WorldWideScience

Sample records for hyperthermia ultrasound array

  1. MR thermometry characterization of a hyperthermia ultrasound array designed using the k-space computational method

    Directory of Open Access Journals (Sweden)

    Lee Hotaik

    2006-10-01

    Full Text Available Abstract Background Ultrasound induced hyperthermia is a useful adjuvant to radiation therapy in the treatment of prostate cancer. A uniform thermal dose (43°C for 30 minutes is required within the targeted cancerous volume for effective therapy. This requires specific ultrasound phased array design and appropriate thermometry method. Inhomogeneous, acoustical, three-dimensional (3D prostate models and economical computational methods provide necessary tools to predict the appropriate shape of hyperthermia phased arrays for better focusing. This research utilizes the k-space computational method and a 3D human prostate model to design an intracavitary ultrasound probe for hyperthermia treatment of prostate cancer. Evaluation of the probe includes ex vivo and in vivo controlled hyperthermia experiments using the noninvasive magnetic resonance imaging (MRI thermometry. Methods A 3D acoustical prostate model was created using photographic data from the Visible Human Project®. The k-space computational method was used on this coarse grid and inhomogeneous tissue model to simulate the steady state pressure wavefield of the designed phased array using the linear acoustic wave equation. To ensure the uniformity and spread of the pressure in the length of the array, and the focusing capability in the width of the array, the equally-sized elements of the 4 × 20 elements phased array were 1 × 14 mm. A probe was constructed according to the design in simulation using lead zerconate titanate (PZT-8 ceramic and a Delrin® plastic housing. Noninvasive MRI thermometry and a switching feedback controller were used to accomplish ex vivo and in vivo hyperthermia evaluations of the probe. Results Both exposimetry and k-space simulation results demonstrated acceptable agreement within 9%. With a desired temperature plateau of 43.0°C, ex vivo and in vivo controlled hyperthermia experiments showed that the MRI temperature at the steady state was 42.9 ± 0.38

  2. Theoretical study of acoustic field patterns of 2-D ultrasound phased arrays for hyperthermia therapy

    Institute of Scientific and Technical Information of China (English)

    HUO Jian; ZHANG Wei; SHI Keren

    2005-01-01

    Acoustic field patterns of 2-D ultrasound phased arrays for the high intensity focused ultrasound (HIFU) hyperthermia therapy are studied, and controlling algorithms of field patterns are provided. The 2-D phased array using the conventional single-focus scanning pattern can exactly control the focal distance and the steering direction of the beam, but in general produce a single focus. Extremely high intensity levels will be needed when this pattern is used to treat large tumors. However, a direct synthesis method of the acoustic field based on the pseudo-inverse matrix can produce the multiple-focus field pattern. The rectangular radiator method of the acoustic field was used to simulate the single-focus scanning pattern and the multiple-focus pattern which are produced by a 2-D phased array consisting of 20×20 elements,and simulation results show that the 2-D array using the multiple-focus pattern can produce several foci with lower intensity levels simultaneously. Furthermore, the improved eigenvector algorithm was used to optimize the intensity gain of the multiple-focus pattern. It is shown to increase the power deposition in the target volume and eliminate the undesired interference.And the multiple-focus pattern also allows the complex excitation vector to be weighted to increase the array excitation efficiency, and therefore we can only control the phase distribution of the excitation vector to realize the phase-only multiple-focus pattern synthesis.

  3. The concentric-ring array for ultrasound hyperthermia: combined mechanical and electrical scanning.

    Science.gov (United States)

    Ibbini, M S; Cain, C A

    1990-01-01

    While two-dimensional phased arrays can be electronically focused and steered in three dimensions without physically moving the applicator, they generally require a relatively large number of small transducer elements and, consequently, complex drive electronics. A configuration that does not require a large number of elements is that of a concentric-ring array. The field conjugation method can be used to produce a focal spot (or multiple spots) along the array axis. The resulting focal regions are very small and need to be steered transversely to heat tumours of typical size. However, steering the focused beam away from the array axis results in annular heating patterns which are often associated with undesired secondary foci (hot spots). In this paper, a method based on combining electrical and mechanical scanning using a concentric-ring applicator is presented. Advantages of the new method over the mechanically scanned fixed-focus transducers, currently in use, are pointed out. Computer simulations are conducted to investigate the possibility of heating different size tumours by appropriately combining the two scanning techniques. The bioheat transfer equation is solved numerically and temperature distributions associated with relevant heating patterns are presented and discussed. The simulations demonstrate the possibility of the combined technique to produce useful heating patterns which cannot be produced by either technique separately.

  4. An improved MRI guided ultrasound system for superficial tumor hyperthermia

    Science.gov (United States)

    Zhu, Mengyuan; Shen, Guofeng; Su, Zhiqiang; Chen, Sheng; Wu, Hao

    2017-03-01

    Among many methods in tumor treatment, ultrasound hyperthermia is characterized by non-invasiveness, and it has been proven very effective for clinical treatment. But the problem of monitoring temperature limits its development. MRI-based temperature mapping techniques are safe compared with invasive methods and have been applied to detect temperature changes for a variety of applications. Among these techniques, the proton resonance frequency (PRF) method is relatively advanced. With a temperature measuring experiment and experiment conducted on tumors inside rabbit legs, the effectiveness of PRF method has been proved. This paper is to introduce an MRI guided ultrasound superficial tumor hyperthermia instrument based on PRF method.

  5. Thermoradiotherapy using ultrasound hyperthermia system for supraclavicular lymph node metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Kuroki, Masaomi; Ono, Seiji; Shiba, Toru; Nishii, Ryuiti; Tamura, Shozo [Miyazaki Medical Coll., Kiyotake (Japan); Hirose, Tetsuo; Kawamura, Shinji

    1998-06-01

    Metastatic lymphnodes located in the subclavian region were treated with thermoradiotherapy using an ultrasound hyperthermia system. The mean size of tumor was 37 mm diameters (range 30-55 mm). Two cases were histologically diagnosed adenocarcinoma and one case was squamous cell carcinoma. The radiation dose was 40-64 Gy. The hyperthermia was performed once or twice a week, total number of session was 4-6. The ultrasound frequency of applicator was 1.0 MHz or 1.5 MHz. The temperature of tumor center was measured by thermo-couples. In three out of 4 cases the tumor temperature raised over 42.5degC within about 6 minutes but temperature of skin surface were under 37.0degC. Three cases had complete response and one case had partial response. Side effects were occurred in two cases, those were pain of clavicle and weakness of affected side arm and blister. The thermoradiotherapy using ultrasound hyperthermia system was considered to be useful modality for subclavian lymphnode metastasis. (author)

  6. Intracranial Dual-Mode IVUS and Hyperthermia Using Circular Arrays: Preliminary Experiments

    OpenAIRE

    Patel, Vivek; Light, Edward; Herickhoff, Carl; Grant, Gerald; Britz, Gavin; Wilson, Christy; Palmeri, Mark; Smith, Stephen

    2013-01-01

    In this study, we investigated the feasibility of using 3.5-Fr (3 Fr = 1 mm) circular phased-array intravascular ultrasound (IVUS) catheters for minimally invasive, image-guided hyperthermia treatment of tumors in the brain. Feasibility was demonstrated in two ways: (1) by inserting a 3.5-Fr IVUS catheter through skull burr holes, for 20 MHz brain imaging in the pig model, and (2) by testing a modified circular array for therapy potential with 18.5-MHz and 9-MHz continuous wave (CW) excitatio...

  7. Mixed Frequency Ultrasound Phased Array

    Institute of Scientific and Technical Information of China (English)

    香勇; 霍健; 施克仁; 陈以方

    2004-01-01

    A mixed frequency ultrasonic phased array (MPA) was developed to improve the focus, in which the element excitation frequencies are not all the same as in a normal constant frequency phased array. A theoretical model of the mixed frequency phased array based on the interference principle was used to simulate the array's sound distribution. The pressure intensity in the array focal area was enhanced and the scanning area having effective contrast resolution was enlarged. The system is especially useful for high intensity focused ultrasound (HIFU) with more powerful energy and ultrasound imaging diagnostics with improved signal to noise ratios, improved beam forming and more uniform imaging quality.

  8. Controlled Hyperthermia with MRI-guided Focused Ultrasound

    DEFF Research Database (Denmark)

    Hokland, Steffen; Salomir, Rares; Pedersen, Michael

    within the plane ROI with steep temperature gradients at its boundaries. Covering the ROI by several consecutive spirals individually modified with respect to applied FUS power and local speed of the focal point based on the MRI temperature maps, the thermal profile may be controlled towards a pre......Introduction: Hyperthermia is an appealing oncological treatment since the significant regions of hypoxia contained in most solid tumours are known to be sensitive to the cytotoxic effect of heat. However, due to the seemingly insurmountable technical difficulties associated with delivering thermal...... doses sufficient to induce cellular deactivation thermotherapy is still regarded as an experimental treatment. In contrast to other thermo-therapeutic modalities Focused Ultrasound (FUS) may be employed non-invasively to deliver a highly localized thermal build-up in deep seated regions of the body...

  9. Development of a spherically focused phased array transducer for ultrasonic image-guided hyperthermia

    Science.gov (United States)

    Liu, Jingfei; Foiret, Josquin; Stephens, Douglas N.; Le Baron, Olivier; Ferrara, Katherine W.

    2016-07-01

    A 1.5 MHz prolate spheroidal therapeutic array with 128 circular elements was designed to accommodate standard imaging arrays for ultrasonic image-guided hyperthermia. The implementation of this dual-array system integrates real-time therapeutic and imaging functions with a single ultrasound system (Vantage 256, Verasonics). To facilitate applications involving small animal imaging and therapy the array was designed to have a beam depth of field smaller than 3.5 mm and to electronically steer over distances greater than 1 cm in both the axial and lateral directions. In order to achieve the required f number of 0.69, 1-3 piezocomposite modules were mated within the transducer housing. The performance of the prototype array was experimentally evaluated with excellent agreement with numerical simulation. A focal volume (2.70 mm (axial)  ×  0.65 mm (transverse)  ×  0.35 mm (transverse)) defined by the  -6 dB focal intensity was obtained to address the dimensions needed for small animal therapy. An electronic beam steering range defined by the  -3 dB focal peak intensity (17 mm (axial)  ×  14 mm (transverse)  ×  12 mm (transverse)) and  -8 dB lateral grating lobes (24 mm (axial)  ×  18 mm (transverse)  ×  16 mm (transverse)) was achieved. The combined testing of imaging and therapeutic functions confirmed well-controlled local heating generation and imaging in a tissue mimicking phantom. This dual-array implementation offers a practical means to achieve hyperthermia and ablation in small animal models and can be incorporated within protocols for ultrasound-mediated drug delivery.

  10. Regional hyperthermia for deep-seated malignancies using the BSD annular array.

    Science.gov (United States)

    Shimm, D S; Cetas, T C; Oleson, J R; Gross, E R; Buechler, D N; Fletcher, A M; Dean, S E

    1988-01-01

    Forty-four patients were treated using the BSD-1000 Annular Phased Array between April 1983 and December 1986. There were 32 pelvic, nine abdominal, two extremity, and one thoracic sites treated. Mean tumour volume was 646 cc. Thirty-nine patients had concurrent radiation therapy, receiving a mean dose of 38 Gy. Mean average temperature was 41.0 +/- 1.4 degrees C. Most patients experienced local or systemic toxicity, requiring temporary treatment interruption in 33 patients, and termination of treatment in eight. Chronic complications were seen in four, but these were in patients receiving high total radiation doses as well. There were six complete and five partial responses. Among the 32 patients with pelvic tumours, mean tumour volume was 317 cc, mean radiation dose was 42 Gy, and mean average temperature was 41.3 +/- 1.2 degrees C. There were five complete and four partial responses. Achieving tumour temperatures greater than or equal to 42 degrees C with the annular array is difficult, due to both systemic and local toxicity. To improve clinical hyperthermia for thoracic, abdominal, and pelvic tumours, new technologies such as steerable phased array microwave systems; scanned, focused ultrasound; and permanently implantable thermoregulating ferromagnetic seeds, or new approaches such as using drugs to alter blood flow, or combining hyperthermia with antineoplastic drugs or biological agents, will be necessary.

  11. Endocavitary Ultrasound Applicator for Hyperthermia Treatment of Cervical Cancer

    Science.gov (United States)

    Wootton, Jeffery; Chen, Xin; Juang, Titania; Rieke, Viola; Hsu, I.-Chow Joe; Diederich, Chris

    2009-04-01

    An endocavitary ultrasound applicator has been developed for targeted heat delivery to the cervix. The device has multiple sectored tubular transducers for truly 3-D heating control (angular and along the length) and is integrated with an intracavitary HDR brachytherapy applicator for sequential administration of conformal heat and radiation. Brachytherapy treatment planning data are inspected to determine target thermal treatment volumes. Heat treatments are simulated with an acoustic and biothermal model of cervical tissue. Power control to individual elements and sectors is implemented for global maximum and pilot point control to limit rectum and bladder temperature. A parametric analysis of device parameters, tissue properties, and catheter materials is conducted to assess their effects on heating patterns and inform device development. Acoustic output of all devices was characterized. MR thermal imaging is used to analyze 3-D conformal heating capabilities in ex vivo tissue and compare to theoretical predictions. Devices were fabricated with 1-3 transducers at 6.5-8 MHz with sectors from 90-180° and heating length from 15-35 mm housed within a 6 mm diameter water-cooled PET catheter. Directional heating from sectored transducers can extend lateral penetration of therapeutic heating (41° C)>2 cm while maintaining rectum and bladder temperatures within 12 mm below thermal damage thresholds. MR artifacts extended cervical hyperthermia.

  12. Intracranial dual-mode IVUS and hyperthermia using circular arrays: preliminary experiments.

    Science.gov (United States)

    Patel, Vivek; Light, Edward; Herickhoff, Carl; Grant, Gerald; Britz, Gavin; Wilson, Christy; Palmeri, Mark; Smith, Stephen

    2013-01-01

    In this study, we investigated the feasibility of using 3.5-Fr (3 Fr = 1 mm) circular phased-array intravascular ultrasound (IVUS) catheters for minimally invasive, image-guided hyperthermia treatment of tumors in the brain. Feasibility was demonstrated in two ways: (1) by inserting a 3.5-Fr IVUS catheter through skull burr holes, for 20 MHz brain imaging in the pig model, and (2) by testing a modified circular array for therapy potential with 18.5-MHz and 9-MHz continuous wave (CW) excitation. The imaging transducer's performance was superior to our previous 9-MHz mechanical IVUS prototype. The therapy catheter transducer was driven by CW electrical power at 18.5 MHz, achieving temperature changes reaching +8°C at a depth of 2 mm in a human glioblastoma grown on the flank of a mouse with minimal transducer resistive heating of +2°C. Further hyperthermia trials showed that 9-MHz CW excitation produced temperature changes of +4.5°C at a depth of 12 mm-a sufficient temperature rise for our long-term goal of targeted, controlled drug release via thermosensitive liposomes for therapeutic treatment of 1-cm-diameter glioblastomas.

  13. Feasibility of A-mode ultrasound attenuation as a monitoring method of local hyperthermia treatment.

    Science.gov (United States)

    Manaf, Noraida Abd; Aziz, Maizatul Nadwa Che; Ridzuan, Dzulfadhli Saffuan; Mohamad Salim, Maheza Irna; Wahab, Asnida Abd; Lai, Khin Wee; Hum, Yan Chai

    2016-06-01

    Recently, there is an increasing interest in the use of local hyperthermia treatment for a variety of clinical applications. The desired therapeutic outcome in local hyperthermia treatment is achieved by raising the local temperature to surpass the tissue coagulation threshold, resulting in tissue necrosis. In oncology, local hyperthermia is used as an effective way to destroy cancerous tissues and is said to have the potential to replace conventional treatment regime like surgery, chemotherapy or radiotherapy. However, the inability to closely monitor temperature elevations from hyperthermia treatment in real time with high accuracy continues to limit its clinical applicability. Local hyperthermia treatment requires real-time monitoring system to observe the progression of the destroyed tissue during and after the treatment. Ultrasound is one of the modalities that have great potential for local hyperthermia monitoring, as it is non-ionizing, convenient and has relatively simple signal processing requirement compared to magnetic resonance imaging and computed tomography. In a two-dimensional ultrasound imaging system, changes in tissue microstructure during local hyperthermia treatment are observed in terms of pixel value analysis extracted from the ultrasound image itself. Although 2D ultrasound has shown to be the most widely used system for monitoring hyperthermia in ultrasound imaging family, 1D ultrasound on the other hand could offer a real-time monitoring and the method enables quantitative measurement to be conducted faster and with simpler measurement instrument. Therefore, this paper proposes a new local hyperthermia monitoring method that is based on one-dimensional ultrasound. Specifically, the study investigates the effect of ultrasound attenuation in normal and pathological breast tissue when the temperature in tissue is varied between 37 and 65 °C during local hyperthermia treatment. Besides that, the total protein content measurement was also

  14. Microwave array applicator for radiometry-controlled superficial hyperthermia

    Science.gov (United States)

    Stauffer, Paul R.; Jacobsen, Svein; Neuman, Daniel

    2001-06-01

    Hyperthermia therapy has been shown clinically effective for a variety of skin diseases but current heating equipment is inadequate for most patients. This effort describes the design and performance of a flexible microstrip array applicator intended for heating large regions of tissue over contoured anatomy while at the same time monitoring temperature of the underlying tissue by non-invasive radiometric sensing of blackbody radiation from the heated volume. For this dual purpose applicator, an array of broadband Archimedean spiral receive antennas is integrated into an array of Dual Concentric Conductor heating apertures. Applicator heating uniformity is assessed with electric field scans in homogenous muscle phantoms and with measured temperature distributions in clinical treatments of chestwall recurrence of breast carcinoma. The data demonstrate precisely controlled heating out to the perimeter of large (40 x 13 cm2) multiaperture conformal array applicators. Capabilities of the radiometry system are assessed by correlation of brightness temperatures measured in phantom loads of known temperature distribution as seen through an intervening 5 mm thick water bolus at constant 40°C. The radiometer demonstrates excellent sensitivity and an accuracy of +0.1-0.45°C for temperature measurements up to 5 cm deep in phantom when using a one dimensional weighting function analysis and up to 6 independent 500 MHz bandwidths within the 1-4 GHz range. The data clearly indicate that both heating and radiometric thermometry are possible using the same thin and flexible printed circuit board microstrip array applicator. Once development is complete, this dual mode conformal array applicator with multiplexed radiometric display system should provide significantly improved uniformity and ease of heating large area superficial tissue disease.

  15. Spatial and temporal-controlled tissue heating on a modified clinical ultrasound scanner for generating mild hyperthermia in tumors.

    Science.gov (United States)

    Kruse, Dustin E; Lai, Chun-Yen; Stephens, Douglas N; Sutcliffe, Patrick; Paoli, Eric E; Barnes, Stephen H; Ferrara, Katherine W

    2010-01-01

    A new system is presented for generating controlled tissue heating with a clinical ultrasound scanner, and initial in vitro and in vivo results are presented that demonstrate both transient and sustained heating in the mild-hyperthermia range of 37 ( degrees )C-42 ( degrees )C. The system consists of a Siemens Antares ultrasound scanner, a custom dual-frequency three-row transducer array and an external temperature feedback control system. The transducer has two outer rows that operate at 1.5 MHz for tissue heating and a center row that operates at 5 MHz for B-mode imaging to guide the therapy. We compare the field maps obtained using a hydrophone against calculations of the ultrasound beam based on monochromatic and linear assumptions. Using the finite-difference time-domain (FDTD) method, we compare predicted time-dependent thermal profiles to measured profiles for soy tofu as a tissue-mimicking phantom. In vitro results show differential heating of 6 ( degrees )C for chicken breast and tofu. In vivo tests of the system were performed on three mice bearing Met-1 tumors, which is a model of aggressive, metastatic, and highly vascular breast cancer. In superficially implanted tumors, we demonstrate controlled heating to 42 ( degrees )C. We show that the system is able to maintain the temperature to within 0.1 ( degrees )C of the desired temperature both in vitro and in vivo.

  16. Model-based feasibility assessment and evaluation of prostate hyperthermia with a commercial MR-guided endorectal HIFU ablation array

    Energy Technology Data Exchange (ETDEWEB)

    Salgaonkar, Vasant A., E-mail: salgaonkarv@radonc.ucsf.edu; Hsu, I-C.; Diederich, Chris J. [Thermal Therapy Research Group, Radiation Oncology, University of California San Francisco, 1600 Divisadero Street, Suite H-1031, San Francisco, California 94143 (United States); Prakash, Punit [Department of Electrical and Computer Engineering, Kansas State University, 2077 Rathbone Hall, Manhattan, Kansas 66506 (United States); Rieke, Viola; Ozhinsky, Eugene; Kurhanewicz, John [Department of Radiology and Biomedical Imaging, University of California San Francisco, 505 Parnassus Avenue, San Francisco, California 94143 (United States); Plata, Juan [Department of Radiology, Stanford University, 1201 Welch Road, Stanford, California 94305 (United States)

    2014-03-15

    Purpose: Feasibility of targeted and volumetric hyperthermia (40–45 °C) delivery to the prostate with a commercial MR-guided endorectal ultrasound phased array system, designed specifically for thermal ablation and approved for ablation trials (ExAblate 2100, Insightec Ltd.), was assessed through computer simulations and tissue-equivalent phantom experiments with the intention of fast clinical translation for targeted hyperthermia in conjunction with radiotherapy and chemotherapy. Methods: The simulations included a 3D finite element method based biothermal model, and acoustic field calculations for the ExAblate ERUS phased array (2.3 MHz, 2.3 × 4.0 cm{sup 2}, ∼1000 channels) using the rectangular radiator method. Array beamforming strategies were investigated to deliver protracted, continuous-wave hyperthermia to focal prostate cancer targets identified from representative patient cases. Constraints on power densities, sonication durations and switching speeds imposed by ExAblate hardware and software were incorporated in the models. Preliminary experiments included beamformed sonications in tissue mimicking phantoms under MR temperature monitoring at 3 T (GE Discovery MR750W). Results: Acoustic intensities considered during simulation were limited to ensure mild hyperthermia (T{sub max} < 45 °C) and fail-safe operation of the ExAblate array (spatial and time averaged acoustic intensity I{sub SATA} < 3.4 W/cm{sup 2}). Tissue volumes with therapeutic temperature levels (T > 41 °C) were estimated. Numerical simulations indicated that T > 41 °C was calculated in 13–23 cm{sup 3} volumes for sonications with planar or diverging beam patterns at 0.9–1.2 W/cm{sup 2}, in 4.5–5.8 cm{sup 3} volumes for simultaneous multipoint focus beam patterns at ∼0.7 W/cm{sup 2}, and in ∼6.0 cm{sup 3} for curvilinear (cylindrical) beam patterns at 0.75 W/cm{sup 2}. Focused heating patterns may be practical for treating focal disease in a single posterior

  17. Controlled Hyperthermia with MRI-guided Focused Ultrasound

    DEFF Research Database (Denmark)

    Hokland, Steffen; Salomir, Rares; Pedersen, Michael

    -based temperature maps. Discussion MRI-thermometry: Of the various MRI-based thermometers the temperature dependent chemical shift of the proton resonance frequency (PRF) is the most widely used providing accurate and high resolution temperature maps. The primary weaknesses of PRF-based thermometry...... is the vulnerability to motion-artifacts, baseline drift and the fact that the PRF in lipids is independent of temperature. FUS-technology: At moderate intensities absorption of ultrasound (US) in tissue results in a local increase in temperature. As in other wave phenomena the extent of the focal point...

  18. Phased array based ultrasound scanning system development

    Science.gov (United States)

    Sagdiev, R. K.; Denisov, E. S.; Evdokimov, Yu K.; Fazlyyyakhmatov, M. G.; Kashapov, N. F.

    2014-12-01

    Multichannel ultrasound scanning system based on phased arrays development is presented in this paper. Substantiation of system parameters is presented. The description of block diagram and hardware development is presented. The combination of the self-developed receiving and a transmitting units and commercially available FPGA unit and Personal Computer can solve our scientific goals, while providing a relatively low device cost.

  19. Patient specific optimization-based treatment planning for catheter-based ultrasound hyperthermia and thermal ablation

    Science.gov (United States)

    Prakash, Punit; Chen, Xin; Wootton, Jeffery; Pouliot, Jean; Hsu, I.-Chow; Diederich, Chris J.

    2009-02-01

    A 3D optimization-based thermal treatment planning platform has been developed for the application of catheter-based ultrasound hyperthermia in conjunction with high dose rate (HDR) brachytherapy for treating advanced pelvic tumors. Optimal selection of applied power levels to each independently controlled transducer segment can be used to conform and maximize therapeutic heating and thermal dose coverage to the target region, providing significant advantages over current hyperthermia technology and improving treatment response. Critical anatomic structures, clinical target outlines, and implant/applicator geometries were acquired from sequential multi-slice 2D images obtained from HDR treatment planning and used to reconstruct patient specific 3D biothermal models. A constrained optimization algorithm was devised and integrated within a finite element thermal solver to determine a priori the optimal applied power levels and the resulting 3D temperature distributions such that therapeutic heating is maximized within the target, while placing constraints on maximum tissue temperature and thermal exposure of surrounding non-targeted tissue. This optimizationbased treatment planning and modeling system was applied on representative cases of clinical implants for HDR treatment of cervix and prostate to evaluate the utility of this planning approach. The planning provided significant improvement in achievable temperature distributions for all cases, with substantial increase in T90 and thermal dose (CEM43T90) coverage to the hyperthermia target volume while decreasing maximum treatment temperature and reducing thermal dose exposure to surrounding non-targeted tissues and thermally sensitive rectum and bladder. This optimization based treatment planning platform with catheter-based ultrasound applicators is a useful tool that has potential to significantly improve the delivery of hyperthermia in conjunction with HDR brachytherapy. The planning platform has been extended

  20. [System design of small intellectualized ultrasound hyperthermia instrument in the LabVIEW environment].

    Science.gov (United States)

    Jiang, Feng; Bai, Jingfeng; Chen, Yazhu

    2005-08-01

    Small-scale intellectualized medical instrument has attracted great attention in the field of biomedical engineering, and LabVIEW (Laboratory Virtual Instrument Engineering Workbench) provides a convenient environment for this application due to its inherent advantages. The principle and system structure of the hyperthermia instrument are presented. Type T thermocouples are employed as thermotransducers, whose amplifier consists of two stages, providing built-in ice point compensation and thus improving work stability over temperature. Control signals produced by specially designed circuit drive the programmable counter/timer 8254 chip to generate PWM (Pulse width modulation) wave, which is used as ultrasound radiation energy control signal. Subroutine design topics such as inner-tissue real time feedback temperature control algorithm, water temperature control in the ultrasound applicator are also described. In the cancer tissue temperature control subroutine, the authors exert new improvments to PID (Proportional Integral Differential) algorithm according to the specific demands of the system and achieve strict temperature control to the target tissue region. The system design and PID algorithm improvement have experimentally proved to be reliable and excellent, meeting the requirements of the hyperthermia system.

  1. Passive cavitation imaging with ultrasound arrays.

    Science.gov (United States)

    Salgaonkar, Vasant A; Datta, Saurabh; Holland, Christy K; Mast, T Douglas

    2009-12-01

    A method is presented for passive imaging of cavitational acoustic emissions using an ultrasound array, with potential application in real-time monitoring of ultrasound ablation. To create such images, microbubble emissions were passively sensed by an imaging array and dynamically focused at multiple depths. In this paper, an analytic expression for a passive image is obtained by solving the Rayleigh-Sommerfield integral, under the Fresnel approximation, and passive images were simulated. A 192-element array was used to create passive images, in real time, from 520-kHz ultrasound scattered by a 1-mm steel wire. Azimuthal positions of this target were accurately estimated from the passive images. Next, stable and inertial cavitation was passively imaged in saline solution sonicated at 520 kHz. Bubble clusters formed in the saline samples were consistently located on both passive images and B-scans. Passive images were also created using broadband emissions from bovine liver sonicated at 2.2 MHz. Agreement was found between the images and source beam shape, indicating an ability to map therapeutic ultrasound beams in situ. The relation between these broadband emissions, sonication amplitude, and exposure conditions are discussed.

  2. Model-based feasibility assessment and evaluation of prostate hyperthermia with a commercial MR-guided endorectal HIFU ablation array

    Science.gov (United States)

    Salgaonkar, Vasant A.; Prakash, Punit; Rieke, Viola; Ozhinsky, Eugene; Plata, Juan; Kurhanewicz, John; Hsu, I.-C. Joe; Diederich, Chris J.

    2017-03-01

    Here, operational modifications to a commercial MR-guided ultrasound phased array designed for prostate ablation (part of ExAblate 2100, InSightec Ltd) are presented for the delivery of protracted mild (40 - 45°C) hyperthermia to large contiguous target volumes in the prostate. This high-intensity focused ultrasound phased array is already in clinical trials for prostate ablation, and can be potentially fast-tracked for clinical hyperthermia treatments. As a part of this preliminary feasibility study, patient-specific numerical simulations were performed using Pennes bioheat model and acoustic field calculations were conducted using the rectangular radiator method for the ExAblate prostate array (2.3 MHz, 2.3×4.0 cm2, ˜1000 channels). Thermal solutions were computed using 3D finite element methods (FEM) implemented using Comsol Multiphysics (Comsol Inc). The patient-specific geometries were created through manual segmentation of anatomical structures from representative patient MRIs and 3D rendering (Mimics 15.01, Materialise) and generation of finite element meshes (3-Matic 7.01, Materialise). Array beamforming was employed and acoustic fields were synthesized (Matlab 2010a, MathWorks) to deliver protracted continuous wave hyperthermia to focal prostate cancer targets identified in the patient-specific models. Constraints on power densities, sonication durations and switching speeds imposed by ExAblate hardware and software were incorporated in the models. Sonication strategies explored during modeling were implemented on the ExAblate prostate array and preliminary experiments were conducted in tissue mimicking phantoms under MR temperature monitoring at 3 T (GE Discovery MR750W). Therapeutic temperatures (40 - 45 °C) could be established conformably in focal cancer volumes in a single prostate quadrant using focused heating patterns and hemi-gland heating was possible using diffused heating patterns (iso-phase or diverging). T>41 °C was calculated in 13

  3. Body conformable 915 MHz microstrip array applicators for large surface area hyperthermia

    Energy Technology Data Exchange (ETDEWEB)

    Lee, E.R.; Tarczy-Hornoch, P.; Kapp, S.; Fessenden, P.; Lohrbach, A.W.; Prionas, S.D. (Stanford University Medical Center, CA (United States)); Wilsey, T. (Carian Associates, Palo Alto, CA (United States))

    1992-01-01

    The optimal treatment with hyperthermia of superficially located tumors which involve large surface areas requires applicators which can physically conform to body contours, and locally alter their power deposition patterns to adjust for nonuniform temperature caused by tissue inhomogeneities and blood flow variations. A series of 915 MHz microstrip array applicators satisfying these criteria have been developed and clinically tested. Clinical and engineering design tradeoffs for practical devices are discussed. Measurements taken in tissue equivalent phantoms and a summary of clinical experiences with these microstrip arrays are presented.

  4. A dynamic two-dimensional phantom for ultrasound hyperthermia controller testing.

    Science.gov (United States)

    Payne, A; Mattingly, M; Shelkey, J; Scott, E; Roemer, R

    2001-01-01

    A new thin layer phantom for testing hyperthermia controllers has been constructed and evaluated using an ultrasound hyperthermia system. The phantom's thermal behaviour agrees with the characteristics of the Pennes' bio-heat transfer equation (BHTE). In particular, the experimental and theoretical results agree in the following ways. First, with respect to the power deposition: for a given power magnitude and scan radius, the shape of the temperature distribution across the phantom corresponds to the shape predicted by the BHTE and the experimental and theoretical temperature values agree closely; when the power magnitude is varied at a fixed scan radius, the average temperature of the phantom varies linearly with the applied power, and as the scan radius is varied at a fixed power magnitude, the average temperature increases with decreasing scan radius size. Secondly, with respect to perfusion: increasing or decreasing the flow rate over the phantom simulates an increase or decrease in the BHTE perfusion term, and the estimated perfusion values are dependent on flow rate only, and are not functions of power or geometry. The combination of these experimental and theoretical results validate the phantom's potential for testing feedback control systems, particularly for future use in the development and verification of model-based controllers. The use of this phantom should improve and accelerate the testing and evaluation of feedback control systems, and reduce the need for animal and human testing.

  5. A head and neck hyperthermia applicator: Theoretical antenna array design

    NARCIS (Netherlands)

    Paulides, M.M.; Bakker, J.F.; Zwamborn, A.P.M.; Rhoon, G.C. van

    2007-01-01

    Purpose: Investigation into the feasibility of a circular array of dipole antennas to deposit RF-energy centrally in the neck as a function of: 1) patient positioning, 2) antenna ring radius, 3) number of antenna rings, 4) number of antennas per ring and 5) distance between antenna rings. Materials

  6. A head and neck hyperthermia applicator: Theoretical antenna array design

    NARCIS (Netherlands)

    M.M. Paulides (Margarethus); J.F. Bakker (Jurriaan); A.P.M. Zwamborn; G.C. van Rhoon (Gerard)

    2007-01-01

    textabstractPurpose: Investigation into the feasibility of a circular array of dipole antennas to deposit RF-energy centrally in the neck as a function of: (1) patient positioning, (2) antenna ring radius, (3) number of antenna rings, (4) number of antennas per ring and (5) distance between antenna

  7. Hyperthermia studies using inductive and ultrasound methods on E. coli bacteria and mouse glioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Cabral–Prieto, A., E-mail: agustin.cabral@inin.gob.mx; López-Callejas, R., E-mail: regulo.lopez@inin.gob.mx; Rodríguez-Méndez, B. G., E-mail: benjamin.rodriguez@inin.gob.mx; Santos-Cuevas, C. L., E-mail: clara.cuevas@inin.gob.mx [Carretera México-Toluca s/n, La Marquesa, Instituto Nacional de Investigaciones Nucleares (Mexico); Celis-Almazán, J., E-mail: jony-jac-5@hotmail.com; Olea-Mejía, O., E-mail: oleaoscar@yahoo.com.mx [Universidad Autónoma del Estado de México, Centro Conjunto de Investigación en Química Sustentable (Mexico); Gómez-Morales, J. L. [Universidad Autónoma del Estado de México, Campus El Cerrillo, Facultad de Ciencias (Mexico); Peña-Eguiluz, R., E-mail: rosendo.eguiluz@inin.gob.mx; Valencia-Alvarado, R., E-mail: raul.valencia@inin.gob.mx; Mercado-Cabrera, A., E-mail: antonio.mercado@inin.gob.mx; Muñoz-Castro, A. E., E-mail: arturo.munoz@inin.gob.mx [Carretera México-Toluca s/n, La Marquesa, Instituto Nacional de Investigaciones Nucleares (Mexico); García-Santibañez, F., E-mail: fegasa2@yahoo.com.mx [Universidad Autónoma del Estado de México, Campus El Cerrillo, Facultad de Ciencias (Mexico)

    2017-11-15

    The survival of Escherichia coli bacteria and mouse glioma cells were studied under different temperatures using direct heating in water, ultrasound, and magnetic fluid hyperthermia. The survival of these microorganisms depended on whether the heating mode was continuous or discontinuous, surviving more in the former than in the discontinuous heating mode. Whereas Escherichia coli bacteria did not survive at temperatures ≥50{sup ∘}C, the mouse glioma cells did not survive at temperatures ≥48{sup ∘}C. The survival of both these microorganisms was independent of the presence or absence of the magnetic nanoparticles of magnetite, suggesting that these, having mean particle sizes of 9.5, 8.5 and 5, did not show any apparent cytotoxicity effect. Present results also showed that the inductive heating system which used a radiofrequency of 13.56 MHz, providing a maximum magnetic field strength of 160 A/m, the electric rather than magnetic heating predominated.

  8. Thermal dosimetry analysis combined with patient-specific thermal modeling of clinical interstitial ultrasound hyperthermia integrated within HDR brachytherapy for treatment of locally advanced prostate cancer

    Science.gov (United States)

    Salgaonkar, Vasant A.; Wootton, Jeff; Prakash, Punit; Scott, Serena; Hsu, I. C.; Diederich, Chris J.

    2017-03-01

    This study presents thermal dosimetry analysis from clinical treatments where ultrasound hyperthermia (HT) was administered following high-dose rate (HDR) brachytherapy treatment for locally advanced prostate cancer as part of a clinical pilot study. HT was administered using ultrasound applicators from within multiple 13-g brachytherapy catheters implanted along the posterior periphery of the prostate. The heating applicators were linear arrays of sectored tubular transducers (˜7 MHz), with independently powered array elements enabling energy deposition with 3D spatial control. Typical heat treatments employed time-averaged peak acoustic intensities of 1 - 3 W/cm2 and lasted for 60 - 70 minutes. Throughout the treatments, temperatures at multiple points were monitored using multi-junction thermocouples, placed within available brachytherapy catheters throughout mid-gland prostate and identified as the hyperthermia target volume (HTV). Clinical constraints allowed placement of 8 - 12 thermocouple sensors in the HTV and patient-specific 3D thermal modeling based on finite element methods (FEM) was used to supplement limited thermometry. Patient anatomy, heating device positions, orientations, and thermometry junction locations were obtained from patient CT scans and HDR and hyperthermia planning software. The numerical models utilized the applied power levels recorded during the treatments. Tissue properties such as perfusion and acoustic absorption were varied within physiological ranges such that squared-errors between measured and simulated temperatures were minimized. This data-fitting was utilized for 6 HT treatments to estimate volumetric temperature distributions achieved in the HTV and surrounding anatomy devoid of thermocouples. For these treatments, the measured and simulated T50 values in the hyperthermia target volume (HTV) were between 40.1 - 43.9 °C and 40.3 - 44.9 °C, respectively. Maximum temperatures between 46.8 - 49.8 °C were measured during

  9. Relationship between acoustic aperture size and tumor conditions for external ultrasound hyperthermia.

    Science.gov (United States)

    Lin, W L; Yen, J Y; Chen, Y Y; Jin, K W; Shieh, M J

    1999-05-01

    External ultrasound hyperthermia is a very flexible modality for heating deep-seated tumors due to its deep penetration and focusing ability. However, under the constraints of the available acoustic aperture size for the ultrasonic beam, ultrasonic attenuation, as well as other anatomic properties, it may not be able to deliver sufficient ultrasonic energy to heat a large tumor located in a deep region without overheating the normal tissue between the tumor and the aperture. In this work, we employ a simulation program based on the steady-state bioheat transfer equation and an ideal ultrasound power deposition (a cone with convergent/divergent shape) to examine the relationship between the minimal diameter of the acoustic aperture and the tumor conditions. Tissue temperatures are used to determine the appropriate aperture diameter and the input power level for a given set of tumor conditions. Due to the assumed central axis symmetry of the power intensity deposition and anatomic properties, a two-dimensional (r-z) simulation program is utilized. Factors determining the acoustic aperture diameter and the input power level considered here are the tumor size, tumor depth, ultrasonic attenuation in tissue, blood perfusion, and temperature of the surface cooling water. Simulation results demonstrate that tumor size, tumor depth, and ultrasonic attenuation are major factors affecting the aperture diameter of the ultrasonic beam to obtain an appropriate temperature distribution, while blood perfusion and the temperature of the surface cooling water are the minor factors. Plots of the effects of these factors can be used as the guideline for designing an optimal ultrasound heating system, arranging the transducers, and planning further treatments.

  10. Micromachined capacitive transducer arrays for intravascular ultrasound

    Science.gov (United States)

    Degertekin, F. Levent; Guldiken, R. Oytun; Karaman, Mustafa

    2005-01-01

    Intravascular ultrasound (IVUS) imaging has become an essential imaging modality for the effective diagnosis and treatment of cardiovascular diseases during the past decade enabled by innovative applications of piezoelectric transducer technology. The limitations in the manufacture and performance of the same piezoelectric transducers have also impeded the improvement of IVUS for emerging clinically important applications such as forward viewing arrays for guiding interventions and high resolution imaging of arterial structure such as vulnerable plaque and fibrous cap, and also implementation of techniques such as harmonic imaging of the tissue and of the contrast agents. Capacitive micromachined ultrasonic transducer (CMUT) technology shows great potential for transforming IVUS not only to satisfy these clinical needs but also to open up possibilities for low-cost imaging devices integrated to therapeutic tools. We have developed manufacturing processes with a maximum process temperature of 250°C to build CMUTs on the same silicon chip with integrated electronics. Using these processes we fabricated CMUT arrays suitable for forward viewing IVUS in the 10-20MHz range. We characterized these array elements in terms of pulse-echo response, radiation pattern measurements and demonstrated its volumetric imaging capabilities on various imaging targets.

  11. Endocervical ultrasound applicator for integrated hyperthermia and HDR brachytherapy in the treatment of locally advanced cervical carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Wootton, Jeffery H.; Hsu, I-Chow Joe; Diederich, Chris J. [Thermal Therapy Research Group, Department of Radiation Oncology, University of California, San Francisco, California 94115 (United States) and Joint Graduate Group in Bioengineering, University of California, Berkeley and San Francisco, California 94115 (United States)

    2011-02-15

    Purpose: The clinical success of hyperthermia adjunct to radiotherapy depends on adequate temperature elevation in the tumor with minimal temperature rise in organs at risk. Existing technologies for thermal treatment of the cervix have limited spatial control or rapid energy falloff. The objective of this work is to develop an endocervical applicator using a linear array of multisectored tubular ultrasound transducers to provide 3-D conformal, locally targeted hyperthermia concomitant to radiotherapy in the uterine cervix. The catheter-based device is integrated within a HDR brachytherapy applicator to facilitate sequential and potentially simultaneous heat and radiation delivery. Methods: Treatment planning images from 35 patients who underwent HDR brachytherapy for locally advanced cervical cancer were inspected to assess the dimensions of radiation clinical target volumes (CTVs) and gross tumor volumes (GTVs) surrounding the cervix and the proximity of organs at risk. Biothermal simulation was used to identify applicator and catheter material parameters to adequately heat the cervix with minimal thermal dose accumulation in nontargeted structures. A family of ultrasound applicators was fabricated with two to three tubular transducers operating at 6.6-7.4 MHz that are unsectored (360 deg.), bisectored (2x180 deg.), or trisectored (3x120 deg.) for control of energy deposition in angle and along the device length in order to satisfy anatomical constraints. The device is housed in a 6 mm diameter PET catheter with cooling water flow for endocervical implantation. Devices were characterized by measuring acoustic efficiencies, rotational acoustic intensity distributions, and rotational temperature distributions in phantom. Results: The CTV in HDR brachytherapy plans extends 20.5{+-}5.0 mm from the endocervical tandem with the rectum and bladder typically <8 mm from the target boundary. The GTV extends 19.4{+-}7.3 mm from the tandem. Simulations indicate that for 60

  12. In vivo hyperthermia effect induced by high-intensity pulsed ultrasound

    Institute of Scientific and Technical Information of China (English)

    Cui Wei-Cheng; Tu Juan; Hwang Joo-Ha; Li Qian; Fan Ting-Bo; Zhang Dong; Chen Jing-Hai; Chen Wei-Zhong

    2012-01-01

    Hyperthermia effects (39-44 ℃) induced by pulsed high-intensity focused ultrasound (HIFU) have been regarded as a promising therapeutic tool for boosting immune responses or enhancing drug delivery into a solid tumor.However,previous studies also reported that the cell death occurs when cells are maintained at 43 ℃ for more than 20 minutes.The aim of this study is to investigate thermal responses inside in vivo rabbit auricular veins exposed to pulsed HIFU (1.17 MHz,5300 W/cm2,with relatively low-duty ratios (0.2%-4.3%).The results show that:(1) with constant pulse repetition frequency (PRF) (e.g.,1 Hz),the thermal responses inside the vessel will increase with the increasing duty ratio; (2) a temperature elevation to 43 ℃ can be identified at the duty ratio of 4.3%; (3) with constant duty ratios,the change of PRF will not significantly affect the temperature measurement in the vessel; (4) as the duty ratios lower than 4.3%,the presence of microbubbles will not significantly enhance the thermal responses in the vessel,but will facilitate HIFU-induced inertial cavitation events.

  13. A temperature-based feedback control system for electromagnetic phased-array hyperthermia: theory and simulation.

    Science.gov (United States)

    Kowalski, M E; Jin, J M

    2003-03-07

    A hybrid proportional-integral-in-time and cost-minimizing-in-space feedback control system for electromagnetic, deep regional hyperthermia is proposed. The unique features of this controller are that (1) it uses temperature, not specific absorption rate, as the criterion for selecting the relative phases and amplitudes with which to drive the electromagnetic phased-array used for hyperthermia and (2) it requires on-line computations that are all deterministic in duration. The former feature, in addition to optimizing the treatment directly on the basis of a clinically relevant quantity, also allows the controller to sense and react to time- and temperature-dependent changes in local blood perfusion rates and other factors that can significantly impact the temperature distribution quality of the delivered treatment. The latter feature makes it feasible to implement the scheme on-line in a real-time feedback control loop. This is in sharp contrast to other temperature optimization techniques proposed in the literature that generally involve an iterative approximation that cannot be guaranteed to terminate in a fixed amount of computational time. An example of its application is presented to illustrate the properties and demonstrate the capability of the controller to sense and compensate for local, time-dependent changes in blood perfusion rates.

  14. Multilayer Array Transducer for Nonlinear Ultrasound Imaging

    Science.gov (United States)

    Owen, Neil R.; Kaczkowski, Peter J.; Li, Tong; Gross, Dan; Postlewait, Steven M.; Curra, Francesco P.

    2011-09-01

    The properties of nonlinear acoustic wave propagation are known to be able to improve the resolution of ultrasound imaging, and could be used to dynamically estimate the physical properties of tissue. However, transducers capable of launching a wave that becomes nonlinear through propagation do not typically have the necessary bandwidth to detect the higher harmonics. Here we present the design and characterization of a novel multilayer transducer for high intensity transmit and broadband receive. The transmit layer was made from a narrow-band, high-power piezoceramic (PZT), with nominal frequency of 2.0 MHz, that was diced into an array of 32 elements. Each element was 0.300 mm wide and 6.3 mm in elevation, and with a pitch of 0.400 mm the overall aperture width was 12.7 mm. A quarter-wave matching layer was attached to the PZT substrate to improve transmit efficiency and bandwidth. The overlaid receive layer was made from polyvinylidene fluoride (PVDF) that had gold metalization on one side. A custom two-sided flex circuit routed electrical connections to the PZT elements and patterned the PVDF elements; the PZT and PVDF elements had identical apertures. A low viscosity and electrically nonconductive epoxy was used for all adhesion layers. Characterization of electrical parameters and acoustic output were performed per standard methods, where transmit and receive events were driven by a software-controlled ultrasound engine. Echo data, collected from ex vivo tissue and digitized at 45 MS/s, exhibited frequency content up to the 4th harmonic of the 2 MHz transmit frequency.

  15. Sub-array patterns of spherical-section phased array for high intensity focused ultrasound surgery

    Institute of Scientific and Technical Information of China (English)

    WANG Xiaodong; WANG Xufei; LU Mingzhu; WAN Mingxi

    2005-01-01

    The sub-array field patterns of spherical-section phased array were implemented for noninvasive ultrasound surgery of liver-tumor. The sub-array approach included field calculation, pseudo-inverse method and genetic algorithm. The sub-arrays uncovered by ribs according to scanned images normally emitted ultrasound. The results from different sub-arrays demonstrated quite satisfied acoustic performances, which included qualified focus size and intensity level for ultrasound surgery with single-focus and multi-foci patterns. Moreover, the patterns could decrease power accumulation on the ribs, and avoid damaging normal tissues. Thus the sub-array method provides a promising tool for phased array ultrasound propagating through strong obstacles like human rib cage, and it may broaden the therapeutic area, make the surgery safer and more flexible.

  16. Implant strategies for endocervical and interstitial ultrasound hyperthermia adjunct to HDR brachytherapy for the treatment of cervical cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wootton, Jeffery H; Prakash, Punit; Hsu, I-Chow Joe; Diederich, Chris J, E-mail: CDiederich@radonc.ucsf.edu [Department of Radiation Oncology, University of California, San Francisco, CA 94115 (United States)

    2011-07-07

    Catheter-based ultrasound devices provide a method to deliver 3D conformable heating integrated with HDR brachytherapy delivery. Theoretical characterization of heating patterns was performed to identify implant strategies for these devices which can best be used to apply hyperthermia to cervical cancer. A constrained optimization-based hyperthermia treatment planning platform was used for the analysis. The proportion of tissue {>=}41 deg. C in a hyperthermia treatment volume was maximized with constraints T{sub max} {<=} 47 deg. C, T{sub rectum} {<=} 41.5 deg. C, and T{sub bladder} {<=} 42.5 deg. C. Hyperthermia treatment was modeled for generalized implant configurations and complex configurations from a database of patients (n = 14) treated with HDR brachytherapy. Various combinations of endocervical (360{sup 0} or 2 x 180{sup 0} output; 6 mm OD) and interstitial (180{sup 0}, 270{sup 0}, or 360{sup 0} output; 2.4 mm OD) applicators within catheter locations from brachytherapy implants were modeled, with perfusion constant (1 or 3 kg m{sup -3} s{sup -1}) or varying with location or temperature. Device positioning, sectoring, active length and aiming were empirically optimized to maximize thermal coverage. Conformable heating of appreciable volumes (>200 cm{sup 3}) is possible using multiple sectored interstitial and endocervical ultrasound devices. The endocervical device can heat >41 deg. C to 4.6 cm diameter compared to 3.6 cm for the interstitial. Sectored applicators afford tight control of heating that is robust to perfusion changes in most regularly spaced configurations. T{sub 90} in example patient cases was 40.5-42.7 deg. C (1.9-39.6 EM{sub 43deg.C}) at 1 kg m{sup -3} s{sup -1} with 10/14 patients {>=}41 deg. C. Guidelines are presented for positioning of implant catheters during the initial surgery, selection of ultrasound applicator configurations, and tailored power schemes for achieving T{sub 90} {>=} 41 deg. C in clinically practical implant

  17. Implant strategies for endocervical and interstitial ultrasound hyperthermia adjunct to HDR brachytherapy for the treatment of cervical cancer.

    Science.gov (United States)

    Wootton, Jeffery H; Prakash, Punit; Hsu, I-Chow Joe; Diederich, Chris J

    2011-07-07

    Catheter-based ultrasound devices provide a method to deliver 3D conformable heating integrated with HDR brachytherapy delivery. Theoretical characterization of heating patterns was performed to identify implant strategies for these devices which can best be used to apply hyperthermia to cervical cancer. A constrained optimization-based hyperthermia treatment planning platform was used for the analysis. The proportion of tissue ≥41 °C in a hyperthermia treatment volume was maximized with constraints T(max) ≤ 47 °C, T(rectum) ≤ 41.5 °C, and T(bladder) ≤ 42.5 °C. Hyperthermia treatment was modeled for generalized implant configurations and complex configurations from a database of patients (n = 14) treated with HDR brachytherapy. Various combinations of endocervical (360° or 2 × 180° output; 6 mm OD) and interstitial (180°, 270°, or 360° output; 2.4 mm OD) applicators within catheter locations from brachytherapy implants were modeled, with perfusion constant (1 or 3 kg m(-3) s(-1)) or varying with location or temperature. Device positioning, sectoring, active length and aiming were empirically optimized to maximize thermal coverage. Conformable heating of appreciable volumes (>200 cm(3)) is possible using multiple sectored interstitial and endocervical ultrasound devices. The endocervical device can heat >41 °C to 4.6 cm diameter compared to 3.6 cm for the interstitial. Sectored applicators afford tight control of heating that is robust to perfusion changes in most regularly spaced configurations. T(90) in example patient cases was 40.5-42.7 °C (1.9-39.6 EM(43 °C)) at 1 kg m(-3) s(-1) with 10/14 patients ≥41 °C. Guidelines are presented for positioning of implant catheters during the initial surgery, selection of ultrasound applicator configurations, and tailored power schemes for achieving T(90) ≥ 41 °C in clinically practical implant configurations. Catheter-based ultrasound devices, when adhering to the guidelines, show potential to

  18. [Effect of tonicity of the medium on the sensitivity of Escherichia coli bacteria to gamma-quantum 60Co, ultrasound and hyperthermia].

    Science.gov (United States)

    Morozov, I I; Petin, V G; Morozova, G V

    1998-01-01

    The cell lethality and permeability induced in Escherichia coli B/r and Escherichia coli BS-1 by 60Co gamma-ray irradiation, ultrasound and hyperthermia in media containing different concentrations of NaCl have been investigated. It was shown that independently from the nature of damaging factors hypotonic media increase while hypertonic media in certain range of osmolyte concentration decrease sensitivity of cells to action of this factors. It was proposed that discovered phenomenology was caused by salt modification of status of the cell osmotic homeostasis destabilizing by ionizing radiation, ultrasound or hyperthermia and was not related with the system of dark repair of DNA.

  19. Implant strategies for endocervical and interstitial ultrasound hyperthermia adjunct to HDR brachytherapy for the treatment of cervical cancer

    Science.gov (United States)

    Wootton, Jeffery H.; Prakash, Punit; Hsu, I.-Chow Joe; Diederich, Chris J.

    2011-07-01

    Catheter-based ultrasound devices provide a method to deliver 3D conformable heating integrated with HDR brachytherapy delivery. Theoretical characterization of heating patterns was performed to identify implant strategies for these devices which can best be used to apply hyperthermia to cervical cancer. A constrained optimization-based hyperthermia treatment planning platform was used for the analysis. The proportion of tissue >=41 °C in a hyperthermia treatment volume was maximized with constraints Tmax treatment was modeled for generalized implant configurations and complex configurations from a database of patients (n = 14) treated with HDR brachytherapy. Various combinations of endocervical (360° or 2 × 180° output; 6 mm OD) and interstitial (180°, 270°, or 360° output; 2.4 mm OD) applicators within catheter locations from brachytherapy implants were modeled, with perfusion constant (1 or 3 kg m-3 s-1) or varying with location or temperature. Device positioning, sectoring, active length and aiming were empirically optimized to maximize thermal coverage. Conformable heating of appreciable volumes (>200 cm3) is possible using multiple sectored interstitial and endocervical ultrasound devices. The endocervical device can heat >41 °C to 4.6 cm diameter compared to 3.6 cm for the interstitial. Sectored applicators afford tight control of heating that is robust to perfusion changes in most regularly spaced configurations. T90 in example patient cases was 40.5-42.7 °C (1.9-39.6 EM43 °C) at 1 kg m-3 s-1 with 10/14 patients >=41 °C. Guidelines are presented for positioning of implant catheters during the initial surgery, selection of ultrasound applicator configurations, and tailored power schemes for achieving T90 >= 41 °C in clinically practical implant configurations. Catheter-based ultrasound devices, when adhering to the guidelines, show potential to generate conformal therapeutic heating ranging from a single endocervical device targeting small

  20. Design and characterisation of a phased antenna array for intact breast hyperthermia.

    Science.gov (United States)

    Curto, Sergio; Garcia-Miquel, Aleix; Suh, Minyoung; Vidal, Neus; Lopez-Villegas, Jose M; Prakash, Punit

    2017-06-28

    Currently available hyperthermia technology is not well suited to treating cancer malignancies in the intact breast. This study investigates a microwave applicator incorporating multiple patch antennas, with the goal of facilitating controllable power deposition profiles for treating lesions at diverse locations within the intact breast. A 3D-computational model was implemented to assess power deposition profiles with 915 MHz applicators incorporating a hemispheric groundplane and configurations of 2, 4, 8, 12, 16 and 20 antennas. Hemispheric breast models of 90 mm and 150 mm diameter were considered, where cuboid target volumes of 10 mm edge length (1 cm(3)) and 30 mm edge length (27 cm(3)) were positioned at the centre of the breast, and also located 15 mm from the chest wall. The average power absorption (αPA) ratio expressed as the ratio of the PA in the target volume and in the full breast was evaluated. A 4-antenna proof-of-concept array was fabricated and experimentally evaluated. Computational models identified an optimal inter-antenna spacing of 22.5° along the applicator circumference. Applicators with 8 and 12 antennas excited with constant phase presented the highest αPA at centrally located and deep-seated targets, respectively. Experimental measurements with a 4-antenna proof-of-concept array illustrated the potential for electrically steering power deposition profiles by adjusting the relative phase of the signal at antenna inputs. Computational models and experimental results suggest that the proposed applicator may have potential for delivering conformal thermal therapy in the intact breast.

  1. Magnetic resonance thermometry at 7T for real-time monitoring and correction of ultrasound induced mild hyperthermia.

    Directory of Open Access Journals (Sweden)

    Brett Z Fite

    Full Text Available While Magnetic Resonance Thermometry (MRT has been extensively utilized for non-invasive temperature measurement, there is limited data on the use of high field (≥7T scanners for this purpose. MR-guided Focused Ultrasound (MRgFUS is a promising non-invasive method for localized hyperthermia and drug delivery. MRT based on the temperature sensitivity of the proton resonance frequency (PRF has been implemented in both a tissue phantom and in vivo in a mouse Met-1 tumor model, using partial parallel imaging (PPI to speed acquisition. An MRgFUS system capable of delivering a controlled 3D acoustic dose during real time MRT with proportional, integral, and derivative (PID feedback control was developed and validated. Real-time MRT was validated in a tofu phantom with fluoroptic temperature measurements, and acoustic heating simulations were in good agreement with MR temperature maps. In an in vivo Met-1 mouse tumor, the real-time PID feedback control is capable of maintaining the desired temperature with high accuracy. We found that real time MR control of hyperthermia is feasible at high field, and k-space based PPI techniques may be implemented for increasing temporal resolution while maintaining temperature accuracy on the order of 1°C.

  2. Shaping and resizing of multifed slot radiators used in conformal microwave antenna arrays for hyperthermia treatment of large superficial diseases.

    Science.gov (United States)

    Maccarini, Paolo F; Arunachalam, Kavitha; Juang, Titania; De Luca, Valeria; Rangarao, Sneha; Neumann, Daniel; Martins, Carlos Daniel; Craciunescu, Oana; Stauffer, Paul R

    2009-01-01

    It has been recently shown that chestwall recurrence of breast cancer and many other superficial diseases can be successfully treated with the combination of radiation, chemotherapy and hyperthermia. Conformal microwave antenna array for hyperthermia treatment of large area superficial diseases can significantly increase patient comfort while at the same time facilitate treatment of larger and more irregularly shaped disease. A large number of small efficient antennas is preferable for improved control of heating, as the disease can be more accurately contoured and the lower power requirement correlates with system reliability, linearity and reduced cost. Thus, starting from the initially proposed square slot antennas, we investigated new designs for multi-fed slot antennas of several shapes that maximize slot perimeter while reducing radiating area, thus increasing antenna efficiency. Simulations were performed with commercial electromagnetic simulation software packages (Ansoft HFSS) to demonstrate that the antenna size reduction method is effective for several dual concentric conductor (DCC) aperture shapes and operating frequencies. The theoretical simulations allowed the development of a set of design rules for multi-fed DCC slot antennas that facilitate conformal heat treatments of irregular size and shape disease with large multi-element arrays. Independently on the shape, it is shown that the perimeter of 10cm at 915 MHz delivers optimal radiation pattern and efficiency. While the maximum radiation is obtained for a circular pattern the rectangular shape is the one that feels more efficiently the array space.

  3. Handheld probe integrating laser diode and ultrasound transducer array for ultrasound/photoacoustic dual modality imaging.

    Science.gov (United States)

    Daoudi, K; van den Berg, P J; Rabot, O; Kohl, A; Tisserand, S; Brands, P; Steenbergen, W

    2014-10-20

    Ultrasound and photoacoustics can be utilized as complementary imaging techniques to improve clinical diagnoses. Photoacoustics provides optical contrast and functional information while ultrasound provides structural and anatomical information. As of yet, photoacoustic imaging uses large and expensive systems, which limits their clinical application and makes the combination costly and impracticable. In this work we present and evaluate a compact and ergonomically designed handheld probe, connected to a portable ultrasound system for inexpensive, real-time dual-modality ultrasound/photoacoustic imaging. The probe integrates an ultrasound transducer array and a highly efficient diode stack laser emitting 130 ns pulses at 805 nm wavelength and a pulse energy of 0.56 mJ, with a high pulse repetition frequency of up to 10 kHz. The diodes are driven by a customized laser driver, which can be triggered externally with a high temporal stability necessary to synchronize the ultrasound detection and laser pulsing. The emitted beam is collimated with cylindrical micro-lenses and shaped using a diffractive optical element, delivering a homogenized rectangular light intensity distribution. The system performance was tested in vitro and in vivo by imaging a human finger joint.

  4. Modelling ultrasound-induced mild hyperthermia of hyperplasia in vascular grafts

    Directory of Open Access Journals (Sweden)

    Cheung Alfred K

    2011-11-01

    Full Text Available Abstract Background Expanded polytetrafluoroethylene (ePTFE vascular grafts frequently develop occlusive neointimal hyperplasia as a result of myofibroblast over-growth, leading to graft failure. ePTFE exhibits higher ultrasound attenuation than native soft tissues. We modelled the selective absorption of ultrasound by ePTFE, and explored the feasibility of preventing hyperplasia in ePTFE grafts by ultrasound heating. Specifically, we simulated the temperature profiles of implanted grafts and nearby soft tissues and blood under ultrasound exposure. The goal was to determine whether ultrasound exposure of an ePTFE graft can generate temperatures sufficient to prevent cell growth on the graft without damaging nearby soft tissues and blood. Methods Ultrasound beams from two transducers (1.5 and 3.2 MHz were simulated in two graft/tissue models, with and without an intra-graft cellular layer mimicking hyperplasia, using the finite-difference time-domain (FDTD method. The resulting power deposition patterns were used as a heat source for the Pennes bioheat equation in a COMSOL® Multiphysics heat transfer model. 50°C is known to cause cell death and therefore the transducer powers were adjusted to produce a 13°C temperature rise from 37°C in the ePTFE. Results Simulations showed that both the frequency of the transducers and the presence of hyperplasia significantly affect the power deposition patterns and subsequent temperature profiles on the grafts and nearby tissues. While neither transducer significantly raised the temperature of the blood, the 1.5-MHz transducer was less focused and heated larger volumes of the graft and nearby soft tissues than the 3.2-MHz transducer. The presence of hyperplasia had little effect on the blood's temperature, but further increased the temperature of the graft and nearby soft tissues in response to either transducer. Skin cooling and blood flow play a significant role in preventing overheating of the native

  5. Error analysis of subaperture processing in 1-D ultrasound arrays.

    Science.gov (United States)

    Zhao, Kang-Qiao; Bjåstad, Tore Gruner; Kristoffersen, Kjell

    2015-04-01

    To simplify the medical ultrasound system and reduce the cost, several techniques have been proposed to reduce the interconnections between the ultrasound probe and the back-end console. Among them, subaperture processing (SAP) is the most straightforward approach and is widely used in commercial products. This paper reviews the most important error sources of SAP, such as static focusing, delay quantization, linear delay profile, and coarse apodization, and the impacts introduced by these errors are shown. We propose to use main lobe coherence loss as a simple classification of the quality of the beam profile for a given design. This figure-ofmerit (FoM) is evaluated by simulations with a 1-D ultrasound subaperture array setup. The analytical expressions and the coherence loss can work as a quick guideline in subaperture design by equalizing the merit degradations from different error sources, as well as minimizing the average or maximum loss over ranges. For the evaluated 1-D array example, a good balance between errors and cost was achieved using a subaperture size of 5 elements, focus at 40 mm range, and a delay quantization step corresponding to a phase of π/4.

  6. Ultrasound cylindrical phased array for transoesophageal thermal therapy: initial studies

    Energy Technology Data Exchange (ETDEWEB)

    Melodelima, David [INSERM, Unite 556, 151 Cours Albert Thomas, 69424 Lyon (France); Lafon, Cyril [INSERM, Unite 556, 151 Cours Albert Thomas, 69424 Lyon (France); Prat, Frederic [Centre Hospitalier Bicetre, 78 Avenue General Leclerc, 94275 Le Kremlin Bicetre (France); Birer, Alain [INSERM, Unite 556, 151 Cours Albert Thomas, 69424 Lyon (France); Cathignol, Dominique [INSERM, Unite 556, 151 Cours Albert Thomas, 69424 Lyon (France)

    2002-12-07

    This work was undertaken to investigate the feasibility of constructing a cylindrical phased array composed of 64 elements spread around the periphery (OD 10.6 mm) for transoesophageal ultrasound thermotherapy. The underlying operating principle of this applicator is to rotate a plane ultrasound beam electronically. For this purpose, eight adjacent transducers were successively excited with appropriate delay times so as to generate a plane wave. The exposure direction was changed by exciting a different set of eight elements. For these feasibility studies, we used a cylindrical prototype (OD 10.6 mm) composed of 16 elementary transducers distributed over a quarter of the cylinder, all operating at 4.55 MHz. The active part was mechanically reinforced by a rigid damper structure behind the transducers. It was shown that an ultrasound field similar to that emitted by a plane transducer could be generated. Ex vivo experiments on pig's liver demonstrated that the ultrasound beam could be accurately rotated to generate sector-based lesions to a suitable depth (up to 19 mm). Throughout these experiments, exposures lasting 20 s were delivered at an acoustic intensity of 17 W cm{sup -2}. By varying the power from exposure to exposure, the depth of the lesion at different angles could be controlled.

  7. Trimodal Therapy: Combining Hyperthermia with Repurposed Bexarotene and Ultrasound for Treating Liver Cancer.

    Science.gov (United States)

    Misra, Santosh K; Ghoshal, Goutam; Gartia, Manas R; Wu, Zhe; De, Arun K; Ye, Mao; Bromfield, Corinne R; Williams, Emery M; Singh, Kuldeep; Tangella, Krishnarao V; Rund, Laurie; Schulten, Klaus; Schook, Lawrence B; Ray, Partha S; Burdette, Everette C; Pan, Dipanjan

    2015-11-24

    Repurposing of existing cancer drugs to overcome their physical limitations, such as insolubility, represents an attractive strategy to achieve enhanced therapeutic efficacy and broaden the range of clinical applications. Such an approach also promises to offer substantial cost savings in drug development efforts. Here we repurposed FDA-approved topical agent bexarotene (Targretin), currently in limited use for cutaneous manifestations of T-cell lymphomas, and re-engineer it for use in solid tumor applications by forming self-assembling nanobubbles. Physico-chemical characterization studies of the novel prodrug nanobubbles demonstrated their stability, enhanced target cell internalization capability, and highly controlled release profile in response to application of focused ultrasound energy. Using an in vitro model of hepatocellular carcinoma and an in vivo large animal model of liver ablation, we demonstrate the effectiveness of bexarotene prodrug nanobubbles when used in conjunction with catheter-based ultrasound, thereby highlighting the therapeutic promise of this trimodal approach.

  8. Piezoelectric micromachined ultrasound transducer (PMUT) arrays for integrated sensing, actuation and imaging

    National Research Council Canada - National Science Library

    Qiu, Yongqiang; Gigliotti, James V; Wallace, Margeaux; Griggio, Flavio; Demore, Christine E M; Cochran, Sandy; Trolier-McKinstry, Susan

    2015-01-01

    .... Piezoelectric micromachined ultrasound transducers (PMUTs), diaphragm-like thin film flexural transducers typically formed on silicon substrates, are a potential solution for integrated transducer arrays...

  9. Breast ultrasound tomography with two parallel transducer arrays: preliminary clinical results

    Science.gov (United States)

    Huang, Lianjie; Shin, Junseob; Chen, Ting; Lin, Youzuo; Intrator, Miranda; Hanson, Kenneth; Epstein, Katherine; Sandoval, Daniel; Williamson, Michael

    2015-03-01

    Ultrasound tomography has great potential to provide quantitative estimations of physical properties of breast tumors for accurate characterization of breast cancer. We design and manufacture a new synthetic-aperture breast ultrasound tomography system with two parallel transducer arrays. The distance of these two transducer arrays is adjustable for scanning breasts with different sizes. The ultrasound transducer arrays are translated vertically to scan the entire breast slice by slice and acquires ultrasound transmission and reflection data for whole-breast ultrasound imaging and tomographic reconstructions. We use the system to acquire patient data at the University of New Mexico Hospital for clinical studies. We present some preliminary imaging results of in vivo patient ultrasound data. Our preliminary clinical imaging results show promising of our breast ultrasound tomography system with two parallel transducer arrays for breast cancer imaging and characterization.

  10. A theranostic nrGO@MSN-ION nanocarrier developed to enhance the combination effect of sonodynamic therapy and ultrasound hyperthermia for treating tumor

    Science.gov (United States)

    Chen, Yu-Wei; Liu, Tse-Ying; Chang, Po-Hsueh; Hsu, Po-Hung; Liu, Hao-Li; Lin, Hong-Cheu; Chen, San-Yuan

    2016-06-01

    Sonodynamic therapy (SDT), which induces activation of sonosensitizers in cancer cells through ultrasound irradiation, has emerged as an alternative and promising noninvasive therapeutic approach to kill both superficial and deep parts of tumors. In this study, mesoporous silica (MSN) grown on reduced graphene oxide nanosheet (nrGO) capped with Rose Bengal (RB)-PEG-conjugated iron-oxide nanoparticles (IONs), nrGO@MSN-ION-PEG-RB, was strategically designed to have targeted functionality and therapeutic efficacy under magnetic guiding and focused ultrasound (FUS) irradiation, respectively. The singlet oxygen produced by ultrasound-activated RB and the ultrasound-induced heating effect was enhanced by rGO and IONs, which improved the cytotoxic effect in cancer cells. In an animal experiment, we demonstrated that the combination of sonodynamic/hyperthermia therapy with magnetic guidance using this nanocomposite therapeutic agent can produce remarkable efficacious therapy in tumor growth inhibition. Furthermore, the combination effect induced by FUS irradiation produces significant damage to both superficial and deep parts of the targeted tumor.Sonodynamic therapy (SDT), which induces activation of sonosensitizers in cancer cells through ultrasound irradiation, has emerged as an alternative and promising noninvasive therapeutic approach to kill both superficial and deep parts of tumors. In this study, mesoporous silica (MSN) grown on reduced graphene oxide nanosheet (nrGO) capped with Rose Bengal (RB)-PEG-conjugated iron-oxide nanoparticles (IONs), nrGO@MSN-ION-PEG-RB, was strategically designed to have targeted functionality and therapeutic efficacy under magnetic guiding and focused ultrasound (FUS) irradiation, respectively. The singlet oxygen produced by ultrasound-activated RB and the ultrasound-induced heating effect was enhanced by rGO and IONs, which improved the cytotoxic effect in cancer cells. In an animal experiment, we demonstrated that the combination of

  11. Development of high frequency annular array ultrasound transducers

    Science.gov (United States)

    Gottlieb, Emanuel John

    The advantage of ultrasonic annular arrays over conventional single element transducers has been in the ability to transmit focus at multiple points throughout the depth of field, as well as receive dynamic focus. Today, annular, linear and multidimensional array imaging systems are not commercially available at frequencies greater than 20 MHz. The fabrication technology used to develop a high frequency (>50 MHz) annular array transducer is presented. A 9 mum P(VDF-TrFE) film was bonded to gold annuli electrodes on the top layer of a two sided polyimide flexible circuit. Each annulus was separated by a 30 mum kerf and had several electroplated micro vias that connected to electrode traces on the bottom side of the polyimide flexible circuit. The array's performance was evaluated by measuring the electrical impedance, pulse echo response and crosstalk measurement for each element in the array. In order to improve device sensitivity each element was electrically matched to an impedance magnitude of 50 O and 0° phase at resonance. The average round trip insertion loss measured for the array and compensated for diffraction effects was -33.5 dB. The measured average center frequency and bandwidth of an element was 55 MHz and 47 respectively. The measured crosstalk between adjacent elements remained below -29 dB at the center frequency in water. A vertical wire phantom was imaged using a single focus transmit beamformer and dynamic focusing receive beamformer. This image showed a significant improvement in lateral resolution over a range of 9 mm after the dynamic focusing receive algorithm was applied. These results correlated well with predictions from a Field II simulation. After beamforming the minimum lateral resolution (-6 dB) was 108 mum at the focus. Preliminary ultrasound B-mode images of the rabbit eye using this transducer were shown in conjunction with a multi-channel digital beamformer. A feasibility study of designing and fabricating tunable copolymer

  12. Compact self-grounded Bow-Tie antenna design for an UWB phased-array hyperthermia applicator.

    Science.gov (United States)

    Takook, Pegah; Persson, Mikael; Gellermann, Johanna; Trefná, Hana Dobšíček

    2017-01-08

    Using UWB hyperthermia systems has the potential to improve the heat delivery to deep seated tumours. In this paper, we present a novel self-grounded Bow-Tie antenna design which is to serve as the basis element in a phased-array applicator. The UWB operation in the frequency range of 0.43-1 GHz is achieved by immersing the antenna in a water bolus. The radiation characteristics are improved by appropriate shaping the water bolus and by inclusion of dielectric layers on the top of the radiating arms of the antenna. In order to find the most appropriate design, we use a combination of performance indicators representing the most important attributes of the antenna. These are the UWB impedance matching, the transmission capability and the effective field size. The antenna was constructed and experimentally validated on muscle-like phantom. The measured reflection and transmission coefficients as well as radiation characteristics are in excellent agreement with the simulated results. MR image acquisitions with antenna located inside MR bore indicate a negligible distortion of the images by the antenna itself, which indicates MR compatibility.

  13. Size reduction and radiation pattern shaping of multi-fed DCC slot antennas used in conformal microwave array hyperthermia applicators.

    Science.gov (United States)

    Maccarini, Paolo F; Arunachalam, Kavitha; Martins, Carlos D; Stauffer, Paul R

    2009-02-23

    The use of conformal antenna array in the treatment of superficial diseases can significantly increase patient comfort while enhancing the local control of large treatment area with irregular shapes. Originally a regular square multi-fed slot antenna (Dual Concentric Conductor - DCC) was proposed as basic unit cell of the array. The square DCC works well when the outline of the treatment area is rectangular such as in the main chest or back area but is not suitable to outline diseases spreading along the armpit and neck area. In addition as the area of the patch increases, the overall power density decreases affecting the efficiency and thus the ability to deliver the necessary thermal dose with medium power amplifier (antennas is preferable as the disease is more accurately contoured and the lower power requirement for the amplifiers correlates with system reliability, durability, linearity and overall reduced cost. For such reason we developed a set of design rules for multi-fed slot antennas with irregular contours and we implemented a design that reduce the area while increasing the perimeter of the slot, thus increasing the antenna efficiency and the power density. The simulation performed with several commercial packages (Ansoft HFSS, Imst Empire, SemcadX and CST Microwave Studio) show that the size reducing method can be applied to several shapes and for different frequencies. The SAR measurements of several DCCs are performed using an in-house high resolution scanning system with tumor equivalent liquid phantom both at 915 MHz for superficial hyperthermia systems in US) and 433 MHz (Europe). The experimental results are compared with the expected theoretical predictions and both simulated and measured patterns of single antennas of various size and shapes are then summed in various combinations using Matlab to show possible treatment irregular contours of complex diseases. The local control is expected to significantly improve while maintaining the patient

  14. Adaptive lesion formation using dual mode ultrasound array system

    Science.gov (United States)

    Liu, Dalong; Casper, Andrew; Haritonova, Alyona; Ebbini, Emad S.

    2017-03-01

    We present the results from an ultrasound-guided focused ultrasound platform designed to perform real-time monitoring and control of lesion formation. Real-time signal processing of echogenicity changes during lesion formation allows for identification of signature events indicative of tissue damage. The detection of these events triggers the cessation or the reduction of the exposure (intensity and/or time) to prevent overexposure. A dual mode ultrasound array (DMUA) is used for forming single- and multiple-focus patterns in a variety of tissues. The DMUA approach allows for inherent registration between the therapeutic and imaging coordinate systems providing instantaneous, spatially-accurate feedback on lesion formation dynamics. The beamformed RF data has been shown to have high sensitivity and specificity to tissue changes during lesion formation, including in vivo. In particular, the beamformed echo data from the DMUA is very sensitive to cavitation activity in response to HIFU in a variety of modes, e.g. boiling cavitation. This form of feedback is characterized by sudden increase in echogenicity that could occur within milliseconds of the application of HIFU (see http://youtu.be/No2wh-ceTLs for an example). The real-time beamforming and signal processing allowing the adaptive control of lesion formation is enabled by a high performance GPU platform (response time within 10 msec). We present results from a series of experiments in bovine cardiac tissue demonstrating the robustness and increased speed of volumetric lesion formation for a range of clinically-relevant exposures. Gross histology demonstrate clearly that adaptive lesion formation results in tissue damage consistent with the size of the focal spot and the raster scan in 3 dimensions. In contrast, uncontrolled volumetric lesions exhibit significant pre-focal buildup due to excessive exposure from multiple full-exposure HIFU shots. Stopping or reducing the HIFU exposure upon the detection of such an

  15. Model-order reduction of nonlinear models of electromagnetic phased-array hyperthermia.

    Science.gov (United States)

    Kowalski, Marc E; Jin, Jian-Ming

    2003-11-01

    A method based on the Karhunen-Loéve (KL) transform is proposed for the reduction of large-scale, nonlinear ordinary differential equations such as those arising from the finite difference modeling of biological heat transfer. The method of snapshots is used to expedite computation of the required quantities in the KL procedure. Guidelines are presented and validated for snapshot selection and resultant basis series truncation, emphasizing the special physical features of the electromagnetic phased-array heat transfer physics. Applications to fast temperature prediction are presented.

  16. Optimized Hyperthermia Treatment of Prostate Cancer Using a Novel Intracavitary Ultrasound Array

    Science.gov (United States)

    2005-01-01

    Simulation results Figure 5(a) shows the reference temperature and the temperature elevations from the adaptive and PID controllers while the power...temperature elevations of the three adaptive and PID controllers computer simulations. Figure 5(a) plots the temperature elevation of each controller as a...the error between the actual output Tactuat and the model output Tdesired and input u. Figure 5. Computer simulation results of three adaptive and PID

  17. Optimized Hyperthermia Treatment of Prostate Cancer Using a Novel Intracavitary Ultrasound Array

    Science.gov (United States)

    2006-01-01

    Seegenschmiedt, M. and Saur, R., Interstitial and intracavitary thermoradiotherapy Berlin: Springer-Verlag, 1993. [3] Seegenschmiedt, M., Fessenden , P., and...and eegenschmiedt, M., "Interstitial heating technologies," in Seegenschmiedt MH, Fessenden P, and ernon CC (eds.) Principles and practices of...thermoradiotherapy Berlin: Springer-Verlag, 1993. 5. Seegenschmiedt, M., Fessenden , P., and Vernon, C., Principles and practices of thermoradiotherapy and

  18. I vivo three-dimensional photoacoustic imaging based on a clinicall matrix array ultrasound probe

    NARCIS (Netherlands)

    Wang, Y.; Erpelding, T.N.; Jankovic, L.; Guo, Z.; Robert, J.L.; David, G.; Wang, L.V.

    2011-01-01

    We present an integrated photoacoustic and ultrasonic three-dimensional (3D) volumetric imaging system based on a two-dimensional (2D) matrix array ultrasound probe. A wavelength-tunable dye laser pumpedby a Q-switched Nd:YAG laser serves as the light source and a modified commercial ultrasound imag

  19. Volumetric Ultrasound Imaging with Row-Column Addressed 2-D Arrays Using Spatial Matched Filter Beamforming

    DEFF Research Database (Denmark)

    Bouzari, Hamed; Engholm, Mathias; Christiansen, Thomas Lehrmann;

    2015-01-01

    For 3-D ultrasound imaging with row-column addressed 2-D arrays, the two orthogonal 1-D transmit and receive arrays are both used for one-way focusing in the lateral and elevation directions separately and since they are not in the same plane, the two-way focusing is the same as one-way focusing....

  20. Acoustical cross-talk in row–column addressed 2-D transducer arrays for ultrasound imaging

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lehrmann; Jensen, Jørgen Arendt; Thomsen, Erik Vilain

    2015-01-01

    The acoustical cross-talk in row–column addressed 2-D transducer arrays for volumetric ultrasound imaging is investigated. Experimental results from a 2.7 MHz, λ/2-pitch capacitive micromachined ultrasonic transducer (CMUT) array with 62 rows and 62 columns are presented and analyzed...

  1. Handheld probe integrating laser diode and ultrasound transducer array for ultrasound/photoacoustic dual modality imaging

    NARCIS (Netherlands)

    Daoudi, K.; Berg, van den P.J.; Rabot, O.; Kohl, A.; Tisserand, S.; Brands, P.J.; Steenbergen, W.

    2014-01-01

    Ultrasound and photoacoustics can be utilized as complementary imaging techniques to improve clinical diagnoses. Photoacoustics provides optical contrast and functional information while ultrasound provides structural and anatomical information. As of yet, photoacoustic imaging uses large and expens

  2. 1D multi-element CMUT arrays for ultrasound thermal therapy

    Science.gov (United States)

    N'Djin, William Apoutou; Canney, Michael; Meynier, Cyril; Chavrier, Françoise; Lafon, Cyril; Nguyen-Dinh, An; Chapelon, Jean-Yves; Carpentier, Alexandre

    2017-03-01

    Interstitial therapeutic ultrasound devices are a promising technology for performing thermal ablation in a wide variety of organs. In this study, the use of Capacitive Micromachined Ultrasound Transducers (CMUTs) for interstitial heating applications was investigated. CMUTs exhibit potential advantages for use in therapeutic ultrasound applications in comparison to standard piezo ultrasound transducer technologies as they have good characteristics in terms of miniaturization (cell size: few dozens of microns), bandwidth (several MHz) and high electro-acoustic efficiency. Two designs of CMUT arrays were studied: (1) a 1D 128-element planar-CMUT array originally dedicated to abdominal ultrasound imaging purposes (5 MHz, element size: 0.3 × 8.0 mm2); (2) a 12-element linear-array, 32.4-mm long and 0.8-mm wide, developed specifically for minimally-invasive interstitial therapeutic applications (6 MHz, element size: 2.7 × 0.8 mm2). Simulations were performed to evaluate the ability to generate thermal lesions in soft tissues with: (1) 1 single linear array, (2) a combination of multiple linear arrays positioned on a cylindrical catheter. Experimental investigations performed with the CMUT imaging array showed the ability to generate surface acoustic intensities (Iac) up to 20 W.cm-2 and to generate intense centimetric thermal lesions in in-vitro turkey breast tissues. At 6 MHz, a single element was able to generate in water a maximum peak pressure of >0.5 MPa. In simulations, the ability to use various power levels and frequencies on independent elements, as well as combinations of multiple linear-arrays offered sufficient flexibility to achieve a wide variety of thermal ablation patterns in 3D. Simulated ablation volumes could be controlled to cover accurately non-symmetrical volumes of brain metastases. In conclusion, CMUT arrays show interesting characteristics, which may open new perspectives of spatial control for conformal interstitial thermal therapy with

  3. Diffraction and coherence in breast ultrasound tomography: a study with a toroidal array

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Lianjie [Los Alamos National Laboratory; Simonetti, Francesco [IMPERIAL COLL.; Duric, Neb [KCI; Littrup, Peter [KCI

    2008-01-01

    Ultrasound is commonly used as an adjunct to mammography for diagnostic evaluation of suspicions arising from breast cancer screening. As an alternative to conventional sonography that uses hand-held transducers, toroidal array probes that encircle the breast immersed in a water bath have been investigated for ultrasound tomography. In this paper, two sets of experiments performed with a prototype ultrasound scanner on a phantom and a human breast in vivo are used to investigate the effects of diffraction and coherence in ultrasound tomography. Reconstructions obtained with transmission diffraction tomography (TDT) are compared with conventional reflection imaging and computerized ultrasound tomography showing a substantial improvement. The in vivo tests demonstrate that TDT can image the complex boundary of a cancer mass and suggest that it can reveal the anatomy of milk ducts and Cooper's ligaments.

  4. Malignant hyperthermia

    Directory of Open Access Journals (Sweden)

    Michael P Phy

    2016-01-01

    Full Text Available Malignant hyperthermia is a rare metabolic crisis triggered by volatile anesthetics and/or succinylcholine. It is important to remember that hyperthermia is not always present and may even present late in the course. Early recognition of the most common signs and symptoms is critical to diagnosis and treatment. Malignant hyperthermia was associated with a high mortality rate, but this has decreased with the use of dantrolene.  Although this is frequently reported in the anesthesia and surgical literature, it is important that critical care units that use succinylcholine as part of their intubation sequence be prepared to identify and treat this serious syndrome.

  5. Acoustical cross-talk in row–column addressed 2-D transducer arrays for ultrasound imaging

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lehrmann; Jensen, Jørgen Arendt; Thomsen, Erik Vilain

    2015-01-01

    The acoustical cross-talk in row–column addressed 2-D transducer arrays for volumetric ultrasound imaging is investigated. Experimental results from a 2.7 MHz, λ/2-pitch capacitive micromachined ultrasonic transducer (CMUT) array with 62 rows and 62 columns are presented and analyzed...... in the frequency-wavenumber domain. The sources of cross-talk are identified and predicted theoretically. The nearest neighbor cross-talk is 23.9±3.7 dB when the array is used as a 1-D array with the rows functioning as both transmitters and receivers. In the row–column configuration, with the columns transmitting...

  6. High-density flexible interconnect for two-dimensional ultrasound arrays.

    Science.gov (United States)

    Fiering, J O; Hultman, P; Lee, W; Light, E D; Smith, S W

    2000-01-01

    We present a method for fabricating flexible multilayer circuits for interconnection to 2-D array ultrasound transducers. In addition, we describe four 2-D arrays in which such flexible interconnect is implemented, including transthoracic arrays with 438 channels operating at up to 7 MHz and intracardiac catheter arrays with 70 channels operating at up to 7 MHz. We employ thin and thick film microfabrication techniques to batch produce the interconnect circuits with minimum dimensions of 12-mum lines, 40-mum vias, and 150-mum array pitch. The arrays show 50-Omega insertion loss of -60 to -84 dB and a fractional bandwidth of 27 to 67%. The arrays are used to obtain real time, in vivo volumetric scans.

  7. Simulation Based Investigation of Focusing Phased Array Ultrasound in Dissimilar Metal Welds

    Directory of Open Access Journals (Sweden)

    Hun-Hee Kim

    2016-02-01

    Full Text Available Flaws at dissimilar metal welds (DMWs, such as reactor coolant systems components, Control Rod Drive Mechanism (CRDM, Bottom Mounted Instrumentation (BMI etc., in nuclear power plants have been found. Notably, primary water stress corrosion cracking (PWSCC in the DMWs could cause significant reliability problems at nuclear power plants. Therefore, phased array ultrasound is widely used for inspecting surface break cracks and stress corrosion cracks in DMWs. However, inspection of DMWs using phased array ultrasound has a relatively low probability of detection of cracks, because the crystalline structure of welds causes distortion and splitting of the ultrasonic beams which propagates anisotropic medium. Therefore, advanced evaluation techniques of phased array ultrasound are needed for improvement in the probability of detection of flaws in DMWs. Thus, in this study, an investigation of focusing and steering phased array ultrasound in DMWs was carried out using a time reversal technique, and an adaptive focusing technique based on finite element method (FEM simulation. Also, evaluation of focusing performance of three different focusing techniques was performed by comparing amplitude of phased array ultrasonic signals scattered from the targeted flaw with three different time delays.

  8. Strategies for Ultrasound Imaging Using Two-Dimensional Arrays

    Science.gov (United States)

    Velichko, A.; Wilcox, P. D.

    2010-02-01

    2D arrays are able to `view' a given defect from a range of angles leading to the possibility of obtaining richer characterization detail than possible with 1D arrays. This has clear benefits as real defects and engineering structures are three-dimensional. This paper describes different approaches to optimize 2D array design. Results are shown that illustrate the application of the proposed techniques to modeling and experimental data.

  9. Malignant hyperthermia

    Science.gov (United States)

    ... you need surgery, tell both your surgeon and anesthesiologist before surgery if: You know that you or ... IN. Malignant hyperthermia and muscle-related disorders. In: Miller RD, ed. Miller's Anesthesia . 8th ed. Philadelphia, PA: ...

  10. Synthetic Aperture Beamforming in Ultrasound using Moving Arrays

    DEFF Research Database (Denmark)

    Andresen, Henrik

    Medical ultrasound (US) is widely used because it allows cheap real-time imaging of soft tissue with no known side-effects or hazards to either patients or operating personnel. US has existed since the 1960s and was originally adapted from the concept of radar and sonar. The development in ultras......Medical ultrasound (US) is widely used because it allows cheap real-time imaging of soft tissue with no known side-effects or hazards to either patients or operating personnel. US has existed since the 1960s and was originally adapted from the concept of radar and sonar. The development...... in ultrasound has allowed the technology to evolve from a showing a simple echo along a line to fully visualize entire organs. The image changes significantly depending on the orientation of the transducer, making it more difficult to see exact features. This poses challenges since anatomy is three...... was missed and allows a more precise measurement of organ dimensions [2, 3, 4]. Conventional 3D ultrasound imaging is basically faced with two limitations. It is only able to have a single transmit focus point and each line in a 3D volume has to be created independently. This reduces image quality outside...

  11. Image-guided ultrasound phased arrays are a disruptive technology for non-invasive therapy

    Science.gov (United States)

    Hynynen, Kullervo; Jones, Ryan M.

    2016-09-01

    Focused ultrasound offers a non-invasive way of depositing acoustic energy deep into the body, which can be harnessed for a broad spectrum of therapeutic purposes, including tissue ablation, the targeting of therapeutic agents, and stem cell delivery. Phased array transducers enable electronic control over the beam geometry and direction, and can be tailored to provide optimal energy deposition patterns for a given therapeutic application. Their use in combination with modern medical imaging for therapy guidance allows precise targeting, online monitoring, and post-treatment evaluation of the ultrasound-mediated bioeffects. In the past there have been some technical obstacles hindering the construction of large aperture, high-power, densely-populated phased arrays and, as a result, they have not been fully exploited for therapy delivery to date. However, recent research has made the construction of such arrays feasible, and it is expected that their continued development will both greatly improve the safety and efficacy of existing ultrasound therapies as well as enable treatments that are not currently possible with existing technology. This review will summarize the basic principles, current statures, and future potential of image-guided ultrasound phased arrays for therapy.

  12. A hemisphere array for non-invasive ultrasound brain therapy and surgery

    Science.gov (United States)

    Clement, G. T.; Sun, Jie; Giesecke, Tonia; Hynynen, Kullervo

    2000-12-01

    Ultrasound phased arrays may offer a method for non-invasive deep brain surgery through the skull. In this study a hemispherical phased array system is developed to test the feasibility of trans-skull surgery. The hemispherical shape is incorporated to maximize the penetration area on the skull surface, thus minimizing unwanted heating. Simulations of a 15 cm radius hemisphere divided into 11, 64, 228 and 512 elements are presented. It is determined that 64 elements are sufficient for correcting scattering and reflection caused by trans-skull propagation. An optimal operating frequency near 0.7 MHz is chosen for the array from numerical and experimental thermal gain measurements comparing the power between the transducer focus and the skull surface. A 0.665 MHz air-backed PZT array is constructed and evaluated. The array is used to focus ultrasound through an ex vivo human skull and the resulting fields are measured before and after phase correction of the transducer elements. Finally, to demonstrate the feasibility of trans-skull therapy, thermally induced lesions are produced through a human skull in fresh tissue placed at the ultrasound focus inside the skull.

  13. Control of the necrosed tissue volume during noninvasive ultrasound surgery using a 16-element phased array.

    Science.gov (United States)

    Fan, X; Hynynen, K

    1995-03-01

    Focused high-power ultrasound beams are well suited for noninvasive local destruction of deep target volumes. In order to avoid cavitation and to utilize only thermal tissue damage, high frequencies (1-5 MHz) are used in ultrasonic surgery. However, the focal spots generated by sharply focused transducers become so small that only small tumors can be treated in a reasonable time. Phased array ultrasound transducers can be employed to electronically scan a focal spot or to produce multiple foci in the desired region to increase the treated volume. In this article, theoretical and experimental studies of spherically curved square-element phased arrays for use in ultrasonic surgery were performed. The simulation results were compared with experimental results from a 16-element array. It was shown that the phased array could control the necrosed tissue volume by using closely spaced multiple foci. The phased array can also be used to enlarge a necrosed tissue volume in only one direction at a time, i.e., lateral or longitudinal. The spherically curved 16 square-element phased array can produce useful results by varying the phase and amplitude setting. Four focal points can be easily generated with a distance of two or four wavelengths between the two closest peaks. The maximum necrosed tissue volume generated by the array can be up to sixteen times the volume induced by a similar spherical transducer. Therefore the treatment time could be reduced compared with single transducer treatment.

  14. 2D sparse array transducer optimization for 3D ultrasound imaging

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jae Hoon; Park, Kwan Kyu [Dept. of Mechanical Convergence Engineering, Hanyang University, Seoul (Korea, Republic of)

    2016-12-15

    A 3D ultrasound image is desired in many medical examinations. However, the implementation of a 2D array, which is needed for a 3D image, is challenging with respect to fabrication, interconnection and cabling. A 2D sparse array, which needs fewer elements than a dense array, is a realistic way to achieve 3D images. Because the number of ways the elements can be placed in an array is extremely large, a method for optimizing the array configuration is needed. Previous research placed the target point far from the transducer array, making it impossible to optimize the array in the operating range. In our study, we focused on optimizing a 2D sparse array transducer for 3D imaging by using a simulated annealing method. We compared the far-field optimization method with the near-field optimization method by analyzing a point-spread function (PSF). The resolution of the optimized sparse array is comparable to that of the dense array.

  15. Sound-speed tomography using first-arrival transmission ultrasound for a ring array

    Science.gov (United States)

    Quan, Youli; Huang, Lianjie

    2007-03-01

    Sound-speed tomography images can be used for cancer detection and diagnosis. Tumors have generally higher sound speeds than the surrounding tissue. Quality and resolution of tomography images are primarily determined by the insonification/illumination aperture of ultrasound and the capability of the tomography method for accurately handling heterogeneous nature of the breast. We investigate the capability of an efficient time-of-flight tomography method using transmission ultrasound from a ring array for reconstructing sound-speed images of the breast. The method uses first-arrival times of transmitted ultrasonic signals emerging from non-beamforming ultrasound transducers located around a ring. It properly accounts for ray bending within the breast by solving the eikonal equation using a finite-difference scheme. We test and validate the time-of-flight transmission tomography method using synthetic data for numerical breast phantoms containing various objects. In our simulation, the objects are immersed in water within a ring array. Two-dimensional synthetic data are generated using a finite-difference scheme to solve acoustic-wave equation in heterogeneous media. We study the reconstruction accuracy of the tomography method for objects with different sizes and shapes as well as different perturbations from the surrounding medium. In addition, we also address some specific data processing issues related to the tomography. Our tomography results demonstrate that the first-arrival transmission tomography method can accurately reconstruct objects larger than approximately five wavelengths of the incident ultrasound using a ring array.

  16. MRI-compatible ultrasound heating system with ring-shaped phased arrays for breast tumor thermal therapy.

    Science.gov (United States)

    Chen, Hung-Nien; Chen, Guan-Ming; Lin, Bo-Sian; Lien, Pi-Hsien; Chen, Yung-Yaw; Chen, Gin-Shin; Lin, Win-Li

    2013-01-01

    Therapeutic ultrasound transducers can carry out precise and efficient power deposition for tumor thermal therapy under the guidance of magnetic resonance imaging. For a better heating, organ-specific ultrasound transducers with precision location control system should be developed for tumors located at various organs. It is feasible to perform a better heating for breast tumor thermal therapy with a ring-shaped ultrasound phased-array transducer. In this study, we developed ring-shaped phased-array ultrasound transducers with 1.0 and 2.5 MHz and a precision location control system to drive the transducers to the desired location to sonicate the designated region. Both thermo-sensitive hydrogel phantom and ex vivo fresh pork were used to evaluate the heating performance of the transducers. The results showed that the ring-shaped phased array ultrasound transducers were very promising for breast tumor heating with the variation of heating patterns and without overheating the ribs.

  17. In vivo visualization of robotically implemented synthetic tracked aperture ultrasound (STRATUS) imaging system using curvilinear array

    Science.gov (United States)

    Zhang, Haichong K.; Aalamifar, Fereshteh; Boctor, Emad M.

    2016-04-01

    Synthetic aperture for ultrasound is a technique utilizing a wide aperture in both transmit and receive to enhance the ultrasound image quality. The limitation of synthetic aperture is the maximum available aperture size limit determined by the physical size of ultrasound probe. We propose Synthetic-Tracked Aperture Ultrasound (STRATUS) imaging system to overcome the limitation by extending the beamforming aperture size through ultrasound probe tracking. With a setup involving a robotic arm, the ultrasound probe is moved using the robotic arm, while the positions on a scanning trajectory are tracked in real-time. Data from each pose are synthesized to construct a high resolution image. In previous studies, we have demonstrated the feasibility through phantom experiments. However, various additional factors such as real-time data collection or motion artifacts should be taken into account when the in vivo target becomes the subject. In this work, we build a robot-based STRATUS imaging system with continuous data collection capability considering the practical implementation. A curvilinear array is used instead of a linear array to benefit from its wider capture angle. We scanned human forearms under two scenarios: one submerged the arm in the water tank under 10 cm depth, and the other directly scanned the arm from the surface. The image contrast improved 5.51 dB, and 9.96 dB for the underwater scan and the direct scan, respectively. The result indicates the practical feasibility of STRATUS imaging system, and the technique can be potentially applied to the wide range of human body.

  18. In vivo three-dimensional photoacoustic imaging based on a clinical matrix array ultrasound probe

    Science.gov (United States)

    Wang, Yu; Erpelding, Todd N.; Jankovic, Ladislav; Guo, Zijian; Robert, Jean-Luc; David, Guillaume; Wang, Lihong V.

    2012-06-01

    We present an integrated photoacoustic and ultrasonic three-dimensional (3-D) volumetric imaging system based on a two-dimensional (2-D) matrix array ultrasound probe. A wavelength-tunable dye laser pumped by a Q-switched Nd:YAG laser serves as the light source and a modified commercial ultrasound imaging system (iU22, Philips Healthcare) with a 2-D array transducer (X7-2, Philips Healthcare) detects both the pulse-echo ultrasound and photoacoustic signals. A multichannel data acquisition system acquires the RF channel data. The imaging system enables rendering of co-registered 3-D ultrasound and photoacoustic images without mechanical scanning. The resolution along the azimuth, elevation, and axial direction are measured to be 0.69, 0.90 and 0.84 mm for photoacoustic imaging. In vivo 3-D photoacoustic mapping of the sentinel lymph node was demonstrated in a rat model using methylene blue dye. These results highlight the clinical potential of 3-D PA imaging for identification of sentinel lymph nodes for cancer staging in humans.

  19. Genomic SNP array as a gold standard for prenatal diagnosis of foetal ultrasound abnormalities

    Directory of Open Access Journals (Sweden)

    Srebniak Malgorzata I

    2012-03-01

    Full Text Available Abstract Background We have investigated whether replacing conventional karyotyping by SNP array analysis in cases of foetal ultrasound abnormalities would increase the diagnostic yield and speed of prenatal diagnosis in clinical practice. Findings/results From May 2009 till June 2011 we performed HumanCytoSNP-12 array (HCS (http://www.Illumina.com analysis in 207 cases of foetal structural abnormalities. HCS allows detecting unbalanced genomic abnormalities with a resolution of about 150/200 kb. All cases were selected by a clinical geneticist after excluding the most common aneuploidies by RAD (rapid aneuploidy detection. Pre-test genetic counselling was offered in all cases. In 24/207 (11,6% foetuses a clinically relevant genetic abnormality was detected. Only 8/24 abnormalities would have been detected if only routine karyotyping was performed. Submicroscopic abnormalities were found in 16/207 (7,7% cases. The array results were achieved within 1-2 weeks after amniocentesis. Conclusions Prenatal SNP array testing is faster than karyotyping and allows detecting much smaller aberrations (~0.15 Mb in addition to the microscopic unbalanced chromosome abnormalities detectable with karyotyping (~ > 5 Mb. Since karyotyping would have missed 66% (16/24 of genomic abnormalities in our cohort, we propose to perform genomic high resolution array testing assisted by pre-test counselling as a primary prenatal diagnostic test in cases of foetal ultrasound abnormalities.

  20. Phased Array Ultrasound: Initial Development of PAUT Inspection of Self-Reacting Friction Stir Welds

    Science.gov (United States)

    Rairigh, Ryan

    2008-01-01

    This slide presentation reviews the development of Phased Array Ultrasound (PAUT) as a non-destructive examination method for Self Reacting Friction Stir Welds (SR-FSW). PAUT is the only NDE method which has been shown to detect detrimental levels of Residual Oxide Defect (ROD), which can result in significant decrease in weld strength. The presentation reviews the PAUT process, and shows the results in comparison with x-ray radiography.

  1. Validity and reliability of rectus femoris ultrasound measurements: Comparison of curved-array and linear-array transducers

    Directory of Open Access Journals (Sweden)

    Kendra Hammond, MD

    2014-11-01

    Full Text Available Muscle-mass loss augers increased morbidity and mortality in critically ill patients. Muscle-mass loss can be assessed by wide linear-array ultrasound transducers connected to cumbersome, expensive console units. Whether cheaper, hand-carried units equipped with curved-array transducers can be used as alternatives is unknown. Accordingly, our primary aim was to investigate in 15 nondisabled subjects the validity of measurements of rectus femoris cross-sectional area by using a curved-array transducer against a linear-array transducer—the reference-standard technique. In these subjects, we also determined the reliability of measurements obtained by a novice operator versus measurements obtained by an experienced operator. Lastly, the relationship between quadriceps strength and rectus area recorded by two experienced operators with a curved-array transducer was assessed in 17 patients with chronic obstructive pulmonary disease (COPD. In nondisabled subjects, the rectus cross-sectional area measured with the curved-array transducer by the novice and experienced operators was valid (intraclass correlation coefficient [ICC]: 0.98, typical percentage error [%TE]: 3.7% and reliable (ICC: 0.79, %TE: 9.7%. In the subjects with COPD, both reliability (ICC: 0.99 and repeatability (%TE: 7.6% and 9.8% were high. Rectus area was related to quadriceps strength in COPD for both experienced operators (coefficient of determination: 0.67 and 0.70. In conclusion, measurements of rectus femoris cross-sectional area recorded with a curved-array transducer connected to a hand-carried unit are valid, reliable, and reproducible, leading us to contend that this technique is suitable for cross-sectional and longitudinal studies.

  2. Localization of focused-ultrasound beams in a tissue phantom, using remote thermocouple arrays.

    Science.gov (United States)

    Hariharan, Prasanna; Dibaji, Seyed Ahmad Reza; Banerjee, Rupak K; Nagaraja, Srinidhi; Myers, Matthew R

    2014-12-01

    In focused-ultrasound procedures such as vessel cauterization or clot lysis, targeting accuracy is critical. To investigate the targeting accuracy of the focused-ultrasound systems, tissue phantoms embedded with thermocouples can be employed. This paper describes a method that utilizes an array of thermocouples to localize the focused ultrasound beam. All of the thermocouples are located away from the beam, so that thermocouple artifacts and sensor interference are minimized. Beam propagation and temperature rise in the phantom are simulated numerically, and an optimization routine calculates the beam location that produces the best agreement between the numerical temperature values and those measured with thermocouples. The accuracy of the method was examined as a function of the array characteristics, including the number of thermocouples in the array and their orientation. For exposures with a 3.3-MHz source, the remote-thermocouple technique was able to predict the focal position to within 0.06 mm. Once the focal location is determined using the localization method, temperatures at desired locations (including the focus) can be estimated from remote thermocouple measurements by curve fitting an analytical solution to the heat equation. Temperature increases in the focal plane were predicted to within 5% agreement with measured values using this method.

  3. Effects of Non-Elevation-Focalized Linear Array Transducer on Ultrasound Plane-Wave Imaging

    Directory of Open Access Journals (Sweden)

    Congzhi Wang

    2016-11-01

    Full Text Available Plane-wave ultrasound imaging (PWUS has become an important method of ultrasound imaging in recent years as its frame rate has exceeded 10,000 frames per second, allowing ultrasound to be used for two-dimensional shear wave detection and functional brain imaging. However, compared to the traditional focusing and scanning method, PWUS images always suffer from a degradation of lateral resolution and contrast. To improve the image quality of PWUS, many different beamforming algorithms have been proposed and verified. Yet the influence of transducer structure is rarely studied. For this paper, the influence of using an acoustic lens for PWUS was evaluated. Two linear array transducers were fabricated. One was not self-focalized in the elevation direction (non-elevation-focalized transducer, NEFT; the other one was a traditional elevation-focalized transducer (EFT. An initial simulation was conducted to show the influence of elevation focusing. Then the images obtained with NEFT on a standard ultrasound imaging phantom were compared with those obtained with EFT. It was demonstrated that, in a relatively deep region, the contrast of an NEFT image is better than that of an EFT image. These results indicate that a more sophisticated design of ultrasound transducer would further improve the image quality of PWUS.

  4. A flexible annular-array imaging platform for micro-ultrasound.

    Science.gov (United States)

    Qiu, Weibao; Yu, Yanyan; Chabok, Hamid Reza; Liu, Cheng; Tsang, Fu Keung; Zhou, Qifa; Shung, K Kirk; Zheng, Hairong; Sun, Lei

    2013-01-01

    Micro-ultrasound is an invaluable imaging tool for many clinical and preclinical applications requiring high resolution (approximately several tens of micrometers). Imaging systems for micro-ultrasound, including single-element imaging systems and linear-array imaging systems, have been developed extensively in recent years. Single-element systems are cheaper, but linear-array systems give much better image quality at a higher expense. Annular-array-based systems provide a third alternative, striking a balance between image quality and expense. This paper presents the development of a novel programmable and real-time annular-array imaging platform for micro-ultrasound. It supports multi-channel dynamic beamforming techniques for large-depth-of-field imaging. The major image processing algorithms were achieved by a novel field-programmable gate array technology for high speed and flexibility. Real-time imaging was achieved by fast processing algorithms and high-speed data transfer interface. The platform utilizes a printed circuit board scheme incorporating state-of-the-art electronics for compactness and cost effectiveness. Extensive tests including hardware, algorithms, wire phantom, and tissue mimicking phantom measurements were conducted to demonstrate good performance of the platform. The calculated contrast-to-noise ratio (CNR) of the tissue phantom measurements were higher than 1.2 in the range of 3.8 to 8.7 mm imaging depth. The platform supported more than 25 images per second for real-time image acquisition. The depth-of-field had about 2.5-fold improvement compared to single-element transducer imaging.

  5. Ultrasound array transmitter architecture with high timing resolution using embedded phase-locked loops.

    Science.gov (United States)

    Smith, Peter R; Cowell, David M J; Raiton, Benjamin; Ky, Chau Vo; Freear, Steven

    2012-01-01

    Coarse time quantization of delay profiles within ultrasound array systems can produce undesirable side lobes in the radiated beam profile. The severity of these side lobes is dependent upon the magnitude of phase quantization error--the deviation from ideal delay profiles to the achievable quantized case. This paper describes a method to improve interchannel delay accuracy without increasing system clock frequency by utilizing embedded phase-locked loop (PLL) components within commercial field-programmable gate arrays (FPGAs). Precise delays are achieved by shifting the relative phases of embedded PLL output clocks in 208-ps steps. The described architecture can achieve the necessary interelement timing resolution required for driving ultrasound arrays up to 50 MHz. The applicability of the proposed method at higher frequencies is demonstrated by extrapolating experimental results obtained using a 5-MHz array transducer. Results indicate an increase in transmit dynamic range (TDR) when using accurate delay profiles generated by the embedded-PLL method described, as opposed to using delay profiles quantized to the system clock.

  6. Optimization of acoustic emitted field of transducer array for ultrasound imaging.

    Science.gov (United States)

    He, Zhengyao

    2014-01-01

    A method is proposed to calculate the weight vector of a transducer array for ultrasound imaging to obtain a low-sidelobe transmitting beam pattern based on the near-field response vector. An optimization problem is established, and the second-order cone (SOC) algorithm is used to solve the problem to obtain the weight vector. The optimized acoustic emitted field of the transducer array is then calculated using the Field II program by applying the obtained weight vector to the array. The simulation results with a 64-element 26 MHz linear phased array show that the proposed method can be used to control the sidelobe of the near-field transmitting beam pattern of the transducer array and achieve a low-sidelobe level. The near-field sound pressure distribution of the transducer array using the proposed method focuses much better than that using the standard delay and sum (DAS) beamforming method. The sound energy is more concentrated using the proposed method.

  7. Theory and operation of 2-D array piezoelectric micromachined ultrasound transducers.

    Science.gov (United States)

    Dausch, David E; Castellucci, John B; Chou, Derrick R; von Ramm, Olaf T

    2008-11-01

    Piezoelectric micromachined ultrasound transducers (pMUTs) are a new approach for the construction of 2-D arrays for forward-looking 3-D intravascular (IVUS) and intracardiac (ICE) imaging. Two-dimensional pMUT test arrays containing 25 elements (5 x 5 arrays) were bulk micromachined in silicon substrates. The devices consisted of lead zirconate titanate (PZT) thin film membranes formed by deep reactive ion etching of the silicon substrate. Element widths ranged from 50 to 200 microm with pitch from 100 to 300 mum. Acoustic transmit properties were measured in de-ionized water with a calibrated hydrophone placed at a range of 20 mm. Measured transmit frequencies for the pMUT elements ranged from 4 to 13 MHz, and mode of vibration differed for the various element sizes. Element capacitance varied from 30 to over 400 pF depending on element size and PZT thickness. Smaller element sizes generally produced higher acoustic transmit output as well as higher frequency than larger elements. Thicker PZT layers also produced higher transmit output per unit electric field applied. Due to flexure mode operation above the PZT coercive voltage, transmit output increased nonlinearly with increased drive voltage. The pMUT arrays were attached directly to the Duke University T5 Phased Array Scanner to produce real-time pulse-echo B-mode images with the 2-D pMUT arrays.

  8. Ultrasound

    Science.gov (United States)

    Ultrasound is a type of imaging. It uses high-frequency sound waves to look at organs and ... liver, and other organs. During pregnancy, doctors use ultrasound to view the fetus. Unlike x-rays, ultrasound ...

  9. Thin catheter bending in the direction perpendicular to ultrasound propagation using two-dimensional array transducer

    Science.gov (United States)

    Suzuki, Toshiya; Mochizuki, Takashi; Ushimizu, Hidetaka; Miyazawa, Shinya; Tsurui, Nobuhiro; Masuda, Kohji

    2017-07-01

    Although we have already experimented on the bending of a thin catheter with acoustic radiation force using a single transducer, it is necessary to develop a method of bending a catheter in an arbitrary direction because the installation position of ultrasound transducers on a body surface is limited for application to various shapes of in vivo blood vessels. Therefore, we examined the bending of a thin catheter in the direction perpendicular to ultrasound propagation using a two-dimensional array transducer (1 MHz), which realizes not only the temporospatial design but also the dynamic variation of acoustic fields. Forming two focal points with opposite phases, where the amplitudes of the two points instantaneously have the positive and negative relationship, we confirmed the bending of a thin catheter in the direction perpendicular to ultrasound propagation. We used a thin catheter (diameter, 200 µm length, 50 mm) to obtain the maximum displacement of 220 µm, where the displacement was proportional to the square of the maximum sound pressure and the duty ratio. From these results, the acoustic energy densities observed in front of and behind the catheter are dominant for the bending of the thin catheter independent of ultrasound propagation. We also found that the distance between two focal points may improve the bending performance without requiring a precise position setting.

  10. 3-D Ultrasound Imaging Performance of a Row-Column Addressed 2-D Array Transducer: A Measurement Study

    DEFF Research Database (Denmark)

    Rasmussen, Morten Fischer; Jensen, Jørgen Arendt

    2013-01-01

    A real-time 3-D ultrasound measurement using only 32 elements and 32 emissions is presented. The imaging quality is compared to a conventionally fully addressed array using 1024 elements and 256 emissions. The main-lobe of the measured line spread function is almost identical, but the side-lobe l...... ultrasound probe made by Vermon S.A....... is 510% larger than when row-column addressing the array. The cyst radius needed to achieve -20 dB intensity in the cyst is 396% larger for the fully addressed array compared to the row-column addressed array. The measurements were made using the experimental ultrasound scanner SARUS and a 32x32 element...

  11. High-throughput fiber-array transvaginal ultrasound/photoacoustic probe for ovarian cancer imaging

    Science.gov (United States)

    Salehi, Hassan S.; Kumavor, Patrick D.; Alqasemi, Umar; Li, Hai; Wang, Tianheng; Zhu, Quing

    2014-03-01

    A high-throughput ultrasound/photoacoustic probe for delivering high contrast and signal-to-noise ratio images was designed, constructed, and tested. The probe consists of a transvaginal ultrasound array integrated with four 1mm-core optical fibers and a sheath. The sheath encases transducer and is lined with highly reflecting aluminum for high intensity light output and uniformity while at the same time remaining below the maximum permissible exposure (MPE) recommended by the American National Standards Institute (ANSI). The probe design was optimized by simulating the light fluence distribution in Zemax. The performance of the probe was evaluated by experimental measurements of the fluence and real-time imaging of polyethylene-tubing filled with blood. These results suggest that our probe has great potential for in vivo imaging and characterization of ovarian cancer.

  12. TOPICAL REVIEW: Capacitive micromachined ultrasonic transducer arrays for minimally invasive medical ultrasound

    Science.gov (United States)

    Chen, Jingkuang

    2010-02-01

    This paper reviews the minimally invasive capacitive micromachined ultrasonic transducer (CMUT) arrays for medical diagnosis and therapy. While piezoelectric transducers dominate today's medical ultrasound market, the capacitive micromachined ultrasonic transducer has recently emerged as a promising alternative which delivers a comparable device performance to its piezoelectric counterparts, is compatible with front-end circuit integration, allows high-density imager integration and is relative easy in miniaturization. Utilizing MEMS technology, the substrate of CMUT arrays can be micromachined into miniature platforms with various geometrical shapes, which include needles, three-dimensional prisms, as well as other flexible-substrate configurations. These arrays are useful for reaching deep inside the tissue or an organ with a minimally invasive approach. Due to the close proximity of the transducers to the target organ/tissue, a higher resolution/accuracy of diagnostic information can be achieved. In addition to pulse-echo and photoacoustic imaging, high-power CMUT devices capable of delivering ultrasounds with a pressure greater than 1.0 MPa have been monolithically integrated with imager CMUTs for image-guided therapy (IGT). Such miniature devices would facilitate diagnostic and therapy interventions not possible with conventional piezoelectric transducers.

  13. Piezoelectric Micromachined Ultrasound Transducer (PMUT Arrays for Integrated Sensing, Actuation and Imaging

    Directory of Open Access Journals (Sweden)

    Yongqiang Qiu

    2015-04-01

    Full Text Available Many applications of ultrasound for sensing, actuation and imaging require miniaturized and low power transducers and transducer arrays integrated with electronic systems. Piezoelectric micromachined ultrasound transducers (PMUTs, diaphragm-like thin film flexural transducers typically formed on silicon substrates, are a potential solution for integrated transducer arrays. This paper presents an overview of the current development status of PMUTs and a discussion of their suitability for miniaturized and integrated devices. The thin film piezoelectric materials required to functionalize these devices are discussed, followed by the microfabrication techniques used to create PMUT elements and the constraints the fabrication imposes on device design. Approaches for electrical interconnection and integration with on-chip electronics are discussed. Electrical and acoustic measurements from fabricated PMUT arrays with up to 320 diaphragm elements are presented. The PMUTs are shown to be broadband devices with an operating frequency which is tunable by tailoring the lateral dimensions of the flexural membrane or the thicknesses of the constituent layers. Finally, the outlook for future development of PMUT technology and the potential applications made feasible by integrated PMUT devices are discussed.

  14. Piezoelectric micromachined ultrasound transducer (PMUT) arrays for integrated sensing, actuation and imaging.

    Science.gov (United States)

    Qiu, Yongqiang; Gigliotti, James V; Wallace, Margeaux; Griggio, Flavio; Demore, Christine E M; Cochran, Sandy; Trolier-McKinstry, Susan

    2015-04-03

    Many applications of ultrasound for sensing, actuation and imaging require miniaturized and low power transducers and transducer arrays integrated with electronic systems. Piezoelectric micromachined ultrasound transducers (PMUTs), diaphragm-like thin film flexural transducers typically formed on silicon substrates, are a potential solution for integrated transducer arrays. This paper presents an overview of the current development status of PMUTs and a discussion of their suitability for miniaturized and integrated devices. The thin film piezoelectric materials required to functionalize these devices are discussed, followed by the microfabrication techniques used to create PMUT elements and the constraints the fabrication imposes on device design. Approaches for electrical interconnection and integration with on-chip electronics are discussed. Electrical and acoustic measurements from fabricated PMUT arrays with up to 320 diaphragm elements are presented. The PMUTs are shown to be broadband devices with an operating frequency which is tunable by tailoring the lateral dimensions of the flexural membrane or the thicknesses of the constituent layers. Finally, the outlook for future development of PMUT technology and the potential applications made feasible by integrated PMUT devices are discussed.

  15. The effect of electronically steering a phased array ultrasound transducer on near-field tissue heating

    Science.gov (United States)

    Payne, Allison; Vyas, Urvi; Todd, Nick; Bever, Joshua de; Christensen, Douglas A.; Parker, Dennis L.

    2011-01-01

    Purpose: This study presents the results obtained from both simulation and experimental techniques that show the effect of mechanically or electronically steering a phased array transducer on proximal tissue heating. Methods: The thermal response of a nine-position raster and a 16-mm diameter circle scanning trajectory executed through both electronic and mechanical scanning was evaluated in computer simulations and experimentally in a homogeneous tissue-mimicking phantom. Simulations were performed using power deposition maps obtained from the hybrid angular spectrum (HAS) method and applying a finite-difference approximation of the Pennes’ bioheat transfer equation for the experimentally used transducer and also for a fully sampled transducer to demonstrate the effect of acoustic window, ultrasound beam overlap and grating lobe clutter on near-field heating. Results: Both simulation and experimental results show that electronically steering the ultrasound beam for the two trajectories using the 256-element phased array significantly increases the thermal dose deposited in the near-field tissues when compared with the same treatment executed through mechanical steering only. In addition, the individual contributions of both beam overlap and grating lobe clutter to the near-field thermal effects were determined through comparing the simulated ultrasound beam patterns and resulting temperature fields from mechanically and electronically steered trajectories using the 256-randomized element phased array transducer to an electronically steered trajectory using a fully sampled transducer with 40 401 phase-adjusted sample points. Conclusions: Three distinctly different three distinctly different transducers were simulated to analyze the tradeoffs of selected transducer design parameters on near-field heating. Careful consideration of design tradeoffs and accurate patient treatment planning combined with thorough monitoring of the near-field tissue temperature will

  16. The effect of electronically steering a phased array ultrasound transducer on near-field tissue heating.

    Science.gov (United States)

    Payne, Allison; Vyas, Urvi; Todd, Nick; de Bever, Joshua; Christensen, Douglas A; Parker, Dennis L

    2011-09-01

    This study presents the results obtained from both simulation and experimental techniques that show the effect of mechanically or electronically steering a phased array transducer on proximal tissue heating. The thermal response of a nine-position raster and a 16-mm diameter circle scanning trajectory executed through both electronic and mechanical scanning was evaluated in computer simulations and experimentally in a homogeneous tissue-mimicking phantom. Simulations were performed using power deposition maps obtained from the hybrid angular spectrum (HAS) method and applying a finite-difference approximation of the Pennes' bioheat transfer equation for the experimentally used transducer and also for a fully sampled transducer to demonstrate the effect of acoustic window, ultrasound beam overlap and grating lobe clutter on near-field heating. Both simulation and experimental results show that electronically steering the ultrasound beam for the two trajectories using the 256-element phased array significantly increases the thermal dose deposited in the near-field tissues when compared with the same treatment executed through mechanical steering only. In addition, the individual contributions of both beam overlap and grating lobe clutter to the near-field thermal effects were determined through comparing the simulated ultrasound beam patterns and resulting temperature fields from mechanically and electronically steered trajectories using the 256-randomized element phased array transducer to an electronically steered trajectory using a fully sampled transducer with 40 401 phase-adjusted sample points. Three distinctly different three distinctly different transducers were simulated to analyze the tradeoffs of selected transducer design parameters on near-field heating. Careful consideration of design tradeoffs and accurate patient treatment planning combined with thorough monitoring of the near-field tissue temperature will help to ensure patient safety during an MRg

  17. PMN-PT single crystal for endoscopic ultrasound 2D array application

    Science.gov (United States)

    Zhu, Yuhang; Liang, Huageng; Zhu, Benpeng; Zhou, Dan; Yang, Xiaofei

    2017-03-01

    Based on lead magnesium niobate-lead titanate single crystal, a 24 × 24 row-column addressing endoscopic two-dimensional array has been successfully fabricated using novel flanged electrodes and "semi-kerf" technologies. Each row/column array element was measured to have an electromechanical coupling coefficient of 0.81, a center frequency of 5MHz, and a fractional bandwidth of approximately 88% at -6 dB. Of particular significance was that the lead magnesium niobate-lead titanate element exhibits much higher sensitivity compared with lead zirconate titanate-based 2D arrays with similar operational frequency and element area. According to the Field II simulated results, although the obtained beamwidth at -6 dB was a little inferior to that of the fully sampled 24 × 24 two-dimensional array, it is believed that the beamwidth can be improved by appropriately increasing the element number. These results demonstrated that the lead magnesium niobate-lead titanate single-crystal 2D array is a promising candidate for real-time three-dimensional endoscopic ultrasound imaging.

  18. Interstitial hyperthermia.

    Science.gov (United States)

    Milligan, A J; Dobelbower, R R

    1984-01-01

    The effectiveness of hyperthermia as a treatment modality for cancer continues to gain popularity in the medical community. One of the disappointing findings has been the inability to deliver uniform thermal doses to tumor volumes. This inability to heat certain tumors is due to a variety of physical and physiologic phenomena. To increase the ability of heating tumors, local interstitial techniques have been developed that are proving to be safe and effective. These techniques employ implanted microwave or radiofrequency antennae for the delivery of local thermal doses. Recently, investigations into the placement of interstitially located ferromagnetic seeds for local hyperthermia have also been conducted. The seeds can be heated by delivery of a high-wattage RF magnetic field to the implanted volume by an external source after implantation. The tissue surrounding the ferromagnetic implant is heated by conduction of heat away from the implanted seeds. While these techniques have been effective, further development of the instrumentation for interstitial therapies is continuing. These developments will include the application of specific control circuitry for delivery of accurate thermal doses.

  19. The feasibility of MRI-guided whole prostate ablation with a linear aperiodic intracavitary ultrasound phased array

    Energy Technology Data Exchange (ETDEWEB)

    Sokka, S.D. [MIT Harvard Division of Health Sciences and Technology, Boston, MA 02115 (United States); Brigham and Women' s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115 (United States); Hynynen, K.H. [Brigham and Women' s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115 (United States)

    2000-11-01

    Over the past decade, numerous minimally invasive thermal procedures have been investigated to treat benign prostate hyperplasia and prostate cancer. Of these methods, ultrasound has shown considerable promise due to its ability to produce more precise and deeper thermal foci. In this study, a linear, transrectal ultrasound phased array capable of ablating large tissue volumes was fabricated and evaluated. The device was designed to be compatible for use with MRI guidance and thermometry. The intracavitary applicator increases treatable tissue volume by using an ultrasonic motor to provide a mechanical rotation angle of up to 100 deg. to a 62-element 1D ultrasound array. An aperiodic array geometry was used to reduce grating lobes. In addition, a specially designed Kapton interconnect was used to reduce cable crosstalk and hence also improve the acoustic efficiency of the array. MRI-guided in vivo and ex vivo experiments were performed to verify the array's large-volume ablative capabilities. Ex vivo bovine experiments were performed to assess the focusing range of the applicator. The array generated foci in a 3 cm (2 to 5 cm from the array surface along the axis normal to the array) by 5.5 cm (along the long axis of the array) by 6 cm (along the transverse axis of the array at a depth of 4 cm) volume. In vivo rabbit thigh experiments were performed to evaluate the lesion-producing capabilities in perfused tissue. The array generated 3 cm x 2 cm x 2 cm lesions with 8 to 12 half-minute sonications equally spaced in the volume. The results indicate that transrectal ultrasound coagulation of the whole prostate is feasible with the developed device. (author)

  20. Non-invasive transcranial surgery with dual-mode ultrasound arrays

    Science.gov (United States)

    Haritonova, Alyona; Liu, Dalong; Wilken-Resman, Elias; Bayat, Mahdi; Wang, Xiao; Chen, Wei; Divani, Afshin; Ebbini, Emad

    2017-03-01

    We present the first transcranial mapping of temperature with Dual-Mode Ultrasound Arrays (DMUAs), with subsequent validation of transskull ultrasound therapy guidance and monitoring in a small rodent model. Experiments were conducted in sacrificed rats, utilizing the custom designed DMUA platform manufactured in our laboratory. First, careful examination of DMUA imaging through the skull was conducted, where a fine 50μm wire was embedded within the brain tissue. Second, anatomical landmarks were visualized by co-registering two volumes, volume of synthetic aperture (SA) images acquired with DMUA and a 9.4T MRI volume acquired in live rats prior to the sacrifice. Third, subtherapeutic shot delivery through the skull was tested, where a set of five varying intensity shots were deposited below the skull surface. Shot delivery and temperature monitoring were performed with DMUA, and compared with the thermocouple data acquired close to the therapeutic focus. This study was an exploratory effort to validate ultrasound therapy delivery and monitoring in transcranial applications with DMUAs. In conclusion, DMUAs offer a unique advantage by providing real-time feedback by means of temperature monitoring with a high degree of spatial localization.

  1. Realtime control of multiple-focus phased array heating patterns based on noninvasive ultrasound thermography.

    Science.gov (United States)

    Casper, Andrew; Liu, Dalong; Ebbini, Emad S

    2012-01-01

    A system for the realtime generation and control of multiple-focus ultrasound phased-array heating patterns is presented. The system employs a 1-MHz, 64-element array and driving electronics capable of fine spatial and temporal control of the heating pattern. The driver is integrated with a realtime 2-D temperature imaging system implemented on a commercial scanner. The coordinates of the temperature control points are defined on B-mode guidance images from the scanner, together with the temperature set points and controller parameters. The temperature at each point is controlled by an independent proportional, integral, and derivative controller that determines the focal intensity at that point. Optimal multiple-focus synthesis is applied to generate the desired heating pattern at the control points. The controller dynamically reallocates the power available among the foci from the shared power supply upon reaching the desired temperature at each control point. Furthermore, anti-windup compensation is implemented at each control point to improve the system dynamics. In vitro experiments in tissue-mimicking phantom demonstrate the robustness of the controllers for short (2-5 s) and longer multiple-focus high-intensity focused ultrasound exposures. Thermocouple measurements in the vicinity of the control points confirm the dynamics of the temperature variations obtained through noninvasive feedback.

  2. Interventional multispectral photoacoustic imaging with a clinical linear array ultrasound probe for guiding nerve blocks

    Science.gov (United States)

    Xia, Wenfeng; West, Simeon J.; Nikitichev, Daniil I.; Ourselin, Sebastien; Beard, Paul C.; Desjardins, Adrien E.

    2016-03-01

    Accurate identification of tissue structures such as nerves and blood vessels is critically important for interventional procedures such as nerve blocks. Ultrasound imaging is widely used as a guidance modality to visualize anatomical structures in real-time. However, identification of nerves and small blood vessels can be very challenging, and accidental intra-neural or intra-vascular injections can result in significant complications. Multi-spectral photoacoustic imaging can provide high sensitivity and specificity for discriminating hemoglobin- and lipid-rich tissues. However, conventional surface-illumination-based photoacoustic systems suffer from limited sensitivity at large depths. In this study, for the first time, an interventional multispectral photoacoustic imaging (IMPA) system was used to image nerves in a swine model in vivo. Pulsed excitation light with wavelengths in the ranges of 750 - 900 nm and 1150 - 1300 nm was delivered inside the body through an optical fiber positioned within the cannula of an injection needle. Ultrasound waves were received at the tissue surface using a clinical linear array imaging probe. Co-registered B-mode ultrasound images were acquired using the same imaging probe. Nerve identification was performed using a combination of B-mode ultrasound imaging and electrical stimulation. Using a linear model, spectral-unmixing of the photoacoustic data was performed to provide image contrast for oxygenated and de-oxygenated hemoglobin, water and lipids. Good correspondence between a known nerve location and a lipid-rich region in the photoacoustic images was observed. The results indicate that IMPA is a promising modality for guiding nerve blocks and other interventional procedures. Challenges involved with clinical translation are discussed.

  3. Highly precise acoustic calibration method of ring-shaped ultrasound transducer array for plane-wave-based ultrasound tomography

    Science.gov (United States)

    Terada, Takahide; Yamanaka, Kazuhiro; Suzuki, Atsuro; Tsubota, Yushi; Wu, Wenjing; Kawabata, Ken-ichi

    2017-07-01

    Ultrasound computed tomography (USCT) is promising for a non-invasive, painless, operator-independent and quantitative system for breast-cancer screening. Assembly error, production tolerance, and aging-degradation variations of the hardwire components, particularly of plane-wave-based USCT systems, may hamper cost effectiveness, precise imaging, and robust operation. The plane wave is transmitted from a ring-shaped transducer array for receiving the signal at a high signal-to-noise-ratio and fast aperture synthesis. There are four signal-delay components: response delays in the transmitters and receivers and propagation delays depending on the positions of the transducer elements and their directivity. We developed a highly precise calibration method for calibrating these delay components and evaluated it with our prototype plane-wave-based USCT system. Our calibration method was found to be effective in reducing delay errors. Gaps and curves were eliminated from the plane wave, and echo images of wires were sharpened in the entire imaging area.

  4. [Genetic algorithm application to multi-focus patterns of 256-element phased array for focused ultrasound surgery].

    Science.gov (United States)

    Xu, Feng; Wan, Mingxi; Lu, Mingzhu

    2008-10-01

    The genetic optimal algorithm and sound field calculation approach for the spherical-section phased array are presented in this paper. The in-house manufactured 256-element phased array focused ultrasound surgery system is briefly described. The on-axis single focus and off-axis single focus are simulated along with the axis-symmetric six-focus patter and the axis-asymmetric four-focus pattern using a 256-element phased array and the genetic optimal algorithm and sound field calculation approach. The experimental results of the described 256-element phased array focused ultrasound surgery system acting on organic glass and phantom are also analyzed. The results of the simulations and experiments confirm the applicability of the genetic algorithm and field calculation approaches in accurately steering three dimensional foci and focus.

  5. Magnetic induction hyperthermia

    Science.gov (United States)

    Nikiforov, V. N.

    2007-09-01

    A review of physical principles and experimental data on magnetic hyperthermia are presented. The main principles of magnetic hyperthermia are considered. Results of its application in the therapy of oncology diseases are presented.

  6. Malignant hyperthermia

    Directory of Open Access Journals (Sweden)

    Pollock Neil

    2007-04-01

    Full Text Available Abstract Malignant hyperthermia (MH is a pharmacogenetic disorder of skeletal muscle that presents as a hypermetabolic response to potent volatile anesthetic gases such as halothane, sevoflurane, desflurane and the depolarizing muscle relaxant succinylcholine, and rarely, in humans, to stresses such as vigorous exercise and heat. The incidence of MH reactions ranges from 1:5,000 to 1:50,000–100,000 anesthesias. However, the prevalence of the genetic abnormalities may be as great as one in 3,000 individuals. MH affects humans, certain pig breeds, dogs, horses, and probably other animals. The classic signs of MH include hyperthermia to marked degree, tachycardia, tachypnea, increased carbon dioxide production, increased oxygen consumption, acidosis, muscle rigidity, and rhabdomyolysis, all related to a hypermetabolic response. The syndrome is likely to be fatal if untreated. Early recognition of the signs of MH, specifically elevation of end-expired carbon dioxide, provides the clinical diagnostic clues. In humans the syndrome is inherited in autosomal dominant pattern, while in pigs in autosomal recessive. The pathophysiologic changes of MH are due to uncontrolled rise of myoplasmic calcium, which activates biochemical processes related to muscle activation. Due to ATP depletion, the muscle membrane integrity is compromised leading to hyperkalemia and rhabdomyolysis. In most cases, the syndrome is caused by a defect in the ryanodine receptor. Over 90 mutations have been identified in the RYR-1 gene located on chromosome 19q13.1, and at least 25 are causal for MH. Diagnostic testing relies on assessing the in vitro contracture response of biopsied muscle to halothane, caffeine, and other drugs. Elucidation of the genetic changes has led to the introduction, on a limited basis so far, of genetic testing for susceptibility to MH. As the sensitivity of genetic testing increases, molecular genetics will be used for identifying those at risk with

  7. Realtime photoacoustic microscopy in vivo with a 30-MHz ultrasound array transducer.

    Science.gov (United States)

    Zemp, Roger J; Song, Liang; Bitton, Rachel; Shung, K Kirk; Wang, Lihong V

    2008-05-26

    We present a novel high-frequency photoacoustic microscopy system capable of imaging the microvasculature of living subjects in realtime to depths of a few mm. The system consists of a high-repetition-rate Q-switched pump laser, a tunable dye laser, a 30-MHz linear ultrasound array transducer, a multichannel high-frequency data acquisition system, and a shared-RAM multi-core-processor computer. Data acquisition, beamforming, scan conversion, and display are implemented in realtime at 50 frames per second. Clearly resolvable images of 6-microm-diameter carbon fibers are experimentally demonstrated at 80 microm separation distances. Realtime imaging performance is demonstrated on phantoms and in vivo with absorbing structures identified to depths of 2.5-3 mm. This work represents the first high-frequency realtime photoacoustic imaging system to our knowledge.

  8. SUPER-RESOLUTION ULTRASOUND TOMOGRAPHY: A PRELIMINARY STUDY WITH A RING ARRAY

    Energy Technology Data Exchange (ETDEWEB)

    HUANG, LIANJIE [Los Alamos National Laboratory; SIMONETTI, FRANCESCO [NON LANL; DURIC, NEBOJSA [NON LANL; RAMA, OLSI [NON LANL

    2007-01-18

    Ultrasound tomography attempts to retrieve the structure of an objective by exploiting the interaction of acoustic waves with the object. A fundamental limit of ultrasound tomography is that features cannot be resolved if they are spaced less than {lambda}/2 apart, where {lambda} is wavelength of the probing wave, regardless of the degree of accuracy of the measurements. Therefore, since the attenuation of the probing wave with propagation distance increases as {lambda} decreases, resolution has to be traded against imaging depth. Recently, it has been shown that the {lambda}/2 limit is a consequence of the Born approximation (implicit in the imaging algorithms currently employed) which neglects the distortion of the probing wavefield as it travels through the medium to be imaged. On the other hand, such a distortion, which is due to the multiple scattering phenomenon, can encode unlimited resolution in the radiating component of the scattered field. Previously, a resolution better than {lambda}/3 has been reported in these proceedings [F. Simonetti, pp. 126 (2006)] in the case of elastic wave probing. In this paper, they demonstrate experimentally a resolution better than {lambda}/4 for objects immersed in a water bth probed by means of a ring array which excites and detects pressure waves in a full view configuration.

  9. Investigation of a spherical-section ultrasound phased array for hepatic ablation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A 3D ultrasound thermal model with a 3D finite element representation for modeling the thermal diffusion effects for hepatic ablation induced by spherical-section ultrasound phased array was developed. The model was first validated against available published measured data in rat liver. Using the validated model, effects of blood perfusion and heating schemes on lesion formation were studied for both single focus and split-focus intensity patterns. It was shown that for single focus sonication pattern the short-duration (~2 s) and high-intensity (~1250 W/cm2) heating scheme can completely reduce the cooling effect of the blood perfusion. The lesion shape and size were significantly altered by perfusion for split-focus pattern even with a rapid heating scheme when the focus spacing was larger than 2.4 mm. Underdosed areas might be present between two foci. Prolonging exposure time or shortening focus spacing can reduce the cool region between two foci. In addition, the influences of thermal and acoustic parameters were also studied. When the therapy depth is short (<5 cm), the lesion size monotonically increases with increasing attenuation coefficient that ranges from 5.4 to 11 Np/(m·MHz).

  10. SUPER-RESOLUTION ULTRASOUND TOMOGRAPHY: A PRELIMINARY STUDY WITH A RING ARRAY

    Energy Technology Data Exchange (ETDEWEB)

    HUANG, LIANJIE [Los Alamos National Laboratory; SIMONETTI, FRANCESCO [NON LANL; DURIC, NEBOJSA [NON LANL; RAMA, OLSI [NON LANL

    2007-01-18

    Ultrasound tomography attempts to retrieve the structure of an objective by exploiting the interaction of acoustic waves with the object. A fundamental limit of ultrasound tomography is that features cannot be resolved if they are spaced less than {lambda}/2 apart, where {lambda} is wavelength of the probing wave, regardless of the degree of accuracy of the measurements. Therefore, since the attenuation of the probing wave with propagation distance increases as {lambda} decreases, resolution has to be traded against imaging depth. Recently, it has been shown that the {lambda}/2 limit is a consequence of the Born approximation (implicit in the imaging algorithms currently employed) which neglects the distortion of the probing wavefield as it travels through the medium to be imaged. On the other hand, such a distortion, which is due to the multiple scattering phenomenon, can encode unlimited resolution in the radiating component of the scattered field. Previously, a resolution better than {lambda}/3 has been reported in these proceedings [F. Simonetti, pp. 126 (2006)] in the case of elastic wave probing. In this paper, they demonstrate experimentally a resolution better than {lambda}/4 for objects immersed in a water bth probed by means of a ring array which excites and detects pressure waves in a full view configuration.

  11. The utility of sparse 2D fully electronically steerable focused ultrasound phased arrays for thermal surgery: a simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Ellens, Nicholas; Pulkkinen, Aki; Song Junho; Hynynen, Kullervo, E-mail: nicholas.ellens@utoronto.ca [Department of Imaging Research, Sunnybrook Research Institute, Toronto (Canada)

    2011-08-07

    Sparse arrays are widely used in diagnostic ultrasound for their strong performance and relative technical simplicity. This simulation study assessed the efficacy of phased arrays of varied sparseness for thermal surgery, especially with regard to power consumption and near-field heating. It employs a linear ultrasound propagation model and a semi-analytical solution to the Pennes' bioheat transfer equation. The basic design had 4912 cylindrical transducers (500 kHz) arranged on a flat 12 cm disk (1.5 mm spacing). This array was compared to randomly-thinned sparse arrays with 75%, 50% and 25% populations. Temperature elevations of 60 and 70 deg. C were induced in sonication times of 5-20 s, at foci spanning depths of 50-150 mm and radii of 0-60 mm. The sparse arrays produced nearly indistinguishable focal patterns but, averaged across the foci, required 132%, 200% and 393% of the power of the full array, respectively, applied through fewer transducer elements. Comparable results were found at 1 MHz from equivalent arrays. Simulated lesions were formed (thermal dose {>=} 240 equivalent minutes at 43 deg. C (T{sub 43})) and 'transition' and 'unsafe' regions (both defined as 5 min < T{sub 43} < 240 min) were identified, the former immediately surrounding the lesion and the latter anywhere else. At a depth of 100 mm, sparse arrays were found to produce comparable lesions to the full array at the focus, but 'unsafe', over-heated near-field regions after some ablated lesion volume: about 12 mL for the 25% array, around 100 mL for the 50% array, while the 75% and full arrays produced 150 mL lesions safely.

  12. Integrated circuits for volumetric ultrasound imaging with 2-D CMUT arrays.

    Science.gov (United States)

    Bhuyan, Anshuman; Choe, Jung Woo; Lee, Byung Chul; Wygant, Ira O; Nikoozadeh, Amin; Oralkan, Ömer; Khuri-Yakub, Butrus T

    2013-12-01

    Real-time volumetric ultrasound imaging systems require transmit and receive circuitry to generate ultrasound beams and process received echo signals. The complexity of building such a system is high due to requirement of the front-end electronics needing to be very close to the transducer. A large number of elements also need to be interfaced to the back-end system and image processing of a large dataset could affect the imaging volume rate. In this work, we present a 3-D imaging system using capacitive micromachined ultrasonic transducer (CMUT) technology that addresses many of the challenges in building such a system. We demonstrate two approaches in integrating the transducer and the front-end electronics. The transducer is a 5-MHz CMUT array with an 8 mm × 8 mm aperture size. The aperture consists of 1024 elements (32 × 32) with an element pitch of 250 μm. An integrated circuit (IC) consists of a transmit beamformer and receive circuitry to improve the noise performance of the overall system. The assembly was interfaced with an FPGA and a back-end system (comprising of a data acquisition system and PC). The FPGA provided the digital I/O signals for the IC and the back-end system was used to process the received RF echo data (from the IC) and reconstruct the volume image using a phased array imaging approach. Imaging experiments were performed using wire and spring targets, a ventricle model and a human prostrate. Real-time volumetric images were captured at 5 volumes per second and are presented in this paper.

  13. A new method for uniform local heating deep in body using ultrasound phased-array system

    Institute of Scientific and Technical Information of China (English)

    Zhang Chenxi; Bai Jingfeng; Chen Yazhu

    2008-01-01

    A new method for targeted heating of deep tissue was developed by using an ultrasound phased-array system which can generate various multiple foci patterns by electronically changing its amplitude or phase pattern. This method involves using a technique of combining switching and rotating of multiple foci patterns to create a uniform temperature over tissue volumes in various size. Using this method, the target tissue deep in the body can be heated to a specified temperature, which gives conditions for thermo-sensitive liposomes release. A simulation study for a 108-element, spherically sectioned array was performed to determine an optimal heating scheme from a set of multiple focus fields which were produced by inputting different combinations of phases and amplitudes. Comparisons of a static multiple foci field, the switched fields and the switched-rotated fields indicated that the technique of combining switching and rotating of multiple foci patterns has advantages of both lowering the peak temperature and evening the temperature distribution. The simulation results also show that the therapeutic heating zones in various size employing the combined method. These results offer significant data for designing thermotherapy equipment for tumor-specific drug release with thermo-sensitive liposomes.

  14. Magnetic nanoparticles for enhancing the effectiveness of ultrasonic hyperthermia

    Science.gov (United States)

    Józefczak, A.; Kaczmarek, K.; Hornowski, T.; Kubovčíková, M.; Rozynek, Z.; Timko, M.; Skumiel, A.

    2016-06-01

    Ultrasonic hyperthermia is a method of cancer treatment in which tumors are exposed to an elevated cytotoxic temperature using ultrasound (US). In conventional ultrasonic hyperthermia, the ultrasound-induced heating in the tumor is achieved through the absorption of wave energy. However, to obtain appropriate temperature in reasonable time, high US intensities, which can have a negative impact on healthy tissues, are required. The effectiveness of US for medical purposes can be significantly improved by using the so-called sonosensitizers, which can enhance the thermal effect of US on the tissue by increasing US absorption. One possible candidate for such sonosensitizers is magnetic nanoparticles with mean sizes of 10-300 nm, which can be efficiently heated because of additional attenuation and scattering of US. Additionally, magnetic nanoparticles are able to produce heat in the alternating magnetic field (magnetic hyperthermia). The synergetic application of ultrasonic and magnetic hyperthermia can lead to a promising treatment modality.

  15. Chirp-coded excitation imaging with a high-frequency ultrasound annular array.

    Science.gov (United States)

    Mamou, Jonathan; Ketterling, Jeffrey A; Silverman, Ronald H

    2008-02-01

    High-frequency ultrasound (HFU, > 15 MHz) is an effective means of obtaining fine-resolution images of biological tissues for applications such as opthalmologic, dermatologic, and small animal imaging. HFU has two inherent drawbacks. First, HFU images have a limited depth of field (DOF) because of the short wavelength and the low fixed F-number of conventional HFU transducers. Second, HFU can be used to image only a few millimeters deep into a tissue because attenuation increases with frequency. In this study, a five-element annular array was used in conjunction with a synthetic-focusing algorithm to extend the DOF. The annular array had an aperture of 10 mm, a focal length of 31 mm, and a center frequency of 17 MHz. To increase penetration depth, 8-micros, chirp-coded signals were designed, input into an arbitrary waveform generator, and used to excite each array element. After data acquisition, the received signals were linearly filtered to restore axial resolution and increase the SNR. To compare the chirpcoded imaging method with conventional impulse imaging in terms of resolution, a 25-microm diameter wire was scanned and the -6-dB axial and lateral resolutions were computed at depths ranging from 20.5 to 40.5 mm. The results demonstrated that chirp-coded excitation did not degrade axial or lateral resolution. A tissue-mimicking phantom containing 10-microm glass beads was scanned, and backscattered signals were analyzed to evaluate SNR and penetration depth. Finally, ex vivo ophthalmic images were formed and chirpcoded images showed features that were not visible in conventional impulse images.

  16. Transparent Fabry-Perot polymer film ultrasound array for backward-mode photoacoustic imaging

    Science.gov (United States)

    Beard, Paul C.; Zhang, Edward Z. Y.; Cox, Benjamin T.

    2004-07-01

    A novel optical ultrasound sensor has been developed for backward-mode photoacoustic imaging. The sensor is based on a Fabry Perot polymer film interferometer, the mirrors of which are transparent to 1064nm, but highly reflective at 850nm. When illuminated by a CW interrogating laser source at the latter wavelength, the system acts as a resonant Fabry Perot (FP) sensing cavity, the reflected intensity output of which is dependent upon acoustically-induced changes in the optical thickness of the polymer film. By optically addressing different regions of the sensor, a notional ultrasound array of arbitrary aperture and dimensionality can be synthesised. The system was demonstrated in backward mode by transmitting 1064nm excitation laser pulses through the sensor into an Intralipid scattering solution (μa=0.03mm-1, μs'=1mm-1) containing various absorbing structures and detecting the resulting photoacoustic signals over a line. A 1D depth profile of a 1.3mm thick absorbing polymer sheet (´a=0.8mm-1) immersed to a depth of 12mm in the Intralipid solution was obtained by performing an 11mm linescan. In another experiment, a 3-layer structure consisting of 0.076mm thick line absorbers was immersed in Intralipid and a 2D image reconstructed from the detected photoacoustic signals using an inverse k-space reconstruction algorithm. Lateral resolution was 0.4mm and the vertical resolution 0.1mm. The ability of this system to map wideband photoacoustic signals with high sensitivity in backward mode may provide a useful tool for high resolution imaging of superficial tissue structures such as the skin microvasculature.

  17. Thermoacoustic range verification using a clinical ultrasound array provides perfectly co-registered overlay of the Bragg peak onto an ultrasound image

    Science.gov (United States)

    Patch, S. K.; Kireeff Covo, M.; Jackson, A.; Qadadha, Y. M.; Campbell, K. S.; Albright, R. A.; Bloemhard, P.; Donoghue, A. P.; Siero, C. R.; Gimpel, T. L.; Small, S. M.; Ninemire, B. F.; Johnson, M. B.; Phair, L.

    2016-08-01

    The potential of particle therapy due to focused dose deposition in the Bragg peak has not yet been fully realized due to inaccuracies in range verification. The purpose of this work was to correlate the Bragg peak location with target structure, by overlaying the location of the Bragg peak onto a standard ultrasound image. Pulsed delivery of 50 MeV protons was accomplished by a fast chopper installed between the ion source and the cyclotron inflector. The chopper limited the train of bunches so that 2 Gy were delivered in 2 μ \\text{s} . The ion pulse generated thermoacoustic pulses that were detected by a cardiac ultrasound array, which also produced a grayscale ultrasound image. A filtered backprojection algorithm focused the received signal to the Bragg peak location with perfect co-registration to the ultrasound images. Data was collected in a room temperature water bath and gelatin phantom with a cavity designed to mimic the intestine, in which gas pockets can displace the Bragg peak. Phantom experiments performed with the cavity both empty and filled with olive oil confirmed that displacement of the Bragg peak due to anatomical change could be detected. Thermoacoustic range measurements in the waterbath agreed with Monte Carlo simulation within 1.2 mm. In the phantom, thermoacoustic range estimates and first-order range estimates from CT images agreed to within 1.5 mm.

  18. Ultrasound

    Science.gov (United States)

    ... Saunders; 2014:chap 66. Cosgrove DO, Eckersley RJ, Harvey CJ, Lim A. Ultrasound. In: Adam A, Dixon AK, Gillard ... Northside Radiology Associates, Atlanta, GA. Also reviewed by David Zieve, MD, MHA, Isla Ogilvie, PhD, and the ...

  19. Development of a 20-MHz wide-bandwidth PMN-PT single crystal phased-array ultrasound transducer.

    Science.gov (United States)

    Wong, Chi-Man; Chen, Yan; Luo, Haosu; Dai, Jiyan; Lam, Kwok-Ho; Chan, Helen Lai-Wa

    2017-01-01

    In this study, a 20-MHz 64-element phased-array ultrasound transducer with a one-wavelength pitch is developed using a PMN-30%PT single crystal and double-matching layer scheme. High piezoelectric (d33>1000pC/N) and electromechanical coupling (k33>0.8) properties of the single crystal with an optimized fabrication process involving the photolithography technique have been demonstrated to be suitable for wide-bandwidth (⩾70%) and high-sensitivity (insertion loss ⩽30dB) phased-array transducer application. A -6dBbandwidth of 91% and an insertion loss of 29dBfor the 20-MHz 64-element phased-array transducer were achieved. This result shows that the bandwidth is improved comparing with the investigated high-frequency (⩾20MHz) ultrasound transducers using piezoelectric ceramic and single crystal materials. It shows that this phased-array transducer has potential to improve the resolution of biomedical imaging, theoretically. Based on the hypothesis of resolution improvement, this phased-array transducer is capable for small animal (i.e. mouse and zebrafish) studies.

  20. Light Focusing and Two-Dimensional Imaging Through Scattering Media using the Photoacoustic Transmission-Matrix with an Ultrasound Array

    CERN Document Server

    Chaigne, Thomas; Katz, Ori; Bossy, Emmanuel; Gigan, Sylvain

    2014-01-01

    We implement the photoacoustic transmission-matrix approach on a two-dimensional photoacoustic imaging system, using a 15 MHz linear ultrasound array. Using a black leaf skeleton as a complex absorbing structure, we demonstrate that the photoacoustic transmission-matrix approach allows to reveal structural features that are invisible in conventional photoacoustic images, as well as to selectively control light focusing on absorbing targets, leading to a local enhancement of the photoacoustic signal.

  1. X-ray-induced acoustic computed tomography with an ultrasound transducer ring-array

    Science.gov (United States)

    Tang, S.; Nguyen, D. H.; Zarafshani, A.; Ramseyer, C.; Zheng, B.; Liu, H.; Xiang, L.

    2017-03-01

    The objective of this study is to develop and test a unique X-ray-induced acoustic computed tomography system that combines the advantages of high X-ray imaging contrast and high ultrasonic spatial resolution. The system features a 5 MHz 128-element ultrasound transducer ring-array formed into a full circular aperture. A parallel data receiver, which consists of a dedicated 128-channel preamplifier and a 128-channel data acquisition module, provides full tomographic imaging at a speed of up to 25 frames per second. Details of the system design and calibration are presented, along with the characteristic results of the imaging resolution. The tomographic imaging performance is demonstrated through images of a phantom with a spatial resolution up to 138 μm. The study results indicate that this imaging device and the methodology provide a rapid and high resolution approach for the dynamic imaging of information, and it may have the potential for becoming a promising noninvasive imaging modality to be used in future applications.

  2. Reliability of Central Adiposity Assessments Using B-Mode Ultrasound: A Comparison of Linear and Curved Array Transducers.

    Science.gov (United States)

    Stoner, Lee; Geoffron, Morgane; Cornwall, Jon; Chinn, Victoria; Gram, Martin; Credeur, Daniel; Fryer, Simon

    2016-12-01

    Recently, it was reported that intra-abdominal thickness (IAT) assessments using ultrasound are most reliable if measured from the linea alba to the anterior vertebral column. These 2 anatomical sites can be simultaneously visualized using a linear array transducer. Linear array transducers have different operational characteristics when compared with conventional curved array transducers and are more reliable for some ultrasound-derived measures such as abdominal subcutaneous fat thickness. However, it is unknown whether linear array transducers facilitate more reliable IAT measurements than curved array transducers. The purpose of the current study was to (1) compare the reliability of linear and curved array transducer assessments of IAT and maximal abdominal ratio (MAR) and (2) use the findings to update central adiposity measurement guidelines. Fifteen healthy adults (mean [SD], 27 [10] years; 60% female) with a range of somatotypes (body mass index: mean [SD], 24 [4]; range, 19-33 kg/m; waist circumference: mean [SD], 75 [11]; range, 61-96 cm) were tested on 3 mornings under standardized conditions. Intra-abdominal thickness was assessed 2 cm above the umbilicus (transverse plane), measuring from linea alba to the anterior vertebral column. Maximal abdominal ratio was defined as the ratio of IAT to abdominal subcutaneous fat thickness. The IAT range was 25 to 87 mm, and the MAR range was 0.15 to 0.77. Between-day intraclass correlation coefficient values for IAT measurements made were comparable (0.96-0.97) for both transducers, as were MAR values (0.95). In conclusion, while both transducers provided equally reliable measurement of IAT, the use of a single linear array transducer simplifies the assessment of central adiposity.

  3. A 63 element 1.75 dimensional ultrasound phased array for the treatment of benign prostatic hyperplasia

    Directory of Open Access Journals (Sweden)

    Smith Nadine

    2005-06-01

    Full Text Available Abstract Background Prostate cancer and benign prostatic hyperplasia are very common diseases in older American men, thus having a reliable treatment modality for both diseases is of great importance. The currently used treating options, mainly surgical ones, have numerous complications, which include the many side effects that accompany such procedures, besides the invasive nature of such techniques. Focused ultrasound is a relatively new treating modality that is showing promising results in treating prostate cancer and benign prostatic hyperplasia. Thus this technique is gaining more attention in the past decade as a non-invasive method to treat both diseases. Methods In this paper, the design, construction and evaluation of a 1.75 dimensional ultrasound phased array to be used for treating prostate cancer and benign prostatic hyperplasia is presented. With this array, the position of the focus can be controlled by changing the electrical power and phase to the individual elements for electronically focusing and steering in a three dimensional volume. The array was designed with a maximum steering angle of ± 13.5° in the transverse direction and a maximum depth of penetration of 11 cm, which allows the treatment of large prostates. The transducer piezoelectric ceramic, matching layers and cable impedance have been designed for maximum power transfer to tissue. Results To verify the capability of the transducer for focusing and steering, exposimetry was performed and the results correlated well with the calculated field. Ex vivo experiments using bovine tissue were performed with various lesion sizes and indicated the capability of the transducer to ablate tissue using short sonications. Conclusion A 1.75 dimensional array, that overcame the drawbacks associated with one-dimensional arrays, has been designed, built and successfully tested. Design issues, such as cable and ceramic capacitances, were taken into account when designing this

  4. Thermal modelling for hyperthermia

    NARCIS (Netherlands)

    Raaymakers, Bas Willem

    2001-01-01

    Hyperthermia aims at increasing the temperature of malignant tissues to the range of 40-44 C. It is used adjuvantly to adiation therapy in order to enhance tumour control and survival as was recently demonstrated for pelvic tumours by the dutch deep hyperthermia group (published in the Lancet, Van

  5. Dual-mode ultrasound arrays for image-guided targeting of atheromatous plaques

    Science.gov (United States)

    Ballard, John R.; Casper, Andrew J.; Liu, Dalong; Haritonova, Alyona; Shehata, Islam A.; Troutman, Mitchell; Ebbini, Emad S.

    2012-11-01

    A feasibility study was undertaken in order to investigate alternative noninvasive treatment options for atherosclerosis. In particular, the aim of this study was to investigate the potential use of Dual-Mode Ultrasound Arrays (DMUAs) for image guided treatment of atheromatous plaques. DMUAs offer a unique treatment paradigm for image-guided surgery allowing for robust image-based identification of tissue targets for localized application of HIFU. In this study we present imaging and therapeutic results form a 3.5 MHz, 64-element fenestrated prototype DMUA for targeting lesions in the femoral artery of familial hypercholesterolemic (FH) swine. Before treatment, diagnostic ultrasound was used to verify the presence of plaque in the femoral artery of the swine. Images obtained with the DMUA and a diagnostic (HST 15-8) transducer housed in the fenestration were analyzed and used for guidance in targeting of the plaque. Discrete therapeutic shots with an estimated focal intensity of 4000-5600 W/cm2 and 500-2000 msec duration were performed at several planes in the plaque. During therapy, pulsed HIFU was interleaved with single transmit focus imaging from the DMUA and M2D imaging from the diagnostic transducer for further analysis of lesion formation. After therapy, the swine's were recovered and later sacrificed after 4 and 7 days for histological analysis of lesion formation. At sacrifice, the lower half of the swine was perfused and the femoral artery with adjoining muscle was fixed and stained with H&E to characterize HIFU-induced lesions. Histology has confirmed that localized thermal lesion formation within the plaque was achieved according to the planned lesion maps. Furthermore, the damage was confined to the plaque tissue without damage to the intima. These results offer the promise of a new treatment potentially suited for vulnerable plaques. The results also provide the first real-time demonstration of DMUA technology in targeting fine tissue structures for

  6. Heat delivery and thermometry in clinical hyperthermia.

    Science.gov (United States)

    Hand, J W

    1987-01-01

    This chapter has discussed some recent technical developments and trends in clinical hyperthermia. Several techniques for the treatment of tumours within 3-4 cm of the body surfaces were described. Each technique has its minor advantages and disadvantages; all techniques employing a single applicator produce temperature distributions with considerable gradients. The introduction of microwave and ultrasound techniques using multiple applicators in which there is some control of the pattern of the energy deposition within the treatment area should improve superficial treatments in this respect. A number of electromagnetic devices for regional hyperthermia are being developed and evaluated. The theoretical predictions of their performances are beginning to suggest restrictions to their use; the limited clinical experience is in general agreement with these predictions. Scanned and focussed ultrasound beams may offer the unique possibility of non-invasive, deep, yet localised hyperthermia in some locations. Such systems are at an early stage of their development; if they prove successful, their controlled and safe use will require detailed information of the temperature distributions produced. Invasive methods for inducing hyperthermia can produce relatively good temperature distributions. The development of 'constant temperature seeds' is promising. Both RF and microwave interstitial systems offering individual control of power to several channels should lead to improved temperature distributions. In general, non-invasive thermometry in clinical hyperthermia remains a distant goal, although developments in microwave radiometry may lead to systems with suitable spatial, temporal and temperature resolutions for use in superficial treatments. Invasive thermometry techniques can provide temperature measurements from several points or from along tracks within the treatment volume. The development of computer models to infer temperature distributions from the limited

  7. A High-Frequency High Frame Rate Duplex Ultrasound Linear Array Imaging System for Small Animal Imaging

    Science.gov (United States)

    Zhang, Lequan; Xu, Xiaochen; Hu, Changhong; Sun, Lei; Yen, Jesse T.; Cannata, Jonathan M.; Shung, K. Kirk

    2010-01-01

    High-frequency (HF) ultrasound imaging has been shown to be useful for non-invasively imaging anatomical structures of the eye and small animals in biological and pharmaceutical research, achieving superior spatial resolution. Cardiovascular research utilizing mice requires not only real-time B-scan imaging, but also ultrasound Doppler to evaluate both anatomy and blood flow of the mouse heart. This paper reports the development of a high frequency ultrasound duplex imaging system capable of both B-mode imaging and Doppler flow measurements, using a 64-element linear array. The system included a HF pulsed-wave Doppler module, a 32-channel HF B-mode imaging module, a PC with a 200 MS/s 14-bit A/D card, and real-time LabView software. A 50dB signal-to-noise ratio (SNR) and a depth of penetration of larger than 12 mm were achieved using a 35 MHz linear array with 50 μm pitch. The two-way beam widths were determined to be 165 μm to 260 μm and the clutter energy to total energy ratio (CTR) were 9.1 dB to 12 dB, when the array was electronically focused at different focal points at depths from 4.8 mm to 9.6 mm. The system is capable of acquiring real-time B-mode images at a rate greater than 400 frames per second (fps) for a 4.8 × 13 mm field of view, using a 30 MHz 64-element linear array with 100 μm pitch. Sample in vivo cardiac high frame rate images and duplex images of mouse hearts are shown to assess its current imaging capability and performance for small animals. PMID:20639149

  8. First in vivo use of a capacitive micromachined ultrasound transducer array-based imaging and ablation catheter.

    Science.gov (United States)

    Stephens, Douglas N; Truong, Uyen T; Nikoozadeh, Amin; Oralkan, Omer; Seo, Chi Hyung; Cannata, Jonathan; Dentinger, Aaron; Thomenius, Kai; de la Rama, Alan; Nguyen, Tho; Lin, Feng; Khuri-Yakub, Pierre; Mahajan, Aman; Shivkumar, Kalyanam; O'Donnell, Matt; Sahn, David J

    2012-02-01

    The primary objective was to test in vivo for the first time the general operation of a new multifunctional intracardiac echocardiography (ICE) catheter constructed with a microlinear capacitive micromachined ultrasound transducer (ML-CMUT) imaging array. Secondarily, we examined the compatibility of this catheter with electroanatomic mapping (EAM) guidance and also as a radiofrequency ablation (RFA) catheter. Preliminary thermal strain imaging (TSI)-derived temperature data were obtained from within the endocardium simultaneously during RFA to show the feasibility of direct ablation guidance procedures. The new 9F forward-looking ICE catheter was constructed with 3 complementary technologies: a CMUT imaging array with a custom electronic array buffer, catheter surface electrodes for EAM guidance, and a special ablation tip, that permits simultaneous TSI and RFA. In vivo imaging studies of 5 anesthetized porcine models with 5 CMUT catheters were performed. The ML-CMUT ICE catheter provided high-resolution real-time wideband 2-dimensional (2D) images at greater than 8 MHz and is capable of both RFA and EAM guidance. Although the 24-element array aperture dimension is only 1.5 mm, the imaging depth of penetration is greater than 30 mm. The specially designed ultrasound-compatible metalized plastic tip allowed simultaneous imaging during ablation and direct acquisition of TSI data for tissue ablation temperatures. Postprocessing analysis showed a first-order correlation between TSI and temperature, permitting early development temperature-time relationships at specific myocardial ablation sites. Multifunctional forward-looking ML-CMUT ICE catheters, with simultaneous intracardiac guidance, ultrasound imaging, and RFA, may offer a new means to improve interventional ablation procedures.

  9. A fast and conformal heating scheme for producing large thermal lesions using a 2D ultrasound phased array.

    Science.gov (United States)

    Liu, Hao-Li; Lin, Win-Li; Chen, Yung-Yaw

    2007-02-01

    The treatment conformability and the total treatment time of large tumors are both important issues in ultrasound thermal therapy. Previous heating strategies all show their restrictions in achieving these two issues to satisfactory levels simultaneously. This work theoretically presents a new heating strategy which is capable of both increasing the treatment conformability and shortening the treatment time, when using a 2D ultrasound phased array transducer. To perform this, a set of the multiple-foci patterns (considered the basic heating units) were temporally switched to steer the beam at different focal planes with the lesion length being well-controlled. Then, to conformally cover an irregular target volume, the 2D phased array was laterally shifted by a positioning system to deposit a suitable heating unit to cover a subvolume part. Results demonstrated that the totally treatment time can be largely reduced. The heating rate can be increased up to 0.96 cm3/min compared to the previously reported 0.26 cm3/min. Also, the proposed scheme showed that the tumor regions can be completely treated with the normal tissue damage at satisfactory level. The feasibility of the proposed strategy for irregular tumor treatment was also demonstrated. This study offers useful information in large tumor treatment in ultrasound thermal therapy.

  10. Proton beam irradiation and hyperthermia. Effects on experimental choroidal melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Riedel, K.G.; Svitra, P.P.; Seddon, J.M.; Albert, D.M.; Gragoudas, E.S.; Koehler, A.M.; Coleman, D.J.; Torpey, J.; Lizzi, F.L.; Driller, J.

    1985-12-01

    Ultrasonically induced hyperthermia (4.75 MHz) and proton irradiation (160 meV) were evaluated alone and combined to treat experimental choroidal melanoma in 58 rabbit eyes. Threshold tumoricidal doses were established for each modality. Therapy was performed combining subthreshold doses of heat and radiation. Focused ultrasonic energy via an external beam was found to deliver well-localized heat to an intraocular tumor. Ectopic temperature elevations due to soft-tissue-bone interfaces were alleviated by modifying beam alignment. The results indicate that hyperthermia (43 degrees C for one hour) potentiated the tumoricidal effects of radiation, while sparing normal ocular structures. Therefore, we believe that experimental hyperthermia is suitable as an adjuvant treatment modality. This shows that ultrasound hyperthermia has the potential to increase the efficacy of proton irradiation by lowering radiation doses and thus decreasing posttreatment ocular morbidity in human intraocular malignancies.

  11. Laser hyperthermia: problems and solutions

    Science.gov (United States)

    Manak, Ivan S.; Lisenkova, A.; Nikolaeva, A.

    2004-08-01

    The possible methods of local and general hyperthermia creation are reviewed. The advantages of a laser hyperthermia of oncologic neoplasms are determined. The comparative analysis of characteristics of different apparatus for creation of a local hyperthermia of cancers, including laser hyperthermia is carried out. The model of a laser hyperthermia of a cancer of a glandular epithelium of bronchuses is offered. The temperature conditions for destruction of cancer are determined.

  12. Find, Fight, Follow: Ultrasound triggered image-guided drug delivery

    NARCIS (Netherlands)

    Sanches, P.G.; Gruell, H.; Steinbach, O.C.

    2012-01-01

    The integration of therapeutic interventions with diagnostic imaginghas been recognized as one of the next technological developments that will have a major impact on medical treatments. Therapeutic applications using ultrasound, for example thermal ablation, hyperthermia or ultrasound induced drug

  13. Advanced 3-D Ultrasound Imaging: 3-D Synthetic Aperture Imaging using Fully Addressed and Row-Column Addressed 2-D Transducer Arrays

    DEFF Research Database (Denmark)

    Bouzari, Hamed

    with transducer arrays using this addressing scheme, when integrated into probe handles. For that reason, two in-house prototyped 62+62 row-column addressed 2-D array transducer probes were manufactured using capacitive micromachined ultrasonic transducer (CMUT) and piezoelectric transducer (PZT) technology...... in many clinical applications. Real-time 3-D ultrasound imaging is still not as widespread in use in the clinics as 2-D ultrasound imaging. Two limiting factors have traditionally been the low image quality as well as low volume rate achievable with a 2-D transducer array using the conventional 3-D...... and measurements with the ultrasound research scanner SARUS and a 3.8 MHz 1024 element 2-D transducer array. In all investigations, 3-D synthetic aperture imaging achieved a better resolution, lower side-lobes, higher contrast, and better signal to noise ratio than parallel beamforming. This is achieved partly...

  14. An 11-channel radio frequency phased array coil for magnetic resonance guided high-intensity focused ultrasound of the breast.

    Science.gov (United States)

    Minalga, E; Payne, A; Merrill, R; Todd, N; Vijayakumar, S; Kholmovski, E; Parker, D L; Hadley, J R

    2013-01-01

    In this study, a radio frequency phased array coil was built to image the breast in conjunction with a magnetic resonance guided high-intensity focused ultrasound (MRgHIFU) device designed specifically to treat the breast in a treatment cylinder with reduced water volume. The MRgHIFU breast coil was comprised of a 10-channel phased array coil placed around an MRgHIFU treatment cylinder where nearest-neighbor decoupling was achieved with capacitive decoupling in a shared leg. In addition a single loop coil was placed at the chest wall making a total of 11 channels. The radio frequency coil array design presented in this work was chosen based on ease of implementation, increased visualization into the treatment cylinder, image reconstruction speed, temporal resolution, and resulting signal-to-noise ratio profiles. This work presents a dedicated 11-channel coil for imaging of the breast tissue in the MRgHIFU setup without obstruction of the ultrasound beam and, specifically, compares its performance in signal-to-noise, overall imaging time, and temperature measurement accuracy to that of the standard single chest-loop coil typically used in breast MRgHIFU. Copyright © 2012 Wiley Periodicals, Inc.

  15. A Flexible Ultrasound Transducer Array with Micro-Machined Bulk PZT

    Directory of Open Access Journals (Sweden)

    Zhe Wang

    2015-01-01

    Full Text Available This paper proposes a novel flexible piezoelectric micro-machined ultrasound transducer, which is based on PZT and a polyimide substrate. The transducer is made on the polyimide substrate and packaged with medical polydimethylsiloxane. Instead of etching the PZT ceramic, this paper proposes a method of putting diced PZT blocks into holes on the polyimide which are pre-etched. The device works in d31 mode and the electromechanical coupling factor is 22.25%. Its flexibility, good conformal contacting with skin surfaces and proper resonant frequency make the device suitable for heart imaging. The flexible packaging ultrasound transducer also has a good waterproof performance after hundreds of ultrasonic electric tests in water. It is a promising ultrasound transducer and will be an effective supplementary ultrasound imaging method in the practical applications.

  16. Cerebral oxygenation and hyperthermia

    Directory of Open Access Journals (Sweden)

    Anthony Richard Bain

    2014-03-01

    Full Text Available Hyperthermia is associated with marked reductions in cerebral blood flow (CBF. Increased distribution of cardiac output to the periphery, increases in alveolar ventilation and resultant hypocapnia each contribute to the fall in CBF during passive hyperthermia; however, their relative contribution remains a point of contention, and probably depends on the experimental condition (e.g. posture and degree of hyperthermia. The hyperthermia-induced hyperventilatory response reduces arterial CO2 pressure (PaCO2 causing cerebral vasoconstriction and subsequent reductions in flow. During supine passive hyperthermia, the majority of recent data indicate that reductions in PaCO2 may be the primary, if not sole, culprit for reduced CBF. On the other hand, during more dynamic conditions (e.g. hemorrhage or orthostatic challenges, an inability to appropriately decrease peripheral vascular conductance presents a condition whereby adequate cerebral perfusion pressure may be compromised secondary to reductions in systemic blood pressure. Although studies have reported maintenance of pre-frontal cortex oxygenation (assessed by near-infrared spectroscopy during exercise and severe heat stress, the influence of cutaneous blood flow is known to contaminate this measure. This review discusses the governing mechanisms associated with changes in CBF and oxygenation during moderate to severe (i.e. 1.0°C to 2.0°C increase in body core temperature levels of hyperthermia. Future research directions are provided.

  17. In vivo characterization of tissue thermal properties of the kidney during local hyperthermia induced by MR-guided high-intensity focused ultrasound.

    Science.gov (United States)

    Cornelis, François; Grenier, Nicolas; Moonen, Chrit T; Quesson, Bruno

    2011-08-01

    The purpose of this study was to evaluate quantitatively in vivo the tissue thermal properties during high-intensity focused ultrasound (HIFU) heating. For this purpose, a total of 52 localized sonications were performed in the kidneys of six pigs with HIFU monitored in real time by volumetric MR thermometry. The kidney perfusion was modified by modulation of the flow in the aorta by insertion of an inflatable angioplasty balloon. The resulting temperature data were analyzed using the bio-heat transfer model in order to validate the model under in vivo conditions and to estimate quantitatively the absorption (α), thermal diffusivity (D) and perfusion (w(b)) of renal tissue. An excellent correspondence was observed between the bio-heat transfer model and the experimental data. The absorption and thermal diffusivity were independent of the flow, with mean values (± standard deviation) of 20.7 ± 5.1 mm(3) K J(-1) and 0.23 ± 0.11 mm(2) s(-1), respectively, whereas the perfusion decreased significantly by 84% (p < 0.01) with arterial flow (mean values of w(b) of 0.06 ± 0.02 and 0.008 ± 0.007 mL(-1) mL s(-1)), as predicted by the model. The quantitative analysis of the volumetric temperature distribution during nondestructive HIFU sonication allows the determination of the thermal parameters, and may therefore improve the quality of the planning of noninvasive therapy with MR-guided HIFU.

  18. Correlations Between B-mode Ultrasound Image Texture Features and Tissue Temperature in Hyperthermia%热消融组织B超图像纹理特征参数温度相关性

    Institute of Scientific and Technical Information of China (English)

    盛磊; 周著黄; 吴水才; 曾毅

    2013-01-01

    The noninvasive estimation of tissue temperature is a key problem in hyperthermia.The original ultrasonic RF signal was used to reconstruct B-mode images,eliminating device-dependent variances to explore the use of B-mode image texture parameters in monitoring temperature and coagulation zones in hyperthermia.The water bath heating experiments were carried out on in-vitro porcine liver samples,and the ultrasound RF signal at different temperatures was collected.Then the Bmode ultrasonic images were reconstructed,and the texture features (gray level histogram,gray level cooccurrence matrices,and gray level-gradient co-occurrence matrix) were extracted.The correlations between temperature and texture parameters of B-mode images were analyzed.Results indicate that some texture parameters are linearly correlated with the temperature in the heated tissue at a temperature from 20 ℃ to 60 ℃.Five parameters with large correlations with temperatures include mean gray scale of gray level histogram,entropy of gray level co-occurrence matrix,and hybrid entropy,inverse difference and correlation of gray level-gradient co-occurrence matrix.These five texture features with large correlations with temperatures can be used for tissue temperature estimation in clinical microwave tumor ablation.%针对微波消融技术应用中的无创监测组织温度难题,通过B超原始射频信号重建B超图像,排除B超仪器的相关性,探讨了利用B超图像纹理特征实现热疗温度监测的可行性.通过水浴加热猪肝实验,采集不同温度下的猪肝B超射频信号,在此基础上重建B超图像并分析图像纹理特征参数(灰度直方图、灰度共生矩阵与灰度梯度共生矩阵)与温度的相关性.实验结果表明:组织B超图像纹理参数随着温度变化而变化,在20~60℃范围内灰度直方图中的灰度均值,灰度共生矩阵中的熵以及灰度梯度共生矩阵中的混合熵、逆差距、相关等5个参数与组织温度

  19. 64-element intraluminal ultrasound cylindrical phased array for transesophageal thermal ablation under fast MR temperature mapping: an ex vivo study.

    Science.gov (United States)

    Melodelima, D; Salomir, R; Mougenot, C; Moonen, C; Cathignol, D

    2006-08-01

    This work was undertaken to investigate the feasibility of using a cylindrical phased array for transoesophaeal thermal ablation under magnetic resonance (MR) imaging guidance. Sixty-four transducers (0.45 mm wide by 15 mm tall), operating at 4.6 MHz, were spread around the periphery of a 10.6-mm-diam cylinder. The head of the applicator was covered with a 65-microm thick latex balloon attached using watertight seals. This envelope was inflated with degassed water to provide acoustic coupling between the transducer and the tissues. The underlying operating principle of this applicator is to rotate a plane ultrasound beam electronically. For this purpose, eight adjacent transducers were excited with appropriate delay times so as to generate a plane wave. The exposure direction was changed by exciting a different set of eight elements. Ex vivo experiments conducted on 47 samples of pig liver under MR temperature monitoring demonstrated the ability of this applicator to generate cylindrical or sector-based coagulation necroses at depths up to 19 mm with excellent angular precision by applying 20 W/cm2. MR thermometry was performed in "real-time" with segmented echo-planar imaging gradient echo sequences. The temporal resolution was approximately 3 s/ image. The average value for the temperature baseline in liver tissue close to the applicator was 0.3 degrees C (+/- 0.6 degrees C). The thermal dose delivered in tissues was computed on-line during temperature imaging. Excellent MR compatibility was demonstrated, all MR acquisitions were performed without susceptibility artifacts or radio-frequency interferences with the ultrasound device. Thermal lesions identified on post-treatment follow up showed good correlation with online MR thermometry data. The individual differences between measurements performed visually and using MRI thermal dose maps were about 11% of volume. This study demonstrated the feasibility of thermal ablation using a phased array intraluminal

  20. A multi-frequency sparse hemispherical ultrasound phased array for microbubble-mediated transcranial therapy and simultaneous cavitation mapping

    Science.gov (United States)

    Deng, Lulu; O'Reilly, Meaghan A.; Jones, Ryan M.; An, Ran; Hynynen, Kullervo

    2016-12-01

    Focused ultrasound (FUS) phased arrays show promise for non-invasive brain therapy. However, the majority of them are limited to a single transmit/receive frequency and therefore lack the versatility to expose and monitor the treatment volume. Multi-frequency arrays could offer variable transmit focal sizes under a fixed aperture, and detect different spectral content on receive for imaging purposes. Here, a three-frequency (306, 612, and 1224 kHz) sparse hemispherical ultrasound phased array (31.8 cm aperture; 128 transducer modules) was constructed and evaluated for microbubble-mediated transcranial therapy and simultaneous cavitation mapping. The array is able to perform effective electronic beam steering over a volume spanning (-40, 40) and (-30, 50) mm in the lateral and axial directions, respectively. The focal size at the geometric center is approximately 0.9 (2.1) mm, 1.7 (3.9) mm, and 3.1 (6.5) mm in lateral (axial) pressure full width at half maximum (FWHM) at 1224, 612, and 306 kHz, respectively. The array was also found capable of dual-frequency excitation and simultaneous multi-foci sonication, which enables the future exploration of more complex exposure strategies. Passive acoustic mapping of dilute microbubble clouds demonstrated that the point spread function of the receive array has a lateral (axial) intensity FWHM between 0.8-3.5 mm (1.7-11.7 mm) over a volume spanning (-25, 25) mm in both the lateral and axial directions, depending on the transmit/receive frequency combination and the imaging location. The device enabled both half and second harmonic imaging through the intact skull, which may be useful for improving the contrast-to-tissue ratio or imaging resolution, respectively. Preliminary in vivo experiments demonstrated the system’s ability to induce blood-brain barrier opening and simultaneously spatially map microbubble cavitation activity in a rat model. This work presents a tool to investigate optimal strategies for non

  1. [Blood coagulation in hyperthermia].

    Science.gov (United States)

    Zwierzina, W D; Herold, M; Günther, R; Kunz, F

    1980-01-01

    Young healthy volunteers were treated with physical hyperthermia (baths) in order to investigate changes in blood coagulation. Such therapy is used in the treatment of rheumatic diseases. Single hot baths (mean body temperature 38,2-39,9 degrees C) resulted in a rise of fibrinogen, factors IX and XII, maximal amplitude of the thrombelastogram and hemoglobin and in a decrease of plasminogen. In a series of hypothermic baths no additional changes of coagulation or fibrinolysis could be found. The results suggest that hyperthermia causes a tendency to thrombosis.

  2. Design of patient-specific focused ultrasound arrays for non-invasive brain therapy with increased trans-skull transmission and steering range

    Science.gov (United States)

    Hughes, Alec; Hynynen, Kullervo

    2017-09-01

    The use of a phased array of ultrasound transducer elements to sonicate through the skull has opened the way for new treatments and the delivery of therapeutics beyond the blood-brain barrier. The limited steering range of current clinical devices, particularly at higher frequencies, limits the regions of the brain that are considered treatable by ultrasound. A new array design is introduced that allows for high levels of beam steering and increased transmission throughout the brain. These improvements are achieved using concave transducers normal to the outer-skull surface in a patient-specific configuration to target within the skull, so that the far-field of each beam is within the brain. It is shown that by using pulsed ultrasound waves timed to arrive in-phase at the desired target, sufficient levels of acoustic energy are delivered for blood-brain barrier opening throughout the brain.

  3. Development of Endoscopic Ultrasound Radial Arrays%环形内窥镜超声换能器的研制

    Institute of Scientific and Technical Information of China (English)

    陈燕; 周丹; 林国豪; 吴锦川; 戴吉岩; 罗豪甦; 陈王丽华

    2014-01-01

    本论文报道了当前环形内窥镜超声换能器的两种不同的制备方法以及其性能的表征。方法一为先采用切割薄片高性能压电PMN-PT单晶和其1~3复合材料制备平面阵列,然后将平面阵列卷曲成圆环形阵列。所制备的128阵元PMN-PT单晶阵列具有较宽带宽达78%,64阵元PMN-PT单晶/环氧1~3复合阵列带宽高达102%。方法二为旋转切割法,通过直接对带有匹配层和背衬材料的压电陶瓷管进行切割,制作不同尺寸及频率的环形超声内窥镜阵列。%We report the fabrication and characterization of endoscopic ultrasound radial arrays transducers for medical imaging by two different methods. The ifrst approach is cal ed wrapping method, high-performance PMN-PT single crystal and PMN-PT/epoxy 1-3 composite plates are used as active elements. After bonded with backing and matching layers and being cut into arrays, transducers are wrapped across a metal tube to form the radial arrays. The bandwidth of the 128-element PMN-PT single crystal radial array and 64-element PMN-PT/epoxy 1-3 composite radial array transducers can achieved 78%and 102%, respectively. In the second method, the PZT tube was selected to fabricate the 50-element 14 MHz and 100-element 3 MHz radial arrays by a rotate-and-dice method. The results show that these two methods are feasible to fabricate radial arrays for endoscopic applications.

  4. Monitoring of high-intensity focused ultrasound treatment by shear wave elastography induced by two-dimensional-array therapeutic transducer

    Science.gov (United States)

    Iwasaki, Ryosuke; Takagi, Ryo; Nagaoka, Ryo; Jimbo, Hayato; Yoshizawa, Shin; Saijo, Yoshifumi; Umemura, Shin-ichiro

    2016-07-01

    Shear wave elastography (SWE) is expected to be a noninvasive monitoring method of high-intensity focused ultrasound (HIFU) treatment. However, conventional SWE techniques encounter difficulty in inducing shear waves with adequate displacements in deep tissue. To observe tissue coagulation at the HIFU focal depth via SWE, in this study, we propose using a two-dimensional-array therapeutic transducer for not only HIFU exposure but also creating shear sources. The results show that the reconstructed shear wave velocity maps detected the coagulated regions as the area of increased propagation velocity even in deep tissue. This suggests that “HIFU-push” shear elastography is a promising solution for the purpose of coagulation monitoring in deep tissue, because push beams irradiated by the HIFU transducer can naturally reach as deep as the tissue to be coagulated by the same transducer.

  5. A novel array processing method for precise depth detection of ultrasound point scatter

    DEFF Research Database (Denmark)

    Diamantis, Konstantinos; Dalgarno, Paul A.; Greenaway, Alan H.;

    2016-01-01

    simulation software. A 7 MHz linear transducer is used to scan a single point scatterer phantom that can move in the axial direction. Individual beamformer outputs from 3 different foci are post-processed using the highly-dependent on focusing errors, metric of sharpness to estimate the position of the point...... scatter. A 37.8 μm uncertainty in depth estimation is achieved, which attains an almost 3-fold improvement compared to conventional ultrasound imaging axial resolution. Future work on the development of this algorithm requires experimental validation in tissue-like materials that provide strong...

  6. Ultrasound pulse-echo measurements on rough surfaces with linear array transducers

    DEFF Research Database (Denmark)

    Sjøj, Sidsel M. N.; Blanco, Esther N.; Wilhjelm, Jens E.

    2012-01-01

    The echo from planar surfaces with rms roughness, Rq, in the range from 0-155 μm was measured with a clinical linear array transducer at different angles of incidence at 6 MHz and 12 MHz. The echo-pulse from the surfaces was isolated with an equal sized window and the power of the echo-pulse was ...

  7. Linear array transducer for high-power airborne ultrasound using flextensional structure

    Science.gov (United States)

    Yamamoto, Jun; Mizuno, Yosuke; Tabaru, Marie; Nakamura, Kentaro

    2015-07-01

    To change the direction of ultrasonic irradiation without moving a transducer, a high-power airborne ultrasonic transducer for a one-dimensional phased array system was designed and tested. A flextensional element transducer with higher-mode bending vibration was fabricated to obtain a high vibration amplitude over a wide aperture, where a phase-compensating stepped structure was employed. The width of the main lobe at half maximum and the sidelobe level were measured to be 14.3 deg and 0.78, respectively. The maximal sound pressure of 132 dB (0 dB re. 0.02 mPa) was obtained under the applied voltage of 4.0 V. The beam steering characteristics of a phased array using eight elements were compared with the simple theory.

  8. High-frequency Ultrasound Doppler System for Biomedical Applications with a 30 MHz Linear Array

    Science.gov (United States)

    Xu, Xiaochen; Sun, Lei; Cannata, Jonathan M.; Yen, Jesse T.; Shung, K. Kirk

    2008-01-01

    In this paper, we report the development of the first high-frequency (HF) pulsed-wave Doppler system using a 30 MHz linear array transducer to assess the cardiovascular functions in small animal. This array based pulsed-wave Doppler system included a 16-channel HF analog beamformer, a HF pulsed-wave Doppler module, timing circuits, HF bipolar pulsers, and analog front-ends. The beamformed echoes acquired by the 16 channel analog beamformer, were directly fed to the HF pulsed-wave Doppler module. Then the in-phase and quadrature-phase (IQ) audio Doppler signals were digitized by either a sound card or a Gage digitizer and stored in a PC. The Doppler spectrogram was displayed on a PC in real time. The two-way beam-widths were determined to be 160 μm to 320 μm when the array was electronically focused at different focal points at depths from 5–10 mm. A micro flow phantom, consisting of a polyimide tube with inner diameter of 127 μm, and the wire phantom were used to evaluate and calibrate the system. The results show that the system is capable of detecting motion velocity of the wire phantom as low as 0.1 mm/s, and detecting blood-mimicking flow velocity in the 127 μm tube lower than 7 mm/s. The system was subsequently used to measure the blood flow in vivo in two mouse abdominal superficial vessels with diameters of approximately 200 μm, and a mouse aorta close to the heart. These results demonstrated that this system may become an indispensable part of the current HF array based imaging systems for small animal studies. PMID:17993243

  9. Comparison of 3-D Synthetic Aperture Phased-Array Ultrasound Imaging and Parallel Beamforming

    DEFF Research Database (Denmark)

    Rasmussen, Morten Fischer; Jensen, Jørgen Arendt

    2014-01-01

    simulations and measurements with anultrasound research scanner and a commercially available 3.5-MHz 1024-element 2-D transducer array. To limit the probecable thickness, 256 active elements are used in transmit andreceive for both techniques. The two imaging techniques weredesigned for cardiac imaging, which......B cystic resolutionby up to 62%. The FWHM of the measured line spread func-tion (LSF) at 80mm depth showed a difference of 20% in favorof SAI. SAI reduced the cyst radius at 60mm depth by 39%in measurements. SAI improved the contrast-to-noise ratiomeasured on anechoic cysts embedded in a tissue...

  10. Ultrasound pregnancy

    Science.gov (United States)

    Pregnancy sonogram; Obstetric ultrasonography; Obstetric sonogram; Ultrasound - pregnancy; IUGR - ultrasound; Intrauterine growth - ultrasound; Polyhydramnios - ultrasound; Oligohydramnios - ultrasound; ...

  11. Metamaterial lens applicator for microwave hyperthermia of breast cancer.

    Science.gov (United States)

    Wang, Gang; Gong, Yu

    2009-01-01

    Artificial left-handed metamaterial (LHM) provides a new perspective for microwave hyperthermia. Four flat LHM slab lenses can be used to form a focus-flexible applicator for breast tumour hyperthermia. By adjusting microwave sources behind the four flat LHM lenses, microwaves emitted from the sources can be focused tightly at different points in the breast tissue so that necessary heating depth in breast tissue can be achieved. Numerical simulations with a two-dimensional finite-difference time-domain method indicate that hyperthermia with the proposed four-lens applicator of moderate LHM losses could be effective in achieving desired power deposition in a heterogeneous breast model. Temperature distribution obtained by solving the bio-heat transfer equation demonstrates that temperature above 43 degrees C can be maintained in the tumour volume for specific periods of time. Flat slab LHM lenses offer a feasible alternative to traditional mechanically scanned lens applicator and electronically scanned phased-array applicators.

  12. TU-EF-210-02: MRg Hyperthermia

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, R. [UT Southwestern Medical Ctr at Dallas (United States)

    2015-06-15

    The use of therapeutic ultrasound to provide targeted therapy is an active research area that has a broad application scope. The invited talks in this session will address currently implemented strategies and protocols for both hyperthermia and ablation applications using therapeutic ultrasound. The role of both ultrasound and MRI in the monitoring and assessment of these therapies will be explored in both pre-clinical and clinical applications. Katherine Ferrara: High Intensity Focused Ultrasound, Drug Delivery, and Immunotherapy Rajiv Chopra: Translating Localized Doxorubicin Delivery to Pediatric Oncology using MRI-guided HIFU Elisa Konofagou: Real-time Ablation Monitoring and Lesion Quantification using Harmonic Motion Imaging Keyvan Farahani: AAPM Task Groups in Interventional Ultrasound Imaging and Therapy Learning Objectives: Understand the role of ultrasound in localized drug delivery and the effects of immunotherapy when used in conjunction with ultrasound therapy. Understand potential targeted drug delivery clinical applications including pediatric oncology. Understand the technical requirements for performing targeted drug delivery. Understand how radiation-force approaches can be used to both monitor and assess high intensity focused ultrasound ablation therapy. Understand the role of AAPM task groups in ultrasound imaging and therapies. Chopra: Funding from Cancer Prevention and Research Initiative of Texas (CPRIT), Award R1308 Evelyn and M.R. Hudson Foundation; Research Support from Research Contract with Philips Healthcare; COI are Co-founder of FUS Instruments Inc Ferrara: Supported by NIH, UCDavis and California (CIRM and BHCE) Farahani: In-kind research support from Philips Healthcare.

  13. Inspection of copper canisters for spent nuclear fuel by means of ultrasound. Phased arrays, ultrasonic imaging and nonlinear acoustics

    Energy Technology Data Exchange (ETDEWEB)

    Stepinski, Tadeusz (ed.); Ping Wu; Wennerstroem, Erik [Uppsala Univ. (Sweden). Signals and Systems

    2004-09-01

    This report contains the research results concerning advanced ultrasound for the inspection of copper canisters for spent nuclear fuel obtained at Signals and Systems, Uppsala University in years 2003/2004. After a short introduction a review of beam forming fundamentals required for proper understanding phased array operation is included. The factors that determine lateral resolution during ultrasonic imaging of flaws in solids are analyzed and results of simulations modelling contact inspection of copper are presented. In the second chapter an improved synthetic aperture imaging (SAI) technique is introduced. The proposed SAI technique is characterized by an enhanced lateral resolution compared with the previously proposed extended synthetic aperture focusing technique (ESAFT). The enhancement of imaging performance is achieved due to more realistic assumption concerning the probability density function of scatterers in the region of interest. The proposed technique takes the form of a two-step algorithm using the result obtained in the first step as a prior for the second step. Final chapter contains summary of our recent experimental and theoretical research on nonlinear ultrasonics of unbounded interfaces. A new theoretical model for rough interfaces is developed, and the experimental results from the copper specimens that mimic contact cracks of different types are presented. Derivation of the theory and selected measurement results are given in appendix.

  14. A novel strategy to increase heating efficiency in a split-focus ultrasound phased array.

    Science.gov (United States)

    Liu, Hao-Li; Shih, Tzu-Ching; Chen, Wen-Shiang; Ju, Kuen-Cheng

    2007-07-01

    Focus splitting using sector-based phased arrays increases the necrosed volume in a single sonication and reduces the total treatment time in the treatment of large tumors. However, split-focus sonication results in a lower energy density and worse focal-beam distortion, which limits its usefulness in practical treatments. Here, we propose a new heating strategy involving consecutive strongly focused and split-focus sonications to improve the heating efficiency. Theoretical predictions including linear and thermal-dose-dependent attenuation change were employed to investigate potential factors of this strategy, and ex vivo tissue experiments were conducted to confirm its effectiveness. Results showed that the thermal lesions produced by the proposed strategy could be increased when comparing with the previous reported strategies. The proposed heating strategy also induces a thermal lesion more rapidly, and exhibits higher robustness to various blood perfusion conditions, higher robustness to various power/heating time combinations, and superiority to generate deep-seated lesions through tissues with complex interfaces. Possible mechanisms include the optimization of the thermal conduction created by the strongly focused sonication and the temperature buildup gained from thermally induced tissue attenuation change based on the theoretical analysis. This may represent a useful technique for increasing the applicability of split-focus and multiple-focus sonication techniques, and solve the obstacles encountered when attempting to use these methods to shorten the total clinical treatment time.

  15. Hyperthermia: How Can It Be Used?

    Directory of Open Access Journals (Sweden)

    Zhaleh Behrouzkia

    2016-03-01

    Full Text Available Hyperthermia (HT is a method used to treat tumors by increasing the temperature of the cells. The treatment can be applied in combination with other verified cancer treatments using several different procedures. We sought to present an overview of the different HT tumor treatment, recent advances in the field, and combinational treatment sequences and outcomes. We used a computer-aided search to identify articles that contained the keywords hyperthermia, cancer treatment, chemotherapy, radiotherapy, nanoparticle, and cisplatin. There are three types of HT treatment, which each need the use of applicators that are in contact with or in the proximity of the patient for the purpose of heating. Heating can be achieved using different types of energy (including microwaves, radio waves, and ultrasound. However, the source of energy will depend on the cancer type and location. The temperature used will also vary. HT is rarely used alone, and can be combined with other cancer treatments. When used in combination with other treatments, improved survival rates have been observed. However, despite in vitro and in vivo studies that support the use of concurrent hypothermia treatments, contradictory results suggest there is a need for more studies to identify other hidden effects of HT.

  16. Regional hyperthermia applicator design using FDTD modelling.

    Science.gov (United States)

    Kroeze, H; Van de Kamer, J B; De Leeuw, A A; Lagendijk, J J

    2001-07-01

    Recently published results confirm the positive effect of regional hyperthermia combined with external radiotherapy on pelvic tumours. Several studies have been published on the improvement of RF annular array applicator systems with dipoles and a closed water bolus. This study investigates the performance of a next-generation applicator system for regional hyperthermia with a multi-ring annular array of antennas and an open water bolus. A cavity slot antenna is introduced to enhance the directivity and reduce mutual coupling between the antennas. Several design parameters, i.e. dimensions, number of antennas and operating frequency, have been evaluated using several patient models. Performance indices have been defined to evaluate the effect of parameter variation on the specific absorption rate (SAR) distribution. The performance of the new applicator type is compared with the Coaxial TEM. Operating frequency appears to be the main parameter with a positive influence on the performance. A SAR increase in tumour of 1.7 relative to the Coaxial TEM system can be obtained with a three-ring, six-antenna per ring cavity slot applicator operating at 150 MHz.

  17. Feasibility of Concurrent Treatment with the Scanning Ultrasound Reflector Linear Array System (SURLAS) and the Helical Tomotherapy System

    Science.gov (United States)

    Peñagarícano, José A.; Moros, Eduardo; Novák, Petr; Yan, Yulong; Corry, Peter

    2010-01-01

    Purpose To evaluate the feasibility of concurrent treatment with the Scanning Ultrasound Reflector Linear Array System (SURLAS) and helical tomotherapy (HT) intensity modulated radiation therapy (IMRT). Methods The SURLAS was placed on a RANDO phantom simulating a patient with superficial or deep recurrent breast cancer. A Megavoltage CT (MVCT) of the phantom with and without the SURLAS was obtained in the HT system. MVCT images with the SURLAS were obtained for two configurations: i) with the SURLAS' long axis parallel and ii) perpendicular to the longitudinal axis of the phantom. The MVCT simulation data set was then transferred to a radiation therapy planning station. Organs at risk (OAR) were contoured including the lungs, heart, abdomen and spinal cord. The metallic parts of the SURLAS were contoured as well and constraints were assigned to completely or directionally block radiation through them. The MVCT-simulation data set and regions of interest (ROI) files were subsequently transferred to the HT planning station. Several HT plans were obtained with optimization parameters that are usually used in the clinic. For comparison purposes, planning was also performed without the SURLAS on the phantom. Results All plans with the SURLAS on the phantom showed adequate dose covering 95% of the planning target volume (PTV D95%), average dose and coefficient of variation of the planning target volume (PTV) dose distribution regardless of the SURLAS' orientation with respect to the RANDO phantom. Likewise, all OAR showed clinically acceptable dose values. Spatial dose distributions and dose-volume histogram (DVH) evaluation showed negligible plan degradation due to the presence of the SURLAS. Beam-on time varied depending on the selected optimization parameters. Conclusion From the perspective of the radiation dosage, concurrent treatment with the SURLAS and HT IMRT is feasible as demonstrated by the obtained clinically acceptable treatment plans. In addition, proper

  18. Hyperthermia and fatigue

    DEFF Research Database (Denmark)

    Nybo, Lars

    2008-01-01

    of the cardiovascular function, which eventually reduces arterial oxygen delivery to the exercising muscles. Accordingly, aerobic energy turnover is impaired and anaerobic metabolism provokes peripheral fatigue. In contrast, metabolic disturbances of muscle homeostasis are less important during prolonged exercise......The present review addresses mechanisms of importance for hyperthermia-induced fatigue during short intense activities and prolonged exercise in the heat. Inferior performance during physical activities with intensities that elicit maximal oxygen uptake is to a large extent related to perturbation...... of the dopaminergic system, but may primarily relate to inhibitory signals from the hypothalamus arising secondary to an increase in brain temperature. Fatigue is an integrated phenomenon, and psychological factors, including the anticipation of fatigue, should not be neglected and the interaction between central...

  19. Local hyperthermia for esophageal cancer in a rabbit tumor model: Magnetic stent hyperthermia versus magnetic fluid hyperthermia

    OpenAIRE

    LIU, Jiayi; Li, Ning; Li, Li; LI, DANYE; Liu, Kai; Zhao, Lingyun; TANG, JINTIAN; Li, Liya

    2013-01-01

    Magnetic-mediated hyperthermia (MMH) is a promising local thermotherapy approach for cancer treatment. The present study investigated the feasibility and effectiveness of MMH in esophageal cancer using a rabbit tumor model. The therapeutic effect of two hyperthermia approaches, magnetic stent hyperthermia (MSH), in which heat is induced by the clinical stent that is placed inside the esophagus, and magnetic fluid hyperthermia (MFH), where magnetic nanoparticles are applied as the agent, was s...

  20. Treatment of malignant glioma using hyperthermia*

    Institute of Scientific and Technical Information of China (English)

    Jiahang Sun; Mian Guo; Hengyuan Pang; Jingtao Qi; Jinwei Zhang; Yunlong Ge

    2013-01-01

    Thirty pathological y diagnosed patients with grade III-IV primary or recurrent malignant glioma (tumor diameter 3-7 cm) were randomly divided into two groups. The control group underwent conventional radiotherapy and chemotherapy. In the hyperthermia group, primary cases received hyperthermia treatment, and patients with recurrent tumors were treated with hyperthermia in com-bination with radiotherapy and chemotherapy. Hyperthermia treatment was administered using a 13.56-MHz radio frequency hyperthermia device. Electrodes were inserted into the tumor with the aid of a CT-guided stereotactic apparatus and heat was applied for 1 hour. During 3 months after hyperthermia, patients were evaluated with head CT or MRI every month. Gliomas in the hyper-thermia group exhibited growth retardation or growth termination. Necrosis was evident in 80%of the heated tumor tissue and there was a decrease in tumor diameter. Our findings indicate that ra-dio frequency hyperthermia has a beneficial effect in the treatment of malignant glioma.

  1. A printed Yagi–Uda antenna for application in magnetic resonance thermometry guided microwave hyperthermia applicators

    Science.gov (United States)

    Paulides, M. M.; Mestrom, R. M. C.; Salim, G.; Adela, B. B.; Numan, W. C. M.; Drizdal, T.; Yeo, D. T. B.; Smolders, A. B.

    2017-03-01

    Biological studies and clinical trials show that addition of hyperthermia stimulates conventional cancer treatment modalities and significantly improves treatment outcome. This supra-additive stimulation can be optimized by adaptive hyperthermia to counteract strong and dynamic thermoregulation. The only clinically proven method for the 3D non-invasive temperature monitoring required is by magnetic resonance (MR) temperature imaging, but the currently available set of MR compatible hyperthermia applicators lack the degree of heat control required. In this work, we present the design and validation of a high-frequency (433 MHz ISM band) printed circuit board antenna with a very low MR-footprint. This design is ideally suited for use in a range of hyperthermia applicator configurations. Experiments emulating the clinical situation show excellent matching properties of the antenna over a 7.2% bandwidth (S 11  antenna was found negligible and MR temperature imaging in a homogeneous muscle phantom was highly correlated with gold-standard probe measurements (root mean square error: RMSE  =  0.51 °C and R 2  =  0.99). This work paves the way for tailored MR imaging guided hyperthermia devices ranging from single antenna or incoherent antenna-arrays, to real-time adaptive hyperthermia with phased-arrays.

  2. A printed Yagi-Uda antenna for application in magnetic resonance thermometry guided microwave hyperthermia applicators.

    Science.gov (United States)

    Paulides, M M; Mestrom, R M C; Salim, G; Adela, B B; Numan, W C M; Drizdal, T; Yeo, D T B; Smolders, A B

    2017-03-07

    Biological studies and clinical trials show that addition of hyperthermia stimulates conventional cancer treatment modalities and significantly improves treatment outcome. This supra-additive stimulation can be optimized by adaptive hyperthermia to counteract strong and dynamic thermoregulation. The only clinically proven method for the 3D non-invasive temperature monitoring required is by magnetic resonance (MR) temperature imaging, but the currently available set of MR compatible hyperthermia applicators lack the degree of heat control required. In this work, we present the design and validation of a high-frequency (433 MHz ISM band) printed circuit board antenna with a very low MR-footprint. This design is ideally suited for use in a range of hyperthermia applicator configurations. Experiments emulating the clinical situation show excellent matching properties of the antenna over a 7.2% bandwidth (S 11  antenna was found negligible and MR temperature imaging in a homogeneous muscle phantom was highly correlated with gold-standard probe measurements (root mean square error: RMSE  =  0.51 °C and R (2)  =  0.99). This work paves the way for tailored MR imaging guided hyperthermia devices ranging from single antenna or incoherent antenna-arrays, to real-time adaptive hyperthermia with phased-arrays.

  3. Conformal hyperthermia of superficial tumor with left-handed metamaterial lens applicator.

    Science.gov (United States)

    Tao, Yonghui; Wang, Gang

    2012-12-01

    With proper source spacing, low loss left-handed metamaterial (LHM) lens should be useful for hyperthermia treatment of large area tumors. With a flat LHM lens applicator, conformal hyperthermia can be performed by joint heating of multiple microwave sources (antennas). In the hyperthermia, we restrict distance of two neighboring sources within a critical source interval, arrange the sources in a specific array of general shape in accord with the tumor, and adjust the source-to-lens distance to acquire desired inclination of the heating zone for better fit to tumor region. It is shown that inclination can also be adjusted by the phases of microwave sources. A maneuverable LHM-based hyperthermia scheme is thus proposed to generate a relatively large and even tilted heating pattern in tissue.

  4. Duplex ultrasound

    Science.gov (United States)

    Vascular ultrasound; Peripheral vascular ultrasound ... A duplex ultrasound combines: Traditional ultrasound: This uses sound waves that bounce off blood vessels to create pictures. Doppler ultrasound: This ...

  5. A high-frequency transimpedance amplifier for CMOS integrated 2D CMUT array towards 3D ultrasound imaging.

    Science.gov (United States)

    Huang, Xiwei; Cheong, Jia Hao; Cha, Hyouk-Kyu; Yu, Hongbin; Je, Minkyu; Yu, Hao

    2013-01-01

    One transimpedance amplifier based CMOS analog front-end (AFE) receiver is integrated with capacitive micromachined ultrasound transducers (CMUTs) towards high frequency 3D ultrasound imaging. Considering device specifications from CMUTs, the TIA is designed to amplify received signals from 17.5MHz to 52.5MHz with center frequency at 35MHz; and is fabricated in Global Foundry 0.18-µm 30-V high-voltage (HV) Bipolar/CMOS/DMOS (BCD) process. The measurement results show that the TIA with power-supply 6V can reach transimpedance gain of 61dBΩ and operating frequency from 17.5MHz to 100MHz. The measured input referred noise is 27.5pA/√Hz. Acoustic pulse-echo testing is conducted to demonstrate the receiving functionality of the designed 3D ultrasound imaging system.

  6. Management of malignant hyperthermia: diagnosis and treatment

    Directory of Open Access Journals (Sweden)

    Schneiderbanger D

    2014-05-01

    Full Text Available Daniel Schneiderbanger, Stephan Johannsen, Norbert Roewer, Frank SchusterDepartment of Anaesthesia and Critical Care, University of Wuerzburg, Wuerzburg, GermanyAbstract: Malignant hyperthermia is a potentially lethal inherited disorder characterized by disturbance of calcium homeostasis in skeletal muscle. Volatile anesthetics and/or the depolarizing muscle relaxant succinylcholine may induce this hypermetabolic muscular syndrome due to uncontrolled sarcoplasmic calcium release via functionally altered calcium release receptors, resulting in hypoxemia, hypercapnia, tachycardia, muscular rigidity, acidosis, hyperkalemia, and hyperthermia in susceptible individuals. Since the clinical presentation of malignant hyperthermia is highly variable, survival of affected patients depends largely on early recognition of the symptoms characteristic of malignant hyperthermia, and immediate action on the part of the attending anesthesiologist. Clinical symptoms of malignant hyperthermia, diagnostic criteria, and current therapeutic guidelines, as well as adequate management of anesthesia in patients susceptible to malignant hyperthermia, are discussed in this review.Keywords: malignant hyperthermia, volatile anesthetics, succinylcholine, in vitro contracture test, genetics

  7. Shape Effects of Iron Nanowires on Hyperthermia Treatment

    Directory of Open Access Journals (Sweden)

    Wei-Syuan Lin

    2013-01-01

    Full Text Available This research discusses the influence of morphology of nanomagnetic materials (one-dimensional iron nanowires and zero-dimensional iron nanoparticles on heating efficiency of the hyperthermia treatment. One-dimensional iron nanowires, synthesized by reducing method in external magnetic field, are explored in terms of their material properties, magnetic anisotropy, and cytotoxicity of EMT-6 cells. The magnetic anisotropy of an array of nanowires is examined in parallel and perpendicular magnetic fields by VSM. For the magnetic hyperthermia treatment tests, iron nanowires and nanoparticles with different concentrations are heated in alternating magnetic field to measure their actual heating efficiency and SLP heating properties. The shape effects of iron nanomaterials can be revealed from their heating properties. The cytotoxicity of nanowires with different concentrations is measured by its survival rate in EMT-6 with the cells cultivated for 6 and 24 hours.

  8. Investigation of standing wave formation in a human skull for a clinical prototype of a large-aperture, transcranial MR-guided Focused Ultrasound (MRgFUS) phased array: An experimental and simulation study

    OpenAIRE

    Song, Junho; Pulkkinen, Aki; Huang, Yuexi; Hynynen, Kullervo

    2011-01-01

    Standing wave formation in an ex vivo human skull was investigated using a clinical prototype of a 30 cm diameter with 15 cm radius of curvature, low frequency (230 kHz), hemispherical transcranial Magnetic Resonance guided Focused Ultrasound (MRgFUS) phased-array. Experimental and simulation studies were conducted with changing aperture size and f-number configurations of the phased array, and qualitatively and quantitatively examined the acoustic pressure variation at the focus due to stand...

  9. Focused ultrasound in ophthalmology

    Directory of Open Access Journals (Sweden)

    Silverman RH

    2016-09-01

    Full Text Available Ronald H Silverman1,2 1Department of Ophthalmology, Columbia University Medical Center, 2F.L. Lizzi Center for Biomedical Engineering, Riverside Research, New York, NY, USA Abstract: The use of focused ultrasound to obtain diagnostically significant information about the eye goes back to the 1950s. This review describes the historical and technological development of ophthalmic ultrasound and its clinical application and impact. Ultrasound, like light, can be focused, which is crucial for formation of high-resolution, diagnostically useful images. Focused, single-element, mechanically scanned transducers are most common in ophthalmology. Specially designed transducers have been used to generate focused, high-intensity ultrasound that through thermal effects has been used to treat glaucoma (via cilio-destruction, tumors, and other pathologies. Linear and annular transducer arrays offer synthetic focusing in which precise timing of the excitation of independently addressable array elements allows formation of a converging wavefront to create a focus at one or more programmable depths. Most recently, linear array-based plane-wave ultrasound, in which the array emits an unfocused wavefront and focusing is performed solely on received data, has been demonstrated for imaging ocular anatomy and blood flow. While the history of ophthalmic ultrasound extends back over half-a-century, new and powerful technologic advances continue to be made, offering the prospect of novel diagnostic capabilities. Keywords: ophthalmic ultrasound, ultrasound biomicroscopy (UBM, high-intensity focused ultrasound (HIFU, ultrafast imaging, Doppler imaging 

  10. Addressing the Limit of Detectability of Residual Oxide Discontinuities in Friction Stir Butt Welds of Aluminum using Phased Array Ultrasound

    Science.gov (United States)

    Johnston, P. H.

    2008-01-01

    This activity seeks to estimate a theoretical upper bound of detectability for a layer of oxide embedded in a friction stir weld in aluminum. The oxide is theoretically modeled as an ideal planar layer of aluminum oxide, oriented normal to an interrogating ultrasound beam. Experimentally-measured grain scattering level is used to represent the practical noise floor. Echoes from naturally-occurring oxides will necessarily fall below this theoretical limit, and must be above the measurement noise to be potentially detectable.

  11. The role of acoustic nonlinearity in tissue heating behind a rib cage using a high-intensity focused ultrasound phased array.

    Science.gov (United States)

    Yuldashev, Petr V; Shmeleva, Svetlana M; Ilyin, Sergey A; Sapozhnikov, Oleg A; Gavrilov, Leonid R; Khokhlova, Vera A

    2013-04-21

    The goal of this study was to investigate theoretically the effects of nonlinear propagation in a high-intensity focused ultrasound (HIFU) field produced by a therapeutic phased array and the resultant heating of tissue behind a rib cage. Three configurations of focusing were simulated: in water, in water with ribs in the beam path and in water with ribs backed by a layer of soft tissue. The Westervelt equation was used to model the nonlinear HIFU field, and a 1 MHz phased array consisting of 254 circular elements was used as a boundary condition to the model. The temperature rise in tissue was modelled using the bioheat equation, and thermally necrosed volumes were calculated using the thermal dose formulation. The shapes of lesions predicted by the modelling were compared with those previously obtained in in vitro experiments at low-power sonications. Intensity levels at the face of the array elements that corresponded to the formation of high-amplitude shock fronts in the focal region were determined as 10 W cm(-2) in the free field in water and 40 W cm(-2) in the presence of ribs. It was shown that exposures with shocks provided a substantial increase in tissue heating, and its better spatial localization in the main focal region only. The relative effects of overheating ribs and splitting of the focus due to the periodic structure of the ribs were therefore reduced. These results suggest that utilizing nonlinear propagation and shock formation effects can be beneficial for inducing confined HIFU lesions when irradiating through obstructions such as ribs. Design of compact therapeutic arrays to provide maximum power outputs with lower intensity levels at the elements is necessary to achieve shock wave regimes for clinically relevant sonication depths in tissue.

  12. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... specific content. Related Articles and Media Sonohysterography Ultrasound - Abdomen Children's (Pediatric) Ultrasound - Abdomen Obstetric Ultrasound Ultrasound - Prostate Kidney and ...

  13. Thermal model of local ultrasound heating of biological tissue

    Science.gov (United States)

    Nedogovor, V. A.; Sigal, V. L.; Popsuev, E. I.

    1996-09-01

    Possibilities of creation of controlled temperature fields in deep-seated biological tissue with the use of an endocavity ultrasound applicator with surface cooling are considered. Mathematical models are proposed and calculated that make it possible to construct acoustic and thermal fields in biotissues depending on the thermophysical and ultrasound characteristics of the medium being irradiated and to reveal situations and effects that are important for solving problems of practical medicine in the field of local ultrasound hyperthermia and thermotherapy of tissue.

  14. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... collects the sounds that bounce back and a computer then uses those sound waves to create an ... types of Doppler ultrasound: Color Doppler uses a computer to convert Doppler measurements into an array of ...

  15. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... collects the sounds that bounce back and a computer then uses those sound waves to create an ... types of Doppler ultrasound: Color Doppler uses a computer to convert Doppler measurements into an array of ...

  16. The genetics of malignant hyperthermia.

    OpenAIRE

    1993-01-01

    Malignant hyperthermia susceptibility remains the commonest cause of death owing to general anaesthesia. This is despite the availability of presymptomatic testing, admittedly by a highly invasive method, and a recognised treatment for implementation immediately a patient shows signs of developing a crisis. Recently the finding of linkage to markers from chromosome 19q13.1-13.2 and the identification of mutations in a candidate gene held out hope of genetic diagnosis being available. However,...

  17. Feasibility of vibro-acoustography with a quasi-2D ultrasound array transducer for detection and localizing of permanent prostate brachytherapy seeds: A pilot ex vivo study

    Energy Technology Data Exchange (ETDEWEB)

    Mehrmohammadi, Mohammad; Kinnick, Randall R.; Fatemi, Mostafa, E-mail: fatemi.mostafa@mayo.edu [Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905 (United States); Alizad, Azra [Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905 and Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota 55905 (United States); Davis, Brian J. [Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota 55905 (United States)

    2014-09-15

    Purpose: Effective permanent prostate brachytherapy (PPB) requires precise placement of radioactive seeds in and around the prostate. The impetus for this research is to examine a new ultrasound-based imaging modality, vibro-acoustography (VA), which may serve to provide a high rate of PPB seed detection while also effecting enhanced prostate imaging. The authors investigate the ability of VA, implemented on a clinical ultrasound (US) scanner and equipped with a quasi-2D (Q2D) array US transducer, to detect and localize PPB seeds in excised prostate specimens. Methods: Nonradioactive brachytherapy seeds were implanted into four excised cadaver prostates. A clinical US scanner equipped with a Q2D array US transducer was customized to acquire both US and C-scan VA images at various depths. The VA images were then used to detect and localize the implanted seeds in prostate tissue. To validate the VA results, computed tomography (CT) images of the same tissue samples were obtained to serve as the reference by which to evaluate the performance of VA in PPB seed detection. Results: The results indicate that VA is capable of accurately identifying the presence and distribution of PPB seeds with a high imaging contrast. Moreover, a large ratio of the PPB seeds implanted into prostate tissue samples could be detected through acquired VA images. Using CT-based seed identification as the standard, VA was capable of detecting 74%–92% of the implanted seeds. Additionally, the angular independency of VA in detecting PPB seeds was demonstrated through a well-controlled phantom experiment. Conclusions: Q2DVA detected a substantial portion of the seeds by using a 2D array US transducer in excised prostate tissue specimens. While VA has inherent advantages associated with conventional US imaging, it has the additional advantage of permitting detection of PPB seeds independent of their orientation. These results suggest the potential of VA as a method for PPB imaging that

  18. Hyperthermia stimulates HIV-1 replication.

    Directory of Open Access Journals (Sweden)

    Ferdinand Roesch

    Full Text Available HIV-infected individuals may experience fever episodes. Fever is an elevation of the body temperature accompanied by inflammation. It is usually beneficial for the host through enhancement of immunological defenses. In cultures, transient non-physiological heat shock (42-45°C and Heat Shock Proteins (HSPs modulate HIV-1 replication, through poorly defined mechanisms. The effect of physiological hyperthermia (38-40°C on HIV-1 infection has not been extensively investigated. Here, we show that culturing primary CD4+ T lymphocytes and cell lines at a fever-like temperature (39.5°C increased the efficiency of HIV-1 replication by 2 to 7 fold. Hyperthermia did not facilitate viral entry nor reverse transcription, but increased Tat transactivation of the LTR viral promoter. Hyperthermia also boosted HIV-1 reactivation in a model of latently-infected cells. By imaging HIV-1 transcription, we further show that Hsp90 co-localized with actively transcribing provirus, and this phenomenon was enhanced at 39.5°C. The Hsp90 inhibitor 17-AAG abrogated the increase of HIV-1 replication in hyperthermic cells. Altogether, our results indicate that fever may directly stimulate HIV-1 replication, in a process involving Hsp90 and facilitation of Tat-mediated LTR activity.

  19. Hyperthermia stimulates HIV-1 replication.

    Science.gov (United States)

    Roesch, Ferdinand; Meziane, Oussama; Kula, Anna; Nisole, Sébastien; Porrot, Françoise; Anderson, Ian; Mammano, Fabrizio; Fassati, Ariberto; Marcello, Alessandro; Benkirane, Monsef; Schwartz, Olivier

    2012-01-01

    HIV-infected individuals may experience fever episodes. Fever is an elevation of the body temperature accompanied by inflammation. It is usually beneficial for the host through enhancement of immunological defenses. In cultures, transient non-physiological heat shock (42-45°C) and Heat Shock Proteins (HSPs) modulate HIV-1 replication, through poorly defined mechanisms. The effect of physiological hyperthermia (38-40°C) on HIV-1 infection has not been extensively investigated. Here, we show that culturing primary CD4+ T lymphocytes and cell lines at a fever-like temperature (39.5°C) increased the efficiency of HIV-1 replication by 2 to 7 fold. Hyperthermia did not facilitate viral entry nor reverse transcription, but increased Tat transactivation of the LTR viral promoter. Hyperthermia also boosted HIV-1 reactivation in a model of latently-infected cells. By imaging HIV-1 transcription, we further show that Hsp90 co-localized with actively transcribing provirus, and this phenomenon was enhanced at 39.5°C. The Hsp90 inhibitor 17-AAG abrogated the increase of HIV-1 replication in hyperthermic cells. Altogether, our results indicate that fever may directly stimulate HIV-1 replication, in a process involving Hsp90 and facilitation of Tat-mediated LTR activity.

  20. Advantage of annular focus generation by sector-vortex array in cavitation-enhanced high-intensity focused ultrasound treatment

    Science.gov (United States)

    Jimbo, Hayato; Takagi, Ryo; Taguchi, Kei; Yoshizawa, Shin; Umemura, Shin-ichiro

    2016-07-01

    High-intensity focused ultrasound (HIFU) is a noninvasive method for cancer treatment. One of the disadvantages of this method is that it has a long total treatment time because of the smallness of the treatment volume by a single exposure. To solve this problem, we have proposed a method of cavitation-enhanced heating, which utilized the heat generated by oscillating the cavitation bubbles, in combination with the method of lateral enlargement of a HIFU focal zone to minimize the surface volume ratio. In a previous study, focal spot scanning at multiple points was employed for the enlargement. This method involves nonlinear propagation and absorption due to the high spatial-peak temporal-peak (SPTP) intensity in addition to the cavitation-enhanced heating. However, it is difficult to predict the size and position of the coagulation volume because they are significantly affected by the nonlinear parameters of the tissue. In this study, a sector vortex method was employed to directly synthesize an annular focal pattern. Since this method can keep the SPTP intensity at a manageably low level, nonlinear propagation and absorption can be minimized. Experimental results demonstrate that the coagulation was generated only in the region where both the cavitation cloud and the heating ultrasound were matched. The proposed method will make the cavitation-enhanced HIFU treatment more accurate and predictable.

  1. Analysis and optimization of waveguide multiapplicator hyperthermia systems.

    Science.gov (United States)

    Boag, A; Leviatan, Y; Boag, A

    1993-09-01

    A method is proposed for determining the excitation coefficients of an antenna array operating in a large rectangular waveguide and used as a hyperthermia system. The excitation coefficients of the array elements are optimized for attaining an improved specific absorption rate (SAR) distribution around a deep-seated tumor. The method is applied to a two-dimensional problem of a piecewise homogeneous post in a waveguide representing a section of the human torso. The array is operating below the cutoff frequency of the dominant mode of the waveguide. Numerical simulations have been performed to check the effectiveness of this approach. The results show that by using the proposed optimization method, SAR distributions can be improved.

  2. Role of CTGF in Sensitivity to Hyperthermia in Ovarian and Uterine Cancers

    Energy Technology Data Exchange (ETDEWEB)

    Hatakeyama, Hiroto; Wu, Sherry Y.; Lyons, Yasmin A.; Pradeep, Sunila; Wang, Wanqin; Huang, Qian; Court, Karem A.; Liu, Tao; Nie, Song; Rodriguez-Aguayo, Cristian; Shen, Fangrong; Huang, Yan; Hisamatsu, Takeshi; Mitamura, Takashi; Jennings, Nicholas; Shim, Jeajun; Dorniak, Piotr L.; Mangala, Lingegowda S.; Petrillo, Marco; Petyuk, Vladislav A.; Schepmoes, Athena A.; Shukla, Anil K.; Torres-Lugo, Madeline; Lee, Ju-Seog; Rodland, Karin D.; Fagotti, Anna; Lopez-Berestein, Gabriel; Li, Chun; Sood, Anil K.

    2016-11-01

    Therapeutic hyperthermia involves raising the temperature of a tumor tissue to 40–43°C. It has been used for treatment of ovarian and other cancers. The rationale for this therapy is based on the direct-killing effects of temperatures above 41-42°C (Wust et al., 2002). Hyperthermia is also applied as an adjunctive therapy with various established cancer treatments, such as radiotherapy and chemotherapy, to sensitize cancers to their effects (Moyer and Delman, 2008; Nagata et al., 1997; Palazzi et al., 2010). Some studies suggested that hyperthermia activates the immune systems against tumor cells by increasing the release of heat shock proteins (HSPs) associated with tumor-specific antigens from heat-stressed or dying tumor cells that are phagocytized by antigen-presenting cells (APCs) (Binder et al., 2000). As interest in hyperthermic treatment of cancer has increased, researchers have made significant progress in developing strategies to heat tumors via local, regional, and whole-body hyperthermia with advancements in surgical techniques, equipment, and nanotechnology (van der Zee, 2002). In localized hyperthermia, heat is applied to a small area restricted to the tumor using various techniques that deliver energy for heating. Different types of energy may be used, including microwaves and radio waves (Gazelle et al., 2000; Seki et al., 1999), magnetic heating (Lee et al., 2011; Rodriguez-Luccioni et al., 2011), and ultrasound (Jolesz and Hynynen, 2002). Regional hyperthermia is applied via perfusion of a limb, organ, or body cavity with heated fluids. For example, the intraperitoneal route of heated chemotherapy administration (hyperthermic intraperitoneal chemotherapy [HIPEC]), which usually lasts 60-120 min with continuous cycling of the chemotherapeutic agent at 42°C, enables direct contact between the tumor cells and the chemotherapeutic agent to control all residual microscopic disease, including microscopic ovarian cancers (Jinny Ha, 2012). Even

  3. Secondary external-beam radiotherapy and hyperthermia for local recurrence after 125-iodine implantation in adenocarcinoma of the prostate

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, I.; Kapp, D.S.; Bagshaw, M.A. (Stanford Univ. School of Medicine, CA (USA))

    1991-03-01

    At Standford, six patients underwent a course of external radiotherapy after local recurrence following 125-iodine implantation. Four of the six patients also received concomitant hyperthermia. Four patients were initially managed with hormonal manipulation at time of local relapse and subsequently received external beam radiotherapy with or without hyperthermia. The hyperthermia was non-invasively induced using an annular phased array radiative electromagnetic system. Treatment was well tolerated, and none of the patients experienced severe rectal or bladder complications. Three patients are free from disease; one patient experience local-regional recurrence based on biopsy; one recurred in the bladder, was treated with cystoprostatectomy and subsequently succumbed to metastatic disease; and one patient died of presumed metastatic disease. External-beam irradiation with concurrent hyperthermia can be safely delivered to treat locally recurrent prostatic carcinoma after 125-iodine implantation.

  4. Obstetrical Ultrasound

    Science.gov (United States)

    ... Physician Resources Professions Site Index A-Z Obstetric Ultrasound Obstetric ultrasound uses sound waves to produce pictures ... limitations of Obstetrical Ultrasound Imaging? What is Obstetrical Ultrasound Imaging? Ultrasound is safe and painless, and produces ...

  5. Prostate Ultrasound

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Ultrasound - Prostate Ultrasound of the prostate uses sound waves ... the limitations of Prostate Ultrasound Imaging? What is Ultrasound Imaging of the Prostate? Ultrasound is safe and ...

  6. Musculoskeletal Ultrasound

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Ultrasound - Musculoskeletal Ultrasound imaging uses sound waves to produce ... Ultrasound Imaging of the Musculoskeletal System? What is Ultrasound Imaging of the Musculoskeletal System? Ultrasound is safe ...

  7. Ultrasound - Scrotum

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Ultrasound - Scrotum Ultrasound imaging of the scrotum uses sound ... of Ultrasound Imaging of the Scrotum? What is Ultrasound Imaging of the Scrotum? Ultrasound imaging of the ...

  8. Ultrasound -- Vascular

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Ultrasound - Vascular Vascular ultrasound uses sound waves to evaluate ... the limitations of Vascular Ultrasound? What is Vascular Ultrasound? Ultrasound is safe and painless, and produces pictures ...

  9. Hip Ultrasound

    Science.gov (United States)

    ... Physician Resources Professions Site Index A-Z Hip Ultrasound Hip ultrasound uses sound waves to produce pictures ... of Ultrasound Imaging of the Hip? What is Ultrasound Imaging of the Hip? Ultrasound images of the ...

  10. Ultrasound -- Vascular

    Science.gov (United States)

    ... Physician Resources Professions Site Index A-Z Ultrasound - Vascular Vascular ultrasound uses sound waves to evaluate the ... are the limitations of Vascular Ultrasound? What is Vascular Ultrasound? Ultrasound is safe and painless, and produces ...

  11. Reliability considerations of NDT by probability of detection (POD). Determination using ultrasound phased array. Results from a project in frame of the German nuclear safety research program

    Energy Technology Data Exchange (ETDEWEB)

    Kurz, Jochen H. [Fraunhofer-Institut fuer Zerstoerungsfreie Pruefverfahren (IZEP), Saarbruecken (Germany); Dugan, Sandra; Juengert, Anne [Stuttgart Univ. (Germany). Materialpruefungsanstalt (MPA)

    2013-07-01

    Reliable assessment procedures are an important aspect of maintenance concepts. Non-destructive testing (NDT) methods are an essential part of a variety of maintenance plans. Fracture mechanical assessments require knowledge of flaw dimensions, loads and material parameters. NDT methods are able to acquire information on all of these areas. However, it has to be considered that the level of detail information depends on the case investigated and therefore on the applicable methods. Reliability aspects of NDT methods are of importance if quantitative information is required. Different design concepts e.g. the damage tolerance approach in aerospace already include reliability criteria of NDT methods applied in maintenance plans. NDT is also an essential part during construction and maintenance of nuclear power plants. In Germany, type and extent of inspection are specified in Safety Standards of the Nuclear Safety Standards Commission (KTA). Only certified inspections are allowed in the nuclear industry. The qualification of NDT is carried out in form of performance demonstrations of the inspection teams and the equipment, witnessed by an authorized inspector. The results of these tests are mainly statements regarding the detection capabilities of certain artificial flaws. In other countries, e.g. the U.S., additional blind tests on test blocks with hidden and unknown flaws may be required, in which a certain percentage of these flaws has to be detected. The knowledge of the probability of detection (POD) curves of specific flaws in specific testing conditions is often not present. This paper shows the results of a research project designed for POD determination of ultrasound phased array inspections of real and artificial cracks. The continuative objective of this project was to generate quantitative POD results. The distribution of the crack sizes of the specimens and the inspection planning is discussed, and results of the ultrasound inspections are presented. In

  12. On the improvement of regional hyperthermia treatment

    NARCIS (Netherlands)

    Kroeze, Hugo

    2003-01-01

    Hyperthermia is an adjuvant treatment modality to radiotherapy and/or chemotherapy, with the aim of increasing the tumour killing effect of the treatment. It involves the elevation of the tumour temperature to ~ 42oC. Radiofrequent heating is a practical method for hyperthermia: a number of external

  13. Ultrasound skin tightening.

    Science.gov (United States)

    Minkis, Kira; Alam, Murad

    2014-01-01

    Ultrasound skin tightening is a noninvasive, nonablative method that allows for energy deposition into the deep dermal and subcutaneous tissue while avoiding epidermal heating. Ultrasound coagulation is confined to arrays of 1-mm(3) zones that include the superficial musculoaponeurotic system and connective tissue. This technology gained approval from the Food and Drug Administration as the first energy-based skin "lifting" device, specifically for lifting lax tissue on the neck, submentum, and eyebrows. Ultrasound has the unique advantage of direct visualization of treated structures during treatment. Ultrasound is a safe and efficacious treatment for mild skin tightening and lifting.

  14. Circumferential lesion formation around the pulmonary veins in the left atrium with focused ultrasound using a 2D-array endoesophageal device: a numerical study

    Energy Technology Data Exchange (ETDEWEB)

    Pichardo, Samuel; Hynynen, Kullervo [Imaging Research-Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Room C713, Toronto, ON M4N 3M5 (Canada)

    2007-08-21

    Atrial fibrillation (AF) is the most frequently sustained cardiac arrhythmia affecting humans. The electrical isolation by ablation of the pulmonary veins (PVs) in the left atrium (LA) of the heart has been proven as an effective cure of AF. The ablation consists mainly in the formation of a localized circumferential thermal coagulation of the cardiac tissue surrounding the PVs. In the present numerical study, the feasibility of producing the required circumferential lesion with an endoesophageal ultrasound probe is investigated. The probe operates at 1 MHz and consists of a 2D array with enough elements (114 x 20) to steer the acoustic field electronically in a volume comparable to the LA. Realistic anatomical conditions of the thorax were considered from the segmentation of histological images of the thorax. The cardiac muscle and the blood-filled cavities in the heart were identified and considered in the sound propagation and thermal models. The influence of different conditions of the thermal sinking in the LA chamber was also studied. The circumferential ablation of the PVs was achieved by the sum of individual lesions induced with the proposed device. Different scenarios of lesion formation were considered where ultrasound exposures (1, 2, 5 and 10 s) were combined with maximal peak temperatures (60, 70 and 80 {sup 0}C). The results of this numerical study allowed identifying the limits and best conditions for controlled lesion formation in the LA using the proposed device. A controlled situation for the lesion formation surrounding the PVs was obtained when the targets were located within a distance from the device in the range of 26 {+-} 7 mm. When combined with a maximal temperature of 70 {sup 0}C and an exposure time between 5 and 10 s, this distance ensured preservation of the esophageal structures, controlled lesion formation and delivery of an acoustic intensity at the transducer surface that is compatible with existing materials. With a peak

  15. An intrauterine ultrasound applicator for targeted delivery of thermal therapy in conjunction with HDR brachytherapy to the cervix

    Science.gov (United States)

    Wootton, Jeffery H.; Juang, Titania; Pouliot, Jean; Hsu, I.-Chow Joe; Diederich, Chris J.

    2009-02-01

    An intracavitary hyperthermia applicator for targeted heat delivery to the cervix was developed based on a linear array of sectored tubular ultrasound transducers that provides truly 3-D heating control (angular and along the length). A central conduit can incorporate an HDR source for sequential or simultaneous delivery of heat and radiation. Hyperthermia treatment volumes were determined from brachytherapy treatment planning data and used as a basis for biothermal simulations analyzing the effects of device parameters, tissue properties, and catheter materials on heating patterns. Devices were then developed with 1-3 elements at 6.5-8 MHz with 90-180° sectors and a 15-35 mm heating length, housed within a 6-mm diameter water-cooled PET catheter. Directional heating from sectored transducers could extend lateral penetration of therapeutic heating (41°C) >2 cm while maintaining rectum and bladder temperatures within 12 mm below thermal damage thresholds. Imaging artifacts were evaluated with standard CT, cone beam CT, and MR images. MR thermal imaging was used to demonstrate shaping of heating profiles in axial and coronal slices with artifact <2 mm from the device. The impact of the high-Z applicator materials on the HDR dose distribution was assessed using a well-type ionization chamber and was found to be less than 6% attenuation, which can readily be accounted for with treatment planning software. The intrauterine ultrasound device has demonstrated potential for 3-D conformal heating of clinical tumors in the delivery of targeted hyperthermia in conjunction with brachytherapy to the cervix.

  16. A synthesis pattern of acoustic field produced by phased array based on the direct weighting of the controlled acoustic pressure

    Institute of Scientific and Technical Information of China (English)

    HU Jiwen; QIAN Shengyou; DING Yajun

    2012-01-01

    To optimize the acoustic field produced by phased array effectively and quickly, the pseudo-inverse method proposed previously is simplified. An approximate weight formula of sound pressure using a method of compensation to the amplitude and phase of the controlled sound pressure was presented. A multiple-focus field patterns based on the pseudo-inverse matrix algorithm can be obtained by presetting the value of the controlled sound pressure. A phased array comprised of 16 x 16 square elements is used for numerical simulation. The results show that the acoustic energy can be effectively deposited at the desired points, and the acoustic field can be synthesized quickly using the direct weight formula of the sound pressure. This study may offer an effective way for controlling the distribution of acoustic field in ultrasound hyperthermia.

  17. Design of a phased array for the generation of adaptive radiation force along a path surrounding a breast lesion for dynamic ultrasound elastography imaging.

    Science.gov (United States)

    Ekeom, Didace; Hadj Henni, Anis; Cloutier, Guy

    2013-03-01

    This work demonstrates, with numerical simulations, the potential of an octagonal probe for the generation of radiation forces in a set of points following a path surrounding a breast lesion in the context of dynamic ultrasound elastography imaging. Because of the in-going wave adaptive focusing strategy, the proposed method is adapted to induce shear wave fronts to interact optimally with complex lesions. Transducer elements were based on 1-3 piezocomposite material. Three-dimensional simulations combining the finite element method and boundary element method with periodic boundary conditions in the elevation direction were used to predict acoustic wave radiation in a targeted region of interest. The coupling factor of the piezocomposite material and the radiated power of the transducer were optimized. The transducer's electrical impedance was targeted to 50 Ω. The probe was simulated by assembling the designed transducer elements to build an octagonal phased-array with 256 elements on each edge (for a total of 2048 elements). The central frequency is 4.54 MHz; simulated transducer elements are able to deliver enough power and can generate the radiation force with a relatively low level of voltage excitation. Using dynamic transmitter beamforming techniques, the radiation force along a path and resulting acoustic pattern in the breast were simulated assuming a linear isotropic medium. Magnitude and orientation of the acoustic intensity (radiation force) at any point of a generation path could be controlled for the case of an example representing a heterogeneous medium with an embedded soft mechanical inclusion.

  18. Prostate Ultrasound

    Medline Plus

    Full Text Available ... through blood vessels. Ultrasound imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions. Prostate ultrasound, also called transrectal ultrasound, provides ...

  19. Quality assurance guidelines for superficial hyperthermia clinical trials: I. Clinical requirements.

    Science.gov (United States)

    Trefná, Hana Dobšíček; Crezee, Hans; Schmidt, Manfred; Marder, Dietmar; Lamprecht, Ulf; Ehmann, Michael; Hartmann, Josefin; Nadobny, Jacek; Gellermann, Johanna; van Holthe, Netteke; Ghadjar, Pirus; Lomax, Nicoletta; Abdel-Rahman, Sultan; Bert, Christoph; Bakker, Akke; Hurwitz, Mark D; Diederich, Chris J; Stauffer, Paul R; van Rhoon, Gerard C

    2017-01-31

    Quality assurance guidelines are essential to provide uniform execution of clinical trials and treatment in the application of hyperthermia. This document provides definitions for a good hyperthermia treatment and identifies the clinical conditions where a certain hyperthermia system can or cannot adequately heat the tumour volume. It also provides brief description of the characteristics and performance of the current electromagnetic (radiative and capacitive), ultrasound and infra-red heating techniques. This information helps to select the appropriate heating technique for the specific tumour location and size, and appropriate settings of the water bolus and thermometry. Finally, requirements of staff training and documentation are provided. The guidelines in this document focus on the clinical application and are complemented with a second, more technical quality assurance document providing instructions and procedure to determine essential parameters that describe heating properties of the applicator for superficial hyperthermia. Both sets of guidelines were developed by the ESHO Technical Committee with participation of senior STM members and members of the Atzelsberg Circle.

  20. Similarities and differences in ablative and non-ablative iron oxide nanoparticle hyperthermia cancer treatment

    Science.gov (United States)

    Petryk, Alicia A.; Misra, Adwiteeya; Kastner, Elliot J.; Mazur, Courtney M.; Petryk, James D.; Hoopes, P. Jack

    2015-03-01

    The use of hyperthermia to treat cancer is well studied and has utilized numerous delivery techniques, including microwaves, radio frequency, focused ultrasound, induction heating, infrared radiation, warmed perfusion liquids (combined with chemotherapy), and recently, metallic nanoparticles (NP) activated by near infrared radiation (NIR) and alternating magnetic field (AMF) based platforms. It has been demonstrated by many research groups that ablative temperatures and cytotoxicity can be produced with locally NP-based hyperthermia. Such ablative NP techniques have demonstrated the potential for success. Much attention has also been given to the fact that NP may be administered systemically, resulting in a broader cancer therapy approach, a lower level of tumor NP content and a different type of NP cancer therapy (most likely in the adjuvant setting). To use NP based hyperthermia successfully as a cancer treatment, the technique and its goal must be understood and utilized in the appropriate clinical context. The parameters include, but are not limited to, NP access to the tumor (large vs. small quantity), cancer cell-specific targeting, drug carrying capacity, potential as an ionizing radiation sensitizer, and the material properties (magnetic characteristics, size and charge). In addition to their potential for cytotoxicity, the material properties of the NP must also be optimized for imaging, detection and direction. In this paper we will discuss the differences between, and potential applications for, ablative and non-ablative magnetic nanoparticle hyperthermia.

  1. Clinical evaluation of hyperthermia equipment: the University of Arizona Institutional Report for the NCI Hyperthermia Equipment Evaluation Contract.

    Science.gov (United States)

    Shimm, D S; Cetas, T C; Oleson, J R; Cassady, J R; Sim, D A

    1988-01-01

    Two-hundred and fifteen independent sites in 203 patients were treated with hyperthermia at the University of Arizona from 10/81 through 3/86 under the auspices of this contract. In the head and neck, a site dominated by superficial tumors, air-coupled and water-coupled microwave applicators yielded the best results. Similarly in the thorax, also dominated by superficial tumors, water-coupled microwave applicators were best. In the abdomen and pelvis, sites dominated by deep tumors, only interstitial radiofrequency (RF) heating, an invasive technique useful only in selected cases, was capable of consistently producing therapeutic temperatures. Toxicity appeared to be site-related, and treatment discomfort was especially common in abdominal and pelvic sites. In conclusion, while superficial sites were readily heated using propagative electromagnetic devices, these devices were ineffective and poorly tolerated at deeper sites. Effective deep hyperthermia was best produced with interstitial techniques, and further development of these techniques using RF electrodes, implantable microwave antennas and thermoregulating ferromagnetic seeds, as well as scanned, focussed-ultrasound techniques, holds promise for effective heating of deep visceral sites.

  2. Prostate Ultrasound

    Medline Plus

    Full Text Available ... Prostate Ultrasound Imaging? What is Ultrasound Imaging of the Prostate? Ultrasound is safe and painless, and produces ... of page What are some common uses of the procedure? A transrectal ultrasound of the prostate gland ...

  3. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... are the limitations of Pelvic Ultrasound Imaging? What is Pelvic Ultrasound Imaging? Ultrasound is safe and painless, ... through the blood vessels. top of page How is the procedure performed? Transabdominal: For most ultrasound exams, ...

  4. Prostate Ultrasound

    Medline Plus

    Full Text Available ... Ultrasound - Prostate Ultrasound of the prostate uses sound waves to produce pictures of a man’s prostate gland ... of the inside of the body using sound waves. Ultrasound imaging, also called ultrasound scanning or sonography , ...

  5. Ultrasound - Breast

    Science.gov (United States)

    ... Physician Resources Professions Site Index A-Z Ultrasound - Breast Ultrasound imaging of the breast uses sound waves ... the Breast? What is Ultrasound Imaging of the Breast? Ultrasound is safe and painless, and produces pictures ...

  6. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Ultrasound - Pelvis Ultrasound imaging of the pelvis uses sound waves to produce pictures of the structures and ... pictures of the inside of the body using sound waves. Ultrasound imaging, also called ultrasound scanning or ...

  7. Prostate Ultrasound

    Medline Plus

    Full Text Available ... Z Ultrasound - Prostate Ultrasound of the prostate uses sound waves to produce pictures of a man’s prostate ... pictures of the inside of the body using sound waves. Ultrasound imaging, also called ultrasound scanning or ...

  8. Prostate Ultrasound

    Medline Plus

    Full Text Available ... Prostate Ultrasound Imaging? What is Ultrasound Imaging of the Prostate? Ultrasound is safe and painless, and produces ... of page What are some common uses of the procedure? A transrectal ultrasound of the prostate gland ...

  9. TU-B-210-02: MRg HIFU - Advanced Approaches for Ablation and Hyperthermia

    Energy Technology Data Exchange (ETDEWEB)

    Moonen, C. [University Medical Center Utrecht (Netherlands)

    2015-06-15

    MR guided focused ultrasound (MRgFUS), or alternatively high-intensity focused ultrasound (MRgHIFU), is approved for thermal ablative treatment of uterine fibroids and pain palliation in bone metastases. Ablation of malignant tumors is under active investigation in sites such as breast, prostate, brain, liver, kidney, pancreas, and soft tissue. Hyperthermia therapy with MRgFUS is also feasible, and may be used in conjunction with radiotherapy and for local targeted drug delivery. MRI allows in situ target definition and provides continuous temperature monitoring and subsequent thermal dose mapping during HIFU. Although MRgHIFU can be very precise, treatment of mobile organs is challenging and advanced techniques are required because of artifacts in MR temperature mapping, the need for intercostal firing, and need for gated HIFU or tracking of the lesion in real time. The first invited talk, “MR guided Focused Ultrasound Treatment of Tumors in Bone and Soft Tissue”, will summarize the treatment protocol and review results from treatment of bone tumors. In addition, efforts to extend this technology to treat both benign and malignant soft tissue tumors of the extremities will be presented. The second invited talk, “MRI guided High Intensity Focused Ultrasound – Advanced Approaches for Ablation and Hyperthermia”, will provide an overview of techniques that are in or near clinical trials for thermal ablation and hyperthermia, with an emphasis of applications in abdominal organs and breast, including methods for MRTI and tracking targets in moving organs. Learning Objectives: Learn background on devices and techniques for MR guided HIFU for cancer therapy Understand issues and current status of clinical MRg HIFU Understand strategies for compensating for organ movement during MRgHIFU Understand strategies for strategies for delivering hyperthermia with MRgHIFU CM - research collaboration with Philips.

  10. Three new applicators for hyperthermia.

    Science.gov (United States)

    Gabriele, P; Orecchia, R; Tseroni, V; Melano, A; Fillini, C; Ragona, R; Bolla, L; Ogno, G

    1989-01-01

    A computerized system with automatic treatment parameters control for radiological hyperthermia, called Sapic SV03, is presented. The system has been planned and built by the "Sezione Avionica ed Equipaggiamenti" of the Aeritalia in cooperation with the Radiotherapy Department of the University of Turin. The device is supplied with a multifrequency generator system (915, 433, 2-30 MHz) connected with many kinds of applicators, with a fiber optic system for temperature control and a previsional thermometry system. In this paper the authors presented three new applicators. The first one is a concave parallel microstrip applicator at 433 MHz, with a size 16 x 9 cm; the heating pattern is homogenous until 4 cm of depth. This antenna can be used for the treatment of chest wall recurrences of breast cancer. The second is a 27 MHz inductive ring and the third applicator is a pyramidal antenna ("TEM line") that operates at a frequency around 27 MHz.

  11. Optical Molecular Imaging of Ultrasound-mediated Drug Delivery

    NARCIS (Netherlands)

    Derieppe, M.P.P.

    2015-01-01

    The goal of this PhD project was to develop optical molecular imaging methods to study drug delivery facilitated by ultrasound waves (US) and hyperthermia. Fibered confocal fluorescence microscopy (FCFM), together with dedicated image analysis, was used in vitro on a cell monolayer, and in vivo at

  12. European Malignant Hyperthermia Group guidelines for investigation of malignant hyperthermia susceptibility

    DEFF Research Database (Denmark)

    Hopkins, P M; Rüffert, H; Snoeck, M M

    2015-01-01

    It is 30 yr since the British Journal of Anaesthesia published the first consensus protocol for the laboratory diagnosis of malignant hyperthermia susceptibility from the European Malignant Hyperthermia Group. This has subsequently been used in more than 10 000 individuals worldwide to inform use...... and guidelines, and new sections, including recommendations for patient referral criteria and clinical interpretation of laboratory findings....

  13. Determination of the temperature artifact during ultrasound hyperthermia.

    Science.gov (United States)

    Waterman, F M

    1990-01-01

    Temperature artifacts produced by very small uncoated thermocouples during ultrasonic heating are evaluated by backward extrapolation of the linear portion of the temperature rise curve or by backward extrapolation of the exponential portion of the temperature decay curve. The accuracy of these techniques for larger clinically used thermocouples is investigated by use of a two-dimensional model of the bioheat equation which simulates the transfer of heat radially from a probe 1 mm in diameter. The accuracy of these techniques is found to depend upon the perfusion rate. In the absence of perfusion, both extrapolation techniques underestimate the artifact by nearly 40%. Extrapolation of the temperature rise curve is very sensitive to the perfusion rate and this technique results in errors exceeding 100% when the perfusion rate is high. Extrapolation of the temperature decay curve produces more consistent results. Over a blood flow range of 0-100 ml/100 g per min, the artifact is underestimated by an amount that varies from approximately 40% to 30% respectively. Thus, the artifact can be determined to within 5% by this technique by increasing the extrapolated value by 35%.

  14. Evaluation the limb and joint function after treatment the pelvic bone tumors by the microwave hyperthermia%骨盆骨肿瘤原位分离微波高温治疗后肢体关节功能的评价

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Objective To evaluate the limb and joint function after treatment the pelvic bone tumors by the microwave hyperthermia inserted antenna arrays.Methods 51 patients were treated by inserted microwave antenna arrays induced hyperthermia. All patient limb and joint functions were observed and analyzed from oncology, function and complications.Results There were 9 recurred cases and 7 of them died. Among the remaining 42 patients,36 patients had excellent and good limb and joint function,6 patients had fair function.Conclusions By the method of inserted microwave antenna arrays induced hyperthermia to treat the pelvic tumors the limb and joint function was excellent.

  15. Advances of Tumor Hyperthermia and Tumor Immunology in Translational Medicine

    OpenAIRE

    Hooshang Lahooti

    2015-01-01

    Hyperthermia is another important method in the treatment of tumors, secondary to surgery, radiotherapy, chemotherapy and biotherapy. It has been demonstrated the efficacy and versatility of hyperthermia in a lot of randomized trials across various primary cancers. Both heat shock proteins (HSPs) and dendritic cells (DCs) are greatly affected by hyperthermia and closely related to the tumor immunology. Nowadays, tumor hyperthermia and tumor immunology have been attached much attention in the ...

  16. Investigation of standing-wave formation in a human skull for a clinical prototype of a large-aperture, transcranial MR-guided focused ultrasound (MRgFUS) phased array: an experimental and simulation study.

    Science.gov (United States)

    Song, Junho; Pulkkinen, Aki; Huang, Yuexi; Hynynen, Kullervo

    2012-02-01

    Standing-wave formation in an ex vivo human skull was investigated using a clinical prototype of a 30-cm diameter with 15-cm radius of curvature, low-frequency (230 kHz), hemispherical transcranial magnetic resonance-guided focused ultrasound phased array. Experimental and simulation studies were conducted with changing aperture size and f -number configurations of the phased array and qualitatively and quantitatively examined the acoustic pressure variation at the focus due to standing waves. The results demonstrated that the nodes and antinodes of standing wave produced by the small-aperture array were clearly seen at approximately every 3 mm. The effect of the standing wave became more pronounced as the focus was moved closer to skull base. However, a sharp focus was seen for the full array, and there was no such standing-wave pattern in the acoustic plane or near the skull base. This study showed that the fluctuation pressure amplitude would be greatly reduced by using a large-scale, hemispherical phased array with a low f-number.

  17. Aspects of biochemical effects by hyperthermia

    Energy Technology Data Exchange (ETDEWEB)

    Streffer, C.

    1982-06-01

    Hyperthermia caused an immediate decrease of DNA, RNA, and protein synthesis. The latter process was most sensitive. Initiation of DNA synthesis at the transition from G1-to S-phase and at the start of new replication units were inhibited. These effects were responsible for the growth delay of cells and were potentiated with irradiation. The immediate inhibition of protein synthesis was due mainly to a disaggregation of the synthesizing mechanisms. It led to a decrease of enzyme activities with a short biological half-life, e.g., ornithine decarboxylase. Lysosomal hydrolytic activities might be enhanced after hyperthermia and contribute to tissue damage. During hyperthermia, glycogen breakdown and glucose turnover through glycolysis and the citrate cycle were apparently increased, but after hyperthermia, respiration and glycolysis were reduced. No lactate accumulation occurred, but other acidic metabolites were enhanced and could induce a metabolic acidosis hours later. A glucose load potentiated the effects on respiration and glycolysis. Immediately after hyperthermia, a lactate accumulation was observed under these conditions. A formula is given by which the ratios of reduced to oxidized substrates might indicate the redox state in different cellular compartments, with oxygen pressure, and during other metabolic conditions. Such changes of the intracellular milieu are important for the thermosensitivity of cells.

  18. Local hyperthermia for esophageal cancer in a rabbit tumor model: Magnetic stent hyperthermia versus magnetic fluid hyperthermia.

    Science.gov (United States)

    Liu, Jiayi; Li, Ning; Li, Li; Li, Danye; Liu, Kai; Zhao, Lingyun; Tang, Jintian; Li, Liya

    2013-12-01

    Magnetic-mediated hyperthermia (MMH) is a promising local thermotherapy approach for cancer treatment. The present study investigated the feasibility and effectiveness of MMH in esophageal cancer using a rabbit tumor model. The therapeutic effect of two hyperthermia approaches, magnetic stent hyperthermia (MSH), in which heat is induced by the clinical stent that is placed inside the esophagus, and magnetic fluid hyperthermia (MFH), where magnetic nanoparticles are applied as the agent, was systematically evaluated. A rabbit esophageal tumor model was established by injecting VX2 carcinoma cells into the esophageal submucosa. The esophageal stent was deployed perorally into the tumor segment of the esophagus. For the MFH, magnetic nanoparticles (MNPs) were administered to the rabbits by intratumoral injection. The rabbits were exposed under a benchtop applicator using an alternative magnetic field (AMF) with 300 kHz frequency for the hyperthermia treatment. The results demonstrated that esophageal stents and MNPs had ideal inductive heating properties upon exposure under an AMF of 300 kHz. MSH, using a thermal dose of 46°C with a 10-min treatment time, demonstrated antitumor effects on the rabbit esophageal cancer. However, the rabbit esophageal wall is not heat-resistant. Therefore, a higher temperature or longer treatment time may lead to necrosis of the rabbit esophagus. MFH has a significant antitumor effect by confining the heat within the tumor site without damaging the adjacent normal tissues. The present study indicates that the two hyperthermia procedures have therapeutic effects on esophageal cancer, and that MFH may be more specific than MSH in terms of temperature control during the treatment.

  19. Prostate Ultrasound

    Medline Plus

    Full Text Available ... are the limitations of Prostate Ultrasound Imaging? What is Ultrasound Imaging of the Prostate? Ultrasound is safe ... transducer into the body. top of page How is the procedure performed? In men, the prostate gland ...

  20. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Pelvis Ultrasound imaging of the pelvis uses sound waves to produce pictures of the structures and organs ... of the inside of the body using sound waves. Ultrasound imaging, also called ultrasound scanning or sonography , ...

  1. Prostate Ultrasound

    Medline Plus

    Full Text Available ... gel. top of page How does the procedure work? Ultrasound imaging is based on the same principles ... to-use and less expensive than other imaging methods. Ultrasound imaging uses no ionizing radiation. Ultrasound scanning ...

  2. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... a pelvic ultrasound examination. Doppler ultrasound , also called color Doppler ultrasonography, is a special ultrasound technique that ... and processes the sounds and creates graphs or color pictures that represent the flow of blood through ...

  3. Intravascular ultrasound

    Science.gov (United States)

    IVUS; Ultrasound - coronary artery; Endovascular ultrasound; Intravascular echocardiography ... A tiny ultrasound wand is attached to the top of a thin tube. This tube is called a catheter. The catheter ...

  4. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... three types of pelvic ultrasound: abdominal, vaginal (for women), and rectal (for men). These exams are frequently ... pelvic ultrasound: abdominal ( transabdominal ) vaginal ( transvaginal / endovaginal ) for women rectal ( transrectal ) for men A Doppler ultrasound exam ...

  5. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... ultrasound images are captured in real-time, they can show the structure and movement of the body's ... Obstetrical Ultrasound page for more information . Ultrasound examinations can help diagnose symptoms experienced by women such as: ...

  6. Magnetic hyperthermia dosimetry by biomechanical properties revealed in magnetomotive optical coherence elastography (MM-OCE) (Conference Presentation)

    Science.gov (United States)

    Huang, Pin-Chieh; Marjanovic, Marina; Spillman, Darold R.; Odintsov, Boris M.; Boppart, Stephen A.

    2016-03-01

    Magnetic nanoparticles (MNPs) have been utilized in magnetic hyperthermia to treat solid tumors. Under an appropriate AC magnetic field, energy can be transferred to the MNPs to heat up the intended tissue target while sparing non-targeted healthy tissue. However, a sensitive monitoring technique for the dose of MNP thermal therapy is desirable in order to prevent over-treatment and collateral injury. Typical hyperthermia dosimetry often relies on changes in imaging properties or temperature measurements based on the thermal distribution. Alternative dosimetric indicators can include the biomechanical properties of the tissue, reflecting the changes due to protein denaturation, coagulation, and tissue dehydration during hyperthermia treatments. Tissue stiffness can be probed by elastography modalities including MRI, ultrasound imaging, and optical coherence elastography (OCE), with OCE showing the highest displacement sensitivity (tens of nanometers). Magnetomotive optical coherence elastography (MM-OCE) is one type of OCE that utilizes MNPs as internal force transducers to probe the tissue stiffness. Therefore, we examined the feasibility of evaluating the hyperthermia dose based on the elasticity changes revealed by MM-OCE. Superparamagnetic MNPs were applied to ex vivo tissue specimens for both magnetic hyperthermia and MM-OCE experiments, where temperature and elastic modulus were obtained. A correlation between temperature rise and measured stiffness was observed. In addition, we found that with repetitive sequential treatments, tissue stiffness increased, while temperature rise remained relatively constant. These results potentially suggest that MM-OCE could indicate the irreversible changes the tissue undergoes during thermal therapy, which supports the idea for MM-OCE-based hyperthermia dosage control in future applications.

  7. Simulation study of the effects of near- and far-field heating during focused ultrasound uterine fibroid ablation using an electronically focused phased array: A theoretical analysis of patient safety

    Energy Technology Data Exchange (ETDEWEB)

    Ellens, Nicholas, E-mail: nicholas.ellens@utoronto.ca; Hynynen, Kullervo [Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7 (Canada)

    2014-07-15

    Purpose: Assess the feasibility of using large-aperture, flat ultrasonic transducer arrays with 6500 small elements operating at 500 kHz without the use of any mechanical components for the thermal coagulation of uterine fibroids. This study examines the benefits and detriments of using a frequency that is significantly lower than that used in clinical systems (1–1.5 MHz). Methods: Ultrasound simulations were performed using the anatomies of five fibroid patients derived from 3D MRI. Using electronic steering solely, the ultrasound focus from a flat, 6500-element phased array was translated around the volume of the fibroids in various patterns to assess the feasibility of completing full treatments from fixed physical locations. Successive temperature maps were generated by numerically solving the bioheat equation. Using a thermal dose model, the bioeffects of these simulations were quantified and analyzed. Results: The simulations indicate that such an array could be used to perform fibroid treatments to 18 EM{sub 43} at an average rate of 90 ± 20 cm{sup 3}/h without physically moving the transducer array. On average, the maximum near-field thermal dose for each patient was below 4 EM{sub 43}. Fibroid tissue could be treated as close as 40 mm to the spine without reaching temperatures expected to cause pain or damage. Conclusions: Fibroids were successfully targeted and treated from a single transducer position to acceptable extents and without causing damage in the near- or far-field. Compared to clinical systems, treatment rates were good. The proposed treatment paradigm is a promising alternative to existing systems and warrants further investigation.

  8. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... through blood vessels. Ultrasound imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions. There are three types of pelvic ultrasound: ...

  9. Advances of Tumor Hyperthermia and Tumor Immunology in Translational Medicine

    Institute of Scientific and Technical Information of China (English)

    Hooshang Lahooti

    2015-01-01

    Hyperthermia is another important method in the treatment of tumors, secondary to surgery, radiotherapy, chemotherapy and biotherapy. It has been demonstrated the efifcacy and versatility of hyperthermia in a lot of randomized trials across various primary cancers. Both heat shock proteins (HSPs) and dendritic cells (DCs) are greatly affected by hyperthermia and closely related to the tumor immunology. Nowadays, tumor hyperthermia and tumor immunology have been attached much attention in the field of translational medicine. In this article, the action mechanism and immunological effects of hyperthermia, activation of HSPs and DCs as well as HSP- and DC-based cancer vaccine were reviewed from the perspective of translational medicine.

  10. Advances of Tumor Hyperthermia and Tumor Immunology in Translational Medicine

    Directory of Open Access Journals (Sweden)

    Hooshang Lahooti

    2015-09-01

    Full Text Available Hyperthermia is another important method in the treatment of tumors, secondary to surgery, radiotherapy, chemotherapy and biotherapy. It has been demonstrated the efficacy and versatility of hyperthermia in a lot of randomized trials across various primary cancers. Both heat shock proteins (HSPs and dendritic cells (DCs are greatly affected by hyperthermia and closely related to the tumor immunology. Nowadays, tumor hyperthermia and tumor immunology have been attached much attention in the field of translational medicine. In this article, the action mechanism and immunological effects of hyperthermia, activation of HSPs and DCs as well as HSP- and DC-based cancer vaccine were reviewed from the perspective of translational medicine.

  11. Fundamentals and advances in magnetic hyperthermia

    Science.gov (United States)

    Périgo, E. A.; Hemery, G.; Sandre, O.; Ortega, D.; Garaio, E.; Plazaola, F.; Teran, F. J.

    2015-12-01

    Nowadays, magnetic hyperthermia constitutes a complementary approach to cancer treatment. The use of magnetic particles as heating mediators, proposed in the 1950s, provides a novel strategy for improving tumor treatment and, consequently, patient's quality of life. This review reports a broad overview about several aspects of magnetic hyperthermia addressing new perspectives and the progress on relevant features such as the ad hoc preparation of magnetic nanoparticles, physical modeling of magnetic heating, methods to determine the heat dissipation power of magnetic colloids including the development of experimental apparatus and the influence of biological matrices on the heating efficiency.

  12. Ultrasound transmission attenuation tomography using energy-scaled amplitude ratios

    Science.gov (United States)

    Chen, Ting; Shin, Junseob; Huang, Lianjie

    2016-04-01

    Ultrasound attenuation of breast tumors is related to their types and pathological states, and can be used to detect and characterize breast cancer. Particularly, ultrasound scattering attenuation can infer the margin properties of breast tumors. Ultrasound attenuation tomography quantitatively reconstructs the attenuation properties of the breast. Our synthetic-aperture breast ultrasound tomography system with two parallel transducer arrays records both ultrasound reflection and transmission signals. We develop an ultrasound attenuation tomography method using ultrasound energy-scaled amplitude decays of ultrasound transmission signals and conduct ultrasound attenuation tomography using a known sound-speed model. We apply our ultrasound transmission attenuation tomography method to a breast phantom dataset, and compare the ultrasound attenuation tomography results with conventional beamforming ultrasound images obtained using reflection signals. We show that ultrasound transmission attenuation tomography complements beamforming images in identifying breast lesions.

  13. Quality assurance guidelines for superficial hyperthermia clinical trials : II. Technical requirements for heating devices.

    Science.gov (United States)

    Dobšíček Trefná, Hana; Crezee, Johannes; Schmidt, Manfred; Marder, Dietmar; Lamprecht, Ulf; Ehmann, Michael; Nadobny, Jacek; Hartmann, Josefin; Lomax, Nicolleta; Abdel-Rahman, Sultan; Curto, Sergio; Bakker, Akke; Hurwitz, Mark D; Diederich, Chris J; Stauffer, Paul R; Van Rhoon, Gerard C

    2017-05-01

    Quality assurance (QA) guidelines are essential to provide uniform execution of clinical trials with uniform quality hyperthermia treatments. This document outlines the requirements for appropriate QA of all current superficial heating equipment including electromagnetic (radiative and capacitive), ultrasound, and infrared heating techniques. Detailed instructions are provided how to characterize and document the performance of these hyperthermia applicators in order to apply reproducible hyperthermia treatments of uniform high quality. Earlier documents used specific absorption rate (SAR) to define and characterize applicator performance. In these QA guidelines, temperature rise is the leading parameter for characterization of applicator performance. The intention of this approach is that characterization can be achieved with affordable equipment and easy-to-implement procedures. These characteristics are essential to establish for each individual applicator the specific maximum size and depth of tumors that can be heated adequately. The guidelines in this document are supplemented with a second set of guidelines focusing on the clinical application. Both sets of guidelines were developed by the European Society for Hyperthermic Oncology (ESHO) Technical Committee with participation of senior Society of Thermal Medicine (STM) members and members of the Atzelsberg Circle.

  14. Spatial and Temporal Control of Hyperthermia Using Real Time Ultrasonic Thermal Strain Imaging with Motion Compensation, Phantom Study.

    Directory of Open Access Journals (Sweden)

    Josquin Foiret

    Full Text Available Mild hyperthermia has been successfully employed to induce reversible physiological changes that can directly treat cancer and enhance local drug delivery. In this approach, temperature monitoring is essential to avoid undesirable biological effects that result from thermal damage. For thermal therapies, Magnetic Resonance Imaging (MRI has been employed to control real-time Focused Ultrasound (FUS therapies. However, combined ultrasound imaging and therapy systems offer the benefits of simple, low-cost devices that can be broadly applied. To facilitate such technology, ultrasound thermometry has potential to reliably monitor temperature. Control of mild hyperthermia was previously achieved using a proportional-integral-derivative (PID controller based on thermocouple measurements. Despite accurate temporal control of heating, this method is limited by the single position at which the temperature is measured. Ultrasound thermometry techniques based on exploiting the thermal dependence of acoustic parameters (such as longitudinal velocity can be extended to create thermal maps and allow an accurate monitoring of temperature with good spatial resolution. However, in vivo applications of this technique have not been fully developed due to the high sensitivity to tissue motion. Here, we propose a motion compensation method based on the acquisition of multiple reference frames prior to treatment. The technique was tested in the presence of 2-D and 3-D physiological-scale motion and was found to provide effective real-time temperature monitoring. PID control of mild hyperthermia in presence of motion was then tested with ultrasound thermometry as feedback and temperature was maintained within 0.3°C of the requested value.

  15. [Novel dianostics and therapeutics with ultrasound technologies and nanotechnologies].

    Science.gov (United States)

    Suzuki, Ryo; Oda, Yusuke; Omata, Daiki; Sawaguchi, Yoshikazu; Negishi, Yoichi; Maruyama, Kazuo

    2013-01-01

    Ultrasound is a good tool for theranostics due to have multi-potency both of diagnostics with sonography and therapeutics with high intensity focused ultrasound (HIFU). In addition, microbubbles and nanobubbles are utilized as not only contrast imaging agent but also enhancer of drug and gene delivery by combination of ultrasound. Recently, we developed novel liposomal nanobubbles (Bubble liposomes) which were containing perfluoropropane. Bubble liposomes induced jet stream by low intensity ultrasound exposure and resulted in enhancing permeability of cell membrane. This phenomenon has been utilized as driving force for drug and gene delivery. On the other hand, the combination of Bubble liposomes and high intensity ultrasound induces strong jet stream and increase temperature. This condition can directly damage to tumor cells, we are applying this for cancer therapy. Therefore, their combination has potency for various cancer therapies such as gene therapy, immunotherapy and hyperthermia. In this review, we discuss about cancer therapy by the combination of Bubble liposomes and ultrasound.

  16. Combined transperineal radiofrequency (RF) interstitial hyperthermia and brachytherapy for localized prostate cancer (PC)

    Energy Technology Data Exchange (ETDEWEB)

    Urakami, Shinji; Gonda, Nobuko; Kikuno, Nobuyuki [Shimane Medical Univ., Izumo (Japan)] (and others)

    2001-05-01

    Hyperthermia has been used effectively as a radiation sensitizer. Interstitial hyperthermoradiotherapy has been therefore utilized as a minimal invasive therapy in attempts to improve local tumor control for various cancers, but not for urological cancer. The purpose of this study was to investigate the safety and feasibility of transperineal hyperthermoradiotherapy for localized PC. Based on our basic study of hyperthermoradiotherapy, we devised the procedure of combined transperineal RF interstitial hyperthermia and brachytherapy for localized prostate cancer. Two patients with localized PC underwent transperineal RF interstitial hyperthermia combined with brachytherapy operation the 192-Ir remote after-loading system (RALS). Under transrectal ultrasound guidance, a total number of 12-18 stainless steel needles for 192-Ir RALS were implanted into the prostatic gland and seminal vesicles (SV) in an optimized pattern. Eight of the needles were used as electrodes for hyperthermia, and were electrically insultated using the vinyl catheter along the length of the subdermal fatty tissue to protect from overheating. Three other needles were utilized for continuous temperature mapping in the prostate. Rectal temperature was also monitored. Total radiation doses of 70 Gy to the prostate and SV were planned as a combination of brachytherapy (24 Gy/4 fraction) and external irradiation using a four-field box technique (46 Gy/23 fraction). Hyperthermic treatment (goal of 42 to 43 deg C for 60 minutes) was performed twice following the 1st and 4th brachytherapy at an interval of more than 48 hours for the recovery of cancer cells from thermotolerance. Both patients reached the treatment goal of all intraprostatic temperatures >43.0 deg C, which was considered favorable for hyperthermia, and the rectal temperatures of both patients remained <38 deg C during hyperthermia. In serial PSA measurements of both patients, serum PSA was less than 1.0 ng/ml within 3 months and has since

  17. Hyperthermia Effects in the Presence of Gold Nanoparticles Together with Chemotherapy on Saos-2 Cell Line

    Directory of Open Access Journals (Sweden)

    Ameneh Sazgarnia

    2011-03-01

    Full Text Available Introduction: Hyperthermia created by microwave (MW, infrared, ultrasound and other methods, is often utilized as an adjuvant to sensitize cancer cells to the effects of chemotherapy and radiation therapy. We investigated the efficacy of hyperthermia using MW in synergy with chemotherapy in the presence and absence and gold nanoparticles (GNPs. Material and Methods: After culturing and proliferation of the Saos-2 cell line derived from human osteogenic sarcoma, the cells were incubated at two concentrations of GNPs in two diameters of 20 and 40 nm and in the absence and presence of doxorubicin in different groups. Forty eight hours after irradiating the cells with MW up to a temperature of 42°C, cell survival rate was determined using the MTT method, in order to study the effectiveness of the therapeutic parameters. Results: Cell survival in the presence of GNPs was greater than 95%. After chemotherapy by doxorubicin with and without 40 nm GNPs, cell survival rates were determined as 62.8% and 37.1%, declining down to 17% and 4.1% respectively following the combined treatment with MW and chemotherapy in the presence of 20 and 40 nm GNPs. Discussion and Conclusions: GNPs did not induce any cytotoxicity by themselves; their presence along with MW provided a reduction in survival rate that was comparable in severity with the lethal effects of doxorubicin. MW hyperthermia with GNPs produced a higher treatment efficiency in comparison to similar groups in which GNPs were absent. The synergism observed between hyperthermia and chemotherapy was dependent in GNPs' size and concentration. This finding could be caused by increased uptake of doxorubicin by the cells in the presence of GNPs.

  18. Drug-induced hyperthermia in Huntington's disease

    NARCIS (Netherlands)

    Gaasbeek, D; Naarding, Paul; Stor, T; Kremer, H P H

    Until now, only three patients with Huntington's disease (HD) and a neuroleptic malignant syndrome (NMS) have been reported in the literature. We describe four cases with advanced stage Huntington's disease who within a period of one year developed drug-induced hyperthermia, either the neuroleptic

  19. Drug-induced hyperthermia in Huntington's disease.

    NARCIS (Netherlands)

    Gaasbeek, D.; Naarding, P.; Stor, T.; Kremer, H.P.H.

    2004-01-01

    Until now, only three patients with Huntington's disease (HD) and a neuroleptic malignant syndrome (NMS) have been reported in the literature. We describe four cases with advanced stage Huntington's disease who within a period of one year developed drug-induced hyperthermia, either the neuroleptic

  20. Mild hyperthermia influence on Herceptin (R) properties

    NARCIS (Netherlands)

    Escoffre, JM; Deckers, RHR; Sasaki, Noboru; Bos, Clemens; Moonen, Chrit

    2015-01-01

    Background. Mild hyperthermia (mHT) increases the tumor perfusion and vascular permeability, and reduces the interstitial fluid pressure, resulting in better intra-tumoral bioavailability of low molecular weight drugs. This approach is potentially also attractive for delivery of therapeutic macromol

  1. Drug-induced hyperthermia in Huntington's disease.

    NARCIS (Netherlands)

    Gaasbeek, D.; Naarding, P.; Stor, T.; Kremer, H.P.H.

    2004-01-01

    Until now, only three patients with Huntington's disease (HD) and a neuroleptic malignant syndrome (NMS) have been reported in the literature. We describe four cases with advanced stage Huntington's disease who within a period of one year developed drug-induced hyperthermia, either the neuroleptic m

  2. Malignant Hyperthermia Association of the United States

    Science.gov (United States)

    ... Videos Blog Get Involved Shop Ask a question right here... MHAUS On Facebook Now view more On Twitter Now view more Tweets by @ ... Malignant Hyperthermia Association of the United States. All rights reserved. ... advertiser and not necessarily the views or opinions of MHAUS, its staff or its ...

  3. Hyperthermia for cancer: a practical perspective.

    Science.gov (United States)

    Moffat, F L; Falk, R E; Laing, D; Ketcham, A S; Falk, J A

    1985-01-01

    A causal relationship between hyperpyrexia and tumor regression was first suggested in 1866, when Busch reported the cure of a histologically diagnosed sarcoma in a middle-aged woman, following a bout of erysipelas. Over the years, interest in the effect of heat on cancer has remained alive, but this interest has increased dramatically in recent years. The literature on this subject is broadly reviewed and the clinical results discussed. It is apparent from clinical studies thus far that it is a relatively simple undertaking to treat superficial neoplasms with hyperthermia. However, the major challenges in clinical thermotherapy pertain to patients with deeply situated tumors. The lack of safe and reliable methods of monitoring temperature in deep tissues is a major impediment to a thorough understanding of thermal dosimetry in clinical hyperthermia, and routine thermal dosimetry in clinical hyperthermia will have to await the development of reliable noninvasive thermometry. As responses have been reported with modest levels of hyperthermia, the need for thermometry is somewhat lessened, given that invasive monitoring is imperfect and somewhat risky when used in deeply seated tumours. The eventual place of thermotherapy in the treatment of malignant tumours in man is as yet unclear and must be rigourously and thoroughly assessed in well-designed, prospective, randomized patient trials.

  4. Medical ultrasound systems.

    Science.gov (United States)

    Powers, Jeff; Kremkau, Frederick

    2011-08-06

    Medical ultrasound imaging has advanced dramatically since its introduction only a few decades ago. This paper provides a short historical background, and then briefly describes many of the system features and concepts required in a modern commercial ultrasound system. The topics addressed include array beam formation, steering and focusing; array and matrix transducers; echo image formation; tissue harmonic imaging; speckle reduction through frequency and spatial compounding, and image processing; tissue aberration; Doppler flow detection; and system architectures. It then describes some of the more practical aspects of ultrasound system design necessary to be taken into account for today's marketplace. It finally discusses the recent explosion of portable and handheld devices and their potential to expand the clinical footprint of ultrasound into regions of the world where medical care is practically non-existent. Throughout the article reference is made to ways in which ultrasound imaging has benefited from advances in the commercial electronics industry. It is meant to be an overview of the field as an introduction to other more detailed papers in this special issue.

  5. Ultrasound triggered, image guided, local drug delivery.

    Science.gov (United States)

    Deckers, Roel; Moonen, Chrit T W

    2010-11-20

    Ultrasound allows the deposition of thermal and mechanical energies deep inside the human body in a non-invasive way. Ultrasound can be focused within a region with a diameter of about 1mm. The bio-effects of ultrasound can lead to local tissue heating, cavitation, and radiation force, which can be used for 1) local drug release from nanocarriers circulating in the blood, 2) increased extravasation of drugs and/or carriers, and 3) enhanced diffusivity of drugs. When using nanocarriers sensitive to mechanical forces (the oscillating ultrasound pressure waves) and/or sensitive to temperature, the content of the nanocarriers can be released locally. Thermo-sensitive liposomes have been suggested for local drug release in combination with local hyperthermia more than 25 years ago. Microbubbles may be designed specifically to enhance cavitation effects. Real-time imaging methods, such as magnetic resonance, optical and ultrasound imaging have led to novel insights and methods for ultrasound triggered drug delivery. Image guidance of ultrasound can be used for: 1) target identification and characterization; 2) spatio-temporal guidance of actions to release or activate the drugs and/or permeabilize membranes; 3) evaluation of bio-distribution, pharmacokinetics and pharmacodynamics; and 4) physiological read-outs to evaluate the therapeutic efficacy.

  6. Drift correction for accurate PRF-shift MR thermometry during mild hyperthermia treatments with MR-HIFU.

    Science.gov (United States)

    Bing, Chenchen; Staruch, Robert M; Tillander, Matti; Köhler, Max O; Mougenot, Charles; Ylihautala, Mika; Laetsch, Theodore W; Chopra, Rajiv

    2016-09-01

    There is growing interest in performing hyperthermia treatments with clinical magnetic resonance imaging-guided high-intensity focused ultrasound (MR-HIFU) therapy systems designed for tissue ablation. During hyperthermia treatment, however, due to the narrow therapeutic window (41-45 °C), careful evaluation of the accuracy of proton resonant frequency (PRF) shift MR thermometry for these types of exposures is required. The purpose of this study was to evaluate the accuracy of MR thermometry using a clinical MR-HIFU system equipped with a hyperthermia treatment algorithm. Mild heating was performed in a tissue-mimicking phantom with implanted temperature sensors using the clinical MR-HIFU system. The influence of image-acquisition settings and post-acquisition correction algorithms on the accuracy of temperature measurements was investigated. The ability to achieve uniform heating for up to 40 min was evaluated in rabbit experiments. Automatic centre-frequency adjustments prior to image-acquisition corrected the image-shifts in the order of 0.1 mm/min. Zero- and first-order phase variations were observed over time, supporting the use of a combined drift correction algorithm. The temperature accuracy achieved using both centre-frequency adjustment and the combined drift correction algorithm was 0.57° ± 0.58 °C in the heated region and 0.54° ± 0.42 °C in the unheated region. Accurate temperature monitoring of hyperthermia exposures using PRF shift MR thermometry is possible through careful implementation of image-acquisition settings and drift correction algorithms. For the evaluated clinical MR-HIFU system, centre-frequency adjustment eliminated image shifts, and a combined drift correction algorithm achieved temperature measurements with an acceptable accuracy for monitoring and controlling hyperthermia exposures.

  7. Design of High-speed Data Acquisition System of Ultrasound Phased Array%超声相控阵检测高速数据采集系统设计

    Institute of Scientific and Technical Information of China (English)

    沈祥华; 许药林; 徐大专

    2013-01-01

    提出了一种超声相控阵高速数据采集系统的设计方案,该方案基于ADC+ FPGA+ARM架构,实现多路高速数据的采集传输.重点研究了ADC、FPGA接口设计.采用AD9272作为相控阵模拟前端,实施前端模拟信号预处理及多路高速数据并行采集;采用Spartan-6XC6SLX150进行多路高速数据的实时传输转换,在FPGA内实现了32路600 M、DDR、串行LVDS数据高速接收恢复;最后通过上位机观测采集传输的超声相控阵回波信号.该设计充分利用当前高集成度芯片,为超声相控阵检测系统小型化的实现提供了参考.%This paper presents a design of high-speed data acquisition system of ultrasound phased array, which is based on the architecture of ADC + FPGA + ARM and is achieving the acquisition and transmission of multichannel high-speed data. This paper focuses on the design of the ADC、FPGA interface. It takes AD9272 as the analog front end of phased array to preprocess the front analog signals and acquire multi-channel highspeed data, and uses Spartan-6 XC6SLX150 to realize the real-time transmission and conversion of multiple high-speed data. The system can achieve the recovery of 32-channel 600 M、DDR、serial LVDS data in the FPGA. Finally, a host computer is used to observe the acquired and transmitted echo signals of ultrasound phased array. This design makes full use of highly integrated chips, providing a reference for the miniaturization of the ultrasonic phased array inspection system.

  8. Prostate Ultrasound

    Medline Plus

    Full Text Available ... as detailed as with the transrectal probe. An MRI of the pelvis may be obtained as an ... Benign Prostatic Hyperplasia (BPH) Prostate Cancer Ultrasound- and MRI-Guided Prostate Biopsy Images related to Ultrasound - Prostate ...

  9. Prostate Ultrasound

    Medline Plus

    Full Text Available ... is done because a potential abnormality needs further evaluation with additional views or a special imaging technique. ... other imaging methods. Ultrasound imaging uses no ionizing radiation. Ultrasound scanning may be able to give a ...

  10. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... needles are used to extract a sample of cells from organs for laboratory testing. Doppler ultrasound images ... ultrasound, measures the direction and speed of blood cells as they move through vessels. The movement of ...

  11. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... the procedure? In women, a pelvic ultrasound is most often performed to evaluate the: uterus cervix ovaries ... page How is the procedure performed? Transabdominal: For most ultrasound exams, you will be positioned lying face- ...

  12. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... transducer into the body. Doppler ultrasound, a special application of ultrasound, measures the direction and speed of ... understanding of the possible charges you will incur. Web page review process: This Web page is reviewed ...

  13. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... menstrual problems Ultrasound exams also help identify: palpable masses such as ovarian cysts and uterine fibroids ovarian ... In children, pelvic ultrasound can help evaluate: pelvic masses pelvic pain ambiguous genitalia and anomalies of pelvic ...

  14. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... bladder seminal vesicles prostate Transrectal ultrasound, a special study usually done to provide detailed evaluation of the ... time to the procedure. If a Doppler ultrasound study is performed, you may actually hear pulse-like ...

  15. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... of page What are some common uses of the procedure? In women, a pelvic ultrasound is most ... child's favorite channel. top of page What does the equipment look like? Ultrasound scanners consist of a ...

  16. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... ultrasound: abdominal, vaginal (for women), and rectal (for men). These exams are frequently used to evaluate the ... vaginal ( transvaginal , endovaginal ) for women rectal ( transrectal ) for men A Doppler ultrasound exam may be part of ...

  17. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... ultrasound: abdominal, vaginal (for women), and rectal (for men). These exams are frequently used to evaluate the ... vaginal ( transvaginal / endovaginal ) for women rectal ( transrectal ) for men A Doppler ultrasound exam may be part of ...

  18. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... 3-D ultrasound or sonohysterography for patients with infertility. In this setting, three-dimensional ultrasound provides information ... the transducer is pressed against the skin, it directs small pulses of inaudible, high-frequency sound waves ...

  19. Prostate Ultrasound

    Medline Plus

    Full Text Available ... 20 minutes. top of page What will I experience during and after the procedure? Ultrasound exams in ... ultrasound , there are no known harmful effects on humans. top of page What are the limitations of ...

  20. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... insertion. top of page How does the procedure work? Ultrasound imaging is based on the same principles ... to-use and less expensive than other imaging methods. Ultrasound imaging is extremely safe and does not ...

  1. Prostate Ultrasound

    Medline Plus

    Full Text Available ... top of page What are the benefits vs. risks? Benefits Ultrasound is widely available, easy-to-use ... procedures such as needle biopsies and fluid aspiration. Risks For standard diagnostic ultrasound , there are no known ...

  2. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... diagnose symptoms experienced by women such as: pelvic pain abnormal vaginal bleeding other menstrual problems Ultrasound exams ... pelvic ultrasound can help evaluate: pelvic masses pelvic pain ambiguous genitalia and anomalies of pelvic organs early ...

  3. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Most ultrasound scanning is noninvasive (no needles or injections). Occasionally, an ultrasound exam may be temporarily uncomfortable, ... the following text box: Comment: E-mail: Area code: Phone no: Thank you! Images × Image Gallery Radiologist ...

  4. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... investigation of the uterine cavity . Three-dimensional (3-D) ultrasound permits evaluation of the uterus and ovaries ... abnormal uterine bleeding Some physicians also use 3-D ultrasound or sonohysterography for patients with infertility. Three- ...

  5. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... For most ultrasound exams, you will be positioned lying face-up on an examination table that can ... ovaries. Transvaginal ultrasound is usually performed with you lying on your back, possibly with your feet in ...

  6. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... investigation of the uterine cavity . Three-dimensional (3-D) ultrasound permits evaluation of the uterus and ovaries ... abnormal uterine bleeding Some physicians also use 3-D ultrasound or sonohysterography for patients with infertility. In ...

  7. Endoscopic ultrasound

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/007646.htm Endoscopic ultrasound To use the sharing features on this page, please enable JavaScript. Endoscopic ultrasound is a type of imaging test. It is ...

  8. Prostate Ultrasound

    Medline Plus

    Full Text Available ... evaluation with additional views or a special imaging technique. A follow-up examination may also be necessary ... to-use and less expensive than other imaging methods. Ultrasound imaging uses no ionizing radiation. Ultrasound scanning ...

  9. Prostate Ultrasound

    Medline Plus

    Full Text Available ... chest. To obtain high-quality images, an ultrasound transducer – a plastic cylinder about the size of a ... or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the ...

  10. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... by women such as: pelvic pain abnormal vaginal bleeding other menstrual problems Ultrasound exams also help identify: ... fibroids cancer, especially in patients with abnormal uterine bleeding Some physicians also use 3-D ultrasound or ...

  11. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... insertion. top of page How does the procedure work? Ultrasound imaging is based on the same principles ... time to the procedure. If a Doppler ultrasound study is performed, you may actually hear pulse-like ...

  12. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... in x-rays ), thus there is no radiation exposure to the patient. Because ultrasound images are captured ... system disorders in both sexes without x-ray exposure. Risks For standard diagnostic ultrasound , there are no ...

  13. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... needles are used to extract a sample of cells from organs for laboratory testing. Doppler ultrasound images ... ultrasound, measures the direction and speed of blood cells as they move through vessels. The movement of ...

  14. Prostate Ultrasound

    Medline Plus

    Full Text Available ... ultrasound images are captured in real-time, they can show the structure and movement of the body's ... Because ultrasound provides real-time images, it also can be used to guide procedures such as needle ...

  15. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... ultrasound: abdominal, vaginal (for women), and rectal (for men). These exams are frequently used to evaluate the ... vaginal ( transvaginal / endovaginal ) for women rectal ( transrectal ) for men A Doppler ultrasound exam may be part of ...

  16. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Ultrasound is safe, noninvasive and does not use ionizing radiation. This procedure requires little to no special preparation. ... create an image. Ultrasound examinations do not use ionizing radiation (as used in x-rays ), thus there is ...

  17. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... and fluid aspiration. Pelvic ultrasound can help to identify and evaluate a variety of urinary and reproductive system disorders in both sexes without x-ray exposure. Risks For standard diagnostic ultrasound , there are no known ...

  18. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... of page What are some common uses of the procedure? In women, a pelvic ultrasound is most ... child's favorite channel. top of page What does the equipment look like? Ultrasound scanners consist of a ...

  19. Prostate Ultrasound

    Medline Plus

    Full Text Available ... of page What will I experience during and after the procedure? Ultrasound exams in which the transducer ... a regular ultrasound imaging probe on the perineal skin of the patient, between the legs and behind ...

  20. Gelatin microcapsules for enhanced microwave tumor hyperthermia

    Science.gov (United States)

    Du, Qijun; Fu, Changhui; Tie, Jian; Liu, Tianlong; Li, Linlin; Ren, Xiangling; Huang, Zhongbing; Liu, Huiyu; Tang, Fangqiong; Li, Li; Meng, Xianwei

    2015-02-01

    Local and rapid heating by microwave (MW) irradiation is important in the clinical treatment of tumors using hyperthermia. We report here a new thermo-seed technique for the highly efficient MW irradiation ablation of tumors in vivo based on gelatin microcapsules. We achieved 100% tumor elimination in a mouse model at an ultralow power of 1.8 W without any side-effects. The results of MTT assays, a hemolysis test and the histological staining of organs indicated that the gelatin microcapsules showed excellent compatibility with the physiological environment. A possible mechanism is proposed for MW hyperthermia using gelatin microcapsules. We also used gelatin microcapsules capped with CdTe quantum dots for in vivo optical imaging. Our study suggests that these microcapsules may have potential applications in imaging-guided cancer treatment.Local and rapid heating by microwave (MW) irradiation is important in the clinical treatment of tumors using hyperthermia. We report here a new thermo-seed technique for the highly efficient MW irradiation ablation of tumors in vivo based on gelatin microcapsules. We achieved 100% tumor elimination in a mouse model at an ultralow power of 1.8 W without any side-effects. The results of MTT assays, a hemolysis test and the histological staining of organs indicated that the gelatin microcapsules showed excellent compatibility with the physiological environment. A possible mechanism is proposed for MW hyperthermia using gelatin microcapsules. We also used gelatin microcapsules capped with CdTe quantum dots for in vivo optical imaging. Our study suggests that these microcapsules may have potential applications in imaging-guided cancer treatment. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07104b

  1. Magnetic hyperthermia with hard-magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kashevsky, Bronislav E., E-mail: bekas@itmo.by [A.V Luikov Heat and Mass Transfer Institute, Belarus Academy of Sciences, P. Brovka str. 15, Minsk 220072 (Belarus); Kashevsky, Sergey B.; Korenkov, Victor S. [A.V Luikov Heat and Mass Transfer Institute, Belarus Academy of Sciences, P. Brovka str. 15, Minsk 220072 (Belarus); Istomin, Yuri P. [N. N. Alexandrov National Cancer Center of Belarus, Lesnoy-2, Minsk 223040 (Belarus); Terpinskaya, Tatyana I.; Ulashchik, Vladimir S. [Institute of Physiology, Belarus Academy of Sciences, Akademicheskaya str. 28, Minsk 220072 (Belarus)

    2015-04-15

    Recent clinical trials of magnetic hyperthermia have proved, and even hardened, the Ankinson-Brezovich restriction as upon magnetic field conditions applicable to any site of human body. Subject to this restriction, which is harshly violated in numerous laboratory and small animal studies, magnetic hyperthermia can relay on rather moderate heat source, so that optimization of the whole hyperthermia system remains, after all, the basic problem predetermining its clinical perspectives. We present short account of our complex (theoretical, laboratory and small animal) studies to demonstrate that such perspectives should be related with the hyperthermia system based on hard-magnetic (Stoner–Wohlfarth type) nanoparticles and strong low-frequency fields rather than with superparamagnetic (Brownian or Neél) nanoparticles and weak high-frequency fields. This conclusion is backed by an analytical evaluation of the maximum absorption rates possible under the field restriction in the ideal hard-magnetic (Stoner–Wohlarth) and the ideal superparamagnetic (single relaxation time) systems, by theoretical and experimental studies of the dynamic magnetic hysteresis in suspensions of movable hard-magnetic particles, by producing nanoparticles with adjusted coercivity and suspensions of such particles capable of effective energy absorption and intratumoral penetration, and finally, by successful treatment of a mice model tumor under field conditions acceptable for whole human body. - Highlights: • Hard-magnetic nanoparticles are shown superior for hyperthetmia to superparamagnetic. • Optimal system parameters are found from magnetic reversal model in movable particle. • Penetrating suspension of HM particles with aggregation-independent SAR is developed. • For the first time, mice with tumors are healed in AC field acceptable for human body.

  2. [Aspects of healthy humans' response to hyperthermia].

    Science.gov (United States)

    Andreeva, L I; Bannikov, A V; Goranchuk, V V

    1999-01-01

    Single-shot hyperthermia of healthy young men in climate chamber up to rectal temperature of 39.5 degrees C over 75-110 minutes revealed variable heat resistance. Individuals with prevalent sympathetic vegetative regulation were more resistant to overheating, if compared to those with prevalent parasympathetic one. Endocrine group peculiarities were observed, the examinees with prevalent parasympathetic vegetative regulation demonstrated more drastic changes of some biochemical parameters.

  3. Anisotropic Magnetic Nanostructures For Enhanced Hyperthermia

    Science.gov (United States)

    Torres, D.; Das, R.; Alonso, J.; Phan, M. H.; Srikanth, H.

    Magnetic nanoparticles assisted hyperthermia is one of the most promising techniques for cancer treatment. By the use of magnetic nanoparticles in an external AC magnetic field, one can target a specific tumor location and deliver toxic doses of heat to the tumor area without damaging the surrounding healthy tissue. Magnetite is typically used in biomedical applications due to its biocompatibility, but the heating efficiency of the commonly used magnetite nanoparticles is not enough to obtain the best results in cancer treatment. Therefore, novel magnetic nanostructures are required in order to improve the heating efficiency. Recently, it has been proposed by different groups that it is possible to increase the heating efficiency of the nanoparticles by tuning their effective anisotropy. Considering this, we have synthesized high aspect ratio magnetic nanorods with increased effective anisotropy. A thorough structural and magnetic characterization has revealed high crystallinity and optimal magnetic properties of these nanorods. The hyperthermia response shows that by increasing the aspect ratio from 5 to 11, their heating efficiency is increased by 150%. In addition, we have observed that a good alignment of the nanorods with the magnetic field ensures the best heating results. Hence, these nanorods appear to be promising candidates for cancer treatment with magnetic hyperthermia.

  4. Carotid Ultrasound

    Science.gov (United States)

    ... this page from the NHLBI on Twitter. Carotid Ultrasound Also known as carotid duplex. Carotid ultrasound is a painless imaging test that uses high- ... of your carotid arteries. This test uses an ultrasound machine, which includes a computer, a screen, and ...

  5. Modeling of ultrasound transducers

    DEFF Research Database (Denmark)

    Bæk, David

    deviation of 5.5 % to 11.0 %. Finite element modeling of piezoceramics in combination with Field II is addressed and reveals the influence of restricting the modeling of transducers to the one-dimensional case. An investigation on modeling capacitive micromachined ultrasonic transducers (CMUT)s with Field......This Ph.D. dissertation addresses ultrasound transducer modeling for medical ultrasound imaging and combines the modeling with the ultrasound simulation program Field II. The project firstly presents two new models for spatial impulse responses (SIR)s to a rectangular elevation focused transducer...... II is addressed. It is shown how a single circular CMUT cell can be well approximated with a simple square transducer encapsulating the cell, and how this influence the modeling of full array elements. An optimal cell discretization with Field II’s mathematical elements is addressed as well...

  6. Fabrication and performance of endoscopic ultrasound radial arrays based on PMN-PT single crystal/epoxy 1-3 composite.

    Science.gov (United States)

    Zhou, Dan; Cheung, Kwok Fung; Chen, Yan; Lau, Sien Ting; Zhou, Qifa; Shung, K Kirk; Luo, Hao Su; Dai, Jiyan; Chan, Helen Lai Wa

    2011-02-01

    In this paper, 0.7Pb(Mg(¹/₃)Nb(²/₃)O₃-0.3PbTiO₃ (PMN-PT) single crystal/epoxy 1/3 composite was used as the active material of the endoscopic ultrasonic radial array transducer, because this composite exhibited ultrahigh electromechanical coupling coefficient (k(t) = 0.81%), very low mechanical quality factor (Q(m) = 11) and relatively low acoustic impedance (Z(t) = 12 MRayls). A 6.91 MHz PMN-PT/epoxy 1/3 composite radial array transducer with 64 elements was tested in a pulseecho response measurement. The -6-dB bandwidth of the composite array transducer was 102%, which was ~30% larger than that of traditional lead zirconate titanate array transducer. The two-way insertion loss was found to be -32.3 dB. The obtained results show that this broadband array transducer is promising for acquiring high-resolution endoscopic ultrasonic images in many clinical applications.

  7. Hyperthermia for the Treatment of Locally Advanced Cervix Cancer

    NARCIS (Netherlands)

    M. Franckena (Martine)

    2010-01-01

    textabstract(English): There is a strong biological rationale for the use of hyperthermia as an oncological treatment modality. Fifteen randomized trials have shown significant improvement in clinical outcome when hyperthermia was added to radiotherapy, chemotherapy or both. At temperatures ≥ 40 0C

  8. Prostacyclin-induced hyperthermia - Implication of a protein mediator

    Science.gov (United States)

    Kandasamy, S. B.; Williams, B. A.

    1982-01-01

    The mechanism of the prostacyclin-linked hyperthermia is studied in rabbits. Results show that intracerebroventricular administration of prostacyclin (PGI2) induces dose-related hyperthermia at room temperature (21 C), as well as at low (4 C) and high (30 C) ambient temperatures. It is found that this PGI2-induced hyperthermia is not mediated by its stable metabolite 6-keto prostaglandin F-1(alpha). Only one of the three anion transport systems, the liver transport system, appears to be important to the central inactivation of pyrogen, prostaglandin E2, and PGI2. Phenoxybenzamine and pimozide have no thermolytic effect on PGI2-induced hyperthermia, while PGI2 still induces hyperthermia after norepinephrine (NE) and dopamine levels are depleted by 6-hydroxydopamine. Indomethacin and SC-19220 (a PG antagonist) do not antagonize PGI2 induced hyperthermia, while theophylline does not accentuate the PGI2-induced hyperthermia. However, the hyperthermic response to PGI2 is attenuated by central administration of the protein synthesis inhibitor, anisomycin. It is concluded that PGI2-induced hyperthermia is not induced by NE, dopamine, or cyclic AMP, but rather that a protein mediator is implicated in the induction of fever by PG12.

  9. Technical Quality of Deep Hyperthermia Using the BSD-2000

    NARCIS (Netherlands)

    D. Fatehi (Daryoush)

    2007-01-01

    textabstractThis thesis is including six previously published papers that briefly described here. In the first paper, homemade software RHyThM (Rotterdam Hyperthermia Thermal Modulator) was presented towards improvement of the accessibility of the PDOS-formatted hyperthermia (HT) data produced by th

  10. Hyperthermia : physiological changes associated with whole body hyperthermia for cancer treatment

    NARCIS (Netherlands)

    N.S. Faithfull

    1983-01-01

    textabstractOver the last ten years hyperthermia has been introduced as an experimental therapy that is available to the clinician in the treatment of malignant disease. Intensive experimental and clinical research is continuing into various aspects of treatment. Since the importance of enviromental

  11. Temporal effect of local hyperthermia on murine contact hypersensitivity

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lan; WANG Yi-ru; HONG Yu-xiao; XU Ya-qin; ZHANG Li; LI Xiao-dong; XIAO Ting

    2013-01-01

    Background The sensitization and elicitation phases are involved in the immunopathogenesis of contact hypersensitivity (CHS).Langerhans cells (LCs) are believed to play pivotal roles in the sensitization stage of CHS.Local hyperthermia on skin induces the migration as well as maturation of epidermal LCs.Although fever-range whole body hyperthermia and local hyperthermia at 43℃ prior to sensitization were reported to suppress CHS,the effects of different temperatures and the timing sequence of local hyperthermia on CHS have not been tackled.Methods Local hyperthermia was applied to murine dorsal skin 3 days prior to,concurrent with,or 2 days post sensitization with fluorescein isothiocyanate (FITC) in BALB/c mice.Local hyperthermia temperatures at 37℃,39℃,41℃ and 43℃ were applied to mouse dorsal skin and the severity of CHS was calculated by measuring the swelling response of the challenged ears.Results Local hyperthermia at 39℃,41℃ and 43℃ prior to sensitization reduced the severity of CHS,as compared with that at 37℃.The suppression of CHS was temperature dependant in that higher temperature had a stronger effect.On the contrary,the hyperthermia treatments,either concurrent with or post-sensitization,resulted in an enhanced temperature-dependant ear swelling response.Conclusions The severity of murine CHS could be influenced by local hyperthermia at the sensitization stage in a temperature dependant manner.The temporal effect of local hyperthermia suggested a novel factor in interpreting the severity of allergic contact dermatitis.

  12. The development and application of a radiofrequency (RF) interstitial hyperthermia system to prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, Nobue; Kawaguchi, Atsuya; Moriyama, Masahiro; Kitagaki, Hajime; Urakami, Shinji; Igawa, Mikio [Shimane Medical Univ., Izumo (Japan); Kato, Hirokazu [Okayama Univ. (Japan). School of Medicine; Kasai, Toshifumi [Kyoto Coll. of Medical Technology, Sonobe (Japan)

    2002-09-01

    To heat a greater volume less invasively and more effectively, we developed a multi-channel RF interstitial hyperthermia system compatible with the high-dose rate Iridium-192 remote after-loading system (Ir-192 RALS). The system is composed of eight channel RF signal generators, which can be controlled individually. Each RF generator can be connected to an internal electrode, which was originally an Ir-192 RALS applicator; and a shared rectangular external electrode made of aluminum. By means of experiments using an agar phantom and an animal liver, we evaluated the heating characteristics, safety, and feasibility of this system. Subsequently, we applied trans-perineal radiofrequency (RF) interstitial hyperthermia and Ir-192 RALS for localized prostate cancer (PC). Under trans-rectal ultrasound guidance, 18 stainless applicators for Ir-192 RALS were inserted into the prostatic gland and seminal vesicles in an optimized pattern. Eight applicators were used as internal electrodes and were electrically insulated along the length of subdermal fat tissue using a vinyl catheter. The temperature inside the prostate and rectum was monitored continuously. Hyperthermia was performed following the first and fourth Ir-192 RALS (total of 24 Gy/4 fractions). Total doses of 46 Gy were also delivered by linear accelerator. There were no complications, such as infection, bleeding, fat necrosis, or burns. Histological examination after the treatment revealed cancer cell death and necrosis. MRI and CT images showed a well-demarcated, low-intensity area at the center of the prostate reflecting the necrotic area. Trans-perineal hyperthermoradiotherapy is a feasible and effective therapeutic alternative for the treatment of patients with localized PC. In addition, our system is compatible with the Ir-192 RALS, allowing for less-invasive interstitial hyperthermoradiotherapy by eliminating the trauma of needle re-insertion. (author)

  13. Design and analysis of a conformal patch antenna for a wearable breast hyperthermia treatment system

    Science.gov (United States)

    Curto, Sergio; Ramasamy, Manoshika; Suh, Minyoung; Prakash, Punit

    2015-03-01

    To overcome the limitations of currently available clinical hyperthermia systems which are based on rigid waveguide antennas, a wearable microwave hyperthermia system is presented. A light wearable system can improve patient comfort and be located in close proximity to the breast, thereby enhancing energy deposition and reducing power requirements. The objective of this work was to design and assess the feasibility of a conformal patch antenna element of an array system to be integrated into a wearable hyperthermia bra. The feasibility of implementing antennas with silver printed ink technology on flexible substrates was evaluated. A coupled electromagnetic-bioheat transfer solver and a hemispheric heterogeneous numerical breast phantom were used to design and optimize a 915 MHz patch antenna. The optimization goals were device miniaturization, operating bandwidth, enhanced energy deposition pattern in targets, and reduced Efield back radiation. The antenna performance was evaluated for devices incorporating a hemispheric conformal groundplane and a rectangular groundplane configuration. Simulated results indicated a stable -10 dB return loss bandwidth of 88 MHz for both the conformal and rectangular groundplane configurations. Considering applied power levels restricted to 15 W, treatment volumes (T>410C) and depth from the skin surface were 11.32 cm3 and 27.94 mm, respectively, for the conformal groundplane configuration, and 2.79 cm3 and 19.72 mm, respectively, for the rectangular groundplane configuration. E-field back-radiation reduced by 85.06% for the conformal groundplane compared to the rectangular groundplane configuration. A prototype antenna with rectangular groundplane was fabricatd and experimentally evaluated. The groundplane was created by printing silver ink (Metalon JS-B25P) on polyethylene terephthalate (PET) film surface. Experiments revealed stable antenna performance for power levels up to 15.3 W. In conclusion, the proposed patch antenna with

  14. Implantable microwave radiators for clinical hyperthermia

    Science.gov (United States)

    Taylor, Leonard S.; Samaras, George M.; Cheung, Augustine Y.; Salcman, Michael; Scott, Ralph M.

    1982-01-01

    We describe the design of coaxial microwave radiators suitable for localized hyperthermia of neoplasia in the esophagus, brain, and other organs which are accessible through body orifices. These radiators can be implanted surgically and are small enough to be passed through such devices as nasogastric tubes and bronchoscopes. The radiators consist of combinations of cross-switched half-wavelength coaxial sections and/or needle antenna terminations. The performance of these radiators, as determined by thermogram recordings in tissue phantoms and the results of in vivo animal tests, is described.

  15. Magnetic hyperthermia in solid magnetic colloids

    Science.gov (United States)

    Zubarev, A. Yu.; Iskakova, L. Yu.; Abu-Bakr, A. F.

    2017-02-01

    We present results of theoretical study of magnetic hyperthermia in systems of single-domain ferromagnetic particles homogeneously distributed in a solid matrix. The heat effect is induced by linearly polarized alternating magnetic field. The effect of magnetic interaction between the particles as well as influence of orientation of the particles magnetic axes are in a focus of our consideration. Analysis shows that the interparticle interaction increases intensity of the heat production. The thermal effect in the systems with parallel orientation of the particles axes of easy magnetization is significantly higher than that in the case of random orientation of these axes.

  16. Radiofrequency hyperthermia-enhanced herpes simplex virus-thymidine kinase/ganciclovir direct intratumoral gene therapy of esophageal squamous cancers

    Science.gov (United States)

    Shi, Yaoping; Wang, Jianfeng; Bai, Zhibin; Li, Yonggang; Qiu, Longhua; Zhai, Bo; Zhang, Feng; Yang, Xiaoming

    2016-01-01

    Despite recent advances in surgical technique and treatment strategies for esophageal cancer (EC), to effectively manage the advanced (metastatic or disseminated) and recurrent EC still remain a great challenge. The aim of this study was to determine the feasibility of using intra-esophagus radiofrequency hyperthermia to enhance local HSV-TK/ganciclovir-mediated suicide gene therapy of an innovative animal models with orthotopic esophageal squamous cancers. Human esophageal squamous cancer (ESCa) cells were labeled with lentivirus/luciferase. ESCa cells and nude rats with orthotopic ESCa were divided into in four groups (n = 6/group) and treated with: i) combination therapy of MR imaging-heating-guidewire-mediated radiofrequency hyperthermia ((RFH, 42°C) plus local HSV-TK/GCV; ii) HSV-TK/GCV alone; iii) RFH alone; and (iv) phosphate-buffered saline (PBS). Bioluminescence optical imaging and transcutaneous ultrasound imaging were used to follow up bioluminescence signal and size changes of tumors among different groups over two weeks, which were correlated with subsequent histology. We demonstrated that combination therapy of RFH with gene therapy resulted in the lowest cell proliferation (37.5±8.6%, Pbioluminescence optical imaging photon signal intensity (0.81±0.17, P<0.01) of orthotopic esophageal cancers, compared with groups treated with gene therapy alone, RFH alone and PBS. Our study indicated that intra-esophageal radiofrequency hyperthermia could enhance the HSV-TK-mediated effect on esophageal squamous cancers. PMID:27725910

  17. Thyroid ultrasound

    OpenAIRE

    Vikas Chaudhary; Shahina Bano

    2013-01-01

    Thyroid ultrasonography has established itself as a popular and useful tool in the evaluation and management of thyroid disorders. Advanced ultrasound techniques in thyroid imaging have not only fascinated the radiologists but also attracted the surgeons and endocrinologists who are using these techniques in their daily clinical and operative practice. This review provides an overview of indications for ultrasound in various thyroid diseases, describes characteristic ultrasound findings in th...

  18. Ultrasound physics.

    Science.gov (United States)

    Shriki, Jesse

    2014-01-01

    Bedside ultrasound has become an important modality for obtaining critical information in the acute care of patients. It is important to understand the physics of ultrasound in order to perform and interpret images at the bedside. The physics of both continuous wave and pulsed wave sound underlies diagnostic ultrasound. The instrumentation, including transducers and image processing, is important in the acquisition of appropriate sonographic images. Understanding how these concepts interplay with each other enables practitioners to obtain the best possible images.

  19. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... medical test that helps physicians diagnose and treat medical conditions. There are three types of pelvic ultrasound: abdominal ( transabdominal ) vaginal ( transvaginal / endovaginal ) ...

  20. Carotid Ultrasound Imaging

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Ultrasound - Carotid Carotid ultrasound uses sound waves to produce ... limitations of Carotid Ultrasound Imaging? What is Carotid Ultrasound Imaging? Ultrasound is safe and painless, and produces ...

  1. General Ultrasound Imaging

    Science.gov (United States)

    ... Physician Resources Professions Site Index A-Z General Ultrasound Ultrasound imaging uses sound waves to produce pictures ... limitations of General Ultrasound Imaging? What is General Ultrasound Imaging? Ultrasound is safe and painless, and produces ...

  2. Venous Ultrasound (Extremities)

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Ultrasound - Venous (Extremities) Venous ultrasound uses sound waves to ... limitations of Venous Ultrasound Imaging? What is Venous Ultrasound Imaging? Ultrasound is safe and painless, and produces ...

  3. Hyperthermia enhances CTL cross-priming.

    Science.gov (United States)

    Shi, Hongzhen; Cao, Tinghua; Connolly, John E; Monnet, Laurence; Bennett, Lynda; Chapel, Sylvie; Bagnis, Claude; Mannoni, Patrice; Davoust, Jean; Palucka, A Karolina; Banchereau, Jacques

    2006-02-15

    Dendritic cells (DCs) loaded with killed allogeneic melanoma cells can cross-prime naive CD8(+) T cells to differentiate into melanoma-specific CTLs in 3-wk cultures. In this study we show that DCs loaded with killed melanoma cells that were heated to 42 degrees C before killing are more efficient in cross-priming of naive CD8(+) T cells than DCs loaded with unheated killed melanoma cells. The enhanced cross-priming was demonstrated by several parameters: 1) induction of naive CD8(+) T cell differentiation in 2-wk cultures, 2) enhanced killing of melanoma peptide-pulsed T2 cells, 3) enhanced killing of HLA-A*0201(+) melanoma cells in a standard 4-h chromium release assay, and 4) enhanced capacity to prevent tumor growth in vitro in a tumor regression assay. Two mechanisms might explain the hyperthermia-induced enhanced cross-priming. First, heat-treated melanoma cells expressed increased levels of 70-kDa heat shock protein (HSP70), and enhanced cross-priming could be reproduced by overexpression of HSP70 in melanoma cells transduced with HSP70 encoding lentiviral vector. Second, hyperthermia resulted in the increased transcription of several tumor Ag-associated Ags, including MAGE-B3, -B4, -A8, and -A10. Thus, heat treatment of tumor cells permits enhanced cross-priming, possibly via up-regulation of both HSPs and tumor Ag expression.

  4. Ultrasound Harmonic Classification of Microemboli

    NARCIS (Netherlands)

    P.C. Palanchon

    2004-01-01

    textabstractThe ultrasound community has experienced dramatic technical advances over the last decades, such as blood °ow measurements with elabo rate Doppler techniques or real time three-dimensional imaging with 2-D phased array transducers. This was partly ascribed to the advantages of ultraso

  5. Effect of hyperthermia on prognosis after acute ischemic stroke.

    Science.gov (United States)

    Saini, Monica; Saqqur, Maher; Kamruzzaman, Anmmd; Lees, Kennedy R; Shuaib, Ashfaq

    2009-09-01

    Experimental studies have shown that hyperthermia is a determinant of poor outcome after ischemic stroke. Clinical studies evaluating the effect of temperature on poststroke outcome have, however, been limited by small sample sizes. We sought to evaluate the effect of temperature and timing of hyperthermia on outcome after ischemic stroke. Data of 5305 patients in acute stroke trials from the Virtual International Stroke Trials Archive (VISTA) data set were analyzed. Data for temperatures at baseline, eighth, 24th, 48th, and 72nd hours, and seventh day were assessed in relation to outcome (poor versus good) based on the modified Rankin Scale at 3 months. Hyperthermia was defined as temperature >37.2 degrees C and poor outcome as 90-day modified Rankin Scale >2. Hazard ratios with 95% CIs were reported for hyperthermia in relation to the outcome. Logistic regression models, in relation to hyperthermia, were fitted for a set of preselected covariates at different time points to identify predictors/determinants of hyperthermia. The average age of patients was 68.0+/-11.9 years, 2380 (44.9%) were females, and 42.3% (2233) received thrombolysis using recombinant tissue plasminogen activator. After adjustment, hyperthermia was a statistically significant predictor of poor outcome. The hazard ratios (95% CI) for poor outcome in relation to hyperthermia at different time points were: baseline 1.2 (1.0 to 1.4), eighth hour 1.7 (1.2 to 2.2), 24th hour 1.5 (1.2 to 1.9), 48th hour 2.0 (1.5 to 2.6), 72nd hour 2.2 (1.7 to 2.9), and seventh day 2.7 (2.0 to 3.8). Gender, stroke severity (National Institutes of Health Stroke Scale score >16), white blood cell count, and antibiotic use were significantly associated with hyperthermia (Pacute ischemic stroke, is associated with a poor clinical outcome. The later the hyperthermia occurs within the first week, the worse the prognosis. Severity of stroke and inflammation are important determinants of hyperthermia after ischemic stroke

  6. Prostate Ultrasound

    Medline Plus

    Full Text Available ... Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z Ultrasound - Prostate ... imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions. Prostate ultrasound, also ...

  7. A Study on the Temperature Correlation of B-mode Ultrasonic Image Gray for Noninvasive Temperature Monitoring in Hyperthermia

    Institute of Scientific and Technical Information of China (English)

    WU Shui-cai; Ren Xin-ying; Bai Yan-ping; Zeng Yi

    2006-01-01

    This paper deals with the temperature correlation of gray scale of Bmode ultrasound image from heated tissue. In this study, many in-vitro fresh pig livers are heated in a temperature range from 28℃ to 45℃, from which a series of B-mode ultrasonic images of livers were obtained. The gray-value is evaluated from the ultrasound images respectively. A correlation of the mean gray value of the selected regions (12×12 pixels) in B-mode ultrasonic images of liver and its temperature was pointed out. And the experiment results agreed the evaluation well. And it is possible to monitor the tissue temperature changing in hyperthermia using this correlation.

  8. Recognizing and managing a malignant hyperthermia crisis: guidelines from the European Malignant Hyperthermia Group

    DEFF Research Database (Denmark)

    Glahn, K P E; Ellis, F.R.; Halsall, P.J.

    2010-01-01

    Survival from a malignant hyperthermia (MH) crisis is highly dependent on early recognition and prompt action. MH crises are very rare and an increasing use of total i.v. anaesthesia is likely to make it even rarer, leading to the potential risk of reduced awareness of MH. In addition, dantrolene....... The guidelines consist of two textboxes: Box 1 on recognizing MH and Box 2 on the treatment of an MH crisis...

  9. Theoretical design and evaluation of endoluminal ultrasound applicators for thermal therapy of pancreatic cancer under image guidance

    Science.gov (United States)

    Adams, Matthew; Scott, Serena; Salgaonkar, Vasant; Sommer, Graham; Diederich, Chris

    2017-03-01

    An image-guided endoluminal ultrasound applicator has been proposed for palliative and potential curative thermal therapy of pancreatic tumors. By considering a directional transducer array of planar, tubular, or curvilinear transducers, this design offers the potential for fast volumetric therapy and 3D spatial control over the energy deposition profile. Treatment of pancreatic tumor tissue would be performed in a minimally invasive fashion with the applicator positioned in the gastrointestinal (GI) lumen, and sparing of the luminal wall would be achieved with a water-cooled balloon surrounding the transducers. A theoretical evaluation of this design was performed by developing a 3D acoustic and bioheat transfer model, with temperature and thermal dose solutions obtained using a FEM solver (COMSOL Multiphysics). Parametric studies were performed on a generalized anatomical model of the pancreas, tumor, and adjacent luminal wall to determine preferred transducer configurations and frequencies for maximizing lesion volume and penetration while sparing the luminal wall. Patient-specific models of pancreatic tumors were generated from CT studies and used to assess the feasibility of performing thermal ablation or hyperthermia on small (˜2 cm diameter) pancreatic head tumors with an endoluminal applicator positioned within the duodenum. Simulation results indicate lower transducer operating frequencies (1-3 MHz) are necessary to mitigate damage to the luminal wall, and a tradeoff between penetration depth and lesion volume emerges as the degree of focusing increases. For patient-specific ablation modeling of tumors within 30 mm of the luminal wall, approximately 95% of the volume could be ablated within 15 min using a planar or lightly focused transducer configuration without duodenal damage. Over 90% of the volume could be elevated above 40°C at steady state for hyperthermia applications (e.g., radiation sensitization, drug delivery) using a tubular transducer. For

  10. Cranial Ultrasound/Head Ultrasound

    Science.gov (United States)

    ... sickle cell disease. It is also used to measure conditions affecting blood flow to and within the brain, such as: Stenosis : ... saved. Doppler ultrasound, a special application of ultrasound, measures ... represent the flow of blood through the blood vessels. top of ...

  11. Parameter optimization of temperature field in RF-capacitive hyperthermia

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    To realize a certain target temperature distribution in tumor tissues and avoid over-heating in normal tissues in radio frequency (RF)-capacitive hyperthermia, an objective function and some weight coefficients are introduced. Then using the 2-D finite element method, the electromagnetic and bio-heat transfer equations are solved, and using the genetic algorithm the heating configurations are recursively modified to minimize the objective function. Finally an optimum solution of the expected heating field distribution in hyperthermia is achieved. And with a human heterogeneous tissue model extracted from X-ray CT images, satisfactory optimization results are obtained in the simulations on a biplate RF-capacitive hyperthermia device. This optimization technique for controlling the body temperature field has shown scientific importance and practical values in the research of hyperthermia.

  12. Review: the role of hyperthermia in treating pancreatic tumors.

    Science.gov (United States)

    Roesch, Martin; Mueller-Huebenthal, Boris

    2015-03-01

    There is only marginal improvement in outcome of treating pancreatic cancer in the last two decades. Time to open up and have a fresh look at complementary adjuvant treatment options. Hyperthermia may be one such option. Hyperthermic intraperitoneal chemotherapy (HIPEC) predominantly as a intrasurgical procedure has already proved its justification. Non-invasive loco regional hyperthermia as complement to either chemo or radiation has not yet reached a comparable status of evidence. However the potential to eventually grow into such evidence is already clearly observable. This review presents the various methodologies available for hyperthermia, covers the initial clinical data that has been published and gives an outlook to what can be expected in the next 2-3 years to come. Hyperthermia has the potential to significantly prolong life expectancies and this while maintaining a satisfying quality of life!

  13. Gold nanoshell mediated hyperthermia enhances the efficacy of radiation therapy

    Science.gov (United States)

    Diagaradjane, Parmeswaran; Shetty, Anil; Wang, James; Elliot, Andrew; Schwartz, Jon; Shentu, Shujun; Park, Chul; Deorukhkar, Amit; Stafford, Jason; Cho, Sang; Tunnell, James; Hazle, John; Krishnan, Sunil

    2008-02-01

    Despite convincing evidence for hyperthermic radiosensitization, the invasive means of achieving and monitoring hyperthermia and the lack of good thermal dosimetry have hindered its use in routine clinical practice. A non-invasive method to generate and monitor hyperthermia would provide renewed enthusiasm for such treatments. Near-infrared absorbing gold nanoshells have been shown to accumulate preferentially in tumors via the enhanced permeability and retention effect and have been used for thermal ablation of tumors. We evaluated the use of these nanoshells to generate hyperthermia to evaluate the anti-tumor effects of combining gold nanoshell mediated hyperthermia with radiotherapy. Laser settings were optimized for hyperthermia in a mouse xenograft model to achieve a temperature rise of 40- 41°C in the tumor periphery and 37-38°C (ΔT=4-5°C) deeper within the tumors. The ΔT measurements were verified using both thermocouple and magnetic resonance thermal imaging (MRTI) temperature measurements. Tumor re-growth delay was estimated by measuring tumor size after treatment with radiation (10Gy single dose), hyperthermia (15 minutes at 40°C), and hyperthermia followed by radiation and control. Significant difference (p time was observed between the radiation group (13 days) and combination treatment group (25 days). The immunofluorescence staining for the hypoxic, proliferating cells and the vasculature corroborated our hypothesis that the radiosensitization is in part mediated by increased initial perfusion and subsequent collapse of vasculature that leads to acute inflammatory response in the tumor. The increased vascular perfusion immediately after gold nanoshell mediated hyperthermia is confirmed by dynamic contrast enhanced magnetic resonance imaging.

  14. Drug-induced hyperthermic syndromes: part I. Hyperthermia in overdose.

    Science.gov (United States)

    Hayes, Bryan D; Martinez, Joseph P; Barrueto, Fermin

    2013-11-01

    Drugs and natural compounds that affect the thermoregulatory system can induce or contribute to hyperthermia when used in excess. Hyperthermia associated with drug overdose is dangerous and potentially lethal. This article reviews the body's process of maintaining thermodynamic equilibrium, and describes the mechanisms by which it is influenced by sympathomimetic and anticholinergic drugs, salicylates, and thyroid replacement medications. Appropriate treatment strategies such as cooling and the administration of counteractive medications are discussed. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Analysis of temperature regimes of hyperthermia of cancer of bronchi

    Science.gov (United States)

    Manak, I.; Lisenkova, A.; Nikolaeva, A.

    2006-02-01

    The model of laser hyperthermia of cancer of glandular epithelium of bronchi is offered. The conditions for achievement of destruction of cancer are determined. Simulation of processes of interaction of the continuous and pulse laser radiation with a multi-layer biotissue taking into account distribution of energy in laser radiation beam, blood stream, heat transfer, processes of absorption and dispersion are realized. Peculiar properties of hyperthermia of cancer of bronch at laser action are considered.

  16. Interstitial hyperthermia in combination with brachytherapy.

    Science.gov (United States)

    Coughlin, C T; Douple, E B; Strohbehn, J W; Eaton, W L; Trembly, B S; Wong, T Z

    1983-07-01

    Flexible coaxial cables were modified to serve as microwave antennas operating at a frequency of 915 MHz. These antennas were inserted into nylon afterloading tubes that had been implanted in tumors using conventional interstitial implantation techniques for iridium-192 seed brachytherapy. The tumor volume was heated to 42-45 degrees C within 15 minutes and heating was continued for a total of 1 hour per treatment. Immediately following a conventional brachytherapy dose and removal of the iridium seeds the tumors were heated again in a second treatment. This interstitial technique for delivering local hyperthermia should be compatible with most brachytherapy methods. The technique has proved so far to be practical and without complications. Temperature distributions obtained in tissue phantoms and a patient are described.

  17. Magnetic hyperthermia of laponite based ferrofluid

    Science.gov (United States)

    Diamantopoulos, G.; Basina, G.; Tzitzios, V.; Karakosta, E.; Fardis, M.; Jaglicic, Z.; Lazaridis, N.; Papavassiliou, G.

    2013-06-01

    Magnetic Hyperthermia experiments have been performed on different concentrations of magnetic iron oxide nanoparticles immobilized on nano-clay disks. The specific absorption rate (SAR) was measured in AC field amplitudes H0 from 7 to 30 kA/m. At low field amplitudes, SAR followed the usual H02 law whereas for higher field amplitudes a linear dependence was found for the higher concentrations. Measurements at three different field amplitudes were also performed for a wide range of iron oxide concentrations in order to determine the effect of the Brownian relaxation time to SAR. A field dependent maximum was observed and for fields up to 20 kA/m the power dissipation losses were well explained according to theoretical predictions.

  18. Malignant Hyperthermia and Idiopathic HyperCKemia

    Directory of Open Access Journals (Sweden)

    Pashtoon Murtaza Kasi

    2011-01-01

    Full Text Available Malignant hyperthermia (MH is a rare but life-threatening condition that is more frequently encountered and discussed within the anesthesia literature. Here we through a case specifically discuss the susceptibility of individuals and/or families with asymptomatic unexplained elevations of creatine kinase (CK, also frequently referred to as hyperCKemia or idiopathic hyperCKemia (IHCK in recent reports. The clinical implications would be to underscore the importance of this as a susceptibility to developing MH and highlight the importance of genetic susceptibility testing in such cases. Anesthesiologists and critical care intensivists as well as primary care physicians should keep this in mind when seeing patients with asymptomatic hyperCKemia and potentially inform them about the possibility of developing MH if exposed to triggering agents. Genetic susceptibility testing should be considered if available and family members should also receive nontriggering agents when undergoing anesthesia and wear Medic Alert tags.

  19. [Clinical features of malignant hyperthermia crisis].

    Science.gov (United States)

    Cornet, C; Moeller, R; Laxenaire, M C

    1989-01-01

    Malignant hyperthermia (MH) is a pharmacogenetic disorder. It is classically described as a hypermetabolic state triggered by halogenated anaesthetics and/or depolarizing muscle relaxants. In fact, since Denborough and Lovel's case, it has been shown that MH has a great number of clinical forms. The overwhelming picture of muscular hypercatabolism with fulminating hyperthermia and generalized rigidity is becoming rare. A better knowledge of the first symptoms explains in part the better prognosis: masseter spasm after suxamethonium, an increase in expired CO2 concentration, unexplained tachycardia, ventricular arrhythmias. The use of dantrolene reduced the mortality of MH. The different types of clinical manifestations are due to genetic differences, the concentration of the anaesthetic agent, and the length of time of exposure to the drug. The severity of the episode is linked to environmental factors such as stress, physical exercise, ambient temperature, concomitant use of other drugs. Masseter spasm after suxamethonium is specific for MH, but not pathognomonic. It occurs in 1% of cases in children when using halothane with suxamethonium. However, in those patients who displayed such a spasm, more than 50% had a positive contracture test. Masseter spasm is often associated with severe rhabdomyolysis in patients with muscle dystrophy, especially Duchenne's dystrophy. In the latter case, major cardiac problems may occur at the time of anaesthetic induction. Even if there are no other signs of MH, all patients who have had a masseter spasm must be considered as open to doubt, and should be further explored. MH is often difficult to diagnose in medium severity types.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... uterine cavity . Three-dimensional (3-D) ultrasound permits evaluation of the uterus and ovaries in planes that ... a special study usually done to provide detailed evaluation of the prostate gland, involves inserting a specialized ...

  1. Prostate Ultrasound

    Medline Plus

    Full Text Available ... sends out high-frequency sound waves (that the human ear cannot hear) into the body and then ... ultrasound , there are no known harmful effects on humans. top of page What are the limitations of ...

  2. Prostate Ultrasound

    Medline Plus

    Full Text Available ... areas of the body while other areas, especially air-filled lungs, are poorly suited for ultrasound. For ... appearance, size or contour of organs, tissues, and vessels or to detect abnormal masses, such as tumors. ...

  3. Prostate Ultrasound

    Medline Plus

    Full Text Available ... the prostate is enlarged, also known as benign prostatic hyperplasia (BPH) , with measurements acquired as needed for any ... size with caption Related Articles and Media Benign Prostatic Hyperplasia (BPH) Prostate Cancer Ultrasound- and MRI-Guided Prostate ...

  4. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... ovaries. Transvaginal ultrasound also evaluates the myometrium (muscular walls of the uterus). Sonohysterography allows for a more ... needle insertion) is usually minimal because the rectal wall is relatively insensitive to the pain in the ...

  5. Prostate Ultrasound

    Medline Plus

    Full Text Available ... object is solid or filled with fluid). In medicine, ultrasound is used to detect changes in appearance, ... of the pelvis may be obtained as an alternative imaging test, because it may be obtained with ...

  6. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... is safe, noninvasive and does not use ionizing radiation. This procedure requires little to no special preparation. ... an image. Ultrasound examinations do not use ionizing radiation (as used in x-rays ), thus there is ...

  7. Prostate Ultrasound

    Medline Plus

    Full Text Available ... is safe, noninvasive, and does not use ionizing radiation. This procedure requires little to no special preparation. ... an image. Ultrasound examinations do not use ionizing radiation (as used in x-rays ), thus there is ...

  8. Ultrasound -- Pelvis

    Science.gov (United States)

    ... help diagnose symptoms experienced by women such as: pelvic pain abnormal bleeding other menstrual problems and help identify: ... children, pelvic ultrasound can help evaluate: pelvic masses pelvic pain ambiguous genitalia and anomalies of pelvic organs early ...

  9. Prostate Ultrasound

    Medline Plus

    Full Text Available ... the returning echoes from the tissues in the body. The principles are similar to sonar used by boats and submarines. The ultrasound image is immediately visible on a video display screen ...

  10. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... the returning echoes from the tissues in the body. The principles are similar to sonar used by boats and submarines. The ultrasound image is immediately visible on a video display screen ...

  11. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... to-use and less expensive than other imaging methods. Ultrasound imaging is extremely safe and does not ... barium exams, CT scanning , and MRI are the methods of choice in such a setting. Large patients ...

  12. Prostate Ultrasound

    Medline Plus

    Full Text Available ... collects the sounds that bounce back and a computer then uses those sound waves to create an ... Ultrasound scanners consist of a console containing a computer and electronics, a video display screen and a ...

  13. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... collects the sounds that bounce back and a computer then uses those sound waves to create an ... Ultrasound scanners consist of a console containing a computer and electronics, a video display screen and a ...

  14. Prostate Ultrasound

    Medline Plus

    Full Text Available ... patient consultation. View full size with caption Related Articles and Media Benign Prostatic Hyperplasia (BPH) (Enlargement of the Prostate) Prostate Cancer Ultrasound- and MRI-Guided Prostate Biopsy Images related ...

  15. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... ovarian cysts and uterine fibroids ovarian or uterine cancers A transvaginal ultrasound is usually performed to view ... detect: uterine anomalies uterine scars endometrial polyps fibroids cancer, especially in patients with abnormal uterine bleeding Some ...

  16. Prostate Ultrasound

    Medline Plus

    Full Text Available ... use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the probe through the gel into the body. The transducer collects the sounds ...

  17. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the probe through the gel into the body. The transducer collects the sounds ...

  18. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... ovarian cysts and uterine fibroids ovarian or uterine cancers A transvaginal ultrasound is usually performed to view ... detect: uterine anomalies uterine scars endometrial polyps fibroids cancer, especially in patients with abnormal uterine bleeding Some ...

  19. Prostate Ultrasound

    Medline Plus

    Full Text Available ... uses sound waves to produce pictures of a man’s prostate gland and to help diagnose symptoms such ... also called transrectal ultrasound, provides images of a man's prostate gland and surrounding tissue. The exam typically ...

  20. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... sends out high-frequency sound waves (that the human ear cannot hear) into the body and then ... ultrasound , there are no known harmful effects on humans. top of page What are the limitations of ...

  1. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... legs, neck and/or brain (in infants and children) or within various body organs such as the ... tumors other disorders of the urinary bladder In children, pelvic ultrasound can help evaluate: pelvic masses pelvic ...

  2. Prostate Ultrasound

    Medline Plus

    Full Text Available ... requested the exam. Usually, the referring physician or health care provider will share the results with you. ... well on x-ray images. Ultrasound causes no health problems and may be repeated as often as ...

  3. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... ultrasound exams are also used to monitor the health and development of an embryo or fetus during ... requested the exam. Usually, the referring physician or health care provider will share the results with you. ...

  4. Prostate Ultrasound

    Medline Plus

    Full Text Available ... physician during a routine physical exam or prostate cancer screening exam. an elevated blood test result. difficulty ... vessels or to detect abnormal masses, such as tumors. In an ultrasound examination, a transducer both sends ...

  5. Prostate Ultrasound

    Medline Plus

    Full Text Available ... of page How is the procedure performed? In men, the prostate gland is located directly in front ... What are the limitations of Prostate Ultrasound Imaging? Men who have had the tail end of their ...

  6. Prostate Ultrasound

    Science.gov (United States)

    ... prostate. help diagnose the cause of a man's infertility. A transrectal ultrasound of the prostate gland is ... the transducer is pressed against the skin, it directs small pulses of inaudible, high-frequency sound waves ...

  7. Prostate Ultrasound

    Medline Plus

    Full Text Available ... prostate. help diagnose the cause of a man's infertility. A transrectal ultrasound of the prostate gland is ... the transducer is pressed against the skin, it directs small pulses of inaudible, high-frequency sound waves ...

  8. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... areas of the body while other areas, especially air-filled lungs, are poorly suited for ultrasound. For ... make secure contact with the body and eliminate air pockets between the transducer and the skin that ...

  9. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... the object is as well as the object's size, shape and consistency (whether the object is solid ... ultrasound is used to detect changes in appearance, size or contour of organs, tissues, and vessels or ...

  10. Prostate Ultrasound

    Medline Plus

    Full Text Available ... an ultrasound transducer – a plastic cylinder about the size of a finger – is inserted short distance into ... the object is as well as the object's size, shape and consistency (whether the object is solid ...

  11. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... are reviewed. top of page What will I experience during and after the procedure? For a transabdominal ... ultrasound , there are no known harmful effects on humans. top of page What are the limitations of ...

  12. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... to-use and less expensive than other imaging methods. Ultrasound imaging is extremely safe and does not ... barium exams, CT scanning , and MRI are the methods of choice in such a setting. Large patients ...

  13. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... ultrasound exams are also used to monitor the health and development of an embryo or fetus during ... requested the exam. Usually, the referring physician or health care provider will share the results with you. ...

  14. Prostate Ultrasound

    Medline Plus

    Full Text Available ... difficulty urinating or an elevated blood test result. It’s also used to investigate a nodule found during ... difficulty urinating. Because ultrasound provides real-time images, it also can be used to guide procedures such ...

  15. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... the examination process. To ensure a smooth experience, it often helps to explain the procedure to the ... on the amplitude (loudness), frequency (pitch) and time it takes for the ultrasound signal to return from ...

  16. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... collects the sounds that bounce back and a computer then uses those sound waves to create an ... Ultrasound scanners consist of a console containing a computer and electronics, a video display screen and a ...

  17. Prostate Ultrasound

    Medline Plus

    Full Text Available ... collects the sounds that bounce back and a computer then uses those sound waves to create an ... Ultrasound scanners consist of a console containing a computer and electronics, a video display screen and a ...

  18. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... to distract the child and make the time pass quickly. The ultrasound exam room may have a ... tissue attenuate (weaken) the sound waves as they pass deeper into the body. top of page Additional ...

  19. Prostate Ultrasound

    Medline Plus

    Full Text Available ... examinations do not use ionizing radiation (as used in x-rays ), thus there is no radiation exposure to the patient. Because ultrasound images are captured in real-time, they can show the structure and ...

  20. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... uterine cavity . Three-dimensional (3-D) ultrasound permits evaluation of the uterus and ovaries in planes that ... a special study usually done to provide detailed evaluation of the prostate gland, involves inserting a specialized ...

  1. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... are also used to monitor the health and development of an embryo or fetus during pregnancy. See ... I prepare? You should wear comfortable, loose-fitting clothing for your ultrasound exam. You may need to ...

  2. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... also used to guide procedures such as needle biopsies , in which needles are used to extract a ... gynecologic examination. For a transrectal exam: If no biopsy is required, transrectal ultrasound of the prostate is ...

  3. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... ultrasound exam room may have a television. Feel free to ask for your child's favorite channel. top ... be turned to either side to improve the quality of the images. After you are positioned on ...

  4. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ... small amount of gel is put on the skin to allow the sound waves to best travel ...

  5. Prostate Ultrasound

    Medline Plus

    Full Text Available ... probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ... small amount of gel is put on the skin to allow the sound waves to best travel ...

  6. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... extract a sample of cells from organs for laboratory testing. Doppler ultrasound images can help the physician ... the returning sound waves), as well as the type of body structure and composition of body tissue ...

  7. Hip Ultrasound

    Science.gov (United States)

    ... be used in infants to check for developmental dysplasia of the hip. Ultrasound is safe, noninvasive, and does not use ... be used to check the hips for developmental dysplasia of the hip (DDH), which in infants can range from a ...

  8. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... called color Doppler ultrasonography, is a special ultrasound technique that allows the physician to see and evaluate ... evaluation with additional views or a special imaging technique. A follow-up examination may also be necessary ...

  9. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... are obtained from different orientations to get the best views of the uterus and ovaries. Transvaginal ultrasound ... over time. Follow-up examinations are sometimes the best way to see if treatment is working or ...

  10. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ... the transducer (the device placed on the patient's skin to send and receive the returning sound waves), ...

  11. Prostate Ultrasound

    Medline Plus

    Full Text Available ... probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ... the transducer (the device placed on the patient's skin to send and receive the returning sound waves), ...

  12. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the ... probe through the gel into the body. The transducer collects the sounds that bounce back and a ...

  13. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... insertion. top of page How does the procedure work? Ultrasound imaging is based on the same principles ... requested the exam. Usually, the referring physician or health care provider will share the results with you. ...

  14. Prostate Ultrasound

    Medline Plus

    Full Text Available ... gel. top of page How does the procedure work? Ultrasound imaging is based on the same principles ... requested the exam. Usually, the referring physician or health care provider will share the results with you. ...

  15. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Leave jewelry at home and wear loose, comfortable clothing. You may be asked to wear a gown. ... I prepare? You should wear comfortable, loose-fitting clothing for your ultrasound exam. You may need to ...

  16. Prostate Ultrasound

    Medline Plus

    Full Text Available ... Leave jewelry at home and wear loose, comfortable clothing. You may be asked to wear a gown ... I prepare? You should wear comfortable, loose-fitting clothing for your ultrasound exam. You may need to ...

  17. Prostate Ultrasound

    Medline Plus

    Full Text Available ... gel. top of page How does the procedure work? Ultrasound imaging is based on the same principles ... these links. About Us | Contact Us | FAQ | Privacy | Terms of Use | Links | Site Map Copyright © 2017 Radiological ...

  18. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... insertion. top of page How does the procedure work? Ultrasound imaging is based on the same principles ... these links. About Us | Contact Us | FAQ | Privacy | Terms of Use | Links | Site Map Copyright © 2017 Radiological ...

  19. Prostate Ultrasound

    Medline Plus

    Full Text Available ... physician during a routine physical exam or prostate cancer screening exam. an elevated blood test result. difficulty urinating. Because ultrasound provides real-time images, it also can be used to guide ...

  20. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... in the abdomen, arms, legs, neck and/or brain (in infants and children) or within various body organs ... or uterine cancers A transvaginal ultrasound is usually performed to view ...

  1. Prostate Ultrasound

    Medline Plus

    Full Text Available ... uses sound waves to produce pictures of a man’s prostate gland and to help diagnose symptoms such ... also called transrectal ultrasound, provides images of a man's prostate gland and surrounding tissue. The exam typically ...

  2. Prostate Ultrasound

    Medline Plus

    Full Text Available ... a nodule found during a rectal exam, detect abnormalities, and determine whether the gland is enlarged. Ultrasound ... follow-up exam is done because a potential abnormality needs further evaluation with additional views or a ...

  3. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... uterine cavity . Three-dimensional (3-D) ultrasound permits evaluation of the uterus and ovaries in planes that ... is done because a potential abnormality needs further evaluation with additional views or a special imaging technique. ...

  4. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... internal organs, as well as blood flowing through blood vessels. Ultrasound imaging is a noninvasive medical test that ... as clots) narrowing of vessels tumors and congenital vascular malformations reduced or absent blood flow to various ...

  5. Prostate Ultrasound

    Medline Plus

    Full Text Available ... information you were looking for? Yes No Please type your comment or suggestion into the following text box: Comment: E-mail: ... Images related to Ultrasound - Prostate Sponsored by Please ...

  6. Prostate Ultrasound

    Medline Plus

    Full Text Available ... prostate is enlarged, also known as benign prostatic hyperplasia (BPH) , with measurements acquired as needed for any ... with caption Related Articles and Media Benign Prostatic Hyperplasia (BPH) Prostate Cancer Ultrasound- and MRI-Guided Prostate ...

  7. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... frequently used to evaluate the reproductive and urinary systems. Ultrasound is safe, noninvasive and does not use ... and evaluate a variety of urinary and reproductive system disorders in both sexes without x-ray exposure. ...

  8. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... prior to the exam. Bringing books, small toys, music or games can help to distract the child ... modality for the diagnosis and monitoring of pregnant women and their unborn babies. Ultrasound provides real-time ...

  9. Ultrasound -- Pelvis

    Science.gov (United States)

    ... prior to the exam. Bringing books, small toys, music or games can help to distract the child ... modality for the diagnosis and monitoring of pregnant women and their unborn babies. Ultrasound provides real-time ...

  10. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... of urinary and reproductive system disorders in both sexes without x-ray exposure. Risks For standard diagnostic ... have special pediatric considerations. The teddy bear denotes child-specific content. Related Articles and Media Sonohysterography Ultrasound - ...

  11. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... a sample of cells from organs for laboratory testing. Doppler ultrasound images can help the physician to ... computer or television monitor. The image is created based on the amplitude (loudness), frequency (pitch) and time ...

  12. Prostate Ultrasound

    Medline Plus

    Full Text Available ... difficulty urinating or an elevated blood test result. It’s also used to investigate a nodule found during ... difficulty urinating. Because ultrasound provides real-time images, it also can be used to guide procedures such ...

  13. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... the examination process. To ensure a smooth experience, it often helps to explain the procedure to the ... on the amplitude (loudness), frequency (pitch) and time it takes for the ultrasound signal to return from ...

  14. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... patient consultation. View full size with caption Pediatric Content Some imaging tests and treatments have special pediatric considerations. The teddy bear denotes child-specific content. Related Articles and Media Sonohysterography Ultrasound - Abdomen Children's ( ...

  15. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... the procedure. Ultrasound examinations are very sensitive to motion, and an active or crying child can prolong ... computer, which in turn creates a real-time picture on the monitor. One or more frames of ...

  16. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... extract a sample of cells from organs for laboratory testing. Doppler ultrasound images can help the physician ... The transducer sends out inaudible, high—frequency sound waves into the body and then listens for the ...

  17. Trauma Ultrasound.

    Science.gov (United States)

    Wongwaisayawan, Sirote; Suwannanon, Ruedeekorn; Prachanukool, Thidathit; Sricharoen, Pungkava; Saksobhavivat, Nitima; Kaewlai, Rathachai

    2015-10-01

    Ultrasound plays a pivotal role in the evaluation of acute trauma patients through the use of multi-site scanning encompassing abdominal, cardiothoracic, vascular and skeletal scans. In a high-speed polytrauma setting, because exsanguinations are the primary cause of trauma morbidity and mortality, ultrasound is used for quick and accurate detection of hemorrhages in the pericardial, pleural, and peritoneal cavities during the primary Advanced Trauma Life Support (ATLS) survey. Volume status can be assessed non-invasively with ultrasound of the inferior vena cava (IVC), which is a useful tool in the initial phase and follow-up evaluations. Pneumothorax can also be quickly detected with ultrasound. During the secondary survey and in patients sustaining low-speed or localized trauma, ultrasound can be used to help detect abdominal organ injuries. This is particularly helpful in patients in whom hemoperitoneum is not identified on an initial scan because findings of organ injuries will expedite the next test, often computed tomography (CT). Moreover, ultrasound can assist in detection of fractures easily obscured on radiography, such as rib and sternal fractures.

  18. Evaluation of Cryosurgery-Hyperthermia Treatment Utilizing Peltier Thermoelectric Effect for Living Tissue

    Science.gov (United States)

    Takahashi, Daishi; Sone, Kazuya; Fukumoto, Ichiro

    Cryosurgery and hyperthermia treatment are used as a treatment method for malignant tumors. Since liquid nitrogen is used as the cryogens, it is difficult to control the freezing rate and thawing rate. In hyperthermia, there are problems of thermotolerance acquisition by heat shock protein (HSP) and only a few studies regarding hyperthermia with cryosurgery have been investigated. The aims of this study are to produce cryosurgery-hyperthermia system utilizing Stirling Cooler and Peltier device and evaluate hyperthermia after cryosurgery by comparing cryosurgery and hyperthermia on the mouse liver. Normal living liver tissues of mice are divided into 3 groups (cryosurgery and cryosurgery-hyperthermia, hyperthermia), then performed cryosurgery, hyperthermia and hyperthermia followed cryosurgery, applying a 1 cycle rapid freezing and slow thawing method for cryosurgery. The temperatures of the tissue surface and probe were measured during operation, the liver was stained by Hematoxylin-Eosin (HE) after operation and observed under an optical microscope. The results showed measured temperature of rapid freezing and slow thawing. HE stained tissue showed stasis, pyknosis, nucleus disappearance and decreasing stainability in cryosurgery and cryosurgery-hyperthermia group, stasis, pyknosis and degreasing stainability in hyperthermia group. The results suggested cryosurgery-hyperthermia was the most effective to destroy the tissue.

  19. Analysis of ultrasound fields in cell culture wells for in vitro ultrasound therapy experiments.

    Science.gov (United States)

    Hensel, Karin; Mienkina, Martin P; Schmitz, Georg

    2011-12-01

    Ultrasound is an established therapy method for bone fracture healing, hyperthermia and the ablation of solid tumors. In this new emerging field, ultrasound is further used for microbubble-enhanced drug delivery, gene therapy, sonoporation and thrombolysis. To study selected therapeutic effects in defined experimental conditions, in vitro setups are designed for cell and tissue therapy. However, in vitro studies often lack reproducibility and the successful transfer to other experimental conditions. This is partly because of the uncertainty of the experimental conditions in vitro. In this paper, the ultrasound wave propagation in the most common in vitro ultrasound therapy setups for cell culture wells is analyzed in simulations and verified by hydrophone measurements. The acoustic parameters of the materials used for culture plates and growth media are determined. The appearance and origin of standing waves and ring interference patterns caused by reflections at interfaces is revealed in simulations and measurements. This causes a local maximal pressure amplitude increase by up to the factor of 5. Minor variations of quantities (e.g., growth medium volume variation of 2.56%) increase or decrease the peak rarefaction pressure at a cell layer by the factor of 2. These pressure variations can affect cell therapy results to a large extent. A sealed cell culture well submersed in a water bath provides the best reproducibility and therefore promises transferable therapy results. Copyright © 2011 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  20. Electric-field distribution near rectangular microstrip radiators for hyperthermia heating: theory versus experiment in water.

    Science.gov (United States)

    Underwood, H R; Peterson, A F; Magin, R L

    1992-02-01

    A rectangular microstrip antenna radiator is investigated for its near-zone radiation characteristics in water. Calculations of a cavity model theory are compared with the electric-field measurements of a miniature nonperturbing diode-dipole E-field probe whose 3 mm tip was positioned by an automatic three-axis scanning system. These comparisons have implications for the use of microstrip antennas in a multielement microwave hyperthermia applicator. Half-wavelength rectangular microstrip patches were designed to radiate in water at 915 MHz. Both low (epsilon r = 10) and high (epsilon r = 85) dielectric constant substrates were tested. Normal and tangential components of the near-zone radiated electric field were discriminated by appropriate orientation of the E-field probe. Low normal to transverse electric-field ratios at 3.0 cm depth indicate that the radiators may be useful for hyperthermia heating with an intervening water bolus. Electric-field pattern addition from a three-element linear array of these elements in water indicates that phase and amplitude adjustment can achieve some limited control over the distribution of radiated power.

  1. Flow patterns and heat convection in a rectangular water bolus for use in superficial hyperthermia.

    Science.gov (United States)

    Birkelund, Yngve; Jacobsen, Svein; Arunachalam, Kavitha; Maccarini, Paolo; Stauffer, Paul R

    2009-07-07

    This paper investigates both numerically and experimentally the spatio-temporal effects of water flow in a custom-made water bolus used for superficial hyperthermia generated by a 915-MHz, 4 x 3 microwave applicator array. Similar hyperthermia models referenced in the literature use a constant water temperature and uniform heat flux to describe conduction and convection energy exchange within the heating apparatus available to cool the tissue surface. The results presented in this paper show that the spatially varying flow pattern and rate are vital factors for the overall heat control applicability of the 5 mm thick bolus under study. Regions with low flow rates and low heat convection clearly put restrictions on the maximum microwave energy possible within the limits of skin temperature rise under the bolus. Our analysis is illustrated by experimental flow front studies using a contrast liquid set-up monitored by high definition video and complemented by numerical analysis of liquid flow and heat exchange within the rectangular water bolus loaded by malignant tissue. Important factors for the improvement of future bolus designs are also discussed in terms of diameter and configuration of the water input and output tubing network.

  2. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... are the limitations of General Ultrasound Imaging? What is General Ultrasound Imaging? Ultrasound is safe and painless, ... through the blood vessels. top of page How is the procedure performed? For most ultrasound exams, you ...

  3. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... A-Z General Ultrasound Ultrasound imaging uses sound waves to produce pictures of the inside of the ... of the inside of the body using sound waves. Ultrasound imaging, also called ultrasound scanning or sonography , ...

  4. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... of an ultrasound examination. Doppler ultrasound , also called color Doppler ultrasonography, is a special ultrasound technique that ... kidneys. There are three types of Doppler ultrasound: Color Doppler uses a computer to convert Doppler measurements ...

  5. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... Index A-Z General Ultrasound Ultrasound imaging uses sound waves to produce pictures of the inside of ... pictures of the inside of the body using sound waves. Ultrasound imaging, also called ultrasound scanning or ...

  6. FDTD analysis of a noninvasive hyperthermia system for brain tumors

    Directory of Open Access Journals (Sweden)

    Yacoob Sulafa M

    2012-08-01

    Full Text Available Abstract Background Hyperthermia is considered one of the new therapeutic modalities for cancer treatment and is based on the difference in thermal sensitivity between healthy tissues and tumors. During hyperthermia treatment, the temperature of the tumor is raised to 40–45°C for a definite period resulting in the destruction of cancer cells. This paper investigates design, modeling and simulation of a new non-invasive hyperthermia applicator system capable of effectively heating deep seated as well as superficial brain tumors using inexpensive, simple, and easy to fabricate components without harming surrounding healthy brain tissues. Methods The proposed hyperthermia applicator system is composed of an air filled partial half ellipsoidal chamber, a patch antenna, and a head model with an embedded tumor at an arbitrary location. The irradiating antenna is placed at one of the foci of the hyperthermia chamber while the center of the brain tumor is placed at the other focus. The finite difference time domain (FDTD method is used to compute both the SAR patterns and the temperature distribution in three different head models due to two different patch antennas at a frequency of 915 MHz. Results The obtained results suggest that by using the proposed noninvasive hyperthermia system it is feasible to achieve sufficient and focused energy deposition and temperature rise to therapeutic values in deep seated as well as superficial brain tumors without harming surrounding healthy tissue. Conclusions The proposed noninvasive hyperthermia system proved suitable for raising the temperature in tumors embedded in the brain to therapeutic values by carefully selecting the systems components. The operator of the system only needs to place the center of the brain tumor at a pre-specified location and excite the antenna at a single frequency of 915 MHz. Our study may provide a basis for a clinical applicator prototype capable of heating brain tumors.

  7. Acute volume expansion attenuates hyperthermia-induced reductions in cerebral perfusion during simulated hemorrhage

    DEFF Research Database (Denmark)

    Schlader, Zachary J; Seifert, Thomas; Wilson, Thad E

    2013-01-01

    Hyperthermia reduces the capacity to withstand a simulated hemorrhagic challenge, but volume loading preserves this capacity. This study tested the hypotheses that acute volume expansion during hyperthermia increases cerebral perfusion and attenuates reductions in cerebral perfusion during a simu...

  8. Radiofrequency fields in hyperthermia and MRI : Exploiting their similarities for mutual benefit

    NARCIS (Netherlands)

    Berg, C.A.T. van den

    2006-01-01

    Hyperthermia treatment planning aims to calculate and optimize the thermal dose of hyperthermia treatments for individual patient cases. For this purpose extensive electromagnetic and thermal modelling techniques have been successfully developed over the last years. Unfortunately, means to monitor a

  9. Therapeutic ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Crum, Lawrence A [Center for Industrial and Medical Ultrasound, 1013 NE 40th Street, University of Washington, Seattle, WA 98105 (United States)

    2004-01-01

    The use of ultrasound in medicine is now quite commonplace, especially with the recent introduction of small, portable and relatively inexpensive, hand-held diagnostic imaging devices. Moreover, ultrasound has expanded beyond the imaging realm, with methods and applications extending to novel therapeutic and surgical uses. These applications broadly include: tissue ablation, acoustocautery, lipoplasty, site-specific and ultrasound mediated drug activity, extracorporeal lithotripsy, and the enhancement of natural physiological functions such as wound healing and tissue regeneration. A particularly attractive aspect of this technology is that diagnostic and therapeutic systems can be combined to produce totally non-invasive, imageguided therapy. This general lecture will review a number of these exciting new applications of ultrasound and address some of the basic scientific questions and future challenges in developing these methods and technologies for general use in our society. We shall particularly emphasize the use of High Intensity Focused Ultrasound (HIFU) in the treatment of benign and malignant tumors as well as the introduction of acoustic hemostasis, especially in organs which are difficult to treat using conventional medical and surgical techniques. (amum lecture)

  10. Ferrite-based magnetic nanofluids used in hyperthermia applications

    Energy Technology Data Exchange (ETDEWEB)

    Sharifi, Ibrahim [Electroceramics Group, Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz (Iran, Islamic Republic of); Shokrollahi, H., E-mail: Shokrollahi@sutech.ac.ir [Electroceramics Group, Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz (Iran, Islamic Republic of); Amiri, S. [Electroceramics Group, Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz (Iran, Islamic Republic of)

    2012-03-15

    Magnetic ferrofluids (magnetic nanofluids) have received special attention due to their various biomedical applications such as drug delivery and hyperthermia treatment for cancer. The biological applications impose some special requirements. For example, the well-known iron oxide ferrofluids become undesirable because their iron atoms are poorly distinguishable from those of hemoglobin. A conceivable solution is to use mixed-ferrites (MFe{sub 2}O{sub 4} where M=Co, Mn, Ni, Zn) to have a range of magnetic properties. These ferrites have attracted special attention because they save time, and because of their low inherent toxicity, ease of synthesis, physical and chemical stabilities and suitable magnetic properties. Based on the importance of ferrite particles in ferrofluids for hyperthermia treatment, this paper gives a summary on the physical concepts of ferrofluids, hyperthermia principal, magnetic properties and synthesis methods of nanosized ferrites. - Highlights: Black-Right-Pointing-Pointer This paper gives a suitable summary and literature survey on the ferrofluids. Black-Right-Pointing-Pointer Ferrofluids have an important role in biomedicine and our life. Black-Right-Pointing-Pointer Ferrofluids include a magnetic core, surfactant and a liquid medium. Black-Right-Pointing-Pointer Nano-ferrites' cores are good candidates for hyperthermia purposes. Black-Right-Pointing-Pointer They present a suitable heat generation for hyperthermia.

  11. Hyperthermia versus Oncothermia: Cellular Effects in Complementary Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Gabriella Hegyi

    2013-01-01

    Full Text Available Hyperthermia means overheating of the living object completely or partly. Hyperthermia, the procedure of raising the temperature of a part of or the whole body above normal for a defined period of time, is applied alone or as an adjunctive with various established cancer treatment modalities such as radiotherapy and chemotherapy. However, hyperthermia is not generally accepted as conventional therapy. The problem is its controversial performance. The controversy is originated from the complications of the deep heating and the focusing of the heat effect. The idea of oncothermia solves the selective deep action on nearly cellular resolution. We would like to demonstrate the force and perspectives of oncothermia, as a highly specialized hyperthermia in clinical oncology. Our aim is to prove the ability of oncothermia to be a candidate to become a widely accepted modality of the standard cancer care. We would like to show the proofs and the challenges of the hyperthermia and oncothermia applications to provide the presently available data and summarize the knowledge in the topic. Like many early stage therapies, oncothermia lacks adequate treatment experience and long-range, comprehensive statistics that can help us optimize its use for all indications.

  12. [Systemic therapy and hyperthermia for locally advanced soft tissue sarcoma].

    Science.gov (United States)

    Lindner, L H; Angele, M; Dürr, H R; Rauch, J; Bruns, C

    2014-05-01

    Patients with high-risk soft tissue sarcomas (FNCLCC grades 2-3, > 5 cm and deep lying) are at a high risk of local recurrence or distant metastases despite optimal surgical tumor resection. Therefore, multimodal treatment should be considered for this difficult to treat patient group. Besides surgery, radiation therapy and chemotherapy, hyperthermia has become a valid, complementary treatment option within multimodal treatment concepts. Hyperthermia in this context means the selective heating of the tumor region to temperatures of 40-43 °C for 60 min by microwave radiation in addition to simultaneous chemotherapy or radiation therapy. A randomized phase III study demonstrated that the addition of hyperthermia to neoadjuvant chemotherapy improved tumor response and was associated with a minimal risk of early disease progression as compared to chemotherapy alone. The addition of hyperthermia to a multimodal treatment regimen for high-risk soft tissue sarcoma consisting of surgery, radiation therapy and chemotherapy, either in the neoadjuvant or adjuvant setting after incomplete or marginal tumor resection, significantly improved local progression-free and disease-free survival. Based on these results and due to the generally good tolerability of hyperthermia, this treatment method in combination with chemotherapy should be considered as a standard treatment option within multimodal treatment approaches for locally advanced high-risk soft tissue sarcoma.

  13. Local tumour hyperthermia as immunotherapy for metastatic cancer.

    Science.gov (United States)

    Toraya-Brown, Seiko; Fiering, Steven

    2014-12-01

    Abstract Local tumour hyperthermia for cancer treatment is currently used either for ablation purposes as an alternative to surgery or less frequently, in combination with chemotherapy and/or radiation therapy to enhance the effects of those traditional therapies. As it has become apparent that activating the immune system is crucial to successfully treat metastatic cancer, the potential of boosting anti-tumour immunity by heating tumours has become a growing area of cancer research. After reviewing the history of hyperthermia therapy for cancer and introducing methods for inducing local hyperthermia, this review describes different mechanisms by which heating tumours can elicit anti-tumour immune responses, including tumour cell damage, tumour surface molecule changes, heat shock proteins, exosomes, direct effects on immune cells, and changes in the tumour vasculature. We then go over in vivo studies that provide promising results showing that local hyperthermia therapy indeed activates various systemic anti-tumour immune responses that slow growth of untreated tumours. Finally, future research questions that will help bring the use of local hyperthermia as systemic immunotherapy closer to clinical application are discussed.

  14. Magnetic hyperthermia of laponite based ferrofluid

    Energy Technology Data Exchange (ETDEWEB)

    Diamantopoulos, G., E-mail: gior15@ims.demokritos.gr [Institute of Materials Science, National Centre for Scientific Research ‘Demokritos’, 153 10 Aghia Paraskevi, Athens (Greece); Basina, G.; Tzitzios, V.; Karakosta, E.; Fardis, M. [Institute of Materials Science, National Centre for Scientific Research ‘Demokritos’, 153 10 Aghia Paraskevi, Athens (Greece); Jaglicic, Z. [University of Ljubljana, Faculty of Civil Engineering and Geodesy and Institute of Mathematics, Physics and Mechanics, Jadranska 19, 1000 Ljubljana (Slovenia); Lazaridis, N. [Aristotle University of Thessaloniki, Chemistry Department, 54124 Thessaloniki (Greece); Papavassiliou, G. [Institute of Materials Science, National Centre for Scientific Research ‘Demokritos’, 153 10 Aghia Paraskevi, Athens (Greece)

    2013-06-15

    Magnetic Hyperthermia experiments have been performed on different concentrations of magnetic iron oxide nanoparticles immobilized on nano-clay disks. The specific absorption rate (SAR) was measured in AC field amplitudes H{sub 0} from 7 to 30 kA/m. At low field amplitudes, SAR followed the usual H{sub 0}{sup 2} law whereas for higher field amplitudes a linear dependence was found for the higher concentrations. Measurements at three different field amplitudes were also performed for a wide range of iron oxide concentrations in order to determine the effect of the Brownian relaxation time to SAR. A field dependent maximum was observed and for fields up to 20 kA/m the power dissipation losses were well explained according to theoretical predictions. - Highlights: ► Influence of the AC field to the specific absorption rates (SAR). ► Transition point from the expected square dependence to a linear law between SAR and AC field amplitude. ► A field dependent maximum of the SAR values versus iron oxide concentration is observed. ► Experimental validation of the existing theoretical work.

  15. Lipopolysaccharide potentiates hyperthermia-induced seizures.

    Science.gov (United States)

    Eun, Baik-Lin; Abraham, Jayne; Mlsna, Lauren; Kim, Min Jung; Koh, Sookyong

    2015-08-01

    Prolonged febrile seizures (FS) have both acute and long-lasting effects on the developing brain. Because FS are often associated with peripheral infection, we aimed to develop a preclinical model of FS that simulates fever and immune activation in order to facilitate the implementation of targeted therapy after prolonged FS in young children. The innate immune activator lipopolysaccharide (LPS) was administered to postnatal day 14 rat (200 μg/kg) and mouse (100 μg/kg) pups 2-2.5 h prior to hyperthermic seizures (HT) induced by hair dryer or heat lamp. To determine whether simulation of infection enhances neuronal excitability, latency to seizure onset, threshold temperature and total number of seizures were quantified. Behavioral seizures were correlated with electroencephalographic changes in rat pups. Seizure-induced proinflammatory cytokine production was assessed in blood samples at various time points after HT. Seizure-induced microglia activation in the hippocampus was quantified using Cx3cr1(GFP/+) mice. Lipopolysaccharide priming increased susceptibility of rats and mice to hyperthemic seizures and enhanced seizure-induced proinflammatory cytokine production and microglial activation. Peripheral inflammation appears to work synergistically with hyperthermia to potentiate seizures and to exacerbate seizure-induced immune responses. By simulating fever, a regulated increase in body temperature from an immune challenge, we developed a more clinically relevant animal model of prolonged FS.

  16. Magnetic nanoparticle hyperthermia for prostate cancer.

    Science.gov (United States)

    Johannsen, Manfred; Thiesen, Burghard; Wust, Peter; Jordan, Andreas

    2010-01-01

    Magnetic nanoparticles are increasingly used for clinical applications such as drug delivery, magnetic resonance imaging and magnetic fluid hyperthermia. A novel method of interstitial heating of tumours following direct injection of magnetic nanoparticles has been evaluated in humans in recent clinical trials. In prostate cancer this approach has been investigated in two separate phase I studies, employing magnetic nanoparticle thermotherapy alone and in combination with permanent seed brachytherapy. The feasibility and good tolerability was shown in both trials, using the first prototype of an alternating magnetic field applicator. As with any other heating technique, this novel approach requires specific tools for planning, quality control and thermal monitoring, based on appropriate imaging and modelling techniques. In these first clinical trials a newly developed method for planning and non-invasive calculations of the 3-dimensional temperature distribution based on computed tomography was validated. Limiting factors of the new approach at present are patient discomfort at high magnetic field strengths and irregular intratumoural heat distribution. Until these limitations are overcome and thermoablation can safely be applied as a monotherapy, this treatment modality is being evaluated in combination with irradiation in patients with localised prostate cancer.

  17. Induced hyperthermia in brain tissue in vivo.

    Science.gov (United States)

    Terzis, A J; Nowak, G; Mueller, E; Rentzsch, O; Arnold, H

    1994-01-01

    Concerning hypothermia treatment, knowledge of time-temperature and of temperature distributions within tumor volumes is essential in order to obtain the maximal therapeutic effect. New techniques are being developed to overcome these difficulties. Two different heat sources, a contact Nd:YAG laser system and an automatically controlled high-frequency current system were investigated on 15 rabbits. Changes of the intracerebral temperature were registered at 4 different distances from the energy source. The intracerebral temperature was increased to 42.5 degrees C at a distance of 5 mm to the heat source and maintained at this level for a period of 60 min. The contact Nd:YAG laser system reached 42.5 degrees C at 3 W of output power. Using higher laser output power, brain tissue herniation (brain edema) through the burrhole was observed. The automatically controlled high-frequency current system reached 42.5 degrees C at 18.75 W of output current. A very small herniation of brain tissue could be observed using higher output current. Both heat sources presented an exponential decrease of the temperature profile depending on the distance. The tissue heat clearance was compensated for by intermittent laser or high-frequency current application. Both systems proved efficient for inducing hyperthermia as needed for antitumoral therapy.

  18. Non-linear Ultrasound Imaging

    DEFF Research Database (Denmark)

    Du, Yigang

    without iteration steps. The ASA is implemented in combination with Field II and extended to simulate the pulsed ultrasound fields. The simulated results from a linear array transducer are made by the ASA based on Field II, and by a released non-linear simulation program- Abersim, respectively....... The calculation speed of the ASA is increased approximately by a factor of 140. For the second harmonic point spread function the error of the full width is 1.5% at -6 dB and 6.4% at -12 dB compared to Abersim. To further investigate the linear and non-linear ultrasound fields, hydrophone measurements.......3% relative to the measurement from a 1 inch diameter transducer. A preliminary study for harmonic imaging using synthetic aperture sequential beamforming (SASB) has been demonstrated. A wire phantom underwater measurement is made by an experimental synthetic aperture real-time ultrasound scanner (SARUS...

  19. Three dimensional (3d) transverse oscillation vector velocity ultrasound imaging

    DEFF Research Database (Denmark)

    2013-01-01

    An ultrasound imaging system (300) includes a transducer array (302) with a two- dimensional array of transducer elements configured to transmit an ultrasound signal and receive echoes, transmit circuitry (304) configured to control the transducer array to transmit the ultrasound signal so...... as to traverse a field of view, and receive circuitry (306) configured to receive a two dimensional set of echoes produced in response to the ultrasound signal traversing structure in the field of view, wherein the structure includes flowing structures such as flowing blood cells, organ cells etc. A beamformer...... (312) configured to beamform the echoes, and a velocity processor (314) configured to separately determine a depth velocity component, a transverse velocity component and an elevation velocity component, wherein the velocity components are determined based on the same transmitted ultrasound signal...

  20. Quantitative assessment of impedance tomography for temperature measurements in hyperthermia.

    Science.gov (United States)

    Blad, B; Persson, B; Lindström, K

    1992-01-01

    The objective of this study is a non-invasive assessment of the thermal dose in hyperthermia. Electrical impedance tomography (EIT) has previously been given a first trial as a temperature monitoring method together with microwave-induced hyperthermia treatment, but it has not been thoroughly investigated. In the present work we have examined this method in order to investigate the correlation in vitro between the true spatial temperature distribution and the corresponding measured relative resistivity changes. Different hyperthermia techniques, such as interstitial water tubings, microwave-induced, laser-induced and ferromagnetic seeds have been used. The results show that it is possible to find a correlation between the measured temperature values and the tomographically measured relative resistivity changes in tissue-equivalent phantoms. But the uncertainty of the temperature coefficients, which has been observed, shows that the method has to be improved before it can be applied to clinical in vivo applications.

  1. [Current status of hyperthermia for deep-seated tumors].

    Science.gov (United States)

    Hiraoka, M; Abe, M

    1989-03-01

    The current status of hyperthermia for deep-seated tumor is reviewed. Heating methods include external heating, intraluminal heating and interstitial heating, all of which have inherent advantages and disadvantages. Hyperthermia alone has significant effects on deep-seated tumors. The combination of hyperthermia and radiotherapy has been widely applied, resulting in 10-15% complete regression and 10-40% partial regression in the treatment of locally advanced tumors. The response rate of thermoradiotherapy was higher than that of radiotherapy for tumors in the brain, rectum and esophagus in the non-randomized study. The clinical application of thermochemotherapy is increasing and its effect is demonstrated in the prevention and treatment of peritoneal dissemination of gastric cancers. Reports of serious complications are rare. The technology for deep-heating and thermometry, and the new criteria for the assessment of thermotherapy for deep-seated tumors seems a promising new treatment modality.

  2. Magnetic Properties of Magnetic Nanoparticles for Efficient Hyperthermia

    Directory of Open Access Journals (Sweden)

    Ihab M. Obaidat

    2015-01-01

    Full Text Available Localized magnetic hyperthermia using magnetic nanoparticles (MNPs under the application of small magnetic fields is a promising tool for treating small or deep-seated tumors. For this method to be applicable, the amount of MNPs used should be minimized. Hence, it is essential to enhance the power dissipation or heating efficiency of MNPs. Several factors influence the heating efficiency of MNPs, such as the amplitude and frequency of the applied magnetic field and the structural and magnetic properties of MNPs. We discuss some of the physics principles for effective heating of MNPs focusing on the role of surface anisotropy, interface exchange anisotropy and dipolar interactions. Basic magnetic properties of MNPs such as their superparamagnetic behavior, are briefly reviewed. The influence of temperature on anisotropy and magnetization of MNPs is discussed. Recent development in self-regulated hyperthermia is briefly discussed. Some physical and practical limitations of using MNPs in magnetic hyperthermia are also briefly discussed.

  3. Synthetic aperture tissue and flow ultrasound imaging

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav

    them: the use of sparse one- and two-dimensional arrays; the use of multiple elements in transmit to create virtual sources of ultrasound; the use of virtual sources of ultrasound to improve the resolution of the images in the elevation plane; the use of temporal and spatial encoding to increase...... imaging applied to medical ultrasound. It is divided into two major parts: tissue and blood flow imaging. Tissue imaging using synthetic aperture algorithms has been investigated for about two decades, but has not been implemented in medical scanners yet. Among the other reasons, the conventional scanning...

  4. Predicting effects of blood flow rate and size of vessels in a vasculature on hyperthermia treatments using computer simulation

    Directory of Open Access Journals (Sweden)

    Shih Tzu-Ching

    2010-03-01

    same difference as compared to the CBVN model. The optimization used here is adjusting power based on the local temperature in the treated region in an attempt to reach the ideal therapeutic temperature of 43°C. The scheme can be used (or adapted in a non-invasive power supply application such as high-intensity focused ultrasound (HIFU. Results show that, for low perfusion rates in CBVN model vessels, impacts on tissue temperature becomes insignificant. Uniform temperature in the treated region is obtained. Conclusion Therefore, any method that could decrease or prevent blood flow rates into the tumorous region is recommended as a pre-process to hyperthermia cancer treatment. Second, the size of vessels in vasculatures does not significantly affect on total power consumption during hyperthermia therapy when the total blood flow rate is constant. It is about 0.8% decreasing in total optimized absorbed power in the heated region as γ (the ratio of diameters of successive vessel generations increases from 0.6 to 0.7, or from 0.7 to 0.8, or from 0.8 to 0.9. Last, in hyperthermia treatments, when the heated region consists of thermally significant vessels, much of absorbed power is required to heat the region and (provided that finer spatial power deposition exists to heat vessels which could lead to higher blood temperatures than tissue temperatures when modeled them using PBHTE.

  5. In vivo verification of regional hyperthermia in the liver

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Jae Moung; Kim, Hye Young; Park, Hee Chul; Lee, So Hyang; Kim, Young Sun; Jung, Sang Hoon; Han, Young Jin [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Hong, Saet Byul; Park, Ji Hyun [Laboratory Animal Research Center, Samsung Biomedical Research Institute, Seoul (Korea, Republic of)

    2014-12-15

    We performed invasive thermometry to verify the elevation of local temperature in the liver during hyperthermia. Three 40-kg pigs were used for the experiments. Under general anesthesia with ultrasonography guidance, two glass fiber-optic sensors were placed in the liver, and one was placed in the peritoneal cavity in front of the liver. Another sensor was placed on the skin surface to assess superficial cooling. Six sessions of hyperthermia were delivered using the Celsius TCS electro-hyperthermia system. The energy delivered was increased from 240 kJ to 507 kJ during the 60-minute sessions. The inter-session cooling periods were at least 30 minutes. The temperature was recorded every 5 minutes by the four sensors during hyperthermia, and the increased temperatures recorded during the consecutive sessions were analyzed. As the animals were anesthetized, the baseline temperature at the start of each session decreased by 1.3 degrees C to 2.8 degrees C (median, 2.1 degrees C). The mean increases in temperature measured by the intrahepatic sensors were 2.42 degrees C (95% confidence interval [CI], 1.70-3.13) and 2.67 degrees C (95% CI, 2.05-3.28) during the fifth and sixth sessions, respectively. The corresponding values for the intraperitoneal sensor were 2.10 degrees C (95% CI, 0.71-3.49) and 2.87 degrees C (1.13-4.43), respectively. Conversely, the skin temperature was not increased but rather decreased according to application of the cooling system. We observed mean 2.67 degrees C and 2.87 degrees C increases in temperature at the liver and peritoneal cavity, respectively, during hyperthermia. In vivo real-time thermometry is useful for directly measuring internal temperature during hyperthermia.

  6. Prostate Ultrasound

    Medline Plus

    Full Text Available ... and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the probe through ... during a single exam. The transducer sends out high-frequency sound waves (that the human ear cannot hear) ...

  7. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the probe through ... during a single exam. The transducer sends out high-frequency sound waves (that the human ear cannot hear) ...

  8. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... and Resources RTAnswers.org Radiation Therapy for Gynecologic Cancers Radiation Therapy for Prostate Cancer top of page This page was reviewed on ... with caption Pediatric Content Some imaging tests and treatments have special pediatric ... Images related to Ultrasound - Pelvis Sponsored by Please ...

  9. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z Ultrasound - Pelvis ... imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions. There are three ...

  10. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician ... blood vessels. Ultrasound imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions. ...

  11. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician ... blood vessels. Ultrasound imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions. ...

  12. The Dartmouth Center for Cancer Nanotechnology Excellence: magnetic hyperthermia.

    Science.gov (United States)

    Baker, Ian; Fiering, Steve N; Griswold, Karl E; Hoopes, P Jack; Kekalo, Katerina; Ndong, Christian; Paulsen, Keith; Petryk, Alicea A; Pogue, Brian; Shubitidze, Fridon; Weaver, John

    2015-01-01

    The Dartmouth Center for Cancer Nanotechnology Excellence - one of nine funded by the National Cancer Institute as part of the Alliance for Nanotechnology in Cancer - focuses on the use of magnetic nanoparticles for cancer diagnostics and hyperthermia therapy. It brings together a diverse team of engineers and biomedical researchers with expertise in nanomaterials, molecular targeting, advanced biomedical imaging and translational in vivo studies. The goal of successfully treating cancer is being approached by developing nanoparticles, conjugating them with Fabs, hyperthermia treatment, immunotherapy and sensing treatment response.

  13. In Vivo Real Time Volumetric Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Bouzari, Hamed; Rasmussen, Morten Fischer; Brandt, Andreas Hjelm;

    2015-01-01

    Synthetic aperture (SA) imaging can be used to achieve real-time volumetric ultrasound imaging using 2-D array transducers. The sensitivity of SA imaging is improved by maximizing the acoustic output, but one must consider the limitations of an ultrasound system, both technical and biological...

  14. Ultrasound imaging for quantitative measurement of immersed plastic waste particles

    NARCIS (Netherlands)

    Sanaee, S.A.; Bakker, M.C.M.

    2012-01-01

    Ultrasound imaging techniques are proposed for measuring the shape and thickness of immersed waste particles (10-20 mm size) using a linear sensor array from a fixed position. For these purposes both the front and back surface of a particle needs to be reconstructed. Raw ultrasound pulse-echo and pl

  15. Focused ultrasound transducer for thermal treatment.

    Science.gov (United States)

    Umemura, Shin-ichiro

    2015-03-01

    Air-backed transducers have been employed for thermal ultrasonic treatment including both ablation and hyperthermia because the power efficiency rather than the bandwidth is a main concern, unlike a typical imaging transducer working in a pulse mode. The characteristic of an air-backed piezoelectric transducer with a matching layer is analysed, and the role and choice of the matching layer is discussed. An element size of a focused array transducer, appropriate for such thermal treatment, is then estimated, and the characteristic of a piezoceramic transducer element of such a size was numerically analysed using a finite element code. The characteristic of a piezocomposite transducer element is also numerically analysed and its suitability to such a therapeutic array transducer is discussed.

  16. Harmonic ultrasound imaging using synthetic aperture sequential beamforming

    DEFF Research Database (Denmark)

    2012-01-01

    A method includes generating an ultrasound image based on the harmonic components in the received echoes using multi-stage beam forming and data generated therefrom. An ultrasound imaging system (100, 200) includes a transducer array (108) including a plurality of transducer elements configured...... to emit ultrasound signals and receive echoes generated in response to the emitted ultrasound signals. The ultrasound imaging system further includes transmit circuitry (1 10) that generates a set of pulses that actuate a set of the plurality of transducer elements to emit ultrasound signals....... The ultrasound imaging system further includes receive circuitry (1 12), including a first beam former (122) configured to process the second harmonic signal components extracted from the received echo signals, generating intermediate scan lines. Memory (126) stores the generated intermediate scan lines...

  17. TU-EF-210-04: AAPM Task Groups in Interventional Ultrasound Imaging and Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Farahani, K. [National Cancer Institute (United States)

    2015-06-15

    The use of therapeutic ultrasound to provide targeted therapy is an active research area that has a broad application scope. The invited talks in this session will address currently implemented strategies and protocols for both hyperthermia and ablation applications using therapeutic ultrasound. The role of both ultrasound and MRI in the monitoring and assessment of these therapies will be explored in both pre-clinical and clinical applications. Katherine Ferrara: High Intensity Focused Ultrasound, Drug Delivery, and Immunotherapy Rajiv Chopra: Translating Localized Doxorubicin Delivery to Pediatric Oncology using MRI-guided HIFU Elisa Konofagou: Real-time Ablation Monitoring and Lesion Quantification using Harmonic Motion Imaging Keyvan Farahani: AAPM Task Groups in Interventional Ultrasound Imaging and Therapy Learning Objectives: Understand the role of ultrasound in localized drug delivery and the effects of immunotherapy when used in conjunction with ultrasound therapy. Understand potential targeted drug delivery clinical applications including pediatric oncology. Understand the technical requirements for performing targeted drug delivery. Understand how radiation-force approaches can be used to both monitor and assess high intensity focused ultrasound ablation therapy. Understand the role of AAPM task groups in ultrasound imaging and therapies. Chopra: Funding from Cancer Prevention and Research Initiative of Texas (CPRIT), Award R1308 Evelyn and M.R. Hudson Foundation; Research Support from Research Contract with Philips Healthcare; COI are Co-founder of FUS Instruments Inc Ferrara: Supported by NIH, UCDavis and California (CIRM and BHCE) Farahani: In-kind research support from Philips Healthcare.

  18. Fundamentals of ultrasonic phased arrays

    CERN Document Server

    Schmerr, Lester W

    2014-01-01

    This book describes in detail the physical and mathematical foundations of ultrasonic phased array measurements.?The book uses linear systems theory to develop a comprehensive model of the signals and images that can be formed with phased arrays. Engineers working in the field of ultrasonic nondestructive evaluation (NDE) will find in this approach a wealth of information on how to design, optimize and interpret ultrasonic inspections with phased arrays. The fundamentals and models described in the book will also be of significant interest to other fields, including the medical ultrasound and

  19. Improving efficacy of hyperthermia in oncology by exploiting biological mechanisms

    DEFF Research Database (Denmark)

    van den Tempel, Nathalie; Horsman, Michael R; Kanaar, Roland

    2016-01-01

    It has long been established that hyperthermia increases the therapeutic benefit of radiation and chemotherapy in cancer treatment. During the last few years there have been substantial technical improvements in the sources used to apply and measure heat, which greatly increases enthusiasm for th...

  20. IRON OXIDE NANOPARTICLES AS THERMAL SEEDS IN MAGNETIC HYPERTHERMIA THERAPY

    OpenAIRE

    2016-01-01

    we present the short review on Magnetic nanoparticle specifically for biomedical application. This study shows the overview on magnetic material properties and its biocompatibility. Here we are discussing some results of manufacturing iron nano particle in lab and its thermal propertie srelated to hyperthermia.  Keywords- Magnetic  nanoparticle (MNP).

  1. On the temperature control in self-controlling hyperthermia therapy

    Science.gov (United States)

    Ebrahimi, Mahyar

    2016-10-01

    In self-controlling hyperthermia therapy, once the desired temperature is reached, the heat generation ceases and overheating is prevented. In order to design a system that generates sufficient heat without thermal ablation of surrounding healthy tissue, a good understanding of temperature distribution and its change with time is imperative. This study is conducted to extend our understanding about the heat generation and transfer, temperature distribution and temperature rise pattern in the tumor and surrounding tissue during self-controlling magnetic hyperthermia. A model consisting of two concentric spheres that represents the tumor and its surrounding tissue is considered and temperature change pattern and temperature distribution in tumor and surrounding tissue are studied. After describing the model and its governing equations and constants precisely, a typical numerical solution of the model is presented. Then it is showed that how different parameters like Curie temperature of nanoparticles, magnetic field amplitude and nanoparticles concentration can affect the temperature change pattern during self-controlling magnetic hyperthermia. The model system herein discussed can be useful to gain insight on the self-controlling magnetic hyperthermia while applied to cancer treatment in real scenario and can be useful for treatment strategy determination.

  2. Malignant hyperthermia (icarus syndrome: new view on the old problem

    Directory of Open Access Journals (Sweden)

    N. A. Shnayder

    2014-01-01

    Full Text Available In the lecture shot history of research of etiology and pathogenesis of more dramatic complication of general anaesthesia – malignant hyperthermia - are presented. Importance of the interdisciplinary approach to working out of methods of preventive maintenance and treatment of it pharmacogenetics conditions in practice of the anaesthesiologist is underlined.

  3. Weather, geography, and vehicle-related hyperthermia in children.

    Science.gov (United States)

    Grundstein, Andrew; Null, Jan; Meentemeyer, Vernon

    2011-01-01

    Vehicle-related hyperthermia is an unfortunate tragedy that leads to the accidental deaths of children each year. This research utilizes the most extensive dataset of child vehicle-related hyperthermia deaths in the United States, including 414 deaths between 1998 and 2008. Deaths follow a seasonal pattern, with a peak in July and no deaths in December or January. Also, deaths occurred over a wide range of temperature and radiation levels and across virtually all regions, although most of them took place across the southern United States. In particular, the Phoenix, Houston, Dallas, and Las Vegas metropolitan areas had the greatest number of deaths. We utilize our vehicle hyperthermia index (vhi) to compare expected deaths versus actual deaths in a metropolitan area, based on the number of children in the area who are under the age of five and on the frequency of hot days in the area. The vhi indicates that the Memphis, West Palm Beach-Boca Raton, and Las Vegas metropolitan areas are the most dangerous places for vehicle-related hyperthermia. We conclude by discussing several recommendations with public health policy implications.

  4. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... of page How is the procedure performed? For most ultrasound exams, you will be positioned lying face- ... Ultrasound examinations are painless and easily tolerated by most patients. Ultrasound exams in which the transducer is ...

  5. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... data into 3-D images. A Doppler ultrasound study may be part of an ultrasound examination. Doppler ... usually stain or discolor clothing. In some ultrasound studies, the transducer is attached to a probe and ...

  6. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... flat sections of the body. Advancements in ultrasound technology include three-dimensional (3-D) ultrasound that formats ... object is solid or filled with fluid). In medicine, ultrasound is used to detect changes in appearance, ...

  7. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... ultrasound. top of page How does the procedure work? Ultrasound imaging is based on the same principles ... to-use and less expensive than other imaging methods. Ultrasound imaging is extremely safe and does not ...

  8. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... ultrasound. top of page How does the procedure work? Ultrasound imaging is based on the same principles ... not stain or discolor clothing. In some ultrasound studies, the transducer is attached to a probe and ...

  9. Ultrasound guided supraclavicular block.

    LENUS (Irish Health Repository)

    Hanumanthaiah, Deepak

    2013-09-01

    Ultrasound guided regional anaesthesia is becoming increasingly popular. The supraclavicular block has been transformed by ultrasound guidance into a potentially safe superficial block. We reviewed the techniques of performing supraclavicular block with special focus on ultrasound guidance.

  10. Breast ultrasound.

    Science.gov (United States)

    Ueno, E

    1996-03-01

    In ultrasound, ultrasonic images are formed by means of echoes among tissues with different acoustic impedance. Acoustic impedance is the product of sound speed and bulk modulus. The bulk modulus expresses the elasticity of an object, and in the human body, the value is increased by conditions such as fibrosis and calcification. The sound speed is usually high in elastic tissues and low in water. In the body, it is lowest in the fatty tissue. Ultrasound echoes are strong on the surface of bones which are hard and have a high sound speed. In organs filled with air such as the lungs, the bulk modulus is low and the sound speed is extremely low at 340 m/s, which produce strong echoes (the sound speed in solid tissues is 1,530 m/s). Human tissue is constructed of units smaller than the ultrasonic beam, and it is necessary to understand back-scattering in order to understand the ultrasonic images of these tissues. When ultrasound passes through tissue, it is absorbed as thermal energy and attenuated. Fiber is a tissue with a high absorption and attenuation rate. When the rate increases, the posterior echoes are attenuated. However, in masses with a high water content such as cysts, the posterior echoes are accentuated. This phenomenon is an important, basic finding for determining the properties of tumors. Breast cancer can be classified into two types: stellate carcinoma and circumscribed carcinoma. Since stellate carcinoma is rich in fiber, the posterior echoes are attenuated or lacking. However, circumscribed carcinoma has a high cellularity and the posterior echoes are accentuated. The same tendency is also seen in benign tumors. In immature fibroadenomas, posterior echoes are accentuated, while in fibroadenomas with hyalinosis, the posterior echoes are attenuated. Therefore, if the fundamentals of this tissue characterization and the histological features are understood, reading of ultrasound becomes easy. Color Doppler has also been developed and has contributed

  11. Ultrasound of the Thyroid Gland

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Ultrasound - Thyroid Thyroid ultrasound uses sound waves to produce ... of Ultrasound of the Thyroid? What is an Ultrasound of the Thyroid? Ultrasound is safe and painless, ...

  12. Study of clinical profile of hyperthermia in neonate admitted in NICU during summer months 2010

    Directory of Open Access Journals (Sweden)

    Kakkad Khyati

    2014-03-01

    Full Text Available Research Question: What is the effect of environmental heat & hyperthermia on neonates? Objectives: 1. To study the clinical and biochemical profile of neonate presented with hyperthermia and heat related illnesses. 2. To study the outcome of neonates presented with hyperthermia and heat related illnesses. Materials & Methods: A retrospective cross sectional study was carried out to study an unusually high number of neonatal hyperthermia cases at the NICU of a tertiary care teaching hospital during summer months (April-June 2010. Their case records were primarily reviewed for presenting signs and symptoms. Findings of clinical assessment and appropriate laboratory investigations were used as tools to rule out hyperpyrexia and other causes. An effort was made to correlate hyperthermia with various other determinant factors which might have a role in increased vulnerability of neonates to hyperthermia. Results: Clinical Profile, signs & symptoms, biochemical profile & outcome of 24 cases of hyperthermia were studied. All were successfully treated and discharged within short time. Normal weight, normally delivered, full term babies in their early neonatal period who are kept in nonthermoregulated ward/unit were most commonly affected. Inadequacy of feeding especially in early neonatal period during summer months with high environmental temperature (heat wave plays an important role in developing hyperthermia in neonates. Hyperthermia & dehydration have bidirectional relationship making hyperthermia an important acute illness among neonates. Conclusions: Inadequacy of feeding, postnatal ward on the topmost and hottest floor of a non-climate controlled hospital building along with coating of Tar on the rooftop (to prevent water leakage from the roof played a crucial role in higher number of hyperthermia cases during heat wave of 2010. Hyperthermia is an acute illness with very good prognosis if identified & treated, timely and promptly

  13. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... through blood vessels. Ultrasound imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions. Conventional ultrasound displays the images in thin, ...

  14. Optimization and control in deep hyperthermia: Clinical implementation of hyperthermia treatment planning in cervical cancer treatment to obtain a higher treatment quality

    NARCIS (Netherlands)

    R.A.M. Canters (Richard)

    2013-01-01

    textabstractDeep hyperthermia is a treatment used in concurrence with radiation therapy or chemotherapy in the treatment of deep seated tumors. In hyperthermia, tumor temperatures are elevated 3 to 7oC above normal body temperature, up to a temperature of 44oC. In a randomized trial, the 3 year over

  15. Optimization and control in deep hyperthermia: Clinical implementation of hyperthermia treatment planning in cervical cancer treatment to obtain a higher treatment quality

    NARCIS (Netherlands)

    R.A.M. Canters (Richard)

    2013-01-01

    textabstractDeep hyperthermia is a treatment used in concurrence with radiation therapy or chemotherapy in the treatment of deep seated tumors. In hyperthermia, tumor temperatures are elevated 3 to 7oC above normal body temperature, up to a temperature of 44oC. In a randomized trial, the 3 year

  16. Ultrasound-guided chest biopsies.

    Science.gov (United States)

    Middleton, William D; Teefey, Sharlene A; Dahiya, Nirvikar

    2006-12-01

    Pulmonary nodules that are surrounded by aerated lung cannot be visualized with sonography. Therefore, percutaneous biopsy must be guided with computed tomography or fluoroscopy. Although this restriction only applies to central lung nodules, it has permeated referral patterns for other thoracic lesions and has retarded the growth of ultrasound-guided interventions. Nevertheless, sonography is an extremely flexible modality that can expeditiously guide many biopsy procedures in the thorax. Peripheral pulmonary nodules can be successfully biopsied with success rates exceeding 90% and complications rates of less than 5%. Orienting the probe parallel to the intercostal space facilitates biopsies of peripheral pulmonary nodules. Anterior mediastinal masses that extend to the parasternal region are often easily approachable provided the internal mammary vessels, costal cartilage, and deep great vessels are identified and avoided. Superior mediastinal masses can be sampled from a suprasternal or supraclavicular approach. Phased array probes or tightly curved arrays may provide improved access for biopsies in this location. Posterior mediastinal masses are more difficult to biopsy with ultrasound guidance because of the overlying paraspinal muscles. However, when posterior mediastinal masses extend into the posterior medial pleural region, they can be biopsied with ultrasound guidance. Because many lung cancers metastasize to the supraclavicular nodes, it is important to evaluate the supraclavicular region when determining the best approach to obtain a tissue diagnosis. When abnormal supraclavicular nodes are present, they often are the easiest and safest lesions to biopsy.

  17. Evaluation of inductively heated ferromagnetic alloy implants for therapeutic interstitial hyperthermia.

    Science.gov (United States)

    Paulus, J A; Richardson, J S; Tucker, R D; Park, J B

    1996-04-01

    Ferromagnetic alloys heated by magnetic induction have been investigated as interstitial hyperthermia delivery implants for over a decade, utilizing low Curie temperatures to provide thermal self-regulation. The minimally invasive method is attractive for fractionated thermal treatment of tumors which are not easily heated by focused microwave or ultrasound techniques. Past analyses of ferromagnetic seeds by other authors depict poor experimental correlation with theoretical heating predictions. Improvements in computer hardware and commercially available finite element analysis software have simplified the analysis of inductively heated thermal seeds considerably. This manuscript examines end effects of finite length implants and nonlinear magnetic material properties to account for previous inconsistencies. Two alloys, Ni-28 wt% Cu (NiCu) and Pd-6.15 wt% Co (PdCo), were used for comparison of theoretical and experimental calorimetric results. Length to diameter (L/d) ratios of over 20 for cylindrical seeds are necessary for minimization of end effects. Magnetic properties tested for alloys of NiCu and PdCo illustrate considerable nonlinearity of these materials in field strength ranges used for induction heating. Field strength dependent magnetic permeabilities and calorimetric data illustrate that more detailed material information must be included to accurately estimate induction power loss for these implants.

  18. Application of acoustical thermometry to noninvasive monitoring of internal temperature during laser hyperthermia

    Science.gov (United States)

    Krotov, Eugene V.; Yakovlev, Ivan V.; Zhadobov, Maxim; Reyman, Alexander M.; Zharov, Vladimir P.

    2002-06-01

    This work present the results of experimental study of applicability of acoustical brightness thermometry (ABT) in monitoring of internal temperature during laser hyperthermia and interstitial therapy. In these experiments the radiation of pulse repetition Nd:YAG laser (1064 nm) and continuous diode laser (800 nm) were used as heating sources. Experiments were performed in vitro by insertion of optical fiber inside the objects - optically transparent gelatin with incorporated light absorbing heterogeneities and samples of biological tissues (e.g. liver). During laser heating, internal temperature in absorbing heterogeneity and at fiber end were monitored by means of multi-channel ABT. The independent temperature control was performed with tiny electronic thermometer incorporated in heated zones. The results of experiments demonstrated reasonable sensitivity and accuracy of ABT for real-time temperature control during different kind of laser thermal therapies. According to preliminary data, ABT allow to measure temperature in depth up to 3-5 cm (depends on tissue properties) with spatial resolution some mm. Obtained data show that ABT is a very promising tool to give quantitative measure for different types of energy deposition (laser, microwave, focused ultrasound etc) at the depth commonly encountered in tumors of vital organs. Besides, ABT could give information about diffusion effects in heated zones or optical absorption. This work was supported by Russian Foundation for Basic Research and 6th competition-expertise of young scientists of Russian Academy of Sciences.

  19. Ferromagnetic glass-coated microwires with good heating properties for magnetic hyperthermia

    Science.gov (United States)

    Talaat, A.; Alonso, J.; Zhukova, V.; Garaio, E.; García, J. A.; Srikanth, H.; Phan, M. H.; Zhukov, A.

    2016-12-01

    The heating properties of Fe71.7Si11B13.4Nb3Ni0.9 amorphous glass-coated microwires are explored for prospective applications in magnetic hyperthermia. We show that a single 5 mm long wire is able to produce a sufficient amount of heat, with the specific loss power (SLP) reaching a value as high as 521 W/g for an AC field of 700 Oe and a frequency of 310 kHz. The large SLP is attributed to the rectangular hysteresis loop resulting from a peculiar domain structure of the microwire. For an array of parallel microwires, we have observed an SLP improvement by one order of magnitude; 950 W/g for an AC field of 700 Oe. The magnetostatic interaction strength essential in the array of wires can be manipulated by varying the distance between the wires, showing a decreasing trend in SLP with increasing wire separation. The largest SLP is obtained when the wires are aligned along the direction of the AC field. The origin of the large SLP and relevant heating mechanisms are discussed.

  20. APOPTOSIS INDUCED BY HYPERTHERMIA IN HUMAN GLIOBLASTOMA CELL LINE AND MURINE GLIOBLASTOMA

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective: To study the role of apoptosis in tumor cell of malignant glioma death following treatment with hyperthermia and calcium ionophore. Methods: The apoptosis induced by hyperthermia and calcium ionophore, A23187, in human glioblastoma cell line TJ905 and murine glioblastoma G422 was evaluated by characteristic findings in DNA agarose gel electrophresis, ultrastructural examination and flow cytometric analysis. Results: Apoptosis could be induced by moderate hyperthermia, but not by mild hyperthermia, calcium ionophore enhanced significantly the effect of mild hyperthermia on the induction of apoptosis. Conclusion: This result indicates that apoptotic cell death is one of the mechanisms of hyperthermic therapy for malignant glioma and taking measures to increase the cytolic calcium may enhance the effect of hyperthermia.

  1. WE-AB-206-01: Diagnostic Ultrasound Imaging Quality Assurance.

    Science.gov (United States)

    Zagzebski, J

    2016-06-01

    The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. The goal of this ultrasound hands-on workshop is to demonstrate quality control (QC) testing in diagnostic ultrasound and to provide updates in ACR ultrasound accreditation requirements. The first half of this workshop will include two presentations reviewing diagnostic ultrasound QA/QC and ACR ultrasound accreditation requirements. The second half of the workshop will include live demonstrations of basic QC tests. An array of ultrasound testing phantoms and ultrasound scanners will be available for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations and on-site instructors. The targeted attendees are medical physicists in diagnostic imaging.

  2. Application and possible mechanisms of combining LLLT (low level laser therapy), infrared hyperthermia and ionizing radiation in the treatment of cancer

    Science.gov (United States)

    Abraham, Edward H.; Woo, Van H.; Harlin-Jones, Cheryl; Heselich, Anja; Frohns, Florian

    2014-02-01

    Benefit of concomitant infrared hyperthermia and low level laser therapy and ionizing radiation is evaluated in this study. The purpose/objectives: presentation with locally advanced bulky superficial tumors is clinically challenging. To enhance the efficacy of chemotherapy and IMRT (intensity-modulated radiation therapy) and/or electron beam therapy we have developed an inexpensive and clinically effective infrared hyperthermia approach that combines black-body infrared radiation with halogen spectrum radiation and discrete wave length infrared clinical lasers LLLT. The goal is to produce a composite spectrum extending from the far infrared to near infrared and portions of the visible spectrum with discrete penetrating wavelengths generated by the clinical infrared lasers with frequencies of 810 nm and/or 830 nm. The composite spectrum from these sources is applied before and after radiation therapy. We monitor the surface and in some cases deeper temperatures with thermal probes, but use an array of surface probes as the limiting safe thermal constraint in patient treatment while at the same time maximizing infrared entry to deeper tissue layers. Fever-grade infrared hyperthermia is produced in the first centimeters while non-thermal infrared effects act at deeper tissue layers. The combination of these effects with ionizing radiation leads to improved tumor control in many cancers.

  3. Thermoseeds for interstitial magnetic hyperthermia: from bioceramics to nanoparticles

    Science.gov (United States)

    Baeza, A.; Arcos, D.; Vallet-Regí, M.

    2013-12-01

    The development of magnetic materials for interstitial hyperthermia treatment of cancer is an ever evolving research field which provides new alternatives to antitumoral therapies. The development of biocompatible magnetic materials has resulted in new biomaterials with multifunctional properties, which are able to adapt to the complex scenario of tumoral processes. Once implanted or injected in the body, magnetic materials can behave as thermoseeds under the effect of AC magnetic fields. Magnetic bioceramics aimed to treat bone tumors and magnetic nanoparticles are among the most studied thermoseeds, and supply different solutions for the different scenarios in cancerous processes. This paper reviews some of the biomaterials used for bone cancer treatment and skeletal reinforcing, as well as the more complex topic of magnetic nanoparticles for intracellular targeting and hyperthermia.

  4. Hypoxic cell radiosensitization by moderate hyperthermia and glucose deprivation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.H.; Kim, S.H.; Hahn, E.W.

    1983-02-01

    Cell culture studies were carried out to determine whether moderate hyperthermia reduces the oxygen enhancement ratio of cells under well-defined cultural conditions. Using asynchronously growing HeLa cells, the OER of cells with and without glucose was determined following exposure of cells to moderate hyperthermia, 40.5omicronC for 1 hr, immediately after X irradiation. The OER of cells with 5 mM glucose was 3.2, whereas the OER of glucose-deprived cells was reduced to 2.0. The pH of the cell culture medium was kept at 7.4 throughtout the experiments. The present finding may provide a clue toward further enhancing the radiosensitization of hypoxic cells by heat.

  5. Hypoxic cell radiosensitization by moderate hyperthermia and glucose deprivation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.H.; Kim, S.H.; Hahn, E.W.

    1983-02-01

    Cell culture studies were carried out to determine whether moderate hyperthermia reduces the oxygen enhancement ratio of cells under well-defined cultural conditions. Using asynchronously growing HeLa cells, the OER of cells with and without glucose was determined following exposure of cells to moderate hyperthermia, 40.5 degrees C for 1 hr, immediately after X irradiation. The OER of cells with 5 mM glucose was 3.2, whereas the OER of glucose-deprived cells was reduced to 2.0. The pH of the cell culture medium was kept at 7.4 throughout the experiments. The present finding may provide a clue toward further enhancing the radiosensitization of hypoxic cells by heat.

  6. A thermal monitoring sheet with low influence from adjacent waterbolus for tissue surface thermometry during clinical hyperthermia.

    Science.gov (United States)

    Arunachalam, Kavitha; Maccarini, Paolo F; Stauffer, Paul R

    2008-10-01

    This paper presents a complete thermal analysis of a novel conformal surface thermometer design with directional sensitivity for real-time temperature monitoring during hyperthermia treatments of large superficial cancer. The thermal monitoring sheet (TMS) discussed in this paper consists of a 2-D array of fiberoptic sensors embedded between two layers of flexible, low-loss, and thermally conductive printed circuit board (PCB) film. Heat transfer across all interfaces from the tissue surface through multiple layers of insulating dielectrics surrounding the small buried temperature sensor and into an adjacent temperature-regulated water coupling bolus was studied using 3-D thermal simulation software. Theoretical analyses were carried out to identify the most effective differential TMS probe configuration possible with commercially available flexible PCB materials and to compare their thermal responses with omnidirectional probes commonly used in clinical hyperthermia. A TMS sensor design that employs 0.0508-mm Kapton MTB and 0.2032-mm Kapton HN flexible polyimide films is proposed for tissue surface thermometry with low influence from the adjacent waterbolus. Comparison of the thermal simulations with clinical probes indicates the new differential TMS probe design to outperform in terms of both transient response and steady-state accuracy in selectively reading the tissue surface temperature, while decreasing the overall thermal barrier of the probe between the coupling waterbolus and tissue surface.

  7. Ultrasound in Space Medicine

    Science.gov (United States)

    Dulchavsky, Scott A.; Sargsyan, A.E.

    2009-01-01

    This slide presentation reviews the use of ultrasound as a diagnostic tool in microgravity environments. The goals of research in ultrasound usage in space environments are: (1) Determine accuracy of ultrasound in novel clinical conditions. (2) Determine optimal training methodologies, (3) Determine microgravity associated changes and (4) Develop intuitive ultrasound catalog to enhance autonomous medical care. Also uses of Ultrasound technology in terrestrial applications are reviewed.

  8. 'Smart' gold nanoshells for combined cancer chemotherapy and hyperthermia.

    Science.gov (United States)

    Liang, Zhongshi; Li, Xingui; Xie, Yegui; Liu, Shunying

    2014-04-01

    Nanomaterials that circulate in the body have great potential in the diagnosis and treatment of diseases. Here we report that 'smart' gold nanoshells can carry a drug payload, and that their intrinsic near-infrared (NIR) plasmon resonance enables the combination of chemotherapeutic and hyperthermia therapies. The 'smart' gold nanoshells (named DOX/A54@GNs) consist of (a) gold nanoshells (GNs) with NIR plasmon resonance, which not only act as nanoblocks but also produce local heat to allow hyperthermia; (b) an anticancer drug, doxorubicin (DOX), which was conjugated onto the nanoblocks by pH-dependent biodegradable copolymer thiol poly(ethylene glycol) derivatives via carbamate linkage; and (c) the targeting peptide A54 (AGKGTPSLETTP) to facilitate its orientation to liver cancer cells and enhance cellular uptake. The conjugated DOX was released from the DOX/A54@GNs much more rapidly in an acidic environment (pH 5.3) than in a neutral environment (pH 7.4), which is a desirable characteristic for intracellular tumor drug release. DOX-modified GNs showed pH-dependent release behavior, and the in vitro cell uptake experiment using ICP-AES and microscopy showed greater internalization of A54-modified GNs in the human liver cancer cell line BEL-7402 than of those without A54. Flow cytometry and fluoroscopy analysis were conducted to reveal the enhanced cell apoptosis caused by the A54-modified GNs under combined chemotherapeutic and hyperthermia therapies. These results imply that DOX/A54@GNs could be used as a multifunctional nanomaterial system with pH-triggered drug-releasing properties for tumor-targeted chemotherapy and hyperthermia.

  9. Cooling System to Treat Exercise-Induced Hyperthermia

    Science.gov (United States)

    2016-06-01

    dL) -- High Blood Pressure -- Diabetes or Impaired Glucose Tolerance -- Obesity (BMI >30) -- Heat Illness - Are you currently taking any...output necessary to meet the combined demands of skin blood flow for thermoregulation and blood flow for the metabolic requirements of exercising ... exercise , which occurs with heavy exertion in all temperatures and may or may not be associated with physical collapse. Exertional hyperthermia, defined

  10. Pulmonary Stress Induced by Hyperthermia: Role of Airway Sensory Nerves

    Science.gov (United States)

    2016-01-01

    support of our hypothesis that the stress of hyperthermia exerted on the respiratory system is primarily mediated through an activation of the...N. Activation of an epithelial neurokinin NK-1 receptor induces relaxation of rat trachea through release of prostaglandin E2. J Pharmacol Exp Ther...inspiratory duty cycle, shortened expiratory time, and reduced expiratory activity . All these effects stress the inspiratory muscles, resulting inspira

  11. Local tumour hyperthermia as immunotherapy for metastatic cancer

    OpenAIRE

    Toraya-Brown, Seiko; Fiering, Steven

    2014-01-01

    Local tumour hyperthermia for cancer treatment is currently used either for ablation purposes as an alternative to surgery or less frequently, in combination with chemotherapy and/or radiation therapy to enhance the effects of those traditional therapies. As it has become apparent that activating the immune system is crucial to successfully treat metastatic cancer, the potential of boosting anti-tumour immunity by heating tumours has become a growing area of cancer research. After reviewing t...

  12. Specific loss power in superparamagnetic hyperthermia: nanofluid versus composite

    Science.gov (United States)

    Osaci, M.; Cacciola, M.

    2017-01-01

    Currently, the magnetic hyperthermia induced by nanoparticles is of great interest in biomedical applications. In the literature, we can find a lot of models for magnetic hyperthermia, but many of them do not give importance to a significant detail, such as the geometry of nanoparticle positions in the system. Usually, a nanofluid is treated by considering random positions of the nanoparticles, geometry that is actually characteristic to the composite nanoparticles. To assess the error which is frequently made, in this paper we propose a comparative analysis between the specific loss power (SLP) in case of a nanofluid and the SLP in case of a composite with magnetic nanoparticles. We are going to use a superparamagnetic hyperthermia model based on the improved model for calculating the Néel relaxation time in a magnetic field oblique to the nanoparticle magnetic anisotropy axes, and on the improved theoretical model LRT (linear response theory) for SLP. To generate the nanoparticle geometry in the system, we are going to apply a Monte Carlo method to a nanofluid, by minimising the interaction potentials in liquid medium and, for a composite environment, a method for generating random positions of the nanoparticles in a given volume.

  13. Controlling temperature in magnetic hyperthermia with low Curie temperature particles

    Science.gov (United States)

    Astefanoaei, Iordana; Dumitru, Ioan; Chiriac, Horia; Stancu, Alexandru

    2014-05-01

    Hyperthermia induced by the heating of magnetic particles (MPs) in alternating magnetic field receives a considerable attention in cancer therapy. An interesting development in the studies dedicated to magnetically based hyperthermia is the possibility to control the temperature using MPs with selective magnetic absorption properties. This paper analyzes the temperature field determined by the heating of MPs having low Curie temperature (a FeCrNbB particulate system) injected within a malignant tissue, subjected to an ac magnetic field. The temperature evolution within healthy and tumor tissues was analyzed by finite element method simulations in a thermo-fluid model. The cooling effect produced by blood flowing in blood vessels was considered. This effect is intensified at the increase of blood velocity. The FeCrNbB particles, having the Curie temperature close to the therapeutic range, transfer the heat more homogeneous in the tumor keeping the temperature within the therapeutic range in whole tumor volume. Having the possibility to automatically control the temperature within a tumor, these particle type opens new research horizons in the magnetic hyperthermia.

  14. Gelatine-assisted synthesis of magnetite nanoparticles for magnetic hyperthermia

    Energy Technology Data Exchange (ETDEWEB)

    Alves, André F.; Mendo, Sofia G. [Universidade de Lisboa, Centro de Química e Bioquímica, Faculdade de Ciências (Portugal); Ferreira, Liliana P. [Universidade de Lisboa, Biosystems and Integrative Sciences Institute, Faculdade de Ciências (Portugal); Mendonça, Maria Helena [Universidade de Lisboa, Centro de Química e Bioquímica, Faculdade de Ciências (Portugal); Ferreira, Paula [University of Aveiro, Department of Materials and Ceramic Engineering, CICECO - Aveiro Institute of Materials (Portugal); Godinho, Margarida; Cruz, Maria Margarida [Universidade de Lisboa, Biosystems and Integrative Sciences Institute, Faculdade de Ciências (Portugal); Carvalho, Maria Deus, E-mail: mdcarvalho@ciencias.ulisboa.pt [Universidade de Lisboa, Centro de Química e Bioquímica, Faculdade de Ciências (Portugal)

    2016-01-15

    Magnetite nanoparticles were synthesized by the co-precipitation method exploring the use of gelatine and agar as additives. For comparison, magnetite nanoparticles were also prepared by standard co-precipitation, by co-precipitation with the addition of a surfactant (sodium dodecyl sulphate) and by the thermal decomposition method. The structure and morphology of the synthesized nanoparticles were investigated by powder X-ray diffraction and transmission electron microscopy. Their magnetic properties were studied by SQUID magnetometry and {sup 57}Fe Mössbauer spectroscopy. The nanoparticles potential for applications in magnetic hyperthermia was evaluated through heating efficiency under alternating magnetic field. The results show that all synthesis methods produce Fe{sub 3−x}O{sub 4} nanoparticles with similar sizes. The nanoparticles synthesized in the gelatine medium display the narrowest particle size distribution, the lowest oxidation degree, one of the highest saturation magnetization values and the best hyperthermia efficiency, proving that this gelatine-assisted synthesis is an efficient, environmental friendly, and low-cost method to produce magnetite nanoparticles. Graphical Abstract: A new gelatine-assisted method is an efficient and low-cost way to synthesize magnetite nanoparticles with enhanced magnetic hyperthermia.

  15. Development of a regional hyperthermia treatment planning system.

    Science.gov (United States)

    Van de Kamer, J B; De Leeuw, A A; Hornsleth, S N; Kroeze, H; Kotte, A N; Lagendijk, J J

    2001-01-01

    A flexible and fast regional hyperthermia treatment planning system for the Coaxial TEM System has been devised and is presented. Using Hounsfield Unit based thresholding and manually outlining of the tumour, a 40 cm CT data set (slice thickness 5 mm) is segmented and down scaled to a resolution of 1 cm, requiring only 30 min. The SAR model is based on the finite-difference time-domain (FDTD) method. The number of time steps to achieve numerical stability has been determined and was found to be 7000. Various optimizations of the SAR model have been applied, resulting in a relatively short computation time of 3.7 h (memory requirements 121 MB) on a Pentium III, 450 MHz standard personal computer, running GNU/Linux. The model has been validated using absolute value(Ez) measurements in a standard phantom inserted in the Coaxial TEM Applicator under different conditions and a good agreement was found. Hyperthermia treatment planning in combination with the homemade visualization tools have provided much insight in the regional hyperthermia treatment with the Coaxial TEM Applicator.

  16. TU-B-210-00: MR-Guided Focused Ultrasound Therapy in Oncology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    MR guided focused ultrasound (MRgFUS), or alternatively high-intensity focused ultrasound (MRgHIFU), is approved for thermal ablative treatment of uterine fibroids and pain palliation in bone metastases. Ablation of malignant tumors is under active investigation in sites such as breast, prostate, brain, liver, kidney, pancreas, and soft tissue. Hyperthermia therapy with MRgFUS is also feasible, and may be used in conjunction with radiotherapy and for local targeted drug delivery. MRI allows in situ target definition and provides continuous temperature monitoring and subsequent thermal dose mapping during HIFU. Although MRgHIFU can be very precise, treatment of mobile organs is challenging and advanced techniques are required because of artifacts in MR temperature mapping, the need for intercostal firing, and need for gated HIFU or tracking of the lesion in real time. The first invited talk, “MR guided Focused Ultrasound Treatment of Tumors in Bone and Soft Tissue”, will summarize the treatment protocol and review results from treatment of bone tumors. In addition, efforts to extend this technology to treat both benign and malignant soft tissue tumors of the extremities will be presented. The second invited talk, “MRI guided High Intensity Focused Ultrasound – Advanced Approaches for Ablation and Hyperthermia”, will provide an overview of techniques that are in or near clinical trials for thermal ablation and hyperthermia, with an emphasis of applications in abdominal organs and breast, including methods for MRTI and tracking targets in moving organs. Learning Objectives: Learn background on devices and techniques for MR guided HIFU for cancer therapy Understand issues and current status of clinical MRg HIFU Understand strategies for compensating for organ movement during MRgHIFU Understand strategies for strategies for delivering hyperthermia with MRgHIFU CM - research collaboration with Philips.

  17. Radiation plus local hyperthermia versus radiation plus the combination of local and whole-body hyperthermia in canine sarcomas.

    Science.gov (United States)

    Thrall, D E; Prescott, D M; Samulski, T V; Rosner, G L; Denman, D L; Legorreta, R L; Dodge, R K; Page, R L; Cline, J M; Lee, J; Case, B C; Evans, S M; Oleson, J R; Dewhirst, M W

    1996-03-15

    The purpose of this study was to assess the effect of increasing intratumoral temperatures by the combination of local hyperthermia (LH) and whole body hyperthermia (WBH) on the radiation response of canine sarcomas. Dogs with spontaneous soft tissue sarcomas and no evidence of metastasis were randomized to be treated with radiation combined with either LH alone or LH + WBH. Dogs were accessioned for treatment at two institutions. The radiation dose was 56.25 Gy, given in 25 2.25 Gy daily fractions. Two hyperthermia treatments were given; one during the first and one during the last week of treatment. Dogs were evaluated after treatment for local recurrence, metastasis, and complications. Sixty-four dogs were treated between 1989 and 1993. The use of LH+WBH resulted in statistically significant increases in the low and middle regions of the temperature distributions. The largest increase was in the low temperatures with median CEM 43 T90 values of 4 vs. 49 min for LH vs. LH + WBH, respectively (p<0.001). There was no difference in duration of local tumor control between hyperthermia groups (p = 0.59). The time to metastasis was shorter for dogs receiving LH + WBH (p = 0.02); the hazard ratio for metastatic disease for dogs in the LH + WBH group was 2.4 (95% confidence interval, 1.2-5.4) with respect to dogs in the LH group. Complications were greater in larger tumors and in tumors treated with LH + WBH, CONCLUSION: The combination of LH + WBH with radiation therapy, as described herein, was not associated with an increase in local tumor control in comparison to use of LH with radiation therapy. The combination of LH + WBH also appeared to alter the biology of the metastatic process and was associated with more complications than LH. We identified no rationale for further study of LH + WBH in combination with radiation for treatment of solid tumors.

  18. Optimal ultrasonic array focusing in attenuative media.

    Science.gov (United States)

    Ganguli, A; Gao, R X; Liang, K; Jundt, J

    2011-12-01

    This paper presents a parametric study on the efficiency of ultrasound focusing in an attenuative medium, using phased arrays. Specifically, an analytical model of ultrasound wave focusing in a homogeneous, isotropic and attenuative fluid with point sources is presented. Calculations based on the model have shown that in an attenuative medium, an optimum frequency exists for the best focusing performance for a particular size of aperture and focal distance. The effect of different f numbers on the focusing performance in the attenuative medium is further investigated. The information obtained from the analytical model provides insights into the design and installation of a phased transducer array for energy efficient wave focusing.

  19. Combined magnetic nanoparticle-based microRNA and hyperthermia therapy to enhance apoptosis in brain cancer cells.

    Science.gov (United States)

    Yin, Perry T; Shah, Birju P; Lee, Ki-Bum

    2014-10-29

    A novel therapy is demonstrated utilizing magnetic nanoparticles for the dual purpose of delivering microRNA and inducing magnetic hyperthermia. In particular, the combination of lethal-7a microRNA (let-7a), which targets a number of the survival pathways that typically limit the effectiveness of hyperthermia, with magnetic hyperthermia greatly enhances apoptosis in brain cancer cells.

  20. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... are the limitations of Abdominal Ultrasound Imaging? What is Abdominal Ultrasound Imaging? Ultrasound is safe and painless, ... through the blood vessels. top of page How is the procedure performed? For most ultrasound exams, you ...

  1. Ultrasound of the Thyroid Gland

    Science.gov (United States)

    ... Physician Resources Professions Site Index A-Z Ultrasound - Thyroid Thyroid ultrasound uses sound waves to produce pictures ... the Thyroid? What is an Ultrasound of the Thyroid? Ultrasound is safe and painless, and produces pictures ...

  2. Ultrasound-Guided Breast Biopsy

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Ultrasound-Guided Breast Biopsy An ultrasound-guided breast biopsy ... limitations of Ultrasound-Guided Breast Biopsy? What is Ultrasound-Guided Breast Biopsy? Lumps or abnormalities in the ...

  3. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... of page What are some common uses of the procedure? Abdominal ultrasound imaging is performed to evaluate ... for ultrasound examinations. top of page What does the ultrasound equipment look like? Ultrasound scanners consist of ...

  4. Ultrasound in Arthritis.

    Science.gov (United States)

    Sudoł-Szopińska, Iwona; Schueller-Weidekamm, Claudia; Plagou, Athena; Teh, James

    2017-09-01

    Ultrasound is currently performed in everyday rheumatologic practice. It is used for early diagnosis, to monitor treatment results, and to diagnose remission. The spectrum of pathologies seen in arthritis with ultrasound includes early inflammatory features and associated complications. This article discusses the spectrum of ultrasound features of arthritides seen in rheumatoid arthritis and other connective tissue diseases in adults, such as Sjögren syndrome, lupus erythematosus, dermatomyositis, polymyositis, and juvenile idiopathic arthritis. Ultrasound findings in spondyloarthritis, osteoarthritis, and crystal-induced diseases are presented. Ultrasound-guided interventions in patients with arthritis are listed, and the advantages and disadvantages of ultrasound are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Differences in the Onset and Severity of Symptoms of Malignant Hyperthermia With Different Inhalational Anesthetics

    Science.gov (United States)

    1999-10-01

    Prospects for the noninvasive presymptomatic diagnosis of malignant hyperthermia susceptibility using molecular genetic techniques. Anesthesiology...Clinics of North America 12, 553-570. Fletcher, J.E. (1996, August). Molecular genetics and diagnosis of malignant hyperthermia. American Society of...worldwide awareness of the risks of genetic susceptibility to certain drugs and stress has been identified. According to Gronert (1980), earlier

  6. Tumor cells can’t stand the heat : Boosting the effectiveness of hyperthermia in cervical carcinoma

    NARCIS (Netherlands)

    Oei, A.L.

    2017-01-01

    Mild hyperthermia, e.g. local heating of the tumor to 40-42.5°C for approximately one hour, is a clinically applied anti-cancer treatment to sensitize radiotherapy and/or chemotherapy. Hyperthermia has already been applied since the 1980s, with convincing evidence in in vitro and in vivo models and

  7. A case of malignant hyperthermia captured by an anesthesia information management system.

    Science.gov (United States)

    Maile, Michael D; Patel, Rajesh A; Blum, James M; Tremper, Kevin K

    2011-04-01

    Many cases of malignant hyperthermia triggered by volatile anesthetic agents have been described. However, to our knowledge, there has not been a report describing the precise changes in physiologic data of a human suffering from this process. Here we describe a case of malignant hyperthermia in which monitoring information was frequently and accurately captured by an anesthesia information management system.

  8. Development and evaluation of a 27MHz multi-electrode current-source interstitial hyperthermia system

    NARCIS (Netherlands)

    R.S.J.P. Kaatee (Robert)

    2000-01-01

    textabstractHyperthermia is the elevation of tissue temperatures to 40-45 °C and is mainly applied as a cancer therapy in combination with other treatment modalities, such as radiotherapy or chemotherapy. A detailed introduction to the biology, physics and clinical application of hyperthermia is

  9. Three-Dimensional Microwave Hyperthermia for Breast Cancer Treatment in a Realistic Environment Using Particle Swarm Optimization.

    Science.gov (United States)

    Nguyen, Phong Thanh; Abbosh, Amin; Crozier, Stuart

    2017-06-01

    In this paper, a technique for noninvasive microwave hyperthermia treatment for breast cancer is presented. In the proposed technique, microwave hyperthermia of patient-specific breast models is implemented using a three-dimensional (3-D) antenna array based on differential beam-steering subarrays to locally raise the temperature of the tumor to therapeutic values while keeping healthy tissue at normal body temperature. This approach is realized by optimizing the excitations (phases and amplitudes) of the antenna elements using the global optimization method particle swarm optimization. The antennae excitation phases are optimized to maximize the power at the tumor, whereas the amplitudes are optimized to accomplish the required temperature at the tumor. During the optimization, the technique ensures that no hotspots exist in healthy tissue. To implement the technique, a combination of linked electromagnetic and thermal analyses using MATLAB and the full-wave electromagnetic simulator is conducted. The technique is tested at 4.2 GHz, which is a compromise between the required power penetration and focusing, in a realistic simulation environment, which is built using a 3-D antenna array of 4 × 6 unidirectional antenna elements. The presented results on very dense 3-D breast models, which have the realistic dielectric and thermal properties, validate the capability of the proposed technique in focusing power at the exact location and volume of tumor even in the challenging cases where tumors are embedded in glands. Moreover, the models indicate the capability of the technique in dealing with tumors at different on- and off-axis locations within the breast with high efficiency in using the microwave power.

  10. Peptide and non-peptide opioid-induced hyperthermia in rabbits

    Science.gov (United States)

    Kandasamy, S. B.; Williams, B. A.

    1983-01-01

    The intracerebroventricular administration of prototype nonpeptide opioid receptor (mu, kappa, and sigma) agonists, morphine, ketocyclazocine, and N-allyl-normetazocine was found to induce hyperthermia in rabbits. The similar administration of peptide opioids like beta-endorphin (BE), methionine-enkephalin (ME), and its synthetic analogue D-ala2-methionine-enkephalinamide (DAME) was also found to cause hyperthermia. Results indicate that only the liver-like transport system is important to the ventricular inactivation of BE and DAME. Prostaglandins and norepinephrine were determined not to be involved in peptide and nonpeptide opioid-induced hyperthermia. In addition, cAMP was not required since a phosphodiesterase inhibitor, theophylline, did not accentuate the hyperthermia due to peptide and nonpeptide opioids. Naloxone-sensitive receptors were found to be involved in the induction of hyperthermia by morphine, BE, ME, and DAME since naloxone attenuated them. However, the hyperthermic response to ketocyclazocine and N-allyl-normetazocine was not antagonized by naloxone.

  11. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... flat sections of the body. Advancements in ultrasound technology include three-dimensional (3-D) ultrasound that formats ... also used to: guide procedures such as needle biopsies , in which needles are used to sample cells ...

  12. Medical Ultrasound Imaging.

    Science.gov (United States)

    Hughes, Stephen

    2001-01-01

    Explains the basic principles of ultrasound using everyday physics. Topics include the generation of ultrasound, basic interactions with material, and the measurement of blood flow using the Doppler effect. (Author/MM)

  13. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... may also be saved. Doppler ultrasound, a special application of ultrasound, measures the direction and speed of ... understanding of the possible charges you will incur. Web page review process: This Web page is reviewed ...

  14. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... of page What are some common uses of the procedure? Ultrasound examinations can help to diagnose a ... the scan begins. top of page What does the equipment look like? Ultrasound scanners consist of a ...

  15. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... flat sections of the body. Advancements in ultrasound technology include three-dimensional (3-D) ultrasound that formats ... accredited facilities database . This website does not provide cost information. The costs for specific medical imaging tests, ...

  16. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... diagnose heart conditions, and assess damage after a heart attack. Ultrasound is safe, noninvasive, and does not use ... heart failure, and to assess damage after a heart attack. Ultrasound of the heart is commonly called an “ ...

  17. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... Us News Physician Resources Professions Site Index A-Z General Ultrasound Ultrasound imaging uses sound waves to ... type of examination you will have. For some scans your doctor may instruct you not to eat ...

  18. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... and ovaries. top of page What will I experience during and after the procedure? Ultrasound examinations are ... ultrasound , there are no known harmful effects on humans. top of page What are the limitations of ...

  19. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... top of page What are the benefits vs. risks? Benefits Most ultrasound scanning is noninvasive (no needles ... procedures such as needle biopsies and fluid aspiration. Risks For standard diagnostic ultrasound , there are no known ...

  20. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... saved. Doppler ultrasound, a special application of ultrasound, measures the direction and speed of blood cells as ... tests, treatments and procedures may vary by geographic region. Discuss the fees associated with your prescribed procedure ...