Sample records for hypersonic shear flows

  1. A MEMS Floating Element Shear Stress Sensor for Hypersonic Flows

    National Research Council Canada - National Science Library

    Sheplak, Mark


    ... for the measurement of unsteady hypersonic flow phenomena. The work focused on three parts: (1) modeling, optimization, and fabrication of a piezoresistive-based micromachined, floating element shear stress sensor, (2...

  2. Hypersonic Air Flow with Finite Rate Chemistry

    National Research Council Canada - National Science Library

    Boyd, Ian


    ... describe the effects of non-equilibrium flow chemistry, shock interaction, and turbulent mixing and combustion on the performance of vehicles and air breathing engines designed to fly in the hypersonic flow...

  3. Optimization of Conical Wings in Hypersonic Flow (United States)

    Triantafillou, S. A.; Schwendeman, D. W.; Cole, J. D.

    A method of calculation is presented to determine conical wing shapes that minimize the coefficient of (wave) drag, CD, for a fixed coefficient of lift, CL, in steady, hypersonic flow. An optimization problem is considered for the compressive flow underneath wings at a small angle of attack δ and at a high free-stream Mach number M∞ so that hypersonic small-disturbance (HSD) theory applies. A figure of merit, F=CD/CL3/2, is computed for each wing using a finite volume discretization of the HSD equations. A set of design variables that determine the shape of the wing is defined and adjusted iteratively to find a shape that minimizes F for a given value of the hypersonic similarity parameter, H= (M∞δ)-2, and planform area. Wings with both attached and detached bow shocks are considered. Optimal wings are found for flat delta wings and for a family of caret wings. In the flat-wing case, the optima have detached bow shocks while in the caret-wing case, the optimum has an attached bow shock. An improved drag-to-lift performance is found using the optimization procedure for curved wing shapes. Several optimal designs are found, all with attached bow shocks. Numerical experiments are performed and suggest that these optima are unique.

  4. DNS Studies of Transitional Hypersonic Reacting Flows Over 3-D Hypersonic Vehicles

    National Research Council Canada - National Science Library

    Zhong, Xiaolin


    The objectives of this research project are to develop CFD techniques and to conduct DNS studies of fundamental flow physics leading to boundary-layer instability and transition in hypersonic flows...

  5. Smooth leading edge transition in hypersonic flow

    Energy Technology Data Exchange (ETDEWEB)

    Gaillard, L.; Benard, E.; Alziary de Roquefort, T. [CEAT, Poitiers (France). Lab. d`Etudes Aerodynamiques


    The boundary layer transition along the attachment line of a smooth swept circular cylinder in hypersonic flow is investigated in a blowdown wind tunnel. A wide range of spanwise Mach numbers Me (3.28 to 6.78) is covered with the help of different models at several sweep angles (60 {<=}{Lambda}{<=}80 ). The transition is indirectly detected by means of heat flux measurements. The influence of the wall to stagnation temperature ratio is investigated by cooling the model with liquid nitrogen. (orig.) With 9 figs., 2 tabs., 30 refs.

  6. Hypersonic merged layer blunt body flows with wakes (United States)

    Jain, Amolak C.; Dahm, Werner K.


    An attempt is made here to understand the basic physics of the flowfield with wake on a blunt body of revolution under hypersonic rarefied conditions. A merged layer model of flow is envisioned. Full steady-state Navier-Stokes equations in spherical polar coordinate system are computed from the surface with slip and temperature jump conditions to the free stream by the Accelerated Successive Replacement method of numerical integration. Analysis is developed for bodies of arbitrary shape, but actual computations have been carried out for a sphere and sphere-cone body. Particular attention is paid to set the limit of the onset of separation, wake closure, shear-layer impingement, formation and dissipation of the shocks in the flowfield. Validity of the results is established by comparing the present results for sphere with the corresponding results of the SOFIA code in the common region of their validity and with the experimental data.

  7. Micro-Ramps for Hypersonic Flow Control

    Directory of Open Access Journals (Sweden)

    Konstantinos Kontis


    Full Text Available Shock/boundary layer interaction (SBLI is an undesirable phenomenon, occurring in high-speed propulsion systems. The conventional method to manipulate and control SBLI is using a bleed system that involves the removal of a certain amount of mass of the inlet flow to control boundary layer separation. However, the system requires a larger nacelle to compensate the mass loss, larger nacelles contribute to additional weight and drag and reduce the overall performance. This study investigates a novel type of flow control device called micro-ramps, a part of the micro vortex generators (VGs family that intends to replace the bleed technique. Micro-ramps produce pairs of counter-rotating streamwise vortices, which help to suppress SBLI and reduce the chances of flow separation. Experiments were done at Mach 5 with two micro-ramp models of different sizes. Schlieren photography, surface flow visualization and infrared thermography were used in this investigation. The results revealed the detailed flow characteristics of the micro-ramp, such as the primary and secondary vortices. This helps us to understand the overall flow physics of micro-ramps in hypersonic flow and their application for SBLI control.

  8. NATO Advanced Study Institute on Molecular Physics and Hypersonic Flows

    CERN Document Server


    Molecular Physics and Hypersonic Flows bridges the gap between the fluid dynamics and molecular physics communities, emphasizing the role played by elementary processes in hypersonic flows. In particular, the work is primarily dedicated to filling the gap between microscopic and macroscopic treatments of the source terms to be inserted in the fluid dynamics codes. The first part of the book describes the molecular dynamics of elementary processes both in the gas phase and in the interaction with surfaces by using quantum mechanical and phenomenological approaches. A second group of contributions describes thermodynamics and transport properties of air components, with special attention to the transport of internal energy. A series of papers is devoted to the experimental and theoretical study of the flow of partially ionized gases. Subsequent contributions treat modern computational techniques for 3-D hypersonic flow. Non-equilibrium vibrational kinetics are then described, together with the coupling of vibra...

  9. Micromachined Sensors for Hypersonic Flows Project (United States)

    National Aeronautics and Space Administration — Interdisciplinary Consulting Corporation proposes a sensor that offers the unique capability to make wall shear stress measurement and pressure measurements for time...

  10. Molecular-Based Optical Diagnostics for Hypersonic Nonequilibrium Flows (United States)

    Danehy, Paul; Bathel, Brett; Johansen, Craig; Winter, Michael; O'Byrne, Sean; Cutler, Andrew


    This presentation package consists of seven different talks rolled up into one. These talks are all invited orals presentations in a special session at the Aviation 2015 conference and represent contributions that were made to a recent AIAA book that will be published entitled 'Hypersonic Nonequilibrium Flows: Fundamentals and Recent Advances'. Slide 5 lists the individual presentations that will be given during the special session.

  11. High-Fidelity Kinetics and Radiation Transport for NLTE Hypersonic Flows Project (United States)

    National Aeronautics and Space Administration — The modeling of NLTE hypersonic flows combines several disciplines: chemistry, kinetics, radiation transport, fluid mechanics, and surface science. No single code or...

  12. Surface pressure measurements for CFD code validation in hypersonic flow

    Energy Technology Data Exchange (ETDEWEB)

    Oberkampf, W.L.; Aeschliman, D.P.; Henfling, J.F.; Larson, D.E.


    Extensive surface pressure measurements were obtained on a hypersonic vehicle configuration at Mach 8. All of the experimental results were obtained in the Sandia National Laboratories Mach 8 hypersonic wind tunnel for laminar boundary layer conditions. The basic vehicle configuration is a spherically blunted 10{degrees} half-angle cone with a slice parallel with the axis of the vehicle. The bluntness ratio of the geometry is 10% and the slice begins at 70% of the length of the vehicle. Surface pressure measurements were obtained for angles of attack from {minus}10 to + 18{degrees}, for various roll angles, at 96 locations on the body surface. A new and innovative uncertainty analysis was devised to estimate the contributors to surface pressure measurement uncertainty. Quantitative estimates were computed for the uncertainty contributions due to the complete instrumentation system, nonuniformity of flow in the test section of the wind tunnel, and variations in the wind tunnel model. This extensive set of high-quality surface pressure measurements is recommended for use in the calibration and validation of computational fluid dynamics codes for hypersonic flow conditions.

  13. Center for Hypersonic Combined Cycle Flow Physics (United States)


    shock train decrease freestream velocity to subsonic values, and the flow is now dominated by the higher momentum of the fuel jet Figure 3: SPIV...Averaged Navier- Stokes Simulation of a Supersonic Reacting Wall Jet ” Combustion & Flame, Vol. 159, No. 3, 2012, pp. 1127-1138. 8. Magnotti, G., Cutler...Scalar-Filtered Mass-Density- Function Simulation of Swirling Reacting Flows on Unstructured Grid, AIAA Journal, 2012, Vol.50: 2476-2482 12. Esposito

  14. Tilting Shear Layers in Coastal Flows (United States)


    term goals of this research are to explore the evolution of flows with strong horizontal shear and horizontal density gradients (see Figure 1). These...converting horizontal shear to vertical shear. The horizontal shear leads to the growth of vertical vortices that are subsequently tilted, stretched...small-scale flows influence the water properties within the lagoons and merge with the larger scale flows around the islands. Specific targets are: 1

  15. Strong MHD-intraction in hypersonic flows near bodies (United States)

    Fomichev, Vladislav; Yadrenkin, Mikhail


    The results of experimental studies of local MHD interaction near bodies of various configurations are presented in the case when the work of the volumetric electromagnetic force leads to the deceleration of the hypersonic air flow, to the fixation of the ionization region in the flow, to the change of pressure in the interaction zone and to the appearance of a bow shock wave in front of the interaction zone. Shown, that at strong MHD-interaction the shape of the model slightly influences the final result of the change in the flow pattern, since the size of the interaction region becomes comparable, and in some cases larger than the size of the streamlined body.

  16. Experimental Aspects of Code Validation in Hypersonic Flows (United States)

    Chanetz, Bruno; Délery, Jean


    In spite of the spectacular progress in CFD there is still a strong need to validate the computer codes by comparison with experiments. The first validation step is the assessment of the code numerical safety and the physical models accuracy. This validation step requires carefully made building block experiments. To be calculable, such experiments must satisfy conditions such as the precise definition of the test set-up geometry, the absence of uncontrolled parasitic effects, a complete information on the flow conditions and indication on the uncertainty margins. Under these conditions, the experiment can be put into a data bank which will be precious to help in the development of reliable and accurate codes. The paper provides an overview of modern measurement techniques for hypersonic flows analysis. The demonstration is illustrated by laminar experiments used to assess the numerical accuracy of codes run in high Mach number flows.

  17. Magnetorheological Shear Flow Near Jamming (United States)

    Vågberg, Daniel; Tighe, Brian


    Flow in magnetorheological (MR) fluids and systems near jamming both display hallmarks of complex fluid rheology, including yield stresses and shear thinning viscosities. They are also tunable, which means that both phenomena can be used as a switching mechanism in ``smart'' fluids, i.e. fluids where properties can be tuned rapidly and reversibly by changing external parameters. We use numerical simulations to investigate the rheological properties of MR fluids close to the jamming transition as a function of the applied field and volume fraction. We are especially interested in the crossover region where both phenomena are needed to describe the observed dynamics. Funded by the Dutch Organization for Scientific Research (NWO).

  18. Transition to turbulence in a shear flow

    CERN Document Server

    Eckhardt, B; Eckhardt, Bruno; Mersmann, Alois


    We analyze the properties of a 19 dimensional Galerkin approximation to a parallel shear flow. The laminar flow with a sinusoidal shape is stable for all Reynolds numbers Re. For sufficiently large Re additional stationary flows occur; they are all unstable. The lifetimes of finite amplitude perturbations show a fractal dependence on amplitude and Reynolds number. These findings are in accord with observations on plane Couette flow and suggest a universality of this transition szenario in shear flows.

  19. Gas-Kinetic Computational Algorithms for Hypersonic Flows in Continuum and Transitional Regimes Project (United States)

    National Aeronautics and Space Administration — This SBIR Phase I project explores two gas-kinetic computational algorithms for simulation of hypersonic flows in both continuum and transitional regimes. One is the...

  20. Astrophysical Applications of Relativistic Shear Flows (United States)

    Liang, Edison


    We review recent PIC simulation results of relativistic collisionless shear flows in both 2D and 3D. We apply these results to spine-sheath jet models of blazars and gamma-ray-bursters, and to shear flows near the horizon of rapidly spinning black holes. We will discuss magnetic field generation, particle energization and radiation processes, and their observational consequences.

  1. Modeling of conjugated heat transfer in unsteady hypersonic flow (United States)

    Pogudalina, S. V.; Goldfeld, M. A.; Pickalov, V. V.; Fedorova, N. N.


    Heat exchange of a blunt cylinder in a hypersonic (M = 6) air flow are studied numerically. Calculations are carried out in ANSYS Fluent, taking into account the conjugate heat transfer between the external flow and the solid model under steady and transient incoming flow conditions. As a result of the calculations, the fields of temperature and other external flow parameters were obtained. The heating regimes are defined for the steel model and the heat transfer sensor installed in the frontal part of the model. Results of the analysis of gas temperature measurement are presented at change of the temperature from 1400 K to 2000 K in an impulse wind tunnel with operation time up to 160 ms. The total temperature was measured by chromel -alumel thermocouples with the junction sizes of 0.05, 0.1 and 0.2 mm. Deconvolution method was used for the solution of convolution integral equation. Thermocouples calibration was done by measurements of temperature step-function. Deconvolution method allows obtaining distinctive feature in the form of temperature peak, which is typical for the temperature distribution in impulse wind tunnels. The estimation of an error of reconstruction of total temperature by means of the offered approach has demonstrated that the temperature can be reconstructed with accuracy not worse than 8%.

  2. Anisotropic Spinodal Decomposition under Shear Flow (United States)

    Imaeda, T.; Onuki, A.; Kawasaki, K.


    When a critical fluid is brought into the unstable region in the presence of shear flow, growing fluctuations are greatly elongated in the flow direction, giving rise to strongly anisotropic light scattering. In the strong shear case the linear growth theory becomes applicable in a sizable time region 0 Bar-on and Miller, it is found to increase as t(a') with a' =~ 0.2, whereas the characteristic size in the flow direction continues to increase roughly as t.

  3. Dynamics of colloidal crystals in shear flow

    NARCIS (Netherlands)

    Derks, D.; Wu, Y.L.; van Blaaderen, A.; Imhof, A.


    We investigate particle dynamics in nearly hard sphere colloidal crystals submitted to a steady shear flow. Both the fluctuations of single colloids and the collective motion of crystalline layers as a whole are studied by using a home-built counter rotating shear cell in combination with confocal

  4. Arc-heated gas flow experiments for hypersonic propulsion applications (United States)

    Roseberry, Christopher Matthew

    Although hydrogen is an attractive fuel for a hypersonic air-breathing vehicle in terms of reaction rate, flame temperature, and energy content per unit mass, the substantial tank volume required to store hydrogen imposes a drag penalty to performance that tends to offset these advantages. An alternative approach is to carry a hydrocarbon fuel and convert it on-board into a hydrogen-rich gas mixture to be injected into the engine combustors. To investigate this approach, the UTA Arc-Heated Wind Tunnel facility was modified to run on methane rather than the normally used nitrogen. Previously, this facility was extensively developed for the purpose of eventually performing experiments simulating scramjet engine flow along a single expansion ramp nozzle (SERN) in addition to more generalized applications. This formidable development process, which involved modifications to every existing subsystem along with the incorporation of new subsystems, is described in detail. Fortunately, only a minor plumbing reconfiguration was required to prepare the facility for the fuel reformation research. After a failure of the arc heater power supply, a 5.6 kW plasma-cutting torch was modified in order to continue the arc pyrolysis experiments. The outlet gas flow from the plasma torch was sampled and subsequently analyzed using gas chromatography. The experimental apparatus converted the methane feedstock almost completely into carbon, hydrogen and acetylene. A high yield of hydrogen, consisting of a product mole fraction of roughly 0.7, was consistently obtained. Unfortunately, the energy consumption of the apparatus was too excessive to be feasible for a flight vehicle. However, other researchers have pyrolyzed hydrocarbons using electric arcs with much less power input per unit mass.

  5. Thermodynamics of dilute gases in shear flow (United States)

    Jou, D.; Criado-Sancho, M.


    We consider the effect of shear and normal viscous pressures on the non-equilibrium entropy of ideal gases in Couette flow. These results extend the previous ones (Bidar et al., Physica A 233 (1996) 163), where normal pressure effects were ignored. Furthermore, we analyze the non-equilibrium contributions to the chemical potential, which may be useful in the analysis of shear-induced effects on colligative properties and chemical equilibrium.

  6. Sheared flows and turbulence in fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Pedrosa, M A [Laboratorio Nacional de Fusion, Asociacion EURATOM/CIEMAT, 28040-Madrid (Spain); Carreras, B A [Laboratorio Nacional de Fusion, Asociacion EURATOM/CIEMAT, 28040-Madrid (Spain); Hidalgo, C [Laboratorio Nacional de Fusion, Asociacion EURATOM/CIEMAT, 28040-Madrid (Spain); Silva, C [Centro de Fusao Nuclear, Instituto Superior Tecnico, Associaccao EURATOM/IST, 1049-001-Lisbon (Portugal); Hron, M [Institute of Plasma Physics, Association EURATOM/IPP.CR, AS CR Prague (Czech Republic); GarcIa, L [Universidad Carlos III, 28911-Leganes, Madrid (Spain); Alonso, J A [Laboratorio Nacional de Fusion, Asociacion EURATOM/CIEMAT, 28040-Madrid (Spain); Calvo, I [Laboratorio Nacional de Fusion, Asociacion EURATOM/CIEMAT, 28040-Madrid (Spain); Pablos, J L de [Laboratorio Nacional de Fusion, Asociacion EURATOM/CIEMAT, 28040-Madrid (Spain); Stoeckel, J [Institute of Plasma Physics, Association EURATOM/IPP.CR, AS CR Prague (Czech Republic)


    The universality of the observed characteristics of sheared flows points to a general ingredient to explain the damping/driving mechanisms responsible for the development of these flows in the plasma boundary region of fusion devices. Experiments in the TJ-II stellarator showing that the generation of spontaneous sheared flows at the plasma edge requires a minimum plasma density or density gradient, open a unique possibility to characterize the dynamics of sheared flow development in fusion plasmas. The effective viscosity at the plasma edge can be deduced by means of the decay rate of the perpendicular flow measurement once the driving force has been removed. Changes in the plasma rotation and turbulence have been studied when an electric field is externally applied at the plasma edge. The relaxation of flows and radial electric fields has been compared in the edge plasma region of TJ-II stellarator and CASTOR tokamak showing a striking similarity. The findings can help to test neoclassical and anomalous damping mechanisms in fusion plasmas. Finally, the emergence of the plasma edge sheared flow as a function of plasma density can be explained using a simple second-order phase transition model that reproduces many of the features of the TJ-II experimental data while capturing the qualitative features of the transition near the critical point.

  7. Turbulent Shear Layers in Supersonic Flow

    CERN Document Server

    Smits, Alexander J


    A good understanding of turbulent compressible flows is essential to the design and operation of high-speed vehicles. Such flows occur, for example, in the external flow over the surfaces of supersonic aircraft, and in the internal flow through the engines. Our ability to predict the aerodynamic lift, drag, propulsion and maneuverability of high-speed vehicles is crucially dependent on our knowledge of turbulent shear layers, and our understanding of their behavior in the presence of shock waves and regions of changing pressure. Turbulent Shear Layers in Supersonic Flow provides a comprehensive introduction to the field, and helps provide a basis for future work in this area. Wherever possible we use the available experimental work, and the results from numerical simulations to illustrate and develop a physical understanding of turbulent compressible flows.

  8. CFD for hypersonic propulsion (United States)

    Povinelli, Louis A.


    An overview is given of research activity on the application of computational fluid dynamics (CDF) for hypersonic propulsion systems. After the initial consideration of the highly integrated nature of air-breathing hypersonic engines and airframe, attention is directed toward computations carried out for the components of the engine. A generic inlet configuration is considered in order to demonstrate the highly three dimensional viscous flow behavior occurring within rectangular inlets. Reacting flow computations for simple jet injection as well as for more complex combustion chambers are then discussed in order to show the capability of viscous finite rate chemical reaction computer simulations. Finally, the nozzle flow fields are demonstrated, showing the existence of complex shear layers and shock structure in the exhaust plume. The general issues associated with code validation as well as the specific issue associated with the use of CFD for design are discussed. A prognosis for the success of CFD in the design of future propulsion systems is offered.

  9. Atomistic Simulation of Non-Equilibrium Phenomena in Hypersonic Flows (United States)

    Norman, Paul Erik

    The goal of this work is to model the heterogeneous recombination of atomic oxygen on silica surfaces, which is of interest for accurately predicting the heating on vehicles traveling at hypersonic speeds. This is accomplished by creating a finite rate catalytic model, which describes recombination with a set of elementary gas-surface reactions. Fundamental to a description of surface catalytic reactions are the in situ chemical structures on the surface where recombination can occur. Using molecular dynamics simulations with the Reax GSISiO potential, we find that the chemical sites active in direct gas-phase reactions on silica surfaces consist of a small number of specific structures (or defects). The existence of these defects on real silica surfaces is supported by experimental results and the structure and energetics of these defects have been verified with quantum chemical calculations. The reactions in the finite rate catalytic model are based on the interaction of molecular and atomic oxygen with these defects. Trajectory calculations are used to find the parameters in the forward rate equations, while a combination of detailed balance and transition state theory are used to find the parameters in the reverse rate equations. The rate model predicts that the oxygen recombination coefficient is relatively constant at T (300-1000 K), in agreement with experimental results. At T > 1000 K the rate model predicts a drop off in the oxygen recombination coefficient, in disagreement with experimental results, which predict that the oxygen recombination coefficient increases with temperature. A discussion of the possible reasons for this disagreement, including non-adiabatic collision dynamics, variable surface site concentrations, and additional recombination mechanisms is presented. This thesis also describes atomistic simulations with Classical Trajectory Calculation Direction Simulation Monte Carlo (CTC-DSMC), a particle based method for modeling non

  10. Hydrodynamic theory of tissue shear flow

    CERN Document Server

    Popović, Marko; Merkel, Matthias; Etournay, Raphaël; Eaton, Suzanne; Jülicher, Frank; Salbreux, Guillaume


    We propose a hydrodynamic theory to describe shear flows in developing epithelial tissues. We introduce hydrodynamic fields corresponding to state properties of constituent cells as well as a contribution to overall tissue shear flow due to rearrangements in cell network topology. We then construct a constitutive equation for the shear rate due to topological rearrangements. We identify a novel rheological behaviour resulting from memory effects in the tissue. We show that anisotropic deformation of tissue and cells can arise from two distinct active cellular processes: generation of active stress in the tissue, and actively driven cellular rearrangements. These two active processes result in distinct cellular and tissue shape changes, depending on boundary conditions applied on the tissue. Our findings have consequences for the understanding of tissue morphogenesis during development.

  11. Active dynamics of tissue shear flow (United States)

    Popović, Marko; Nandi, Amitabha; Merkel, Matthias; Etournay, Raphaël; Eaton, Suzanne; Jülicher, Frank; Salbreux, Guillaume


    We present a hydrodynamic theory to describe shear flows in developing epithelial tissues. We introduce hydrodynamic fields corresponding to state properties of constituent cells as well as a contribution to overall tissue shear flow due to rearrangements in cell network topology. We then construct a generic linear constitutive equation for the shear rate due to topological rearrangements and we investigate a novel rheological behaviour resulting from memory effects in the tissue. We identify two distinct active cellular processes: generation of active stress in the tissue, and actively driven topological rearrangements. We find that these two active processes can produce distinct cellular and tissue shape changes, depending on boundary conditions applied on the tissue. Our findings have consequences for the understanding of tissue morphogenesis during development.

  12. Dynamics of microcapsules in oscillating shear flow (United States)

    Zhao, Mengye; Bagchi, Prosenjit


    We present a three-dimensional numerical study on the dynamics of deformable capsules in sinusoidally oscillating shear flow. We consider capsules of spherical and oblate spheroid resting shapes. For spherical resting shapes, we find an identical deformation response during positive and negative vorticities. However, the deformation response becomes unequal and shows complex behavior for nonspherical resting shapes. The average elongation is higher in the retarding phase of the shear flow than in the accelerating phase. Primarily two types of dynamics are observed for nonspherical shapes: a clockwise/counter-clockwise swinging motion in response to the altering flow direction that occurs at both high and low values of shear rate amplitudes, and a continuous/unidirectional tumbling motion that occurs at intermediate values. The unidirectional tumbling motion occurs despite the fact that the time-average vorticity is zero. Such a tumbling motion is accompanied by a continuous tank-treading motion of the membrane in the opposite direction. We obtain phase diagram that shows existence of two critical shear rates and two oscillation frequencies. The unidirectional tumbling motion occurs in the intermediate range, and the clockwise/counter-clockwise swinging motion occurs otherwise. We also find that the dynamics is highly sensitive to the initial condition. A swinging is generally observed when the capsule is released aligned with the extensional or compressional axis of the shear flow, and a tumbling is observed otherwise. These results suggest the possibility of chaotic behavior of cells in time-dependent flows. We provide explanations of such complex dynamics by analyzing the coupling between the shape and angular oscillation and the imposed flow oscillation.

  13. Shear-dependant toroidal vortex flow

    Energy Technology Data Exchange (ETDEWEB)

    Khorasani, Nariman Ashrafi; Haghighi, Habib Karimi [Payame Noor University, Tehran (Iran, Islamic Republic of)


    Pseudoplastic circular Couette flow in annulus is investigated. The flow viscosity is dependent on the shear rate, which directly affects the conservation equations that are solved in the present study by the spectral method in the present study. The pseudoplastic model adopted here is shown to be a suitable representative of nonlinear fluids. Unlike the previous studies, where only the square of shear rate term in the viscosity expression was considered to ease the numerical manipulations, in the present study takes the term containing the quadratic power into account. The curved streamlines of the circular Couette flow can cause a centrifugal instability leading to toroidal vortices, known as Taylor vortices. It is further found that the critical Taylor number becomes lower as the pseudoplastic effect increases. Comparison with existing measurements on pseudoplastic circular Couette flow results in good agreement.

  14. Reynolds stress and shear flow generation

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Michelsen, Poul; Naulin, V.


    to the treatment of the pseudo-Reynolds stress, we present analytical and numerical results which demonstrate that the Reynolds stress in a plasma, indeed, generates a poloidal shear flow. The numerical simulations are performed both in a drift wave turbulence regime and a resistive interchange turbulence regime......The so-called Reynolds stress may give a measure of the self-consistent flow generation in turbulent fluids and plasmas by the small-scale turbulent fluctuations. A measurement of the Reynolds stress can thus help to predict flows, e.g. shear flows in plasmas. This may assist the understanding...... of improved confinement scenarios such as H-mode confinement regimes. However, the determination of the Reynolds stress requires measurements of the plasma potential, a task that is difficult in general and nearly impossible in hot plasmas in large devices. In this work we investigate an alternative method...

  15. Wall catalytic recombination and boundary conditions in nonequilibrium hypersonic flows - With applications (United States)

    Scott, Carl D.


    The meaning of catalysis and its relation to aerodynamic heating in nonequilibrium hypersonic flows are discussed. The species equations are described and boundary conditions for them are derived for a multicomponent gas and for a binary gas. Slip effects are included for application of continuum methods to low-density flows. Measurement techniques for determining catalytic wall recombination rates are discussed. Among them are experiments carried out in arc jets as well as flow reactors. Diagnostic methods for determining the atom or molecule concentrations in the flow are included. Results are given for a number of materials of interest to the aerospace community, including glassy coatings such as the RCG coating of the Space Shuttle and for high temperature refractory metals such as coated niobium. Methods of calculating the heat flux to space vehicles in nonequilibrium flows are described. These methods are applied to the Space Shuttle, the planned Aeroassist Flight Experiment, and a hypersonic slender vehicle such as a transatmospheric vehicle.

  16. Red blood cell in simple shear flow (United States)

    Chien, Wei; Hew, Yayu; Chen, Yeng-Long


    The dynamics of red blood cells (RBC) in blood flow is critical for oxygen transport, and it also influences inflammation (white blood cells), thrombosis (platelets), and circulatory tumor migration. The physical properties of a RBC can be captured by modeling RBC as lipid membrane linked to a cytoskeletal spectrin network that encapsulates cytoplasm rich in hemoglobin, with bi-concave equilibrium shape. Depending on the shear force, RBC elasticity, membrane viscosity, and cytoplasm viscosity, RBC can undergo tumbling, tank-treading, or oscillatory motion. We investigate the dynamic state diagram of RBC in shear and pressure-driven flow using a combined immersed boundary-lattice Boltzmann method with a multi-scale RBC model that accurately captures the experimentally established RBC force-deformation relation. It is found that the tumbling (TU) to tank-treading (TT) transition occurs as shear rate increases for cytoplasm/outer fluid viscosity ratio smaller than 0.67. The TU frequency is found to be half of the TT frequency, in agreement with experiment observations. Larger viscosity ratios lead to the disappearance of stable TT phase and unstable complex dynamics, including the oscillation of the symmetry axis of the bi-concave shape perpendicular to the flow direction. The dependence on RBC bending rigidity, shear modulus, the order of membrane spectrin network and fluid field in the unstable region will also be discussed.

  17. Propagation of waves in shear flows

    CERN Document Server

    Fabrikant, A L


    The state of the art in a theory of oscillatory and wave phenomena in hydrodynamical flows is presented in this book. A unified approach is used for waves of different physical origins. A characteristic feature of this approach is that hydrodynamical phenomena are considered in terms of physics; that is, the complement of the conventionally employed formal mathematical approach. Some physical concepts such as wave energy and momentum in a moving fluid are analysed, taking into account induced mean flow. The physical mechanisms responsible for hydrodynamic instability of shear flows are conside

  18. Multiscale Computational Analysis of Nitrogen and Oxygen Gas-Phase Thermochemistry in Hypersonic Flows (United States)

    Bender, Jason D.

    Understanding hypersonic aerodynamics is important for the design of next-generation aerospace vehicles for space exploration, national security, and other applications. Ground-level experimental studies of hypersonic flows are difficult and expensive; thus, computational science plays a crucial role in this field. Computational fluid dynamics (CFD) simulations of extremely high-speed flows require models of chemical and thermal nonequilibrium processes, such as dissociation of diatomic molecules and vibrational energy relaxation. Current models are outdated and inadequate for advanced applications. We describe a multiscale computational study of gas-phase thermochemical processes in hypersonic flows, starting at the atomic scale and building systematically up to the continuum scale. The project was part of a larger effort centered on collaborations between aerospace scientists and computational chemists. We discuss the construction of potential energy surfaces for the N4, N2O2, and O4 systems, focusing especially on the multi-dimensional fitting problem. A new local fitting method named L-IMLS-G2 is presented and compared with a global fitting method. Then, we describe the theory of the quasiclassical trajectory (QCT) approach for modeling molecular collisions. We explain how we implemented the approach in a new parallel code for high-performance computing platforms. Results from billions of QCT simulations of high-energy N2 + N2, N2 + N, and N2 + O2 collisions are reported and analyzed. Reaction rate constants are calculated and sets of reactive trajectories are characterized at both thermal equilibrium and nonequilibrium conditions. The data shed light on fundamental mechanisms of dissociation and exchange reactions -- and their coupling to internal energy transfer processes -- in thermal environments typical of hypersonic flows. We discuss how the outcomes of this investigation and other related studies lay a rigorous foundation for new macroscopic models for

  19. Ultrasonically Absorptive Coatings for Hypersonic Laminar Flow Control (United States)


    integrated into TPS. This, in turn, provides basis for design of UAC-TPS test articles that could be flight tested within the framework of the HIFiRE...articles could be flight tested within the framework of the HIFiRE (Hypersonic International Flight Research and Experimentation) project [ 15]. The...waves Sp’= poc Aexp[iwt - ikRx sinO][exp(ikokycosO) + Rexp( cosO )], (3.20) where R - complex reflection coefficient, A = const, K z 1 - 0.5i[bi

  20. Gas-Kinetic Navier-Stokes Solver for Hypersonic Flows in Thermal and Chemical Non-Equilibrium Project (United States)

    National Aeronautics and Space Administration — This SBIR project proposes to develop a gas-kinetic Navier-Stokes solver for simulation of hypersonic flows in thermal and chemical non-equilibrium. The...

  1. Computations of Separated High-Enthalpy Hypersonic Flows: Development of RANS and Variable-Resolution PANS Approaches Project (United States)

    National Aeronautics and Space Administration — We propose the development of a high fidelity computational approach for unsteady calculations of strongly separated non-equilibrium high-enthalpy hypersonic flows....

  2. Parametric Study of Cantilever Plates Exposed to Supersonic and Hypersonic Flows (United States)

    Sri Harsha, A.; Rizwan, M.; Kuldeep, S.; Giridhara Prasad, A.; Akhil, J.; Nagaraja, S. R.


    Analysis of hypersonic flows associated with re-entry vehicles has gained a lot of significance due to the advancements in Aerospace Engineering. An area that is studied extensively by researchers is the simultaneous reduction aerodynamic drag and aero heating in re-entry vehicles. Out of the many strategies being studied, the use of aerospikes at the stagnation point of the vehicle is found to give favourable results. The structural stability of the aerospike becomes important as it is exposed to very high pressures and temperatures. Keeping this in view, the deflection and vibration of an inclined cantilever plate in hypersonic flow is carried out using ANSYS. Steady state pressure distribution obtained from Fluent is applied as load to the transient structural module for analysis. After due validation of the methods, the effects of parameters like flow Mach number, plate inclination and plate thickness on the deflection and vibration are studied.

  3. Numerical Analysis of Supersonic Film Cooling in Supersonic Flow in Hypersonic Inlet with Isolator

    Directory of Open Access Journals (Sweden)

    Silong Zhang


    Full Text Available Supersonic film cooling is an efficient method to cool the engine with extremely high heat load. In order to study supersonic film cooling in a real advanced engine, a two-dimensional model of the hypersonic inlet in a scramjet engine with supersonic film cooling in the isolator is built and validated through experimental data. The simulation results show that the cooling effect under different coolant injection angles does not show clear differences; a small injection angle can ensure both the cooling effect and good aerodynamic performances (e.g., flow coefficient of the hypersonic inlet. Under selected coolant injection angle and inlet Mach number, the cooling efficiency increases along with the injection Mach number of the coolant flow, only causing a little total pressure loss in the isolator. Along with the increase of the inlet Mach number of the hypersonic inlet, the cooling efficiency does not present a monotonic change because of the complex shock waves. However, the wall temperature shows a monotonic increase when the inlet Mach number increases. The mass flow rate of coolant flow should be increased to cool the engine more efficiently according to the mass flow rate of the main stream when the inlet Mach number increases.

  4. Simultaneous PSP and TSP measurements of transient flow in a long-duration hypersonic tunnel (United States)

    Peng, Di; Jiao, Lingrui; Sun, Zhijun; Gu, Yunsong; Liu, Yingzheng


    The current work presents simultaneous measurements of transient flow using fast-responding pressure- and temperature-sensitive paints in a long-duration hypersonic tunnel; the pressure, temperature and heat flux fields were obtained on a standard model (HB-2) at Ma = 5. Fast PSP and TSP were applied symmetrically on the model with low thermal conductivity. Both coatings were illuminated by a UV-LED, and unsteady pressure and temperature data were recorded at 500 Hz using a high-speed camera. Time-dependent temperature correction was applied on the PSP data based on the TSP results, while the heat flux was calculated from the time-resolved temperature fields using a 1D semi-finite heat conduction model. The temperature-induced errors in PSP data were effectively removed by the current compensation method. The pressure and heat flux results showed good agreement with the reference data from previous studies. The key events throughout the hypersonic tunnel run were captured by the unsteady PSP/TSP data, including the tunnel start-up, the flow build-up, the steady flow period and the tunnel shutdown. The differences caused by the change of attack angle were also clearly recognized. The current PSP/TSP system has shown great potential for unsteady flow diagnostics in hypersonic flows.

  5. Three-dimensional hypersonic rarefied flow calculations using direct simulation Monte Carlo method (United States)

    Celenligil, M. Cevdet; Moss, James N.


    A summary of three-dimensional simulations on the hypersonic rarefied flows in an effort to understand the highly nonequilibrium flows about space vehicles entering the Earth's atmosphere for a realistic estimation of the aerothermal loads is presented. Calculations are performed using the direct simulation Monte Carlo method with a five-species reacting gas model, which accounts for rotational and vibrational internal energies. Results are obtained for the external flows about various bodies in the transitional flow regime. For the cases considered, convective heating, flowfield structure and overall aerodynamic coefficients are presented and comparisons are made with the available experimental data. The agreement between the calculated and measured results are very good.

  6. Active shear flow control for improved combustion (United States)

    Gutmark, E.; Parr, T. P.; Hanson-Parr, D. M.; Schadow, K. C.


    The acoustical and fluid dynamic facets of an excited premixed flame were studied experimentally to evaluate possibilities for development of a stabilizing closed-loop control system. The flame was analyzed as a nonlinear system which includes different subcomponents: acoustics, fluid dynamics, and chemical reaction. Identification of the acoustical and fluid dynamics subsystems is done by analyzing the transfer function, which was obtained by driving the system with both white-noise and a frequency-sweeping sine-wave. The features obtained by this analysis are compared to results of flow visualization and hot-wire flow-field and spectral measurements. The acoustical subsystem is determined by the resonant acoustic modes of the settling chamber. These modes are subsequently filtered and amplified by the flow shear layer, whose instability characteristics are dominated by the preferred mode frequency.

  7. Simulation of Stagnation Region Heating in Hypersonic Flow on Tetrahedral Grids (United States)

    Gnoffo, Peter A.


    Hypersonic flow simulations using the node based, unstructured grid code FUN3D are presented. Applications include simple (cylinder) and complex (towed ballute) configurations. Emphasis throughout is on computation of stagnation region heating in hypersonic flow on tetrahedral grids. Hypersonic flow over a cylinder provides a simple test problem for exposing any flaws in a simulation algorithm with regard to its ability to compute accurate heating on such grids. Such flaws predominantly derive from the quality of the captured shock. The importance of pure tetrahedral formulations are discussed. Algorithm adjustments for the baseline Roe / Symmetric, Total-Variation-Diminishing (STVD) formulation to deal with simulation accuracy are presented. Formulations of surface normal gradients to compute heating and diffusion to the surface as needed for a radiative equilibrium wall boundary condition and finite catalytic wall boundary in the node-based unstructured environment are developed. A satisfactory resolution of the heating problem on tetrahedral grids is not realized here; however, a definition of a test problem, and discussion of observed algorithm behaviors to date are presented in order to promote further research on this important problem.

  8. On nitrogen condensation in hypersonic nozzle flows: Numerical method and parametric study

    KAUST Repository

    Lin, Longyuan


    A numerical method for calculating two-dimensional planar and axisymmetric hypersonic nozzle flows with nitrogen condensation is developed. The classical nucleation theory with an empirical correction function and the modified Gyarmathy model are used to describe the nucleation rate and the droplet growth, respectively. The conservation of the liquid phase is described by a finite number of moments of the size distribution function. The moment equations are then combined with the Euler equations and are solved by the finite-volume method. The numerical method is first validated by comparing its prediction with experimental results from the literature. The effects of nitrogen condensation on hypersonic nozzle flows are then numerically examined. The parameters at the nozzle exit under the conditions of condensation and no-condensation are evaluated. For the condensation case, the static pressure, the static temperature, and the amount of condensed fluid at the nozzle exit decrease with the increase of the total temperature. Compared with the no-condensation case, both the static pressure and temperature at the nozzle exit increase, and the Mach number decreases due to the nitrogen condensation. It is also indicated that preheating the nitrogen gas is necessary to avoid the nitrogen condensation even for a hypersonic nozzle with a Mach number of 5 operating at room temperatures. © 2013 Springer-Verlag Berlin Heidelberg.

  9. Ir Thermographic Measurements of Temperatures and Heat Fluxes in Hypersonic Plasma Flow (United States)

    Cardone, G.; Tortora, G.; del Vecchio, A.


    The technological development achieved in instruments and methodology concerning both flights and ground hypersonic experiment (employed in space plane planning) goes towards an updating and a standardization of the heat flux technical measurements. In fact, the possibility to simulate high enthalpy flow relative to reentry condition by hypersonic arc-jet facility needs devoted methods to measure heat fluxes. Aim of this work is to develop an experimental numerical technique for the evaluation of heat fluxes over Thermal Protection System (TPS) by means of InfraRed (IR) thermographic temperature measurements and a new heat flux sensor (IR-HFS). We tackle the numerical validation of IR-HFS, apply the same one to the Hyflex nose cap model and compare the obtained results with others ones obtained by others methodology.

  10. Collision partner selection schemes in DSMC: From micro/nano flows to hypersonic flows

    Energy Technology Data Exchange (ETDEWEB)

    Roohi, Ehsan, E-mail:; Stefanov, Stefan


    The motivation of this review paper is to present a detailed summary of different collision models developed in the framework of the direct simulation Monte Carlo (DSMC) method. The emphasis is put on a newly developed collision model, i.e., the Simplified Bernoulli trial (SBT), which permits efficient low-memory simulation of rarefied gas flows. The paper starts with a brief review of the governing equations of the rarefied gas dynamics including Boltzmann and Kac master equations and reiterates that the linear Kac equation reduces to a non-linear Boltzmann equation under the assumption of molecular chaos. An introduction to the DSMC method is provided, and principles of collision algorithms in the DSMC are discussed. A distinction is made between those collision models that are based on classical kinetic theory (time counter, no time counter (NTC), and nearest neighbor (NN)) and the other class that could be derived mathematically from the Kac master equation (pseudo-Poisson process, ballot box, majorant frequency, null collision, Bernoulli trials scheme and its variants). To provide a deeper insight, the derivation of both collision models, either from the principles of the kinetic theory or the Kac master equation, is provided with sufficient details. Some discussions on the importance of subcells in the DSMC collision procedure are also provided and different types of subcells are presented. The paper then focuses on the simplified version of the Bernoulli trials algorithm (SBT) and presents a detailed summary of validation of the SBT family collision schemes (SBT on transient adaptive subcells: SBT-TAS, and intelligent SBT: ISBT) in a broad spectrum of rarefied gas-flow test cases, ranging from low speed, internal micro and nano flows to external hypersonic flow, emphasizing first the accuracy of these new collision models and second, demonstrating that the SBT family scheme, if compared to other conventional and recent collision models, requires smaller

  11. Relative viscosity of emulsions in simple shear flow: Temperature, shear rate, and interfacial tension dependence

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Se Bin; Lee, Joon Sang [Dept. of Mechanical Engineering, Yonsei Unversity, Seoul (Korea, Republic of)


    We simulate an emulsion system under simple shear rates to analyze its rheological characteristics using the lattice Boltzmann method (LBM). We calculate the relative viscosity of an emulsion under a simple shear flow along with changes in temperature, shear rate, and surfactant concentration. The relative viscosity of emulsions decreased with an increase in temperature. We observed the shear-thinning phenomena, which is responsible for the inverse proportion between the shear rate and viscosity. An increase in the interfacial tension caused a decrease in the relative viscosity of the decane-in-water emulsion because the increased deformation caused by the decreased interfacial tension significantly influenced the wall shear stress.

  12. Sustained shear flows in Rayleigh-Bénard convection (United States)

    Quist, Tayler; Anders, Evan; Brown, Benjamin; Oishi, Jeffrey


    Zonal shear flows play important roles in both the solar and geo dynamos. In two dimensional simulations, and at relatively narrow aspect ratios, Rayleigh-Bénard convection naturally achieves zonal shear flows. These zonal flows are driven by the convection and modify it, significantly altering the heat transport and convective structures. Here we study shear flows in two and three-dimensional simulations of Rayleigh-Bénard convection using the Dedalus pseudospectral framework. At small aspect ratios and at Prandtl number 1, a large horizontal shear naturally occurs. At larger aspect ratios, we find that shearing is naturally prevented unless manually induced; there is a bistability between states dominated by "flywheel" modes and states dominated by large scale shear. We explore these states and the possibilities of sustained large scale shear in 3-D simulations.

  13. Exponential Shear Flow of Linear, Entangled Polymeric Liquids

    DEFF Research Database (Denmark)

    Neergaard, Jesper; Park, Kyungho; Venerus, David C.


    A previously proposed reptation model is used to interpret exponential shear flow data taken on an entangled polystyrenesolution. Both shear and normal stress measurements are made during exponential shear using mechanical means. The model iscapable of explaining all trends seen in the data...

  14. Fluid flow analysis of a hot-core hypersonic wind-tunnel nozzle concept (United States)

    Anders, J. B.; Sebacher, D. I.; Boatright, W. B.


    A hypersonic-wind-tunnel nozzle concept which incorporates a hot-core flow surrounded by an annular flow of cold air offers a promising technique for maximizing the model size while minimizing the power required to heat the test core. This capability becomes especially important when providing the true-temperature duplication needed for hypersonic propulsion testing. Several two-dimensional wind-tunnel nozzle configurations that are designed according to this concept are analyzed by using recently developed analytical techniques for prediction of the boundary-layer growth and the mixing between the hot and cold coaxial supersonic airflows. The analyses indicate that introduction of the cold annular flow near the throat results in an unacceptable test core for the nozzle size and stagnation conditions considered because of both mixing and condensation effects. Use of a half-nozzle with a ramp on the flat portion does not appear promising because of the thick boundary layer associated with the extra length. However, the analyses indicate that if the cold annular flow is introduced at the exit of a full two-dimensional nozzle, an acceptable test core will be produced. Predictions of the mixing between the hot and cold supersonic streams for this configuration show that mixing effects from the cold flow do not appreciably penetrate into the hot core for the large downstream distances of interest.

  15. Investigation of turbulence models with compressibility corrections for hypersonic boundary flows

    Directory of Open Access Journals (Sweden)

    Han Tang


    Full Text Available The applications of pressure work, pressure-dilatation, and dilatation-dissipation (Sarkar, Zeman, and Wilcox models to hypersonic boundary flows are investigated. The flat plate boundary layer flows of Mach number 5–11 and shock wave/boundary layer interactions of compression corners are simulated numerically. For the flat plate boundary layer flows, original turbulence models overestimate the heat flux with Mach number high up to 10, and compressibility corrections applied to turbulence models lead to a decrease in friction coefficients and heating rates. The pressure work and pressure-dilatation models yield the better results. Among the three dilatation-dissipation models, Sarkar and Wilcox corrections present larger deviations from the experiment measurement, while Zeman correction can achieve acceptable results. For hypersonic compression corner flows, due to the evident increase of turbulence Mach number in separation zone, compressibility corrections make the separation areas larger, thus cannot improve the accuracy of calculated results. It is unreasonable that compressibility corrections take effect in separation zone. Density-corrected model by Catris and Aupoix is suitable for shock wave/boundary layer interaction flows which can improve the simulation accuracy of the peak heating and have a little influence on separation zone.

  16. Three-dimensional viscous flow computations of high area ratio nozzles for hypersonic propulsion (United States)

    Reddy, D. R.; Harloff, G. J.


    The PARC3D code was selected by the authors to analyze a variety of complex and high-speed flow configurations. Geometries considered for code validation include ramps and corner flows, which are characteristic of inlets and nozzles. Flows with Mach numbers of 3-14 were studied. Both two- and three-dimensional experimental data for shock-boundary-layer interaction were considered to validate the code. A detailed comparison of various flow parameters with available experimental data is presented; agreement between the solutions and the experimental data in terms of pitot pressure profiles, yaw-angle distributions, static pressures, and skin friction is found to be very good. In addition, two- and three-dimensional flow calculations were performed for a hypersonic nozzle. Comparison of the wall pressure results with the published solutions is made for the two-dimensional case.


    The effects of ambient dissociation on frozen flow in the vicinity of a stagnation point are discussed within the framework of the thin shock-layer...recombination heat transfer. The general effects of ambient dissociation at low Reynolds numbers are discussed, and special consideration is given to the...effects of ambient dissociation on a variety of flow quantities are calculated. The discussion includes an estimate of the extent of gas-phase reaction at low Reynolds numbers. (Author)

  18. Microalga propels along vorticity direction in a shear flow (United States)

    Chengala, Anwar; Hondzo, Miki; Sheng, Jian


    Using high-speed digital holographic microscopy and microfluidics, we discover that, when encountering fluid flow shear above a threshold, unicellular green alga Dunaliella primolecta migrates unambiguously in the cross-stream direction that is normal to the plane of shear and coincides with the local fluid flow vorticity. The flow shear drives motile microalgae to collectively migrate in a thin two-dimensional horizontal plane and consequently alters the spatial distribution of microalgal cells within a given suspension. This shear-induced algal migration differs substantially from periodic rotational motion of passive ellipsoids, known as Jeffery orbits, as well as gyrotaxis by bottom-heavy swimming microalgae in a shear flow due to the subtle interplay between torques generated by gravity and viscous shear. Our findings could facilitate mechanistic solutions for modeling planktonic thin layers and sustainable cultivation of microalgae for human nutrition and bioenergy feedstock.

  19. Combined compressive and shear buckling analysis of hypersonic aircraft sandwich panels (United States)

    Ko, William L.; Jackson, Raymond H.


    The combined-load (compression and shear) buckling equations were established for orthotropic sandwich panels by using the Rayleigh-Ritz method to minimize the panel total potential energy. The resulting combined-load buckling equations were used to generate buckling interaction curves for super-plastically-formed/diffusion-bonded titanium truss-core sandwich panels and titanium honeycomb-core sandwich panels having the same specific weight. The relative combined-load buckling strengths of these two types of sandwich panels are compared with consideration of their sandwich orientations. For square and nearly square panels of both types, the combined load always induces symmetric buckling. As the panel aspect ratios increase, antisymmetric buckling will show up when the loading is shear-dominated combined loading. The square panel (either type) has the highest combined buckling strength, but the combined load buckling strength drops sharply as the panel aspect ratio increases. For square panels, the truss-core sandwich panel has higher compression-dominated load buckling strength. However, for shear dominated loading, the square honeycomb-core sandwich panel has higher shear-dominated combined load buckling strength.

  20. Combined compressive and shear buckling analysis of hypersonic aircraft structural sandwich panels (United States)

    Ko, William L.; Jackson, Raymond H.


    The combined-load (compression and shear) buckling equations were established for orthotropic sandwich panels by using the Rayleigh-Ritz method to minimize the panel total potential energy. The resulting combined-load buckling equations were used to generate buckling interaction curves for super-plastically-formed/diffusion-bonded titanium truss-core sandwich panels and titanium honeycomb-core sandwich panels having the same specific weight. The relative combined-load buckling strengths of these two types of sandwich panels are compared with consideration of their sandwich orientations. For square and nearly square panels of both types, the combined load always induces symmetric buckling. As the panel aspect ratios increase, antisymmetric buckling will show up when the loading is shear-dominated combined loading. The square panel (either type) has the highest combined buckling strength, but the combined load buckling strength drops sharply as the panel aspect ratio increases. For square panels, the truss-core sandwich panel has higher compression-dominated combined load buckling strength. However, for shear dominated loading, the square honeycomb-core sandwich panel has higher shear-dominated combined load buckling strength.

  1. Development of braided rope seals for hypersonic engine applications. Part 2: Flow modeling (United States)

    Mutharasan, Rajakkannu; Steinetz, Bruce M.; Tao, Xiaoming; Ko, Frank


    Two models based on the Kozeny-Carmen equation were developed to analyze the fluid flow through a new class of braided rope seals under development for advanced hypersonic engines. A hybrid seal geometry consisting of a braided sleeve and a substantial amount of longitudinal fibers with high packing density was selected for development based on its low leakage rates. The models developed allow prediction of the gas leakage rate as a function of fiber diameter, fiber packing density, gas properties, and pressure drop across the seal.

  2. Development of braided rope seals for hypersonic engine applications. II - Flow modeling (United States)

    Mutharasan, Rajakkannu; Tao, Xiaoming; Ko, Frank; Steinetz, Bruce M.


    Two models based on the Kozeny-Carmen equation were developed to analyze the fluid flow through a new class of braided rope seals under development for advanced hypersonic engines. A hybrid seal geometry consisting of a braided sleeve and a substantial amount of longitudinal fibers with high packing density was selected for development based on its low leakage rates. The models developed allow prediction of the gas leakage rate as a function of fiber diameter, fiber packing density, gas properties, and pressure drop across the seal.

  3. A modular particle continuum numerical method for hypersonic non-equilibrium gas flows (United States)

    Schwartzentruber, T. E.; Scalabrin, L. C.; Boyd, I. D.


    A modular particle-continuum (MPC) numerical method for steady-state flows is presented which solves the Navier-Stokes equations in regions of near-equilibrium and uses the direct simulation Monte Carlo (DSMC) method to simulate regions of non-equilibrium gas flow. Existing, state-of-the-art, DSMC and Navier-Stokes solvers are coupled together using a novel modular implementation which requires only a limited number of additional hybrid functions. Hybrid functions are used to adaptively position particle-continuum interfaces and update boundary conditions in each module at appropriate times. The MPC method is validated for 2D flow over a cylinder at various hypersonic Mach numbers where the global Knudsen number is 0.01. For the cases considered, the MPC method is verified to accurately reproduce DSMC flow field results as well as local particle velocity distributions up to 2.2 times faster than full DSMC simulations.

  4. Dynamics of nonspherical capsules in shear flow (United States)

    Bagchi, Prosenjit; Kalluri, R. Murthy


    Three-dimensional numerical simulations using a front-tracking method are presented on the dynamics of oblate shape capsules in linear shear flow by considering a broad range of viscosity contrast (ratio of internal-to-external fluid viscosity), shear rate (or capillary number), and aspect ratio. We focus specifically on the coupling between the shape deformation and orientation dynamics of capsules, and show how this coupling influences the transition from the tank-treading to tumbling motion. At low capillary numbers, three distinct modes of motion are identified: a swinging or oscillatory (OS) mode at a low viscosity contrast in which the inclination angle θ(t) oscillates but always remains positive; a vacillating-breathing (VB) mode at a moderate viscosity contrast in which θ(t) periodically becomes positive and negative, but a full tumbling does not occur; and a pure tumbling mode (TU) at a higher viscosity contrast. At higher capillary numbers, three types of transient motions occur, in addition to the OS and TU modes, during which the capsule switches from one mode to the other as (i) VB to OS, (ii) TU to VB to OS, and (iii) TU to VB. Phase diagrams showing various regimes of capsule dynamics are presented. For all modes of motion (OS, VB, and TU), a large-amplitude oscillation in capsule shape and a strong coupling between the shape deformation and orientation dynamics are observed. It is shown that the coupling between the shape deformation and orientation is the strongest in the VB mode, and hence at a moderate viscosity contrast, for which the amplitude of shape deformation reaches its maximum. The numerical results are compared with the theories of Keller and Skalak, and Skotheim and Secomb. Significant departures from the two theories are discussed and related to the strong coupling between the shape deformation, inclination, and transition dynamics.

  5. Molecule-based approach for computing chemical-reaction rates in upper atmosphere hypersonic flows.

    Energy Technology Data Exchange (ETDEWEB)

    Gallis, Michail A.; Bond, Ryan Bomar; Torczynski, John Robert


    This report summarizes the work completed during FY2009 for the LDRD project 09-1332 'Molecule-Based Approach for Computing Chemical-Reaction Rates in Upper-Atmosphere Hypersonic Flows'. The goal of this project was to apply a recently proposed approach for the Direct Simulation Monte Carlo (DSMC) method to calculate chemical-reaction rates for high-temperature atmospheric species. The new DSMC model reproduces measured equilibrium reaction rates without using any macroscopic reaction-rate information. Since it uses only molecular properties, the new model is inherently able to predict reaction rates for arbitrary nonequilibrium conditions. DSMC non-equilibrium reaction rates are compared to Park's phenomenological non-equilibrium reaction-rate model, the predominant model for hypersonic-flow-field calculations. For near-equilibrium conditions, Park's model is in good agreement with the DSMC-calculated reaction rates. For far-from-equilibrium conditions, corresponding to a typical shock layer, the difference between the two models can exceed 10 orders of magnitude. The DSMC predictions are also found to be in very good agreement with measured and calculated non-equilibrium reaction rates. Extensions of the model to reactions typically found in combustion flows and ionizing reactions are also found to be in very good agreement with available measurements, offering strong evidence that this is a viable and reliable technique to predict chemical reaction rates.

  6. Low Density Real Gas Flows About Hypersonic Vehicles. (United States)


    in the adjacent cell to the boundary cell, as: Vbc = Vdj -(3-29) Solid Wall (No-slip). Although the exact form of the solid wall (no-slip) boundary...Wall. In the nonequilibrium flow over a body, the solid surface may act as a catalyst for the recombination of atoms and ions: hence, the heat transfer...catalycity is represented in terms of species catalytic efficiencies, defined as the ratio of the number of species recombining at the wall to the

  7. An improved PNS scheme for predicting complex three-dimensional hypersonic flows (United States)

    Bhutta, Bilal A.; Lewis, Clark H.


    Upwinding is incorporated into a numerical technique for predicting hypersonic viscous flows over lifting configurations at moderate angles of attack. A general real-gas flux-vector-splitting technique based on Van Leer's (1982) approach is employed to model upwinding, and three techniques are examined for flux-vector differencing. The three methods are evaluated by applying them to an axisymmetric configuration with a 10-deg afterbody flare. The results indicate that an oscillation-free shock front can be described by using first-order full upwinding across the embedded shock and central-differencing for the other zones. This combined approach is found to be highly convergent for the near-wall region, and its performance is examined for predicting a Mach 15 flow over a finned missile. Attention is given to the effects of gas chemistry which can significantly affect the flows over the missile configurations.

  8. Engine panel seals for hypersonic engine applications: High temperature leakage assessments and flow modelling (United States)

    Steinetz, Bruce M.; Mutharasan, Rajakkannu; Du, Guang-Wu; Miller, Jeffrey H.; Ko, Frank


    A critical mechanical system in advanced hypersonic engines is the panel-edge seal system that seals gaps between the articulating horizontal engine panels and the adjacent engine splitter walls. Significant advancements in seal technology are required to meet the extreme demands placed on the seals, including the simultaneous requirements of low leakage, conformable, high temperature, high pressure, sliding operation. In this investigation, the seal concept design and development of two new seal classes that show promise of meeting these demands will be presented. These seals include the ceramic wafer seal and the braided ceramic rope seal. Presented are key elements of leakage flow models for each of these seal types. Flow models such as these help designers to predict performance-robbing parasitic losses past the seals, and estimate purge coolant flow rates. Comparisons are made between measured and predicted leakage rates over a wide range of engine simulated temperatures and pressures, showing good agreement.

  9. Hypersonic flow computations around re-entry vehicles (United States)

    Peraire, J.; Peiro, J.; Morgan, K.; Vahdati, M.; Molina, R. C.


    The development of an algorithm for the solution of the compressible Euler equations at high Mach numbers on unstructured tetrahedral meshes is described. The basic algorithm is constructed in the form of a central difference scheme plus an explicit added artificial viscosity based upon fourth order differences of the solution. The stability of the solution in the vicinity of strong gradients is preserved by the incorporation of an additional artificial viscosity based upon a second order difference. Higher order accuracy is regained by using the ideas of flux corrected transport to limit the amount of added viscosity. The solution is advanced to steady state by means of an explicit multi-stage time-stepping method. The computational efficiency of the complete process is improved by incorporating an unstructured multigrid acceleration procedure. A number of flows of practical interest are analyzed to demonstrate the numerical performance of the proposed approach.

  10. Laminar boundary layers with uniform shear cross flow (United States)

    Weidman, Patrick


    Laminar boundary layers with fully developed uniform shear cross flows are considered. The first streamwise laminar flow is a Blasius boundary layer flow, the second is uniform shear flow over a semi-infinite plate, and the third is the flow induced by a power-law stretching surface. In the first two cases, the effect of streamwise plate motion is taken into account by the parameter λ. In each case, the similarity solutions reduce the governing boundary layer equations to a primary ordinary differential equation for the streamwise flow and a secondary linear equation coupled to the primary solution for the cross flow. It is found that an infinity of solutions exist in each problem and the unique solution in each case is found by applying the Glauert criterion. In some instances, a simple exact solution for the cross flow is presented. Results for the wall shear stresses and velocity profiles are given in graphical form.

  11. Research on wall shear stress considering wall roughness when shear swirling flow vibration cementing (United States)

    Cui, Zhihua; Ai, Chi; Feng, Fuping


    When shear swirling flow vibration cementing, the casing is revolving periodically and eccentrically, which leads to the annulus fluid in turbulent swirling flow state. The wall shear stress is more than that in laminar flow field when conventional cementing. The paper mainly studied the wall shear stress distribution on the borehole wall when shear swirling flow vibration cementing based on the finite volume method. At the same time, the wall roughness affected and changed the turbulent flow near the borehole wall and the wall shear stress. Based on the wall function method, the paper established boundary conditions considering the wall roughness and derived the formula of the wall shear stress. The results showed that the wall roughness significantly increases the wall shear stress. However, the larger the wall roughness, the greater the thickness of mud cake, which weakening the cementing strength. Considering the effects in a comprehensive way, it is discovered that the particle size of solid phase in drilling fluid is about 0.1 mm to get better cementing quality.

  12. Hypersonic rarefied flow about a delta wing - Direct simulation and comparison with experiment (United States)

    Celenligil, M. C.; Moss, James N.


    Three-dimensional simulations of hypersonic rarefied flow about a delta wing are made using the direct simulation Monte Carlo (DSMC) method of Bird, and the results of the computations are compared with recent experimental data obtained in a vacuum wind tunnel at the DLR in Gottingen, Germany. The present study considers Mach 8.89 nitrogen flow for a range of conditions that include Knudsen numbers of 0.016 to 3.505 for an incidence angle of 30 deg, and angles of incidence of 15 to 60 deg for a constant Knudsen number of 0.389. The calculations provide details concerning the flowfield structure and surface quantities. Comparisons between the calculations and the available experimental measurements are made for aerodynamic and overall heat-transfer coefficients and recovery temperature. The agreement between the measured and calculated data are very good, well within the estimated measurement uncertainty. Comparisons are also made with modified Newtonian and free-molecule theories.

  13. Implementation of Radiation, Ablation, and Free Energy Minimization Modules for Coupled Simulations of Hypersonic Flow (United States)

    Gnoffo, Peter A.; Johnston, Christopher O.; Thompson, Richard A.


    A description of models and boundary conditions required for coupling radiation and ablation physics to a hypersonic flow simulation is provided. Chemical equilibrium routines for varying elemental mass fraction are required in the flow solver to integrate with the equilibrium chemistry assumption employed in the ablation models. The capability also enables an equilibrium catalytic wall boundary condition in the non-ablating case. The paper focuses on numerical implementation issues using FIRE II, Mars return, and Apollo 4 applications to provide context for discussion. Variable relaxation factors applied to the Jacobian elements of partial equilibrium relations required for convergence are defined. Challenges of strong radiation coupling in a shock capturing algorithm are addressed. Results are presented to show how the current suite of models responds to a wide variety of conditions involving coupled radiation and ablation.

  14. Hypersonic Engine Leading Edge Experiments in a High Heat Flux, Supersonic Flow Environment (United States)

    Gladden, Herbert J.; Melis, Matthew E.


    A major concern in advancing the state-of-the-art technologies for hypersonic vehicles is the development of an aeropropulsion system capable of withstanding the sustained high thermal loads expected during hypersonic flight. Three aerothermal load related concerns are the boundary layer transition from laminar to turbulent flow, articulating panel seals in high temperature environments, and strut (or cowl) leading edges with shock-on-shock interactions. A multidisciplinary approach is required to address these technical concerns. A hydrogen/oxygen rocket engine heat source has been developed at the NASA Lewis Research Center as one element in a series of facilities at national laboratories designed to experimentally evaluate the heat transfer and structural response of the strut (or cowl) leading edge. A recent experimental program conducted in this facility is discussed and related to cooling technology capability. The specific objective of the experiment discussed is to evaluate the erosion and oxidation characteristics of a coating on a cowl leading edge (or strut leading edge) in a supersonic, high heat flux environment. Heat transfer analyses of a similar leading edge concept cooled with gaseous hydrogen is included to demonstrate the complexity of the problem resulting from plastic deformation of the structures. Macro-photographic data from a coated leading edge model show progressive degradation over several thermal cycles at aerothermal conditions representative of high Mach number flight.

  15. Concentrated energy addition for active drag reduction in hypersonic flow regime (United States)

    Ashwin Ganesh, M.; John, Bibin


    Numerical optimization of hypersonic drag reduction technique based on concentrated energy addition is presented in this study. A reduction in wave drag is realized through concentrated energy addition in the hypersonic flowfield upstream of the blunt body. For the exhaustive optimization presented in this study, an in-house high precision inviscid flow solver has been developed. Studies focused on the identification of "optimum energy addition location" have revealed the existence of multiple minimum drag points. The wave drag coefficient is observed to drop from 0.85 to 0.45 when 50 Watts of energy is added to an energy bubble of 1 mm radius located at 74.7 mm upstream of the stagnation point. A direct proportionality has been identified between energy bubble size and wave drag coefficient. Dependence of drag coefficient on the upstream added energy magnitude is also revealed. Of the observed multiple minimum drag points, the energy deposition point (EDP) that offers minimum wave drag just after a sharp drop in drag is proposed as the most optimum energy addition location.

  16. Excitation of vortex meandering in shear flow


    Schröttle, Josef; Dörnbrack, Andreas; Schumann, Ulrich


    This paper investigates the evolution of a streamwise aligned columnar vortex with vorticity ω in an axial background shear of magnitude Ω by means of linear stability analysis and numerical simulations. A long wave mode of vorticity normal to the plane spanned by the background shear vector Ω and the vorticity of the vortex are excited by an instability. The stationary wave modes of the vertical and lateral vorticity are amplified. In order to form a helical vortex, the lat...

  17. Shear layer flame stabilization sensitivities in a swirling flow

    National Research Council Canada - National Science Library

    Foley, Christopher; Chterev, Ianko; Noble, Bobby; Seitzman, Jerry; Lieuwen, Tim

    A variety of different flame configurations and heat release distributions exist in high swirl, annular flows, due to the existence of inner and outer shear layers as well a vortex breakdown bubble...

  18. Assessment of gas-surface interaction models for computation of rarefied hypersonic flows (United States)

    Padilla, Jose Fernando

    Over the next few decades, spaceflight is expected to become more common through the resurgence of manned space exploration and the rise of commercial manned spaceflight. An essential role for the efficient research and development of suborbital spaceflight is played by computational simulation of rarefied hypersonic flows. Among the few classes of computational approaches for examining rarefied gas dynamics, the most widely used approach, for spatial scales relevant to suborbital spaceflight, is the direct simulation Monte Carlo (DSMC) method. Although the DSMC method has been under development for over forty years, there are still many areas where improvements can be made. One particular area is the associated numerical modeling of interactions between gas molecules and solid surfaces. Gas-surface interactions are not well understood for rarefied hypersonic conditions, although various models have been developed. This thesis ultimately focuses on assessing two common gas-surface interaction models in use with the DSMC method, the Maxwell model and the Cercignani, Lampis and Lord (CLL) model. In the search for a definitive thesis goal and as a consequence of the analysis tools developed for achieving the definitive thesis goal, several aspects of DSMC analysis are examined. Initially, procedures to determine aerodynamic coefficients from DSMC simulations are validated against certain windtunnel test data and an independent DSMC code. Then, sensitivity studies are performed involving aerothermodynamics predictions for the Apollo 6, at the 110 km altitude return trajectory point. This reveals the significance of gas-surface surface interaction models in rarefied hypersonic flows. A review of existing gas-surface interaction models motivates the assessment of the Maxwell and CLL models. The two models are scrutinized with the help of relatively recent windtunnel test measurements and procedures to extract surface scattering distributions. Both models yield similar

  19. Hypersonic engine component experiments in high heat flux, supersonic flow environment (United States)

    Gladden, Herbert J.; Melis, Matthew E.


    A major concern in advancing the state-of-the-art technologies for hypersonic vehicles is the development of an aeropropulsion system capable of withstanding the sustained high thermal loads expected during hypersonic flight. Even though progress has been made in the computational understanding of fluid dynamics and the physics/chemistry of high speed flight, there is also a need for experimental facilities capable of providing a high heat flux environment for testing component concepts and verifying/calibrating these analyses. A hydrogen/oxygen rocket engine heat source was developed at the NASA Lewis Research Center as one element in a series of facilities at national laboratories designed to fulfill this need. This 'Hot Gas Facility' is capable of providing heat fluxes up to 450 w/sq cm on flat surfaces and up to 5,000 w/sq cm at the leading edge stagnation point of a strut in a supersonic flow stream. Gas temperatures up to 3050 K can also be attained. Two recent experimental programs conducted in this facility are discussed. The objective of the first experiment is to evaluate the erosion and oxidation characteristics of a coating on a cowl leading edge (or strut leading edge) in a supersonic, high heat flux environment. Macrophotographic data from a coated leading edge model show progressive degradation over several thermal cycles at aerothermal conditions representative of high Mach number flight. The objective of the second experiment is to assess the capability of cooling a porous surface exposed to a high temperature, high velocity flow environment and to provide a heat transfer data base for a design procedure. Experimental results from transpiration cooled surfaces in a supersonic flow environment are presented.

  20. Shear banding and flow-concentration coupling in colloidal glasses. (United States)

    Besseling, R; Isa, L; Ballesta, P; Petekidis, G; Cates, M E; Poon, W C K


    We report experiments on hard-sphere colloidal glasses that show a type of shear banding hitherto unobserved in soft glasses. We present a scenario that relates this to an instability due to shear-concentration coupling, a mechanism previously thought unimportant in these materials. Below a characteristic shear rate γ(c) we observe increasingly nonlinear and localized velocity profiles. We attribute this to very slight concentration gradients in the unstable flow regime. A simple model accounts for both the observed increase of γ(c) with concentration, and the fluctuations in the flow.

  1. Stimulated bioluminescence by fluid shear stress associated with pipe flow

    Energy Technology Data Exchange (ETDEWEB)

    Cao Jing; Wang Jiangan; Wu Ronghua, E-mail: [Col. of Electronic Eng., Naval University of Engineering, Wuhan 430033 (China)


    Dinoflagellate can be stimulated bioluminescence by hydrodynamic agitation. Two typical dinoflagellate (Lingulodinium polyedrum and Pyrocystis noctiluca) was choosed to research stimulated bioluminescence. The bioluminescence intensity and shear stress intensity were measured using fully developed pipe flow. There is shear stress threshold to agitate organism bioluminescence. From these experiment, the response thresholds of the stimulated bioluminscence always occurred in laminar flows at a shear stress level of 0.6-3 dyn/cm{sup 2}. At the same time, the spectral characteristc of dinoflagellate was recorded, the wavelength of them is about 470nm, and the full width at half maximum is approximate 30nm.

  2. A Compact Tunable Diode Laser Absorption Spectrometer to Monitor CO2 at 2.7 µm Wavelength in Hypersonic Flows

    Directory of Open Access Journals (Sweden)

    Raphäel Vallon


    Full Text Available Since the beginning of the Mars planet exploration, the characterization of carbon dioxide hypersonic flows to simulate a spaceship’s Mars atmosphere entry conditions has been an important issue. We have developed a Tunable Diode Laser Absorption Spectrometer with a new room-temperature operating antimony-based distributed feedback laser (DFB diode laser to characterize the velocity, the temperature and the density of such flows. This instrument has been tested during two measurement campaigns in a free piston tunnel cold hypersonic facility and in a high enthalpy arc jet wind tunnel. These tests also demonstrate the feasibility of mid-infrared fiber optics coupling of the spectrometer to a wind tunnel for integrated or local flow characterization with an optical probe placed in the flow.

  3. Applications of Quantum Theory of Atomic and Molecular Scattering to Problems in Hypersonic Flow (United States)

    Malik, F. Bary


    The general status of a grant to investigate the applications of quantum theory in atomic and molecular scattering problems in hypersonic flow is summarized. Abstracts of five articles and eleven full-length articles published or submitted for publication are included as attachments. The following topics are addressed in these articles: fragmentation of heavy ions (HZE particles); parameterization of absorption cross sections; light ion transport; emission of light fragments as an indicator of equilibrated populations; quantum mechanical, optical model methods for calculating cross sections for particle fragmentation by hydrogen; evaluation of NUCFRG2, the semi-empirical nuclear fragmentation database; investigation of the single- and double-ionization of He by proton and anti-proton collisions; Bose-Einstein condensation of nuclei; and a liquid drop model in HZE particle fragmentation by hydrogen.

  4. Development of braided rope seals for hypersonic engine applications: Flow modeling (United States)

    Mutharasan, Rajakkannu; Steinetz, Bruce M.; Tao, Xiaoming; Du, Guang-Wu; Ko, Frank


    A new type of engine seal is being developed to meet the needs of advanced hypersonic engines. A seal braided of emerging high temperature ceramic fibers comprised of a sheath-core construction was selected for study based on its low leakage rates. Flexible, low-leakage, high temperature seals are required to seal the movable engine panels of advanced ramjet-scramjet engines either preventing potentially dangerous leakage into backside engine cavities or limiting the purge coolant flow rates through the seals. To predict the leakage through these flexible, porous seal structures new analytical flow models are required. Two such models based on the Kozeny-Carman equations are developed herein and are compared to experimental leakage measurements for simulated pressure and seal gap conditions. The models developed allow prediction of the gas leakage rate as a function of fiber diameter, fiber packing density, gas properties, and pressure drop across the seal. The first model treats the seal as a homogeneous fiber bed. The second model divides the seal into two homogeneous fiber beds identified as the core and the sheath of the seal. Flow resistances of each of the main seal elements are combined to determine the total flow resistance. Comparisons between measured leakage rates and model predictions for seal structures covering a wide range of braid architectures show good agreement. Within the experimental range, the second model provides a prediction within 6 to 13 percent of the flow for many of the cases examined. Areas where future model refinements are required are identified.

  5. A Rate-Dependent Shear Transformation Zone Model of Shear Band Formation During Flow (United States)

    Hinkle, Adam R.; Falk, Michael L.


    Recent shear-experiments of carbopol gels have revealed the formation of a transient shear band before reaching the steady-state characterized by homogeneous flow. Analysis of this phenomenon using a rate-dependent effective temperature in the shear transformation zone (STZ) theory reveals that the observed fluidization proceeds via two distinct processes: A shear band initiates and broadens via disordering at the interface of the band. This is accompanied by spatially homogeneous fluidization outside of the shear band where the disorder of the gel grows uniformly. Experimental data are used to parameterize the STZ theory, and direct, quantitative comparison is made to measurements of the structural evolution of the gel. NSF IGERT Fellowship Award No. 0801471.

  6. Dynamics of a self-diffusiophoretic particle in shear flow. (United States)

    Frankel, Alexandra E; Khair, Aditya S


    Colloidal particles can achieve autonomous motion by a number of physicochemical mechanisms. For instance, if a spherical particle acts as a catalyst with an asymmetric surface reactivity, a molecular solute concentration gradient will develop in the surrounding fluid that can propel the particle via self-diffusiophoresis. Theoretical analyses of self-diffusiophoresis have mostly been considered in quiescent fluid, where the solute concentration is usually assumed to evolve solely via diffusion. In practical applications, however, self-propelled colloidal particles can be expected to reside in flowing fluids. Here, we examine the role of ambient flow on self-diffusiophoresis by quantifying the dynamics of a model Janus particle in a simple shear flow. The imposed flow can distort the self-generated solute concentration gradient. The extent of this distortion is quantified by a Peclet number, Pe, associated with the shear flow. Utilizing matched asymptotic analysis, we determine the concentration gradient surrounding a Janus particle in shear flow at a small, but finite, Peclet number and the resulting particle motion. For example, when the symmetry axis of the particle is aligned with the imposed flow, the Janus particle experiences an O(Pe) cross-streamline drift and an O(Pe(3/2)) reduction in translational velocity along the flow direction. We then analyze the in-plane trajectory of the Janus particle in shear. We find that the particle performs elliptical orbits around its initial position in the flow, which decrease in size with increasing Pe.

  7. Simulating flow around scaled model of a hypersonic vehicle in wind tunnel (United States)

    Markova, T. V.; Aksenov, A. A.; Zhluktov, S. V.; Savitsky, D. V.; Gavrilov, A. D.; Son, E. E.; Prokhorov, A. N.


    A prospective hypersonic HEXAFLY aircraft is considered in the given paper. In order to obtain the aerodynamic characteristics of a new construction design of the aircraft, experiments with a scaled model have been carried out in a wind tunnel under different conditions. The runs have been performed at different angles of attack with and without hydrogen combustion in the scaled propulsion engine. However, the measured physical quantities do not provide all the information about the flowfield. Numerical simulation can complete the experimental data as well as to reduce the number of wind tunnel experiments. Besides that, reliable CFD software can be used for calculations of the aerodynamic characteristics for any possible design of the full-scale aircraft under different operation conditions. The reliability of the numerical predictions must be confirmed in verification study of the software. The given work is aimed at numerical investigation of the flowfield around and inside the scaled model of the HEXAFLY-CIAM module under wind tunnel conditions. A cold run (without combustion) was selected for this study. The calculations are performed in the FlowVision CFD software. The flow characteristics are compared against the available experimental data. The carried out verification study confirms the capability of the FlowVision CFD software to calculate the flows discussed.

  8. Resonant alignment of microswimmer trajectories in oscillatory shear flows (United States)

    Hope, Alexander; Croze, Ottavio A.; Poon, Wilson C. K.; Bees, Martin A.; Haw, Mark D.


    Oscillatory flows are commonly experienced by swimming micro-organisms in the environment, industrial applications, and rheological investigations. We characterize experimentally the response of the alga Dunaliella salina to oscillatory shear flows and report the surprising discovery that algal swimming trajectories orient perpendicular to the flow-shear plane. The ordering has the characteristics of a resonance in the driving parameter space. The behavior is qualitatively reproduced by a simple model and simulations accounting for helical swimming, suggesting a mechanism for ordering and criteria for the resonant amplitude and frequency. The implications of this work for active oscillatory rheology and industrial algal processing are discussed.

  9. Multi-Scale Investigation of Sheared Flows In Magnetized Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Edward, Jr., Thomas [Auburn Univ., Auburn, AL (United States)


    Flows parallel and perpendicular to magnetic fields in a plasma are important phenomena in many areas of plasma science research. The presence of these spatially inhomogeneous flows is often associated with the stability of the plasma. In fusion plasmas, these sheared flows can be stabilizing while in space plasmas, these sheared flows can be destabilizing. Because of this, there is broad interest in understanding the coupling between plasma stability and plasma flows. This research project has engaged in a study of the plasma response to spatially inhomogeneous plasma flows using three different experimental devices: the Auburn Linear Experiment for Instability Studies (ALEXIS) and the Compact Toroidal Hybrid (CTH) stellarator devices at Auburn University, and the Space Plasma Simulation Chamber (SPSC) at the Naval Research Laboratory. This work has shown that there is a commonality of the plasma response to sheared flows across a wide range of plasma parameters and magnetic field geometries. The goal of this multi-device, multi-scale project is to understand how sheared flows established by the same underlying physical mechanisms lead to different plasma responses in fusion, laboratory, and space plasmas.

  10. Swinging of two-domains vesicles in shear flow (United States)

    Viallat, Annie; Tusch, Simon; Khelloufi, Kamel; Leonetti, Marc


    Giant lipid vesicles and red blood cells in shear flow at low shear rates tank tread (TT) at small viscosity ratio between the inner particle volume and the external fluid, and flip or tumble (T) at large viscosity ratio. The phase diagram of motion of red blood cells is however much more complex. Swinging superimposes to TT, cells wobble and roll rather than tumble with increasing shear rate and present a shear-rate driven transition between TT to T. These features are attributed to the shear elasticity and the non spherical stress-free shape of the cell membrane, which stores shear elastic energy as a function of the relative position of its elements. We have created vesicles with a phase diagram of motion comparable to that of red blood cells by preparing membranes with two lipids and cholesterol. These membranes present two domains separated by a contact line. The line has a tension energy that depends on its relative position on the vesicle. Similarly to red blood cells, two-domains vesicles swing and wobble. An analytical model where line tension energy is added to the Keller and Skalak's model fits our experimental data without any adjustable parameter. Our experiments and model shed light on the motion of deformable particles in shear flow.

  11. Instability of Stratified Shear Flow: Intermittency and Length Scales (United States)

    Ecke, Robert; Odier, Philippe


    The stability of stratified shear flows which occur in oceanic overflows, wind-driven thermoclines, and atmospheric inversion layers is governed by the Richardson Number Ri , a non-dimensional balance between stabilizing stratification and destabilizing shear. For a shear flow with velocity difference U, density difference Δρ and characteristic length H, one has Ri = g (Δρ / ρ) H /U2 . A more precise definition is the gradient Richardson Number Rig =N2 /S2 where the buoyancy frequency N =√{ (g / ρ) ∂ρ / ∂z } , the mean strain S = ∂U / ∂z with z parallel to gravity and with ensemble or time averages defining the gradients. We explore the stability and mixing properties of a wall-bounded shear flow for 0 . 1 alcohol-water mixture injected from a nozzle into quiescent heavier salt-water fluid. The injected flow is turbulent with Taylor Reynolds number about 75. We compare a set of length scales that characterize the mixing properties of our turbulent stratified shear flow including Thorpe Length LT, Ozmidov Length LO, and Ellison Length LE.

  12. A Rotary Flow Channel for Shear Stress Sensor Calibration (United States)

    Zuckerwar, Allan J.; Scott, Michael A.


    A proposed shear sensor calibrator consists of a rotating wheel with the sensor mounted tangential to the rim and positioned in close proximity to the rim. The shear stress generated by the flow at the sensor position is simply tau(sub omega) = (mu)r(omega)/h, where mu is the viscosity of the ambient gas, r the wheel radius, omega the angular velocity of the wheel, and h the width of the gap between the wheel rim and the sensor. With numerical values of mu = 31 (mu)Pa s (neon at room temperature), r = 0.5 m, omega = 754 /s (7200 rpm), and h = 50.8 m, a shear stress of tau(sub omega) = 231 Pa can be generated. An analysis based on one-dimensional flow, with the flow velocity having only an angular component as a function of the axial and radial coordinates, yields corrections to the above simple formula for the curvature of the wheel, flatness of the sensor, and finite width of the wheel. It is assumed that the sensor mount contains a trough (sidewalls) to render a velocity release boundary condition at the edges of the rim. The Taylor number under maximum flow conditions is found to be 62.3, sufficiently low to obviate flow instability. The fact that the parameters entering into the evaluation of the shear stress can be measured to high accuracy with well-defined uncertainties makes the proposed calibrator suitable for a physical standard for shear stress calibration.

  13. Coherent structures in compressible free-shear-layer flows

    Energy Technology Data Exchange (ETDEWEB)

    Aeschliman, D.P.; Baty, R.S. [Sandia National Labs., Albuquerque, NM (United States). Engineering Sciences Center; Kennedy, C.A.; Chen, J.H. [Sandia National Labs., Livermore, CA (United States). Combustion and Physical Sciences Center


    Large scale coherent structures are intrinsic fluid mechanical characteristics of all free-shear flows, from incompressible to compressible, and laminar to fully turbulent. These quasi-periodic fluid structures, eddies of size comparable to the thickness of the shear layer, dominate the mixing process at the free-shear interface. As a result, large scale coherent structures greatly influence the operation and efficiency of many important commercial and defense technologies. Large scale coherent structures have been studied here in a research program that combines a synergistic blend of experiment, direct numerical simulation, and analysis. This report summarizes the work completed for this Sandia Laboratory-Directed Research and Development (LDRD) project.

  14. Pulsatile blood flow, shear force, energy dissipation and Murray's Law

    Directory of Open Access Journals (Sweden)

    Bengtsson Hans-Uno


    Full Text Available Abstract Background Murray's Law states that, when a parent blood vessel branches into daughter vessels, the cube of the radius of the parent vessel is equal to the sum of the cubes of the radii of daughter blood vessels. Murray derived this law by defining a cost function that is the sum of the energy cost of the blood in a vessel and the energy cost of pumping blood through the vessel. The cost is minimized when vessel radii are consistent with Murray's Law. This law has also been derived from the hypothesis that the shear force of moving blood on the inner walls of vessels is constant throughout the vascular system. However, this derivation, like Murray's earlier derivation, is based on the assumption of constant blood flow. Methods To determine the implications of the constant shear force hypothesis and to extend Murray's energy cost minimization to the pulsatile arterial system, a model of pulsatile flow in an elastic tube is analyzed. A new and exact solution for flow velocity, blood flow rate and shear force is derived. Results For medium and small arteries with pulsatile flow, Murray's energy minimization leads to Murray's Law. Furthermore, the hypothesis that the maximum shear force during the cycle of pulsatile flow is constant throughout the arterial system implies that Murray's Law is approximately true. The approximation is good for all but the largest vessels (aorta and its major branches of the arterial system. Conclusion A cellular mechanism that senses shear force at the inner wall of a blood vessel and triggers remodeling that increases the circumference of the wall when a shear force threshold is exceeded would result in the observed scaling of vessel radii described by Murray's Law.

  15. Aerodynamic performance investigation on waverider with variable blunt radius in hypersonic flows (United States)

    Li, Shibin; Wang, Zhenguo; Huang, Wei; Xu, Shenren; Yan, Li


    Waverider is an important candidate for the design of hypersonic vehicles. However, the ideal waverider cannot be manufactured because of its sharp leading edge, so the leading edge should be blunted. In the paper, the HMB solver and laminar flow model have been utilized to obtain the flow field properties around the blunt waverider with the freestream Mach number being 8.0, and several novel strategies have been suggested to improve the aerodynamic performance of blunt waverider. The numerical method has been validated against experimental data, and the Stanton number(St) of the predicted result has been analyzed. The obtained results show good agreement with the experimental data. Stmax decreases by 58% and L/D decreases by 8.2% when the blunt radius increases from 0.0002 m to 0.001 m. ;Variable blunt waverider; is a good compromise for aerodynamic performance and thermal insulation. The aero-heating characteristics are very sensitive to Rmax. The position of the smallest blunt radius has a great effect on the aerodynamic performance. In addition, the type of blunt leading edge has a great effect on the aero-heating characteristics when Rmax is fixed. Therefore, out of several designs, Type 4is the best way to achieve the good overall performance. The ;Variable blunt waverider; not only improves the aerodynamic performance, but also makes the aero-heating become evenly-distributed, leading to better aero-heating characteristics.

  16. Development of hypersonic engine seals: Flow effects of preload and engine pressures (United States)

    Cai, Zhong; Mutharasan, Rajakkannu; Ko, Frank K.; Steinetz, Bruce M.


    A new type of engine seal is being developed to meet the needs of advanced hypersonic engines. A seal braided of emerging high temperature ceramic fibers comprised of a sheath-core construction was selected for study based on its low leakage rates. Flexible, low-leakage, high temperature seals are required to seal the movable engine panels of advanced ramjet-scramjet engines either preventing potentially dangerous leakage into backside engine cavities or limiting the purge coolant flow rates through the seals. To predict the leakage through these flexible, porous seal structures as a function of preload and engine pressures, new analytical flow models are required. An empirical leakage resistance/preload model is proposed to characterize the observed decrease in leakage with increasing preload. Empirically determined compression modulus and preload factor are used to correlate experimental leakage data for a wide range of seal architectures. Good agreement between measured and predicted values are observed over a range of engine pressures and seal preloads.

  17. Development of hypersonic engine seals - Flow effects of preload and engine pressures (United States)

    Cai, Zhong; Mutharasan, Rajakkannu; Ko, Frank K.; Steinetz, Bruce M.


    A new type of engine seal is being developed to meet the needs of advanced hypersonic engines. A seal braided of emerging high temperature ceramic fibers comprised of a sheath-core construction has been selected for study based on its low leakage rates. Flexible, low-leakage, high-temperature seals are required to seal the movable engine panels of advanced ramjet-scramjet engines either preventing potentially dangerous leakage into backside engine cavities or limiting the purge coolant flow rates through the seals. To predict the leakage through these flexible, porous seal structures as a function of preload and engine pressures, new analytical flow models are required. An empirical leakage resistance/preload model is proposed to characterize the observed decrease in leakage with increasing preload. Empirically determined compression modulus and preload factor are used to correlate experimental leakage data for a wide range of seal architectures. Good agreement between measured and predicted values are observed over a range of engine pressures and seal preload.

  18. Magnetohydrodynamic Simulations of Hypersonic Flow over a Cylinder Using Axial- and Transverse-Oriented Magnetic Dipoles

    Directory of Open Access Journals (Sweden)

    Andrew N. Guarendi


    Full Text Available Numerical simulations of magnetohydrodynamic (MHD hypersonic flow over a cylinder are presented for axial- and transverse-oriented dipoles with different strengths. ANSYS CFX is used to carry out calculations for steady, laminar flows at a Mach number of 6.1, with a model for electrical conductivity as a function of temperature and pressure. The low magnetic Reynolds number (≪1 calculated based on the velocity and length scales in this problem justifies the quasistatic approximation, which assumes negligible effect of velocity on magnetic fields. Therefore, the governing equations employed in the simulations are the compressible Navier-Stokes and the energy equations with MHD-related source terms such as Lorentz force and Joule dissipation. The results demonstrate the ability of the magnetic field to affect the flowfield around the cylinder, which results in an increase in shock stand-off distance and reduction in overall temperature. Also, it is observed that there is a noticeable decrease in drag with the addition of the magnetic field.

  19. The importance of flow history in mixed shear and extensional flows (United States)

    Wagner, Caroline; McKinley, Gareth


    Many complex fluid flows of experimental and academic interest exhibit mixed kinematics with regions of shear and elongation. Examples include flows through planar hyperbolic contractions in microfluidic devices and through porous media or geometric arrays. Through the introduction of a ``flow-type parameter'' α which varies between 0 in pure shear and 1 in pure elongation, the local velocity fields of all such mixed flows can be concisely characterized. It is tempting to then consider the local stress field and interpret the local state of stress in a complex fluid in terms of shearing or extensional material functions. However, the material response of such fluids exhibit a fading memory of the entire deformation history. We consider a dilute solution of Hookean dumbbells and solve the Oldroyd-B model to obtain analytic expressions for the entire stress field in any arbitrary mixed flow of constant strain rate and flow-type parameter α. We then consider a more complex flow for which the shear rate is constant but the flow-type parameter α varies periodically in time (reminiscent of flow through a periodic array or through repeated contractions and expansions). We show that the flow history and kinematic sequencing (in terms of whether the flow was initialized as shearing or extensional) is extremely important in determining the ensuing stress field and rate of dissipated energy in the flow, and can only be ignored in the limit of infinitely slow flow variations.

  20. On Howard's conjecture in heterogeneous shear flow problem

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    the basic heterogeneity distribution function, are negligible as compared to the first-order terms in gβ. 2. Mathematical formulation of the problem. The basic equations governing the linear instability in a Boussinesq inviscid parallel shear flow which is confined between two rigid horizontal boundaries is given by. 451 ...

  1. An Analytical Model of Wake Deflection Due to Shear Flow

    NARCIS (Netherlands)

    Micallef, D.; Simao Ferreira, C.J.; Sant, T.; Van Bussel, G.J.W.


    The main motivation behind this work is to create a purely analytical engineering model for wind turbine wake upward deflection due to shear flow, by developing a closed form solution of the velocity field due to an oblique vortex ring. The effectiveness of the model is evaluated by comparing the

  2. Ion waves driven by shear flow in a relativistic degenerate ...

    Indian Academy of Sciences (India)


    Home; Journals; Pramana – Journal of Physics; Volume 86; Issue 5. Ion waves driven by shear flow in a relativistic degenerate ... Proceedings of the International Workshop/Conference on Computational Condensed Matter Physics and Materials Science (IWCCMP-2015). Posted on November 27, 2015. Guest Editors: ...

  3. Aerodynamic Design of a Dual-Flow Mach 7 Hypersonic Inlet System for a Turbine-Based Combined-Cycle Hypersonic Propulsion System (United States)

    Sanders, Bobby W.; Weir, Lois J.


    A new hypersonic inlet for a turbine-based combined-cycle (TBCC) engine has been designed. This split-flow inlet is designed to provide flow to an over-under propulsion system with turbofan and dual-mode scramjet engines for flight from takeoff to Mach 7. It utilizes a variable-geometry ramp, high-speed cowl lip rotation, and a rotating low-speed cowl that serves as a splitter to divide the flow between the low-speed turbofan and the high-speed scramjet and to isolate the turbofan at high Mach numbers. The low-speed inlet was designed for Mach 4, the maximum mode transition Mach number. Integration of the Mach 4 inlet into the Mach 7 inlet imposed significant constraints on the low-speed inlet design, including a large amount of internal compression. The inlet design was used to develop mechanical designs for two inlet mode transition test models: small-scale (IMX) and large-scale (LIMX) research models. The large-scale model is designed to facilitate multi-phase testing including inlet mode transition and inlet performance assessment, controls development, and integrated systems testing with turbofan and scramjet engines.

  4. Computational Tool for Coupled Simulation of Nonequilibrium Hypersonic Flows with Ablation Project (United States)

    National Aeronautics and Space Administration — The goal of this SBIR project is to develop a predictive computational tool for the aerothermal environment around ablation-cooled hypersonic atmospheric entry...

  5. Terahertz Quantum Cascade Laser-Based Sensors for Hypersonic Flows (7274-050) Project (United States)

    National Aeronautics and Space Administration — Ground test facilities are used by NASA to simulate the conditions present during flight at hypersonic velocities, to test thermal protection materials for existing...

  6. Suspension of rigid spheres in shear flows (United States)

    Rahmani, Mona; Esteghamatian, Amir; Wachs, Anthony


    Suspension of rigid spheres in a plane Couette flow is studied using three-dimensional particle resolved numerical simulations. We use a fixed mesh that resolves each particle diameter using 24 points and a Distributed Lagrange Multi- plier/Fictitious Domain (DLM/FD) method. The effects of particle volume fraction and particle Reynolds number on the macrcoscopic and microscopic stresses in the suspension are examined. The kinematics of particle are also studied for a range of dilute to dense suspensions and Stokes to inertial flows. For dense suspensions and also for higher particle Reynolds numbers the particle/particle and particle/wall contacts are enhanced. For such cases, lubrication forces need to be taken into account. We compare simulations with and without the lubrication forces to conclude for what range of parameters lubrication should be incorporated into the simulations.

  7. Red cells and rouleaux in shear flow. (United States)

    Goldsmith, H L


    The rotation and deformation of human red cells and linear aggregates (rouleaux) in dilute plasma suspension were observed in Poiseuille and Couette flow. Single lunideform-led erythrocyte. s and roluleauix rotated in orbits predicted by theory for rigid spheroids. Bending of rouleaux occurred at orientations at which compressive forces act on the particles and the degree of flexibility increased with the number of cells in linear array.

  8. Interaction of single-pulse laser energy with bow shock in hypersonic flow

    Directory of Open Access Journals (Sweden)

    Hong Yanji


    Full Text Available Pressure sensing and schlieren imaging with high resolution and sensitivity are applied to the study of the interaction of single-pulse laser energy with bow shock at Mach 5. An Nd:YAG laser operated at 1.06 μm, 100 mJ pulse energy is used to break down the hypersonic flow in a shock tunnel. Three-dimensional Navier–Stokes equations are solved with an upwind scheme to simulate the interaction. The pressure at the stagnation point on the blunt body is measured and calculated to examine the pressure variation during the interaction. Schlieren imaging is used in conjunction with the calculated density gradients to examine the process of the interaction. The results show that the experimental pressure at the stagnation point on the blunt body and schlieren imaging fit well with the simulation. The pressure at the stagnation point on the blunt body will increase when the transmission shock approaches the blunt body and decrease with the formation of the rarefied wave. Bow shock is deformed during the interaction. Quasi-stationary waves are formed by high rate laser energy deposition to control the bow shock. The pressure and temperature at the stagnation point on the blunt body and the wave drag are reduced to 50%, 75% and 81% respectively according to the simulation. Schlieren imaging has provided important information for the investigation of the mechanism of the interaction.

  9. Hypersonic Transition Experiments in 3D Cone Flow with New Measurement Techniques (United States)


    Schematic view of Hypersonic Ludwieg Tube Braunschweig ( HLB ).................... 9 Figure 2: First cone model...Hypersonic Ludwieg Tube Braunschweig ( HLB ). The facility is described in detail in Estorf et al. (2004). A schematic of the facility is given in Fig...1. The HLB is a wind tunnel that runs at a nominal Mach number M∞ = 6, in a unit Reynolds number range of [3 − 20] × 106 m-1 for about 80 ms at

  10. Shear-thinning of molecular fluids in Couette flow (United States)

    Raghavan, Bharath V.; Ostoja-Starzewski, Martin


    We use non-equilibrium molecular dynamics simulations, the Boltzmann equation, and continuum thermomechanics to investigate and characterize the shear-thinning behavior of molecular fluids undergoing Couette flow, interacting via a Lennard-Jones (LJ) potential. In particular, we study the shear-stress under steady-state conditions and its dependency on fluid density and applied shear-strain rate. Motivated by kinetic theory, we propose a rheological equation of state that fits observed system responses exceptionally well and captures the extreme shear-thinning effect. We notice that beyond a particular strain-rate threshold, the fluid exhibits shear-thinning, the degree of which is dependent on the density and temperature of the system. In addition, we obtain a shear-rate dependent model for the viscosity which matches the well established Cross viscosity model. We demonstrate how this model arises naturally from the Boltzmann equation and possesses an inherent scaling parameter that unifies the rheological properties of the LJ fluid. We compare our model with those in the literature. Finally, we formulate a dissipation function modeling the LJ fluid as a quasilinear fluid.

  11. Scientific Transactions No. 11 of the Institute of Mechanics, Moscow State University. [supersonic and hypersonic gas flow and the movement of gas with exothermic reactions (United States)

    Gonor, A. L. (Editor)


    The results of flow around wings, the determination of the optimal form, and the interaction of the wake with the accompanying flow at supersonic and hypersonic speeds of the free-stream flow are given. Methods of numerical and analytical calculation of one dimensional unsteady and two dimensional steady motions of fuel-gas mixtures with exothermic reactions are also considered.

  12. Spherical particle sedimenting in weakly viscoelastic shear flow (United States)

    Einarsson, Jonas; Mehlig, Bernhard


    We consider the dynamics of a small spherical particle driven through an unbounded viscoelastic shear flow by an external force. We give analytical solutions to both the mobility problem (the velocity of a forced particle) and the resistance problem (the force on a fixed particle), valid to second order in the dimensionless Deborah and Weissenberg numbers, which represent the elastic relaxation time of the fluid relative to the rate of translation and the imposed shear rate. We find a shear-induced lift at O (Wi ) , a modified drag at O (De2) and O (Wi2) , and a second lift that is orthogonal to the first, at O (Wi2) . The relative importance of these effects depends strongly on the orientation of the forcing relative to the shear. We discuss how these forces affect the terminal settling velocity in an inclined shear flow. We also describe a basis set of symmetric Cartesian tensors and demonstrate how they enable general tensorial perturbation calculations such as the present theory. In particular, this scheme allows us to write down a solution to the inhomogeneous Stokes equations, required by the perturbation expansion, by a sequence of algebraic manipulations well suited to computer implementation.

  13. Analysis on Nonlinear Stress-Growth Data for Shear Flow of Starch Material with Shear Process

    Directory of Open Access Journals (Sweden)

    Jinghu Yu


    Full Text Available The material function of liquid materials for packaging plays an important role in analysis of its mechanical behavior. The mechanical behavior of material affects the packaging process in many aspects, such as selection of packaging materials and preparation of packaging method. Therefore, research on the material function of the liquid material is very helpful to guide the packaging process and look into how the packaging quality and efficiency are affected by the mechanical properties of material. This paper established the material function for the starch solution under shear process. With the relaxation test of the starch solution specimens, the G(t function and dumping function were established and verified. Based on the memory function of starch solution, the material function of starch solution was constructed and approved to be efficiently predict the mechanical behavior during the shear process. Therefore, such material function can be used to guide the operation on the shear flow.

  14. Cavitation Inception in Immersed Jet Shear Flows (United States)

    Lockett, R. D.; Ndamuso, N.; Price, R.


    Cavitation inception occurring in immersed jets was investigated in a purpose-built mechanical flow rig. The rig utilized custom-built cylindrical and conical nozzles to direct high-velocity jets of variable concentration n-octane-hexadecane mixtures into a fused silica optically accessible receiver. The fluid pressure upstream and down-stream of the nozzles were manually controlled. The study employed a variety of acrylic and metal nozzles. The results show that the critical upstream pressure to downstream pressure ratio for incipient cavitation decreases with increasing n-octane concentration for the cylindrical nozzles, and increases with increasing n-octane concentration for the conical nozzle.

  15. The stabilizing effect of compressibility in turbulent shear flow (United States)

    Sarkar, S.


    Direct numerical simulation of turbulent homogeneous shear flow is performed in order to clarify compressibility effects on the turbulence growth in the flow. The two Mach numbers relevant to homogeneous shear flow are the turbulent Mach number M(t) and the gradient Mach number M(g). Two series of simulations are performed where the initial values of M(g) and M(t) are increased separately. The growth rate of turbulent kinetic energy is observed to decrease in both series of simulations. This 'stabilizing' effect of compressibility on the turbulent energy growth rate is observed to be substantially larger in the DNS series where the initial value of M(g) is changed. A systematic companion of the different DNS cues shows that the compressibility effect of reduced turbulent energy growth rate is primarily due to the reduced level of turbulence production and not due to explicit dilatational effects. The reduced turbulence production is not a mean density effect since the mean density remains constant in compressible homogeneous shear flow. The stabilizing effect of compressibility on the turbulence growth is observed to increase with the gradient Mach number M(g) in the homogeneous shear flow DNS. Estimates of M(g) for the mixing and the boundary layer are obtained. These estimates show that the parameter M(g) becomes much larger in the high-speed mixing layer relative to the high-speed boundary layer even though the mean flow Mach numbers are the same in the two flows. Therefore, the inhibition of turbulent energy production and consequent 'stabilizing' effect of compressibility on the turbulence (over and above that due to the mean density variation) is expected to be larger in the mixing layer relative to the boundary layer in agreement with experimental observations.

  16. Mean-field dynamo action in renovating shearing flows. (United States)

    Kolekar, Sanved; Subramanian, Kandaswamy; Sridhar, S


    We study mean-field dynamo action in renovating flows with finite and nonzero correlation time (τ) in the presence of shear. Previous results obtained when shear was absent are generalized to the case with shear. The question of whether the mean magnetic field can grow in the presence of shear and nonhelical turbulence, as seen in numerical simulations, is examined. We show in a general manner that, if the motions are strictly nonhelical, then such mean-field dynamo action is not possible. This result is not limited to low (fluid or magnetic) Reynolds numbers nor does it use any closure approximation; it only assumes that the flow renovates itself after each time interval τ. Specifying to a particular form of the renovating flow with helicity, we recover the standard dispersion relation of the α(2)Ω dynamo, in the small τ or large wavelength limit. Thus mean fields grow even in the presence of rapidly growing fluctuations, surprisingly, in a manner predicted by the standard quasilinear closure, even though such a closure is not strictly justified. Our work also suggests the possibility of obtaining mean-field dynamo growth in the presence of helicity fluctuations, although having a coherent helicity will be more efficient.

  17. Modeling and simulation of radiation from hypersonic flows with Monte Carlo methods (United States)

    Sohn, Ilyoup

    During extreme-Mach number reentry into Earth's atmosphere, spacecraft experience hypersonic non-equilibrium flow conditions that dissociate molecules and ionize atoms. Such situations occur behind a shock wave leading to high temperatures, which have an adverse effect on the thermal protection system and radar communications. Since the electronic energy levels of gaseous species are strongly excited for high Mach number conditions, the radiative contribution to the total heat load can be significant. In addition, radiative heat source within the shock layer may affect the internal energy distribution of dissociated and weakly ionized gas species and the number density of ablative species released from the surface of vehicles. Due to the radiation total heat load to the heat shield surface of the vehicle may be altered beyond mission tolerances. Therefore, in the design process of spacecrafts the effect of radiation must be considered and radiation analyses coupled with flow solvers have to be implemented to improve the reliability during the vehicle design stage. To perform the first stage for radiation analyses coupled with gas-dynamics, efficient databasing schemes for emission and absorption coefficients were developed to model radiation from hypersonic, non-equilibrium flows. For bound-bound transitions, spectral information including the line-center wavelength and assembled parameters for efficient calculations of emission and absorption coefficients are stored for typical air plasma species. Since the flow is non-equilibrium, a rate equation approach including both collisional and radiatively induced transitions was used to calculate the electronic state populations, assuming quasi-steady-state (QSS). The Voigt line shape function was assumed for modeling the line broadening effect. The accuracy and efficiency of the databasing scheme was examined by comparing results of the databasing scheme with those of NEQAIR for the Stardust flowfield. An accuracy of

  18. Acceleration feature points of unsteady shear flows

    CERN Document Server

    Kasten, Jens; Hotz, Ingrid; Hege, Hans-Christian; Noack, Bernd R; Daviller, Guillaume; Morzynski, Marek


    In this paper, we propose a novel framework to extract features such as vortex cores and saddle points in two-dimensional unsteady flows. This feature extraction strategy generalizes critical points of snapshot topology in a Galilean-invariant manner, allows to prioritize features according to their strength and longevity, enables to track the temporal evolution of features, is robust against noise and has no subjective parameters. These characteristics are realized via several constitutive elements. First, acceleration is employed as a feature identifier following Goto and Vassilicos (2006), thus ensuring Galilean invariance. Second, the acceleration magnitude is used as basis for a mathematically well-developed scalar field topology. The minima of this field are called acceleration feature points, a superset of the acceleration zeros. These points are discriminated into vortices and saddle points depending the spectral properties of the velocity Jacobian. Third, all operations are based on discrete topology...

  19. Transverse electron-scale instability in relativistic shear flows

    CERN Document Server

    Alves, E P; Fonseca, R A; Silva, L O


    Electron-scale surface waves are shown to be unstable in the transverse plane of a shear flow in an initially unmagnetized plasma, unlike in the (magneto)hydrodynamics case. It is found that these unstable modes have a higher growth rate than the closely related electron-scale Kelvin-Helmholtz instability in relativistic shears. Multidimensional particle-in-cell simulations verify the analytic results and further reveal the emergence of mushroom-like electron density structures in the nonlinear phase of the instability, similar to those observed in the Rayleigh Taylor instability despite the great disparity in scales and different underlying physics. Macroscopic ($\\gg c/\\omega_{pe}$) fields are shown to be generated by these microscopic shear instabilities, which are relevant for particle acceleration, radiation emission and to seed MHD processes at long time-scales.

  20. Instability and segregation in bounded particulate shear flows (United States)

    Conway, Stephen L.

    Strategies for processing particulate materials, ranging from nanoparticles to pharmaceutical tablets, remain largely empirical and unreliable. Non-uniformity and segregation threaten product quality and consistency. We tackle these problems using fundamental, mesoscale approaches widespread in analysis of fluids. In paradigmatic gravity and Couette geometries, we examine the high-shear flow regime representative of many mixing and transport operations and characterize their unstable nature and consequent component segregation. Large-scale particle-dynamics simulations and experiments in two and three dimensions are quantified chiefly by Fourier methods, particle image velocimetry and image analysis, and provide tests of the continuum equations of granular kinetic theory. Uniform flows of identical particles spontaneously evolve into coherent clusters due to dissipative collisions and the presence of solid boundaries. Through parametric and transient analysis of numerical results, we find underlying instabilities cause order-of-magnitude variations in macroscopic properties and initiate vorticity. Similar instabilities are expressed experimentally. Measurements also indicate that subsurface circulation driven by velocity gradients near frictional walls is central to the generation of free-surface waves, suggesting a granular analog of fluid boundary layers. Instabilities also trigger segregation in particle mixtures. The magnitude and direction of species flux depends on local gradients describing cluster intensity, with implications for particle size distribution measurements. New segregation modes are quantified experimentally. Novel mixing-segregation transitions occur when we use gas fluidization to overcome particle jamming and show for the first time that granular materials develop vortices consistent with the primary Taylor instability---arguably the most instructive of all shear instabilities in fluids. However, unlike those in fluids, the granular vortices

  1. Free shear layer and swirl flow heat transfer enhancement (United States)

    Wirtz, R. A.; Greiner, M.; Snyder, B.


    Two wall shape induced convective heat transfer enhancement mechanisms for channel flows are investigated. The first uses transverse grooves in a channel wall to produce unstable free shear layers which cause traveling waves to be superimposed on the mean flow, thus augmenting heat transfer. The second uses streamline curvature to produce a swirling secondary flow. In this case, a serpentine channel is investigated. Flow visualization and heat transfer/pressure drop measurements with both air and water show that the expected augmentation mechanisms are operable in both the grooved and serpentine channel configurations at flow rates normally encountered in compact heat exchanger applications. When compared to other enhanced surfaces (such as offset strip fins or corrugated plate fins) on an equal pumping power basis, both the grooved and serpentine configurations of the present study produce performance curves which are comparable to, and in some cases superior to other conventional techniques.

  2. Study on breakup of liquid ligaments in hypersonic cross flow using laser sheet imaging and infrared light extinction spectroscopy (United States)

    Regert, T.; Horvath, I.; Buchlin, J.-M.; Masutti, D.; Chazot, O.; Vetrano, M. R.; Lapebie, C.; Le Gallic, C.


    This paper presents and discusses the results of tests of breakup phenomenon of liquid water into a hypersonic cross §ow from the surface of a 7 degree half-angle cone model at zero degree angle of incidence. The present work shows the dependence of the liquid phase characteristics on the cross-section area of the injection hole in a Mach 6 cross flow. The results are analyzed qualitatively by imaging, by Interferometric Laser Imaging for Droplet Sizing (ILIDS), and by InfraRed Light Extinction Spectroscopy (IR-LES). Conclusions are drawn concerning the droplet size distribution and the liquid §ow ¦eld characteristics.

  3. On rotational dynamics of inertial disks in creeping shear flow

    Energy Technology Data Exchange (ETDEWEB)

    Challabotla, Niranjan Reddy, E-mail:; Nilsen, Christopher; Andersson, Helge I.


    The rotational motion of an inertial disk-like particle in a creeping linear shear flow is investigated. A disk-like particle in a linear shear flow tends to rotate in the velocity-gradient plane as do rod-like particles. Unlike prolate spheroids, however, oblate spheroids always attain the same steady rotation in the shear plane irrespective of their initial orientation. The drift of the orientation of the rotation axis towards the vorticity vector consists of two qualitatively different stages. First, the wobbling drift towards rotation in the velocity-gradient plane becomes slower with increasing particle inertia, except for the least inertial spheroids. The duration of the second stage, during which the spheroid spins up to match the angular fluid velocity, becomes independent of the aspect ratio for relatively flat particles, provided that a new shape-dependent Stokes number is used. - Highlights: • Oblate spheroids rotate in flow-gradient plane irrespective of initial orientation. • A shape-dependent time scale is proposed for rotation of an oblate spheroid. • The final stage of spin-up is exponential for disk-like particles.

  4. Interaction Between Aerothermally Compliant Structures and Boundary-Layer Transition in Hypersonic Flow (United States)

    Riley, Zachary Bryce

    The use of thin-gauge, light-weight structures in combination with the severe aero-thermodynamic loading makes reusable hypersonic cruise vehicles prone to fluid-thermal-structural interactions. These interactions result in surface perturbations in the form of temperature changes and deformations that alter the stability and eventual transition of the boundary layer. The state of the boundary layer has a significant effect on the aerothermodynamic loads acting on a hypersonic vehicle. The inherent relationship between boundary-layer stability, aerothermodynamic loading, and surface conditions make the interaction between the structural response and boundary-layer transition an important area of study in high-speed flows. The goal of this dissertation is to examine the interaction between boundary layer transition and the response of aerothermally compliant structures. This is carried out by first examining the uncoupled problems of: (1) structural deformation and temperature changes altering boundary-layer stability and (2) the boundary layer state affecting structural response. For the former, the stability of boundary layers developing over geometries that typify the response of surface panels subject to combined aerodynamic and thermal loading is numerically assessed using linear stability theory and the linear parabolized stability equations. Numerous parameters are examined including: deformation direction, deformation location, multiple deformations in series, structural boundary condition, surface temperature, the combined effect of Mach number and altitude, and deformation mode shape. The deformation-induced pressure gradient alters the boundary-layer thickness, which changes the frequency of the most-unstable disturbance. In regions of small boundary-layer growth, the disturbance frequency modulation resulting from a single or multiple panels deformed into the flowfield is found to improve boundary-layer stability and potentially delay transition. For the

  5. Development of a computer code for calculating the steady super/hypersonic inviscid flow around real configurations. Volume 1: Computational technique (United States)

    Marconi, F.; Salas, M.; Yaeger, L.


    A numerical procedure has been developed to compute the inviscid super/hypersonic flow field about complex vehicle geometries accurately and efficiently. A second order accurate finite difference scheme is used to integrate the three dimensional Euler equations in regions of continuous flow, while all shock waves are computed as discontinuities via the Rankine Hugoniot jump conditions. Conformal mappings are used to develop a computational grid. The effects of blunt nose entropy layers are computed in detail. Real gas effects for equilibrium air are included using curve fits of Mollier charts. Typical calculated results for shuttle orbiter, hypersonic transport, and supersonic aircraft configurations are included to demonstrate the usefulness of this tool.

  6. A Computational Model of Deformable Cell Rolling in Shear Flow (United States)

    Eggleton, Charles; Jadhav, Sameer


    Selectin-mediated rolling of polymorphonuclear leukocytes (PMNs) on activated endothelium is critical to their recruitment to sites of inflammation. The cell rolling velocity is influenced by bond interactions on the molecular scale that oppose hydrodynamic forces at the mesoscale. Recent studies have shown that PMN rolling velocity on selectin-coated surfaces in shear flow is significantly slower compared to that of microspheres bearing a similar density of selectin ligands. To investigate whether cell deformability is responsible for these differences, we developed a 3-D computational model which simulates rolling of a deformable cell on a selectin-coated surface under shear flow with a stochastic description of receptor-ligand bond interaction. We observed that rolling velocity increases with increasing membrane stiffness and this effect is larger at high shear rates. The average bond lifetime, number of receptor-ligand bonds and the cell-substrate contact area decreased with increasing membrane stiffness. This study shows that cellular properties along with the kinetics of selectin-ligand interactions affect leukocyte rolling on selectin-coated surfaces.

  7. Physics of Transitional Shear Flows Instability and Laminar–Turbulent Transition in Incompressible Near-Wall Shear Layers

    CERN Document Server

    Boiko, Andrey V; Grek, Genrih R; Kozlov, Victor V


    Starting from fundamentals of classical stability theory, an overview is given of the transition phenomena in subsonic, wall-bounded shear flows. At first, the consideration focuses on elementary small-amplitude velocity perturbations of laminar shear layers, i.e. instability waves, in the simplest canonical configurations of a plane channel flow and a flat-plate boundary layer. Then the linear stability problem is expanded to include the effects of pressure gradients, flow curvature, boundary-layer separation, wall compliance, etc. related to applications. Beyond the amplification of instability waves is the non-modal growth of local stationary and non-stationary shear flow perturbations which are discussed as well. The volume continues with the key aspect of the transition process, that is, receptivity of convectively unstable shear layers to external perturbations, summarizing main paths of the excitation of laminar flow disturbances. The remainder of the book addresses the instability phenomena found at l...

  8. Flow patterns and critical criteria of thermally stratified shear flow in braided rivers

    Directory of Open Access Journals (Sweden)

    Li Gu


    Full Text Available Flow characteristics of thermally stratified shear flow in braided rivers are particularly complicated and poorly understood. In this study, a series of typical flow patterns was examined and their critical criteria were determined. Four flow patterns were identified: mixed, locally unstable, continuously stratified, and two-layer flow. Temperature distributions of the four types of flow patterns were analyzed and compared. The critical Froude numbers for unstable flow, FDcr1, and stable flow, FDcr2, were determined to be 6 and 1, respectively, and comparison of FDcr1 and FDcr2 to the peak Froude numbers, FD1 at the outer bank and FD2 at the inner bank along the anabranch, allowed the flow patterns to be assessed. Then, a discriminant based on initial Jeffreys-Keulegan stability parameters was established to distinguish the flow stages from two-layer flow to completely mixed flow. It is indicated that the three critical Jeffreys-Keulegan parameters increased with the diversion angle of braided rivers. Results also show that, compared to the stratified flow in straight and curved channels, it was more difficult for braided stratified flow to maintain as two-layer flow, and it more easily became mixed flow. Consequently, empirical expressions for stability criteria of the thermally stratified shear flow in braided rivers are presented.

  9. Turbulent characteristics of shear-thinning fluids in recirculating flows

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, A.S. [Inst. Superior de Engenharia do Porto (Portugal). Dept. de Engenharia Quimica; Pinho, F.T. [Centro de Estudos de Fenomenos de Transporte, Departamento de Engenharia Mecanica e Gestao Industrial, Faculdade de Engenharia da Universidade do Porto, Rua dos Bragas, 4050-123 Porto (Portugal)


    A miniaturised fibre optic laser-Doppler anemometer was used to carry out a detailed hydrodynamic investigation of the flow downstream of a sudden expansion with 0.1-0.2% by weight shear-thinning aqueous solutions of xanthan gum. Upstream of the sudden expansion the pipe flow was fully-developed and the xanthan gum solutions exhibited drag reduction with corresponding lower radial and tangential normal Reynolds stresses, but higher axial Reynolds stress near the wall and a flatter axial mean velocity profile in comparison with Newtonian flow. The recirculation bubble length was reduced by more than 20% relative to the high Reynolds number Newtonian flow, and this was attributed to the occurrence further upstream of high turbulence for the non-Newtonian solutions, because of advection of turbulence and earlier high turbulence production in the shear layer. Comparisons with the measurements of Escudier and Smith (1999) with similar fluids emphasized the dominating role of inlet turbulence. The present was less anisotropic, and had lower maximum axial Reynolds stresses (by 16%) but higher radial turbulence (20%) than theirs. They reported considerably longer recirculating bubble lengths than we do for similar non-Newtonian fluids and Reynolds numbers. (orig.)

  10. Reduced description of exact coherent states in parallel shear flows. (United States)

    Beaume, Cédric; Chini, Gregory P; Julien, Keith; Knobloch, Edgar


    A reduced description of exact coherent structures in the transition regime of plane parallel shear flows is developed, based on the Reynolds number scaling of streamwise-averaged (mean) and streamwise-varying (fluctuation) velocities observed in numerical simulations. The resulting system is characterized by an effective unit Reynolds number mean equation coupled to linear equations for the fluctuations, regularized by formally higher-order diffusion. Stationary coherent states are computed by solving the resulting equations simultaneously using a robust numerical algorithm developed for this purpose. The algorithm determines self-consistently the amplitude of the fluctuations for which the associated mean flow is just such that the fluctuations neither grow nor decay. The procedure is used to compute exact coherent states of a flow introduced by Drazin and Reid [Hydrodynamic Stability (Cambridge University Press, Cambridge, UK, 1981)] and studied by Waleffe [Phys. Fluids 9, 883 (1997)]: a linearly stable, plane parallel shear flow confined between stationary stress-free walls and driven by a sinusoidal body force. Numerical continuation of the lower-branch states to lower Reynolds numbers reveals the presence of a saddle node; the saddle node allows access to upper-branch states that are, like the lower-branch states, self-consistently described by the reduced equations. Both lower- and upper-branch states are characterized in detail.

  11. Resonance of Brownian vortices in viscoelastic shear flows (United States)

    Laas, K.; Mankin, R.


    The dynamics of a Brownian particle in an oscillatory viscoelastic shear flow is considered using the generalized Langevin equation. The interaction with fluctuations of environmental parameters is modeled by an additive external white noise and by an internal Mittag-Leffer noise with a finite memory time. Focusing on the mean angular momentum of particles it is shown that the presence of memory has a profound effect on the behavior of the Brownian vortices. Particularly, if an external noise dominates over the internal noise, a resonance-like dependence of the mean angular momentum of "free" particles, trapped due to the cage effect, on the characteristic memory time is observed. Moreover, it is established that memory effects can induce two kinds of resonance peaks: one resonance peak is related to the presence of external noise and the other is related to the initial positional distribution of particles. The bona fide resonance versus the shear frequency is also discussed.

  12. On the self-organizing process of large scale shear flows

    Energy Technology Data Exchange (ETDEWEB)

    Newton, Andrew P. L. [Department of Applied Maths, University of Sheffield, Sheffield, Yorkshire S3 7RH (United Kingdom); Kim, Eun-jin [School of Mathematics and Statistics, University of Sheffield, Sheffield, Yorkshire S3 7RH (United Kingdom); Liu, Han-Li [High Altitude Observatory, National Centre for Atmospheric Research, P. O. BOX 3000, Boulder, Colorado 80303-3000 (United States)


    Self organization is invoked as a paradigm to explore the processes governing the evolution of shear flows. By examining the probability density function (PDF) of the local flow gradient (shear), we show that shear flows reach a quasi-equilibrium state as its growth of shear is balanced by shear relaxation. Specifically, the PDFs of the local shear are calculated numerically and analytically in reduced 1D and 0D models, where the PDFs are shown to converge to a bimodal distribution in the case of finite correlated temporal forcing. This bimodal PDF is then shown to be reproduced in nonlinear simulation of 2D hydrodynamic turbulence. Furthermore, the bimodal PDF is demonstrated to result from a self-organizing shear flow with linear profile. Similar bimodal structure and linear profile of the shear flow are observed in gulf stream, suggesting self-organization.

  13. Formation of oil droplets in plasticized starch matrix in simple shear flow

    NARCIS (Netherlands)

    Emin, M.A.; Hardt, N.A.; Goot, van der A.J.; Schuchmann, H.P.


    This paper describes the effect of simple shear flow on the formation of triglyceride oil droplets in a plasticized starch matrix. An in-house developed shearing device was used that enabled the application of controlled shear flow and rheological characterization of the native maize

  14. A new energy transfer model for turbulent free shear flow (United States)

    Liou, William W.-W.


    A new model for the energy transfer mechanism in the large-scale turbulent kinetic energy equation is proposed. An estimate of the characteristic length scale of the energy containing large structures is obtained from the wavelength associated with the structures predicted by a weakly nonlinear analysis for turbulent free shear flows. With the inclusion of the proposed energy transfer model, the weakly nonlinear wave models for the turbulent large-scale structures are self-contained and are likely to be independent flow geometries. The model is tested against a plane mixing layer. Reasonably good agreement is achieved. Finally, it is shown by using the Liapunov function method, the balance between the production and the drainage of the kinetic energy of the turbulent large-scale structures is asymptotically stable as their amplitude saturates. The saturation of the wave amplitude provides an alternative indicator for flow self-similarity.

  15. Bubble nucleation from micro-crevices in a shear flow (United States)

    Groß, T. F.; Bauer, J.; Ludwig, G.; Fernandez Rivas, D.; Pelz, P. F.


    The formation of gas bubbles at gas cavities located in walls bounding the flow occurs in many technical applications, but is usually hard to observe. Even though, the presence of a fluid flow undoubtedly affects the formation of bubbles, there are very few studies that take this fact into account. In the present paper new experimental results on bubble formation (diffusion-driven nucleation) from surface nuclei in a shear flow are presented. The observed gas-filled cavities are micrometre-sized blind holes etched in silicon substrates. We measure the frequency of bubble generation (nucleation rate), the size of the detaching bubbles and analyse the growth of the surface nuclei. The experimental findings support an extended understanding of bubble formation as a self-excited cyclic process and can serve as validation data for analytical and numerical models.

  16. Evolution of shear banding flows in metallic glasses characterized by molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Li, E-mail: [Shanghai Institute of Space Power-Sources, 2965 Dongchuan Rd., Shanghai 200245 (China); Luan, Yingwei [School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240 (China)


    To reveal the evolution of shear banding flows, one-dimensional nanostructure metallic glass composites have been studied with molecular dynamics. The inherent size determines the initial thickness of shear bands, and the subsequent broadening can be restricted to some extent. The vortex-like flows evoke the atomic motion perpendicular to the shear plane, which accelerates the interatomic diffusion. The reduction of local strain rate causes the flow softening for monolithic Cu-Zr glass, but the participation of Cu-atoms in the shear banding flow gradually leads to the shear hardening for the composites.

  17. Fibrillization kinetics of insulin solution in an interfacial shearing flow (United States)

    Balaraj, Vignesh; McBride, Samantha; Hirsa, Amir; Lopez, Juan


    Although the association of fibril plaques with neurodegenerative diseases like Alzheimer's and Parkinson's is well established, in-depth understanding of the roles played by various physical factors in seeding and growth of fibrils is far from well known. Of the numerous factors affecting this complex phenomenon, the effect of fluid flow and shear at interfaces is paramount as it is ubiquitous and the most varying factor in vivo. Many amyloidogenic proteins have been found to denature upon contact at hydrophobic interfaces due to the self-assembling nature of protein in its monomeric state. Here, fibrillization kinetics of insulin solution is studied in an interfacial shearing flow. The transient surface rheological response of the insulin solution to the flow and its effect on the bulk fibrillization process has been quantified. Minute differences in hydrophobic characteristics between two variants of insulin- Human recombinant and Bovine insulin are found to result in very different responses. Results presented will be in the form of fibrillization assays, images of fibril plaques formed, and changes in surface rheological properties of the insulin solution. The interfacial velocity field, measured from images (via Brewster Angle Microscopy), is compared with computations. Supported by NNX13AQ22G, National Aeronautics and Space Administration.

  18. Fourier-Bessel theory on flow acoustics in inviscid shear pipeline fluid flow (United States)

    Chen, Yong; Huang, Yiyong; Chen, Xiaoqian


    Flow acoustics in pipeline is of considerable interest in both industrial application and scientific research. While well-known analytical solutions exist for stationary and uniform mean flow, only numerical solutions exist for shear mean flow. Based on potential theory, a general mathematical formulation of flow acoustics in inviscid fluid with shear mean flow is deduced, resulting in a set of two second-order differential equations. According to Fourier-Bessel theory which is orthogonal and complete in Lebesgue Space, a solution is proposed to transform the differential equations to linear homogeneous algebraic equations. Consequently, the axial wave number is numerically calculated due to the existence condition of non-trivial solution to homogeneous linear algebraic equations, leading to the vanishment of the corresponding determinant. Based on the proposed method, wave propagation in laminar and turbulent flow is numerically analyzed.

  19. Nonlinear Terms of MHD Equations for Homogeneous Magnetized Shear Flow

    CERN Document Server

    Dimitrov, Z D; Hristov, T S; Mishonov, T M


    We have derived the full set of MHD equations for incompressible shear flow of a magnetized fluid and considered their solution in the wave-vector space. The linearized equations give the famous amplification of slow magnetosonic waves and describe the magnetorotational instability. The nonlinear terms in our analysis are responsible for the creation of turbulence and self-sustained spectral density of the MHD (Alfven and pseudo-Alfven) waves. Perspectives for numerical simulations of weak turbulence and calculation of the effective viscosity of accretion disks are shortly discussed in k-space.

  20. Numerical Analysis of Supersonic Film Cooling in Supersonic Flow in Hypersonic Inlet with Isolator


    Silong Zhang; Jiang Qin; Wen Bao; Long Zhang


    Supersonic film cooling is an efficient method to cool the engine with extremely high heat load. In order to study supersonic film cooling in a real advanced engine, a two-dimensional model of the hypersonic inlet in a scramjet engine with supersonic film cooling in the isolator is built and validated through experimental data. The simulation results show that the cooling effect under different coolant injection angles does not show clear differences; a small injection angle can ensure both t...

  1. Heat Release Effects on Scaling Laws for Turbulent Shear Flows (United States)

    Tacina, Kathleen M.; Dahm, Werner J. A.


    Experiments have long suggested apparent differences in the fundamental scaling laws for turbulent shear flows between reacting and nonreacting flows. These differences result from the density changes produced by exothermic reaction, and are here shown to be similar to the changes produced by free-stream density differences in nonreacting flows. Motivated by this, we show that the fundamental scaling laws can be generalized to predict the changes due to heat release. The bilinear dependence of temperature T(ζ) on an appropriately defined conserved scalar ζ allows the density changes to be related to an equivalent nonreacting flow, in which one of the free-stream fluid temperatures is set to a value determined by the adiabatic flame temperature and the overall stoichiometry. This scaling principle is applied to turbulent jet diffusion flames, and leads to a generalized scaling variable d^+ for both reacting and nonreacting flows; it effectively extends the momentum diameter d^* of Thring & Newby (1952) and Ricou & Spalding (1961) to reacting flows. The resulting predicted effects of heat release show good agreement with all available data from momentum-dominated jet flames. (Supported by GRI Contract No. 5093-260-2728.)

  2. Energy considerations in accelerating rapid shear granular flows

    Directory of Open Access Journals (Sweden)

    S. P. Pudasaini


    Full Text Available We present a complete expression for the total energy associated with a rapid frictional granular shear flow down an inclined surface. This expression reduces to the often used energy for a non-accelerating flow of an isotropic, ideal fluid in a horizontal channel, or to the energy for a vertically falling mass. We utilize thickness-averaged mass and momentum conservation laws written in a slope-defined coordinate system. Both the enhanced gravity and friction are taken into account in addition to the bulk motion and deformation. The total energy of the flow at a given spatial position and time is defined as the sum of four energy components: the kinetic energy, gravity, pressure and the friction energy. Total energy is conserved for stationary flow, but for non-stationary flow the non-conservative force induced by the free-surface gradient means that energy is not conserved. Simulations and experimental results are used to sketch the total energy of non-stationary flows. Comparison between the total energy and the sum of the kinetic and pressure energy shows that the contribution due to gravity acceleration and frictional resistance can be of the same order of magnitude, and that the geometric deformation plays an important role in the total energy budget of the cascading mass. Relative importance of the different constituents in the total energy expression is explored. We also introduce an extended Froude number that takes into account the apparent potential energy induced by gravity and pressure.

  3. Flow velocities and bed shear stresses in a stone cover under an oscillatory flow

    DEFF Research Database (Denmark)

    Stenanato, F.; Nielsen, Anders Wedel; Sumer, B. Mutlu


    layers of stones. The flow velocities in the pores of the stones were measured using LDA (Laser Doppler Anemometer). In addition to the velocity measurements, the bed shear stresses were also measured using a hotfilm (Constant Temperature Anemometry). It is found that the boundary layer of the outer flow...... current boundary layer without any externally generated turbulence. The bd shear stress is found to be very low, more than ten times smaller than in the case of a smooth base bottom without stone cover....

  4. Mixing in a stratified shear flow: Energetics and sampling (United States)

    Ivey, G. N.; Koseff, J. R.; Briggs, D. A.; Ferziger, J. H.


    Direct numerical simulations of the time evolution of homogeneous stably stratified shear flows have been performed for Richardson numbers from 0 to 1 and for Prandtl numbers between 0.1 and 2. The results indicate that mixing efficiency R(sub f) varies with turbulent Froude number in a manner consistent with laboratory experiments performed with Prandtl numbers of 0.7 and 700. However, unlike the laboratory results, for a particular Froude number, the simulations do not show a clear dependence on the magnitude of R(sub f) on Pr. The observed maximum value of R(sub f) is 0.25. When averaged over vertical length scales of an order of magnitude greater than either the overturning or Ozmidov scales of the flow, the simulations indicate that the dissipation rate epsilon is only weakly lognormally distributed with an intermittency of about 0.01 whereas estimated values in the ocean are 3 to 7.

  5. Rheological State Diagrams for Rough Colloids in Shear Flow (United States)

    Hsiao, Lilian C.; Jamali, Safa; Glynos, Emmanouil; Green, Peter F.; Larson, Ronald G.; Solomon, Michael J.


    To assess the role of particle roughness in the rheological phenomena of concentrated colloidal suspensions, we develop model colloids with varying surface roughness length scales up to 10% of the particle radius. Increasing surface roughness shifts the onset of both shear thickening and dilatancy towards lower volume fractions and critical stresses. Experimental data are supported by computer simulations of spherical colloids with adjustable friction coefficients, demonstrating that a reduction in the onset stress of thickening and a sign change in the first normal stresses occur when friction competes with lubrication. In the quasi-Newtonian flow regime, roughness increases the effective packing fraction of colloids. As the shear stress increases and suspensions of rough colloids approach jamming, the first normal stresses switch signs and the critical force required to generate contacts is drastically reduced. This is likely a signature of the lubrication films giving way to roughness-induced tangential interactions that bring about load-bearing contacts in the compression axis of flow.

  6. Oscillating sources in a shear flow with a free surface

    CERN Document Server

    Ellingsen, Simen Å


    We report on progress on the free surface flow in the presence of submerged oscillating line sources (2D) or point sources (3D) when a simple shear flow is present varying linearly with depth. Such sources are in routine use as Green functions in the realm of potential theory for calculating wave-body interactions, but no such theory exists in for rotational flow. We solve the linearized problem in 2D and 3D from first principles, based on the Euler equations, when the sources are at rest relative to the undisturbed surface. Both in 2D and 3D a new type of solution appears compared to irrotational case, a critical layer-like flow whose surface manifestation ("wave") drifts downstream from the source at the velocity of the flow at the source depth. We analyse the additional vorticity in light of the vorticity equation and provide a simple physical argument why a critical layer is a necessary consequence of Kelvin's circulation theorem. In 3D a related critical layer phenomenon occurs at every depth, whereby a ...

  7. Investigation of Compressibility Effect for Aeropropulsive Shear Flows (United States)

    Balasubramanyam, M. S.; Chen, C. P.


    Rocket Based Combined Cycle (RBCC) engines operate within a wide range of Mach numbers and altitudes. Fundamental fluid dynamic mechanisms involve complex choking, mass entrainment, stream mixing and wall interactions. The Propulsion Research Center at the University of Alabama in Huntsville is involved in an on- going experimental and numerical modeling study of non-axisymmetric ejector-based combined cycle propulsion systems. This paper attempts to address the modeling issues related to mixing, shear layer/wall interaction in a supersonic Strutjet/ejector flow field. Reynolds Averaged Navier-Stokes (RANS) solutions incorporating turbulence models are sought and compared to experimental measurements to characterize detailed flow dynamics. The effect of compressibility on fluids mixing and wall interactions were investigated using an existing CFD methodology. The compressibility correction to conventional incompressible two- equation models is found to be necessary for the supersonic mixing aspect of the ejector flows based on 2-D simulation results. 3-D strut-base flows involving flow separations were also investigated.

  8. Effect of confinement on droplet coalescence in shear flow. (United States)

    Chen, Dongju; Cardinaels, Ruth; Moldenaers, Paula


    The effect of confinement on the coalescence of Newtonian (polydimethylsiloxane) droplets in a Newtonian (polyisobutylene) matrix is investigated experimentally. A counter rotating parallel plate device, equipped with a microscopy setup, is used to visualize two interacting droplets during shear flow. The ratio of droplet-to-matrix viscosity is kept constant at 1.1. Droplet collisions are studied for a range of droplet sizes, both in bulk conditions and for gap spacings that are comparable to the droplet size. As a result, we present the first quantitative experimental data set for the coalescence of two equal-sized droplets in a pure shear flow with varying degrees of confinement. Compared to bulk conditions, for droplets smaller than roughly 0.2 times the gap spacing, a slight degree of confinement only decreases the orientation angle at which the droplets coalesce whereas the critical conditions for coalescence remain unaltered. For more confined conditions, the critical capillary number up to which coalescence can occur, increases. Therefore, confinement clearly promotes coalescence. In addition, the droplet trajectories, the time-dependent orientation angle of the droplet pair, and the droplet deformation prior to the coalescence event are systematically studied, and a comparison between the confined and the unconfined situation is provided. It is shown that the presence of two parallel walls can induce changes in the flow field around the droplet pair, which cause an increase of the interaction time between the droplets. Moreover, for sufficiently confined droplets, the additional force originating from the presence of the walls becomes comparable to the hydrodynamic force on the droplet pair, thus influencing the drainage of the matrix film between the droplet surfaces.

  9. Flow rate dependency of critical wall shear stress in a radial-flow cell

    DEFF Research Database (Denmark)

    Detry, J.G.; Jensen, Bo Boye Busk; Sindic, M.


    In the present work, a radial-flow cell was used to study the removal of starch particle aggregates from several solid substrates (glass, stainless steel, polystyrene and PTFE) in order to determine the critical wall shear stress value for each case. The particle aggregates were formed by aspersi...

  10. A kinetic-theory approach for computing chemical-reaction rates in upper-atmosphere hypersonic flows. (United States)

    Gallis, Michael A; Bond, Ryan B; Torczynski, John R


    Recently proposed molecular-level chemistry models that predict equilibrium and nonequilibrium reaction rates using only kinetic theory and fundamental molecular properties (i.e., no macroscopic reaction-rate information) are investigated for chemical reactions occurring in upper-atmosphere hypersonic flows. The new models are in good agreement with the measured Arrhenius rates for near-equilibrium conditions and with both measured rates and other theoretical models for far-from-equilibrium conditions. Additionally, the new models are applied to representative combustion and ionization reactions and are in good agreement with available measurements and theoretical models. Thus, molecular-level chemistry modeling provides an accurate method for predicting equilibrium and nonequilibrium chemical-reaction rates in gases.

  11. Performance characterization of a cross-flow hydrokinetic turbine in sheared inflow

    Energy Technology Data Exchange (ETDEWEB)

    Forbush, Dominic; Polagye, Brian; Thomson, Jim; Kilcher, Levi; Donegan, James; McEntee, Jarlath


    A method for constructing a non-dimensional performance curve for a cross-flow hydrokinetic turbine in sheared flow is developed for a natural river site. The river flow characteristics are quasi-steady, with negligible vertical shear, persistent lateral shear, and synoptic changes dominated by long time scales (days to weeks). Performance curves developed from inflow velocities measured at individual points (randomly sampled) yield inconclusive turbine performance characteristics because of the spatial variation in mean flow. Performance curves using temporally- and spatially-averaged inflow velocities are more conclusive. The implications of sheared inflow are considered in terms of resource assessment and turbine control.

  12. Flow-thermodynamics interactions in compressible shear-driven turbulence: Linear analysis of possible flow control strategies (United States)

    Bertsch, Rebecca; Kumar, Gaurav; Girimaji, Sharath


    Flow-thermodynamics interaction in turbulent flows can be classified into three categories based on the action of pressure fluctuations. In very high Mach number flows, pressure fluctuations play an insignificant role as momentum far exceeds pressure forces. At very low Mach numbers, pressure is determined by the Poisson equation and flow-thermodynamics interactions are dynamically not very important. However, at intermediate Mach numbers, pressure exhibits wave character leading to critical flow-thermodynamics interactions and concurrent modification in the nature of turbulence. In our previous works, we have established that inhibiting influence of compressibility on turbulence is due to the intermediate Mach number regime. In this work, we use RDT (rapid distortion theory) linear equations to examine some strategies for flow control in the intermediate Mach number regime by exploiting flow-thermodynamic interactions. The results have important implications for inhibiting onset of turbulence in hypersonic external flows and intensifying mixing in internal propulsion flows.

  13. Restructuring and Break-Up of Two-Dimensional Aggregates in Shear Flow

    NARCIS (Netherlands)

    Vassileva, Nikolina D.; van den Ende, Henricus T.M.; Mugele, Friedrich Gunther; Mellema, J.


    We consider single two-dimensional aggregates, containing glass particles, placed at a water/air interface. We have investigated the critical shear rate for break-up of aggregates with different sizes in a simple shear flow. All aggregates break-up nearly at the same shear rate (1.8 ± 0.2 s-1)

  14. Retrograde flow and shear rate acutely impair endothelial function in humans.

    NARCIS (Netherlands)

    Thijssen, D.H.J.; Dawson, E.A.; Tinken, T.M.; Cable, N.T.; Green, D.J.


    Changes in arterial shear stress induce functional and structural vasculature adaptations. Recent studies indicate that substantial retrograde flow and shear can occur through human conduit arteries. In animals, retrograde shear is associated with atherogenic effects. The aim of this study was to

  15. Effects of thermochemistry, nonequilibrium, and surface catalysis on the design of hypersonic vehicles (United States)

    Scott, Carl D.


    An account is given of the function of physical aspects of a gas on the characteristics of the flow and of the heating associated with hypersonic flight. At the high temperatures encountered, the thermal and chemical characteristics of the air in a hypersonic vehicle's shock layer are altered in ways which depend on the atomic and molecular structure of N and O and their ions; similar effects exist in scramjet propulsion systems. These properties in turn influence the character of shock waves and expansions, and hence the pressure, temperature, and velocity distributions. Transport properties affecting the boundary-layer structure will also affect heat flux and shear stress.

  16. Non-canonical Wnt signalling modulates the endothelial shear stress flow sensor in vascular remodelling. (United States)

    Franco, Claudio A; Jones, Martin L; Bernabeu, Miguel O; Vion, Anne-Clemence; Barbacena, Pedro; Fan, Jieqing; Mathivet, Thomas; Fonseca, Catarina G; Ragab, Anan; Yamaguchi, Terry P; Coveney, Peter V; Lang, Richard A; Gerhardt, Holger


    Endothelial cells respond to molecular and physical forces in development and vascular homeostasis. Deregulation of endothelial responses to flow-induced shear is believed to contribute to many aspects of cardiovascular diseases including atherosclerosis. However, how molecular signals and shear-mediated physical forces integrate to regulate vascular patterning is poorly understood. Here we show that endothelial non-canonical Wnt signalling regulates endothelial sensitivity to shear forces. Loss of Wnt5a/Wnt11 renders endothelial cells more sensitive to shear, resulting in axial polarization and migration against flow at lower shear levels. Integration of flow modelling and polarity analysis in entire vascular networks demonstrates that polarization against flow is achieved differentially in artery, vein, capillaries and the primitive sprouting front. Collectively our data suggest that non-canonical Wnt signalling stabilizes forming vascular networks by reducing endothelial shear sensitivity, thus keeping vessels open under low flow conditions that prevail in the primitive plexus.

  17. Velocity-pressure correlation measurements in complex free shear flows

    Energy Technology Data Exchange (ETDEWEB)

    Naka, Yoshitsugu [Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi Kohoku-ku, Yokohama-city 223-8522 (Japan)], E-mail:; Obi, Shinnosuke [Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi Kohoku-ku, Yokohama-city 223-8522 (Japan)], E-mail:


    Simultaneous measurements of fluctuating velocity and pressure were performed in various turbulent free shear flows including a turbulent mixing layer and the wing-tip vortex trailing from a NACA0012 half-wing. Two different methods for fluctuating static pressure measurement were considered: a direct method using a miniature Pitot tube and an indirect method where static pressure was calculated from total pressure. The pressure obtained by either of these methods was correlated with the velocity measured by an X-type hot-wire probe. The results from these two techniques agreed with each other in the turbulent mixing layer. In the wing-tip vortex case, however, some discrepancies were found, although overall characteristics of the pressure-related statistics were adequately captured by both methods.

  18. Energy conserving truncations for convection with shear flow

    Energy Technology Data Exchange (ETDEWEB)

    Thiffeault, J.L.; Horton, W. [Univ. of Texas, Austin, TX (United States)


    A method is presented for making finite Fourier mode truncations of the Rayleigh-Benard convection system that preserve invariants of the full partial differential equations in the dissipationless limit. This system is analogous to the flute-reduced MHD equations for large aspect-ratio axisymmetric toroidal systems. These truncations are shown to have no unbounded solutions and provide a description of the thermal flux that has the correct limiting behaviour in a steady-state. A particular low-order truncation (containing 7 modes) is selected and compared with the 6 mode truncation of Howard and Krishnamurti, which does not conserve the total energy in the dissipationless limit. A numerical example is presented to compare the two truncations and study the effect of shear flow on thermal transport.

  19. Transient Growth in Shear Flows: Linearity vs Nonlinearity

    CERN Document Server

    Pringle, Chris C T


    Two approaches to the problem of transition to turbulence of shear flows are popular in the literature. The first is the linear one of transient growth which focuses on the likely form of the most 'dangerous' (lowest energy) turbulence-triggering disturbances. The second is the nonlinear calculation of the laminar-turbulent boundary which instead focuses on their typical amplitudes. We look to bridge the gap between these two perspectives by considering the fully nonlinear transient growth problem to estimate both the form and amplitude of the most dangerous disturbance. We thereby discover a new nonlinear optimal disturbance which outgrows the well-known linear optimal for the same initial energy and is crucially much more efficient in triggering turbulence. The conclusion is then that the most dangerous disturbance can differ markedly from what traditional linear transient growth analysis predicts.

  20. Investigation of the Shear Flow Effect and Tip Clearance on a Low Speed Axial Flow Compressor Cascade

    Directory of Open Access Journals (Sweden)

    Mahesh Varpe


    Full Text Available This paper explores the effect of inlet shear flow on the tip leakage flow in an axial flow compressor cascade. A flow with a high shear rate is generated in the test section of an open circuit cascade wind tunnel by using a combination of screens with a prescribed solidity. It is observed that a stable shear flow of shear rate 1.33 is possible and has a gradual decay rate until 15 times the height of the shear flow generator downstream. The computational results obtained agree well with the available experimental data on the baseline configuration. The detailed numerical analysis shows that the tip clearance improves the blade loading near the tip through the promotion of favorable incidence by the tip leakage flow. The tip clearance shifts the centre of pressure on the blade surface towards the tip. It, however, has no effect on the distribution of end wall loss and deviation angle along the span up to 60% from the hub. In the presence of a shear inflow, the end wall effects are considerable. On the other hand, with a shear inflow, the effects of tip leakage flow are observed to be partly suppressed. The shear flow reduces the tip leakage losses substantially in terms of kinetic energy associated with it.

  1. Cross flow response of a cylindrical structure under local shear flow

    Directory of Open Access Journals (Sweden)

    Yoo-Chul Kim


    Full Text Available The VIV (Vortex-Induced Vibration analysis of a flexible cylindrical structure under locally strong shear flow is presented. The model is made of Teflon and has 9.5m length, 0.0127m diameter, and 0.001m wall thickness. 11 2-dimensional accelerometers are installed along the model. The experiment has been conducted at the ocean engineering basin in the University of Tokyo in which uniform current can be generated. The model is installed at about 30 degree of slope and submerged by almost overall length. Local shear flow is made by superposing uniform current and accelerated flow generated by an impeller. The results of frequency and modal analysis are presented.

  2. Electromagnetic transport components and sheared flows in drift-Alfven turbulence

    DEFF Research Database (Denmark)

    Naulin, V.


    Results from three-dimensional numerical simulations of drift-Alfven turbulence in a toroidal geometry with sheared magnetic field are presented. The simulations show a relation between self-generated poloidal shear flows and magnetic field perturbations. For large values of the plasma beta we...... observe an increase of the transport if the viscous damping of the self-generated shear flows is absent. This behavior is in contrast to the standard argument that sheared flows suppress turbulence and transport via a decorrelation mechanism. An explanation of this behavior in terms of the transport...

  3. Growth of viscoelastic wings and the reduction of particle mobility in a viscoelastic shear flow (United States)

    Murch, William L.; Krishnan, Sreenath; Shaqfeh, Eric S. G.; Iaccarino, Gianluca


    The motion of a rigid spherical particle in a sheared polymeric fluid is studied via experiments and numerical simulations. We study particle mobility in highly elastic fluids, where the deformation due to the sphere's movement and the shear flow both result in significant stretching of the polymer. The shear flow is imposed in a plane perpendicular to the sphere's movement, resulting in regions of high polymer tension in the wake of the sphere that can extend well into the shear flow and gradient directions. We observe that these viscoelastic wake structures, resembling wings, are linked to an increase in the form drag, providing a mechanism for a dramatic decrease in the particle mobility.

  4. Determination of heat transfer into a wedge model in a hypersonic flow using temperature-sensitive paint (United States)

    Risius, Steffen; Beck, Walter H.; Klein, Christian; Henne, Ulrich; Wagner, Alexander


    Heat loads on spacecraft traveling at hypersonic speed are of major interest for their designers. Several tests using temperature-sensitive paints (TSP) have been carried out in long duration shock tunnels to determine these heat loads; generally paint layers were thin, so that certain assumptions could be invoked to enable a good estimate of the thermal parameter ρck (a material property) to be obtained—the value of this parameter is needed to determine heat loads from the TSP. Very few measurements have been carried out in impulse facilities [viz. shock tunnels such as the High Enthalpy Shock Tunnel Göttingen (HEG)], where test times are much shorter. Presented here are TSP temperature measurements and subsequently derived heat loads on a ramp model placed in a hypersonic flow in HEG (specific enthalpy h 0 = 3.3 MJ kg-1, Mach number M = 7.4, temperature T ∞ = 277 K, density ρ ∞ = 11 g m-3). A number of fluorescence intensity images were acquired, from which, with the help of calibration data, temperature field data on the model surface were determined. From these the heat load into the surface was calculated, using an assumption of a 1D, semi-infinite heat transfer model. ρck for the paint was determined using an insitu calibration with a Medtherm coaxial thermocouple mounted on the model; Medtherm ρck is known. Finally presented are sources of various measurement uncertainties, arising from: (1) estimation of ρck; (2) intensity measurement in the chosen interrogation area; (3) paint time response.

  5. A Hot Dynamic Seal Rig for Measuring Hypersonic Engine Seal Durability and Flow Performance (United States)

    Miller, Jeffrey H.; Steinetz, Bruce M.; Sirocky, Paul J.; Kren, Lawrence A.


    A test fixture for measuring the dynamic performance of candidate high-temperature engine seal concepts was installed at NASA Lewis Research Center. The test fixture was designed to evaluate seal concepts under development for advanced hypersonic engines, such as those being considered for the National Aerospace Plane (NASP). The fixture can measure dynamic seal leakage performance from room temperature up to 840 C (1550 F) and air pressure differentials up to 690 kPa (100 psi). Performance of the seals can be measured while sealing against flat or distorted walls. In the fixture two seals are preloaded against the sides of a 30 cm (1 ft) long saber that slides transverse to the axis of the seals, simulating the scrubbing motion anticipated in these engines. The capabilities of this test fixture along with preliminary data showing the dependence of seal leakage performance on high temperature cycling are addressed.

  6. Hot dynamic test rig for measuring hypersonic engine seal flow and durability (United States)

    Miller, Jeffrey H.; Steinetz, Bruce M.; Sirocky, Paul J.; Kren, Lawrence A.


    A test fixture for measuring the dynamic performance of candidate high-temperature engine seal concepts was developed. The test fixture was developed to evaluate seal concepts under development for advanced hypersonic engines, such as those being considered for the National Aerospace Plane (NASP). The fixture can measure dynamic seal leakage performance from room temperature up to 840 C and air pressure differentials of to 0.7 MPa. Performance of the seals can be measured while sealing against flat or engine-simulated distorted walls. In the fixture, two seals are preloaded against the sides of a 0.3 m long saber that slides transverse to the axis of the seals, simulating the scrubbing motion anticipated in these engines. The capabilities of this text fixture along with preliminary data showing the dependence of seal leakage performance on high temperature cycling are covered.

  7. Shear flow effect on ion temperature gradient vortices in plasmas with sheared magnetic field

    DEFF Research Database (Denmark)

    Chakrabarti, N.; Juul Rasmussen, J.


    The effect of velocity shear on ion temperature gradient (ITG) driven vortices in a nonuniform plasma in a curved, sheared magnetic field is investigated. In absence of parallel ion dynamics, vortex solutions for the ITG mode are studied analytically. It is shown that under certain conditions...... and ultimately lead to a dominating monopolar form. The effects of magnetic shear indicate it may destroy these structures. (C) 1999 American Institute of Physics....

  8. Development of a computer code for calculating the steady super/hypersonic inviscid flow around real configurations. Volume 2: Code description (United States)

    Marconi, F.; Yaeger, L.


    A numerical procedure was developed to compute the inviscid super/hypersonic flow field about complex vehicle geometries accurately and efficiently. A second-order accurate finite difference scheme is used to integrate the three-dimensional Euler equations in regions of continuous flow, while all shock waves are computed as discontinuities via the Rankine-Hugoniot jump conditions. Conformal mappings are used to develop a computational grid. The effects of blunt nose entropy layers are computed in detail. Real gas effects for equilibrium air are included using curve fits of Mollier charts. Typical calculated results for shuttle orbiter, hypersonic transport, and supersonic aircraft configurations are included to demonstrate the usefulness of this tool.

  9. Dynamics of Miura-patterned foldable sheets in shear flow. (United States)

    Dutta, Sarit; Graham, Michael D


    We study the dynamics of piecewise rigid sheets containing predefined crease lines in shear flow. The crease lines act like hinge joints along which the sheet may fold rigidly, i.e. without bending any other crease line. We choose the crease lines such that they tessellate the sheet into a two-dimensional array of parallelograms. Specifically, we focus on a particular arrangement of crease lines known as a Miura-pattern in the origami community. When all the hinges are fully open the sheet is planar, whereas when all are closed the sheet folds over itself to form a compact flat structure. Due to rigidity constraints, the folded state of a Miura-sheet can be described using a single fold angle. The hinged sheet is modeled using the framework of constrained multibody systems in the absence of inertia. The hydrodynamic drag on each of the rigid panels is calculated based on an inscribed elliptic disk, but intra-panel hydrodynamic interactions are neglected. We find that when the motion of a sheet remains symmetric with respect to the flow-gradient plane, after a sufficiently long time, the sheet either exhibits asymptotically periodic tumbling and breathing, indicating approach to a limit cycle; or it reaches a steady state by completely unfolding, which we show to be a half-stable node in the phase space. In the case of asymmetric motion of the sheet with respect to the flow-gradient plane, we find that the terminal state of motion is one of - (i) steady state with a fully unfolded or fully folded configuration, (ii) asymptotically periodic tumbling, indicating approach to a limit cycle, (iii) cyclic tumbling without repetition, indicating a quasiperiodic orbit, or (iv) cyclic tumbling with repetition after several cycles, indicating a resonant quasiperiodic orbit. No chaotic behavior was found.

  10. Fractally Fourier decimated homogeneous turbulent shear flow in noninteger dimensions. (United States)

    Fathali, Mani; Khoei, Saber


    Time evolution of the fully resolved incompressible homogeneous turbulent shear flow in noninteger Fourier dimensions is numerically investigated. The Fourier dimension of the flow field is extended from the integer value 3 to the noninteger values by projecting the Navier-Stokes equation on the fractal set of the active Fourier modes with dimensions 2.7≤d≤3.0. The results of this study revealed that the dynamics of both large and small scale structures are nontrivially influenced by changing the Fourier dimension d. While both turbulent production and dissipation are significantly hampered as d decreases, the evolution of their ratio is almost independent of the Fourier dimension. The mechanism of the energy distribution among different spatial directions is also impeded by decreasing d. Due to this deficient energy distribution, turbulent field shows a higher level of the large-scale anisotropy in lower Fourier dimensions. In addition, the persistence of the vortex stretching mechanism and the forward spectral energy transfer, which are three-dimensional turbulence characteristics, are examined at changing d, from the standard case d=3.0 to the strongly decimated flow field for d=2.7. As the Fourier dimension decreases, these forward energy transfer mechanisms are strongly suppressed, which in turn reduces both the small-scale intermittency and the deviation from Gaussianity. Besides the energy exchange intensity, the variations of d considerably modify the relative weights of local to nonlocal triadic interactions. It is found that the contribution of the nonlocal triads to the total turbulent kinetic energy exchange increases as the Fourier dimension increases.

  11. Experimental Studies on the Effects of Thermal Bumps in the Flow-Field around a Flat Plate using a Hypersonic Wind Tunnel (United States)


    without the presence of thermal bumps at hypersonic Mach number using miniature encapsulated piezo-electric pressure sensors and comparison with global...Palflash 501 (Pulse Photonics) with a focusing lens and a 2 mm wide slit, two 8 inches parabolic mirrors with 6 ft focal length, a knife edge, a set of...test section windows before focusing on the knife edge plane that is placed parallel to flow direction and the focused beam is shone on CMOS sensor

  12. Shear flows of dense suspensions: flow modification by particle clustering and mixing (United States)

    Vowinckel, Bernhard; Carmi, Meital; Biegert, Edward; Meiburg, Eckart


    We investigate numerically the behavior of sheared, dense suspensions of neutrally buoyant particles, for finite Reynolds number values. This type of problem is of particular interest for multiple applications in environmental, mechanical as well as process engineering such as debris flows, slurries, and pneumatic conveying in pipelines. Controlling channel flows laden with dense suspensions is very important as it can result in jamming of the channel, hence, lowering the efficiency of a hydraulic facility. It was observed that there exists a regime for which a small increase in shear force can cause a drastic, discontinuous increase of the effective viscosity of the mixture. This abrupt transition is commonly referred to as discontinuous shear thickening. We carry out phase-resolved numerical simulations to understand the modification of the flow on the grain scale in full detail allowing for improved definitions of threshold conditions. As the properties of the carrier fluid remain unchanged during the simulation, the thickening must be caused by the disperse phase, for example, by effects of changes in spatial particle distribution, clustering, and mixing. We provide a detailed statistical analysis to answer this question.

  13. An MPI-CUDA approach for hypersonic flows with detailed state-to-state air kinetics using a GPU cluster (United States)

    Bonelli, Francesco; Tuttafesta, Michele; Colonna, Gianpiero; Cutrone, Luigi; Pascazio, Giuseppe


    This paper describes the most advanced results obtained in the context of fluid dynamic simulations of high-enthalpy flows using detailed state-to-state air kinetics. Thermochemical non-equilibrium, typical of supersonic and hypersonic flows, was modeled by using both the accurate state-to-state approach and the multi-temperature model proposed by Park. The accuracy of the two thermochemical non-equilibrium models was assessed by comparing the results with experimental findings, showing better predictions provided by the state-to-state approach. To overcome the huge computational cost of the state-to-state model, a multiple-nodes GPU implementation, based on an MPI-CUDA approach, was employed and a comprehensive code performance analysis is presented. Both the pure MPI-CPU and the MPI-CUDA implementations exhibit excellent scalability performance. GPUs outperform CPUs computing especially when the state-to-state approach is employed, showing speed-ups, of the single GPU with respect to the single-core CPU, larger than 100 in both the case of one MPI process and multiple MPI process.

  14. A Two-Temperature Open-Source CFD Model for Hypersonic Reacting Flows, Part Two: Multi-Dimensional Analysis †

    Directory of Open Access Journals (Sweden)

    Vincent Casseau


    Full Text Available hy2Foam is a newly-coded open-source two-temperature computational fluid dynamics (CFD solver that has previously been validated for zero-dimensional test cases. It aims at (1 giving open-source access to a state-of-the-art hypersonic CFD solver to students and researchers; and (2 providing a foundation for a future hybrid CFD-DSMC (direct simulation Monte Carlo code within the OpenFOAM framework. This paper focuses on the multi-dimensional verification of hy2Foam and firstly describes the different models implemented. In conjunction with employing the coupled vibration-dissociation-vibration (CVDV chemistry–vibration model, novel use is made of the quantum-kinetic (QK rates in a CFD solver. hy2Foam has been shown to produce results in good agreement with previously published data for a Mach 11 nitrogen flow over a blunted cone and with the dsmcFoam code for a Mach 20 cylinder flow for a binary reacting mixture. This latter case scenario provides a useful basis for other codes to compare against.

  15. A Two-Temperature Open-Source CFD Model for Hypersonic Reacting Flows, Part One: Zero-Dimensional Analysis

    Directory of Open Access Journals (Sweden)

    Vincent Casseau


    Full Text Available A two-temperature CFD (computational fluid dynamics solver is a prerequisite to any spacecraft re-entry numerical study that aims at producing results with a satisfactory level of accuracy within realistic timescales. In this respect, a new two-temperature CFD solver, hy2Foam, has been developed within the framework of the open-source CFD platform OpenFOAM for the prediction of hypersonic reacting flows. This solver makes the distinct juncture between the trans-rotational and multiple vibrational-electronic temperatures. hy2Foam has the capability to model vibrational-translational and vibrational-vibrational energy exchanges in an eleven-species air mixture. It makes use of either the Park TTv model or the coupled vibration-dissociation-vibration (CVDV model to handle chemistry-vibration coupling and it can simulate flows with or without electronic energy. Verification of the code for various zero-dimensional adiabatic heat baths of progressive complexity has been carried out. hy2Foam has been shown to produce results in good agreement with those given by the CFD code LeMANS (The Michigan Aerothermodynamic Navier-Stokes solver and previously published data. A comparison is also performed with the open-source DSMC (direct simulation Monte Carlo code dsmcFoam. It has been demonstrated that the use of the CVDV model and rates derived from Quantum-Kinetic theory promote a satisfactory consistency between the CFD and DSMC chemistry modules.

  16. Shear-flow susceptibility near the low-density transition in TJ-II (United States)

    Carralero, D.; Calvo, I.; da Graça, S.; Carreras, B. A.; Estrada, T.; Pedrosa, M. A.; Hidalgo, C.


    The emergence of the plasma edge shear-flow layer has been recently shown to be consistent with second-order transition model coupling shear amplification by Reynolds stress and turbulence reduction by shear. A fundamental feature of second-order transitions in equilibrium thermodynamics is the divergence of the susceptibility near the critical point. In this paper, an experimental investigation is carried out to find out whether an analogous phenomenon takes place in the transition leading to the formation of the shear-flow layer in the TJ-II stellarator.

  17. Measurements of Shear Lift Force on a Bubble in Channel Flow in Microgravity (United States)

    Nahra, Henry K.; Motil, Brian J.; Skor, Mark


    Under microgravity conditions, the shear lift force acting on bubbles, droplets or solid particles in multiphase flows becomes important because under normal gravity, this hydrodynamic force is masked by buoyancy. This force plays an important role in furnishing the detachment process of bubbles in a setting where a bubble suspension is needed in microgravity. In this work, measurements of the shear lift force acting on a bubble in channel flow are performed. The shear lift force is deduced from the bubble kinematics using scaling and then compared with predictions from models in literature that address different asymptotic and numerical solutions. Basic trajectory calculations are then performed and the results are compared with experimental data of position of the bubble in the channel. A direct comparison of the lateral velocity of the bubbles is also made with the lateral velocity prediction from investigators, whose work addressed the shear lift on a sphere in different two-dimensional shear flows including Poiseuille flow.

  18. Combined modeling of cell aggregation and adhesion mediated by receptor–ligand interactions under shear flow

    Directory of Open Access Journals (Sweden)

    Yu Du


    Full Text Available Blood cell aggregation and adhesion to endothelial cells under shear flow are crucial to many biological processes such as thrombi formation, inflammatory cascade, and tumor metastasis, in which these cellular interactions are mainly mediated by the underlying receptor–ligand bindings. While theoretical modeling of aggregation dynamics and adhesion kinetics of interacting cells have been well studied separately, how to couple these two processes remains unclear. Here we develop a combined model that couples cellular aggregation dynamics and adhesion kinetics under shear flow. The impacts of shear rate (or shear stress and molecular binding affinity were elucidated. This study provides a unified model where the action of a fluid flow drives cell aggregation and adhesion under the modulations of the mechanical shear flow and receptor–ligand interaction kinetics. It offers an insight into understanding the relevant biological processes and functions.

  19. Mechanotransduction Signaling in Podocytes from Fluid Flow Shear Stress. (United States)

    Srivastava, Tarak; Dai, Hongying; Heruth, Daniel P; Alon, Uri S; Garola, Robert E; Zhou, Jianping; Duncan, R Scott; El-Meanawy, Ashraf; McCarthy, Ellen T; Sharma, Ram; Johnson, Mark L; Savin, Virginia J; Sharma, Mukut


    Recently we and others have found that hyperfiltration-associated increase in biomechanical forces, namely tensile stress and fluid flow shear stress (FFSS) can directly and distinctly alter podocyte structure and function. The ultrafiltrate flow over the major processes and cell body generates FFSS to podocyte. Our previous work suggests that COX2-PGE2-EP2 axis plays an important role in mechanoperception of FFSS in podocyte (Srivastava et al. Am J Physiol Renal Physiol 307: F1323-F1333, 2014). To address mechanotransduction of the perceived mechanical stimulus through EP2 receptor, cultured podocytes were exposed to FFSS (2 dynes/cm2) for 2hrs. Total RNA from cells at the end of treatment, 2h post-FFSS and 24h post-FFSS was used for whole exon array analysis. The differentially regulated genes (pmechanotransduction as well as exogenous PGE2 activate the Akt-GSK3β-β-catenin (Ser552) and ERK/MAPK but not the cAMP-PKA signal transduction cascades. These pathways are reportedly associated with FFSS-induced and EP2-mediated signaling in other epithelial cells as well. Current regimen for treating hyperfiltration-mediated injury largely depends on targeting the Renin-Angiotensin-Aldosterone System. Present study identifies specific transduction mechanisms and provides novel information on the direct effect of FFSS on podocytes. These results suggest that targeting EP2 receptor-mediated signaling pathways holds therapeutic significance for delaying progression chronic kidney disease secondary to hyperfiltration. Copyright © 2017, American Journal of Physiology-Renal Physiology.

  20. Shear flow instabilities in the Earth's magnetotail

    Directory of Open Access Journals (Sweden)

    R. V. Reddy

    Full Text Available Shear flow instability is studied in the Earth's magnetotail by treating plasma as compressible. A dispersion relation is derived from the linearized MHD equations using the oscillating boundary conditions at the inner central plasma sheet/outer central plasma sheet (OCPS interface and OCPS/plasma-sheet boundary layer (PSBL interface, whereas the surface-mode boundary condition is used at the PSBL/lobe interface. The growth rates and the real frequencies are obtained numerically for near-Earth (∣X∣~10–15 RE and far-Earth (∣X∣~100 RE magnetotail parameters. The periods and wavelengths of excited modes depend sensitively on the value of plasma-sheet half thickness, L, which is taken as L=5 RE for quiet time and L=1 RE for disturbed time. The plasma-sheet region is found to be stable for constant plasma flows unless MA3>1.25, where MA3 is the Alfvén Mach number in PSBL. For near-Earth magnetotail, the excited oscillations have periods of 2–20 min (quiet time and 0.5–4 min (disturbed time with typical transverse wavelengths of 2–30 RE and 0.5–6.5 RE, respectively; whereas for distant magnetotail, the analysis predicts the oscillation periods of ~8–80 min for quiet periods and 2–16 min for disturbed periods.

  1. Immersed boundary method predictions of shear stresses for different flow topologies occuring in cerebral aneurysms

    NARCIS (Netherlands)

    Mikhal, Julia Olegivna; Pereira, J.C.F; Sequeira, A.; Lopez Penha, D.J.; Slump, Cornelis H.; Pereira, J.M.C.; Janela, J.; Geurts, Bernardus J.; Borges, L.

    A volume-penalizing immersed boundary method is presented that facilitates the computation of incompressible fluid flow in complex flow domains. We apply this method to simulate the flow in cerebral aneurysms, and focus on the accuracy with which the flow field and the corresponding shear stress

  2. Investigation of a reattaching turbulent shear layer Flow over a backward-facing step (United States)

    Kim, J.; Kline, S. J.; Johnston, J. P.


    The paper studies incompressible flow over a backward-facing step in order to investigate the flow characteristics in the separated shear layer, the reattachment zone, and the redeveloping boundary layer after reattachment. It is shown that turbulent intensities and shear stress reach maxima in the reattachment zone, followed by rapid decay near the surface after reattachment. In addition, it is found that downstream of reattachment, the flow returns very slowly to the structure of an ordinary turbulent boundary layer.

  3. Retrograde flow and shear rate acutely impair endothelial function in humans. (United States)

    Thijssen, Dick H J; Dawson, Ellen A; Tinken, Toni M; Cable, N Timothy; Green, Daniel J


    Changes in arterial shear stress induce functional and structural vasculature adaptations. Recent studies indicate that substantial retrograde flow and shear can occur through human conduit arteries. In animals, retrograde shear is associated with atherogenic effects. The aim of this study was to examine the impact of incremental levels of retrograde shear on endothelial function in vivo. On 3 separate days, we examined bilateral brachial artery flow-mediated dilation, an index of NO-mediated endothelial function, in healthy men (24+/-3 years) before and after a 30-minute intervention consisting of cuff inflation to 25, 50, or 75 mm Hg. Cuff inflations resulted in "dose"-dependent increases in retrograde shear rate, compared with the noncuffed arm, within subjects (P<0.001). Flow-mediated dilation in the cuffed arm did not change in response to the 25-mm Hg stimulus but decreased significantly after both the 50- and 75-mm Hg interventions (P<0.05). The decrease in flow-mediated dilation after the 75-mm Hg intervention was significantly larger than that observed after a 50-mm Hg intervention (P=0.03). In the noncuffed arm, no changes in shear rate or flow-mediated dilation were observed. These results demonstrate that an increase in retrograde shear rate induces a dose-dependent attenuation of endothelial function in humans. This finding contributes to our understanding regarding the possible detrimental effects of retrograde shear rate in vivo.

  4. Large-eddy simulation of sheared interfacial flow (United States)

    Reboux, S.; Sagaut, P.; Lakehal, D.


    Large-eddy simulations (LES) of a turbulent interfacial gas-liquid flows are described in this paper. The variational multiscale approach (VMS) introduced by Hughes for single-phase flows is systematically assessed against direct numerical simulation (DNS) data obtained at a shear Reynolds number Re⋆=171, and compared to LES results obtained with the Smagorinsky model, modified by a near-interface turbulence decay treatment. The models are incorporated in the same pseudospectral DNS solver built within the boundary fitting method used by Fulgosi et al. for air-water flow. The LES are performed for physical conditions allowing low interface deformations that fall in the range of capillary waves of wave slope ak =0.01. The LES results show that both the modified Smagorinsky model and the VMS are capable to predict the boundary layer structure in the gas side, including the decay process, and to cope with the anisotropy of turbulence in the liquid blockage layer underneath the interface. Higher-order turbulence statistics, including the transfer of energy between the normal stresses is also well predicted by both approaches, but qualitatively the VMS results remain overall better than the modified Smagorinsky model. The study has demonstrated that the key to the prediction of the energy transfer mechanism is in the proper prediction of the fluctuating pressure field, which has been found out of reach of any of the LES methodologies. The superiority of the VMS is demonstrated through the analysis of the subgrid transport and exchange terms in the resolved kinetic energy, where it is indeed shown to be self-adaptive with regard to the eddy viscosity. Although VMS is shown to be sensitive to filter scale partition and model constant, the optimal setting can be easily translated in the interface tracking/finite-volume context, which makes it very useful for practical purposes. An important point is that the VMS approach yields very satisfactory results without the need

  5. Experiments on the flow past long circular cylinders in a shear flow

    Energy Technology Data Exchange (ETDEWEB)

    Kappler, M. [Universitaet Karlsruhe, Institut fuer Hydromechanik, Karlsruhe (Germany); Helmut-Schmidt-Universitaet, Universitaet der Bundeswehr Hamburg (Germany); Rodi, W. [Universitaet Karlsruhe, Institut fuer Hydromechanik, Karlsruhe (Germany); Szepessy, S. [Alfa Laval, Tumba (Sweden); Badran, O. [Al-Balqa' Applied University, FET, Amman (Jordan)


    This paper describes an experimental investigation of the flow past circular cylinders, with the mean flow perpendicular to the cylinder axis, at conditions that yield a strong three-dimensional behaviour. The experiments were carried out in the subcritical regime. Long cylinders with end plates were subjected to shear flow with a linear velocity profile in the spanwise direction generated by means of a curved gauze. It was concluded that spanwise cellular structures of vortex shedding emerged in the wake, more clearly for some boundary conditions than others. These structures are characterised by a portion of spanwise length, a cell, having constant shedding frequency over a time average, which implies that there were no vortex dislocations inside that cell during that time. These features were studied using flow visualisation and hot-film anemometry. Spectra of the local shedding frequency are shown, revealing the effect of the shear parameter {beta}(=0.02 and 0.04) and aspect ratio L/D(=20.6 and 8) on the stability and geometry of the cells at several Reynolds numbers in the range of 3.13 x 10{sup 3}{<=}Re{sub m}{<=}1.25 x 10{sup 4}. (orig.)

  6. Compressibility Effects on the Growth and Structure of Homogeneous Turbulent Shear Flow (United States)

    Blaisdell, G. A.; Mansour, N. N.; Reynolds, W. C.


    Compressibility effects within decaying isotropic turbulence and homogeneous turbulent shear flow have been studied using direct numerical simulation. The objective of this work is to increase our understanding of compressible turbulence and to aid the development of turbulence models for compressible flows. The numerical simulations of compressible isotropic turbulence show that compressibility effects are highly dependent on the initial conditions. The shear flow simulations, on the other hand, show that measures of compressibility evolve to become independent of their initial values and are parameterized by the root mean square Mach number. The growth rate of the turbulence in compressible homogeneous shear flow is reduced compared to that in the incompressible case. The reduced growth rate is the result of an increase in the dissipation rate and energy transfer to internal energy by the pressure-dilatation correlation. Examination of the structure of compressible homogeneous shear flow reveals the presence of eddy shocklets, which are important for the increased dissipation rate of compressible turbulence.

  7. Inflammatory responses of endothelial cells experiencing reduction in flow after conditioning by shear stress. (United States)

    Matharu, Nick M; McGettrick, Helen M; Salmon, Mike; Kissane, Steve; Vohra, Rajiv K; Rainger, G Ed; Nash, Gerard B


    Exposure of endothelial cells (EC) to shear stress reduces their response to tumour necrosis factor-alpha (TNF). We tested how shear-conditioned EC responded to reduction in flow, either by spontaneously binding leukocytes, or by increasing sensitivity to TNF. Human umbilical vein EC were exposed to shear stress of 2.0 Pa (20 dyn/cm(2)) for 24 h. Shear was then reduced to stasis (30 sec perfusion each hour to exchange medium) or 0.003 Pa (creeping flow). At chosen times, neutrophils were perfused over the EC at 0.1 Pa (effective reperfusion). EC developed an ability to capture flowing neutrophils that lasted from 1 to 3 h after flow reduction, which was reduced by antibody against P-selectin or pre-treatment of EC with an inhibitor of NADPH-oxidase. Adhesion of neutrophils to TNF-treated EC was greatly suppressed by shear-conditioning, remained suppressed immediately after cessation of flow and then took 48 h to approach the level in static cultures. Interestingly, the response to TNF remained suppressed in cultures switched to creeping flow. Gene array analysis confirmed that differently recovered cells had separate phenotypes. Thus, an acute response of EC to reduction in shear may contribute to leukocyte recruitment, along with hypoxia, in ischaemia and reperfusion. Prolonged cessation of flow may increase the sensitivity of EC to inflammatory stimuli, but this effect may be suppressed by residual flow.

  8. Simulations of droplet coalescence in simple shear flow. (United States)

    Shardt, Orest; Derksen, J J; Mitra, Sushanta K


    Simulating droplet coalescence is challenging because small-scale (tens of nanometers) phenomena determine the behavior of much larger (micrometer- to millimeter-scale) droplets. In general, liquid droplets colliding in a liquid medium coalesce when the capillary number is less than a critical value. We present simulations of droplet collisions and coalescence in simple shear flow using the free-energy binary-liquid lattice Boltzmann method. In previous simulations of low-speed collisions, droplets coalesced at unrealistically high capillary numbers. Simulations of noncoalescing droplets have not been reported, and therefore, the critical capillary number for simulated collisions was unknown. By simulating droplets with radii up to 100 lattice nodes, we determine the critical capillary number for coalescence and quantify the effects of several numerical and geometric parameters. The simulations were performed with a well-resolved interface, a Reynolds number of one, and capillary numbers from 0.01 to 0.2. The ratio of the droplet radius and interface thickness has the greatest effect on the critical capillary number. As in experiments, the critical capillary number decreases with increasing droplet size. A second numerical parameter, the interface diffusivity (Péclet number) also influences the conditions for coalescence: coalescence occurs at higher capillary numbers with lower Péclet numbers (higher diffusivity). The effects of the vertical offset between the droplets and the confinement of the droplets were also studied. Physically reasonable results were obtained and provide insight into the conditions for coalescence. Simulations that match the conditions of experiments reported in the literature remain computationally impractical. However, the scale of the simulations is now sufficiently large that a comparison with experiments involving smaller droplets (≈10 μm) and lower viscosities (≈10(-6) m(2)/s, the viscosity of water) may be possible

  9. Constitutive Curve and Velocity Profile in Entangled Polymers during Start-Up of Steady Shear Flow

    KAUST Repository

    Hayes, Keesha A.


    Time-dependent shear stress versus shear rate, constitutive curve, and velocity profile measurements are reported in entangled polymer solutions during start-up of steady shear flow. By combining confocal microscopy and particle image velocimetry (PIV), we determine the time-dependent velocity profile in polybutadiene and polystyrene solutions seeded with fluorescent 150 nm silica and 7.5 μm melamine particles. By comparing these profiles with time-dependent constitutive curves obtained from experiment and theory, we explore the connection between transient nonmonotonic regions in the constitutive curve for an entangled polymer and its susceptibility to unstable flow by shear banding [Adams et al. Phys. Rev. Lett. 2009, 102, 067801-4]. Surprisingly, we find that even polymer systems which exhibit transient, nonmonotonic shear stress-shear rate relationships in bulk rheology experiments manifest time-dependent velocity profiles that are decidedly linear and show no evidence of unstable flow. We also report that interfacial slip plays an important role in the steady shear flow behavior of entangled polymers at shear rates above the reciprocal terminal relaxation time but has little, if any, effect on the shape of the velocity profile. © 2010 American Chemical Society.

  10. Sympathetic nervous system activation, arterial shear rate, and flow-mediated dilation.

    NARCIS (Netherlands)

    Thijssen, D.H.J.; Atkinson, C.L.; Ono, K.; Sprung, V.S.; Spence, A.L.; Pugh, C.J.; Green, D.J.


    The aim of this study was to examine the contribution of arterial shear to changes in flow-mediated dilation (FMD) during sympathetic nervous system (SNS) activation in healthy humans. Ten healthy men reported to our laboratory four times. Bilateral FMD, shear rate (SR), and catecholamines were

  11. Stability of nanofluids in quiescent and shear flow fields

    Directory of Open Access Journals (Sweden)

    Chen Haisheng


    Full Text Available Abstract An experimental study was conducted to investigate the structural stability of ethylene glycol-based titanium dioxide nanoparticle suspensions (nanofluids prepared by two-step method. The effects of particle concentration, fluid temperature, shear rate and shear duration were examined. Particle size and thermal conductivity measurements in quiescent state indicated the existence of aggregates and that they were stable in temperatures up to 60°C. Shear stability tests suggested that the structure of nanoparticle aggregates was stable in a shear interval of 500-3000 s-1 measured over a temperature range of 20-60°C. These findings show directions to resolve controversies surrounding the underlying mechanisms of thermal conduction and convective heat transfer of nanofluids.

  12. Torsional shear flow of granular materials: shear localization and minimum energy principle (United States)

    Artoni, Riccardo; Richard, Patrick


    The rheological properties of granular matter submitted to torsional shear are investigated numerically by means of discrete element method. The shear cell is made of a cylinder filled by grains which are sheared by a bumpy bottom and submitted to a vertical pressure which is applied at the top. Regimes differing by their strain localization features are observed. They originate from the competition between dissipation at the sidewalls and dissipation in the bulk of the system. The effects of the (i) the applied pressure, (ii) sidewall friction, and (iii) angular velocity are investigated. A model, based on the purely local μ (I)-rheology and a minimum energy principle is able to capture the effect of the two former quantities but unable to account the effect of the latter. Although, an ad hoc modification of the model allows to reproduce all the numerical results, our results point out the need for an alternative rheology.

  13. Page 1 & Coherent structures in turbulent shear flows 175 Sirkar K K ...

    Indian Academy of Sciences (India)

    Mass. : MIT Press). Theodorsen T 1952 Proc. Second Midwestern Mechanics Conference (Ohio State University) p. 1. Townsend A A 1956 The structure of turbulent shear flow (Cambridge: University Press). Townsend A A 1979.J. Fluid Mech.

  14. Theoretical and experimental investigation of the coalescence efficiency of droplets in simple shear flow

    NARCIS (Netherlands)

    Mousa, H.A.H.; Koutsoukos, P.G.; Agterof, W.G.M.; Mellema, J.


    The coalescence efficiency of two Newtonian droplets submerged in a Newtonian fluid subjected to a simple shear flow was investigated experimentally and theoretically. The experimental investigation was based on observing collisions between two droplets under a microscope. The theoretical

  15. Shear-induced particle diffusion and its effects on the flow of concentrated suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Acrivos, A. [City College of CUNY, New York, NY (United States)


    The mechanism underlying shear-induced particle diffusion in concentrated suspensions is clarified. Examples are then presented where this diffusion process plays a crucial role in determining the manner by which such suspensions flow under laminar conditions.

  16. Final Report - Investigation of Intermittent Turbulence and Turbulent Structures in the Presence of Controlled Sheared Flows

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, Mark A. [University of New Mexico


    Final Report for grant DE-FG02-06ER54898. The dynamics and generation of intermittent plasma turbulent structures, widely known as "blobs" have been studied in the presence of sheared plasma flows in a controlled laboratory experiment.

  17. Experimental And Numerical Study Of CMC Leading Edges In Hypersonic Flows (United States)

    Kuhn, Markus; Esser, Burkard; Gulhan, Ali; Dalenbring, Mats; Cavagna, Luca


    Future transportation concepts aim at high supersonic or hypersonic speeds, where the formerly sharp boundaries between aeronautic and aerospace applications become blurred. One of the major issues involved to high speed flight are extremely high aerothermal loads, which especially appear at the leading edges of the plane’s wings and at sharp edged air intake components of the propulsion system. As classical materials like metals or simple ceramics would thermally and structurally fail here, new materials have to be applied. In this context, lightweight ceramic matrix composites (CMC) seem to be prospective candidates as they are high-temperature resistant and offer low thermal expansion along with high specific strength at elevated temperature levels. A generic leading edge model with a ceramic wing assembly with a sweep back angle of 53° was designed, which allowed for easy leading edge sample integration of different CMC materials. The samples consisted of the materials C/C-SiC (non-oxide), OXIPOL and WHIPOX (both oxide) with a nose radius of 2 mm. In addition, a sharp edged C/C-SiC sample was prepared to investigate the nose radius influence. Overall, 13 thermocouples were installed inside the entire model to measure the temperature evolution at specific locations, whereby 5 thermocouples were placed inside the leading edge sample itself. In addition, non-intrusive techniques were applied for surface temperature measurements: An infrared camera was used to measure the surface temperature distribution and at specific spots, the surface temperature was also measured by pyrometers. Following, the model was investigated in DLR’s arc-heated facility L3K at a total enthalpy of 8.5 MJ/kg, Mach number of 7.8, different angles of attack and varying wing inclination angles. These experiments provide a sound basis for the simulation of aerothermally loaded CMC leading edge structures. Such fluid-structure coupled approaches have been performed by FOI, basing on a

  18. PNS predictions for supersonic/hypersonic flows over finned missile configurations (United States)

    Bhutta, Bilal A.; Lewis, Clark H.


    Finned missile design entails accurate and computationally fast numerical techniques for predicting viscous flows over complex lifting configurations at small to moderate angles of attack and over Mach 3 to 15; these flows are often characterized by strong embedded shocks, so that numerical algorithms are also required to capture embedded shocks. The recent real-gas Flux Vector Splitting technique is here extended to investigate the Mach 3 flow over a typical finned missile configuration with/without side fin deflections. Elliptic grid-generation techniques for Mach 15 flows are shown to be inadequate for Mach 3 flows over finned configurations and need to be modified. Fin-deflection studies indicate that even small amounts of missile fin deflection can substantially modify vehicle aerodynamics. This 3D parabolized Navier-Stokes scheme is also extended into an efficient embedded algorithm for studying small axially separated flow regions due to strong fin and control surface deflections.

  19. Hypersonic propulsion (United States)

    Cheng, SIN-I.


    The paper reviews the whys and hows of the concept of supersonic combustion for hypersonic propulsion. Attention is given to the problem areas, the current research and development efforts, and their implications. The operating boundary of the SCRAMJET is reasonably well defined. The paper also explores some air-breathing alternatives that may go beyond SCRAMJETS.

  20. An alternative assessment of second-order closure models in turbulent shear flows (United States)

    Speziale, Charles G.; Gatski, Thomas B.


    The performance of three recently proposed second-order closure models is tested in benchmark turbulent shear flows. Both homogeneous shear flow and the log-layer of an equilibrium turbulent boundary layer are considered for this purpose. An objective analysis of the results leads to an assessment of these models that stands in contrast to that recently published by other authors. A variety of pitfalls in the formulation and testing of second-order closure models are uncovered by this analysis.

  1. Shear Stress Dependence of Flow Properties of Gelatinized Modified Starch Suspensions


    朝田, 仁; 鈴木, 寛一


    Flow properties of gelatinized modified starch suspensions were studied using a tube viscometer. The modified starches used were commercially available samples of hydroxypropylated distarch phosphate derived from waxy corn and potato starches (Starch A and Starch B). Two types of irreversible shear stress dependence of flow behavior were observed. By applying shear stress on the gelatinized starch suspensions, fluidity of Starch A (5.0 wt%) decreased to an equilibrium value, while fluidity of...

  2. Investigation into the dual role of shear flow in 2D MHD turbulence. (United States)

    Newton, Andrew P L; Kim, Eun-Jin


    The turbulent diffusion eta_{T} of a large-scale magnetic field B0 is numerically studied in two-dimensional magnetohydrodynamic turbulence with an imposed shear flow. We demonstrate that a shear flow plays a dual role, quenching transport through shear destruction and enhancing it via resonance. Specifically without resonance eta_{T} proportional, variantB_{0};{-4} with no shear (rms shearing rate=Omega=0) and eta_{T} proportional, variantOmega;{-2.7} for B_{0}=0, while with resonance eta_{T} proportional, variantB_{0};{-2} proportional, variantOmega;{-2}. These results indicate that the absence of resonance is responsible for the most catastrophic reductions in transport.

  3. Computational analysis of integrated biosensing and shear flow in a microfluidic vascular model (United States)

    Wong, Jeremy F.; Young, Edmond W. K.; Simmons, Craig A.


    Fluid flow and flow-induced shear stress are critical components of the vascular microenvironment commonly studied using microfluidic cell culture models. Microfluidic vascular models mimicking the physiological microenvironment also offer great potential for incorporating on-chip biomolecular detection. In spite of this potential, however, there are few examples of such functionality. Detection of biomolecules released by cells under flow-induced shear stress is a significant challenge due to severe sample dilution caused by the fluid flow used to generate the shear stress, frequently to the extent where the analyte is no longer detectable. In this work, we developed a computational model of a vascular microfluidic cell culture model that integrates physiological shear flow and on-chip monitoring of cell-secreted factors. Applicable to multilayer device configurations, the computational model was applied to a bilayer configuration, which has been used in numerous cell culture applications including vascular models. Guidelines were established that allow cells to be subjected to a wide range of physiological shear stress while ensuring optimal rapid transport of analyte to the biosensor surface and minimized biosensor response times. These guidelines therefore enable the development of microfluidic vascular models that integrate cell-secreted factor detection while addressing flow constraints imposed by physiological shear stress. Ultimately, this work will result in the addition of valuable functionality to microfluidic cell culture models that further fulfill their potential as labs-on-chips.

  4. Cyclical shear fracture and viscous flow during transitional ductile-brittle deformation in the Saddlebag Lake Shear Zone, California (United States)

    Compton, Katharine E.; Kirkpatrick, James D.; Holk, Gregory J.


    Exhumed shear zones often contain folded and/or dynamically recrystallized structures, such as veins and pseudotachylytes, which record broadly contemporaneous brittle and ductile deformation. Here, we investigate veins within the Saddlebag Lake Shear Zone, central Sierra Nevada, California, to constrain the conditions and processes that caused fractures to form during ductile deformation. The shear zone mylonites contain compositional banding at centimeter- to meter- scales, and a ubiquitous, grain-scale, continuous- to spaced-foliation defined by aligned muscovite and chlorite grains. Veins of multiple compositions formed in two predominant sets: sub-parallel to the foliation and at high angle to the foliation. Some foliation sub-parallel veins show apparent shear offset consistent with the overall kinematics of the shear zone. These veins are folded with the foliation and are commonly boudinaged, showing they were rigid inclusions after formation. Quartz microstructures and fluid inclusion thermobarometry measurements indicate the veins formed by fracture at temperatures between 400-600 °C. Quartz, feldspar and tourmaline δ18O values (+ 2.5 to + 16.5) suggest extended fluid-rock interaction that involved magmatic, metamorphic, and meteoric-hydrothermal fluids. The orientation and spatial distribution of the veins shows that shear fractures formed along mechanically weak foliation planes. We infer fracture was promoted by perturbations to the strain rate and/or pore pressure during frictional-viscous deformation in a low effective stress environment. Evidence for repeated fracture and subsequent flow suggest both the stress and pore pressure varied, and that the tendency to fracture was controlled by the rates of pore pressure recovery, facilitated by fracture cementation. The tectonic setting and inferred phenomenological behavior were similar to intra-continental transform faults that host triggered tectonic tremor, suggesting the mechanisms that caused

  5. Emergence and decay rate of the edge plasma flow shear near a critical transition

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, J M; Garcia, L [Universidad Carlos III, 28911 Leganes, Madrid (Spain); Carreras, B A [BACV Solutions, Inc, Oak Ridge, Tennessee 37830 (United States)], E-mail:


    Recently, the experimental results for the emergence of the plasma shear flow layer in TJ-II have been explained as a second-order phase transition like process by using a simple model of envelope equations for the fluctuation level, the averaged poloidal velocity shear and the pressure gradient (2006 Phys. Plasmas 13 122509). Here, we extend this model by incorporating radial coupling. The model is applied to the study of the turbulence-shear flow interaction when the energy flux is low. Transition dynamics and their concomitant thresholds are examined within the context of this model. The effect of an external torque induced by electrode biasing has also been considered. In particular, we analyze the decay rate of the shear flow after switching off the biasing.

  6. Animal models of surgically manipulated flow velocities to study shear stress-induced atherosclerosis. (United States)

    Winkel, Leah C; Hoogendoorn, Ayla; Xing, Ruoyu; Wentzel, Jolanda J; Van der Heiden, Kim


    Atherosclerosis is a chronic inflammatory disease of the arterial tree that develops at predisposed sites, coinciding with locations that are exposed to low or oscillating shear stress. Manipulating flow velocity, and concomitantly shear stress, has proven adequate to promote endothelial activation and subsequent plaque formation in animals. In this article, we will give an overview of the animal models that have been designed to study the causal relationship between shear stress and atherosclerosis by surgically manipulating blood flow velocity profiles. These surgically manipulated models include arteriovenous fistulas, vascular grafts, arterial ligation, and perivascular devices. We review these models of manipulated blood flow velocity from an engineering and biological perspective, focusing on the shear stress profiles they induce and the vascular pathology that is observed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Self-organization in suspensions of end-functionalized semiflexible polymers under shear flow (United States)

    Myung, Jin Suk; Winkler, Roland G.; Gompper, Gerhard


    The nonequilibrium dynamical behavior and structure formation of end-functionalized semiflexible polymer suspensions under flow are investigated by mesoscale hydrodynamic simulations. The hybrid simulation approach combines the multiparticle collision dynamics method for the fluid, which accounts for hydrodynamic interactions, with molecular dynamics simulations for the semiflexible polymers. In equilibrium, various kinds of scaffold-like network structures are observed, depending on polymer flexibility and end-attraction strength. We investigate the flow behavior of the polymer networks under shear and analyze their nonequilibrium structural and rheological properties. The scaffold structure breaks up and densified aggregates are formed at low shear rates, while the structural integrity is completely lost at high shear rates. We provide a detailed analysis of the shear- rate-dependent flow-induced structures. The studies provide a deeper understanding of the formation and deformation of network structures in complex materials.

  8. Experimental results of a Mach 10 conical-flow derived waverider to 14-X hypersonic aerospace vehicle

    Directory of Open Access Journals (Sweden)

    Tiago Cavalcanti Rolim


    Full Text Available This paper presents a research in the development of the 14-X hypersonic airspace vehicle at Institute for Advanced Studies (IEAv from Department of Science and Aerospace Technology (DCTA of the Brazilian Air Force (FAB. The 14-X project objective is to develop a higher efficient satellite launch alternative, using a Supersonic Combustion Ramjet (SCRAMJET engine and waverider aerodynamics. For this development, the waverider technology is under investigation in Prof. Henry T. Nagamatsu Aerothermodynamics and Hypersonics Laboratory (LHTN, in IEAv/DCTA. The investigation has been conducted through ground test campaigns in Hypersonic Shock Tunnel T3. The 14-X Waverider Vehicle characteristic was verified in shock tunnel T3 where surface static pressures and pitot pressure for Mach number 10 were measured and, using Schlieren photographs Diagnostic Method, it was possible to identify a leading-edge attached shock wave in 14-X lower surface.

  9. Validation of vibration-dissociation coupling models in hypersonic non-equilibrium separated flows (United States)

    Shoev, G.; Oblapenko, G.; Kunova, O.; Mekhonoshina, M.; Kustova, E.


    The validation of recently developed models of vibration-dissociation coupling is discussed in application to numerical solutions of the Navier-Stokes equations in a two-temperature approximation for a binary N2/N flow. Vibrational-translational relaxation rates are computed using the Landau-Teller formula generalized for strongly non-equilibrium flows obtained in the framework of the Chapman-Enskog method. Dissociation rates are calculated using the modified Treanor-Marrone model taking into account the dependence of the model parameter on the vibrational state. The solutions are compared to those obtained using traditional Landau-Teller and Treanor-Marrone models, and it is shown that for high-enthalpy flows, the traditional and recently developed models can give significantly different results. The computed heat flux and pressure on the surface of a double cone are in a good agreement with experimental data available in the literature on low-enthalpy flow with strong thermal non-equilibrium. The computed heat flux on a double wedge qualitatively agrees with available data for high-enthalpy non-equilibrium flows. Different contributions to the heat flux calculated using rigorous kinetic theory methods are evaluated. Quantitative discrepancy of numerical and experimental data is discussed.

  10. Shear-thinning effects on vortex breakdown in swirling pipe flows: experiments and simulations (United States)

    Dennis, David; Petit, Tom; Thompson, Deacon; Poole, Robert


    Laminar pipe flow with a controllable wall swirl has been studied both numerically and experimentally to explore the behaviour of inelastic shear-thinning fluids. The pipe consists of two smoothly joined sections that can be rotated independently about the same axis. The circumstances of flow entering a stationary pipe from a rotating pipe (decaying swirl) and flow entering a rotating pipe from a stationary pipe (growing swirl) have been investigated. A numerical parametric study using a simple power law model is conducted and reveals the axial length of the recirculation region is increased for shear-thinning fluids and decreased for shear-thickening (in comparison to the Newtonian reference). The critical swirl ratio required to induce the breakdown at a range of Reynolds numbers and extent of shear-thinning is investigated and a method of scaling is presented that collapses all the data for all fluids (shear-thickening, Newtonian and shear-thinning) onto a single universal curve. Experimental visualisations using an aqueous solution of Xantham Gum (shear-thinning) confirm the conclusions drawn from the numerical results.

  11. Statistical Simulation of Reentry Capsule Aerodynamics in Hypersonic Near-Continuum Flows (United States)


    processes on the flow is given in Fig. 1 where the translational temperature fields about the Soyuz capsule at an altitude of 85 km are shown for...Stati sti cal si mul ati on of reentry capsul e aero dynami cs i n hyp ersoni c near-conti nuum flows Mikhail S. Ivanov Computational Aerodynamics...effects are implemented in SMILE. Aerodynamics of promising reentry capsule in the near-continuum regime is considered as an example. RTO-EN-AVT-194

  12. Experimental study of the vortex-induced vibration of drilling risers under the shear flow with the same shear parameter at the different Reynolds numbers.

    Directory of Open Access Journals (Sweden)

    Mao Liangjie

    Full Text Available A considerable number of studies for VIV under the uniform flow have been performed. However, research on VIV under shear flow is scarce. An experiment for VIV under the shear flow with the same shear parameter at the two different Reynolds numbers was conducted in a deep-water offshore basin. Various measurements were obtained by the fiber bragg grating strain sensors. Experimental data were analyzed by modal analysis method. Results show several valuable features. First, the corresponding maximum order mode of the natural frequency for shedding frequency is the maximum dominant vibration mode and multi-modal phenomenon is appeared in VIV under the shear flow, and multi-modal phenomenon is more apparent at the same shear parameter with an increasing Reynolds number under the shear flow effect. Secondly, the riser vibrates at the natural frequency and the dominant vibration frequency increases for the effect of the real-time tension amplitude under the shear flow and the IL vibration frequency is the similar with the CF vibration frequency at the Reynolds number of 1105 in our experimental condition and the IL dominant frequency is twice the CF dominant frequency with an increasing Reynolds number. In addition, the displacement trajectories at the different locations of the riser appear the same shape and the shape is changed at the same shear parameter with an increasing Reynolds number under the shear flow. The diagonal displacement trajectories are observed at the low Reynolds number and the crescent-shaped displacement trajectories appear with an increasing Reynolds number under shear flow in the experiment.

  13. Steady shear flow properties of Cordia myxa leaf gum as a function of concentration and temperature. (United States)

    Chaharlang, Mahmood; Samavati, Vahid


    The steady shear flow properties of dispersions of Cordia myxa leaf gum (CMLG) were determined as a function of concentration (0.5-2.5%, w/w), and temperature (10-50 °C). The CMLG dispersions exhibited strong shear-thinning behavior at all concentrations and temperatures. The Power-law (Ostwald-Waele's) and Herschel-Bulkley models were employed to characterize flow behavior of CMLG solutions at 0.1-100 s(-1) shear rate. Non-Newtonian shear-thinning behavior was observed at all temperatures and concentrations. While increase in temperature decreased the viscosity and increased the flow behavior indices, adverse effect was obtained by increasing the concentration. The Power-law model was found the best model to describe steady shear flow behavior of CMLG. The pseudoplasticity of CMLG increased markedly with concentration. An Arrhenius-type model was also used to describe the effect of temperature. The activation energy (Ea) appeared in the range of 5.972-18.104 kJ/mol, as concentration increased from 0.5% to 2.5%, at a shear rate of 10 s(-1). Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Lift on a Steady Airfoil in Low Reynolds Number Shear Flow (United States)

    Hammer, Patrick; Visbal, Miguel; Naguib, Ahmed; Koochesfahani, Manoochehr


    Current understanding of airfoil aerodynamics is primarily based on a uniform freestream velocity approaching the airfoil, without consideration for possible presence of shear in the approach flow. Inviscid theory by Tsien (1943) shows that a symmetric airfoil at zero angle of attack experiences positive lift, i.e. a shift in the zero-lift angle of attack, in the presence of positive mean shear in the approach flow. In the current work, 2D computations are conducted on a steady NACA 0012 airfoil at a chord Reynolds number of Re = 12,000, at zero angle of attack. A uniform shear profile (i.e. a linear velocity variation) is used for the approach flow by modifying the FDL3DI Navier-Stokes solver (Visbal and Gaitonde, 1999). Interestingly, opposite to the inviscid prediction of Tsien (1943), the results for the airfoil at zero angle of attack show that the average lift is negative in the shear flow. The magnitude of this lift grows as the shear rate increases. Additional results are presented regarding the physics underlying the shear effect on lift. A companion experimental study is also given in a separate presentation. This work was supported by AFOSR Award Number FA9550-15-1-0224.

  15. Nature of Transport across Sheared Zonal Flows in Electrostatic Ion-Temperature-Gradient Gyrokinetic Plasma Turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Raul [ORNL; Newman, David E [University of Alaska; Leboeuf, Jean-Noel [JNL Scientific, Inc., Casa Grande, AZ; Decyk, Viktor [University of California, Los Angeles; Carreras, Benjamin A [BACV Solutions, Inc., Oak Ridge


    It is shown that the usual picture for the suppression of turbulent transport across a stable sheared flow based on a reduction of diffusive transport coefficients is, by itself, incomplete. By means of toroidal gyrokinetic simulations of electrostatic, collisionless ion-temperature-gradient turbulence, it is found that the nature of the transport is altered fundamentally, changing from diffusive to anticorrelated and subdiffusive. Additionally, whenever the flows are self-consistently driven by turbulence, the transport gains an additional non-Gaussian character. These results suggest that a description of transport across sheared flows using effective diffusivities is oversimplified.

  16. Granular temperature measured experimentally in a shear flow by acoustic energy (United States)

    Taylor, Stephanie; Brodsky, Emily E.


    Granular temperature may control high-speed granular flows, yet it is difficult to measure in laboratory experiments. Here we utilize acoustic energy to measure granular temperature in dense shear flows. We show that acoustic energy captures the anticipated behavior of granular temperature as a function of grain size in quartz sand shear flows. We also find that granular temperature (through its proxy acoustic energy) is nearly linearly proportional to inertial number, and dilation is proportional to acoustic energy raised to the power 0.6 ±0.2 . This demonstrates the existence of a relationship between granular temperature and dilation. It is also consistent with previous results on dilation due to externally imposed vibration, thus showing that internally and externally induced vibrations have identical results on granular shear flows.

  17. Spatial correlations of hydrodynamic fluctuations in simple fluids under shear flow: A mesoscale simulation study. (United States)

    Varghese, Anoop; Gompper, Gerhard; Winkler, Roland G


    Hydrodynamic fluctuations in simple fluids under shear flow are demonstrated to be spatially correlated, in contrast to the fluctuations at equilibrium, using mesoscopic hydrodynamic simulations. The simulation results for the equal-time hydrodynamic correlations in a multiparticle collision dynamics (MPC) fluid in shear flow are compared with the explicit expressions obtained from fluctuating hydrodynamics calculations. For large wave vectors k, the nonequilibrium contributions to transverse and longitudinal velocity correlations decay as k^{-4} for wave vectors along the flow direction and as k^{-2} for the off-flow directions. For small wave vectors, a crossover to a slower decay occurs, indicating long-range correlations in real space. The coupling between the transverse velocity components, which vanishes at equilibrium, also exhibits a k^{-2} dependence on the wave vector. In addition, we observe a quadratic dependency on the shear rate of the nonequilibrium contribution to pressure.

  18. VOF simulation on a large bubble in a linear shear flow

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Woo-Ram; Lee, Jae-Young [Handong Global University, Pohang (Korea, Republic of)


    Instability of flow around a body moving in a fluid can induce lift force acting on the body. One example of this phenomena is a bubble rising. Lift acting on a bubble effects on a void fraction distribution of a bubbly flow, which can be related to two phase flow in a nuclear reactor, bubble column reactor, and a flow around a ship. This leads researchers to use experimental or numerical methods. Study of Tomiyama et al.(2002) is the most well known experimental results on a bubble rising in a linear shear flow. They used water-glycerin mixture as a liquid and rotating belt to make linear shear flow, and measured lift coefficients. VOF simulations are conducted for investigation of lift acting on single bubble rising in a high Re linear shear flow. In spite of small amount of data and numerical error about spurious current near bubble interface, some insights can be obtained. First, a turbulence model generates large difference on C{sub L} of large Re bubble. Second, for lift acting on a large Re bubble in a linear shear flow, Re is better scale than E{sub oH} and C{sub L} is proportional to inverse of Re. Despite of some quantitative difference between results of experiment(Yang et al.(2013), Li et al.(2016)) and present numerical study, all results shows -7

  19. Numerical Investigation of PLIF Gas Seeding for Hypersonic Boundary Layer Flows (United States)

    Johanson, Craig T.; Danehy, Paul M.


    Numerical simulations of gas-seeding strategies required for planar laser-induced fluorescence (PLIF) in a Mach 10 air flow were performed. The work was performed to understand and quantify adverse effects associated with gas seeding and to compare different flow rates and different types of seed gas. The gas was injected through a slot near the leading edge of a flat plate wedge model used in NASA Langley Research Center's 31- Inch Mach 10 Air Tunnel facility. Nitric oxide, krypton, and iodine gases were simulated at various injection rates. Simulation results showing the deflection of the velocity field for each of the cases are presented. Streamwise distributions of velocity and concentration boundary layer thicknesses as well as vertical distributions of velocity, temperature, and mass distributions are presented for each of the cases. Relative merits of the different seeding strategies are discussed.

  20. Hypersonic Flow over a Cylinder with a Nanosecond Pulse Electrical Discharge (United States)


    reduced-order phenomenological model of the actuator. A three-dimensional simulation of the experiment was able to accurately capture the complex cylinder...a quiescent air [2], and visualization [4] of a large-scale, spanwise vortex over the airfoil atMach 0.3. The flow controlmechanism in these...III. Numerical Methods Flowfield results were obtained using computational fluid dynamics ( CFD ) to solve the Navier–Stokes equations. The CFD

  1. High-fidelity simulation of compressible flows for hypersonic propulsion applications (United States)

    Otis, Collin C.

    In the first part of this dissertation, the scalar filtered mass density function (SFMDF) methodology is implemented into the computer code US3D. The SFMDF is a sub-grid scale closure and is simulated via a Lagrangian Monte Carlo solver. US3D is an Eulerian finite volume code and has proven very effective for compressible flow simulations. The resulting SFMDF-US3D code is employed for large eddy simulation (LES) of compressible turbulent flows on unstructured meshes. Simulations are conducted of subsonic and supersonic flows. The consistency and accuracy of the simulated results are assessed along with appraisal of the overall performance of the methodology. In the second part of this dissertation, a new methodology is developed for accurate capturing of discontinuities in multi-block finite difference simulations of hyperbolic partial differential equations. The fourth-order energy-stable weighted essentially non-oscillatory (ESWENO) scheme on closed domains is combined with simultaneous approximation term (SAT) weak interface and boundary conditions. The capability of the methodology is demonstrated for accurate simulations in the presence of significant and abrupt changes in grid resolution between neighboring subdomains. Results are presented for the solutions of linear scalar hyperbolic wave equations and the Euler equations in one and two dimensions. Strong discontinuities are passed across subdomain interfaces without significant distortions. It is demonstrated that the methodology provides stable and accurate solutions even when large differences in the grid-spacing exist, whereas strong imposition of the interface conditions causes noticeable oscillations. Keywords: Large eddy simulation, filtered density function, turbulent reacting flows, multi-block finite difference schemes, high-order numerical methods, WENO shock-capturing, computational fluid dynamics.

  2. Boltzmann rovibrational collisional coarse-grained model for internal energy excitation and dissociation in hypersonic flows. (United States)

    Munafò, A; Panesi, M; Magin, T E


    A Boltzmann rovibrational collisional coarse-grained model is proposed to reduce a detailed kinetic mechanism database developed at NASA Ames Research Center for internal energy transfer and dissociation in N(2)-N interactions. The coarse-grained model is constructed by lumping the rovibrational energy levels of the N(2) molecule into energy bins. The population of the levels within each bin is assumed to follow a Boltzmann distribution at the local translational temperature. Excitation and dissociation rate coefficients for the energy bins are obtained by averaging the elementary rate coefficients. The energy bins are treated as separate species, thus allowing for non-Boltzmann distributions of their populations. The proposed coarse-grained model is applied to the study of nonequilibrium flows behind normal shock waves and within converging-diverging nozzles. In both cases, the flow is assumed inviscid and steady. Computational results are compared with those obtained by direct solution of the master equation for the rovibrational collisional model and a more conventional multitemperature model. It is found that the proposed coarse-grained model is able to accurately resolve the nonequilibrium dynamics of internal energy excitation and dissociation-recombination processes with only 20 energy bins. Furthermore, the proposed coarse-grained model provides a superior description of the nonequilibrium phenomena occurring in shock heated and nozzle flows when compared with the conventional multitemperature models.

  3. Impact of E × B shear flow on low-n MHD instabilities. (United States)

    Chen, J G; Xu, X Q; Ma, C H; Xi, P W; Kong, D F; Lei, Y A


    Recently, the stationary high confinement operations with improved pedestal conditions have been achieved in DIII-D [K. H. Burrell et al., Phys. Plasmas 23, 056103 (2016)], accompanying the spontaneous transition from the coherent edge harmonic oscillation (EHO) to the broadband MHD turbulence state by reducing the neutral beam injection torque to zero. It is highly significant for the burning plasma devices such as ITER. Simulations about the effects of E × B shear flow on the quiescent H-mode (QH-mode) are carried out using the three-field two-fluid model in the field-aligned coordinate under the BOUT++ framework. Using the shifted circular cross-section equilibriums including bootstrap current, the results demonstrate that the E × B shear flow strongly destabilizes low-n peeling modes, which are mainly driven by the gradient of parallel current in peeling-dominant cases and are sensitive to the Er shear. Adopting the much more general shape of E × B shear ([Formula: see text]) profiles, the linear and nonlinear BOUT++ simulations show qualitative consistence with the experiments. The stronger shear flow shifts the most unstable mode to lower-n and narrows the mode spectrum. At the meantime, the nonlinear simulations of the QH-mode indicate that the shear flow in both co- and counter directions of diamagnetic flow has some similar effects. The nonlinear mode interaction is enhanced during the mode amplitude saturation phase. These results reveal that the fundamental physics mechanism of the QH-mode may be shear flow and are significant for understanding the mechanism of EHO and QH-mode.

  4. Vortex-induced vibrations of a cylinder in planar shear flow (United States)

    Gsell, Simon; Bourguet, Remi; Braza, Marianna


    Vortex-induced vibrations (VIV) of bluff bodies are common in nature and in engineering applications where flexible or flexibly mounted structures are exposed to wind and ocean currents. VIV have been thoroughly studied through the canonical problem of an elastically mounted, rigid cylinder immersed in uniform flow. However, in the real physical systems where VIV develop, the oncoming flows are usually non-uniform. The present work investigates the impact of a shear of the oncoming current in the cross-flow direction. As a first preliminary step, focus is placed on the fixed cylinder case; the analysis is based on a series of numerical simulations over a wide range of shear rates, at Reynolds number 100. It is found that the shear leads to the cancellation of wake unsteadiness beyond a critical value of the shear rate. Once the rigid cylinder is elastically mounted, free vibrations arise over the entire range of shear rates under study, including beyond the above mentioned critical value. Different flow-structure interaction regimes are uncovered. Some of them exhibit a major deviation from the uniform-flow case, with a profound reconfiguration of the wake patterns and a dramatic amplification of the structural response amplitudes.

  5. Effects of shear on vortex shedding patterns in high Reynolds number flow: an experimental study

    Energy Technology Data Exchange (ETDEWEB)



    Vortex shedding has been identified as a potential major source of loading on the Ocean Thermal Energy Conversion (OTEC) Plant Cold Water Pipe (CWP). To gain a better understanding of the vortex shedding phenomena, a series of model tests has been conducted. The results of this investigation are presented. The effects of current shear on vortex shedding patterns in high Reynolds number (R/sub e/) flow around a circular cylinder used to model the OTEC CWP are addressed. Tests were conducted in a wind tunnel on a 56-inch long, 6-inch diameter circular cylinder for various flow and shear conditions. Measurements were conducted to describe the frequencies of the eddies shed from the cylinder and to investigate the fluctuating surface pressure on the cylinder. From these tests it was determined that shedding for high R/sub e/ sheared flow is characterized by the formation of distinct cells of eddies with constant frequency, that pressure fluctuations on the surface of the cylinder are greater for sheared flow than unsheared flow, and that the mean surface pressures are generally independent of the magnitude of shear.

  6. Effect of Wall Shear Stress Distribution on Manning Coefficient of Smooth Open Rectangular Channel Flows


    BİLGİL, Ahmet


    The determination of velocity distribution in open channel flows is crucial in many critical engineering problems such as channel design, calculation of energy losses and sedimentation. In this study, velocity distribution is experimentally investigated in a smooth rectangular open channel. Wall shear stresses are calculated using measured local velocities. Assuming logarithmic velocity distribution along perpendiculars to a wetted perimeter, dimensionless wall shear stresses K(I) =...

  7. Shear flow suppresses the volume of the nucleation precursor clusters in lysozyme solutions (United States)

    Byington, Michael C.; Safari, Mohammad S.; Conrad, Jacinta C.; Vekilov, Peter G.


    Shear flow alters the rate at which crystals nucleate from solution, yet the underlying mechanisms remain poorly understood. To fill this knowledge gap, we explore the response to shear of dense liquid clusters, which may serve as crystal nucleation precursors. Solutions of the protein lysozyme were sheared in a Couette cell at rates from 0.3 to 200 s-1 for up to seven hours. The cluster size and total population volume were characterized by dynamic light scattering. We demonstrate that shear rates greater than 10 s-1 applied for longer than one hour reduce the volume of the cluster population. The likely mechanism of the observed response involves enhanced partial unfolding of the lysozyme molecules, which exposes hydrophobic surfaces between the constituent domains to the aqueous solution. We show that disruption of the intramolecular S-S bridges does not contribute to the mechanism of response to shear. The decrease of the cluster population volume with increasing shear rate or shear time implies that nucleation could be inhibited at moderate shear rates.

  8. Area Expansivity Moduli of Regenerating Plant Protoplast Cell Walls Exposed to Shear Flows (United States)

    Fujimura, Yuu; Iino, Masaaki; Watanabe, Ugai


    To control the elasticity of the plant cell wall, protoplasts isolated from cultured Catharanthus roseus cells were regenerated in shear flows of 115 s-1 (high shear) and 19.2 s-1 (low shear, as a control). The surface area expansivity modulus and the surface breaking strength of these regenerating protoplasts were measured by a micropipette aspiration technique. Cell wall synthesis was also measured using a cell wall-specific fluorescent dye. High shear exposure for 3 h doubled both the surface area modulus and breaking strength observed under low shear, significantly decreased cell wall synthesis, and roughly quadrupled the moduli of the cell wall. Based on the cell wall synthesis data, we estimated the three-dimensional modulus of the cell wall to be 4.1± 1.2 GPa for the high shear, and 0.35± 0.2 GPa for the low shear condition, using the surface area expansivity modulus divided by the cell wall thickness, which is identical with the Young’s modulus divided by 2(1-σ), where σ is Poisson's ratio. We concluded that high shear exposure considerably strengthens the newly synthesized cell wall.

  9. Association beween resting heart rate, shear and flow-mediated dilation in healthy adults. (United States)

    Fox, Brandon M; Brantley, Lucy; White, Claire; Seigler, Nichole; Harris, Ryan A


    Preclinical data have demonstrated that heart rate (HR) can directly impact vascular endothelial function, in part, through a shear-stress mechanism. This study sought to explore, in humans, the associations between resting heart rate and both shear and endothelial function assessed by flow-mediated dilation (FMD). The brachial artery FMD test was performed in 31 apparently healthy volunteers. Basal (B) and hyperaemic (H) shear were quantified in the following two ways using data from the FMD test: the traditional cumulative shear area under the curve up to peak dilation (Shearcum) method; and our novel method of shear summation (Shearsum), which accounts for HR by summing each individual cardiac cycle shear up to peak dilation. Data were grouped by tertiles based on resting HR as follows: low (LHR = 43-56 beats min(-1); n = 10); middle (MHR = 58-68 beats min(-1); n = 11); and high (HHR = 69-77 beats min(-1); n = 10). Within the LHR group, both B-Shearcum and H-Shearcum were significantly higher (P heart rate and both shear and endothelial function in humans. Moreover, these findings have implications for considering heart rate as an important physiological variable when quantifying shear and performing the FMD test. © 2014 The Authors. Experimental Physiology © 2014 The Physiological Society.

  10. Compressibility Considerations for kappa-omega Turbulence Models in Hypersonic Boundary Layer Applications (United States)

    Rumsey, C. L.


    The ability of kappa-omega models to predict compressible turbulent skin friction in hypersonic boundary layers is investigated. Although uncorrected two-equation models can agree well with correlations for hot-wall cases, they tend to perform progressively worse - particularly for cold walls - as the Mach number is increased in the hypersonic regime. Simple algebraic models such as Baldwin-Lomax perform better compared to experiments and correlations in these circumstances. Many of the compressibility corrections described in the literature are summarized here. These include corrections that have only a small influence for kappa-omega models, or that apply only in specific circumstances. The most widely-used general corrections were designed for use with jet or mixing-layer free shear flows. A less well-known dilatation-dissipation correction intended for boundary layer flows is also tested, and is shown to agree reasonably well with the Baldwin-Lomax model at cold-wall conditions. It exhibits a less dramatic influence than the free shear type of correction. There is clearly a need for improved understanding and better overall physical modeling for turbulence models applied to hypersonic boundary layer flows.

  11. Increasing Plasma Parameters using Sheared Flow Stabilization of a Z-Pinch (United States)

    Shumlak, Uri


    Recent experiments on the ZaP Flow Z-Pinch at the University of Washington have been successful in compressing the plasma column to smaller radii, producing the predicted increases in plasma density (1018 cm-3), temperature (200 eV), and magnetic fields (4 T), while maintaining plasma stability for many Alfven times (over 40 μs) using sheared plasma flows. These results indicate the suitability of the device as a discovery science platform for astrophysical and high energy density plasma research, and keeps open a possible path to achieving burning plasma conditions in a compact fusion device. Long-lived Z-pinch plasmas have been produced with dimensions of 1 cm radius and 100 cm long that are stabilized by sheared axial flows for over 1000 Alfven radial transit times. The observed plasma stability is coincident with the presence of a sheared flow as measured by time-resolved multi-chord ion Doppler spectroscopy applied to impurity ion radiation. These measurements yield insights into the evolution of the velocity profile and show that the stabilizing behavior of flow shear agrees with theoretical calculations and 2-D MHD computational simulations. The flow shear value, extent, and duration are shown to be consistent with theoretical models of the plasma viscosity, which places a design constraint on the maximum axial length of a sheared flow stabilized Z-pinch. Measurements of the magnetic field topology indicate simultaneous azimuthal symmetry and axial uniformity along the entire 100 cm length of the Z-pinch plasma. Separate control of plasma acceleration and compression have increased the accessible plasma parameters and have generated stable plasmas with radii below 0.5 cm, as measured with a high resolution digital holographic interferometer. This work was supported by Grants from U.S. DOE, NNSA, and ARPA-E.

  12. Scale Effects in the Flow of a Shear-Thinning Fluid in Rough Fractures (United States)

    Meheust, Y.; Roques, C.; Le Borgne, T.; Selker, J. S.


    The understanding of flow processes involving non-Newtonian fluids in the subsurface is of interest for many engineering applications, from in-situ remediation to enhanced oil recovery. The fluids of interest in such applications (f.e., polymers in remediation) often present shear-thinning properties, i.e., their viscosity decreases as a function of the local shear rate. We investigate how fracture wall roughness impacts the flow of a shear-thinning fluid. Numerical simulations of flow in 3D fracture geometries are carried out by solving a modified Navier-Stokes equation incorporating the Carreau viscous-shear model. The synthetic fractures consist of two rough surfaces which are isotropic self-affine geometries and correlated with each other above a scale which we denote correlation length (see Méheust et al. PAGEOPH 2003). Perfect plastic closing is assumed when the surfaces touch each other. The objective is to test how varying the correlation length impacts the flow behavior, for different degrees of closure, and how this behavior diverges for shear-thinning fluids from what is known for Newtonian fluids. The results from the 3D simulations are also compared to 2D simulations based on the lubrication theory, which we have developed as an extension of the Reynolds equation for Newtonian fluids. We also discuss the implications of our results for the general understanding of the flows of shear-thinning fluids in fractured media and of solute transport by such flows. References:Méheust, Y., & Schmittbuhl, J. (2003). Scale effects related to flow in rough fractures. Pure and Applied Geophysics, 160(5-6), 1023-1050.

  13. Stability of an external gravity wave in a stratified basic flow with lateral shear


    Tomizuka, Akira


    The author investigates the stability of an external gravity wave progressing horizontally in an inviscid and incompressible stratified basic flow with lateral shear. (1) In the model which basic flow has a Helmholtz velocity profile, there exist no neutral solutions contrary to internal gravity waves. Perturbations are always unstable independent of the coefficient of vertical wave mode m or the wave number k_y. (2) In the model which basic flow is composed of unbounded layers with the centr...

  14. Pattern formation in directional solidification under shear flow. I: Linear stability analysis and basic patterns


    Marietti, Yannick; Debierre, Jean-Marc; Bock, Thomas-Michael; Kassner, Klaus


    An asymptotic interface equation for directional solidification near the absolute stabiliy limit is extended by a nonlocal term describing a shear flow parallel to the interface. In the long-wave limit considered, the flow acts destabilizing on a planar interface. Moreover, linear stability analysis suggests that the morphology diagram is modified by the flow near the onset of the Mullins-Sekerka instability. Via numerical analysis, the bifurcation structure of the system is shown to change. ...

  15. The lift-up effect: the linear mechanism behind transition and turbulence in shear flows

    CERN Document Server

    Brandt, Luca


    The formation and amplification of streamwise velocity perturbations induced by cross-stream disturbances is ubiquitous in shear flows. This disturbance growth mechanism, so neatly identified by Ellingsen and Palm in 1975, is a key process in transition to turbulence and self-sustained turbulence. In this review, we first present the original derivation and early studies and then discuss the non-modal growth of streaks, the result of the lift-up process, in transitional and turbulent shear flows. In the second part, the effects on the lift-up process of additives in the fluid and of a second phase are discussed and new results presented with emphasis on particle-laden shear flows. For all cases considered, we see the lift-up process to be a very robust process, always present as a first step in subcritical transition.

  16. Correlation between vortices and wall shear stress in a curved artery model under pulsatile flow conditions (United States)

    Cox, Christopher; Plesniak, Michael W.


    One of the most physiologically relevant factors within the cardiovascular system is the wall shear stress. The wall shear stress affects endothelial cells via mechanotransduction and atherosclerotic regions are strongly correlated with curvature and branching in the human vasculature, where the shear stress is both oscillatory and multidirectional. Also, the combined effect of curvature and pulsatility in cardiovascular flows produces unsteady vortices. In this work, our goal is to assess the correlation between multiple vortex pairs and wall shear stress. To accomplish this, we use an in-house high-order flux reconstruction Navier-Stokes solver to simulate pulsatile flow of a Newtonian blood-analog fluid through a rigid 180° curved artery model. We use a physiologically relevant flow rate and generate results using both fully developed and uniform entrance conditions, the latter motivated by the fact that flow upstream to a curved artery may not be fully developed. Under these two inflow conditions, we characterize the evolution of various vortex pairs and their subsequent effect on several wall shear stress metrics. Supported by GW Center for Biomimetics and Bioinspired Engineering.

  17. Deformation of a Capsule in a Power-Law Shear Flow. (United States)

    Tian, Fang-Bao


    An immersed boundary-lattice Boltzmann method is developed for fluid-structure interactions involving non-Newtonian fluids (e.g., power-law fluid). In this method, the flexible structure (e.g., capsule) dynamics and the fluid dynamics are coupled by using the immersed boundary method. The incompressible viscous power-law fluid motion is obtained by solving the lattice Boltzmann equation. The non-Newtonian rheology is achieved by using a shear rate-dependant relaxation time in the lattice Boltzmann method. The non-Newtonian flow solver is then validated by considering a power-law flow in a straight channel which is one of the benchmark problems to validate an in-house solver. The numerical results present a good agreement with the analytical solutions for various values of power-law index. Finally, we apply this method to study the deformation of a capsule in a power-law shear flow by varying the Reynolds number from 0.025 to 0.1, dimensionless shear rate from 0.004 to 0.1, and power-law index from 0.2 to 1.8. It is found that the deformation of the capsule increases with the power-law index for different Reynolds numbers and nondimensional shear rates. In addition, the Reynolds number does not have significant effect on the capsule deformation in the flow regime considered. Moreover, the power-law index effect is stronger for larger dimensionless shear rate compared to smaller values.

  18. Recent improvements in the nonequilibrium VSL scheme for hypersonic blunt-body flows (United States)

    Bhutta, Bilal A.; Lewis, Clark H.


    The nonequilibrium viscous shock-layer (VSL) solution scheme is revisited to improve its solution accuracy in the stagnation point region and also to minimize and control the errors in the conservation of elemental mass. The stagnation-point solution is improved by using a second-order expansion for the normal velocity and the elemental mass conservation is improved by directly imposing the element conservation equations as solution constraints. These modifications are such that the general structure and computational efficiency of the nonequilibrium VSL scheme is not affected. This revised nonequilibrium VSL scheme is used to study the Mach 20 flow over a 7-deg sphere-cone vehicle under zero and 20-deg angle-of-attack conditons. Comparisons are made with the corresponding predictions of Navier-Stokes and Parabolized Navier-Stokes solution schemes. The results of these tests show that the nonequilibrium blunt-body VSL scheme is indeed an accurate, fast and extremely efficient means for generating the blunt-body flowfield over spherical nosetips at small-to-large angles of attack.

  19. Shear flow generation and energetics in electromagnetic turbulence

    DEFF Research Database (Denmark)

    Naulin, V.; Kendl, A.; Garcia, O.E.


    acoustic mode (GAM) transfer in drift-Alfvén turbulence is investigated. By means of numerical computations the energy transfer into zonal flows owing to each of these effects is quantified. The importance of the three driving ingredients in electrostatic and electromagnetic turbulence for conditions...... relevant to the edge of fusion devices is revealed for a broad range of parameters. The Reynolds stress is found to provide a flow drive, while the electromagnetic Maxwell stress is in the cases considered a sink for the flow energy. In the limit of high plasma β, where electromagnetic effects and Alfvén...

  20. Shear-induced particle migration in one-, two-, and three-dimensional flows (United States)

    Gao, C.; Gilchrist, J. F.


    We investigate the segregation resulting from the competition between advection and shear-induced migration of suspensions in steady open flows. Herringbone channels form a concentration profile deviating from the particle focusing found in straight channels. Transients can result from a buckling instability during the onset of migration when particle-depleted fluid is injected into particle-rich fluid. In chaotic flows, the better mixing found at low bulk volume fraction is not seen at higher bulk volume fraction. Thus, the ability of static mixers to reduce the effects of shear-induced migration is significantly limited.

  1. Influence of steady shear flow on dynamic viscoelastic properties of ...

    Indian Academy of Sciences (India)


    superposed flow condition on viscoelastic properties of LLDPE, Kevlar fibre reinforced LLDPE and hybrid of short glass fibre and Kev- lar fibre reinforced LLDPE. Parallel-plate rheometer was employed for these tests. Rheological parameters.

  2. Two-dimensional dynamics of a trapped active Brownian particle in a shear flow. (United States)

    Li, Yunyun; Marchesoni, Fabio; Debnath, Tanwi; Ghosh, Pulak K


    We model the two-dimensional dynamics of a pointlike artificial microswimmer diffusing in a harmonic trap subject to the shear flow of a highly viscous medium. The particle is driven simultaneously by the linear restoring force of the trap, the drag force exerted by the flow, and the torque due to the shear gradient. For a Couette flow, elliptical orbits in the noiseless regime, and the correlation functions between the particle's displacements parallel and orthogonal to the flow are computed analytically. The effects of thermal fluctuations (translational) and self-propulsion fluctuations (angular) are treated separately. Finally, we discuss how to extend our approach to the diffusion of a microswimmer in a Poiseuille flow. These results provide an accurate reference solution to investigate, both numerically and experimentally, hydrodynamics corrections to the diffusion of active matter in confined geometries.

  3. Transient dynamics of eccentric double emulsion droplets in a simple shear flow (United States)

    Kim, Sangkyu; Dabiri, Sadegh


    We numerically examine the time-dependent behavior of double emulsions in a simple shear flow using finite volume and front-tracking methods. A single inner drop is initially located eccentrically to the outer drop. When the eccentricity is contained within the plane of shear, the inner drop experiences a "revolving" motion within the plane of shear, orbiting about the center of the compound drop while slowly moving outward. The inner drop eventually experiences a limit cycle, where no more outward movement occurs because the distance between the two interfaces is reduced to a thin liquid film for portions of the revolving cycle. In addition, eccentricity in the direction normal to the plane of shear is tested. In this case, the inner droplet undergoes a "drifting" motion, slowly moving perpendicularly to the plane of shear until only a thin layer remains between the two interfaces. Finally, the revolving and drifting motions are simultaneously observed when the in-plane-of-shear eccentricity is included in addition to the off-plane-of-shear eccentricity. The observed behaviors are not qualitatively affected by the inner to outer droplet radii ratio, and are preserved when Re≤5 ,Cao≤0.1 , and Cai<0.2 .

  4. Crystal nucleation mechanism in melts of short polymer chains under quiescent conditions and under shear flow (United States)

    Anwar, Muhammad; Berryman, Joshua T.; Schilling, Tanja


    We present a molecular dynamics simulation study of crystal nucleation from undercooled melts of n-alkanes, and we identify the molecular mechanism of homogeneous crystal nucleation under quiescent conditions and under shear flow. We compare results for n-eicosane (C20) and n-pentacontahectane (C150), i.e., one system below the entanglement length and one above, at 20%-30% undercooling. Under quiescent conditions, we observe that entanglement does not have an effect on the nucleation mechanism. For both chain lengths, the chains first align and then straighten locally, then the local density increases and finally positional ordering sets in. At low shear rates the nucleation mechanism is the same as under quiescent conditions, while at high shear rates the chains align and straighten at the same time. We report on the effects of shear rate and temperature on the nucleation rates and estimate the critical shear rates, beyond which the nucleation rates increase with the shear rate. In agreement with previous experimental observation and theoretical work, we find that the critical shear rate corresponds to a Weissenberg number of order 1. Finally, we show that the viscosity of the system is not affected by the crystalline nuclei.

  5. Kinematics of horizontal simple shear zones of concentric arcs (Taylor-Couette flow) with incompressible Newtonian rheology (United States)

    Mukherjee, Soumyajit; Biswas, Rakesh


    We present preliminary kinematic analyses of Taylor-Couette flow. We consider deformation of a Newtonian incompressible ductile material inside rotating horizontal listric (concentric circular) boundaries. The velocity profile is curved indicating non-uniform shear strain but leads to the same shear sense. Each material point on progressive shear keeps increasing shear strain linearly with time. A curve of no movement, the `neutral curve', may exist inside the shear zone. Irregular geometries of initially regular markers and their individual non-matching strain paths indicate inhomogeneous deformaion in such Taylor-Couette flow.

  6. Stick-slip instabilities in sheared granular flow: The role of friction and acoustic vibrations. (United States)

    Lieou, Charles K C; Elbanna, Ahmed E; Langer, J S; Carlson, J M


    We propose a theory of shear flow in dense granular materials. A key ingredient of the theory is an effective temperature that determines how the material responds to external driving forces such as shear stresses and vibrations. We show that, within our model, friction between grains produces stick-slip behavior at intermediate shear rates, even if the material is rate strengthening at larger rates. In addition, externally generated acoustic vibrations alter the stick-slip amplitude, or suppress stick-slip altogether, depending on the pressure and shear rate. We construct a phase diagram that indicates the parameter regimes for which stick-slip occurs in the presence and absence of acoustic vibrations of a fixed amplitude and frequency. These results connect the microscopic physics to macroscopic dynamics and thus produce useful information about a variety of granular phenomena, including rupture and slip along earthquake faults, the remote triggering of instabilities, and the control of friction in material processing.

  7. Sphere interaction in bounded shear flow of Oldroyd-B fluids (United States)

    Chiu, Shang-Huan; Pan, Tsorng-Whay; Glowinski, Roland


    It is well-known that, up to the initial sphere displacement, binary encounters of spheres in bounded shear flow of a Newtonian fluid can have either swapping or non-swapping trajectories under creeping flow conditions. The motion of dilute sphere suspensions in bounded shear flow of Oldroyd-B fluids at zero Reynolds number has been studied. The pass and return trajectories of the two ball mass centers in a two wall driven shear flow are similar to those in a Newtonian fluid; but they lose the symmetry due to the effect of elastic force arising from viscoelastic fluids. A tumbling chain of two balls (a dipole) may occur, depending on the value of the Weissenberg number and the initial vertical displacement of the ball mass center to the middle plane between two walls. The two ball tumbling motion has also been compared with that of an ellipsoid in bounded shear flow Oldroyd-B fluids. This work was supported by NSF (Grant DMS-1418308).

  8. Updates to Multi-Dimensional Flux Reconstruction for Hypersonic Simulations on Tetrahedral Grids (United States)

    Gnoffo, Peter A.


    The quality of simulated hypersonic stagnation region heating with tetrahedral meshes is investigated by using an updated three-dimensional, upwind reconstruction algorithm for the inviscid flux vector. An earlier implementation of this algorithm provided improved symmetry characteristics on tetrahedral grids compared to conventional reconstruction methods. The original formulation however displayed quantitative differences in heating and shear that were as large as 25% compared to a benchmark, structured-grid solution. The primary cause of this discrepancy is found to be an inherent inconsistency in the formulation of the flux limiter. The inconsistency is removed by employing a Green-Gauss formulation of primitive gradients at nodes to replace the previous Gram-Schmidt algorithm. Current results are now in good agreement with benchmark solutions for two challenge problems: (1) hypersonic flow over a three-dimensional cylindrical section with special attention to the uniformity of the solution in the spanwise direction and (2) hypersonic flow over a three-dimensional sphere. The tetrahedral cells used in the simulation are derived from a structured grid where cell faces are bisected across the diagonal resulting in a consistent pattern of diagonals running in a biased direction across the otherwise symmetric domain. This grid is known to accentuate problems in both shock capturing and stagnation region heating encountered with conventional, quasi-one-dimensional inviscid flux reconstruction algorithms. Therefore the test problems provide a sensitive indicator for algorithmic effects on heating. Additional simulations on a sharp, double cone and the shuttle orbiter are then presented to demonstrate the capabilities of the new algorithm on more geometrically complex flows with tetrahedral grids. These results provide the first indication that pure tetrahedral elements utilizing the updated, three-dimensional, upwind reconstruction algorithm may be used for the

  9. Investigation of Ultrasound-Measured Flow Velocity, Flow Rate and Wall Shear Rate in Radial and Ulnar Arteries Using Simulation. (United States)

    Zhou, Xiaowei; Xia, Chunming; Stephen, Gandy; Khan, Faisel; Corner, George A; Hoskins, Peter R; Huang, Zhihong


    Parameters of blood flow measured by ultrasound in radial and ulnar arteries, such as flow velocity, flow rate and wall shear rate, are widely used in clinical practice and clinical research. Investigation of these measurements is useful for evaluating accuracy and providing knowledge of error sources. A method for simulating the spectral Doppler ultrasound measurement process was developed with computational fluid dynamics providing flow-field data. Specific scanning factors were adjusted to investigate their influence on estimation of the maximum velocity waveform, and flow rate and wall shear rate were derived using the Womersley equation. The overestimation in maximum velocity increases greatly (peak systolic from about 10% to 30%, time-averaged from about 30% to 50%) when the beam-vessel angle is changed from 30° to 70°. The Womersley equation was able to estimate flow rate in both arteries with less than 3% error, but performed better in the radial artery (2.3% overestimation) than the ulnar artery (15.4% underestimation) in estimating wall shear rate. It is concluded that measurements of flow parameters in the radial and ulnar arteries with clinical ultrasound scanners are prone to clinically significant errors. Copyright © 2017. Published by Elsevier Inc.

  10. Mechanotransduction of flow-induced shear stress by endothelial glycocalyx fibers is torque determined. (United States)

    Liu, Xiao; Fan, Yubo; Deng, Xiaoyan


    To test the hypothesis that the mechanotransduction of flow-induced shear stress on endothelial cells (ECs) might be triggered by the total torque transmitted from the glycocalyx fibers to the ECs rather than by the total shear force acting directly on the membrane of ECs, we formulated the arterial wall as a five-layer model and numerically investigated the effect of two types of damages to the endothelial glycocalyx layer (EGL) on the flow in the EGL and on the drag force and bending moment acting on the glycocalyx fibers. One type of damage was to alter the thickness of the EGL, and the other was to damage its integrity. The results revealed that almost all amount of the shear stress acting on ECs was transmitted to the cells by the EGL and that the flow-induced shear stress acting directly on the cell membrane was negligibly small. In addition, the total force transmitted from the glycocalyx fibers to the cell membrane in the forms of drag force was hardly affected by the damages to the EGL. However, such damages could significantly influence the total torque at the roots of the EGL fibers. In conclusion, the mechanotransduction of shear stress by the EGL might be torque determined rather than force determined.

  11. Assembly of vorticity-aligned hard-sphere colloidal strings in a simple shear flow

    KAUST Repository

    Cheng, X.


    Colloidal suspensions self-assemble into equilibrium structures ranging from face- and body-centered cubic crystals to binary ionic crystals, and even kagome lattices. When driven out of equilibrium by hydrodynamic interactions, even more diverse structures can be accessed. However, mechanisms underlying out-of-equilibrium assembly are much less understood, though such processes are clearly relevant in many natural and industrial systems. Even in the simple case of hard-sphere colloidal particles under shear, there are conflicting predictions about whether particles link up into string-like structures along the shear flow direction. Here, using confocal microscopy, we measure the shear-induced suspension structure. Surprisingly, rather than flow-aligned strings, we observe log-rolling strings of particles normal to the plane of shear. By employing Stokesian dynamics simulations, we address the mechanism leading to this out-of-equilibrium structure and show that it emerges from a delicate balance between hydrodynamic and interparticle interactions. These results demonstrate a method for assembling large-scale particle structures using shear flows.

  12. Assembly of vorticity-aligned hard-sphere colloidal strings in a simple shear flow (United States)

    Cheng, Xiang; Xu, Xinliang; Rice, Stuart A.; Dinner, Aaron R.; Cohen, Itai


    Colloidal suspensions self-assemble into equilibrium structures ranging from face- and body-centered cubic crystals to binary ionic crystals, and even kagome lattices. When driven out of equilibrium by hydrodynamic interactions, even more diverse structures can be accessed. However, mechanisms underlying out-of-equilibrium assembly are much less understood, though such processes are clearly relevant in many natural and industrial systems. Even in the simple case of hard-sphere colloidal particles under shear, there are conflicting predictions about whether particles link up into string-like structures along the shear flow direction. Here, using confocal microscopy, we measure the shear-induced suspension structure. Surprisingly, rather than flow-aligned strings, we observe log-rolling strings of particles normal to the plane of shear. By employing Stokesian dynamics simulations, we address the mechanism leading to this out-of-equilibrium structure and show that it emerges from a delicate balance between hydrodynamic and interparticle interactions. These results demonstrate a method for assembling large-scale particle structures using shear flows. PMID:22198839

  13. Scaling laws for homogeneous turbulent shear flows in a rotating frame (United States)

    Speziale, Charles G.; Mhuiris, Nessan Macgiolla


    The scaling properties of plane homogeneous turbulent shear flows in a rotating frame are examined mathematically by a direct analysis of the Navier-Stokes equations. It is proved that two such shear flows are dynamically similar if and only if their initial dimensionless energy spectrum E star (k star, 0), initial dimensionless shear rate SK sub 0/epsilon sub 0, initial Reynolds number K squared sub 0/nu epsilon sub 0, and the ration of the rotation rate to the shear rate omega/S are identical. Consequently, if universal equilibrium states exist, at high Reynolds numbers, they will only depend on the single parameter omega/S. The commonly assumed dependence of such equilibrium states on omega/S through the Richardson number Ri=-2(omega/S)(1-2 omega/S) is proven to be inconsistent with the full Navier-Stokes equations and to constitute no more than a weak approximation. To be more specific, Richardson number similarity is shown to only rigorously apply to certain low-order truncations of the Navier-Stokes equations (i.e., to certain second-order closure models) wherein closure is achieved at the second-moment level by assuming that the higher-order moments are a small perturbation of their isotropic states. The physical dependence of rotating turbulent shear flows on omega/S is discussed in detail along with the implications for turbulence modeling.

  14. Symmetry breaking in MAST plasma turbulence due to toroidal flow shear

    CERN Document Server

    Fox, M F J; Field, A R; Ghim, Y -c; Parra, F I; Schekochihin, A A


    The flow shear associated with the differential toroidal rotation of tokamak plasmas breaks an underlying symmetry of the turbulent fluctuations imposed by the up-down symmetry of the magnetic equilibrium. Using experimental Beam-Emission-Spectroscopy (BES) measurements and gyrokinetic simulations, this symmetry breaking in ion-scale turbulence in MAST is shown to manifest itself as a tilt of the spatial correlation function and a finite skew in the distribution of the fluctuating density field. The tilt is a statistical expression of the "shearing" of the turbulent structures by the mean flow. The skewness of the distribution is related to the emergence of long-lived density structures in sheared, near-marginal plasma turbulence. The extent to which these effects are pronounced is argued (with the aid of the simulations) to depend on the distance from the nonlinear stability threshold. Away from the threshold, the symmetry is effectively restored.

  15. The shear flow processing of controlled DNA tethering and stretching for organic molecular electronics. (United States)

    Yu, Guihua; Kushwaha, Amit; Lee, Jungkyu K; Shaqfeh, Eric S G; Bao, Zhenan


    DNA has been recently explored as a powerful tool for developing molecular scaffolds for making reproducible and reliable metal contacts to single organic semiconducting molecules. A critical step in the process of exploiting DNA-organic molecule-DNA (DOD) array structures is the controlled tethering and stretching of DNA molecules. Here we report the development of reproducible surface chemistry for tethering DNA molecules at tunable density and demonstrate shear flow processing as a rationally controlled approach for stretching/aligning DNA molecules of various lengths. Through enzymatic cleavage of λ-phage DNA to yield a series of DNA chains of various lengths from 17.3 μm down to 4.2 μm, we have investigated the flow/extension behavior of these tethered DNA molecules under different flow strengths in the flow-gradient plane. We compared Brownian dynamic simulations for the flow dynamics of tethered λ-DNA in shear, and found our flow-gradient plane experimental results matched well with our bead-spring simulations. The shear flow processing demonstrated in our studies represents a controllable approach for tethering and stretching DNA molecules of various lengths. Together with further metallization of DNA chains within DOD structures, this bottom-up approach can potentially enable efficient and reliable fabrication of large-scale nanoelectronic devices based on single organic molecules, therefore opening opportunities in both fundamental understanding of charge transport at the single molecular level and many exciting applications for ever-shrinking molecular circuits.

  16. Constraint and flow: Poiseuille shear response of a surfactant ...

    Indian Academy of Sciences (India)

    flow responses of L3 phases as well as their accommodation to the constraint of a prox- imate surface – in both these situations over appropriate ranges the higher symmetry of the stacked membrane phases is established. These phases exhibit a strong dynamical scaling due to their entropic stabilization by hydrodynamic ...

  17. Nucleation of protein crystals under the influence of solution shear flow. (United States)

    Penkova, Anita; Pan, Weichun; Hodjaoglu, Feyzim; Vekilov, Peter G


    Several recent theories and simulations have predicted that shear flow could enhance, or, conversely, suppress the nucleation of crystals from solution. Such modulations would offer a pathway for nucleation control and provide a novel explanation for numerous mysteries in nucleation research. For experimental tests of the effects of shear flow on protein crystal nucleation, we found that if a protein solution droplet of approximately 5 microL (2-3 mm diameter at base) is held on a hydrophobic substrate in an enclosed environment and in a quasi-uniform constant electric field of 2 to 6 kV cm(-1), a rotational flow with a maximum rate at the droplet top of approximately 10 microm s(-1) is induced. The shear rate varies from 10(-3) to 10(-1) s(-1). The likely mechanism of the rotational flow involves adsorption of the protein and amphiphylic buffer molecules on the air-water interface and their redistribution in the electric field, leading to nonuniform surface tension of the droplet and surface tension-driven flow. Observations of the number of nucleated crystals in 24- and 72-h experiments with the proteins ferritin, apoferritin, and lysozyme revealed that the crystals are typically nucleated at a certain radius of the droplet, that is, at a preferred shear rate. Variations of the rotational flow velocity resulted in suppression or enhancement of the total number of nucleated crystals of ferritin and apoferritin, while all solution flow rates were found to enhance lysozyme crystal nucleation. These observations show that shear flow may strongly affect nucleation, and that for some systems, an optimal flow velocity, leading to fastest nucleation, exists. Comparison with the predictions of theories and simulations suggest that the formation of ordered nuclei in a "normal" protein solution cannot be affected by such low shear rates. We conclude that the flow acts by helping or suppressing the formation of ordered nuclei within mesoscopic metastable dense liquid

  18. Steady state drift vortices in plasmas with shear flow in equilibrium

    DEFF Research Database (Denmark)

    Chakrabarti, N.


    The Hasegawa-Mima equation in the presence of sheared poloidal flow is solved for two-dimensional steady state vortex. It is shown that when the phase velocity of the vortex is the same as the diamagnetic drift velocity, an exact solution in the form of counter-rotating vortices may appear...

  19. Aggregation and Breakup of Colloidal Particle Aggregates in Shear Flow, Studied with Video Microscopy

    NARCIS (Netherlands)

    Tolpekin, V.A.; Duits, Michael H.G.; van den Ende, Henricus T.M.; Mellema, J.


    We used video microscopy to study the behavior of aggregating suspensions in shear flow. Suspensions consisted of 920 nm diameter silica spheres, dispersed in a methanol/bromoform solvent, to which poly(ethylene glycol) (M = 35.000 g) was added to effect weak particle aggregation. With our solvent

  20. Sustained turbulence and magnetic energy in non-rotating shear flows

    DEFF Research Database (Denmark)

    Nauman, Farrukh; Blackman, Eric G.


    From numerical simulations, we show that non-rotating magnetohydrodynamic shear flows are unstable to finite amplitude velocity perturbations and become turbulent, leading to the growth and sustenance of magnetic energy, including large scale fields. This supports the concept that sustained magne...

  1. On the internal gravity waves in the stratified ocean with shear flows

    CERN Document Server

    Bulatov, Vitaly V


    In this paper, we consider a fundamental problem of describing the dynamics of internal gravity waves in the stratified ocean with shear flows. We develop an asymptotic representation of the wave fields in terms of the Green's functions. We explore the far field of the internal gravity waves generated by disturbing sources, and propose asymptotic algorithms for calculating its dynamics.

  2. Symmetry breaking perturbative flows to retrieve resonant modes in plane shear layers

    CERN Document Server

    Akinaga, Takeshi; Generalis, Sotos


    We propose a simple computational procedure in order to resolve the degeneracy, which invariably exists on the background of fluid motion associated with a channel of infinite extent. The procedure is applied to elucidate the bifurcation structure for the particular case of laterally heated flow with the addition of a perturbative Poiseuille flow component. The introduction of a symmetry breaking perturbation as the simplest imperfection alters the bifurcation tree of the original shear flow. As a result, the previously unknown higher order nonlinear solutions for the unperturbed flow are discovered, without implementing classical stability theory.

  3. Restructuring and break-up of two-dimensional aggregates in shear flow. (United States)

    Vassileva, Nikolina D; van den Ende, Dirk; Mugele, Frieder; Mellema, Jorrit


    We consider single two-dimensional aggregates, containing glass particles, placed at a water/air interface. We have investigated the critical shear rate for break-up of aggregates with different sizes in a simple shear flow. All aggregates break-up nearly at the same shear rate (1.8 +/- 0.2 s(-)(1)) independent of their size. The evolution of the aggregate structure before break-up was also investigated. With increasing shear rate, the aggregates adopt a more circular shape, and the particles order in a more dense, hexagonal structure. A simple theoretical model was developed to explain the experimentally observed break-up. In the model, the aggregate is considered as a solid circular disk that will break near its diameter. The capillary and drag force on the two parts of the aggregate were calculated, and from this force balance, the critical shear rate was found. The model shows a weak size dependence of the critical shear rate for the considered aggregates. This is consistent with the experimental observations.

  4. Mean flow stability wave models for coherent structures in open shear flows: experimental assessment of potentials and limitations (United States)

    Oberleithner, Kilian; Rukes, Lothar; Paschereit, Oliver; Soria, Julio


    We report on a number of experimental and theoretical investigations of shear flow instabilities in jet flows. In these studies, linear stability analysis is employed to the time-averaged flow taken from experiments, contrasting the ``classic'' stability approach that is based on a stationary base flow. The eigenmodes of the time-averaged flow are considered as models for the nonlinearly saturated state of the instability waves. The accuracy of these models is validated through a detailed comparison with experiments. In this talk we outline the potential and limitation of these flow models for convectively and globally unstable jet flows. The first author was supported by a fellowship within the Postdoc-Program of the German Academic Exchange Service (DAAD). The support of the Australian Research Council (ARC) and the German Research Foundation (DFG) is greatfully acknowledged.

  5. Sub-auroral flow shear observed by King Salmon HF radar and RapidMAG (United States)

    Hori, T.; Kikuchi, T.; Tsuji, Y.; Shinbori, A.; Ohtaka, T.; Kunitake, M.; Watari, S.; Nagatsuma, T.; Troshichev, O. A.


    We examine in detail the evolution of ionospheric flow shears in the sub-auroral region associated with alternate northward/southward turnings of the IMF. The flow shear structures are often observed in the dusk sector by the SuperDARN King Salmon (KSR) HF radar. Interestingly, some of those show the eastward (westward) flow on the lower (higher) latitude side, respectively, opposite to the typical polarity of the dusk convection cell. In those flow shear events, the IMF has a weak but persistent southward component (~ -1 to -3 nT) before onset of flow shears and following decreases of the southward IMF or even northward turning appear to cause the flow shears. The ground magnetograms provided by the Russian Auroral and Polar Ionospheric Disturbance Magnetometers (RapidMAG) show gradual increases (abrupt declines) of the H-component in association with the increases (decreases) of the merging electric field, respectively, derived from the simultaneous solar wind-IMF observations. The fairly coherent increases (decreases) of the H-component over the wide range of local time (afternoon to evening) indicate development (decay) of the large-scale DP2 current system. A detailed analysis on the 2-D convection structure near the lower latitude edge of the dusk convection cell shows that the ionospheric plasma generally flows westward there and has a larger speed with increasing latitude particularly during increases of the merging electric field. However, once the southward IMF decreases or even shifts to northward and thereby the merging electric field goes down, the region of westward flow moves toward higher latitudes and instead an eastward flow emerges there, forming a flow shear of the counterclockwise sense. This indicates that a downward field-aligned current (FAC), which is the Region-2 (R2) sense on the dusk side, flows into the flow shear region. Subsequently the convection returns to a westward flow again upon increases of the merging electric field due to the

  6. Estimating bed shear stress from remotely measured surface turbulent dissipation fields in open channel flows (United States)

    Johnson, E. D.; Cowen, E. A.


    Synoptic information on bed shear stress is necessary in predicting the transport of sediments and environmental contaminants in rivers and open channels. Existing methods of estimating bed shear stress typically involve measuring vertical profiles of streamwise velocity or Reynolds stress and taking advantage of the logarithmic or the constant stress region, respectively, to determine friction velocity and subsequently, bed shear stress. While effective, these methods yield local measurements of bed shear stress only. Direct measurements of bed shear stress can also be obtained through measurements with a drag plate. However, this method yields average shear stress information over the area of the plate and is impractical for large-scale implementation in the field. Here we present a method capable of providing continuous synoptic measurements of bed shear stress over a large field-of-view. A series of Large-Scale Particle Image Velocimetry (LSPIV) and Acoustic Doppler Velocimetry (ADV) measurements were made in a variety of flows generated in a wide-open channel facility. Turbulent dissipation is calculated on the free surface from the 2-D LSPIV results and is correlated with near-surface ADV measurements of turbulent dissipation in the water column. The ADV results are consistent with the Nezu (1977) established relationship for the vertical variation of turbulent dissipation in the water column. Knowledge of the correlation between free-surface and near-surface dissipation values coupled with Nezu's (1977) relationship allow a robust and accurate estimate of friction velocity to be made and subsequently, shear stress at the bed can be estimated.

  7. Shear Flow Induced Alignment of Carbon Nanotubes in Natural Rubber

    Directory of Open Access Journals (Sweden)

    Yan He


    Full Text Available A new procedure for the fabrication of natural rubber composite with aligned carbon nanotubes is provided in this study. The two-step approach is based on (i the preparation of mixture latex of natural rubber, multiwalled carbon nanotubes, and other components and (ii the orientation of carbon nanotubes by a flow field. Rubber composite sheets filled with variable volume fraction of aligned carbon nanotubes were fabricated and then confirmed by transmission electron microscopy and Raman spectroscopy studies. An obvious increase in thermal conductivity has been obtained after the alignment of carbon nanotubes. The dynamic mechanical analysis was carried out in a tear mode for the composite.

  8. Direct and noisy transitions in a model shear flow

    Directory of Open Access Journals (Sweden)

    Marina Pausch


    Full Text Available The transition to turbulence in flows where the laminar profile is linearly stable requires perturbations of finite amplitude. “Optimal” perturbations are distinguished as extrema of certain functionals, and different functionals give different optima. We here discuss the phase space structure of a 2D simplified model of the transition to turbulence and discuss optimal perturbations with respect to three criteria: energy of the initial condition, energy dissipation of the initial condition, and amplitude of noise in a stochastic transition. We find that the states triggering the transition are different in the three cases, but show the same scaling with Reynolds number.

  9. Graphene Nanosheets and Shear Flow Induced Crystallization in Isotactic Polypropylene Nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Z Xu; C Chen; Y Wang; H Tang; Z Li; B Hsiao


    Combined effects of graphene nanosheets (GNSs) and shear flow on the crystallization behavior of isotactic polypropylene (iPP) were investigated by in-situ synchrotron wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) techniques. For crystallization under quiescent condition (at 145 C), the half-crystallization time (t{sub 1/2}) of nanocomposites containing 0.05 and 0.1 wt % GNSs was reduced to at least 50% compared to that of neat iPP, indicating the high nucleation ability of GNSs. The crystallization rate of iPP was directly proportional to the GNS content. Under a relatively weak shear flow (at a rate of 20 s{sup -1} for 5 s duration) and a low degree of supercooling, the neat iPP exhibited an isotropic structure due to the relaxation of row nuclei. However, visible antisotropic crystals appeared in sheared iPP/GNSs nanocomposites, indicating that GNSs induced a network structure hindering the mobility of iPP chains and allowing the survival of oriented row nuclei for a long period of time. The presence of GNSs clearly enhanced the effects of shear-induced nucleation as well as orientation of iPP crystals. Two kinds of nucleating origins coexisted in the sheared nanocomposite melt: heterogeneous nucleating sites initiated by GNSs and homogeneous nucleating sites (row nuclei) induced by shear. The difference of t{sub 1/2} of nanocomposites with and without shear was significantly larger than that of neat iPP. The presence of GNSs and shear flow exhibited a synergistic interaction on promoting crystallization kinetics of iPP, although the effect of GNS concentration was not apparent. From WAXD results of isothermal and nonisothermal crystallization of sheared iPP, it was found that the appearance of {beta}-crystals depended on the preservation of row nuclei, where the {alpha}-crystals were predominant in the iPP/GNSs nanocomposites, indicating that GNSs could directly induce {alpha}-crystals of iPP.

  10. Viscoelasticity and nonlinear simple shear flow behavior of an entangled asymmetric exact comb polymer solution

    KAUST Repository

    Snijkers, F.


    We report upon the characterization of the steady-state shear stresses and first normal stress differences as a function of shear rate using mechanical rheometry (both with a standard cone and plate and with a cone partitioned plate) and optical rheometry (with a flow-birefringence setup) of an entangled solution of asymmetric exact combs. The combs are polybutadienes (1,4-addition) consisting of an H-skeleton with an additional off-center branch on the backbone. We chose to investigate a solution in order to obtain reliable nonlinear shear data in overlapping dynamic regions with the two different techniques. The transient measurements obtained by cone partitioned plate indicated the appearance of overshoots in both the shear stress and the first normal stress difference during start-up shear flow. Interestingly, the overshoots in the start-up normal stress difference started to occur only at rates above the inverse stretch time of the backbone, when the stretch time of the backbone was estimated in analogy with linear chains including the effects of dynamic dilution of the branches but neglecting the effects of branch point friction, in excellent agreement with the situation for linear polymers. Flow-birefringence measurements were performed in a Couette geometry, and the extracted steady-state shear and first normal stress differences were found to agree well with the mechanical data, but were limited to relatively low rates below the inverse stretch time of the backbone. Finally, the steady-state properties were found to be in good agreement with model predictions based on a nonlinear multimode tube model developed for linear polymers when the branches are treated as solvent.

  11. Numerical simulation of hypersonic non-equilibrium wake flow using a higher-resolution method; Goku choonsoku netsu kagaku hiheiko wo koryoshita donto buttai koryu no kokaizodo suchi kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Nagatomo, H.; Yamamoto, S.; Daiguji, H. [Tohoku University, Sendai (Japan). Faculty of Engineering


    An object which flies hypersonic speed, such as an aeroassisted orbital transfer vehicle, is affected greatly by not only the bow shock but also the expansion around the shoulder and the recompression of separated flow. Though the experiments to analyze this flow have been performed by some groups recently, there are some difficulties in measuring the flow because of limitations of instrumentation. Both experimental and numerical approaches are necessary to analyze the phenomena. The efficient numerical code which has been developed by the authors for hypersonic thermochemical non-equilibrium flow is applied to simulate the problem. The calculated results of different accuracies in space, the perfect gas and the experimental data are compared. 12 refs., 10 figs., 1 tab.

  12. Investigation of flow and material induced hemolysis with a Couette type high shear system

    Energy Technology Data Exchange (ETDEWEB)

    Klaus, S.; Glasmacher, B. [Aachen Univ. (Germany). Helmholtz-Inst. for Biomedical Engineering; IZKF ' BIOMAT' Interdisciplinary Center for Clinical Research, Aachen (Germany); Paul, R.; Reul, H. [Aachen Univ. (Germany). Helmholtz-Inst. for Biomedical Engineering; Mottaghy, K. [Inst. for Physiology, Aachen Univ. (Germany)


    Damage of red blood cells (hemolysis) in miniaturized pump systems for heart support is induced by contact with artificial surfaces and high mechanical shear forces. In vitro experiments with porcine blood under well defined material and flow conditions with a new Couette model showed hemolysis not starting until shear stresses of 400 Pa and exposure times of 400 ms. Hemolysis in general was much lower than predicted in earlier investigations. Heparinized blood revealed a more sensitive behaviour as compared to citrated blood (CPDA-1). (orig.)

  13. Periodic magnetorotational dynamo action as a prototype of nonlinear magnetic-field generation in shear flows. (United States)

    Herault, J; Rincon, F; Cossu, C; Lesur, G; Ogilvie, G I; Longaretti, P-Y


    The nature of dynamo action in shear flows prone to magnetohydrodynamc instabilities is investigated using the magnetorotational dynamo in Keplerian shear flow as a prototype problem. Using direct numerical simulations and Newton's method, we compute an exact time-periodic magnetorotational dynamo solution to three-dimensional dissipative incompressible magnetohydrodynamic equations with rotation and shear. We discuss the physical mechanism behind the cycle and show that it results from a combination of linear and nonlinear interactions between a large-scale axisymmetric toroidal magnetic field and nonaxisymmetric perturbations amplified by the magnetorotational instability. We demonstrate that this large-scale dynamo mechanism is overall intrinsically nonlinear and not reducible to the standard mean-field dynamo formalism. Our results therefore provide clear evidence for a generic nonlinear generation mechanism of time-dependent coherent large-scale magnetic fields in shear flows and call for new theoretical dynamo models. These findings may offer important clues to understanding the transitional and statistical properties of subcritical magnetorotational turbulence.

  14. Periodic magnetorotational dynamo action as a prototype of nonlinear magnetic-field generation in shear flows (United States)

    Herault, J.; Rincon, F.; Cossu, C.; Lesur, G.; Ogilvie, G. I.; Longaretti, P.-Y.


    The nature of dynamo action in shear flows prone to magnetohydrodynamc instabilities is investigated using the magnetorotational dynamo in Keplerian shear flow as a prototype problem. Using direct numerical simulations and Newton’s method, we compute an exact time-periodic magnetorotational dynamo solution to three-dimensional dissipative incompressible magnetohydrodynamic equations with rotation and shear. We discuss the physical mechanism behind the cycle and show that it results from a combination of linear and nonlinear interactions between a large-scale axisymmetric toroidal magnetic field and nonaxisymmetric perturbations amplified by the magnetorotational instability. We demonstrate that this large-scale dynamo mechanism is overall intrinsically nonlinear and not reducible to the standard mean-field dynamo formalism. Our results therefore provide clear evidence for a generic nonlinear generation mechanism of time-dependent coherent large-scale magnetic fields in shear flows and call for new theoretical dynamo models. These findings may offer important clues to understanding the transitional and statistical properties of subcritical magnetorotational turbulence.

  15. Direct numerical simulations of agglomeration of circular colloidal particles in two-dimensional shear flow

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Young Joon, E-mail:; Djilali, Ned, E-mail: [Institute for Integrated Energy Systems and Department of Mechanical Engineering, University of Victoria, Victoria, British Columbia V8W 3P6 (Canada)


    Colloidal agglomeration of nanoparticles in shear flow is investigated by solving the fluid-particle and particle-particle interactions in a 2D system. We use an extended finite element method in which the dynamics of the particles is solved in a fully coupled manner with the flow, allowing an accurate description of the fluid-particle interfaces without the need of boundary-fitted meshes or of empirical correlations to account for the hydrodynamic interactions between the particles. Adaptive local mesh refinement using a grid deformation method is incorporated with the fluid-structure interaction algorithm, and the particle-particle interaction at the microscopic level is modeled using the Lennard-Jones potential. Motivated by the process used in fabricating fuel cell catalysts from a colloidal ink, the model is applied to investigate agglomeration of colloidal particles under external shear flow in a sliding bi-periodic Lees-Edwards frame with varying shear rates and particle fraction ratios. Both external shear and particle fraction are found to have a crucial impact on the structure formation of colloidal particles in a suspension. Segregation intensity and graph theory are used to analyze the underlying agglomeration patterns and structures, and three agglomeration regimes are identified.

  16. PIV measurements in two hypersonic shock wave / turbulent boundary layer interactions (United States)

    Schreyer, Anne-Marie; Williams, Owen; Smits, Alexander J.


    Particle Image Velocimetry measurements were performed to study two compression corner interactions in hypersonic flow. The experiments, carried out at Mach 7.2 and at a Reynolds number based on momentum thickness of 3500, included mean flow surveys as well as turbulence measurements in the near-field of the interaction. For the 8° compression corner, the flow remained attached, and for the 33° compression corner a large separation bubble formed. For the attached case, the influence of the shock wave on the streamwise turbulence intensities is weak, but the wall-normal component and the Reynolds shear stress show considerable amplification. In the fully separated case, both the streamwise and wall normal velocity fluctuations, as well as the Reynolds shear stresses, show strong amplification across the interaction. In contrast with the behavior in the attached case, equilibrium flow is approached much more rapidly in the separated case. Turbulence measurements in such complex hypersonic flows are far from trivial, with particle frequency response limitations often significantly reducing the measured wall-normal turbulence. We will therefore discuss these influences on overall data quality as well as the interpretation of flow physics based on these results.

  17. Theoretical study of motion of small spherical air bubbles in a uniform shear flow of water

    Directory of Open Access Journals (Sweden)

    Syed Murtuza Mehdi


    Full Text Available A simple Couette flow velocity profile with an appropriate correlation for the free terminal rise velocity of a single bubble in a quiescent liquid can produce reliable results for the trajectories of small spherical air bubbles in a low-viscosity liquid (water provided the liquid remains under uniform shear flow. Comparison of the model adopted in this paper with published results has been accomplished. Based on this study it has also been found that the lift coefficient in water is higher than its typical value in a high-viscosity liquid and therefore a modified correlation for the lift coefficient in a uniform shear flow of water within the regime of the Eötvös number 0.305≤Eo≤1.22 is also presented.

  18. Effect of pulse pressure on borehole stability during shear swirling flow vibration cementing (United States)


    The shear swirling flow vibration cementing (SSFVC) technique rotates the downhole eccentric cascade by circulating cementing fluid. It makes the casing eccentrically revolve at high speed around the borehole axis. It produces strong agitation action to the annulus fluid, makes it in the state of shear turbulent flow, and results in the formation of pulse pressure which affects the surrounding rock stress. This study was focused on 1) the calculation of the pulse pressure in an annular turbulent flow field based on the finite volume method, and 2) the analysis of the effect of pulse pressure on borehole stability. On the upside, the pulse pressure is conducive to enhancing the liquidity of the annulus fluid, reducing the fluid gel strength, and preventing the formation of fluid from channeling. But greater pulse pressure may cause lost circulation and even formation fracturing. Therefore, in order to ensure smooth cementing during SSFVC, the effect of pulse pressure should be considered when cementing design. PMID:29145408

  19. Effect of pulse pressure on borehole stability during shear swirling flow vibration cementing.

    Directory of Open Access Journals (Sweden)

    Zhihua Cui

    Full Text Available The shear swirling flow vibration cementing (SSFVC technique rotates the downhole eccentric cascade by circulating cementing fluid. It makes the casing eccentrically revolve at high speed around the borehole axis. It produces strong agitation action to the annulus fluid, makes it in the state of shear turbulent flow, and results in the formation of pulse pressure which affects the surrounding rock stress. This study was focused on 1 the calculation of the pulse pressure in an annular turbulent flow field based on the finite volume method, and 2 the analysis of the effect of pulse pressure on borehole stability. On the upside, the pulse pressure is conducive to enhancing the liquidity of the annulus fluid, reducing the fluid gel strength, and preventing the formation of fluid from channeling. But greater pulse pressure may cause lost circulation and even formation fracturing. Therefore, in order to ensure smooth cementing during SSFVC, the effect of pulse pressure should be considered when cementing design.

  20. Analytical approximations for the orientation distribution of small dipolar particles in steady shear flows

    DEFF Research Database (Denmark)

    Bees, Martin Alan; Hill, N.A.; Pedley, T.J.


    Analytical approximations are obtained to solutions of the steady Fokker-Planck equation describing the probability density function for the orientation of dipolar particles in a steady, low-Reynolds-number shear flow and a uniform external field. Exact computer algebra is used to solve the equat......Analytical approximations are obtained to solutions of the steady Fokker-Planck equation describing the probability density function for the orientation of dipolar particles in a steady, low-Reynolds-number shear flow and a uniform external field. Exact computer algebra is used to solve...... to swimming cells in bioconvection are discussed. A separate symptotic expansion is performed for the case in which spherical particles are in a flow with high vorticy, and the results are compared with the truncated spherical harmonic expansion. Agreement between the two methods is excellent....

  1. Shear flow-ballooning instability as a possible mechanism for hydromagnetic fluctuations. [at plasmapause boundary (United States)

    Vinas, A. F.; Madden, T. R.


    A unified linear electromagnetic analysis of both the Kelvin-Helmholtz (shear flow) instability and of the ballooning (interchange) instability is carried out on the basis of MHD theory. In the analysis, the concept of the Richardson instability of hydrodynamic flows is extended into the hydromagnetic context by unifying both the shear flow and the ballooning instability. As essential concept of the analysis is the role played by the magnetic buoyancy due to an effective gravity produced by the curvature of the field lines which provides the basic step by which both instabilities could be coupled. The results of the study are applied to the plasmapause to explain the excitation of hydromagnetic waves in that region, including the effect of the hot particles from the plasma sheet.

  2. Experimental study of granular flows in a rough annular shear cell. (United States)

    Jasti, Venkata; Higgs, C Fred


    The study of granular flows in physics has always been important because of their recurring presence in nature and industry. However, the nonlinear and multiphase behavior exhibited by these particulate systems makes them hard to model and predict. Several experiments were conducted in the past to gain insight into granular flows. The current experimental work furthers this insight and specifically attempts to understand the effect of rough surfaces on granular flows, namely, their local flow behavior. Understanding this interaction can have implications on industrial-scale granular problems. In this work, a granular shear cell, a two-dimensional annular shear cell, was developed to conduct shear experiments where roughness is imposed on the driving surface and experimentally quantified. A digital particle tracking velocimetry data retrieval scheme was developed to extract solid fraction, velocity, and granular temperature data from the experiments as a function of the roughness factor and wheel rotation rate. In general, the steady-state results show the two distinct regions as expected-a high-velocity and dilute-gas-like kinetic region near the moving wall and a high-solid-fraction liquid-like frictional flow regime away from the moving wall. Parametric studies conducted show that the normalized slip near the moving wall decreases with increasing wall roughness and decreasing wall rotation rate. Slip is an important parameter which can be easily interpreted as momentum transfer or traction performance in granular systems related to wheel-terrain interaction, agricultural processing, and most notably granular lubrication.

  3. Oscillating line source in a shear flow with a free surface: critical layer-like contributions

    CERN Document Server

    Ellingsen, Simen Å


    The linearized water-wave radiation problem for an oscillating submerged line source in an inviscid shear flow with a free surface is investigated analytically at finite, constant depth in the presence of a shear flow varying linearly with depth. The surface velocity is taken to be zero relative to the oscillating source, so that Doppler effects are absent. The radiated wave out from the source is calculated based on Euler's equation of motion with the appropriate boundary and radiation conditions, and differs substantially from the solution obtained by assuming potential flow. To wit, an additional wave is found in the downstream direction in addition to the previously known dispersive wave solutions; this wave is non-dispersive and we show how it is the surface manifestation of a critical layer-like flow generated by the combination of shear and mass flux at the source, passively advected with the flow. As seen from a system moving at the fluid velocity at the source's depth, streamlines form closed curves ...

  4. Experiments on a Steady Low Reynolds Number Airfoil in a Shear Flow (United States)

    Olson, David; Naguib, Ahmed; Koochesfahani, Manoochehr


    The aerodynamics of steady airfoils in uniform flow have received considerably more attention than that of an airfoil operating in a non-uniform flow. Inviscid theory by Tsien (1943) shows that an airfoil experiences a decrease in the zero lift angle of attack for a shear flow with uniform clockwise vorticity. The current work utilizes a shaped honeycomb technique to create a velocity profile with a large region of uniform shear in a water tunnel. Direct force measurements are implemented and validated using experiments on a circular cylinder and NACA 0012 in a uniform cross-flow. Results for a NACA 0012 airfoil with a chord Reynolds number of 1.2 ×104 in a non-uniform approach flow are compared to concurrent CFD calculations (presented in a companion talk) showing an increase in the zero lift angle of attack; in contradiction with inviscid theory. The effect of shear on the mean lift coefficient over a wide range of angles of attack is also explored. This work was supported by AFOSR Award Number FA9550-15-1-0224.

  5. Global bifurcations to subcritical magnetorotational dynamo action in Keplerian shear flow (United States)

    Riols, A.; Rincon, F.; Cossu, C.; Lesur, G.; Longaretti, P.-Y.; Ogilvie, G. I.; Herault, J.


    Magnetorotational dynamo action in Keplerian shear flow is a three-dimensional, nonlinear magnetohydrodynamic process whose study is relevant to the understanding of accretion and magnetic field generation in astrophysics. Transition to this form of dynamo is subcritical and shares many characteristics of transition to turbulence in non-rotating hydrodynamic shear flows. This suggests that these different fluid systems become active through similar generic bifurcation mechanisms, which in both cases have eluded detailed understanding so far. In this paper, we investigate numerically the bifurcation mechanisms at work in the incompressible Keplerian magnetorotational dynamo problem in the shearing box framework. Using numerical techniques imported from dynamical systems research, we show that the onset of chaotic dynamo action at magnetic Prandtl numbers larger than unity is primarily associated with global homoclinic and heteroclinic bifurcations of nonlinear magnetorotational dynamo cycles. These global bifurcations are supplemented by local bifurcations of cycles marking the beginning of period-doubling cascades. This suggests that nonlinear magnetorotational dynamo cycles provide the pathway to turbulent injection of both kinetic and magnetic energy in incompressible magnetohydrodynamic Keplerian shear flow in the absence of an externally imposed magnetic field. Studying the nonlinear physics and bifurcations of these cycles in different regimes and configurations may subsequently help to better understand the conditions of excitation of magnetohydrodynamic turbulence and instability-driven dynamos in various astrophysical systems and laboratory experiments. The detailed characterization of global bifurcations provided for this three-dimensional subcritical fluid dynamics problem may also prove useful for the problem of transition to turbulence in hydrodynamic shear flows.

  6. Deformation of a Capsule in a Power-Law Shear Flow

    Directory of Open Access Journals (Sweden)

    Fang-Bao Tian


    Full Text Available An immersed boundary-lattice Boltzmann method is developed for fluid-structure interactions involving non-Newtonian fluids (e.g., power-law fluid. In this method, the flexible structure (e.g., capsule dynamics and the fluid dynamics are coupled by using the immersed boundary method. The incompressible viscous power-law fluid motion is obtained by solving the lattice Boltzmann equation. The non-Newtonian rheology is achieved by using a shear rate-dependant relaxation time in the lattice Boltzmann method. The non-Newtonian flow solver is then validated by considering a power-law flow in a straight channel which is one of the benchmark problems to validate an in-house solver. The numerical results present a good agreement with the analytical solutions for various values of power-law index. Finally, we apply this method to study the deformation of a capsule in a power-law shear flow by varying the Reynolds number from 0.025 to 0.1, dimensionless shear rate from 0.004 to 0.1, and power-law index from 0.2 to 1.8. It is found that the deformation of the capsule increases with the power-law index for different Reynolds numbers and nondimensional shear rates. In addition, the Reynolds number does not have significant effect on the capsule deformation in the flow regime considered. Moreover, the power-law index effect is stronger for larger dimensionless shear rate compared to smaller values.

  7. Possible ionospheric preconditioning by shear flow leading to equatorial spread F

    Directory of Open Access Journals (Sweden)

    D. L. Hysell


    Full Text Available Vertical shear in the zonal plasma drift speed is apparent in incoherent and coherent scatter radar observations of the bottomside F region ionosphere made at Jicamarca from about 1600–2200 LT. The relative importance of the factors controlling the shear, which include competition between the E and F region dynamos as well as vertical currents driven in the E and F regions at the dip equator, is presently unknown. Bottom-type scattering layers arise in strata where the neutral and plasma drifts differ widely, and periodic structuring of irregularities within the layers is telltale of intermediate-scale waves in the bottomside. These precursor waves appear to be able to seed ionospheric interchange instabilities and initiate full-blown equatorial spread F. The seed or precursor waves may be generated by a collisional shear instability. However, assessing the viability of shear instability requires measurements of the same parameters needed to understand shear flow quantitatively - thermospheric neutral wind and off-equatorial conductivity profiles. Keywords. Ionosphere (Equatorial ionosphere; ionospheric irregularities – Space plasma physics (Waves and instabilities

  8. Sheared magnetospheric plasma flows and discrete auroral arcs: a quasi-static coupling model

    Directory of Open Access Journals (Sweden)

    M. M. Echim


    Full Text Available We consider sheared flows in magnetospheric boundary layers of tangential discontinuity type, forming a structure that is embedded in a large-scale convergent perpendicular electric field. We construct a kinetic model that couples the magnetospheric structure with the topside ionosphere. The contribution of magnetospheric electrons and ionospheric electrons and ions is taken into account into the current-voltage relationship derived for an electric potential monotonically decreasing with the altitude. The solution of the current continuity equation gives the distribution of the ionospheric potential consistent with the given magnetospheric electric potential. The model shows that a sheared magnetospheric flow generates current sheets corresponding to upward field-aligned currents, field-aligned potential drops and narrow bands of precipitating energy, as in discrete auroral arcs. Higher velocity magnetospheric sheared flows have the tendency to produce brighter and slightly broader arcs. An increase in arc luminosity is also associated with enhancements of magnetospheric plasma density, in which case the structures are narrower. Finally, the model predicts that an increase of the electron temperature of the magnetospheric flowing plasma corresponds to slightly wider arcs but does not modify their luminosity.

  9. Analysis of Zero Reynolds Shear Stress Appearing in Dilute Surfactant Drag-Reducing Flow

    Directory of Open Access Journals (Sweden)

    Weiguo Gu


    Full Text Available Dilute surfactant solution of 25 ppm in the two-dimensional channel is investigated experimentally compared with water flow. Particle image velocimetry (PIV system is used to take 2D velocity frames in the streamwise and wall-normal plane. Based on the frames of instantaneous vectors and statistical results, the phenomenon of zero Reynolds shear stress appearing in the drag-reducing flow is discussed. It is found that 25 ppm CTAC solution exhibits the highest drag reduction at Re = 25000 and loses drag reduction completely at Re = 40000. When drag reduction lies in the highest, Reynolds shear stress disappears and reaches zero although the RMS of the velocity fluctuations is not zero. By the categorization in four quadrants, the fluctuations of 25 ppm CTAC solution are distributed in all four quadrants equally at Re = 25000, which indicates that turnaround transportation happens in drag-reducing flow besides Reynolds shear stress transportation. Moreover, the contour distribution of streamwise velocity and the fluctuations suggests that turbulence transportation is depressed in drag-reducing flow. The viscoelasticity is possible to decrease the turbulence transportation and cause the turnaround transportation.

  10. The dynamics of a capsule in a wall-bounded oscillating shear flow

    CERN Document Server

    Zhu, LaiLai; Brandt, Luca


    The motion of an initially spherical capsule in a wall-bounded oscillating shear flow is investigated via an accelerated boundary integral implementation. The neo-Hookean model is used as the constitutive law of the capsule membrane. The maximum wall-normal migration is observed when the oscillation period of the imposed shear is of the order of the relaxation time of the elastic membrane; hence, the optimal capillary number scales with the inverse of the oscillation frequency and the ratio agrees well with the theoretical prediction in the limit of high-frequency oscillation. The migration velocity decreases monotonically with the frequency of the applied shear and the capsule-wall distance. We report a significant correlation between the capsule lateral migration and the normal stress difference induced in the flow. The periodic variation of the capsule deformation is roughly in phase with that of the migration velocity and normal stress difference, with twice the frequency of the imposed shear. The maximum...

  11. Phase Diagram and Breathing Dynamics of Red Blood Cell Motion in Shear Flow (United States)

    Bagchi, Prosenjit; Yazdani, Alireza


    We present phase diagrams of red blood cell dynamics in shear flow using three-dimensional numerical simulations. By considering a wide range of shear rate and interior-to-exterior fluid viscosity ratio, it is shown that the cell dynamics is often more complex than the well-known tank-treading, tumbling and swinging motion, and is characterized by an extreme variation of the cell shape. We identify such complex shape dynamics as `breathing' dynamics. During the breathing motion, the cell either completely aligns with the flow direction and the membrane folds inward forming two cusps, or, it undergoes large swinging motion while deep, crater-like dimples periodically emerge and disappear. At lower bending rigidity, the breathing motion occurs over a wider range of shear rates, and is often characterized by the emergence of a quad-concave shape. The effect of the breathing dynamics on the tank-treading-to-tumbling transition is illustrated by detailed phase diagrams which appear to be more complex and richer than those of vesicles. In a remarkable departure from classical theory of nondeformable cells, we find that there exists a critical viscosity ratio below which the transition is dependent on shear rate only. Supported by NSF.

  12. Oscillatory motion based measurement method and sensor for measuring wall shear stress due to fluid flow (United States)

    Armstrong, William D [Laramie, WY; Naughton, Jonathan [Laramie, WY; Lindberg, William R [Laramie, WY


    A shear stress sensor for measuring fluid wall shear stress on a test surface is provided. The wall shear stress sensor is comprised of an active sensing surface and a sensor body. An elastic mechanism mounted between the active sensing surface and the sensor body allows movement between the active sensing surface and the sensor body. A driving mechanism forces the shear stress sensor to oscillate. A measuring mechanism measures displacement of the active sensing surface relative to the sensor body. The sensor may be operated under periodic excitation where changes in the nature of the fluid properties or the fluid flow over the sensor measurably changes the amplitude or phase of the motion of the active sensing surface, or changes the force and power required from a control system in order to maintain constant motion. The device may be operated under non-periodic excitation where changes in the nature of the fluid properties or the fluid flow over the sensor change the transient motion of the active sensor surface or change the force and power required from a control system to maintain a specified transient motion of the active sensor surface.

  13. Mechanical picture of the linear transient growth of vortical perturbations in incompressible smooth shear flows (United States)

    Chagelishvili, George; Hau, Jan-Niklas; Khujadze, George; Oberlack, Martin


    The linear dynamics of perturbations in smooth shear flows covers the transient exchange of energies between (1) the perturbations and the basic flow and (2) different perturbations modes. Canonically, the linear exchange of energies between the perturbations and the basic flow can be described in terms of the Orr and the lift-up mechanisms, correspondingly for two-dimensional (2D) and three-dimensional (3D) perturbations. In this paper the mechanical basis of the linear transient dynamics is introduced and analyzed for incompressible plane constant shear flows, where we consider the dynamics of virtual fluid particles in the framework of plane perturbations (i.e., perturbations with plane surfaces of constant phase) for the 2D and 3D case. It is shown that (1) the formation of a pressure perturbation field is the result of countermoving neighboring sets of incompressible fluid particles in the flow, (2) the keystone of the energy exchange mechanism between the basic flow and perturbations is the collision of fluid particles with the planes of constant pressure in accordance with the classical theory of elastic collision of particles with a rigid wall, making the pressure field the key player in this process, (3) the interplay of the collision process and the shear flow kinematics describes the transient growth of plane perturbations and captures the physics of the growth, and (4) the proposed mechanical picture allows us to reconstruct the linearized Euler equations in spectral space with a time-dependent shearwise wave number, the linearized Euler equations for Kelvin modes. This confirms the rigor of the presented analysis, which, moreover, yields a natural generalization of the proposed mechanical picture of the transient growth to the well-established linear phenomenon of vortex-wave-mode coupling.

  14. Turbulence generation by mountain wave breaking in flows with directional wind shear (United States)

    Vittoria Guarino, Maria; Teixeira, Miguel A. C.


    In this study, wave breaking, and the potential for the generation of turbulence in the atmosphere, is investigated using high-resolution numerical simulations of idealized atmospheric flows with directional wind shear over a three-dimensional isolated mountain. These simulations, which use the WRF-ARW model, differ in degree of flow non-linearity and directional wind shear intensity, quantified through the dimensionless mountain height and the Richardson number of the incoming flow. The aim is to predict wave breaking occurrence based on large-scale variables. The simulation results have been used to produce a regime diagram representing a description of wave breaking behavior in parameter space. By selecting flow overturning occurrence as a discriminating factor, it was possible to split the regime diagram in two sub-regions representing: a non-wave breaking regime and a wave breaking regime. The regime diagram shows that in the presence of directional shear wave breaking may occur over lower mountains that in a constant-wind case. When mountain waves break, the associated convective instability can lead to turbulence generation (known as Clear Air Turbulence or CAT in a non-cloudy atmosphere), thus, regions within the simulation domain where wave breaking and potential development of CAT are expected have been identified. The extent of these regions is variable and increases with the background shear intensity. In contrast with constant-wind flows, where wave breaking occurs in the stream-wise direction aligned with the mountain, for the helical wind profiles considered in this study as prototypes of flows with directional wind shear, flow overturning regions have a more three-dimensional geometry. The analysis of the model outputs, supported by theoretical arguments, suggest the existence of a link between wave breaking and the relative orientation of the incoming wind vector and the horizontal velocity perturbation vector. In particular, in a wave breaking

  15. Model-based control of transitional and turbulent wall-bounded shear flows (United States)

    Moarref, Rashad

    Turbulent flows are ubiquitous in nature and engineering. Dissipation of kinetic energy by turbulent flow around airplanes, ships, and submarines increases resistance to their motion (drag). In this dissertation, we have designed flow control strategies for enhancing performance of vehicles and other systems involving turbulent flows. While traditional flow control techniques combine physical intuition with costly numerical simulations and experiments, we have developed control-oriented models of wall-bounded shear flows that enable simulation-free and computationally-efficient design of flow controllers. Model-based approach to flow control design has been motivated by the realization that progressive loss of robustness and consequential noise amplification initiate the departure from the laminar flow. In view of this, we have used the Navier-Stokes equations with uncertainty linearized around the laminar flow as a control-oriented model for transitional flows and we have shown that reducing the sensitivity of fluctuations to external disturbances represents a powerful paradigm for preventing transition. In addition, we have established that turbulence modeling in conjunction with judiciously selected linearization of the flow with control can be used as a powerful control-oriented model for turbulent flows. We have illustrated the predictive power of our model-based control design in three concrete problems: preventing transition by (i) a sensorless strategy based on traveling waves and (ii) an optimal state-feedback controller based on local flow information; and (iii) skin-friction drag reduction in turbulent flows by transverse wall oscillations. We have developed analytical and computational tools based on perturbation analysis (in the control amplitude) for control design by means of spatially- and temporally- periodic flow manipulation in problems (i) and (iii), respectively. In problem (ii), we have utilized tools for designing structured optimal state

  16. Effects of Gravity and Shear on the Dynamics and Stability of Particulate and Multiphase Flows (United States)

    Sangani, Ashor S.


    The main objectives of this project are to understand the differing particulate and multiphase flow behaviors that will occur in space and in Earth's gravity. More specifically, the project is concerned with understanding the effect of shear and gravity on two relatively ideal suspensions with significant inertial effects. The first is a gas-solid suspension at small Reynolds numbers and finite Stokes numbers. In this type of suspensions the inertia of the particle phase is significant while the hydrodynamic interactions are dominated by viscous forces in the suspending fluid. The other is a bubble suspension at small Weber and large Reynolds numbers. The hydrodynamic interactions in such suspensions are dominated by the inertial effects in the suspending fluid, but these inertial interactions can be described using potential flow theory. Our main objective is to examine the effects of shear and gravity on the average properties and stability of these two suspensions.

  17. Dynamics of Ellipsoidal Particles in Simple Shear Flows under the Influence of Uniform Magnetic Fields (United States)

    Sobecki, Christopher; Zhang, Yanzhi; Wang, Cheng


    Our recent experiments demonstrated a ``torque''-based method to separate nonspherical particles by combining shear flows and uniform magnetic fields. Experiments showed correlation between the lateral migration of the particle and the asymmetry of the particle rotation. To further understand the effect of magnetic field on the particle rotation, we study the rotational dynamics of an ellipsoidal particle, in an unbounded simple shear flow at zero-Reynolds numbers, subject to a uniform magnetic field. A dimensionless parameter,S, is defined to represent the relative strength between the magnetic and hydrodynamic torques. Without magnetic fields, the particle completes a family of periodic rotations known as Jeffery's Orbit. With a magnetic field, we find that there exists a critical value of S (Scr) . The particle is able to execute complete rotations for a weak magnetic field (SScr, we determine the steady-state angles of the particle, and analyze their stability.

  18. The instability of counter-propagating kernel gravity waves in a constant shear flow

    CERN Document Server

    Umurhan, O M; Harnik, N; Lott, F


    The mechanism describing the recently developed notion of kernel gravity waves (KGWs) is reviewed and such structures are employed to interpret the unstable dynamics of an example stratified plane parallel shear flow. This flow has constant vertical shear, is infinite in the vertical extent, and characterized by two density jumps of equal magnitude each decreasing successively with height, in which the jumps are located symmetrically away from the midplane of the system. We find that for a suitably defined bulk-Richardson number there exists a band of horizontal wavenumbers which exhibits normal-mode instability. The instability mechanism closely parallels the mechanism responsible for the instability seen in the problem of counter-propagating Rossby waves. In this problem the instability arises out of the interaction of counter-propagating gravity waves. We argue that the instability meets the Hayashi-Young criterion for wave instability. We also argue that the instability is the simplest one that can arise ...

  19. Investigation of Particle Sampling Bias in the Shear Flow Field Downstream of a Backward Facing Step (United States)

    Meyers, James F.; Kjelgaard, Scott O.; Hepner, Timothy E.


    The flow field about a backward facing step was investigated to determine the characteristics of particle sampling bias in the various flow phenomena. The investigation used the calculation of the velocity:data rate correlation coefficient as a measure of statistical dependence and thus the degree of velocity bias. While the investigation found negligible dependence within the free stream region, increased dependence was found within the boundary and shear layers. Full classic correction techniques over-compensated the data since the dependence was weak, even in the boundary layer and shear regions. The paper emphasizes the necessity to determine the degree of particle sampling bias for each measurement ensemble and not use generalized assumptions to correct the data. Further, it recommends the calculation of the velocity:data rate correlation coefficient become a standard statistical calculation in the analysis of all laser velocimeter data.

  20. On Shear Stress Distributions for Flow in Smooth or Partially Rough Annuli

    Energy Technology Data Exchange (ETDEWEB)

    Kjellstroem, B.; Hedberg, S.


    It is commonly assumed that for turbulent flow in annuli the radii of zero shear and maximum velocity are coincident. By inspection of the differential equations for such flow and by an integral analysis it is shown that this is not necessarily true. To check whether important differences could occur, experiments were made in which velocity and shear stress distributions were measured in one smooth and two partially rough annuli. The results show no difference in the radii for the smooth annulus, but for the partially rough annuli there was a small but significant difference. This difference explains the breakdown of Hall's transformation theory reported by other investigators. The error introduced by use of Hall's theory is however small, of the order of 10 % or less.

  1. Page 1 T - Shear flow of nematics 38 OO7 OO7 O.O.5 V (cm/sec ...

    Indian Academy of Sciences (India)

    the case of PAA.) When a field H is applied normal to the plates thc I e is a. Stabilizing effect and in decreases at first more Slowly with the increase of shear rate and finally at large shear rates approaches mil. in general decreases in the presence of a field H. applied along the flow direc- tion (figure 1 a). At low shear rates in ...

  2. Experiments in a flighted conveyor comparing shear rates in compressed versus free surface flows (United States)

    Pohlman, Nicholas; Higgins, Hannah; Krupiarz, Kamila; O'Connor, Ryan


    Uniformity of granular flow rate is critical in industry. Experiments in a flighted conveyor system aim to fill a gap in knowledge of achieving steady mass flow rate by correlating velocity profile data with mass flow rate measurements. High speed images were collected for uniformly-shaped particles in a bottom-driven flow conveyor belt system from which the velocity profiles can be generated. The correlation of mass flow rates from the velocity profiles to the time-dependent mass measurements will determine energy dissipation rates as a function of operating conditions. The velocity profiles as a function of the size of the particles, speed of the belt, and outlet size, will be compared to shear rate relationships found in past experiments that focused on gravity-driven systems. The dimension of the linear shear and type of decaying transition to the stationary bed may appear different due to the compression versus dilation space in open flows. The application of this research can serve to validate simulations in discrete element modeling and physically demonstrate a process that can be further developed and customized for industry applications, such as feeding a biomass conversion reactor. Sponsored by NIU's Office of Student Engagement and Experiential Learning.

  3. Shear-Layer Manipulation of Backward-Facing Step Flow with Forcing: A Numerical Study (United States)


    approximation. Algebraic multigrid algorithm is employed in conjunction with an im- plicit residual smoothing scheme. The solver is par- allelized using...with freestream flow and an increas- ing amalgamation of vortices due to a reinforced flapping motion excited by the forcing at a harmo- nized burst...periodic phenomena inher- ent in the shear layer have undergone increasing amalgamation in relation to the breakup of rolling structures and vortex

  4. A Note on the bottom shear stress in oscillatory planetary boundary layer flow

    Directory of Open Access Journals (Sweden)

    Dag Myrhaug


    Full Text Available A simple analytical theory is presented, which describes the motion in a turbulent oscillatory planetary boundary layer near a rough seabed using a two-layer, time-invariant eddy viscosity model. The bottom shear stress is outlined, and comparison is made with Pingree and Griffiths' (1974 measurements of turbulent tidal planetary boundary layer flow on the continental shelf south-west of Lands End, England.

  5. Non-Newtonian hydrodynamics for a dilute granular suspension under uniform shear flow. (United States)

    Chamorro, Moisés G; Reyes, Francisco Vega; Garzó, Vicente


    We study in this work a steady shearing laminar flow with null heat flux (usually called "uniform shear flow") in a gas-solid suspension at low density. The solid particles are modeled as a gas of smooth hard spheres with inelastic collisions while the influence of the surrounding interstitial fluid on the dynamics of grains is modeled by means of a volume drag force, in the context of a rheological model for suspensions. The model is solved by means of three different but complementary routes, two of them being theoretical (Grad's moment method applied to the corresponding Boltzmann equation and an exact solution of a kinetic model adapted to granular suspensions) and the other being computational (Monte Carlo simulations of the Boltzmann equation). Unlike in previous studies on granular sheared suspensions, the collisional moment associated with the momentum transfer is determined in Grad's solution by including all the quadratic terms in the stress tensor. This theoretical enhancement allows for the detection and evaluation of the normal stress differences in the plane normal to the laminar flow. In addition, the exact solution of the kinetic model gives the explicit form of the velocity moments of the velocity distribution function. Comparison between our theoretical and numerical results shows in general a good agreement for the non-Newtonian rheological properties, the kurtosis (fourth velocity moment of the distribution function), and the velocity distribution of the kinetic model for quite strong inelasticity and not too large values of the (scaled) friction coefficient characterizing the viscous drag force. This shows the accuracy of our analytical results that allows us to describe in detail the flow dynamics of the granular sheared suspension.

  6. Sensor for Direct Measurement of the Boundary Shear Stress in Fluid Flow (United States)

    Bao, Xiaoqi; Badescu, Mircea; Bar-Cohen, Yoseph; Lih, Shyh-Shiuh; Sherrit, Stewart; Chang, Zensheu; Chen, Beck; Widholm, Scott; Ostlund, Patrick


    The formation of scour patterns at bridge piers is driven by the forces at the boundary of the water flow. In most experimental scour studies, indirect processes have been applied to estimate the shear and normal stress using measured velocity profiles. The estimations are based on theoretical models and associated assumptions. However, the turbulence flow fields and boundary layer in the pier-scour region are very complex. In addition, available turbulence models cannot account accurately for the bed roughness effect. Direct measurement of the boundary shear and normal stress and their fluctuations are attractive alternatives. However, this approach is a challenging one especially for high spatial resolution and high fidelity measurements. The authors designed and fabricated a prototype miniature shear stress sensor including an EDM machined floating plate and a high-resolution laser optical encoder. Tests were performed both in air as well as operation in water with controlled flow. The sensor sensitivity, stability and signal-to-noise level were measured and evaluated. The detailed test results and a discussion of future work will be presented in this paper.

  7. Endothelial cell dynamics under pulsating flows: significance of high versus low shear stress slew rates (d(tau)/dt). (United States)

    Hsiai, Tzung K; Cho, Sung K; Honda, Henry M; Hama, Susan; Navab, Mohamad; Demer, Linda L; Ho, Chih-Ming


    Shear stress modulates endothelial cell (EC) remodeling via realignment and elongation. We provide the first evidence that the upstroke slopes of pulsatile flow, defined as shear stress slew rates (positive d(tau)/dt), affect significantly the rates at which ECs remodel. We designed a novel flow system to isolate various shear stress slew rates by precisely controlling the frequency, amplitude, and time-averaged shear stress (tau(ave)) of pulsatile flow. Bovine aortic endothelial cell (BAEC) monolayers were exposed to three conditions: (1) pulsatile flow (1 Hz) at high slew rate (293 dyn/cm2 s), (2) pulsatile flow (1 Hz) at low slew rate (71 dyn/cm2s), and (3) steady laminar flow at d(tau)/dt = 0. All of the three conditions were operated at tau(ave) = 50 dyn/cm2. BAEC elongation and alignment were measured over 17 h. We were able to demonstrate the effects of shear stress slew rates ((tau)/dt) on EC remodeling at a fixed spatial shear stress gradient (d(tau)/dx). We found that pulsatile flow significantly increased the rates at which EC elongated and realigned, compared to steady flow at d(tau)/dt = 0. Furthermore, EC remodeling was faster in response to high than to low slew rates at a given tau(ave).

  8. Quantifying effects of particulate properties on powder flow properties using a ring shear tester. (United States)

    Hou, Hao; Sun, Changquan Calvin


    Effects of particle size, morphology, particle density, and surface silicification, on powder flow properties were investigated using a ring shear tester. Flow properties were quantified by flow function (FF), that is, unconfined yield strength, f(c), as a function of major principal stress. A total of 11 powders from three series of microcrystalline cellulose (MCC): Avicel (regular MCC, elongated particles), Prosolv (silicified MCC, elongated particles), and Celphere (spherical MCC), were studied. Particle size distribution in each type of MCC was systematically different. Within each series, smaller particles always led to poorer powder flow properties. The slope of FF line was correlated to degree of powder consolidation by external stress. A key mechanism of the detrimental effect of particle size reduction on flow properties was the larger powder specific surface area. Flow properties of Celphere were significantly better than Avicel of comparable particles size, suggesting spherical morphology promoted better powder flow properties. Flow properties of powders different in densities but similar in particle size, shape, and surface properties were similar. When corrected for density effect, higher particle density corresponded to better flow behavior. Surface silicification significantly improved flow properties of finer MCC, but did not improve those of coarser.

  9. Unstart coupling mechanism analysis of multiple-modules hypersonic inlet. (United States)

    Hu, Jichao; Chang, Juntao; Wang, Lei; Cao, Shibin; Bao, Wen


    The combination of multiplemodules in parallel manner is an important way to achieve the much higher thrust of scramjet engine. For the multiple-modules scramjet engine, when inlet unstarted oscillatory flow appears in a single-module engine due to high backpressure, how to interact with each module by massflow spillage, and whether inlet unstart occurs in other modules are important issues. The unstarted flowfield and coupling characteristic for a three-module hypersonic inlet caused by center module II and side module III were, conducted respectively. The results indicate that the other two hypersonic inlets are forced into unstarted flow when unstarted phenomenon appears on a single-module hypersonic inlet due to high backpressure, and the reversed flow in the isolator dominates the formation, expansion, shrinkage, and disappearance of the vortexes, and thus, it is the major factor of unstart coupling of multiple-modules hypersonic inlet. The coupling effect among multiple modules makes hypersonic inlet be more likely unstarted.

  10. Inviscid instabilities of non-planar transversely sheared flows governed by the generalized Rayleigh pressure equation (United States)

    Afsar, Mohammed; Sescu, Adrian


    Transition in boundary layer flow over flat/curved surfaces and at moderate to high freestream disturbances or under the influence of various surface roughness elements often involves inviscid secondary instability. This stage in transition can be pictured as being a parametric resonance-type phenomena where a unstable primary flow saturates to a more-or-less steady-state, susceptible to infinitesimal three-dimensional wave-like instability modes that grow much faster than the primary. In decades of research on boundary layers, experimenters have relied upon an inflection point in the wall normal y and/or spanwise directions z of the primary as a pre-cursor to transition. This assertion, based on Rayleigh's theorem, does not however apply in transversely sheared flows. In this talk, we show that an alternative local criterion for inviscid secondary instability - sharing similarities to the original one-dimensional Rayleigh criterion - exists for a class of non-planar transversely sheared flows at long streamwise wavelength. Our general stability criterion is, remarkably, given by necessity of the surface U y , z possessing at least one saddle point in the plane. We analyze this saddle-point criterion numerically show its relevance to secondary instabilities. M.Z.A. would like to anknowledge financial support from Laminar Flow Control (LFC-UK) Research Program at Imperial College London and would like to thank Professor Philip Hall for motivating his interest in this problem.

  11. A new parallel plate shear cell for in situ real-space measurements of complex fluids under shear flow

    NARCIS (Netherlands)

    Wu, Yu Ling; Brand, Joost; van Gemert, Jos; Verkerk, Jaap; Wisman, H.; van Blaaderen, Alfons; Imhof, Arnout


    We developed and tested a parallel plate shear cell that can be mounted on top of an inverted microscope to perform confocal real-space measurements on complex fluids under shear. To follow structural changes in time, a plane of zero velocity is created by letting the plates move in opposite

  12. Flow properties of fresh concrete by using modified geotechnical Vane shear test

    Directory of Open Access Journals (Sweden)

    Metwally A. Abd Elaty


    Full Text Available An experimental investigation has been performed to study the efficiency of using modified geotechnical Vane shear test to evaluate the fresh properties of concrete. Different concrete mixes with different coarse aggregates (both type and size were conducted. Moreover different shapes and sizes of Vane probes were investigated. Also the influence of using enhancing workability admixtures was studied. The results of the shear Vane test were statistically analyzed and compared with those for standard tests. The results reveal that the Vane shear test with modified blades can be simply executed to measure workability of concrete anywhere with a good efficiency. Useful equations with good correlation coefficients are established between the well known standard tests include compacting factor, slump, VeBe and flow tests and the Vane yield method. Size effect phenomenon related to Vane size is recorded for the Vane yield stress results. The results of the Vane yield stress could clearly distinguish between not only mixes made up of different aggregate types but also the aggregate maximum nominal size. The results of the Vane shear test are clearly affected by using enhancing workability admixtures and its dosage. A direct proportion between Vane yield stress results and the companion compacting factors test values is strongly noticed which introduces the Vane test method as a simple instrument that could be simply adapted anywhere to measure the workability of fresh concrete instead of compacting factor that is a laboratory apparatus.

  13. Singing sand as an instability arising from a shear-plug flow (United States)

    Dagois-Bohy, Simon; Courrech Du Pont, Sylvain; Douady, Stéphane


    Desert sand dunes can have the peculiar ability to emit a loud sound up to 110 dB, with a well-defined frequency: this is the song of the dunes. After the early travelers who first mentioned it (Darwin, Marco-Polo, ...) later scientific observations have shown that if not all dunes sing, all the singing dunes are composed of dry, well-sorted and coated sand; this sound occurs when the sand is sheared, and particularly on field during avalanches on a slip face of a singing dune? Several observations—recent and less recent—have shown that the sound frequency is likely equal to the shear rate of the flow, or at least is varying in the same way. We have been able to reproduce these avalanches in laboratory on an inclined plane with singing sand from Morocco and Oman, which has made possible to study them more accurately than on the field. Signals of accelerometers measuring local vertical oscillations of the flowing surface show that the phenomenon does not require resonance in the depth or in the dune. Measures of velocity and flow rate during avalanches enhance the co-existence of a plug flow with a large shear band underneath, both strongly correlated to the sound emission. A new model has been developed, based on the mechanical interaction between the plug area and the transient force chains in the flow. This model predicts a threshold that depends on the compacity of the granular media and on the surface friction and adhesion properties of the grains, and the value predicted fits quantitively well the data collected from avalanches, as well as from other experimental set-up of singing sand.

  14. Internal shear layers and uniform momentum zones in a turbulent pipe flow (United States)

    Gul, Melika; Elsinga, Gerrit E.; Westerweel, Jerry


    Turbulent pipe flow has previously been shown to contain large-scale nearly uniform momentum, which are separated by layers of significant shear. These internal layers are of interest, because they are associated with fluid transport between uniform momentum zones, hence with the growth of these large energy-containing motions. In this study, we compare two methods to detect and analyse the internal shear layers; the triple decomposition method (TDM) and the streamwise velocity histogram method. The assessment is based on time-resolved PIV measurements in the cross-section of the pipe spanning a range of Reynolds numbers (Reτ = 700-1178). The strong jumps in the conditionally averaged flow statistics across the layers detected by TDM are smeared out with the histogram method. Using the TDM method, some scaling analyses are performed for the layer thickness, and the velocity jump over the layer. It is found that the layer thickness becomes almost constant after 0.4R, and the streamwise velocity jump decreases from the wall region to the core of the pipe. With the histogram method, on the other hand, one distinct shear layer is distinguished from the distribution of all local peak velocities, which is corresponding to the 95% of the central velocity of the pipe.

  15. A 3-D Computational Model of Cell Rolling Under Shear Flow (United States)

    Jadhav, Sameer; Eggleton, Charles; Konstantopoulos, Konstantinos


    Selectin-mediated rolling of polymorphonuclear leukocytes (PMNs) on activated endothelium is critical to their recruitment to sites of inflammation. Recent studies have shown that PMN rolling velocity on selectin-coated surfaces in shear flow is significantly slower compared to that of microspheres bearing a similar density of selectin ligands. To investigate whether cell deformability is responsible for the aforementioned differences, we developed a three-dimensional computational model based on the immersed boundary method which simulates rolling of a deformable cell on a selectin-coated surface under shear flow with a stochastic description of receptor-ligand bond interaction. We observed that rolling velocity increases with increasing membrane stiffness and this effect is larger at high shear rates. The bond lifetime, number of receptor-ligand bonds and the contact area between cell and substrate decreased with increasing membrane stiffness. This study shows that cellular properties along with the kinetics of selectin-ligand interactions affect leukocyte rolling on selectin-coated surfaces.

  16. Shear localization and effective wall friction in a wall bounded granular flow

    Directory of Open Access Journals (Sweden)

    Artoni Riccardo


    Full Text Available In this work, granular flow rheology is investigated by means of discrete numerical simulations of a torsional, cylindrical shear cell. Firstly, we focus on azimuthal velocity profiles and study the effect of (i the confining pressure, (ii the particle-wall friction coefficient, (iii the rotating velocity of the bottom wall and (iv the cell diameter. For small cell diameters, azimuthal velocity profiles are nearly auto-similar, i.e. they are almost linear with the radial coordinate. Different strain localization regimes are observed : shear can be localized at the bottom, at the top of the shear cell, or it can be even quite distributed. This behavior originates from the competition between dissipation at the sidewalls and dissipation in the bulk of the system. Then we study the effective friction at the cylindrical wall, and point out the strong link between wall friction, slip and fluctuations of forces and velocities. Even if the system is globally below the sliding threshold, force fluctuations trigger slip events, leading to a nonzero wall slip velocity and an effective wall friction coefficient different from the particle-wall one. A scaling law was found linking slip velocity, granular temperature in the main flow direction and effective friction. Our results suggest that fluctuations are an important ingredient for theories aiming to capture the interface rheology of granular materials.

  17. Evolution of symmetric reconnection layer in the presence of parallel shear flow

    Energy Technology Data Exchange (ETDEWEB)

    Lu Haoyu [Space Science Institute, School of Astronautics, Beihang University, Beijing 100191 (China); Sate Key Laboratory of Space Weather, Chinese Academy of Sciences, Beijing 100190 (China); Cao Jinbin [Space Science Institute, School of Astronautics, Beihang University, Beijing 100191 (China)


    The development of the structure of symmetric reconnection layer in the presence of a shear flow parallel to the antiparallel magnetic field component is studied by using a set of one-dimensional (1D) magnetohydrodynamic (MHD) equations. The Riemann problem is simulated through a second-order conservative TVD (total variation diminishing) scheme, in conjunction with Roe's averages for the Riemann problem. The simulation results indicate that besides the MHD shocks and expansion waves, there exist some new small-scale structures in the reconnection layer. For the case of zero initial guide magnetic field (i.e., B{sub y0} = 0), a pair of intermediate shock and slow shock (SS) is formed in the presence of the parallel shear flow. The critical velocity of initial shear flow V{sub zc} is just the Alfven velocity in the inflow region. As V{sub z{infinity}} increases to the value larger than V{sub zc}, a new slow expansion wave appears in the position of SS in the case V{sub z{infinity}} < V{sub zc}, and one of the current densities drops to zero. As plasma {beta} increases, the out-flow region is widened. For B{sub y0} {ne} 0, a pair of SSs and an additional pair of time-dependent intermediate shocks (TDISs) are found to be present. Similar to the case of B{sub y0} = 0, there exists a critical velocity of initial shear flow V{sub zc}. The value of V{sub zc} is, however, smaller than the Alfven velocity of the inflow region. As plasma {beta} increases, the velocities of SS and TDIS increase, and the out-flow region is widened. However, the velocity of downstream SS increases even faster, making the distance between SS and TDIS smaller. Consequently, the interaction between SS and TDIS in the case of high plasma {beta} influences the property of direction rotation of magnetic field across TDIS. Thereby, a wedge in the hodogram of tangential magnetic field comes into being. When {beta}{yields}{infinity}, TDISs disappear and the guide magnetic field becomes constant.

  18. Wall shear stress characterization of a 3D bluff-body separated flow (United States)

    Fourrié, Grégoire; Keirsbulck, Laurent; Labraga, Larbi


    Efficient flow control strategies aimed at reducing the aerodynamic drag of road vehicles require a detailed knowledge of the reference flow. In this work, the flow around the rear slanted window of a generic car model was experimentally studied through wall shear stress measurements using an electrochemical method. The mean and fluctuating wall shear stress within the wall impact regions of the recirculation bubble and the main longitudinal vortex structures which develop above the rear window are presented. Correlations allow a more detailed characterization of the recirculation phenomenon within the separation bubble. In the model symmetry plane the recirculation structure compares well with simpler 2D configurations; specific lengths, flapping motion and shedding of large-scale vortices are observed, these similarities diminish when leaving the middle plane due to the strong three-dimensionality of the flow. A specific attention is paid to the convection processes occurring within the recirculation: a downstream convection velocity is observed, in accordance with 2D recirculations from the literature, and an upstream convection is highlighted along the entire bubble length which has not been underlined in some previous canonical configurations.

  19. Pattern formation in directional solidification under shear flow. I. Linear stability analysis and basic patterns. (United States)

    Marietti, Y; Debierre, J M; Bock, T M; Kassner, K


    An asymptotic interface equation for directional solidification near the absolute stability limit is extended by a nonlocal term describing a shear flow parallel to the interface. In the long-wave limit considered, the flow acts destabilizing on a planar interface. Moreover, linear stability analysis suggests that the morphology diagram is modified by the flow near onset of the Mullins-Sekerka instability. Via numerical analysis, the bifurcation structure of the system is shown to change. Besides the known hexagonal cells, structures consisting of stripes arise. Due to its symmetry-breaking properties, the flow term induces a lateral drift of the whole pattern, once the instability has become active. The drift velocity is measured numerically and described analytically in the framework of a linear analysis. At large flow strength, the linear description breaks down, which is accompanied by a transition to flow-dominated morphologies which is described in the following paper. Small and intermediate flows lead to increased order in the lattice structure of the pattern, facilitating the elimination of defects. Locally oscillating structures appear closer to the instability threshold with flow than without.

  20. Numerical simulations of deformation and aggregation of red blood cells in shear flow. (United States)

    Low, Hong-Tong; Ju, M; Sui, Y; Nazir, T; Namgung, B; Kim, Sangho


    This article reviews numerical simulations of red blood cells (RBCs) mainly using the lattice Boltzmann method (LBM), focusing on the 2-dimensional deformation and aggregation of the cells in simple shear flow. We outline the incorporation of the immersed boundary method into the LBM, in which the membrane forces are obtained from the membrane model. The RBCs are simulated as a single biconcave capsule and as a doublet of biconcave capsules. The transition from swinging to tumbling motions of the RBCs, as induced by reducing the shear rate or increasing the membrane bending stiffness, is discussed. Also discussed is the aggregation tendency of the doublet of RBCs, for which homogenous deformability maintained RBC aggregation, whereas an increased deformability difference resulted in RBC dissociation.

  1. Orientated Crystallization in Discontinuous Aramid Fiber/isotactic Polypropylene Composites under Shear Flow Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Larin,B.; Marom, G.; Avila-Orta, C.; Somani, R.Hsiao, B.


    Melt blends of short aramid fibers (AF) and isotactic polypropylene (iPP) are subjected to shear at 145 C and the structural evolution and final morphology are examined by in situ synchrotron X-ray scattering/diffraction and high-resolution scanning electron microscopy, respectively. The results indicate that the presence of short AFs significantly enhances the crystallization of iPP. It is argued that shear flow in this system exerts a twofold orientating action, namely, on the bulk iPP molecules and on the short AFs. The resultant crystalline morphology reflects the combined effects of crystallization on orientated iPP molecules to facilitate a shish kebab morphology and at the interface of the aligned fibers, to form transcrystallinity.

  2. Isomorph invariance of Couette shear flows simulated by the SLLOD equations of motion

    DEFF Research Database (Denmark)

    Separdar, Leila; Bailey, Nicholas; Schrøder, Thomas


    and nonlinear regimes. For both systems, when represented in reduced units the radial distribution function and the intermediate scattering function are identical for state points that are isomorphic. The strain-rate dependent viscosity, which exhibits shear thinning, is also invariant along an isomorph. Our...... of the two systems. We show analytically that these equations are isomorph invariant provided the reduced strain rate is fixed along the isomorph. Since isomorph invariance is generally only approximate, a range of strain rates were simulated to test for the predicted invariance, covering both the linear...... results extend the isomorph concept to the non-equilibrium situation of a shear flow, for which the phase diagram is three dimensional because the strain rate defines a third dimension....

  3. The temporal evolution of the resistive pressure-gradient-driven turbulence and anomalous transport in shear flow across the magnetic field (United States)

    Lee, Hae June; Mikhailenko, Vladmir; Mikhailenko, Vladimir


    The temporal evolution of the resistive pressure-gradient-driven mode in the sheared flow is investigated by employing the shearing modes approach. It reveals an essential difference in the processes, which occur in the case of the flows with velocity shearing rate less than the growth rate of the instability in the steady plasmas, and in the case of the flows with velocity shear larger than the instability growth rate in steady plasmas. It displays the physical content of the empirical ``quench rule'' which predicts the suppression of the turbulence in the sheared flows when the velocity shearing rate becomes larger than the maximum growth rate of the possible instability. We found that the distortion of the perturbations by the sheared flow with such velocity shear introduces the time dependencies into the governing equations, which prohibits the application of the eigenmodes formalism and requires the solution of the initial value problem.

  4. Heavy ellipsoids in creeping shear flow: transitions of the particle rotation rate and orbit shape. (United States)

    Lundell, Fredrik; Carlsson, Allan


    The motion of an inertial ellipsoid in a creeping linear shear flow of a Newtonian fluid is studied numerically. This constitutes a fundamental system that is used as a basis for simulations and analysis of flows with heavy nonspherical particles. The torque on the ellipsoid is given analytically by Jeffery [Proc. R. Soc. London, Ser. A 102, 161 (1922)]. This torque is coupled with the angular-momentum equation for the particle. The motion is then governed by the Stokes number St=rho(e)gammal(2)/mu, where rho(e) is the density of the ellipsoid, gamma is the rate of shear, l is the length of the major axis of the ellipsoid, and mu is the dynamic viscosity of the fluid. For low St (the numerical value depends on the aspect ratio of the particle), the particle motion is similar to the Jeffery orbits obtained for inertia-free particles with the addition of an orbit drift so that the particle eventually lies in the flow-gradient plane. At higher St, more drastic effects are seen. For particles oriented in the flow-gradient plane, the rotation rate increases rather abruptly to half the shear rate in a narrow range of St. For particles with other orientations, the motion goes from a kayaking motion to rotation around an oblique axis. It is suggested that, depending on aspect and density ratios, particle inertia might be sufficient to explain and model orbit drift observed previously at low Reynolds numbers. It is discussed how and when the assumption of negligible fluid inertia and strong particle inertia can be justified from a fundamental perspective for particles of different aspect ratios.

  5. Global strike hypersonic weapons (United States)

    Lewis, Mark J.


    Beginning in the 1940's, the United States has pursued the development of hypersonic technologies, enabling atmospheric flight in excess of five times the speed of sound. Hypersonic flight has application to a range of military and civilian applications, including commercial transport, space access, and various weapons and sensing platforms. A number of flight tests of hypersonic vehicles have been conducted by countries around the world, including the United States, Russia, and China, that could lead the way to future hypersonic global strike weapon systems. These weapons would be especially effective at penetrating conventional defenses, and could pose a significant risk to national security.

  6. Influence of erythrocyte aggregation on radial migration of platelet-sized spherical particles in shear flow. (United States)

    Guilbert, Cyrille; Chayer, Boris; Allard, Louise; Yu, François T H; Cloutier, Guy


    Blood platelets when activated are involved in the mechanisms of hemostasis and thrombosis, and their migration toward injured vascular endothelium necessitates interaction with red blood cells (RBCs). Rheology co-factors such as a high hematocrit and a high shear rate are known to promote platelet mass transport toward the vessel wall. Hemodynamic conditions promoting RBC aggregation may also favor platelet migration, particularly in the venous system at low shear rates. The aim of this study was to confirm experimentally the impact of RBC aggregation on platelet-sized micro particle migration in a Couette flow apparatus. Biotin coated micro particles were mixed with saline or blood with different aggregation tendencies, at two shear rates of 2 and 10s(-1) and three hematocrits ranging from 20 to 60%. Streptavidin membranes were respectively positioned on the Couette static and rotating cylinders upon which the number of adhered fluorescent particles was quantified. The platelet-sized particle adhesion on both walls was progressively enhanced by increasing the hematocrit (p<0.001), reducing the shear rate (p<0.001), and rising the aggregation of RBCs (p<0.001). Particle count was minimum on the stationary cylinder when suspended in saline at 2s(-1) (57±33), and maximum on the rotating cylinder at 60% hematocrit, 2s(-1) and the maximum dextran-induced RBC aggregation (2840±152). This fundamental study is confirming recent hypotheses on the role of RBC aggregation on venous thrombosis, and may guide molecular imaging protocols requiring injecting active labeled micro particles in the venous flow system to probe human diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Significance of composition and particle size on the shear flow properties of wheat flour. (United States)

    Siliveru, Kaliramesh; Ambrose, Rp Kingsly; Vadlani, Praveen V


    Size-based fractionation of flour particles is an important process in wheat milling. Inter-particle cohesion could affect the dynamic separation process and result in loss in throughput. This study quantifies the effect of particle properties that includes physical and chemical characteristics on the shear flow behavior of wheat flour. The cohesion and flow function values of wheat flour at three moisture contents (10%, 12%, and 14%), three particle sizes (75-106, 45-75, and properties (cohesion, flow function, and angle of internal friction) demonstrates that chemical composition significantly contributes towards the differences in dynamic flowability of wheat flours. In addition, fat composition had a significant effect on the differences in flowability of wheat flours due to the increased inter-particulate cohesion. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  8. Detection of flow separation and reattachment using shear-sensitive liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, S. [School of Engineering, University of Manchester, Manchester (United Kingdom)


    Coatings of pure chiral nematic liquid crystals are known to change colour under different levels of surface shear stress. In this study, the liquid crystal was used to provide information about flow separation and reattachment on both a two-dimensional aerofoil and a delta wing. The tests were carried out at a free-stream velocity of 28 m/s and a number of incidence angles. The Reynolds numbers based on the central chord length of the models were 200,000 and 270,000 for the aerofoil and delta wing models, respectively. The study showed that locations of boundary layer separation and reattachment can be identified from spatial variations in the surface colour; the agreement between the results and those obtained using surface oil flow was good. Issues relating to interpretation of the crystal colour pattern and the limitation of this technique in detection of flow separation were also discussed. (orig.)

  9. Influence of Base Oil Polarity on the Transient Shear Flow of Biodegradable Lubricating Greases

    Directory of Open Access Journals (Sweden)

    Martin Fiedler


    Full Text Available The scope of this study is to elucidate the physical mechanisms influencing the transient flow behavior of lubricating greases based on biogenic oleochemicals from a polarity point of view. This includes the mutually interacting influence of base oil polarity and thickening agents on the rheologically-measured mechanical structural degradation in transient shear flow. Due to the high temperature dependence of Keesom forces in the background of polar-active bond mechanisms, the analysis of the transient flow response as a function of temperature allows to attribute the observed influences to differences in base oil polarity. In general, clay-thickened greases show a greater tendency to be rheologically influenced by base oil polarities than soap-thickened lubricating greases.

  10. Seasonal Variability in Regional Ice Flow Due to Meltwater Injection Into the Shear Margins of Jakobshavn Isbræ (United States)

    Cavanagh, J. P.; Lampkin, D. J.; Moon, T.


    The impact of meltwater injection into the shear margins of Jakobshavn Isbræ via drainage from water-filled crevasses on ice flow is examined. We use Landsat-8 Operational Land Imager panchromatic, high-resolution imagery to monitor the spatiotemporal variability of seven water-filled crevasse ponds during the summers of 2013 to 2015. The timing of drainage from water-filled crevasses coincides with an increase of 2 to 20% in measured ice velocity beyond Jakobshavn Isbræ shear margins, which we define as extramarginal ice velocity. Some water-filled crevasse groups demonstrate multiple drainage events within a single melt season. Numerical simulations show that hydrologic shear weakening due to water-filled crevasse drainage can accelerate extramarginal flow by as much as 35% within 10 km of the margins and enhance mass flux through the shear margins by 12%. This work demonstrates a novel mechanism through which surface melt can influence regional ice flow.

  11. Evaluation of ring shear testing as a characterization method for powder flow in small-scale powder processing equipment

    DEFF Research Database (Denmark)

    Søgaard, Søren Vinter; Pedersen, Troels; Allesø, Morten


    Powder flow in small-scale equipment is challenging to predict. To meet this need, the impact of consolidation during powder flow characterization, the level of consolidation existing during discharge of powders from a tablet press hopper and the uncertainty of shear and wall friction measurements...... at small consolidation stresses were investigated. For this purpose, three grades of microcrystalline cellulose were used. Results showed that powder flow properties depend strongly on the consolidation during testing. The consolidation during discharge in terms of the major principal stress and wall......, the wall and shear stress resolution influences the precision of the measured powder flow properties. This study highlights the need for an improved experimental setup which would be capable of measuring the flow properties of powders under very small consolidation stresses with a high shear stress...

  12. Time-resolved Spectroscopy of a Sheared Flow Stabilized Z-pinch Plasma (United States)

    Forbes, Eleanor


    The ZaP Flow Z-pinch Project investigates the use of sheared-axial flows to stabilize an otherwise unstable plasma configuration. Diagnostics with sub-microsecond resolution are required to obtain accurate time-resolved data since the plasma pulse is approximately 100 μs. Analyzing the Doppler shift of impurity line radiation from the pinch provides a measure of the velocity profile and is a reliable method of determining the plasma sheared flow. The velocity profile is spatially resolved through the use of a 20-chord fiber bundle. The ZaP-HD experiment has used a PI-MAX intensified CCD array to record a single time-resolved spectrum per plasma pulse. Obtaining the evolution of the velocity profile using this method required spectra acquired over hundreds of pulses with identical initial parameters and varying acquisition times. The use of a Kirana 05M ultra-fast framing camera is investigated for recording time-resolved velocity profiles during a single pulse. The Kirana utilizes an ultraviolet intensifier to record 180 frames of UV light at up to 2 million frames per second. An ultraviolet optics system is designed to couple the exit port of an Acton SP-500i spectrometer to the Kirana UV intensifier and focus spectra at the camera detector plane. This work is supported by US DoE FES, NNSA, and ARPA-E ALPHA.

  13. Wall morphology, blood flow and wall shear stress: MR findings in patients with peripheral artery disease

    Energy Technology Data Exchange (ETDEWEB)

    Galizia, Mauricio S.; Barker, Alex; Collins, Jeremy; Carr, James [Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Liao, Yihua [Northwestern University' s Feinberg School of Medicine, Department of Preventive Medicine, Chicago, IL (United States); McDermott, Mary M. [Northwestern University' s Feinberg School of Medicine, Department of Preventive Medicine, Chicago, IL (United States); Northwestern University' s Feinberg School of Medicine, Department of Medicine, Chicago, IL (United States); Markl, Michael [Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Northwestern University, Department Biomedical Engineering, McCormick School of Engineering, Chicago, IL (United States)


    To investigate the influence of atherosclerotic plaques on femoral haemodynamics assessed by two-dimensional (2D) phase-contrast (PC) magnetic resonance imaging (MRI) with three-directional velocity encoding. During 1 year, patients with peripheral artery disease and an ankle brachial index <1.00 were enrolled. After institutional review board approval and written informed consent, 44 patients (age, 70 ± 12 years) underwent common femoral artery MRI. Patients with contra-indications for MRI were excluded. Sequences included 2D time-of-flight, proton-density, T1-weighted and T2-weighted MRI. Electrocardiogram (ECG)-gated 2D PC-MRI with 3D velocity encoding was acquired. A radiologist classified images in five categories. Blood flow, velocity and wall shear stress (WSS) along the vessel circumference were quantified from the PC-MRI data. The acquired images were of good quality for interpretation. There were no image quality problems related to poor ECG-gating or slice positioning. Velocities, oscillatory shear stress and total flow were similar between patients with normal arteries and wall thickening/plaque. Patients with plaques demonstrated regionally increased peak systolic WSS and enhanced WSS eccentricity. Combined multi-contrast morphological imaging of the peripheral arterial wall with PC-MRI with three-directional velocity encoding is a feasible technique. Further study is needed to determine whether flow is an appropriate marker for altered endothelial cell function, vascular remodelling and plaque progression. (orig.)

  14. Thin liquid films with time-dependent chemical reactions sheared by an ambient gas flow (United States)

    Bender, Achim; Stephan, Peter; Gambaryan-Roisman, Tatiana


    Chemical reactions in thin liquid films are found in many industrial applications, e.g., in combustion chambers of internal combustion engines where a fuel film can develop on pistons or cylinder walls. The reactions within the film and the turbulent outer gas flow influence film stability and lead to film breakup, which in turn can lead to deposit formation. In this work we examine the evolution and stability of a thin liquid film in the presence of a first-order chemical reaction and under the influence of a turbulent gas flow. Long-wave theory with a double perturbation analysis is used to reduce the complexity of the problem and obtain an evolution equation for the film thickness. The chemical reaction is assumed to be slow compared to film evolution and the amount of reactant in the film is limited, which means that the reaction rate decreases with time as the reactant is consumed. A linear stability analysis is performed to identify the influence of reaction parameters, material properties, and environmental conditions on the film stability limits. Results indicate that exothermic reactions have a stabilizing effect whereas endothermic reactions destabilize the film and can lead to rupture. It is shown that an initially unstable film can become stable with time as the reaction rate decreases. The shearing of the film by the external gas flow leads to the appearance of traveling waves. The shear stress magnitude has a nonmonotonic influence on film stability.

  15. An experimental investigation of underwater spread of oil spill in a shear flow. (United States)

    Zhu, Hongjun; You, Jiahui; Zhao, Honglei


    The time taken for spilt oil to appear firstly at the sea surface and its location are two key issues for emergency response. The underwater spread of oil spill in a shear flow was studied experimentally in a re-circulating water channel. The high speed imaging technology was employed to record the whole transport process of oil spilt from a leak of a submarine pipe to the surface. Based on the experimental results, three underwater transport types are identified, which are single droplet pattern (model A), linear chain pattern (model B) and oil plume pattern (model C), respectively. The pressure difference inside and outside of the leak determines the underwater transport pattern. For single droplet pattern, the transport of oil droplet has two successive stage, namely the accumulation stage and the buoyant droplet stage. When it comes to linear chain pattern, the first stage changes to be the initial jet stage. Besides the initial jet stage and the buoyant droplet stage, oil plume pattern has an intermediate transition stage, namely the plume development stage. During the whole floating process, the pressure difference dominates the initial stage, while droplet buoyancy is the driven force in the rest. The required time for oil droplets to reach the surface is increased with the decreasing of the initial momentum and the increasing of the shear flow velocity. In the buoyance dominated stage, the floating rate of oil droplets is basically unchanged and the horizontal migration rate is similar with the shear flow velocity. Both the break-up and coalescence of oil droplets have two forms, which are single droplet splitting and droplet-column separation for break-up form and turbulence merging and pursuit merging for coalescence form, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Collisional Rayleigh-Taylor instability and shear-flow in equatorial Spread-F plasma

    Directory of Open Access Journals (Sweden)

    N. Chakrabarti


    Full Text Available Collisional Rayleigh-Taylor (RT instability is considered in the bottom side of the equatorial F-region. By a novel nonmodal calculation it is shown that for an applied shear flow in equilibrium, the growth of the instability is considerably reduced. Finite but small amounts of diffusion enhances the stabilization process. The results may be relevant to the observations of long-lived irregularities at the bottom-side of the F-layer.Key words. Ionosphere (ionospheric irregularities, equatorial ionosphere, plasma waves and instabilities

  17. Vapour bubble growth and detachment at the wall of shear flow

    Energy Technology Data Exchange (ETDEWEB)

    Duhar, G.; Riboux, G.; Colin, C. [Institut de Mecanique des Fluides de Toulouse, Toulouse (France)


    N-pentane micro-bubbles are created on a small heated film flushed-mounted at the lower wall of a horizontal channel. The bubble growth and detachment in the shear flow are filmed with a high-speed video camera. The time evolutions of the bubble radius and bubble centre position are measured from image processing. The growth rate is determined and compared to models of the literature. The experimental results are also used to estimate the different forces acting on the bubble during its growth and after its detachment. (orig.)

  18. Collisional Rayleigh-Taylor instability and shear-flow in equatorial Spread-F plasma

    Directory of Open Access Journals (Sweden)

    N. Chakrabarti

    Full Text Available Collisional Rayleigh-Taylor (RT instability is considered in the bottom side of the equatorial F-region. By a novel nonmodal calculation it is shown that for an applied shear flow in equilibrium, the growth of the instability is considerably reduced. Finite but small amounts of diffusion enhances the stabilization process. The results may be relevant to the observations of long-lived irregularities at the bottom-side of the F-layer.

    Key words. Ionosphere (ionospheric irregularities, equatorial ionosphere, plasma waves and instabilities

  19. Flight testing vehicles for verification and validation of hypersonics technology (United States)

    Sacher, Peter W.


    Hypersonics technology has obtained renewed interest since various concepts for future completely reusable Space Transportation Systems (STS) using airbreathing propulsion for the parts of atmospheric flight have been proposed in different countries (e.g. US, CIS, Japan, France, Germany, and UK). To cover major developments in those countries, AGARD FDP has formed the Working Group 18 on 'Hypersonic Experimental and Computational Capabilities - Improvement and Validation'. Of major importance for the proof of feasibility for all these concepts is the definition of an overall convincing philosophy for a 'hypersonics technology development and verification concept' using ground simulation facilities (both experimental and numerical) and flight testing vehicles. Flying at hypersonic Mach numbers using airbreathing propulsion requires highly sophisticated design tools to provide reliable prediction of thrust minus aerodynamic drag to accelerate the vehicle during ascent. Using these design tools, existing uncertainties have to be minimized by a carefully performed code validation process. To a large degree the database required for this validation cannot be obtained on ground. In addition thermal loads due to hypersonic flow have to be predicted accurately by aerothermodynamic flow codes to provide the inputs needed to decide on materials and structures. Heat management for hypersonic flight vehicles is one of the key-issues for any kind of successful flight demonstration. This paper identifies and discusses the role of flight testing during the verification and validation process of advanced hypersonic technology needed for flight in the atmosphere with hypersonic Mach numbers using airbreathing propulsion systems both for weapons and space transportation systems.

  20. The impact of shearing flows on electroactive biofilm formation, structure, and current generation (United States)

    Jones, A.-Andrew; Buie, Cullen


    A special class of bacteria exist that directly produce electricity. First explored in 1911, these electroactive bacteria catalyze hydrocarbons and transport electrons directly to a metallic electron acceptor forming thicker biofilms than other species. Electroactive bacteria biofilms are thicker because they are not limited by transport of oxygen or other terminal electron acceptors. Electroactive bacteria can produce power in fuel cells. Power production is limited in fuel cells by the bacteria's inability to eliminate protons near the insoluble electron acceptor not utilized in the wild. To date, they have not been successfully evolved or engineered to overcome this limit. This limitation may be overcome by enhancing convective mass transport while maintaining substantial biomass within the biofilm. Increasing convective mass transport increases shear stress. A biofilm may respond to increased shear by changing biomass, matrix, or current production. In this study, a rotating disk electrode is used to separate nutrient from physical stress. This phenomenon is investigated using the model electroactive bacterium Geobacter sulfurreducens at nutrient loads comparable to flow-through microbial fuel cells. We determine biofilm structure experimentally by measuring the porosity and calculating the tortuosity from confocal microscope images. Biofilm adaptation for electron transport is quantified using electrical impedance spectroscopy. Our ultimate objective is a framework relating biofilm thickness, porosity, shear stress and current generation for the optimization of bioelectrochemical systems The Alfred P Sloan Foundation MPHD Program.

  1. Shear flow and carbon nanotubes synergistically induced nonisothermal crystallization of poly(lactic acid) and its application in injection molding. (United States)

    Tang, Hu; Chen, Jing-Bin; Wang, Yan; Xu, Jia-Zhuang; Hsiao, Benjamin S; Zhong, Gan-Ji; Li, Zhong-Ming


    The effect of shear flow and carbon nanotubes (CNTs), separately and together, on nonisothermal crystallization of poly(lactic acid) (PLA) at a relatively large cooling rate was investigated by time-resolved synchrotron wide-angle X-ray diffraction (WAXD) and polarized optical microscope (POM). Unlike flexible-chain polymers such as polyethylene, and so on, whose crystallization kinetics are significantly accelerated by shear flow, neat PLA only exhibits an increase in onset crystallization temperature after experiencing a shear rate of 30 s(-1), whereas both the nucleation density and ultimate crystallinity are not changed too much because PLA chains are intrinsically semirigid and have relatively short length. The breaking down of shear-induced nuclei into point-like precursors (or random coil) probably becomes increasingly active after shear stops. Very interestingly, a marked synergistic effect of shear flow and CNTs exists in enhancing crystallization of PLA, leading to a remarkable increase of nucleation density in PLA/CNT nanocomposite. This synergistic effect is ascribed to extra nuclei, which are formed by the anchoring effect of CNTs' surfaces on the shear-induced nuclei and suppressing effect of CNTs on the relaxation of the shear-induced nuclei. Further, this interesting finding was deliberately applied to injection molding, aiming to improve the crystallinity of PLA products. As expected, a remarkable high crystallinity in the injection-molded PLA part has been achieved successfully by the combination of shear flow and CNTs, which offers a new method to fabricate PLA products with high crystallinity for specific applications.

  2. Tearing Instability of a Current Sheet Forming by Sheared Incompressible Flow (United States)

    Tolman, Elizabeth; Loureiro, Nuno; Uzdensky, Dmitri


    Sweet-Parker current sheets are unstable to the tearing mode, suggesting they will not form in physical systems. Understanding magnetic reconnection thus requires study of the stability of a current sheet as it forms. Such formation can occur as a result of sheared, sub-Alfvénic incompressible flows into and along the sheet. This work presents an analysis of how tearing perturbations behave in a current sheet forming under the influence of such flows, beginning with a phase when the growth rate of the tearing mode is small and the behavior of perturbations is primarily governed by ideal MHD. Later, after the tearing growth rate becomes significant relative to the time scale of the driving flows, the flows cause a slight reduction in the tearing growth rate and wave vector of the dominant mode. Once the tearing mode enters the nonlinear regime, the flows accelerate the tearing growth slightly; during X-point collapse, the flows have negligible effect on the system behavior. This analysis allows greater understanding of reconnection in evolving systems and increases confidence in the application of tools developed in time-independent current sheets to changing current sheets. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship.

  3. Scaling of turbulence spectra measured in strong shear flow near the Earth’s surface (United States)

    Mikkelsen, T.; Larsen, S. E.; Jørgensen, H. E.; Astrup, P.; Larsén, X. G.


    Within the lowest kilometer of the Earth’s atmosphere, in the so-called atmospheric boundary layer, winds are often gusty and turbulent. Nearest to the ground, the turbulence is predominately generated by mechanical wall-bounded wind shear, whereas at higher altitudes turbulent mixing of heat and moisture also play a role. The variance (square of the standard deviation) of the fluctuation around the mean wind speed is a measure of the kinetic energy content of the turbulence. This kinetic energy can be resolved into the spectral distributions, or spectra, as functions of eddy size, wavenumber, or frequency. Spectra are derived from Fourier transforms of wind records as functions of space or time corresponding to wavenumber and frequency spectra, respectively. Atmospheric spectra often exhibit different subranges that can be distinguished and scaled by the physical parameters responsible for: (1) their generation; (2) the cascade of energy across the spectrum from large- to small-scale; and (3) the eventual decay of turbulence into heat owing to viscosity effects on the Kolmogorov microscale, in which the eddy size is only a fraction of a millimeter. This paper addresses atmospheric turbulence spectra in the lowest part of the atmospheric boundary layer—the so-called surface layer—where the wind shear is strong owing to the nonslip condition at the ground. Theoretical results dating back to Tchen’s early work in 1953 ‘on the spectrum of energy in turbulent shear flow’ led Tchen to predict a shear production subrange with a distinct inverse-linear power law for turbulence in a strongly sheared high-Reynolds number wall-bounded flow, as is encountered in the lowest sheared part of the atmospheric boundary layer, also known as the eddy surface layer. This paper presents observations of spectra measured in a meteorological mast at Høvsøre, Denmark, that support Tchen’s prediction of a shear production subrange following a distinct power law of degree

  4. On the nature of radial transport across sheared zonal flows in electrostatic ion-temperature-gradient gyrokinetic tokamak plasma turbulencea) (United States)

    Sánchez, R.; Newman, D. E.; Leboeuf, J.-N.; Carreras, B. A.; Decyk, V. K.


    It is argued that the usual understanding of the suppression of radial turbulent transport across a sheared zonal flow based on a reduction in effective transport coefficients is, by itself, incomplete. By means of toroidal gyrokinetic simulations of electrostatic, ion-temperature-gradient turbulence, it is found instead that the character of the radial transport is altered fundamentally by the presence of a sheared zonal flow, changing from diffusive to anticorrelated and subdiffusive. Furthermore, if the flows are self-consistently driven by the turbulence via the Reynolds stresses (in contrast to being induced externally), radial transport becomes non-Gaussian as well. These results warrant a reevaluation of the traditional description of radial transport across sheared flows in tokamaks via effective transport coefficients, suggesting that such description is oversimplified and poorly captures the underlying dynamics, which may in turn compromise its predictive capabilities.

  5. On the nature of radial transport across sheared zonal flows in electrostatic ion-temperature-gradient gyrokinetic tokamak turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Raul [ORNL; Newman, David E [University of Alaska; Leboeuf, Jean-Noel [JNL Scientific, Inc., Casa Grande, AZ; Carreras, Benjamin A [BACV Solutions, Inc., Oak Ridge; Decyk, Viktor [University of California, Los Angeles


    It is argued that the usual understanding of the suppression of radial turbulent transport across a sheared zonal flow based on a reduction in effective transport coefficients is, by itself, incomplete. By means of toroidal gyrokinetic simulations of electrostatic, ion-temperature-gradient turbulence, it is found instead that the character of the radial transport is altered fundamentally by the presence of a sheared zonal flow, changing from diffusive to anticorrelated and subdiffusive. Furthermore, if the flows are self-consistently driven by the turbulence via the Reynolds stresses (in contrast to being induced externally), radial transport becomes non-Gaussian as well. These results warrant a reevaluation of the traditional description of radial transport across sheared flows in tokamaks via effective transport coefficients, suggesting that such description is oversimplified and poorly captures the underlying dynamics, which may in turn compromise its predictive capabilities.

  6. Coherent structures in a boundary layer and shear layer of a turbulent backward-facing step flow (United States)

    Jovic, Srba; Browne, L. W. B.


    A wind tunnel experiment has been carried out at the NASA Ames Research Center to analyze the evolution of coherent structures from a boundary layer to a shear layer in a turbulent, backward-facing, step flow. A miniature X-wire/cold-wire probe has been used in conjunction with two arrays of cold wires, one aligned in the plane of main shear and the other in the spanwise direction of the flow, to detect and characterize delta-scale organized structures in the outer regions of the flow and to provide detailed information concerning these structures. Kinematic features of the events associated with the large scale structures were analyzed and topological pictures of the evolving flow, as well as the contributions to the Reynolds shear stress components are presented.

  7. Rivulet flow round a horizontal cylinder subject to a uniform surface shear stress

    KAUST Repository

    Paterson, C.


    © 2014 © The Author, 2014. Published by Oxford University Press; all rights reserved. For Permissions, please email: The steady flow of a slowly varying rivulet with prescribed flux in the azimuthal direction round a large stationary horizontal cylinder subject to a prescribed uniform azimuthal surface shear stress is investigated. In particular, we focus on the case where the volume flux is downwards but the shear stress is upwards, for which there is always a solution corresponding to a rivulet flowing down at least part of one side of the cylinder. We consider both a rivulet with constant non-zero contact angle but slowly varying width (that is, de-pinned contact lines) and a rivulet with constant width but slowly varying contact angle (that is, pinned contact lines), and show that they have qualitatively different behaviour. When shear is present, a rivulet with constant non-zero contact angle can never run all the way from the top to the bottom of the cylinder, and so we consider the scenario in which an infinitely wide two-dimensional film of uniform thickness covers part of the upper half of the cylinder and \\'breaks\\' into a single rivulet with constant non-zero contact angle. In contrast, a sufficiently narrow rivulet with constant width can run all the way from the top to the bottom of the cylinder, whereas a wide rivulet can do so only if its contact lines de-pin, and so we consider the scenario in which the contact lines of a wide rivulet de-pin on the lower half of the cylinder.

  8. Zonal flows and long-distance correlations during the formation of the edge shear layer in the TJ-II stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Calvo, I; Pedrosa, M A; Hidalgo, C [Laboratorio Nacional de Fusion, Asociacion EURATOM-CIEMAT, 28040 Madrid (Spain); Carreras, B A; Garcia, L [Universidad Carlos III, 28911 Leganes, Madrid (Spain)], E-mail:


    A theoretical interpretation is given for the observed long-distance correlations in potential fluctuations in TJ-II. The value of the correlation increases above the critical point of the transition for the emergence of the plasma edge shear flow layer. Mean (i.e. surface averaged, zero-frequency) sheared flows cannot account for the experimental results. A model consisting of four envelope equations for the fluctuation level, the mean flow shear, the zonal flow amplitude shear and the averaged pressure gradient is proposed. It is shown that the presence of zonal flows is essential to reproduce the main features of the experimental observations.

  9. Zonal flows and long-distance correlations during the formation of the edge shear layer in the TJ-II stellarator (United States)

    Calvo, I.; Carreras, B. A.; Garcia, L.; Pedrosa, M. A.; Hidalgo, C.


    A theoretical interpretation is given for the observed long-distance correlations in potential fluctuations in TJ-II. The value of the correlation increases above the critical point of the transition for the emergence of the plasma edge shear flow layer. Mean (i.e. surface averaged, zero-frequency) sheared flows cannot account for the experimental results. A model consisting of four envelope equations for the fluctuation level, the mean flow shear, the zonal flow amplitude shear and the averaged pressure gradient is proposed. It is shown that the presence of zonal flows is essential to reproduce the main features of the experimental observations.

  10. Self-sustaining processes at all scales in wall-bounded turbulent shear flows (United States)

    Cossu, Carlo; Hwang, Yongyun


    We collect and discuss the results of our recent studies which show evidence of the existence of a whole family of self-sustaining motions in wall-bounded turbulent shear flows with scales ranging from those of buffer-layer streaks to those of large-scale and very-large-scale motions in the outer layer. The statistical and dynamical features of this family of self-sustaining motions, which are associated with streaks and quasi-streamwise vortices, are consistent with those of Townsend's attached eddies. Motions at each relevant scale are able to sustain themselves in the absence of forcing from larger- or smaller-scale motions by extracting energy from the mean flow via a coherent lift-up effect. The coherent self-sustaining process is embedded in a set of invariant solutions of the filtered Navier-Stokes equations which take into full account the Reynolds stresses associated with the residual smaller-scale motions.

  11. Dilute suspensions in annular shear flow under gravity: simulation and experiment

    Directory of Open Access Journals (Sweden)

    Schröer Kevin


    Full Text Available A dilute suspension in annular shear flow under gravity was simulated using multi-particle collision dynamics (MPC and compared to experimental data. The focus of the analysis is the local particle velocity and density distribution under the influence of the rotational and gravitational forces. The results are further supported by a deterministic approximation of a single-particle trajectory and OpenFOAM CFD estimations of the overcritical frequency range. Good qualitative agreement is observed for single-particle trajectories between the statistical mean of MPC simulations and the deterministic approximation. Wall contact and detachment however occur earlier in the MPC simulation, which can be explained by the inherent thermal noise of the method. The multi-particle system is investigated at the point of highest particle accumulation that is found at 2/3 of the particle revolution, starting from the top of the annular gap. The combination of shear flow and a slowly rotating volumetric force leads to strong local accumulation in this section that increases the particle volume fraction from overall 0.7% to 4.7% at the outer boundary. MPC simulations and experimental observations agree well in terms of particle distribution and a close to linear velocity profile in radial direction.

  12. Hydrodynamic stress on small colloidal aggregates in shear flow using Stokesian dynamics. (United States)

    Seto, Ryohei; Botet, Robert; Briesen, Heiko


    The hydrodynamic properties of rigid fractal aggregates have been investigated by considering their motion in shear flow in the Stokesian dynamics approach. Due to the high fluid viscosity and small particle inertia of colloidal systems, the total force and torque applied to the aggregate reach equilibrium values in a short time. Obtaining equilibrating motions for a number of independent samples, one can extract the average hydrodynamic characteristics of the given fractal aggregates. Despite the geometry of these objects being essentially disordered, the average drag-force distributions for aggregates show symmetric patterns. Moreover, these distributions collapse on a single master curve, characteristic of the nature of the aggregates, provided the positions of the particles are rescaled with the geometric radius of gyration. This result can be used to explain the reason why the stress acting on an aggregate and moments of the forces acting on contact points between particles follow power-law behaviors with the aggregate size. Moreover, the values of the exponents can be explained. As a consequence, considering cohesive force typical for colloidal particles, we find that even aggregates smaller than a few dozen particles must experience restructuring when typical shear flow is applied.

  13. Multiscale Modeling of Primary Cilium Deformations Under Local Forces and Shear Flows (United States)

    Peng, Zhangli; Feng, Zhe; Resnick, Andrew; Young, Yuan-Nan


    We study the detailed deformations of a primary cilium under local forces and shear flows by developing a multiscale model based on the state-of-the-art understanding of its molecular structure. Most eukaryotic cells are ciliated with primary cilia. Primary cilia play important roles in chemosensation, thermosensation, and mechanosensation, but the detailed mechanism for mechanosensation is not well understood. We apply the dissipative particle dynamics (DPD) to model an entire well with a primary cilium and consider its different components, including the basal body, microtubule doublets, actin cortex, and lipid bilayer. We calibrate the mechanical properties of individual components and their interactions from experimental measurements and molecular dynamics simulations. We validate the simulations by comparing the deformation profile of the cilium and the rotation of the basal body with optical trapping experiments. After validations, we investigate the deformation of the primary cilium under shear flows. Furthermore, we calculate the membrane tensions and cytoskeleton stresses, and use them to predict the activation of mechanosensitive channels.

  14. Dynamic and Thermal Turbulent Time Scale Modelling for Homogeneous Shear Flows (United States)

    Schwab, John R.; Lakshminarayana, Budugur


    A new turbulence model, based upon dynamic and thermal turbulent time scale transport equations, is developed and applied to homogeneous shear flows with constant velocity and temperature gradients. The new model comprises transport equations for k, the turbulent kinetic energy; tau, the dynamic time scale; k(sub theta), the fluctuating temperature variance; and tau(sub theta), the thermal time scale. It offers conceptually parallel modeling of the dynamic and thermal turbulence at the two equation level, and eliminates the customary prescription of an empirical turbulent Prandtl number, Pr(sub t), thus permitting a more generalized prediction capability for turbulent heat transfer in complex flows and geometries. The new model also incorporates constitutive relations, based upon invariant theory, that allow the effects of nonequilibrium to modify the primary coefficients for the turbulent shear stress and heat flux. Predictions of the new model, along with those from two other similar models, are compared with experimental data for decaying homogeneous dynamic and thermal turbulence, homogeneous turbulence with constant temperature gradient, and homogeneous turbulence with constant temperature gradient and constant velocity gradient. The new model offers improvement in agreement with the data for most cases considered in this work, although it was no better than the other models for several cases where all the models performed poorly.

  15. Formation of compositional gradient profiles by using shear-induced polymer migration phenomenon under Couette flow field

    Energy Technology Data Exchange (ETDEWEB)

    Im, Sang Hyuk; Lee, Su Jin [Kyung Hee University, Yongin (Korea, Republic of); Suh, Duck Jong; Park, O Ok [Korea Advanced Institute of Science and Technology (KAIST), Daejeon (Korea, Republic of); Kwon, Moo Hyun [Woosuk University, Wanju (Korea, Republic of)


    We investigated whether a graded-index profile, specified by the polymer compositional gradient, could be formed using shear-induced polymer migration phenomenon in a polymer solution. For the presented model system, we generated a shear flow by rotating a glass rod at the center of a polystyrene/methylmethacrylate (PS/MMA) solution and measured the degree of polymer migration by the shear flow field by examining the concentration of polymer solution along the radial direction from the rotating axis to the periphery. Through model experiments, we formed a compositional gradient and controlled its profile in the solution by varying the concentration of polymer solution, molecular weight of polymer, and shear rate. Finally, we solidified the gradient profiles by the polymerization of the PS/MMA solution and confirmed that the gradient profiles were maintained with a compositional gradient twice larger than the mother PS/MMA solution.

  16. CO$_2$ dissolution controlled by buoyancy driven shear dispersion in a background hydrological flow

    CERN Document Server

    Unwin, H Juliette T; Woods, Andrew W


    We present an analytical and numerical study of the long-time flow which controls the dissolution of a plume of CO$_2$ following injection into an anticline structure in a deep saline aquifer of finite vertical extent. Over times of tens to thousands of years, some of the CO$_2$ will dissolve into the underlying groundwater to produce a region of relatively dense, CO$_2$ saturated water directly below the plume of CO$_2$. Continued dissolution then requires the supply of CO$_2$ unsaturated aquifer water. This may be provided by a background hydrological flow or buoyancy driven flow caused by the density contrast between the CO$_2$ saturated and unsaturated water in the aquifer. At long times, the interaction of the cross-layer diffusive mixing with the buoyancy, leads to buoyancy driven shear dispersion of the CO$_2$. With a background hydrological flow, the upstream transport of dissolved CO$_2$ by this dispersion becomes balanced by the oncoming hydrological flow so that CO$_2$ rich water can only spread a ...

  17. Laminar, turbulent, and inertial shear-thickening regimes in channel flow of neutrally buoyant particle suspensions. (United States)

    Lashgari, Iman; Picano, Francesco; Breugem, Wim-Paul; Brandt, Luca


    The aim of this Letter is to characterize the flow regimes of suspensions of finite-size rigid particles in a viscous fluid at finite inertia. We explore the system behavior as a function of the particle volume fraction and the Reynolds number (the ratio of flow and particle inertia to viscous forces). Unlike single-phase flows, where a clear distinction exists between the laminar and the turbulent states, three different regimes can be identified in the presence of a particulate phase, with smooth transitions between them. At low volume fractions, the flow becomes turbulent when increasing the Reynolds number, transitioning from the laminar regime dominated by viscous forces to the turbulent regime characterized by enhanced momentum transport by turbulent eddies. At larger volume fractions, we identify a new regime characterized by an even larger increase of the wall friction. The wall friction increases with the Reynolds number (inertial effects) while the turbulent transport is weakly affected, as in a state of intense inertial shear thickening. This state may prevent the transition to a fully turbulent regime at arbitrary high speed of the flow.

  18. Insights into interstitial flow, shear stress, and mass transport effects on ECM heterogeneity in bioreactor-cultivated engineered cartilage hydrogels. (United States)

    Chen, Tony; Buckley, Mark; Cohen, Itai; Bonassar, Lawrence; Awad, Hani A


    Interstitial flow in articular cartilage is secondary to compressive and shear deformations during joint motion and has been linked with the well-characterized heterogeneity in structure and composition of its extracellular matrix. In this study, we investigated the effects of introducing gradients of interstitial flow on the evolution of compositional heterogeneity in engineered cartilage. Using a parallel-plate bioreactor, we observed that Poiseuille flow stimulation of chondrocyte-seeded agarose hydrogels led to an increase in glycosaminoglycan and type II collagen deposition in the surface region of the hydrogel exposed to flow. Experimental measurements of the interstitial flow fields based on the fluorescence recovery after photobleaching technique suggested that the observed heterogeneity in composition is associated with gradients in interstitial flow in a boundary layer at the hydrogel surface. Interestingly, the interstitial flow velocity profiles were nonlinearly influenced by flow rate, which upon closer examination led us to the original observation that the apparent hydrogel permeability decreased exponentially with increased interfacial shear stress. We also observed that interstitial flow enhances convective mass transport irrespective of molecular size within the boundary layer near the hydrogel surface and that the convective contribution to transport diminishes with depth in association with interstitial flow gradients. The implications of the nonlinearly inverse relationship between the interfacial shear stress and the interstitial flux and permeability and its consequences for convective transport are important for tissue engineering, since porous scaffolds comprise networks of Poiseuille channels (pores) through which interstitial flow must navigate under mechanical stimulation or direct perfusion.

  19. Vascular endothelial wound closure under shear stress: role of membrane fluidity and flow-sensitive ion channels. (United States)

    Gojova, Andrea; Barakat, Abdul I


    Sufficiently rapid healing of vascular endothelium following injury is essential for preventing further pathological complications. Recent work suggests that fluid dynamic shear stress regulates endothelial cell (EC) wound closure. Changes in membrane fluidity and activation of flow-sensitive ion channels are among the most rapid endothelial responses to flow and are thought to play an important role in EC responsiveness to shear stress. The goal of the present study was to probe the role of these responses in bovine aortic EC (BAEC) wound closure under shear stress. BAEC monolayers were mechanically wounded and subsequently subjected to either "high" (19 dyn/cm(2)) or "low" (3 dyn/cm(2)) levels of steady shear stress. Image analysis was used to quantify cell migration and spreading under both flow and static control conditions. Our results demonstrate that, under static conditions, BAECs along both wound edges migrate at similar velocities to cover the wounded area. Low shear stress leads to significantly lower BAEC migration velocities, whereas high shear stress results in cells along the upstream edge of the wound migrating significantly more rapidly than those downstream. The data also show that reducing BAEC membrane fluidity by enriching the cell membrane with exogenous cholesterol significantly slows down both cell spreading and migration under flow and hence retards wound closure. Blocking flow-sensitive K and Cl channels reduces cell spreading under flow but has no impact on cell migration. These findings provide evidence that membrane fluidity and flow-sensitive ion channels play distinct roles in regulating EC wound closure under flow.

  20. A numerical approach for assessing effects of shear on equivalent permeability and nonlinear flow characteristics of 2-D fracture networks (United States)

    Liu, Richeng; Li, Bo; Jiang, Yujing; Yu, Liyuan


    Hydro-mechanical properties of rock fractures are core issues for many geoscience and geo-engineering practices. Previous experimental and numerical studies have revealed that shear processes could greatly enhance the permeability of single rock fractures, yet the shear effects on hydraulic properties of fractured rock masses have received little attention. In most previous fracture network models, single fractures are typically presumed to be formed by parallel plates and flow is presumed to obey the cubic law. However, related studies have suggested that the parallel plate model cannot realistically represent the surface characters of natural rock fractures, and the relationship between flow rate and pressure drop will no longer be linear at sufficiently large Reynolds numbers. In the present study, a numerical approach was established to assess the effects of shear on the hydraulic properties of 2-D discrete fracture networks (DFNs) in both linear and nonlinear regimes. DFNs considering fracture surface roughness and variation of aperture in space were generated using an originally developed code DFNGEN. Numerical simulations by solving Navier-Stokes equations were performed to simulate the fluid flow through these DFNs. A fracture that cuts through each model was sheared and by varying the shear and normal displacements, effects of shear on equivalent permeability and nonlinear flow characteristics of DFNs were estimated. The results show that the critical condition of quantifying the transition from a linear flow regime to a nonlinear flow regime is: 10-4 〈 J fluid flow is in a linear regime (i.e., J fluid flow in the nonlinear regime (J 〉 10-3), δ2 is nonlinearly correlated with J. A shear process would reduce the equivalent permeability significantly in the orientation perpendicular to the sheared fracture as much as 53.86% when J = 1, shear displacement Ds = 7 mm, and normal displacement Dn = 1 mm. By fitting the calculated results, the mathematical

  1. Evaluation of ring shear testing as a characterization method for powder flow in small-scale powder processing equipment. (United States)

    Søgaard, Søren Vinter; Pedersen, Troels; Allesø, Morten; Garnaes, Joergen; Rantanen, Jukka


    Powder flow in small-scale equipment is challenging to predict. To meet this need, the impact of consolidation during powder flow characterization, the level of consolidation existing during discharge of powders from a tablet press hopper and the uncertainty of shear and wall friction measurements at small consolidation stresses were investigated. For this purpose, three grades of microcrystalline cellulose were used. Results showed that powder flow properties depend strongly on the consolidation during testing. The consolidation during discharge in terms of the major principal stress and wall normal stress were approximately 200 Pa and 114 Pa, respectively, in the critical transition from the converging to the lower vertical section of the hopper. The lower limit of consolidation for the shear and wall friction test was approximately 500 Pa and 200 Pa, respectively. At this consolidation level, the wall and shear stress resolution influences the precision of the measured powder flow properties. This study highlights the need for an improved experimental setup which would be capable of measuring the flow properties of powders under very small consolidation stresses with a high shear stress resolution. This will allow the accuracy, precision and applicability of the shear test to be improved for pharmaceutical applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Red Blood Cells and Other Nonspherical Capsules in Shear Flow: Oscillatory Dynamics and the Tank-Treading-to-Tumbling Transition (United States)

    Skotheim, J. M.; Secomb, T. W.


    We consider the motion of red blood cells and other nonspherical microcapsules dilutely suspended in a simple shear flow. Our analysis indicates that depending on the viscosity, membrane elasticity, geometry, and shear rate, the particle exhibits either tumbling, tank-treading of the membrane about the viscous interior with periodic oscillations of the orientation angle, or intermittent behavior in which the two modes occur alternately. For red blood cells, we compute the complete phase diagram and identify a novel tank-treading-to-tumbling transition as the shear rate decreases. Observations of such motions coupled with our theoretical framework may provide a sensitive means of assessing capsule properties.

  3. Lee-surface heating and flow phenomena on space shuttle orbiters at large angles of attack and hypersonic speeds (United States)

    Hefner, J. N.


    The lee-surface flow phenomena on a delta-wing orbiter and a straight-wing orbiter have been investigated at angles of attack between 0 deg and 50 deg at a Mach number of 6. Limited studies of the delta-wing orbiter were conducted at a Mach number of 19. Heat-transfer data, pressure distributions, and oil-flow studies were employed to experimentally examine the nature of the surface flow and the severity of the lee-surface heating. The effects of Reynolds number on the flow field and heating were investigated. Problem areas are defined and areas for further study are recommended.

  4. The formation of sporadic E layers by a vortical perturbation excited in a horizontal wind shear flow

    Directory of Open Access Journals (Sweden)

    G. G. Didebulidze


    Full Text Available The formation of the mid-latitude sporadic E layers (Es layers by an atmospheric vortical perturbation excited in a horizontal shear flow (horizontal wind with a horizontal linear shear is investigated. A three-dimensional atmospheric vortical perturbation (atmospheric shear waves, whose velocity vector is in the horizontal plane and has a vertical wavenumber kz≠0, can provide a vertical shear of the horizontal wind. The shear waves influence the vertical transport of heavy metallic ions and their convergence into thin and dense horizontal layers. The proposed mechanism takes into account the dynamical influence of the shear wave velocity in the horizontal wind on the vertical drift velocity of the ions. It also can explain the multi-layer structure of Es layers. The pattern of the multi-layer structure depends on the value of the shear-wave vertical wavelength, the ion-neutral collision frequency and the direction of the background horizontal wind. The modelling of formation of sporadic E layers with a single and a double peak is presented. Also, the importance of shear wave coupling with short-period atmospheric gravity waves (AGWs on the variations of sporadic E layer ion density is examined and discussed.

  5. OCT-based quantification of flow velocity, shear force, and power generated by a biological ciliated surface (Conference Presentation) (United States)

    Huang, Brendan K.; Khokha, Mustafa K.; Loewenberg, Michael; Choma, Michael A.


    In cilia-driven fluid flow physiology, quantification of flow velocity, shearing force, and power dissipation is important in defining abnormal ciliary function. The capacity to generate flow can be robustly described in terms of shearing force. Dissipated power can be related to net ATP consumption by ciliary molecular motors. To date, however, only flow velocity can be routinely quantified in a non-invasive, non-contact manner. Additionally, traditional power-based metrics rely on metabolic consumption that reflects energy consumption not just from cilia but also from all active cellular processes. Here, we demonstrate the estimation of all three of these quantities (flow velocity, shear force, and power dissipation) using only optical coherence tomography (OCT). Specifically, we develop a framework that can extract force and power information from vectorial flow velocity fields obtained using OCT-based methods. We do so by (a) estimating the viscous stress tensor from flow velocity fields to estimate shearing force and (b) using the viscous stress tensor to estimate the power dissipation function to infer total mechanical power. These estimates have the advantage of (a) requiring only a single modality, (b) being non-invasive in nature, and (c) being reflective of only the net power work generated by a ciliated surface. We demonstrate our all-optical approach to the estimation of these parameters in the Xenopus animal model system under normal and increased viscous loading. Our preliminary data support the hypothesis that the Xenopus ciliated surface can increase force output under loading conditions.

  6. A Unified Two-Dimensional Approach to the Calculation of Three- Dimensional Hypersonic Flows, with Application to Bodies of Revolution (United States)


    8217rinRE-DifMENSONAL HtYPERtSONIC 15.W indicated-flow-separation oin the leewardl side of (lie body for excellent agreemelnt in tlie plano of symmlletry...REIMARKS b~ound~ary layers may, inl like imanner, prove useful il- pie - A mnethod of characteristics employing p)ressure and-flow deigdrednesoa

  7. Center of Excellence for Hypersonics Research (United States)


    American astronauts on the moon . These observations motivated the need for a Center of Excellence in the area of hypersonic flows to advance the state well as argon-xenon and argon- helium mixtures. The data produced by such first-principles MD simulations is then used to improve DSMC collision

  8. Optimised mixing and flow resistance during shear flow over a rib roughened boundary

    NARCIS (Netherlands)

    Arfaie, A.; Burns, A. D.; Dorrell, R. M.; Eggenhuisen, J. T.; Ingham, D. B.; McCaffrey, W. D.


    A series of numerical investigations has been performed to study the effect of lower boundary roughness on turbulent flow in a two-dimensional channel. The roughness spacing to height ratio, w/k, has been investigated over the range 0.12 to 402 by varying the horizontal rib spacing. The square

  9. Model based prediction of dynamics of particles in particle laden turbulent shear flow (United States)

    Goswami, Partha; Ghosh, Swagnik


    Particle-laden turbulent flows find application in wide range of industrial and natural processes. The advent of fast computing facility has enabled investigation of Particle-laden turbulent flows using Direct Numerical Simulation (DNS). Still simulating such flows in case of practically applicable geometry is still far from the reality. Therefore modeling such flows is inevitable. The proposed fluctuating force and fluctuating torque simulation is such a modeling method in which the effect of fluid velocity and vorticity fluctuations on the particle is modeled as anisotropic Gaussian white noise. For dilute suspensions, strength of the noise is extracted from diffusivity data of unladen fluid phase. The inter-particle and wall-particle collisions are modeled by introducing co-efficient of restitution (e) and roughness factor (β) in hard sphere collision model. Introduction of rotational diffusivity due to fluid vortical structures can predict the detailed rotational dynamics of particle phase. Present investigations have been performed for dilute sheared suspensions for different roughness factor in the limit of high Stokes number. The results obtained are compared with DNS using one-way coupling.

  10. Michaelis-Menten kinetics in shear flow: Similarity solutions for multi-step reactions. (United States)

    Ristenpart, W D; Stone, H A


    Models for chemical reaction kinetics typically assume well-mixed conditions, in which chemical compositions change in time but are uniform in space. In contrast, many biological and microfluidic systems of interest involve non-uniform flows where gradients in flow velocity dynamically alter the effective reaction volume. Here, we present a theoretical framework for characterizing multi-step reactions that occur when an enzyme or enzymatic substrate is released from a flat solid surface into a linear shear flow. Similarity solutions are developed for situations where the reactions are sufficiently slow compared to a convective time scale, allowing a regular perturbation approach to be employed. For the specific case of Michaelis-Menten reactions, we establish that the transversally averaged concentration of product scales with the distance x downstream as x(5/3). We generalize the analysis to n-step reactions, and we discuss the implications for designing new microfluidic kinetic assays to probe the effect of flow on biochemical processes.

  11. Nonlinear saturation of Rayleigh-Taylor instability and generation of shear flow in equatorial spread-F plasma

    Directory of Open Access Journals (Sweden)

    N. Chakrabarti


    Full Text Available An analysis of low order mode coupling equations is used to describe the nonlinear behaviour of the Rayleigh-Taylor (RT instability in the equatorial ionosphere. The nonlinear evolution of RT instability leads to the development of shear flow. It is found that there is an interplay between the nonlinearity and the shear flow which compete with each other and saturate the RT mode, both in the collisionless and collisional regime. However, the nonlinearly saturated state, normally known as vortices or bubbles, may not be stable. Under certain condition these bubbles are shown to be unstable to short scale secondary instabilities that are driven by the large gradients which develop within these structures. Some understanding of the role of collisional nonlinearity in the  shear flow generations is also discussed.

  12. Prominence Bubble Shear Flows and the Coupled Kelvin-Helmholtz — Rayleigh-Taylor Instability (United States)

    Berger, Thomas; Hillier, Andrew


    Prominence bubbles are large arched structures that rise from below into quiescent prominences, often growing to heights on the order of 10 Mm before going unstable and generating plume upflows. While there is general agreement that emerging flux below pre-existing prominences causes the structures, there is lack of agreement on the nature of the bubbles and the cause of the instability flows. One hypothesis is that the bubbles contain coronal temperature plasma and rise into the prominence above due to both magnetic and thermal buoyancy, eventually breaking down via a magnetic Rayleigh-Taylor (RT) instability to release hot plasma and magnetic flux and helicity into the overlying coronal flux rope. Another posits that the bubbles are actually just “arcades” in the prominence indicating a magnetic separator line between the bipole and the prominence fields with the observed upflows and downflows caused by reconnection along the separator. We analyze Hinode/SOT, SDO/AIA, and IRIS observations of prominence bubbles, focusing on characteristics of the bubble boundary layers that may discriminate between the two hypotheses. We find speeds on the order of 10 km/s in prominence plasma downflows and lateral shear flows along the bubble boundary. Inflows to the boundary gradually increase the thickness and brightness of the layer until plasma drains from there, apparently around the dome-like bubble domain. In one case, shear flow across the bubble boundary develops Kelvin-Helmholtz (KH) vortices that we use to infer flow speeds in the low-density bubble on the order of 100 km/sec. IRIS spectra indicate that plasma flows on the bubble boundary at transition region temperatures achieve Doppler speeds on the order of 50 km/s, consistent with this inference. Combined magnetic KH-RT instability analysis leads to flux density estimates of 10 G with a field angle of 30° to the prominence, consistent with vector magnetic field measurements. In contrast, we find no evidence

  13. In-vitro measurement and modelling of shear-induced platelet margination and adhesion in channel flows (United States)

    Qi, Qin M.; Oglesby, Irene; Cowman, Jonathan; Ricco, Antonio J.; Kenny, Dermot; Shaqfeh, Eric S. G.


    Blood coagulation is initiated by GPIb and GPIIbIIIa receptors on the platelet surface binding with von Willebrand factors tethered on the vascular wall. This process occurs much faster in the presence of flow shear than in the quiescent fluid. First of all, the near-wall platelet concentration in flowing blood increases significantly. This phenomenon, commonly referred to as platelet margination, is due to shear-induced hydrodynamic interactions between red blood cells and platelets. Flow shear also manifests itself in affecting the reaction kinetics of receptor-ligand binding. The breaking and formation of multiple bonds on the platelet surface result in the translocating motion of platelets rolling close to the vascular wall. To date, a fundamental understanding of how fluid mechanics relate the bond-level kinetics to the platelet-level dynamics is very limited. In this talk, we investigate platelet adhesion under physiological shear rates using both microfluidic experiments and multi-scale modeling. Our model, (based on existing single molecule measurements and hydrodynamics of blood at zero Reynolds number) shows good agreement with experimental results. We discuss the roles of red blood cell volume fraction (hematocrit), shear rate, receptor densities in the dynamics of platelet adhesion. These findings also provide implications for how platelet defects and abnormal flow conditions influence hemostasis and thrombosis.

  14. Generalized stability of a shear flow with a free surface with respect to three-dimensional perturbations (United States)

    Mallios, Christos; Bakas, Nikolaos A.


    Modal and nonmodal growth of three-dimensional perturbations in a shear flow with a free surface are examined for a wide range of Froude numbers. By approximating the mean flow with a piecewise linear profile, the modal instabilities are shown to arise from the interaction of three-dimensional edge waves supported at the interfaces of density discontinuity at the surface and mean vorticity discontinuity at the edges of the shear layer. The mechanism and properties of the instability are explained in terms of the dynamics of the edge-wave interactions. Previously reported modal stability analysis restricted to two-dimensional perturbations in the plane of the flow accurately predicts the fastest growing perturbations but underestimates the range of length scales for the unstable structures. Robust nonmodal transient growth of perturbations within a few advective time units is found. For low Froude numbers or low values of the shear, three-dimensional perturbations with small horizontal scales exhibit the largest growth through a synergy between the Orr and the lift-up mechanisms and produce large streamwise streaks in the shear flow without an effect on the free surface. For large Froude numbers or large values of the shear, planar perturbations with larger horizontal scales exhibit the largest energy growth by effectively instigating the modal instability and excite surface waves at large amplitude.

  15. Approximation of wave action flux velocity in strongly sheared mean flows (United States)

    Banihashemi, Saeideh; Kirby, James T.; Dong, Zhifei


    Spectral wave models based on the wave action equation typically use a theoretical framework based on depth uniform current to account for current effects on waves. In the real world, however, currents often have variations over depth. Several recent studies have made use of a depth-weighted current U˜ due to [Skop, R. A., 1987. Approximate dispersion relation for wave-current interactions. J. Waterway, Port, Coastal, and Ocean Eng. 113, 187-195.] or [Kirby, J. T., Chen, T., 1989. Surface waves on vertically sheared flows: approximate dispersion relations. J. Geophys. Res. 94, 1013-1027.] in order to account for the effect of vertical current shear. Use of the depth-weighted velocity, which is a function of wavenumber (or frequency and direction) has been further simplified in recent applications by only utilizing a weighted current based on the spectral peak wavenumber. These applications do not typically take into account the dependence of U˜ on wave number k, as well as erroneously identifying U˜ as the proper choice for current velocity in the wave action equation. Here, we derive a corrected expression for the current component of the group velocity. We demonstrate its consistency using analytic results for a current with constant vorticity, and numerical results for a measured, strongly-sheared current profile obtained in the Columbia River. The effect of choosing a single value for current velocity based on the peak wave frequency is examined, and we suggest an alternate strategy, involving a Taylor series expansion about the peak frequency, which should significantly extend the range of accuracy of current estimates available to the wave model with minimal additional programming and data transfer.

  16. Hydrodynamic of a deformed bubble in linear shear flow; Hydrodynamique d'une bulle deformee dans un ecoulement cisaille

    Energy Technology Data Exchange (ETDEWEB)

    Adoua, S.R


    This work is devoted to the study of an oblate spheroidal bubble of prescribed shape set fixed in a linear shear flow using direct numerical simulation. The three dimensional Navier-Stokes equations are solved in orthogonal curvilinear coordinates using a finite volume method. The bubble response is studied over a wide range of the aspect ratio (1-2.7), the bubble Reynolds number (50-2000) and the non-dimensional shear rate (0.-1.2). The numerical simulations shows that the shear flow imposes a plane symmetry of the wake whatever the parameters of the flow. The trailing vorticity is organized into two anti-symmetrical counter rotating tubes with a sign imposed by the competition of two mechanisms (the Lighthill mechanism and the instability of the wake). Whatever the Reynolds number, the lift coefficient reaches the analytical value obtained in an inviscid, weakly sheared flow corresponding to a lift force oriented in the same direction as that of a spherical bubble. For moderate Reynolds numbers, the direction of the lift force reverses when the bubble aspect ratio is large enough as observed in experiments. This reversal occurs for aspect ratios larger than 2.225 and is found to be directly linked to the sign of the trailing vorticity which is concentrated within two counter-rotating threads which propel the bubble in a direction depending of their sign of rotation. The behavior of the drag does not revel any significant effect induced by the wake structure and follows a quadratic increase with the shear rate. Finally, the torque experienced by the bubble also reverses for the same conditions inducing the reversal of the lift force. By varying the orientation of the bubble in the shear flow, a stable equilibrium position is found corresponding to a weak angle between the small axis of the bubble and the flow direction. (author)

  17. Impaired popliteal artery flow-mediated dilation caused by reduced daily physical activity is prevented by increased shear stress. (United States)

    Teixeira, André L; Padilla, Jaume; Vianna, Lauro C


    We recently showed that 5 days of reduced daily physical activity impair popliteal artery, but not brachial artery, flow-mediated dilation (FMD). However, the mechanisms by which physical inactivity causes leg vascular dysfunction are unclear. We reason that a reduction in leg blood flow-induced shear stress is a primary underlying mechanism by which reduced daily physical activity impairs popliteal artery FMD. Thus the purpose of this study was to determine whether increased leg blood flow and shear stress during inactivity prevent the reduction in popliteal artery FMD. Bilateral popliteal artery FMD measures were performed at baseline and after 5 days of a transition from high (>10,000 steps/day) to low levels (physical activity in 13 healthy and physically active men [20 ± 2 (SD) yr]. During the inactive period, one foot was submerged in ~42°C water (i.e., heated leg) three times a day for 30 min each period, to increase blood flow and thus shear stress, whereas the contralateral leg remained dry and served as internal control (i.e., nonheated leg). During heating, popliteal artery mean shear rate was increased in the heated leg (change of 119.3 ± 26.4%, P physical activity in the control nonheated leg (P stress during physical inactivity is a key underlying mechanism mediating leg vascular dysfunction.NEW & NOTEWORTHY We found that the impairment in popliteal artery flow-mediated dilation caused by physical inactivity can be prevented by increased shear stress. These findings indicate that reduced leg blood flow-induced shear stress during physical inactivity may be a key underlying mechanism mediating the detrimental leg vascular effects of physical inactivity. Heating the foot area may be used as a nonpharmacological therapy to combat inactivity-induced leg vascular dysfunction, especially in people who are unable or unwilling to be active. Copyright © 2017 the American Physiological Society.

  18. In vitro blood flow model with physiological wall shear stress for hemocompatibility testing-An example of coronary stent testing. (United States)

    Engels, Gerwin Erik; Blok, Sjoerd Leendert Johannes; van Oeveren, Willem


    Hemocompatibility of blood contacting medical devices has to be evaluated before their intended application. To assess hemocompatibility, blood flow models are often used and can either consist of in vivo animal models or in vitro blood flow models. Given the disadvantages of animal models, in vitro blood flow models are an attractive alternative. The in vitro blood flow models available nowadays mostly focus on generating continuous flow instead of generating a pulsatile flow with certain wall shear stress, which has shown to be more relevant in maintaining hemostasis. To address this issue, the authors introduce a blood flow model that is able to generate a pulsatile flow and wall shear stress resembling the physiological situation, which the authors have coined the "Haemobile." The authors have validated the model by performing Doppler flow measurements to calculate velocity profiles and (wall) shear stress profiles. As an example, the authors evaluated the thrombogenicity of two drug eluting stents, one that was already on the market and one that was still under development. After identifying proper conditions resembling the wall shear stress in coronary arteries, the authors compared the stents with each other and often used reference materials. These experiments resulted in high contrast between hemocompatible and incompatible materials, showing the exceptional testing capabilities of the Haemobile. In conclusion, the authors have developed an in vitro blood flow model which is capable of mimicking physiological conditions of blood flow as close as possible. The model is convenient in use and is able to clearly discriminate between hemocompatible and incompatible materials, making it suitable for evaluating the hemocompatible properties of medical devices.

  19. Ring-Sheared Drop (RSD): Microgravity Module for Containerless Flow Studies (United States)

    Gulati, Shreyash; Raghunandan, Aditya; Rasheed, Fayaz; McBride, Samantha A.; Hirsa, Amir H.


    Microgravity is potentially a powerful tool for investigating processes that are sensitive to the presence of solid walls, since fluid containment can be achieved by surface tension. One such process is the transformation of protein in solution into amyloid fibrils; these are protein aggregates associated with neurodegenerative diseases such as Alzheimer's and Parkinson's. In addition to solid walls, experiments with gravity are also subject to influences from sedimentation of aggregates and buoyancy-driven convection. The ring-sheared drop (RSD) module is a flow apparatus currently under development to study formation of amyloid fibrils aboard the International Space Station (ISS). A 25 mm diameter drop of protein solution will be contained by surface tension and constrained by a pair of sharp-edged tubes, forming two contact rings. Shear can be imparted by rotating one ring with the other ring kept stationary. Here we report on parabolic flights conducted to test the growth and pinning of 10 mm diameter drops of water in under 10 s of microgravity. Finite element method (FEM) based fluid dynamics computations using a commercial package (COMSOL) assisted in the design of the parabolic flight experiments. Prior to the parabolic flights, the code was validated against experiments in the lab (1 g), on the growth of sessile and pendant droplets. The simulations show good agreement with the experiments. This modeling capability will enable the development of the RSD at the 25 mm scale for the ISS.

  20. Adhesion dynamics of circulating tumor cells under shear flow in a bio-functionalized microchannel (United States)

    Siu-Lun Cheung, Luthur; Zheng, Xiangjun; Wang, Lian; Baygents, James C.; Guzman, Roberto; Schroeder, Joyce A.; Heimark, Ronald L.; Zohar, Yitshak


    The adhesion dynamics of circulating tumor cells in a bio-functionalized microchannel under hydrodynamic loading is explored experimentally and analyzed theoretically. EpCAM antibodies are immobilized on the microchannel surface to specifically capture EpCAM-expressing target breast cancer cells MDA-MB-231 from a homogeneous cell suspension in shear flow. In the cross-stream direction, gravity is the dominant physical mechanism resulting in continuous interaction between the EpCAM cell receptors and the immobilized surface anti-EpCAM ligands. Depending on the applied shear rate, three dynamic states have been characterized: firm adhesion, rolling adhesion and free rolling. The steady-state velocity under adhesion- and free-rolling conditions as well as the time-dependent velocity in firm adhesion has been characterized experimentally, based on video recordings of target cell motion in functionalized microchannels. A previously reported theoretical model, utilizing a linear spring to represent the specific receptor-ligand bonds, has been adopted to analyze adhesion dynamics including features such as the cell-surface binding force and separation gap. By fitting theoretical predictions to experimental measurements, a unified exponential decay function is proposed to describe the target cell velocity evolution during capture; the fitting parameters, velocity and time scales, depend on the particular cell-surface system.

  1. Enhanced Dissipation, Hypoellipticity, and Anomalous Small Noise Inviscid Limits in Shear Flows (United States)

    Bedrossian, Jacob; Coti Zelati, Michele


    We analyze the decay and instant regularization properties of the evolution semigroups generated by two-dimensional drift-diffusion equations in which the scalar is advected by a shear flow and dissipated by full or partial diffusion. We consider both the space-periodic T^2 setting and the case of a bounded channel T × [0,1] with no-flux boundary conditions. In the infinite Péclet number limit (diffusivity {ν\\to 0}), our work quantifies the enhanced dissipation effect due to the shear. We also obtain hypoelliptic regularization, showing that solutions are instantly Gevrey regular even with only partial diffusion. The proofs rely on localized spectral gap inequalities and ideas from hypocoercivity with an augmented energy functional with weights replaced by pseudo-differential operators (of a rather simple form). As an application, we study small noise inviscid limits of invariant measures of stochastic perturbations of passive scalars, and show that the classical Freidlin scaling between noise and diffusion can be modified. In particular, although statistically stationary solutions blow up in {H^1} in the limit {ν \\to 0}, we show that viscous invariant measures still converge to a unique inviscid measure.

  2. Velocity profiles and rheology of a granular bed sheared by a fluid flow (United States)

    Allen, Benjamin; Kudrolli, Arshad

    We discuss an experimental investigation of motion of a granular bed driven by a laminar fluid flow as a function of applied shear rate. This is a model system to investigate a variety of examples where such a situation arises including wind blowing over sand, sediment transport in rivers, slurries, and turbidity currents. We have developed an experimental apparatus which allows examination of the fluid as well as the grain dynamics both at the surface as well as deep into the bed under steady state conditions with refractive index matching technique. This allows us to obtain both the applied local shear stress by the fluid as well as the local strain rate inside the bed. We find that that the granular flux as a function of depth decays exponentially into the bed. Further, the velocity profile is observed to exhibit a crossover from a regime where particles are fully suspended to where there is bed load transport. We will discuss the observed velocity and density profiles in light of various models of granular suspensions. Supported by NSF CBET - 1335928.

  3. [List and drag forces on droplets and particles in wall-bounded shear flows]. [Progress report, Clarkson Univ

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, J.B.


    This project has two goals, to calculate the lift force on a spherical droplet or particle that translates through a shear flow, and to measure the inertial migration velocity that is caused by the lift force. The focus of the study is on a range of Reynolds numbers that has been shown to be of importance in the inertial deposition of aerosols from turbulent shear flows. Aspects of current technical progress summarized are the asymptotic analysis, computer simulations, and experimental measurements. Future plans and resulting publications are given.

  4. [List and drag forces on droplets and particles in wall-bounded shear flows]. Technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, J.B.


    This project has two goals, to calculate the lift force on a spherical droplet or particle that translates through a shear flow, and to measure the inertial migration velocity that is caused by the lift force. The focus of the study is on a range of Reynolds numbers that has been shown to be of importance in the inertial deposition of aerosols from turbulent shear flows. Aspects of current technical progress summarized are the asymptotic analysis, computer simulations, and experimental measurements. Future plans and resulting publications are given.

  5. Baroclinic Vortices in Rotating Stratified Shearing Flows: Cyclones, Anticyclones, and Zombie Vortices (United States)

    Hassanzadeh, Pedram

    infer the height and internal stratification of some astrophysical and geophysical vortices because direct measurements of their vertical structures are difficult. In Chapter 3, we show numerically and experimentally that localized suction in rotating continuously stratified flows produces three-dimensional baroclinic cyclones. As expected from Chapter 2, the interiors of these cyclones are super-stratified. Suction, modeled as a small spherical sink in the simulations, creates an anisotropic flow toward the sink with directional dependence changing with the ratio of the Coriolis parameter to the Brunt-Vaisala frequency. Around the sink, this flow generates cyclonic vorticity and deflects isopycnals so that the interior of the cyclone becomes super-stratified. The super-stratified region is visualized in the companion experiments that we helped to design and analyze using the synthetic schlieren technique. Once the suction stops, the cyclones decay due to viscous dissipation in the simulations and experiments. The numerical results show that the vertical velocity of viscously decaying cyclones flows away from the cyclone's midplane, while the radial velocity flows toward the cyclone's center. This observation is explained based on the cyclo-geostrophic balance. This vertical velocity mixes the flow inside and outside of cyclone and reduces the super-stratification. We speculate that the predominance of anticyclones in geophysical and astrophysical flows is due to the fact that anticyclones require sub-stratification, which occurs naturally by mixing, while cyclones require super-stratification. In Chapter 4, we show that a previously unknown instability creates space-filling lattices of 3D turbulent baroclinic vortices in linearly-stable, rotating, stratified shear flows. The instability starts from a newly discovered family of easily-excited critical layers. This new family, named the baroclinic critical layer, has singular vertical velocities; the traditional family

  6. Nonlinear evolution of electron shear flow instabilities in the presence of an external guide magnetic field

    CERN Document Server

    Jain, Neeraj


    The dissipation mechanism by which the magnetic field reconnects in the presence of an external (guide) magnetic field in the direction of the main current is not well understood. In thin electron current sheets (ECS) (thickness ~ an electron inertial length) formed in collisionless magnetic reconnection, electron shear flow instabilities (ESFI) are potential candidates for providing an anomalous dissipation mechanism which can break the frozen-in condition of the magnetic field affecting the structure and rate of reconnection. We investigate the evolution of ESFI in guide field magnetic reconnection. The properties of the resulting plasma turbulence and their dependence on the strength of the guide field are studied. Utilizing 3-D electron-magnetohydrodynamic simulations of ECS we show that, unlike the case of ECS self-consistently embedded in anti-parallel magnetic fields, the evolution of thin ECS in the presence of a guide field (equal to the asymptotic value of the reconnecting magnetic field or larger) ...

  7. Curvature Effect in Shear Flow: Slowdown of Turbulent Flame Speeds with Markstein Number (United States)

    Lyu, Jiancheng; Xin, Jack; Yu, Yifeng


    It is well-known in the combustion community that curvature effect in general slows down flame propagation speeds because it smooths out wrinkled flames. However, such a folklore has never been justified rigorously. In this paper, as the first theoretical result in this direction, we prove that the turbulent flame speed (an effective burning velocity) is decreasing with respect to the curvature diffusivity (Markstein number) for shear flows in the well-known G-equation model. Our proof involves several novel and rather sophisticated inequalities arising from the nonlinear structure of the equation. On a related fundamental issue, we solve the selection problem of weak solutions or find the "physical fluctuations" when the Markstein number goes to zero and solutions approach those of the inviscid G-equation model. The limiting solution is given by a closed form analytical formula.

  8. Raman study of lysozyme amyloid fibrils suspended on super-hydrophobic surfaces by shear flow

    KAUST Repository

    Moretti, Manola


    The shear flow generated at the rim of a drop evaporating on a micro-fabricated super-hydrophobic surface has been used to suspend and orient single/few lysozyme amyloid fibrils between two pillars for substrate-free characterization. Micro Raman spectroscopy performed on extended fibers evidenced a shift of the Amide I band main peak to the value attributed to β-sheet secondary structure, characteristic of the amyloid fibers. In addition, given the orientation sensitivity of the anisotropic molecule, the Raman signal of the main secondary structure was nicely enhanced for a fiber alignment parallel to the polarization direction of the laser. The substrate-free sample generated by this suspending technique is suitable for other structural analysis methods, where fiber crystals are investigated. It could be further employed for generation of arrays and patterns in a controllable fashion, where bio-compatible material is needed.

  9. Hypersonic Tunnel Facility (HTF) (United States)

    Federal Laboratory Consortium — The Hypersonic Tunnel Facility (HTF) is a blow-down, non-vitiated (clean air) free-jet wind tunnel capable of testing large-scale, propulsion systems at Mach 5, 6,...

  10. Scaling of energy amplification in the weak and strong elastic limits of viscoelastic shear flows (United States)

    Hameduddin, Ismail; Zaki, Tamer; Gayme, Dennice


    We investigate energy amplification in viscoelastic parallel shear flows in terms of the steady-state variance maintained in the velocity and polymer stresses when either quantity is excited with white noise. We derive analytical expressions that show how this amplification scales with both Reynolds (Re) and Weissenberg (Wi) numbers. The analysis focuses on the streamwise-constant fields in the limits of high and low elasticity. By introducing stochastic forcing in both the velocity and the polymer stress dynamics, we show that at low elasticity the scaling retains a form similar to the well-known O(Re3) relationship but with an added elastic correction. At high elasticity, however, the scaling is O(Wi3) with a viscous correction. Our results demonstrate that energy amplification in a viscoelastic flow can be considerable even at low Re, correlating well with recent observations of elastic turbulence in creeping flows. We also note that forcing in the polymer stress dynamics can contribute significantly to the energy amplification.

  11. Comparison of multi-sphere and superquadric particle representation for modelling shearing and flow characteristics of granular assemblies (United States)

    Soltanbeigi, Behzad; Podlozhnyuk, Alexander; Ooi, Jin Y.; Kloss, Christoph; Papanicolopulos, Stefanos-Aldo


    In the current study, complex-shaped particles are simulated with the Discrete Element Method (DEM) using two different approaches, namely Multi-spheres (MS) and Superquadrics (SQ). Both methods have been used by researchers to represent the shape of real particles. However, despite the growing popularity of utilizing MS and SQ particles in DEM simulations, few insights have been given on the comparison of the macro scale characteristics arising from the two methods. In this respect, initially the characteristics of the two shape representation methods are evaluated in a direct shear test simulation. The results suggest that controlling the sharpness of the edges for SQ particles can lead to a good agreement with the results of MS particles. This way, a set of SQ and MS particles, which are numerically calibrated in the shear tester, are obtained. Furthermore, the macro-scale responses of the numerically calibrated particles are assessed during a slow shearing scenario, which is achieved through simulating quasi-static flow of the particles from a flat-bottom silo. The results for mass discharge, flow profile and wall pressure show a good quantitative agreement. These findings suggest that the numerically calibrated MS and SQ particles in the shear tester can provide similar bulk-scale flow properties. Moreover, the results highlight that surface bumpiness for MS particles and corner sharpness for SQ particles change the characteristics of particles and play a significant role in the shear strength of the material composed of these particles.

  12. Comparison of multi-sphere and superquadric particle representation for modelling shearing and flow characteristics of granular assemblies

    Directory of Open Access Journals (Sweden)

    Soltanbeigi Behzad


    Full Text Available In the current study, complex-shaped particles are simulated with the Discrete Element Method (DEM using two different approaches, namely Multi-spheres (MS and Superquadrics (SQ. Both methods have been used by researchers to represent the shape of real particles. However, despite the growing popularity of utilizing MS and SQ particles in DEM simulations, few insights have been given on the comparison of the macro scale characteristics arising from the two methods. In this respect, initially the characteristics of the two shape representation methods are evaluated in a direct shear test simulation. The results suggest that controlling the sharpness of the edges for SQ particles can lead to a good agreement with the results of MS particles. This way, a set of SQ and MS particles, which are numerically calibrated in the shear tester, are obtained. Furthermore, the macro-scale responses of the numerically calibrated particles are assessed during a slow shearing scenario, which is achieved through simulating quasi-static flow of the particles from a flat-bottom silo. The results for mass discharge, flow profile and wall pressure show a good quantitative agreement. These findings suggest that the numerically calibrated MS and SQ particles in the shear tester can provide similar bulk-scale flow properties. Moreover, the results highlight that surface bumpiness for MS particles and corner sharpness for SQ particles change the characteristics of particles and play a significant role in the shear strength of the material composed of these particles.

  13. Low-complexity stochastic modeling of wall-bounded shear flows (United States)

    Zare, Armin

    Turbulent flows are ubiquitous in nature and they appear in many engineering applications. Transition to turbulence, in general, increases skin-friction drag in air/water vehicles compromising their fuel-efficiency and reduces the efficiency and longevity of wind turbines. While traditional flow control techniques combine physical intuition with costly experiments, their effectiveness can be significantly enhanced by control design based on low-complexity models and optimization. In this dissertation, we develop a theoretical and computational framework for the low-complexity stochastic modeling of wall-bounded shear flows. Part I of the dissertation is devoted to the development of a modeling framework which incorporates data-driven techniques to refine physics-based models. We consider the problem of completing partially known sample statistics in a way that is consistent with underlying stochastically driven linear dynamics. Neither the statistics nor the dynamics are precisely known. Thus, our objective is to reconcile the two in a parsimonious manner. To this end, we formulate optimization problems to identify the dynamics and directionality of input excitation in order to explain and complete available covariance data. For problem sizes that general-purpose solvers cannot handle, we develop customized optimization algorithms based on alternating direction methods. The solution to the optimization problem provides information about critical directions that have maximal effect in bringing model and statistics in agreement. In Part II, we employ our modeling framework to account for statistical signatures of turbulent channel flow using low-complexity stochastic dynamical models. We demonstrate that white-in-time stochastic forcing is not sufficient to explain turbulent flow statistics and develop models for colored-in-time forcing of the linearized Navier-Stokes equations. We also examine the efficacy of stochastically forced linearized NS equations and their

  14. Effects of Varied Shear Correction on the Thermal Vibration of Functionally-Graded Material Shells in an Unsteady Supersonic Flow

    Directory of Open Access Journals (Sweden)

    Chih Chiang Hong


    Full Text Available A model is presented for functionally-graded material (FGM, thick, circular cylindrical shells under an unsteady supersonic flow, following first-order shear deformation theory (FSDT with varied shear correction coefficients. Some interesting vibration results of the dynamics are calculated by using the generalized differential quadrature (GDQ method. The varied shear correction coefficients are usually functions of FGM total thickness, power law index, and environment temperature. Two parametric effects of the environmental temperature and FGM power law index on the thermal stress and center deflection are also presented. The novelty of the paper is that the maximum flutter value of the center deflection amplitude can be predicted and occurs at a high frequency of applied heat flux for a supersonic air flow.

  15. Local wall shear stress measurements with a thin plate submerged in the sublayer in wall turbulent flows (United States)

    Hua, Dan; Suzuki, Hiroki; Mochizuki, Shinsuke


    A local wall shear stress measurement technique has been developed using a thin plate, referred to as a sublayer plate which is attached to the wall in the sublayer of a near-wall turbulent flow. The pressure difference between the leading and trailing edges of the plate is correlated to the known wall shear stress obtained in the fully developed turbulent channel flow. The universal calibration curve can be well represented in dimensionless form, and the sensitivity of the proposed method is as high as that of the sublayer fence, even if the sublayer fence is enveloped by the linear sublayer. The results of additional experiments prove that the sublayer plate has fairly good angular resolution in detecting the direction of the local wall shear stress vector.

  16. Analysis of the fluctuations of a single-tethered, quantum-dot labeled DNA molecule in shear flow

    Energy Technology Data Exchange (ETDEWEB)

    Laube, K; Guenther, K; Mertig, M, E-mail: [Professur fuer Physikalische Chemie, Mess- und Sensortechnik, Technische Universitaet Dresden, 01062 Dresden (Germany)


    A novel technique for analyzing the conformational fluctuations of a single, surface-tethered DNA molecule by fluorescence microscopy is reported. Attaching a nanometer-sized fluorescent quantum dot to the free end of a {lambda}-phage DNA molecule allows us to study the fluctuations of a native DNA molecule without the mechanical properties being altered by fluorescent dye staining. We report on the investigation of single-tethered DNA in both the unperturbed and the shear flow induced stretched state. The dependence of the observed fractional extension and the magnitude of fluctuations on the shear rate can be qualitatively interpreted by Brochard's stem-and-flower model. The cyclic dynamics of a DNA molecule is directly observed in the shear flow experiment.

  17. Experimental evidence of coupling between sheared-flow development and an increase in the level of turbulence in the TJ-II stellarator. (United States)

    Hidalgo, C; Pedrosa, M A; García, L; Ware, A


    The link between the development of sheared flows and the structure of turbulence has been investigated in the plasma boundary region of the TJ-II stellarator. The development of the naturally occurring velocity shear layer requires a minimum plasma density. Near this critical density, the level of edge turbulent transport and the turbulent kinetic energy significantly increases in the plasma edge. The resulting shearing rate in the phase velocity of fluctuations is comparable to the one required to trigger a transition to improved confinement regimes with reduction of edge turbulence, suggesting that spontaneous sheared flows and fluctuations keep themselves near marginal stability. These findings provide the experimental evidence of coupling between sheared flows development and increasing in the level of edge turbulence. The experimental results are consistent with the expectations of second-order transition models of turbulence-driven sheared flows.

  18. Steady/Oscillatory, Supersonic/Hypersonic Inviscid Flow Past Oscillating Wings and Wedge Combinations at Arbitrary Angles of Attack. (United States)


    area duct. Steady flow. S(F, t) Vt Region I Region 2 2Vn 2 Figure 1.4b. Change of conditions across an arbitrary ciscontinuity surface S(r,t...with the source located at ( we obtain T(x,y,z,t) = - -F = - ( (2.29) 4 TrR Ot 4 TR t 1) where: R = I 2222] V(x_ 2 + (lM2) [(y-nI + (z- 2 and TD -M

  19. Self-assembled core-polyethylene glycol-lipid shell nanoparticles demonstrate high stability in shear flow. (United States)

    Shen, Zhiqiang; Ye, Huilin; Kröger, Martin; Li, Ying


    A core-polyethylene glycol-lipid shell (CPLS) nanoparticle consists of an inorganic core coated with polyethylene glycol (PEG) polymers, surrounded by a lipid bilayer shell. It can be self-assembled from a PEGylated core with surface-tethered PEG chains, where all the distal ends are covalently bonded to lipid molecules. Upon adding free lipids, a complete lipid bilayer shell can be formed on the surface driven by the hydrophobic nature of lipid tails, leading to the formation of a CPLS nanoparticle. The stability of CPLS nanoparticles in shear flow has been systematically studied through large scale dissipative particle dynamics simulations. CPLS nanoparticles demonstrate higher stability and less deformation in shear flow, compared with lipid vesicles. Burst leakage of drug molecules inside lipid vesicles and CPLS NPs can be induced by the large pores at their tips. These pores are initiated by the maximum stress in the waist region. It further grows along with the tank-treading motion of vesicles or CPLS NPs in shear flow. However, due to the constraints applied by PEG polymers, CPLS NPs are less deformed than vesicles with comparable size under the same flow conditions. Thus, the less deformed CPLS NPs express a smaller maximum stress at waists, demonstrating higher stability. Pore formation at waists, evolving into large pores on vesicles, leads to the burst leakage of drug molecules and complete rupture of vesicles. In contrast, although similar drug leakage in CPLS nanoparticles can occur at high shear rates, pores initiated at moderate shear rates tend to be short-lived and close due to the constraints mediated by PEG polymers. This kind of 'self-healing' capability can be observed over a wide range of shear rates for CPLS nanoparticles. Our results suggest self-assembled CPLS nanoparticles to exhibit high stability during blood circulation without rapid drug leakage. These features make CPLS nanoparticles candidates for a promising drug delivery platform.

  20. Growth and detachment of single hydrogen bubbles in a magnetohydrodynamic shear flow (United States)

    Baczyzmalski, Dominik; Karnbach, Franziska; Mutschke, Gerd; Yang, Xuegeng; Eckert, Kerstin; Uhlemann, Margitta; Cierpka, Christian


    This study investigates the effect of a magnetohydrodynamic (MHD) shear flow on the growth and detachment of single sub-millimeter-sized hydrogen gas bubbles. These bubbles were electrolytically generated at a horizontal Pt microelectrode (100 μ m in diameter) in an acidic environment (1 M H2SO4 ). The inherent electric field was superimposed by a homogeneous electrode-parallel magnetic field of up to 700 mT to generate Lorentz forces in the electrolyte, which drive the MHD flow. The growth and motion of the hydrogen bubble was analyzed by microscopic high-speed imaging and measurements of the electric current, while particle tracking velocimetry (μ PTV ) and particle image velocimetry (μ PIV ) were applied to measure the surrounding electrolyte flow. In addition, numerical flow simulations were performed based on the experimental conditions. The results show a significant reduction of the bubble growth time and detachment diameter with increasing magnetic induction, which is known to improve the efficiency of water electrolysis. In order to gain further insight into the bubble detachment mechanism, an analysis of the forces acting on the bubble was performed. The strong MHD-induced drag force causes the bubble to slowly slide away from the center of the microelectrode before its detachment. This motion increases the active electrode area and enhances the bubble growth rate. The results further indicate that at large current densities the coalescence of tiny bubbles formed at the foot of the main bubble might play an important role for the bubble detachment. Moreover, the occurrence of Marangoni stresses at the gas-liquid interface is discussed.

  1. Non-Newtonian behavior and molecular structure of Cooee bitumen under shear flow

    DEFF Research Database (Denmark)

    Lemarchand, Claire; Bailey, Nicholas; Daivis, Peter


    The rheology and molecular structure of a model bitumen (Cooee bitumen) under shear are investigated in the non-Newtonian regime using non-equilibrium molecular dynamics simulations. The shear viscosity, normal stress differences, and pressure of the bitumen mixture are computed at different shear...

  2. Mechanistic theory of margination and flow-induced segregation in confined multicomponent suspensions: Simple shear and Poiseuille flows* (United States)

    Henríquez Rivera, Rafael G.; Zhang, Xiao; Graham, Michael D.


    A mechanistic model, derived from kinetic theory, is developed to describe segregation in confined multicomponent suspensions such as blood. It incorporates the two key phenomena arising in these systems at low Reynolds number: hydrodynamic pair collisions and hydrodynamic migration. Two flow profiles are considered: simple shear flow (plane Couette flow) and plane Poiseuille flow. The theory begins by writing the evolution of the number density of each component in the suspension as a master equation with contributions from migration and collisions. By making judicious approximations for the collisions, this system of integrodifferential equations is reduced to a set of drift-diffusion equations. We focus attention on the case of a binary suspension with a deformable primary component that completely dominates the collision dynamics in the system and a trace component that has no effect on the primary. The model captures the phenomena of depletion layer formation and margination observed in confined multicomponent suspensions of deformable particles. The depletion layer thickness of the primary component is predicted to follow a master curve relating it in a specific way to confinement ratio and volume fraction. Results from various sources (experiments, detailed simulations, master equation solutions) with different parameters (flexibility of different components in the suspension, viscosity ratio, confinement, among others) collapse onto the same curve. For sufficiently dilute suspensions the analytical form predicted by the drift-diffusion theory for this curve is in excellent agreement with results from these other sources with only one adjustable parameter. In a binary suspension, several regimes of segregation arise, depending on the value of a "margination parameter" M . Most importantly, in both Couette and Poiseuille flows there is a critical value of M below which a sharp "drainage transition" occurs: one component is completely depleted from the bulk

  3. Observation and modeling of mixing-layer development in HED blast-wave-driven shear flow (United States)

    di Stefano, Carlos


    This talk describes work exploring the sensitivity to initial conditions of hydrodynamic mixing-layer growth due to shear flow in the high-energy-density regime. This work features an approach in two parts, experimental and theoretical. First, an experiment, conducted at the OMEGA-60 laser facility, seeks to measure the development of such a mixing layer. This is accomplished by placing a layer of low-density (initially of either 0.05 or 0.1 g/cm3, to vary the system's Atwood number) carbon foam against a layer of higher-density (initially 1.4 g/cm3) polyamide-imide that has been machined to a nominally-flat surface at its interface with the foam. Inherent roughness of this surface's finish is precisely measured and varied from piece to piece. Ten simultaneous OMEGA beams, comprising a 4.5 kJ, 1-ns pulse focused to a roughly 1-mm-diameter spot, irradiate a thin polycarbonate ablator, driving a blast wave into the foam, parallel to its interface with the polyamide-imide. The ablator is framed by a gold washer, such that the blast wave is driven only into the foam, and not into the polyamide-imide. The subsequent forward motion of the shocked foam creates the desired shear effect, and the system is imaged by X-ray radiography 35 ns after the beginning of the driving laser pulse. Second, a simulation is performed, intending to replicate the flow observed in the experiment as closely as possible. Using the resulting simulated flow parameters, an analytical model can be used to predict the evolution of the mixing layer, as well as track the motion of the fluid in the experiment prior to the snapshot seen in the radiograph. The ability of the model to predict growth of the mixing layer under the various conditions observed in the experiment is then examined. This work is funded by the Predictive Sciences Academic Alliances Program in NNSA-ASC via grant DEFC52- 08NA28616, by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, grant number DE

  4. A Reactor Development Scenario for the FuZE Sheared-Flow Stabilized Z-pinch (United States)

    McLean, Harry S.; Higginson, D. P.; Schmidt, A.; Tummel, K. K.; Shumlak, U.; Nelson, B. A.; Claveau, E. L.; Forbes, E. G.; Golingo, R. P.; Stepanov, A. D.; Weber, T. R.; Zhang, Y.


    We present a conceptual design, scaling calculations, and development path for a pulsed fusion reactor based on a flow-stabilized Z-pinch. Experiments performed on the ZaP and ZaP-HD devices have largely demonstrated the basic physics of sheared-flow stabilization at pinch currents up to 100 kA. Initial experiments on the FuZE device, a high-power upgrade of ZaP, have achieved 20 usec of stability at pinch current 100-200 kA and pinch diameter few mm for a pinch length of 50 cm. Scaling calculations based on a quasi-steady-state power balance show that extending stable duration to 100 usec at a pinch current of 1.5 MA and pinch length of 50 cm, results in a reactor plant Q 5. Future performance milestones are proposed for pinch currents of: 300 kA, where Te and Ti are calculated to exceed 1-2 keV; 700 kA, where DT fusion power would be expected to exceed pinch input power; and 1 MA, where fusion energy per pulse exceeds input energy per pulse. This work funded by USDOE ARPA-E and performed under the auspices of Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-734770.

  5. The effect of geometrical confinement on coalescence efficiency of droplet pairs in shear flow. (United States)

    De Bruyn, Pieter; Cardinaels, Ruth; Moldenaers, Paula


    Droplet coalescence is determined by the combined effect of the collision frequency and the coalescence efficiency of colliding droplets. In the present work, the effect of geometrical confinement on coalescence efficiency in shear flow is experimentally investigated by means of a counter rotating parallel plate device, equipped with a microscope. The model system consisted of Newtonian droplets in a Newtonian matrix. The ratio of droplet diameter to plate spacing (2R/H) is varied between 0.06 and 0.42, thus covering bulk as well as confined conditions. Droplet interactions are investigated for the complete range of offsets between the droplet centers in the velocity gradient direction. It is observed that due to confinement, coalescence is possible up to higher initial offsets. On the other hand, confinement also induces a lower boundary for the initial offset, below which the droplets reverse during their interaction, thus rendering coalescence impossible. Numerical simulations in 2D show that the latter phenomenon is caused by recirculation flows at the front and rear of confined droplet pairs. The lower boundary is independent of Ca, but increases with increasing confinement ratio 2R/H and droplet size. The overall coalescence efficiency is significantly larger in confined conditions as compared to bulk conditions. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Quantifying the deformation of the red blood cell skeleton in shear flow (United States)

    Peng, Zhangli; Zhu, Qiang


    To quantitatively predict the response of red blood cell (RBC) membrane in shear flow, we carried out multiphysics simulations by coupling a three-level multiscale approach of RBC membranes with a Boundary Element Method (BEM) for surrounding flows. Our multiscale approach includes a model of spectrins with the domain unfolding feature, a molecular-based model of the junctional complex with detailed protein connectivity and a whole cell Finite Element Method (FEM) model with the bilayer-skeleton friction derived from measured transmembrane protein diffusivity based on the Einstein-Stokes relation. Applying this approach, we investigated the bilayer-skeleton slip and skeleton deformation of healthy RBCs and RBCs with hereditary spherocytosis anemia during tank-treading motion. Compared with healthy cells, cells with hereditary spherocytosis anemia sustain much larger skeleton-bilayer slip and area deformation of the skeleton due to deficiency of transmembrane proteins. This leads to extremely low skeleton density and large bilayer-skeleton interaction force, both of which may cause bilayer loss. This finding suggests a possible mechanism of the development of hereditary spherocytosis anemia.

  7. Effects of Soluble Surfactant on Lateral Migration of a Bubble in a Shear Flow (United States)

    Muradoglu, Metin; Tryggvason, Gretar


    Motivated by the recent experimental study of Takagi et al. (2008), direct numerical simulations are performed to examine effects of soluble surfactant on the lateral migration of a deformable bubble in a pressure-driven channel flow. The interfacial and bulk surfactant concentration evolution equations are solved fully coupled with the incompressible Navier-Stokes equations. A non-linear equation of state is used to relate interfacial surface tension to surfactant concentration at the interface. A multiscale method is developed to handle the mass exchange between the interface and bulk fluid at high Peclet numbers, using a boundary-layer approximation next to the bubble and a relatively coarse grid for the rest of the flow. It is found that the surfactant induced Marangoni stresses can dominate over the shear-induced lift force and thus alter the behavior of the bubble completely, i.e., the contaminated bubble drifts away from the channel wall and stabilizes at the center of the channel in contrast with the corresponding clean bubble that drifts toward the wall and stabilizes near the wall. The Scientific and Technical Research Council of Turkey (TUBITAK), Grant 112M181 and Turkish Academy of Sciences (TUBA).

  8. Yield and flow-induced phase transition in colloidal gels under startup shear (United States)

    Johnson, Lilian; Landrum, Benjamin; Zia, Roseanna


    We study the micro-mechanical origins of the transition from solid-like to liquid-like behavior during flow startup of colloidal gels via large-scale dynamic simulation, with a view toward understanding connections to energy storage and phase transition. Such materials often exhibit an overshoot in stress, and prior studies of strong, dilute colloidal gels with a stringy microstructure connect this "yield" event to loss of network connectivity. Owing to the importance of Brownian transport in phase separation processes in colloids, here we study a reversible colloidal gel of hard spheres that interact via a short-range attraction of several kT, for which Brownian motion can lead to rapid quiescent coarsening. In the present study, we interrogate the shear stress for a range of imposed flow strengths, monitoring particle-level structure and dynamics, to determine the microscopic picture of gel yield. Our detailed studies of the microstructural evolution and macroscopic response during startup provide insight into the phase behavior during yield. We present a new model of stress development, phase transition, and structural evolution during transient yield in colloidal gels for which ongoing phase separation informs gel phenomenology.

  9. Modeling Compressibility Effects in High-Speed Turbulent Flows (United States)

    Sarkar, S.


    Man has strived to make objects fly faster, first from subsonic to supersonic and then to hypersonic speeds. Spacecraft and high-speed missiles routinely fly at hypersonic Mach numbers, M greater than 5. In defense applications, aircraft reach hypersonic speeds at high altitude and so may civilian aircraft in the future. Hypersonic flight, while presenting opportunities, has formidable challenges that have spurred vigorous research and development, mainly by NASA and the Air Force in the USA. Although NASP, the premier hypersonic concept of the eighties and early nineties, did not lead to flight demonstration, much basic research and technology development was possible. There is renewed interest in supersonic and hypersonic flight with the HyTech program of the Air Force and the Hyper-X program at NASA being examples of current thrusts in the field. At high-subsonic to supersonic speeds, fluid compressibility becomes increasingly important in the turbulent boundary layers and shear layers associated with the flow around aerospace vehicles. Changes in thermodynamic variables: density, temperature and pressure, interact strongly with the underlying vortical, turbulent flow. The ensuing changes to the flow may be qualitative such as shocks which have no incompressible counterpart, or quantitative such as the reduction of skin friction with Mach number, large heat transfer rates due to viscous heating, and the dramatic reduction of fuel/oxidant mixing at high convective Mach number. The peculiarities of compressible turbulence, so-called compressibility effects, have been reviewed by Fernholz and Finley. Predictions of aerodynamic performance in high-speed applications require accurate computational modeling of these "compressibility effects" on turbulence. During the course of the project we have made fundamental advances in modeling the pressure-strain correlation and developed a code to evaluate alternate turbulence models in the compressible shear layer.

  10. Uncertainty Propagation in Hypersonic Vehicle Aerothermoelastic Analysis (United States)

    Lamorte, Nicolas Etienne

    Hypersonic vehicles face a challenging flight environment. The aerothermoelastic analysis of its components requires numerous simplifying approximations. Identifying and quantifying the effect of uncertainties pushes the limits of the existing deterministic models, and is pursued in this work. An uncertainty quantification framework is used to propagate the effects of identified uncertainties on the stability margins and performance of the different systems considered. First, the aeroelastic stability of a typical section representative of a control surface on a hypersonic vehicle is examined. Variability in the uncoupled natural frequencies of the system is modeled to mimic the effect of aerodynamic heating. Next, the stability of an aerodynamically heated panel representing a component of the skin of a generic hypersonic vehicle is considered. Uncertainty in the location of transition from laminar to turbulent flow and the heat flux prediction is quantified using CFD. In both cases significant reductions of the stability margins are observed. A loosely coupled airframe--integrated scramjet engine is considered next. The elongated body and cowl of the engine flow path are subject to harsh aerothermodynamic loading which causes it to deform. Uncertainty associated with deformation prediction is propagated to the engine performance analysis. The cowl deformation is the main contributor to the sensitivity of the propulsion system performance. Finally, a framework for aerothermoelastic stability boundary calculation for hypersonic vehicles using CFD is developed. The usage of CFD enables one to consider different turbulence conditions, laminar or turbulent, and different models of the air mixture, in particular real gas model which accounts for dissociation of molecules at high temperature. The system is found to be sensitive to turbulence modeling as well as the location of the transition from laminar to turbulent flow. Real gas effects play a minor role in the

  11. Non-Newtonian flow effects on the coalescence and mixing of initially stationary droplets of shear-thinning fluids. (United States)

    Sun, Kai; Wang, Tianyou; Zhang, Peng; Law, Chung K


    The coalescence of two initially stationary droplets of shear-thinning fluids in a gaseous environment is investigated numerically using the lattice Boltzmann method, with particular interest in non-Newtonian flow effects on the internal mixing subsequent to coalescence. Coalescence of equal-sized droplets, with one being Newtonian while the other is non-Newtonian, leads to the non-Newtonian droplet wrapping around the Newtonian one and hence minimal fine-scale mixing. For unequal-sized droplets, mixing is greatly promoted if both droplets are shear-thinning. When only one of the droplets is shear-thinning, the non-Newtonian effect from the smaller droplet is found to be significantly more effective than that from the larger droplet in facilitating internal jetlike mixing. Parametric study with the Carreau-Yasuda model indicates that the phenomena are universal to a wide range of shear-thinning fluids, given that the extent of shear thinning reaches a certain level, and the internal jet tends to be thicker and develops more rapidly with increasing extent of the shear-thinning effect.

  12. Normalization of flow-mediated dilation to shear stress area under the curve eliminates the impact of variable hyperemic stimulus

    Directory of Open Access Journals (Sweden)

    Mickleborough Timothy D


    Full Text Available Abstract Background Normalization of brachial artery flow-mediated dilation (FMD to individual shear stress area under the curve (peak FMD:SSAUC ratio has recently been proposed as an approach to control for the large inter-subject variability in reactive hyperemia-induced shear stress; however, the adoption of this approach among researchers has been slow. The present study was designed to further examine the efficacy of FMD normalization to shear stress in reducing measurement variability. Methods Five different magnitudes of reactive hyperemia-induced shear stress were applied to 20 healthy, physically active young adults (25.3 ± 0. 6 yrs; 10 men, 10 women by manipulating forearm cuff occlusion duration: 1, 2, 3, 4, and 5 min, in a randomized order. A venous blood draw was performed for determination of baseline whole blood viscosity and hematocrit. The magnitude of occlusion-induced forearm ischemia was quantified by dual-wavelength near-infrared spectrometry (NIRS. Brachial artery diameters and velocities were obtained via high-resolution ultrasound. The SSAUC was individually calculated for the duration of time-to-peak dilation. Results One-way repeated measures ANOVA demonstrated distinct magnitudes of occlusion-induced ischemia (volume and peak, hyperemic shear stress, and peak FMD responses (all p AUC (p = 0.785. Conclusion Our data confirm that normalization of FMD to SSAUC eliminates the influences of variable shear stress and solidifies the utility of FMD:SSAUC ratio as an index of endothelial function.

  13. Effect of bidirectional internal flow on fluid–structure interaction dynamics of conveying marine riser model subject to shear current

    Directory of Open Access Journals (Sweden)

    Zheng-Shou Chen


    Full Text Available This article presents a numerical investigation concerning the effect of two kinds of axially progressing internal flows (namely, upward and downward on fluid–structure interaction (FSI dynamics about a marine riser model which is subject to external shear current. The CAE technology behind the current research is a proposed FSI solution, which combines structural analysis software with CFD technology together. Efficiency validation for the CFD software was carried out first. It has been proved that the result from numerical simulations agrees well with the observation from relating model test cases in which the fluidity of internal flow is ignorable. After verifying the numerical code accuracy, simulations are conducted to study the vibration response that attributes to the internal progressive flow. It is found that the existence of internal flow does play an important role in determining the vibration mode (/dominant frequency and the magnitude of instantaneous vibration amplitude. Since asymmetric curvature along the riser span emerges in the case of external shear current, the centrifugal and Coriolis accelerations owing to up- and downward internal progressive flows play different roles in determining the fluid–structure interaction response. The discrepancy between them becomes distinct, when the velocity ratio of internal flow against external shear current is relatively high.

  14. Feedbacks Between Deformation and Fluid Flow in Mantle Shear Zones from Zabargad, Red Sea (United States)

    Tommasi, A.; Boudier, F. I.; Vauchez, A. R.; Zaderatzky, M.


    Peridotites in the Zabargad island, Red Sea, record different stages of lithospheric thinning and asthenospheric upwelling during rifting. Field mapping highlights a pervasive high-temperature NW-SE, subvertical foliation with lineations pluning 50°NW. This foliation is overprinted by a series of lower-temperature mylonitic zones with slightly oblique foliations and subhorizontal lineations, which record progressive strain localization under retrogressive conditions during the final exhumation of the peridotites (Nicolas and Boudier, JGR 1987). We performed a petrostructural study of ca. 50 samples collected by A. Nicolas and F. Boudier in the 80s from the different deformation facies. This study highlights: (1) a rather pervasive, but highly heterogeneous distribution of the LT deformation and (2) a feedback between deformation and fluid flow. The HT deformation is recorded in medium grained plagioclase- and spinel-peridotites by a homogeneous foliation and lineation marked by a shape-preferred orientation of plagioclase and olivine and a consistent CPO of all major-rock forming phases. The LT temperature deformation results in dynamic recrystallization of olivine leading to a marked grain size reduction by dynamic recrystallization of olivine, remobilization of orthopyroxene by dissolution-precipitation, and crystallization of amphibole. Increasing finite strain is recorded by the increase in the volume of the fine-grained material and of the amphibole proportion. The latter may attain in totally recrystallized cm-wide ultramylonite bands up to 30%. This together with the strong amphibole SPO and CPO corroborate fluid focusing and enhanced reaction rates into active shear zones. In the LT shear zones we also document: (1) changes in the olivine CPO, indicating changes in the dominant slip system and (2) unusual orthopyroxene CPO, which we interpret as due to oriented crystallization. Static replacement of pyroxenes by amphibole with no associated LT deformation

  15. A comparison of three-dimensional nonequilibrium solution algorithms applied to hypersonic flows with stiff chemical source terms (United States)

    Palmer, Grant; Venkatapathy, Ethiraj


    Three solution algorithms, explicit underrelaxation, point implicit, and lower upper symmetric Gauss-Seidel (LUSGS), are used to compute nonequilibrium flow around the Apollo 4 return capsule at 62 km altitude. By varying the Mach number, the efficiency and robustness of the solution algorithms were tested for different levels of chemical stiffness. The performance of the solution algorithms degraded as the Mach number and stiffness of the flow increased. At Mach 15, 23, and 30, the LUSGS method produces an eight order of magnitude drop in the L2 norm of the energy residual in 1/3 to 1/2 the Cray C-90 computer time as compared to the point implicit and explicit under-relaxation methods. The explicit under-relaxation algorithm experienced convergence difficulties at Mach 23 and above. At Mach 40 the performance of the LUSGS algorithm deteriorates to the point it is out-performed by the point implicit method. The effects of the viscous terms are investigated. Grid dependency questions are explored.

  16. Transmission of Anaplasma phagocytophilum from endothelial cells to peripheral granulocytes in vitro under shear flow conditions. (United States)

    Wang, Jinyong; Dyachenko, Viktor; Munderloh, Ulrike G; Straubinger, Reinhard K


    Anaplasma phagocytophilum (Ap) is a tick-borne pathogen, which can cause granulocytic anaplasmosis in humans and animals. In vivo this obligate intracellular pathogen is primarily located in circulating mature granulocytes, but it also infects endothelial cells. In order to study the interaction between Ap-infected endothelial cells and human granulocytes under conditions similar to those found naturally in the infected host, an in vitro model that mimics physiological flow conditions in the microvasculature was established. Cell-to-cell interactions were then visualized by microscopy, which showed that granulocytes adhered strongly to Ap-infected endothelial cells at a shear stress of 0.5 dyne/cm(2). In addition, Ap-transmission assays under flow conditions showed that the bacteria transferred from infected endothelial cells to circulating granulocytes and were able to establish infection in constantly moving granulocytes. Cell surface analysis showed that Ap induced up-regulation of the cell adhesion molecules ICAM-1 and VCAM-1 on infected endothelial cells in a dose-dependent manner. Furthermore, IL-8 secretion by endothelial cells indicated that the presence of Ap induced a pro-inflammatory response. In summary, the results of this study suggest that endothelial cells of the microvasculature (1) provide an excellent site for Ap dissemination to peripheral blood granulocytes under flow conditions and therefore may play a crucial role in the development of persistent infection, and (2) are stimulated by Ap to express surface molecules and cytokines that may lead to inflammatory responses at the site of the infection.

  17. Shear stress induced by an interstitial level of slow flow increases the osteogenic differentiation of mesenchymal stem cells through TAZ activation.

    Directory of Open Access Journals (Sweden)

    Kyung Min Kim

    Full Text Available Shear stress activates cellular signaling involved in cellular proliferation, differentiation, and migration. However, the mechanisms of mesenchymal stem cell (MSC differentiation under interstitial flow are not fully understood. Here, we show the increased osteogenic differentiation of MSCs under exposure to constant, extremely low shear stress created by osmotic pressure-induced flow in a microfluidic chip. The interstitial level of shear stress in the proposed microfluidic system stimulated nuclear localization of TAZ (transcriptional coactivator with PDZ-binding motif, a transcriptional modulator of MSCs, activated TAZ target genes such as CTGF and Cyr61, and induced osteogenic differentiation. TAZ-depleted cells showed defects in shear stress-induced osteogenic differentiation. In shear stress induced cellular signaling, Rho signaling pathway was important forthe nuclear localization of TAZ. Taken together, these results suggest that TAZ is an important mediator of interstitial flow-driven shear stress signaling in osteoblast differentiation of MSCs.

  18. Measurement and analysis of flow wall shear stress in an interior subchannel of triangular array rods. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Fakori-Monazah, M.R.; Todreas, N.E.


    A simulated model of triangular array rods with pitch to diameter ratio of 1.10 (as a test section) and air as the fluid flow was used to study the LMFBR hydraulic parameters. The wall shear stress distribution around the rod periphery, friction factors, static pressure distributions and turbulence intensity corresponding to various Reynolds numbers ranging from 4140 to 36170 in the central subchannel were measured. Various approaches for measurement of wall shear stress were compared. The measurement was performed using the Preston tube technique with the probe outside diameter equal to 0.014 in.

  19. Effect of ion mass on transition to drift-zonal flow turbulence in the Controlled Shear Decorrelation eXperiment (United States)

    Hong, Rongjie; Thakur, Saikat; Tynan, George


    The Controlled Shear De-correlation eXperiment (CSDX) is a helicon plasma device dedicated to studies of drift wave turbulence, zonal flow interaction and generation of intrinsic rotation in a cylindrical plasma configuration. Previous studies in argon plasma demonstrated existence of a weak turbulence driven azimuthally symmetric, radially sheared plasma flow. More recent studies at higher B field with larger plasma size have shown the coexistence of radially separated multiple instabilities during the transition to strongly developed plasma turbulence. To better understand the underlying mechanism and the role of the drift wave turbulence in the formation of the zonal shear layer and of the spatially separated multiple instabilities, we study the effects of the ion mass to further vary the effective system size via the parameter (Ln /ρs). Using an upgraded RF power source, we have achieved high-density helicon plasmas in gases such as argon, neon, helium, deut erium and hydrogen in CSDX. Therefore, the impact of the ρs and isotope effect on turbulent transport, including the energy transfers and self-organization mechanisms between turbulence and sheared flows, will be addressed. CMTFO - # DE-SC0008378, MIT - #DE-SC0010593.

  20. Layering, melting, and recrystallization of a close-packed micellar crystal under steady and large-amplitude oscillatory shear flows

    Energy Technology Data Exchange (ETDEWEB)

    López-Barrón, Carlos R., E-mail: [ExxonMobil Chemical Company, Baytown Technology and Engineering Complex, Baytown, Texas 77520 (United States); Wagner, Norman J. [Center for Neutron Science, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716 (United States); Porcar, Lionel [Institute Laue-Langevin, BP 156, F38042 Grenoble Cedex 9 (France)


    The rheology and three-dimensional microstructure of a concentrated viscoelastic solution of the triblock copolymer poly(ethylene oxide){sub 106}-poly(propylene oxide){sub 68}-poly(ethylene oxide){sub 106} (Pluronic F127) in the protic ionic liquid ethylammonium nitrate are measured by small angle neutron scattering (SANS) under flow in three orthogonal planes. This solution's shear-thinning viscosity is due to the formation of two-dimensional hexagonal close-packed (HCP) sliding layer structure. Shear-melting of the crystalline structure is observed without disruption of the self-assembled micelles, resulting in a change in flow properties. Spatially resolved measurements in the 1–2 plane reveal that both shear-melting and sliding are not uniform across the Couette gap. Melting and recrystallization of the HCP layers occur cyclically during a single large amplitude oscillatory shear (LAOS) cycle, in agreement with the “stick-slip” flow mechanism proposed by Hamley et al. [Phys. Rev. E 58, 7620–7628 (1998)]. Analysis of 3D “structural” Lissajous curves show that the cyclic melting and sliding are direct functions of the strain rate amplitude and show perfect correlation with the cyclic stress response during LAOS. Both viscosity and structural order obey the Delaware–Rutgers rule. Combining rheology with in situ spatiotemporally resolved SANS is demonstrated to elucidate the structural origins of the nonlinear rheology of complex fluids.

  1. Integrated numerical methods for hypersonic aircraft cooling systems analysis (United States)

    Petley, Dennis H.; Jones, Stuart C.; Dziedzic, William M.


    Numerical methods have been developed for the analysis of hypersonic aircraft cooling systems. A general purpose finite difference thermal analysis code is used to determine areas which must be cooled. Complex cooling networks of series and parallel flow can be analyzed using a finite difference computer program. Both internal fluid flow and heat transfer are analyzed, because increased heat flow causes a decrease in the flow of the coolant. The steady state solution is a successive point iterative method. The transient analysis uses implicit forward-backward differencing. Several examples of the use of the program in studies of hypersonic aircraft and rockets are provided.

  2. Transverse injection into Mach 2 flow behind a rearward-facing step - A 3-D, compressible flow test case for hypersonic combustor CFD validation (United States)

    Mcdaniel, James C.; Fletcher, Douglas G.; Hartfield, Roy J.; Hollo, Steven D.


    A spatially-complete data set of the important primitive flow variables is presented for the complex, nonreacting, 3D unit combustor flow field employing transverse injection into a Mach 2 flow behind a rearward-facing step. A unique wind tunnel facility providing the capability for iodine seeding was built specifically for these measurements. Two optical techniques based on laser-induced-iodine fluorescence were developed and utilized for nonintrusive, in situ flow field measurements. LDA provided both mean and fluctuating velocity component measurements. A thermographic phosphor wall temperature measurement technique was developed and employed. Data from the 2D flow over a rearward-facing step and the complex 3D mixing flow with injection are reported.

  3. Multi-relaxation-time Lattice Boltzman model for uniform-shear flow over a rotating circular cylinder

    Directory of Open Access Journals (Sweden)

    Nemati Hasan


    Full Text Available A numerical investigation of the two-dimensional laminar flow and heat transfer a rotating circular cylinder with uniform planar shear, where the free-stream velocity varies linearly across the cylinder using Multi-Relaxation-Time Lattice Boltzmann method is conducted. The effects of variation of Reynolds number, rotational speed ratio at shear rate 0.1, blockage ratio 0.1 and Prandtl number 0.71 are studied. The Reynolds number changing from 50 to 160 for three rotational speed ratios of 0, 0.5, 1 is investigated. Results show that flow and heat transfer depends significantly on the rotational speed ratio as well as the Reynolds number. The effect of Reynolds number on the vortex-shedding frequency and period-surface Nusselt numbers is overall very strong compared with rotational speed ratio. Flow and heat conditions characteristics such as lift and drag coefficients, Strouhal number and Nusselt numbers are studied.

  4. Effect of static shape deformation on aerodynamics and aerothermodynamics of hypersonic inflatable aerodynamic decelerator (United States)

    Guo, Jinghui; Lin, Guiping; Bu, Xueqin; Fu, Shiming; Chao, Yanmeng


    The inflatable aerodynamic decelerator (IAD), which allows heavier and larger payloads and offers flexibility in landing site selection at higher altitudes, possesses potential superiority in next generation space transport system. However, due to the flexibilities of material and structure assembly, IAD inevitably experiences surface deformation during atmospheric entry, which in turn alters the flowfield around the vehicle and leads to the variations of aerodynamics and aerothermodynamics. In the current study, the effect of the static shape deformation on the hypersonic aerodynamics and aerothermodynamics of a stacked tori Hypersonic Inflatable Aerodynamic Decelerator (HIAD) is demonstrated and analyzed in detail by solving compressible Navier-Stokes equations with Menter's shear stress transport (SST) turbulence model. The deformed shape is obtained by structural modeling in the presence of maximum aerodynamic pressure during entry. The numerical results show that the undulating shape deformation makes significant difference to flow structure. In particular, the more curved outboard forebody surface results in local flow separations and reattachments in valleys, which consequently yields remarkable fluctuations of surface conditions with pressure rising in valleys yet dropping on crests while shear stress and heat flux falling in valleys yet rising on crests. Accordingly, compared with the initial (undeformed) shape, the corresponding differences of surface conditions get more striking outboard, with maximum augmentations of 379 pa, 2224 pa, and 19.0 W/cm2, i.e., 9.8%, 305.9%, and 101.6% for the pressure, shear stress and heat flux respectively. Moreover, it is found that, with the increase of angle of attack, the aerodynamic characters and surface heating vary and the aeroheating disparities are evident between the deformed and initial shape. For the deformable HIAD model investigated in this study, the more intense surface conditions and changed flight

  5. The LS-STAG immersed boundary method for non-Newtonian flows in irregular geometries: flow of shear-thinning liquids between eccentric rotating cylinders (United States)

    Botella, Olivier; Ait-Messaoud, Mazigh; Pertat, Adrien; Cheny, Yoann; Rigal, Claire


    This paper presents the extension of a well-established immersed boundary/cut-cell method, the LS-STAG method (Cheny and Botella in J Comput Phys 229:1043-1076, 2010), to non-Newtonian flow computations in 2D irregular geometries. One of the distinguished features of our IB method is to use level-set techniques in the cut-cells near the irregular boundary, where accurate discretization is of paramount importance for stability and accuracy of the computations. For this purpose, we present here an accurate discretization of the velocity gradients and shear rate in the cut-cells that fits elegantly in the framework of the velocity-pressure-stress staggered arrangement and the special quadratures developed previously for viscoelastic flows. After assessing the accuracy of the discretization on a benchmark solution for power-law fluids, the LS-STAG code is applied to the flow of various shear-thinning xanthan solutions in a wide-gap, non-coaxial, Taylor-Couette reactor for which rheological characterization, experimental flow measurements (PIV) and FLUENT simulations have recently been performed in our group. Our numerical investigation will give new insight on the flow patterns (onset, size and position of the recirculation zone) and will firmly correlate them to global flow properties such as shear-thinning index, generalized Reynolds number and torque ratio at the cylinders.

  6. Relaxation processes after instantaneous shear rate reversal in a dense granular flow (United States)

    Rojas, Eduardo; Soto, Rodrigo; Clement, Eric; Trulsson, Martin; Andreotti, Bruno


    A numerical model of granular material at different packing fractions and under steady shear is submitted to a sudden shear reversal. We monitor consequences of the strong density and shear rate spatiotemporal heterogeneities, on the constitutive relations. We show that the dynamics can be decomposed into two subsequent regimes spanning a time scale inversely proportional to the shear rate. In the first regime, a nonlocal constitutive relation is satisfied, hence accounting for the spatial heterogeneity of the fluidity parameter. However at later time, we find that the local μ(I) constitutive relation can be applied, in spite of the fact that the fluidity parameter remains heterogeneous.

  7. Modelling and Simulating the Adhesion and Detachment of Chondrocytes in Shear Flow (United States)

    Hao, Jian; Pan, Tsorng-Whay; Rosenstrauch, Doreen

    Chondrocytes are typically studied in the environment where they normally reside such as the joints in hips, intervertebral disks or the ear. For example, in [SKE+99], the effect of seeding duration on the strength of chondrocyte adhesion to articulate cartilage has been studied in shear flow chamber since such adhesion may play an important role in the repair of articular defects by maintaining cells in positions where their biosynthetic products can contribute to the repair process. However, in this investigation, we focus mainly on the use of auricular chondrocytes in cardiovascular implants. They are abundant, easily and efficiently harvested by a minimally invasive technique. Auricular chondrocytes have ability to produce collagen type-II and other important extracellular matrix constituents; this allows them to adhere strongly to the artificial surfaces. They can be genetically engineered to act like endothelial cells so that the biocompatibility of cardiovascular prothesis can be improved. Actually in [SBBR+02], genetically engineered auricular chondrocytes can be used to line blood-contacting luminal surfaces of left ventricular assist device (LVAD) and a chondrocyte-lined LVAD has been planted into the tissue-donor calf and the results in vivo have proved the feasibility of using autologous auricular chondrocytes to improve the biocompatibility of the blood-biomaterial interface in LVADs and cardiovascular prothesis. Therefore, cultured chondrocytes may offer a more efficient and less invasive means of covering artificial surface with a viable and adherent cell layer.

  8. A Reactor Development Scenario for the FUZE Shear-flow Stabilized Z-pinch (United States)

    McLean, H. S.; Higginson, D. P.; Schmidt, A.; Tummel, K. K.; Shumlak, U.; Nelson, B. A.; Claveau, E. L.; Golingo, R. P.; Weber, T. R.


    We present a conceptual design, scaling calculations, and a development path for a pulsed fusion reactor based on the shear-flow-stabilized Z-pinch device. Experiments performed on the ZaP device have demonstrated stable operation for 40 us at 150 kA total discharge current (with 100 kA in the pinch) for pinches that are 1cm in diameter and 100 cm long. Scaling calculations show that achieving stabilization for a pulse of 100 usec, for discharge current 1.5 MA, in a shortened pinch 50 cm, results in a pinch diameter of 200 um and a reactor plant Q 5 for reasonable assumptions of the various system efficiencies. We propose several key intermediate performance levels in order to justify further development. These include achieving operation at pinch currents of 300 kA, where Te and Ti are calculated to exceed 1 keV, 700 kA where fusion power exceeds pinch input power, and 1 MA where fusion energy per pulse exceeds input energy per pulse. This work funded by USDOE ARPAe ALPHA Program and performed under the auspices of Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-697801.

  9. The role of external triggers in flow shear arcs in the dayside aurora

    Directory of Open Access Journals (Sweden)

    P. E. Sandholt


    Full Text Available In case studies we relate dayside auroral transients to IMF By-distorted plasma convection cells based on high-resolution observations from the ground. We selected three days representing positive and negative IMF By conditions when SuperDARN returned reliable dayside convection patterns in the sector of our optical observations from Ny Ålesund, Svalbard (76° MLAT. We combine two perspectives on the dayside aurora, the local and the global. In the first we derive the fine-structure of dayside precipitation/convection as a function of magnetic latitude (MLAT and magnetic local time (MLT, which is necessary to understand the local M-I coupling processes (Birkeland current structure. The larger perspective (quasi-global dayside aurora may be used to shed light on the solar wind-magnetosphere interconnection topology. The auroral morphology consists of brightening events and poleward moving auroral forms (PMAFs in the pre- and postnoon sectors longitudinally separated by a band of strongly attenuated aurora near noon. We find that the MLT-dependent spatial structure in the dayside aurora (PMAFs/prenoon – "midday gap aurora" – PMAFs/postnoon which is present during stable IMF conditions is altered by temporal structure during intervals of IMF/solar wind plasma transients. The focus is on the PMAF substructure (so-called "rebrightening forms" which we identify as dynamical plasma flow shear arcs (FSAs in By-distorted dawn- and dusk-centered convection cells in the close vicinity of the cusp.

  10. Comparing Two Implementations of a Micromixing Model. Part I: Wall Shear-Layer Flow (United States)

    Postma, John V.; Wilson, John D.; Yee, Eugene


    A Lagrangian stochastic (LS) micromixing model is used for estimating concentration fluctuations in plumes of a passive, non-reactive tracer dispersing from elevated and ground-level compact sources into a neutral wall shear-layer flow. SPMMM (for sequential particle micromixing model) implements the familiar IECM (interaction by exchange with the conditional mean) micromixing scheme. The parametrization of the scalar micromixing time scale is identical to that proposed in a previously reported LS-IECM model (Cassiani et al., Atmos Environ 39:1457-1469, 2005a). However, while SPMMM is mathematically equivalent to the previously reported model, it differs in its numerical implementation: SPMMM releases N independent particles sequentially, whereas the previously reported model releases N independent particles simultaneously. In both implementations, the trajectories of the N particles are governed by single-point velocity statistics. The sequential particle implementation is computationally efficient, but cannot be applied to the case of reacting species. Results from both implementations are compared to experimental wind-tunnel dispersion data and to each other.

  11. Scaling the Shear-flow Stabilized Z-pinch to Reactor Conditions (United States)

    McLean, H. S.; Schmidt, A.; Shumlak, U.; Nelson, B. A.; Golingo, R. P.; Cleveau, E.


    We present a conceptual design along with scaling calculations for a pulsed fusion reactor based on the shear-flow-stabilized Z-pinch device. Experiments performed on the ZaP device, at the University of Washington, have demonstrated stable operation for durations of 20 usec at ~100kA discharge current for pinches that are ~1 cm in diameter and 100 cm long. The inverse of the pinch diameter and plasma energy density scale strongly with pinch current and calculations show that maintaining stabilization durations of ~7 usec for increased discharge current (~15x) in a shortened pinch (10 cm) results in a pinch diameter of ~200 um and plasma conditions that approach those needed to support significant fusion burn and energy gain (Ti ~ 30keV, density ~ 3e26/m3, ntau ~1.4e20 sec/m3). Compelling features of the concept include operation at modest discharge current (1.5 MA) and voltage (40kV) along with direct adoption of liquid metals for at least one electrode--technological capabilities that have been proven in existing, commercial, pulse power devices such as large ignitrons. LLNL-ABS-674920. This work performed under the auspices of the U.S. Department of Energy ARPAe ALPHA Program by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  12. Producing High-Performance, Stable, Sheared-Flow Z-Pinches in the FuZE project (United States)

    Golingo, R. P.; Shumlak, U.,; Nelson, B. A.; Claveau, E. L.; Forbes, E. G.; Stepanov, A. D.; Weber, T. R.; Zhang, Y.; McLean, H. S.; Tummel, K. K.; Higginson, D. P.; Schmidt, A. E.; University of Washington (UW) Collaboration; Lawrence Livermore National Laboratory (LLNL) Collaboration


    The Fusion Z-Pinch Experiment (FuZE) has made significant strides towards generating high-performance, stable Z-pinch plasmas with goals of ne = 1018 cm-3 and T =1 keV. The Z-pinch plasmas are stabilized with a sheared axial flow that is driven by a coaxial accelerator. The new FuZE device has been constructed and reproduces the major scientific achievements the ZaP project at the University of Washington; ne = 1016 cm-3,T = 100 eV, r20 μs. These parameters are measured with an array of magnetic field probes, spectroscopy, and fast framing cameras. The plasma parameters are achieved using a small fraction of the maximum energy storage and gas injection capability of the FuZE device. Higher density, ne = 5×1017 cm-3, and temperature, T = 500 eV, Z-pinch plasmas are formed by increasing the pinch current. At the higher voltages and currents, the ionization rates in the accelerator increase. By modifying the neutral gas profile in the accelerator, the plasma flow from the accelerator is maintained, driving the flow shear. Formation and sustainment of the sheared-flow Z-pinch plasma will be discussed. Experimental data demonstrating high performance plasmas in a stable Z-pinches will be shown. This work is supported by an award from US ARPA-E.

  13. Impact of flow rates in a cardiac cycle on correlations between advanced human carotid plaque progression and mechanical flow shear stress and plaque wall stress

    Directory of Open Access Journals (Sweden)

    Ferguson Marina


    Full Text Available Abstract Background Mechanical stresses are known to play important roles in atherosclerotic plaque initiation, progression and rupture. It has been well-accepted that atherosclerosis initiation and early progression correlate negatively with flow wall shear stresses (FSS. However, mechanisms governing advanced plaque progression are not well understood. Method In vivo serial MRI data (patient follow-up were acquired from 14 patients after informed consent. Each patient had 2-4 scans (scan interval: 18 months. Thirty-two scan pairs (baseline and follow-up scans were formed with slices matched for model construction and analysis. Each scan pair had 4-10 matched slices which gave 400-1000 data points for analysis (100 points per slice on lumen. Point-wise plaque progression was defined as the wall thickness increase (WTI at each data point. 3D computational models with fluid-structure interactions were constructed based on in vivo serial MRI data to extract flow shear stress and plaque wall stress (PWS on all data points to quantify correlations between plaque progression and mechanical stresses (FSS and PWS. FSS and PWS data corresponding to both maximum and minimum flow rates in a cardiac cycle were used to investigate the impact of flow rates on those correlations. Results Using follow-up scans and maximum flow rates, 19 out of 32 scan pairs showed a significant positive correlation between WTI and FSS (positive/negative/no significance correlation ratio = 19/9/4, and 26 out of 32 scan pairs showed a significant negative correlation between WTI and PWS (correlation ratio = 2/26/4. Corresponding to minimum flow rates, the correlation ratio for WTI vs. FSS and WTI vs. PWS were (20/7/5 and (2/26/4, respectively. Using baseline scans, the correlation ratios for WTI vs. FSS were (10/12/10 and (9/13/10 for maximum and minimum flow rates, respectively. The correlation ratios for WTI vs. PWS were the same (18/5/9, corresponding to maximum and minimum

  14. Impact of flow rates in a cardiac cycle on correlations between advanced human carotid plaque progression and mechanical flow shear stress and plaque wall stress. (United States)

    Yang, Chun; Canton, Gador; Yuan, Chun; Ferguson, Marina; Hatsukami, Thomas S; Tang, Dalin


    Mechanical stresses are known to play important roles in atherosclerotic plaque initiation, progression and rupture. It has been well-accepted that atherosclerosis initiation and early progression correlate negatively with flow wall shear stresses (FSS). However, mechanisms governing advanced plaque progression are not well understood. In vivo serial MRI data (patient follow-up) were acquired from 14 patients after informed consent. Each patient had 2-4 scans (scan interval: 18 months). Thirty-two scan pairs (baseline and follow-up scans) were formed with slices matched for model construction and analysis. Each scan pair had 4-10 matched slices which gave 400-1000 data points for analysis (100 points per slice on lumen). Point-wise plaque progression was defined as the wall thickness increase (WTI) at each data point. 3D computational models with fluid-structure interactions were constructed based on in vivo serial MRI data to extract flow shear stress and plaque wall stress (PWS) on all data points to quantify correlations between plaque progression and mechanical stresses (FSS and PWS). FSS and PWS data corresponding to both maximum and minimum flow rates in a cardiac cycle were used to investigate the impact of flow rates on those correlations. Using follow-up scans and maximum flow rates, 19 out of 32 scan pairs showed a significant positive correlation between WTI and FSS (positive/negative/no significance correlation ratio = 19/9/4), and 26 out of 32 scan pairs showed a significant negative correlation between WTI and PWS (correlation ratio = 2/26/4). Corresponding to minimum flow rates, the correlation ratio for WTI vs. FSS and WTI vs. PWS were (20/7/5) and (2/26/4), respectively. Using baseline scans, the correlation ratios for WTI vs. FSS were (10/12/10) and (9/13/10) for maximum and minimum flow rates, respectively. The correlation ratios for WTI vs. PWS were the same (18/5/9), corresponding to maximum and minimum flow rates. Flow shear stress

  15. Effects of Shear Dependent Viscosity and Variable Thermal Conductivity on the Flow and Heat Transfer in a Slurry

    Directory of Open Access Journals (Sweden)

    Ling Miao


    Full Text Available In this paper we study the effects of variable viscosity and thermal conductivity on the heat transfer in the pressure-driven fully developed flow of a slurry (suspension between two horizontal flat plates. The fluid is assumed to be described by a constitutive relation for a generalized second grade fluid where the shear viscosity is a function of the shear rate, temperature and concentration. The heat flux vector for the slurry is assumed to follow a generalized form of the Fourier’s equation where the thermal conductivity k depends on the temperature as well as the shear rate. We numerically solve the governing equations of motion in the non-dimensional form and perform a parametric study to see the effects of various dimensionless numbers on the velocity, volume fraction and temperature profiles. The different cases of shear thinning and thickening, and the effect of the exponent in the Reynolds viscosity model, for the temperature variation in viscosity, are also considered. The results indicate that the variable thermal conductivity can play an important role in controlling the temperature variation in the flow.

  16. Migration of gluten under shear flow: influence of process parameters on separation behaviour

    NARCIS (Netherlands)

    Peighambardoust, S.H.; Goot, van der A.J.


    The effect of processing conditions on the shear-induced migration of starch and gluten was described. A shearing device was used to induce a separation of wheat dough into a gluten rich fraction and a starch phase. A two-stage mechanism for separation was observed: first local aggregation of

  17. Hypersonic propulsion. [supersonic combustion ramjet engines (United States)

    Beach, H. L., Jr.


    Research on hydrogen fueled scramjet engines for hypersonic flight is reviewed. Component developments, computational methods, and preliminary ground tests of subscale scramjet engine modules at Mach 4 and 7 are emphasized. Airframe integration, structures, and flow diagnostics are also discussed. It is shown that mixed-mode perpendicular and parallel fuel injection controls heat release over a wide Mach range and the fixed geometry inlet gives good performance over a wide range of Mach numbers.

  18. The influence of stevia on the flow, shear and compression behavior of sorbitol, a pharmaceutical excipient for direct compression. (United States)

    Hurychová, Hana; Ondrejček, Pavel; Šklubalová, Zdenka; Vraníková, Barbora; Svěrák, Tomáš


    Good flow and compaction properties are necessary for the manipulation of particulate material in the pharmaceutical industry. The influence of the addition of an alternative sweetener, rebaudioside A, in a concentration 0.2% w/w and 0.5% w/w on the flow, shear and compaction properties of sorbitol for direct compaction, Merisorb® 200, was investigated in this work. Rebaudioside A worsened the flow properties of sorbitol: the Hausner ratio, the compressibility index and the mass flow rate through the aperture of a model hopper. Using a Jenike shear cell revealed a significant increase in cohesion leading to the decrease of the flow function; moreover, the addition of rebaudioside A increased the total energy for compression of tablets and plasticity estimated by the force-displacement method. Finally, the tablets showed a higher tensile strength and needed longer time to disintegrate compared to the tablets made of sorbitol itself. In view of the results for the free-flowable excipient, sorbitol, the effects of stevia even for a 0.2% w/w concentration have to be carefully considered, particularly whenever used in pharmaceutical formulations of poor flow properties.

  19. Effect of shear stress in the flow through the sampling needle on concentration of nanovesicles isolated from blood. (United States)

    Štukelj, Roman; Schara, Karin; Bedina-Zavec, Apolonija; Šuštar, Vid; Pajnič, Manca; Pađen, Ljubiša; Krek, Judita Lea; Kralj-Iglič, Veronika; Mrvar-Brečko, Anita; Janša, Rado


    During harvesting of nanovesicles (NVs) from blood, blood cells and other particles in blood are exposed to mechanical forces which may cause activation of platelets, changes of membrane properties, cell deformation and shedding of membrane fragments. We report on the effect of shear forces imposed upon blood samples during the harvesting process, on the concentration of membrane nanovesicles in isolates from blood. Mathematical models of blood flow through the needle during sampling with vacuumtubes and with free flow were constructed, starting from the Navier-Stokes formalism. Blood was modeled as a Newtonian fluid. Work of the shear stress was calculated. In experiments, nanovesicles were isolated by repeated centrifugation (up to 17,570×g) and washing, and counted by flow cytometry. It was found that the concentration of nanovesicles in the isolates positively corresponded with the work by the shear forces in the flow of the sample through the needle. We have enhanced the effect of the shear forces by shaking the samples prior to isolation with glass beads. Imaging of isolates by scanning electron microscopy revealed closed globular structures of a similar size and shape as those obtained from unshaken plasma by repetitive centrifugation and washing. Furthermore, the sizes and shapes of NVs obtained by shaking erythrocytes corresponded to those isolated from shaken platelet-rich plasma and from unshaken platelet rich plasma, and not to those induced in erythrocytes by exogenously added amphiphiles. These results are in favor of the hypothesis that a significant pool of nanovesicles in blood isolates is created during their harvesting. The identity, shape, size and composition of NVs in isolates strongly depend on the technology of their harvesting. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Hypersonic Materials and Structures (United States)

    Glass, David E.


    Thermal protection systems (TPS) and hot structures are required for a range of hypersonic vehicles ranging from ballistic reentry to hypersonic cruise vehicles, both within Earth's atmosphere and non-Earth atmospheres. The focus of this presentation is on air breathing hypersonic vehicles in the Earth's atmosphere. This includes single-stage to orbit (SSTO), two-stage to orbit (TSTO) accelerators, access to space vehicles, and hypersonic cruise vehicles. This paper will start out with a brief discussion of aerodynamic heating and thermal management techniques to address the high heating, followed by an overview of TPS for rocket-launched and air-breathing vehicles. The argument is presented that as we move from rocket-based vehicles to air-breathing vehicles, we need to move away from the insulated airplane approach used on the Space Shuttle Orbiter to a wide range of TPS and hot structure approaches. The primary portion of the paper will discuss issues and design options for CMC TPS and hot structure components, including leading edges, acreage TPS, and control surfaces. The current state-of-the-art will be briefly discussed for some of the components.

  1. Deformation and Stress Response of Carbon Nanotubes/UHMWPE Composites under Extensional-Shear Coupling Flow (United States)

    Wang, Junxia; Cao, Changlin; Yu, Dingshan; Chen, Xudong


    In this paper, the effect of varying extensional-shear couple loading on deformation and stress response of Carbon Nanotubes/ ultra-high molecular weight polyethylene (CNTs/UHMWPE) composites was investigated using finite element numerical simulation, with expect to improve the manufacturing process of UHMWPE-based composites with reduced stress and lower distortion. When applying pure extensional loading and pure X-Y shear loading, it was found that the risk of a structural breakage greatly rises. For identifying the coupling between extensional and shear loading, distinct generations of force loading were defined by adjusting the magnitude of extensional loading and X-Y shear loading. It was shown that with the decrement of X-Y shear loading the deformation decreases obviously where the maximal Mises stress in Z-direction at 0.45 m distance is in the range from 24 to 10 MPa and the maximal shear stress at 0.61 m distance is within the range from 0.9 to 0.3 MPa. In addition, all the stresses determined were clearly below the yield strength of CNTs/UHMWPE composites under extensional-shear couple loading.

  2. Progress on Scaling the Sheared-Flow Stabilized Z-Pinch: The Fusion Z-Pinch Experiment ``FuZE'' (United States)

    Nelson, B. A.; Shumlak, U.; Claveau, E. L.; Forbes, E. G.; Golingo, R. P.; Stepanov, A. D.; Weber, T. R.; Zhang, Y.; McLean, H. S.; Higginson, D. P.; Schmidt, A. E.; Tummel, K. K.


    The sheared-flow-stabilized (SFS) Z-pinch ZaP experiment was constructed based on calculations showing stabilization of the kink and sausage instabilities with sufficient flow shear. ZaP experimentally demonstrated production and sustainment of an SFS Z-pinch for a wide range of plasma parameters, with densities up to n = 5 ×1022 m-3 and a pinch radius of a=1 cm. The follow-on ZaP-HD (high density) experiment demonstrated scaling of the SFS Z-pinch to 2-3x smaller radii and 10x higher densities than ZaP, with up to 1 keV temperatures. Based on the successful results of ZaP and ZaP-HD, the Fusion Z-pinch Experiment (FuZE) project is experimentally and computationally studying scaling the plasma performance toward fusion conditions, with the target of a smaller radius, a=1 mm, and higher density, n = 2 ×1024 m-3. Initial FuZE experimental results show several hundred eV ion temperatures, with pinch currents of 100-200 kA and a few mm radius. 2D kinetic calculations show stabilization of instabilities at moderate sheared flows, and 3D kinetic calculations are in progress. This work is supported by an award from US ARPA-E.

  3. Phase diagram and breathing dynamics of a single red blood cell and a biconcave capsule in dilute shear flow (United States)

    Yazdani, Alireza Z. K.; Bagchi, Prosenjit


    We present phase diagrams of the single red blood cell and biconcave capsule dynamics in dilute suspension using three-dimensional numerical simulations. The computational geometry replicates an in vitro linear shear flow apparatus. Our model includes all essential properties of the cell membrane, namely, the resistance against shear deformation, area dilatation, and bending, as well as the viscosity difference between the cell interior and suspending fluids. By considering a wide range of shear rate and interior-to-exterior fluid viscosity ratio, it is shown that the cell dynamics is often more complex than the well-known tank-treading, tumbling, and swinging motion and is characterized by an extreme variation of the cell shape. As a result, it is often difficult to clearly establish whether the cell is swinging or tumbling. Identifying such complex shape dynamics, termed here as “breathing” dynamics, is the focus of this article. During the breathing motion at moderate bending rigidity, the cell either completely aligns with the flow direction and the membrane folds inward, forming two cusps, or it undergoes large swinging motion while deep, craterlike dimples periodically emerge and disappear. At lower bending rigidity, the breathing motion occurs over a wider range of shear rates, and is often characterized by the emergence of a quad-concave shape. The effect of the breathing dynamics on the tank-treading-to-tumbling transition is illustrated by detailed phase diagrams which appear to be more complex and richer than those of vesicles. In a remarkable departure from the vesicle dynamics, and from the classical theory of nondeformable cells, we find that there exists a critical viscosity ratio below which the transition is independent of the viscosity ratio, and dependent on shear rate only. Further, unlike the reduced-order models, the present simulations do not predict any intermittent dynamics of the red blood cells.

  4. Influence of shear on microbial adhesion to PEO-brushes and glass by convective-diffusion and sedimentation in a parallel plate flow chamber

    NARCIS (Netherlands)

    Roosjen, A; Boks, NP; van der Mei, HC; Busscher, HJ; Norde, W


    Microbial adhesion to surfaces often occurs despite high wall shear rates acting on the adhering microorganisms. In this paper, we compare the wall shear rates needed to prevent microbial adhesion to bare glass and poly(ethylene oxide) (PEO)-brush coated glass in a parallel plate flow chamber.

  5. Numerical prediction of cavitating flow around a hydrofoil using pans and improved shear stress transport k-omega model

    Directory of Open Access Journals (Sweden)

    Zhang De-Sheng


    Full Text Available The prediction accuracies of partially-averaged Navier-Stokes model and improved shear stress transport k-ω turbulence model for simulating the unsteady cavitating flow around the hydrofoil were discussed in this paper. Numerical results show that the two turbulence models can effectively reproduce the cavitation evolution process. The numerical prediction for the cycle time of cavitation inception, development, detachment, and collapse agrees well with the experimental data. It is found that the vortex pair induced by the interaction between the re-entrant jet and mainstream is responsible for the instability of the cavitation shedding flow.

  6. On the predominance of oblique disturbances in the supersonic shear flow instability of the geomagnetic tail boundary

    Directory of Open Access Journals (Sweden)

    V. V. Mishin


    Full Text Available A study is made of the influence of the longitudinal magnetic field and density inhomogeneity on the supersonic shear flow instability at the magnetospheric tail boundary. It is shown that the most unstable are slow oblique (3D disturbances, with a phase velocity approaching at a sufficiently large angle (with respect to the flow direction the magnetosonic velocity. Their growth rate and spectral width are much larger than those of the usually considered longitudinal (2D supersonic disturbances. The magnetic field reduces the compressibility effect and, unlike the subsonic case, has a noticeable destabilizing effect on the excitation of oblique disturbances.

  7. Hypersonic Inflatable Aerodynamic Decelerator (HIAD) Project (United States)

    National Aeronautics and Space Administration — The Hypersonic Inflatable Aerodynamic Decelerator (HIAD) project will focus on the development and demonstration of hypersonic inflatable aeroshell technologies...

  8. A numerical study of hypersonic propulsion/airframe integration problem (United States)

    Narayan, J. R.; Kumar, A.


    A numerical analysis procedure useful in the propulsion-airframe integration problem has been established. Flow around a generic hypersonic vehicle forebody is solved using Parabolized Navier-Stokes equations and Thin Layer Navier-Stokes equations. Forebody cross sectional geometry corresponds to a two-ellipse configuration. Effect of forebody geometry on the flow structure, especially at the engine inlet location, is analyzed.

  9. Shear-scaling-based approach for irreversible energy loss estimation in stenotic aortic flow - An in vitro study. (United States)

    Gülan, Utku; Binter, Christian; Kozerke, Sebastian; Holzner, Markus


    Today, the functional and risk assessment of stenosed arteries is mostly based on ultrasound Doppler blood flow velocity measurements or catheter pressure measurements, which rely on several assumptions. Alternatively, blood velocity including turbulent kinetic energy (TKE) may be measured using MRI. The aim of the present study is to validate a TKE-based approach that relies on the fact that turbulence production is dominated by the flow's shear to determine the total irreversible energy loss from MRI scans. Three-dimensional particle tracking velocimetry (3D-PTV) and phase-contrast magnetic resonance imaging (PC-MRI) simulations were performed in an anatomically accurate, compliant, silicon aortic phantom. We found that measuring only the laminar viscous losses does not reflect the true losses of stenotic flows since the contribution of the turbulent losses to the total loss become more dominant for more severe stenosis types (for example, the laminar loss is 0.0094±0.0015W and the turbulent loss is 0.0361±0.0015W for the Remax=13,800 case, where Remax is the Reynolds number based on the velocity in the vena-contracta). We show that the commonly used simplified and modified Bernoulli's approaches overestimate the total loss, while the new TKE-based method proposed here, referred to as "shear scaling" approach, results in a good agreement between 3D-PTV and simulated PC-MRI (mean error is around 10%). In addition, we validated the shear scaling approach on a geometry with post-stenotic dilatation using numerical data by Casas et al. (2016). The shear scaling-based method may hence be an interesting alternative for irreversible energy loss estimation to replace traditional approaches for clinical use. We expect that our results will evoke further research, in particular patient studies for clinical implementation of the new method. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Evaluation of 3D blood flow patterns and wall shear stress in the normal and dilated thoracic aorta using flow-sensitive 4D CMR

    Directory of Open Access Journals (Sweden)

    Bürk Jonas


    Full Text Available Abstract Background The purpose of this study was to investigate 3D flow patterns and vessel wall parameters in patients with dilated ascending aorta, age-matched subjects, and healthy volunteers. Methods Thoracic time-resolved 3D phase contrast CMR with 3-directional velocity encoding was applied to 33 patients with dilated ascending aorta (diameter ≥40 mm, age=60±16 years, 15 age-matched normal controls (diameter ≤37 mm, age=68±7.5 years and 15 young healthy volunteers (diameter ≤30 mm, age=23±2 years. 3D blood flow was visualized and flow patterns were graded regarding presence of supra-physiologic-helix and vortex flow using a semi-quantitative 3-point grading scale. Blood flow velocities, regional wall shear stress (WSS, and oscillatory shear index (OSI were quantified. Results Incidence and strength of supra-physiologic-helix and vortex flow in the ascending aorta (AAo was significantly higher in patients with dilated AAo (16/33 and 31/33, grade 0.9±1.0 and 1.5±0.6 than in controls (2/15 and 7/15, grade 0.2 ± 0.6 and 0.6 ± 0.7, PPPPPPPP Conclusions Increase in AAo diameter is significantly correlated with the presence and strength of supra-physiologic-helix and vortex formation in the AAo, as well with decrease in systolic WSS and increase in OSI.

  11. Application of a transitional boundary-layer theory in the low hypersonic Mach number regime (United States)

    Shamroth, S. J.; Mcdonald, H.


    An investigation is made to assess the capability of a finite-difference boundary-layer procedure to predict the mean profile development across a transition from laminar to turbulent flow in the low hypersonic Mach-number regime. The boundary-layer procedure uses an integral form of the turbulence kinetic-energy equation to govern the development of the Reynolds apparent shear stress. The present investigation shows the ability of this procedure to predict Stanton number, velocity profiles, and density profiles through the transition region and, in addition, to predict the effect of wall cooling and Mach number on transition Reynolds number. The contribution of the pressure-dilatation term to the energy balance is examined and it is suggested that transition can be initiated by the direct absorption of acoustic energy even if only a small amount (1 per cent) of the incident acoustic energy is absorbed.

  12. Non-Darcian flow of shear-thinning fluids through packed beads: Experiments and predictions using Forchheimer's law and Ergun's equation (United States)

    Rodríguez de Castro, Antonio; Radilla, Giovanni


    The flow of shear-thinning fluids through unconsolidated porous media is present in a number of important industrial applications such as soil depollution, Enhanced Oil Recovery or filtration of polymeric liquids. Therefore, predicting the pressure drop-flow rate relationship in model porous media has been the scope of major research efforts during the last decades. Although the flow of Newtonian fluids through packs of spherical particles is well understood in most cases, much less is known regarding the flow of shear-thinning fluids as high molecular weight polymer aqueous solutions. In particular, the experimental data for the non-Darcian flow of shear-thinning fluids are scarce and so are the current approaches for their prediction. Given the relevance of non-Darcian shear-thinning flow, the scope of this work is to perform an experimental study to systematically evaluate the effects of fluid shear rheology on the flow rate-pressure drop relationships for the non-Darcian flow through different packs of glass spheres. To do so, xanthan gum aqueous solutions with different polymer concentrations are injected through four packs of glass spheres with uniform size under Darcian and inertial flow regimes. A total of 1560 experimental data are then compared with predictions coming from different methods based on the extension of widely used Ergun's equation and Forchheimer's law to the case of shear thinning fluids, determining the accuracy of these predictions. The use of a proper definition for Reynolds number and a realistic model to represent the rheology of the injected fluids results in the porous media are shown to be key aspects to successfully predict pressure drop-flow rate relationships for the inertial shear-thinning flow in packed beads.

  13. Survey of Aerothermodynamics Facilities Useful for the Design of Hypersonic Vehicles Using Air-Breathing Propulsion (United States)

    Arnold, James O.; Deiwert, George S.


    This paper surveys the use of aerothermodynamic facilities which have been useful in the study of external flows and propulsion aspects of hypersonic, air-breathing vehicles. While the paper is not a survey of all facilities, it covers the utility of shock tunnels and conventional hypersonic blow-down facilities which have been used for hypersonic air-breather studies. The problems confronting researchers in the field of aerothermodynamics are outlined. Results from the T5 GALCIT tunnel for the shock-on lip problem are outlined. Experiments on combustors and short expansion nozzles using the semi-free jet method have been conducted in large shock tunnels. An example which employed the NASA Ames 16-Inch shock tunnel is outlined, and the philosophy of the test technique is described. Conventional blow-down hypersonic wind tunnels are quite useful in hypersonic air-breathing studies. Results from an expansion ramp experiment, simulating the nozzle on a hypersonic air-breather from the NASA Ames 3.5 Foot Hypersonic wind tunnel are summarized. Similar work on expansion nozzles conducted in the NASA Langley hypersonic wind tunnel complex is cited. Free-jet air-frame propulsion integration and configuration stability experiments conducted at Langley in the hypersonic wind tunnel complex on a small generic model are also summarized.

  14. Prediction of transitional boundary layers and fully turbulent free shear flows, using Reynolds averaged Navier-Stokes models (United States)

    Lopez Varilla, Maurin Alberto

    One of the biggest unsolved problems of modern physics is the turbulence phenomena in fluid flow. The appearance of turbulence in a flow system is regularly determined by velocity and length scales of the system. If those scales are small the motion of the fluid is laminar, but at larger scales, disturbances appear and grow, leading the flow field to transition to a fully turbulent state. The prediction of transitional flow is critical for many complex fluid flow applications, such as aeronautical, aerospace, biomedical, automotive, chemical processing, heating and cooling systems, and meteorology. For example, in some cases the flow may remain laminar throughout a significant portion of a given domain, and fully turbulent simulations may produce results that can lead to inaccurate conclusions or inefficient design, due to an inability to resolve the details of the transition process. This work aims to develop, implement, and test a new model concept for the prediction of transitional flows using a linear eddy-viscosity RANS approach. The effects of transition are included through one additional transport equation for upsilon 2 as an alternative to the Laminar Kinetic Energy (LKE) framework. Here upsilon2 is interpreted as the energy of fully turbulent, three-dimensional velocity fluctuations. The concept is based on a description of the transition process previously discussed by Walters. This dissertation presents two new single-point, physics-based turbulence models based on the transitional methodology mentioned above. The first one uses an existing transitional model as a baseline which is modified to accurately capture the physics of fully turbulent free shear flows. The model formulation was tested over several boundary layer and free shear flow test cases. The simulations show accurate results, qualitatively equal to the baseline model on transitional boundary layer test cases, and substantially improved over the baseline model for free shear flows. The

  15. Determination of the Orthokinetic Coalescence Efficiency of Droplets in Simple Shear Flow Using Mobile, Partially Mobile and Immobile Drainage Models and Trajectory Analysis

    NARCIS (Netherlands)

    Mousa, H.A.H.; Agterof, W.G.M.; Mellema, J.


    The orthokinetic coalescence efficiency, of two Newtonian droplets submerged in a Newtonian fluid in simple shear flow, was theoretically investigated. The investigation considered three drainage models: immobile, partially mobile and mobile interfaces. The coalescence efficiency was also determined

  16. Unstart Coupling Mechanism Analysis of Multiple-Modules Hypersonic Inlet

    Directory of Open Access Journals (Sweden)

    Jichao Hu


    Full Text Available The combination of multiplemodules in parallel manner is an important way to achieve the much higher thrust of scramjet engine. For the multiple-modules scramjet engine, when inlet unstarted oscillatory flow appears in a single-module engine due to high backpressure, how to interact with each module by massflow spillage, and whether inlet unstart occurs in other modules are important issues. The unstarted flowfield and coupling characteristic for a three-module hypersonic inlet caused by center module II and side module III were, conducted respectively. The results indicate that the other two hypersonic inlets are forced into unstarted flow when unstarted phenomenon appears on a single-module hypersonic inlet due to high backpressure, and the reversed flow in the isolator dominates the formation, expansion, shrinkage, and disappearance of the vortexes, and thus, it is the major factor of unstart coupling of multiple-modules hypersonic inlet. The coupling effect among multiple modules makes hypersonic inlet be more likely unstarted.

  17. Reynolds stress and the energy balance of a localized two-dimensional vortex in a uniform shear flow (United States)

    Cummins, Patrick F.


    Consideration is given to the kinetic energy balance of a localized two-dimensional vortex in unbounded space, subject to a uniform background shear flow. For this problem, a quadratic invariant based on the total flow can be constructed that consists of the sum of the vortex self-energy and the energy of interaction with the background flow. It is shown that an energy equation also may be written for the rate of change of vortex self-energy, relating this to the rate of working by the Reynolds stress. The stress integral is demonstrated to converge for a localized vortex of finite circulation, in contrast to the total kinetic energy. The two approaches to the energy balance are shown to be complementary, and the relation between the Reynolds stress and interaction energy is discussed. As an example, the integrated Reynolds stress is evaluated for a uniformly sheared elliptical (Kirchhoff) vortex. The stress integral includes far field contributions, indicating that appreciable exchange of energy with the external flow occurs well beyond the boundary of the vortex.

  18. Nonequilibrium molecular dynamics study of ring polymer melts under shear and elongation flows: A comparison with their linear analogs

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jeongha; Kim, Jinseong; Baig, Chunggi, E-mail: [Department of Chemical Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798 (Korea, Republic of)


    We present detailed results for the structural and rheological properties of unknotted and unconcatenated ring polyethylene (PE) melts under shear and elongation flows via direct atomistic nonequilibrium molecular dynamics simulations. Short (C{sub 78}H{sub 156}) and long (C{sub 400}H{sub 800}) ring PE melts were subjected to planar Couette flow (PCF) and planar elongational flow (PEF) across a wide range of strain rates from linear to highly nonlinear flow regimes. The results are analyzed in detail through a direct comparison with those of the corresponding linear polymers. We found that, in comparison to their linear analogs, ring melts possess rather compact chain structures at or near the equilibrium state and exhibit a considerably lesser degree of structural deformation with respect to the applied flow strength under both PCF and PEF. The large structural resistance of ring polymers against an external flow field is attributed to the intrinsic closed-loop configuration of the ring and the topological constraint of nonconcatenation between ring chains in the melt. As a result, there appears to be a substantial discrepancy between ring and linear systems in terms of their structural and rheological properties such as chain orientation, the distribution of chain dimensions, viscosity, flow birefringence, hydrostatic pressure, the pair correlation function, and potential interaction energies. The findings and conclusions drawn in this work would be a useful guide in future exploration of the characteristic dynamical and relaxation mechanisms of ring polymers in bulk or confined systems under flowing conditions.

  19. An Analysis of the Applicability of the Hypersonic Similarity Law to the Study of Flow About Bodies of Revolution at Zero Angle of Attack (United States)

    Ehret, Dorris M.; Rossow, Vernon J.; Stevens, Victor I.


    The hypersonic similarity law as derived by Tsien has been investigated by comparing the pressure distributions along bodies of revolution at zero angle of attack. In making these comparisons, particular attention was given to determining the limits of Mach number and fineness ratio for which the similarity law applies. For the purpose of this investigation, pressure distributions determined by the method of characteristics for ogive cylinders for values of Mach numbers and fineness ratios varying from 1.5 to 12 were compared. Pressures on various cones and on cone cylinders were also compared in this study. The pressure distributions presented demonstrate that the hypersonic similarity law is applicable over a wider range of values of Mach numbers and fineness ratios than might be expected from the assumptions made in the derivation. This is significant since within the range of applicability of the law a single pressure distribution exists for all similarly shaped bodies for which the ratio of free-stream Mach number to fineness ratio is constant. Charts are presented for rapid determination of pressure distributions over ogive cylinders for any combination of Mach number and fineness ratio within defined limits.

  20. Flow diagnostics using fibre optics

    Indian Academy of Sciences (India)

    the results of experiments of aerodynamic load measurements at hypersonic speeds. (Mach 8·35 and 7·0) and studies carried out recently in a water tunnel over a lifting hypersonic vehicle with a 2-component fibre-optic strain-gauge balance. Keywords. Fibre optics; flow diagnostics; hypersonic speeds. 1. Introduction.

  1. A comparison of macroscopic models describing the collective response of sedimenting rod-like particles in shear flows (United States)

    Helzel, Christiane; Tzavaras, Athanasios E.


    We consider a kinetic model, which describes the sedimentation of rod-like particles in dilute suspensions under the influence of gravity, presented in Helzel and Tzavaras (submitted for publication). Here we restrict our considerations to shear flow and consider a simplified situation, where the particle orientation is restricted to the plane spanned by the direction of shear and the direction of gravity. For this simplified kinetic model we carry out a linear stability analysis and we derive two different nonlinear macroscopic models which describe the formation of clusters of higher particle density. One of these macroscopic models is based on a diffusive scaling, the other one is based on a so-called quasi-dynamic approximation. Numerical computations, which compare the predictions of the macroscopic models with the kinetic model, complete our presentation.

  2. A comparison of macroscopic models describing the collective response of sedimenting rod-like particles in shear flows

    KAUST Repository

    Helzel, Christiane


    We consider a kinetic model, which describes the sedimentation of rod-like particles in dilute suspensions under the influence of gravity, presented in Helzel and Tzavaras (submitted for publication). Here we restrict our considerations to shear flow and consider a simplified situation, where the particle orientation is restricted to the plane spanned by the direction of shear and the direction of gravity. For this simplified kinetic model we carry out a linear stability analysis and we derive two different nonlinear macroscopic models which describe the formation of clusters of higher particle density. One of these macroscopic models is based on a diffusive scaling, the other one is based on a so-called quasi-dynamic approximation. Numerical computations, which compare the predictions of the macroscopic models with the kinetic model, complete our presentation.

  3. Design optimization of scaffold microstructures using wall shear stress criterion towards regulated flow-induced erosion. (United States)

    Chen, Yuhang; Schellekens, Michiel; Zhou, Shiwei; Cadman, Joseph; Li, Wei; Appleyard, Richard; Li, Qing


    Tissue scaffolds aim to provide a cell-friendly biomechanical environment for facilitating cell growth. Existing studies have shown significant demands for generating a certain level of wall shear stress (WSS) on scaffold microstructural surfaces for promoting cellular response and attachment efficacy. Recently, its role in shear-induced erosion of polymer scaffold has also drawn increasing attention. This paper proposes a bi-directional evolutionary structural optimization (BESO) approach for design of scaffold microstructure in terms of the WSS uniformity criterion, by downgrading highly-stressed solid elements into fluidic elements and/or upgrading lowly-stressed fluidic elements into solid elements. In addition to this, a computational model is presented to simulate shear-induced erosion process. The effective stiffness and permeability of initial and optimized scaffold microstructures are characterized by the finite element based homogenization technique to quantify the variations of mechanical properties of scaffold during erosion. The illustrative examples show that a uniform WSS is achieved within the optimized scaffold microstructures, and their architectural and biomechanical features are maintained for a longer lifetime during shear-induced erosion process. This study provides a mathematical means to the design optimization of cellular biomaterials in terms of the WSS criterion towards controllable shear-induced erosion.

  4. Hypersonic propulsion research (United States)

    Northam, G. Burton


    The development of technology for the modular airframe integrated scramjet has been the focus of hypersonic propulsion research for several years. An part of this research, a variety of inlet concepts have been explored and characterized. The emphasis of the inlet program has been the development of the short (light weight), fixed geometry, side wall compression inlets that operate efficiently over a wide Mach number range. As hypersonic combustion tunnels were developed, programs to study the parameters controlling fuel mixing and combustion with single and multiple strut models were conducted using direct connect test techniques. These various tests supported the design of subscale engine test hardware that integrated inlet and combustor technology and allowed the study of the effect of heat release on thrust and combustor/inlet interaction. A number of subscale engine tests have shown predicted performance levels at Mach 4 and 7 simulated flight conditions. A few of the highlights from this research program are summarized.

  5. Generation of Large-Scale Magnetic Fields by Small-Scale Dynamo in Shear Flows. (United States)

    Squire, J; Bhattacharjee, A


    We propose a new mechanism for a turbulent mean-field dynamo in which the magnetic fluctuations resulting from a small-scale dynamo drive the generation of large-scale magnetic fields. This is in stark contrast to the common idea that small-scale magnetic fields should be harmful to large-scale dynamo action. These dynamos occur in the presence of a large-scale velocity shear and do not require net helicity, resulting from off-diagonal components of the turbulent resistivity tensor as the magnetic analogue of the "shear-current" effect. Given the inevitable existence of nonhelical small-scale magnetic fields in turbulent plasmas, as well as the generic nature of velocity shear, the suggested mechanism may help explain the generation of large-scale magnetic fields across a wide range of astrophysical objects.

  6. Effects of wall shear stress on unsteady MHD conjugate flow in a porous medium with ramped wall temperature. (United States)

    Khan, Arshad; Khan, Ilyas; Ali, Farhad; Ulhaq, Sami; Shafie, Sharidan


    This study investigates the effects of an arbitrary wall shear stress on unsteady magnetohydrodynamic (MHD) flow of a Newtonian fluid with conjugate effects of heat and mass transfer. The fluid is considered in a porous medium over a vertical plate with ramped temperature. The influence of thermal radiation in the energy equations is also considered. The coupled partial differential equations governing the flow are solved by using the Laplace transform technique. Exact solutions for velocity and temperature in case of both ramped and constant wall temperature as well as for concentration are obtained. It is found that velocity solutions are more general and can produce a huge number of exact solutions correlative to various fluid motions. Graphical results are provided for various embedded flow parameters and discussed in details.

  7. Computational solution of the velocity and wall shear stress distribution inside a left carotid artery under pulsatile flow conditions (United States)

    Arslan, Nurullah; Turmuş, Hakan


    Stroke is still one of the leading causes for death after heart diseases and cancer in all over the world. Strokes happen because an artery that carries blood uphill from the heart to the head is clogged. Most of the time, as with heart attacks, the problem is atherosclerosis, hardening of the arteries, calcified buildup of fatty deposits on the vessel wall. In this study, the fluid dynamic simulations were done in a left carotid bifurcation under the pulsatile flow conditions computationally. Pulsatile flow waveform is given in the paper. In vivo geometry and boundary conditions were obtained from a patient who has stenosis located at external carotid artery (ECA) and internal carotid artery (ICA) of his common carotid artery (CCA). The location of critical flow fields such as low wall shear stress (WSS), stagnation regions and separation regions were detected near the highly stenosed region and at branching region.

  8. Lattice Boltzmann simulation of shear-induced particle migration in plane Couette-Poiseuille flow: Local ordering of suspension (United States)

    Chun, Byoungjin; Kwon, Ilyoung; Jung, Hyun Wook; Hyun, Jae Chun


    The shear-induced migration of concentrated non-Brownian monodisperse suspensions in combined plane Couette-Poiseuille (C-P) flows is studied using a lattice Boltzmann simulation. The simulations are mainly performed for a particle volume fraction of ϕbulk = 0.4 and H/a = 44.3, 23.3, where H and a denote the channel height and radius of suspended particles, respectively. The simulation method is validated in two simple flows, plane Poiseuille and plane Couette flows. In the Poiseuille flow, particles migrate to the mid-plane of the channel where the local concentration is close to the limit of random-close-packing, and a random structure is also observed at the plane. In the Couette flow, the particle distribution remains in the initial uniform distribution. In the combined C-P flows, the behaviors of migration are categorized into three groups, namely, Poiseuille-dominant, Couette-dominant, and intermediate regimes, based on the value of a characteristic force, G, where G denotes the relative magnitude of the body force (P) against the wall-driving force (C). With respect to the Poiseuille-dominant regime, the location of the maximum concentration is shifted from the mid-plane to the lower wall moving in the same direction as the external body force, when G decreases. With respect to the Couette-dominant regime, the behavior is similar to that of a simple shear flow with the exception that a slightly higher concentration of particles is observed near the lower wall. However, with respect to the intermediate value of G, several layers of highly ordered particles are unexpectedly observed near the lower wall where the plane of maximum concentration is located. The locally ordered structure is mainly due to the lateral migration of particles and wall confinement. The suspended particles migrate toward a vanishingly small shear rate at the wall, and they are consequently layered into highly ordered two-dimensional structures at the high local volume fraction.

  9. Numerical simulation of turbulent shear flow using a cascade model; Numerische Simulation turbulenter Scherstroemungen mit einem Kaskadenmodell

    Energy Technology Data Exchange (ETDEWEB)

    Niemann, V.


    Homogeneous stratified turbulent shear flow was simulated numerically using the cascade model of Eggers and Grossmann (1991). The model is made applicable to homogeneous shear flow by transformation into a coordinate system that moves along with a basic flow with a constant vertical velocity gradient. The author simulated cases of stable thermal stratification with Richardson numbers in the range of 0{<=}Ri{<=}1. The simulation data were evaluated with particular regard to the anisotropic characteristics of the turbulence field. Further, the results are compared with some common equation systems up to second order. (orig.) [Deutsch] Thema der vorliegenden Dissertation ist die numerische Simulation homogener geschichteter turbulenter Scherstroemungen. Grundlage der Simulation ist das von Eggers and Grossmann (1991) entwickelte Kaskadenmodell. Dieses Modell wird durch Transformation in ein Koordinatensystem, das mit einem Grundstrom mit konstantem vertikalen Geschwindigkeitsgradienten mitbewegt wird, auf homogene Scherstroemungen angewendet. Simuliert werden Faelle mit stabiler thermischer Schichtung mit Richardsonzahlen im Bereich von 0{<=}Ri{<=}1. Der Schwerpunkt bei der Auswertung der Simulationsdaten liegt auf der Untersuchung der Anisotropie-Eigenschaften des Turbulenzfeldes. Darueber hinaus wird ein Vergleich mit einigen gaengigen Schliessungsansaetzen bis zur zweiten Ordnung gezogen. (orig.)

  10. Relativistic Shear Flow between Electron-Ion and Electron-Positron Plasmas and Astrophysical Applications (United States)

    Liang, Edison; Fu, Wen; Böttcher, Markus


    We present particle-in-cell simulation results of relativistic shear boundary layers between electron-ion and electron-positron plasmas and discuss their potential applications to astrophysics. Specifically, we find that in the case of a fast electron-positron spine surrounded by a slow-moving or stationary electron-ion sheath, lepton acceleration proceeds in a highly anisotropic manner due to electromagnetic fields created at the shear interface. While the highest-energy leptons still produce a beaming pattern (as seen in the quasi-stationary frame of the sheath) of order 1/Γ, where Γ is the bulk Lorentz factor of the spine, for lower-energy particles, the beaming is much less pronounced. This is in stark contrast to the case of pure electron-ion shear layers, in which anisotropic particle acceleration leads to significantly narrower beaming patterns than 1/Γ for the highest-energy particles. In either case, shear-layer acceleration is expected to produce strongly angle-dependent lepton (hence, emanating radiation) spectra, with a significantly harder spectrum in the forward direction than viewed from larger off-axis angles, much beyond the regular Doppler boosting effect from a co-moving isotropic lepton distribution. This may solve the problem of the need for high (and apparently arbitrarily chosen) minimum Lorentz factors of radiating electrons, often plaguing current blazar and GRB jet modeling efforts.

  11. Fragmentation and Erosion of Two-Dimensional Aggregates in Shear Flow

    NARCIS (Netherlands)

    Vassileva, Nikolina D.; van den Ende, Henricus T.M.; Mugele, Friedrich Gunther; Mellema, J.


    We consider single two-dimensional aggregates containing glass particles trapped at a water/oil or water/air interface. Two modes for aggregate break up are observed: break up by fragmentation into a few parts and break up by erosion of single particles. We have studied the critical shear rate for

  12. Depinning and heterogeneous dynamics of colloidal crystal layers under shear flow (United States)

    Gerloff, Sascha; Klapp, Sabine H. L.


    Using Brownian dynamics (BD) simulations and an analytical approach we investigate the shear-induced, nonequilibrium dynamics of dense colloidal suspensions confined to a narrow slit-pore. Focusing on situations where the colloids arrange in well-defined layers with solidlike in-plane structure, the confined films display complex, nonlinear behavior such as collective depinning and local transport via density excitations. These phenomena are reminiscent of colloidal monolayers driven over a periodic substrate potential. In order to deepen this connection, we present an effective model that maps the dynamics of the shear-driven colloidal layers to the motion of a single particle driven over an effective substrate potential. This model allows us to estimate the critical shear rate of the depinning transition based on the equilibrium configuration, revealing the impact of important parameters, such as the slit-pore width and the interaction strength. We then turn to heterogeneous systems where a layer of small colloids is sheared with respect to bottom layers of large particles. For these incommensurate systems we find that the particle transport is dominated by density excitations resembling the so-called "kink" solutions of the Frenkel-Kontorova (FK) model. In contrast to the FK model, however, the corresponding "antikinks" do not move.

  13. Influence of Sewer Sediments on Flow Friction and Shear Stress Distribution

    DEFF Research Database (Denmark)

    Perrusquia, G.; Petersen, O.; Larsen, Torben


    Most sewers contain more or less deposited sediments. The paper discusses the distribution of the boundary shear stresses and the hydraulic resistance in part-full sewer pipes with such deposited sediments. The discussion is based on a series of numerical experiments using a validated numerical...

  14. Scale-down of a high-shear pelletisation process : Flow profile and growth kinetics

    NARCIS (Netherlands)

    Ramaker, JS; Jelgersma, MA; Vonk, P; Kossen, NWF


    For the predictive modelling of the high-shear pelletisation process it is necessary to have a better understanding of the underlying mechanisms. Therefore, pelletisation experiments were carried out with microcrystalline cellulose and lactose in a coffee grinder (small-scale) and in a Gral 10

  15. Static pressure and wall shear stress distributions in air flow in a seven wire-wrapped rod bundle


    Fernandez y Fernandez, Elói; Carajilescov, Pedro


    An experimental investigation is performed in a turbulent flow in a seven wire-wrapped rod bundle, mounted in an open air facility. Static pressure distributions are measured on central and peripheral rods. By using a Preston tube, the wall shear stress profiles are experimentally obtained along the perimeter of the rods. The geometric parameters of the test section are P/D=1.20 and H/D=15. The measuring section is located at L/D=40 from the air inlet. It is observed that the dimensionless st...

  16. Rheology and ordering transitions of non-Brownian suspensions in a confined shear flow: effects of external torques. (United States)

    Yeo, Kyongmin; Maxey, Martin R


    We investigate the effect of an external torque, applied in the vorticity direction, to particles in a sheared non-Brownian suspension confined by rigid walls. At volume fractions of ϕ=0.48-0.52 such suspension flows undergo an ordering transition, developing a hexagonal structure of particle strings in the velocity gradient-vorticity plane. The hexagonal structure is disturbed by negative torques, leading to an increase in the shear viscosity. Positive torque has a favorable effect on the ordered state. However, if the magnitude of the positive torque exceeds a certain threshold, the hexagonal order begins to be weakened. Due to the significant changes in suspension microstructures, rheological parameters such as the shear and vortex viscosities exhibit nonlinear responses to the external torques. On the other hand, at lower volume fractions ϕ≤0.40, where ordered structures are not developed, suspension microstructure is not sensitive to an external torque and the apparent viscosity is a linear function of the torque.

  17. An interfacial shear term evaluation study for adiabatic dispersed air–water two-phase flow with the two-fluid model using CFD

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, S.L., E-mail: [School of Nuclear Engineering, Purdue University, West Lafayette, IN (United States); Hibiki, T.; Ishii, M. [School of Nuclear Engineering, Purdue University, West Lafayette, IN (United States); Schlegel, J.P. [Department of Mining and Nuclear Engineering, Missouri University of Science and Technology, Rolla, MO (United States); Buchanan, J.R.; Hogan, K.J. [Bettis Laboratory, Naval Nuclear Laboratory, West Mifflin, PA (United States); Guilbert, P.W. [ANSYS UK Ltd, Oxfordshire (United Kingdom)


    Highlights: • Closure form of the interfacial shear term in three-dimensional form is investigated. • Assessment against adiabatic upward bubbly air–water flow data using CFD. • Effect of addition of the interfacial shear term on the phase distribution. - Abstract: In commercially available Computational Fluid Dynamics (CFD) codes such as ANSYS CFX and Fluent, the interfacial shear term is missing in the field momentum equations. The derivation of the two-fluid model (Ishii and Hibiki, 2011) indicates the presence of this term as a momentum source in the right hand side of the field momentum equation. The inclusion of this term is considered important for proper modeling of the interfacial momentum coupling between phases. For separated flows, such as annular flow, the importance of the shear term is understood in the one-dimensional (1-D) form as the major mechanism by which the wall shear is transferred to the gas phase (Ishii and Mishima, 1984). For gas dispersed two-phase flow CFD simulations, it is important to assess the significance of this term in the prediction of phase distributions. In the first part of this work, the closure of this term in three-dimensional (3-D) form in a CFD code is investigated. For dispersed gas–liquid flow, such as bubbly or churn-turbulent flow, bubbles are dispersed in the shear layer of the continuous phase. The continuous phase shear stress is mainly due to the presence of the wall and the modeling of turbulence through the Boussinesq hypothesis. In a 3-D simulation, the continuous phase shear stress can be calculated from the continuous fluid velocity gradient, so that the interfacial shear term can be closed using the local values of the volume fraction and the total stress of liquid phase. This form also assures that the term acts as an action-reaction force for multiple phases. In the second part of this work, the effect of this term on the volume fraction distribution is investigated. For testing the model two

  18. Experimental Studies of Shock Interaction Phenomena Associated with Hypersonic Airbreathing Propulsion

    National Research Council Canada - National Science Library

    Holden, Michael


    ... and double cone configurations in hypersonic flow. In the best Navier-Stokes solutions the structure and density of the flowfield was captured exactly over both the hollow cylinder/flare and double cone models...

  19. Experimental investigation of hypersonic buzz on a high cross-range shuttle configuration (United States)

    Goldman, R. L.; Obremski, H. J.


    A wind tunnel investigation has been conducted to determine the nature of an unsteady hypersonic flow phenomenon, often referred to as hypersonic buzz, on a 1:100 scale model representative of a high cross-range shuttle configuration. The tests, conducted in helium at a nominal Mach number of 17.5, were specifically directed at obtaining a better understanding of the character of the hypersonic flow field in the vicinity of a deflected control surface. Power spectral densities and root mean squared values of surface pressure fluctuations are presented along with observations made from high speed motion pictures, schlieren and oil flow photographs. Flap deflections of 0, 20, 30, 35, 40 and 60 deg were tested at various angles of attack from 0 deg to 37 deg. It is quite clear from these tests that, under certain conditions, extremely unstable hypersonic flow patterns are formed.

  20. A Laser-Based Diagnostic Suite for Hypersonic Test Facilities Project (United States)

    National Aeronautics and Space Administration — In this SBIR effort, Los Gatos Research (LGR) proposes to develop a suite of laser-based diagnostics for the study of reactive and non-reactive hypersonic flows....

  1. Does arterial shear explain the magnitude of flow-mediated dilation?: a comparison between young and older humans. (United States)

    Thijssen, Dick H J; Bullens, Lauren M; van Bemmel, Marieke M; Dawson, Ellen A; Hopkins, Nicola; Tinken, Toni M; Black, Mark A; Hopman, Maria T E; Cable, N Timothy; Green, Daniel J


    Flow-mediated dilatation (FMD) has become a commonly applied approach for the assessment of vascular function and health in humans. Recent studies emphasize the importance of normalizing the magnitude of FMD to its apparent eliciting stimulus, the postdeflation arterial shear. However, the relationship between shear stress and the magnitude of FMD may differ between groups. The aim of this study was to examine the relationship between the brachial FMD and four different indexes of postdeflation shear rate (SR) in healthy children (n = 51, 10 +/- 1 yr) and young (n = 57, 27 +/- 6 yr) and older (n = 27, 58 +/- 4 yr) adults. SR was calculated from deflation (time 0) until 9 s (peak), 30 s (0-30), 60 s (0-60), or until the time-to-peak diameter in each individual (0-ttp). Edge detection and wall tracking of high resolution B-mode arterial ultrasound images were used to calculate the conduit artery diameter. In young adults, the brachial artery FMD demonstrated a significant correlation with the area under the SR curve (SR(AUC)) 0-30 s (r(2) = 0.12, P = 0.009), 0-60 s (r(2) = 0.14, P = 0.005), and 0-ttp (r(2) = 0.14, P = 0.005) but not for the peak SR(AUC) 0-9 s (r(2) = 0.04, P = 0.12). In children and older adults, the magnitude of the brachial artery FMD did not correlate with any of the four SR(AUC) stimuli. These findings suggest that in young subjects, postdeflation SR(AUC) correlates moderately with the magnitude of the FMD response. However, the relationship between FMD and postdeflation shear appears to be age dependent, with less evidence for an association in younger and older subjects. Therefore, we support presenting SR(AUC) stimuli but not normalizing FMD responses for the SR(AUC) when using this technique.

  2. Coalescence in PLA-PBAT blends under shear flow: Effects of blend preparation and PLA molecular weight

    Energy Technology Data Exchange (ETDEWEB)

    Nofar, M. [Center for High Performance Polymer and Composite Systems (CREPEC), Chemical Engineering Department, Polytechnique Montreal, Montreal, Quebec H3T 1J4, Canada and CREPEC, Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 2B2 (Canada); Heuzey, M. C.; Carreau, P. J., E-mail: [Center for High Performance Polymer and Composite Systems (CREPEC), Chemical Engineering Department, Polytechnique Montreal, Montreal, Quebec H3T 1J4 (Canada); Kamal, M. R. [CREPEC, Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 2B2 (Canada); Randall, J. [NatureWorks LLC, 15305 Minnetonka Boulevard, Minnetonka, Minnesota 55345 (United States)


    Blends containing 75 wt. % of an amorphous polylactide (PLA) with two different molecular weights and 25 wt. % of a poly[(butylene adipate)-co-terephthalate] (PBAT) were prepared using either a Brabender batch mixer or a twin-screw extruder. These compounds were selected because blending PLA with PBAT can overcome various drawbacks of PLA such as its brittleness and processability limitations. In this study, we investigated the effects of varying the molecular weight of the PLA matrix and of two different mixing processes on the blend morphology and, further, on droplet coalescence during shearing. The rheological properties of these blends were investigated and the interfacial properties were analyzed using the Palierne emulsion model. Droplet coalescence was investigated by applying shear flows of 0.05 and 0.20 s{sup −1} at a fixed strain of 60. Subsequently, small amplitude oscillatory shear tests were conducted to investigate changes in the viscoelastic properties. The morphology of the blends was also examined using scanning electron microscope (SEM) micrographs. It was observed that the PBAT droplets were much smaller when twin-screw extrusion was used for the blend preparation. Shearing at 0.05 s{sup −1} induced significant droplet coalescence in all blends, but coalescence and changes in the viscoelastic properties were much more pronounced for the PLA-PBAT blend based on a lower molecular weight PLA. The viscoelastic responses were also somehow affected by the thermal degradation of the PLA matrix during the experiments.

  3. On the effect of shear thinning rheology on hemodynamic characteristics in basilar tip aneurysms with implication of two distinct flow patterns

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Wook [Univ. of Ulsan, Ulsan (Korea, Republic of)


    Intra aneurysmal hemodynamics such as wall shear stress and complex flow structures have been implicated as one of the important factors on the growth and risk of rupture of an aneurysm. In this study, the sensitivity of intra-aneurysmal blood flow dynamics to the shear thinning rheological model is investigated by using the idealized geometries of a basilar tip aneurysm with two representative anterior posterior (AP) tilting angles (2.deg. and 30.deg.). By choice of different rheological models, time averaged hemodynamic factors such as wall shear stress, oscillatory shear index and relative residence time exhibited only minor effects. However, highly unstable flow present in idealized aneurysm model with 2 .deg. AP tilting angle facilitated an evident change in the instantaneous local flow dynamics with a considerable increase in effective viscosity. Nevertheless, the distinct hemodynamic phenotype, which characterizes the gross intraaneurysmal flow pattern, was independent of the choice of rheological model. This result suggests that the shear thinning viscous effect is of secondary importance in the gross hemodynamics in a basilar tip aneurysm but is appreciably enhanced on the instantaneous hemodynamics with unstable complex flow structures.

  4. Effects of Coating Materials and Processing Conditions on Flow Enhancement of Cohesive Acetaminophen Powders by High-Shear Processing With Pharmaceutical Lubricants. (United States)

    Wei, Guoguang; Mangal, Sharad; Denman, John; Gengenbach, Thomas; Lee Bonar, Kevin; Khan, Rubayat I; Qu, Li; Li, Tonglei; Zhou, Qi Tony


    This study has investigated the surface coating efficiency and powder flow improvement of a model cohesive acetaminophen powder by high-shear processing with pharmaceutical lubricants through 2 common equipment, conical comil and high-shear mixer. Effects of coating materials and processing parameters on powder flow and surface coating coverage were evaluated. Both Carr's index and shear cell data indicated that processing with the lubricants using comil or high-shear mixer substantially improved the flow of the cohesive acetaminophen powder. Flow improvement was most pronounced for those processed with 1% wt/wt magnesium stearate, from "cohesive" for the V-blended sample to "easy flowing" for the optimally coated sample. Qualitative and quantitative characterizations demonstrated a greater degree of surface coverage for high-shear mixing compared with comilling; nevertheless, flow properties of the samples at the corresponding optimized conditions were comparable between 2 techniques. Scanning electron microscopy images demonstrated different coating mechanisms with magnesium stearate or l-leucine (magnesium stearate forms a coating layer and leucine coating increases surface roughness). Furthermore, surface coating with hydrophobic magnesium stearate did not retard the dissolution kinetics of acetaminophen. Future studies are warranted to evaluate tableting behavior of such dry-coated pharmaceutical powders. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  5. Molecular simulation of flow-enhanced nucleation in n-eicosane melts under steady shear and uniaxial extension (United States)

    Nicholson, David A.; Rutledge, Gregory C.


    Non-equilibrium molecular dynamics is used to study crystal nucleation of n-eicosane under planar shear and, for the first time, uniaxial extension. A method of analysis based on the mean first-passage time is applied to the simulation results in order to determine the effect of the applied flow field type and strain rate on the steady-state nucleation rate and a characteristic growth rate, as well as the effects on kinetic parameters associated with nucleation: the free energy barrier, critical nucleus size, and monomer attachment pre-factor. The onset of flow-enhanced nucleation (FEN) occurs at a smaller critical strain rate in extension as compared to shear. For strain rates larger than the critical rate, a rapid increase in the nucleation rate is accompanied by decreases in the free energy barrier and critical nucleus size, as well as an increase in chain extension. These observations accord with a mechanism in which FEN is caused by an increase in the driving force for crystallization due to flow-induced entropy reduction. At high applied strain rates, the free energy barrier, critical nucleus size, and degree of stretching saturate, while the monomer attachment pre-factor and degree of orientational order increase steadily. This trend is indicative of a significant diffusive contribution to the nucleation rate under intense flows that is correlated with the degree of global orientational order in a nucleating system. Both flow fields give similar results for all kinetic quantities with respect to the reduced strain rate, which we define as the ratio of the applied strain rate to the critical rate. The characteristic growth rate increases with increasing strain rate, and shows a correspondence with the nucleation rate that does not depend on the type of flow field applied. Additionally, a structural analysis of the crystalline clusters indicates that the flow field suppresses the compaction and crystalline ordering of clusters, leading to the formation of

  6. Molecular simulation of flow-enhanced nucleation in n-eicosane melts under steady shear and uniaxial extension. (United States)

    Nicholson, David A; Rutledge, Gregory C


    Non-equilibrium molecular dynamics is used to study crystal nucleation of n-eicosane under planar shear and, for the first time, uniaxial extension. A method of analysis based on the mean first-passage time is applied to the simulation results in order to determine the effect of the applied flow field type and strain rate on the steady-state nucleation rate and a characteristic growth rate, as well as the effects on kinetic parameters associated with nucleation: the free energy barrier, critical nucleus size, and monomer attachment pre-factor. The onset of flow-enhanced nucleation (FEN) occurs at a smaller critical strain rate in extension as compared to shear. For strain rates larger than the critical rate, a rapid increase in the nucleation rate is accompanied by decreases in the free energy barrier and critical nucleus size, as well as an increase in chain extension. These observations accord with a mechanism in which FEN is caused by an increase in the driving force for crystallization due to flow-induced entropy reduction. At high applied strain rates, the free energy barrier, critical nucleus size, and degree of stretching saturate, while the monomer attachment pre-factor and degree of orientational order increase steadily. This trend is indicative of a significant diffusive contribution to the nucleation rate under intense flows that is correlated with the degree of global orientational order in a nucleating system. Both flow fields give similar results for all kinetic quantities with respect to the reduced strain rate, which we define as the ratio of the applied strain rate to the critical rate. The characteristic growth rate increases with increasing strain rate, and shows a correspondence with the nucleation rate that does not depend on the type of flow field applied. Additionally, a structural analysis of the crystalline clusters indicates that the flow field suppresses the compaction and crystalline ordering of clusters, leading to the formation of

  7. Turbulent shear flow downstream of a sphere with and without an o-ring located over a plane boundary (United States)

    Ozgoren, Muammer; Okbaz, Abdulkerim; Dogan, Sercan; Sahin, Besir; Akilli, Huseyin


    Flow-structure interaction of separated shear flow from the sphere and a flat plate was investigated by using dye visualization and the particle image velocimetry technique. Later, a passive control method was applied with 2mm oring located on the sphere surface at 55° from front stagnation point. The experiments were carried out in open water channel for Reynolds number value of Re=5000. Flow characteristics have been examined in terms of the 2-D instantaneous and time-averaged velocity vectors, patterns of vorticity, streamlines, rms of velocity fluctuations and Reynolds stress variations and discussed from the point of flow physics, vortex formation, lengths of large-scale Karman Vortex Streets and Kelvin-Helmholtz vortices depending on the sphere locations over the flat plate. It is demonstrated that the gap flow occurring between the sphere bottom point and the flat plate surface has very high scouring effect until h/d=0.25 and then unsymmetrical flow structure of the wake region keeps up to h/D=1.0 for smooth sphere. For the sphere with o-ring, the wake flow structure becomes symmetrical at smaller gap ratios and reattachment point on the flat plate surface occurs earlier. Moreover, o-ring on the sphere diminishes peak magnitudes of the flow characteristics and thus it is expected that the flow-induced forces will be lessened both on the sphere and flat plate surface. Vortex formation lengths and maximum value occurring points become closer locations to the rear surface of the sphere with o-ring.

  8. A multi-axis confocal rheoscope for studying shear flow of structured fluids

    KAUST Repository

    Lin, Neil Y. C.


    We present a new design for a confocal rheoscope that enables uniform uniaxial or biaxial shear. The design consists of two precisely positioned parallel plates with a gap that can be adjusted down to 2 ±0.1 μm, allowing for the exploration of confinement effects. By using our shear cell in conjunction with a biaxial force measurement device and a high-speed confocal microscope, we are able to measure the real-time biaxial stress while simultaneously imaging the material three-dimensional structure. We illustrate the importance of the instrument capabilities by discussing the applications of this instrument in current and future research topics in colloidal suspensions. © 2014 AIP Publishing LLC.

  9. Causality-violating Lorentzian manifolds admitting a shear-free timelike flow

    Energy Technology Data Exchange (ETDEWEB)

    Plaue, Matthias


    The Goedel spacetime is an important cosmological solution of Einstein's field equations of gravitation. Although it does not offer a viable description of the physical universe, it illustrates the theoretical possibility of time travel. This work investigates world models similar to the Goedel spacetime with particular emphasis on relations between kinematical properties (shear, vorticity, acceleration, expansion) and causality violation, i.e., the formation of closed timelike curves.

  10. Analysis of Blood Flow Through a Viscoelastic Artery using the Cosserat Continuum with the Large-Amplitude Oscillatory Shear Deformation Model

    DEFF Research Database (Denmark)

    Sedaghatizadeh, N.; Atefi, G.; Fardad, A. A.


    In this investigation, semiempirical and numerical studies of blood flow in a viscoelastic artery were performed using the Cosserat continuum model. The large-amplitude oscillatory shear deformation model was used to quantify the nonlinear viscoelastic response of blood flow. The finite difference...

  11. Influence of blood flow on shear stress responsive genes in the development of cardiac malformations : the involvement of the endothelin-1 pathway

    NARCIS (Netherlands)

    Groenendijk, Bianca C.W.


    Ligation of the right lateral vitelline vein in chicken embryos (venous clip) results in changes in the intracardial blood flow patterns, and in functional and morphological cardiovascular defects. This demonstrates that blood flow, of which shear stress is a derivative, plays an important role in

  12. Complex, multilayered azimuthal anisotropy beneath Tibet: evidence for co-existing channel flow and pure-shear crustal thickening (United States)

    Agius, Matthew R.; Lebedev, Sergei


    Of the two debated, end-member models for the late-Cenozoic thickening of Tibetan crust, one invokes 'channel flow' (rapid viscous flow of the mid-lower crust, driven by topography-induced pressure gradients and transporting crustal rocks eastward) and the other 'pure shear' (faulting and folding in the upper crust, with viscous shortening in the mid-lower crust). Deep-crustal deformation implied by each model is different and would produce different anisotropic rock fabric. Observations of seismic anisotropy can thus offer a discriminant. We use broad-band phase-velocity curves-each a robust average of tens to hundreds of measurements-to determine azimuthal anisotropy in the entire lithosphere-asthenosphere depth range and constrain its amplitude. Inversions of the differential dispersion from path pairs, region-average inversions and phase-velocity tomography yield mutually consistent results, defining two highly anisotropic layers with different fast-propagation directions within each: the middle crust and the asthenosphere. In the asthenosphere beneath central and eastern Tibet, anisotropy is 2-4 per cent and has an NNE-SSW fast-propagation azimuth, indicating flow probably driven by the NNE-ward, shallow-angle subduction of India. The distribution and complexity of published shear wave splitting measurements can be accounted for by the different anisotropy in the mid-lower crust and asthenosphere. The estimated splitting times that would be accumulated in the crust alone are 0.25-0.8 s; in the upper mantle-0.5-1.2 s, depending on location. In the middle crust (20-45 km depth) beneath southern and central Tibet, azimuthal anisotropy is 3-5 and 4-6 per cent, respectively, and its E-W fast-propagation directions are parallel to the current extension at the surface. The rate of the extension is relatively low, however, whereas the large radial anisotropy observed in the middle crust requires strong alignment of mica crystals, implying large finite strain and

  13. A two-dimensional continuum model of biofilm growth incorporating fluid flow and shear stress based detachment

    KAUST Repository

    Duddu, Ravindra


    We present a two-dimensional biofilm growth model in a continuum framework using an Eulerian description. A computational technique based on the eXtended Finite Element Method (XFEM) and the level set method is used to simulate the growth of the biofilm. The model considers fluid flow around the biofilm surface, the advection-diffusion and reaction of substrate, variable biomass volume fraction and erosion due to the interfacial shear stress at the biofilm-fluid interface. The key assumptions of the model and the governing equations of transport, biofilm kinetics and biofilm mechanics are presented. Our 2D biofilm growth results are in good agreement with those obtained by Picioreanu et al. (Biotechnol Bioeng 69(5):504-515, 2000). Detachment due to erosion is modeled using two continuous speed functions based on: (a) interfacial shear stress and (b) biofilm height. A relation between the two detachment models in the case of a 1D biofilm is established and simulated biofilm results with detachment in 2D are presented. The stress in the biofilm due to fluid flow is evaluated and higher stresses are observed close to the substratum where the biofilm is attached. © 2008 Wiley Periodicals, Inc.

  14. A new highly adaptable design of shear-flow device for orientation of macromolecules for Linear Dichroism (LD) measurement

    KAUST Repository

    Lundahl, P. Johan


    This article presents a new design of flow-orientation device for the study of bio-macromolecules, including DNA and protein complexes, as well as aggregates such as amyloid fibrils and liposome membranes, using Linear Dichroism (LD) spectroscopy. The design provides a number of technical advantages that should make the device inexpensive to manufacture, easier to use and more reliable than existing techniques. The degree of orientation achieved is of the same order of magnitude as that of the commonly used concentric cylinders Couette flow cell, however, since the device exploits a set of flat strain-free quartz plates, a number of problems associated with refraction and birefringence of light are eliminated, increasing the sensitivity and accuracy of measurement. The device provides similar shear rates to those of the Couette cell but is superior in that the shear rate is constant across the gap. Other major advantages of the design is the possibility to change parts and vary sample volume and path length easily and at a low cost. © 2011 The Royal Society of Chemistry.

  15. Hypersonic boundary layer stabilization by using a wavy surface (United States)

    Kirilovskiy, S. V.; Poplavskaya, T. V.


    Numerical simulation of hypersonic (M∞=6) flow and evolution of disturbances on a smooth plate and a shallow grooved plate was performed by solving two-dimensional Navier– Stokes equations. Computational soft-ware verification was conducted by comparison with existing data of pressure pulsations on plates surface. It was showed that wavy surface significantly decrease pressure pulsations on plate surface and does not increase the value of mean heat fluxes. Data about effect of wavy surfaces with different form on the disturbances intensity in hypersonic boundary layer was obtained.

  16. Unsteady compressible boundary layer flow over a circular cone near a plane of symmetry (United States)

    Chamkha, A. J.; Takhar, H. S.; Nath, G.


    An analysis has been performed to study the unsteady laminar compressible boundary layer governing the hypersonic flow over a circular cone at an angle of attack near a plane of symmetry with either inflow or outflow in the presence of suction. The flow is assumed to be steady at time t=0 and at t>0 it becomes unsteady due to the time-dependent free stream velocity which varies arbitrarily with time. The nonlinear coupled parabolic partial differential equations under boundary layer approximations have been solved by using an implicit finite-difference method. It is found that suction plays an important role in stabilising the fluid motion and in obtaining unique solution of the problem. The effect of the cross flow parameter is found to be more pronounced on the cross flow surface shear stress than on the streamwise surface shear stress and surface heat transfer. Beyond a certain value of the cross flow parameter overshoot in the cross flow velocity occurs and the magnitude of this overshoot increases with the cross flow parameter. The time variation of the streamwise surface shear stress is more significant than that of the cross flow surface shear stress and surface heat transfer. The suction and the total enthalpy at the wall exert strong influence on the streamwise and cross flow surface shear stresses and the surface heat transfer except that the effect of suction on the cross flow surface shear stress is small.

  17. Orientation-dependent microstructure and shear flow behavior of extruded Mg–Li–Zn alloys

    Energy Technology Data Exchange (ETDEWEB)

    Karami, M.; Mahmudi, R., E-mail:


    The microstructural and textural evolutions together with the orientation dependencies of mechanical properties of the extruded Mg–6Li–1Zn (LZ61), Mg–8Li–1Zn (LZ81) and Mg–12Li–1Zn (LZ121) alloys were investigated. The shear punch testing (SPT) method was employed to evaluate the room- and high-temperature (200–300 °C) mechanical anisotropy of the extruded materials. Microstructural analysis revealed that, despite a great discontinuous dynamic recrystallization (DDRX) occurred in the extrusion direction (ED) and normal direction (ND), the microstructural anisotropy was observed in all extruded materials, the effect which was more pronounced in the LZ81 alloy by developing banded structure in the ND condition. Textural studies in both hcp LZ61 and LZ81-α phase showed a fiber-type texture with the basal planes being parallel to the ED after extrusion. For the LZ81 alloy, however, the interfering presence of β phase affects the LZ81-α-phase texture by reducing the intensity of the maximum orientations of the basal and prismatic planes. Similar weakened bimodal type texture was formed in the bcc-structured LZ81-β phase, where some <110> poles were located parallel to the ED along with developing some other poles of a fiber-type character. It was also found that the abnormal grain growth might have been encouraged by the strong texture developed in the extruded LZ121 alloy. The SPT results indicated that the texture-dependent hcp LZ61 alloy showed higher shear strength in the ND condition than the ED condition, caused by the texture strengthening effect. As the Li content and deformation temperature increase, the texture dependence of strength properties, and thus, the mechanical anisotropy, decrease so that the LZ121-ND sample showed lower shear strength than the ED specimen due to the greater grain sizes achieved in the ND condition.

  18. Numerical Simulations of Underground Explosions: Effect of Joints Near the Source on Energy Coupling, Shear Motions and Gas Flow (United States)

    Antoun, T.; Ezzedine, S. M.; Vorobiev, O.; Glenn, L. A.


    We have performed 3D high resolution simulations of underground explosions conducted recently in jointed rock outcrop as part of the Source Physics Experiment (SPE). The main goal is to understand the nature of the shear motions recorded in the near field at depth. Several hypotheses have been proposed to explain the genesis of shear motions: 1) sliding on the joints, 2) wave conversion at the material boundaries and 3) non sphericity of the source. We suggest yet another mechanism to be responsible for some shear wave generation when the cracks or joints are present in the rock mass containing the source and the explosive products find their way into the cracks. In order to investigate this mechanism, we have conducted several high resolution simulations of the source region using an Eulerian hydrodynamic code GEODYN. We explored the effect of joint orientations, number of family of fracture, energy deposition, joint aperture size, and joint spacing on the overall development of the source itself, sustained damage around the source and shear wave polarization and motions in the vicinity of the source. We have observed that waves interact with the joints and refraction and diffraction of the wave intensify the complexity of the wave field. It is worth noting that the fracture network topology has also dramatically been affected. It is expected that after the pressure has been released and the energy has been dissipated that source cavity may shrink to a different size but will sustain considerable irreversible damage which affect subsequent shots if they were to be conducted in the vicinity or at the same depth. Fracture network connectivity has drastically changed which will affect wave motions and flow of gases. To explore those effects, we have coupled STOTRAN code, which handles flow, mass and heat transport of fluids and gases in fractures and fractured porous media with the GEODYN code. We will present recent 2D and 3D simulations of typical settings for SPE

  19. Ordering transition of non-Brownian suspensions in confined steady shear flow. (United States)

    Yeo, Kyongmin; Maxey, Martin R


    We report on ordering transitions of concentrated non-Brownian suspensions confined by two parallel walls under steady shear. At a volume fraction as low as ϕ=0.48, particles near the wall assemble into strings which are organized as a simple hexagonal array by hydrodynamic interactions. The suspension exhibits a complex phase behavior depending on the ratio of the channel height to the particle radius, Hy/a. In a strongly confined system Hy/aplane changes between hexagonal and rectangular structures depending on Hy/a. It is shown that the relative viscosity is a function of both the volume fraction and the ordered state.

  20. Flow under standing waves Part 1. Shear stress distribution, energy flux and steady streaming

    DEFF Research Database (Denmark)

    Gislason, Kjartan; Fredsøe, Jørgen; Deigaard, Rolf


    The conditions for energy flux, momentum flux and the resulting streaming velocity are analysed for standing waves formed in front of a fully reflecting wall. The exchange of energy between the outer wave motion and the near bed oscillatory boundary layer is considered, determining the horizontal...... energy flux inside and outside the boundary layer. The momentum balance, the mean shear stress and the resulting time averaged streaming velocities are determined. For a laminar bed boundary layer the analysis of the wave drift gives results similar to the original work of Longuet-Higgins from 1953...