Bulk viscosity and cosmological evolution
Beesham, A.
1996-01-01
In a recent interesting paper, Pimentel and Diaz-Rivera (Nuovo Cimento B, 109(1994) 1317) have derived several solutions with bulk viscosity in homogeneous and isotropic cosmological models. They also discussed the properties of these solutions. In this paper the authors relate the solutions of Pimentel and Diaz-Rivera by simple transformations to previous solutions published in the literature, showing that all the solutions can be derived from the known existing ones. Drawbacks to these approaches of studying bulk viscosity are pointed out, and better approaches indicated
Bulk viscosity of molecular fluids
Jaeger, Frederike; Matar, Omar K.; Müller, Erich A.
2018-05-01
The bulk viscosity of molecular models of gases and liquids is determined by molecular simulations as a combination of a dilute gas contribution, arising due to the relaxation of internal degrees of freedom, and a configurational contribution, due to the presence of intermolecular interactions. The dilute gas contribution is evaluated using experimental data for the relaxation times of vibrational and rotational degrees of freedom. The configurational part is calculated using Green-Kubo relations for the fluctuations of the pressure tensor obtained from equilibrium microcanonical molecular dynamics simulations. As a benchmark, the Lennard-Jones fluid is studied. Both atomistic and coarse-grained force fields for water, CO2, and n-decane are considered and tested for their accuracy, and where possible, compared to experimental data. The dilute gas contribution to the bulk viscosity is seen to be significant only in the cases when intramolecular relaxation times are in the μs range, and for low vibrational wave numbers (<1000 cm-1); This explains the abnormally high values of bulk viscosity reported for CO2. In all other cases studied, the dilute gas contribution is negligible and the configurational contribution dominates the overall behavior. In particular, the configurational term is responsible for the enhancement of the bulk viscosity near the critical point.
Longitudinal and bulk viscosities of expanded rubidium
Zaheri, Ali Hossein Mohammad; Srivastava, Sunita; Tankeshwar, K
2003-01-01
First three non-vanishing sum rules for the bulk and longitudinal stress auto-correlation functions have been evaluated for liquid Rb at six thermodynamic states along the liquid-vapour coexistence curve. The Mori memory function formalism and the frequency sum rules have been used to calculate bulk and longitudinal viscosities. The results thus obtained for the ratio of bulk viscosity to shear viscosity have been compared with experimental and other theoretical predictions wherever available. The values of the bulk viscosity have been found to be more than the corresponding values of the shear viscosity for all six thermodynamic states investigated here
On the bulk viscosity of relativistic matter
Canuto, V.; Hsieh, S.-H.
1978-01-01
An expression for the bulk viscosity coefficient in terms of the trace of the hydrodynamic energy-stress tensor is derived from the Kubo formula. This, along with a field-theoretic model of an interacting system of scalar particles, suggests that at high temperatures the bulk viscosity tends to zero, contrary to the often quoted resuls of Iso, Mori and Namiki. (author)
Bulk-viscosity-driven asymmetric inflationary universe
Waga, I.; Lima, J.A.S.; Portugal, R.
1987-01-01
A primordial net bosinic charge is introduced in the context of the bulk-viscosity-driven inflationary models. The analysis is carried through a macroscopic point of view in the framework of the causal thermodynamic theory. The conditions for having exponetial and generalized inflation are obtained. A phenomenological expression for the bulk viscosity coefficient is also derived. (author) [pt
Bulk viscosity in holographic Lifshitz hydrodynamics
Hoyos, Carlos; Kim, Bom Soo; Oz, Yaron
2014-01-01
We compute the bulk viscosity in holographic models dual to theories with Lifshitz scaling and/or hyperscaling violation, using a generalization of the bulk viscosity formula derived in arXiv:1103.1657 from the null focusing equation. We find that only a class of models with massive vector fields are truly Lifshitz scale invariant, and have a vanishing bulk viscosity. For other holographic models with scalars and/or massless vector fields we find a universal formula in terms of the dynamical exponent and the hyperscaling violation exponent
Bulk viscosity in 2SC quark matter
Alford, Mark G; Schmitt, Andreas
2007-01-01
The bulk viscosity of three-flavour colour-superconducting quark matter originating from the nonleptonic process u + s ↔ u + d is computed. It is assumed that up and down quarks form Cooper pairs while the strange quark remains unpaired (2SC phase). A general derivation of the rate of strangeness production is presented, involving contributions from a multitude of different subprocesses, including subprocesses that involve different numbers of gapped quarks as well as creation and annihilation of particles in the condensate. The rate is then used to compute the bulk viscosity as a function of the temperature, for an external oscillation frequency typical of a compact star r-mode. We find that, for temperatures far below the critical temperature T c for 2SC pairing, the bulk viscosity of colour-superconducting quark matter is suppressed relative to that of unpaired quark matter, but for T ∼> T c /30 the colour-superconducting quark matter has a higher bulk viscosity. This is potentially relevant for the suppression of r-mode instabilities early in the life of a compact star
A bulk viscosity driven inflationary model
Waga, I.; Falcao, R.C.; Chanda, R.
1985-01-01
Bulk viscosity associated with the production of heavy particles during the GUT phase transition can lead to exponential or 'generalized' inflation. The condition of inflation proposed is independent of the details of the phase transition and remains unaltered in presence of a cosmological constant. Such mechanism avoids the extreme supercooling and reheating needed in the usual inflationary models. The standard baryongenesis mechanism can be maintained. (Author) [pt
On bulk viscosity and moduli decay
Laine, Mikko
2010-01-01
This pedagogically intended lecture, one of four under the header 'Basics of thermal QCD', reviews an interesting relationship, originally pointed out by Boedeker, that exists between the bulk viscosity of Yang-Mills theory (of possible relevance to the hydrodynamics of heavy ion collision experiments) and the decay rate of scalar fields coupled very weakly to a heat bath (appearing in some particle physics inspired cosmological scenarios). This topic serves, furthermore, as a platform on which a number of generic thermal field theory concepts are illustrated. The other three lectures (on the QCD equation of state and the rates of elastic as well as inelastic processes experienced by heavy quarks) are recapitulated in brief encyclopedic form. (author)
Bulk viscosity of spin-one color superconductors
Sa' d, Basil A.
2009-08-27
The bulk viscosity of several quark matter phases is calculated. It is found that the effect of color superconductivity is not trivial, it may suppress, or enhance the bulk viscosity depending on the critical temperature and the temperature at which the bulk viscosity is calculated. Also, is it found that the effect of neutrino-emitting Urca processes cannot be neglected in the consideration of the bulk viscosity of strange quark matter. The results for the bulk viscosity of strange quark matter are used to calculate the r-mode instability window of quark stars with several possible phases. It is shown that each possible phase has a different structure for the r-mode instability window. (orig.)
Temperature dependence of bulk viscosity in water using acoustic spectroscopy
Holmes, M J; Parker, N G; Povey, M J W
2011-01-01
Despite its fundamental role in the dynamics of compressible fluids, bulk viscosity has received little experimental attention and there remains a paucity of measured data. Acoustic spectroscopy provides a robust and accurate approach to measuring this parameter. Working from the Navier-Stokes model of a compressible fluid one can show that the bulk viscosity makes a significant and measurable contribution to the frequency-squared acoustic attenuation. Here we employ this methodology to determine the bulk viscosity of Millipore water over a temperature range of 7 to 50 0 C. The measured attenuation spectra are consistent with the theoretical predictions, while the bulk viscosity of water is found to be approximately three times larger than its shear counterpart, reinforcing its significance in acoustic propagation. Moreover, our results demonstrate that this technique can be readily and generally applied to fluids to accurately determine their temperature dependent bulk viscosities.
Bulk viscosity of spin-one color superconductors
Sa'd, Basil A.
2009-01-01
The bulk viscosity of several quark matter phases is calculated. It is found that the effect of color superconductivity is not trivial, it may suppress, or enhance the bulk viscosity depending on the critical temperature and the temperature at which the bulk viscosity is calculated. Also, is it found that the effect of neutrino-emitting Urca processes cannot be neglected in the consideration of the bulk viscosity of strange quark matter. The results for the bulk viscosity of strange quark matter are used to calculate the r-mode instability window of quark stars with several possible phases. It is shown that each possible phase has a different structure for the r-mode instability window. (orig.)
Singularities and Entropy in Bulk Viscosity Dark Energy Model
Meng Xinhe; Dou Xu
2011-01-01
In this paper bulk viscosity is introduced to describe the effects of cosmic non-perfect fluid on the cosmos evolution and to build the unified dark energy (DE) with (dark) matter models. Also we derive a general relation between the bulk viscosity form and Hubble parameter that can provide a procedure for the viscosity DE model building. Especially, a redshift dependent viscosity parameter ζ ∝ λ 0 + λ 1 (1 + z) n proposed in the previous work [X.H. Meng and X. Dou, Commun. Theor. Phys. 52 (2009) 377] is investigated extensively in this present work. Further more we use the recently released supernova dataset (the Constitution dataset) to constrain the model parameters. In order to differentiate the proposed concrete dark energy models from the well known ΛCDM model, statefinder diagnostic method is applied to this bulk viscosity model, as a complementary to the Om parameter diagnostic and the deceleration parameter analysis performed by us before. The DE model evolution behavior and tendency are shown in the plane of the statefinder diagnostic parameter pair {r, s} as axes where the fixed point represents the ΛCDM model. The possible singularity property in this bulk viscosity cosmology is also discussed to which we can conclude that in the different parameter regions chosen properly, this concrete viscosity DE model can have various late evolution behaviors and the late time singularity could be avoided. We also calculate the cosmic entropy in the bulk viscosity dark energy frame, and find that the total entropy in the viscosity DE model increases monotonously with respect to the scale factor evolution, thus this monotonous increasing property can indicate an arrow of time in the universe evolution, though the quantum version of the arrow of time is still very puzzling. (geophysics, astronomy, and astrophysics)
Bulk viscosity, interaction and the viability of phantom solutions
Leyva, Yoelsy; Sepulveda, Mirko [Universidad de Tarapaca, Departamento de Fisica, Facultad de Ciencias, Arica (Chile)
2017-06-15
We study the dynamics of a bulk viscosity model in the Eckart approach for a spatially flat Friedmann-Robertson-Walker (FRW) Universe. We have included radiation and dark energy, assumed as perfect fluids, and dark matter treated as an imperfect fluid having bulk viscosity. We also introduce an interaction term between the dark matter and dark energy components. Considering that the bulk viscosity is proportional to the dark matter energy density and imposing a complete cosmological dynamics, we find bounds on the bulk viscosity in order to reproduce a matter-dominated era (MDE). This constraint is independent of the interaction term. Some late time phantom solutions are mathematically possible. However, the constraint imposed by a MDE restricts the interaction parameter, in the phantom solutions, to a region consistent with a null value, eliminating the possibility of late time stable solutions with w < -1. From the different cases that we study, the only possible scenario, with bulk viscosity and interaction term, belongs to the quintessence region. In the latter case, we find bounds on the interaction parameter compatible with latest observational data. (orig.)
Bulk and shear viscosities of hot and dense hadron gas
Kadam, Guru Prakash; Mishra, Hiranmaya
2015-01-01
We estimate the bulk and the shear viscosity at finite temperature and baryon densities of hadronic matter within a hadron resonance gas model which includes a Hagedorn spectrum. The parameters of the Hagedorn spectrum are adjusted to fit recent lattice QCD simulations at finite chemical potential. For the estimation of the bulk viscosity we use low energy theorems of QCD for the energy momentum tensor correlators. For the shear viscosity coefficient, we estimate the same using molecular kinetic theory to relate the shear viscosity coefficient to average momentum of the hadrons in the hot and dense hadron gas. The bulk viscosity to entropy ratio increases with chemical potential and is related to the reduction of velocity of sound at nonzero chemical potential. The shear viscosity to entropy ratio on the other hand, shows a nontrivial behavior with the ratio decreasing with chemical potential for small temperatures but increasing with chemical potential at high temperatures and is related to decrease of entropy density with chemical potential at high temperature due to finite volume of the hadrons
Anisotropic cosmological models with bulk viscosity and particle ...
4.1.3 Ideal gas. In the case of an ideal gas. = 0 and pc = 0. Then eq. (2) becomes. ˙η + 3ηH = 0. (69). Equation (69), on integration gives η = η1t. −3/n,. (70) where η1 is an integrating constant. Equation (69) is the expression for particle creation density. This model has only bulk viscosity and bulk viscous stress is obtained as.
Shear and bulk viscosity of high-temperature gluon plasma
Zhang, Le; Hou, De-Fu
2018-05-01
We calculate the shear viscosity (η) and bulk viscosity (ζ) to entropy density (s) ratios η/s and ζ/s of a gluon plasma system in kinetic theory, including both the elastic {gg}≤ftrightarrow {gg} forward scattering and the inelastic soft gluon bremsstrahlung {gg}≤ftrightarrow {ggg} processes. Due to the suppressed contribution to η and ζ in the {gg}≤ftrightarrow {gg} forward scattering and the effective g≤ftrightarrow {gg} gluon splitting, Arnold, Moore and Yaffe (AMY) and Arnold, Dogan and Moore (ADM) have got the leading order computations for η and ζ in high-temperature QCD matter. In this paper, we calculate the correction to η and ζ in the soft gluon bremsstrahlung {gg}≤ftrightarrow {ggg} process with an analytic method. We find that the contribution of the collision term from the {gg}≤ftrightarrow {ggg} soft gluon bremsstrahlung process is just a small perturbation to the {gg}≤ftrightarrow {gg} scattering process and that the correction is at ∼5% level. Then, we obtain the bulk viscosity of the gluon plasma for the number-changing process. Furthermore, our leading-order result for bulk viscosity is the formula \\zeta \\propto \\tfrac{{α }s2{T}3}{ln}{α }s-1} in high-temperature gluon plasma. Supported by Ministry of Science and Technology of China (MSTC) under the “973” Project (2015CB856904(4)) and National Natural Science Foundation of China (11735007, 11521064)
Longitudinal and bulk viscosities of Lennard-Jones fluids
Tankeshwar, K.; Pathak, K. N.; Ranganathan, S.
1996-12-01
Expressions for the longitudinal and bulk viscosities have been derived using Green Kubo formulae involving the time integral of the longitudinal and bulk stress autocorrelation functions. The time evolution of stress autocorrelation functions are determined using the Mori formalism and a memory function which is obtained from the Mori equation of motion. The memory function is of hyperbolic secant form and involves two parameters which are related to the microscopic sum rules of the respective autocorrelation function. We have derived expressions for the zeroth-, second-and fourth- order sum rules of the longitudinal and bulk stress autocorrelation functions. These involve static correlation functions up to four particles. The final expressions for these have been put in a form suitable for numerical calculations using low- order decoupling approximations. The numerical results have been obtained for the sum rules of longitudinal and bulk stress autocorrelation functions. These have been used to calculate the longitudinal and bulk viscosities and time evolution of the longitudinal stress autocorrelation function of the Lennard-Jones fluids over wide ranges of densities and temperatures. We have compared our results with the available computer simulation data and found reasonable agreement.
Bulk viscosity and ultrasonic attenuation in liquid metals
Awasthi, O.N.; Murthy, B.V.S.
1984-11-01
Ultrasonic attenuation in simple liquid metals has been investigated using the thermodynamic theory of relaxation processes incorporating the concept of a two state model for the liquid near the melting point. Agreement of the results with the experimental values of the ultrasonic attenuation and bulk viscosity indicates that this might be an appropriate approach to explain the excess attenuation of ultrasonic waves in liquid metals. (author)
An estimate of the bulk viscosity of the hadronic medium
Sarwar, Golam; Chatterjee, Sandeep; Alam, Jane
2017-05-01
The bulk viscosity (ζ) of the hadronic medium has been estimated within the ambit of the Hadron Resonance Gas (HRG) model including the Hagedorn density of states. The HRG thermodynamics within a grand canonical ensemble provides the mean hadron number as well as its fluctuation. The fluctuation in the chemical composition of the hadronic medium in the grand canonical ensemble can result in non-zero divergence of the hadronic fluid flow velocity, allowing us to estimate the ζ of the hadronic matter up to a relaxation time. We study the influence of the hadronic spectrum on ζ and find its correlation with the conformal symmetry breaking measure, ε -3P. We estimate ζ along the contours with constant, S/{N}B (total entropy/net baryon number) in the T-μ plane (temperature-baryonic chemical potential) for S/{N}B=30,45 and 300. We also assess the value of ζ on the chemical freeze-out curve for various centers of mass energy (\\sqrt{{s}{NN}}) and find that the bulk viscosity to entropy density ratio, \\zeta /s is larger in the energy range of the beam energy scan program of RHIC, low energy SPS run, AGS, NICA and FAIR, than LHC energies.
Phase space analysis for anisotropic universe with nonlinear bulk viscosity
Sharif, M.; Mumtaz, Saadia
2018-06-01
In this paper, we discuss phase space analysis of locally rotationally symmetric Bianchi type I universe model by taking a noninteracting mixture of dust like and viscous radiation like fluid whose viscous pressure satisfies a nonlinear version of the Israel-Stewart transport equation. An autonomous system of equations is established by defining normalized dimensionless variables. In order to investigate stability of the system, we evaluate corresponding critical points for different values of the parameters. We also compute power-law scale factor whose behavior indicates different phases of the universe model. It is found that our analysis does not provide a complete immune from fine-tuning because the exponentially expanding solution occurs only for a particular range of parameters. We conclude that stable solutions exist in the presence of nonlinear model for bulk viscosity with different choices of the constant parameter m for anisotropic universe.
Bulk viscosity of hot dense Quark matter in the PNJL model
Xiao Shisong; Guo Panpan; Zhang Le; Hou Defu
2014-01-01
Starting from the Kubo formula and the QCD low energy theorem, we study the the bulk viscosity of hot dense quark matter in the PNJL model from the equation of state. We show that the bulk viscosity has a sharp peak near the chiral phase transition, and that the ratio of bulk viscosity over entropy rises dramatically in the vicinity of the phase transition. These results agree with those from the lattice and other model calculations. In addition, we show that the increase of chemical potential raises the bulk viscosity. (authors)
Randall-Sundrum model with λ<0 and bulk brane viscosity
Lepe, Samuel; Pena, Francisco; Saavedra, Joel
2008-01-01
We study the effect of the inclusion of bulk brane viscosity on brane world (BW) cosmology in the framework of the Eckart's theory, we focus in the Randall-Sundrum model with negative tension on the brane
Randall-Sundrum model with {lambda}<0 and bulk brane viscosity
Lepe, Samuel [Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Casilla 4950, Valparaiso (Chile); Pena, Francisco [Departamento de Ciencias Fisicas, Facultad de Ingenieria, Ciencias y Administracion, Universidad de la Frontera, Avda. Francisco Salazar 01145, Casilla 54-D, Temuco (Chile); Saavedra, Joel [Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Casilla 4950, Valparaiso (Chile)], E-mail: joel.saavedra@ucv.cl
2008-04-17
We study the effect of the inclusion of bulk brane viscosity on brane world (BW) cosmology in the framework of the Eckart's theory, we focus in the Randall-Sundrum model with negative tension on the brane.
Bulk and shear viscosities of the gluon plasma in a quasiparticle description
Bluhm, M; Redlich, K
2011-01-01
Bulk and shear viscosities of deconfined gluonic matter are investigated within an effective kinetic theory by describing the strongly interacting medium phenomenologically in terms of quasiparticle excitations with medium-dependent self-energies. In this approach, local conservation of energy and momentum follows from a Boltzmann-Vlasov type kinetic equation and guarantees thermodynamic self-consistency. We show that the resulting transport coefficients reproduce the parametric dependencies on temperature and coupling obtained in perturbative QCD at large temperatures and small running coupling. The extrapolation into the non-perturbative regime results in a decreasing specific shear viscosity with decreasing temperature, exhibiting a minimum in the vicinity of the deconfinement transition temperature, while the specific bulk viscosity is sizeable in this region falling off rapidly with increasing temperature. The temperature dependence of specific bulk and shear viscosities found within this quasiparticle d...
Ratio of bulk to shear viscosity in a quasigluon plasma: from weak to strong coupling
Bluhm, M; Redlich, K
2012-01-01
The ratio of bulk to shear viscosity is expected to exhibit a different behaviour in weakly and in strongly coupled systems. This can be expressed by the dependence of the ratio on the squared sound velocity. In the high temperature QCD plasma at small running coupling, the viscosity ratio is uniquely determined by a quadratic dependence on the conformality measure, whereas in certain strongly coupled and nearly conformal theories this dependence is linear. Employing an effective kinetic theory of quasiparticle excitations with medium-modified dispersion relation, we analyze the ratio of bulk to shear viscosity of the gluon plasma. We show that in this approach the viscosity ratio comprises both dependencies found by means of weak coupling perturbative and strong coupling holographic techniques.
Jung, Gerhard, E-mail: jungge@uni-mainz.de; Schmid, Friederike, E-mail: friederike.schmid@uni-mainz.de [Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 9, D-55099 Mainz (Germany)
2016-05-28
Exact values for bulk and shear viscosity are important to characterize a fluid, and they are a necessary input for a continuum description. Here we present two novel methods to compute bulk viscosities by non-equilibrium molecular dynamics simulations of steady-state systems with periodic boundary conditions — one based on frequent particle displacements and one based on the application of external bulk forces with an inhomogeneous force profile. In equilibrium simulations, viscosities can be determined from the stress tensor fluctuations via Green-Kubo relations; however, the correct incorporation of random and dissipative forces is not obvious. We discuss different expressions proposed in the literature and test them at the example of a dissipative particle dynamics fluid.
Buoninfante, L.; Lambiase, G. [Dipartimento di Fisica ' ' E.R. Caianiello' ' Universita di Salerno, Fisciano (Italy); INFN-Gruppo Collegato di Salerno, Fisciano (Italy)
2017-05-15
The gravitino problem is revisited in the framework of cosmological models in which the primordial cosmic matter is described by a relativistic imperfect fluid. Dissipative effects (or bulk viscosity effects) arise owing to the different cooling rates of the fluid components. We show that the effects of the bulk viscosity allow one to avoid the late abundance of gravitinos. In particular, for particular values of the parameters characterizing the cosmological model, the gravitino abundance turns out to be weakly depending on the reheating temperature. (orig.)
THE STABILITY OF OPTICALLY THIN REACTING PLASMAS: EFFECTS OF THE BULK VISCOSITY
Ibanez S, Miguel H.
2009-01-01
The thermochemical stability of reacting plasmas is analyzed by taking into account the change in the thermodynamical equilibrium values during the fluctuation. This shift in the equilibrium produces two main effects: a change in the four instability criteria for reacting gases resulting when the above effect is neglected and adds a fifth instability criterion due to the fact that the corresponding secular equation becomes a fifth-order polynomial. The above results are applied to several plasma models, in particular, to a photoionized hydrogen plasma for which the bulk viscosity can be more important than the dynamic viscosity and the thermometric conductivity. Therefore, the bulk viscosity may quench thermochemical instabilities were the thermal conduction is unable of stabilizing. This occurs for low values of the photoionizing energy E. The implications of the above results in explaining the formation of clump structures in different regions of the interstellar medium are outlined.
Good, Gerald J.
In this dissertation, we investigate the properties of matter, denser than nuclei, that exists inside compact stars. First, we examine a mixed superfluid/superconductor system, which likely occurs in neutron star cores. We derive an effective theory of Cooper pair quasiparticles from a microscopic theory of nucleons, and calculate the coupling strengths between quasiparticles. We then calculate the structure of magnetic flux tubes, taking into consideration interactions between neutron and proton Cooper pairs. We find that interactions between the condensates can lead to interesting phenomena and new phases at the border between type-I and type-II behavior. Next, we examine the response of nuclear matter to vibrational modes by calculating the bulk viscosity from purely leptonic processes. We find that for hot neutron stars, the bulk viscosity due to leptons is very small compared to the bulk viscosity due to nucleons, but for cold neutron stars, the leptonic component is dominant. Finally, we derive the reflection and transmission properties of light at boundaries between phases of matter that have two independent U(1) generators, which may exist at the surface of "strange stars" or at boundaries between different phases of matter in a neutron star.
Bulk viscosity of spin-one color superconducting strange quark matter
Wang Xinyang; Shovkovy, Igor A.
2010-01-01
The bulk viscosity in spin-one color superconducting strange quark matter is calculated by taking into account the interplay between the nonleptonic and semileptonic week processes. In agreement with previous studies, it is found that the inclusion of the semileptonic processes may result in non-negligible corrections to the bulk viscosity in a narrow window of temperatures. The effect is generally more pronounced for pulsars with longer periods. Compared to the normal phase, however, this effect due to the semileptonic processes is less pronounced in spin-one color superconductors. Assuming that the critical temperature of the phase transition is much larger than 40 keV, the main effect of spin-one color superconductivity in a wide range of temperatures is an overall increase of the bulk viscosity with respect to the normal phase. The corresponding enhancement factor reaches up to about 9 in the polar and A phases, about 25 in the planar phase, and about 29 in the color-spin-locked (CSL) phase. This factor is determined by the suppression of the nonleptonic rate in color superconducting matter and, therefore, may be even larger if all quark quasiparticles happen to be gapped.
Hoover, W.G.; Evans, D.J.; Hickman, R.B.; Ladd, A.J.C.; Ashurst, W.T.; Moran, B.
1980-01-01
A new Hamiltonian method for deformation simulations is related to the Green-Kubo fluctuation theory through perturbation theory and linear-response theory. Numerical results for the bulk and shear viscosity coefficients are compared to corresponding Green-Kubo calculations. Both viscosity coefficients depend similarly on frequency, in a way consistent with enhanced ''long-time tails.''
Bianchi type-VIh string cloud cosmological models with bulk viscosity
Tripathy, Sunil K.; Behera, Dipanjali
2010-11-01
String cloud cosmological models are studied using spatially homogeneous and anisotropic Bianchi type VIh metric in the frame work of general relativity. The field equations are solved for massive string cloud in presence of bulk viscosity. A general linear equation of state of the cosmic string tension density with the proper energy density of the universe is considered. The physical and kinematical properties of the models have been discussed in detail and the limits of the anisotropic parameter responsible for different phases of the universe are explored.
On the gravitational collapse of a gas cloud in the presence of bulk viscosity
Carlevaro, Nakia; Montani, Giovanni
2005-01-01
We analyse the effects induced by the bulk (or second) viscosity on the dynamics associated with the extreme gravitational collapse. The aim of the work is to investigate whether the presence of viscous corrections to the evolution of a collapsing gas cloud influences the top-down fragmentation process. To this end, we generalize the approach presented by Hunter (1962 Astrophys. J. 136 594) to include in the dynamics of the (uniform and spherically symmetric) cloud the negative pressure contribution associated with the bulk viscosity phenomenology. Within the framework of a Newtonian approach (whose range of validity is outlined), we extend to the viscous case either the Lagrangian or the Eulerian motion of the system addressed in Hunter (1962 Astrophys. J. 136 594) and we treat the asymptotic evolution in correspondence with a viscosity coefficient of the form ζ = ζ 0 ρ 5/6 (ρ being the cloud density and ζ 0 = const). We show how the adiabatic-like behaviour of the gas (i.e. when the polytropic index γ takes values 4/3 < γ ≤ 5/3) is deeply influenced by viscous correction when its collapse reaches the extreme regime toward the singularity. In fact, for sufficiently large viscous contributions, density contrasts associated with a given scale of the fragmentation process acquire, asymptotically, a vanishing behaviour which prevents the formation of sub-structures. Since in the non-dissipative case density contrasts diverge (except for the purely adiabatic behaviour γ = 5/3 in which they remain constant), we can conclude that in the adiabatic-like collapse the top-down mechanism of structure formation is suppressed as soon as enough strong viscous effects are taken into account. Such a feature is not present in the isothermal-like (i.e. 1 ≤ γ < 4/3) collapse because the sub-structure formation is yet present and outlines the same behaviour as in the non-viscous case. We emphasize that in the adiabatic-like collapse the bulk viscosity is also responsible
Bulk viscosity of strongly interacting matter in the relaxation time approximation
Czajka, Alina; Hauksson, Sigtryggur; Shen, Chun; Jeon, Sangyong; Gale, Charles
2018-04-01
We show how thermal mean field effects can be incorporated consistently in the hydrodynamical modeling of heavy-ion collisions. The nonequilibrium correction to the distribution function resulting from a temperature-dependent mass is obtained in a procedure which automatically satisfies the Landau matching condition and is thermodynamically consistent. The physics of the bulk viscosity is studied here for Boltzmann and Bose-Einstein gases within the Chapman-Enskog and 14-moment approaches in the relaxation time approximation. Constant and temperature-dependent masses are considered in turn. It is shown that, in the small mass limit, both methods lead to the same value of the ratio of the bulk viscosity to its relaxation time. The inclusion of a temperature-dependent mass leads to the emergence of the βλ function in that ratio, and it is of the expected parametric form for the Boltzmann gas, while for the Bose-Einstein case it is affected by the infrared cutoff. This suggests that the relaxation time approximation may be too crude to obtain a reliable form of ζ /τR for gases obeying Bose-Einstein statistics.
Shibasaki, S; Takamizawa, T; Nojiri, K; Imai, A; Tsujimoto, A; Endo, H; Suzuki, S; Suda, S; Barkmeier, W W; Latta, M A; Miyazaki, M
The present study determined the mechanical properties and volumetric polymerization shrinkage of different categories of resin composite. Three high viscosity bulk fill resin composites were tested: Tetric EvoCeram Bulk Fill (TB, Ivoclar Vivadent), Filtek Bulk Fill posterior restorative (FB, 3M ESPE), and Sonic Fill (SF, Kerr Corp). Two low-shrinkage resin composites, Kalore (KL, GC Corp) and Filtek LS Posterior (LS, 3M ESPE), were used. Three conventional resin composites, Herculite Ultra (HU, Kerr Corp), Estelite ∑ Quick (EQ, Tokuyama Dental), and Filtek Supreme Ultra (SU, 3M ESPE), were used as comparison materials. Following ISO Specification 4049, six specimens for each resin composite were used to determine flexural strength, elastic modulus, and resilience. Volumetric polymerization shrinkage was determined using a water-filled dilatometer. Data were evaluated using analysis of variance followed by Tukey's honestly significant difference test (α=0.05). The flexural strength of the resin composites ranged from 115.4 to 148.1 MPa, the elastic modulus ranged from 5.6 to 13.4 GPa, and the resilience ranged from 0.70 to 1.0 MJ/m 3 . There were significant differences in flexural properties between the materials but no clear outliers. Volumetric changes as a function of time over a duration of 180 seconds depended on the type of resin composite. However, for all the resin composites, apart from LS, volumetric shrinkage began soon after the start of light irradiation, and a rapid decrease in volume during light irradiation followed by a slower decrease was observed. The low shrinkage resin composites KL and LS showed significantly lower volumetric shrinkage than the other tested materials at the measuring point of 180 seconds. In contrast, the three bulk fill resin composites showed higher volumetric change than the other resin composites. The findings from this study provide clinicians with valuable information regarding the mechanical properties and
Influence of the spin and the Weinberg-angle on the bulk viscosity of a neutrino-electron mixture
Siskens, Th.J.; Weerb, Ch.G. van; Boer, W.P.H. de
1977-01-01
Results are presented for the first approximation to the bulk viscosity of a non-degenerate electron-neutrino system interacting in accordance with the Weinberg-Salam model. The influence of the electron spin and the Weinberg-angle are taken into account separately. (Auth.)
Meijer, A.S.; Wijn, de A.S.; Peters, M.F.E.; Dam, N.J.; Water, van de W.
2010-01-01
We investigate coherent Rayleigh–Brillouin spectroscopy as an efficient process to measure the bulk viscosity of gases at gigahertz frequencies. Scattered spectral distributions are measured using a Fizeau spectrometer. We discuss the statistical error due to the fluctuating mode structure of the
Lach, J.
1995-11-01
Magnetic moment measurement of the baryon octet and decouplet have recently been measurements illustrated the success as well as the limitations of the simpple qazrk model. Measurements of hyperon production polarizations have shown this to be a rich and complex process. It has forced us to reconsider our basic understanding of hyperon polarization processes
Hyperons: Insights into baryon structures
Lach, J.
1991-08-01
The baryon octet is composed mainly of hyperons. Modern high energy hyperon beams provide a tool for the study of hyperon static properties and interactions. Experiments with these beams have provided new insights into hyperon rare decays, magnetic moments, and interactions. These experiments provide us with insights into the strong, weak, and electromagnetic structure of the baryons. 65 refs., 45 figs., 5 tabs
Overseth, O.E.
1981-01-01
The Fermilab Neutral Hyperon Beam Collaboration has measured the magnetic moments of Λ 0 , XI-neutral and XI-minus hyperons. With a recently published result for the Σ + hyperon, we now have precision measurements on the magnetic moments of six baryons. This allows a sensitive test of the quark model. The data are in qualitative agreement with the simple additive static quark model. Quantitatively however the data disagree with theoretical predictions by typically 15%. Several theoretical attempts to understand or remedy this discrepancy will be mentioned
Lipkin, H.J.
1976-01-01
Hyperon beams can provide new interesting information about hadron structure and their strong, electromagnetic and weak interactions. The dependence of hadron interactions on strangeness and baryon number is not understood, and data from hyperon beams can provide new clues to paradoxes which arise in the interpretation of data from conventional beams. Examples of interesting data are total and differential cross sections, magnetic moments and values of Gsub(A)/Gsub(V) for weak semileptonic decays. (author)
New holographic dark energy model with constant bulk viscosity in modified f(R,T) gravity theory
Srivastava, Milan; Singh, C. P.
2018-06-01
The aim of this paper is to study new holographic dark energy (HDE) model in modified f(R,T) gravity theory within the framework of a flat Friedmann-Robertson-Walker model with bulk viscous matter content. It is thought that the negative pressure caused by the bulk viscosity can play the role of dark energy component, and drive the accelerating expansion of the universe. This is the motive of this paper to observe such phenomena with bulk viscosity. In the specific model f(R,T)=R+λ T, where R is the Ricci scalar, T the trace of the energy-momentum tensor and λ is a constant, we find the solution for non-viscous and viscous new HDE models. We analyze new HDE model with constant bulk viscosity, ζ =ζ 0= const. to explain the present accelerated expansion of the universe. We classify all possible scenarios (deceleration, acceleration and their transition) with possible positive and negative ranges of λ over the constraint on ζ 0 to analyze the evolution of the universe. We obtain the solutions of scale factor and deceleration parameter, and discuss the evolution of the universe. We observe the future finite-time singularities of type I and III at a finite time under certain constraints on λ . We also investigate the statefinder and Om diagnostics of the viscous new HDE model to discriminate with other existing dark energy models. In late time the viscous new HDE model approaches to Λ CDM model. We also discuss the thermodynamics and entropy of the model and find that it satisfies the second law of thermodynamics.
Czajka, Alina; Jeon, Sangyong
2017-06-01
In this paper we provide a quantum field theoretical study on the shear and bulk relaxation times. First, we find Kubo formulas for the shear and the bulk relaxation times, respectively. They are found by examining response functions of the stress-energy tensor. We use general properties of correlation functions and the gravitational Ward identity to parametrize analytical structures of the Green functions describing both sound and diffusion mode. We find that the hydrodynamic limits of the real parts of the respective energy-momentum tensor correlation functions provide us with the method of computing both the shear and bulk viscosity relaxation times. Next, we calculate the shear viscosity relaxation time using the diagrammatic approach in the Keldysh basis for the massless λ ϕ4 theory. We derive a respective integral equation which enables us to compute η τπ and then we extract the shear relaxation time. The relaxation time is shown to be inversely related to the thermal width as it should be.
Tuning the viscosity of halogen free bulk heterojunction inks for inkjet printed organic solar cells
Lamont, C.A.; Eggenhuisen, T.M.; Coenen, M.J.J.; Slaats, T.W.L.; Andriessen, R.; Groen, P.
2015-01-01
For the solution processing of organic photovoltaics on an industrial scale, the exclusion of halogenated solvents is a necessity. However, the limited solubility of most semiconducting polymer/fullerene blends in non-halogenated solvents results in ink formulations with low viscosities which poses
Roberts, B.L.; Booth, E.C.; Gall, K.P.; McIntyre, E.K.; Miller, J.P.; Whitehouse, D.A.; Bassalleck, B.; Hall, J.R.; Larson, K.D.; Wolfe, D.M.; Fickinger, W.J.; Robinson, D.K.; Hallin, A.L.; Hasinoff, M.D.; Measday, D.F.; Noble, A.J.; Waltham, C.E.; Hessey, N.P.; Lowe, J.; Horvath, D.; Salomon, M.
1990-01-01
New measurements of the Σ + and Λ weak radiative decays are discussed. The hyperons were produced at rest by the reaction K - p → Yπ where Y = Σ + or Λ. The monoenergetic pion was used to tag the hyperon production, and the branching ratios were determined from the relative amplitudes of Σ + → pγ to Σ + → pπ 0 and Λ → nγ to Λ → nπ 0 . The photons from weak radiative decays and from π 0 decays were detected with modular NaI arrays. (orig.)
Spin polarizability of hyperons
K B VIJAYA KUMAR. Department of Physics, Mangalore University, Mangalagangothri 574 199, India. E-mail: kbvijayakumar@yahoo.com. DOI: 10.1007/s12043-014-0869-4; ePublication: 4 November 2014. Abstract. We review the recent progress of the theoretical understanding of spin polarizabilities of the hyperon in the ...
Dapo, Haris
2009-01-28
The hyperon-nucleon YN low momentum effective interaction (V{sub low} {sub k}) allows for an extensive study of the behavior of hyperons in dense matter, together with an investigation of effects of the presence of hyperons on dense matter. The first step towards this goal is the construction of the matrix elements for the hyperon-nucleon low momentum potential. In order to assess the different properties of hyperons within these potentials we calculate the hyperon single-particle potentials in the Hartree-Fock approximation for all of the interactions. Their dependence on both momentum and density, is studied. The single-particle potentials are then used to determine the chemical potential of hyperons in neutron stars. For nucleonic properties, the nucleon-nucleon V{sub low} {sub k} can be used with the caveat that the calculation of the ground-state energy of symmetric nuclear matter does not correctly reproduce the properties of matter at saturation. With the nucleon-nucleon V{sub low} {sub k} one is unable to reach the densities needed for the calculation of neutron star masses. To circumvent this problem we use two approaches: in the first one, we parametrize the entire nucleonic sector. In the second one, we replace only the three-body force. The former will enable us to study neutron star masses, and the latter for studying the medium's response to the external probe. In this thesis we take the external probe to be the neutrino. By combining this parametrization with the YN V{sub low} {sub k} potential, we calculate the equation of state of equilibrated matter. Performing the calculation in the Hartree-Fock approximation at zero temperature, the concentrations of all particles are calculated. From these we can ascertain at which densities hyperons appear for a wide range of parameters. Finally, we calculate the masses of neutron stars with these concentrations. For the calculation of the medium's response to an external probe, we replace the three
Dapo, Haris
2009-01-01
The hyperon-nucleon YN low momentum effective interaction (V low k ) allows for an extensive study of the behavior of hyperons in dense matter, together with an investigation of effects of the presence of hyperons on dense matter. The first step towards this goal is the construction of the matrix elements for the hyperon-nucleon low momentum potential. In order to assess the different properties of hyperons within these potentials we calculate the hyperon single-particle potentials in the Hartree-Fock approximation for all of the interactions. Their dependence on both momentum and density, is studied. The single-particle potentials are then used to determine the chemical potential of hyperons in neutron stars. For nucleonic properties, the nucleon-nucleon V low k can be used with the caveat that the calculation of the ground-state energy of symmetric nuclear matter does not correctly reproduce the properties of matter at saturation. With the nucleon-nucleon V low k one is unable to reach the densities needed for the calculation of neutron star masses. To circumvent this problem we use two approaches: in the first one, we parametrize the entire nucleonic sector. In the second one, we replace only the three-body force. The former will enable us to study neutron star masses, and the latter for studying the medium's response to the external probe. In this thesis we take the external probe to be the neutrino. By combining this parametrization with the YN V low k potential, we calculate the equation of state of equilibrated matter. Performing the calculation in the Hartree-Fock approximation at zero temperature, the concentrations of all particles are calculated. From these we can ascertain at which densities hyperons appear for a wide range of parameters. Finally, we calculate the masses of neutron stars with these concentrations. For the calculation of the medium's response to an external probe, we replace the three-body force with a density-dependent interaction. This
2002-01-01
The experiment WA89 uses the upgraded Omega facility together with a hyperon beam installed at the end of the H1 beamline. The beam can deliver 2~10$ ^{5} \\% Sigma ^- $ per machine burst at 330 GeV/c with a background of 5 10$ ^{5} \\% \\pi ^- $. \\\\ \\\\ The goals of the experiment are: observation of charmed particles, mainly the charmed-strange baryons and measurements of their production in the kinematical range x$ _{F} $~$>$~0.2, and their decay properties, a search for exotic states such as U(3100) observed in the previous CERN hyperon beam experiment WA62, measurements of hyperon polarization and production properties. \\\\ \\\\ A vertex detector consisting of 24 silicon microstrip planes with 25~$\\mu$m pitch and 6~planes with 50~$\\mu$m pitch provides track measurements of sufficient accuracy to identify the decays of short living charmed particles and measure their lifetimes. A RICH detector provides good $\\pi$/K separation for momenta up to 100~GeV/c and $\\pi$/p separation up to 150~GeV/c. Photons are detecte...
Avelino, Arturo; Nucamendi, Ulises, E-mail: avelino@ifm.umich.mx, E-mail: ulises@ifm.umich.mx [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3, Ciudad Universitaria, CP. 58040, Morelia, Michoacán (Mexico)
2010-08-01
We explore the viability of a bulk viscous matter-dominated Universe to explain the present accelerated expansion of the Universe. The model is composed by a pressureless fluid with bulk viscosity of the form ζ = ζ{sub 0}+ζ{sub 1}H where ζ{sub 0} and ζ{sub 1} are constants and H is the Hubble parameter. The pressureless fluid characterizes both the baryon and dark matter components. We study the behavior of the Universe according to this model analyzing the scale factor as well as some curvature scalars and the matter density. On the other hand, we compute the best estimated values of ζ{sub 0} and ζ{sub 1} using the type Ia Supernovae (SNe Ia) probe. We find that from all the possible scenarios for the Universe, the preferred one by the best estimated values of (ζ{sub 0},ζ{sub 1}) is that of an expanding Universe beginning with a Big-Bang, followed by a decelerated expansion at early times, and with a smooth transition in recent times to an accelerated expansion epoch that is going to continue forever. The predicted age of the Universe is a little smaller than the mean value of the observational constraint coming from the oldest globular clusters but it is still inside of the confidence interval of this constraint. A drawback of the model is the violation of the local second law of thermodynamics in redshifts z∼>1. However, when we assume ζ{sub 1} = 0, the simple model ζ = ζ{sub 0} evaluated at the best estimated value for ζ{sub 0} satisfies the local second law of thermodynamics, the age of the Universe is in perfect agreement with the constraint of globular clusters, and it also has a Big-Bang, followed by a decelerated expansion with the smooth transition to an accelerated expansion epoch in late times, that is going to continue forever.
Hubert Gojzewski
2017-06-01
Full Text Available UV-curable polymer composites are of importance in industry, biomedical applications, scientific fields, and daily life. Outstanding physical properties of polymer composites were achieved with nanoparticles as filler, primarily in enhancing mechanical strength or barrier properties. Structure-property relationships of the resulting nanocomposites are dictated by the polymer-filler molecular architecture, i.e. interactions between polymer matrix and filler, and high surface area to volume ratio of the filler particles. Among monomers, acrylates and methacrylates attracted wide attention due to their ease of polymerization and excellent physicochemical and mechanical properties of the derived polymers. We prepared and photopolymerized two series of formulations containing hydrophobized silica nanofiller (Aerosil R7200 dispersed in 2-hydroxyethyl acrylate (HEA or polyethylene glycol diacrylate (PEGDA monomers. We compared selected physical properties of the formulations, both before and after photocuring; specifically the viscosity of formulations and dispersion of the filler in the polymer matrices. Additionally, we estimated the bulk Poisson׳s ratio of the investigated nanocomposites. This article contains data related to the research article entitled “Nanoscale Young׳s modulus and surface morphology in photocurable polyacrylate/nanosilica composites” (Gojzewski et al., 2017 [1].
Collocott, S.J.; Dunlop, J.B.
2009-01-01
A number of ferromagnetic Pr-Fe-Al alloys have been prepared by argon arc melting and quenching into a copper mould. The alloy of composition Pr 58 Fe 24 Al 18 is identified as being amorphous (bulk metallic glass or bulk amorphous ferromagnet), and a range of magnetic measurements have been performed to explore differences and similarities between it and a partially amorphous alloy, containing a significant crystalline fraction, Pr 60 Fe 24 Al 16 . For both alloys, measurements of the irreversible susceptibility, and magnetic viscosity on the major hysteresis loop are reported. From the magnetic viscosity data, the fluctuation field is determined. The behaviour of the anomalous magnetic viscosity (non-monotonic behaviour of the magnetic viscosity, where the magnetisation as a function of time is seen to increase, reach a peak, and then decrease), on the recoil curve that leads to the dc demagnetised state is investigated. Both alloys display non-monotonic behaviour. After dc demagnetisation, spontaneous remagnetisation is observed in both alloys, and some comments are made on the thermal remagnetisation behaviour of the amorphous alloy. The anomalous magnetic viscosity is interpreted in the context of the Preisach model, as it predicts a simple functional relationship between the time taken to reach a peak and the applied magnetic field. The experimental data for both alloys is in good agreement with this prediction.
Avelino, Arturo; Nucamendi, Ulises
2009-01-01
We test a cosmological model which the only component is a pressureless fluid with a constant bulk viscosity as an explanation for the present accelerated expansion of the universe. We classify all the possible scenarios for the universe predicted by the model according to their past, present and future evolution and we test its viability performing a Bayesian statistical analysis using the SCP ''Union'' data set (307 SNe Ia), imposing the second law of thermodynamics on the dimensionless constant bulk viscous coefficient ζ-tilde and comparing the predicted age of the universe by the model with the constraints coming from the oldest globular clusters. The best estimated values found for ζ-tilde and the Hubble constant H 0 are: ζ-tilde = 1.922±0.089 and H 0 = 69.62±0.59 (km/s)Mpc −1 with a χ 2 min = 314 (χ 2 d.o.f = 1.031). The age of the universe is found to be 14.95±0.42 Gyr. We see that the estimated value of H 0 as well as of χ 2 d.o.f are very similar to those obtained from ΛCDM model using the same SNe Ia data set. The estimated age of the universe is in agreement with the constraints coming from the oldest globular clusters. Moreover, the estimated value of ζ-tilde is positive in agreement with the second law of thermodynamics (SLT). On the other hand, we perform different forms of marginalization over the parameter H 0 in order to study the sensibility of the results to the way how H 0 is marginalized. We found that it is almost negligible the dependence between the best estimated values of the free parameters of this model and the way how H 0 is marginalized in the present work. Therefore, this simple model might be a viable candidate to explain the present acceleration in the expansion of the universe
Induced Hyperon-Nucleon-Nucleon Interactions and the Hyperon Puzzle.
Wirth, Roland; Roth, Robert
2016-10-28
We present the first ab initio calculations for p-shell hypernuclei including hyperon-nucleon-nucleon (YNN) contributions induced by a similarity renormalization group transformation of the initial hyperon-nucleon interaction. The transformation including the YNN terms conserves the spectrum of the Hamiltonian while drastically improving model-space convergence of the importance-truncated no-core model, allowing a precise extraction of binding and excitation energies. Results using a hyperon-nucleon interaction at leading order in chiral effective field theory for lower- to mid-p-shell hypernuclei show a good reproduction of experimental excitation energies while hyperon separation energies are typically overestimated. The induced YNN contributions are strongly repulsive and we show that they are related to a decoupling of the Σ hyperons from the hypernuclear system, i.e., a suppression of the Λ-Σ conversion terms in the Hamiltonian. This is linked to the so-called hyperon puzzle in neutron-star physics and provides a basic mechanism for the explanation of strong ΛNN three-baryon forces.
LAMPF II - also a hyperon factory
Sanford, T.W.L.
1982-06-01
The possibility of generating large numbers of hyperons via an intense 4.5 GeV/c K - beam at LAMPF II is explored. The advantage of using a K - beam over that of using a π beam is examined. Hyperon fluxes and backgrounds are estimated and compared with those available from existing hyperon beams. Production mechanisms are briefly discussed
Ryu, Sangwook; Paquet, Jean-François; Shen, Chun; Denicol, Gabriel; Schenke, Björn; Jeon, Sangyong; Gale, Charles
2018-03-01
We describe ultrarelativistic heavy ion collisions at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider with a hybrid model using the IP-Glasma model for the earliest stage and viscous hydrodynamics and microscopic transport for the later stages of the collision. We demonstrate that within this framework the bulk viscosity of the plasma plays an important role in describing the experimentally observed radial flow and azimuthal anisotropy simultaneously. We further investigate the dependence of observables on the temperature below which we employ the microscopic transport description.
The hyperon-nucleon interaction
Haidenbauer, J.
2007-01-01
Results of two recent hyperon-nucleon interaction potentials, both developed by the Bonn-Juelich group, are presented that are derived either in the conventional meson-exchange picture or within leading order chiral effective field theory. The chiral potential consists of one-pseudoscalar-meson exchanges and non-derivative four-baryon contact terms. The most salient feature of the new meson-exchange hyperon-nucleon model is that the contributions in the scalar-isoscalar (σ) and vector-isovector (ρ) exchange channels are constrained by a microscopic model of correlated ππ and KK-bar exchange
Induced hyperon-nucleon-nucleon interactions and the hyperon puzzle
Wirth, Roland; Roth, Robert [Institut fuer Kernphysik, TU Darmstadt (Germany)
2016-07-01
There is a strong experimental and theoretical interest in determining the structure of hypernuclei and the effect of strangeness in strongly interacting many-body systems. Recently, we presented the first calculations of hypernuclei in the p shell from first principles. However, these calculations showed either slow convergence with respect to model-space size or, when the hyperon-nucleon potential is transformed via the Similarity Renormalization Group, strong induced three-body terms. By including these induced hyperon-nucleon-nucleon (YNN) terms explicitly, we get precise binding and excitation energies. We present first results for p-shell hypernuclei and discuss the origin of the YNN terms, which are mainly driven by the evolution of the Λ-Σ conversion terms. We find that they are tightly connected to the hyperon puzzle, a long-standing issue where the appearance of hyperons in models of neutron star matter lowers the predicted maximum neutron star mass below the bound set by the heaviest observed objects.
Global Λ hyperon polarization in nuclear collisions
Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Ajitanand, N. N.; Alekseev, I.; Anderson, D. M.; Aoyama, R.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Ashraf, M. U.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Behera, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Brown, D.; Bunzarov, I.; Butterworth, J.; Caines, H.; de La Barca Sánchez, M. Calderón; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chankova-Bunzarova, N.; Chatterjee, A.; Chattopadhyay, S.; Chen, X.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; de Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Elsey, N.; Engelage, J.; Eppley, G.; Esha, R.; Esumi, S.; Evdokimov, O.; Ewigleben, J.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Federicova, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Hamad, A. I.; Hamed, A.; Harlenderova, A.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Horvat, S.; Huang, T.; Huang, B.; Huang, X.; Huang, H. Z.; Humanic, T. J.; Huo, P.; Igo, G.; Jacobs, W. W.; Jentsch, A.; Jia, J.; Jiang, K.; Jowzaee, S.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Kocmanek, M.; Kollegger, T.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulathunga, N.; Kumar, L.; Kvapil, J.; Kwasizur, J. H.; Lacey, R.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, C.; Li, W.; Li, Y.; Lidrych, J.; Lin, T.; Lisa, M. A.; Liu, H.; Liu, P.; Liu, Y.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, S.; Luo, X.; Ma, G. L.; Ma, L.; Ma, Y. G.; Ma, R.; Magdy, N.; Majka, R.; Mallick, D.; Margetis, S.; Markert, C.; Matis, H. S.; Meehan, K.; Mei, J. C.; Miller, Z. W.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mizuno, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nie, M.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Nonaka, T.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Ray, R. L.; Reed, R.; Rehbein, M. J.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roth, J. D.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Salur, S.; Sandweiss, J.; Saur, M.; Schambach, J.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Schweid, B. R.; Seger, J.; Sergeeva, M.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, A.; Sharma, M. K.; Shen, W. Q.; Shi, Z.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solyst, W.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Strikhanov, M.; Stringfellow, B.; Sugiura, T.; Sumbera, M.; Summa, B.; Sun, Y.; Sun, X. M.; Sun, X.; Surrow, B.; Svirida, D. N.; Tang, A. H.; Tang, Z.; Taranenko, A.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; van Buren, G.; van Nieuwenhuizen, G.; Vasiliev, A. N.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, G.; Wang, Y.; Wang, F.; Wang, Y.; Webb, J. C.; Webb, G.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, W.; Xie, G.; Xu, J.; Xu, N.; Xu, Q. H.; Xu, Y. F.; Xu, Z.; Yang, Y.; Yang, Q.; Yang, C.; Yang, S.; Ye, Z.; Ye, Z.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, Z.; Zhang, X. P.; Zhang, J. B.; Zhang, S.; Zhang, J.; Zhang, Y.; Zhang, J.; Zhang, S.; Zhao, J.; Zhong, C.; Zhou, L.; Zhou, C.; Zhu, X.; Zhu, Z.; Zyzak, M.
2017-08-01
The extreme energy densities generated by ultra-relativistic collisions between heavy atomic nuclei produce a state of matter that behaves surprisingly like a fluid, with exceptionally high temperature and low viscosity. Non-central collisions have angular momenta of the order of 1,000ћ, and the resulting fluid may have a strong vortical structure that must be understood to describe the fluid properly. The vortical structure is also of particular interest because the restoration of fundamental symmetries of quantum chromodynamics is expected to produce novel physical effects in the presence of strong vorticity. However, no experimental indications of fluid vorticity in heavy ion collisions have yet been found. Since vorticity represents a local rotational structure of the fluid, spin-orbit coupling can lead to preferential orientation of particle spins along the direction of rotation. Here we present measurements of an alignment between the global angular momentum of a non-central collision and the spin of emitted particles (in this case the collision occurs between gold nuclei and produces Λ baryons), revealing that the fluid produced in heavy ion collisions is the most vortical system so far observed. (At high energies, this fluid is a quark-gluon plasma.) We find that Λ and hyperons show a positive polarization of the order of a few per cent, consistent with some hydrodynamic predictions. (A hyperon is a particle composed of three quarks, at least one of which is a strange quark; the remainder are up and down quarks, found in protons and neutrons.) A previous measurement that reported a null result, that is, zero polarization, at higher collision energies is seen to be consistent with the trend of our observations, though with larger statistical uncertainties. These data provide experimental access to the vortical structure of the nearly ideal liquid created in a heavy ion collision and should prove valuable in the development of hydrodynamic models that
Czajka, Alina; Jeon, Sangyong
2017-01-01
In this paper we provide a quantum field theoretical study on the shear and bulk relaxation times. First, we find Kubo formulas for the shear and the bulk relaxation times, respectively. They are found by examining response functions of the stress-energy tensor. We use general properties of correlation functions and the gravitational Ward identity to parametrize analytical structures of the Green functions describing both sound and diffusion mode. We find that the hydrodynamic limits of the r...
Hyperon polarization: theory and experiments
Magnin, J.; Simao, F.R.A.
1996-01-01
We give a brief review of the experimental situation concerning hyperon polarization. We mention also the current models developed to understand the experimental results and make some comments on some theoretical aspects contained in the Thomas precession model. (author). 8 ref
P-shell hyperon binding energies
Koetsier, D.; Amos, K.
1991-01-01
A shell model for lambda hypernuclei has been used to determine the binding energy of the hyperon in nuclei throughout the p shell. Conventional (Cohen and Kurath) potential energies for nucleon-nucleon interactions were used with hyperon-nucleon interactions taken from Nijmegen one boson exchange potentials. The hyperon binding energies calculated from these potentials compare well with measured values. 7 refs., 2 figs
Hyperon excitation in nuclear coulomb field
Vanyashin, A.V.; Nikitin, Yu.P.; Shan'gin, A.A.
1981-01-01
A possibility is studied to measure radiative decay partial widths from the 3/2 + decuplet hyperon resonances by means of the Coulomb excitation method of the octet hyperons. The expected contributions from the strong and electromagnetic interactions in the coherence range to the hyperon excitation cross sections on heavy nuclei and on the 4 He nucleus are estimated. The particle angular distributions in the reactions Σ-+A→Σ-(1385)+A and Λ+A→Σ 0 (1385)+A are analysed in order to determine the energy range where the background conditions are the most favorable to extract the electromagnetic mechanism of the hyperon excitation [ru
Bohm, A.; Garcia, A.; Instituto Politecnico Nacional, Mexico City. Escuela Superior de Fisica y Matematicas); Kielanowski, P.; Texas Univ., Austin; Instituto Politecnico Nacional, Mexico City. Centro de Investigacion y de Estudios Avanzados)
1985-01-01
This book is an introduction to the physics of the semileptonic decay of hyperons. After a general introduction and a description of the experimental results the Cabibbo theory is introduced for the theoretical description of these results. Then radiative and other corrections are discussed. Finally this decay is considered in the framework of broken SU(3). This book applies to graduate students and other ''non-specialists'' who want to get some insight into the physics of weak interactions. (HSI)
Takatsuka, Tatsuyuki
2004-01-01
Hyperon mixing in neutron star matter is investigated by the G-matrix-based effective interaction approach under the attention to use the YN and the YY potentials compatible with hypernuclear data and is shown to occur at densities relevant to neutron star cores, together with discussions to clarify the mechanism of hyperon contamination. It is remarked that developed Y-mixed phase causes a dramatic softening of the neutron star equation of state and leads to the serious problem that the resulting maximum mass M max for neutron star model contradicts the observed neutron star mass (M max obs = 1.44 M Θ ), suggesting the necessity of some extra repulsion'' in hypernuclear system. It is shown that the introduction of three-body repulsion similar to that in nuclear system can resolve the serious situation and under the consistency with observation (M max > M obs ) the threshold densities for Λ and Σ - are pushed to higher density side, from 2ρ 0 to ∼ 4ρ 0 (ρ 0 being the nuclear density). On the basis of a realistic Y-mixed neutron star model, occurrence of Y-superfluidity essential for ''hyperon cooling'' scenario is studied and both of Λ- and Σ - -superfluids are shown to be realized with their critical temperatures 10 8-9 K, meaning that the hyperon cooling'' is a promising candidate for a fast non-standard cooling demanded for some neutron stars with low surface temperature. A comment is given as to the consequence of less attractive ΛΛ interaction suggested by the ''NAGARA event'' ΛΛ 6 He. (author)
Heavy Hyperon-Antihyperon Production
Oelert, W.; Jarczyk, Lucjan; Kilian, K.; Moskal, P.; Winter, P.
2005-01-01
Based on the experience from the production of anti-Lambda Lambda and anti-Sigma Sigma pairs at LEAR (experiment PS185) it is suggested to continue the investigations towards the heavier antihyperon--hyperon pairs anti-Xi Xi and anti-Omega Omega in view of: (1) the production dynamics of the heavier antihyperon--hyperon out of the anti-p p annihilation (2) a comparison of the (3s 3anti-s quark system) anti-Omega Omega to the (3 (anti-s s)) 3 phi meson production, where both systems have similar masses (3.345 and 3.057, respectively) and identical valence quark content. A systematic study of the antihyperon--hyperon production with increasing strangeness content is interesting for the following reasons: The anti-Omega Omega production is the creation of two spin 3/2 objects out of the two spin 1/2 anti-p p particles. Results of the PS185 experiments prove a clear dominance of the spin triplet anti-s s dissociation. In the Omega anti-Omega the three s-quarks (three anti-s quarks) are aligned to spin 3/2 each. I...
Sengupta, Tapan K., E-mail: tksen@iitk.ac.in; Bhole, Ashish; Shruti, K. S. [HPCL, Department of Aerospace Engineering, IIT Kanpur, Kanpur, UP (India); Sengupta, Aditi [Department of Engineering, University of Cambridge, Cambridge (United Kingdom); Sharma, Nidhi [Graduate Student, HPCL, Department of Aerospace Engineering, IIT Kanpur, Kanpur, UP (India); Sengupta, Soumyo [Department of Mechanical and Aerospace Engineering, Ohio State University, Columbus, Ohio 43210 (United States)
2016-09-15
Direct numerical simulations of Rayleigh-Taylor instability (RTI) between two air masses with a temperature difference of 70 K is presented using compressible Navier-Stokes formulation in a non-equilibrium thermodynamic framework. The two-dimensional flow is studied in an isolated box with non-periodic walls in both vertical and horizontal directions. The non-conducting interface separating the two air masses is impulsively removed at t = 0 (depicting a heaviside function). No external perturbation has been used at the interface to instigate the instability at the onset. Computations have been carried out for rectangular and square cross sections. The formulation is free of Boussinesq approximation commonly used in many Navier-Stokes formulations for RTI. Effect of Stokes’ hypothesis is quantified, by using models from acoustic attenuation measurement for the second coefficient of viscosity from two experiments. Effects of Stokes’ hypothesis on growth of mixing layer and evolution of total entropy for the Rayleigh-Taylor system are reported. The initial rate of growth is observed to be independent of Stokes’ hypothesis and the geometry of the box. Following this stage, growth rate is dependent on the geometry of the box and is sensitive to the model used. As a consequence of compressible formulation, we capture pressure wave-packets with associated reflection and rarefaction from the non-periodic walls. The pattern and frequency of reflections of pressure waves noted specifically at the initial stages are reflected in entropy variation of the system.
Hyperon beta decay and the CKM matrix
Ratcliffe, P.G.
2004-01-01
I shall present a pedagogical discussion of hyperon semileptonic decays, covering some of the historical background, the basics notions of hyperon semileptonic decays, deeply inelastic scattering and the CKM matrix, and the description of SU(2) and SU(3) breaking. I shall also present a prediction for a process under current experimental study. (author)
Hyperon-nucleon and hyperon-hyperon interaction in the quark cluster model
Straub, U.
1988-01-01
The nonrelativistic quark cluster model is used for the description of the hyperon-nucleon and hyperon-hyperon interaction. The different mass of the quarks is consistently regarded in the Hamiltonian and in the shape of the spatial wave functions of the quarks. The six-quark wave function is completely antisymmetrisized. By means of the resonating-group method the dynamic equations for the determination of the binding and scattering states of the six-quark problem are formulated. The corresponding resonating-group kernels are explicitely given. We calculate the lambda-nucleon and sigma-nucleon interaction. The sigma-nucleon scattering in the isospin (T=3/2) channel can be treated in a one-channel calculation. The sigma-nucleon (T=1/2) interaction and the lambda-nucleon interaction are studied in a coupled two-channel calculation. From a fit of the experimental lambda-nucleon interaction cross section the strength of the sigma-meson exchange is determined. The calculation of the sigma-nucleon scattering follows then completely parameterless. The agreement of the theory with the experiment is good. Subsequently the cluster model with this parameter is applied to the dihyperon which is a possibly bound state of two up quarks, two down quarks, and two strange quarks. We solve for this a coupled three-channel calculation. The cluster model presented here gives a binding energy of the dihyperon of (20±5) MeV below the lambda-lambda threshold. The mass of the dihyperon is predicted by this as (2211±5) MeV. (orig.) [de
Trapping of Σ+ hyperons in nuclei
Wycech Sławomir
2016-01-01
Full Text Available The nuclear capture of K− studied by FINUDA discovered a puzzling low momentum component in the spectrum of final Σ+ hyperon. This component is interpreted here as the effect of Gamov state formed by the hyperon. Such state is quasi-localized in space with a radius in between the hyper-nuclear and the hyper-atomic radius. Experimental and theoretical consequences of this discovery are studied.
Hyperon and hypernuclear physics with intense beams
Gibson, B.F.
1983-01-01
A brief examination of progress in the study of hypernuclear physics and the hyperon-nucleon interaction is presented. The use of #betta#-hypernuclei in the study of conventional (nonstrange) nuclei is explored. The status of the hyperon-nucleon force problem is reviewed. Anecdotal results are discussed for baryon numbers 4 and 13. μ-hypernuclei are discussed. Production of S = -2 hypernuclei is mentioned
Hyperon interactions in nuclear matter
Dhar, Madhumita; Lenske, Horst [Institut fuer Theoretische Physik, Universitaet Giessen (Germany)
2014-07-01
Baryon-baryon interactions within the SU(3)-octet are investigated in free space and nuclear matter. A meson exchange model is used for determining the interaction. The Bethe-Salpeter equations are solved in a 3-D reduction scheme. In-medium effects have been incorporated by including a two particle Pauli projection operator in the scattering equation. The coupling of the various channels of total strangeness S=-1,-2 and conserved total charge is studied in detail. Calculations and the corresponding results are compared for using the isospin and the particle basis. Matrix elements are compared in detail, in particular discussing mixing effects of different hyperon channels. Special attention is paid to the physical thresholds. The density dependence of interaction is clearly seen in the variation of the in-medium low-energy parameters. The approach is compared to descriptions derived from chiral-EFT and other meson-exchange models e.g. the Nijmegen and the Juelich model.
Gravitational waves from the axial perturbations of hyperon stars
Wen De-Hua; Yan Jing; Liu Xue-Mei
2012-01-01
The eigen-frequencies of the axial w-mode oscillations of hyperon stars are examined. It is shown that as the appearance of hyperons softens the equation of state of the super-density matter, the frequency of gravitational waves from the axial w-mode of hyperon star becomes smaller than that of a traditional neutron star at the same stellar mass. Moreover, the eigenfrequencies of hyperon stars also have scaling universality. It is shown that the EURO third-generation gravitational-wave detector has the potential to detect the gravitational-wave signal emitted from the axial w-mode oscillations of a hyperon star. (general)
Hyperons in the nuclear pasta phase
Menezes, Débora P.; Providência, Constança
2017-10-01
We have investigated under which conditions hyperons (particularly Λ s and Σ-s ) can be found in the nuclear pasta phase. As the density and temperature are larger and the electron fraction is smaller, the probability is greater that these particles appear, but always in very small amounts. Λ hyperons only occur in gas and in smaller amounts than would occur if matter were homogeneous, never with abundancies above 10-5. The amount of Σ- in the gas is at least two orders of magnitude smaller and can be disregarded in practical calculations.
Mulyukova, Elvira; Dabrowski, Marcin; Steinberger, Bernhard
2015-04-01
Many problems in geodynamic applications may be described as viscous flow of chemically heterogeneous materials. Examples include subduction of compositionally stratified lithospheric plates, folding of rheologically layered rocks, and thermochemical convection of the Earth's mantle. The associated time scales are significantly shorter than that of chemical diffusion, which justifies the commonly featured phenomena in geodynamic flow models termed contact discontinuities. These are spatially sharp interfaces separating regions of different material properties. Numerical modelling of advection of fields with sharp interfaces is challenging. Typical errors include numerical diffusion, which arises due to the repeated action of numerical interpolation. Mathematically, a material field can be represented by discrete indicator functions, whose values are interpreted as logical statements (e.g. whether or not the location is occupied by a given material). Interpolation of a discrete function boils down to determining where in the intermediate node-positions one material ends, and the other begins. The numerical diffusion error thus manifests itself as an erroneous location of the material-interface. Lagrangian advection-schemes are known to be less prone to numerical diffusion errors, compared to their Eulerian counterparts. The tracer-ratio method, where Lagrangian markers are used to discretize the bulk of materials filling the entire domain, is a popular example of such methods. The Stokes equation in this case is solved on a separate, static grid, and in order to do it - material properties must be interpolated from the markers to the grid. This involves the difficulty related to interpolation of discrete fields. The material distribution, and thus material-properties like viscosity and density, seen by the grid is polluted by the interpolation error, which enters the solution of the momentum equation. Errors due to the uncertainty of interface-location can be
Anisotropic pressure and hyperons in neutron stars
Sulaksono, A.
2015-01-01
We study the effects of anisotropic pressure (AI-P) on properties of the neutron stars (NSs) with hyperons inside its core within the framework of extended relativistic mean field. It is found that the main effects of AI-P on NS matter is to increase the stiffness of the equation of state EOS, which compensates for the softening of the EOS due to the hyperons. The maximum mass and redshift predictions of anisotropic neutron star with hyperonic core are quite compatible with the result of recent observational constraints if we use the parameter of AI-P model h ≤ 0.8 [L. Herrera and W. Barreto, Phys. Rev. D 88 (2013) 084022.] and Λ ≤ -1.15 [D. D. Doneva and S. S. Yazadjiev, Phys. Rev. D 85 (2012) 124023.]. The radius of the corresponding NS at M = 1.4 M ⊙ is more than 13 km, while the effect of AI-P on the minimum mass of NS is insignificant. Furthermore, due to the AI-P in the NS, the maximum mass limit of higher than 2.1 M ⊙ cannot rule out the presence of hyperons in the NS core. (author)
Strange diquarks and orbital excitations of hyperons
Kondratyuk, L.A.; Ralchenko, Yu.V.; Vasilets, A.V.
1987-01-01
Using the model of the QCD string with spin-orbital interaction the masses of strange diquarks are determined. The spectra of orbital excitations of the Λ and Σ hyperons are calculated and discussed. Also the decay modes for Λ's and Σ's are considered
[Study of hyperons and beauty particles
1991-01-01
The proposed research program is to study the production and decay properties of the hyperons and the beauty hadrons at Fermilab. Since the project was approved in 1989, a lot of progress has been made. This report is a summary of the achievements
Hyperon99 experimental summary: A 40 year perspective
Ramberg, E.
2000-01-01
The Hyperon 99 Symposium was held in a very timely fashion and place. Fermilab is likely making the last 800 GeV fixed target run for a very long time. As has been true since Fermilab began, hyperon physics continues to play an important role in the fixed target program. Both of the active fixed target experiments, KTeV and HyperCP, have strong hyperon physics programs, and both have reported results at this symposium. In addition, it should be pointed out that both experiments have strong kaon physics programs. This linkage of kaons and hyperons is, of course, not coincidental, but mirrors the gradual discovery of strangeness through associated production of kaons and hyperons in the early 1950's. As an overview of the long history of hyperon physics, Vince Smith gave a very thorough presentation of the CERN hyperon physics program and showed how it relates to the work done at Brookhaven and Fermilab. The author has arranged this summary in five sections. The first three correspond to the way in which hyperons are studied: they exist (with static properties such as mass and lifetime), they are produced (with production properties such as polarization) and they decay (with decay properties such as form factors). The author then summarizes some of the data presented at the symposium reflecting strangeness in other baryonic forms of matter than the standard hyperon. In the last section, this paper summarizes important future measurements which should be taken in the field of hyperon physics
Hyperon puzzle, hadron-quark crossover and massive neutron stars
Masuda, Kota; Hatsuda, Tetsuo; Takatsuka, Tatsuyuki
2016-01-01
Bulk properties of cold and hot neutron stars are studied on the basis of the hadron-quark crossover picture where a smooth transition from the hadronic phase to the quark phase takes place at finite baryon density. By using a phenomenological equation of state (EOS) ''CRover'', which interpolates the two phases at around 3 times the nuclear matter density (ρ 0 ), it is found that the cold NSs with the gravitational mass larger than 2M CircleDot can be sustained. This is in sharp contrast to the case of the first-order hadron-quark transition. The radii of the cold NSs with the CRover EOS are in the narrow range (12.5 ± 0.5) km which is insensitive to the NS masses. Due to the stiffening of the EOS induced by the hadron-quark crossover, the central density of the NSs is at most 4 ρ 0 and the hyperon-mixing barely occurs inside the NS core. This constitutes a solution of the long-standing hyperon puzzle. The effect of color superconductivity (CSC) on the NS structures is also examined with the hadron-quark crossover. For the typical strength of the diquark attraction, a slight softening of the EOS due to two-flavor CSC (2SC) takes place and the maximum mass is reduced by about 0.2M CircleDot . The CRover EOS is generalized to the supernova matter at finite temperature to describe the hot NSs at birth. The hadron-quark crossover is found to decrease the central temperature of the hot NSs under isentropic condition. The gravitational energy release and the spin-up rate during the contraction from the hot NS to the cold NS are also estimated. (orig.)
Hyperon puzzle, hadron-quark crossover and massive neutron stars
Masuda, Kota [The University of Tokyo, Department of Physics, Tokyo (Japan); Nishina Center, RIKEN, Theoretical Research Division, Wako (Japan); Hatsuda, Tetsuo [Nishina Center, RIKEN, Theoretical Research Division, Wako (Japan); The University of Tokyo, Kavli IPMU (WPI), Chiba (Japan); Takatsuka, Tatsuyuki [Nishina Center, RIKEN, Theoretical Research Division, Wako (Japan)
2016-03-15
Bulk properties of cold and hot neutron stars are studied on the basis of the hadron-quark crossover picture where a smooth transition from the hadronic phase to the quark phase takes place at finite baryon density. By using a phenomenological equation of state (EOS) ''CRover'', which interpolates the two phases at around 3 times the nuclear matter density (ρ{sub 0}), it is found that the cold NSs with the gravitational mass larger than 2M {sub CircleDot} can be sustained. This is in sharp contrast to the case of the first-order hadron-quark transition. The radii of the cold NSs with the CRover EOS are in the narrow range (12.5 ± 0.5) km which is insensitive to the NS masses. Due to the stiffening of the EOS induced by the hadron-quark crossover, the central density of the NSs is at most 4 ρ{sub 0} and the hyperon-mixing barely occurs inside the NS core. This constitutes a solution of the long-standing hyperon puzzle. The effect of color superconductivity (CSC) on the NS structures is also examined with the hadron-quark crossover. For the typical strength of the diquark attraction, a slight softening of the EOS due to two-flavor CSC (2SC) takes place and the maximum mass is reduced by about 0.2M {sub CircleDot}. The CRover EOS is generalized to the supernova matter at finite temperature to describe the hot NSs at birth. The hadron-quark crossover is found to decrease the central temperature of the hot NSs under isentropic condition. The gravitational energy release and the spin-up rate during the contraction from the hot NS to the cold NS are also estimated. (orig.)
Superfluidity of hyperon-mixed neutron stars
Takatsuka, Tatsuyuki; Nishizaki, Shigeru; Yamamoto, Yasuo; Tamagaki, Ryozo
2002-01-01
Superfluidity of hyperons (Y) admixed in neutron star cores is investigated by a realistic approach. It is found that hyperons such as Λ and Σ - are likely to be superfluid due mainly to their large effective masses in the medium, in addition to their 1 S 0 -pairing attraction not so different from that of nucleons. Also the existence of nucleon superfluidity at high-density is investigated under a developed Y-contamination. It is found that the density change of nucleon components due to the Y-mixing does not work for the realization of n-superfluid and makes the existence of p-superfluid more unlikely, as compared to the normal case without the Y-mixing. (author)
Status of CP violation in hyperon decays
He, X.G.; Steger, H.; Valencia, G.
1991-01-01
We update the estimate of CP violating observables in hyperon decays. We consider the effect of a heavy top quark, as well as recent bounds on the CKM angles. We present an estimate of the uncertainties associated with the evaluation of the hadronic matrix elements by comparing different models. We find that A(Λ - 0 ) is likely to occur at the 10 -5 level within the standard model, although it could reach 10 -4 . (orig.)
Hyperon resonances in SU(3) soliton models
Scoccola, N.N.
1990-01-01
Hyperon resonances excited in kaon-nucleon scattering are investigated in the framework of an SU(3) soliton model in which kaon degrees of freedom are treated as small fluctuations around an SU(2) soliton. For partial waves l≥2 the model predicts correctly the quantum numbers and average excitation energies of most of the experimentally observed Λ and Σ resonances. Some disagreements are found for lower partial waves. (orig.)
Light hypernuclei and hyperon-nucleon interaction
Carlson, J.; Gibson, B.F.
1990-01-01
Light Hypernuclei are a vital testing ground for our understanding of the Hyperon-Nucleon interaction. We have performed microscopic calculations of four and five-body hypernuclei using the Nijmegen nucleon-nucleon and hyperon-nucleon interactions. Our calculations include explicit Sigma degrees of freedom. These degrees of freedom are quite important since, in contrast to the Δ - N mass difference of ∼ 300 MeV, the Σ resonance is only about 80 MeV above the Λ. In addition, although there is no one-pion-exchange in the ΛN diagonal channel, this longest-range term does contribute to the transition ΛN - ΣN interaction. Our variational calculations show that the A=4 spin 0 ground state binding energy is well reproduced by the Nijmegen HN integration, a one-boson exchange model fit to the available scattering data. The spin 1 excited state and the A=5 ground state are strongly underbound, however. We demonstrate the importance of the strong tensor terms of the Nijmegen model, particularly those in the transition channel, in obtaining this result. The limited data currently available for hyperon-nucleon scattering must be greatly improved in order to place reasonable constraints on the interaction. 12 refs., 3 figs., 3 tabs
Light hypernuclei and hyperon-nucleon interaction
Carlson, J.; Gibson, B.F.
1990-01-01
Light Hypernuclei are a vital testing ground for our understanding of the Hyperon-Nucleon interaction. We have performed microscopic calculations of four and five-body hypernuclei using the Nijmegen nucleon-nucleon and hyperon-nucleon interactions. Our calculations include explicit Sigma degrees of freedom. These degrees of freedom are quite important since, in contrast to the {Delta} {minus} N mass difference of {approx} 300 MeV, the {Sigma} resonance is only about 80 MeV above the {Lambda}. In addition, although there is no one-pion-exchange in the {Lambda}N diagonal channel, this longest-range term does contribute to the transition {Lambda}N {minus} {Sigma}N interaction. Our variational calculations show that the A=4 spin 0 ground state binding energy is well reproduced by the Nijmegen HN integration, a one-boson exchange model fit to the available scattering data. The spin 1 excited state and the A=5 ground state are strongly underbound, however. We demonstrate the importance of the strong tensor terms of the Nijmegen model, particularly those in the transition channel, in obtaining this result. The limited data currently available for hyperon-nucleon scattering must be greatly improved in order to place reasonable constraints on the interaction. 12 refs., 3 figs., 3 tabs.
Coexistence of hyperon and π condensation in neutron stars
Isshiki, Akinori
2000-01-01
We consider the coexistence of hyperon and π condensation in neutron stars. The coexistence phase may occur because of the strong ΛΣπ coupling. Hyperon can appear under π condensation, because short range repulsion reduce the π-baryon p wave attraction. The system approaches the Fermi gas because of this reduction. (author)
Lambda-nuclear interactions and hyperon puzzle in neutron stars
Haidenbauer, J. [Forschungszentrum Juelich, Institute for Advanced Simulation, Institut fuer Kernphysik and Juelich Center for Hadron Physics, Juelich (Germany); Universitaet Bonn, Helmholtz Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Meissner, U.G. [Universitaet Bonn, Helmholtz Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Forschungszentrum Juelich, Institute for Advanced Simulation, Institut fuer Kernphysik and Juelich Center for Hadron Physics, Juelich (Germany); Kaiser, N.; Weise, W. [Technische Universitaet Muenchen, Physik Department, Garching (Germany)
2017-06-15
Brueckner theory is used to investigate the in-medium properties of a Λ-hyperon in nuclear and neutron matter, based on hyperon-nucleon interactions derived within SU(3) chiral effective field theory (EFT). It is shown that the resulting Λ single-particle potential U{sub Λ}(p{sub Λ} = 0, ρ) becomes strongly repulsive for densities ρ of two-to-three times that of normal nuclear matter. Adding a density-dependent effective ΛN-interaction constructed from chiral ΛNN three-body forces increases the repulsion further. Consequences of these findings for neutron stars are discussed. It is argued that for hyperon-nuclear interactions with properties such as those deduced from the SU(3) EFT potentials, the onset for hyperon formation in the core of neutron stars could be shifted to much higher density which, in turn, could pave the way for resolving the so-called hyperon puzzle. (orig.)
Effect of hyperons on nuclear phase transition
Das, P.; Mallik, S.; Chaudhuri, G.
2016-01-01
Phase transition of nuclear system in heavy ion-collisions at intermediate energy has been studied well for many years and it has also been extended to strange nuclear matter. Recently, using the Canonical Thermodynamical Model (CTM), detailed work on multiplicity distribution of fragments produced from fragmentation of hypernuclear system shows the existence of phase transition or phase coexistence in strange system with Λ-hyperons. In present work we want to continue the investigation on phase transition with respect to some other thermodynamic observables like free energy, specific heat etc. in order to be confirmed about the nature of the transition
Interplay between kaon condensation and hyperons in highly dense matter
Muto, Takumi
2008-01-01
The possible coexistence and/or competition of kaon condensation with hyperons are investigated in hyperonic matter, where hyperons are mixed in the ground state of neutron-star matter. The formulation is based on the effective chiral Lagrangian for the kaon-baryon interaction and the nonrelativistic baryon-baryon interaction model. First, the onset condition of the s-wave kaon condensation realized from hyperonic matter is reexamined. It is shown that the usual assumption of the continuous phase transition is not always kept valid in the presence of the negatively charged hyperons (Σ - ). Second, the equation of state (EOS) of the kaon-condensed phase in hyperonic matter is discussed. In the case of the stronger kaon-baryon attractive interaction, it is shown that a local energy minimum with respect to the baryon number density appears as a result of considerable softening of the EOS due to both kaon condensation and hyperon mixing and recovering of the stiffness of the EOS at very high densities. This result implies a possible existence of self-bound objects with kaon condensates on any scale from an atomic nucleus to a neutron star
Hypernuclei and hyperon-nucleon interactions
Yamamoto, Yasuo
1994-01-01
The properties of baryon many-body systems which contain nucleons and hyperons with strangeness link closely to the underlying hyperon(Y)-nucleon(N) and YY interactions. It is very convenient to derive effective interactions in nuclear media from those in free space. The G-matrix gives a good starting point for such approach. It is possible and important to explore the properties of YN and YY interactions, and test their theoretical models by analyzing hypernuclear phenomena. In this work, the G-matrix interaction of the baryon pair in a nuclear matter was derived. The coupling effect between different baryon channels is renormalized into the G-matrix. The density dependence of the resultant G-matrix originates from the repulsive core singularity, the tensor force and also the coupling between different baryon channels. For the application to various hypernuclear problems, it is convenient to construct effective local potentials which simulate the G-matrices. Those are parameterized in a three-range Gaussian form. The parameters are determined so as to simulate the calculated G-matrices. The effective interactions are called YNG-ND, NF, NS, JA and JB. The data on ΛN, ΣN, ΛΛ and ΣN interactions are given. (K.I.)
Benetti, Ana Raquel; Havndrup-Pedersen, Cæcilie; Honoré, Daniel
2015-01-01
the restorative procedure. The aim of this study, therefore, was to compare the depth of cure, polymerization contraction, and gap formation in bulk-fill resin composites with those of a conventional resin composite. To achieve this, the depth of cure was assessed in accordance with the International Organization...... for Standardization 4049 standard, and the polymerization contraction was determined using the bonded-disc method. The gap formation was measured at the dentin margin of Class II cavities. Five bulk-fill resin composites were investigated: two high-viscosity (Tetric EvoCeram Bulk Fill, SonicFill) and three low......-viscosity (x-tra base, Venus Bulk Fill, SDR) materials. Compared with the conventional resin composite, the high-viscosity bulk-fill materials exhibited only a small increase (but significant for Tetric EvoCeram Bulk Fill) in depth of cure and polymerization contraction, whereas the low-viscosity bulk...
Reconstructing Hyperons with the ANDA Detector at FAIR
Ikegami Andersson, W
2016-01-01
Hyperon production and the study of their properties is an important part of the physics programme of the future ANDA experiment at FAIR. Antihyperon-hyperon pairs will be produced in antiproton-proton collisions through the annihilation of at least one light antiquark-quark ( u, d ) pair and the creation of a corresponding number of antiquark-quark s pairs. By measuring the decay products of the hyperons, spin observables such as the polarisation can be measured. Many hyperons have a long life-time which gives rise to final state particles originating from displaced vertices. A pattern recognition algorithm using information from the ANDA Straw Tube Tracker is extended to reconstruct not only the transversal, but also the longitudinal components of charged tracks. A Hough transform and a path finding method as tools to extract the longitudinal components are being developed. (paper)
Bag-model quantum chromodynamics for hyperons at low energy
Weber, H.J.; Maslow, J.N.
1980-01-01
In a non-perturbative bag model framework, gluon exchange which mediates quark exchange scattering in conjunction with quark interchange is shown to be the basis of the OBE interactions of hyperons at low energy. (orig.)
Dirac phenomenology and hyperon-nucleus interactions
Mares, J; Jennings, B K [TRIUMF, Vancouver, British Columbia (Canada); Cooper, E D [Fraser Valley Univ. College, Chilliwack, British Columbia (Canada). Dept. of Physics
1993-05-01
We discuss various aspects of hyperon-nucleus interactions in the relativistic mean field theory. First, characteristics of {Lambda}, {Sigma} and {identical_to} hypernuclei, as well as multi strange baryonic objects, are investigated. The spin-orbit splittings and magnetic moments are shown to be very sensitive to the value of the tensor coupling f{omega}y. Second, optical potentials for {Lambda} and {Sigma} scattering off nuclei are developed based on a global nucleon-nucleon Dirac optical potential and SU(3) symmetry. The tensor coupling has a large effect on the predictions for the analyzing power. Third, the Dirac approach is used in the calculations of the non-mesonic decay of {Lambda} hypernuclei. The large discrepancy between the decay rates and data suggests the need for additional meson exchanges. (authors). 62 refs.,7 figs., 6 tabs.
Hyperon decay form factors in chiral perturbation theory
Lacour, Andre; Kubis, Bastian; Meissner, Ulf-G.
2007-01-01
We present a complete calculation of the SU(3)-breaking corrections to the hyperon vector form factors up to O(p 4 ) in covariant baryon chiral perturbation theory. Partial higher-order contributions are obtained, and we discuss chiral extrapolations of the vector form factor at zero momentum transfer. In addition we derive low-energy theorems for the subleading moments in hyperon decays, the weak Dirac radii and the weak anomalous magnetic moments, up to O(p 4 )
Suprathermal viscosity of dense matter
Alford, Mark; Mahmoodifar, Simin; Schwenzer, Kai
2010-01-01
Motivated by the existence of unstable modes of compact stars that eventually grow large, we study the bulk viscosity of dense matter, taking into account non-linear effects arising in the large amplitude regime, where the deviation μ Δ of the chemical potentials from chemical equilibrium fulfills μ Δ > or approx. T. We find that this supra-thermal bulk viscosity can provide a potential mechanism for saturating unstable modes in compact stars since the viscosity is strongly enhanced. Our study confirms previous results on strange quark matter and shows that the suprathermal enhancement is even stronger in the case of hadronic matter. We also comment on the competition of different weak channels and the presence of suprathermal effects in various color superconducting phases of dense quark matter.
Iver Brevik
2012-11-01
Full Text Available A bulk viscosity is introduced in the formalism of modified gravity. It is shownthat, based on a natural scaling law for the viscosity, a simple solution can be found forquantities such as the Hubble parameter and the energy density. These solutions mayincorporate a viscosity-induced Big Rip singularity. By introducing a phase transition inthe cosmic fluid, the future singularity can nevertheless in principle be avoided.
Study of hyperon-nucleon interactions with d(e,e'K) reactions
Lee, T.-S. H.
1998-01-01
The dependence of the d(e,eprimeK + ) reaction cross sections on the hyperon-nucleon interactions is investigated. It is shown that the data obtained with Longitudinal-Transverse separation or polarized photons can distinguish a class of Nijmegen models of hyperon-nucleon interactions which are χ 2 -equivalent in fitting the existing 35 data points of hyperon-nucleon reactions
Hyperon decays and spectrum generating SU(3)
Teese, R.B.; Boehm, A.
1976-02-01
The research program described in this review is aimed at describing the properties of relativistic one-hadron systems by an algebra of observables, in analogy to the nonrelativistic description of atoms. This formalism has recently been applied to the leptonic and semi-leptonic decays of pseudoscalar mesons, and was shown to be capable of predicting both the suppression of strangeness changing decays and the value of the form factor ratio xi in K/sub l 3 / decay. A preliminary description of the leptonic decays of hyperons indicates that second class matrix elements are predicted as a consequence of a precise formulation of SU(3) symmetry breaking. A chi 2 -fit to the experimental data indicates that this preliminary model is an improvement over the usual Cabibbo model, and points the way for further theoretical work. It is hoped that this program will lead to a model for the leptonic decays of hadrons which improves upon the results of the Cabibbo model and which explains some of the assumptions of that model
Juliano da Silva, Carlos; Pasquini, Celio
2015-01-21
Conventional reflectance spectroscopy (NIRS) and hyperspectral imaging (HI) in the near-infrared region (1000-2500 nm) are evaluated and compared, using, as the case study, the determination of relevant properties related to the quality of natural rubber. Mooney viscosity (MV) and plasticity indices (PI) (PI0 - original plasticity, PI30 - plasticity after accelerated aging, and PRI - the plasticity retention index after accelerated aging) of rubber were determined using multivariate regression models. Two hundred and eighty six samples of rubber were measured using conventional and hyperspectral near-infrared imaging reflectance instruments in the range of 1000-2500 nm. The sample set was split into regression (n = 191) and external validation (n = 95) sub-sets. Three instruments were employed for data acquisition: a line scanning hyperspectral camera and two conventional FT-NIR spectrometers. Sample heterogeneity was evaluated using hyperspectral images obtained with a resolution of 150 × 150 μm and principal component analysis. The probed sample area (5 cm(2); 24,000 pixels) to achieve representativeness was found to be equivalent to the average of 6 spectra for a 1 cm diameter probing circular window of one FT-NIR instrument. The other spectrophotometer can probe the whole sample in only one measurement. The results show that the rubber properties can be determined with very similar accuracy and precision by Partial Least Square (PLS) regression models regardless of whether HI-NIR or conventional FT-NIR produce the spectral datasets. The best Root Mean Square Errors of Prediction (RMSEPs) of external validation for MV, PI0, PI30, and PRI were 4.3, 1.8, 3.4, and 5.3%, respectively. Though the quantitative results provided by the three instruments can be considered equivalent, the hyperspectral imaging instrument presents a number of advantages, being about 6 times faster than conventional bulk spectrometers, producing robust spectral data by ensuring sample
Weak quasielastic electroproduction of hyperons with polarization observables
Akbar, F.; Sajjad Athar, M.; Fatima, A.; Singh, S.K. [Aligarh Muslim University, Department of Physics, Aligarh (India)
2017-07-15
With the availability of high luminosity electron beams at the accelerators, there is now the possibility of studying weak quasielastic hyperon production off the proton, i.e. e{sup -}p → ν{sub e}Y(Y = Λ,Σ{sup 0}), which will enable the determination of the nucleon-hyperon vector and axial-vector transition form factors at high Q{sup 2} in the strangeness sector and provide test of the Cabibbo model, G-invariance, CVC, PCAC hypotheses and SU(3) symmetry. In this work, we have studied the total cross section, differential cross section as well as the longitudinal and perpendicular components of polarization of the final hyperons (Λ and Σ{sup 0} produced in these reactions) and presented numerical results for these observables and their sensitivity to the transition form factors. (orig.)
SiΛvio: A trigger for Λ-hyperons
Münzer, Robert; Berger, Martin; Fabbietti, Laura [Excellence Cluster Universe, Technische Universität München, Boltzmannstr. 2, D-85748 (Germany); Averbeck, R.; Andronic, A. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt (Germany); Barret, V. [Laboratoire de Physique Corpusculaire, IN2P3/CNRS, Université Blaise Pascal, Clermont-Ferrand (France); Basrak, Z. [Ruđer Bošković Institute, Zagreb (Croatia); Bastid, N. [Laboratoire de Physique Corpusculaire, IN2P3/CNRS, Université Blaise Pascal, Clermont-Ferrand (France); Benabderrahmane, M.L. [Physikalisches Institut der Universität Heidelberg, Heidelberg (Germany); Buehler, P.; Cargnelli, M. [Stefan-Meyer-Institut für subatomare Physik, Österreichische Akademie der Wissenschaften, Wien (Austria); Čaplar, R. [Ruđer Bošković Institute, Zagreb (Croatia); Carevic, I. [University of Split, Split (Croatia); Charviakova, V. [Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw (Poland); Crochet, P. [Laboratoire de Physique Corpusculaire, IN2P3/CNRS, Université Blaise Pascal, Clermont-Ferrand (France); Deppner, I. [Physikalisches Institut der Universität Heidelberg, Heidelberg (Germany); Dupieux, P. [Laboratoire de Physique Corpusculaire, IN2P3/CNRS, Université Blaise Pascal, Clermont-Ferrand (France); Dželalija, M. [University of Split, Split (Croatia); Fodor, Z. [Wigner RCP, RMKI, Budapest (Hungary); and others
2014-05-01
As online trigger for events containing Λ hyperons in p+p collisions at 3.1 GeV a silicon-based device has been designed and built. This system has been integrated close to the target region within the FOPI spectrometer at GSI and was also employed as a tracking device to improve the vertex reconstruction of secondary decays. The design of the detector components, read-out, the trigger capability as well as the tracking performance are presented. An enrichment factor of about 14 was achieved for events containing a Λ-hyperon candidate.
Role of pions and hyperons in neutron stars and supernovae
Glendenning, N.K.
1987-05-01
Neutron stars are studied in the framework of nuclear relativistic field theory. Hyperons and pions significantly soften the equation of state of neutron star matter at moderate and high density. We conjecture that they are responsible for the softening that is found to be crucial to the bounce scenario in supernova calculations. Hyperons reduce the limiting mass of neutron stars predicted by theory by one half solar mass or more, which is a large effect compared to the range in which theories of matter predict this limit to fall. 6 refs., 2 figs
LAMBDA-hyperon superfluidity in neutron star cores
Takatsuka, T
2000-01-01
Superfluidity of LAMBDA hyperons in neutron star cores is investigated by a realistic approach to use reliable LAMBDA LAMBDA interactions and the effective mass of LAMBDA based on the G-matrix calculations. It is found that LAMBDA superfluid can exist at rho approx = (rho sub t approx rho sub d) with rho sub t approx = 2 rho sub 0 (rho sub 0 being the nuclear density) and rho sub d approx = (3 - 4.5)rho sub 0 , depending on hyperon core models.
Theoretical nuclear reaction and structure studies using hyperons and photons
Cotanch, S.R.
1991-01-01
This report details research progress and results obtained during the 12 month period from January 1991 through 31 December 1991. The research project, entitled ''Theoretical Nuclear Reaction and Structure Studies Using Hyperons and Photons,'' is supported by grant DE-FG05-88ER40461 between North Carolina State University and the United States Department of Energy. In compliance with grant requirements the Principal Investigator, Professor Stephen R. Cotanch, has conducted a research program addressing theoretical investigations of reactions involving hyperons and photons. The new, significant research results are briefly summarized in the following sections
Microhardness of bulk-fill composite materials
Kelić, Katarina; Matić, Sanja; Marović, Danijela; Klarić, Eva; Tarle, Zrinka
2016-01-01
The aim of the study was to determine microhardness of high- and low-viscosity bulk-fill composite resins and compare it with conventional composite materials. Four materials of high-viscosity were tested, including three bulk-fills: QuiXfi l (QF), x-tra fil (XTF) and Tetric EvoCeram Bulk Fill (TEBCF), while nanohybrid composite GrandioSO (GSO) served as control. The other four were low-viscosity composites, three bulk-fill materials: Smart Dentin Replacement (SDR), Venus Bulk Fill (VBF) and ...
Hyperon AND Hyperon Resonance Properties From Charm Baryon Decays At BaBar
Ziegler, Veronique; /Iowa U.
2007-07-03
This report describes studies of hyperons and hyperon resonances produced in charm baryon decays at BABAR. Using two-body decays of the {Xi}{sub c}{sup 0} and {Omega}{sub c}{sup 0}, it is shown, for the first time, that the spin of the {omega}{sup -} is 3/2. The {Omega}{sup -} analysis procedures are extended to three-body final states and properties of the {Xi}(1690){sup 0} are extracted from a detailed isobar model analysis of the {Lambda}{sub c}{sup +} {yields} {Lambda}{bar K}{sup 0}K{sup +} Dalitz plot. The mass and width values of the {Xi}(1690){sup 0} are measured with much greater precision than attained previously. The hypothesis that the spin of the {Xi}(1690) resonance is 1/2 yields an excellent description of the data, while spin values 3/2 and 5/2 are disfavored. The {Lambda}a{sub 0}(980){sup +} decay mode of the {Lambda}{sub c}{sup +} is observed for the first time. Similar techniques are then used to study {Xi}(1530){sup 0} production in {Lambda}{sub c}{sup +} decay. The spin of the {Xi}(1530) is established for the first time to be 3/2. The existence of an S-wave amplitude in the {Xi}{sup -}{pi}{sup +} system is shown, and its interference with the {Xi}(1530){sup 0} amplitude provides the first clear demonstration of the Breit-Wigner phase motion expected for the {Xi}(1530). The {Xi}{sup -}{pi}{sup +} mass distribution in the vicinity of the {Xi}(1690){sup 0} exhibits interesting structure which may be interpreted as indicating that the {Xi}(1690) has negative parity.
NA48 results on neutral kaon and hyperon rare decays
The NA48 Collaboration has performed an extensive program of kaon and hyperon rare decays using the data collected during the period 1997-2001. This program includes new tests of chiral perturbation theory, new measurements of the mass and K S lifetime and the possibility to measure the Cabibbo angle using Ξ ...
Hyperon polarizabilities in the bound-state soliton model
Gobbi, C.; Scoccola, N.N.
1996-01-01
A detailed calculation of electric and magnetic static polarizabilities of octet hyperons is presented in the framework of the bound-state soliton model. Both seagull and dispersive contributions are considered, and the results are compared with different model predictions. (orig.)
Hyperon puzzle of neutron stars with Skyrme force models
Lim, Yeunhwan; Hyun, Chang Ho; Kwak, Kyujin; Lee, Chang-Hwan
2015-01-01
We consider the so-called hyperon puzzle of neutron star (NS). We employ Skyrme force models for the description of in-medium nucleon–nucleon (NN), nucleon–Lambda hyperon (NΛ) and Lambda–Lambda (ΛΛ) interactions. A phenomenological finite-range force (FRF) for the ΛΛ interaction is considered as well. Equation of state (EoS) of NS matter is obtained in the framework of density functional theory, and Tolman–Oppenheimer–Volkoff (TOV) equations are solved to obtain the mass-radius relations of NSs. It has been generally known that the existence of hyperons in the NS matter is not well supported by the recent discovery of large-mass NSs (M ≃ 2M⊙) since hyperons make the EoS softer than the one without them. For the selected interaction models, NΛ interactions reduce the maximum mass of NS by about 30%, while ΛΛ interactions can give about 10% enhancement. Consequently, we find that some Skyrme force models predict the maximum mass of NS consistent with the observation of 2M ⊙ NSs, and at the same time satisfy observationally constrained mass-radius relations. (author)
Results on hyperon production from the NA57 experiment
Antinori, F.; Bacon, P. A.; Balada, A.; Staroba, Pavel; Závada, Petr
2005-01-01
Roč. 22, - (2005), s. 113-120 ISSN 1219-7580 R&D Projects: GA MŠk 1P04LA211 Institutional research plan: CEZ:AV0Z10100502 Keywords : hyperons * strangeness enhancement * blast-wave model Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 0.137, year: 2005
Collocott, S.J. [CSIRO Materials Science and Engineering, Lindfield, NSW 2070 (Australia)], E-mail: stephen.collocott@csiro.au; Dunlop, J.B. [CSIRO Materials Science and Engineering, Lindfield, NSW 2070 (Australia)
2008-08-15
The fluctuation field, H{sub f}, is a useful parameter for characterising any ferromagnetic material that displays hysteresis, as it is a measure of the thermally activated rate processes that govern magnetisation reversals. Anomalous magnetic viscosity, i.e. nonmonotonic behaviour of the time dependent magnetisation, where the magnetisation is seen to increase, reach a peak, and then decrease, has been observed on both the upper and lower branches of minor loops or recoil curves in some ferromagnetic materials. Parameters relevant to the Preisach model are discussed as to their usefulness in predicting anomalous magnetic viscosity in ferromagnetic materials. This is done with reference to measurements of H{sub f} and the time dependent magnetisation in commercial NdFeB alloys, AlNiCo and the bulk amorphous ferromagnets Nd{sub 60}Fe{sub 30}Al{sub 10} and Nd{sub 60}Fe{sub 20}Co{sub 10}Al{sub 10}.
The effect of the scalar-isovector meson field on hyperon-rich neutron star matter
Mi, Aijun; Zuo, Wei; Li, Ang
2008-01-01
We investigate the effect of the scalar-isovector δ-meson field on the equation of state (EOS) and composition of hyperonic neutron star matter, and the properties of hyperonic neutron stars within the framework of the relativistic mean field theory. The influence of the δ-field turns out to be quite different and generally weaker for hyperonic neutron star matter as compared to that for npeμ neutron star matter. We find that inclusion of the δ-field enhances the strangeness content slightly and consequently moderately softens the EOS of neutron star matter in its hyperonic phase. As for the composition of hyperonic star matter, the effect of the δ-field is shown to shift the onset of the negatively-charged (positively-charged) hyperons to slightly lower (higher) densities and to enhance (reduce) their abundances. The influence of the δ-field on the maximum mass of hyperonic neutron stars is found to be fairly weak, whereas inclusion of the δ-field turns out to enhance sizably both the radii and the moments of inertia of neutron stars with given masses. It is also shown that the effects of the δ-field on the properties of hyperonic neutron stars remain similar in the case of switching off the Σ hyperons. (author)
SU(3) breaking in hyperon transition vector form factors
Shanahan, P.E.; Thomas, A.W.; Young, R.D.; Zanotti, J.M.; Rakow, P.E.L.
2015-08-01
We present a calculation of the SU(3)-breaking corrections to the hyperon transition vector form factors to O(p 4 ) in heavy baryon chiral perturbation theory with finite-range regularisation. Both octet and decuplet degrees of freedom are included. We formulate a chiral expansion at the kinematic point Q 2 =-(M B 1 -M B 2 ) 2 , which can be conveniently accessed in lattice QCD. The two unknown low-energy constants at this point are constrained by lattice QCD simulation results for the Σ - →n and Ξ 0 →Σ + transition form factors. Hence we determine lattice-informed values of f 1 at the physical point. This work constitutes progress towards the precise determination of vertical stroke V us vertical stroke from hyperon semileptonic decays.
Λ, Σ, and Ξ hyperons in neutron matter
Kohno, M.
2013-01-01
Hyperon single-particle potentials are calculated in pure neutron matter in the framework of the lowest-order Brueckner theory, using two recent baryon–baryon interactions, the SU 6 quark-model potential and the potential derived from the chiral effective field theory. These properties are important for understanding neutron star matter on the basis of underlying baryon–baryon interactions. Because the calculated potential of Σ − is strongly repulsive and that of Ξ − is also repulsive, these hyperons are unlikely to appear in neutron star matter. The Λ potential is attractive enough to appear in high neutron matter as has been commonly expected in microscopic calculations. After showing important contributions of three-nucleon forces in neutron matter, analogous repulsive contributions to the Λ potential from the Σ ⁎ excitation are estimated by evaluating second-order diagrams
Helicity amplitudes and electromagnetic decays of hyperon resonances
Cauteren, T. van; Ryckebusch, J.; Metsch, B.; Petry, H.R.
2005-01-01
We present results for the helicity amplitudes of the lowest-lying hyperon resonances Y * , computed within the framework of the Bonn Constituent-Quark model, which is based on the Bethe-Salpeter approach. The seven parameters entering the model were fitted to the best-known baryon masses. Accordingly, the results for the helicity amplitudes are genuine predictions. Some hyperon resonances are seen to couple more strongly to a virtual photon with finite Q 2 than to a real photon. Other Y * 's, such as the S 01 (1670) Λ-resonance or the S 11 (1620) Σ-resonance, couple very strongly to real photons. We present a qualitative argument for predicting the behaviour of the helicity asymmetries of baryon resonances at high Q 2 . (orig.)
Goldberger-Treiman constraint criterion for hyperon coupling constants
General, Ignacio J.; Cotanch, Stephen R.
2004-01-01
The generalized Goldberger-Treiman relation is combined with the Dashen-Weinstein sum rule to provide a constraint equation between the g KΣN and g KΛN coupling constants. A comprehensive examination of the published phenomenological and theoretical hyperon couplings has yielded a much smaller set of values, spanning the intervals 0.80≤g KΣN /√(4π)≤2.72 and -3.90≤g KΛN /√(4π)≤-1.84, consistent with this criterion. The broken SU F (3) and Goldberger-Treiman hyperon couplings satisfy the constraint along with predictions from a Taylor series extrapolation using the same momentum variation as exhibited by g πNN
Theoretical nuclear reaction and structure studies using hyperons and photons
Cotanch, S.R.
1992-01-01
Research in three principal areas is summarized: (1) Work in elementary hadron structure seeks to further the understanding of hadron structure within the framework of quantum chromodynamics (QCD) and QCD-based models. A comparative study of meson properties employed three relativistic models: an extended Dziembowski model, a generalized light-front approach, and a completely covariant null plane approach. (2) Work on the electromagnetic production of strangeness addressed systems involving the strange quark (hyperons) and hyperon electromagnetic production and radiative capture processes. (3) In the work on medium-energy photonuclear reactions, a large-scale continuum shell-model calculation was performed for (γ,N) and (N,γ) reactions at low and medium energies spanning the Δ isobar region
Neutron decay, semileptonic hyperon decay and the Cabibbo model
Siebert, H.W.
1989-01-01
The decay rates and formfactor ratios of neutron decay and semileptonic hyperon decays are compared in the framework of the Cabibbo model. The results indicate SU(3) symmetry breaking. The Kobayashi-Maskawa matrix element V us determined from these decays is in good agreement with the value determined from K→πeν decays, and with unitarity of the KM-matrix. (orig.)
Interference Correlations of Hyperons in Neutron-Carbon Interactions
Aleev, A N; Balandin, V P; Bulekov, O V; Eremin, S V; Geshkov, I M; Goudzovski, E A; Grigalashvili, T S; Guriev D K; Ivanchenko, I M; Ivanchenko, Z M; Kekelidze, V D; Khristov, P Z; Kopadze, M V; Kosarev, I G; Kozhenkova, Z I; Kuzmin, N A; Kvatadze, R A; Ljubimov, A L; Loktionov, A A; Lomidze, N L; Madigozhin, D T; Maznyj, V G; Mitsyn, V V; Molokanova, N A; Morozov, A N; Pismenyj, R E; Polenkevich, I A; Ponosov, A K; Ponta, T; Potrebenikov, Yu K; Sergeev, F M; Slepets, L A; Spaskov, V N; Zinchenko, A I
2003-01-01
The interference correlations of \\Lambda-hyperon pairs produced on the carbon target by 20-70 GeV neutrons have been investigated with the EXCHARM spectrometer. Destructive correlations at low relative 4-momenta are observed for \\Lambda\\Lambda-pairs. No correlations of this type are observed for \\Lambda\\bar{\\Lambda}. Comparison with the corresponding data on meson correlations shows a decrease of production area sizes with an increase of particle masses.
Conversion width of Σ-hyperon in nuclear matter
Filimonov, V.A.
1983-01-01
Width G of ΣN→ΛN conversion for Σ - hyperon in nuclear matter on the base of one-boson exchange model is calculated. Essential compensation of contributions of diffe-- rent mesons to amplitude of the conversiop is shown to take place. As a result G decreases approximately twice as compaped with the value from exchange only by π-meson. Without accout of Pauli principle it is obtained G=15-25 MeV
Evidence for SU(3) symmetry breaking from hyperon production
Yang Jianjun
2002-01-01
We examine the SU(3) symmetry breaking in hyperon semileptonic decays (HSD) by considering two typical sets of quark contributions to the spin content of the octet baryons: set 1 with SU(3) flavor symmetry and set 2 with SU(3) flavor symmetry breaking in the HSD. The quark distributions of the octet baryons are calculated with a successful statistical model. Using an approximate relation between the quark fragmentation functions and the quark distributions, we predict the polarizations of the octet baryons produced in e + e - annihilation and semi-inclusive deep lepton-nucleon scattering in order to reveal the SU(3) symmetry breaking effect on the spin structure of the octet baryons. We find that the SU(3) symmetry breaking significantly affects the hyperon polarization. The available experimental data on the Λ polarization seem to favor the theoretical predictions with SU(3) symmetry breaking. We conclude that there is a possibility to get collateral evidence for SU(3) symmetry breaking from hyperon production. The theoretical errors for our predictions are discussed
Hyperon-mixed neutron star matter and neutron stars
Nishizaki, Shigeru; Takatsuka, Tatsuyuki; Yamamoto, Yasuo
2002-01-01
Effective Σ - n and Σ - Σ - interactions are derived from the G-matrix calculations for {n+Σ - } matter and employed in the investigation of hyperon mixing in neutron star matter. The threshold densities ρ t (Y) at which hyperons start to appear are between 2ρ 0 and 3ρ 0 (where ρ 0 is the normal nuclear density) for both Λ and Σ - , and their fractions increase rapidly with baryon density, reaching 10% already for ρ≅ρ t + ρ 0 . The mechanism of hyperon mixing and single-particle properties, such as the effective mass and the potential depth, are analyzed taking into account the roles of YN and NN interactions. The resulting equation of state is found to be too soft to sustain the observed neutron star mass M obs =1.44(solar mass). We discuss the reason for this and stress the necessity of the ''extra repulsion'' for YN and YY interactions to resolve this crucial problem. It is remarked that ρ t (Y) would be as large as 4ρ 0 for neutron stars compatible with M obs . A comment is given regarding the effects on the Y-mixing problem from a less attractive ΛΛ interaction, newly suggested by the NAGARA event. (author)
Hyperon-mixed neutron star matter and neutron stars
Nishizaki, S; Yamamoto, Y
2002-01-01
Effective SIGMA sup - n and SIGMA sup -SIGMA sup - interactions are derived from the G-matrix calculations for left brace n+SIGMA sup -right brace matter and employed in the investigation of hyperon mixing in neutron star matter. The threshold densities rho sub t (Y) at which hyperons start to appear are between 2 rho sub 0 and 3 rho sub 0 (where rho sub 0 is the normal nuclear density) for both LAMBDA and SIGMA sup - , and their fractions increase rapidly with baryon density, reaching 10% already for rho approx = rho sub t + rho sub 0. The mechanism of hyperon mixing and single-particle properties, such as the effective mass and the potential depth, are analyzed taking into account the roles of YN and NN interactions. The resulting equation of state is found to be too soft to sustain the observed neutron star mass M sub o sub b sub s =1.44(solar mass). We discuss the reason for this and stress the necessity of the ''extra repulsion'' for YN and YY interactions to resolve this crucial problem. It is remarked ...
Measurement of the asymmetry parameter in the hyperon radiative decay Σ+→pγ
Foucher, M.; Albuquerque, I.F.; Bondar, N.F.; Carrigan, R. Jr.; Chen, D.; Li Chengze; Cooper, P.S.; Denisov, A.S.; Dobrovolsky, A.V.; Dubbs, T.; Endler, A.M.F.; Escobar, C.O.; Tang Fukun; Golovtsov, V.L.; Goritchev, P.A.; Gottschalk, H.; Gouffon, P.; Grachev, V.T.; Shi Huanzhang; Yan Jie; Khanzadeev, A.V.; Kubantsev, M.A.; Kuropatkin, N.P.; Lach, J.; Luksys, M.; Lebedenko, V.N.; Dai Lisheng; Mahon, J.R.P.; McCliment, E.; Morelos, A.; Newsom, C.; Lang Pengfei; Pommot Maia, M.C.; Samsonov, V.M.; Zheng Shuchen; Smith, V.J.; Terentyev, N.K.; Timm, S.; Tkatch, I.I.; Uvarov, L.N.; Vorobyov, A.A.; Zhao Wenheng; Zhong Yuanyuan; Li Yunshan
1992-01-01
We have measured the asymmetry parameter (α γ ) in the hyperon radiative decay Σ + →pγ with a sample of 34 754±212 events obtained in a polarized charged hyperon beam experiment at Fermilab. We find α γ =-0.720±0.086±0.045, where the quoted errors are statistical and systematic, respectively
Nucleon Structure and Hyperon Form Factors from Lattice QCD.
Lin,H.W.
2007-06-11
In this work, I report the latest lattice QCD calculations of nucleon and hyperon structure from chiral fermions in 2+1-flavor dynamical simulations. All calculations are done with a chirally symmetric fermion action, domain-wall fermions, for valence quarks. I begin with the latest lattice results on the nucleon structure, focusing on results from RBC/UKQCD using 2+1-flavor chiral fermion actions. We find the chiral-extrapolated axial coupling constant at physical pion mass point. to be 1.23(5), consistent with experimental value. The renormalization constants for the structure functions are obtained from RI/MOM-scheme non-perturbative renormalization. We find first moments of the polarized and unpolarized nucleon structure functions at zero transfer momentum to be 0.133(13) and 0.203(23) respectively, using continuum chiral extrapolation. These are consistent with the experimental values, unlike previous calculations which have been 50% larger. We also have a prediction for the transversity, which we find to be 0.56(4). The twist-3 matrix element is consistent with zero which agrees with the prediction of the Wandzura-Wilczek relation. In the second half of this work, I report an indirect dynamical estimation of the strangeness proton magnetic moments using mixed actions. With the analysis of hyperon form factors and using charge symmetry, the strangeness of proton is found to be -0.066(2G), consistent with the Adelaide-JLab Collaboration's result. The hyperon {Sigma} and {Xi} axial coupling constants are also performed for the first time in a lattice calculation, g{sub {Sigma}{Sigma}} = 0.441(14) and g{sub {Xi}{Xi}} = -0.277(11).
Nucleon Structure and hyperon form factors from lattice QCD
Lin, Huey-Wen
2007-06-11
In this work, I report the latest lattice QCD calculations of nucleon and hyperon structure from chiral fermions in 2+1-flavor dynamical simulations. All calculations are done with a chirally symmetric fermion action, domain-wall fermions, for valence quarks. I begin with the latest lattice results on the nucleon structure, focusing on results from RBC/UKQCD using 2+1-flavor chiral fermion actions. We find the chiral-extrapolated axial coupling constant at physical pion mass point to be 1.23(5), consistant with experimental value. The renormalization constants for the structure functions are obtained from RI/MOM-scheme non-perturbative renormalization. We find first moments of the polarized and unpolarized nucleon structure functions at zero transfer momentum to be 0.133(13) and 0.203(23) respectively, using continuum chiral extrapolation. These are consistent with the experimental values, unlike previous calculations which have been 50% larger. We also have a prediction for the transversity, which we find to be 0.56(4). The twist-3 matrix element is consistent with zero which agrees with the prediction of the Wandzura-Wilczek relation. In the second half of this work, I report an indirect dynamical estimation of the strangeness proton magnetic moments using mixed actions. With the analysis of hyperon form factors and using charge symmetry, the strangeness of proton is found to be -0.066(26), consistent with the Adelaide-JLab Collaboration's result. The hyperon Sigma and Xi axial coupling constants are also performed for the first time in a lattice calculation, g_SigmaSigma = 0.441(14) and g_XiXi = -0.277(11).
Fits combining hyperon semileptonic decays and magnetic moments and CVC
Bohm, A.; Kielanowski, P.
1982-10-01
We have performed a test of CVC by determining the baryon charges and magnetic moments from the hyperon semileptonic data. Then CVC was applied in order to make a joint fit of all baryon semileptonic decay data and baryon magnetic moments for the spectrum generating group (SG) model as well as for the conventional (cabibbo and magnetic moments in nuclear magnetons) model. The SG model gives a very good fit with chi 2 /n/sub D/ = 25/20 approximately equals 21% C.L. whereas the conventional model gives a fit with chi 2 /n/sub D/ = 244/20
The Omega RICH in the CERN hyperon beam experiment
Mueller, U; Beusch, W; Boss, M; Engelfried, J; Gerassimov, S G; Klempt, W; Lennert, P; Martens, K; Newbold, D; Rieseberg, H; Siebert, H -W; Smith, V J; Thilmann, O; Waelder, G
1999-08-21
The Omega RICH, a large-aperture detector for identification of secondary pions, kaons, and (anti) protons was in operation at the CERN Omega spectrometer facility between 1984 and 1994. Cherenkov photons from a 5 m long radiator were detected in drift chambers with quartz windows, using TMAE-loaded counting gases. The RICH was used by experiments WA69 and WA82, until 1988. It was then equipped with new drift chambers and mirrors and was in use since 1990 in experiments WA89 and WA94. The setup in the WA89 hyperon beam experiment is described in more detail and efficiencies, resolutions, and physics results are discussed.
Hyperon-Nulceon Scattering from Fully-Dynamical Lattice QCD
Silas Beane; Paulo Bedaque; Thomas Luu; Konstantinos Orginos; Elizabetta Pallante; Assumpta Parreno; Martin Savage
2007-10-01
We present results of the first fully-dynamical lattice QCD determination of hyperon-nucleon scattering. One s-wave phase shift was determined for n{Lambda} scattering in both spin-channels at pion masses of 350, 490, and 590 MeV, and for n{Sigma}^- scattering in both spin channels at pion masses of 490, and 590 MeV. The calculations were performed with domain-wall valence quarks on dynamical, staggered gauge configurations with a lattice spacing of b ~0.125 fm.
The design of the Hyperon Data Acquisition System
Gee, C.N.P.
1980-12-01
A new Native-mode Data Acquisition system, running on a VAX 11/780, has been designed for the SPS Hyperon Experiments at CERN. The system incorporates a variable number of communicating processes running under VAX/VMS, including user-written monitoring processes. Event handling has been implemented into the CAMAC Driver, and facilities are provided for using a data buffer much larger than the System Maximum Working-set Size. A generalised debugging facility for non terminal-oriented processes is also supported. (author)
Production of hyperons and hyperon resonances in Xi /sup -/N interactions at 102 and 135 GeV/c
Biagi, S F; Britten, A J; Brown, R M; Burckhart, H J; Carter, A A; Carter, J R; Dore, C; Externmann, P; Gailloud, M; Gee, C N P; Gibson, W M; Gordon, J C; Gray, R J; Igo-Kemenes, P; Louis, W C; Modis, T; Mühlemann, P; Perrier, J; Rosselet, P; Saunders, B J; Schirato, P; Siebert, H W; Smith, V J; Streit, K P; Stickland, D P; Threshner, J J; Weill, R
1981-01-01
Xi /sup -/ interactions in hydrogen and deuterium are studied close to the forward direction using the CERN charged hyperon beam. The inclusive production of Sigma */sup -/(1385), Xi /sup -/, Xi */sup 0 /(1530), Xi */sup -/(1700), Xi */sup -/(1830), and Omega /sup -/ is observed, as well as an enhancement in the Xi /sup -/ pi /sup +/ channel at 1940 MeV/c/sup 2/. The momentum distributions and the production cross sections are measured for Sigma */sup -/(1385), Xi /sup -/*/sup 0/(1530), and Omega /sup -/. (21 refs).
An Experiment on the Strong Interactions of Charged Hyperons
2002-01-01
The main goal of this experiment is to study @S*, @X* and @W* diffractive production in @X|-N collisions. Incident @X|- at a mean momentum of 118~GeV/c are tagged by a differential Cherenkov counter (DISC). The resonance decay products are analysed by a double stage magnetic spectrometer equipped with multiwire proportional chambers and drift chambers, a multicell Cherenkov counter and two complementary neutral particle detectors, a liquid argon calorimeter for @g and neutron detection and a lead glass bl wide angle @g rays. A multiplicity counter (M) and two hodoscopes of scintillators (H2 and H3) are used in the trigger. Hyperon radiative decays are also being studied with the same apparatus. The scattering target is taken out and appropriate trigger conditions are used. For the @S|+~@A~p@g decay mode, the polarity of the hyperon channel is reversed and the @S|+'s are identified by the DISC. For the @L~@A~n@g decay mode, @X|-~@A~@L@p|- decays occuring between the B and D chambers provide a source of @L's of...
Constraints on hyperon couplings from neutron star equations of state
Miyazaki, K
2005-01-01
Based on the constituent quark picture of baryons and taking into account the contributions of isovector and strange mesons, we have developed the extended Zimanyi-Moszkowski model of dense baryon matter for studying neutron star (NS) equations of state (EOSs). Four sets of meson-hyperons coupling constants are investigated. The first is characterized by strong attractive N\\Sigma interaction while the others have repulsive N\\Sigma interactions. The second is characterized by strong attractive \\Lambda\\Lambda interaction. The third has weak \\Lambda\\Lambda but strong attractive \\Sigma\\Sigma interactions. The last one has much weaker \\Sigma\\Sigma interaction than the third one. By systematic analyses of the EOSs and mass sequences of NSs, it has been found that the strong attractive N\\Sigma, \\Lambda\\Lambda and \\Sigma\\Sigma interactions are ruled out. The result is consistent to the most recent information on hyperon interactions from the experimental and theoretical i! nvestigations of hypernuclei.
Effects of hyperon mixing on neutron star properties
Takatsuka, Tatsuyuki
2008-01-01
From a serious inconsistency between theory and observations for the mass of hyperon-mixed neutron stars (NSs), it is stressed that some "extra repulsion" is missing in hypernuclear systems and three-body force repulsion is tested for the cases with phenomenological Illinoi's type, 2π-exchange via Δ-excitation type (2πΔ) and string-junction quark model(SJM). It is remarked that the "extra repulsion" should have a nature to act universally, i.e., independent of baryon species. The SJM three-body repulsion can meet the condition because of flavor-independence and {2πΔ+SJM} scheme is shown to be a promising candidate for the "extra repulsion". Occurence of Λ and Σ - superfluidities are shown also by a realistic approach, which importantly supports the idea of nonstandard fast "hyperon cooling" scenario to explain colder class NSs. However, less attractive ΛΛ interaction suggested by the "NAGARA event" ( ΛΛ 6 He) leads to the disappearance of Λ superfluidity and the breaking down of the scenario. In this connection, the revival of "Λ superfluidity" due to ΛΣ - pairing instead of ΛΛ one is discussed in a new scheme of "bubble shell" hypothesis where the matching of two different Fermi surfaces is forced. (author)
Hyperons in nuclear matter from SU(3) chiral effective field theory
Petschauer, S.; Kaiser, N. [Technische Universitaet Muenchen, Physik Department, Garching (Germany); Haidenbauer, J. [Institut fuer Kernphysik, Forschungszentrum Juelich, Institute for Advanced Simulation, Juelich Center for Hadron Physics, Juelich (Germany); Meissner, Ulf G. [Institut fuer Kernphysik, Forschungszentrum Juelich, Institute for Advanced Simulation, Juelich Center for Hadron Physics, Juelich (Germany); Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Weise, W. [Technische Universitaet Muenchen, Physik Department, Garching (Germany); Villa Tambosi, ECT, Villazzano (Trento) (Italy)
2016-01-15
Brueckner theory is used to investigate the properties of hyperons in nuclear matter. The hyperon-nucleon interaction is taken from chiral effective field theory at next-to-leading order with SU(3) symmetric low-energy constants. Furthermore, the underlying nucleon-nucleon interaction is also derived within chiral effective field theory. We present the single-particle potentials of Λ and Σ hyperons in symmetric and asymmetric nuclear matter computed with the continuous choice for intermediate spectra. The results are in good agreement with the empirical information. In particular, our calculation gives a repulsive Σ-nuclear potential and a weak Λ-nuclear spin-orbit force. (orig.)
In situ viscosity of oil sands using low field NMR
Bryan, J.; Moon, D.; Kantzas, A.
2005-01-01
In heavy oil and bitumen reservoirs, oil viscosity is a vital piece of information that will have great bearing on the chosen EOR scheme and the recovery expected. Prediction of in situ viscosity with a logging tool would he very beneficial in reservoir characterization and exploitation design. Low field NMR is a technology that has shown great potential as a tool for characterizing hydrocarbon properties in heavy oil and bitumen reservoirs. An oil viscosity correlation has previously been developed that is capable of providing order of magnitude viscosity estimates for a wide range of oils taken from various fields in Alberta. This paper presents tuning procedures to improve the NMR predictions for different viscosity ranges, and extends the NMR viscosity model to in situ heavy oil in unconsolidated sands. The results of this work show that the NMR oil peak can be de-convoluted from the in situ signals of the oil and water, and the bulk viscosity correlation that was developed for bulk oils can he applied to predict the in situ oil viscosity. These results can be translated to an NMR logging tool algorithm, allowing for in situ measurements of oil viscosity at the proper reservoir conditions. (author)
A Monte Carlo Study of Lambda Hyperon Polarization at BM@N
Suvarieva, D.; Gudima, K.; Zinchenko, A.
2018-03-01
Heavy strange objects (hyperons) can provide essential signatures of the excited and compressed baryonic matter. At NICA, it is planned to study hyperons both in the collider mode (MPD detector) and the fixed-target one (BM@N setup). Measurements of strange hyperon polarization can give additional information on the strong interaction mechanisms. In heavy-ion collisions, such measurements are even more valuable since the polarization is expected to be sensitive to characteristics of the QCD medium (vorticity, hydrodynamic helicity) and to QCD anomalous transport. In this analysis, the possibility to measure at BM@N the polarization of the lightest strange hyperon Λ is studied in Monte Carlo event samples of Au + Au collisions produced with the DCM-QGSM generator. It is shown that the detector will allow to measure polarization with a precision required to check the model predictions.
Radiative corrections of semileptonic hyperon decays Pt. 1
Margaritisz, T.; Szegoe, K.; Toth, K.
1982-07-01
The beta decay of free quarks is studied in the framework of the standard SU(2) x U(1) model of weak and electromagnetic interactions. The so-called 'weak' part of radiative corrections is evaluated to order α in one-loop approximation using a renormalization scheme, which adjusts the counter terms to the electric charge, and to the mass of the charged and neutral vector bosons, Msub(w) and Msub(o), respectively. The obtained result is, to a good approximation, equal with the 'weak' part of radiative corrections for the semileptonic decay of any hyperon. It is shown in the model that the methods, which work excellently in case of the 'weak' corrections, do not, in general, provide us with the dominant part of the 'photonic' corrections. (author)
Measurement of the Spin of the Omega- Hyperon at Babar
Aubert, B.
2006-01-01
A measurement of the spin of the (Omega) - hyperon produced through the exclusive process Ξ c 0 → (Omega) - K + is presented using a total integrated luminosity of 116 fb -1 recorded with the BABAR detector at the e + e - asymmetric-energy B-Factory at SLAC. Under the assumption that the Ξ c 0 has spin 1/2, the angular distribution of the Λ from (Omega) - → ΛK - decay is inconsistent with all half-integer (Omega) - spin values other than 3/2. Lower statistics data for the process (Omega) c 0 → (Omega) - π + from a 230 fb -1 sample are also found to be consistent with (Omega) - spin 3/2. If the Ξ c 0 spin were 3/2, an (Omega) - spin of 5/2 cannot be excluded
S-wave pairing of Λ hyperons in dense matter
Balberg, S.; Barnea, N.; Barnea, N.
1998-01-01
In this work we calculate the 1 S 0 gap energies of Λ hyperons in neutron star matter. The calculation is based on a solution of the BCS gap equation for an effective G-matrix parametrization of the Λ-Λ interaction with a nuclear matter background, presented recently by Lanskoy and Yamamoto. We find that a gap energy of a few tenths of a MeV is expected for Λ Fermi momenta up to about 1.3fm -1 . Implications for neutron star matter are examined, and suggest the existence of a Λ 1 S 0 superfluid between the threshold baryon density for Λ formation and the baryon density where the Λ fraction reaches 15 endash 20%. copyright 1998 The American Physical Society
Spin transfer coefficient DΛLL to Λ hyperon in semi-inclusive DIS at HERMES
Belostotski, S; Veretennikov, D; Naryshkin, Yu
2011-01-01
Three components of the spin transfer coefficient from the longitudinally polarized electron/positron beam to the Λ or Λ-bar hyperon have been measured in the HERMES experiment. Kinematical dependencies of the spin-transfer have been studied. Averaged over Λ kinematics, longitudinal component of the spin transfer DΛ LL (along the virtual photon direction) to the Λ hyperon is found to be DΛ LL = 0.19 ± 0.04 stat ± 0.02 syst .
Phase analysis of NK-bar scattering and Λ-hyperon magnetic moment
Nikitiu, F.
1987-01-01
The NK-bar-scattering S matrix is suggested to have the P 01 -channel pole which corresponds to Λ-hyperon. The Λ-hyperon magnetic moment is calculated. Its value ''arises'' only due to nucleon magnetic moments and N and K-bar nontrivial relativistic coupling in the P 01 -channel. This is one more method to the quark model methods. The calculations are in agreement with the experimental value of μΛ
Antihyperon-hyperon production in antiproton-proton annihilations with PANDA at FAIR
Papenbrock, Michael [Department of Nuclear Physics and Astronomy, Uppsala University, Uppsala (Sweden); Collaboration: PANDA-Collaboration
2015-07-01
The production of antihyperon-hyperon pairs in antiproton-proton annihilations involves the annihilation of at least one light (u,d) quark-antiquark pair and the creation of a heavier (s,c,b) pair. Production of strange hyperons occur in an energy region in which QCD is difficult to predict. By studying hyperon production we learn about the strong interaction in this energy region, i.e. the confinement domain. It is an open question what the relevant degrees of freedom are: quarks and gluons, or hadrons. Spin observables is an excellent tool in order to better understand the physical processes. These are accessible via the weak, parity violating decay of the hyperon which results in an angular asymmetry of the decay products. The future PANDA experiment at FAIR is going to be ideally suited to study spin physics on hyperons with both high precision and high statistics. Since hyperons decay weakly and thus have long life-times, their decay vertices are displaced with respect to the production point. This sets high demands on precise track reconstruction. A pattern recognition algorithm is currently under development, with the ability to reconstruct tracks originating in displaced vertices. Simulation studies done by the Uppsala group as well as the status of the development will be presented and discussed.
Gravitational waves, neutrino emissions and effects of hyperons in binary neutron star mergers
Kiuchi, Kenta; Sekiguchi, Yuichiro; Kyutoku, Koutarou; Shibata, Masaru
2012-01-01
Numerical simulations for the merger of binary neutron stars are performed in full general relativity incorporating both nucleonic and hyperonic finite-temperature equations of state (EOS) and neutrino cooling. It is found that for the nucleonic and hyperonic EOS, a hyper-massive neutron star (HMNS) with a long lifetime (t life ≥ 10 ms) is the outcome for the total mass ≅2.7M sun . For the total mass ≅3 M sun , a long-lived (short-lived with t life ≅ 3 ms) HMNS is the outcome for the nucleonic (hyperonic) EOS. It is shown that the typical total neutrino luminosity of the HMNS is ∼3-6 x 10 53 erg s -1 and the effective amplitude of gravitational waves from the HMNS is 1-4 x 10 -22 at f ≅ 2-3.2 kHz for a source of distance of 100 Mpc. During the HMNS phase, characteristic frequencies of gravitational waves shift to a higher frequency for the hyperonic EOS in contrast to the nucleonic EOS in which they remain constant approximately. Our finding suggests that the effects of hyperons are well imprinted in gravitational waves and their detection will give us a potential opportunity to explore the composition of the neutron star matter. We present the neutrino luminosity curve when a black hole is formed as well. (paper)
Inclusive Rates and Spectra of the Lambda, Cascade, and Omega Hyperons atBaBar
Chien, Andrew L. [Stanford Univ., CA (United States)
2008-01-01
We employ Runs 1-4 off-peak data sample (about 21.5 fb^{-1}) to produce the current world-best spectra and production rates measurements for three strangely-flavored baryons: the Λ hyperon, the cascade hyperon, and the Ω hyperon. These improved measurements shall enable theoretical and phenomelogical workers to generate more realistic models for the hadronization process, currently one of the unresolved problem areas in the standard model of particle physics. This analysis was conducted using codes from release 16 series. We report the production rate at 10.54 GeV for the Λ as 0.0900 ± 0.0006(stat.) ± 0.0039(sys.) per hadronic event. Our measured production rate at the same energy for the cascade hyperon is 0.00562 ± 0.00013(stat.) ± 0.00045(sys.) per hadronic event, while that for the Ω hyperon is 0.00027 ± 0.00004(stat.) ± 0.0008(sys.) per hadronic event. The spectral measurements for the respective particles also constitute current world-best measurements.
General partial wave analysis of the decay of a hyperon of spin 1/2
Lee, T.D.; Yang, C.N.
1983-01-01
This note is to consider the general problem of the decay of a hyperon of spin 1/2 into a pion and a nucleon under the general assumption of possible violations of parity conservation, charge-conjugation invariance, and time-reversal invariance. The discussion is in essence a partial wave analysis of the decay phenomena and is independent of the dynamics of the decay. Nonrelativistic approximations are not made on either of the decay products. In the reference system in which the hyperon is at rest there are two possible final states of the pion-nucleon system:s/sub 1/2/ and p/sub 1/2/. Denoting the amplitudes of these two states by A and B, one observes that the decay is physically characterized by three real constants specifying the magnitudes and the relative phase between these amplitudes. One of these constants can be taken to be absolute value a 2 + absolute value B 2 , and is evidently proportional to the decay probability per unit time. The other two constants are best defined in terms of experimentally measurable quantities. They discuss three types of experiments: (a) The angular distribution of the decay pion from a completely polarized hyperon at rest. (b) The longitudinal polarization of the nucleon emitted in the decay of unpolarized hyperons at rest. (c) Transverse polarization of the nucleon emitted in a given direction in the decay of a polarized hyperon
Inclusive Rates and Spectra of the Lambda, Cascade, and Omega Hyperons at BaBar
Chien, A
2008-01-01
We employ Runs 1-4 off-peak data sample (about 21.5 fb -1 ) to produce the current world-best spectra and production rates measurements for three strangely-flavored baryons: the Λ hyperon, the cascade hyperon, and the (Omega) hyperon. These improved measurements shall enable theoretical and phenomelogical workers to generate more realistic models for the hadronization process, currently one of the unresolved problem areas in the standard model of particle physics. This analysis was conducted using codes from release 16 series. We report the production rate at 10.54 GeV for the Λ as 0.0900 ± 0.0006(stat.) ± 0.0039(sys.) per hadronic event. Our measured production rate at the same energy for the cascade hyperon is 0.00562 ± 0.00013(stat.) ± 0.00045(sys.) per hadronic event, while that for the (Omega) hyperon is 0.00027 ± 0.00004(stat.) ± 0.0008(sys.) per hadronic event. The spectral measurements for the respective particles also constitute current world-best measurements
Antihyperon-hyperon production in the meson exchange framework
Haidenbauer, J.; Holinde, K.; Speth, J.
1992-01-01
Strangeness production processes bar pp→ bar YY (Y=Λ,Σ) have been studied near threshold in a full coupled-channel calculation. The transition interactions are based on K- and K * -meson exchange. The elastic part of the bar pp and bar YY interactions has been derived from a one-boson-exchange version of the Bonn NN potential and a corresponding extension to the hyperon-nucleon case whereas the annihilation part is taken into account by introducing phenomenological optical potentials. First results are presented for the reactions bar pp→ bar ΛΣ 0 +bar Σ 0 Λ as well as bar pp→ bar Σ ± Σ ± , bar Σ 0 Σ 0 , which agree with existing data. As in bar pp→ bar ΛΛ, tensor and spin-triplet dominance is realized in bar pp→ bar Σ Σ but is somewhat reduced in bar pp→ bar Λ Σ 0 +bar Σ 0 Λ. Although bar Σ - Σ - cannot be reached from bar pp by a single transition, the corresponding cross section is only slightly smaller than for bar Σ + Σ + . Initial-and final-state effects play a decisive role, even in cross section ratios
A Study of Polarization in Hyperon Production Processes
Woods, David McDill [Minnesota U.
1995-01-01
The polarization of $\\Xi^-$ and $\\Omega^-$ hyperons produced from both polarized and unpolarized neutral particle beams has been studied. The unpolarized neutral beam production studies are the first measurements made using this production technique. The neutral beam consisted of neutrons, $\\Lambda^0$s, $\\Xi^0$s, $K^0$s, and photons. No polarization was observed in the sample of 1.4 x $10^7 \\Xi^-$s produced by an unpolarized neutral beam. For n-s produced by an unpolarized neutral beam, a sample of 1.7 x $10^5$ events with an average momentum of 394. GeV/c had a polarization of +0.044 $\\pm$ 0.008 and a sample of 5 x 104 events with an average momentum of 304. GeV /c had a polarization of +0.036 $\\pm$ 0.015. The polarization of 7.1 x $10^5 \\Xi^- s$ produced by a polarized neutral beam was -0.118±0.004 at an average momentum of 393. GeV/c. 1.8 x $10^4 \\Omega^- s$ produced by the polarized neutral beam had a polarization of -0.069 $\\pm$ 0.023 at an average momentum of 394. GeV /c. The measurements for production from a polarized neutral beam are in agreement with a previous measurement.
Viscosity and attenuation of sound wave in high density deuterium
Inoue, Kazuko; Ariyasu, Tomio
1985-01-01
The penetration of low frequency sound wave into the fuel deuterium is discussed as for laser fusion. The sound velocity and the attenuation constant due to viscosity are calculated for high density (n = 10 24 -- 10 27 cm -3 , T = 10 -1 -- 10 4 eV) deuterium. The shear viscosity of free electron gas and the bulk viscosity due to ion-ion interaction mainly contribute to the attenuation of sound wave. The sound wave of the frequency below 10 10 Hz can easily penetrate through the compressed fuel deuterium of diameter 1 -- 10 3 μm. (author)
Measurements of hyperon semileptonic decays at the CERN Super Proton Synchrotron
Bourquin, M.; Chatelus, Y.; Brown, R.M.
1983-06-01
Results on five different hyperon semileptonic decays from the WA2 experiment, performed in the CERN SPS charged hyperon beam, have been analysed within the framework of the Cabibbo model. For the first time, the inconsistencies, which inevitably occur when the results from different experiments are combined, have been avoided in these comprehensive fits to high statistics data from a single hyperon decay experiment. Excellent agreement with the basic Cabibbo model has been obtained using the WA2 data either alone or together with neutron lifetime measurements. These results contrast strongly with other recent Cabibbo analyses which have indicated the presence of SU(3) breaking effects. Using additional information on ft values for superallowed nuclear Fermi transitions, an upper limit on the mixing parameter sintheta 3 in the Kobayashi-Maskawa six quark scheme has been obtained. (author)
Adolph, C; Alexakhin, V.Yu; Alexandrov, Yu.; Alexeev, G D; Amoroso, A; Austregesilo, A; Badelek, B; Balestra, F; Barth, J; Baum, G; Bedfer, Y; Berlin, A; Bernhard, J; Bertini, R; Bicker, K; Bieling, J; Birsa, R; Bisplinghoff, J; Bordalo, P; Bradamante, F; Braun, C; Bravar, A; Bressan, A; Buchele, M; Burtin, E; Capozza, L; Chiosso, M; Chung, S U; Cicuttin, A; Crespo, M L; Dalla Torre, S; Dasgupta, S S; Dasgupta, S; Denisov, O.Yu; Donskov, S V; Doshita, N; Duic, V; Dunnweber, W; Dziewiecki, M; Efremov, A; Elia, C; Eversheim, P D; Eyrich, W; Faessler, M; Ferrero, A; Filin, A; Finger, M; Finger, M., Jr; Fischer, H; Franco, C; von Hohenesche, N. du Fresne; Friedrich, J M; Frolov, V; Garfagnini, R; Gautheron, F; Gavrichtchouk, O P; Gerassimov, S; Geyer, R; Giorgi, M; Gnesi, I; Gobbo, B; Goertz, S; Grabmuller, S; Grasso, A; Grube, B; Gushterski, R; Guskov, A; Guthorl, T; Haas, F; von Harrach, D; Heinsius, F H; Herrmann, F; Hess, C; Hinterberger, F; Hoppner, Ch; Horikawa, N; d'Hose, N; Huber, S; Ishimoto, S; Ivanshin, Yu; Iwata, T; Jahn, R; Jary, V; Jasinski, P; Joosten, R; Kabuss, E; Kang, D; Ketzer, B; Khaustov, G V; Khokhlov, Yu. A; Kisselev, Yu; Klein, F; Klimaszewski, K; Koivuniemi, J H; Kolosov, V N; Kondo, K; Konigsmann, K; Konorov, I; Konstantinov, V F; Kotzinian, A M; Kouznetsov, O; Kramer, M; Kroumchtein, Z V; Kuchinski, N; Kunne, F.; Kurek, K; Kurjata, R P; Lednev, A A; Lehmann, A; Levorato, S; Lichtenstadt, J; Maggiora, A; Magnon, A; Makke, N; Mallot, G K; Mann, A; Marchand, C; Martin, A; Marzec, J; Matsuda, H; Matsuda, T; Meshcheryakov, G; Meyer, W; Michigami, T; Mikhailov, Yu. V; Miyachi, Y; Morreale, A; Nagaytsev, A; Nagel, T.; Nerling, F; Neubert, S; Neyret, D; Nikolaenko, V I; Novy, J; Nowak, W D; Nunes, A.S.; Olshevsky, A G; Ostrick, M; Panknin, R; Panzieri, D; Parsamyan, B; Paul, S.; Piragino, G; Platchkov, S; Pochodzalla, J; Polak, J; Polyakov, V A; Pretz, J; Quaresma, M; Quintans, C; Ramos, S; Reicherz, G; Rocco, E; Rodionov, V; Rondio, E; Rossiyskaya, N S; Ryabchikov, D I; Samoylenko, V D; Sandacz, A; Sapozhnikov, M G; Sarkar, S.; Savin, I A; Sbrizzai, G; Schiavon, P; Schill, C.; Schluter, T.; Schmidt, A; Schmidt, K; Schmitt, L; Schmiden, H; Schonning, K; Schopferer, S; Schott, M; Shevchenko, O.Yu; Silva, L.; Sinha, L; Sirtl, S; Sosio, S; Sozzi, F; Srnka, A; Steiger, L; Stolarski, M; Sulc, M; Sulej, R; Suzuki, H; Sznajder, P; Takekawa, S; Wolbeek, J.Ter; Tessaro, S; Tessarotto, F; Thibaud, F; Uhl, S; Uman, I; Vandenbroucke, M; Virius, M; Wang, L; Weisrock, T; Wilfert, M; Windmolders, R; Wislicki, W; Wollny, H; Zaremba, K; Zavertyaev, M; Zemlyanichkina, E; Zhuravlev, N; Ziembicki, M
2013-01-01
Large samples of $\\Lambda$, $\\Sigma(1385)$ and $\\Xi(1321)$ hyperons produced in deep-inelastic muon scattering off a $^6$LiD target were collected with the COMPASS experimental setup at CERN. The relative yields of $\\Sigma(1385)^+$, $\\Sigma(1385)^-$, $\\bar{\\Sigma}(1385)^-$, $\\bar{\\Sigma}(1385)^+$, $\\Xi(1321)^-$, and $\\bar{\\Xi}(1321)^+$ hyperons decaying into $\\Lambda(\\bar{\\Lambda})\\pi$ were measured. The heavy hyperon to $\\Lambda$ and heavy antihyperon to $\\bar{\\Lambda}$ yield ratios were found to be in the range 3.8% to 5.6% with a relative uncertainty of about 10%. They were used to tune the parameters relevant for strange particle production of the LEPTO Monte Carlo generator.
Adolph, C.; Braun, C.; Eyrich, W.; Lehmann, A.; Schmidt, A. [Universitaet Erlangen-Nuernberg, Physikalisches Institut, Erlangen (Germany); Alekseev, M.G.; Birsa, R.; Bravar, A.; Dalla Torre, S.; Dasgupta, S.S.; Gobbo, B.; Sozzi, F.; Steiger, L.; Tessaro, S.; Tessarotto, F. [Trieste Section of INFN, Trieste (Italy); Alexakhin, V.Y.; Alexeev, G.D.; Efremov, A.; Gavrichtchouk, O.P.; Gushterski, R.; Guskov, A.; Ivanshin, Y.; Kroumchtein, Z.V.; Kuchinski, N.; Meshcheryakov, G.; Nagaytsev, A.; Olshevsky, A.G.; Rodionov, V.; Rossiyskaya, N.S.; Sapozhnikov, M.G.; Savin, I.A.; Shevchenko, O.Y.; Zemlyanichkina, E.; Zhuravlev, N. [Joint Institute for Nuclear Research, Dubna, Moscow region (Russian Federation); Alexandrov, Y. [Lebedev Physical Institute, Moscow (Russian Federation); Amoroso, A.; Balestra, F.; Bertini, R.; Chiosso, M.; Garfagnini, R.; Gnesi, I.; Grasso, A.; Kotzinian, A.M.; Parsamyan, B.; Piragino, G.; Sosio, S. [University of Turin, Department of Physics (Italy); Torino Section of INFN, Turin (Italy); Austregesilo, A.; Bicker, K. [CERN, Geneva 23 (Switzerland); Technische Universitaet Muenchen, Physik Department, Garching (Germany); Badelek, B. [University of Warsaw, Faculty of Physics, Warsaw (Poland); Barth, J.; Bieling, J.; Goertz, S.; Klein, F.; Panknin, R.; Pretz, J.; Windmolders, R. [Universitaet Bonn, Physikalisches Institut, Bonn (Germany); Baum, G. [Universitaet Bielefeld, Fakultaet fuer Physik, Bielefeld (Germany); Bedfer, Y.; Burtin, E.; Capozza, L.; Ferrero, A.; Hose, N. d'
2013-10-15
Large samples of {Lambda}, {Sigma}(1385) and {Xi}(1321) hyperons produced in the deep-inelastic muon scattering off a {sup 6}LiD target were collected with the COMPASS experimental setup at CERN. The relative yields of {Sigma}(1385){sup +}, {Sigma}(1385){sup -}, anti {Sigma}(1385){sup -}, anti {Sigma}(1385){sup +}, {Xi}(1321){sup -}, and anti {Xi}(1321){sup +} hyperons decaying into {Lambda}(anti {Lambda}){pi} were measured. The ratios of heavy-hyperon to {Lambda} and heavy-antihyperon to anti {Lambda} were found to be in the range 3.8 % to 5.6 % with a relative uncertainty of about 10 %. They were used to tune the parameters relevant for strange particle production of the LEPTO Monte Carlo generator. (orig.)
Study of Σ(1385) and Ξ(1321) hyperon and antihyperon production in deep inelastic muon scattering
Adolph, C.; Braun, C.; Eyrich, W.; Lehmann, A.; Schmidt, A.; Alekseev, M.G.; Birsa, R.; Bravar, A.; Dalla Torre, S.; Dasgupta, S.S.; Gobbo, B.; Sozzi, F.; Steiger, L.; Tessaro, S.; Tessarotto, F.; Alexakhin, V.Y.; Alexeev, G.D.; Efremov, A.; Gavrichtchouk, O.P.; Gushterski, R.; Guskov, A.; Ivanshin, Y.; Kroumchtein, Z.V.; Kuchinski, N.; Meshcheryakov, G.; Nagaytsev, A.; Olshevsky, A.G.; Rodionov, V.; Rossiyskaya, N.S.; Sapozhnikov, M.G.; Savin, I.A.; Shevchenko, O.Y.; Zemlyanichkina, E.; Zhuravlev, N.; Alexandrov, Y.; Amoroso, A.; Balestra, F.; Bertini, R.; Chiosso, M.; Garfagnini, R.; Gnesi, I.; Grasso, A.; Kotzinian, A.M.; Parsamyan, B.; Piragino, G.; Sosio, S.; Austregesilo, A.; Bicker, K.; Badelek, B.; Barth, J.; Bieling, J.; Goertz, S.; Klein, F.; Panknin, R.; Pretz, J.; Windmolders, R.; Baum, G.; Bedfer, Y.; Burtin, E.; Capozza, L.; Ferrero, A.; Hose, N. d'; Kunne, F.; Magnon, A.; Marchand, C.; Morreale, A.; Neyret, D.; Platchkov, S.; Thibaud, F.; Vandenbroucke, M.; Wollny, H.; Berlin, A.; Gautheron, F.; Hess, C.; Kisselev, Y.; Koivuniemi, J.H.; Meyer, W.; Reicherz, G.; Wang, L.; Bernhard, J.; Harrach, D. von; Jasinski, P.; Kabuss, E.; Kang, D.; Ostrick, M.; Pochodzalla, J.; Weisrock, T.; Wilfert, M.; Bisplinghoff, J.; Eversheim, P.D.; Hinterberger, F.; Jahn, R.; Joosten, R.; Schmiden, H.; Bordalo, P.; Franco, C.; Nunes, A.S.; Quaresma, M.; Quintans, C.; Ramos, S.; Silva, L.; Stolarski, M.; Bradamante, F.; Bressan, A.; Duic, V.; Elia, C.; Giorgi, M.; Levorato, S.; Martin, A.; Sbrizzai, G.; Schiavon, P.; Buechele, M.; Fischer, H.; Guthoerl, T.; Heinsius, F.H.; Herrmann, F.; Koenigsmann, K.; Nerling, F.; Nowak, W.D.; Schill, C.; Schmidt, K.; Schopferer, S.; Sirtl, S.; Wolbeek, J. ter; Chung, S.U.; Friedrich, J.M.; Grabmueller, S.; Grube, B.; Haas, F.; Hoeppner, C.; Huber, S.; Ketzer, B.; Kraemer, M.; Mann, A.; Nagel, T.; Neubert, S.; Paul, S.; Schmitt, L.; Uhl, S.; Cicuttin, A.; Crespo, M.L.; Dasgupta, S.; Sarkar, S.; Sinha, L.; Denisov, O.Y.; Maggiora, A.; Takekawa, S.; Donskov, S.V.; Filin, A.; Khaustov, G.V.; Khokhlov, Y.A.; Kolosov, V.N.; Konstantinov, V.F.; Lednev, A.A.; Mikhailov, Yu.V.; Nikolaenko, V.I.; Polyakov, V.A.; Ryabchikov, D.I.; Samoylenko, V.D.; Doshita, N.; Ishimoto, S.; Iwata, T.; Kondo, K.; Matsuda, H.; Michigami, T.; Miyachi, Y.; Suzuki, H.; Duennweber, W.; Faessler, M.; Geyer, R.; Schlueter, T.; Uman, I.; Dziewiecki, M.; Kurjata, R.P.; Marzec, J.; Zaremba, K.; Ziembicki, M.; Finger, M.; Finger, M.; Novy, J.; Du Fresne von Hohenesche, N.; Frolov, V.; Mallot, G.K.; Rocco, E.; Schoenning, K.; Schott, M.; Gerassimov, S.; Konorov, I.; Horikawa, N.; Jary, V.; Virius, M.; Klimaszewski, K.; Kurek, K.; Rondio, E.; Sandacz, A.; Sulej, R.; Sznajder, P.; Wislicki, W.; Kouznetsov, O.; Lichtenstadt, J.; Makke, N.; Matsuda, T.; Panzieri, D.; Polak, J.; Srnka, A.; Sulc, M.; Zavertyaev, M.
2013-01-01
Large samples of Λ, Σ(1385) and Ξ(1321) hyperons produced in the deep-inelastic muon scattering off a 6 LiD target were collected with the COMPASS experimental setup at CERN. The relative yields of Σ(1385) + , Σ(1385) - , anti Σ(1385) - , anti Σ(1385) + , Ξ(1321) - , and anti Ξ(1321) + hyperons decaying into Λ(anti Λ)π were measured. The ratios of heavy-hyperon to Λ and heavy-antihyperon to anti Λ were found to be in the range 3.8 % to 5.6 % with a relative uncertainty of about 10 %. They were used to tune the parameters relevant for strange particle production of the LEPTO Monte Carlo generator. (orig.)
Hyperons in nuclear matter from SU(3) chiral effective field theory
Petschauer, Stefan; Kaiser, Norbert [Technische Universitaet Muenchen (Germany); Haidenbauer, Johann [Forschungszentrum Juelich (Germany); Meissner, Ulf G. [Forschungszentrum Juelich (Germany); Universitaet Bonn (Germany); Weise, Wolfram [Technische Universitaet Muenchen (Germany); ECT, Trento (Italy)
2016-07-01
Brueckner theory is used to investigate the properties of hyperons in nuclear matter. The hyperon-nucleon interaction is taken from chiral effective field theory at next-to-leading order with SU(3) symmetric low-energy constants. Furthermore, the underlying nucleon-nucleon interaction is also derived within chiral effective field theory. We present the single-particle potentials of Λ and Σ hyperons in symmetric and asymmetric nuclear matter computed with the continuous choice for intermediate spectra. The results are in good agreement with the empirical information. In particular, our calculation gives a repulsive Σ-nuclear potential and a weak Λ-nuclear spin-orbit force. The splittings among the Σ{sup +}, Σ{sup 0} and Σ{sup -} potentials have a non-linear dependence on the isospin asymmetry which goes beyond the usual parametrization in terms of an isovector Lane potential.
Non-leptonic hyperon decays and the chiral meson coupling to bags
Horvat, D.; Tadic, D.
1986-01-01
Hyperon nonleptonic decays have been analyzed using a chiral-bag model instead of the MIT-bag model which was used in earlier analyses. The adopted theoretical formalism allows a step by step comparison between the new and the old approaches. The results are in agreement with the calculation which has used chiral model in its cloudy-bag variant. Chiral-bag model based theoretical predictions are not significantly different from the old MIT-bag model based results. Theory can account for overall gross features of the hyperon nonleptonic decays but not for the fine details like the exact, almost vanishing, value of the A(Σsub(+) + ) amplitude. (orig.)
Possible physics program with a large acceptance hyperon spectrometer at J-PARC
Imai, Kenichi
2013-01-01
We are going to construct a large acceptance hyperon spectrometer (HypTPC) at J-PARC primarily to search for H-dibaryon. The HypTPC consists of a superconducting Helmholtz magnet and a Time Projection Chamber (TPC). The short-life hyperons can be detected with high precision as well as any charged particles. Here, we discuss possible physics programs other than H-dibaryon which can be done with this spectrometer, such as a nucleon resonance spectroscopy experiment, systematic study of Λ(1405) and spectroscopy of Ξ and Ω - resonances. (author)
Transverse polarization of lambda(anti) hyperons from quasireal photoproduction on nuclei at HERMES
Hayrapetyan, Avetik; Brodski, Irina; Etzelmueller, Erik; Dueren, Michael; Zagrebalny, Vitaly [II. Physikalisches Inst., JLU Giessen (Germany)
2015-07-01
The transverse polarization of Λ(anti Λ) hyperons was measured in inclusive quasireal photoproduction for various target nuclei ranging from hydrogen to xenon. These data were taken at the HERMES Experiment at HERA/DESY using the 27.6 GeV lepton beam. They are compared to results from previous measurements of the HERMES experiment on hydrogen (H) and deuteron (D) targets. In comparison with earlier measurement a new improved track-fitting algorithm has been used leading to better vertex and momentum resolution. The HERMES data complement extensive transverse polarization studies of hyperons, using hadron beams.
Baryonic forces and hyperons in nuclear matter from SU(3) chiral effective field theory
Petschauer, Stefan Karl
2016-02-12
In this work the baryon-baryon interaction is studied at next-to-leading order in SU(3) chiral effective field theory and applied to hyperon-nucleon scattering. The properties of hyperons in isospin-symmetric as well as asymmetric nuclear matter are calculated within the Bruecker-Hartree-Fock formalism. Moreover, the leading three-baryon interaction is derived and its low-energy constants are estimated from decuplet intermediate states. We conclude, that chiral effective field theory is a well-suited tool to describe the baryonic forces.
Anisotropic cosmological models with bulk viscosity and particle ...
... equations in two types of cosmologies, one with power-law expansion and the other with exponential expansion. ... a Big-Bang singularity at time t = 0 , whereas the model with exponential expansion has no finite singularity. ... Current Issue
Technological characteristics of meat - viscosity
DIBĎÁK, Tomáš
2012-01-01
This bachelor thesis is focused on the technological characteristics of meat, mainly viscosity of meat. At the beginning I dealt with construction of meat and various types of meat: beef, veal, pork, mutton, rabbit, poultry and venison. Then I described basic chemical composition of meat and it?s characteristic. In detail I dealt with viscosity of meat. Viscosity is the ability of meat to bind water both own and added. I mentioned influences, which effects viscosity and I presented the possib...
PRAMANA NA48 results on neutral kaon and hyperon rare decays
Abstract. The NA48 Collaboration has performed an extensive program of kaon and hyperon rare decays using the data collected during the period 1997-2001. This program includes new tests of chiral perturbation theory, new measurements of the η mass and Ks lifetime and the possibility to measure the Cabibbo angle ...
Transverse polarizaton of Λ and anti Λ hyperons in quasireal photoproduction
Airapetian, A.; Akopov, N.; Akopov, Z.
2007-04-01
The HERMES experiment has measured the transverse polarization of Λ and anti Λ hyperons produced inclusively in quasireal photoproduction at a positron beam energy of 27.6 GeV. The transverse polarization P n Λ of the Λ hyperon is found to be positive while the observed anti Λ polarization is compatible with zero. The values averaged over the kinematic acceptance of HERMES are P n Λ = 0.078 ± 0.006 (stat) ± 0.012 (syst) and P n anti Λ = -0.025 ± 0.015 (stat) ± 0.018 (syst) for Λ and anti Λ, respectively. The dependences of P n Λ and P n anti Λ on the fraction of ζ the beam's light-cone momentum carried by the hyperon and on the hyperon's transverse momentum p T were investigated. The measured Λ polarization rises linearly with p T and exhibits a different behavior for low and high values of ζ, which approximately correspond to the backward and forward regions in the center-of-mass frame of the γ * N reaction. (orig.)
Single Particle Potential of a Σ Hyperon in Nuclear Matter. II Rearrangement Effects
Dabrowski, J.
2000-01-01
The rearrangement contribution to the real part of the single particle potential of a Σ hyperon in nuclear matter, U Σ , is investigated. The isospin and spin dependent parts of U Σ are considered. Results obtained for four models of the Nijmegen baryon-baryon interaction are presented and discussed. (author)
Radiative corrections for semileptonic decays of hyperons: the 'model independent' part
Toth, K.; Szegoe, K.; Margaritis, T.
1984-04-01
The 'model independent' part of the order α radiative correction due to virtual photon exchanges and inner bremsstrahlung is studied for semileptonic decays of hyperons. Numerical results of high accuracy are given for the relative correction to the branching ratio, the electron energy spectrum and the (Esub(e),Esub(f)) Dalitz distribution in the case of four different decays. (author)
Hyperon production in photonuclear reactions on protons and deuterons : The Kappa(0)Sigma(+) channel
Lohner, H; Bacelar, J; Castelijns, R; Messchendorp, J; Shende, S; Maeda, K; Tamura, H; Nakamura, SN; Hashimoto, O
2004-01-01
With the combined setup of the Crystal Barrel and TAPS photonspectrometers at ELSA in Bonn we have studied photonuclear reactions on protons and deuterons. From the series of experiments on single and multiple neutral meson emission we concentrate here on the hyperon production off protons and
Polarization of Λ hyperons produced inclusively in v p andbar v p charged current interactions
Jones, G. T.; Kennedy, B. W.; O'Neale, S. W.; Böckmann, K.; Gebel, W.; Geich-Gimbel, C.; Nellen, B.; Cooper-Sarkar, A. M.; Grant, A.; Klein, H.; Morrison, D. R. O.; Schmid, P.; Wachsmuth, H.; Barnham, K. W. J.; Clayton, E. F.; Miller, D. B.; Mobayyen, M. M.; Villalobos-Baillie, O.; Aderholz, M.; Deck, L.; Schmitz, N.; Settles, R.; Wernhard, K. L.; Wittek, W.; Corrigan, G.; Myatt, G.; Radojicic, D.; Saitta, B.; Wells, J.
1985-03-01
Lambda hyperons from v p andbar v p charged current interactions have been analysed for polarization. A significant polarization is observed for Λ particles in the quasi-elastic region for both types of interactions. Part of this polarization is due to the decay of highly polarized Σ(1385) resonances. The results are compared with simple predictions of the quark parton model.
Dynamic viscosity of polymer solutions
Peterlin, A
1982-03-01
The dynamic viscosity investigation of solutions of long chain polymers in very viscous solvents has definitely shown the existence of the low and high frequency plateau with the gradual transition between them. In both extreme cases the extrapolation of the measured Newtonian viscosities of the plateaus to the infinite dilution yields the limiting intrinsic viscosities. Such a behavior is expected from the dynamic intrinsic viscosity of the necklace model of the linear polymer with finite internal viscosity. The plateau at low frequency shows up in any model of polymer solution. This work shows the constant dynamic intrinsic viscosity in both extreme cases is well reproducible by the necklace model with the internal viscosity acting only between the beads on the same link. 20 references.
Crustal Viscosity Structure Estimated from Multi-Phase Mixing Theory
Shinevar, W. J.; Behn, M. D.; Hirth, G.
2014-12-01
Estimates of lower crustal viscosity are typically constrained by analyses of isostatic rebound, post seismic creep, and laboratory-derived flow laws for crustal rocks and minerals. Here we follow a new approach for calculating the viscosity structure of the lower continental crust. We use Perple_X to calculate mineral assemblages for different crustal compositions. Effective viscosity is then calculated using the rheologic mixing model of Huet et al. (2014) incorporating flow laws for each mineral phase. Calculations are performed along geotherms appropriate for the Basin and Range, Tibetan Plateau, Colorado Plateau, and the San Andreas Fault. To assess the role of crustal composition on viscosity, we examined two compositional gradients extending from an upper crust with ~67 wt% SiO2 to a lower crust that is either: (i) basaltic with ~53 wt% SiO2 (Rudnick and Gao, 2003), or (ii) andesitic with ~64% SiO2 (Hacker et al., 2011). In all cases, the middle continental crust has a viscosity that is 2-3 orders of magnitude greater than that inferred for wet quartz, a common proxy for mid-crustal viscosities. An andesitic lower crust results in viscosities of 1020-1021 Pa-s and 1021-1022 Pa-s for hotter and colder crustal geotherms, respectively. A mafic lower crust predicts viscosities that are an order of magnitude higher for the same geotherm. In all cases, the viscosity calculated from the mixing model decreases less with depth compared to single-phase estimates. Lastly, for anhydrous conditions in which alpha quartz is stable, we find that there is a strong correlation between Vp/Vs and bulk viscosity; in contrast, little to no correlation exists for hydrous conditions.
Hyperon interaction in free space and nuclear matter within a SU(3) based meson exchange model
Dhar, Madhumita
2016-06-15
To establish the connection between free space and in-medium hyperon-nucleon interactions is the central issue of this thesis. The guiding principle is flavor SU(3) symmetry which is exploited at various levels. In first step hyperon-nucleon and hyperon- hyperon interaction boson exchange potential in free space are introduced. A new parameter set applicable for the complete baryon octet has been derived leading to an updated one-boson- exchange model, utilizing SU(3) flavor symmetry, optimizing the number of free parameters involved, and revising the set of mesons included. The scalar, pseudoscalar, and vector SU(3) meson octets are taken into account. T-matrices are calculated by solving numerically coupled linear systems of Lippmann-Schwinger equations obtained from a 3-D reduced Bethe-Salpeter equation. Coupling constants were determined by χ{sup 2} fits to the world set of scattering data. A good description of the few available data is achieved within the imposed SU(3) constraints. Having at hand a consistently derived vacuum interaction we extend the approach next to investigations of the in-medium properties of hyperon interaction, avoiding any further adjustments. Medium effect in infinite nuclear matter are treated microscopically by recalculating T-matrices by an medium-modified system of Lippmann-Schwinger equations. A particular important role is played by the Pauli projector accounting for the exclusion principle. The presence of a background medium induces a weakening of the vacuum interaction amplitudes. Especially coupled channel mixing is found to be affected sensitively by medium. Investigation on scattering lengths and effective range parameters are revealing the density dependence of the interaction on a quantitative level.
Kim, Bom Soo
2018-05-01
We discuss the contribution of magnetic Skyrmions to the Hall viscosity and propose a simple way to identify it in experiments. The topological Skyrmion charge density has a distinct signature in the electric Hall conductivity that is identified in existing experimental data. In an electrically neutral system, the Skyrmion charge density is directly related to the thermal Hall conductivity. These results are direct consequences of the field theory Ward identities, which relate various physical quantities based on symmetries and have been previously applied to quantum Hall systems.
Renormalization group approach to causal bulk viscous cosmological models
Belinchon, J A; Harko, T; Mak, M K
2002-01-01
The renormalization group method is applied to the study of homogeneous and flat Friedmann-Robertson-Walker type universes, filled with a causal bulk viscous cosmological fluid. The starting point of the study is the consideration of the scaling properties of the gravitational field equations, the causal evolution equation of the bulk viscous pressure and the equations of state. The requirement of scale invariance imposes strong constraints on the temporal evolution of the bulk viscosity coefficient, temperature and relaxation time, thus leading to the possibility of obtaining the bulk viscosity coefficient-energy density dependence. For a cosmological model with bulk viscosity coefficient proportional to the Hubble parameter, we perform the analysis of the renormalization group flow around the scale-invariant fixed point, thereby obtaining the long-time behaviour of the scale factor
Bulk viscous cosmology in early Universe
The effect of bulk viscosity on the early evolution of Universe for a spatially homogeneous and isotropic Robertson-Walker model is considered. Einstein's field equations are solved by using `gamma-law' equation of state = ( - 1)ρ, where the adiabatic parameter gamma () depends on the scale factor of the model.
Hyperon radiative decays, the α parameter of Σ+ → pγ first results from Fermilab E761
Foucher, M.
1991-05-01
A high statistics study of the hyperon radiative decay, Σ + → pγ, has been performed in the Proton Center charged hyperon beam at Fermilab. A preliminary result for the α parameter for Σ + → pγ is presented. We find the α parameter to be -0.69 ± (0.11 statistical) ±(0.11 ± 0.11 systematic). 4 refs., 4 figs
Study of the Hyperon-Nucleon Interaction in Exclusive Λ Photoproduction off the Deuteron
Zachariou, Nicholas; CLAS Collaboration
2014-09-01
Understanding the nature of the nuclear force in terms of the fundamental degrees of freedom of the theory of strong interaction, Quantum Chromodynamics (QCD), is one of the primary goals of modern nuclear physics. While the nucleon-nucleon (NN) interaction has been studied for decades, a systematic description of the NN potential has been achieved only recently with the development of low-energy Effective Field Theories (EFT). To obtain a comprehensive understanding of the strong interaction, dynamics involving strange baryons must be studied. Currently, little is known about the properties of the hyperon-nucleon (YN) and the hyperon-hyperon (YY) interactions. In this talk I will describe our current research of the Λn interaction using the E06-103 experiment performed with the CLAS detector in Hall B at Jefferson Lab. The large kinematic coverage of the CLAS combined with the exceptionally high quality of the experimental data allows to identify and select final-state interaction events in the reaction γd -->K+ Λn and to establish their kinematical dependencies. The large set of observables we aim to obtain will provide tight constraints on modern YN potentials. I will present the current status of the project and will discuss future incentives. Understanding the nature of the nuclear force in terms of the fundamental degrees of freedom of the theory of strong interaction, Quantum Chromodynamics (QCD), is one of the primary goals of modern nuclear physics. While the nucleon-nucleon (NN) interaction has been studied for decades, a systematic description of the NN potential has been achieved only recently with the development of low-energy Effective Field Theories (EFT). To obtain a comprehensive understanding of the strong interaction, dynamics involving strange baryons must be studied. Currently, little is known about the properties of the hyperon-nucleon (YN) and the hyperon-hyperon (YY) interactions. In this talk I will describe our current research of the
Viscosity-Induced Crossing of the Phantom Barrier
Iver Brevik
2015-09-01
Full Text Available We show explicitly, by using astrophysical data plus reasonable assumptions for the bulk viscosity in the cosmic fluid, how the magnitude of this viscosity may be high enough to drive the fluid from its position in the quintessence region at present time t = 0 across the barrier w = −1 into the phantom region in the late universe. The phantom barrier is accordingly not a sharp mathematical divide, but rather a fuzzy concept. We also calculate the limiting forms of various thermodynamical quantities, including the rate of entropy production, for a dark energy fluid near the future Big Rip singularity.
Viscosities in the Gluon-Plasma within a Quasiparticle Model
Bluhm, M; Redlich, K
2009-01-01
A phenomenological quasiparticle model, featuring dynamically generated self-energies of excitation modes, successfully describes lattice QCD results relevant for the QCD equation of state and related quantities both at zero and non-zero net baryon density. Here, this model is extended to study bulk and shear viscosities of the gluon-plasma within an effective kinetic theory approach. In this way, the compatibility of the employed quasiparticle ansatz with the apparent low viscosities of the strongly coupled deconfined gluonic medium is shown.
The peak in anomalous magnetic viscosity
Collocott, S.J.; Watterson, P.A.; Tan, X.H.; Xu, H.
2014-01-01
Anomalous magnetic viscosity, where the magnetization as a function of time exhibits non-monotonic behaviour, being seen to increase, reach a peak, and then decrease, is observed on recoil lines in bulk amorphous ferromagnets, for certain magnetic prehistories. A simple geometrical approach based on the motion of the state line on the Preisach plane gives a theoretical framework for interpreting non-monotonic behaviour and explains the origin of the peak. This approach gives an expression for the time taken to reach the peak as a function of the applied (or holding) field. The theory is applied to experimental data for bulk amorphous ferromagnet alloys of composition Nd 60−x Fe 30 Al 10 Dy x , x = 0, 1, 2, 3 and 4, and it gives a reasonable description of the observed behaviour. The role played by other key magnetic parameters, such as the intrinsic coercivity and fluctuation field, is also discussed. When the non-monotonic behaviour of the magnetization of a number of alloys is viewed in the context of the model, features of universal behaviour emerge, that are independent of alloy composition. - Highlights: • Development of a simple geometrical model based on the Preisach model which gives a complete explanation of the peak in the magnetic viscosity. • Geometrical approach is extended by considering equations that govern the motion of the state line. • The model is used to deduce the relationship between the holding field and the time it takes to reach the peak. • The model is tested with experimental results for a range of Nd–Fe–Al–Dy bulk amorphous ferromagnets. • There is good agreement between the model and the experimental data
Pressure Effect on Extensional Viscosity
Christensen, Jens Horslund; Kjær, Erik Michael
1999-01-01
The primary object of these experiments was to investigate the influence of hydrostatic pressure on entrance flow. The effect of pressure on shear and extensional viscosity was evaluated using an axis symmetric capillary and a slit die where the hydrostatic pressure was raised with valves....... The experiments show a significant increase in extensional viscosity with increasing pressure....
Effects of Δ baryon in hyperon stars in a modified quark meson coupling model
Sahoo, H.S.; Mishra, R.N.; Panda, P.K.; Barik, N.
2016-01-01
Recent studies on the appearance of the Δ (1232) isobars in neutron stars has ignited much debate on the possibility of its existence in neutron stars satisfying the observational limit of 2 M_⊙. Given the fact that the presence of the Δ tends to soften the equation of state (EoS) and reduce the maximum mass, theoretical and observational contradictions have given rise to the so called Δ puzzle, similar to the hyperon puzzle. In the present work we develop the EoS for dense matter with the inclusion of the nucleons, hyperons and the Delta isobars and study the effects of such inclusion on stellar properties using a Modified Quark-Meson coupling model (MQMC)
Medium effects and parity doubling of hyperons across the deconfinement phase transition*
Aarts Gert
2018-01-01
Full Text Available We analyse the behaviour of hyperons with strangeness S = –1,–2,–3 in the hadronic and quark gluon plasma phases, with particular interest in parity doubling and its emergence as the temperature grows. This study uses our FASTSUM anisotropic Nf = 2+1 ensembles, with four temperatures below and four above the deconfinement transition temperature, Tc. The positive-parity groundstate masses are found to be largely temperature independent below Tc, whereas the negative-parity ones decrease considerably as the temperature increases. Close to the transition, the masses are almost degenerate, in line with the expectation from chiral symmetry restoration. This may be of interest for heavy-ion phenomenology. In particular we show an application of this effect to the Hadron Resonance Gas model. A clear signal of parity doubling is found above Tc in all hyperon channels, with the strength of the effect depending on the number of s-quarks in the baryons.
Low- and high-density nuclear equation of state and the hyperon puzzle
Colucci, Giuseppe; Sedrakian, Armen [Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik
2013-07-01
The measurements of the unusually high mass of the millisecond pulsar PSR J1614-2230 (1.97 ± 0.04 M {sub CircleDot}) imposes a strong constraint on the nuclear Equation of State (EoS), in particular for what concerns the finite density behaviour of nuclear and neutron matter. In my talk I first discuss a model for the low-density part of the EoS, based on chiral one-pion exchange. I consider a self-consistent approach at finite temperature and density and show that even in a fully-relativistic theory the one-pion exchange contribution is dominated by a contact interaction. Then, a relativistic mean-field approach is used to discuss the high-density part of the EoS, including the presence of hyperons. In the latter, a density dependent parametrization is used and a parameter study on the hyperon-scalar meson coupling is performed.
Effect of hyperon channels in low-energy k-d scattering
Schick, L.H.; Gibson, B.F.
1978-01-01
Within the framework of a Faddeev formalism and an implicit hyperon channel approximation, we have calculated K - d elastic, total, and reaction cross sections for incident kaon laboratory momenta up to 120 Mev/c. We have used as input two different (slightly modified) multichannel M matrix fits to low-energy anti KN scattering, each of which contains explicitly the πY channels, as well as a single channel representation of the anti KN interaction in which the hyperon channels appear only through their contributions to the imaginary parts of the anti KN scattering lengths. The K - d cross sections obtained with the single channel anti KN input differ by only some 10% from those for which we used the multichannel anti KN input. The D - d cross sections calculated using anti KN input parameters from each of the two separate M matrix fits differ across the entire momentum range investigated by 25-35%. (orig.) [de
Correlation effects on the nonmesonic weak decay of the Λ hyperon in nuclear matter
Robertson, N. J.; Dickhoff, W. H.
2005-08-01
The nonmesonic weak decay of a Λ hyperon is studied in nuclear matter. Special emphasis is placed on a consistent treatment of correlations introduced by the strong interaction on its weak counterpart. The latter is described by the exchange of mesons between the initial ΛN state and the final NN one. The weak decay is studied in terms of the weak self-energy, which allows a systematic evaluation of short-range and tensor correlation effects that are determined by a realistic hyperon-nucleon interaction. The admixture of ΣN components through the strong interaction is also included in the calculation of the Λ decay properties. Calculations for the ratio of the neutron-induced partial width to the corresponding proton-induced one, Γn/Γp, are discussed in connection with recent experimental results.
Fast reconstruction of multi-strange hyperons in the CBM experiment
Vassiliev, Iouri [GSI, Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Collaboration: CBM-Collaboration
2015-07-01
The main goal of the CBM experiment is to study the behaviour of nuclear matter at very high baryonic density in which the transition to a deconfined and chirally restored phase is expected to happen. One of the promissing signatures of this new state is the enhanced production of multi-strange particles, therefore the reconstruction of multi-strange hyperons is essential for the understanding of the heavy ion collision dynamics. Another experimental challenge of the CBM experiment is online selection of open charm particles via the displaced vertex of the hadronic decay, Charmonium and low mass vector mesons in the environment of a heavy-ion collision. This task requires fast and efficient track reconstruction algorithms, primary vertex finder and particles finder. Results of feasibility studies of the multi-strange hyperons in the CBM experiment are presented.
The viscosity of dimethyl ether
Sivebæk, Ion Marius; Jakobsen, Jørgen
2007-01-01
and NOx traps are installed. The most significant problem encountered when engines are fuelled with DME is that the injection equipment breaks down prematurely due to extensive wear. This tribology issue can be explained by the very low lubricity and viscosity of DME. Recently, laboratory methods have...... appeared capable of measuring these properties of DME. The development of this is rendered difficult because DME has to be pressurised to remain in the liquid state and it dissolves most of the commercially available elastomers. This paper deals fundamentally with the measurement of the viscosity of DME...... and extends the discussion to the difficulty of viscosity establishing of very thin fluids. The main issue here is that it is not easy to calibrate the viscometers in the very low viscosity range corresponding to about one-fifth of that of water. The result is that the low viscosity is measured at high...
Capillary waves with surface viscosity
Shen, Li; Denner, Fabian; Morgan, Neal; van Wachem, Berend; Dini, Daniele
2017-11-01
Experiments over the last 50 years have suggested a correlation between the surface (shear) viscosity and the stability of a foam or emulsion. With recent techniques allowing more accurate measurements of the elusive surface viscosity, we examine this link theoretically using small-amplitude capillary waves in the presence of the Marangoni effect and surface viscosity modelled via the Boussinesq-Scriven model. The surface viscosity effect is found to contribute a damping effect on the amplitude of the capillary wave with subtle differences to the effect of the convective-diffusive Marangoni transport. The general wave dispersion is augmented to take into account the Marangoni and surface viscosity effects, and a first-order correction to the critical damping wavelength is derived. The authors acknowledge the financial support of the Shell University Technology Centre for fuels and lubricants.
The influence of hyperons and strong magnetic field in neutron star properties
Lopes, L.L.; Menezes, D.P.
2012-01-01
Neutron stars are among the most exotic objects in the universe and constitute a unique laboratory to study nuclear matter above the nuclear saturation density. In this work, we study the equation of state (EoS) of the nuclear matter within a relativistic model subject to a strong magnetic field. We then apply this EoS to study and describe some of the physical characteristics of neutron stars, especially the massradius relation and chemical compositions. To study the influence of the magnetic field and the hyperons in the stellar interior, we consider altogether four solutions: two different magnetic fields to obtain a weak and a strong influence; and two configurations: a family of neutron stars formed only by protons, electrons, and neutrons and a family formed by protons, electrons, neutrons, muons, and hyperons. The limit and the validity of the results found are discussed with some care. In all cases, the particles that constitute the neutron star are in ,B equilibrium and zero total net charge. Our work indicates that the effect of a strong magnetic field has to be taken into account in the description of magnetars, mainly if we believe that there are hyperons in their interior, in which case the influence of the magnetic field can increase the mass by more than 10 %. We have also seen that although a magnetar can reach 2.48 M0, a natural explanation of why we do not know pulsars with masses above 2.0 Mo arises. We also discuss how the magnetic field affects the strangeness fraction in some standard neutron star masses, and to conclude our paper, we revisit the direct Urca process related to the cooling of the neutron stars and show how it is affected by the hyperons and the magnetic field. (author)
Hyperon production in Pb + Pb collisions at 158 A GeV/c
Andersen, E.; Andrighetto, A.; Antinori, F.; Böhm, Jan; Píška, Karel; Staroba, Pavel; Šťastný, Jan; Vaníčková, Marcela; Závada, Petr
1996-01-01
Roč. 4, - (1996), s. 97-103 ISSN 1219-7580. [Workshop on strangeness in Hadronic Matter ( Strangeness 96). Budapest, 15.05.1996-17.05.1996] R&D Projects: GA ČR GA202/95/0217 Keywords : heavy ion collision * lead-lead * hyperon * antihyperon production * yield * (Omega- Xi- Lambda) * enhancement * (Omega- Xi-) * mass spectrum * magnetic spectrometer * OMEGA * CERN SPS * 158 GeV/c/nucleon Subject RIV: BF - Elementary Particles and High Energy Physics
Active target with plastic scintillating fibers for hyperon-proton scattering experiments
Ahn, J. K.; Akikawa, H.; Arvieux, H.; Bassalleck, B.; Chung, M. S.; En'yo, H.; Fukuda, T.; Funahashi, H.; Golovkin, SV.; Gorin, AM.; Goto, Y.; Hanabata, M.; Hayakawa, T.; Ichikawa, A.; Ieiri, M.; Imai, K.; Ishino, M.; Kanda, H.; Kim, Y. D.; Kondo, Y.; Kozarenko, E. N.; Kreslo, I. E.; Lee, J. M.; Masaike, A.; Mihara, S.; Nakai, K.; Nakazawa, K.; Ozawa, K.; Sato, A.; Sato, H. D.; Sim, K. S.; Tabaru, T.; Takeutchi, F.; Tlustý, Pavel; Torii, H.; Yamamoto, K.; Yokkaichi, S.; Yoshida, M.
2002-01-01
Roč. 49, č. 2 (2002), s. 592-596 ISSN 0018-9499 R&D Projects: GA AV ČR IAA1048304; GA AV ČR KSK1048102 Institutional research plan: CEZ:AV0Z1048901 Keywords : active target * hyperon-proton scattering * scintillating fibers Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.431, year: 2002
Bono, Jason [Florida Intl Univ., Miami, FL (United States)
2014-08-31
The parity violating weak decay of hyperons offers a valuable means of measuring their polarization, providing insight into the production of strange quarks and the matter they compose. Jefferson Lab's CLAS collaboration has utilized this property of hyperons, publishing the most precise polarization measurements for the Lambda and Sigma in both photoproduction and electroproduction to date. In contrast, cascades, which contain two strange quarks, can only be produced through indirect processes and as a result, exhibit low cross sections thus remaining experimentally elusive.
At present, there are two aspects in cascade physics where progress has been minimal: characterizing their production mechanism, which lacks theoretical and experimental developments, and observation of the numerous excited cascade resonances that are required to exist by flavor SU(3)F symmetry. However, CLAS data were collected in 2008 with a luminosity of 68 pb^-1 using a circularly polarized photon beam with energies up to 5.45 GeV, incident on a liquid hydrogen target. This dataset is, at present, the world's largest for meson photoproduction in its energy range and provides a unique opportunity to study cascade physics with polarization measurements.
The current analysis explores hyperon production through the yp -> K^+ K^+ Xi^- reaction by providing the first ever determination of spin observables P, Cx and Cz for the cascade. Three of our primary goals are to test the only cascade photoproduction model in existence, examine the underlying processes that give rise to hyperon polarization, and to stimulate future theoretical developments while providing constraints for their parameters. Our research is part of a broader program to understand the production of strange quarks and hadrons with strangeness. The remainder of this document discusses the motivation behind such research, the method of data collection, details of their analysis, and the significance of
Bulk-fill resin composites: polymerization contraction, depth of cure, and gap formation.
Benetti, A R; Havndrup-Pedersen, C; Honoré, D; Pedersen, M K; Pallesen, U
2015-01-01
The bulk-filling of deep, wide dental cavities is faster and easier than traditional incremental restoration. However, the extent of cure at the bottom of the restoration should be carefully examined in combination with the polymerization contraction and gap formation that occur during the restorative procedure. The aim of this study, therefore, was to compare the depth of cure, polymerization contraction, and gap formation in bulk-fill resin composites with those of a conventional resin composite. To achieve this, the depth of cure was assessed in accordance with the International Organization for Standardization 4049 standard, and the polymerization contraction was determined using the bonded-disc method. The gap formation was measured at the dentin margin of Class II cavities. Five bulk-fill resin composites were investigated: two high-viscosity (Tetric EvoCeram Bulk Fill, SonicFill) and three low-viscosity (x-tra base, Venus Bulk Fill, SDR) materials. Compared with the conventional resin composite, the high-viscosity bulk-fill materials exhibited only a small increase (but significant for Tetric EvoCeram Bulk Fill) in depth of cure and polymerization contraction, whereas the low-viscosity bulk-fill materials produced a significantly larger depth of cure and polymerization contraction. Although most of the bulk-fill materials exhibited a gap formation similar to that of the conventional resin composite, two of the low-viscosity bulk-fill resin composites, x-tra base and Venus Bulk Fill, produced larger gaps.
Banik, Sarmistha [BITS Pilani, Hyderabad Campus, Hyderabad-500078 (India); Hempel, Matthias [Departement Physik, Universität Basel, Klingelbergstrasse 82, 4056 Basel (Switzerland); Bandyopadhyay, Debades [Astroparticle Physics and Cosmology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700064 (India)
2014-10-01
We develop new hyperon equation of state (EoS) tables for core-collapse supernova simulations and neutron stars. These EoS tables are based on a density-dependent relativistic hadron field theory where baryon-baryon interaction is mediated by mesons, using the parameter set DD2 for nucleons. Furthermore, light and heavy nuclei along with interacting nucleons are treated in the nuclear statistical equilibrium model of Hempel and Schaffner-Bielich which includes excluded volume effects. Of all possible hyperons, we consider only the contribution of Λs. We have developed two variants of hyperonic EoS tables: in the npΛφ case the repulsive hyperon-hyperon interaction mediated by the strange φ meson is taken into account, and in the npΛ case it is not. The EoS tables for the two cases encompass a wide range of densities (10{sup –12} to ∼1 fm{sup –3}), temperatures (0.1 to 158.48 MeV), and proton fractions (0.01 to 0.60). The effects of Λ hyperons on thermodynamic quantities such as free energy per baryon, pressure, or entropy per baryon are investigated and found to be significant at higher densities. The cold, β-equilibrated EoS (with the crust included self-consistently) results in a 2.1 M {sub ☉} maximum mass neutron star for the npΛφ case, whereas that for the npΛ case is 1.95 M {sub ☉}. The npΛφ EoS represents the first supernova EoS table involving hyperons that is directly compatible with the recently measured 2 M {sub ☉} neutron stars.
Dynamic viscosity versus probe-reported microviscosity of aqueous mixtures of poly(ethylene glycol)
Bhanot, Chhavi; Trivedi, Shruti; Gupta, Arti; Pandey, Shubha; Pandey, Siddharth
2012-01-01
Highlights: ► Aqueous polymer mixtures, non-toxic media of huge industrial importance, are investigated. ► Bulk viscosity of aqueous. PEG mixtures is shown to vary widely with composition and temperature. ► T-dependent viscosity follows Arrhenius behavior suggesting aqueous PEGs to be Newtonian fluids. ► Microviscosity sensed by a fluorescence ratiometric probe is estimated and correlated with viscosity. ► Microviscosity correlates well with bulk viscosity at higher PEG concentrations. - Abstract: Correlation between the dynamic viscosity (η) and the microviscosity of a hybrid green medium constituted of water and poly(ethylene glycol) (PEG) of average molar mass (200, 400, and 600) g · mol −1 , respectively, is explored over the temperatures range (10 to 90) °C across the complete composition regime. The microviscosity is obtained using a fluorescence probe 1,3-bis-(1-pyrenyl)propane (BPP), which is manifested through the ratio of the monomer-to-intramolecular excimer intensities (I M /I E ). Aqueous PEG mixtures are observed to behave similar to Newtonian fluids as the temperature dependence of dynamic viscosity follows Arrhenius-type behavior. Surprisingly, a simple and convenient linear dependence of ln η with wt% PEG of the mixture is established. The BPP I M /I E is observed, in general, to increase with the bulk dynamic viscosity of the mixture having >10 wt% PEG suggesting a good correlation between the bulk dynamic viscosity and BPP-reported microviscosity when the viscosity of the aqueous PEG mixture is relatively high.
Viscosity of particle laden films
Timounay, Yousra; Rouyer, Florence
2017-06-01
We perform retraction experiments on soap films where large particles bridge the two interfaces. Local velocities are measured by PIV during the unstationnary regime. The velocity variation in time and space can be described by a continuous fluid model from which effective viscosity (shear and dilatational) of particulate films is measured. The 2D effective viscosity of particulate films η2D increases with particle surface fraction ϕ: at low ϕ, it tends to the interfacial dilatational viscosity of the liquid/air interfaces and it diverges at the critical particle surface fraction ϕc ≃ 0.84. Experimental data agree with classical viscosity laws of hard spheres suspensions adapted to the 2D geometry, assuming viscous dissipation resulting from the squeeze of the liquid/air interfaces between the particles. Finally, we show that the observed viscous dissipation in particulate films has to be considered to describe the edge velocity during a retraction experiment at large particle coverage.
Bulk velocity extraction for nano-scale Newtonian flows
Zhang, Wenfei, E-mail: zwenfei@gmail.com [Key Laboratory of Mechanical Reliability for Heavy Equipments and Large Structures of Hebei Province, Yanshan University, Qinhuangdao 066004 (China); Sun, Hongyu [Key Laboratory of Mechanical Reliability for Heavy Equipments and Large Structures of Hebei Province, Yanshan University, Qinhuangdao 066004 (China)
2012-04-16
The conventional velocity extraction algorithm in MDS method has difficulty to determine the small flow velocity. This study proposes a new method to calculate the bulk velocity in nano-flows. Based on the Newton's law of viscosity, according to the calculated viscosities and shear stresses, the flow velocity can be obtained by numerical integration. This new method can overcome the difficulty existed in the conventional MDS method and improve the stability of the computational process. Numerical results show that this method is effective for the extraction of bulk velocity, no matter the bulk velocity is large or small. -- Highlights: ► Proposed a new method to calculate the bulk velocity in nano-flows. ► It is effective for the extraction of small bulk velocity. ► The accuracy, convergence and stability of the new method is good.
Bulk velocity extraction for nano-scale Newtonian flows
Zhang, Wenfei; Sun, Hongyu
2012-01-01
The conventional velocity extraction algorithm in MDS method has difficulty to determine the small flow velocity. This study proposes a new method to calculate the bulk velocity in nano-flows. Based on the Newton's law of viscosity, according to the calculated viscosities and shear stresses, the flow velocity can be obtained by numerical integration. This new method can overcome the difficulty existed in the conventional MDS method and improve the stability of the computational process. Numerical results show that this method is effective for the extraction of bulk velocity, no matter the bulk velocity is large or small. -- Highlights: ► Proposed a new method to calculate the bulk velocity in nano-flows. ► It is effective for the extraction of small bulk velocity. ► The accuracy, convergence and stability of the new method is good.
Revel, D [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1965-05-15
We present the results on hyperon-antihyperon production by 4 GeV/c antiprotons in hydrogen. We used about 10{sup 5} pictures taken in an antiproton beam from the CERN proton synchrotron with the 81 cm Saclay hydrogen bubble chamber. The aim of this work was the study, through the cross sections and the angular distributions, of production mechanism of hyperon antihyperon pairs and excited hyperons (or antihyperons). For most of the channels, these angular distributions show a strong forward peaking of the antihyperon in the center of mass of the interaction. This suggests that a peripheral-type mechanism is predominant in these processes. We compare the results of some cross sections, with theoretical predictions according to SU{sub 3} unitary symmetry. (author) [French] Nous presentons ici des resultats concernant la production d'hyperons et d'antihyperons dans l'interaction antiproton sur proton a 4 GeV/c. Nous avons utilise pour cette experience un lot de 10{sup 5} photographies, prises avec la chambre a bulles de 81 cm a hydrogene liquide de Saclay, placee dans un faisceau d'antiprotons aupres du synchrotron a protons du CERN. Le but de ce travail etait l'etude des mecanismes de production des paires hyperons antihyperons et des hyperons excites (antihyperons excites) au travers des sections efficaces et des distributions angulaires. Pour la plupart des voies, ces distributions angulaires, dans le systeme du centre de masse, indiquent une forte tendance a l'emission vers l'avant de l'antihyperon, ce qui suggere un mecanisme de production de type peripherique. Nous avons compare les resultats de certaines sections efficaces avec des previsions obtenues a partir de la theorie de symetrie unitaire SU{sub 3}. (auteur)
Comparison of parallel viscosity with neoclassical theory
Ida, K.; Nakajima, N.
1996-04-01
Toroidal rotation profiles are measured with charge exchange spectroscopy for the plasma heated with tangential NBI in CHS heliotron/torsatron device to estimate parallel viscosity. The parallel viscosity derived from the toroidal rotation velocity shows good agreement with the neoclassical parallel viscosity plus the perpendicular viscosity. (μ perpendicular = 2 m 2 /s). (author)
Threshold hyperon production in proton-proton collisions at COSY-11
Rozek, T.
2005-10-01
For the first time the pp→nK + Σ + reaction has been measured in the threshold region and the cross section was determined. The measurement was performed at the COSY-11 detection system at two beam momenta P beam =2.6 GeV/c and 2.74 GeV/c, corresponding to excess energies Q=13 MeV and 60 MeV. COSY-11 is an internal magnetic spectrometer experiment at the COoler SYnchrotron and storage ring COSY in Juelich, Germany. It is equipped with scintillator hodoscopes and drift chambers for charged particle detection and a scintillator/lead sandwich detector for neutrons. Experimentally, the Σ + hyperon was identified via the missing mass technique, by detecting the remaining reaction products - K + meson and neutron. Extensive background studies in the missing mass spectra have been performed and the possible influence of the higher partial waves on the detection efficiency discussed. The investigation on the Σ + production is a part of the long ongoing studies of the hyperons production performed by the COSY-11 collaboration. In the previous analysis of the Λ and Σ 0 hyperon production in the pp→pK + Λ and pp→pK + Σ 0 reactions, respectively, the unexpectedly high cross section ratio σ(Λ/σ)(Σ 0 ) in the close to threshold region was observed. To explain this behavior, various theoretical scenarios were proposed, but although they differ even in the dominant basic reaction mechanism, all more or less reproduce the data. In order to get more information for disentangling the contributing reaction mechanisms, data from an other isospin channel were taken, namely pp→nK + Σ + . Within this thesis the method of the measurement and the data analysis is given. The total cross section is presented and the results are discussed in view of available theoretical models. (orig.)
Beta decay of hyperons. Lectures in mathematics and physics at the University of Texas at Austin
Bohm, A.; Garcia, A.; Kielanowski, P.
1985-01-01
This book is an introduction to the physics of the semileptonic decay of hyperons. After a general introduction and a description of the experimental results the Cabibbo theory is introduced for the theoretical description of these results. Then radiative and other corrections are discussed. Finally this decay is considered in the framework of broken SU(3). This book applies to graduate students and other ''non-specialists'' who want to get some insight into the physics of weak interactions. (HSI).
Polarization of Λ hyperons produced in pp collisions at 19 GeV/c
Aahlin, P.; Frodesen, A.G.; Alpgaard, K.; Hulth, P.O.; Svedin, U.; Yamdagni, N.; Hagman, V.-M.; Tuominiemi, J.; Villanen, P.
1977-05-01
The polarization of the Λ hyperon produced in the inclusive reaction p+p→Λ+X is measured at 19 GeV/c with a sample of 4975 Λ's. Nonzero values of the polarization are observed for Λ's with transverse momentum larger than 0.6 GeV/c. Somewhat weaker indications of a nonzero effect are seen for values of the Feynman variable |x| larger than 0.8. The triple-Regge formula with only leading Ksup(*) and Ksup(**) trajectories predicts vanishing polarization and is consistent with data at |x| < 0.8 and small transverse momentum. (author)
Solution of the hyperon puzzle within a relativistic mean-field model
Maslov, K.A. [National Research Nuclear University (MEPhI), 115409 Moscow (Russian Federation); Kolomeitsev, E.E., E-mail: E.Kolomeitsev@gsi.de [Matej Bel University, SK-97401 Banska Bystrica (Slovakia); Voskresensky, D.N. [National Research Nuclear University (MEPhI), 115409 Moscow (Russian Federation)
2015-09-02
The equation of state of cold baryonic matter is studied within a relativistic mean-field model with hadron masses and coupling constants depending on the scalar field. All hadron masses undergo a universal scaling, whereas the couplings are scaled differently. The appearance of hyperons in dense neutron star interiors is accounted for, however the equation of state remains sufficiently stiff if the reduction of the ϕ meson mass is included. Our equation of state matches well the constraints known from analyses of the astrophysical data and particle production in heavy-ion collisions.
Production of $\\Lambda$ hyperons in inelastic p+p interactions at 158 GeV/$c$
Aduszkiewicz, A.; Andronov, E.; Antićić, T.; Antoniou, N.; Baatar, B.; Bay, F.; Blondel, A.; Bogomilov, M.; Brandin, A.; Bravar, A.; Brzychczyk, J.; Bunyatov, S.A.; Busygina, O.; Christakoglou, P.; Ćirković, M.; Czopowicz, T.; Damyanova, A.; Davis, N.; Dembinski, H.; Deveaux, M.; Diakonos, F.; Di Luise, S.; Dominik, W.; Dumarchez, J.; Dynowski, K.; Engel, R.; Ereditato, A.; Feofilov, G.A.; Fodor, Z.; Garibov, A.; Gazdzicki, M.; Golubeva, M.; Grebieszkow, K.; Grzeszczuk, A.; Guber, F.; Haesler, A.; Hasegawa, T.; Hervé, A.E.; Hierholzer, M.; Igolkin, S.; Ivashkin, A.; Johnson, S.R.; Kadija, K.; Kapoyannis, A.; Kaptur, E.; Kisiel, J.; Kobayashi, T.; Kolesnikov, V.I.; Kolev, D.; Kondratiev, V.P.; Korzenev, A.; Kowalik, K.; Kowalski, S.; Koziel, M.; Krasnoperov, A.; Kuich, M.; Kurepin, A.; Larsen, D.; László, A.; Lewicki, M.; Lyubushkin, V.V.; Maćkowiak-Pawłowska, M.; Maksiak, B.; Malakhov, A.I.; Manić, D.; Marcinek, A.; Marino, A.D.; Marton, K.; Mathes, H.J.; Matulewicz, T.; Matveev, V.; Melkumov, G.L.; Messerly, B.; Mills, G.B.; Morozov, S.; Mrówczyński, S.; Nagai, Y.; Nakadaira, T.; Naskręt, M.; Nirkko, M.; Nishikawa, K.; Panagiotou, A.D.; Paolone, V.; Pavin, M.; Petukhov, O.; Pistillo, C.; Płaneta, R.; Popov, B.A.; Posiadała, M.; Puławski, S.; Puzović, J.; Rauch, W.; Ravonel, M.; Redij, A.; Renfordt, R.; Richter-Wąs, E.; Robert, A.; Röhrich, D.; Rondio, E.; Roth, M.; Rubbia, A.; Rumberger, B.T.; Rustamov, A.; Rybczynski, M.; Sadovsky, A.; Sakashita, K.; Schmidt, K.; Sekiguchi, T.; Selyuzhenkov, I.; Seryakov, A.; Seyboth, P.; Sgalaberna, D.; Shibata, M.; Słodkowski, M.; Staszel, P.; Stepaniak, J.; Stefanek, G.; Ströbele, H.; Šuša, T.; Szuba, M.; Tada, M.; Taranenko, A.; Tefelski, D.; Tereshchenko, V.; Tsenov, R.; Turko, L.; Ulrich, R.; Unger, M.; Vassiliou, M.; Veberič, D.; Vechernin, V.V.; Vesztergombi, G.; Vinogradov, L.; Wilczek, A.; Włodarczyk, Z.; Wojtaszek-Szwarc, A.; Wyszyński, O.; Zambelli, L.; Zimmerman, E.D.; Zambelli, L.; Zimmermann, E.D.
2016-01-01
Inclusive production of $\\Lambda$-hyperons was measured with the large acceptance NA61/SHINE spectrometer at the CERN SPS in inelastic p+p interactions at beam momentum of 158 GeVc. Spectra of transverse momentum and transverse mass as well as distributions of rapidity and x$_{_F}$ are presented. The mean multiplicity was estimated to be $0.120\\,\\pm0.006\\;(stat.)\\,\\pm 0.010\\;(sys.)$. The results are compared with previous measurements and predictions of the EPOS, UrQMD and FRITIOF models.
Solution of the hyperon puzzle within a relativistic mean-field model
K.A. Maslov
2015-09-01
Full Text Available The equation of state of cold baryonic matter is studied within a relativistic mean-field model with hadron masses and coupling constants depending on the scalar field. All hadron masses undergo a universal scaling, whereas the couplings are scaled differently. The appearance of hyperons in dense neutron star interiors is accounted for, however the equation of state remains sufficiently stiff if the reduction of the ϕ meson mass is included. Our equation of state matches well the constraints known from analyses of the astrophysical data and particle production in heavy-ion collisions.
Future NA48 programs for hyperon rare decays and CP violation measurements
Koch, Uwe
2002-01-01
Recently two proposals of the NA48 collaboration to extend its physics program after the completion of the ε'/ε measurement have been approved. The first will address several topics in rare hyperon and K S decays, using an high intensity K S beam. A running period of about 120 days in 2002 is planned. In the second extension the focus is on the measurement of direct CP violation in charged kaon decays, using simultaneous K ± beams. It is foreseen to start in 2003 and to continue until 2004 with two running periods of about 120 days each. (author)
Hyperon polarization in heavy-ion collisions and holographic gravitational anomaly
Baznat, Mircea; Gudima, Konstantin; Sorin, Alexander; Teryaev, Oleg
2018-04-01
We study the energy dependence of global polarization of Λ hyperons in peripheral Au-Au collisions. We combine the calculation of vorticity and strange chemical potential in the framework of the kinetic quark-gluon-string model with the anomalous mechanism related to the axial vortical effect. We pay special attention to the temperature-dependent contribution related to the holographic gravitational anomaly and find that the preliminary data from the BNL Relativistic Heavy Ion Collider are compatible with its suppression discovered earlier in lattice calculations.
Goldstein, G R
2001-01-01
Spin dependent fragmentation functions for heavy flavor quarks to fragment into heavy baryons are calculated in a quark-diquark model. The production of intermediate spin 1/2 and 3/2 excited states is explicity included. $\\Lambda_b$ , $\\Lambda_c$ and $\\Xi_c$ production rate and polarization at LEP energies are calculated and, where possible, compared with experiment. A different approach, also relying on a heavy quark-diquark model, is proposed for the small momentum transfer inclusive production of polarized heavy flavor hyperons. The predicted $\\Lambda_c$ polarization is roughly in agreement with experiment.
Production of $\\Lambda$ hyperons in inelastic p+p interactions at 158 GeV/$c$
Aduszkiewicz, A.; Andronov, E.; Antićić, T.; Antoniou, N.; Baatar, B.; Bay, F.; Blondel, A.; Bogomilov, M.; Brandin, A.; Bravar, A.; Brzychczyk, J.; Bunyatov, S.A.; Busygina, O.; Christakoglou, P.; Ćirković, M.; Czopowicz, T.; Damyanova, A.; Davis, N.; Dembinski, H.; Deveaux, M.; Diakonos, F.; Di Luise, S.; Dominik, W.; Dumarchez, J.; Dynowski, K.; Engel, R.; Ereditato, A.; Feofilov, G.A.; Fodor, Z.; Garibov, A.; Gazdzicki, M.; Golubeva, M.; Grebieszkow, K.; Grzeszczuk, A.; Guber, F.; Haesler, A.; Hasegawa, T.; Hervé, A.E.; Hierholzer, M.; Igolkin, S.; Ivashkin, A.; Johnson, S.R.; Kadija, K.; Kapoyannis, A.; Kaptur, E.; Kisiel, J.; Kobayashi, T.; Kolesnikov, V.I.; Kolev, D.; Kondratiev, V.P.; Korzenev, A.; Kowalik, K.; Kowalski, S.; Koziel, M.; Krasnoperov, A.; Kuich, M.; Kurepin, A.; Larsen, D.; László, A.; Lewicki, M.; Lyubushkin, V.V.; Maćkowiak-Pawłowska, M.; Maksiak, B.; Malakhov, A.I.; Manić, D.; Marcinek, A.; Marino, A.D.; Marton, K.; Mathes, H.J.; Matulewicz, T.; Matveev, V.; Melkumov, G.L.; Messerly, B.; Mills, G.B.; Morozov, S.; Mrówczyński, S.; Nagai, Y.; Nakadaira, T.; Naskręt, M.; Nirkko, M.; Nishikawa, K.; Panagiotou, A.D.; Paolone, V.; Pavin, M.; Petukhov, O.; Pistillo, C.; Płaneta, R.; Popov, B.A.; Posiadała, M.; Puławski, S.; Puzović, J.; Rauch, W.; Ravonel, M.; Redij, A.; Renfordt, R.; Richter-Wąs, E.; Robert, A.; Röhrich, D.; Rondio, E.; Roth, M.; Rubbia, A.; Rumberger, B.T.; Rustamov, A.; Rybczynski, M.; Sadovsky, A.; Sakashita, K.; Schmidt, K.; Sekiguchi, T.; Selyuzhenkov, I.; Seryakov, A.; Seyboth, P.; Sgalaberna, D.; Shibata, M.; Słodkowski, M.; Staszel, P.; Stepaniak, J.; Stefanek, G.; Ströbele, H.; Šuša, T.; Szuba, M.; Tada, M.; Taranenko, A.; Tefelski, D.; Tereshchenko, V.; Tsenov, R.; Turko, L.; Ulrich, R.; Unger, M.; Vassiliou, M.; Veberič, D.; Vechernin, V.V.; Vesztergombi, G.; Vinogradov, L.; Wilczek, A.; Włodarczyk, Z.; Wojtaszek-Szwarc, A.; Wyszyński, O.; Zambelli, L.; Zimmerman, E.D.; Zambelli, L.; Zimmermann, E.D.
2016-04-12
Inclusive production of $\\Lambda$-hyperons was measured with the large acceptance NA61/SHINE spectrometer at the CERN SPS in inelastic p+p interactions at beam momentum of 158 GeVc. Spectra of transverse momentum and transverse mass as well as distributions of rapidity and x$_{_F}$ are presented. The mean multiplicity was estimated to be $0.120\\,\\pm0.006\\;(stat.)\\,\\pm 0.010\\;(sys.)$. The results are compared with previous measurements and predictions of the EPOS, UrQMD and FRITIOF models.
Viscosity Control Experiment Feasibility Study
Morris, Heidi E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bradley, Paul Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2018-01-31
Turbulent mix has been invoked to explain many results in Inertial Confinement Fusion (ICF) and High Energy Density (HED) physics, such as reduced yield in capsule implosions. Many ICF capsule implosions exhibit interfacial instabilities seeded by the drive shock, but it is not clear that fully developed turbulence results from this. Many simulations use turbulent mix models to help match simulation results to data, but this is not appropriate if turbulence is not present. It would be useful to have an experiment where turbulent mixing could be turned on or off by design. The use of high-Z dopants to modify viscosity and the resulting influence on turbulence is considered here. A complicating factor is that the plasma in some implosions can become strongly coupled, which makes the Spitzer expression for viscosity invalid. We first consider equations that cover a broad parameter space in temperature and density to address regimes for various experimental applications. Next, a previous shock-tube and other ICF experiments that investigate viscosity or use doping to examine the effects on yield are reviewed. How viscosity and dopants play a role in capsule yield depends on the region and process under consideration. Experiments and simulations have been performed to study the effects of viscosity on both the hot spot and the fuel/ablator mix. Increases in yield have been seen for some designs, but not all. We then discuss the effect of adding krypton dopant to the gas region of a typical OMEGA and a 2-shock NIF implosion to determine approximately the effect of adding dopant on the computed Reynolds number. Recommendations for a path forward for possible experiments using high-Z dopants to affect viscosity and turbulence are made.
Viscosity kernel of molecular fluids
Puscasu, Ruslan; Todd, Billy; Daivis, Peter
2010-01-01
, temperature, and chain length dependencies of the reciprocal and real-space viscosity kernels are presented. We find that the density has a major effect on the shape of the kernel. The temperature range and chain lengths considered here have by contrast less impact on the overall normalized shape. Functional...... forms that fit the wave-vector-dependent kernel data over a large density and wave-vector range have also been tested. Finally, a structural normalization of the kernels in physical space is considered. Overall, the real-space viscosity kernel has a width of roughly 3–6 atomic diameters, which means...
Blaschke, David; Alvarez-Castillo, David E.
2016-01-01
We aim at contributing to the resolution of three of the fundamental puzzles related to the still unsolved problem of the structure of the dense core of compact stars (CS): (i) the hyperon puzzle: how to reconcile pulsar masses of 2 M ⊙ with the hyperon softening of the equation of state (EoS); (ii) the masquerade problem: modern EoS for cold, high density hadronic and quark matter are almost identical; and (iii) the reconfinement puzzle: what to do when after a deconfinement transition the hadronic EoS becomes favorable again? We show that taking into account the compositeness of baryons (by excluded volume and/or quark Pauli blocking) on the hadronic side and confining and stiffening effects on the quark matter side results in an early phase transition to quark matter with sufficient stiffening at high densities which removes all three present-day puzzles of CS interiors. Moreover, in this new class of EoS for hybrid CS falls the interesting case of a strong first order phase transition which results in the observable high mass twin star phenomenon, an astrophysical observation of a critical endpoint in the QCD phase diagram
Medium effects and parity doubling of hyperons across the deconfinement phase transition
Aarts, Gert; Allton, Chris; Boni, Davide De; Hands, Simon; Jäger, Benjamin; Praki, Chrisanthi; Skullerud, Jon-Ivar
2018-03-01
We analyse the behaviour of hyperons with strangeness S = -1,-2,-3 in the hadronic and quark gluon plasma phases, with particular interest in parity doubling and its emergence as the temperature grows. This study uses our FASTSUM anisotropic Nf = 2+1 ensembles, with four temperatures below and four above the deconfinement transition temperature, Tc. The positive-parity groundstate masses are found to be largely temperature independent below Tc, whereas the negative-parity ones decrease considerably as the temperature increases. Close to the transition, the masses are almost degenerate, in line with the expectation from chiral symmetry restoration. This may be of interest for heavy-ion phenomenology. In particular we show an application of this effect to the Hadron Resonance Gas model. A clear signal of parity doubling is found above Tc in all hyperon channels, with the strength of the effect depending on the number of s-quarks in the baryons. Presented at 35th International Symposium on Lattice Field Theory, 18-24 June 2017, Granada, Spain
Track following of Ξ-hyperons in nuclear emulsion for the E07 experiment
Mishina, Akihiro; Nakazawa, Kazuma; Hoshino, Kaoru; Itonaga, Kazunori; Yoshida, Junya; Than Tint, Khin; Kyaw Soe, Myint; Kinbara, Shinji; Itoh, Hiroki; Endo, Yoko; Kobayashi, Hidetaka; Umehara, Kaori; Yokoyama, Hiroyuki; Nakashima, Daisuke; J-PARC E07 Collaboration
2014-09-01
Events of Double- Λ and Twin Single- Λ Hypernuclei are very important to understand Λ- Λ and Ξ--N interaction. We planned the E07 experiment to find Nuclear mass dependences of them with ten times higher statistics than before. In the experiment, the number of Ξ- hyperon stopping at rest is about ten thousands which is ten times larger than before. Such number of tracks for Ξ- hyperon candidates should be followed in nuclear emulsion plate up to their stopping point. To complete its job within one year, it is necessary for development of automated track following system. The important points for track following is Track connection in plate by plate. To carry out these points, we innovated image processing methods. Especially, we applied pattern match of K- beams for 2nd point. Position accuracy of this method was 1.4 +/-0.8 μm . If we succeed this application in about one minute for a track in each plate, all track following can be finished in one year.
Viscosity of particle laden films
Timounay Yousra
2017-01-01
Full Text Available We perform retraction experiments on soap films where large particles bridge the two interfaces. Local velocities are measured by PIV during the unstationnary regime. The velocity variation in time and space can be described by a continuous fluid model from which effective viscosity (shear and dilatational of particulate films is measured. The 2D effective viscosity of particulate films η2D increases with particle surface fraction ϕ: at low ϕ, it tends to the interfacial dilatational viscosity of the liquid/air interfaces and it diverges at the critical particle surface fraction ϕc ≃ 0.84. Experimental data agree with classical viscosity laws of hard spheres suspensions adapted to the 2D geometry, assuming viscous dissipation resulting from the squeeze of the liquid/air interfaces between the particles. Finally, we show that the observed viscous dissipation in particulate films has to be considered to describe the edge velocity during a retraction experiment at large particle coverage.
Effective viscosity of confined hydrocarbons
Sivebæk, Ion Marius; Samoilov, V.N.; Persson, B.N.J.
2012-01-01
We present molecular dynamics friction calculations for confined hydrocarbon films with molecular lengths from 20 to 1400 carbon atoms. We find that the logarithm of the effective viscosity ηeff for nanometer-thin films depends linearly on the logarithm of the shear rate: log ηeff=C-nlog γ̇, where...
Fission hindrance and nuclear viscosity
is in exact conformity with all the previous measurements [7,10–13]. The CASCADE calculations (solid lines in figure 1) used in this first level of analysis do not include any viscosity or temperature-dependent nuclear level density parameter a. The γ and particle decay are calculated using the standard prescriptions as ...
Antinori, F.; Bakke, H.; Beusch, W.; Staroba, Pavel; Závada, Petr
1999-01-01
Roč. 661, - (1999), 476c-480c ISSN 0375-9474 Institutional research plan: CEZ:AV0Z1010920 Keywords : CERN SPS * WA97 * proton-beryllium collisions * hyperon * negaive particle production Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 2.088, year: 1999
Enhancement of hyperon production at central rapidity in 158 A GeV/c Pb-Pb collisions
Antinori, F.; Bacon, P.; Balada, A.; Staroba, Pavel; Závada, Petr
2006-01-01
Roč. 32, - (2006), s. 427-441 ISSN 0954-3899 Institutional research plan: CEZ:AV0Z10100502 Keywords : central Pb-Pb * hyperon * antihyperon * yield * rapidity * transverse momentum Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.781, year: 2006
Polarization of Λ hyperons produced inclusively in νp and anti νp charged current interactions
Jones, G.T.; Kennedy, B.W.; O'Neale, S.W.; Barnham, K.W.J.; Clayton, E.F.; Miller, D.B.; Mobayyen, M.M.; Villalobos-Baillie, O.; Corrigan, G.; Myatt, G.; Radojicic, D.; Saitta, B.; Wells, J.; Aderholz, M.; Deck, L.; Schmitz, N.; Settles, R.; Wernhard, K.L.; Wittek, W.
1985-01-01
Lambda hyperons from νp and anti np charged current interactions have been analysed for polarization. A significant polarization is observed for Λ particles in the quasi-elastic region for both types of interactions. Part of this polarization is due to the decay of highly polarized Σ(1385) resonances. The results are compared with simple predictions of the quark parton model. (orig.)
Cerny, V.
1983-01-01
A model based estimate is presented of the geometrical acceptance of the HYPERON spectrometer for the detection of the e + e - pairs in the proposed lepton experiment. The results of the Monte Carlo calculation show that the expected acceptance is fairly high. (author)
Polarization of Λ hyperons produced inclusively in νp and anti νp charged current interactions
Jones, G.T.; Kennedy, B.W.; O'Neale, S.W.; Barnham, K.W.J.; Clayton, E.F.; Miller, D.B.; Mobayyen, M.M.; Villalobos-Baillie, O.; Corrigan, G.; Myatt, G.; Radojicic, D.; Saitta, B.; Wells, J.
1985-01-01
Lambda hyperons from νp charged current interactions have been analysed for polarization. A significant polarization is observed for Λ particles in the quasi-elastic region for both types of interactions. Part of this polarization is due to the decay of highly polarized phi(1,385) resonances. The results are compared with simple predictions of the quark parton model. (orig.)
On the measurement of the relative viscosity of suspensions
Acrivos, A.; Fan, X.; Mauri, R.
1994-01-01
The relative viscosity of a suspension of rigid, noncolloidal particles immersed in a Newtonian fluid was measured in a Couette device and was found to be shear thinning even for values of the solids fraction as low as 20%. Although such behavior was reported previously, no satisfactory explanation appears to have been given thus far. It shall be shown presently, however, that, at least for our systems, this shear-thinning effect was due to a slight mismatch in the densities of the two phases. Moreover, the apparent relative viscosities measured in our apparatus were found to be in excellent agreement with those predicted theoretically using a model, originally proposed by Leighton and Acrivos [Chem. Eng. Sci. 41, 1377--1384 (1986)], to describe viscous resuspension, according to which the measured relative viscosity should depend on the bulk particle concentration and on the dimensionless Shields number A, and should attain its correct value for a well-mixed suspension only as A→∞. The predictions of this model are also in excellent agreement with the measured transient response of the apparent relative viscosity due to a sudden change in the shear rate
CP violation in hyperon decays: the case p-bar p → Λ-bar Λ → p-bar π+ pπ-
Hamann, N.; He, X.G.; Landua, R.; Ohlsson, S.; Steger, H.; Valencia, G.; Fischer, H.; Geyer, R.; Hertzog, D.; Kolo, B.; Miller, J.P.; Rohrich, K.
1992-01-01
An account is given of the experimental status of CP violation and of the phenomenology of hyperon non-leptonic decays. Updated information on the estimate of CP-violating observable in these decays is presented. An experimental programme is outlined, which aims to pursue the search for direct CP violation in hyperon-antihyperon decays by means of the reaction p-bar p → Λ-bar Λ → p-bar π + pπ - . The experiment as well as analysis methods are described. Alternative approaches employing hyperons are also discussed. 54 refs., 1 tab., 13 figs
Threshold hyperon production in proton-proton collisions at COSY-11
Rozek, T.
2005-10-01
For the first time the pp{yields}nK{sup +}{sigma}{sup +} reaction has been measured in the threshold region and the cross section was determined. The measurement was performed at the COSY-11 detection system at two beam momenta P{sub beam}=2.6 GeV/c and 2.74 GeV/c, corresponding to excess energies Q=13 MeV and 60 MeV. COSY-11 is an internal magnetic spectrometer experiment at the COoler SYnchrotron and storage ring COSY in Juelich, Germany. It is equipped with scintillator hodoscopes and drift chambers for charged particle detection and a scintillator/lead sandwich detector for neutrons. Experimentally, the {sigma}{sup +} hyperon was identified via the missing mass technique, by detecting the remaining reaction products - K{sup +} meson and neutron. Extensive background studies in the missing mass spectra have been performed and the possible influence of the higher partial waves on the detection efficiency discussed. The investigation on the {sigma}{sup +} production is a part of the long ongoing studies of the hyperons production performed by the COSY-11 collaboration. In the previous analysis of the {lambda} and {sigma}{sup 0} hyperon production in the pp{yields}pK{sup +}{lambda} and pp{yields}pK{sup +}{sigma}{sup 0} reactions, respectively, the unexpectedly high cross section ratio {sigma}({lambda}/{sigma})({sigma}{sup 0}) in the close to threshold region was observed. To explain this behavior, various theoretical scenarios were proposed, but although they differ even in the dominant basic reaction mechanism, all more or less reproduce the data. In order to get more information for disentangling the contributing reaction mechanisms, data from an other isospin channel were taken, namely pp{yields}nK{sup +}{sigma}{sup +}. Within this thesis the method of the measurement and the data analysis is given. The total cross section is presented and the results are discussed in view of available theoretical models. (orig.)
Second viscosity effects in cosmology
Potupa, A.S.
1978-01-01
The object of the investigation is to draw attention to two important aspects in the choice of a substance model, namely an allowance for the viscosity and behaviour of the metrics at the later stages of cosmological evolution. It is shown that in homogeneous cosmological models taking into account the viscosity there are solutions which realize interpolation between the Fridman and steady-state regimes. In a closed model a solution is obtained which corresponds to the ''curvature compensation'' regime with an unboundedly increasing radius. The problem of compensation of singularity at t → o is discussed as well as the choice of the equations of state for the early (hadron) stages of cosmological evolution in connection with the hydrodynamic theory of multiple hadron production
Effect of viscosity on learned satiation
Mars, M.; Hogenkamp, P.S.; Gosses, A.M.; Stafleu, A.; Graaf, C.de
2009-01-01
A higher viscosity of a food leads to a longer orosensory stimulation. This may facilitate the learned association between sensory signals and metabolic consequences. In the current study we investigated the effect of viscosity on learned satiation. In two intervention groups a low viscosity (LV)
Nuclear quadrupole relaxation and viscosity in liquid metals
Schirmacher, W.
1976-01-01
It is shown that the nuclear quadrupole relaxation rate due to the molecular motions in liquid metals is related to the shear and bulk viscosity and hence to the absorption coefficient of ultrasound. Application of the 'extended liquid phonon' model of Ortoleva and Nelkin - which is the third of a series of continued-fraction-approximations for the van Hove neutron scattering function - gives a relation to the self diffusion constant. The predictions of the theory concerning the temperature dependence are compared with quadrupole relaxation measurements of Riegel et al. and Kerlin et al. in liquid gallium. Agreement is found only with the data of Riegel et al. (orig.) [de
A relationship between solvent viscosity and biomolecule picosecond thermal fluctuations
Cornicchi, E.; De Francesco, A.; Marconi, M.; Onori, G.; Paciaroni, A.
2008-01-01
Through elastic neutron scattering measurements, we investigated the picosecond dynamics of DNA in the hydrated powder state or embedded in glycerol glassy matrix from 20 K to 300 K. We calculated the relaxational contribution of the mean square displacements (MSD) of DNA hydrogen atoms. We found the existence of a linear relationship between the inverse of the biomolecule relaxational MSD and the logarithm of the bulk viscosity of the surrounding environment. From the comparison with the case of lysozyme in the same environments, for which the validity of the relationship was already verified, possible differences and analogies concerning the biomolecule-to-solvent dynamical coupling can be stressed
Observation of Global Hyperon Polarization in Ultrarelativistic Heavy-Ion Collisions
Upsal, Isaac; STAR Collaboration
2017-11-01
Collisions between heavy nuclei at ultra-relativistic energies form a color-deconfined state of matter known as the quark-gluon plasma. This state is well described by hydrodynamics, and non-central collisions are expected to produce a fluid characterized by strong vorticity in the presence of strong external magnetic fields. The STAR Collaboration at Brookhaven National Laboratory's Relativistic Heavy Ion Collider (RHIC) has measured collisions between gold nuclei at center of mass energies √{sNN} = 7.7- 200 GeV. We report the first observation of globally polarized Λ and Λ bar hyperons, aligned with the angular momentum of the colliding system. These measurements provide important information on partonic spin-orbit coupling, the vorticity of the quark-gluon plasma, and the magnetic field generated in the collision.
From hyperons to applied optics: open-quotes Winston Conesclose quotes during and after ZGS era
Swallow, E.C.
1994-01-01
This paper discusses developments in light collection which had their origin in efforts to construct high performance gas Cerenkov detectors for precision studies of hyperon beta decays at the ZGS. The resulting devices, know generally as open-quotes compound parabolic concentrators,close quotes have found applications ranging from nuclear and particle physics experiments to solar energy concentration, instrument illumination, and understanding the optics of visual receptors. Interest in these devices and the ideas underlying them stimulated the development of a substantial new subfield of physics: nonimaging optics. This progression provides an excellent example of some ways in which unanticipated - and often unanticipatable - applied science and open-quotes practicalclose quotes devices naturally emerge from first-rate basic science. The characteristics of this process suggest that the term open-quotes spinoffclose quotes commonly used to denote it is misleading and in need of replacement
Track following of Ξ"- hyperons in nuclear emulsion for the E07 experiment
Mishina, Akihiro; Endo, Yoko; Hoshino, Kaoru
2015-01-01
The E07 experiment is expected to provide knowledge of S = -2 systems with ten times more statistics than that of the past E373 experiment. To achieve this in a reasonable time, an automated track following system is very important. This system consists of three techniques, 'emulsion surface detection', 'alignment of plate by plate connection with K"- beams' and 'followed track recognition in nuclear emulsion'. Ξ"- hyperon candidate tracks are followed from the entrance to the end point in the emulsion. If the system operates properly such that one track is processed in each plate within one minute, all Ξ"- candidate tracks can be followed successfully to their stopping points in a year. The development of softwares for the system is ongoing. (author)
Mohanty, S.; Deo, B.B.; Mohapatra, J.K.
1986-01-01
A relatively stable method of phase shift analysis of hyperon-nucleon scattering is proposed and applied to Σ + p and Λp scattering. The analytic cut t-planes of analyticity of the helicity amplitudes are mapped into the interior of unifocal ellipses. The helicity amplitudes are then expressed as accelerated convergent expansions in the mapped variable. A definite economy is observed in the number of free parameters for fixed energy phase shift analysis of Σ + p and Λp scattering at 40 and 100 MeV and 100 MeV respectively. Twenty six more phase shifts and coupling parameters corresponding to higher J values are also predicted. (author)
Extraction of the CKM matrix element Vus from the hyperon semileptonic decays
Sharma, N.; Dahiya, H.; Chatley, P.K.
2010-01-01
The chiral constituent quark model with configuration mixing (χCQM config ), which is successful in explaining the weak vector and axial-vector form factors for the strangeness-changing as well as strangeness-nonchanging hyperon semileptonic decays at Q 2 =0, has been extended to determine the CKM matrix element V us for the strangeness-changing decays. The implications of the effect of the SU(3) symmetry breaking, Q 2 -dependence and radiative corrections on the form factors and V us have also been investigated. It is found that the results with SU(3) symmetry breaking show considerable improvement over the SU(3) symmetric results when compared with the existing experimental data. The inclusion of the Q 2 -dependence and radiative corrections in form factors have only a small effect on the prediction of V us as is expected from the theory. (orig.)
XII International Conference on Beauty, Charm, and Hyperons in Hadronic Interactions (BEACH 2016)
2016-01-01
This volume contains the contributed papers presented at the 12 th International Conference on Hyperons, Charm and Beauty Hadrons , currently known as the BEACH Conferences. The BEACH conferences cover a broad range of physics topics in the field of Hyperon and heavy- flavor physics. This conference continues the BEACH series, which began with a meeting in Strasbourg in 1995 and since then offers a biennial opportunity for both theorists and experimentalists from the high-energy physics community to discuss all aspects of flavour physics. The 12 th Conference took place in the Research Hall Room 163 of the Geoege Mason University in Fairfax, Virginia from June 12 th to June 18 th and was attended by 65 participants. All of the sessions were plenary sessions accommodating review talks and shorter contributions discussing both theory and recent experiments. At the end of the conference Alan Schwarz summarized and put in context all the presentations of the conference giving a very interesting Summary talk. I want to thank here the Local Organizing Committee that organized the Conference. Many from the University Staff have contributed to the smooth running of the conference. I would like also to thank the Local Scientific Secretariat for their invaluable help in making the conference a truly enjoyable event; a special thanks goes to Maria Hobbs, our local secretary, who worked tirelessly in the organization of every detail. Finally we would like thank the European Organization for Nuclear Research and the George Mason University for their generous support. The next BEACH Conference will be held at Peniche, north of Lisbon, Portugal at the beginning of summer 2018 and I hope that we will all meet again there. (paper)
Polarization of the sigma minus hyperon produced by a polarized neutral particle beam
Nguyen, A.N.
1992-01-01
A spin transfer technique has been tried in an attempt to produce a beam of polarized hyperons. The method makes use of a two-stage targeting scheme where unpolarized protons from Fermilab's Tevatron incident on target number one (Cu) at production angles of ±2.0 mrad would produce a beam of particles containing polarized Λs and Ξs as well as neutrons and Ks. This secondary beam would then be swept magnetically to retain only neutral particles and brought to bear on target number two (Cu) at 0.0 mrad, producing a tertiary beam of hyperons. The polarization of some 1.3 millions reconstructed Σ - → nπ - events in this tertiary beam (the Σ - having been produced in the inclusive reaction neutrals + Cu → Σ - + X) has been measured at average Σ - momenta 320 GeV/c (1.14 millions events) and 410 GeV/c (135,000 events) and found to be |P| = 3.9 ± 3.2 ± 1.8% and |P| = 13.9 ± 8.1 ± 2.0% respectively, where the first uncertainty is statistical and the second systematic. These polarizations are small and consistent with zero, and preclude a meaningful measurement of the Σ - magnetic moment by the spin precession method. The sign of the polarizations at the target is ambiguous, giving rise to two possible different solutions for the magnetic moment-one of two possible different solutions for the magnetic moment-one of which distinctly disagrees with the world average value for the moment. However, this solution fits the data slightly better than the other. This inconsistency would not exist if the polarization is, in fact, zero
Gough, N.
1993-01-01
The Institute Bulk Oil Clauses produced by the London market and the American SP-13c Clauses are examined in detail in this article. The duration and perils covered are discussed, and exclusions, adjustment clause 15 of the Institute Bulk Oil Clauses, Institute War Clauses (Cargo), and Institute Strikes Clauses (Bulk Oil) are outlined. (UK)
The shear and bulk relaxation times from the general correlation functions
Czajka, Alina; Jeon, Sangyong
2017-11-01
In this paper we present two quantum field theoretical analyses on the shear and bulk relaxation times. First, we discuss how to find Kubo formulas for the shear and the bulk relaxation times. Next, we provide results on the shear viscosity relaxation time obtained within the diagrammatic approach for the massless λϕ4 theory.
HyperCP: A high-rate spectrometer for the study of charged hyperon and kaon decays
Burnstein, R.A.; Chakravorty, A.; Chan, A.; Chen, Y.C.; Choong, W.-S.; Clark, K.; Dukes, E.C.; Durandet, C.; Felix, J.; Fuzesy, R.; Gidal, G.; Gu, P.; Gustafson, H.R.; Ho, C.; Holmstrom, T.; Huang, M.; James, C.; Jenkins, C.M.; Jones, T.D.; Kaplan, D.M.; Lederman, L.M.; Leros, N.; Longo, M.J.; Lopez, F.; Lu, L.C.; Luebke, W.; Luk, K.-B.; Nelson, K.S.; Park, H.K.; Perroud, J.-P.; Rajaram, D.; Rubin, H.A.; Teng, P.K.; Turko, B.; Volk, J.; White, C.G.; White, S.L.; Zyla, P.
2005-01-01
The HyperCP experiment (Fermilab E871) was designed to search for rare phenomena in the decays of charged strange particles, in particular CP violation in Ξ and Λ hyperon decays with a sensitivity of 10 -4 . Intense charged secondary beams were produced by 800GeV/c protons and momentum selected by a magnetic channel. Decay products were detected in a large-acceptance, high-rate magnetic spectrometer using multiwire proportional chambers, trigger hodoscopes, a hadronic calorimeter, and a muon-detection system. Nearly identical acceptances and efficiencies for hyperons and antihyperons decaying within an evacuated volume were achieved by reversing the polarities of the channel and spectrometer magnets. A high-rate data-acquisition system enabled 231 billion events to be recorded in 12 months of data-taking
Role of high-spin hyperon resonances in the reaction of $\\gamma p \\to K^+ K^+ \\Xi^-$
J. Ka Shing Man, Yongseok Oh, K. Nakayama
2011-05-01
The recent data taken by the CLAS Collaboration at the Thomas Jefferson National Accelerator Facility for the reaction of $\\gamma p \\to K^+ K^+ \\Xi^-$ are reanalyzed within a relativistic meson-exchange model of hadronic interactions. The present model is an extension of the one developed in an earlier work by Nakayama, Oh, and Haberzettl [Phys. Rev. C 74, 035205 (2006)]. In particular, the role of the spin-5/2 and -7/2 hyperon resonances, which were not included in the previous model, is investigated in the present study. It is shown that the contribution of the $\\Sigma(2030)$ hyperon having spin-7/2 and positive parity has a key role to bring the model predictions into a fair agreement with the measured data for the $K^+\\Xi^-$ invariant mass distribution.
Drop Spreading with Random Viscosity
Xu, Feng; Jensen, Oliver
2016-11-01
Airway mucus acts as a barrier to protect the lung. However as a biological material, its physical properties are known imperfectly and can be spatially heterogeneous. In this study we assess the impact of these uncertainties on the rate of spreading of a drop (representing an inhaled aerosol) over a mucus film. We model the film as Newtonian, having a viscosity that depends linearly on the concentration of a passive solute (a crude proxy for mucin proteins). Given an initial random solute (and hence viscosity) distribution, described as a Gaussian random field with a given correlation structure, we seek to quantify the uncertainties in outcomes as the drop spreads. Using lubrication theory, we describe the spreading of the drop in terms of a system of coupled nonlinear PDEs governing the evolution of film height and the vertically-averaged solute concentration. We perform Monte Carlo simulations to predict the variability in the drop centre location and width (1D) or area (2D). We show how simulation results are well described (at much lower computational cost) by a low-order model using a weak disorder expansion. Our results show for example how variability in the drop location is a non-monotonic function of the solute correlation length increases. Engineering and Physical Sciences Research Council.
Viscosity of ring polymer melts
Pasquino, Rossana
2013-10-15
We have measured the linear rheology of critically purified ring polyisoprenes, polystyrenes, and polyethyleneoxides of different molar masses. The ratio of the zero-shear viscosities of linear polymer melts η0,linear to their ring counterparts η0,ring at isofrictional conditions is discussed as a function of the number of entanglements Z. In the unentangled regime η0,linear/η 0,ring is virtually constant, consistent with the earlier data, atomistic simulations, and the theoretical expectation η0,linear/ η0,ring = 2. In the entanglement regime, the Z-dependence of ring viscosity is much weaker than that of linear polymers, in qualitative agreement with predictions from scaling theory and simulations. The power-law extracted from the available experimental data in the rather limited range 1 < Z < 20, η0,linear/η0,ring ∼ Z 1.2±0.3, is weaker than the scaling prediction (η0,linear/η0,ring ∼ Z 1.6±0.3) and the simulations (η0,linear/ η0,ring ∼ Z2.0±0.3). Nevertheless, the present collection of state-of-the-art experimental data unambiguously demonstrates that rings exhibit a universal trend clearly departing from that of their linear counterparts, and hence it represents a major step toward resolving a 30-year-old problem. © 2013 American Chemical Society.
Viscosity of ring polymer melts
Pasquino, Rossana; Vasilakopoulos, Thodoris C.; Jeong, Youncheol; Lee, Hyojoon; Rogers, Simon A.; Sakellariou, Georgios; Allgaier, Jü rgen B.; Takano, Atsushi; Brá s, Ana Rita E; Chang, Taihyun; Gooß en, Sebastian; Pyckhout-Hintzen, Wim; Wischnewski, Andreas; Hadjichristidis, Nikolaos; Richter, Dieter R.; Rubinstein, Michael H.; Vlassopoulos, Dimitris
2013-01-01
We have measured the linear rheology of critically purified ring polyisoprenes, polystyrenes, and polyethyleneoxides of different molar masses. The ratio of the zero-shear viscosities of linear polymer melts η0,linear to their ring counterparts η0,ring at isofrictional conditions is discussed as a function of the number of entanglements Z. In the unentangled regime η0,linear/η 0,ring is virtually constant, consistent with the earlier data, atomistic simulations, and the theoretical expectation η0,linear/ η0,ring = 2. In the entanglement regime, the Z-dependence of ring viscosity is much weaker than that of linear polymers, in qualitative agreement with predictions from scaling theory and simulations. The power-law extracted from the available experimental data in the rather limited range 1 < Z < 20, η0,linear/η0,ring ∼ Z 1.2±0.3, is weaker than the scaling prediction (η0,linear/η0,ring ∼ Z 1.6±0.3) and the simulations (η0,linear/ η0,ring ∼ Z2.0±0.3). Nevertheless, the present collection of state-of-the-art experimental data unambiguously demonstrates that rings exhibit a universal trend clearly departing from that of their linear counterparts, and hence it represents a major step toward resolving a 30-year-old problem. © 2013 American Chemical Society.
Estimation of viscosity based on transverse momentum correlations
Sharma, Monika
2010-02-01
The heavy ion program at RHIC created a paradigm shift in the exploration of strongly interacting hot and dense matter. An important milestone achieved is the discovery of the formation of strongly interacting matter which seemingly flows like a perfect liquid at temperatures on the scale of T ˜ 2 x10^12 K [1]. As a next step, we consider measurements of transport coefficients such as kinematic, shear or bulk viscosity? Many calculations based on event anisotropy measurements indicate that the shear viscosity to the entropy density ratio (η/s) of the fluid formed at RHIC is significantly below that of all known fluids including the superfluid ^4He [2]. Precise determination of η/s ratio is currently a subject of extensive study. We present an alternative technique for the determination of medium viscosity proposed by Gavin and Aziz [3]. Preliminary results of measurements of the evolution of the transverse momentum correlation function with collision centrality of Au + Au interactions at √sNN = 200 GeV will be shown. We present results on differential version of the correlation measure and describe its use for the experimental determination of η/s.[4pt] [1] J. Adams et al., [STAR Collaboration], Nucl. Phys. A 757 (2005) 102.[0pt] [2] R. A. Lacey et al., Phys. Rev. Lett. 98 (2007) 092301.[0pt] [3] S. Gavin and M. Abdel-Aziz, Phys. Rev. Lett. 97 (2006) 162302. )
Souto, W A; Oliveira, J C T; Rodrigues, H; Duarte, S B; Chiapparini, M
2015-01-01
In this work we determine the equation of state and the population of baryons and leptons and discuss the effects of the hyperon-meson coupling constants to the formation of delta resonances in the stellar medium. We also discuss the structure of the protoneutron stars including the delta matter in their composition, and compared the results of a cooled neutron star, after escape of neutrinos. For protoneutron stars structure and composition, the neutrinos are considered trapped. (paper)
Norzita Yacob; Norhashidah Talip; Maznah Mahmud
2011-01-01
Molecular weight of chitosan can be determined by different techniques such as Gel Permeation Chromatography (GPC), Static Light Scattering (SLS) and intrinsic viscosity measurement. Determination of molecular weight by intrinsic viscosity measurement is a simple method for characterization of chitosan. Different concentrations of chitosan were prepared and measurement was done at room temperature. The flow time data was used to calculate the intrinsic viscosity by extrapolating the reduced viscosity to zero concentration. The value of intrinsic viscosity was then recalculated into the viscosity-average molecular weight using Mark-Houwink equation. (author)
Bulk viscous cosmology with causal transport theory
Piattella, Oliver F.; Fabris, Júlio C.; Zimdahl, Winfried
2011-01-01
We consider cosmological scenarios originating from a single imperfect fluid with bulk viscosity and apply Eckart's and both the full and the truncated Müller-Israel-Stewart's theories as descriptions of the non-equilibrium processes. Our principal objective is to investigate if the dynamical properties of Dark Matter and Dark Energy can be described by a single viscous fluid and how such description changes when a causal theory (Müller-Israel-Stewart's, both in its full and truncated forms) is taken into account instead of Eckart's non-causal one. To this purpose, we find numerical solutions for the gravitational potential and compare its behaviour with the corresponding ΛCDM case. Eckart's and the full causal theory seem to be disfavoured, whereas the truncated theory leads to results similar to those of the ΛCDM model for a bulk viscous speed in the interval 10 −11 || cb 2 ∼ −8
VISCOSITY DICTATES METABOLIC ACTIVITY of Vibrio ruber
Maja eBoric
2012-07-01
Full Text Available Little is known about metabolic activity of bacteria, when viscosity of their environment changes. In this work, bacterial metabolic activity in media with viscosity ranging from 0.8 to 29.4 mPas was studied. Viscosities up to 2.4 mPas did not affect metabolic activity of Vibrio ruber. On the other hand, at 29.4 mPas respiration rate and total dehydrogenase activity increased 8 and 4-fold, respectively. The activity of glucose-6-phosphate dehydrogenase increased up to 13-fold at higher viscosities. However, intensified metabolic activity did not result in faster growth rate. Increased viscosity delayed the onset as well as the duration of biosynthesis of prodigiosin. As an adaptation to viscous environment V. ruber increased metabolic flux through the pentose phosphate pathway and reduced synthesis of a secondary metabolite. In addition, V. ruber was able to modify the viscosity of its environment.
Uniaxial Elongational viscosity of bidisperse polystyrene melts
Nielsen, Jens Kromann; Rasmussen, Henrik K.; Hassager, Ole
2006-01-01
The startup and steady uniaxial elongational viscosity have been measured for three bidisperse polystyrene (PS) melts, consisting of blends of monodisperse PS with molecular weights of 52 kg/mole or 103 kg/mole and 390 kg/mole. The bidisperse melts have a maximum in the steady elongational...... viscosity, of up to a factor of 7 times the Trouton limit of 3 times the zero-shear viscosity....
VISCOSITY TEST OF VEHICLE ENGINE OILS
Rita Prasetyowati
2016-01-01
This study aims to determine the value of the kinematic viscosity lubricants motorcycle that has been used at various temperatures and the use of distance. This study also aims to remedy mengtahui how the value of the kinematic viscosity of the lubricant car that has been used in a wide range of temperature variation and distance usage. Viscosity liquid, in this case is the lubricants, can be determined using the Redwood viscometer By using Redwood viscometer, can be measured flow time requir...
PREFACE: XI Conference on Beauty, Charm, Hyperons in Hadronic Interactions BEACH
Bozzo, Marco
2014-11-01
This volume contains the invited and contributed papers presented at the 11th International Conference on Hyperons, Charm and Beauty Hadrons, currently known as the BEACH Conferences. The BEACH conferences cover a broad range of physics topics in the field of Hyperon and heavy-flavor physics. This conference continues the BEACH series, which began with a meeting in Strasbourg in 1995 and since then offers a biennial opportunity for both theorists and experimentalists from the high-energy physics community to discuss all aspects of flavour physics. The 11th Conference took place in the Lecture Theatre of the Physics West Building of the University of Birmingham (United Kingdom) from July 22nd to July 26th and was attended by 107 participants. All of the sessions were plenary sessions accommodating review talks and shorter contributions discussing both theory and recent experiments. At the end of the conference Valerie Gibson (Cavendish Laboratory, University of Cambridge, UK) and Sebastian Jaeger (School of Physics and Astronomy, University of Sussex, UK) summarized and put in context all the presentations of the conference giving two very interesting Summary talks. These Conference Proceedings are particularly interesting since, due to the long shutdown of the LHC in Geneva (CH), most of the data presented were from the entire data set available. This volume in fact offers an interesting panorama of the present situation and allows a comparison of the experimental data and the theory in a field that is always in continuous evolution. The conference was impeccably organized by the Local Organizing Committee chaired by Cristina Lazzeroni (Birmingham Univeristy, Birmingham, UK) that I want to thank particularly here. Many from the University Staff have contributed to the smooth running of the conference. We would like to thank the Local Scientific Secretariat for their invaluable help in making the conference a truly enjoyable and unforgettable event; a special thanks
The experimental viscosity and calculated relative viscosity of liquid In-Sn allcoys
Wu, A.Q.; Guo, L.J.; Liu, C.S.; Jia, E.G.; Zhu, Z.G.
2007-01-01
The experimental measured viscosity of liquid pure Sn, In 20 Sn 80 and In 80 Sn 20 alloys was studied, and to make a comparison, the calculated relative viscosity based on the pair distribution functions, g(r), has also been studied. There is one peak in each experimental viscosity and calculated relative-viscosity curve of liquid pure Sn about 1000 deg. C. One valley appears in each experimental viscosity and calculated viscosity curve of liquid In 20 Sn 80 alloy about 700 deg. C. There is no abnormal behavior on In 80 Sn 20 alloy. The behavior of experimental viscosity and calculated relative viscosity is coincident with each other. Those results conformed that the temperature-induced structure anomalies reported before did take place
A search for CP violation in hyperon decays by the hyper-CP experiment at Fermilab
Holmstrom, T.
2002-01-01
The Hyper-CP collaboration is performing a precision search for CP violation in hyperon decays, these decays are sensitive to sources of CP violation to which neutral kaon decays are not. The measured CP observable is proportional to the difference between the product of the Ξ and Λ decay α parameters and that of the CP-conjugate decays. About 2.5 billion fully-reconstructed Ξ - → Λπ - → pπ - π - and Ξ-bar + → Λ-barπ + → p-barπ + π + decays were taken in 2 fixed-target runs at Fermilab, allowing a statistical sensitivity of about 2.10 -4 in the CP asymmetry. These 2 runs gave us the largest sample of Ξ and Ω ever collected. An initial study has been done on a fraction of the data and we have obtained: A ΞΛ equals (-7±12(statistical)±6.2(systematic))*10 -4 . Other preliminary results are also presented in this series of slides
Final State Interaction on non Mesonic Hyperon Weak Decay Spectra of Λ12C
Gonzalez, I.; Rodriguez, O.; Deppman, A.; Duarte, S.; Krmpotic, F.
2011-01-01
In the present work, we study the one nucleon induced non mesonic hyperon weak decay (NMWD)(ΛΝ → ηΝ) on the Λ 12 C hypernuclei with corresponding transition rates given by Γ ρ ≡ Γ (Λρ → ηρ) and Γ η ≡ Γ (Λη → ηη) respectively. The whole nuclear process is described by using a connection of two models, one to describe the primary non mesonic weak decay in the nuclear environment and another one to follows the time evolution of the outgoing of nucleons from nuclear system, to consider the Final State Interaction (FSI). The Independent-Particle Shell-Model (IPSM) is used to depict the dynamic of the primary decay by mean of the exchange of π and + Κ mesons with usual parameterization. A time dependent multicolisional intranuclear cascade approach implemented on the CRISP (Collaboration Rio-Sao Paulo) code incorporates the FSI to the Γ η /Γ ρ ratio calculation and the behaviour of these value with the coulomb barrier as well as to the observable nucleon kinetic energy spectra and also to angular correlation determinations. Recent KEK and FINUDA experiments on one- and two-nucleon non mesonic weak decay (NMWD) spectra in Λ 12 C hypernuclei are analyzed theoretically and the effect of FSI is determined within our model scenery. (Author)
The electromagnetic Sigma-to-Lambda hyperon transition form factors at low energies
Granados, Carlos; Leupold, Stefan; Perotti, Elisabetta
2017-01-01
Using dispersion theory the low-energy electromagnetic form factors for the transition of a Sigma to a Lambda hyperon are related to the pion vector form factor. The additionally required input, i.e. the two-pion-Sigma-Lambda amplitudes are determined from relativistic next-to-leading-order (NLO) baryon chiral perturbation theory including the baryons from the octet and optionally from the decuplet. Pion rescattering is again taken into account by dispersion theory. It turns out that the inclusion of decuplet baryons is not an option but a necessity to obtain reasonable results. The electric transition form factor remains very small in the whole low-energy region. The magnetic transition form factor depends strongly on one not very well determined low-energy constant of the NLO Lagrangian. One obtains reasonable predictive power if this low-energy constant is determined from a measurement of the magnetic transition radius. Such a measurement can be performed at the future Facility for Antiproton and Ion Research (FAIR). (orig.)
The electromagnetic Sigma-to-Lambda hyperon transition form factors at low energies
Granados, Carlos [Uppsala Universitet, Institutionen foer Fysik och Astronomi (Sweden); Jefferson Lab, Newport News, VA (United States); Leupold, Stefan; Perotti, Elisabetta [Uppsala Universitet, Institutionen foer Fysik och Astronomi (Sweden)
2017-06-15
Using dispersion theory the low-energy electromagnetic form factors for the transition of a Sigma to a Lambda hyperon are related to the pion vector form factor. The additionally required input, i.e. the two-pion-Sigma-Lambda amplitudes are determined from relativistic next-to-leading-order (NLO) baryon chiral perturbation theory including the baryons from the octet and optionally from the decuplet. Pion rescattering is again taken into account by dispersion theory. It turns out that the inclusion of decuplet baryons is not an option but a necessity to obtain reasonable results. The electric transition form factor remains very small in the whole low-energy region. The magnetic transition form factor depends strongly on one not very well determined low-energy constant of the NLO Lagrangian. One obtains reasonable predictive power if this low-energy constant is determined from a measurement of the magnetic transition radius. Such a measurement can be performed at the future Facility for Antiproton and Ion Research (FAIR). (orig.)
Messung der Lebensdauer des $\\Xi^{0}$ -Hyperons mit dem NA48-Detektor
Marouelli, Peter
2005-01-01
One of the main characteristics of particles is the lifetime. The mean lifetime of the Xi0 hyperon, which can be determined theoretically from the Xi- lifetime by using the Delta I=1/2 rule, has been measured a couple of times. The most recent measurement from 1977 has a relative uncertainty of 5%, which could be improved by usind data from new experiments like NA48/1. The Xi0 lifetime is an important input parameter in the determination of the matrix element Vus of the Cabibbo-Kobayashi-Maskawa matrix in semileptonic Xi0 decays. In 2002 a high intensity data acquisition was performed by the NA48/1 collaboration, in which about 10^9 Xi0 decay candidates were recorded. From this sample 192000 events of the decay "Xi0 to Lambda pi0" were reconstructed and a subsample of 107000 could be used to determine the lifetime. The lifetime was determined by comparison of measured and simulated data in ten energy bins to avoid systematic effects. The result has a higher precision than older measurements. It differs from t...
Viscosity evolution of anaerobic granular sludge
Pevere, A.; Guibaud, G.; Hullebusch, van E.D.; Lens, P.N.L.; Baudu, M.
2006-01-01
The evolution of the apparent viscosity at steady shear rate of sieved anaerobic granular sludge (20¿315 ¿m diameter) sampled from different full-scale anaerobic reactors was recorded using rotation tests. The ¿limit viscosity¿ of sieved anaerobic granular sludge was determined from the apparent
The Friction Theory for Viscosity Modeling
Cisneros, Sergio; Zeberg-Mikkelsen, Claus Kjær; Stenby, Erling Halfdan
2001-01-01
, in the case when experimental information is available a more accurate modeling can be obtained by means of a simple tuning procedure. A tuned f-theory general model can deliver highly accurate viscosity modeling above the saturation pressure and good prediction of the liquid-phase viscosity at pressures......In this work the one-parameter friction theory (f-theory) general models have been extended to the viscosity prediction and modeling of characterized oils. It is demonstrated that these simple models, which take advantage of the repulsive and attractive pressure terms of cubic equations of state...... such as the SRK, PR and PRSV, can provide accurate viscosity prediction and modeling of characterized oils. In the case of light reservoir oils, whose properties are close to those of normal alkanes, the one-parameter f-theory general models can predict the viscosity of these fluids with good accuracy. Yet...
Norzita Yacob; Norhashidah Talip; Maznah Mahmud; Nurul Aizam Idayu Mat Sani; Nor Akma Samsuddin; Norafifah Ahmad Fabillah
2013-01-01
Determination of molecular weight by intrinsic viscosity measurement is a simple method for characterization of chitosan. To study the effect of radiation on molecular weight, chitosan was first irradiated using electron beam at different doses prior to measurement. Different concentrations of chitosan were prepared and measurement was done at room temperature. The flow time data was used to calculate the intrinsic viscosity by extrapolating the reduced viscosity to zero concentration. The value of intrinsic viscosity was then recalculated into the viscosity-average molecular weight using Mark-Houwink equation. (Author)
Eruptive viscosity and volcano morphology
Posin, S.B.; Greeley, R.
1988-01-01
Terrestrial central volcanoes formed predominantly from lava flows were classified as shields, stratovolcanoes, and domes. Shield volcanoes tend to be large in areal extent, have convex slopes, and are characterized by their resemblance to inverted hellenic war shields. Stratovolcanoes have concave slopes, whereas domes are smaller and have gentle convex slopes near the vent that increase near the perimeter. In addition to these differences in morphology, several other variations were observed. The most important is composition: shield volcanoes tend to be basaltic, stratovolcanoes tend to be andesitic, and domes tend to be dacitic. However, important exceptions include Fuji, Pico, Mayon, Izalco, and Fuego which have stratovolcano morphologies but are composed of basaltic lavas. Similarly, Ribkwo is a Kenyan shield volcano composed of trachyte and Suswa and Kilombe are shields composed of phonolite. These exceptions indicate that eruptive conditions, rather than composition, may be the primary factors that determine volcano morphology. The objective of this study is to determine the relationships, if any, between eruptive conditions (viscosity, erupted volume, and effusion rate) and effusive volcano morphology. Moreover, it is the goal of this study to incorporate these relationships into a model to predict the eruptive conditions of extraterrestrial (Martian) volcanoes based on their morphology
Large area bulk superconductors
Miller, Dean J.; Field, Michael B.
2002-01-01
A bulk superconductor having a thickness of not less than about 100 microns is carried by a polycrystalline textured substrate having misorientation angles at the surface thereof not greater than about 15.degree.; the bulk superconductor may have a thickness of not less than about 100 microns and a surface area of not less than about 50 cm.sup.2. The textured substrate may have a thickness not less than about 10 microns and misorientation angles at the surface thereof not greater than about 15.degree.. Also disclosed is a process of manufacturing the bulk superconductor and the polycrystalline biaxially textured substrate material.
Excessive Additive Effect On Engine Oil Viscosity
Vojtěch Kumbár
2014-01-01
Full Text Available The main goal of this paper is excessive additive (for oil filling effect on engine oil dynamic viscosity. Research is focused to commercially distribute automotive engine oil with viscosity class 15W–40 designed for vans. There were prepared blends of new and used engine oil without and with oil additive in specific ratio according manufacturer’s recommendations. Dynamic viscosity of blends with additive was compared with pure new and pure used engine oil. The temperature dependence dynamic viscosity of samples was evaluated by using rotary viscometer with standard spindle. Concern was that the oil additive can moves engine oil of several viscosity grades up. It is able to lead to failure in the engine. Mathematical models were used for fitting experimental values of dynamic viscosity. Exponential fit function was selected, which was very accurate because the coefficient of determination R2 achieved high values (0.98–0.99. These models are able to predict viscosity behaviour blends of engine oil and additive.
Viscosity measurement techniques in Dissipative Particle Dynamics
Boromand, Arman; Jamali, Safa; Maia, Joao M.
2015-11-01
In this study two main groups of viscosity measurement techniques are used to measure the viscosity of a simple fluid using Dissipative Particle Dynamics, DPD. In the first method, a microscopic definition of the pressure tensor is used in equilibrium and out of equilibrium to measure the zero-shear viscosity and shear viscosity, respectively. In the second method, a periodic Poiseuille flow and start-up transient shear flow is used and the shear viscosity is obtained from the velocity profiles by a numerical fitting procedure. Using the standard Lees-Edward boundary condition for DPD will result in incorrect velocity profiles at high values of the dissipative parameter. Although this issue was partially addressed in Chatterjee (2007), in this work we present further modifications (Lagrangian approach) to the original LE boundary condition (Eulerian approach) that will fix the deviation from the desired shear rate at high values of the dissipative parameter and decrease the noise to signal ratios in stress measurement while increases the accessible low shear rate window. Also, the thermostat effect of the dissipative and random forces is coupled to the dynamic response of the system and affects the transport properties like the viscosity and diffusion coefficient. We investigated thoroughly the dependency of viscosity measured by both Eulerian and Lagrangian methodologies, as well as numerical fitting procedures and found that all the methods are in quantitative agreement.
Comparative evaluation of aqueous humor viscosity.
Davis, Kyshia; Carter, Renee; Tully, Thomas; Negulescu, Ioan; Storey, Eric
2015-01-01
To evaluate aqueous humor viscosity in the raptor, dog, cat, and horse, with a primary focus on the barred owl (Strix varia). Twenty-six raptors, ten dogs, three cats, and one horse. Animals were euthanized for reasons unrelated to this study. Immediately, after horizontal and vertical corneal dimensions were measured, and anterior chamber paracentesis was performed to quantify anterior chamber volume and obtain aqueous humor samples for viscosity analysis. Dynamic aqueous humor viscosity was measured using a dynamic shear rheometer (AR 1000 TA Instruments, New Castle, DE, USA) at 20 °C. Statistical analysis included descriptive statistics, unpaired t-tests, and Tukey's test to evaluate the mean ± standard deviation for corneal diameter, anterior chamber volume, and aqueous humor viscosity amongst groups and calculation of Spearman's coefficient for correlation analyses. The mean aqueous humor viscosity in the barred owl was 14.1 centipoise (cP) ± 9, cat 4.4 cP ± 0.2, and dog 2.9 cP ± 1.3. The aqueous humor viscosity for the horse was 1 cP. Of the animals evaluated in this study, the raptor aqueous humor was the most viscous. The aqueous humor of the barred owl is significantly more viscous than the dog (P humor viscosity of the raptor, dog, cat, and horse can be successfully determined using a dynamic shear rheometer. © 2014 American College of Veterinary Ophthalmologists.
Equation of state and viscosities from a gravity dual of the gluon plasma
R. Yaresko
2015-07-01
Full Text Available Employing new precision data of the equation of state of the SU(3 Yang–Mills theory (gluon plasma the dilaton potential of a gravity-dual model is adjusted in the temperature range (1–10Tc within a bottom-up approach. The ratio of bulk viscosity to shear viscosity follows then as ζ/η≈πΔvs2 for Δvs2<0.2 and achieves a maximum value of 0.94 at Δvs2≈0.3, where Δvs2≡1/3−vs2 is the non-conformality measure and vs2 is the velocity of sound squared, while the ratio of shear viscosity to entropy density is known as (4π−1 for the considered set-up with Hilbert action on the gravity side.
McNabb, John
2002-01-01
The differential cross section and hyperon recoil polarizations of the photoproduction of the ground state hyperons, γ p → K + Λ and γ p → K + Σ 0 , have been measured with the CLAS at Jefferson Lab up to a photon energy in the lab of 2.325 GeV. The results for both channels show significantly larger cross section in the middle to forward angles than have been observed previously by the SAPHIR Collaboration. Both reactions show significantly more backward peaking in the angular distributions than has previously been possible to observe. The backward peaking hints that hyperon resonances in the u-channel play a significant role in the production mechanism. In addition, in the γ p → K + Λ reaction, a previously unobserved bump in the cross section was observed at forward angles, centered on a W of 1.95 GeV with a width of approximately Γ = 100 MeV. In both γ p → K + Y reactions the recoil polarization in the forward direction seems reasonably well reproduced by t-channel interferences in a Regge model calculation as well as hadrodynamic models that include kaon resonances in the t-channel. The recoil polarization for γ p → K + Λ shows a significant enhancement around a W of 1.9 GeV in the backward angles, which is a sign of resonance activity in this vicinity. The polarization of γ p → K + Σ 0 at backward angles is, in contrast, less pronounced and mostly consistent with zero
Shear viscosity of liquid mixtures: Mass dependence
Kaushal, Rohan; Tankeshwar, K.
2002-06-01
Expressions for zeroth, second, and fourth sum rules of transverse stress autocorrelation function of two component fluid have been derived. These sum rules and Mori's memory function formalism have been used to study shear viscosity of Ar-Kr and isotopic mixtures. It has been found that theoretical result is in good agreement with the computer simulation result for the Ar-Kr mixture. The mass dependence of shear viscosity for different mole fraction shows that deviation from ideal linear model comes even from mass difference in two species of fluid mixture. At higher mass ratio shear viscosity of mixture is not explained by any of the emperical model. (author)
Rapid viscosity measurements of powdered thermosetting resins
Price, H. L.; Burks, H. D.; Dalal, S. K.
1978-01-01
A rapid and inexpensive method of obtaining processing-related data on powdered thermosetting resins has been investigated. The method involved viscosity measurements obtained with a small specimen (less than 100 mg) parallel plate plastometer. A data acquisition and reduction system was developed which provided a value of viscosity and strain rate about 12-13 second intervals during a test. The effects of specimen compaction pressure and reduction of adhesion between specimen and parallel plates were examined. The plastometer was used to measure some processing-related viscosity changes of an addition polyimide resin, including changes caused by pre-test heat treatment, test temperature, and strain rate.
Laboratory Tests for Dispersive Soil Viscosity Determining
Ter-Martirosyan, Z. G.; Ter-Martirosyan, A. Z.; Sobolev, E. S.
2017-11-01
There are several widespread methods for soil viscosity determining now. The standard shear test device and torsion test apparatus are the most commonly used installations to do that. However, the application of them has a number of disadvantages. Therefore, the specialists of Moscow State University of Civil Engineering proposed a new device to determine the disperse soil viscosity on the basis of a stabilometer with the B-type camera (viscosimeter). The paper considers the construction of a viscosimeter and the technique for determining soil viscosity inside this tool as well as some experimental verification results of its work.
Viscosity of liquid sulfur under high pressure
Terasaki, Hidenori; Kato, T; Funakoshi, K; Suzuki, A; Urakawa, S
2004-01-01
The viscosity of liquid sulfur up to 9.7 GPa and 1067 K was measured using the in situ x-ray radiography falling sphere method. The viscosity coefficients were found to range from 0.11 to 0.69 Pa s, and decreased continuously with increasing pressure under approximately constant homologous temperature conditions. The observed viscosity variation suggests that a gradual structural change occurs in liquid sulfur with pressure up to 10 GPa. The L-L' transition in liquid sulfur proposed by Brazhkin et al (1991 Phys. Lett. A 154 413) from thermobaric measurements has not been confirmed by the present viscometry
Intrinsic viscosity of a suspension of cubes
Mallavajula, Rajesh K.
2013-11-06
We report on the viscosity of a dilute suspension of cube-shaped particles. Irrespective of the particle size, size distribution, and surface chemistry, we find empirically that cubes manifest an intrinsic viscosity [η]=3.1±0.2, which is substantially higher than the well-known value for spheres, [η]=2.5. The orientation-dependent intrinsic viscosity of cubic particles is determined theoretically using a finite-element solution of the Stokes equations. For isotropically oriented cubes, these calculations show [η]=3.1, in excellent agreement with our experimental observations. © 2013 American Physical Society.
Shear viscosity of liquid mixtures Mass dependence
Kaushal, R
2002-01-01
Expressions for zeroth, second, and fourth sum rules of transverse stress autocorrelation function of two component fluid have been derived. These sum rules and Mori's memory function formalism have been used to study shear viscosity of Ar-Kr and isotopic mixtures. It has been found that theoretical result is in good agreement with the computer simulation result for the Ar-Kr mixture. The mass dependence of shear viscosity for different mole fraction shows that deviation from ideal linear model comes even from mass difference in two species of fluid mixture. At higher mass ratio shear viscosity of mixture is not explained by any of the emperical model.
pt and xF dependence of the polarization of Σ+ hyperons produced by 800 GeV/c protons
Morelos, A.; Albuquerque, I.F.; Bondar, N.F.; Carrigan, R. Jr.; Chen, D.; Cooper, P.S.; Lisheng, D.; Denisov, A.S.; Dobrovolsky, A.V.; Dubbs, T.; Endler, A.M.F.; Escobar, C.O.; Foucher, M.; Golovtsov, V.L.; Gottschalk, H.; Gouffon, P.; Grachev, V.T.; Khanzadeev, A.V.; Kubantsev, M.A.; Kuropatkin, N.P.; Lach, J.; Lang Pengfei; Lebedenko, V.N.; Li Chengze; Li Yunshan; Luksys, M.; Mahon, J.R.P.; McCliment, E.; Newsom, C.; Pommot Maia, M.C.; Samsonov, V.M.; Schegelsky, V.A.; Shi Huanzhang; Smith, V.J.; Fukun, T.; Terentyev, N.K.; Timm, S.; Tkatch, I.I.; Uvarov, L.N.; Vorobyov, A.A.; Yan Jie; Wenheng, Z.; Zheng Shuchen; Zhong Yuanyuan
1995-01-01
We utilize the angle and momentum resolution of our apparatus to study the polarization of 375 GeV/c Σ + hyperons produced by 800 GeV/c protons incident on a Cu target. By examining in detail two of our high statistics data samples, we find evidence for structure in the p t dependence of Σ + polarization and are able to extract the x F dependence of the Σ + polarization and compare it with x F behavior in the Λ 0 and Ξ - systems
Margaritisz, Tanaszisz
1984-01-01
The Glashow-Weinberg-Salam theory of unified electromagnetic and weak interactions, believed to be the correct quantum theory of these interactions, possesses the great advantage of being renormable. Thus the perturbation theory is applicable to calculate the radiative corrections of the tree-graph results. The present paper describes the detailed calculation of one-loop corrections to beta decay of hyperons. After defining the theory and fixing the gauge and renormalization conventions, the equations of weak and electromagnetic one-loop corrections are derived. Numerical evaluation of the equations was helped by algebraic and integrator computer codes. The results are directly comparable to experimental data. (D.Gy.)
Production of Λ-hyperons in inelastic p+p interactions at 158 GeV/c
Aduszkiewicz, A.; Dominik, W.; Kuich, M.; Matulewicz, T.; Posiadala, M. [University of Warsaw, Warsaw (Poland); Ali, Y. [Jagiellonian University, Cracow (Poland); COMSATS Institute of Information Technology, Department of Physics, Islamabad (Pakistan); Andronov, E.; Feofilov, G.A.; Igolkin, S.; Kondratiev, V.P.; Seryakov, A.; Vechernin, V.V.; Vinogradov, L. [St. Petersburg State University, St. Petersburg (Russian Federation); Anticic, T.; Kadija, K. [Ruder Boskovic Institute, Zagreb (Croatia); Antoniou, N.; Christakoglou, P.; Davis, N.; Diakonos, F.; Kapoyannis, A.; Panagiotou, A.D.; Vassiliou, M. [University of Athens, Athens (Greece); Baatar, B.; Bunyatov, S.A.; Kolesnikov, V.I.; Krasnoperov, A.; Lyubushkin, V.V.; Malakhov, A.I.; Matveev, V.; Melkumov, G.L.; Tereshchenko, V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Bay, F.; Di Luise, S.; Rubbia, A.; Sgalaberna, D. [ETH Zuerich, Zuerich (Switzerland); Blondel, A.; Bravar, A.; Damyanova, A.; Haesler, A.; Korzenev, A.; Ravonel, M. [University of Geneva, Geneva (Switzerland); Bogomilov, M.; Kolev, D.; Tsenov, R. [University of Sofia, Faculty of Physics, Sofia (Bulgaria); Brandin, A.; Selyuzhenkov, I.; Taranenko, A. [National Research Nuclear University ' ' MEPhI' ' (Moscow Engineering Physics Institute), Moscow (Russian Federation); Brzychczyk, J.; Larsen, D.; Planeta, R.; Richter-Was, E.; Staszel, P.; Wyszynski, O. [Jagiellonian University, Cracow (Poland); Busygina, O.; Golubeva, M.; Guber, F.; Ivashkin, A.; Kurepin, A.; Sadovsky, A. [Institute for Nuclear Research, Moscow (Russian Federation); Cirkovic, M.; Manic, D.; Puzovic, J. [University of Belgrade, Belgrade (Serbia); Czopowicz, T.; Dynowski, K.; Grebieszkow, K.; Mackowiak-Pawlowska, M.; Maksiak, B.; Slodkowski, M.; Tefelski, D. [Warsaw University of Technology, Warsaw (Poland); Dembinski, H.; Engel, R.; Herve, A.E.; Mathes, H.J.; Roth, M.; Szuba, M.; Ulrich, R.; Unger, M.; Veberic, D. [Karlsruhe Institute of Technology, Karlsruhe (Germany); Deveaux, M.; Koziel, M.; Renfordt, R.; Stroebele, H. [University of Frankfurt, Frankfurt (Germany); Dumarchez, J.; Robert, A. [University of Paris VI and VII, LPNHE, Paris (France); Ereditato, A.; Hierholzer, M.; Nirkko, M.; Pistillo, C.; Redij, A. [University of Bern, Bern (Switzerland); Fodor, Z. [Wigner Research Centre for Physics of the Hungarian Academy of Sciences, Budapest (Hungary); University of Wroclaw, Wroclaw (Poland); Garibov, A. [National Nuclear Research Center, Baku (Azerbaijan); Gazdzicki, M. [University of Frankfurt, Frankfurt (Germany); Jan Kochanowski University in Kielce, Kielce (Poland); Grzeszczuk, A.; Kaptur, E.; Kisiel, J.; Kowalski, S.; Pulawski, S.; Schmidt, K.; Wilczek, A. [University of Silesia, Katowice (Poland); Hasegawa, T.; Kobayashi, T.; Nakadaira, T.; Nishikawa, K.; Sakashita, K.; Sekiguchi, T.; Shibata, M.; Tada, M. [Institute for Particle and Nuclear Studies, Tsukuba (Japan); Johnson, S.R.; Marino, A.D.; Nagai, Y.; Rumberger, B.T.; Zimmerman, E.D. [University of Colorado, Boulder (United States); Kowalik, K.; Rondio, E.; Stepaniak, J. [National Centre for Nuclear Research, Warsaw (Poland); Laszlo, A.; Marton, K.; Vesztergombi, G. [Wigner Research Centre for Physics of the Hungarian Academy of Sciences, Budapest (Hungary); Lewicki, M.; Naskret, M.; Turko, L. [University of Wroclaw, Wroclaw (Poland); Marcinek, A. [Jagiellonian University, Cracow (Poland); University of Wroclaw, Wroclaw (Poland); Messerly, B.; Paolone, V. [University of Pittsburgh, Pittsburgh (United States); Mills, G.B. [Los Alamos National Laboratory, Los Alamos (United States); Morozov, S.; Petukhov, O. [Institute for Nuclear Research, Moscow (Russian Federation); National Research Nuclear University ' ' MEPhI' ' (Moscow Engineering Physics Institute), Moscow (Russian Federation); Mrowczynski, S.; Rybczynski, M.; Seyboth, P.; Stefanek, G.; Wlodarczyk, Z.; Wojtaszek-Szwarc, A. [Jan Kochanowski University in Kielce, Kielce (Poland); Pavin, M. [Ruder Boskovic Institute, Zagreb (Croatia); University of Paris VI and VII, LPNHE, Paris (France); Popov, B.A. [University of Paris VI and VII, LPNHE, Paris (France); Joint Institute for Nuclear Research, Dubna (Russian Federation); Rauch, W. [Fachhochschule Frankfurt, Frankfurt (Germany); Roehrich, D. [University of Bergen, Bergen (Norway); Rustamov, A. [National Nuclear Research Center, Baku (Azerbaijan); University of Frankfurt, Frankfurt (Germany); Susa, T. [Ruder Boskovic Institute, Zagreb (Croatia); Zambelli, L. [University of Paris VI and VII, LPNHE, Paris (France); Institute for Particle and Nuclear Studies, Tsukuba (Japan); Collaboration: NA61/SHINE Collaboration
2016-04-15
Inclusive production of Λ-hyperons was measured with the large acceptance NA61/SHINE spectrometer at the CERN SPS in inelastic p+p interactions at beam momentum of 158 GeV/c. Spectra of transverse momentum and transverse mass as well as distributions of rapidity and x{sub F} are presented. The mean multiplicity was estimated to be 0.120 ± 0.006(stat.) ± 0.010(sys.). The results are compared with previous measurements and predictions of the Epos, Urqmd and Fritiof models. (orig.)
McCracken, M. E.; Bellis, M.; Adhikari, K. P.; Adikaram, D.; Akbar, Z.; Pereira, S. Anefalos; Badui, R. A.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Boiarinov, S.; Briscoe, W. J.
2015-01-01
We present a search for ten baryon-number violating decay modes of $\\Lambda$ hyperons using the CLAS detector at Jefferson Laboratory. Nine of these decay modes result in a single meson and single lepton in the final state ($\\Lambda \\rightarrow m \\ell$) and conserve either the sum or the difference of baryon and lepton number ($B \\pm L$). The tenth decay mode ($\\Lambda \\rightarrow \\bar{p}\\pi^+$) represents a difference in baryon number of two units and no difference in lepton number. We obser...
Lambda hyperon production and polarization in collisions of p(3.5 GeV)+Nb
Agakishiev, G.; Belyaev, A.V.; Chernenko, S.; Fateev, O.V.; Ierusalimov, A.; Ladygin, V.; Muentz, C.; Vasiliev, T.; Zanevsky, Y.V. [Joint Institute of Nuclear Research, Dubna (Russian Federation); Arnold, O.; Berger-Chen, J.C.; Epple, E.; Fabbietti, L.; Lalik, R.; Lapidus, K.; Schmah, A.; Siebenson, J. [Excellence Cluster ' ' Origin and Structure of the Universe' ' , Garching (Germany); Balanda, A.; Dybczak, A.; Michalska, B.; Palka, M.; Przygoda, W.; Salabura, P.; Trebacz, R. [Jagiellonian University of Cracow, Smoluchowski Institute of Physics, Krakow (Poland); Belver, D.; Cabanelas, P.; Garzon, J.A.; Kornakov, G. [Univ. de Santiago de Compostela, LabCAF F. Fisica, Santiago de Compostela (Spain); Blanco, A.; Fonte, P.; Lopes, L.; Mangiarotti, A. [LIP-Laboratorio de Instrumentacao e Fisica Experimental de Particulas, Coimbra (Portugal); Boehmer, M.; Friese, J.; Gernhaeuser, R.; Jurkovic, M.; Kruecken, R.; Maier, L.; Weber, M. [Technische Universitaet Muenchen, Physik Department E12, Garching (Germany); Boyard, J.L.; Hennino, T.; Liu, T.; Ramstein, B. [Universite Paris Sud, Institut de Physique Nucleaire (UMR 8608), CNRS/IN2P3, Orsay Cedex (France); Finocchiaro, P. [Laboratori Nazionali del Sud, INFN, Catania (Italy); Froehlich, I.; Goebel, K.; Lorenz, M.; Markert, J.; Michel, J.; Pachmayer, Y.C.; Pechenova, O.; Rustamov, A.; Stroebele, H.; Tarantola, A.; Teilab, K. [Johann Wolfgang Goethe-Universitaet, Institut fuer Kernphysik, Frankfurt (Germany); Galatyuk, T.; Gonzalez-Diaz, D. [Technische Universitaet Darmstadt, Darmstadt (Germany); Golubeva, M.; Guber, F.; Ivashkin, A.; Karavicheva, T.; Kurepin, A.; Reshetin, A.; Sadovsky, A. [Russian Academy of Science, Institute for Nuclear Research, Moscow (Russian Federation); Gumberidze, M. [Technische Universitaet Darmstadt, Darmstadt (Germany); Universite Paris Sud, Institut de Physique Nucleaire (UMR 8608), CNRS/IN2P3, Orsay Cedex (France); Heinz, T.; Holzmann, R.; Koenig, I.; Koenig, W.; Kolb, B.W.; Lang, S.; Pechenov, V.; Pietraszko, J.; Schwab, E.; Sturm, C.; Traxler, M.; Yurevich, S. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Iori, I. [Sezione di Milano, INFN, Milano (Italy); Kaempfer, B.; Kotte, R.; Naumann, L.; Wendisch, C.; Wuestenfeld, J. [Helmholtz-Zentrum Dresden-Rossendorf, Institut fuer Strahlenphysik, Dresden (Germany); Krasa, A.; Krizek, F.; Kugler, A.; Sobolev, Yu.G.; Tlusty, P.; Wagner, V. [Academy of Sciences of Czech Republic, Nuclear Physics Institute, Rez (Czech Republic); Kuc, H. [Jagiellonian University of Cracow, Smoluchowski Institute of Physics, Krakow (Poland); Universite Paris Sud, Institut de Physique Nucleaire (UMR 8608), CNRS/IN2P3, Orsay Cedex (France); Kuehn, W.; Metag, V.; Spataro, S.; Spruck, B. [Justus Liebig Universitaet Giessen, II.Physikalisches Institut, Giessen (Germany); Lebedev, A. [Institute of Theoretical and Experimental Physics, Moscow (Russian Federation); Parpottas, Y.; Tsertos, H. [University of Cyprus, Department of Physics, Nicosia (Cyprus); Stroth, J. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Johann Wolfgang Goethe-Universitaet, Institut fuer Kernphysik, Frankfurt (Germany); Collaboration: HADES Collaboration
2014-05-15
Results on Λ hyperon production are reported for collisions of p(3.5 GeV) + Nb, studied with the High-Acceptance Di-Electron Spectrometer (HADES) at SIS18 at GSI Helmholtzzentrum for Heavy-Ion Research, Darmstadt. The transverse mass distributions in rapidity bins are well described by Boltzmann shapes with a maximum inverse slope parameter of about 90 MeV at a rapidity of y = 1.0, i.e. slightly below the center-of-mass rapidity for nucleon-nucleon collisions, y{sub cm} = 1.12. The rapidity density decreases monotonically with increasing rapidity within a rapidity window ranging from 0.3 to 1.3. The Λ phase-space distribution is compared with results of other experiments and with predictions of two transport approaches which are available publicly. None of the present versions of the employed models is able to fully reproduce the experimental distributions, i.e. in absolute yield and in shape. Presumably, this finding results from an insufficient modelling in the transport models of the elementary processes being relevant for Λ production, rescattering and absorption. The present high-statistics data allow for a genuine two-dimensional investigation as a function of phase space of the self-analyzing Λ polarization in the weak decay Λ → pπ{sup -}. Finite negative values of the polarization in the order of 5-20% are observed over the entire phase space studied. The absolute value of the polarization increases almost linearly with increasing transverse momentum for p{sub t} > 300 MeV/c and increases with decreasing rapidity for y < 0.8. (orig.)
Lambda hyperon production and polarization in collisions of p(3.5 GeV)+Nb
Agakishiev, G.; Belyaev, A.V.; Chernenko, S.; Fateev, O.V.; Ierusalimov, A.; Ladygin, V.; Muentz, C.; Vasiliev, T.; Zanevsky, Y.V.; Arnold, O.; Berger-Chen, J.C.; Epple, E.; Fabbietti, L.; Lalik, R.; Lapidus, K.; Schmah, A.; Siebenson, J.; Balanda, A.; Dybczak, A.; Michalska, B.; Palka, M.; Przygoda, W.; Salabura, P.; Trebacz, R.; Belver, D.; Cabanelas, P.; Garzon, J.A.; Kornakov, G.; Blanco, A.; Fonte, P.; Lopes, L.; Mangiarotti, A.; Boehmer, M.; Friese, J.; Gernhaeuser, R.; Jurkovic, M.; Kruecken, R.; Maier, L.; Weber, M.; Boyard, J.L.; Hennino, T.; Liu, T.; Ramstein, B.; Finocchiaro, P.; Froehlich, I.; Goebel, K.; Lorenz, M.; Markert, J.; Michel, J.; Pachmayer, Y.C.; Pechenova, O.; Rustamov, A.; Stroebele, H.; Tarantola, A.; Teilab, K.; Galatyuk, T.; Gonzalez-Diaz, D.; Golubeva, M.; Guber, F.; Ivashkin, A.; Karavicheva, T.; Kurepin, A.; Reshetin, A.; Sadovsky, A.; Gumberidze, M.; Heinz, T.; Holzmann, R.; Koenig, I.; Koenig, W.; Kolb, B.W.; Lang, S.; Pechenov, V.; Pietraszko, J.; Schwab, E.; Sturm, C.; Traxler, M.; Yurevich, S.; Iori, I.; Kaempfer, B.; Kotte, R.; Naumann, L.; Wendisch, C.; Wuestenfeld, J.; Krasa, A.; Krizek, F.; Kugler, A.; Sobolev, Yu.G.; Tlusty, P.; Wagner, V.; Kuc, H.; Kuehn, W.; Metag, V.; Spataro, S.; Spruck, B.; Lebedev, A.; Parpottas, Y.; Tsertos, H.; Stroth, J.
2014-01-01
Results on Λ hyperon production are reported for collisions of p(3.5 GeV) + Nb, studied with the High-Acceptance Di-Electron Spectrometer (HADES) at SIS18 at GSI Helmholtzzentrum for Heavy-Ion Research, Darmstadt. The transverse mass distributions in rapidity bins are well described by Boltzmann shapes with a maximum inverse slope parameter of about 90 MeV at a rapidity of y = 1.0, i.e. slightly below the center-of-mass rapidity for nucleon-nucleon collisions, y cm = 1.12. The rapidity density decreases monotonically with increasing rapidity within a rapidity window ranging from 0.3 to 1.3. The Λ phase-space distribution is compared with results of other experiments and with predictions of two transport approaches which are available publicly. None of the present versions of the employed models is able to fully reproduce the experimental distributions, i.e. in absolute yield and in shape. Presumably, this finding results from an insufficient modelling in the transport models of the elementary processes being relevant for Λ production, rescattering and absorption. The present high-statistics data allow for a genuine two-dimensional investigation as a function of phase space of the self-analyzing Λ polarization in the weak decay Λ → pπ - . Finite negative values of the polarization in the order of 5-20% are observed over the entire phase space studied. The absolute value of the polarization increases almost linearly with increasing transverse momentum for p t > 300 MeV/c and increases with decreasing rapidity for y < 0.8. (orig.)
Effect of fluid viscosity on wave propagation in a cylindrical bore in ...
Е18Ж. In order to obtain the equation of motion in a viscous liquid medium, the elastic wave equation is modified by replacing Lame's parameter ! by KH └ Е2a3Ж"H, where KH is the bulk modulus and "H is the rigidity of the fluid considered. Using the correspondence principle (Ewing et al 1957) the effect of fluid viscosity is ...
Fabrication and Testing of Viscosity Measuring Instrument (Viscometer
A. B. HASSAN
2006-01-01
Full Text Available This paper presents the fabrication and testing of a simple and portable viscometer for the measurement of bulk viscosity of different Newtonian fluids. It is aimed at making available the instrument in local markets and consequently reducing or eliminating the prohibitive cost of importation. The method employed is the use of a D.C motor to rotate a disc having holes for infra-red light to pass through and fall on a photo-diode thus undergoing amplification and this signal being translated on a moving-coil meter as a deflection. The motor speed is kept constant but varies with changes in viscosity of the fluid during stirring, which alter signals being read on the meter. The faster is revolution per minute of the disc, the less the deflection on the meter and vise-versa. From the results of tests conducted on various sample fluids using data on standard Newtonian fluids as reliable guide the efficiency of the viscometer was 76.5%.
Viscosity effect in Landau's hydrodynamical model
Hoang, T.F.; Phua, K.K.; Nanyang Univ., Singapore
1979-01-01
The Bose-Einstein distribution is used to investigate Landau's hydrodynamical model with viscosity. In case the viscosity dependence on the temperature is T 3 , the correction to the multiplicity behaves like I/E and is found to be negligible for the pp data. A discussion is presented on a possibility of reconciling E 1 / 2 and logE dependence of the multiplicity law. (orig.)
A Simple BODIPY-Based Viscosity Probe for Imaging of Cellular Viscosity in Live Cells
Dongdong Su
2016-08-01
Full Text Available Intracellular viscosity is a fundamental physical parameter that indicates the functioning of cells. In this work, we developed a simple boron-dipyrromethene (BODIPY-based probe, BTV, for cellular mitochondria viscosity imaging by coupling a simple BODIPY rotor with a mitochondria-targeting unit. The BTV exhibited a significant fluorescence intensity enhancement of more than 100-fold as the solvent viscosity increased. Also, the probe showed a direct linear relationship between the fluorescence lifetime and the media viscosity, which makes it possible to trace the change of the medium viscosity. Furthermore, it was demonstrated that BTV could achieve practical applicability in the monitoring of mitochondrial viscosity changes in live cells through fluorescence lifetime imaging microscopy (FLIM.
Viscosity properties of sodium borophosphate glasses
Gaylord, S.; Tincher, B.; Petit, L.; Richardson, K.
2009-01-01
The viscosity behavior of (1 - x)NaPO 3 -xNa 2 B 4 O 7 glasses (x = 0.05-0.20) have been measured as a function of temperature using beam-bending and parallel-plate viscometry. The viscosity was found to shift to higher temperatures with increasing sodium borate content. The kinetic fragility parameter, m, estimated from the viscosity curve, decreases from 52 to 33 when x increases from 0.05 to 0.20 indicating that the glass network transforms from fragile to strong with the addition of Na 2 B 4 O 7 . The decrease in fragility with increasing x is due to the progressive depolymerization of the phosphate network by the preferred four-coordinated boron atoms present in the low alkali borate glasses. As confirmed by Raman spectroscopy increasing alkali borate leads to enhanced B-O-P linkages realized with the accompanying transition from solely four-coordinated boron (in BO 4 units) to mixed BO 4 /BO 3 structures. The glass viscosity characteristics of the investigated glasses were compared to those of P-SF67 and N-FK5 commercial glasses from SCHOTT. We showed that the dependence of the viscosity of P-SF67 was similar to the investigated glasses due to similar phosphate network organization confirmed by Raman spectroscopy, whereas N-FK5 exhibited a very different viscosity curve and fragility parameter due to its highly coordinated silicate network
Searching for perfect fluids: quantum viscosity in a universal Fermi gas
Cao, C; Elliott, E; Wu, H; Thomas, J E
2011-01-01
We measure the shear viscosity in a two-component Fermi gas of atoms, tuned to a broad s-wave collisional (Feshbach) resonance. At resonance, the atoms strongly interact and exhibit universal behavior, where the equilibrium thermodynamic properties and transport coefficients are universal functions of density n and temperature T. We present a new calibration of the temperature as a function of global energy, which is directly measured from the cloud profiles. Using the calibration, the trap-averaged shear viscosity in units of ℎn is determined as a function of the reduced temperature at the trap center, from nearly the ground state to the unitary two-body regime. Low-temperature data are obtained from the damping rate of the radial breathing mode, whereas high-temperature data are obtained from hydrodynamic expansion measurements. We also show that the best fit to the high-temperature expansion data is obtained for a vanishing bulk viscosity. The measured trap-averaged entropy per particle and shear viscosity are used to estimate the ratio of shear viscosity to entropy density, which is compared with that conjectured for a perfect fluid.
Nakada, Masao; Okuno, Jun'ichi; Irie, Yoshiya
2018-03-01
A viscosity model with an exponential profile described by temperature (T) and pressure (P) distributions and constant activation energy (E_{{{um}}}^{{*}} for the upper mantle and E_{{{lm}}}^* for the lower mantle) and volume (V_{{{um}}}^{{*}} and V_{{{lm}}}^*) is employed in inferring the viscosity structure of the Earth's mantle from observations of glacial isostatic adjustment (GIA). We first construct standard viscosity models with an average upper-mantle viscosity ({\\bar{η }_{{{um}}}}) of 2 × 1020 Pa s, a typical value for the oceanic upper-mantle viscosity, satisfying the observationally derived three GIA-related observables, GIA-induced rate of change of the degree-two zonal harmonic of the geopotential, {\\dot{J}_2}, and differential relative sea level (RSL) changes for the Last Glacial Maximum sea levels at Barbados and Bonaparte Gulf in Australia and for RSL changes at 6 kyr BP for Karumba and Halifax Bay in Australia. Standard viscosity models inferred from three GIA-related observables are characterized by a viscosity of ˜1023 Pa s in the deep mantle for an assumed viscosity at 670 km depth, ηlm(670), of (1 - 50) × 1021 Pa s. Postglacial RSL changes at Southport, Bermuda and Everglades in the intermediate region of the North American ice sheet, largely dependent on its gross melting history, have a crucial potential for inference of a viscosity jump at 670 km depth. The analyses of these RSL changes based on the viscosity models with {\\bar{η }_{{{um}}}} ≥ 2 × 1020 Pa s and lower-mantle viscosity structures for the standard models yield permissible {\\bar{η }_{{{um}}}} and ηlm (670) values, although there is a trade-off between the viscosity and ice history models. Our preferred {\\bar{η }_{{{um}}}} and ηlm (670) values are ˜(7 - 9) × 1020 and ˜1022 Pa s, respectively, and the {\\bar{η }_{{{um}}}} is higher than that for the typical value of oceanic upper mantle, which may reflect a moderate laterally heterogeneous upper
Superductile bulk metallic glass
Yao, K.F.; Ruan, F.; Yang, Y.Q.; Chen, N.
2006-01-01
Usually, monolithic bulk metallic glasses undergo inhomogeneous plastic deformation and exhibit poor ductility (<2%) at room temperature. We report a newly developed Pd-Si binary bulk metallic glass, which exhibits a uniform plastic deformation and a large plastic engineering strain of 82% and a plastic true strain of 170%, together with initial strain hardening, slight strain softening and final strain hardening characteristics. The uniform shear deformation and the ultrahigh plasticity are mainly attributed to strain hardening, which results from the nanoscale inhomogeneity due to liquid phase separation. The formed nanoscale inhomogeneity will hinder, deflect, and bifurcate the propagation of shear bands
Bourquin, M; Chatelus, Y; Chollet, J C; Degré, A; Froidevaux, D; Fyfe, A R; Gaillard, J M; Gee, C N P; Gibson, W M; Gray, R J; Igo-Kemenes, P; Jeffreys, P W; Merkel, B; Morand, R; Ott, R J; Plothow, H; Repellin, J P; Saunders, B J; Sauvage, G; Schiby, B; Siebert, H W; Smith, V J; Streit, K P; Strub, R; Thresher, J J
1982-01-01
The charged hyperon beam at the CERN Super Proton Synchrotron (SPS) has been used to collect data on semileptonic decays of Sigma ^{-}, Xi ^{-} and Lambda . A magnetic channel selects 100 GeV/c negatively charged particles produced in the forward direction by interaction of the 200 GeV/c SPS proton beam on a BeO target. The Sigma ^{-} and Xi ^{-} hyperons are concurrently identified in a DISC Cernekov counter, and their decay products are analysed by a magnetic spectrometer. Electron-hadron discrimination is achieved by the combined use of lead-glass and lead/scintillator counters, transition radiation detectors, and a Cerenkov counter. The authors report results on the Sigma ^{-} to Lambda e^{-} nu decay mode. Measurements of the GL polarization and of the centre-of-mass distributions (baryon kinetic energy, electron-neutrino correlation, and Dalitz plot distributions) yield the vector to axial-vector form factor ratio f/sub 1//g/sub 1/=+0.034+or-0.080, in agreement with the value expected from the conserved...
Kohno, M.
2018-03-01
Adopting hyperon-nucleon and hyperon-nucleon-nucleon interactions parametrized in chiral effective field theory, single-particle potentials of the Λ and Σ hyperons are evaluated in symmetric nuclear matter and in pure neutron matter within the framework of lowest-order Bruckner theory. The chiral NLO interaction bears strong Λ N -Σ N coupling. Although the Λ potential is repulsive if the coupling is switched off, the Λ N -Σ N correlation brings about the attraction consistent with empirical data. The Σ potential is repulsive, which is also consistent with empirical information. The interesting result is that the Λ potential becomes shallower beyond normal density. This provides the possibility of solving the hyperon puzzle without introducing ad hoc assumptions. The effects of the Λ N N -Λ N N and Λ N N -Σ N N three-baryon forces are considered. These three-baryon forces are first reduced to normal-ordered effective two-baryon interactions in nuclear matter and then incorporated in the G -matrix equation. The repulsion from the Λ N N -Λ N N interaction is of the order of 5 MeV at normal density and becomes larger with increasing density. The effects of the Λ N N -Σ N N coupling compensate the repulsion at normal density. The net effect of the three-baryon interactions on the Λ single-particle potential is repulsive at higher densities.
Auctioning Bulk Mobile Messages
S. Meij (Simon); L-F. Pau (Louis-François); H.W.G.M. van Heck (Eric)
2003-01-01
textabstractThe search for enablers of continued growth of SMS traffic, as well as the take-off of the more diversified MMS message contents, open up for enterprises the potential of bulk use of mobile messaging , instead of essentially one-by-one use. In parallel, such enterprises or value added
Schulz, Alexander
2015-01-01
is currently matter of discussion, called passive symplasmic loading. Based on the limited material available, this review compares the different loading modes and suggests that diffusion is the driving force in apoplasmic loaders, while bulk flow plays an increasing role in plants having a continuous...
Ferromagnetic bulk glassy alloys
Inoue, Akihisa; Makino, Akihiro; Mizushima, Takao
2000-01-01
This paper deals with the review on the formation, thermal stability and magnetic properties of the Fe-based bulk glassy alloys in as-cast bulk and melt-spun ribbon forms. A large supercooled liquid region over 50 K before crystallization was obtained in Fe-(Al, Ga)-(P, C, B, Si), Fe-(Cr, Mo, Nb)-(Al, Ga)-(P, C, B) and (Fe, Co, Ni)-Zr-M-B (M=Ti, Hf, V, Nb, Ta, Cr, Mo and W) systems and bulk glassy alloys were produced in a thickness range below 2 mm for the Fe-(Al, Ga)-(P, C, B, Si) system and 6 mm for the Fe-Co-(Zr, Nb, Ta)-(Mo, W)-B system by copper-mold casting. The ring-shaped glassy Fe-(Al, Ga)-(P, C, B, Si) alloys exhibit much better soft magnetic properties as compared with the ring-shaped alloy made from the melt-spun ribbon because of the formation of the unique domain structure. The good combination of high glass-forming ability and good soft magnetic properties indicates the possibility of future development as a new bulk glassy magnetic material
Entropy viscosity method applied to Euler equations
Delchini, M. O.; Ragusa, J. C.; Berry, R. A.
2013-01-01
The entropy viscosity method [4] has been successfully applied to hyperbolic systems of equations such as Burgers equation and Euler equations. The method consists in adding dissipative terms to the governing equations, where a viscosity coefficient modulates the amount of dissipation. The entropy viscosity method has been applied to the 1-D Euler equations with variable area using a continuous finite element discretization in the MOOSE framework and our results show that it has the ability to efficiently smooth out oscillations and accurately resolve shocks. Two equations of state are considered: Ideal Gas and Stiffened Gas Equations Of State. Results are provided for a second-order time implicit schemes (BDF2). Some typical Riemann problems are run with the entropy viscosity method to demonstrate some of its features. Then, a 1-D convergent-divergent nozzle is considered with open boundary conditions. The correct steady-state is reached for the liquid and gas phases with a time implicit scheme. The entropy viscosity method correctly behaves in every problem run. For each test problem, results are shown for both equations of state considered here. (authors)
Mineev, Vladimir N; Funtikov, Aleksandr I
2004-01-01
A review is given of experimental and calculated data on the viscosity of iron-based melts on the melting curve. The interest in these data originates in the division of opinion on whether viscosity increases rather moderately or considerably in the high-pressure range. This disagreement is especially pronounced in the interpretation of the values of molten iron and its compounds in the environment of the earth's outer core. The conclusion on a substantial rise in viscosity mostly follows from the universal law, proposed by Brazhkin and Lyapin [1], of viscosity changing along the metal melting curve in the high-pressure range. The review analyzes available experimental and computational data, including the most recent ones. Data on viscosity of metals under shock wave compression in the megabar pressure range are also discussed. It is shown that data on viscosity of metal melts point to a small increase of viscosity on the melting curve. Specifics are discussed of the phase diagram of iron made more complex by the presence of several phase transitions and by the uncertainty in the position of the melting curve in the high-pressure range. Inaccuracies that arise in extrapolating the results of viscosity measurements to the pressure range corresponding to the earth's core environment are pointed out. (reviews of topical problems)
The Viscosity of Organic Liquid Mixtures
Len, C. W.; Trusler, J. P. M.; Vesovic, V.; Wakeham, W. A.
2006-01-01
The paper reports measurements of the viscosity and density of two heavy hydrocarbon mixtures, Dutrex and Arab Light Flashed Distillate (ALFD), and of their mixtures with hydrogen. The measurements have been carried out with a vibrating-wire device over a range of temperatures from 399 to 547 K and at pressures up to 20 MPa. Measurements have also been carried out on systems in which hydrogen at different concentrations has been dissolved in the liquids. The measurements have an estimated uncertainty of ±5% for viscosity and ±2% for density and represent the first results on these prototypical heavy hydrocarbons. The results reveal that the addition of hydrogen reduces both the density and viscosity of the original hydrocarbon mixture at a particular temperature and pressure.
Viscosity of Ga-Li liquid alloys
Vidyaev, Dmitriy; Boretsky, Evgeny; Verkhorubov, Dmitriy
2018-03-01
The measurement of dynamic viscosity of Ga-Li liquid alloys has been performed using low-frequency vibrational viscometer at five temperatures in the range 313-353 K and four gallium-based dilute alloy compositions containing 0-1.15 at.% Li. It was found that the viscosity of the considered alloys increases with decreasing temperature and increasing lithium concentration in the above ranges. It was shown that dependence of the viscosity of Ga-Li alloys in the investigated temperature range has been described by Arrhenius equation. For this equation the activation energy of viscous flow and pre-exponential factor were calculated. This study helped to determine the conditions of the alkali metals separating process in gallam-exchange systems.
Viscosity Meaurement Technique for Metal Fuels
Ban, Heng [Utah State Univ., Logan, UT (United States). Mechanical and Aerospace Engineering; Kennedy, Rory [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2015-02-09
Metallic fuels have exceptional transient behavior, excellent thermal conductivity, and a more straightforward reprocessing path, which does not separate out pure plutonium from the process stream. Fabrication of fuel containing minor actinides and rare earth (RE) elements for irradiation tests, for instance, U-20Pu-3Am-2Np-1.0RE-15Zr samples at the Idaho National Laboratory, is generally done by melt casting in an inert atmosphere. For the design of a casting system and further scale up development, computational modeling of the casting process is needed to provide information on melt flow and solidification for process optimization. Therefore, there is a need for melt viscosity data, the most important melt property that controls the melt flow. The goal of the project was to develop a measurement technique that uses fully sealed melt sample with no Americium vapor loss to determine the viscosity of metallic melts and at temperatures relevant to the casting process. The specific objectives of the project were to: develop mathematical models to establish the principle of the measurement method, design and build a viscosity measurement prototype system based on the established principle, and calibrate the system and quantify the uncertainty range. The result of the project indicates that the oscillation cup technique is applicable for melt viscosity measurement. Detailed mathematical models of innovative sample ampoule designs were developed to not only determine melt viscosity, but also melt density under certain designs. Measurement uncertainties were analyzed and quantified. The result of this project can be used as the initial step toward the eventual goal of establishing a viscosity measurement system for radioactive melts.
Viscosity Meaurement Technique for Metal Fuels
Ban, Heng
2015-01-01
Metallic fuels have exceptional transient behavior, excellent thermal conductivity, and a more straightforward reprocessing path, which does not separate out pure plutonium from the process stream. Fabrication of fuel containing minor actinides and rare earth (RE) elements for irradiation tests, for instance, U-20Pu-3Am-2Np-1.0RE-15Zr samples at the Idaho National Laboratory, is generally done by melt casting in an inert atmosphere. For the design of a casting system and further scale up development, computational modeling of the casting process is needed to provide information on melt flow and solidification for process optimization. Therefore, there is a need for melt viscosity data, the most important melt property that controls the melt flow. The goal of the project was to develop a measurement technique that uses fully sealed melt sample with no Americium vapor loss to determine the viscosity of metallic melts and at temperatures relevant to the casting process. The specific objectives of the project were to: develop mathematical models to establish the principle of the measurement method, design and build a viscosity measurement prototype system based on the established principle, and calibrate the system and quantify the uncertainty range. The result of the project indicates that the oscillation cup technique is applicable for melt viscosity measurement. Detailed mathematical models of innovative sample ampoule designs were developed to not only determine melt viscosity, but also melt density under certain designs. Measurement uncertainties were analyzed and quantified. The result of this project can be used as the initial step toward the eventual goal of establishing a viscosity measurement system for radioactive melts.
Characterisation of bulk solids
D. McGlinchey [Glasgow Caledonian University, Glasgow (United Kingdom). Centre for Industrial Bulk Solids Handling
2005-07-01
Handling of powders and bulk solids is a critical industrial technology across a broad spectrum of industries, including minerals processing. With contributions from leading authors in their respective fields, this book provides the reader with a sound understanding of the techniques, importance and application of particulate materials characterisation. It covers the fundamental characteristics of individual particles and bulk particulate materials, and includes discussion of a wide range of measurement techniques, and the use of material characteristics in design and industrial practice. Contents: Characterising particle properties; Powder mechanics and rheology; Characterisation for hopper and stockpile design; Fluidization behaviour; Characterisation for pneumatic conveyor design; Explosiblility; 'Designer' particle characteristics; Current industrial practice; and Future trends. 130 ills.
Giomataris, I.; De Oliveira, R.; Andriamonje, S.; Aune, S.; Charpak, G.; Colas, P.; Fanourakis, G.; Ferrer, E.; Giganon, A.; Rebourgeard, Ph.; Salin, P.
2006-01-01
In this paper, we present a novel way to manufacture the bulk Micromegas detector. A simple process based on the Printed Circuit Board (PCB) technology is employed to produce the entire sensitive detector. Such a fabrication process could be extended to very large area detectors made by the industry. The low cost fabrication together with the robustness of the electrode materials will make it attractive for several applications ranging from particle physics and astrophysics to medicine
Communication: Simple liquids' high-density viscosity
Costigliola, Lorenzo; Pedersen, Ulf R.; Heyes, David M.; Schrøder, Thomas B.; Dyre, Jeppe C.
2018-02-01
This paper argues that the viscosity of simple fluids at densities above that of the triple point is a specific function of temperature relative to the freezing temperature at the density in question. The proposed viscosity expression, which is arrived at in part by reference to the isomorph theory of systems with hidden scale invariance, describes computer simulations of the Lennard-Jones system as well as argon and methane experimental data and simulation results for an effective-pair-potential model of liquid sodium.
Measuring Viscosities of Gases at Atmospheric Pressure
Singh, Jag J.; Mall, Gerald H.; Hoshang, Chegini
1987-01-01
Variant of general capillary method for measuring viscosities of unknown gases based on use of thermal mass-flowmeter section for direct measurement of pressure drops. In technique, flowmeter serves dual role, providing data for determining volume flow rates and serving as well-characterized capillary-tube section for measurement of differential pressures across it. New method simple, sensitive, and adaptable for absolute or relative viscosity measurements of low-pressure gases. Suited for very complex hydrocarbon mixtures where limitations of classical theory and compositional errors make theoretical calculations less reliable.
Entropy viscosity method for nonlinear conservation laws
Guermond, Jean-Luc
2011-05-01
A new class of high-order numerical methods for approximating nonlinear conservation laws is described (entropy viscosity method). The novelty is that a nonlinear viscosity based on the local size of an entropy production is added to the numerical discretization at hand. This new approach does not use any flux or slope limiters, applies to equations or systems supplemented with one or more entropy inequalities and does not depend on the mesh type and polynomial approximation. Various benchmark problems are solved with finite elements, spectral elements and Fourier series to illustrate the capability of the proposed method. © 2010 Elsevier Inc.
Communication: Simple liquids' high-density viscosity.
Costigliola, Lorenzo; Pedersen, Ulf R; Heyes, David M; Schrøder, Thomas B; Dyre, Jeppe C
2018-02-28
This paper argues that the viscosity of simple fluids at densities above that of the triple point is a specific function of temperature relative to the freezing temperature at the density in question. The proposed viscosity expression, which is arrived at in part by reference to the isomorph theory of systems with hidden scale invariance, describes computer simulations of the Lennard-Jones system as well as argon and methane experimental data and simulation results for an effective-pair-potential model of liquid sodium.
Gravimetric capillary method for kinematic viscosity measurements
Rosenberger, Franz; Iwan, J.; Alexander, D.; Jin, Wei-Qing
1992-01-01
A novel version of the capillary method for viscosity measurements of liquids is presented. Viscosity data can be deduced in a straightforward way from mass transfer data obtained by differential weighing during the gravity-induced flow of the liquid between two cylindrical chambers. Tests of this technique with water, carbon tetrachloride, and ethanol suggest that this arrangement provides an accuracy of about +/- 1 percent. The technique facilitates operation under sealed, isothermal conditions and, thus can readily be applied to reactive and/or high vapor pressure liquids.
Entropy viscosity method for nonlinear conservation laws
Guermond, Jean-Luc; Pasquetti, Richard; Popov, Bojan
2011-01-01
A new class of high-order numerical methods for approximating nonlinear conservation laws is described (entropy viscosity method). The novelty is that a nonlinear viscosity based on the local size of an entropy production is added to the numerical discretization at hand. This new approach does not use any flux or slope limiters, applies to equations or systems supplemented with one or more entropy inequalities and does not depend on the mesh type and polynomial approximation. Various benchmark problems are solved with finite elements, spectral elements and Fourier series to illustrate the capability of the proposed method. © 2010 Elsevier Inc.
Bulk delivery of explosives offers positive advantages
NONE
1993-09-01
The bulk delivery of precisely-formulated explosives directly to the shothole is a safe, secure and cost effective way of bringing rock to the quarry floor. This article describes several of the latest generation of Anfo trucks. The typical Anfo truck carries ammonium nitrate and fuel oil in bulk, together with several other mix constituents, including an emulsifying agent. These are designed to form the basis of a range of emulsion-type explosives. In effect, these are water in oil emulsions where the water phase consists of droplets of a saturated solution of the oxidizing material suspended in oil. The formulations may be further tailored to the shothole requirements by the addition of oils or waxes, which can alter the viscosity of the explosive. The precise and programmable controls which determine the exact quantities of materials delivered to the mixer mean that the explosive mixtures can be tailored exactly to the requirements of the blasting operation, be it the amount of rock to be dislodged, the geological conditions, or the state of the shothole - either wet or dry. 4 systems are described in detail. 3 figs.
Measurement of the polarization of the Ξ0 (Ξ0) hyperon beam by the NA48/1 experiment
Batley, J R; Lazzeroni, C; Munday, D J; Patel, M; Slater, M W; Wotton, S A; Arcidiacono, R; Bocquet, G; Ceccucci, A; Cundy, D; Doble, N; Falaleev, V; Gatignon, L; Gonidec, A; Grafström, P; Kubischta, W; Mikulec, I; Norton, A; Panzer-Steindel, B; Rubin, P; Wahl, H; Goudzovski, Yu; Hristov, P; Kekelidze, V; Litov, L; Madigozhin, D; Molokanova, N; Potrebenikov, Yu; Stoynev, S; Zinchenko, A; Monnier, E; Swallow, E; Winston, R; Sacco, R; Walke, A; Baldini, W; Gianoli, A; Dalpiaz, P; Frabetti, P L; Martini, M; Petrucci, F; Savrié, M; Scarpa, M; Calvetti, M; Collazuol, G; Iacopini, E; Ruggiero, G; Bizzeti, A; Lenti, M; Veltri, M; Behler, M; Eppard, K; Eppard, M; Hirstius, A; Kleinknecht, K; Koch, U; Marouelli, P; Masetti, L; Moosbrugger, U; Morales Morales, C; Peters, A; Wanke, R; Winhart, A; Dabrowski, A; Fonseca Martin, T; Velasco, M; Cenci, P; Lubrano, P; Pepe, M; Anzivino, G; Imbergamo, E; Lamanna, G; Michetti, A; Nappi, A; Petrucci, M C; Piccini, M; Valdata, M; Cerri, C; Fantechi, R; Costantini, F; Fiorini, L; Giudici, S; Pierazzini, G; Sozzi, M; Manelli, I; Cheshkov, C; Cheze, J B; De Beer, M; Debu, P; Gouge, D; Marel, D; Mazzucato, E; Peyaud, B; Vallage, B; Holder, M; Maier 3, A; Ziolkowski, M; Biino, C; Cartiglia, N; Marchetto, F; Pastrone, N; Clemencic, M; Goy Lopez, S; Menichetti, E; Wislicki, W; Dibon, H; Jeitler, M; Markytan, M; Neuhofer, G; Widhalm, L; Dibon, H; Jeitler, M; Markytan, M; Neuhofer, D; Widhalm, L
2009-01-01
A total of 368 415 Ξ0 →Λπ0 and 31 171 Ξ0 →Λπ0 were selected from data recorded in the NA48/1 experiment during 2002 data taking. From this sample, the polarization of Ξ0 and Ξ0 hyperons was measured to be PΞ0 = −0.102 ± 0.012(stat) ± 0.008(syst) and P Ξ0 = −0.01 ± 0.04(stat) ± 0.008(syst). The dependence of PΞ0 on the Ξ0 transverse momentum with respect to the primary proton beam is also presented. With the same data sample, the ratio of Ξ0 and Ξ0 fluxes in proton collisions at 400 GeV/c on a beryllium target was measured.
Production of charged sigma-hyperons in 4.2 GeV/c K-p interactions
Groot, A.J. de
1975-01-01
Results from a 4.2 GeV/c K - p experiment are presented. In a general review of the experiment particular attention is paid to the scanning procedure. Problems connected with charged decays (kinks) are dealt with. Modifications are treated that have been implemented in the kinematical fitting programme in order to improve the pass rate of events with a straight hyperon-track. Geometrical losses for kinks and ways to correct for them are discussed. Reactions of the type K - p→0 - 1/2 + are considered and Veneziano models for K - p→Σ + π - and K - p→Σ + π - π 0 . A new B 5 -approach is made to the reaction K - p→Σ + π - π 0 , using a five-point function. (V.J.C.)
Alekseev, M.; Alexandrov, Yu.; Alexeev, G.D.; Amoroso, A.; Austregesilo, A.; Badelek, B.; Balestra, F.; Ball, J.; Barth, J.; Baum, G.; Bedfer, Y.; Bernhard, J.; Bertini, R.; Bettinelli, M.; Birsa, R.; Bisplinghoff, J.; Bordalo, P.; Bradamante, F.; Bravar, A.; Bressan, A.; Brona, G.; Burtin, E.; Bussa, M.P.; Chapiro, A.; Chiosso, M.; Chung, S.U.; Cicuttin, A.; Colantoni, M.; Crespo, M.L.; Dalla Torre, S.; Dafni, T.; Das, S.; Dasgupta, S.S.; Denisov, O.Yu.; Dhara, L.; Diaz, V.; Dinkelbach, A.M.; Donskov, S.V.; Doshita, N.; Duic, V.; Dunnweber, W.; Efremov, A.; Eversheim, P.D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Finger, M.; Finger, M.Jr.; Fischer, H.; Franco, C.; Friedrich, J.M.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O.P.; Gazda, R.; Gerassimov, S.; Geyer, R.; Giorgi, M.; Gobbo, B.; Goertz, S.; Grabmuller, S.; Grajek, O.A.; Grasso, A.; Grube, B.; Gushterski, R.; Guskov, A.; Haas, F.; von Harrach, D.; Hasegawa, T.; Heckmann, J.; Heinsius, F.H.; Hermann, M.; Hermann, R.; Herrmann, F.; Hess, C.; Hinterberger, F.; Horikawa, N.; Hoppner, Ch.; d'Hose, N.; Ilgner, C.; Ishimoto, S.; Ivanov, O.; Ivanshin, Yu.; Iven, B.; Iwata, T.; Jahn, R.; Jasinski, P.; Jegou, G.; Joosten, R.; Kabuss, E.; Kang, D.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu.A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koblitz, S.; Koivuniemi, J.H.; Kolosov, V.N.; Komissarov, E.V.; Kondo, K.; Konigsmann, K.; Konopka, R.; Konorov, I.; Konstantinov, V.F.; Korzenev, A.; Kotzinian, A.M.; Kouznetsov, O.; Kowalik, K.; Kramer, M.; Kral, A.; Kroumchtein, Z.V.; Kuhn, R.; Kunne, F.; Kurek, K.; Le Goff, J.M.; Lednev, A.A.; Lehmann, A.; Levorato, S.; Lichtenstadt, J.; Liska, T.; Maggiora, A.; Maggiora, M.; Magnon, A.; Mallot, G.K.; Mann, A.; Marchand, C.; Marroncle, J.; Martin, A.; Marzec, J.; Massmann, F.; Matsuda, T.; Maximov, A.N.; Meyer, W.; Michigami, T.; Mikhailov, Yu.V.; Moinester, M.A.; Mutter, A.; Nagaytsev, A.; Nagel, T.; Nassalski, J.; Negrini, S.; Nerling, F.; Neubert, S.; Neyret, D.; Nikolaenko, V.I.; Olshevsky, A.G.; Ostrick, M.; Padee, A.; Panknin, R.; Panzieri, D.; Parsamyan, B.; Paul, S.; Pawlukiewicz-Kaminska, B.; Perevalova, E.; Pesaro, G.; Peshekhonov, D.V.; Piragino, G.; Platchkov, S.; Pochodzalla, J.; Polak, J.; Polyakov, V.A.; Pontecorvo, G.; Pretz, J.; Quintans, C.; Rajotte, J.F.; Ramos, S.; Rapatsky, V.; Reicherz, G.; Reggiani, D.; Richter, A.; Robinet, F.; Rocco, E.; Rondio, E.; Ryabchikov, D.I.; Samoylenko, V.D.; Sandacz, A.; Santos, H.; Sapozhnikov, M.G.; Sarkar, S.; Sbrizzai, G.; Schiavon, P.; Schill, C.; Schmitt, L.; Schroder, W.; Shevchenko, O.Yu.; Siebert, H.W.; Silva, L.; Sinha, L.; Sissakian, A.N.; Slunecka, M.; Smirnov, G.I.; Sosio, S.; Sozzi, F.; Srnka, A.; Stolarski, M.; Sulc, M.; Sulej, R.; Takekawa, S.; Tessaro, S.; Tessarotto, F.; Teufel, A.; Tkatchev, L.G.; Venugopal, G.; Virius, M.; Vlassov, N.V.; Vossen, A.; Weitzel, Q.; Windmolders, R.; Wislicki, W.; Wollny, H.; Zaremba, K.; Zemlyanichkina, E.; Ziembicki, M.; Zhao, J.; Zhuravlev, N.; Zvyagin, A.
2009-01-01
The longitudinal polarisation transfer from muons to lambda and anti-lambda hyperons, D_LL, has been studied in deep inelastic scattering off an unpolarised isoscalar target at the COMPASS experiment at CERN. The spin transfers to lambda and anti-lambda produced in the current fragmentation region exhibit different behaviours as a function of x and xF . The measured x and xF dependences of D^lambda_LL are compatible with zero, while D^anti-lambda_LL tends to increase with xF, reaching values of 0.4 - 0.5. The resulting average values are D^lambda_LL = -0.012 +- 0.047 +- 0.024 and D^anti-lambda_LL = 0.249 +- 0.056 +- 0.049. These results are discussed in the frame of recent model calculations.
Gluon gas viscosity in nonperturbative region
Il'in, S.V.; Mogilevskij, O.A.; Smolyanskij, S.A.; Zinov'ev, G.M.
1992-01-01
Using the Green-Kubo-type formulae and the cutoff model motivated by Monte Carlo lattice gluodynamics simulations we find the temperature behaviour of shear viscosity of gluon gas in the region of deconfinement phase transition. 22 refs.; 1 fig. (author)
Jet collimation by turbulent viscosity. I
Henriksen, R.N.
1987-01-01
In this paper it is assumed that the subscale turbulent eddies induced in an ambient medium by the emergence of a (already collimated) jet from a galactic nucleus (VLBI jet) are the source of the viscosity which causes material to be entrained into the large-scale (VLA) jet. New analytic solutions are derived by a generalization of the self-similar Ansatz used in the Landau-Squires solution to include variable density and viscosity. It is shown that such a process of viscous collimation of the VLA jets can account for the observed collimation-luminosity correlation, the magnetic flux, and the inferred mass flux of these jets. Order of magnitude comparisons of velocity and density fields with recently observed emission-line flow regions near radio jets are made. All of the viscosity-dependent observational checks imply roughly the same plausible value for the eddy viscosity. It is emphasized that storing the initial VLBI jet energy in the intermediate scales occupied by the turbulent eddies allows this energy to be largely undetected. 35 references
On the measurement of magnetic viscosity
Serletis, C. [Department of Physics, Aristotle University, Thessaloniki 54124 (Greece); Efthimiadis, K.G., E-mail: kge@auth.gr [Department of Physics, Aristotle University, Thessaloniki 54124 (Greece)
2012-08-15
This work is an investigation of the experimental method used for measuring the magnetic viscosity in a hard ferromagnetic material, i.e. the recording of the magnetization under constant applied field and temperature, after the material has been magnetically saturated. It investigates how the experimental results are affected by the initial conditions of the method (saturation field, field change rate and field oscillation prior to its stabilization), and by minor variations of field and temperature during the recording. Based on the arising conclusions and the use of a more complex fitting function of measurements, the accuracy and repeatability of experimental results is improved. - Highlights: Black-Right-Pointing-Pointer Magnetic viscosity is affected by initial measurement conditions. Black-Right-Pointing-Pointer Minor field deviations prior to its stabilization cause large changes in viscosity. Black-Right-Pointing-Pointer Viscosity is strongly dependent on the field change rate from saturation to the measurement field. Black-Right-Pointing-Pointer Small changes in field and temperature during the experiment can lead to false measurements. Black-Right-Pointing-Pointer Errors in measurements can be eliminated through the use of a proper fitting function.
Effect of Viscosity on Liquid Curtain Stability
Mohammad Karim, Alireza; Suszynski, Wieslaw; Francis, Lorraine; Carvalho, Marcio; Dow Chemical Company Collaboration; PUC Rio Collaboration; University of Minnesota, Twin Cities Collaboration
2016-11-01
The effect of viscosity on the stability of Newtonian liquid curtains was explored by high-speed visualization. Glycerol/water solutions with viscosity ranging from 19.1 to 210 mPa.s were used as coating liquids. The experimental set-up used a slide die delivery and steel tube edge guides. The velocity along curtain at different positions was measured by tracking small particles at different flow conditions. The measurements revealed that away from edge guides, velocity is well described by free fall effect. However, close to edge guides, liquid moves slower, revealing formation of a viscous boundary layer. The size of boundary layer and velocity near edge guides are strong function of viscosity. The critical condition was determined by examining flow rate below which curtain broke. Curtain failure was initiated by growth of a hole within liquid curtain, close to edge guides. Visualization results showed that the hole forms in a circular shape then becomes elliptical as it grows faster in vertical direction compared to horizontal direction. As viscosity rises, minimum flow rate for destabilization of curtain increased, indicating connection between interaction with edge guides and curtain stability. We would like to acknowledge the financial support from the Dow Chemical Company.
Sensor for Viscosity and Shear Strength Measurement
Dillon, J.; Moore, J.E. Jr.; Ebadian, M.A.; Jones, W.K.
1998-01-01
Measurement of the physical properties (viscosity and density) of waste slurries is critical in evaluating transport parameters to ensure turbulent flow through transport pipes. The environment for measurement and sensor exposure is extremely harsh; therefore, reliability and ruggedness are critical in the sensor design. The work for this project will be performed in three phases. The first phase, carried out in FY96, involved (1) an evaluation of acoustic and other methods for viscosity measurement; (2) measurement of the parameters of slurries over the range of percent solids found in tanks and transport systems; (3) a comparison of physical properties (e.g., viscosity and density) to percent solids found composition; and (4) the design of a prototype sensor. The second phase (FY97) will involve the fabrication of a prototype hybrid sensor to measure the viscosity and mechanical properties of slurries in remote, high-radiation environments. Two different viscometer designs are being investigated in this study: a magnetostrictive pulse wave guide viscometer; an oscillating cylinder viscometer. In FY97, the Hemispheric Center for Environmental Technology (HCET) at Florida International University (FIU), which has printed circuit, thick film, thin film, and co-fired ceramic fabrication capability, will fabricate five probes for demonstration after technology selection and evaluation
Role of viscosity in nonlinear effects
Petrov, G V; Peshkin, M A; Polyakov, Ye Ye
1980-01-01
Data are presented on laboratory experiments for filtering of gases of liquids in clay, slightly permeable core samples. A method is proposed for processing the results of experiments which makes it possible to isolate the effect of viscosity of the fluid on the defined quantity of maximum pressure differential.
Cosmological model with viscosity media (dark fluid) described by an effective equation of state
Ren Jie; Meng Xinhe
2006-01-01
A generally parameterized equation of state (EOS) is investigated in the cosmological evolution with bulk viscosity media modelled as dark fluid, which can be regarded as a unification of dark energy and dark matter. Compared with the case of the perfect fluid, this EOS has possessed four additional parameters, which can be interpreted as the case of the non-perfect fluid with time-dependent viscosity or the model with variable cosmological constant. From this general EOS, a completely integrable dynamical equation to the scale factor is obtained with its solution explicitly given out. (i) In this parameterized model of cosmology, for a special choice of the parameters we can explain the late-time accelerating expansion universe in a new view. The early inflation, the median (relatively late time) deceleration, and the recently cosmic acceleration may be unified in a single equation. (ii) A generalized relation of the Hubble parameter scaling with the redshift is obtained for some cosmology interests. (iii) By using the SNe Ia data to fit the effective viscosity model we show that the case of matter described by p=0 plus with effective viscosity contributions can fit the observational gold data in an acceptable level
Bulk viscous matter-dominated Universes: asymptotic properties
Avelino, Arturo [Departamento de Física, Campus León, Universidad de Guanajuato, León, Guanajuato (Mexico); García-Salcedo, Ricardo [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada - Legaria del IPN, México D.F. (Mexico); Gonzalez, Tame [Departamento de Ingeniería Civil, División de Ingeniería, Universidad de Guanajuato, Guanajuato (Mexico); Nucamendi, Ulises [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3, Ciudad Universitaria, CP. 58040 Morelia, Michoacán (Mexico); Quiros, Israel, E-mail: avelino@fisica.ugto.mx, E-mail: rigarcias@ipn.mx, E-mail: tamegc72@gmail.com, E-mail: ulises@ifm.umich.mx, E-mail: iquiros6403@gmail.com [Departamento de Matemáticas, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Corregidora 500 S.R., Universidad de Guadalajara, 44420 Guadalajara, Jalisco (Mexico)
2013-08-01
By means of a combined use of the type Ia supernovae and H(z) data tests, together with the study of the asymptotic properties in the equivalent phase space — through the use of the dynamical systems tools — we demonstrate that the bulk viscous matter-dominated scenario is not a good model to explain the accepted cosmological paradigm, at least, under the parametrization of bulk viscosity considered in this paper. The main objection against such scenarios is the absence of conventional radiation and matter-dominated critical points in the phase space of the model. This entails that radiation and matter dominance are not generic solutions of the cosmological equations, so that these stages can be implemented only by means of unique and very specific initial conditions, i. e., of very unstable particular solutions. Such a behavior is in marked contradiction with the accepted cosmological paradigm which requires of an earlier stage dominated by relativistic species, followed by a period of conventional non-relativistic matter domination, during which the cosmic structure we see was formed. Also, we found that the bulk viscosity is positive just until very late times in the cosmic evolution, around z < 1. For earlier epochs it is negative, been in tension with the local second law of thermodynamics.
Conditions of viscosity measurement for detecting irradiated peppers
Hayashi, Toru; Todoriki, Setsuko; Okadome, Hiroshi; Kohyama, Kaoru
1995-01-01
Viscosity of gelatinized suspensions of black and white peppers decreased depending upon dose. The viscosity was influenced by gelatinization and viscosity measurement conditions. The difference between unirradiated pepper and an irradiated one was larger at a higher pH and temperature for gelatinization. A viscosity parameter normalized with the starch content of pepper sample and the viscosity of a 5% suspension of corn starch could get rid of the influence of the conditions for viscosity measurement such as type of viscometer, shear rate and temperature. (author)
Bulk viscous matter and recent acceleration of the universe
Sasidharan, Athira; Mathew, Titus K. [Cochin University of Science and Technology, Department of Physics, Kochi (India)
2015-07-15
We consider a cosmological model dominated by bulk viscous matter with a total bulk viscosity coefficient proportional to the velocity and acceleration of the expansion of the universe in such a way that ζ = ζ{sub 0} + ζ{sub 1}(a)/(a) + ζ{sub 2}(a)/(a). We show that there exist two limiting conditions in the bulk viscous coefficients (ζ{sub 0}, ζ{sub 1}, ζ{sub 2}) which correspond to a universe having a Big Bang at the origin, followed by an early decelerated epoch and then making a smooth transition into an accelerating epoch. We have constrained the model using the type Ia Supernovae data, evaluated the best estimated values of all the bulk viscous parameters and the Hubble parameter corresponding to the two limiting conditions. We found that even though the evolution of the cosmological parameters are in general different for the two limiting cases, they show identical behavior for the best estimated values of the parameters from both limiting conditions. A recent acceleration would occur if ζ{sub 0} + ζ{sub 1} > 1 for the first limiting conditions and if ζ{sub 0} + ζ{sub 1} < 1 for the second limiting conditions. The age of the universe predicted by this model is found to be less than that predicted from the oldest galactic globular clusters. The total bulk viscosity seems to be negative in the past and becomes positive when z ≤ 0.8. So the model violates the local second law of thermodynamics. However, the model satisfies the generalized second law of thermodynamics at the apparent horizon throughout the evolution of the universe. We also made a statefinder analysis of the model and found that it is distinguishably different from the standard ΛCDM model at present, but it shows a de Sitter type behavior in the far future of the evolution. (orig.)
Eslami, Hossein; Müller-Plathe, Florian
2010-01-14
Our new simulation scheme in isosurface-isothermal-isobaric ensemble [Eslami, H.; Mozaffari, F.; Moghadasi, J.; Müller-Plathe, F. J. Chem. Phys. 2008, 129, 194702], developed to simulate confined fluids in equilibrium with bulk, is applied to simulate polyamide-6,6 oligomers confined between graphite surfaces. The reverse nonequilibrium molecular dynamics simulation technique is employed to shear the graphite surfaces. In this work, six confined systems, with different surface separations, as well as the bulk fluid are simulated. Our results show a viscosity increase with respect to the bulk fluid, with decreasing distance between surfaces. Also, the calculated viscosities of the confined systems show an oscillatory behavior with maxima corresponding to well-formed layers between the surfaces. We observe a substantial slip at the surfaces, with the slip length depending on the shear rate and on the slit width. The slip length and the slip velocity show oscillatory behavior with out-of-phase oscillations with respect to the solvation force oscillations. Moreover, the temperature difference between coldest and hottest parts of the simulation box depends on the shear rate and on the layering effect (solvation force oscillations). An analysis of oligomer deformation under flow shows preferential alignment of oligomers parallel to the surfaces with increasing shear rate.
Mechanism of viscosity effect on magnetic island rotation
Mikhailovskii, A.B.; Konovalov, S.V. [Institute of Nuclear Fusion, Russian Research Centre ' Kurchatov Institute' , Kurchatov Sq., 1, Moscow (Russian Federation); Pustovitov, V.D. [National Inst. for Fusion Science, Toki, Gifu (Japan); Tsypin, V.S. [Institute of Physics, University of Sao Paulo, Rua do Matao, Travessa R, SP (Brazil)
2000-04-01
It is shown that plasma viscosity does not influence the magnetic island rotation directly. Nevertheless, it leads to nonstationarity of the plasma velocity. This nonstationarity is the reason of the viscosity effect on island rotation. (author)
Evaluation of Relative Blood Viscosity During Menstruation in ...
USER
ABSTRACT. The changes in blood viscosity, plasma viscosity, haematocrit and erythrocyte sedimentation rate before ... higher (6.78±0.18mm/hr) during the menstrual phase than during the premenstrual phase ... MATERIALS AND METHODS.
Viscose kink and drift-kink modes in a tokamak
Kuvshinov, B.N.; Mikhajlovskij, A.B.
1988-01-01
Intristic kink modes in a tokamak are theoretically investigated taking account of longitudinal viscosity of ions and electrons and drift effect. It is marked that dispersion equation of investigated modes coinsides in form with that for ballooning modes. It is shown that five types of intrinsic kink instability may be distinguished in disregard of viscosity and drift effects. Effect of stabilizing quasiideal viscose kink and viscose resistive kink modes by finite Larmuir ion radius is investigated. A branch of viscose reclosure mode which instability is due to electron viscosity is pointed out. A series of other viscose and drift-kink tokamak modes is considered. Both general disperse equations of the above-mentioned kink instability varieties, taking account of viscose and drift ones, and disperse equations of separate branches are presented
Liyanage, Chamari R D G; Kodali, Venkata
2014-10-17
The accessibility and usage of body building supplements is on the rise with stronger internet marketing strategies by the industry. The dangers posed by the ingredients in them are underestimated. A healthy young man came to the emergency room with palpitations and feeling unwell. Initial history and clinical examination were non-contributory to find the cause. ECG showed atrial fibrillation. A detailed history for any over the counter or herbal medicine use confirmed that he was taking supplements to bulk muscle. One of the components in these supplements is yohimbine; the onset of symptoms coincided with the ingestion of this product and the patient is symptom free after stopping it. This report highlights the dangers to the public of consuming over the counter products with unknown ingredients and the consequential detrimental impact on health. 2014 BMJ Publishing Group Ltd.
Caldera resurgence driven by magma viscosity contrasts.
Galetto, Federico; Acocella, Valerio; Caricchi, Luca
2017-11-24
Calderas are impressive volcanic depressions commonly produced by major eruptions. Equally impressive is the uplift of the caldera floor that may follow, dubbed caldera resurgence, resulting from magma accumulation and accompanied by minor eruptions. Why magma accumulates, driving resurgence instead of feeding large eruptions, is one of the least understood processes in volcanology. Here we use thermal and experimental models to define the conditions promoting resurgence. Thermal modelling suggests that a magma reservoir develops a growing transition zone with relatively low viscosity contrast with respect to any newly injected magma. Experiments show that this viscosity contrast provides a rheological barrier, impeding the propagation through dikes of the new injected magma, which stagnates and promotes resurgence. In explaining resurgence and its related features, we provide the theoretical background to account for the transition from magma eruption to accumulation, which is essential not only to develop resurgence, but also large magma reservoirs.
Shear viscosity, cavitation and hydrodynamics at LHC
Bhatt, Jitesh R.; Mishra, Hiranmaya; Sreekanth, V.
2011-01-01
We study evolution of quark-gluon matter in the ultrarelativistic heavy-ion collisions within the frame work of relativistic second-order viscous hydrodynamics. In particular, by using the various prescriptions of a temperature-dependent shear viscosity to the entropy ratio, we show that the hydrodynamic description of the relativistic fluid becomes invalid due to the phenomenon of cavitation. For most of the initial conditions relevant for LHC, the cavitation sets in very early stage. The cavitation in this case is entirely driven by the large values of shear viscosity. Moreover we also demonstrate that the conformal terms used in equations of the relativistic dissipative hydrodynamic can influence the cavitation time.
Pendulum Underwater - An Approach for Quantifying Viscosity
Leme, José Costa; Oliveira, Agostinho
2017-12-01
The purpose of the experiment presented in this paper is to quantify the viscosity of a liquid. Viscous effects are important in the flow of fluids in pipes, in the bloodstream, in the lubrication of engine parts, and in many other situations. In the present paper, the authors explore the oscillations of a physical pendulum in the form of a long and lightweight wire that carries a ball at its lower end, which is totally immersed in water, so as to determine the water viscosity. The system used represents a viscous damped pendulum and we tried different theoretical models to describe it. The experimental part of the present paper is based on a very simple and low-cost image capturing apparatus that can easily be replicated in a physics classroom. Data on the pendulum's amplitude as a function of time were acquired using digital video analysis with the open source software Tracker.
Viscosity, ion mobility, and the lambda transition
Goodstein, D.L.
1977-01-01
A model is presented of the lambda transition in superfluid helium in which fluctuations near the transition are approximated by distinct regions of normal fluid and superfluid. The macroscopic viscosity of such a medium is computed. The ion mobility is also computed, taking into account a region of normal fluid around the ion induced by electrostriction. The results are, for the viscosity, eta/sub lambda/ - eta approx. t/sup 0.67/ and for the mobility μ - μ/sub lambda/ approx. t/sup 0.92/, both in excellent agreement with recent experiments. The model suggests that the lambda transition itself is the point at which superfluid regions become macroscopically connected
An empirical model for the melt viscosity of polymer blends
Dobrescu, V.
1981-01-01
On the basis of experimental data for blends of polyethylene with different polymers an empirical equation is proposed to describe the dependence of melt viscosity of blends on component viscosities and composition. The model ensures the continuity of viscosity vs. composition curves throughout the whole composition range, the possibility of obtaining extremum values higher or lower than the viscosities of components, allows the calculation of flow curves of blends from the flow curves of components and their volume fractions. (orig.)
Elongational viscosity of narrow molar mass distribution polystyrene
Bach, Anders; Almdal, Kristoffer; Rasmussen, Henrik Koblitz
2003-01-01
Transient and steady elongational viscosity has been measured for two narrow molar mass distribution polystyrene melts of molar masses 200 000 and 390 000 by means of a filament stretching rheometer. Total Hencky strains of about five have been obtained. The transient elongational viscosity rises...... above the linear viscoelastic prediction at intermediate strains, indicating strain hardening. The steady elongational viscosities are monotone decreasing functions of elongation rate. At elongation rates larger than the inverse reptation time, the steady elongational viscosity scales linearly...
Measurement of viscosity of slush at high shear rates
小林, 俊一; 川村, 公之; 津川, 圭一; 和泉, 薫; Kobayashi, Shun'ichi; Kawamura, Kimiyuki; Tugawa, Keiichi; Izumi, Kaoru
1988-01-01
Measurements of viscosity of slush were carried out using a method of flow along an inclined smooth surface in a 0℃cold room. The method was used to get the values of viscosity under high shear rates (25 and 75s^). From our experiments two important results were obtained: 1) the viscosity of slush decreases with increasing shear rates; 2) The fluid behavior is pseudoplastic that the values of non-Newtonian index of viscosity were less than unity.
Alternative derivation of the parallel ion viscosity
Bravenec, R.V.; Berk, H.L.; Hammer, J.H.
1982-01-01
A set of double-adiabatic fluid equations with additional collisional relaxation between the ion temperatures parallel and perpendicular to a magnetic field are shown to reduce to a set involving a single temperature and a parallel viscosity. This result is applied to a recently published paper [R. V. Bravenec, A. J. Lichtenberg, M. A. Leiberman, and H. L. Berk, Phys. Fluids 24, 1320 (1981)] on viscous flow in a multiple-mirror configuration
Viscosity and Plasticity of Latvian Illite Clays
Jurgelāne, I; Vecstaudža, J; Stepanova, V; Mālers, J; Bērziņa-Cimdiņa, L
2012-01-01
Due to viscosity and plasticity, clays and clay minerals are used in civil engineering, pottery and also in cosmetics and medicine as thickening agents and emulsion and suspension stabilizers. The rheological properties of clay suspensions are complex. Mostly it is an interaction between mineral composition, clay particle size and pH value and also depends on clay minerals. Clay-water suspension is non-Newtonian fluid showing thixotropic and pseudoplastic properties. Results showed that plast...
Hall viscosity of hierarchical quantum Hall states
Fremling, M.; Hansson, T. H.; Suorsa, J.
2014-03-01
Using methods based on conformal field theory, we construct model wave functions on a torus with arbitrary flat metric for all chiral states in the abelian quantum Hall hierarchy. These functions have no variational parameters, and they transform under the modular group in the same way as the multicomponent generalizations of the Laughlin wave functions. Assuming the absence of Berry phases upon adiabatic variations of the modular parameter τ, we calculate the quantum Hall viscosity and find it to be in agreement with the formula, given by Read, which relates the viscosity to the average orbital spin of the electrons. For the filling factor ν =2/5 Jain state, which is at the second level in the hierarchy, we compare our model wave function with the numerically obtained ground state of the Coulomb interaction Hamiltonian in the lowest Landau level, and find very good agreement in a large region of the complex τ plane. For the same example, we also numerically compute the Hall viscosity and find good agreement with the analytical result for both the model wave function and the numerically obtained Coulomb wave function. We argue that this supports the notion of a generalized plasma analogy that would ensure that wave functions obtained using the conformal field theory methods do not acquire Berry phases upon adiabatic evolution.
Viscosity characteristics of selected volcanic rock melts
Hobiger, Manuel; Sonder, Ingo; Büttner, Ralf; Zimanowski, Bernd
2011-02-01
A basic experimental study of the behavior of magma rheology was carried out on remelted volcanic rocks using wide gap viscometry. The complex composition of magmatic melts leads to complicated rheologic behavior which cannot be described with one simple model. Therefore, measurement procedures which are able to quantify non-Newtonian behavior have to be employed. Furthermore, the experimental apparatus must be able to deal with inhomogeneities of magmatic melts. We measured the viscosity of a set of materials representing a broad range of volcanic processes. For the lower viscous melts (low-silica compositions), non-Newtonian behavior is observed, whereas the high-silica melts show Newtonian behavior in the measured temperature and shear rate range (T = 1423 K - 1623 K, γ˙ = 10 - 2 s - 1 - 20 s - 1 ). The non-Newtonian materials show power-law behavior. The measured viscosities η and power-law indexes m lie in the intervals 8 Pa s ≤ η ≤ 210 3 Pa s, 0.71 ≤ m ≤ 1.0 (Grímsvötn basalt), 0.9 Pa s ≤ η ≤ 350 Pa s, 0.61 ≤ m ≤ 0.93 (Hohenstoffeln olivine-melilitite), and 8 Pa s ≤ η ≤ 1.510 4 Pa s, 0.55 ≤ m ≤ 1.0 (Sommata basalt). Measured viscosities of the Newtonian high-silica melts lie in the range 10 4 Pa s ≤ η ≤ 310 5 Pa s.
Turbulent viscosity optimized by data assimilation
Y. Leredde
Full Text Available As an alternative approach to classical turbulence modelling using a first or second order closure, the data assimilation method of optimal control is applied to estimate a time and space-dependent turbulent viscosity in a three-dimensional oceanic circulation model. The optimal control method, described for a 3-D primitive equation model, involves the minimization of a cost function that quantifies the discrepancies between the simulations and the observations. An iterative algorithm is obtained via the adjoint model resolution. In a first experiment, a k + L model is used to simulate the one-dimensional development of inertial oscillations resulting from a wind stress at the sea surface and with the presence of a halocline. These results are used as synthetic observations to be assimilated. The turbulent viscosity is then recovered without the k + L closure, even with sparse and noisy observations. The problems of controllability and of the dimensions of the control are then discussed. A second experiment consists of a two-dimensional schematic simulation. A 2-D turbulent viscosity field is estimated from data on the initial and final states of a coastal upwelling event.
Key words. Oceanography: general (numerical modelling · Oceanography: physical (turbulence · diffusion · and mixing processes
RELAP-7 Numerical Stabilization: Entropy Viscosity Method
R. A. Berry; M. O. Delchini; J. Ragusa
2014-06-01
The RELAP-7 code is the next generation nuclear reactor system safety analysis code being developed at the Idaho National Laboratory (INL). The code is based on the INL's modern scientific software development framework, MOOSE (Multi-Physics Object Oriented Simulation Environment). The overall design goal of RELAP-7 is to take advantage of the previous thirty years of advancements in computer architecture, software design, numerical integration methods, and physical models. The end result will be a reactor systems analysis capability that retains and improves upon RELAP5's capability and extends the analysis capability for all reactor system simulation scenarios. RELAP-7 utilizes a single phase and a novel seven-equation two-phase flow models as described in the RELAP-7 Theory Manual (INL/EXT-14-31366). The basic equation systems are hyperbolic, which generally require some type of stabilization (or artificial viscosity) to capture nonlinear discontinuities and to suppress advection-caused oscillations. This report documents one of the available options for this stabilization in RELAP-7 -- a new and novel approach known as the entropy viscosity method. Because the code is an ongoing development effort in which the physical sub models, numerics, and coding are evolving, so too must the specific details of the entropy viscosity stabilization method. Here the fundamentals of the method in their current state are presented.
Temperature dependence of the bulk and surface properties of liquid Zn-Cd alloys
Awe, O.E. [University of Ibadan, Department of Physics, Ibadan (Nigeria); Azeez, A.A. [African University of Science and Technology, Abuja (Nigeria)
2017-05-15
The effects of temperature on the bulk and surface properties of liquid Zn-Cd alloys have been theoretically investigated, using a combination of self association model, Darken's thermodynamic equation for diffusion, empirical model for viscosity and a statistical mechanics model. The results from this study show that change in temperature resulted in cross-over effects in bulk and surface properties. We also found that with an increase in temperature, a pronounced asymmetry of viscosity isotherm is significantly reduced, and viscosity isotherm exhibited anomalous behaviour. Our results reveal that the homocoordination tendency in Zn-Cd liquid alloys is not strong and reduces with increasing temperature. The study further suggests a pronounced segregation of Cd-atoms at the surface of Zn-Cd liquid alloys and the extent of segregation reduces with temperature. We as well found that, in addition to the reported understanding that size-factor determines the compositional location of asymmetry of the viscosity isotherm, temperature is an operating parameter that has effect, not only on the composition of asymmetry, but also on the magnitude of asymmetry. In all the properties investigated, the most pronounced effect of temperature (52.9 %) is on the viscosity while the least effect (7.1 %) is on the surface tension. (orig.)
High-temperature bulk acoustic wave sensors
Fritze, Holger
2011-01-01
Piezoelectric crystals like langasite (La 3 Ga 5 SiO 14 , LGS) and gallium orthophosphate (GaPO 4 ) exhibit piezoelectrically excited bulk acoustic waves at temperatures of up to at least 1450 °C and 900 °C, respectively. Consequently, resonant sensors based on those materials enable new sensing approaches. Thereby, resonant high-temperature microbalances are of particular interest. They correlate very small mass changes during film deposition onto resonators or gas composition-dependent stoichiometry changes of thin films already deposited onto the resonators with the resonance frequency shift of such devices. Consequently, the objective of the work is to review the high-temperature properties, the operation limits and the measurement principles of such resonators. The electromechanical properties of high-temperature bulk acoustic wave resonators such as mechanical stiffness, piezoelectric and dielectric constant, effective viscosity and electrical conductivity are described using a one-dimensional physical model and determined accurately up to temperatures as close as possible to their ultimate limit. Insights from defect chemical models are correlated with the electromechanical properties of the resonators. Thereby, crucial properties for stable operation as a sensor under harsh conditions are identified to be the formation of oxygen vacancies and the bulk conductivity. Operation limits concerning temperature, oxygen partial pressure and water vapor pressure are given. Further, application-relevant aspects such as temperature coefficients, temperature compensation and mass sensitivity are evaluated. In addition, approximations are introduced which make the exact model handy for routine data evaluation. An equivalent electrical circuit for high-temperature resonator devices is derived based on the one-dimensional physical model. Low- and high-temperature approximations are introduced. Thereby, the structure of the equivalent circuit corresponds to the
High-temperature bulk acoustic wave sensors
Fritze, Holger
2011-01-01
Piezoelectric crystals like langasite (La3Ga5SiO14, LGS) and gallium orthophosphate (GaPO4) exhibit piezoelectrically excited bulk acoustic waves at temperatures of up to at least 1450 °C and 900 °C, respectively. Consequently, resonant sensors based on those materials enable new sensing approaches. Thereby, resonant high-temperature microbalances are of particular interest. They correlate very small mass changes during film deposition onto resonators or gas composition-dependent stoichiometry changes of thin films already deposited onto the resonators with the resonance frequency shift of such devices. Consequently, the objective of the work is to review the high-temperature properties, the operation limits and the measurement principles of such resonators. The electromechanical properties of high-temperature bulk acoustic wave resonators such as mechanical stiffness, piezoelectric and dielectric constant, effective viscosity and electrical conductivity are described using a one-dimensional physical model and determined accurately up to temperatures as close as possible to their ultimate limit. Insights from defect chemical models are correlated with the electromechanical properties of the resonators. Thereby, crucial properties for stable operation as a sensor under harsh conditions are identified to be the formation of oxygen vacancies and the bulk conductivity. Operation limits concerning temperature, oxygen partial pressure and water vapor pressure are given. Further, application-relevant aspects such as temperature coefficients, temperature compensation and mass sensitivity are evaluated. In addition, approximations are introduced which make the exact model handy for routine data evaluation. An equivalent electrical circuit for high-temperature resonator devices is derived based on the one-dimensional physical model. Low- and high-temperature approximations are introduced. Thereby, the structure of the equivalent circuit corresponds to the Butterworth
Microfabricated Bulk Piezoelectric Transformers
Barham, Oliver M.
Piezoelectric voltage transformers (PTs) can be used to transform an input voltage into a different, required output voltage needed in electronic and electro- mechanical systems, among other varied uses. On the macro scale, they have been commercialized in electronics powering consumer laptop liquid crystal displays, and compete with an older, more prevalent technology, inductive electromagnetic volt- age transformers (EMTs). The present work investigates PTs on smaller size scales that are currently in the academic research sphere, with an eye towards applications including micro-robotics and other small-scale electronic and electromechanical sys- tems. PTs and EMTs are compared on the basis of power and energy density, with PTs trending towards higher values of power and energy density, comparatively, indicating their suitability for small-scale systems. Among PT topologies, bulk disc-type PTs, operating in their fundamental radial extension mode, and free-free beam PTs, operating in their fundamental length extensional mode, are good can- didates for microfabrication and are considered here. Analytical modeling based on the Extended Hamilton Method is used to predict device performance and integrate mechanical tethering as a boundary condition. This model differs from previous PT models in that the electric enthalpy is used to derive constituent equations of motion with Hamilton's Method, and therefore this approach is also more generally applica- ble to other piezoelectric systems outside of the present work. Prototype devices are microfabricated using a two mask process consisting of traditional photolithography combined with micropowder blasting, and are tested with various output electri- cal loads. 4mm diameter tethered disc PTs on the order of .002cm. 3 , two orders smaller than the bulk PT literature, had the followingperformance: a prototype with electrode area ratio (input area / output area) = 1 had peak gain of 2.3 (+/- 0.1), efficiency of 33 (+/- 0
Developing bulk exchange spring magnets
Mccall, Scott K.; Kuntz, Joshua D.
2017-06-27
A method of making a bulk exchange spring magnet by providing a magnetically soft material, providing a hard magnetic material, and producing a composite of said magnetically soft material and said hard magnetic material to make the bulk exchange spring magnet. The step of producing a composite of magnetically soft material and hard magnetic material is accomplished by electrophoretic deposition of the magnetically soft material and the hard magnetic material to make the bulk exchange spring magnet.
The role of viscosity in TATB hot spot ignition
Fried, Laurence E.; Zepeda-Ruis, Luis; Howard, W. Michael; Najjar, Fady; Reaugh, John E.
2012-03-01
The role of dissipative effects, such as viscosity, in the ignition of high explosive pores is investigated using a coupled chemical, thermal, and hydrodynamic model. Chemical reactions are tracked with the Cheetah thermochemical code coupled to the ALE3D hydrodynamic code. We perform molecular dynamics simulations to determine the viscosity of liquid TATB. We also analyze shock wave experiments to obtain an estimate for the shock viscosity of TATB. Using the lower bound liquid-like viscosities, we find that the pore collapse is hydrodynamic in nature. Using the upper bound viscosity from shock wave experiments, we find that the pore collapse is closest to the viscous limit.
Electron treatment of wood pulp for the viscose process
Stepanik, T. M.; Ewing, D. E.; Whitehouse, R.
2000-03-01
Electron processing is currently being evaluated by several viscose producers for integration into their process. The viscose industry converts dissolving wood pulp into products such as staple fibre, filament, cord, film, packaging, and non-edible sausage casings. These materials are used in the clothing, drapery, hygiene, automobile, food, and packaging industries. Viscose producers are facing increasingly high production costs and stringent environmental regulations that have forced some plants to close. Electron treatment of wood pulp can significantly reduce the amounts of chemicals used for producing viscose and the production of hazardous pollutants. Acsion Industries has worked with companies worldwide to demonstrate the benefits of using electron treated pulp for producing viscose (rayon). This paper describes the viscose process, the benefits of using electron treatment in the viscose process, and Acsion's efforts in developing this technology.
Endre, Z.H.; Kuchel, P.W.
1986-01-01
Metabolically active human erythrocytes were incubated with [α- 13 C]glycine which led to the specific enrichment of intracellular glutathione. The cells were then studied using 13 C-NMR in which the longitudinal relaxation times (T 1 ) and nuclear Overhauser enhancements of the free glycine and glutathione were measured. Bulk viscosities of the erythrocyte cytoplasm were measured using Ostwald capillary viscometry. Large differences existed between the latter viscosity estimates and those based upon NMR-T 1 measurements. The authors derived an equation from the theory of the viscosity of concentrated solutions which contains two phenomenological interaction parameters, a 'shape' factor and a 'volume' factor; it was fitted to data relating to the concentration dependence of viscosity measured by both methods. Under various conditions of extracellular osmotic pressure, erythrocytes change volume and thus the viscosity of the intracellular milieu is altered. The volume changes resulted in changes in the T 1 of [α- 13 C]glycine. Conversely, the authors showed that alterations in T 1 , when appropriately calibrated, could be used for monitoring changes in volume of metabolically active cells. (Auth.)
Nuclear viscosity of hot rotating 240Cf
Shaw, N. P.; Dioszegi, I.; Mazumdar, I.; Buda, A.; Morton, C. R.; Velkovska, J.; Beene, J. R.; Stracener, D. W.; Varner, R. L.; Thoennessen, M.
2000-01-01
The absolute γ-ray/fission multiplicities from hot rotating 240 Cf, populated at seven bombarding energies using the reaction 32 S+ 208 Pb, are reported. Statistical model calculations including nuclear dissipation have been performed to extract the dependence of the nuclear viscosity on temperature and/or nuclear deformation. The extracted nuclear dissipation coefficient is found to be independent of temperature. Large dissipation during the saddle to scission path provides a good fit to the γ-ray spectra. (c) 2000 The American Physical Society
From Suitable Weak Solutions to Entropy Viscosity
Guermond, Jean-Luc
2010-12-16
This paper focuses on the notion of suitable weak solutions for the three-dimensional incompressible Navier-Stokes equations and discusses the relevance of this notion to Computational Fluid Dynamics. The purpose of the paper is twofold (i) to recall basic mathematical properties of the three-dimensional incompressible Navier-Stokes equations and to show how they might relate to LES (ii) to introduce an entropy viscosity technique based on the notion of suitable weak solution and to illustrate numerically this concept. © 2010 Springer Science+Business Media, LLC.
Viscosity in the edge of tokamak plasmas
Stacey, W.M.
1993-05-01
A fluid representation of viscosity has been incorporated into a set of fluid equations that are maximally ordered in the ''short-radial-gradient-scale-length'' (srgsl) ordering that is appropriate for the edge of tokamak plasmas. The srgsl ordering raises viscous drifts and other viscous terms to leading order and fundamentally alters the character of the fluid equations. A leasing order viscous drift is identified. Viscous-driven radial particle and energy fluxes in the scrape-off layer and divertor channel are estimated to have an order unity effect in reducing radial peaking of energy fluxes transported along the field lines to divertor collector plates
On the measurement of magnetic viscosity
Serletis, C.; Efthimiadis, K. G.
2012-08-01
This work is an investigation of the experimental method used for measuring the magnetic viscosity in a hard ferromagnetic material, i.e. the recording of the magnetization under constant applied field and temperature, after the material has been magnetically saturated. It investigates how the experimental results are affected by the initial conditions of the method (saturation field, field change rate and field oscillation prior to its stabilization), and by minor variations of field and temperature during the recording. Based on the arising conclusions and the use of a more complex fitting function of measurements, the accuracy and repeatability of experimental results is improved.
Viscosity of many-component glasses
Hrma, Pavel R.; Arrigoni, Benjamin M.; Schweiger, Michael J.
2009-01-01
The effect of composition on the viscosity of multicomponent glasses was expressed as a function of temperature and composition for three composition regions containing various subsets of Al2O3, B2O3, Bi2O3, CaO, Cr2O3, F, Fe2O3, K2O, Li2O, MgO, MnO, Na2O, NiO, P2O5, SiO2, UO2, and ZrO2. Limits of applicability of the composition models are discussed
Viscosity calculations at molecular dynamics simulations
Kirova, E M; Norman, G E
2015-01-01
Viscosity and diffusion are chosen as an example to demonstrate the universality of diagnostics methods in the molecular dynamics method. To emphasize the universality, three diverse systems are investigated, which differ from each other drastically: liquids with embedded atom method and pairwise interatomic interaction potentials and dusty plasma with a unique multiparametric interparticle interaction potential. Both the Einstein-Helfand and Green-Kubo relations are used. Such a particular process as glass transition is analysed at the simulation of the aluminium melt. The effect of the dust particle charge fluctuation is considered. The results are compared with the experimental data. (paper)
Melkumov, G L; Anticic, T; Baatar, B; Barna, D; Bartke, J; Betev, L; Bialkowska, H; Blume, C; Boimska, B; Botje, M; Bracinik, J; Bramm, R; Buncic, P; Cerny, V; Christakoglou, P; Chung, P; Chvala, O; Cramer, J G; Csató, P; Dinkelaker, P; Eckardt, V; Flierl, D; Fodor, Z; Foka, P; Friese, V; Gál, J; Gazdzicki, M; Genchev, V; Georgopoulos, G; Grebieszkow, K; Hegyi, S; Höhne, C; Kadija, K; Karev, A; Kikola, D; Gladysz-Dziadus, E; Kliemant, M; Kniege, S; Kolesnikov, V I; Kornas, E; Korus, R; Kowalski, M; Kraus, I; Kreps, M; Laszlo, A; Lacey, R; Van Leeuwen, M; Lvai, P; Litov, L; Lungwitz, B; Makariev, M; Malakhov, A I; Mateev, M; Melkumov, G L; Mischke, A; Mitrovski, M; Molnár, J; Mrówczynski, S; Nicolic, V; Pálla, G; Panagiotou, A D; Panayotov, D; Petridis, A; Peryt, W; Pikna, M; Pluta, J; Prindle, D; Pühlhofer, F; Renfordt, R; Roland, C; Roland5, G; Rybczynski, M; Rybicki, A; Sandoval, A; Schmitz, N; Schuster, T; Siklér, F; Sitár, B; Skrzypczak, E; Slodkowski, M; Stefanek, G; Stock, R; Seyboth, P; Strabel, C; Ströbele, H; Susa, T; Szentpetery, I; Sziklai, J; Szuba, M; Szymanski, P; Trubnikov, V; Varga, D; Vassiliou, M; Veres, G I; Vesztergombi, G; Vranic, D; Wlodarczyk, Z; Wojtaszek11, A; Yoo, I K; Zimnyi, J; Wetzler, A
2007-01-01
The NA49 experiment has collected comprehensive data on particle production in nucleus-nucleus collisions over the whole SPS beam energies range, the critical energy domain where the expected phase transition to a deconfined phase is expected to occur. The latest results from Pb+Pb collisions between 20$A$ GeV and 158$A$ GeV on baryon stopping and light nuclei production as well as those for strange hyperons are presented. The measured data on $p$, $\\bar{p}$, $\\Lambda$, $\\bar{\\Lambda}$, $\\Xi^-$ and $\\bar{\\Xi}^+$ production were used to evaluate the rapidity distributions of net-baryons at SPS energies and to compare with the results from the AGS and the RHIC for central Pb+Pb (Au+Au) collisions. The dependence of the yield ratios and the inverse slope parameter of the $m_t$ spectra on the collision energy and centrality, and the mass number of the produced nuclei $^3He$, $t$, $d$ and $\\bar{d}$ are discussed within coalescence and statistical approaches. Analysis of the total multiplicity exhibits remarkable a...
Lutz, M.F.M.; Korpa, C.L.
2001-05-01
We evaluate the antikaon spectral density in isospin symmetric nuclear matter. The in-medium antikaon-nucleon scattering process and the antikaon propagation is treated in a self consistent and relativistic manner where a maximally scheme-independent formulation is derived by performing a partial density resummation in terms of the free-space antikaon-nucleon scattering amplitudes. The latter amplitudes are taken from a relativistic and chiral coupled-channel SU(3) approach which includes s-, p- and d-waves systematically. Particular care is taken on the proper evaluation of the in-medium mixing of the partial waves. Our analysis establishes a rich structure of the antikaon spectral function with considerable strength at small energies. At nuclear saturation density we predict attractive mass shifts for the Λ(1405), Σ(1385) and Λ(1520) of about 130 MeV, 60 MeV and 100 MeV respectively. The hyperon states are found to exhibit at the same time an increased decay width of about 150 MeV for the s-wave Λ(1405), 70 MeV for the p-wave Σ(1385) and 100 MeV for the d-wave Λ(1520) resonance. (orig.)
Multistrange Hyperon Production in Pb+Pb collisions at 30, 40, 80 and 158 A$\\cdot$GeV
Mitrovski, Michael; Anticic, T; Baatar, B; Barna, D; Bartke, Jerzy; Behler, M; Betev, L; Bialkowska, H; Billmeier, A; Blume, C; Boimska, B; Botje, M; Bracinik, J; Bramm, R; Brun, R; Buncic, P; Cerny, V; Christakoglou, P; Chvala, O; Cramer, J G; Csató, P; Darmenov, N; Dimitrov, A; Dinkelaker, P; Eckardt, V; Filip, P; Fischer, H G; Flierl, D; Fodor, Z; Foka, P; Freund, P; Friese, V; Gál, J; Gazdzicki, M; Georgopoulos, G; Gladysz-Dziadus, E; Hegyi, S; Höhne, C; Kadija, K; Karev, A; Kliemant, M; Kniege, S; Kolesnikov, V I; Kollegger, T; Kornas, E; Korus, R; Kowalski, M; Kraus, I; Kreps, M; Van Leeuwen, M; Lévai, Peter; Litov, L; Lungwitz, B; Makariev, M; Malakhov, A I; Markert, C; Mateev, M; Mayes, B W; Melkumov, G L; Meurer, C; Mischke, A; Molnár, J; Mrówczynski, S; Pálla, G; Panagiotou, A D; Panayotov, D; Perl, K; Petridis, A; Pikna, M; Pinsky, L; Pühlhofer, F; Reid, J G; Renfordt, R E; Retyk, W; Richard, A; Roland, C; Roland, G; Rybczynski, M; Rybicki, A; Sandoval, A; Sann, H; Schmitz, N; Seyboth, P; Siklér, F; Sitár, B; Skrzypczak, E; Stefanek, G; Stock, R; Ströbele, H; Susa, T; Szentpétery, I; Sziklai, J; Trainor, T A; Varga, D; Vassiliou, Maria; Veres, G I; Vesztergombi, G; Vranic, D; Wenig, S; Wetzler, A; Wlodarczyk, Z; Yoo, I K; Zaranek, J; Zimányi, J; Mitrovski, Michael
2004-01-01
A non-monotonic energy dependence of the $K^{+} / \\pi^{+}$ ratio with a sharp maximum close to 30 A$\\cdot$GeV is observed in central Pb+Pb collisions. Within a statistical model of the early stage, this is interpreted as a sign of the phase transition to a QGP, which causes a sharp change in the energy dependence of the strangeness to entropy ratio. This observation naturally motivates us to study the production of multistrange hyperons ($\\Xi$, $\\Omega$) as a function of the beam energy. Furthermore it was suggested that the kinematic freeze-out of $\\Omega$ takes place directly at QGP hadronization. If this is indeed the case, the transverse momentum spectra of the $\\Omega$ directly reflect the transverse expansion velocity of a hadronizing QGP. In this report we show preliminary NA49 results on $\\Omega^{-}$ and $\\bar{\\Omega}^{+}$ production in central Pb+Pb collisions at 40 and 158 A$\\cdot$GeV and compare them to measurements of $\\Xi^{-}$ and $\\bar{\\Xi}^{+}$ production in central Pb+Pb collisions at 30, 40, ...
Shear viscosity and out of equilibrium dynamics
El, Andrej; Xu, Zhe; Greiner, Carsten
2009-01-01
Using Grad’s method, we calculate the entropy production and derive a formula for the second-order shear viscosity coefficient in a one-dimensionally expanding particle system, which can also be considered out of chemical equilibrium. For a one-dimensional expansion of gluon matter with Bjorken boost invariance, the shear tensor and the shear viscosity to entropy density ratio η/s are numerically calculated by an iterative and self-consistent prescription within the second-order Israel-Stewart hydrodynamics and by a microscopic parton cascade transport theory. Compared with η/s obtained using the Navier-Stokes approximation, the present result is about 20% larger at a QCD coupling αs ∼ 0.3 (with η/s ≈ 0.18) and is a factor of 2–3 larger at a small coupling αs ∼ 0.01. We demonstrate an agreement between the viscous hydrodynamic calculations and the microscopic transport results on η/s, except when employing a small αs . On the other hand, we demonstrate that for such small αs , the gluon syst...
Shear viscosity and out of equilibrium dynamics
El, Andrej; Xu, Zhe; Greiner, Carsten
2009-01-01
Using the Grad's method we calculate the entropy production and derive a formula for the second order shear viscosity coefficient in a one-dimensionally expanding particle system, which can also be considered out of chemical equilibrium. For a one-dimensional expansion of gluon matter with Bjorken boost invariance the shear tensor and the shear viscosity to entropy density ratio $\\eta/s$ are numerically calculated by an iterative and self-consistent prescription within the second order Israel-Stewart hydrodynamics and by a microscopic parton cascade transport theory. Compared with $\\eta/s$ obtained using the Navier-Stokes approximation, the present result is about 20% larger at a QCD coupling $\\alpha_s \\sim 0.3$(with $\\eta/s\\approx 0.18$) and is a factor of 2-3 larger at a small coupling $\\alpha_s \\sim 0.01$. We demonstrate an agreement between the viscous hydrodynamic calculations and the microscopic transport results on $\\eta/s$, except when employing a small $\\alpha_s$. On the other hand, we demonstrate th...
Shear viscosity coefficient from microscopic models
Muronga, Azwinndini
2004-01-01
The transport coefficient of shear viscosity is studied for a hadron matter through microscopic transport model, the ultrarelativistic quantum molecular dynamics (UrQMD), using the Green-Kubo formulas. Molecular-dynamical simulations are performed for a system of light mesons in a box with periodic boundary conditions. Starting from an initial state composed of π,η,ω,ρ,φ with a uniform phase-space distribution, the evolution takes place through elastic collisions, production, and annihilation. The system approaches a stationary state of mesons and their resonances, which is characterized by common temperature. After equilibration, thermodynamic quantities such as the energy density, particle density, and pressure are calculated. From such an equilibrated state the shear viscosity coefficient is calculated from the fluctuations of stress tensor around equilibrium using Green-Kubo relations. We do our simulations here at zero net baryon density so that the equilibration times depend on the energy density. We do not include hadron strings as degrees of freedom so as to maintain detailed balance. Hence we do not get the saturation of temperature but this leads to longer equilibration times
Shear viscosity and out of equilibrium dynamics
El, Andrej; Xu Zhe; Greiner, Carsten; Muronga, Azwinndini
2009-01-01
Using Grad's method, we calculate the entropy production and derive a formula for the second-order shear viscosity coefficient in a one-dimensionally expanding particle system, which can also be considered out of chemical equilibrium. For a one-dimensional expansion of gluon matter with Bjorken boost invariance, the shear tensor and the shear viscosity to entropy density ratio η/s are numerically calculated by an iterative and self-consistent prescription within the second-order Israel-Stewart hydrodynamics and by a microscopic parton cascade transport theory. Compared with η/s obtained using the Navier-Stokes approximation, the present result is about 20% larger at a QCD coupling α s ∼0.3 (with η/s≅0.18) and is a factor of 2-3 larger at a small coupling α s ∼0.01. We demonstrate an agreement between the viscous hydrodynamic calculations and the microscopic transport results on η/s, except when employing a small α s . On the other hand, we demonstrate that for such small α s , the gluon system is far from kinetic and chemical equilibrium, which indicates the break down of second-order hydrodynamics because of the strong nonequilibrium evolution. In addition, for large α s (0.3-0.6), the Israel-Stewart hydrodynamics formally breaks down at large momentum p T > or approx. 3 GeV but is still a reasonably good approximation.
Viscosity properties of tellurite-based glasses
Tincher, B.; Massera, J.; Petit, L.; Richardson, K.
2010-01-01
The viscosity behavior of glasses with the composition (90-x)TeO 2 -10Bi 2 O 3 -xZnO with x = 15, 17.5, and 20 (TBZ glasses) and 80TeO 2 -(20-y)Na 2 O-yZnO system with y = 0, 5, and 10 (TNZ glasses) have been measured as a function of temperature using a beam-bending (BBV) and a parallel-plate (PPV) viscometer. The structure of the glass' network has been characterized using Raman spectroscopy and has been related to the viscosity temperature behavior and the fragility parameter (m) of the glasses. As the concentration of ZnO in the TBZ system (x) increases, the fragility parameter of the glass increases, whereas it decreases with an increase of the ZnO concentration (y) in the TNZ system. In both glasses, these variations in m have been related to the partial depolymerization of the tellurite network associated with the level of modifier content. The depolymerization of the tellurite network is believed to be the result of a reduction in the number of [TeO 4 ] units and the formation of [TeO 3 ] and [TeO 3+1 ] units that occurs with a change in TeO 2 content in the TBZ system and modifier content in the TNZ system.
Reversing the direction of galvanotaxis with controlled increases in boundary layer viscosity
Kobylkevich, Brian M.; Sarkar, Anyesha; Carlberg, Brady R.; Huang, Ling; Ranjit, Suman; Graham, David M.; Messerli, Mark A.
2018-05-01
Weak external electric fields (EFs) polarize cellular structure and direct most migrating cells (galvanotaxis) toward the cathode, making it a useful tool during tissue engineering and for healing epidermal wounds. However, the biophysical mechanisms for sensing weak EFs remain elusive. We have reinvestigated the mechanism of cathode-directed water flow (electro-osmosis) in the boundary layer of cells, by reducing it with neutral, viscous polymers. We report that increasing viscosity with low molecular weight polymers decreases cathodal migration and promotes anodal migration in a concentration dependent manner. In contrast, increased viscosity with high molecular weight polymers does not affect directionality. We explain the contradictory results in terms of porosity and hydraulic permeability between the polymers rather than in terms of bulk viscosity. These results provide the first evidence for controlled reversal of galvanotaxis using viscous agents and position the field closer to identifying the putative electric field receptor, a fundamental, outside-in signaling receptor that controls cellular polarity for different cell types.
Stress tensor and viscosity of water: Molecular dynamics and generalized hydrodynamics results
Bertolini, Davide; Tani, Alessandro
1995-08-01
The time correlation functions (CF's) of diagonal and off-diagonal components of the stress tensor of water have been calculated at 245 and 298 K in a molecular dynamics (MD) study on 343 molecules in the microcanonical ensemble. We present results obtained at wave number k=0 and at a few finite values of k, in the atomic and molecular formalism. In all cases, more than 98% of these functions are due to the potential term of the stress tensor. At k=0, their main features are a fast oscillatory initial decay, followed by a long-time tail more apparent in the supercooled region. Bulk and shear viscosities, calculated via Green-Kubo integration of the relevant CF at k=0, are underestimated with respect to experimental data, mainly at low temperature, but their ratio (~=2) is correctly reproduced. Both shear and bulk viscosity decrease as a function of k, the latter more rapidly, so that they become almost equal at ~=1 Å-1. Also, both viscosities drop rapidly from their maximum at ω=0. This behavior has been related to the large narrowing observed in the acoustic band, mainly in the supercooled region. The infinite frequency bulk and shear rigidity moduli have been shown to be in fair agreement with the experimental data, provided the MD value used for comparison is that corresponding to the frequency range relevant to ultrasonic measurements. The MD results of stress-stress CF's compare well with those predicted by Bertolini and Tani [Phys. Rev. E 51, 1091 (1995)] at k=0, by an application of generalized hydrodynamics [de Schepper et al., Phys. Rev. A 38, 271 (1988)] in the molecular formalism, to the same model of water (TIP4P) [Jorgensen et al., J. Chem. Phys. 79, 926 (1983)]. These CF's are essentially equal in the atomic and molecular formalism, the only minor difference being restricted to the high frequency librational region of the shear function. By a comparison of atomic and molecular results, we show here that neglecting libration has no effect on the
Viscosity of glasses containing simulated Savannah River Plant waste
Plodinec, M.J.
1978-08-01
The viscosity of glass melts containing four simulated sludge types and two frit candidates (Frits 18 and 21) was measured over the temperature range 750 to 1200 0 C. The viscosity of melts made with either frit was reduced by the addition of high iron sludge, unchanged by average sludge, and increased by composite and high aluminum sludge. High aluminium sludge greatly increased the viscosity. Frit 21 (containing 4 wt % Li 2 O substituted for 4 wt % Na 2 O in Frit 18) was clearly better than Frit 18 in terms of its low viscosity. However, further reductions in viscosity are desirable, especially for glasses containing high aluminum sludge. Changing any frit component by 1 wt % did not significantly affect the viscosity of the glasses. Therefore, variability of 1 wt % in any frit component can be tolerated
Viscosity calculations of simulated ion-exchange resin waste glasses
Kim, Cheon Woo; Park, Jong Kil; Lee, Kyung Ho; Lee, Myung Chan; Song, Myung Jae; BRUNELOT, Pierre
2000-01-01
An induction cold crucible melter (CCM) located in the NETEC-KEPCO has been used to vitrify simulated ion-exchange resin. During vitrification, the CCM operations were tightly constrained by glass viscosity as an important process parameter. Understanding the role of viscosity and quantifying viscosity is highly required in the determination of optimized feed formulations and in the selection of the processing temperature. Therefore, existing process models of glass viscosity based on a relationship between the glass composition, its structure polymerization, and the temperature were searched and adapted to our borosilicate glass systems. Calculated data using a viscosity model based on calculation of non-bridging oxygen (NBO) were in good agreement with the measured viscosity data of benchmark glasses
Mining the bulk positron lifetime
Aourag, H.; Guittom, A.
2009-01-01
We introduce a new approach to investigate the bulk positron lifetimes of new systems based on data-mining techniques. Through data mining of bulk positron lifetimes, we demonstrate the ability to predict the positron lifetimes of new semiconductors on the basis of available semiconductor data already studied. Informatics techniques have been applied to bulk positron lifetimes for different tetrahedrally bounded semiconductors in order to discover computational design rules. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Modeling of Viscosity and Thermal Expansion of Bioactive Glasses
Farid, Saad B. H.
2012-01-01
The behaviors of viscosity and thermal expansion for different compositions of bioactive glasses have been studied. The effect of phosphorous pentoxide as a second glass former in addition to silica was investigated. Consequently, the nonlinear behaviors of viscosity and thermal expansion with respect to the oxide composition have been modeled. The modeling uses published data on bioactive glass compositions with viscosity and thermal expansion. -regression optimization technique has been uti...
Viscosity, thermal diffusivity and Prandtl number of nanoparticle suspensions
WANG Buxuan; ZHOU Leping; PENG Xiaofeng
2004-01-01
Using our reported experimental data of effective thermal conductivity, specific heat capacity and viscosity for CuO nanoparticle suspensions, the corresponding thermal diffusivity and Prandtl number are calculated. With the hard sphere model and considering effects of particle clustering and surface adsorption, the increase of viscosity for nanoparticle suspension observed is explained. It is shown that the effective thermal conductivity will be strongly affected by the formation and correlated spatial distribution of nanoparticle clusters when compared to viscosity in hosting liquid.
Dynamics of charged bulk viscous collapsing cylindrical source with heat flux
Shah, S.M.; Abbas, G. [The Islamia University of Bahawalpur, Department of Mathematics, Bahawalpur (Pakistan)
2017-04-15
In this paper, we have explored the effects of dissipation on the dynamics of charged bulk viscous collapsing cylindrical source which allows the out-flow of heat flux in the form of radiations. The Misner-Sharp formalism has been implemented to drive the dynamical equation in terms of proper time and radial derivatives. We have investigated the effects of charge and bulk viscosity on the dynamics of collapsing cylinder. To determine the effects of radial heat flux, we have formulated the heat transport equations in the context of Mueller-Israel-Stewart theory by assuming that thermodynamics viscous/heat coupling coefficients can be neglected within some approximations. In our discussion, we have introduced the viscosity by the standard (non-causal) thermodynamics approach. The dynamical equations have been coupled with the heat transport equation; the consequences of the resulting coupled heat equation have been analyzed in detail. (orig.)
Kawamata, H.; Kuwaki, S.; Mishina, T.; Ikoma, T.; Tanaka, J.; Nozaki, R.
2017-03-01
Aqueous solutions of biomolecules such as proteins are very important model systems for understanding the functions of biomolecules in actual life processes because interactions between biomolecules and the surrounding water molecules are considered to be important determinants of biomolecules’ functions. Globule proteins have been extensively studied via dielectric spectroscopy; the results indicate three relaxation processes originating from fluctuations in the protein molecule, the bound water and the bulk water. However, the characteristics of aqueous solutions of collagens have rarely been investigated. In this work, based on broadband dielectric measurements between 500 MHz and 2.5 THz, we demonstrate that the high viscosity of a collagen aqueous solution is due to the network structure being constructed of rod-like collagen molecules surrounding free water molecules and that the water molecules are not responsible for the viscosity. We determine that the macroscopic viscosity is related to the mean lifetime of the collagen-collagen interactions supporting the networks and that the local viscosity of the water surrounded by the networks is governed by the viscosity of free water as in the bulk. This hierarchical structure in the dynamics of the aqueous solution of biomolecules has been revealed for the first time.
Rotational and spin viscosities of water: Application to nanofluidics
Hansen, Jesper Søndergaard; Bruus, Henrik; Todd, B.D.
2010-01-01
In this paper we evaluate the rotational viscosity and the two spin viscosities for liquid water using equilibrium molecular dynamics. Water is modeled via the flexible SPC/Fw model where the Coulomb interactions are calculated via the Wolf method which enables the long simulation times required....... We find that the rotational viscosity is independent of the temperature in the range from 284 to 319 K. The two spin viscosities, on the other hand, decrease with increasing temperature and are found to be two orders of magnitude larger than that estimated by Bonthuis et al. [Phys. Rev. Lett. 103...
Applicability of viscosity measurement to the detection of irradiated peppers
Hayashi, T.; Todoriki, S.; Kohyama, K.
1996-01-01
Starch is degraded by ionising radiation, resulting in a decrease in viscosity. The viscosities of black and white peppers which contain large amounts of starch are reduced by irradiation so, therefore, viscosity measurement has been proposed as a method to detect the irradiation treatment of these food products. Although detection of irradiated spices by thermoluminescence measurement has been established, it is useful to establish the viscosity measuring technique for detecting irradiated peppers, as this method is carried out widely in the laboratories of food controlling authorities and food processing companies. (author)
Viscosity of Heterogeneous Silicate Melts: A Non-Newtonian Model
Liu, Zhuangzhuang; Blanpain, Bart; Guo, Muxing
2017-12-01
The recently published viscosity data of heterogeneous silicate melts with well-documented structure and experimental conditions are critically re-analyzed and tabulated. By using these data, a non-Newtonian viscosity model incorporating solid fraction, solid shape, and shear rate is proposed on the basis of the power-law equation. This model allows calculating the viscosity of the heterogeneous silicate melts with solid fraction up to 34 vol pct. The error between the calculated and measured data is evaluated to be 32 pct, which is acceptable considering the large error in viscosity measurement of the completely liquid silicate melt.
Determination of viscosity in recirculating fluidized bed using radioactive tracer
Silva, G.G. da.
1986-01-01
The use of radioactive tracer for measuring viscosity is proposed. The methodology relates the terminal velocity of a radioactive sphere in interior of fluid with the viscosity, which can be a fluidized bed or total flow of solids. The arrangement is composed by two γ detectors placed externally and along the bed. Both detectors are coupled by amplifier to electronic clock. The drop time of sphere between two detectors is measured. The bed viscosity two detectors is measured. The bed viscosity is calculated from mathematical correlations of terminal velocity of the sphere. (M.C.K.)
Bulk stress auto-correlation function in simple liquids-sum rules
Tankeshwar, K.; Bhandari, R.; Pathak, K.N.
1990-10-01
Expressions for the zeroth, second and fourth frequency sum rules of the bulk stress auto correlation function have been derived. The exact expressions involve static correlation function up to four particles. Because of the non availability of any information about static quadruplet correlation function we use a low order decoupling approximation for this. In this work, we have obtained, separately, the sum rules for the different mechanism of momentum transfer in the fluids. The results are expected to be useful in the study of bulk viscosity of the fluids. (author). 9 refs
McNabb, John W.C. [Carnegie Mellon Univ., Pittsburgh, PA (United States)
2002-12-05
The differential cross section and hyperon recoil polarizations of the photoproduction of the ground state hyperons, γ p → K^{+} Λ and γ p → K^{+} Σ^{0} , have been measured with the CLAS at Jefferson Lab up to a photon energy in the lab of 2.325 GeV. The results for both channels show significantly larger cross section in the middle to forward angles than have been observed previously by the SAPHIR Collaboration. Both reactions show significantly more backward peaking in the angular distributions than has previously been possible to observe. The backward peaking hints that hyperon resonances in the u-channel play a significant role in the production mechanism. In addition, in the γ p → K^{+} Λ reaction, a previously unobserved bump in the cross section was observed at forward angles, centered on a W of 1.95 GeV with a width of approximately Γ = 100 MeV. In both γ p → K^{+} Y reactions the recoil polarization in the forward direction seems reasonably well reproduced by t-channel interferences in a Regge model calculation as well as hadrodynamic models that include kaon resonances in the t-channel. The recoil polarization for γ p → K^{+} Λ shows a significant enhancement around a W of 1.9 GeV in the backward angles, which is a sign of resonance activity in this vicinity. The polarization of γ p → K^{+} Σ^{0} at backward angles is, in contrast, less pronounced and mostly consistent with zero.
Sensor for viscosity and shear strength measurement
Ebadian, M.A.; Dillion, J.; Moore, J.; Jones, K.
1998-01-01
Measurement of the physical properties (viscosity and density) of waste slurries is critical in evaluating transport parameters to ensure turbulent flow through transport pipes. The environment for measurement and sensor exposure is extremely harsh; therefore, reliability and ruggedness are critical in the sensor design. Two different viscometer techniques are being investigated in this study, based on: magnetostrictive pulse generated acoustic waves; and an oscillating cylinder. Prototype sensors have been built and tested which are based on both techniques. A base capability instrumentation system has been designed, constructed, and tested which incorporates both of these sensors. It requires manual data acquisition and off-line calculation. A broad range of viscous media has been tested using this system. Extensive test results appear in this report. The concept for each technique has been validated by these test results. This base capability system will need to be refined further before it is appropriate for field tests. The mass of the oscillating system structure will need to be reduced. A robust acoustic probe assembly will need to be developed. In addition, in March 1997 it was made known for the first time that the requirement was for a deliverable automated viscosity instrumentation system. Since then such a system has been designed, and the hardware has been constructed so that the automated concept can be proved. The rest of the hardware, which interfaced to a computer, has also been constructed and tested as far as possible. However, for both techniques the computer software for automated data acquisition, calculation, and logging had not been completed before funding and time ran out.
Viscous surface flow induced on Ti-based bulk metallic glass by heavy ion irradiation
Zhang, Kun [Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Hu, Zheng [Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Science and Technology on Vehicle Transmission Laboratory, China North Vehicle Research Institute, Beijing 100072 (China); Li, Fengjiang [Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Wei, Bingchen, E-mail: weibc@imech.ac.cn [Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China)
2016-12-30
Highlights: • Obvious smoothing and roughening phases on the Ti-based MG surface resulted, which correspond respectively to the normal and off-normal incidence angles. • Atomic force microscopy confirms two types of periodic ripples distributed evenly over the rough surface. • The irradiation-induced viscosity of MG is about 4×10{sup 12} Pa·s, which accords with the theoretical prediction for metallic glasses close to glass transition temperature. • Surface-confined viscous flow plays a dominant quantitative role, which is due to radiation-induced softening of the low-viscosity surface layer. - Abstract: Ti-based bulk metallic glass was irradiated by a 20 MeV Cl{sup 4+} ion beam under liquid-nitrogen cooling, which produced remarkable surface smoothing and roughening that respectively correspond to normal and off-normal incidence angles of irradiation. Atomic force microscopy confirms two types of periodic ripples distributed evenly over the rough glass surface. In terms of mechanism, irradiation-induced viscosity agrees with the theoretical prediction for metallic glasses near glass transition temperature. Here, a model is introduced, based on relaxation of confined viscous flow with a thin liquid-like layer, that explains both surface smoothing and ripple formation. This study demonstrates that bulk metallic glass has high morphological instability and low viscosity under ion irradiation, which assets can pave new paths for metallic glass applications.
Viscosity of iodinated contrast agents during renal excretion
Jost, Gregor; Lengsfeld, Philipp; Lenhard, Diana C.; Pietsch, Hubertus; Huetter, Joachim; Sieber, Martin A.
2011-01-01
Objective: Modern iodinated non-ionic contrast agents (CAs) can be classified based on their molecular structure into monomeric and dimeric CAs and have at comparable iodine concentrations a different viscosity and osmolality. During their renal excretion, CAs are concentrated in the renal tubuli which might enhance the viscosity difference between monomeric and dimeric CAs. The viscosity of a CA might have an underestimated importance for renal safety, as suggested by recent publications. In this study, we investigated the viscosities of CAs at the concentrations expected to be present in renal tubules. This concentration process was simulated in vitro using dialysis. Furthermore, we investigated urine viscosity and urine flow in rodents after administration of several non-ionic monomeric and dimeric CAs. Materials and methods: To estimate the viscosity of the CAs in vivo, we performed an in vitro dialysis of monomeric and dimeric CAs at various physiological osmolalities of the renal tubulus (290, 400, 500, 700 and 1000 mOsm/kg H 2 O). Following the dialysis, the iodine concentrations and the viscosities of the CAs were determined. Furthermore, to investigate the concentration process in vivo, we measured the urine viscosity and the urine flow in Han Wister rats after the administration of Iopromide, Iohexol, Ioversol, Iomeprol, Iodixanol, and Iosimenol at comparable iodine concentrations. As a control, saline was injected at the same volume. Results: In vitro dialysis of the dimeric CA increased the iodine concentration and strongly increased the viscosity at all tested osmolalities. In contrast, for the monomeric agents an increase in concentration and viscosity was observed only at 700 as well 1000 mOsm/kg H 2 O but to a lesser extent. In summary, dialysis strongly enhanced the viscosity differences between the non-ionic monomeric and dimeric CAs. The administration of dimeric CAs leads to a strong increase in urine viscosity; this was not observed for the
Viscosity of iodinated contrast agents during renal excretion
Jost, Gregor, E-mail: Gregor.Jost@bayer.com [TRG Diagnostic Imaging, Bayer Schering Pharma AG, Berlin (Germany); Lengsfeld, Philipp, E-mail: Philipp.Lengsfeld@bayer.com [Global Medical Affairs Diagnostic Imaging, Bayer Schering Pharma AG, Berlin (Germany); Lenhard, Diana C., E-mail: Diana.Lenhard@bayer.com [TRG Diagnostic Imaging, Bayer Schering Pharma AG, Berlin (Germany); Pietsch, Hubertus, E-mail: Hubertus.Pietsch@bayer.com [TRG Diagnostic Imaging, Bayer Schering Pharma AG, Berlin (Germany); Huetter, Joachim, E-mail: Joachim.Huetter@bayer.com [TRG Diagnostic Imaging, Bayer Schering Pharma AG, Berlin (Germany); Sieber, Martin A., E-mail: Martin.Sieber@bayer.com [TRG Diagnostic Imaging, Bayer Schering Pharma AG, Berlin (Germany)
2011-11-15
Objective: Modern iodinated non-ionic contrast agents (CAs) can be classified based on their molecular structure into monomeric and dimeric CAs and have at comparable iodine concentrations a different viscosity and osmolality. During their renal excretion, CAs are concentrated in the renal tubuli which might enhance the viscosity difference between monomeric and dimeric CAs. The viscosity of a CA might have an underestimated importance for renal safety, as suggested by recent publications. In this study, we investigated the viscosities of CAs at the concentrations expected to be present in renal tubules. This concentration process was simulated in vitro using dialysis. Furthermore, we investigated urine viscosity and urine flow in rodents after administration of several non-ionic monomeric and dimeric CAs. Materials and methods: To estimate the viscosity of the CAs in vivo, we performed an in vitro dialysis of monomeric and dimeric CAs at various physiological osmolalities of the renal tubulus (290, 400, 500, 700 and 1000 mOsm/kg H{sub 2}O). Following the dialysis, the iodine concentrations and the viscosities of the CAs were determined. Furthermore, to investigate the concentration process in vivo, we measured the urine viscosity and the urine flow in Han Wister rats after the administration of Iopromide, Iohexol, Ioversol, Iomeprol, Iodixanol, and Iosimenol at comparable iodine concentrations. As a control, saline was injected at the same volume. Results: In vitro dialysis of the dimeric CA increased the iodine concentration and strongly increased the viscosity at all tested osmolalities. In contrast, for the monomeric agents an increase in concentration and viscosity was observed only at 700 as well 1000 mOsm/kg H{sub 2}O but to a lesser extent. In summary, dialysis strongly enhanced the viscosity differences between the non-ionic monomeric and dimeric CAs. The administration of dimeric CAs leads to a strong increase in urine viscosity; this was not observed for
Understanding the Viscosity of Liquids used in Infant Dysphagia Management
Frazier, Jackie; Chestnut, Amanda; Jackson, Arwen; Barbon, Carly E. A.; Steele, Catriona M.; Pickler, Laura
2016-01-01
When assessing swallowing in infants, it is critical to have confidence that the liquids presented during the swallow study closely replicate the viscosity of liquids in the infant's typical diet. However, we lack research on rheological properties of frequently used infant formulas or breastmilk, and various forms of barium contrast media used in swallow studies. The aim of the current study was to provide objective viscosity measurements for typical infant liquid diet options and barium contrast media. A TA-Instruments AR2000 Advanced Rheometer was used to measure the viscosity, five standard infant formulas, three barium products and two breastmilk samples. Additionally, this study measured the viscosity of infant formulas and breastmilk when mixed with powdered barium contrast in a 20% weight-to-volume (w/v) concentration. Study findings determined that standard infant formulas and the two breastmilk samples had low viscosities, at the lower end of the National Dysphagia Diet (NDD) thin liquid range. Two specialty formulas tested had much thicker viscosities, close to the NDD nectar-thick liquid range lower boundary. The study showed differences in viscosity between two 60% w/v barium products (Liquid E-Z-Paque® and E-Z-Paque® powder); the powdered product had a much lower viscosity, despite identical barium concentration. When E-Z-Paque® powdered barium was mixed in a 20% w/v concentration using water, standard infant formulas or breastmilk, the resulting viscosities were at the lower end of the NDD thin range, and only slightly thicker than the non-barium comparator liquids. When E-Z-Paque® powdered barium was mixed in a 20% w/v concentration with the two thicker specialty formulas (Enfamil AR 20kcal and 24 kcal), unexpected alterations in their original viscosity occurred. These findings highlight the clinical importance of objective measures of viscosity as well as objective data on how infant formulas or breastmilk may change in consistency when mixed
Whole-blood viscosity and the insulin-resistance syndrome.
Høieggen, A; Fossum, E; Moan, A; Enger, E; Kjeldsen, S E
1998-02-01
In a previous study we found that elevated blood viscosity was linked to the insulin resistance syndrome, and we proposed that high blood viscosity may increase insulin resistance. That study was based on calculated viscosity. To determine whether directly measured whole-blood viscosity was related to the insulin-resistance syndrome in the same way as calculated viscosity had been found to be. Healthy young men were examined with the hyperinsulinemic isoglycemic glucose clamp technique, and we related insulin sensitivity (glucose disposal rate) to other metabolic parameters and to blood viscosity. We established a technique for direct measurement of whole-blood viscosity. There were statistically significant negative correlations between glucose disposal rate and whole-blood viscosity at low and high shear rates (r = -0.41, P = 0.007 for both, n = 42). Whole-blood viscosity was correlated positively (n = 15) to serum triglyceride (r = 0.54, P = 0.04) and total cholesterol (r = 0.52, P = 0.05), and negatively with high-density lipoprotein cholesterol (r = -0.53, P = 0.04) concentrations. Insulin sensitivity index was correlated positively to high-density lipoprotein cholesterol (r = 0.54, P = 0.04) and negatively to serum triglyceride (r = -0.69, P = 0.005) and to total cholesterol (r = -0.81, P = 0.0003) concentrations. The present results demonstrate for the first time that there is a negative relationship between directly measured whole-blood viscosity and insulin sensitivity as a part of the insulin-resistance syndrome. Whole-blood viscosity contributes to the total peripheral resistance, and these results support the hypothesis that insulin resistance has a hemodynamic basis.
Modelling of bulk superconductor magnetization
Ainslie, M D; Fujishiro, H
2015-01-01
This paper presents a topical review of the current state of the art in modelling the magnetization of bulk superconductors, including both (RE)BCO (where RE = rare earth or Y) and MgB 2 materials. Such modelling is a powerful tool to understand the physical mechanisms of their magnetization, to assist in interpretation of experimental results, and to predict the performance of practical bulk superconductor-based devices, which is particularly important as many superconducting applications head towards the commercialization stage of their development in the coming years. In addition to the analytical and numerical techniques currently used by researchers for modelling such materials, the commonly used practical techniques to magnetize bulk superconductors are summarized with a particular focus on pulsed field magnetization (PFM), which is promising as a compact, mobile and relatively inexpensive magnetizing technique. A number of numerical models developed to analyse the issues related to PFM and optimise the technique are described in detail, including understanding the dynamics of the magnetic flux penetration and the influence of material inhomogeneities, thermal properties, pulse duration, magnitude and shape, and the shape of the magnetization coil(s). The effect of externally applied magnetic fields in different configurations on the attenuation of the trapped field is also discussed. A number of novel and hybrid bulk superconductor structures are described, including improved thermal conductivity structures and ferromagnet–superconductor structures, which have been designed to overcome some of the issues related to bulk superconductors and their magnetization and enhance the intrinsic properties of bulk superconductors acting as trapped field magnets. Finally, the use of hollow bulk cylinders/tubes for shielding is analysed. (topical review)
Should you trust your heavy oil viscosity measurement?
Nelson, L.; Miller, K.; Almond, R. [Petrovera Resources Ltd., Edmonton, AB (Canada)
2003-07-01
For the last 60 years, the heavy oil and bitumen reservoirs from western Canada have been exploited with varying degrees of success. There are many factors that may effect heavy oil and bitumen production rates. Primary production rates, which vary greatly from field to field, were found to improve with the addition of steam. Viscosity is the single most valued criteria in predicting cold production response from a new field. It is also the criteria used to determine whether thermal process are needed to reduce oil viscosity, or whether horizontal or vertical wells should be used. This study examined why production forecasts based on oil viscosity alone have been poor. It is based on an extensive data collection project in the Elk Point area reservoir which has lower than expected and erratic cold production rates. Viscosity values from the same wells were found to vary by a factor of four or more. One of the objectives of this study was to encourage commercial labs to develop an industry-wide standard method of heavy oil sample cleaning and viscosity measurement. It is generally understood that viscosity increases with an increase in the concentration of asphaltenes, but there is little information to quantify the relationship. Some studies suggest that viscosity increases logarithmically with increasing asphaltenes. It was concluded that the prediction of the viscosity of heavy oils and bitumens is very empirical, but there are ways to improve data comparisons and evaluation by applying available information from other scientific fields. 23 refs., 5 tabs., 6 figs.
Heritability and Seasonal Changes in Viscosity of Slash Pine Oleoresin
Robert D. McReynolds
1971-01-01
Oleoresin viscosity was measured in slash pine (Pinus elliottii var. elliottii) trees of known genetic origin over a 1-year period. A strong broad-sense heritability of this trait was found. Seasonal variation followed a definite pattern, with the highest viscosities occurring in early spring and a gradual decline occurring in...
Viscosity of liquids theory, estimation, experiment, and data
Viswanath, Dabir S; Prasad, Dasika HL; Dutt, Nidamarty VK; Rani, Kalipatnapu Y
2007-01-01
Single comprehensive book on viscosity of liquids, as opposed to most of the books in this area which are data books, i.e., a compilation of viscosity data from the literature, where the information is scattered and the description and analysis of the experimental methods and governing theory are not readily available in a single place.
Viscosity of low-temperature substances at pressure
Rudenko, N.S.; Slyusar', V.P.
1976-01-01
The review presents an analysis of data available on the viscosity coefficients of hydrogen, deuterohydrogen, deuterium, neon, argon, krypton, xenon, nitrogen and methane under pressure in the temperature range from triple points to 300 deg K. Averaged values of viscosity coefficients for all the substances listed above versus temperature, pressure and density are tabulated
Elongational viscosity of monodisperse and bidisperse polystyrene melts
Nielsen, Jens Kromann; Rasmussen, Henrik K.; Hassager, Ole
2006-01-01
The start-up and steady uniaxial elongational viscosity have been measured for two monodisperse polystyrene melts with molecular weights of 52 and 103 kg/mole, and for three bidisperse polystyrene melts. The monodisperse melts show a maximum in the steady elongational viscosity vs. the elongational...
Effective viscosity of dispersions approached by a statistical continuum method
Mellema, J.; Willemse, M.W.M.
1983-01-01
The problem of the determination of the effective viscosity of disperse systems (emulsions, suspensions) is considered. On the basis of the formal solution of the equations governing creeping flow in a statistically homogeneous dispersion, the effective viscosity is expressed in a series expansion
On-line measurement of food viscosity during flow
Mason, Sarah Louise; Friis, Alan
2006-01-01
Sarah L. Mason and Alan Friis discuss some of the principles and equipment used to monitor food viscosity in real time.......Sarah L. Mason and Alan Friis discuss some of the principles and equipment used to monitor food viscosity in real time....
A Riemann problem with small viscosity and dispersion
Kayyunnapara Thomas Joseph
2006-09-01
Full Text Available In this paper we prove existence of global solutions to a hyperbolic system in elastodynamics, with small viscosity and dispersion terms and derive estimates uniform in the viscosity-dispersion parameters. By passing to the limit, we prove the existence of solution the Riemann problem for the hyperbolic system with arbitrary Riemann data.
Viscosity measurements of molten refractory metals using an electrostatic levitator
Ishikawa, Takehiko; Paradis, Paul-François; Okada, Junpei T; Watanabe, Yuki
2012-01-01
Viscosities of several refractory metals (titanium, nickel, zirconium, niobium, ruthenium, rhodium, hafnium, iridium and platinum) and terbium have been measured by the oscillation drop method with an improved procedure. The measured data were less scattered than our previous measurements. Viscosities at their melting temperatures showed good agreement with literature values and some predicted values. (paper)
Nonlinear Eddy Viscosity Models applied to Wind Turbine Wakes
Laan, van der, Paul Maarten; Sørensen, Niels N.; Réthoré, Pierre-Elouan
2013-01-01
The linear k−ε eddy viscosity model and modified versions of two existing nonlinear eddy viscosity models are applied to single wind turbine wake simulations using a Reynolds Averaged Navier-Stokes code. Results are compared with field wake measurements. The nonlinear models give better results...
Viscosity Prediction of Hydrocarbon Mixtures Based on the Friction Theory
Zeberg-Mikkelsen, Claus Kjær; Cisneros, Sergio; Stenby, Erling Halfdan
2001-01-01
The application and capability of the friction theory (f-theory) for viscosity predictions of hydrocarbon fluids is further illustrated by predicting the viscosity of binary and ternary liquid mixtures composed of n-alkanes ranging from n-pentane to n-decane for wide ranges of temperature and from...
Fluctuation expressions for fast thermal transport processes: Vortex viscosity
Evans, D.J.; Hanley, H.J.M.
1982-01-01
The vortex viscosity of a model diatomic fluid is calculated using both equilibrium and nonequilibrium molecular dynamics. The two calculations agree within statistical uncertainties. The results show that vortex viscosity does not have a conventional Kubo-Green relation. An argument as to why this is so is presented
Viscosity of melts in the sodium borosilicate system
Tait, J.C.; Mandolesi, D.L.; Rummens, H.E.C.
1984-01-01
The viscosities of a series of glasses in the sodium borosilicate system (5-35Na 2 O, 5-35B 2 O 3 , 45-80SiO 2 mol%) have been determined between 950 and 1500 deg C, using a rotating bob viscometer. A simplex lattice experimental design was used to define a series of compositions suitable for numerical analysis of the data. The viscosity data were fitted using the Fulcher equation for each composition. Nonlinear regression analysis of the viscosities at constant temperatures gave expressions for the variation in viscosity as a function of composition. The results are displayed as isoviscosity contours on the Na 2 O-B 2 O 3 -SiO 2 composition diagram. The viscosity behaviour as a function of composition is discussed in terms of structural bonding in the melt. (author)
Viscosity Prediction of Natural Gas Using the Friction Theory
Zeberg-Mikkelsen, Claus Kjær; Cisneros, Sergio; Stenby, Erling Halfdan
2002-01-01
Based on the concepts of the friction theory (f-theory) for viscosity modeling, a procedure is introduced for predicting the viscosity of hydrocarbon mixtures rich in one component, which is the case for natural gases. In this procedure, the mixture friction coefficients are estimated with mixing...... rules based on the values of the pure component friction coefficients. Since natural gases contain mainly methane, two f-theory models are combined, where the friction coefficients of methane are estimated by a seven-constant f-theory model directly fitted to methane viscosities, and the friction...... coefficients of the other components are estimated by the one-parameter general f-theory model. The viscosity predictions are performed with the SRK, the PR, and the PRSV equations of state, respectively. For recently measured viscosities of natural gases, the resultant AAD (0.5 to 0.8%) is in excellent...
Bulk metallic glass matrix composites
Choi-Yim, H.; Johnson, W.L.
1997-01-01
Composites with a bulk metallic glass matrix were synthesized and characterized. This was made possible by the recent development of bulk metallic glasses that exhibit high resistance to crystallization in the undercooled liquid state. In this letter, experimental methods for processing metallic glass composites are introduced. Three different bulk metallic glass forming alloys were used as the matrix materials. Both ceramics and metals were introduced as reinforcement into the metallic glass. The metallic glass matrix remained amorphous after adding up to a 30 vol% fraction of particles or short wires. X-ray diffraction patterns of the composites show only peaks from the second phase particles superimposed on the broad diffuse maxima from the amorphous phase. Optical micrographs reveal uniformly distributed particles in the matrix. The glass transition of the amorphous matrix and the crystallization behavior of the composites were studied by calorimetric methods. copyright 1997 American Institute of Physics
Elongational viscosity of photo-oxidated LDPE
Rolón-Garrido, Víctor H.; Wagner, Manfred H.
2014-05-01
Sheets of low-density polyethylene (LDPE) were photo-oxidatively treated at room temperature, and subsequently characterized rheologically in the melt state by shear and uniaxial extensional experiments. For photo-oxidation, a xenon lamp was used to irradiate the samples for times between 1 day and 6 weeks. Linear-viscoelastic characterization was performed in a temperature range of 130 to 220°C to obtain the master curve at 170°C, the reference temperature at which the elongational viscosities were measured. Linear viscoelasticity is increasingly affected by increasing photo-oxidation due to crosslinking of LDPE, as corroborated by an increasing gel fraction as determined by a solvent extraction method. The elongational measurements reveal a strong enhancement of strain hardening until a saturation level is achieved. The elongational data are analyzed in the frame work of two constitutive equations, the rubber-like liquid and the molecular stress function models. Within the experimental window, timedeformation separability is confirmed for all samples, independent of the degree of photo-oxidation.
Wave anisotropy of shear viscosity and elasticity
Rudenko, O. V.; Sarvazyan, A. P.
2014-11-01
The paper presents the theory of shear wave propagation in a "soft solid" material possessing anisotropy of elastic and dissipative properties. The theory is developed mainly for understanding the nature of the low-frequency acoustic characteristics of skeletal muscles, which carry important diagnostic information on the functional state of muscles and their pathologies. It is shown that the shear elasticity of muscles is determined by two independent moduli. The dissipative properties are determined by the fourth-rank viscosity tensor, which also has two independent components. The propagation velocity and attenuation of shear waves in muscle depend on the relative orientation of three vectors: the wave vector, the polarization vector, and the direction of muscle fiber. For one of the many experiments where attention was distinctly focused on the vector character of the wave process, it was possible to make a comparison with the theory, estimate the elasticity moduli, and obtain agreement with the angular dependence of the wave propagation velocity predicted by the theory.
Methods of viscosity measurements in sealed ampoules
Mazuruk, Konstantin
1999-07-01
Viscosity of semiconductors and metallic melts is usually measured by oscillating cup method. This method utilizes the melts contained in vacuum sealed silica ampoules, thus the problems related to volatility, contamination, and high temperature and pressure can be alleviate. In a typical design, the time required for a single measurement is of the order of one hour. In order to reduce this time to a minute range, a high resolution angular detection system is implemented in our design of the viscometer. Furthermore, an electromagnet generating a rotational magnetic field (RMF) is incorporated into the apparatus. This magnetic field can be used to remotely and nonintrusively measure the electrical conductivity of the melt. It can also be used to induce a well controlled rotational flow in the system. The transient behavior of this flow can potentially yield of the fluid. Based on RMF implementation, two novel viscometry methods are proposed in this work: a) the transient torque method, b) the resonance method. A unified theoretical approach to the three methods is presented along with the initial test result of the constructed apparatus. Advantages of each of the method are discussed.
Aspelin, P.
1978-01-01
The effect of the ionic contrast media diatrizoate, iocarmate and metrizoate and the non-ionic metrizamide on whole blood viscosity, plasma viscosity and hematocrit was investigated. All the contrast media increased whole blood and plasma viscosity and reduced the hematocrit. The whole blood viscosity increased with increasing osmolality of the contrast medium solutions, whereas the plasma viscosity increased with increasing viscosity of the contrast medium solutions. The higher the osmolality of the contrast media, the lower the hematocrit became. The normal shear-thinning (decreasing viscosity with increasing shear rate) property of blood was reduced when contrast medium was added to the blood. At 50 per cent volume ratio (contrast medium to blood), the ionic contrast media converted the blood into a shear-thickening (increasing viscosity with increasing shear rate) suspension, indicating a marked rigidification of the single red cell, while the non-ionic contrast medium still produced shear-thinning, indicating less rigidification of the red cell (p<0.01). (Auth.)
Kaidalov, A.B.; Klochkov, M.A.; Sarychev, L.I.; Smirnova, L.N.
1989-01-01
The inclusive differential cross sections of Λ- and bar Λ-hyperon production in bar pp and pp interactions at momenta 12, 32, and 100 GeV/c are calculated in the quark-gluon string model and compared with experiment. The model satisfactorily reproduces the experimental data
Metastability and thermophysical properties of metallic bulk glass forming alloys
Wunderlich, R.K.; Fecht, H.J.
1998-01-01
The absence of crystallization over a wide time/temperature window can be used to produce bulk metallic glass by relatively slow cooling of the melt. For a number of alloys, including several multicomponent Zr-based alloys, the relevant thermodynamic and thermomechanical properties of the metastable glassy and undercooled liquid states have been measured below and above the glass transition temperature. These measurements include specific heat, viscosity, volume, and elastic properties as a function of temperature. As a result, it becomes obvious that the maximum undercooling for these alloys is given by an isentropic condition before an enthalpic or isochoric instability is reached. Alternatively, these glasses can also be produced by mechanical alloying, thus replacing the thermal disorder by static disorder and resulting in the same thermodynamic glass state. During heating through the undercooled liquid, a nanoscale phase separation occurs for most glasses as a precursor of crystallization
Design of Oil Viscosity Sensor Based on Plastic Optical Fiber
Yunus, Muhammad; Arifin, A.
2018-03-01
A research of plastic optical fiber based sensors have been studied for measurement of oil viscosity. This sensor was made with straight configuration, U configuration, and gamma configuration have two types, there are optical fiber sensor with cladding and without cladding. Viscosity sensor was made, dipped into an oil sample with a concentration of viscosity percentage about 270 mPa.s - 350 mPa.s. The light from the LED propagated into the optical fiber, then it was received by the photodetector converted to output power. When plastic optical fiber dipped into an oil sample, viscosity of oil affect increase of refractive index on optical fiber resulting in a bigger loss of power so the light intensity will be smaller, consequences the measured output power will be smaller. Sensitivity and resolution viscosity sensor without cladding peel showed the best result rather than viscosity sensor with cladding peel. The best result in the measurement showed in gamma configuration with 3 cm length of cladding peel and the diameter of bending 0,25 cm is the range 103,090 nWatt, sensitivity 1,289 nWatt/mPa.s, and resolution 0,776 mPa.s. This method is effectively and efficiently used as an oil viscosity sensor with high sensitivity and resolution.
Zirconium based bulk metallic glasses
Dey, G.K.; Neogy, S.; Savalia, R.T.; Tewari, R.; Srivastava, D.; Banerjee, S.
2006-01-01
Metallic glasses have come into prominence in recent times because their nanocrystalline atomic arrangement imparts many useful and unusual properties to these metallic solids. In this study, bulk glasses have been obtained in Zr based multicomponent alloy by induction melting these alloys in silica crucibles and casting these in form of rods 3 and 6 mm in diameter in a copper mould
Longitudinal bulk acoustic mass sensor
Hales, Jan Harry; Teva, Jordi; Boisen, Anja
2009-01-01
A polycrystalline silicon longitudinal bulk acoustic cantilever is fabricated and operated in air at 51 MHz. A mass sensitivity of 100 Hz/fg (1 fg=10(-15) g) is obtained from the preliminary experiments where a minute mass is deposited on the device by means of focused ion beam. The total noise...
An eddy viscosity model for flow in a tube bundle
Soussan, D.; Grandotto, M.
1998-01-01
The work described in this paper is part of the development of GENEPI a 3-dimensional finite element code, designed for the thermalhydraulic analysis of steam generators. It focuses on the implementation of two-phase flow turbulence-induced viscosity in a tube bundle. The GENEPI code, as other industrial codes, uses the eddy viscosity concept introduced by Boussinesq for single phase flow. The concept assumes that the turbulent momentum transfer is similar to the viscous shear stresses. Eddy viscosity formulation is reasonably well known for single phase flows, especially in simple geometries (i.e., in smooth tube, around a single body, or behind a row of bars/tubes), but there exists very little information on it for two-phase flows. An analogy between single and two-phases is used to set up a model for eddy viscosity. The eddy viscosity model examined in this paper is used for a tube bundle geometry and, therefore, is extended to include anisotropy to the classic model. Each of the main flow directions (cross flow inline, cross flow staggered, and parallel flows) gives rise to a specific eddy viscosity formula. The results from a parametric study indicate that the eddy viscosity in the staggered flow is roughly 1.5 times as large as that for the inline cross flow, 60 times as large as that for the parallel flow, and 105 as large as that for the molecular viscosity. Then, the different terms are combined with each other to result in a global eddy viscosity model for a steam generator tube bundle flow. (author)
Effect of viscosity on tear drainage and ocular residence time.
Zhu, Heng; Chauhan, Anuj
2008-08-01
An increase in residence time of dry eye medications including artificial tears will likely enhance therapeutic benefits. The drainage rates and the residence time of eye drops depend on the viscosity of the instilled fluids. However, a quantitative understanding of the dependence of drainage rates and the residence time on viscosity is lacking. The current study aims to develop a mathematical model for the drainage of Newtonian fluids and also for power-law non-Newtonian fluids of different viscosities. This study is an extension of our previous study on the mathematical model of tear drainage. The tear drainage model is modified to describe the drainage of Newtonian fluids with viscosities higher than the tear viscosity and power-law non-Newtonian fluids with rheological parameters obtained from fitting experimental data in literature. The drainage rate through canaliculi was derived from the modified drainage model and was incorporated into a tear mass balance to calculate the transients of total solute quantity in ocular fluids and the bioavailability of instilled drugs. For Newtonian fluids, increasing the viscosity does not affect the drainage rate unless the viscosity exceeds a critical value of about 4.4 cp. The viscosity has a maximum impact on drainage rate around a value of about 100 cp. The trends are similar for shear thinning power law fluids. The transients of total solute quantity, and the residence time agrees at least qualitatively with experimental studies. A mathematical model has been developed for the drainage of Newtonian fluids and power-law fluids through canaliculi. The model can quantitatively explain different experimental observations on the effect of viscosity on the residence of instilled fluids on the ocular surface. The current study is helpful for understanding the mechanism of fluid drainage from the ocular surface and for improving the design of dry eye treatments.
Non-minimal derivative coupling scalar field and bulk viscous dark energy
Mostaghel, Behrang [Shahid Beheshti University, Department of Physics, Tehran (Iran, Islamic Republic of); Moshafi, Hossein [Institute for Advanced Studies in Basic Sciences, Department of Physics, Zanjan (Iran, Islamic Republic of); Movahed, S.M.S. [Shahid Beheshti University, Department of Physics, Tehran (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), School of Physics, Tehran (Iran, Islamic Republic of)
2017-08-15
Inspired by thermodynamical dissipative phenomena, we consider bulk viscosity for dark fluid in a spatially flat two-component Universe. Our viscous dark energy model represents phantom-crossing which avoids big-rip singularity. We propose a non-minimal derivative coupling scalar field with zero potential leading to accelerated expansion of the Universe in the framework of bulk viscous dark energy model. In this approach, the coupling constant, κ, is related to viscosity coefficient, γ, and the present dark energy density, Ω{sub DE}{sup 0}. This coupling is bounded as κ element of [-1/9H{sub 0}{sup 2}(1 - Ω{sub DE}{sup 0}), 0]. We implement recent observational data sets including a joint light-curve analysis (JLA) for SNIa, gamma ray bursts (GRBs) for most luminous astrophysical objects at high redshifts, baryon acoustic oscillations (BAO) from different surveys, Hubble parameter from HST project, Planck CMB power spectrum and lensing to constrain model free parameters. The joint analysis of JLA + GRBs + BAO + HST shows that Ω{sub DE}{sup 0} = 0.696 ± 0.010, γ = 0.1404 ± 0.0014 and H{sub 0} = 68.1 ± 1.3. Planck TT observation provides γ = 0.32{sup +0.31}{sub -0.26} in the 68% confidence limit for the viscosity coefficient. The cosmographic distance ratio indicates that current observed data prefer to increase bulk viscosity. The competition between phantom and quintessence behavior of the viscous dark energy model can accommodate cosmological old objects reported as a sign of age crisis in the ΛCDM model. Finally, tension in the Hubble parameter is alleviated in this model. (orig.)
Effect of ion viscosity on neoclassical tearing mode
Yoshida, Shigeki; Itoh, Sanae-I.; Yagi, Masatoshi; Azumi, Masafumi
2004-01-01
Linear stability analysis of neoclassical tearing mode (NTM) is performed on the basis of four-field reduced magnetohydrodynamic (MHD) model which takes account of fluctuating ion parallel flow and ion neoclassical viscosity. The dependence of the growth rate on the kinetic effects is investigated. It is shown that the linear NTM is stabilized by ion neoclassical viscosity and that the stabilizing effect of ion parallel compressibility is weak in the banana-plateau regime. It is found that not only ion neoclassical viscosity but also both ion and electron diamagnetic effects are important for the stabilization of NTM. (author)
Plasma viscosity increase with progression of peripheral arterial atherosclerotic disease.
Poredos, P; Zizek, B
1996-03-01
Increased blood and plasma viscosity has been described in patients with coronary and peripheral arterial disease. However, the relation of viscosity to the extent of arterial wall deterioration--the most important determinant of clinical manifestation and prognosis of the disease--is not well known. Therefore, the authors studied plasma viscosity as one of the major determinants of blood viscosity in patients with different stages of arterial disease of lower limbs (according to Fontaine) and its relation to the presence of some risk factors of atherosclerosis. The study encompassed four groups of subjects: 19 healthy volunteers (group A), 18 patients with intermittent claudication up to 200 m (stage II; group B), 15 patients with critical ischemia of lower limbs (stage III and IV; group C), and 16 patients with recanalization procedures on peripheral arteries. Venous blood samples were collected from an antecubital vein without stasis for the determination of plasma viscosity (with a rotational capillary microviscometer, PAAR), fibrinogen, total cholesterol, alpha-2-macroglobulin, and glucose concentrations. In patients with recanalization procedure local plasma viscosity was also determined from blood samples taken from a vein on the dorsum of the foot. Plasma viscosity was most significantly elevated in the patients with critical ischemia (1.78 mPa.sec) and was significantly higher than in the claudicants (1.68 mPa.sec), and the claudicants also had significantly higher viscosity than the controls (1.58 mPa.sec). In patients in whom a recanalization procedure was performed, no differences in systemic and local plasma viscosity were detected, neither before nor after recanalization of the diseased artery. In all groups plasma viscosity was correlated with fibrinogen concentration (r=0.70, P < 0.01) and total cholesterol concentration (r=0.24, P < 0.05), but in group C (critical ischemia) plasma viscosity was most closely linked to the concentration of alpha-2
Elongational viscosity of multiarm (Pom-Pom) polystyrene
Nielsen, Jens Kromann; Rasmussen, Henrik K.; Almdal, Kristoffer
2006-01-01
-Pom was estimated to have 2.5 arms on average, while the estimate is 3.3 for the asymmetric star. The molar mass of each arm is about 27 kg/mol. The melts were characterized in the linear viscoelastic regime and in non-linear elongational rheometry. The transient elongational viscosity for the Pom-Pom molecule...... it corresponds well with an estimate of the maximum stretchability of the backbone. Time-strain separability was not observed for the 'Asymmetric star' molecule at the elongation rates investigated. The transient elongational viscosity for the 'Pom-Pom' molecule went through a reproducible maximum...... in the viscosity at the highest elongational rate....
Shear viscosities of photons in strongly coupled plasmas
Di-Lun Yang
2016-09-01
Full Text Available We investigate the shear viscosity of thermalized photons in the quark gluon plasma (QGP at weak coupling and N=4 super Yang–Mills plasma (SYMP at both strong and weak couplings. We find that the shear viscosity due to the photon–parton scattering up to the leading order of electromagnetic coupling is suppressed when the coupling of the QGP/SYMP is increased, which stems from the blue-shift of the thermal-photon spectrum at strong coupling. In addition, the shear viscosity rapidly increases near the deconfinement transition in a phenomenological model analogous to the QGP.
Chebyshev super spectral viscosity method for water hammer analysis
Hongyu Chen
2013-09-01
Full Text Available In this paper, a new fast and efficient algorithm, Chebyshev super spectral viscosity (SSV method, is introduced to solve the water hammer equations. Compared with standard spectral method, the method's advantage essentially consists in adding a super spectral viscosity to the equations for the high wave numbers of the numerical solution. It can stabilize the numerical oscillation (Gibbs phenomenon and improve the computational efficiency while discontinuities appear in the solution. Results obtained from the Chebyshev super spectral viscosity method exhibit greater consistency with conventional water hammer calculations. It shows that this new numerical method offers an alternative way to investigate the behavior of the water hammer in propellant pipelines.
Shear viscosity of liquid argon and liquid rubidium
Chiakwelu, O.
1978-01-01
A direct evaluation of the shear viscosity coefficient for models of liquid rubidium and liquid argon is presented by neglecting the cross-terms in the autocorrelation function of the transverse component of the momentum stress tensor. The time dependence of the shear viscosity for liquid argon is found to display a long decaying tail in qualitative agreement with a computer calculation of Levesque et al. However, the numerical values of the shear viscosity coefficients are smaller than the experimentally determined values of about 45% for liquid rubidium and 35% for liquid argon
Linking structure to fragility in bulk metallic glass-forming liquids
Wei, Shuai; Stolpe, Moritz; Gross, Oliver; Gallino, Isabella; Hembree, William; Busch, Ralf; Evenson, Zach; Bednarcik, Jozef; Kruzic, Jamie J.
2015-01-01
Using in-situ synchrotron X-ray scattering, we show that the structural evolution of various bulk metallic glass-forming liquids can be quantitatively connected to their viscosity behavior in the supercooled liquid near T g . The structural signature of fragility is identified as the temperature dependence of local dilatation on distinct key atomic length scales. A more fragile behavior results from a more pronounced thermally induced dilatation of the structure on a length scale of about 3 to 4 atomic diameters, coupled with shallower temperature dependence of structural changes in the nearest neighbor environment. These findings shed light on the structural origin of viscous slowdown during undercooling of bulk metallic glass-forming liquids and demonstrate the promise of predicting the properties of bulk metallic glasses from the atomic scale structure
Linking structure to fragility in bulk metallic glass-forming liquids
Wei, Shuai, E-mail: shuai.wei@asu.edu, E-mail: m.stolpe@mx.uni-saarland.de [Department of Materials Science and Engineering, Saarland University, Campus C63, 66123 Saarbrücken (Germany); Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287 (United States); Stolpe, Moritz, E-mail: shuai.wei@asu.edu, E-mail: m.stolpe@mx.uni-saarland.de; Gross, Oliver; Gallino, Isabella; Hembree, William; Busch, Ralf [Department of Materials Science and Engineering, Saarland University, Campus C63, 66123 Saarbrücken (Germany); Evenson, Zach [Department of Materials Science and Engineering, Saarland University, Campus C63, 66123 Saarbrücken (Germany); Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln (Germany); Bednarcik, Jozef [Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22603 Hamburg (Germany); Kruzic, Jamie J. [Material Science, School of Mechanical, Industrial, and Manufacturing Engineering, Oregon State University, Corvallis, Oregon 97331 (United States)
2015-05-04
Using in-situ synchrotron X-ray scattering, we show that the structural evolution of various bulk metallic glass-forming liquids can be quantitatively connected to their viscosity behavior in the supercooled liquid near T{sub g}. The structural signature of fragility is identified as the temperature dependence of local dilatation on distinct key atomic length scales. A more fragile behavior results from a more pronounced thermally induced dilatation of the structure on a length scale of about 3 to 4 atomic diameters, coupled with shallower temperature dependence of structural changes in the nearest neighbor environment. These findings shed light on the structural origin of viscous slowdown during undercooling of bulk metallic glass-forming liquids and demonstrate the promise of predicting the properties of bulk metallic glasses from the atomic scale structure.
A note on finite-scale Navier–Stokes theory: The case of constant viscosity, strictly adiabatic flow
Jordan, P.M.; Keiffer, R.S.
2015-01-01
We investigate the “piston problem” for the case of a viscous, but non-thermally conducting, gas with constant transport coefficients under the recently introduced generalization of the Navier–Stokes (NS) equations known as the finite-scale Navier–Stokes (FSNS) equations. Along with determining and analyzing the integral curves of the resulting kink-type traveling wave solutions (TWS)s, the present study also reveals the importance of the bulk viscosity vis-a-vis this special case of FSNS theory and highlights the impact that averaging has on the structure of the shock profile
Optimization of NMR spectroscopy of encapsulated proteins dissolved in low viscosity fluids
Nucci, Nathaniel V.; Marques, Bryan S.; Bédard, Sabrina; Dogan, Jakob; Gledhill, John M.; Moorman, Veronica R.; Peterson, Ronald W.; Valentine, Kathleen G.; Wand, Alison L.; Wand, A. Joshua
2011-01-01
Comprehensive application of solution NMR spectroscopy to studies of macromolecules remains fundamentally limited by the molecular rotational correlation time. For proteins, molecules larger than 30 kDa require complex experimental methods, such as TROSY in conjunction with isotopic labeling schemes that are often expensive and generally reduce the potential information available. We have developed the reverse micelle encapsulation strategy as an alternative approach. Encapsulation of proteins within the protective nano-scale water pool of a reverse micelle dissolved in ultra-low viscosity nonpolar solvents overcomes the slow tumbling problem presented by large proteins. Here, we characterize the contributions from the various components of the protein-containing reverse micelle system to the rotational correlation time of the encapsulated protein. Importantly, we demonstrate that the protein encapsulated in the reverse micelle maintains a hydration shell comparable in size to that seen in bulk solution. Using moderate pressures, encapsulation in ultra-low viscosity propane or ethane can be used to magnify this advantage. We show that encapsulation in liquid ethane can be used to reduce the tumbling time of the 43 kDa maltose binding protein from ∼23 to ∼10 ns. These conditions enable, for example, acquisition of TOCSY-type data resolved on the adjacent amide NH for the 43 kDa encapsulated maltose binding protein dissolved in liquid ethane, which is typically impossible for proteins of such size without use of extensive deuteration or the TROSY effect.
Molecular dynamics calculation of shear viscosity for molten salt
Okamoto, Yoshihiro; Yokokawa, Mitsuo; Ogawa, Toru
1993-12-01
A computer program of molecular dynamics simulation has been made to calculate shear viscosity of molten salt. Correlation function for an off-diagonal component of stress tensor can be obtained as the results of calculation. Shear viscosity is calculated by integration of the correlation function based on the Kubo-type formula. Shear viscosities for a molten KCl ranging in temperature from 1047K to 1273K were calculated using the program. Calculation of 10 5 steps (1 step corresponds to 5 x 10 -15 s) was performed for each temperature in the 216 ions system. The obtained results were in good agreement with the reported experimental values. The program has been vectorized to achieve a faster computation in supercomputer. It makes possible to calculate the viscosity using a large number of statistics amounting to several million MD steps. (author)
Relating Fresh Concrete Viscosity Measurements from Different Rheometers.
Ferraris, Chiara F; Martys, Nicos S
2003-01-01
Concrete rheological properties need to be properly measured and predicted in order to characterize the workability of fresh concrete, including special concretes such as self-consolidating concrete (SCC). It was shown by a round-robin test held in 2000 [1,2] that different rheometer designs gave different values of viscosity for the same concrete. While empirical correlation between different rheometers was possible, for a procedure that is supposed to "scientifically" improve on the empirical slump tests, this situation is unsatisfactory. To remedy this situation, a new interpretation of the data was developed. In this paper, it is shown that all instruments tested could be directly and quantitatively compared in terms of relative plastic viscosity instead of the plastic viscosity alone. This should eventually allow the measurements from various rheometer designs to be directly calibrated against known standards of plastic viscosity, putting concrete rheometry and concrete workability on a sounder materials science basis.
Determination of the viscosity by spherical drop using nuclear tecniques
Silva, F.V. da; Qassim, R.Y.; Souza, Roberto de; Rio de Janeiro Univ.
1983-01-01
The measurements of the drop limit velocity of a Sphere in a fluid using a radiotracer method are analyzed. The dynamic process involved was observed, identifying the density and viscosity of the fluid. (E.G.) [pt
Diffusivities and Viscosities of Poly(ethylene oxide) Oligomers †
Hong, Bingbing; Escobedo, Fernando; Panagiotopoulos, Athanassios Z.
2010-01-01
Diffusivities and viscosities of poly(ethylene oxide) (PEO) oligomer melts with 1 to 12 repeat units have been obtained from equilibrium molecular dynamics simulations using the TraPPE-UA force field. The simulations generated diffusion coefficients
High Ra, high Pr convection with viscosity gradients
First page Back Continue Last page Overview Graphics. High Ra, high Pr convection with viscosity gradients. Weak upward flow through mesh. Top fluid more viscous. Unstable layer Instability Convection.
Viscosity and density tables of sodium chloride solutions
Fair, J.A.; Ozbek, H. (comps.)
1977-04-01
A file is presented containing tabulated data extracted from the scientific literature on the density and viscosity of aqueous sodium chloride solutions. Also included is a bibliography of the properties of aqueous sodium chloride solutions. (MHR)
The viscosity window of the silicate glass foam production
Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng
2017-01-01
which can offer a practical starting point for the optimisation procedure. The melt viscosity might be the most important parameter for controlling the foaming process and the glass foam density. In this work, we attempt to define a viscosity range in which foaming of different glasses results...... in a maximum of foam expansion. The expansion maximum is obtained for different glasses (labware, E-glass, CRT panel, soda-lime-silica) by foaming with CaCO3 at isokom temperature and from literature data. In general, the viscosity window was found to be within 104–106 Pa s when foaming with MnO2 or metal...... carbonates (CaCO3, Na2CO3, MgCO3, SrCO3, dolomite) whereas SiC requires higher temperatures and correspondingly lower viscosities (103.3–104.0 Pa s). These findings can help assessing the implementation of new resources in the glass foam production....
PVT characterization and viscosity modeling and prediction of crude oils
Cisneros, Eduardo Salvador P.; Dalberg, Anders; Stenby, Erling Halfdan
2004-01-01
In previous works, the general, one-parameter friction theory (f-theory), models have been applied to the accurate viscosity modeling of reservoir fluids. As a base, the f-theory approach requires a compositional characterization procedure for the application of an equation of state (EOS), in most...... pressure, is also presented. The combination of the mass characterization scheme presented in this work and the f-theory, can also deliver accurate viscosity modeling results. Additionally, depending on how extensive the compositional characterization is, the approach,presented in this work may also...... deliver accurate viscosity predictions. The modeling approach presented in this work can deliver accurate viscosity and density modeling and prediction results over wide ranges of reservoir conditions, including the compositional changes induced by recovery processes such as gas injection....
Shear viscosity enhancement in water–nanoparticle suspensions
Balasubramanian, Ganesh; Sen, Swarnendu; Puri, Ishwar K.
2012-01-01
Equilibrium molecular dynamics simulations characterize the increase in the shear viscosity of water around a suspended silicon dioxide nanoparticle. Water layering on the solid surface decreases the fraction of adjacent fluid molecules that are more mobile and hence less viscous, thereby increasing the shear viscosity. The contribution of the nanoparticle surface area to this rheological behavior is identified and an empirical model that accounts for it is provided. The model successfully reproduces the shear viscosity predictions from previous experimental measurements as well as our simulations. -- Highlights: ► Layering of water on the solid surfaces increases the fraction of less mobile molecules adjacent to them. ► A nondimensional parameter predicts of viscosity enhancement due to particle shape, volume fraction. ► Model predictions agree with the results of atomistic simulations and experimental measurements.
Measurement of viscosity as a means to identify irradiated food
Nuernberger, E.; Heide, L.; Boegl, K.W.
1990-01-01
The measurement of viscosity is a simple method to identify previous irradiation of some kinds of spices and foods, at least in combination with other methods. A possible change of the soaking capacity was examined up to a storage period of 18 months after irradiation of black pepper, white pepper, cinnamon, ginger and onion powder with a radiation dose of 10 kGy each. After irradiation, either increased or decreased viscosity values were measured; the results showed, also after the 18-months-storage period, considerable differences of the viscosity behaviour in non-irradiated and irradiated samples. The time of storage had no effect to the individual viscosity values, so that this method could also be applied to the examined spices after a longer storage period. (orig.) With 51 figs., 25 tabs [de
Effect of soft mode on shear viscosity of quark matter
Fukutome, Takahiko; Iwasaki, Masaharu
2008-01-01
We calculate the shear viscosity of quark matter at finite temperature and density. If we assume that the quark interacts with the soft mode, which is a collective mode of a quark-antiquark pair, the self-energy of the quark is calculated by quasi-particle random phase approximation. It is shown that its imaginary part is large and its mean free path is short. With the use of the Kubo formula, the shear viscosity of quark matter decreases. The Reynolds number of quark matter is estimated to be about 10. As temperature increases, shear viscosity increases gradually for T>200 MeV. Moreover it is shown that the shear viscosity also increases with the chemical potential for μ>200 MeV. (author)
effect of electrochemical oxidation of a viscose rayon based ...
DJFLEX
KEYWORDS: Viscose rayon based activated carbon cloth; Sorption isotherms; Electrochemical oxidation; Arsenic .... (AAS ) in acetylene-air flame emission mode. 2.9. Quality ..... of the EO ACC thereby restricting the number of binding sites for ...
Understanding the Viscosity of Liquids used in Infant Dysphagia Management.
Frazier, Jacqueline; Chestnut, Amanda H; Jackson, Arwen; Barbon, Carly E A; Steele, Catriona M; Pickler, Laura
2016-10-01
When assessing swallowing in infants, it is critical to have confidence that the liquids presented during the swallow study closely replicate the viscosity of liquids in the infant's typical diet. However, we lack research on rheological properties of frequently used infant formulas or breastmilk, and various forms of barium contrast media used in swallow studies. The aim of the current study was to provide objective viscosity measurements for typical infant liquid diet options and barium contrast media. A TA-Instruments AR2000 Advanced Rheometer was used to measure the viscosity of five standard infant formulas, three barium products, and two breastmilk samples. Additionally, this study measured the viscosity of infant formulas and breastmilk when mixed with powdered barium contrast in a 20 % weight-to-volume (w/v) concentration. The study findings determined that standard infant formulas and the two breastmilk samples had low viscosities, at the lower end of the National Dysphagia Diet (NDD) thin liquid range. Two specialty formulas tested had much thicker viscosities, close to the lower boundary of the NDD nectar-thick liquid range. The study showed differences in viscosity between 60 % w/v barium products (Liquid E-Z-Paque(®) and E-Z-Paque(®) powder); the powdered product had a much lower viscosity, despite identical barium concentration. When E-Z-Paque(®) powdered barium was mixed in a 20 % w/v concentration using water, standard infant formulas, or breastmilk, the resulting viscosities were at the lower end of the NDD thin range and only slightly thicker than the non-barium comparator liquids. When E-Z-Paque(®) powdered barium was mixed in a 20 % w/v concentration with the two thicker specialty formulas (Enfamil AR 20 and 24 kcal), unexpected alterations in their original viscosity occurred. These findings highlight the clinical importance of objective measures of viscosity as well as objective data on how infant formulas or breastmilk may change in
Convergence of a residual based artificial viscosity finite element method
Nazarov, Murtazo
2013-02-01
We present a residual based artificial viscosity finite element method to solve conservation laws. The Galerkin approximation is stabilized by only residual based artificial viscosity, without any least-squares, SUPG, or streamline diffusion terms. We prove convergence of the method, applied to a scalar conservation law in two space dimensions, toward an unique entropy solution for implicit time stepping schemes. © 2012 Elsevier B.V. All rights reserved.
Chebyshev super spectral viscosity method for a fluidized bed model
Sarra, Scott A.
2003-01-01
A Chebyshev super spectral viscosity method and operator splitting are used to solve a hyperbolic system of conservation laws with a source term modeling a fluidized bed. The fluidized bed displays a slugging behavior which corresponds to shocks in the solution. A modified Gegenbauer postprocessing procedure is used to obtain a solution which is free of oscillations caused by the Gibbs-Wilbraham phenomenon in the spectral viscosity solution. Conservation is maintained by working with unphysical negative particle concentrations
A note on the mixture viscosity using the Shannak definition
Awad, M.M.
2014-01-01
Highlights: • A note on the mixture viscosity using the Shannak definition is presented. • The Shannak definition gives μ (2ph) > μ f at low x. • Attention must be taken when using the Shannak definition at low x. - Abstract: In this study, a note on the mixture viscosity using the Shannak definition is presented [Shannak, B. A., 2008. Frictional pressure drop of gas liquid two-phase flow in pipes. Nucl. Eng. Des. 238, 3277–3284]. From his definition of the two-phase Reynolds number (Re (2ph) ), an expression of the two-phase viscosity (μ (2ph) ) is obtained. This expression of the two-phase viscosity (μ (2ph) ) satisfies the following important limiting conditions: i. at x = 0, μ (2ph) = μ f , and at x = 1, μ (2ph) = μ g . This definition of the two-phase viscosity (μ (2ph) ) can be used to compute the two-phase frictional pressure gradient using the homogeneous modeling approach in circular pipes, minichannels and microchannels. By plotting μ (2ph) /μ f versus x for air–water system at atmospheric conditions using the Shannak definition as well as the other most commonly used formulas of the two-phase viscosity (μ (2ph) ) in gas–liquid two-phase flows such as McAdams et al. (1942), Cicchitti et al. (1960), and Awad and Muzychka (2008) (Definition 1, Definition 2, Definition 3, and Definition 4), it is clear that the Shannak definition of the two-phase viscosity gives μ (2ph) > μ f at low x. This is impossible because we must have μ g (2ph) f for 0 < x < 1. Therefore, attention must be taken when using the Shannak definition of the two-phase viscosity at low x
Magnetic viscosity study in FePt/C granular films
Huang, Y.; Butler, W.; Zhang, Y.; Hadjipanayis, G.C.; Weller, D.
2004-01-01
The magnetic viscosity of FePt/C granular thin films was studied in the temperature range from 2 to 300 K in order to examine the thermal stability of the nanoparticles. The magnetic viscosity coefficient (S max ) was found to decrease with temperature because of decreased thermal activation. At low temperatures, S max showed an almost linear dependence on temperature. However, S max does not extrapolate to zero but seems to have a finite value at cryogenic temperatures
Effect of Fluid Dynamic Viscosity on the Strength of Chalk
Hedegaard, K.; Fabricius, Ida Lykke
The mechanical strength of high porosity and weakly cemented chalk is affected by the fluid in the pores. In this study, the effect of the dynamic viscosity of non-polar fluids has been measured on outcrop chalk from Sigerslev Quarry, Stevns, Denmark. The outcome is that the measured strength...... of the chalk decreases with increasing dynamic viscosity. The proposed qualitative explanation is that pressure difference supports and enhances the generation of microscopic shear and tensile failures....
Coefficients of viscosity for heavy impurity element in tokamak
El-Sharif, R N; Bekhit, A M [Plasma Physics dept., NRC, Atomic energy Authority, Cairo, (Egypt)
1997-12-31
The transport of heavy impurity element in to tokamak was studied theoretically. The viscosity coefficients of chromium impurities has been calculated in 13 and 21 moment approximation, in the limit of strong fields where is the gyrofrequency of species it was found that the off diagonal coefficient approximately tends to zero. This means that the friction force in the off-diagonal direction is very small, for the perpendicular viscosity coefficient the two approximation coincide to each other. 3 figs.
Vanishing Shear Viscosity Limit in the Magnetohydrodynamic Equations
Fan, Jishan; Jiang, Song; Nakamura, Gen
2007-03-01
We study an initial boundary value problem for the equations of plane magnetohydrodynamic compressible flows, and prove that as the shear viscosity goes to zero, global weak solutions converge to a solution of the original equations with zero shear viscosity. As a by-product, this paper improves the related results obtained by Frid and Shelukhin for the case when the magnetic effect is neglected.
Refractive index and viscosity: dual sensing with plastic fibre gratings
Ferreira, Ricardo; Bilro, Lúcia; Marques, Carlos; Oliveira, Ricardo; Nogueira, Rogério
2014-05-01
A refractive index and viscosity sensor based on FBGs in mPOF is reported for the first time. The refractive index was measured with a sensitivity of -10:98nm=RIU and a resolution of 1 - 10-4RIU. Viscosity measurements were performed with acousto-optic modulation, obtaining a sensitivity of -94:42%=mPa • s and a resolution of 0:06mPa • s.
Viscosity and density models for copper electrorefining electrolytes
Kalliomäki Taina; Aji Arif T.; Aromaa Jari; Lundström Mari
2016-01-01
Viscosity and density are highly important physicochemical properties of copper electrolyte since they affect the purity of cathode copper and energy consumption [1, 2] affecting the mass and heat transfer conditions in the cell [3]. Increasing viscosity and density decreases the rate in which the anode slime falls to the bottom of the cell [4, 5] and lowers the diffusion coefficient of cupric ion (DCu2+) [6]. Decreasing the falling rate of anode slime increases movement of the slime to other...
Predicting specific gravity and viscosity of biodiesel fuels
Tesfa, Belachew; Mishra, Rakesh; Gu, Fengshou; Ball, Andrew
2009-01-01
Biodiesel is a promising non-toxic and biodegradable alternative fuel in transport sector. Of all the biodiesel properties, specific gravity and viscosity are the most significant for the effects they have on the utilization of biodiesel fuels in unmodified engines. This paper presents models, which have been derived from experimental data, for predicting the specific gravity and dynamic viscosity of biodiesel at various temperatures and fractions. In addition a model has also been developed ...
Coulombic Fluids Bulk and Interfaces
Freyland, Werner
2011-01-01
Ionic liquids have attracted considerable interest in recent years. In this book the bulk and interfacial physico-chemical characteristics of various fluid systems dominated by Coulomb interactions are treated which includes molten salts, ionic liquids as well as metal-molten salt mixtures and expanded fluid metals. Of particular interest is the comparison of the different systems. Topics in the bulk phase concern the microscopic structure, the phase behaviour and critical phenomena, and the metal-nonmetal transition. Interfacial phenomena include wetting transitions, electrowetting, surface freezing, and the electrified ionic liquid/ electrode interface. With regard to the latter 2D and 3D electrochemical phase formation of metals and semi-conductors on the nanometer scale is described for a number of selected examples. The basic concepts and various experimental methods are introduced making the book suitable for both graduate students and researchers interested in Coulombic fluids.
Bulk viscous Zel'dovich fluid model and its asymptotic behavior
Nair, K.R.; Mathew, Titus K. [Cochin University of Science and Technology, Department of Physics, Kochi (India)
2016-10-15
In this paper we consider a flat FLRW universe with bulk viscous Zel'dovich fluid as the cosmic component. Considering the bulk viscosity as characterized by a constant bulk viscous coefficient, we analyze the evolution of the Hubble parameter. Type Ia Supernovae data is used for constraining the model and for extracting the constant bulk viscous parameter and present the Hubble parameter. We also present the analysis of the scale factor, equation of state, and deceleration parameter. The model predicts the later time acceleration and is also compatible with the age of the universe as given by the oldest globular clusters. Study of the phase-space behavior of the model shows that a universe dominated by bulk viscous Zel'dovich fluid is stable. But the inclusion of a radiation component in addition to the Zel'dovich fluid makes the model unstable. Hence, even though the bulk viscous Zel'dovich fluid dominated universe is a feasible one, the model as such fails to predict a prior radiation dominated phase. (orig.)
Negative viscosity can enhance learning of inertial dynamics.
Huang, Felix C; Patton, James L; Mussa-Ivaldi, Ferdinando A
2009-06-01
We investigated how learning of inertial load manipulation is influenced by movement amplification with negative viscosity. Using a force-feedback device, subjects trained on anisotropic loads (5 orientations) with free movements in one of three conditions (inertia only, negative viscosity only, or combined), prior to common evaluation conditions (prescribed circular pattern with inertia only). Training with Combined-Load resulted in lower error (6.89±3.25%) compared to Inertia-Only (8.40±4.32%) and Viscosity-Only (8.17±4.13%) according to radial deviation analysis (% of trial mean radius). Combined-Load and Inertia-Only groups exhibited similar unexpected no-load trials (8.38±4.31% versus 8.91±4.70% of trial mean radius), which suggests comparable low-impedance strategies. These findings are remarkable since negative viscosity, only available during training, evidently enhanced learning when combined with inertia. Modeling analysis suggests that a feedforward after-effect of negative viscosity cannot predict such performance gains. Instead, results from Combined-Load training are consistent with greater feedforward inertia compensation along with a small increase in impedance control. The capability of the nervous system to generalize learning from negative viscosity suggests an intriguing new method for enhancing sensorimotor adaptation.
Local viscosity distribution in bifurcating microfluidic blood flows
Kaliviotis, E.; Sherwood, J. M.; Balabani, S.
2018-03-01
The red blood cell (RBC) aggregation phenomenon is majorly responsible for the non-Newtonian nature of blood, influencing the blood flow characteristics in the microvasculature. Of considerable interest is the behaviour of the fluid at the bifurcating regions. In vitro experiments, using microchannels, have shown that RBC aggregation, at certain flow conditions, affects the bluntness and skewness of the velocity profile, the local RBC concentration, and the cell-depleted layer at the channel walls. In addition, the developed RBC aggregates appear unevenly distributed in the outlets of these channels depending on their spatial distribution in the feeding branch, and on the flow conditions in the outlet branches. In the present work, constitutive equations of blood viscosity, from earlier work of the authors, are applied to flows in a T-type bifurcating microchannel to examine the local viscosity characteristics. Viscosity maps are derived for various flow distributions in the outlet branches of the channel, and the location of maximum viscosity magnitude is obtained. The viscosity does not appear significantly elevated in the branches of lower flow rate as would be expected on the basis of the low shear therein, and the maximum magnitude appears in the vicinity of the junction, and towards the side of the outlet branch with the higher flow rate. The study demonstrates that in the branches of lower flow rate, the local viscosity is also low, helping us to explain why the effects of physiological red blood cell aggregation have no adverse effects in terms of in vivo vascular resistance.
A viscosity and density meter with a magnetically suspended rotor
Bano, Mikulas; Strharsky, Igor; Hrmo, Igor
2003-01-01
A device for measuring the viscosity and density of liquids is presented. It is a Couette-type viscometer that uses a submerged rotor to measure the viscosity without errors originating in the contact of the rotor with the sample/air boundary. The inner cylinder is a glass rotor suspended in the liquid, and the outer cylinder is also made of glass. The rotor is stabilized on the axis of the outer cylinder by an electromagnetic force controlled by feedback from the rotor's vertical position. In the lower part of the rotor is an aluminum cylinder located in a magnetic field generated by rotating permanent magnets. The interaction of this rotating magnetic field with eddy currents generated in the aluminum cylinder causes rotation of the rotor. This rotation is optically detected, and viscosity is calculated from the measured angular velocity of rotor. The density of the liquid is calculated from the applied vertical equilibrating force. A computer controls the whole measurement. The device works at constant temperature or while scanning temperature. The sample volume is 1.6 ml, and the accuracy of measurement of both viscosity and density is ∼0.1%. The range of measured densities is (0.7-1.4) g/ml, and viscosity can be measured in the range (3x10 -4 -0.3) Pa s. The shear rate of the viscosity measurement varies in the range (20-300) s-1. The accuracy of the temperature measurement is 0.02 K
Temperature dependent kinematic viscosity of different types of engine oils
Libor Severa
2009-01-01
Full Text Available The objective of this study is to measure how the viscosity of engine oil changes with temperature. Six different commercially distributed engine oils (primarily intended for motorcycle engines of 10W–40 viscosity grade have been evaluated. Four of the oils were of synthetic type, two of semi–synthetic type. All oils have been assumed to be Newtonian fluids, thus flow curves have not been determined. Oils have been cooled to below zero temperatures and under controlled temperature regulation, kinematic viscosity (mm2 / s have been measured in the range of −5 °C and +115 °C. Anton Paar digital viscometer with concentric cylinders geometry has been used. In accordance with expected behavior, kinematic viscosity of all oils was decreasing with increasing temperature. Viscosity was found to be independent on oil’s density. Temperature dependence has been modeled using several mathematical models – Vogel equation, Arrhenius equation, polynomial, and Gaussian equation. The best match between experimental and computed data has been achieved for Gaussian equation (R2 = 0.9993. Knowledge of viscosity behavior of an engine oil as a function of its temperature is of great importance, especially when considering running efficiency and performance of combustion engines. Proposed models can be used for description and prediction of rheological behavior of engine oils.
Relaxation-based viscosity mapping for magnetic particle imaging
Utkur, M.; Muslu, Y.; Saritas, E. U.
2017-05-01
Magnetic particle imaging (MPI) has been shown to provide remarkable contrast for imaging applications such as angiography, stem cell tracking, and cancer imaging. Recently, there is growing interest in the functional imaging capabilities of MPI, where ‘color MPI’ techniques have explored separating different nanoparticles, which could potentially be used to distinguish nanoparticles in different states or environments. Viscosity mapping is a promising functional imaging application for MPI, as increased viscosity levels in vivo have been associated with numerous diseases such as hypertension, atherosclerosis, and cancer. In this work, we propose a viscosity mapping technique for MPI through the estimation of the relaxation time constant of the nanoparticles. Importantly, the proposed time constant estimation scheme does not require any prior information regarding the nanoparticles. We validate this method with extensive experiments in an in-house magnetic particle spectroscopy (MPS) setup at four different frequencies (between 250 Hz and 10.8 kHz) and at three different field strengths (between 5 mT and 15 mT) for viscosities ranging between 0.89 mPa · s-15.33 mPa · s. Our results demonstrate the viscosity mapping ability of MPI in the biologically relevant viscosity range.
Temperature Dependence Viscosity and Density of Different Biodiesel Blends
Vojtěch Kumbár
2015-01-01
Full Text Available The main goal of this paper is to assess the effect of rapeseed oil methyl ester (RME concentration in diesel fuel on its viscosity and density behaviour. The density and dynamic viscosity were observed at various mixing ratios of RME and diesel fuel. All measurements were performed at constant temperature of 40 °C. Increasing ratio of RME in diesel fuel was reflected in increased density value and dynamic viscosity of the blend. In case of pure RME, pure diesel fuel, and a blend of both (B30, temperature dependence of dynamic viscosity and density was examined. Temperature range in the experiment was −10 °C to 80 °C. Considerable temperature dependence of dynamic viscosity and density was found and demonstrated for all three samples. This finding is in accordance with theoretical assumptions and reference data. Mathematical models were developed and tested. Temperature dependence of dynamic viscosity was modeled using a polynomial 3rd polynomial degree. Correlation coefficients R −0.796, −0.948, and −0.974 between measured and calculated values were found. Temperature dependence of density was modeled using a 2nd polynomial degree. Correlation coefficients R −0.994, −0.979, and −0.976 between measured and calculated values were acquired. The proposed models can be used for flow behaviour prediction of RME, diesel fuel, and their blends.
Bulk Superconductors in Mobile Application
Werfel, F. N.; Delor, U. Floegel-; Rothfeld, R.; Riedel, T.; Wippich, D.; Goebel, B.; Schirrmeister, P.
We investigate and review concepts of multi - seeded REBCO bulk superconductors in mobile application. ATZ's compact HTS bulk magnets can trap routinely 1 T@77 K. Except of magnetization, flux creep and hysteresis, industrial - like properties as compactness, power density, and robustness are of major device interest if mobility and light-weight construction is in focus. For mobile application in levitated trains or demonstrator magnets we examine the performance of on-board cryogenics either by LN2 or cryo-cooler application. The mechanical, electric and thermodynamical requirements of compact vacuum cryostats for Maglev train operation were studied systematically. More than 30 units are manufactured and tested. The attractive load to weight ratio is more than 10 and favours group module device constructions up to 5 t load on permanent magnet (PM) track. A transportable and compact YBCO bulk magnet cooled with in-situ 4 Watt Stirling cryo-cooler for 50 - 80 K operation is investigated. Low cooling power and effective HTS cold mass drives the system construction to a minimum - thermal loss and light-weight design.
Lorenzo, Jose; Couzis, Alex; Maldarelli, Charles; Singh, Bhim S. (Technical Monitor)
2000-01-01
When a fluid interface with surfactants is at rest, the interfacial stress is isotropic (as given by the equilibrium interfacial tension), and is described by the equation of state which relates the surface tension to the surfactant surface concentration. When surfactants are subjected to shear and dilatational flows, flow induced interaction of the surfactants; can create interfacial stresses apart from the equilibrium surface tension. The simplest relationship between surface strain rate and surface stress is the Boussinesq-Scriven constitutive equation completely characterized by three coefficients: equilibrium interfacial tension, surface shear viscosity, and surface dilatational viscosity Equilibrium interfacial tension and surface shear viscosity measurements are very well established. On the other hand, surface dilatational viscosity measurements are difficult because a flow which change the surface area also changes the surfactant surface concentration creating changes in the equilibrium interfacial tension that must be also taken into account. Surface dilatational viscosity measurements of existing techniques differ by five orders of magnitude and use spatially damped surface waves and rapidly expanding bubbles. In this presentation we introduce a new technique for measuring the surface dilatational viscosity by contracting an aqueous pendant drop attached to a needle tip and having and insoluble surfactant monolayer at the air-water interface. The isotropic total tension on the surface consists of the equilibrium surface tension and the tension due to the dilation. Compression rates are undertaken slow enough so that bulk hydrodynamic stresses are small compared to the surface tension force. Under these conditions we show that the total tension is uniform along the surface and that the Young-Laplace equation governs the drop shape with the equilibrium surface tension replaced by the constant surface isotropic stress. We illustrate this technique using
McCracken, M. E.; Bellis, M.; Adhikari, K. P.; Adikaram, D.; Akbar, Z.; Pereira, S. Anefalos; Badui, R. A.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Boiarinov, S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Colaneri, L.; Cole, P. L.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dodge, G. E.; Dupre, R.; Alaoui, A. El; Fassi, L. El; Elouadrhiri, E.; Eugenio, P.; Fedotov, G.; Fegan, S.; Fersch, R.; Filippi, A.; Fleming, J. A.; Garillon, B.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hughes, S. M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jenkins, D.; Jiang, H.; Jo, H. S.; Keller, D.; Khachatryan, G.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Kubarovsky, V.; Lenisa, P.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Mayer, M.; McKinnon, B.; Mestayer, M. D.; Meyer, C. A.; Mirazita, M.; Mokeev, V.; Moody, C. I.; Moriya, K.; Camacho, C. Munoz; Nadel-Turonski, P.; Net, L. A.; Niccolai, S.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Pisano, S.; Pogorelko, O.; Price, J. W.; Procureur, S.; Prok, Y.; Raue, B. A.; Ripani, M.; Rizzo, A.; Rosner, G.; Roy, P.; Sabatié, F.; Salgado, C.; Schumacher, R. A.; Seder, E.; Sharabian, Y. G.; Skorodumina, Iu.; Sokhan, D.; Sparveris, N.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Sytnik, V.; Tian, Ye; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.; CLAS Collaboration
2015-10-01
We present a search for ten baryon number violating decay modes of Λ hyperons using the CLAS detector at Jefferson Laboratory. Nine of these decay modes result in a single meson and single lepton in the final state (Λ →m ℓ) and conserve either the sum or the difference of baryon and lepton number (B ±L ). The tenth decay mode (Λ →p ¯ π+ ) represents a difference in baryon number of two units and no difference in lepton number. We observe no significant signal and set upper limits on the branching fractions of these reactions in the range (4 - 200 )×10-7 at the 90% confidence level.
Kanaki, K.
2007-03-15
The HADES spectrometer is a high resolution detector installed at the SIS/GSI, Darmstadt. It was primarily designed for studying dielectron decay channels of vector mesons. However, its high accuracy capabilities make it an attractive tool for investigating other rare probes at these beam energies, like strange baryons. Development and investigation of Multiwire Drift Chambers for high spatial resolution have been provided. One of the early experimental runs of HADES was analyzed and the {lambda} hyperon signal was successfully reconstructed for the first time in C+C collisions at 2 AGeV beam kinetic energy. The total {lambda} production cross section is contrasted with expectations from simulations and compared with measurements of the {lambda} yield in heavier systems at the same energy. In addition, the result is considered in the context of strangeness balance and the relative strangeness content of the reaction products is determined. (orig.)
Study of Λ hyperon production in C+C collisions at 2 AGeV beam energy with the HADES spectrometer
Kanaki, K.
2007-03-01
The HADES spectrometer is a high resolution detector installed at the SIS/GSI, Darmstadt. It was primarily designed for studying dielectron decay channels of vector mesons. However, its high accuracy capabilities make it an attractive tool for investigating other rare probes at these beam energies, like strange baryons. Development and investigation of Multiwire Drift Chambers for high spatial resolution have been provided. One of the early experimental runs of HADES was analyzed and the Λ hyperon signal was successfully reconstructed for the first time in C+C collisions at 2 AGeV beam kinetic energy. The total Λ production cross section is contrasted with expectations from simulations and compared with measurements of the Λ yield in heavier systems at the same energy. In addition, the result is considered in the context of strangeness balance and the relative strangeness content of the reaction products is determined. (orig.)
Povh, B.
1981-01-01
Results of hypernuclear spectroscopy and their interpretations are presented. The kinematical properties and, in particular, the distortion in strangeness exchange reactions are considered and experimental methods developed for hypernuclear spectroscopy discussed. The present understanding and knowledge of the Λ-nucleus interaction obtained from classical emulsion work on the ground state of light hypernuclei and the systematic study of the (K - , π - ) reaction on nuclei in more recent counter experiments are reviewed. The problem of the quasiparticle behaviour in nuclear matter is considered in the light of interactions. Finally recent results on the Σ-nucleus interactions are presented. (U.K.)
Yamazaki, Toshimitsu.
1987-11-01
The formation of various hypernuclei from K - absorption at rest is discussed from the viewpoints of compound decay of highly excited hypernuclei in contrast to the direct reaction mechanism. Recent (stopped K - , π) experiments at KEK as well as old data of emulsion and bubble chamber experiments are discussed. Some future direction of hypernuclear spectroscopy is suggested. (author)
The influence of tongue strength on oral viscosity discrimination acuity.
Steele, Catriona M
2018-06-01
The ability to generate tongue pressures is widely considered to be critical for liquid bolus propulsion in swallowing. It has been proposed that the application of tongue pressure may also serve the function of collecting sensory information regarding bolus viscosity (resistance to flow). In this study, we explored the impact of age-related reductions in tongue strength on oral viscosity discrimination acuity. The experiment employed a triangle test discrimination protocol with an array of xanthan-gum thickened liquids in the mildly to moderately thick consistency range. A sample of 346 healthy volunteers was recruited, with age ranging from 12 to 86 (164 men, 182 women). On average, participants were able to detect a 0.29-fold increase in xanthan-gum concentration, corresponding to a 0.5-fold increase in viscosity at 50/s. Despite having significantly reduced tongue strength on maximum isometric tongue-palate pressure tasks, and regardless of sex, older participants in this study showed no reductions in viscosity discrimination acuity. In this article, the relationship between tongue strength and the ability to discriminate small differences in liquid viscosity during oral processing is explored. Given that tongue strength declines with age in healthy adults and is also reduced in individuals with dysphagia, it is interesting to determine whether reduced tongue strength might contribute to difficulties in evaluating liquid viscosity during the oral stage of swallowing. Using an array of mildly to moderately thick xanthan-gum thickened liquids, this experiment failed to find any evidence that reductions in tongue strength influence oral viscosity discrimination acuity. © 2017 Wiley Periodicals, Inc.
Elastic properties of Pd40Cu30Ni10P20 bulk glass in supercooled liquid region
Nishiyama, N.; Inoue, A.; Jiang, Jianzhong
2001-01-01
In situ ultrasonic measurements for the Pd40Cu30Ni10P20 bulk glass in three states: Glassy solid, supercooled liquid, and crystalline, have been performed. It is found that velocities of both longitudinal and transverse waves and elastic moduli (shear modulus, bulk modulus, Young's modulus......, and Lame parameter), together with Debye temperature, gradually decrease with increasing temperature through the glass transition temperature as the Poisson's ratio increases. The behavior of the velocity of transverse wave vs. temperature in the supercooled liquid region could be explained by viscosity...
Ordered bulk degradation via autophagy
Dengjel, Jörn; Kristensen, Anders Riis; Andersen, Jens S
2008-01-01
During amino acid starvation, cells undergo macroautophagy which is regarded as an unspecific bulk degradation process. Lately, more and more organelle-specific autophagy subtypes such as reticulophagy, mitophagy and ribophagy have been described and it could be shown, depending on the experimental...... at proteasomal and lysosomal degradation ample cross-talk between the two degradation pathways became evident. Degradation via autophagy appeared to be ordered and regulated at the protein complex/organelle level. This raises several important questions such as: can macroautophagy itself be specific and what...
Efficiency of polymerization of bulk-fill composite resins: a systematic review.
Reis, André Figueiredo; Vestphal, Mariana; Amaral, Roberto Cesar do; Rodrigues, José Augusto; Roulet, Jean-François; Roscoe, Marina Guimarães
2017-08-28
This systematic review assessed the literature to evaluate the efficiency of polymerization of bulk-fill composite resins at 4 mm restoration depth. PubMed, Cochrane, Scopus and Web of Science databases were searched with no restrictions on year, publication status, or article's language. Selection criteria included studies that evaluated bulk-fill composite resin when inserted in a minimum thickness of 4 mm, followed by curing according to the manufacturers' instructions; presented sound statistical data; and comparison with a control group and/or a reference measurement of quality of polymerization. The evidence level was evaluated by qualitative scoring system and classified as high-, moderate- and low- evidence level. A total of 534 articles were retrieved in the initial search. After the review process, only 10 full-text articles met the inclusion criteria. Most articles included (80%) were classified as high evidence level. Among several techniques, microhardness was the most frequently method performed by the studies included in this systematic review. Irrespective to the "in vitro" method performed, bulk fill RBCs were partially likely to fulfill the important requirement regarding properly curing in 4 mm of cavity depth measured by depth of cure and / or degree of conversion. In general, low viscosities BFCs performed better regarding polymerization efficiency compared to the high viscosities BFCs.
Determination of Viscosity Versus Pressure by Means of a Clearance Seal
Christiansen, Peter; Schmidt Hansen, Niels; Lund, Martin Thomas Overdahl
2018-01-01
This paper describes the construction and testing of a simple, experimental tool setup that enables determination of the pressure–viscosity relationship for high viscosity oils. Comparing the determined pressure–viscosity relationship with a reference rheometer measuring the viscosity at ambient ...
The influence of magnetic fields on crude oils viscosity
Goncalves, Jose L.; Bombard, Antonio J. F. [Universidade Federal de Itajuba (UNIFEI), Itajuba, MG (Brazil). Instituto de Ciencias Exatas. Lab. de Reologia
2009-07-01
The crystallization of paraffin causes serious problems in the process of transportation of petroleum. This phenomenon increases the crude oil viscosity and implies an organic resin accumulation on pipeline wall, resulting in a reduced flux area or totally blocked pipes. One of the most challenging tasks for pipeline maintenance is solving this problem at low cost. Therefore, a method that inhibits the crystallization of paraffin and reduces the viscosity of crude oil could have many useful applications within the petroleum industry. Recent studies showed that magnetic fields reduce the Wax Appearance Temperature (WAT) and the viscosity of paraffin-based crude oil. For better understanding of this discovery, a series of tests was performed. This paper will show the influence of a DC magnetic field on rheological proprieties of three crude oils with different paraffin concentrations: a crude oil sample with 11 % p/p of paraffin concentration (sample 1); a crude oil sample with 6 % p/p of paraffin concentration (sample 2); a mixture of paraffin plus light crude oil with a total of 11 % p/p of paraffin concentration. These samples were placed in an electromagnet that generates a magnetic field of 1.3 Tesla. The samples' temperatures were conditioned around their Wax Appearance Temperature (WAT), and they were exposed to the field. As the viscosity of crude oil is very sensitive to the changes in temperature, it was ensured that the temperature has remained constant throughout the process. The sample 1 revealed a considerable reduction of viscosity: its original viscosity was 66 cP before magnetic field exposure, after that its viscosity was reduced to 39 cP. The other samples showed the same viscosity, before and after the magnetic field exposure. Since the samples 1 and 3 have the same paraffin concentrations, the viscosity reduction is not due only to the presence of paraffin; there must be other factors responsible for the interaction of sample 1 with the
Structural and molecular basis of starch viscosity in hexaploid wheat.
Ral, J-P; Cavanagh, C R; Larroque, O; Regina, A; Morell, M K
2008-06-11
Wheat starch is considered to have a low paste viscosity relative to other starches. Consequently, wheat starch is not preferred for many applications as compared to other high paste viscosity starches. Increasing the viscosity of wheat starch is expected to increase the functionality of a range of wheat flour-based products in which the texture is an important aspect of consumer acceptance (e.g., pasta, and instant and yellow alkaline noodles). To understand the molecular basis of starch viscosity, we have undertaken a comprehensive structural and rheological analysis of starches from a genetically diverse set of wheat genotypes, which revealed significant variation in starch traits including starch granule protein content, starch-associated lipid content and composition, phosphate content, and the structures of the amylose and amylopectin fractions. Statistical analysis highlighted the association between amylopectin chains of 18-25 glucose residues and starch pasting properties. Principal component analysis also identified an association between monoesterified phosphate and starch pasting properties in wheat despite the low starch-phosphate level in wheat as compared to tuber starches. We also found a strong negative correlation between the phosphate ester content and the starch content in flour. Previously observed associations between internal starch granule fatty acids and the swelling peak time and pasting temperature have been confirmed. This study has highlighted a range of parameters associated with increased starch viscosity that could be used in prebreeding/breeding programs to modify wheat starch pasting properties.
Calculated viscosity-distance dependence for some actively flowing lavas
Pieri, D.
1987-01-01
The importance of viscosity as a gauge of the various energy and momentum dissipation regimes of lava flows has been realized for a long time. Nevertheless, despite its central role in lava dynamics and kinematics, it remains among the most difficult of flow physical properties to measure in situ during an eruption. Attempts at reconstructing the actual emplacement viscosities of lava flows from their solidified topographic form are difficult. Where data are available on the position of an advancing flow front as a function of time, it is possible to calculate the effective viscosity of the front as a function of distance from the vent, under the assumptions of a steady state regime. As an application and test of an equation given, relevant parameters from five recent flows on Mauna Loa and Kilauea were utilized to infer the dynamic structure of their aggregate flow front viscosity as they advanced, up to cessation. The observed form of the viscosity-distance relation for the five active Hawaiian flows examined appears to be exponential, with a rapid increase just before the flows stopped as one would expect
Viscosity of diluted suspensions of vegetal particles in water
Szydłowska Adriana
2017-01-01
Full Text Available Viscosity and rheological behaviour of sewage as well as sludge are essential while designing apparatuses and operations employed in the sewage treatment process and its processing. With reference to these substances, the bio-suspensions samples of three size fractions ((i 150÷212 μm, (ii 106÷150 μm and (iii below106 μm of dry grass in water with solid volume fraction 8%, 10% and 11% were prepared. After twenty four hours prior to their preparation time, the suspension samples underwent rheometeric measurements with the use of a rotational rheometer with coaxial cylinders. On the basis of the obtained results, flow curves were plotted and described with both the power model and Herschel-Bulkley model. Moreover, the viscosity of the studied substances was determined that allowed to conclude that the studied bio-suspensions display features of viscoelastic fluids. The experimentally established viscosity was compared to the calculated one according to Manley and Manson equation, recommended in the literature. It occurred that the measured viscosity values substantially exceed the calculation viscosity values, even by 105 times. The observations suggest that it stems from water imbibition of fibrous vegetal particles, which causes their swelling and decreases the amount of liquid phase in the suspension.
Microfluidic method for measuring viscosity using images from smartphone
Kim, Sooyeong; Kim, Kyung Chun; Yeom, Eunseop
2018-05-01
The viscosity of a fluid is the most important characteristic in fluid rheology. Many microfluidic devices have been proposed for easily measuring the fluid viscosity of small samples. A hybrid system consisting of a smartphone and microfluidic device can offer a mobile laboratory for performing a wide range of detection and analysis functions related to healthcare. In this study, a new mobile sensing method based on a microfluidic device was proposed for fluid viscosity measurements. By separately delivering sample and reference fluids into the two inlets of a Y-shaped microfluidic device, an interfacial line is induced at downstream of the device. Because the interfacial width (W) between the sample and reference fluid flows was determined by their pressure ratio, the viscosity (μ) of the sample could be estimated by measuring the interfacial width. To distinguish the interfacial width of a sample, optical images of the flows at downstream of the Y-shaped microfluidic device were acquired using a smartphone. To check the measurement accuracy of the proposed method, the viscosities of glycerol mixtures were compared with those measured by a conventional viscometer. The proposed technique was applied to monitor the variations in blood and oil samples depending on storage or rancidity. We expect that this mobile sensing method based on a microfluidic device could be utilized as a viscometer with significant advantages in terms of mobility, ease-of-operation, and data management.
Dynamic viscosity study of barley malt and chicory concentrates
G. O. Magomedov
2016-01-01
Full Text Available The purpose of research is to find optimal conditions for dispersing and subsequent dehydration of liquid food environments in the nozzle spray drying chamber through the study of dynamic changes in viscosity according to temperature, velocities gradients and dry residue content. The objects of study were roasted chicory and malt barley concentrates with dry residue content of 20, 40, 60 and 80%. Research of dynamic viscosity were carried out at the measuring complex based on the rotational viscometer Rheotest II, analog-to-digital converter, module Laurent and a personal computer with a unique software that allows to record in real time (not only on a tape recorder, but also in the form of graphic files the behavior of the viscosity characteristics of concentrates. Registration of changes of dynamic viscosity was carried out at a shear rate gradient from 1,0 с -1 to 27,0 с -1 and the products temperature thermostating : 35, 55, 75˚ C. The research results are presented in the form of graphic dependences of effective viscosity on shear rate and flow curves (dependencies of shear stresses on the velocity gradient, which defined flow regimes, the optimal modes of dispersion concentrates into spray dryer chambers in obtaining of powdered semi-finished products and instanting were found: dry residue content - 40 %, concentrate temperature - 75 ˚C, velocity gradient in the air channel of the nozzle at least 20 c-1
Drop splashing: the role of surface wettability and liquid viscosity
Almohammadi, Hamed; Amirfazli, Alidad; -Team
2017-11-01
There are seemingly contradictory results in the literature about the role of surface wettability and drop viscosity for the splashing behavior of a drop impacting onto a surface. Motivated by such issues, we conducted a systematic experimental study where splashing behavior for a wide range of the liquid viscosity (1-100 cSt) and surface wettability (hydrophilic to hydrophobic) are examined. The experiments were performed for the liquids with both low and high surface tensions ( 20 and 72 mN/m). We found that the wettability affects the splashing threshold at high or low contact angle values. At the same drop velocity, an increase of the viscosity (up to 4 cSt) promotes the splashing; while, beyond such value, any increase in viscosity shows the opposite effect. It is also found that at a particular combination of liquid surface tension and viscosity (e.g. silicone oil, 10 cSt), an increase in the drop velocity changes the splashing to spreading. We relate such behaviors to the thickness, shape, and the velocity of the drop's lamella. Finally, to predict the splashing, we developed an empirical correlation which covers all of the previous reported data, hence clarifying the ostensible existing contradictions.
The effect of gasses on the viscosity of dimethyl ether
Sivebæk, Ion Marius; Jakobsen, Jørgen
2008-01-01
media, but their effect on DME viscosity is unknown. Argon (Ar), nitrogen (NA carbon dioxide (CO2), hydrogen (H-2) and propane (C3H8) have been investigated at pressure levels of 12-15 bar. A Cannon-Manning semi-micro capillary glass viscometer, size 25, enclosed in a cylindrical pressure container......, of glass, submerged completely in a constant temperature bath, has been used. A distinct reduction of efflux times was found only for the gas, CO2. The reduction in efflux time was about 9%. The kinematic viscosity of pure DME was determined to be: 0.188 +/- 0.001 cSt, 25 degrees C. A previously reported...... viscosity of pure DME has been corrected for the surface tension effect. Viscosity determination was initially based on a direct comparison of efflux times of DME with that of distilled water. The calculation gave a revised viscosity of 0.186 +/- 0.002 cSt, 25 degrees C, consistent with the above...
Investigation of viscosity of whole hydrolyze sweetened condensed milk
O. Kalinina
2015-05-01
Full Text Available Introduction. Рaper is aimed at developing of low-lactose (hydrolyzed sweetened condensed milk products technology for lactose intolerant people and for the whole population. Materials and methods: Rheological characteristics were determined on a Reotest device by the 2 nd method of viscometry Results and discussion. Reasonability of ß-galactosidase use for milk lactose hydrolyze during the production of canned products with sugar was proved in the previous works. This technology gives possibility to increase the quality of condensed canned foods, to reduce sugar concentration till 50 %, to increase dietary properties. Due to the reducing of saccharose mass part till 22 and 31 % the products had a liquid consistency that’s why was a necessity to increase the viscosity properties of condensed products. One of method to increase the product viscosity is inoculation of stabilization systems. Reasonability of the usage of stabilization system Bivicioc 1L was proved. The researches of viscosity determination in whole hydrolyzed sweetened condensed milk were shown in the work. Relations of viscosity of whole hydrolyzed condensed milk to the deformation rate were presented. Conclusions Viscosity indices of experimental samples in the fresh produced products and during storage are determined and justified.
Handling of bulk solids theory and practice
Shamlou, P A
1990-01-01
Handling of Bulk Solids provides a comprehensive discussion of the field of solids flow and handling in the process industries. Presentation of the subject follows classical lines of separate discussions for each topic, so each chapter is self-contained and can be read on its own. Topics discussed include bulk solids flow and handling properties; pressure profiles in bulk solids storage vessels; the design of storage silos for reliable discharge of bulk materials; gravity flow of particulate materials from storage vessels; pneumatic transportation of bulk solids; and the hazards of solid-mater
The thermo magnetic instability in hot viscose plasmas
Haghani, A.; Khosravi, A.; Khesali, A.
2017-10-01
Magnetic Rotational Instability (MRI) can not performed well in accretion disks with strong magnetic field. Studies have indicated a new type of instability called thermomagnetic instability (TMI) in systems where Nernst coefficient and gradient temperature were considered. Nernst coefficient would appear if Boltzman equation could be expanded through ω_{Be} (cyclotron frequency). However, the growth rate of this instability was two magnitude orders below MRI growth (Ωk), which could not act the same as MRI. Therefor, a higher growth rate of unstable modes was needed. In this paper, rotating viscid hot plasma with strong magnetic filed was studied. Firstly, a constant alpha viscosity was studied and then a temperature sensitive viscosity. The results showed that the temperature sensitive viscosity would be able to increase the growth rate of TMI modes significantly, hence capable of acting similar to MRI.
Separation of gold nanorods by viscosity gradient centrifugation
Dong, Suli; Wang, Yawei; Li, Xiaogang; Zhang, Qingquan; Liu, Xiaojun; Tu, Yang; Liang, Aiye
2016-01-01
Size-uniform gold nanorods (Au-NRs) are used in biosensing, bioimaging, photothermal therapy, drug and gene delivery, and controlled release. Monodisperse Au-NRs are usually obtained by separation steps following their synthesis, and centrifugation is widely used because of the ease of operation, high recovery, and the good availability of equipment. So far, the effect of viscosity on the separation of Au-NRs has not been investigated. We have developed a method for separation of monodisperse Au-NRs that is based on centrifugation in a viscosity gradient. Monodisperse Au-NRs obtained from gold nanoparticles were obtained by centrifugation in viscosity gradient adjusted with poly(2-ethyl-2-oxazoline). Au-NRs in sizes ranging from 25.6 to 26.1 nm in effective radius can be separated 5500 g within 5 min, which appears to be the fastest method for separation of Au-NRs. (author)
Pipeline flow of heavy oil with temperature-dependent viscosity
Maza Quinones, Danmer; Carvalho, Marcio da Silveira [Pontifical Catholic University of Rio de Janeiro (PUC-Rio), RJ (Brazil). Dept. of Mechanical Engineering], E-mail: msc@puc-rio.br
2010-07-01
The heavy oil produced offshore needs to be transported through pipelines between different facilities. The pipelines are usually laid down on the seabed and are submitted to low temperatures. Although heavy oils usually present Newtonian behavior, its viscosity is a strong function of temperature. Therefore, the prediction of pressure drops along the pipelines should include the solution of the energy equation and the dependence of viscosity to temperature. In this work, an asymptotic model is developed to study this problem. The flow is considered laminar and the viscosity varies exponentially with temperature. The model includes one-dimensional equations for the temperature and pressure distribution along the pipeline at a prescribed flow rate. The solution of the coupled differential equation is obtained by second-order finite difference. Results show a nonlinear behavior as a result of coupled interaction between the velocity, temperature, and temperature dependent material properties. (author)
Experimental viscosity measurements of biodiesels at high pressure
Schaschke C.J.
2016-01-01
Full Text Available The viscosity of biodiesels of soybean and rapeseed biodiesels blended with mineral diesel fuel were measured at pressures of up to 200 MPa. Using a falling sinker-type viscometer reproducible viscosity data were obtained based on the time taken for a sinker to descend a fixed distance down an enclosed tube under the influence of gravity. Measurements were taken using pressures which correspond to those of interest in automotive common rail diesel engines, and at temperatures of between 25ºC and 80ºC. In all cases, the viscosity of the biodiesel blends were found to increase exponentially for which the blends were noted as being more viscous than pure mineral fuels. A pressure-freezing effect was not observed for the blends.
Estimation of shear viscosity based on transverse momentum correlations
Sharma, Monika
2009-01-01
Event anisotropy measurements at RHIC suggest the strongly interacting matter created in heavy ion collisions flows with very little shear viscosity. Precise determination of 'shear viscosity-to-entropy' ratio is currently a subject of extensive study [S. Gavin and M. Abdel-Aziz, Phys. Rev. Lett. 97 (2006) 162302]. We present preliminary results of measurements of the evolution of transverse momentum correlation function with collision centrality of Au+Au interactions at √(s NN )=200 GeV. We compare two differential correlation functions, namely inclusive [J. Adams et al. (STAR Collaboration), Phys. Rev. C 72 (2005) 044902] and a differential version of the correlation measure C introduced by Gavin et al. [S. Gavin and M. Abdel-Aziz, Phys. Rev. Lett. 97 (2006) 162302; M. Sharma and C. A. Pruneau, Phys. Rev. C 79 (2009) 024905.]. These observables can be used for the experimental study of the shear viscosity per unit entropy.
Estimation of shear viscosity based on transverse momentum correlations
STAR Collaboration; Sharma, Monika; STAR Collaboration
2009-11-01
Event anisotropy measurements at RHIC suggest the strongly interacting matter created in heavy ion collisions flows with very little shear viscosity. Precise determination of “shear viscosity-to-entropy” ratio is currently a subject of extensive study [S. Gavin and M. Abdel-Aziz, Phys. Rev. Lett. 97 (2006) 162302]. We present preliminary results of measurements of the evolution of transverse momentum correlation function with collision centrality of Au+Au interactions at s=200 GeV. We compare two differential correlation functions, namely inclusive [J. Adams et al. (STAR Collaboration), Phys. Rev. C 72 (2005) 044902] and a differential version of the correlation measure C˜ introduced by Gavin et al. [S. Gavin and M. Abdel-Aziz, Phys. Rev. Lett. 97 (2006) 162302; M. Sharma and C. A. Pruneau, Phys. Rev. C 79 (2009) 024905.]. These observables can be used for the experimental study of the shear viscosity per unit entropy.
Using Quartz Crystal Microbalance for Field Measurement of Liquid Viscosities
Qingsong Bai
2016-01-01
Full Text Available The field measurement of liquid viscosities, especially the high viscous liquids, is challenging and often requires expensive equipment, long processing time, and lots of reagent. We use quartz crystal microbalances (QCMs operating in solution which are also sensitive to the viscosity and density of the contacting solution. QCMs are typically investigated for sensor applications in which one surface of QCM completely immersed in Newtonian liquid, but the viscous damping in liquids would cause not only large frequency shifts but also large losses in the quality factor Q leading to instability and even cessation of oscillation. A novel mass-sensitivity-based method for field measurement of liquid viscosities using a QCM is demonstrated in this paper and a model describing the influence of the liquid properties on the oscillation frequency is established as well. Two groups of verified experiments were performed and the experimental results show that the presented method is effective and possesses potential applications.
Giant Viscosity Enhancement in a Spin-Polarized Fermi Liquid
Akimoto, H.; Xia, J. S.; Adams, E. D.; Sullivan, N. S.; Candela, D.; Mullin, W. J.
2007-01-01
The viscosity is measured for a Fermi liquid, a dilute 3 He- 4 He mixture, under extremely high magnetic field/temperature conditions (B≤14.8 T, T≥1.5 mK). The spin-splitting energy μB is substantially greater than the Fermi energy k B T F ; as a consequence the polarization tends to unity and s-wave quasiparticle scattering is suppressed for T F . Using a novel composite vibrating-wire viscometer an enhancement of the viscosity is observed by a factor of more than 500 over its low-field value. Good agreement is found between the measured viscosity and theoretical predictions based upon a t-matrix formalism
Dependence of Helium II viscosity properties on oscillation frequency
Nadirashvili, Z.S.; Tsakadze, J.S.
1979-01-01
The causes of a discrepancy in the results of measurements of He II viscosity below Tapprox. =1.6 K obtained with different measurement methods are investigated. It is shown that to obtain correct results in oscillation experiments, the condition delta>>lambda/sub ph/ should obtain, where delta is the depth of viscous wave penetration and lambda/sub ph/ is the phonon free path length. Results of viscosity measurements at different ratios delta/lambda/sub ph/ (by a wire viscometer) are presented. It is shown that for the condition delta>>lambda/sub ph/, the results obtained are in good agreement with the results of Andronikashvili (in which delta/lambda/sub ph/>100). If the mentioned relation is not satisfied, then as the value of the ratio delta/lambda/sub ph/ is decreased, the value measured for the viscosity is increasingly lower than the results of Andronikashvili
Viscosity and transient electric birefringence study of clay colloidal aggregation.
Bakk, Audun; Fossum, Jon O; da Silva, Geraldo J; Adland, Hans M; Mikkelsen, Arne; Elgsaeter, Arnljot
2002-02-01
We study a synthetic clay suspension of laponite at different particle and NaCl concentrations by measuring stationary shear viscosity and transient electrically induced birefringence (TEB). On one hand the viscosity data are consistent with the particles being spheres and the particles being associated with large amount bound water. On the other hand the viscosity data are also consistent with the particles being asymmetric, consistent with single laponite platelets associated with a very few monolayers of water. We analyze the TEB data by employing two different models of aggregate size (effective hydrodynamic radius) distribution: (1) bidisperse model and (2) log-normal distributed model. Both models fit, in the same manner, fairly well to the experimental TEB data and they indicate that the suspension consists of polydisperse particles. The models also appear to confirm that the aggregates increase in size vs increasing ionic strength. The smallest particles at low salt concentrations seem to be monomers and oligomers.
Diffusivities and Viscosities of Poly(ethylene oxide) Oligomers †
Hong, Bingbing
2010-10-14
Diffusivities and viscosities of poly(ethylene oxide) (PEO) oligomer melts with 1 to 12 repeat units have been obtained from equilibrium molecular dynamics simulations using the TraPPE-UA force field. The simulations generated diffusion coefficients with high accuracy for all of the molar masses studied, but the statistical uncertainties in the viscosity calculations were significantly larger for longer chains. There is good agreement of the calculated viscosities and densities with available experimental data, and thus, the simulations can be used to bridge gaps in the data and for extrapolations with respect to chain length, temperature, and pressure. We explored the convergence characteristics of the Green-Kubo formulas for different chain lengths and propose minimal production times required for convergence of the transport properties. The chain-length dependence of the transport properties suggests that neither Rouse nor reptation models are applicable in the short-chain regime investigated. © 2010 American Chemical Society.
Temperature Dependence of the Viscosity of Isotropic Liquids
Jadzyn, J.; Czechowski, G.; Lech, T.
1999-04-01
Temperature dependence of the shear viscosity measured for isotropic liquids belonging to the three homologous series: 4-(trans-4'-n-alkylcyclohexyl) isothiocyanatobenzenes (Cn H2n+1 CyHx Ph NCS; nCHBT, n=0-12), n-alkylcyanobiphenyls (CnH2n+1 Ph Ph CN; nCB, n=2-12) and 1,n-alkanediols (HO(CH2)nOH; 1,nAD, n=2-10) were analysed with the use of Arrhenius equation and its two modifications: Vogel--Fulcher and proposed in this paper. The extrapolation of the isothermal viscosity of 1,n-alkanediols (n=2-10) to n=1 leads to an interesting conclusion concerning the expected viscosity of methanediol, HOCH2OH, the compound strongly unstable in a pure state.
Blood viscosity during coagulation at different shear rates
Ranucci, Marco; Laddomada, Tommaso; Ranucci, Matteo; Baryshnikova, Ekaterina
2014-01-01
Abstract During the coagulation process, blood changes from a liquid to a solid gel phase. These changes are reflected by changes in blood viscosity; however, blood viscosity at different shear rates (SR) has not been previously explored during the coagulation process. In this study, we investigated the viscosity changes of whole blood in 10 subjects with a normal coagulation profile, using a cone‐on‐plate viscosimeter. For each subject, three consecutive measurements were performed, at a SR of 20, 40, 80 sec−1. On the basis of the time‐dependent changes in blood viscosity, we identified the gel point (GP), the time‐to‐gel point (TGP), the maximum clot viscosity (MCV), and the clot lysis half‐time (CLH). The TGP significantly (P = 0.0023) shortened for increasing SR, and was significantly associated with the activated partial thromboplastin time at a SR of 20 sec−1 (P = 0.038) and 80 sec−1 (P = 0.019). The MCV was significantly lower at a SR of 80 sec−1 versus 40 sec−1 (P = 0.027) and the CLH significantly (P = 0.048) increased for increasing SR. These results demonstrate that measurement of blood viscosity during the coagulation process offers a number of potentially useful parameters. In particular, the association between the TGP and the activated partial thromboplastin time is an expression of the clotting time (intrinsic and common pathway), and its shortening for increasing SR may be interpreted the well‐known activating effects of SR on platelet activation and thrombin generation. Further studies focused on the TGP under conditions of hypo‐ or hypercoagulability are required to confirm its role in the clinical practice. PMID:24994896
VISCOSITY ANALYSIS OF EMPTY FRUIT BUNCH (EFB BIO-OIL
Z.S. Nazirah
2013-12-01
Full Text Available Empty fruit bunches (EFB are one of the solid wastes produced by the palm oil industry, which is increasing rapidly. The aim of this paper is to analyse the viscosity of empty fruit bunch (EFB bio-oil that can be extracted from all solid waste EFB as a sample, and a few processes were executed. The samples underwent two processes, which were pre-treatment and pyrolysis. The pre-treatment involved three processes, namely, cutting, shredding and sieving, which were necessary in order to prepare EFB into a particle size suitable for the reactor. After that, the samples were fed into the feedback reactor as feedstock for the pyrolysis process to produce bio-oil. Once the bio-oil was produced, its viscosity was tested using the Brookfield Viscometer in two conditions: before and after the chemical reaction. The bio-oil was treated by adding 10 ml and 20 ml of acetone respectively through the chemical reaction. The viscosity test was carried out at different temperatures, which were 25°C, 30°C, 35°C, 40°C, 45°C and 50°C respectively. The observed viscosity of the EFB bio-oil varied and was higher as the temperature decreased. In addition, the viscosity of the EFB bio-oil was higher when it reacted chemically with the acetone added. Therefore, the results showed that the chemical reaction with acetone has the potential to increase the viscosity of EFB bio-oil.
Effect of viscosity on seismic response of waste storage tanks
Tang, Yu; Uras, R.A.; Chang, Yao-Wen.
1992-06-01
The dynamic response of liquid-storage tanks subjected to harmonic excitations and earthquake ground motions has been studied. A rigid tank of negligible mass, rigidly supported at the base having a diameter of 50 ft. and fluid height of 20.4 ft. was used in the computer analysis. The liquid is assumed to have a density of 1.5 g/ml. Viscosity values, μ = 60, 200, 100, and 10,000 cP, were used in the numerical analyses to study the effects of viscosity on sloshing wave height, impulsive and convective pressure on the tank wall, base shear and base moments. Harmonic excitations as well as earthquake ground motions were used as input motions. The harmonic excitations used in the analyses covers a wide range of frequencies, including both the resonant and non-resonant frequencies. Two earthquake motions were used. One matches the Newmark-Hall median response spectrum and is anchored at 0.24 g for a rock site with a damping of 2% and a time duration of 10 s. The other is the 1978 Tabas earthquake which had a peak ZPA of 0.81 g and a time duration of 29 s. A small tank, about 1/15 the size of the typical waste storage tank, was used in the harmonic excitation study to investigate the effect of viscosity on the response of liquid-storage tanks and how the viscosity effect is affected by the size of the storage tank. The results of this study show that for the typical waste storage tank subjected to earthquake motions, the effect of viscosity on sloshing wave height and impulsive and convective pressures is very small and can be neglected. For viscosity effect to become noticeable in the response of the typical waste storage tank, the waste viscosity must be greater than 10,000 cP. This value is far greater than the estimated viscosity value of the high level wastes, which may range from 60 to 200 cP for some tanks
Determination of liquid viscosity at high pressure by DLS
Fukui, K; Asakuma, Y; Maeda, K
2010-01-01
The movement of particles with a size smaller than few microns is governed by random Brownian motion. This motion causes the fluid to flow around the particles. The force acting upon Brownian particles as well as their velocities are measured by using the dynamic light scattering (DLS) technique. It provides the relationship between fluid shear stress and shear rate over the Brownian particle and determines the viscosity properties of the fluid. In this study, we propose a new rheometer which is widely applicable to fluid viscosity measurements at both normal and high pressure levels for Newtonian and non- Newtonian fluids.
NVP melt/magma viscosity: insight on Mercury lava flows
Rossi, Stefano; Morgavi, Daniele; Namur, Olivier; Vetere, Francesco; Perugini, Diego; Mancinelli, Paolo; Pauselli, Cristina
2016-04-01
After more than four years of orbiting Mercury, NASA's MESSENGER spacecraft came to an end in late April 2015. MESSENGER has provided many new and surprising results. This session will again highlight the latest results on Mercury based on MESSENGER observations or updated modelling. The session will further address instrument calibration and science performance both retrospective on MESSENGER and on the ESA/JAXA BepiColombo mission. Papers covering additional themes related to Mercury are also welcomed. Please be aware that this session will be held as a PICO session. This will allow an intensive exchange of expertise and experience between the individual instruments and mission. NVP melt/magma viscosity: insight on Mercury lava flows S. Rossi1, D. Morgavi1, O. Namur2, D. Perugini1, F.Vetere1, P. Mancinelli1 and C. Pauselli1 1 Dipartimento di Fisica e Geologia, Università di Perugia, piazza Università 1, 06123 Perugia, Italy 2 Uni Hannover Institut für Mineralogie, Leibniz Universität Hannover, Callinstraβe 3, 30167 Hannover, Germany In this contribution we report new measurements of viscosity of synthetic komatitic melts, used the behaviour of silicate melts erupted at the surface of Mercury. Composition of Mercurian surface magmas was calculated using the most recent maps produced from MESSENGER XRS data (Weider et al., 2015). We focused on the northern hemisphere (Northern Volcanic Province, NVP, the largest lava flow on Mercury and possibly in the Solar System) for which the spatial resolution of MESSENGER measurements is high and individual maps of Mg/Si, Ca/Si, Al/Si and S/Si were combined. The experimental starting material contains high Na2O content (≈7 wt.%) that strongly influences viscosity. High temperature viscosity measurements were carried out at 1 atm using a concentric cylinder apparatus equipped with an Anton Paar RheolabQC viscometer head at the Department of Physics and Geology (PVRG_lab) at the University of Perugia (Perugia, Italy
Shear viscosity and thermal conductivity of nuclear 'pasta'
Horowitz, C. J.; Berry, D. K.
2008-01-01
We calculate the shear viscosity η and thermal conductivity κ of a nuclear pasta phase in neutron star crusts. This involves complex nonspherical shapes. We use semiclassical molecular dynamics simulations involving 40, 000 to 100, 000 nucleons. The viscosity η can be simply expressed in terms of the height Z* and width Δq of the peak in the static structure factor S p (q). We find that η increases somewhat, compared to a lower density phase involving spherical nuclei, because Z* decreases from form factor and ion screening effects. However, we do not find a dramatic increase in η from nonspherical shapes, as may occur in conventional complex fluids
Composition and Temperature Dependence of Shear Viscosity of Hydrocarbon Mixtures
1980-07-01
HNN- XTHDCPD Binary System IX. VTF Eq. Parameters for Shear Viscosities Using Constant B Parameter X. Results of Fits to Master Viscosity Eqs. (43...T(K) for 5 C10 Hydrocarbons I Fig. 2a. log n versus 103/T(K) for HNNi I Fig. 2b. log n versus 103/T(K) for XTHDCPD Fig. 3. Isothem of log n versus X...CD for CO-MO Binary System Fig. 4. Isotherm of log n versus XNBC for NBC-DMO Binary System ( ~Fig. 5. Isotherm of log n versus XfINN for HNN- XTHDCPD
VARIATION IN MEAT COMPOSITION VISCOSITY DURING THE MIXING PROCESS
DANIELA IANIłCHI
2008-10-01
Full Text Available Animal raw material processing is directly influenced by the physical and chemical characteristics of the materials which also influence their water holding capacity. The various combinations and status of the raw materials used in the food industry determine specific behaviours that may influence the processing equipment performance and construction. The study on meat composition viscosity depending upon the added components, temperature and mixing time length, has shown that viscosity is increasing with lower added water percentage, lower mixing temperature and higher mixing time length.
Time Dependent and Steady Uni-axial Elongational Viscosity
Nielsen, Jens K.; Rasmussen, Henrik Koblitz; Hassager, Ole
2005-01-01
Here we present measurements of transient and steady uni-axial elongational viscosity, using the Filament Stretching Rheometer1 or FSR1 (see Fig. 1) of the following melts: Four narrow MMD polystyrene (PS) samples with weight-average molar mass Mw in the range of 50k to 390k. Three different bi......-disperse samples, mixed from the narrow MMD PS. Two low-density polyethylene (LDPE) melts (Lupolen 1840D and 3020D). A steady-state viscosity was kept for 1-2.5 Hencky strain units in all measurements....
Density and viscosity modeling and characterization of heavy oils
Cisneros, Sergio; Andersen, Simon Ivar; Creek, J
2005-01-01
to thousands of mPa center dot s. Essential to the presented extended approach for heavy oils is, first, achievement of accurate P nu T results for the EOS-characterized fluid. In particular, it has been determined that, for accurate viscosity modeling of heavy oils, a compressibility correction in the way...... are widely used within the oil industry. Further work also established the basis for extending the approach to heavy oils. Thus, in this work, the extended f-theory approach is further discussed with the study and modeling of a wider set of representative heavy reservoir fluids with viscosities up...
Calculation of the viscosity of nuclear waste glass systems
Shah, R.; Behrman, E.C.; Oksoy, D.
1990-01-01
Viscosity is one of the most important processing parameters and one of the most difficult to calculate theoretically, particularly for multicomponent systems like nuclear waste glasses. Here, the authors propose a semi-empirical approach based on the Fulcher equation, involving identification of key variables, for which coefficients are then determined by regression analysis. Results are presented for two glass systems, and compared to results of previous workers and to experiment. The authors also sketch a first-order statistical mechanical perturbation theory calculation for the effects on viscosity of a change in composition of the melt
Bulk handling benefits from ICT
NONE
2007-11-15
The efficiency and accuracy of bulk handling is being improved by the range of management information systems and services available today. As part of the program to extend Richards Bay Coal Terminal, Siemens is installing a manufacturing execution system which coordinates and monitors all movements of raw materials. The article also reports recent developments by AXSMarine, SunGuard Energy, Fuelworx and Railworx in providing integrated tools for tracking, managing and optimising solid/liquid fuels and rail car maintenance activities. QMASTOR Ltd. has secured a contract with Anglo Coal Australia to provide its Pit to Port.net{reg_sign} and iFuse{reg_sign} software systems across all their Australians sites, to include pit-to-product stockpile management. 2 figs.
Bulk analysis using nuclear techniques
Borsaru, M.; Holmes, R.J.; Mathew, P.J.
1983-01-01
Bulk analysis techniques developed for the mining industry are reviewed. Using penetrating neutron and #betta#-radiations, measurements are obtained directly from a large volume of sample (3-30 kg) #betta#-techniques were used to determine the grade of iron ore and to detect shale on conveyor belts. Thermal neutron irradiation was developed for the simultaneous determination of iron and aluminium in iron ore on a conveyor belt. Thermal-neutron activation analysis includes the determination of alumina in bauxite, and manganese and alumina in manganese ore. Fast neutron activation analysis is used to determine silicon in iron ores, and alumina and silica in bauxite. Fast and thermal neutron activation has been used to determine the soil in shredded sugar cane. (U.K.)