WorldWideScience

Sample records for hydroponic solution bioavailability

  1. Reuse of hydroponic waste solution.

    Science.gov (United States)

    Kumar, Ramasamy Rajesh; Cho, Jae Young

    2014-01-01

    Attaining sustainable agriculture is a key goal in many parts of the world. The increased environmental awareness and the ongoing attempts to execute agricultural practices that are economically feasible and environmentally safe promote the use of hydroponic cultivation. Hydroponics is a technology for growing plants in nutrient solutions with or without the use of artificial medium to provide mechanical support. Major problems for hydroponic cultivation are higher operational cost and the causing of pollution due to discharge of waste nutrient solution. The nutrient effluent released into the environment can have negative impacts on the surrounding ecosystems as well as the potential to contaminate the groundwater utilized by humans for drinking purposes. The reuse of non-recycled, nutrient-rich hydroponic waste solution for growing plants in greenhouses is the possible way to control environmental pollution. Many researchers have successfully grown several plant species in hydroponic waste solution with high yield. Hence, this review addresses the problems associated with the release of hydroponic waste solution into the environment and possible reuse of hydroponic waste solution as an alternative resource for agriculture development and to control environmental pollution.

  2. Root uptake of uranium (6) in solution by a higher plant: speciation in hydroponic solution, bioavailability, micro-localisation and biological effects induced

    International Nuclear Information System (INIS)

    Laroche, L.

    2005-01-01

    Uranium exists naturally in the environment, usually present in trace quantities. In soil solution and oxic conditions, uranium is present in the +VI oxidation state and forms a large number of inorganic and organic complexes. The exposure medium, an artificial soil solution, was designed in such a way as to control the uranium species in solution. The geochemical speciation code JCHESS was used to calculate the uranium aqueous species concentration and to define the domains of interest, each of them characterized by a limited number of dominant U species. These domains were defined as follows: pH 4.9 with uranyl ions as dominant species, pH 5.8 with hydroxyl complexes and pH 7 where carbonates play a major role. For each pH, short-duration (5 hours of exposure) well-defined laboratory experiments were carried out with Phaseolus vulgaris as plant model. The effect of competitive ions such as Ca 2+ or the presence of ligands such as phosphate or citrate on root assimilation efficiency was explored. Results have shown that uranium transfer was not affected by the presence of calcium, phosphate or citrate (but was decreased of 60% with citrate (10 μM) at pH 5.8) in our experimental conditions. Moreover, observation in Transmission Electronic Microscopy (TEM), equipped with an EDAX probe, have shown that uranium was associated with granules rich in phosphorus and that there were some chloroplast anomalies. Finally, the presence of uranium affects root CEC by reducing it and stimulates root elongation at low uranium concentrations (100 nM, 400 nM and 2 μM at pHs 4.9, 5.8 and 7 respectively) and inhibits it at high uranium concentrations. (author)

  3. Solution Culture Hydroponics: History and Inexpensive Equipment.

    Science.gov (United States)

    Hershey, David R.

    1994-01-01

    Describes historical accounts dating back to as early as 604-562 BC of the various uses of hydroponics. Throughout the article, diagrams and simple instructions are provided to aid in classroom use of hydroponics. (ZWH)

  4. Lettuce (Lactuca sativa L. var. Sucrine) growth performance in complemented aquaponic solution outperforms hydroponics

    NARCIS (Netherlands)

    Delaide, Boris; Goddek, Simon; Gott, James; Soyeurt, Hélène; Jijakli, M.H.

    2016-01-01

    Plant growth performance is optimized under hydroponic conditions. The comparison between aquaponics and hydroponics has attracted considerable attention recently, particularly regarding plant yield. However, previous research has not focused on the potential of using aquaponic solution

  5. Lettuce (Lactuca sativa L. var. Sucrine) growth performance in complemented aquaponic solution outperforms hydroponics

    OpenAIRE

    Delaide, Boris; Goddek, Simon; Gott, James; Soyeurt, Hélène; Jijakli, M.H.

    2016-01-01

    Plant growth performance is optimized under hydroponic conditions. The comparison between aquaponics and hydroponics has attracted considerable attention recently, particularly regarding plant yield. However, previous research has not focused on the potential of using aquaponic solution complemented with mineral elements to commercial hydroponic levels in order to increase yield. For this purpose, lettuce plants were put into AeroFlo installations and exposed to hydroponic (HP), aquaponic (AP...

  6. Laboratory Evaluation of Ion-Selective Electrodes for Simultaneous Analysis of Macronutrients in Hydroponic Solution

    Science.gov (United States)

    Automated sensing of macronutrients in hydroponic solution would allow more efficient management of nutrients for crop growth in closed hydroponic systems. Ion-selective microelectrode technology requires an ion-selective membrane or a solid metal material that responds selectively to one analyte in...

  7. Uptake of cadmium from hydroponic solutions by willows ( Salix spp ...

    African Journals Online (AJOL)

    Salix integra 'Weishanhu') and Yizhibi (S. integra 'Yizhibi') were chosen as model plants to evaluate their potential for uptake of cadmium from hydroponic culture and relative uptake mechanism. Cadmium uptake showed a linear increase in the ...

  8. Removal of 4-chlorobenzoic acid from spiked hydroponic solution by willow trees (Salix viminalis)

    DEFF Research Database (Denmark)

    Deavers, K.; Macek, T.; Karlson, U.

    2010-01-01

    . Methods The removal of 4-CBA by willow trees was investigated with intact, septic willow trees growing in hydroponic solution and with sterile cell suspensions at concentrations of 5 mg/L and 50 mg/L 4-CBA. Nutrient solutions with different levels of ammonium and nitrate were prepared to achieve different...

  9. Root uptake of uranium (6) in solution by a higher plant: speciation in hydroponic solution, bioavailability, micro-localisation and biological effects induced; Transfert racinaire de l'uranium (6) en solution chez une plante superieure: speciation en solution hydroponique, prise en charge par la plante, microlocalisation et effets biologiques induits

    Energy Technology Data Exchange (ETDEWEB)

    Laroche, L

    2005-01-15

    Uranium exists naturally in the environment, usually present in trace quantities. In soil solution and oxic conditions, uranium is present in the +VI oxidation state and forms a large number of inorganic and organic complexes. The exposure medium, an artificial soil solution, was designed in such a way as to control the uranium species in solution. The geochemical speciation code JCHESS was used to calculate the uranium aqueous species concentration and to define the domains of interest, each of them characterized by a limited number of dominant U species. These domains were defined as follows: pH 4.9 with uranyl ions as dominant species, pH 5.8 with hydroxyl complexes and pH 7 where carbonates play a major role. For each pH, short-duration (5 hours of exposure) well-defined laboratory experiments were carried out with Phaseolus vulgaris as plant model. The effect of competitive ions such as Ca{sup 2+} or the presence of ligands such as phosphate or citrate on root assimilation efficiency was explored. Results have shown that uranium transfer was not affected by the presence of calcium, phosphate or citrate (but was decreased of 60% with citrate (10 {mu}M) at pH 5.8) in our experimental conditions. Moreover, observation in Transmission Electronic Microscopy (TEM), equipped with an EDAX probe, have shown that uranium was associated with granules rich in phosphorus and that there were some chloroplast anomalies. Finally, the presence of uranium affects root CEC by reducing it and stimulates root elongation at low uranium concentrations (100 nM, 400 nM and 2 {mu}M at pHs 4.9, 5.8 and 7 respectively) and inhibits it at high uranium concentrations. (author)

  10. Lettuce (Lactuca sativa L. var. Sucrine Growth Performance in Complemented Aquaponic Solution Outperforms Hydroponics

    Directory of Open Access Journals (Sweden)

    Boris Delaide

    2016-10-01

    Full Text Available Plant growth performance is optimized under hydroponic conditions. The comparison between aquaponics and hydroponics has attracted considerable attention recently, particularly regarding plant yield. However, previous research has not focused on the potential of using aquaponic solution complemented with mineral elements to commercial hydroponic levels in order to increase yield. For this purpose, lettuce plants were put into AeroFlo installations and exposed to hydroponic (HP, aquaponic (AP, or complemented aquaponic (CAP solutions. The principal finding of this research was that AP and HP treatments exhibited similar (p > 0.05 plant growth, whereas the shoot weight of the CAP treatment showed a significant (p < 0.05 growth rate increase of 39% on average compared to the HP and AP treatments. Additionally, the root weight was similar (p > 0.05 in AP and CAP treatments, and both were significantly higher (p < 0.05 than that observed in the HP treatment. The results highlight the beneficial effect of recirculating aquaculture system (RAS water on plant growth. The findings represent a further step toward developing decoupled aquaponic systems (i.e., two- or multi-loops that have the potential to establish a more productive alternative to hydroponic systems. Microorganisms and dissolved organic matter are suspected to play an important role in RAS water for promoting plant roots and shoots growth.

  11. Interaction between copper and radiocesium in Indian mustard and sunflower grown in the hydroponic solution

    International Nuclear Information System (INIS)

    Shirong Tang; Xiaochang Wang

    2002-01-01

    Both Indian mustard and sunflower were grown in a hydroponic solution treated with different concentration activities of 134 Cs or with different amounts of copper or with both in order to investigate the interaction between copper and radiocesium. It was found that 134 Cs activity concentration applied in the nutrient solution exerted more influence on the uptake and translocation of copper by Indian mustard than by sunflower. Indian mustard grown in hydroponic solution containing certain levels of copper and being treated with higher 134 Cs activity concentration showed higher uptake of copper than sunflower. However, in the case of root copper concentrations, sunflower showed significantly higher copper immobilization by roots than Indian mustard. It was also found that the presence of copper the the hydroponic solution did modify radiocesium uptake by both species. The application of 1 mg/l in the growth medium could greatly increase the uptake of 134 Cs by both species. With 3 mg/l concentration of copper amended to the solution, the accumulation of 134 Cs by both species was decreased compared to the 1 mg/l copper treatment. These lines of evidence show that there is stronger interaction between copper and radiocesium in Indian mustard than in sunflower during the root uptake through nutrient solution. (author)

  12. Fertilizer drawn forward osmosis process for sustainable water reuse to grow hydroponic lettuce using commercial nutrient solution

    KAUST Repository

    Chekli, Laura; Eun Kim, Jung; El Saliby, Ibrahim; Kim, Youngjin; Phuntsho, Sherub; Li, Sheng; Ghaffour, NorEddine; Leiknes, TorOve; Kyong Shon, Ho

    2017-01-01

    This study investigated the sustainable reuse of wastewater using fertilizer drawn forward osmosis (FDFO) process through osmotic dilution of commercial nutrient solution for hydroponics, a widely used technique for growing plants without soil

  13. Development of a vinasse nutritive solution for hydroponics.

    Science.gov (United States)

    dos Santos, José Darcy; Lopes da Silva, André Luís; da Luz Costa, Jefferson; Scheidt, Gessiel Newton; Novak, Alessandra Cristine; Sydney, Eduardo Bittencourt; Soccol, Carlos Ricardo

    2013-01-15

    Vinasse is a residue that originates from the distillation of fuel alcohol. However, it contains a relative amount of nutrients. The aim of this work was to develop a nutritive solution using vinasse and to compare it with a commercial solution for the cultivation of lettuce, watercress and rocket. Vinasse obtained from juice must was decanted and filtered, followed by chemical analyses of the nutrients. A nutritive solution composed of 10% vinasse supplemented with nutrients was in agreement with the results of the chemical analyses (a similar amount of Furlani's solution). Experiments were then performed in an NFT (Nutrient film technique) system. The treatments used the vinasse solution and a commercial solution constituted from a Yara Fertilizantes(®) product. The height of the aerial part and the number of leaves of the crops were evaluated at 7, 14, 21, 28, 35 and 42 days. In most crops, the results were very similar. The vinasse solution promoted a larger number of leaves in lettuce and the highest aerial part in watercress. For the rocket, there were no significant differences between the two solutions. In conclusion, a nutritive solution was developed using vinasse, and this solution provided suitable growth, which was higher in some cases, for the crops studied herein. This study shows the great potential of this technology as a rational alternative to vinasse disposal. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Excess nutrients in hydroponic solutions alter nutrient content of rice, wheat, and potato

    Science.gov (United States)

    McKeehen, J. D.; Mitchell, C. A.; Wheeler, R. M.; Bugbee, B.; Nielsen, S. S.

    1996-01-01

    Environment has significant effects on the nutrient content of field-grown crop plants. Little is known, however, about compositional changes caused by controlled environments in which plants receive only artificial radiation and soilless, hydroponic culture. This knowledge is essential for developing a safe, nutritious diet in a Controlled Ecological Life-Support System (CELSS). Three crops that are candidates for inclusion in a CELSS (rice, wheat, and white potato) were grown both in the field and in controlled environments where the hydroponic nutrient solution, photosynthetic photon flux (PPF), and CO2 level were manipulated to achieve rapid growth rates. Plants were harvested at maturity, separated into discrete parts, and dried prior to analysis. Plant materials were analyzed for proximate composition (protein, fat, ash, and carbohydrate), total nitrogen (N), nitrate, minerals, and amino-acid composition. The effect of environment on nutrient content varied by crop and plant part. Total N and nonprotein N (NPN) contents of plant biomass generally increased under controlled-environment conditions compared to field conditions, especially for leafy plant parts and roots. Nitrate levels were increased in hydroponically-grown vegetative tissues, but nitrate was excluded from grains and tubers. Mineral content changes in plant tissue included increased phosphorus and decreased levels of certain micronutrient elements under controlled-environment conditions. These findings suggest that cultivar selection, genetic manipulation, and environmental control could be important to obtain highly nutritious biomass in a CELSS.

  15. Automated pH Control of Nutrient Solution in a Hydroponic Plant Growth System

    Science.gov (United States)

    Smith, B.; Dogan, N.; Aglan, H.; Mortley, D.; Loretan, P.

    1998-01-01

    Over, the years, NASA has played an important role in providing to and the development of automated nutrient delivery and monitoring, systems for growing crops hydroponically for long term space missions. One example are the systems used in the Biomass Production Chamber (BPC) at Kennedy Space Center (KSC). The current KSC monitoring system is based on an engineering workstation using standard analog/digital input/output hardware and custom written software. The monitoring system uses completely separate sensors to provide a check of control sensor accuracy and has the ability to graphically display and store data form past experiment so that they are available for data analysis [Fortson, 1992]. In many cases, growing systems have not been fitted with the kind of automated control systems as used at KSC. The Center for Food and Environmental Systems for Human Exploration of Space (CFESH) located on the campus of Tuskegee University, has effectively grown sweetpotatoes and peanuts hydroponically for the past five years. However they have adjusted the pH electrical conductivity and volume of the hydroponic nutrient solution only manually at times when the solution was to be replenished or changed out according to its protocol (e.g. one-week, two-week, or two-day cycle). But the pH of the nutrient solution flowing through the channel is neither known nor controlled between the update, change out, or replenishment period. Thus, the pH of the nutrient solution is not held at an optimum level over the span of the plant's growth cycle. To solve this dilemma, an automated system for the control and data logging of pH data relative to sweetpotato production using the nutrient film technique (NFT) has been developed, This paper discusses a microprocessor-based system, which was designed to monitor, control, and record the pH of a nutrient solution used for growing sweetpotatoes using NFT.

  16. Computer model of hydroponics nutrient solution pH control using ammonium.

    Science.gov (United States)

    Pitts, M; Stutte, G

    1999-01-01

    A computer simulation of a hydroponics-based plant growth chamber using ammonium to control pH was constructed to determine the feasibility of such a system. In nitrate-based recirculating hydroponics systems, the pH will increase as plants release hydroxide ions into the nutrient solution to maintain plant charge balance. Ammonium is an attractive alternative to traditional pH controls in an ALSS, but requires careful monitoring and control to avoid overdosing the plants with ammonium. The primary advantage of using NH4+ for pH control is that it exploits the existing plant nutrient uptake charge balance mechanisms to maintain solution pH. The simulation models growth, nitrogen uptake, and pH of a l-m2 stand of wheat. Simulation results indicated that ammonium-based control of nutrient solution pH is feasible using a proportional integral controller. Use of a 1 mmol/L buffer (Ka = 1.6 x 10(-6)) in the nutrient solution is required.

  17. A monitoring system of radioactive tracers in hydroponic solution for research on plant physiology

    International Nuclear Information System (INIS)

    Suzui, N.; Kawachi, N.; Ishioka, N.; Fujimaki, S.; Yamaguchi, M.

    2009-01-01

    The mechanism of nutrient uptake in plants has received considerable attention in the field of plant science. Here we describe the development of a new monitoring system of radioactive tracers in hydroponic solution, which enables the noninvasive measurement of radioactive tracer uptake by an intact plant. In addition, we incorporated a weighing instrument into this system in order to simultaneously monitor water uptake by the same plant. For an evaluation of this monitoring system, we conducted a tracer experiment with a rice plant and a positron-emitting radioactive tracer, and successfully obtained continuous data for the amounts of radioactive tracer and water taken up by the intact plant over 36 h. (authors)

  18. A monitoring system of radioactive tracers in hydroponic solution for research on plant physiology

    Energy Technology Data Exchange (ETDEWEB)

    Suzui, N.; Kawachi, N.; Ishioka, N.; Fujimaki, S. [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Takasaki, Gunma 370-1292 (Japan); Yamaguchi, M. [Takasaki Advanced Radiation Research Institute, Atomic Energy Agency, Takasaki, Gunma 370-1292 (Japan)

    2009-07-01

    The mechanism of nutrient uptake in plants has received considerable attention in the field of plant science. Here we describe the development of a new monitoring system of radioactive tracers in hydroponic solution, which enables the noninvasive measurement of radioactive tracer uptake by an intact plant. In addition, we incorporated a weighing instrument into this system in order to simultaneously monitor water uptake by the same plant. For an evaluation of this monitoring system, we conducted a tracer experiment with a rice plant and a positron-emitting radioactive tracer, and successfully obtained continuous data for the amounts of radioactive tracer and water taken up by the intact plant over 36 h. (authors)

  19. Hydroponic Culture

    Science.gov (United States)

    Steucek, G. L.; Yurkiewicz, W. J.

    1973-01-01

    Describes a hydroponic culture technique suitable for student exercises in biology. This technique of growing plants in nutrient solutions enhances plant growth, and is an excellent way to obtain intact plants with root systems free of soil or other particulate matter. (JR)

  20. Bioavailability

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, J. [National Environmental Research Inst., Silkeborg (Denmark). Dept. of Terrestrial Ecology

    2003-07-01

    Although commonly discussed and debated the scientific basis for adequately using bioavailability in ecological risk assessment is still relatively weak. One of the first obstacles to solve is to define the term properly. It must be recognised that bioavailability is dynamic processes comprising several distinct phases. One is the adsorption/desorption process (chemical availability) controlled by parameters like pH, clay, CEC and organic matter. Another one is a physiological driven uptake process (biological availability) controlled by species-specific parameters like anatomy, feeding strategy, preferences in micro-habitat etc. The last one is an internal allocation process (toxicological availability) controlled by species specific parameters like metabolism, detoxification, storage, excretion, energy resources etc. The complexity of bioavailability means that there seems no straight way forward how to handle bioavailability in the risk assessment procedure. Nevertheless, what almost all people - from scientists to problem holders and responsible authorities - agree upon is that there is a need for alternatives to the common use of the 'total concentration approach'. From an ecological perspective, biological tools would be preferred when assessing risk to ecosystems. However, due to the lower cost and higher reproducibility chemical tools may often be the best suitable solutions. The outcome of mild extraction procedures like CaCl{sub 2} have for example been shown to correlated relatively well to ecotoxicological effects of heavy metals. Bioavailability of organic pollutants has less frequently been correlated to ecological effects of organisms within the soil compartment and adjacent water systems. It has nevertheless been documented that mild extractors like n-butanol, propanol, ethyl acetate and acetonitrile are useful in predicting the uptake of PAHs in earthworms and plants as well as microbial toxicity. (orig.)

  1. Root uptake of uranium by a higher plant model (Phaseolus vulgaris) bioavailability from soil solution

    Energy Technology Data Exchange (ETDEWEB)

    Laroche, L.; Henner, P.; Camilleri, V.; Garnier-Laplace, J. [CEA Cadarache (DEI/SECRE/LRE), Laboratory of Radioecology and Ecotoxicology, Institute for Radioprotection and Nuclear Safety, 13 - Saint-Paul-lez-Durance (France)

    2004-07-01

    Uranium behaviour in soils is controlled by actions and interactions between physicochemical and biological processes that also determine its bioavailability. In soil solution, uranium(+VI) aqueous speciation undergoes tremendous changes mainly depending on pH, carbonates, phosphates and organic matter. In a first approach to identify bioavailable species of U to plants, cultures were performed using hydroponics, to allow an easy control of the composition of the exposure media. The latter, here an artificial soil solution, was designed to control the uranium species in solution. The geochemical speciation code JCHESS using a database compiled from the OECD/NEA thermochemical database project and verified was used to perform the solution speciation calculations. On this theoretical basis, three domains were defined for short-duration well-defined laboratory experiments in simplified conditions: pH 4.9, 5.8 and 7 where predicted dominant species are uranyl ions, hydroxyl complexes and carbonates respectively. For these domains, biokinetics and characterization of transmembrane transport according to a classical Michaelis Menten approach were investigated. The Free Ion Model (or its derived Biotic Ligand Model) was tested to determine if U uptake is governed by the free uranyl species or if other metal complexes can be assimilated. The effect of different variables on root assimilation efficiency and phyto-toxicity was explored: presence of ligands such as phosphates or carbonates and competitive ions such as Ca{sup 2+} at the 3 pH. According to previous experiments, uranium was principally located in roots whatever the pH and no difference in uranium uptake was evidenced between the main growth stages of the plant. Within the 3 studied chemical domains, results from short-term kinetics evidenced a linear correlation between total uranium concentration in bean roots and that in exposure media, suggesting that total uranium in soil solution could be a good predictor

  2. Root uptake of uranium by a higher plant model (Phaseolus vulgaris) bioavailability from soil solution

    International Nuclear Information System (INIS)

    Laroche, L.; Henner, P.; Camilleri, V.; Garnier-Laplace, J.

    2004-01-01

    Uranium behaviour in soils is controlled by actions and interactions between physicochemical and biological processes that also determine its bioavailability. In soil solution, uranium(+VI) aqueous speciation undergoes tremendous changes mainly depending on pH, carbonates, phosphates and organic matter. In a first approach to identify bioavailable species of U to plants, cultures were performed using hydroponics, to allow an easy control of the composition of the exposure media. The latter, here an artificial soil solution, was designed to control the uranium species in solution. The geochemical speciation code JCHESS using a database compiled from the OECD/NEA thermochemical database project and verified was used to perform the solution speciation calculations. On this theoretical basis, three domains were defined for short-duration well-defined laboratory experiments in simplified conditions: pH 4.9, 5.8 and 7 where predicted dominant species are uranyl ions, hydroxyl complexes and carbonates respectively. For these domains, biokinetics and characterization of transmembrane transport according to a classical Michaelis Menten approach were investigated. The Free Ion Model (or its derived Biotic Ligand Model) was tested to determine if U uptake is governed by the free uranyl species or if other metal complexes can be assimilated. The effect of different variables on root assimilation efficiency and phyto-toxicity was explored: presence of ligands such as phosphates or carbonates and competitive ions such as Ca 2+ at the 3 pH. According to previous experiments, uranium was principally located in roots whatever the pH and no difference in uranium uptake was evidenced between the main growth stages of the plant. Within the 3 studied chemical domains, results from short-term kinetics evidenced a linear correlation between total uranium concentration in bean roots and that in exposure media, suggesting that total uranium in soil solution could be a good predictor for

  3. Fertilizer drawn forward osmosis process for sustainable water reuse to grow hydroponic lettuce using commercial nutrient solution

    KAUST Repository

    Chekli, Laura

    2017-03-10

    This study investigated the sustainable reuse of wastewater using fertilizer drawn forward osmosis (FDFO) process through osmotic dilution of commercial nutrient solution for hydroponics, a widely used technique for growing plants without soil. Results from the bench-scale experiments showed that the commercial hydroponic nutrient solution (i.e. solution containing water and essential nutrients) exhibited similar performance (i.e., water flux and reverse salt flux) to other inorganic draw solutions when treating synthetic wastewater. The use of hydroponic solution is highly advantageous since it provides all the required macro- (i.e., N, P and K) and micronutrients (i.e., Ca, Mg, S, Mn, B, Zn and Mo) in a single balanced solution and can therefore be used directly after dilution without the need to add any elements. After long-term operation (i.e. up to 75% water recovery), different physical cleaning methods were tested and results showed that hydraulic flushing can effectively restore up to 75% of the initial water flux while osmotic backwashing was able to restore the initial water flux by more than 95%; illustrating the low-fouling potential of the FDFO process. Pilot-scale studies demonstrated that the FDFO process is able to produce the required nutrient concentration and final water quality (i.e., pH and conductivity) suitable for hydroponic applications. Coupling FDFO with pressure assisted osmosis (PAO) in the later stages could help in saving operational costs (i.e., energy and membrane replacement costs). Finally, the test application of nutrient solution produced by the pilot FDFO process to hydroponic lettuce showed similar growth pattern as the control without any signs of nutrient deficiency.

  4. Effect of pH Upper Control Limit on Nutrient Solution Component and Water Spinach Growth under Hydroponics

    OpenAIRE

    Xuzhang Xue; Yinkun Li; Feng Li; Fang Zhang; Wenzhong Guo

    2015-01-01

    In this study, experiment with four levels of nutrient solution pH control upper limit was conducted to explore the optimal nutrient solution pH management scheme under hydroponics by evaluating the nutrient solution characters i.e., pH, Electric Conductivity (EC), nitrate, soluble phosphorus (soluble-P), water spinach growth and quality. The results showed that the nutrient solution pH was 8.2 and unsuitable for water spinach growth under the treatment with no pH regulation during the experi...

  5. Closed-Cycle Nutrient Supply For Hydroponics

    Science.gov (United States)

    Schwartzkopf, Steven H.

    1991-01-01

    Hydroponic system controls composition and feed rate of nutrient solution and recovers and recycles excess solution. Uses air pressure on bladders to transfer aqueous nutrient solution. Measures and adjusts composition of solution before it goes to hydroponic chamber. Eventually returns excess solution to one of tanks. Designed to operate in microgravity, also adaptable to hydroponic plant-growing systems on Earth.

  6. Aseptic hydroponics to assess rhamnolipid-Cd and rhamnolipid-Zn bioavailability for sunflower (Helianthus annuus): a phytoextraction mechanism study.

    Science.gov (United States)

    Wen, Jia; McLaughlin, Mike J; Stacey, Samuel P; Kirby, Jason K

    2016-11-01

    The availability of cadmium (Cd) and zinc (Zn) to sunflower (Helianthus annuus) was investigated in rhamnolipid- and ethylenediaminetetraacetic acid (EDTA)-buffered solutions in order to evaluate the influence of aqueous speciation of the metals on their uptake by the plant, in relation to predictions of uptake by the free ion activity model (FIAM). Free metal ion activity was estimated using the chemical equilibrium program MINTEQ or measured by Donnan dialysis. The uptake of Cd followed the FIAM for the EDTA-buffered solution at EDTA concentrations below 0.4 μM; for the rhamnolipid-buffered solution, the uptake of both metals in roots was not markedly affected by increasing rhamnolipid concentrations in solution. This suggests rhamnolipid enhanced metal accumulation in plant roots (per unit free metal in solution) possibly through formation and uptake of lipophilic complexes. The addition of normal Ca concentrations (low millimetre range) to the rhamnolipid uptake solutions reduced Cd accumulation in shoots by inhibiting Cd translocation, whereas it significantly increased Zn accumulation in shoots. This study confirms that although rhamnolipid could enhance accumulation of Cd in plants roots at low Ca supply, it is not suitable for Cd phytoextraction in contaminated soil environments where Ca concentrations in soil solution are orders of magnitude greater than those of Cd.

  7. Measuring calcium, potassium, and nitrate in plant nutrient solutions using ion-selective electrodes in hydroponic greenhouse of some vegetables.

    Science.gov (United States)

    Vardar, Gökay; Altıkatoğlu, Melda; Ortaç, Deniz; Cemek, Mustafa; Işıldak, İbrahim

    2015-01-01

    Generally, the life cycle of plants depends on the uptake of essential nutrients in a balanced manner and on toxic elements being under a certain concentration. Lack of control of nutrient levels in nutrient solution can result in reduced plant growth and undesired conditions such as blossom-end rot. In this study, sensitivity and selectivity tests for various polyvinylchloride (PVC)-based ion-selective membranes were conducted to identify those suitable for measuring typical concentration ranges of macronutrients, that is, NO(3-), K(+), and Ca(2+), in hydroponic solutions. The sensitivity and selectivity of PVC-membrane-based ion-selective sensors prepared with tetradodecylammoniumnitrate for NO(3-), valinomycin for K(+), and Ca ionophore IV for Ca(2+) were found to be satisfactory for measuring NO(3-), K(+), and Ca(2+) ions in nutrient solutions over typical ranges of hydroponic concentrations. Potassium, calcium, and nitrate levels that were utilized by cucumber and tomato seedlings in the greenhouse were different. The findings show that tomato plants consumed less amounts of nitrate than cucumber plants over the first 2 months of their growth. We also found that the potassium intake was higher than other nutritional elements tested for all plants. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  8. Growth of Escherichia coli O157:H7, Non-O157 Shiga Toxin-Producing Escherichia coli , and Salmonella in Water and Hydroponic Fertilizer Solutions.

    Science.gov (United States)

    Shaw, Angela; Helterbran, Kara; Evans, Michael R; Currey, Christopher

    2016-12-01

    The desire for local, fresh produce year round is driving the growth of hydroponic growing systems in the United States. Many food crops, such as leafy greens and culinary herbs, grown within hydroponics systems have their root systems submerged in recirculating nutrient-dense fertilizer solutions from planting through harvest. If a foodborne pathogen were introduced into this water system, the risk of contamination to the entire crop would be high. Hence, this study was designed to determine whether Escherichia coli O157:H7, non-O157 Shiga toxin-producing E. coli , and Salmonella were able to survive and reproduce in two common hydroponic fertilizer solutions and in water or whether the bacteria would be killed or suppressed by the fertilizer solutions. All the pathogens grew by 1 to 6 log CFU/ml over a 24-h period, depending on the solution. E. coli O157:H7 reached higher levels in the fertilizer solution with plants (3.12 log CFU/ml), whereas non-O157 Shiga toxin-producing E. coli and Salmonella reached higher levels in the fertilizer solution without plants (1.36 to 3.77 log CFU/ml). The foodborne pathogens evaluated here survived for 24 h in the fertilizer solution, and populations grew more rapidly in these solutions than in plain water. Therefore, human pathogens entering the fertilizer solution tanks in hydroponic systems would be expected to rapidly propagate and spread throughout the system and potentially contaminate the entire crop.

  9. Effect of Nutrition Solution pH and Electrical Conductivity on Fusarium Wilt on Strawberry Plants in Hydroponic Culture

    Directory of Open Access Journals (Sweden)

    Myeong Hyeon Nam

    2018-03-01

    Full Text Available Fusarium wilt on strawberry plants caused by Fusarium oxysporum f. sp. fragariae (Fof is a major disease in Korea. The prevalence of this disease is increasing, especially in hydroponic cultivation in strawberry field. This study assessed the effect of nutrition solution pH and electrical conductivity (EC on Fusarium wilt in vitro and in field trials. pH levels of 5.0, 5.5, 6.0, 6.5, 7.0, and 7.5 were assayed in vitro and in field trials. EC levels at 0, 0.5, 0.8, 1.0, and 1.5 dS∙m⁻¹ were assayed in field trials. Mycelial growth of Fof increased with increasing pH and was highest at 25°C pH 7 and lowest at 20°C, pH 5.0 in vitro. The incidence of Fusarium wilt was lowest in the pH 6.5 treatment and highest in the pH 5 treatment in field trials. At higher pH levels, the EC decreased in the drain solution and the potassium content of strawberry leaves increased. In the EC assay, the severity of Fusarium wilt and nitrogen content of leaves increased as the EC increased. These results indicate that Fusarium wilt is related to pH and EC in hydroponic culture of strawberry plants.

  10. Spectral Quantitation Of Hydroponic Nutrients

    Science.gov (United States)

    Schlager, Kenneth J.; Kahle, Scott J.; Wilson, Monica A.; Boehlen, Michelle

    1996-01-01

    Instrument continuously monitors hydroponic solution by use of absorption and emission spectrometry to determine concentrations of principal nutrients, including nitrate, iron, potassium, calcium, magnesium, phosphorus, sodium, and others. Does not depend on extraction and processing of samples, use of such surrograte parameters as pH or electrical conductivity for control, or addition of analytical reagents to solution. Solution not chemically altered by analysis and can be returned to hydroponic process stream after analysis.

  11. Bioavailability and ecotoxicity of arsenic species in solution culture and soil system: implications to remediation.

    Science.gov (United States)

    Bolan, Nanthi; Mahimairaja, Santiago; Kunhikrishnan, Anitha; Seshadri, Balaji; Thangarajan, Ramya

    2015-06-01

    In this work, bioavailability and ecotoxicity of arsenite (As(III)) and arsenate (As(V)) species were compared between solution culture and soil system. Firstly, the adsorption of As(III) and As(V) was compared using a number of non-allophanic and allophanic soils. Secondly, the bioavailability and ecotoxicity were examined using germination, phytoavailability, earthworm, and soil microbial activity tests. Both As-spiked soils and As-contaminated sheep dip soils were used to test bioavailability and ecotoxicity. The sheep dip soil which contained predominantly As(V) species was subject to flooding to reduce As(V) to As(III) and then used along with the control treatment soil to compare the bioavailability between As species. Adsorption of As(V) was much higher than that of As(III), and the difference in adsorption between these two species was more pronounced in the allophanic than non-allophanic soils. In the solution culture, there was no significant difference in bioavailability and ecotoxicity, as measured by germination and phytoavailability tests, between these two As species. Whereas in the As-spiked soils, the bioavailability and ecotoxicity were higher for As(III) than As(V), and the difference was more pronounced in the allophanic than non-allophanic soils. Bioavailability of As increased with the flooding of the sheep dip soils which may be attributed to the reduction of As(V) to As(III) species. The results in this study have demonstrated that while in solution, the bioavailability and ecotoxicity do not vary between As(III) and As(V), in soils, the latter species is less bioavailable than the former species because As(V) is more strongly retained than As(III). Since the bioavailability and ecotoxicity of As depend on the nature of As species present in the environment, risk-based remediation approach should aim at controlling the dynamics of As transformation.

  12. Solução nutritiva para produção de menta em hidroponia Nutrient solution for mint production in hydroponic solution

    Directory of Open Access Journals (Sweden)

    Dalva Paulus

    2008-03-01

    ,50 x 0,25 m pode ser recomendada para o cultivo hidropônico de Mentha arvensis.The mint (Mentha arvensis L. is an aromatic plant that produces essential oil with high menthol concentration. For the hydroponic cultivation of vegetables and fruits, a great number of recommended formulas exist; however, little information exists about hydroponic solutions for mint. The goal of this work was to evaluate a nutrient solution for the mint cultivation in hydroponic system. Two experiments were carried out from October to December, 2004. For the field experiment, transplants were obtained from cuttings and produced in organic mineral substrates (plantmax®. Later they were transplanted in seed beds of 5.00 m length and 1.00 m width, spacings of 0.60 x 0.30 m. For the hydroponic system NFT, seedlings were obtained from cuttings and planted in phenolic foam where they stayed during 18 days. After that, they were transplanted to a production canal. The experimental design was a 2x2 factorial (nutrient solution concentrations x spacings. The hydroponic solution with 100% concentration in transplant and 50% replacement when the electric condutivity decreased 50% of the initial value and 0.5 x 0.25 m spacings resulted in the highest concentration of essential oil (0.60 mL 100 g-1 fresh leaves, menthol (82,4% and total dry matter (45 g plant-1. In hydroponic system the yield of dry matter and content of essential oil was higher than under soil conditions 27 g planta-1 of dry matter, concentration oil 0.53 mL 100 g-1 and 64,43% of menthol. The hydroponic solution with 100% concentration in transplant and 50% replacement when the electric condutivity decreased 50% of the initial value and 0.5 x 0.25 m spacing can be recommended for the cultivation of mint in hydroponic solution.

  13. Hydroponic Gardening

    Science.gov (United States)

    Julinor, Helmut

    1976-01-01

    In addition to being an actual source of foodstuffs in inhospitable climates and a potential source of a large portion of the world's food supply, hydroponic gardening is a useful technique in the classroom for illustrating the role of plant life in the world's food chain. (MB)

  14. Hydroponic leeks

    NARCIS (Netherlands)

    Nichols, M.; Os, van E.A.

    2011-01-01

    Hydroponic and greenhouse technologies offer the promise of growing many crops traditionally grown in soil. A comparative study in The Netherlands has demonstrated that it is now possible to grow leeks in soilless culture using protected cropping technologies with increased production and yields and

  15. Energy demand analysis via small scale hydroponic systems in suburban areas - An integrated energy-food nexus solution.

    Science.gov (United States)

    Xydis, George A; Liaros, Stelios; Botsis, Konstantinos

    2017-09-01

    The study is a qualitative approach and looks into new ways for the effective energy management of a wind farm (WF) operation in a suburban or near-urban environment in order the generated electricity to be utilised for hydroponic farming purposes as well. Since soilless hydroponic indoor systems gain more and more attention one basic goal, among others, is to take advantage of this not typical electricity demand and by managing it, offering to the grid a less fluctuating electricity generation signal. In this paper, a hybrid business model is presented where the Distributed Energy Resources (DER) producer is participating in the electricity markets under competitive processes (spot market, real-time markets etc.) and at the same time acts as a retailer offering - based on the demand - to the hydroponic units for their mass deployment in an area, putting forward an integrated energy-food nexus approach. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Phytoextraction of cadmium by Ipomoea aquatica (water spinach) in hydroponic solution: effects of cadmium speciation.

    Science.gov (United States)

    Wang, Kai-Sung; Huang, Lung-Chiu; Lee, Hong-Shen; Chen, Pai-Ye; Chang, Shih-Hsien

    2008-06-01

    Phytoextraction is a promising technique to remediate heavy metals from contaminated wastewater. However, the interactions of multi-contaminants are not fully clear. This study employed cadmium, Triton X-100 (TX-100), and EDTA to investigate their interactions on phytotoxicity and Cd phytoextraction of Ipomoea aquatica (water spinach) in simulated wastewater. The Cd speciation was estimated by a chemical equilibrium model and MINEQL+. Statistic regression was applied to evaluate Cd speciation on Cd uptake in shoots and stems of I. aquatica. Results indicated that the root length was a more sensitive parameter than root weight and shoot weight. Root elongation was affected by Cd in the Cd-EDTA solution and TX-100 in the Cd-TX-100 solution. Both the root length and the root biomass were negatively correlated with the total soluble Cd ions. In contrast, Cd phytoextraction of I. aquatic was correlated with the aqueous Cd ions in the free and complex forms rather than in the chelating form. Additionally, the high Cd bioconcentration factors of I. aquatica (375-2227 l kg(-1) for roots, 45-144 l kg(-1) for shoots) imply that I. aquatica is a potential aquatic plant to remediate Cd-contaminated wastewater.

  17. Microbial ecosystem constructed in water for successful organic hydroponics

    OpenAIRE

    Makoto Shinohara; Hiromi Ohmori; Yoichi Uehara

    2008-01-01

    Conventional hydroponics systems generally use only chemical fertilisers, not organic ones, since there are no microbial ecosystems present in such systems to mineralise organic compounds to inorganic nutrients. Addition of organic compounds to the hydroponic solution generally has phytotoxic effects and causes poor plant growth. We developed a novel hydroponic culture method using organic fertiliser. A microbial ecosystem was constructed in hydroponic solution by regulating the amounts of or...

  18. Hydroponics in the Classroom.

    Science.gov (United States)

    Sell, Merran

    1997-01-01

    Summarizes the benefits of using hydroponics in school for investigational work. Lists requirements and includes advice on suitable plant choices. Outlines the various growing systems and growing media and provides suggestions for science investigations using hydroponics. (DDR)

  19. Effect of different soil washing solutions on bioavailability of residual arsenic in soils and soil properties.

    Science.gov (United States)

    Im, Jinwoo; Yang, Kyung; Jho, Eun Hea; Nam, Kyoungphile

    2015-11-01

    The effect of soil washing used for arsenic (As)-contaminated soil remediation on soil properties and bioavailability of residual As in soil is receiving increasing attention due to increasing interest in conserving soil qualities after remediation. This study investigates the effect of different washing solutions on bioavailability of residual As in soils and soil properties after soil washing. Regardless of washing solutions, the sequential extraction revealed that the residual As concentrations and the amount of readily labile As in soils were reduced after soil washing. However, the bioassay tests showed that the washed soils exhibited ecotoxicological effects - lower seed germination, shoot growth, and enzyme activities - and this could largely be attributed to the acidic pH and/or excessive nutrient contents of the washed soils depending on washing solutions. Overall, this study showed that treated soils having lower levels of contaminants could still exhibit toxic effects due to changes in soil properties, which highly depended on washing solutions. This study also emphasizes that data on the As concentrations, the soil properties, and the ecotoxicological effects are necessary to properly manage the washed soils for reuses. The results of this study can, thus, be utilized to select proper post-treatment techniques for the washed soils. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Labile synthetic cadmium complexes are not bioavailable to Pseudokirchneriella subcapitata in resin buffered solutions

    Energy Technology Data Exchange (ETDEWEB)

    Verheyen, L., E-mail: Liesbeth.Verheyen@ees.kuleuven.be [Division of Soil and Water Management, K.U. Leuven, Kasteelpark Arenberg 20, Box 2459, 3001 Heverlee (Belgium); Merckx, R. [Division of Soil and Water Management, K.U.Leuven, Kasteelpark Arenberg 20, Box 2459, 3001 Heverlee (Belgium); Smolders, E., E-mail: Erik.Smolders@ees.kuleuven.be [Division of Soil and Water Management, K.U. Leuven, Kasteelpark Arenberg 20, Box 2459, 3001 Heverlee (Belgium)

    2012-11-15

    The Free Ion Activity Model (FIAM) predicts that cadmium (Cd) uptake by organisms is identical for solutions with the same free Cd{sup 2+} concentration and inorganic composition. Clear exceptions to the FIAM have been shown for Cd uptake by plant roots, periphyton and human cells where labile Cd complexes increase bioavailability and which has been attributed to their role in enhancing Cd diffusion towards the uptake cells. Here, we assessed the role of labile Cd complexes on Cd uptake by algae, for which diffusion limitations should be less pronounced due to their smaller size. Long-term (3 days) Cd uptake by the green algae Pseudokirchneriella subcapitata was measured in resin buffered solutions with or without synthetic ligands and at three Cd{sup 2+} ion activities (pCd 8.2-5.7). The free Cd{sup 2+} activity was maintained during the test using a metal-selective resin located in the algal bottles. Total dissolved Cd increased up to 35-fold by adding the synthetic ligands at constant Cd{sup 2+} activity. In contrast, Cd uptake by algae increased maximally 2.8 fold with increasing concentration of the synthetic ligands and the availability of the complexes were maximally 5.2% relative to Cd{sup 2+} for NTA and CDTA complexes. It is concluded that labile Cd complexes do not greatly enhance Cd bioavailability to the unicellular algae and calculations suggest that Cd transport from solution to these small cells is not rate limiting.

  1. Labile synthetic cadmium complexes are not bioavailable to Pseudokirchneriella subcapitata in resin buffered solutions

    International Nuclear Information System (INIS)

    Verheyen, L.; Merckx, R.; Smolders, E.

    2012-01-01

    The Free Ion Activity Model (FIAM) predicts that cadmium (Cd) uptake by organisms is identical for solutions with the same free Cd 2+ concentration and inorganic composition. Clear exceptions to the FIAM have been shown for Cd uptake by plant roots, periphyton and human cells where labile Cd complexes increase bioavailability and which has been attributed to their role in enhancing Cd diffusion towards the uptake cells. Here, we assessed the role of labile Cd complexes on Cd uptake by algae, for which diffusion limitations should be less pronounced due to their smaller size. Long-term (3 days) Cd uptake by the green algae Pseudokirchneriella subcapitata was measured in resin buffered solutions with or without synthetic ligands and at three Cd 2+ ion activities (pCd 8.2–5.7). The free Cd 2+ activity was maintained during the test using a metal-selective resin located in the algal bottles. Total dissolved Cd increased up to 35-fold by adding the synthetic ligands at constant Cd 2+ activity. In contrast, Cd uptake by algae increased maximally 2.8 fold with increasing concentration of the synthetic ligands and the availability of the complexes were maximally 5.2% relative to Cd 2+ for NTA and CDTA complexes. It is concluded that labile Cd complexes do not greatly enhance Cd bioavailability to the unicellular algae and calculations suggest that Cd transport from solution to these small cells is not rate limiting.

  2. Chemical composition and Zn bioavailability of the soil solution extracted from Zn amended variable charge soils.

    Science.gov (United States)

    Zampella, Mariavittoria; Adamo, Paola

    2010-01-01

    A study on variable charge soils (volcanic Italian and podzolic Scottish soils) was performed to investigate the influence of soil properties on the chemical composition of soil solution. Zinc speciation, bioavailability and toxicity in the soil solution were examined. The soils were spiked with increasing amounts of Zn (0, 100, 200, 400 and 1000 mg/kg) and the soil solutions were extracted using rhizon soil moisture samplers. The pH, total organic carbon (TOC), base cations, anions, total Zn and free Zn2+ in soil solution were analysed. A rapid bioassay with the luminescent bacterium Escherichia coli HB101 pUCD607 was performed to assess Zn toxicity. The influence of soil type and Zn treatments on the chemical composition of soil solution and on Zn toxicity was considered and discussed. Different trends of total and free Zn concentrations, base cations desorption and luminescence of E. coli HB101 pUCD607 were observed. The soil solution extracted from the volcanic soils had very low total and free Zn concentrations and showed specific Zn2+/Ca2+ exchange. The soil solution from the podzolic soil had much higher total and free Zn concentrations and showed no evidence of specific Zn2+/Ca2+ exchange. In comparison with the subalkaline volcanic soils, the acidic podzol showed enhanced levels of toxic free Zn2+ and consequently stronger effects on E. coli viability.

  3. Hydroponic training visit

    NARCIS (Netherlands)

    Os, van Erik; Waked, Laith; Blok, Chris

    2016-01-01

    From January 25-29 2016 Wageningen UR Greenhouse Horticulture organized a Hydroponic Training for Jordan researcher and consultants. The order was supplied by Ecoconsult (Hydroponic Green Farming Initiative) from Jordan and funded by USAID. Presentations were delivered in the field of growing

  4. Hydroponic cultivation of Oncidium baueri

    Directory of Open Access Journals (Sweden)

    Daniele Brandstetter Rodrigues

    2017-08-01

    Full Text Available In Brazil, orchid cultivation has been increasing steadily over the last few years and contributing significantly to the economy. It has been reported that several vegetable crops and ornamentals have been successfully grown by soilless cultivation. The orchid Oncidium baueri Lindl. is grown on pot substrates. Nevertheless, hydroponics is an excellent alternative, especially for the production of cut flowers and bare root plants. The objective of this study was to evaluate the development of Oncidium baueri on two soilless systems: (a pots containing Amafibra® coconut fiber, carbonized rice husk, and pine bark (1:1:1 irrigated with nutrient solution every 15 d; and (b a nutrient film technique (NFT hydroponic system irrigated with nutrient solution daily. Shoot height, pseudobulb diameter, and number of sprouts were evaluated monthly. The number of flowering plants, number of flowers, dry mass of shoots, and dry mass of roots were evaluated 11 months after onset of experiment. The pot cultivation system yielded more flowers and higher values for all vegetative parameters than the NFT hydroponic system.

  5. Hydroponics or soilless culture

    Science.gov (United States)

    Chapman, H. D.

    1963-01-01

    Historically, hydroponics is not a new field; plant physiologists have known and used it for some 100 years. Inevitably, some enthusiasts got carried away.Claims were made of enormous potential yields; skyscraper tops were said to be capable of producing enough food for all of their occupants; and closets, basements, garages, etc. were wishfully converted into fields for hydroponic culture. Numerous publications on the subject appeared during this period. Basic requirements for hydropinc techniques are given along with examples of where soilless culture has been used commercially.

  6. Diffusive gradient in thin FILMS (DGT) compared with soil solution and labile uranium fraction for predicting uranium bioavailability to ryegrass.

    Science.gov (United States)

    Duquène, L; Vandenhove, H; Tack, F; Van Hees, M; Wannijn, J

    2010-02-01

    The usefulness of uranium concentration in soil solution or recovered by selective extraction as unequivocal bioavailability indices for uranium uptake by plants is still unclear. The aim of the present study was to test if the uranium concentration measured by the diffusive gradient in thin films (DGT) technique is a relevant substitute for plant uranium availability in comparison to uranium concentration in the soil solution or uranium recovered by ammonium acetate. Ryegrass (Lolium perenne L. var. Melvina) is grown in greenhouse on a range of uranium spiked soils. The DGT-recovered uranium concentration (C(DGT)) was correlated with uranium concentration in the soil solution or with uranium recovered by ammonium acetate extraction. Plant uptake was better predicted by the summed soil solution concentrations of UO(2)(2+), uranyl carbonate complexes and UO(2)PO(4)(-). The DGT technique did not provide significant advantages over conventional methods to predict uranium uptake by plants. Copyright 2009 Elsevier Ltd. All rights reserved.

  7. Diffusive gradient in thin FILMS (DGT) compared with soil solution and labile uranium fraction for predicting uranium bioavailability to ryegrass

    Energy Technology Data Exchange (ETDEWEB)

    Duquene, L. [SCK-CEN, Biosphere Impact Studies, Boeretang 200, B-2400 Mol (Belgium); Vandenhove, H., E-mail: hvandenh@sckcen.b [SCK-CEN, Biosphere Impact Studies, Boeretang 200, B-2400 Mol (Belgium); Tack, F. [Ghent University, Laboratory for Analytical Chemistry and Applied Ecochemistry, Coupure Links 653, B-9000 Gent (Belgium); Van Hees, M.; Wannijn, J. [SCK-CEN, Biosphere Impact Studies, Boeretang 200, B-2400 Mol (Belgium)

    2010-02-15

    The usefulness of uranium concentration in soil solution or recovered by selective extraction as unequivocal bioavailability indices for uranium uptake by plants is still unclear. The aim of the present study was to test if the uranium concentration measured by the diffusive gradient in thin films (DGT) technique is a relevant substitute for plant uranium availability in comparison to uranium concentration in the soil solution or uranium recovered by ammonium acetate. Ryegrass (Lolium perenne L. var. Melvina) is grown in greenhouse on a range of uranium spiked soils. The DGT-recovered uranium concentration (C{sub DGT}) was correlated with uranium concentration in the soil solution or with uranium recovered by ammonium acetate extraction. Plant uptake was better predicted by the summed soil solution concentrations of UO{sub 2}{sup 2+}, uranyl carbonate complexes and UO{sub 2}PO{sub 4}{sup -}. The DGT technique did not provide significant advantages over conventional methods to predict uranium uptake by plants.

  8. Diffusive gradient in thin FILMS (DGT) compared with soil solution and labile uranium fraction for predicting uranium bioavailability to ryegrass

    International Nuclear Information System (INIS)

    Duquene, L.; Vandenhove, H.; Tack, F.; Van Hees, M.; Wannijn, J.

    2010-01-01

    The usefulness of uranium concentration in soil solution or recovered by selective extraction as unequivocal bioavailability indices for uranium uptake by plants is still unclear. The aim of the present study was to test if the uranium concentration measured by the diffusive gradient in thin films (DGT) technique is a relevant substitute for plant uranium availability in comparison to uranium concentration in the soil solution or uranium recovered by ammonium acetate. Ryegrass (Lolium perenne L. var. Melvina) is grown in greenhouse on a range of uranium spiked soils. The DGT-recovered uranium concentration (C DGT ) was correlated with uranium concentration in the soil solution or with uranium recovered by ammonium acetate extraction. Plant uptake was better predicted by the summed soil solution concentrations of UO 2 2+ , uranyl carbonate complexes and UO 2 PO 4 - . The DGT technique did not provide significant advantages over conventional methods to predict uranium uptake by plants.

  9. Hands-On Hydroponics

    Science.gov (United States)

    Carver, Jeffrey; Wasserman, Bradley

    2012-01-01

    Hydroponics is a process in which plants are grown using nutrient-rich water instead of soil. Because this process maximizes the use of water and nutrients--providing only what the plant uses in controlled and easily maintained systems--it is a viable alternative to traditional farming methods. The amount of control in these systems also ensures…

  10. Phytoaccumulation of antimicrobials by hydroponic Cucurbita pepo.

    Science.gov (United States)

    Aryal, Niroj; Reinhold, Dawn

    2013-01-01

    Consumer use of antimicrobial-containing products continuously introduces triclocarban and triclosan into the environment. Triclocarban and triclosan adversely affect plants and animals and have the potential to affect human health. Research examined the phytoaccumulation of triclocarban and triclosan by pumpkin (Cucurbita pepo cultivar Howden) and zucchini (Cucurbita pepo cultivar Gold Rush) grown hydroponically. Pumpkin and zucchini were grown in nutrient solution spiked with 0.315 microg/mL triclocarban and 0.289 microg/mL triclosan for two months. Concentrations of triclocarban and triclosan in nutrient solutions were monitored weekly. At the end of the trial, roots and shoots were analyzed for triclocarban and triclosan. Research demonstrated that pumpkin and zucchini accumulated triclocarban and triclosan. Root accumulation factors were 1.78 and 0.64 and translocation factors were 0.001 and 0.082 for triclocarban and triclosan, respectively. The results of this experiment were compared with a previous soil column study that represented environmentally relevant exposure of antimicrobials from biosolids and had similar root mass. Plants were not as efficient in removing triclocarban and triclosan in hydroponic systems as in soil systems. Shoot concentrations of antimicrobials were the same or lower in hydroponic systems than in soil columns, indicating that hydroponic system does not overpredict the concentrations of antimicrobials.

  11. Relative bioavailability of diclofenac potassium from softgel capsule versus powder for oral solution and immediate-release tablet formulation.

    Science.gov (United States)

    Bende, Girish; Biswal, Shibadas; Bhad, Prafulla; Chen, Yuming; Salunke, Atish; Winter, Serge; Wagner, Robert; Sunkara, Gangadhar

    2016-01-01

    The oral bioavailability of diclofenac potassium 50 mg administered as a soft gelatin capsule (softgel capsule), powder for oral solution (oral solution), and tablet was evaluated in a randomized, open-label, 3-period, 6-sequence crossover study in healthy adults. Plasma diclofenac concentrations were measured using a validated liquid chromatography-mass spectrometry/mass spectrometry method, and pharmacokinetic analysis was performed by noncompartmental methods. The median time to achieve peak plasma concentrations of diclofenac was 0.5, 0.25, and 0.75 hours with the softgel capsule, oral solution, and tablet formulations, respectively. The geometric mean ratio and associated 90%CI for AUCinf, and Cmax of the softgel capsule formulation relative to the oral solution formulation were 0.97 (0.95-1.00) and 0.85 (0.76-0.95), respectively. The geometric mean ratio and associated 90%CI for AUCinf and Cmax of the softgel capsule formulation relative to the tablet formulation were 1.04 (1.00-1.08) and 1.67 (1.43-1.96), respectively. In conclusion, the exposure (AUC) of diclofenac with the new diclofenac potassium softgel capsule formulation was comparable to that of the existing oral solution and tablet formulations. The peak plasma concentration of diclofenac from the new softgel capsule was 67% higher than the existing tablet formulation, whereas it was 15% lower in comparison with the oral solution formulation. © 2015, The American College of Clinical Pharmacology.

  12. Degradation of Surfactants in Hydroponic Wheat Root Zones

    Science.gov (United States)

    Monje, Oscar; McCoy, Lashelle; Flanagan, Aisling

    Hygiene water recycling in recirculating hydroponic systems can be enhanced by plant roots by providing a substrate and root exudates for bacterial growth. However, reduced plant growth can occur during batch mode additions of high concentrations of surfactant. An analog hygiene water stream containing surfactants (Steol CS330, Mirataine CB) was added to a hydroponically-grown wheat plant root zone. The plants were grown at 700 mol mol-1 CO2, a photosynthetic photon flux of 300 mol m-2 s-1, and a planting density of 380 plants m-2. Volumetric oxygen mass transfer coefficients were determined using the fermentative/dynamic outgassing method to maintain adequate oxygen mass transfer rates in the root zone. This analysis suggested an optimal flow rate of the hydroponic solution of 5 L min-1. The hydroponic system was inoculated with biofilm from a bioreactor and rates of surfactant degradation were measured daily based on reduction in chemical oxygen demand (COD). The COD decreased from 400 to 100 mg L-1 after 2 days following batch addition of the analog hygiene water to the hydroponic system. Measurements of dissolved oxygen concentration and solution temperature suggest that the root zone was provided adequate aeration to meet both oxygen demands from plant and microbial respiration during the degradation of the surfactant. Results from this study show that hydroponic systems can be used to enhance rates of hygiene water processing.

  13. Exploring Classroom Hydroponics. Growing Ideas.

    Science.gov (United States)

    National Gardening Association, Burlington, VT.

    Growing Ideas, the National Gardening Association's series for elementary, middle, and junior high school educators, helps teachers engage students in using plants and gardens as contexts for developing a deeper, richer understanding of the world around them. This volume's focus is on hydroponics. It presents basic hydroponics information along…

  14. Nutrient Film Technique (NFT Hydroponic Monitoring System

    Directory of Open Access Journals (Sweden)

    Helmy Helmy

    2016-10-01

    Full Text Available Plant cultivation using hydroponic is very popular today. Nutrient Film Technique (NFT hydroponic system is commonly used by people. It can be applied indoor or outdoor. Plants in this systemneed nutrient solution to grow well. pH, TDS and temperature of the nutrient solution must be check to ensure plant gets sufficient nutrients. This research aims todevelop monitoring system of NFT hydroponic. Farmer will be able to monitor pH, TDS and temperature online. It will ease farmer to decide which plant is suitable to be cultivated and time to boost growth.Delay of the system will be measured to know system performance. Result shows that pH is directly proportional with TDS. Temperature value has no correlation with pH and TDS. System has highest delay during daylight and afternoon but it will decline in the night and morning. Average of delay in the morning is 11 s, 28.5 s in daylight, 32 s in the afternoon and 17.5 s in the night.

  15. Labile rhizosphere soil solution fraction for prediction of bioavailability of heavy metals and rare earth elements to plants.

    Science.gov (United States)

    Shan, Xiao-Quan; Wang, Zhongwen; Wang, Weisheng; Zhang, Shuzhen; Wen, Bei

    2003-02-01

    A labile rhizosphere soil solution fraction has been recommended to predict the bioavailability of heavy metals and rare earth elements to plants. This method used moist rhizosphere soil in combination with a mixture of 0.01 mol L(-1) of low-molecular-weight organic acids (LMWOAs) as extractant. The extracted soil solutions were fractionated into two colloidal fractions of soil solution fraction, F(lrss). For the soil solutions extracted with a mixture of LMWOAs the concentrations of heavy metals and rare earth elements in F(2) and F(3) were quite similar. However, the mean concentrations of Cr, Ni, Zn, Cu, Pb, Cd, La, Ce, Pr, and Nd in F(lrss) accounted for 79.9%, 91.3%, 90.8%, 60.1%, 77.5%, 75.3%, 81.2%, 77.2%, 80.3%, and 79.5%, respectively, of their concentrations in F(2). In contrast, there were no differences in the extractable metal concentrations between the three fractions while the first step of the method recommended by the European Community of Reference (BCR), where 0.1 mol L(-1) acetic acid was used as an extractant. The single correlation analysis was made between metal concentrations in the different fractions of soil solutions and their concentrations in wheat. If the first step of BCR method was used there was no good correlation between heavy metals in soil pools and that in wheat shoots and roots. When LMWAOs were used a good correlation was obtained between the concentrations of heavy metals in soil pools and that in wheat roots, which followed a general order of r(1 kD, LMWOAs) >r(0.2 microm, LMWOAs) approximately r(0.45 microm, LMWOAs). In the case of rare earth elements the good correlation was obtained for both the wheat roots and shoots. Generally, the correlation coefficients obtained by LMWAOs were better than that obtained by the first step of BCR method. Therefore, LMWAOs and F(lrss) were strongly recommended to predict the bioavailability of metals in soil pools to plants.

  16. A recirculating hydroponic system for studying peanut (Arachis hypogaea L.)

    Science.gov (United States)

    Mackowiak, C. L.; Wheeler, R. M.; Stutte, G. W.; Yorio, N. C.; Ruffe, L. M.; Sager, J. C. (Principal Investigator)

    1998-01-01

    Peanut (Arachis hypogaea L.) plants were grown hydroponically, using continuously recirculating nutrient solution. Two culture tray designs were tested; one tray design used only nutrient solution, while the other used a sphagnum-filled pod development compartment just beneath the cover and above the nutrient solution. Both trays were fitted with slotted covers to allow developing gynophores to reach the root zone. Peanut seed yields averaged 350 gm-2 dry mass, regardless of tray design, suggesting that substrate is not required for hydroponic peanut production.

  17. Speciation of Se and DOC in soil solution and their relation to Se bioavailability.

    Science.gov (United States)

    Weng, Liping; Vega, Flora Alonso; Supriatin, Supriatin; Bussink, Wim; Van Riemsdijk, Willem H

    2011-01-01

    A 0.01 M CaCl(2) extraction is often used to asses the bioavailability of plant nutrients in soils. However, almost no correlation was found between selenium (Se) in the soil extraction and Se content in grass. The recently developed anion Donnan membrane technique was used to analyze chemical speciation of Se in the 0.01 M CaCl(2) extractions of grassland soils and fractionation of DOC (dissolved organic carbon). The results show that most of Se (67-86%) in the extractions (15 samples) are colloidal-sized Se. Only 13-34% of extractable Se are selenate, selenite and small organic Se (<1 nm). Colloidal Se is, most likely, Se bound to or incorporated in colloidal-sized organic matter. The dominant form of small Se compounds (selenate, selenite/small organic compounds) depends on soil. A total of 47-85% of DOC is colloidal-sized and 15-53% are small organic molecules (<1 nm). In combination with soluble S (sulfur) and/or P (phosphor), concentration of small DOC can explain most of the variability of Se content in grass. The results indicate that mineralization of organic Se is the most important factor that controls Se availability in soils. Competition with sulfate and phosphate needs to be taken into account. Further research is needed to verify if concentration of small DOC is a good indicator of mineralization of soil organic matter.

  18. Nutrient Management in Recirculating Hydroponic Culture

    Science.gov (United States)

    Bugbee, Bruce

    2004-01-01

    There is an increasing need to recirculate and reuse nutrient solutions in order to reduce environmental and economic costs. However, one of the weakest points in hydroponics is the lack of information on managing the nutrient solution. Many growers and research scientists dump out nutrient solutions and refill at weekly intervals. Other authors have recommended measuring the concentrations of individual nutrients in solution as a key to nutrient control and maintenance. Dumping and replacing solution is unnecessary. Monitoring ions in solution is not always necessary; in fact the rapid depletion of some nutrients often causes people to add toxic amounts of nutrients to the solution. Monitoring ions in solution is interesting, but it is not the key to effective maintenance.

  19. Análise do resfriamento da solução nutritiva para cultivo hidropônico do morangueiro Nutrient solution cooling evaluation for hydroponic cultivation of strawberry plant

    Directory of Open Access Journals (Sweden)

    Luiz V. E. Villela Júnior

    2004-08-01

    Full Text Available Este trabalho teve como objetivo a produção hidropônica de morangos com resfriamento da solução nutritiva, em Jaboticabal - SP. O experimento foi conduzido no Setor de Plasticultura do Departamento de Engenharia Rural da FCAV/UNESP, Câmpus de Jaboticabal, em casa de vegetação coberta com filme de polietileno, sendo o transplantio realizado em 9-1-2002. Foram avaliadas duas variedades de morango: Campinas e "Sweet Charlie", cultivadas em sistema hidropônico tipo NFT, com ou sem resfriamento da solução nutritiva. A solução nutritiva resfriada foi mantida à temperatura de aproximadamente 12 ºC, por meio de um trocador de calor. A variedade "Sweet Charlie" apresentou melhores resultados para peso médio dos pseudofrutos, diâmetro médio longitudinal, diâmetro médio transversal, número médio de pseudofrutos e produtividade. O resfriamento da solução nutritiva conferiu maior número de pseudofrutos colhidos, maior produtividade e maior teor de sólidos solúveis totais aos pseudofrutos da variedade "Sweet Charlie". No entanto, o resfriamento da solução nutritiva não causou efeitos sobre a variedade Campinas.This work had as its major aim the hydroponic production of strawberries with the cooling of the nutrient solution, in Jaboticabal - SP - Brazil. The experiment was conducted in a covered greenhouse with a plastic film and seed transplantation achieved on January 9, 2002. Two varieties of strawberries were evaluated: Campinas and Sweet Charlie, both cultivated under the hydroponic system NFT type with or without cooling the nutrient solution. The cooling of the nutrient solution at about 12 °C was in a heating exchange device. The Sweet Charlie variety presented the best results for both the average weight and number of pseudofruit, longitudinal average diameter, cross average diameter, average number of pseudofruit and productivity. The cooling of the nutrient solution confered greater number of pseudofruit collected and

  20. Hydroponics reducing effluent's heavy metals discharge.

    Science.gov (United States)

    Rababah, Abdellah; Al-Shuha, Ahmad

    2009-01-01

    This paper investigates the capacity of Nutrient Film Technique (NFT) to control effluent's heavy metals discharge. A commercial hydroponic system was adapted to irrigate lettuces with primary treated wastewater for studying the potential heavy metals removal. A second commercial hydroponic system was used to irrigate the same type of lettuces with nutrient solution and this system was used as a control. Results showed that lettuces grew well when irrigated with primary treated effluent in the commercial hydroponic system. The NFT-plant system heavy metals removal efficiency varied amongst the different elements, The system's removal efficiency for Cr was more than 92%, Ni more than 85%, in addition to more than 60% reduction of B, Pb, and Zn. Nonetheless, the NFT-plants system removal efficiencies for As, Cd and Cu were lower than 30%. Results show that lettuces accumulated heavy metals in leaves at concentrations higher than the maximum acceptable European and Australian levels. Therefore, non-edible plants such as flowers or pyrethrum are recommended as value added crops for the proposed NFT.

  1. A new method for determining the bioavailability of radionuclides in the soil solution

    International Nuclear Information System (INIS)

    Jouve, A.; Lejeune, M.; Rey, J.

    1999-01-01

    A new method for determining the pool of radionuclides in the soil solution, available for root uptake, has been compared to existing methods. The new method is based on extracting the soil solution at a soil moisture below saturation. It uses the soaking capacity of a polyacrylamide resin deposited on a cellulose acetate membrane laid on the soil surface. The new method exhibited the best reproductibility amongst the methods tested. It allowed us to extract more 134 Cs and a similar amount of 85 Sr relative to the other methods. The correlation between the observed ratio of radionuclide concentrations in soil and plants and the radionuclide concentration of the soil solution using the new method was better than using the existing methods. Using the measurement of 134 Cs and natural potassium in the soil solution by the new method, based on a multiple regression equation involving an exponential form, the uptake of 134 Cs by bean and wheat was predicted with a 0.9 determination coefficient. As far as the uptake of 85 Sr is considered, this method was not very successful since the equation with a linear form involved a large number of parameters. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  2. Development of hydroponic system using agricultural waste. 2. Utilization of ozone for sterilization of nutrient solution; Suiko saibai ni okeru haikibutsu riyo gijutsu no kaihatsu. 2. Ozone ni yoru baiyoeki sakkin ni kansuru kento

    Energy Technology Data Exchange (ETDEWEB)

    Terazoe, H; Yoshihara, T; Nakaya, K [Central Research Institute of Electric Power Industry, Tokyo (Japan)

    1995-08-01

    Discussions were given on a sterilizing effect of ozone on Fusarium bacteria in hydroponic culture, and its effect on components in the culture solution. In an experiment, dry air with O3 concentration of 3.5 ppm was sent into aqueous solution inoculated with Fusarium bacteria at a flow rate of 5 liters per minute. The Fusarium bacteria was sterilized nearly completely in about five minutes. No change was observed in pH, EC and dissolved oxygen concentration of the O3-treated culture solution. However, iron and manganese among the soluble components have been oxidized by O3 and precipitated, hence these components must be added after the O3 treatment. In spinach culture performed on a culture medium inoculated with Fusarium bacteria, ozone water containing dissolved O3 at 0.8 ppm was flown into a urethane foam medium and vegetable roots. This treatment has resulted in reduction of the number of strains occurred with a wilt symptom below that in the section flown with distilled water. The spinach has grown normally without showing an effect of the ozone water. 15 refs., 10 figs., 3 tabs.

  3. Growth and production of nasturtium flowers in three hydroponic solutions Crescimento e produção de flores de nastúrcio cultivado em hidroponia com três soluções nutritivas

    Directory of Open Access Journals (Sweden)

    Evanisa Fátima RQ Melo

    2011-12-01

    Full Text Available This experiment was carried out during April to August 2003 in a greenhouse at the Universidade Federal de Santa Maria, Rio Grande do Sul state, Brazil. The growth and production of nasturtium flowers (Tropaeolum majus in hydroponics NFT system was typified. Treatments were displayed in a 3x11 factorial, with six replications, in entirely randomized experimental design, and were composed of three nutrition solutions and 11 assessment dates. Each plant was separated between aerial part and root for the evaluation of dry mass. The blossoming started 49 days after the transplant (DAT. The plants presented good development in hydroponics, as well as growing dry mass, stature, leaf area and IAF, during the cycle. The culture's growth rate presented larger accumulation of leaf mass from 49 DAT on, in linear relation. Biological productivity was adjusted to a 2nd degree equation. Nutrition solutions did not show statistical differences, however, Furlani (1997 solution was the most reasonably priced.Com o objetivo de caracterizar o crescimento e produção de flores de nastúrcio (Tropaeolum majus em hidroponia, no sistema NFT, conduziu-se um experimento em casa de vegetação da Universidade Federal de Santa Maria, de abril a agosto de 2003. O experimento foi um fatorial 3x11 com seis repetições, em delineamento experimental inteiramente casualizado, sendo os tratamentos constituídos de três soluções nutritivas e 11 datas de avaliação. Dividiu-se cada planta em parte aérea e raiz para avaliação da fitomassa seca. A floração iniciou aos 49 dias após o transplante (DAT. A planta apresentou bom desenvolvimento em hidroponia sendo a produção de fitomassa seca crescente durante o ciclo, bem como a estatura, a área foliar e o IAF. A taxa de crescimento da cultura apresentou maior acúmulo de fitomassa a partir dos 49 DAT com relação linear. A produtividade biológica ajustou-se a uma equação do 2º grau. As soluções nutritivas n

  4. Performance test of nutrient control equipment for hydroponic plants

    Science.gov (United States)

    Rahman, Nurhaidar; Kuala, S. I.; Tribowo, R. I.; Anggara, C. E. W.; Susanti, N. D.

    2017-11-01

    Automatic control equipment has been made for the nutrient content in irrigation water for hydroponic plants. Automatic control equipment with CCT53200E conductivity controller to nutrient content in irrigation water for hydroponic plants, can be used to control the amount of TDS of nutrient solution in the range of TDS numbers that can be set according to the range of TDS requirements for the growth of hydroponically cultivated crops. This equipment can minimize the work time of hydroponic crop cultivators. The equipment measurement range is set between 1260 ppm up to 1610 ppm for spinach plants. Caisim plants were included in this experiment along with spinach plants with a spinach plants TDS range. The average of TDS device is 1450 ppm, while manual (conventional) is 1610 ppm. Nutrient solution in TDS controller has pH 5,5 and temperature 29,2 °C, while manual is pH 5,6 and temperature 31,3 °C. Manually treatment to hydroponic plant crop, yields in an average of 39.6 grams/plant, greater than the yield of spinach plants with TDS control equipment, which is in an average of 24.6 grams / plant. The yield of caisim plants by manual treatment is in an average of 32.3 grams/crop, less than caisim crop yields with TDS control equipment, which is in an average of 49.4 grams/plant.

  5. Automated sensing of hydroponic macronutrients using a computer-controlled system with an array of ion-selective electrodes

    Science.gov (United States)

    Hydroponic production systems grow plants without soil, relying on a circulating solution to provide the necessary nutrients. Maintaining an optimum nutrient balance in this solution is important for maximizing crop growth and yield. Particularly in closed hydroponic systems it is important to monit...

  6. Hydroponic Technology for Lily Flowers and Bulbs Production Using ...

    African Journals Online (AJOL)

    This experiment was carried out to investigate the potential of nutrient film technique (NFT) hydroponic system for flowers and bulbs production of the Asiatic hybrid lily cv. "Blackout" using rainwater and some common nutrient solutions (Hoagland No. 2 Basal Salt Mixture, Murashige and Skoog Basal Salt Mixture and ...

  7. Produtividade de rúcula hidropônica cultivada em diferentes épocas e vazões de solução nutritiva Yield of hydroponic rocket cultivated in different seasons and flow rates of nutrient solution

    Directory of Open Access Journals (Sweden)

    Gláucio da C Genuncio

    2011-12-01

    Full Text Available A rúcula é uma das principais hortaliças produzidas no Brasil via hidroponia. Entretanto, além da aplicação de uma solução nutritiva adequada à cultura, torna-se imprescindível o conhecimento e o controle das variáveis intrínsecas ao manejo da solução nutritiva. Assim, o objetivo foi avaliar o acúmulo de biomassa fresca de parte aérea e raiz e a produtividade da rúcula cultivada em três vazões de solução nutritiva em hidroponia NFT, durante seis ciclos de cultivo. Os tratamentos consistiram de três vazões de solução nutritiva, sendo V1= 0,75, V2= 1,00 e V3= 1,50 L min-1. Foram avaliados seis ciclos de cultivo (de julho a dezembro. O delineamento experimental foi de blocos ao acaso com oito repetições. Realizaram-se as colheitas aos 30 dias após o transplante para os canais de hidroponia. O acúmulo de biomassa de parte aérea e de raiz foi maior nos meses de novembro e dezembro, devido a maiores temperaturas em casa de vegetação. Foi observado menor valor de biomassa de parte aérea na menor vazão do sistema. A produtividade da parte aérea e total (parte aérea + raiz foi maior nos meses mais quentes. Observou-se um incremento na produtividade com um aumento da vazão da solução nutritiva nos canais de hidroponia.The rocket is one of the main vegetable crops produced in Brazil through hydroponics. Nevertheless, besides the application of an appropriate nutrient solution for the crop, the knowledge and control of intrinsic variables for the management of the nutrient solution is essential. The accumulation of fresh biomass of the aboveground part, roots and the yield of rocket grown in three flow rates of nutrient solution during six crop cycles was studied. The treatments consisted of three flows rates of nutrient solution, V1= 0.75, V2= 1.00 and V3= 1.50 L min-1. We also evaluated six cycles of cultivation (from July to December. The experimental design was randomized blocks with eight replications. Harvest

  8. Effects of different combinations of Hoagland's solution and Azolla ...

    African Journals Online (AJOL)

    ALAN

    2013-04-17

    Apr 17, 2013 ... hydroponic cultures containing different compositions of hydroponic solutions were evaluated in ... (Hoagland's solution minus N solution excluding Azolla; ..... nutrient deficiencies on photosynthesis and respiration in spinach.

  9. Evaluation of Skin Penetration of Diclofenac from a Novel Topical Non Aqueous Solution: A Comparative Bioavailability Study.

    Science.gov (United States)

    Nivsarkar, Manish; Maroo, Sanjaykumar H; Patel, Ketan R; Patel, Dixit D

    2015-12-01

    Different topical formulations of diclofenac have varying skin penetration profile. Recent advances in science and technology has led to the development of many new formulations of drugs for topical drug delivery. One such technological development has led to the innovation of Dynapar QPS, a novel, non-aqueous, quick penetrating solution (QPS) of diclofenac diethylamine. This study was aimed to measure the total exposure from the drug penetrating the skin in healthy human subjects and comparing the relative systemic bioavailability of Dynapar QPS(®) with diclofenac emulgel. A 200 mg of diclofenac from either Dynapar QPS(®) (5 ml) or emulgel (20 g) was applied on back of subject as per the randomisation schedule. Blood samples were collected up to 16 hours post drug application. Plasma concentration of diclofenac was measured by pre-validated HPLC method. Pharmacokinetic (PK) parameters like Cmax, Tmax, t1/2, AUC0-t, AUC0-∞, and Kel, of diclofenac were determined for both the formulations. Mean Cmax after administration of Dynapar QPS(®) and diclofenac emulgel were 175.93 and 40.04 ng/ml, respectively. Tmax of diclofenac was almost half with QPS compared to emulgel (5.24 hrs versus 9.53 hrs respectively). The mean AUC0-t and AUC0-∞ after administration of Dynapar QPS(®) was higher as compared to diclofenac emulgel (AUC0-t: 1224.19 versus 289.78 ng.h/ml, respectively; AUC0-∞: 1718.21 versus 513.83 ng.h/ml, respectively). None of the subject experienced any adverse event during the study. The results indicate an enhanced penetration and subsequent absorption of diclofenac from Dynapar QPS(®) as compared to diclofenac emulgel. Higher penetration is likely to translate into better pain relief in patients.

  10. Concentration of nutrient solution in the hydroponic production of potato minitubers Concentração da solução nutritiva na produção hidropônica de minitubérculos de batata

    Directory of Open Access Journals (Sweden)

    Manuel Benito Novella

    2008-09-01

    Full Text Available The effect of the nutrient solution concentration on potato plant growth and minituber yield were determined in a sand closed hydroponic system. Minitubers and micropropagated plantlets of the cv. 'Macaca' were used. Treatments were five nutrient solution concentrations at electrical conductivities (EC of 1.0 (T1, 2.2 (T2, 3.4 (T3, 4.7 (T4 and 5.8dS m-1 (T5. The split plot randomised experimental design was used with three replications. Plants from minitubers produced higher fresh and mean weight of minitubers, shoot dry mass and leaf area index than the micropropagated ones. However, higher dry mass of minitubers was found with micropropagated plantlets compared to minitubers. The concentration of the nutrient solution did not affect minituber number. Increasing the nutrient solution concentration decreased total and minituber dry mass production of micropropagated plantlets and plant growth and minituber production of minituber-originated plants. Low concentration of nutrient solution at an EC of about 1.0dS m-1 can be used in the hydroponic production of potato minitubers of both micropropagated and minituber-originated plants.Neste trabalho foi determinado o efeito da concentração da solução nutritiva no crescimento e na produtividade de minitubérculos de batata em um sistema hidropônico fechado empregando areia como substrato. Plântulas micropropagadas e minitubérculos foram plantados em 24 de março de 2004. Os tratamentos foram cinco soluções nutritivas com condutividades elétricas (CE de 1,0 (T1, 2,2 (T2, 3,4 (T3, 4,7 (T4 e 5,8dS m-1 (T5. O experimento foi conduzido em parcelas subdivididas no delineamento inteiramente casualizado com três repetições. Plantas originadas de minitubérculos produziram mais massa fresca total e média de minitubérculos, massa seca da parte aérea e maior índice de área foliar que plantas micropropagadas. Entretanto, maior massa seca dos minitubérculos foi obtida em plantas micropropagadas

  11. Effect of Nitrogen Form and pH of Nutrient Solution on the Shoot Concentration of Phosphorus, Nitrate, and Nitrogen of Spinach in Hydroponic Culture

    OpenAIRE

    N. Najafi; M. Parsazadeh

    2010-01-01

    In order to study the effect of nitrogen form and pH of nutrient solution on the shoot concentration of P, nitrate, organic N + inorganic ammonium, and total N of spinach, a factorial experiment was conducted with two factors including pH of nutrient solution in three levels (4.5, 6.5 and 8.0) and nitrate to ammonium ratio of nutrient solution in five levels (100:0, 75:25, 50:50, 25:75 and 0:100). This factorial experiment was carried out in a completely randomized design with four replicatio...

  12. Standardization of a sulfur quantitative analysis method by X ray fluorescence in a leaching solution for bio-available sulfates in soil

    International Nuclear Information System (INIS)

    Morales S, E.; Aguilar S, E.

    1989-11-01

    A method for bio-available sulfate analysis in soils is described. A Ca(H2PO4) leaching solution was used for soil samples treatment. A standard NaSO4 solution was used for preparing a calibration curve and also the fundamental parameters method approach was employed. An Am-241 (100 mCi) source and a Si-Li detector were employed. Analysis could be done in 5 minutes; good reproducibility, 5 and accuracy, 5 were obtained. The method is very competitive with conventional nephelometry where good and reproducible suspensions are difficult to obtain. (author)

  13. Improved bioavailability

    Directory of Open Access Journals (Sweden)

    Nadia M. Morsi

    2016-09-01

    Full Text Available Timolol maleate (TiM, a nonselective β-adrenergic blocker, is a potent highly effective agent for management of hypertension. The drug suffers from extensive first pass effect, resulting in a reduction of oral bioavailability (F% to 50% and a short elimination half-life of 4 h; parameters necessitating its frequent administration. The current study was therefore, designed to formulate and optimize the transfersomal TiM gel for transdermal delivery. TiM loaded transfersomal gel was optimized using two 23 full factorial designs; where the effects of egg phosphatidyl choline (PC: surfactant (SAA molar ratio, solvent volumetric ratio, and the drug amount were evaluated. The formulation variables; including particle size, drug entrapment efficiency (%EE, and release rate were characterized. The optimized transfersomal gel was prepared with 4.65:1 PC:SAA molar ratio, 3:1 solvent volumetric ratio, and 13 mg drug amount with particle size of 2.722 μm, %EE of 39.96%, and a release rate of 134.49 μg/cm2/h. The permeation rate of the optimized formulation through the rat skin was excellent (151.53 μg/cm2/h and showed four times increase in relative bioavailability with prolonged plasma profile up to 72 h compared with oral aqueous solution. In conclusion, a potential transfersomal transdermal system was successfully developed and the factorial design was found to be a smart tool, when optimized.

  14. Effect of nitrogen form and pH of nutrient solution on the changes in pH and EC of spinach rhizosphere in hydroponic culture

    OpenAIRE

    M. Parsazadeh; N. Najafi

    2011-01-01

    In this study, the effect of nitrate to ammonium ratio and pH of nutrient solution on the changes in pH and EC of rhizosphere during spinach growth period in perlite culture, under greenhouse conditions, was investigated. A split factorial experiment in a completely randomized design with four replications was conducted with three factors including nutrient solution’s pH in three levels (4.5, 6.5 and 8), nitrate to ammonium ratio of nutrient solution in five levels (100:0, 75:25, 50:50, 25:75...

  15. Zn availability in nutrient solutions for cucumber (Cucumis sativus L) in hydroponics as affected by Fe-chelates and pH

    NARCIS (Netherlands)

    Voogt, W.; Sonneveld, C.

    2017-01-01

    In soil-less culture systems Fe is usually supplied as chelate to ensure an adequate availability of this element. As chelates have affinity for many metal ions these chelates will interact with other cation nutrients in nutrient solutions. This affects the availability of Fe and other nutrients.

  16. Comparison of soil solution speciation and diffusive gradients in thin-films measurement as an indicator of copper bioavailability to plants.

    Science.gov (United States)

    Zhao, Fang-Jie; Rooney, Corinne P; Zhang, Hao; McGrath, Steve P

    2006-03-01

    The toxicity effect concentrations (10% effective concentration [EC10] and 50% effective concentration [EC50]) of total added Cu derived from barley root elongation and tomato growth assays varied widely among 18 European soils. We investigated whether this variation could be explained by the solubility or speciation of Cu in soil solutions or the diffusive gradients in thin-films (DGT) measurement. Solubility and Cu speciation varied greatly among the soils tested. However, the EC10 and EC50 of soil solution Cu or free Cu2+ activity varied even more widely than those based on the total added Cu, indicating that solubility or soil solution speciation alone could not explain intersoil variation in Cu toxicity. Estimated EC10 and EC50 of free Cu2+ activity correlated closely and negatively with soil pH, indicating a protective effect of H+, which is consistent with the biotic ligand model concept. The DGT measurement was found to narrow the intersoil variation in EC50 considerably and to be a better predictor of plant Cu concentrations than either soil solution Cu or free Cu2+ activity. We conclude that plant bioavailability of Cu in soil depends on Cu speciation, interactions with protective ions (particularly H+), and the resupply from the solid phase, and we conclude that the DGT measurement provides a useful indicator of Cu bioavailability in soil.

  17. Can we predict uranium bioavailability based on soil parameters? Part 2: soil solution uranium concentration is not a good bioavailability index.

    Science.gov (United States)

    Vandenhove, H; Van Hees, M; Wannijn, J; Wouters, K; Wang, L

    2007-01-01

    The present study aimed to quantify the influence of soil parameters on uranium uptake by ryegrass. Ryegrass was established on eighteen distinct soils, spiked with (238)U. Uranium soil-to-plant transfer factors (TF) ranged from 0.0003 to 0.0340kgkg(-1). There was no significant relation between the U soil-to-plant transfer (or total U uptake or flux) and the uranium concentration in the soil solution or any other soil factor measured, nor with the U recovered following selective soil extractions. Multiple linear regression analysis resulted in a significant though complex model explaining up to 99% of variation in TF. The influence of uranium speciation on uranium uptake observed was featured: UO(2)(+2), uranyl carbonate complexes and UO(2)PO(4)(-) seem the U species being preferentially taken up by the roots and transferred to the shoots. Improved correlations were obtained when relating the uranium TF with the summed soil solution concentrations of mentioned uranium species.

  18. Biological Control of Diseases of Vegetables Grown Hydroponically in Thailand: Challenge and Opportunity.

    Science.gov (United States)

    Kanjanamaneesathian, Mana

    2015-01-01

    In Thailand, yield loss due to plant diseases in vegetables grown hydroponically is very high as a result of the growers` lack of knowledge for controlling diseases and their un- willingness to invest in setting-up the proper hydroponic system from the beginning. Severe root rot disease caused by Pythium spp. is frequent and can be anticipated in the hot climate in Thailand. This review focuses on the diseases in temperate lettuces which have been produced hydroponically and have been attacked by plant pathogens, particularly Pythium spp. Biological control of vegetable diseases grown hydroponically has been investigated in Thailand. Research is being carried out to identify effective strains of the antagonists, formulating the applicable products and delivering them appropriately to control the disease. Products of Bacillus subtilis, Chaetomium globosom and Trichoderma harzianum have been recommended for use to control diseases in vegetables grown hydroponically. Control efficacy of these products is varied as the biological products have been used by the growers in the paradigm of using chemical fungicide for disease control in hydroponic production system, overlooking the intrinsic characteristics of the biological control products. The recent patent, which minimizes the effects of sunlight and heat on the nutrient solution without the use of an external energy for cooling the nutrient, should be applied in producing hydroponic vegetables to mitigate poor plant growth and root rot disease outbreak in Thailand.

  19. Hydroponic food production: a definitive guidebook for the advanced home gardener and the commercial hydroponic grower

    National Research Council Canada - National Science Library

    Resh, Howard M

    2013-01-01

    Hydroponic Food Production: A Definitive Guidebook for the Advanced Home Gardener and the Commercial Hydroponic Grower details advances that have taken place in this field since the publication of the previous edition in 2001...

  20. Hydroponic food production: a definitive guidebook for the advanced home gardener and the commercial hydroponic grower

    National Research Council Canada - National Science Library

    Resh, Howard M

    2013-01-01

    .... Meant for hobby and commercial growers, the book shows readers how to set up a hydroponic operation with the options of using any of the many hydroponic cultures presently used in the industry to grow vegetable crops...

  1. Níveis de alumínio e acúmulo de macronutrientes em porta-enxertos cítricos em cultivo hidropônico Aluminum levels and macronutrient accumulation in citrus rootstocks in hydroponic solution

    Directory of Open Access Journals (Sweden)

    Carlos Henrique dos Santos

    1999-01-01

    Full Text Available O presente trabalho teve como objetivo avaliar a influência de diferentes níveis de alumínio no acúmulo de macronutrientes pelos porta-enxertos cítricos limoeiro Cravo e citrumeleiro Swingle, sob cultivo hidropônico. Os tratamentos utilizados em condições de casa de vegetação seguiram o delineamento estatístico inteiramente casualizado, com 3 repetições, em parcelas subdivididas. Os níveis de alumínio utilizados foram: 0, 7,5, 15, 22,5 e 30 mg L-1, na forma de AlCl3.6 H2O. Determinaram-se o acúmulo de N, P, K, Ca, Mg, S e do Al da matéria seca vegetal, relacionando-os com os pesos da matéria seca da parte aérea (folhas e caule e raízes durante o período de 84 dias, com coletas de plantas a cada 14 dias. Conclui-se que, com adição a partir de 7,5 mg L-1 de alumínio em solução nutritiva ocorreram alterações fisiológicas e reduções significativas no acúmulo de macronutrientes associado à redução nos pesos da matéria seca das folhas, caule e raízes das plantas de citrumelo Swingle.The aim of this research was to study the influence of different levels of aluminum on macronutrient contents of citrus rootstocks of the `Rangpur' lime and the `Swingle' citrumelo, in hydroponic solution. The treatments, established under greenhouse conditions, followed a completely randomized experimental design, with 3 replications, distributed in split-plots. The levels of aluminum were: 0; 7.5; 15; 22.5 and 30 mg L-1, applied as AlCl3.6 H2O. The evaluated chemical plant parameters were the concentrations of N, P, K, Ca, Mg, S, Al and dry weight of leaves, stem and root system. The results showed that with adition of 7.5 mg L-1 of Al to the nutrient solution there was a significant decrese of nutrient contents and a decrese in leave, stem and root system dry weight of `Swingle' citrumelo.

  2. Hydroponic Feed With Suction

    Science.gov (United States)

    Cox, William M.; Brown, Christopher S.; Dreschel, Thomas W.

    1994-01-01

    Placing nutrient solution under suction increases growth. Foam plug seals growing stem of plant, making it possible to maintain suction in nutrient liquid around roots. Jar wrapped in black tape to keep out light. Potential use in terrestrial applications in arid climates or in labor-intensive agricultural situations.

  3. Hydroponic phytoremediation of heavy metals and radionuclides

    International Nuclear Information System (INIS)

    Hartong, J.; Szpak, J.; Hamric, T.; Cutright, T.

    1998-01-01

    It is estimated that the Departments of Defense, Energy, and Agriculture will spend up to 300 billion federal dollars on environmental remediation during the next century. Current remediation processes can be expensive, non-aesthetic, and non-versatile. Therefore, the need exists for more innovative and cost effective solutions. Phytoremediation, the use of vegetation for the remediation of contaminated sediments, soils, and ground water, is an emerging technology for treating several categories of persistent, toxic contaminants. Although effective, phytoremediation is still in a developmental stage, and therefore is not a widely accepted technology by regulatory agencies and public groups. Research is currently being conducted to validate the processes effectiveness as well as increase regulatory and community acceptance. This research will focus on the ability of plants to treat an aquifer contaminated with heavy metals and radionuclides. Specifically, the effectiveness of hydroponically grown dwarf sunflowers and mustard seed will be investigated

  4. Hydroponic phytoremediation of heavy metals and radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Hartong, J; Szpak, J; Hamric, T; Cutright, T

    1998-07-01

    It is estimated that the Departments of Defense, Energy, and Agriculture will spend up to 300 billion federal dollars on environmental remediation during the next century. Current remediation processes can be expensive, non-aesthetic, and non-versatile. Therefore, the need exists for more innovative and cost effective solutions. Phytoremediation, the use of vegetation for the remediation of contaminated sediments, soils, and ground water, is an emerging technology for treating several categories of persistent, toxic contaminants. Although effective, phytoremediation is still in a developmental stage, and therefore is not a widely accepted technology by regulatory agencies and public groups. Research is currently being conducted to validate the processes effectiveness as well as increase regulatory and community acceptance. This research will focus on the ability of plants to treat an aquifer contaminated with heavy metals and radionuclides. Specifically, the effectiveness of hydroponically grown dwarf sunflowers and mustard seed will be investigated.

  5. Hydroponics--Studies in Plant Culture With Historical Roots.

    Science.gov (United States)

    Lopez, Luz Maria

    1981-01-01

    Presents methods for demonstrating and applying scientific principles by growing plants through water culture (hydroponics), including a review of the history of hydroponics, re-creating some early experiments, and setting up a modern hydroponic system. (CS)

  6. Hydroponic system for the treatment of anaerobic liquid.

    Science.gov (United States)

    Krishnasamy, K; Nair, J; Bäuml, B

    2012-01-01

    The effluent from anaerobic digestion process has high concentrations of nutrients, particularly nitrogen, essential for plant growth but is not suitable for direct disposal or application due to high chemical oxygen demand (COD), low dissolved oxygen (DO), odour issues and is potentially phytotoxic. This research explored the optimum conditions of anaerobic effluent for application and dilutions of the effluent required to obtain better plant growth. A small-scale hydroponic system was constructed in a glasshouse to test different concentrations of anaerobic effluent against a commercial hydroponic medium as the control for the growth of silverbeet. It was found that the survival of silverbeet was negatively affected at 50% concentration due to low DO and NH(4) toxicity. The concentration of 20% anaerobic liquid was found to be the most efficient with highest foliage yield and plant growth. The hydroponic system with 20% concentrated effluent had better utilisation of nutrients for plant growth and a COD reduction of 95% was achieved during the 50-day growth period. This preliminary evaluation revealed that the growth and development of silverbeet was significantly lower in anaerobic effluent compared with a commercial hydroponic plant growth solution. The nutrient quality of anaerobic effluent could be highly variable with the process and the waste material used and dilution may depend on the nutrient content of the effluent. It is recommended that, a pre-treatment of the effluent to increase DO and reduce ammonium content is required before plant application, and simple dilution by itself is not suitable for optimum plant growth in a hydroponic system.

  7. Folate bioavailability

    OpenAIRE

    Öhrvik, Veronica

    2009-01-01

    An inadequate folate status is associated with increased risk of anaemia and neural tube defects. In many countries a folate intake below recommendations has been reported for women in childbearing age. However, data on folate intake and status are not always associated, since factors other than intake, e.g. bioavailability, affect folate status. This thesis studied the bioavailability of folate using in vivo and in vitro models. The effect of two pieces of Swedish nutritional advice on folat...

  8. A hydroponic design for microgravity and gravity installations

    Science.gov (United States)

    Fielder, Judith; Leggett, Nickolaus

    1990-01-01

    A hydroponic system is presented that is designed for use in microgravity or gravity experiments. The system uses a sponge-like growing medium installed in tubular modules. The modules contain the plant roots and manage the flow of the nutrient solution. The physical design and materials considerations are discussed, as are modifications of the basic design for use in microgravity or gravity experiments. The major external environmental requirements are also presented.

  9. Gene expression profiling of ramie roots during hydroponic induction and adaption to aquatic environment

    Directory of Open Access Journals (Sweden)

    Gang Gao

    2017-12-01

    Full Text Available Ramie (Boehmeria nivea (L. Gaud. is a traditionally terrestrial fiber crop. However, hydroponic technology can enhance the quantity and quality of disease free Ramie plant seedlings for field cultivation. To date, few studies have attempted to examine the hydroponic induction of ramie roots and the molecular responses of ramie roots to aquatic environment. In this study, ramie tender stems was grown in the soil or in a hydroponic water solution, and cultured in the same environmental conditions. Root samples of terrestrial ramie, and different developmental stages of hydroponic ramie (5 days, 30 days, were firstly pooled for reference transcriptome sequencing by Illumina Hiseq 2000. Gene expression levels of each samples were quantified using the BGISEQ500 platform to help understand the distribution of aquatic root development related genes at the macro level (GSE98903. Our data resources provided an opportunity to elucidate the adaptation mechanisms of ramie seedlings roots in aquatic environment.

  10. Produção de pepino de plantas enxertadas cultivadas em soluções nutritivas com diferentes teores de potássio Growth and yield of grafted cucumber plants cultivated in hydroponic solution with different potassium levels

    Directory of Open Access Journals (Sweden)

    Paulo César Costa

    2001-11-01

    Full Text Available O experimento foi conduzido em estufa tipo arco de 50 m² na Faculdade de Ciências Agronômicas da UNESP em Botucatu. Plantas de pepino (Cucumis sativus L. não enxertadas e enxertadas em abóbora (Cucurbita sp. foram cultivadas em sistema hidropônico para estudar o efeito de níveis de potássio (45; 90; 180 e 360 mg.L-1 de K na altura da planta e produção de número de frutos/m². A condução das plantas foi em vasos de 28 L de capacidade contendo 20% vermiculita + 80% casca de arroz + solução nutritiva fornecida a partir de galões individuais contendo 20 litros de solução. O delineamento experimental foi blocos casualizados, com oito tratamentos (fatorial 4 x 2 e três repetições. Não houve efeito da enxertia e das doses de K sobre a altura da planta, porém, os níveis de potássio independente da enxertia alteraram o início da floração. A enxertia potencializou a produção aumentando em 39% o número de frutos/m² quando fornecido na solução nutritiva 45 mg.L-1 de K e 144% com 360 mg.L-1 de K. O menor teor de potássio, 45 mg.L-1, foi suficiente para atingir alta produção.The trial was carried out at Faculdade de Ciências Agronômicas in Botucatu, Brazil. Cucumber plants (Cucumis sativus L. grafted on squash (Cucumis sp. were cultivated in hydroponic solution to study the effect of three potassium levels (45; 90; 180 and 360 mg.L-1 K on growth and yield of grafted and non grafted cucumber plants. There was no effect of plant height, but grafting and potassium level altered flowering outset. Grafted plants fertilized with 45 mg.L_1 K produced 39% more fruits than non grafted ones, and produced 144% more fruits when fertilized with 360 mg.L-1 K. The lowest K level studied (45 mg.L_1 K was enough to obtain high yield.

  11. Effect of dissolved humic acid on the Pb bioavailability in soil solution and its consequence on ecological risk.

    Science.gov (United States)

    An, Jinsung; Jho, Eun Hea; Nam, Kyoungphile

    2015-04-09

    Current risk characterization in ecological risk assessment does not consider bioavailability of heavy metals, which highly depends on physicochemical properties of environmental media. This study was set to investigate the effect of humic acid (HA), used as a surrogate of organic matter, on Pb toxicity and the subsequent effect on risk characterization in ecological risk assessment. Pb toxicity was assessed using Microtox(®) in the presence and absence of two different forms of HA, particulate HA (pHA) and dissolved HA (dHA). With increasing contact time, the EC10 values increased (i.e., the toxic effects decreased) and the dissolved Pb concentrations of the filtrates decreased. The high correlation (R = 0.88, p < 0.001) between toxic effects determined using both the mixture and its filtrate as exposure media leads us to conclude that the Pb toxicity highly depends on the soluble fraction. Also, reduced Pb toxicity with increasing dHA concentrations, probably due to formation of Pb-dHA complexes, indicated that Pb toxicity largely comes from free Pb ions. Overall, this study shows the effect of HA on metal toxicity alleviation, and emphasizes the need for incorporating the bioavailable heavy metal concentrations in environmental media as a point of exposure in ecological risk assessment. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. The uptake of 131I by some hydroponically grown crops

    International Nuclear Information System (INIS)

    Asprer, G.A.; Lansangan, L.M.; de la Paz, L.R.

    1982-01-01

    Biologically labelled vegetables which include kangkong and sweet potato tops were grown hydroponically in a modified Hoagland-Arnon nutrient solution containing radioiodine with 0.5% non-radioactive Nal solution as the medium. The crops considered in this study are commonly eaten by Filipinos. The concentration of the solution as well as the uptake in the plant system were determined at various time intervals. The extent of radioiodine uptake through air-water-plant pathway is one of the parameters needed for calculating the dose that the general populace could be exposed to, due to radioactivity in the environment. (author)

  13. Sistema auxiliar de bombeamento de solução nutritiva em cultivos hidropônicos de hortaliças Auxiliary pumping of nutrient solution for hydroponic culture of vegetables

    Directory of Open Access Journals (Sweden)

    João Bosco C da Silva

    2010-09-01

    compressores de ar, baterias automotivas de várias capacidades de carga e vários modelos de motobomba de 12 volts.The most usual hydroponics system consists of plant cultivation into gutter pipe or other containers through which the nutrient solution circulates intermittently. This system requires continuous electricity supply for pumping nutrient solution, so it is highly vulnerable to prolonged failures in the electricity supply. Two auxiliary systems were evaluated for pumping. In one, the solution movement is promoted by compressed air. The electric buoys and pneumatics valves controllers perform several cycles of nutrient solution, using the air accumulated into the cylinder's compressor. The other system consists of a set of 12-volt pumps fed by batteries which are supplied by a charger. The tested system had a compressor with a motor of one hp, a cylinder of 45 L, and two solution tanks. One tank had 60 L, which allows pressurization. Specifically for the used compressor, it was obtained, on average, four cycles of solution transference for each full cylinder of the compressor, without electricity. The total volume of solution transference for each cylinder was 200 L, which corresponds to the movement of approximately 5 L of solution per liter of compressed air. The other system consists of three 12-volt pumps model 500 gph with capacity for 1890 L h-1 of liquid transference and consumption of 2.5 amps h-1, supplied by an automotive battery. The set worked, on average, for 3 hours and 20 minutes for each battery charge. The volume of pumped solution was approximately 500 L h-1. With these parameters it is possible to make projects of systems for auxiliary pumping according to the volume of solution to be pumped and the convenient intervals, since there are many models of air compressors, automotive batteries, chargers and 12-volts pumps.

  14. Hormonal regulation of wheat growth during hydroponic culture

    Science.gov (United States)

    Wetherell, Donald

    1988-01-01

    Hormonal control of root growth has been explored as one means to alleviate the crowding of plant root systems experienced in prototype hydroponic biomass production chambers being developed by the CELSS Breadboard Project. Four plant hormones, or their chemical analogs, which have been reported to selectively inhibit root growth, were tested by adding them to the nutrient solutions on day 10 of a 25 day growth test using spring wheat in hydroponic cultures. Growth and morphological changes is both shoot and root systems were evaluated. In no case was it possible to inhibit root growth without a comparable inhibition of shoot growth. It was concluded that this approach is unlikely to prove useful for wheat.

  15. Pharmacokinetics and Bioavailability of the GnRH Analogs in the Form of Solution and Zn2+-Suspension After Single Subcutaneous Injection in Female Rats.

    Science.gov (United States)

    Suszka-Świtek, Aleksandra; Ryszka, Florian; Dolińska, Barbara; Dec, Renata; Danch, Alojzy; Filipczyk, Łukasz; Wiaderkiewicz, Ryszard

    2017-04-01

    Although many synthetic gonadoliberin analogs have been developed, only a few of them, including buserelin, were introduced into clinical practice. Dalarelin, which differs from buserelin by just one aminoacid in the position 6 (D-Ala), is not widely used so far. Gonadotropin-releasing hormone (GnRH) analogs are used to treat many different illnesses and are available in different forms like solution for injection, nasal spray, microspheres, etc. Unfortunately, none of the above drug formulations can release the hormones for 24 h. We assumed that classical suspension could solve this problem. Two sets of experiments were performed. In the first one, buserelin and dalarelin were injected into mature female rats in two forms: suspension, in which the analogs are bounded by Zn 2+ ions and solution. The pharmacokinetic parameters and bioavailability of the analogs were calculated, based on their concentration in the plasma measured by high-performance liquid chromatography method (HPLC). In the second experiment, the hormones in two different forms were injected into superovulated immature female rats and then the concentration of Luteinizing hormone (LH), Follicle-stimulating hormone (FSH) and 17β-estradiol in the serum was measured by radioimmunological method. The Extent of Biological Availability (EBA), calculated on the base of AUC 0-∞ , showed that in the form of solution buserelin and dalarelin display, respectively, only 13 and 8 % of biological availability of their suspension counterparts. Comparing both analogs, the EBA of dalarelin was half (53 %) that of buserelin delivered in the form of solution and 83 % when they were delivered in the form of suspension. The injection of buserelin or dalarelin, in the form of solution or suspension, into superovulated female rats increased LH, FSH and estradiol concentration in the serum. However, after injection of the analogs in the form of suspension, the high concentration of LH and FSH in the serum persisted

  16. Hydroponics as a valid tool to assess arsenic availability in mine soils.

    Science.gov (United States)

    Moreno-Jiménez, E; Esteban, E; Fresno, T; de Egea, C López; Peñalosa, J M

    2010-04-01

    The low solubility of As in mine soils limits its phytoavailability. This makes the extrapolation of data obtained under hydroponic conditions unrealistic because the concentration in nutrient solution frequently overexposes plants to this metalloid. This work evaluates whether As supply in hydroponics resembles, to some extent, the As phytoavailable fraction in soils and the implications for phytoremediation. Phytotoxicity of As, in terms of biomass production, chlorophyll levels, and As concentrations in plants, was estimated and compared in both soils and hydroponics. In order for hydroponic conditions to be compared to soil conditions, plant exposure levels were measured in both cultures. Hydroponic As concentration ranging from 2-8microM equated to the same plant organ concentrations from soils with 700-3000mgkg(-1). Total and extractable As fractions exceeded those values, but As concentrations in pore water were bellow them. According to our results (i) hydroponics should include doses in the range 0-10microM As to allow the extrapolation of the results to As-polluted soils, and (ii) phytoextraction of As in mining sites will be limited by low As phytoavailability.

  17. Methotrexate bioavailability

    NARCIS (Netherlands)

    van Roon, E. N.; van de Laar, M. A. F. J.

    2010-01-01

    The clinical relevance of the concept of bioavailability rests on two main principles. First, that measurement of the active component at the site of action is generally not possible and, secondly, that a relationship exists between on the one hand efficacy and/or safely and on the other hand

  18. A Simplified Integrated Fish Culture Hydroponics System.

    Science.gov (United States)

    Emberger, Gary

    1991-01-01

    Investigations that facilitate experimental design, the concept of replication, data analysis, and other aspects of scientific study are described. A list of materials, the recommended plants, and the directions for building the hydroponics unit are included. (KR)

  19. Hydroponic system design with real time OS based on ARM Cortex-M microcontroller

    Science.gov (United States)

    Atmadja, Wiedjaja; Liawatimena, Suryadiputra; Lukas, Jonathan; Nata, Eka Putra Leo; Alexander, Ivan

    2017-12-01

    Hydroponic is the process of growing plants without soil, plant root flooded or moist with nutrient-rich solutions in inert material. Hydroponics has become a reality for greenhouse growers in virtually all climates. Large hydroponic installations exist throughout the world for growing flowers, vegetables and some short period fruit like tomato and cucumber. In soilless culture, we must maintain stable pH and conductivity level of nutrient solution to make plant grow well, large variation of pH of certain time will poisoned plant. This paper describes development complete automation hydroponic system, from maintaining stable nutrient composition (conductivity and pH), grow light, and monitor plant environment such as CO2, temperature and humidity. The heart of our automation is ARM Cortex-M4 from ST Microelectronic running ARM mbed OS, the official Real Time Operating System (RTOS) for ARM Cortex-M microcontroller. Using RTOS gives us flexibility to have multithreaded process. Results show that system capable to control desired concentration level with variation of less than 3%, pH sensor show good accuracy 5.83% from pH value 3.23-10. Growing light intensity measurement show result 105 μmol/m2/s therefore we need turn on the light at least 17 hours/day to fulfil plant light requirement. RTOS give good performance with latency and jitter less than 15 us, system overall show good performance and accuracy for automating hydroponic plant in vegetative phase of growth.

  20. Study of the heavy metal phytoextraction capacity of two forage species growing in an hydroponic environment.

    Science.gov (United States)

    Bonfranceschi, Barros A; Flocco, C G; Donati, E R

    2009-06-15

    Sorghum and alfalfa are two important forage crops. We studied their capacity for accumulating heavy metals in hydroponic experiments. Cadmium, nickel (as divalent cations) and chromium (trivalent and hexavalent) were added individually to the nutrient solution in a range of concentrations from 1 to 80 mg/l. Cr(III) was complexed with EDTA to increase its bioavailability. In alfalfa the increases in the concentration of Cr(III) and Cr(VI) favoured translocation of the metals to the upper parts of the plants, while with Ni(II) the level of translocated metal remained almost unchanged. In sorghum, both Cr(VI) and Ni(II) produced similar results to those in alfalfa, but increases in the concentrations of Cd(II) and Cr(III) in the solution lead to a higher accumulation of the metal at the root level. The concentrations referred to the dry biomass of alfalfa were 500 mg/kg (aerial parts) and 1500 mg/kg (roots) of Cr(III), simultaneously enhancing plant growth. Sorghum captured 500 and 1100 mg/kg (in aerial parts) and 300 and 2000 mg/kg (in roots) for Ni(II) and Cd(II) respectively, without significant damage to its biomass. The results show that alfalfa and sorghum can not only grow in the presence of high heavy metal concentration but also capture and translocate them to the aerial parts; because of these results special attention should be given to these crop plants for their possible use in phytoremediation of large contaminated areas but especially to avoid the possible introduction of the metals accumulated in aerial parts into the food chain when those plants grow in contaminated areas.

  1. Study of the heavy metal phytoextraction capacity of two forage species growing in an hydroponic environment

    Energy Technology Data Exchange (ETDEWEB)

    Bonfranceschi, Barros A. [Centro de Investigacion y Desarrollo en Fermentaciones Industriales (CINDEFI, UNLP-CCT La Plata, CONICET), Facultad de Ciencias Exactas (UNLP), Calle 50 y 115, 1900 La Plata (Argentina); Flocco, C.G. [Consejo Nacional de Investigaciones Cientificas y Tecnologicas (CONICET), Buenos Aires (Argentina); Donati, E.R., E-mail: donati@quimica.unlp.edu.ar [Centro de Investigacion y Desarrollo en Fermentaciones Industriales (CINDEFI, UNLP-CCT La Plata, CONICET), Facultad de Ciencias Exactas (UNLP), Calle 50 y 115, 1900 La Plata (Argentina)

    2009-06-15

    Sorghum and alfalfa are two important forage crops. We studied their capacity for accumulating heavy metals in hydroponic experiments. Cadmium, nickel (as divalent cations) and chromium (trivalent and hexavalent) were added individually to the nutrient solution in a range of concentrations from 1 to 80 mg/l. Cr(III) was complexed with EDTA to increase its bioavailability. In alfalfa the increases in the concentration of Cr(III) and Cr(VI) favoured translocation of the metals to the upper parts of the plants, while with Ni(II) the level of translocated metal remained almost unchanged. In sorghum, both Cr(VI) and Ni(II) produced similar results to those in alfalfa, but increases in the concentrations of Cd(II) and Cr(III) in the solution lead to a higher accumulation of the metal at the root level. The concentrations referred to the dry biomass of alfalfa were 500 mg/kg (aerial parts) and 1500 mg/kg (roots) of Cr(III), simultaneously enhancing plant growth. Sorghum captured 500 and 1100 mg/kg (in aerial parts) and 300 and 2000 mg/kg (in roots) for Ni(II) and Cd(II) respectively, without significant damage to its biomass. The results show that alfalfa and sorghum can not only grow in the presence of high heavy metal concentration but also capture and translocate them to the aerial parts; because of these results special attention should be given to these crop plants for their possible use in phytoremediation of large contaminated areas but especially to avoid the possible introduction of the metals accumulated in aerial parts into the food chain when those plants grow in contaminated areas.

  2. Study of the heavy metal phytoextraction capacity of two forage species growing in an hydroponic environment

    International Nuclear Information System (INIS)

    Bonfranceschi, Barros A.; Flocco, C.G.; Donati, E.R.

    2009-01-01

    Sorghum and alfalfa are two important forage crops. We studied their capacity for accumulating heavy metals in hydroponic experiments. Cadmium, nickel (as divalent cations) and chromium (trivalent and hexavalent) were added individually to the nutrient solution in a range of concentrations from 1 to 80 mg/l. Cr(III) was complexed with EDTA to increase its bioavailability. In alfalfa the increases in the concentration of Cr(III) and Cr(VI) favoured translocation of the metals to the upper parts of the plants, while with Ni(II) the level of translocated metal remained almost unchanged. In sorghum, both Cr(VI) and Ni(II) produced similar results to those in alfalfa, but increases in the concentrations of Cd(II) and Cr(III) in the solution lead to a higher accumulation of the metal at the root level. The concentrations referred to the dry biomass of alfalfa were 500 mg/kg (aerial parts) and 1500 mg/kg (roots) of Cr(III), simultaneously enhancing plant growth. Sorghum captured 500 and 1100 mg/kg (in aerial parts) and 300 and 2000 mg/kg (in roots) for Ni(II) and Cd(II) respectively, without significant damage to its biomass. The results show that alfalfa and sorghum can not only grow in the presence of high heavy metal concentration but also capture and translocate them to the aerial parts; because of these results special attention should be given to these crop plants for their possible use in phytoremediation of large contaminated areas but especially to avoid the possible introduction of the metals accumulated in aerial parts into the food chain when those plants grow in contaminated areas.

  3. Can we predict uranium bioavailability based on soil parameters? Part 1: effect of soil parameters on soil solution uranium concentration.

    Science.gov (United States)

    Vandenhove, H; Van Hees, M; Wouters, K; Wannijn, J

    2007-01-01

    Present study aims to quantify the influence of soil parameters on soil solution uranium concentration for (238)U spiked soils. Eighteen soils collected under pasture were selected such that they covered a wide range for those parameters hypothesised as being potentially important in determining U sorption. Maximum soil solution uranium concentrations were observed at alkaline pH, high inorganic carbon content and low cation exchange capacity, organic matter content, clay content, amorphous Fe and phosphate levels. Except for the significant correlation between the solid-liquid distribution coefficients (K(d), L kg(-1)) and the organic matter content (R(2)=0.70) and amorphous Fe content (R(2)=0.63), there was no single soil parameter significantly explaining the soil solution uranium concentration (which varied 100-fold). Above pH=6, log(K(d)) was linearly related with pH [log(K(d))=-1.18 pH+10.8, R(2)=0.65]. Multiple linear regression analysis did result in improved predictions of the soil solution uranium concentration but the model was complex.

  4. Can we predict uranium bioavailability based on soil parameters? Part 1: Effect of soil parameters on soil solution uranium concentration

    International Nuclear Information System (INIS)

    Vandenhove, H.; Hees, M. van; Wouters, K.; Wannijn, J.

    2007-01-01

    Present study aims to quantify the influence of soil parameters on soil solution uranium concentration for 238 U spiked soils. Eighteen soils collected under pasture were selected such that they covered a wide range for those parameters hypothesised as being potentially important in determining U sorption. Maximum soil solution uranium concentrations were observed at alkaline pH, high inorganic carbon content and low cation exchange capacity, organic matter content, clay content, amorphous Fe and phosphate levels. Except for the significant correlation between the solid-liquid distribution coefficients (K d , L kg -1 ) and the organic matter content (R 2 = 0.70) and amorphous Fe content (R 2 = 0.63), there was no single soil parameter significantly explaining the soil solution uranium concentration (which varied 100-fold). Above pH = 6, log(K d ) was linearly related with pH [log(K d ) = - 1.18 pH + 10.8, R 2 = 0.65]. Multiple linear regression analysis did result in improved predictions of the soil solution uranium concentration but the model was complex. - Uranium solubility in soil can be predicted from organic matter or amorphous iron content and pH or with complex multilinear models considering several soil parameters

  5. Vegetable Cultivation Hydroponics System In Community Economic Zone KEM Kanagarian Tikalak Subdistrict X Koto Singkarak Districts Solok

    OpenAIRE

    I Ketut Budaraga; Ramaiyulis; Ellyza nurdin

    2017-01-01

    Current conditions especially in urban agricultural land is getting narrower due to the rapid development. If left untreated it can lead to food security and environmental problems. One solution to allow the fulfillment of foodstuffs such as vegetables can be fulfilled for the people to exploit the potential of the narrow yard with continuous production of hydroponic systems. Interest dedication to the community to find ways to introduce a hydroponic vegetable crops that can supplement the fa...

  6. Bioavailability and biochemical effects of diclofenac sodium 0.1% ophthalmic solution in the domestic chicken (Gallus gallus domesticus).

    Science.gov (United States)

    Griggs, Angela N; Yaw, Taylor J; Haynes, Joseph S; Ben-Shlomo, Gil; Tofflemire, Kyle L; Allbaugh, Rachel A

    2017-03-01

    To determine if topical ophthalmic diclofenac sodium 0.1% solution alters renal parameters in the domestic chicken, and to determine if the drug is detectable in plasma after topical ophthalmic administration. Thirty healthy domestic chickens. Over 7 days, six birds were treated unilaterally with one drop of artificial tear solution (group 1), 12 birds were treated unilaterally (group 2) and 12 bilaterally (group 3) with diclofenac sodium 0.1% ophthalmic solution. Treatments were provided every 12 h in all groups. Pre- and post-treatment plasma samples from all birds were evaluated for changes in albumin, total protein, and uric acid. Post-treatment samples of all birds, collected 15 min post-administration, were analyzed by high-performance liquid chromatography with mass spectrometry for diclofenac sodium detection. A randomly selected renal sample from each group was submitted for histopathologic review. Changes in pre- and post-treatment plasma albumin were significant (P Ophthalmic diclofenac sodium 0.1% administered topically every 12 h in one or both eyes for 7 days is detectable in systemic circulation in the domestic chicken, but does not cause overt significant changes in plasma uric acid or total protein. © 2016 American College of Veterinary Ophthalmologists.

  7. Hydroponic Crop Production using Recycled Nutrients from Inedible Crop Residues

    Science.gov (United States)

    Garland, Jay L.; Mackowiak, Cheryl L.; Sager, John C.

    1993-01-01

    The coupling of plant growth and waste recycling systems is an important step toward the development of bioregenerative life support systems. This research examined the effectiveness of two alternative methods for recycling nutrients from the inedible fraction (residue) of candidate crops in a bioregenerative system as follows: (1) extraction in water, or leaching, and (2) combustion at 550 C, with subsequent reconstitution of the ash in acid. The effectiveness of the different methods was evaluated by (1) comparing the percent recovery of nutrients, and (2) measuring short- and long-term plant growth in hydroponic solutions, based on recycled nutrients.

  8. Root uptake and translocation of perfluorinated alkyl acids by three hydroponically grown crops

    NARCIS (Netherlands)

    Felizeter, S.; McLachlan, M.S.; de Voogt, P.

    2014-01-01

    Tomato, cabbage, and zucchini plants were grown hydroponically in a greenhouse. They were exposed to 14 perfluorinated alkyl acids (PFAAs) at four different concentrations via the nutrient solution. At maturity the plants were harvested, and the roots, stems, leaves, twigs (where applicable), and

  9. Carotenoid composition of hydroponic leafy vegetables.

    Science.gov (United States)

    Kimura, Mieko; Rodriguez-Amaya, Delia B

    2003-04-23

    Because hydroponic production of vegetables is becoming more common, the carotenoid composition of hydroponic leafy vegetables commercialized in Campinas, Brazil, was determined. All samples were collected and analyzed in winter. Lactucaxanthin was quantified for the first time and was found to have concentrations similar to that of neoxanthin in the four types of lettuce analyzed. Lutein predominated in cress, chicory, and roquette (75.4 +/- 10.2, 57.0 +/- 10.3, and 52.2 +/- 12.6 microg/g, respectively). In the lactucaxanthin-containing lettuces, beta-carotene and lutein were the principal carotenoids (ranging from 9.9 +/- 1.5 to 24.6 +/- 3.1 microg/g and from 10.2 +/- 1.0 to 22.9 +/- 2.6 microg/g, respectively). Comparison of hydroponic and field-produced curly lettuce, taken from neighboring farms, showed that the hydroponic lettuce had significantly lower lutein, beta-carotene, violaxanthin, and neoxanthin contents than the conventionally produced lettuce. Because the hydroponic farm had a polyethylene covering, less exposure to sunlight and lower temperatures may have decreased carotenogenesis.

  10. [Plant hydroponics and its application prospect in medicinal plants study].

    Science.gov (United States)

    Zeng, Yan; Guo, Lan-Ping; Huang, Lu-Qi; Sun, Yu-Zhang

    2007-03-01

    This article introduced the theorem and method of hydroponics. Some examples of studies in agriculture and forestry were presented, the effects of elements, environmental stress and hormones on physiology of medicinal plants by using hydroponics were analyzed. It also introduced the feasibility and advantage of hydroponics in intermediate propagation and allelopathy of medicinal plant. And finally it made the conclusion that the way of hydroponics would be widely used in medicinal plant study.

  11. Uranium uptake by hydroponically cultivated crop plants

    Energy Technology Data Exchange (ETDEWEB)

    Soudek, Petr; Petrova, Sarka [Laboratory of Plant Biotechnologies, Joint Laboratory of Institute of Experimental Botany AS CR, v.v.i. and Crop Research Institute, v.v.i., Rozvojova 263, 162 05 Prague 6 (Czech Republic); Benesova, Dagmar [Laboratory of Plant Biotechnologies, Joint Laboratory of Institute of Experimental Botany AS CR, v.v.i. and Crop Research Institute, v.v.i., Rozvojova 263, 162 05 Prague 6 (Czech Republic); Faculty of Environment Technology, Institute of Chemical Technology, Technicka 5, 166 28 Prague 6 (Czech Republic); Dvorakova, Marcela [Laboratory of Plant Biotechnologies, Joint Laboratory of Institute of Experimental Botany AS CR, v.v.i. and Crop Research Institute, v.v.i., Rozvojova 263, 162 05 Prague 6 (Czech Republic); Vanek, Tomas, E-mail: vanek@ueb.cas.cz [Laboratory of Plant Biotechnologies, Joint Laboratory of Institute of Experimental Botany AS CR, v.v.i. and Crop Research Institute, v.v.i., Rozvojova 263, 162 05 Prague 6 (Czech Republic)

    2011-06-15

    Hydroponicaly cultivated plants were grown on medium containing uranium. The appropriate concentrations of uranium for the experiments were selected on the basis of a standard ecotoxicity test. The most sensitive plant species was determined to be Lactuca sativa with an EC{sub 50} value about 0.1 mM. Cucumis sativa represented the most resistant plant to uranium (EC{sub 50} = 0.71 mM). Therefore, we used the uranium in a concentration range from 0.1 to 1 mM. Twenty different plant species were tested in hydroponic solution supplemented by 0.1 mM or 0.5 mM uranium concentration. The uranium accumulation of these plants varied from 0.16 mg/g DW to 0.011 mg/g DW. The highest uranium uptake was determined for Zea mays and the lowest for Arabidopsis thaliana. The amount of accumulated uranium was strongly influenced by uranium concentration in the cultivation medium. Autoradiography showed that uranium is mainly localized in the root system of the plants tested. Additional experiments demonstrated the possibility of influencing the uranium uptake from the cultivation medium by amendments. Tartaric acid was able to increase uranium uptake by Brassica oleracea and Sinapis alba up to 2.8 times or 1.9 times, respectively. Phosphate deficiency increased uranium uptake up to 4.5 times or 3.9 times, respectively, by Brassica oleracea and S. alba. In the case of deficiency of iron or presence of cadmium ions we did not find any increase in uranium accumulation. - Highlights: > The uranium accumulation in twenty different plant species varied from 0.160 to 0.011 mg/g DW. > Uranium is mainly localized in the root system. > Tartaric acid was able to increase uranium uptake by Brassica oleracea and Sinapis alba. > The phosphates deficiency increase the uranium uptake.

  12. Uranium uptake by hydroponically cultivated crop plants

    International Nuclear Information System (INIS)

    Soudek, Petr; Petrova, Sarka; Benesova, Dagmar; Dvorakova, Marcela; Vanek, Tomas

    2011-01-01

    Hydroponicaly cultivated plants were grown on medium containing uranium. The appropriate concentrations of uranium for the experiments were selected on the basis of a standard ecotoxicity test. The most sensitive plant species was determined to be Lactuca sativa with an EC 50 value about 0.1 mM. Cucumis sativa represented the most resistant plant to uranium (EC 50 = 0.71 mM). Therefore, we used the uranium in a concentration range from 0.1 to 1 mM. Twenty different plant species were tested in hydroponic solution supplemented by 0.1 mM or 0.5 mM uranium concentration. The uranium accumulation of these plants varied from 0.16 mg/g DW to 0.011 mg/g DW. The highest uranium uptake was determined for Zea mays and the lowest for Arabidopsis thaliana. The amount of accumulated uranium was strongly influenced by uranium concentration in the cultivation medium. Autoradiography showed that uranium is mainly localized in the root system of the plants tested. Additional experiments demonstrated the possibility of influencing the uranium uptake from the cultivation medium by amendments. Tartaric acid was able to increase uranium uptake by Brassica oleracea and Sinapis alba up to 2.8 times or 1.9 times, respectively. Phosphate deficiency increased uranium uptake up to 4.5 times or 3.9 times, respectively, by Brassica oleracea and S. alba. In the case of deficiency of iron or presence of cadmium ions we did not find any increase in uranium accumulation. - Highlights: → The uranium accumulation in twenty different plant species varied from 0.160 to 0.011 mg/g DW. → Uranium is mainly localized in the root system. → Tartaric acid was able to increase uranium uptake by Brassica oleracea and Sinapis alba. → The phosphates deficiency increase the uranium uptake.

  13. Uniformity of environmental conditions and plant growth in a hydroponic culture system for use in a growth room with aerial CO2 control

    Science.gov (United States)

    Vessey, J. K.; York, E. K.; Henry, L. T.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1988-01-01

    A portable system of hydroponic culture was developed that maintained temperature, pH, and nutrient concentrations of circulating nutrient solutions. The hydroponic system is used within a controlled-environment room (CER) for control of aerial environment. The CER was equipped with an auto-calibrating system for atmospheric CO2 control. The control systems for the hydroponic chambers were able to maintain acidity within +/- 0.2 pH units and the temperature with +/- 0.5 degree C. Mixing time for the 200-liter volume of solution within a hydroponic chamber was less than 12 min. The CO2 control system was able to maintain aerial concentrations within +/- 10 ppm CO2 during the light period. The only gradient found to occur within the hydroponic chambers or CER was a slight gradient in aerial temperature along the length of hydroponic chambers. Growth of soybeans [Glycine max (L.) Merr.] was characterized during a 3-week period of vegetative development by leaf number and area, plant dry weight, total N content of plants, and N depletion from the nutrient solution. The growth characteristics among populations for three hydroponic chambers within the CER were not significantly different, and the percent standard errors of means of the measurements within populations from each chamber were nearly all less than 10%. Thus, the uniformity of plant growth reflected the uniformity of environmental conditions.

  14. Wheat response to differences in water and nutritional status between zeoponic and hydroponic growth systems

    Science.gov (United States)

    Steinberg, S. L.; Ming, D. W.; Henderson, K. E.; Carrier, C.; Gruener, J. E.; Barta, D. J.; Henninger, D. L.

    2000-01-01

    Hydroponic culture has traditionally been used for controlled environment life support systems (CELSS) because the optimal environment for roots supports high growth rates. Recent developments in zeoponic substrate and microporous tube irrigation (ZPT) also offer high control of the root environment. This study compared the effect of differences in water and nutrient status of ZPT or hydroponic culture on growth and yield of wheat (Triticum aestivum L. cv. USU-Apogee). In a side-by-side test in a controlled environment, wheat was grown in ZPT and recirculating hydroponics to maturity. Water use by plants grown in both culture systems peaked at 15 to 20 L m-2 d-1 up to Day 40, after which it declined more rapidly for plants grown in ZPT culture due to earlier senescence of leaves. No consistent differences in water status were noted between plants grown in the two culture systems. Although yield was similar, harvest index was 28% lower for plants grown in ZPT than in hydroponic culture. Sterile green tillers made up 12 and 0% of the biomass of plants grown in ZPT and hydroponic culture, respectively. Differences in biomass partitioning were attributed primarily to NH4-N nutrition of plants grown in ZPT compared with NO3-N in hydroponic nutrient solution. It is probable that NH4-N-induced Ca deficiency produced excess tillering and lower harvest index for plants grown in ZPT culture. These results suggest that further refinements in zeoponic substrate would make ZPT culture a viable alternative for achieving high productivity in a CELSS.

  15. Automated hydroponics nutrition plants systems using arduino uno microcontroller based on android

    Science.gov (United States)

    Sihombing, P.; Karina, N. A.; Tarigan, J. T.; Syarif, M. I.

    2018-03-01

    Technological developments today make the combination of science is very common, including in Computer Science and Agriculture to make both of science need each other. This paper aims to develop a control tool for the flow of nutrients of hydroponic plants automatically using Arduino microcontroller and controlled by smartphone. We use an Arduino Uno microcontroller to automatically control the flow of nutrient solution with logic if else. The microcontroller can also send data of fluid level (solution) and temperature around the plant to smartphone android of the owner of the hydroponics plant. The height of the nutrient solution (water) is detected by the Ultrasonic sensor HC-SR04 and the temperature is detected by the temperature sensor LM35. Data from the sensor will forward into Arduino Uno and displayed in liquid crystal display (LCD) then via wireless fidelity (WIFI) ESP8266 module will transmit the height of the nutrient solution and the temperature around of the plants to Android smartphone.

  16. Carrot Cultivar Evaluation: Soilless Media vs. Hydroponics

    OpenAIRE

    Pinnock, Derek R.; Bugbee, Bruce

    2002-01-01

    Nine cultivars of carrots were grown in a growth chamber. Each cultivar was grown both in hydroponic and soil-less media root-zone for sixty days. Three 30L tubs were used for each root-zone treatment. Three cultivars were planted in each tub, initially at 180 plants m-2 then thinned to 90 plants m-2 on day 45.

  17. Hydroponic systems: hype or new perspective

    NARCIS (Netherlands)

    Vermeulen, T.; Weel, van P.A.; Ruijs, M.N.A.; Buwalda, F.; Os, van E.A.; Giacomelli, G.; Samperio Ruiz, G.

    2014-01-01

    Over the past five to ten years internationally a renewed interest can be observed in systems that require little or no substrate, such as deep flow technique and nutrient film technique - here dubbed hydroponic systems. Interestingly these systems have been around for over 40 years, but have only

  18. Coal ash as a substrate in hydroponics: chemical and agronomical aspects

    Energy Technology Data Exchange (ETDEWEB)

    Giusquiani, P L; Gigliotti, G; Businelli, D; Varallo, G [University of Perugia, Perugia (Italy)

    1995-05-01

    Tomato plants were grown in hydroponics using pelleted fly and heavy ash as substrates. The water stability of the substrates and their ability in a nutrient solution to sorb or desorb ions have been studied. Both substrates showed a satisfactory stability to water treatments. Interactions between the nutrient solution and the substrates did not influence the ion uptake by tomato plants nor plant growth and productivity.

  19. Monitoring And Controlling Hydroponic Flow

    Science.gov (United States)

    Dreschel, Thomas W.

    1992-01-01

    Pressure-monitoring and -controlling apparatus maintains slight suction required on nutrient solution in apparatus described in "Tubular Membrane Plant-Growth Unit" (KSC-11375), while overcoming gravity effects on operation of system on Earth. Suction helps to hold solution in tubular membrane.

  20. Hydroponic cultivation of soybean for Bioregenerative Life Support Systems (BLSSs)

    Science.gov (United States)

    De Pascale, Stefania; De Micco, Veronica; Aronne, Giovanna; Paradiso, Roberta

    evaluate the adaptation of soybean plants to hydroponics under controlled environment, as well as the plant response to changing cultural parameters, in order to identify the best cultivation protocol for BLSSs. The optimisation of growth conditions in hydroponics has been pursued being aware that environmental factors acting at sub-optimal levels may also increase the sensitivity of plants to space factors. The influence of the following parameters on plant growth and yield was also studied: - the hydroponic system: sole liquid solution (Nutrient Film Technique, NFT) vs solid substrate (rockwool); - the source of nitrogen in the nutrient solution: nitrate fertilizers vs urea; - the root symbiosis with atmospheric nitrogen-fixing bacteria: absence or presence of Bradyrhizobium japonicum; - the influence of microbes in the rhizosphere: inoculation with a mix containing mycorrhizal and trichoderma species, and beneficial bacteria vs a non-inoculated control. All the treatments were evaluated in terms of agronomic traits (e.g. plant size and seed production), physiological traits (gas exchange, nutrient uptake), chemical composition of seeds and their products, and technical parameters such as resource use efficiency and non-edible biomass production (waste).

  1. Liquid humus and microorganisms to promote the production of Lettuce (Lactuca sativa var. Crespa in hydroponic crop

    Directory of Open Access Journals (Sweden)

    Velasco José

    2016-11-01

    Full Text Available In an initial phase, a trial with growing hydroponic lettuce was installed, considering all the macro and micronutrients necessary and sufficient for growth, where treatments were applied with and without liquid humus, combining separately with inoculation of mycorrhiza and bacteria Bacillus type, observing that the significant effect by the individual use of the liquid humus is up to 50%. Subsequently, in a Phase II, different doses of only liquid humus with only mycorrhizae were evaluated, where applying of 8 L of pure liquid humus per 36 L of stock solution of hydroponics crop, the plants had the highest weight (40.7%, the highest altitude (39% and the longest (42% compared to the witness. Instead, the combination of liquid humus plus mycorrhizal is 6 L per 36 L of stock solution, which stimulated a further growth and weight of growing lettuce in hydroponics conditions. In general, the use of liquid humus decreased the production time from 60 to 52 days.

  2. AQUAPONICS: INTEGRATION BETWEEN AQUACULTURE AND HYDROPONICS

    Directory of Open Access Journals (Sweden)

    Guilherme Crispim Hundley2

    2013-12-01

    and hydroponics in recirculating systems for water and nutrients. Furthermore, Aquaponics presents itself as a real alternative for the production of food with reduced impact to the environment for its sustainability characteristics. Thus, Aquaponics is among the sustainable techniques involving fish and vegetable integrated production, capable of benefiting both. This integration allows the plant to use the nutrients from the water provided by the fish, thus improving water quality.

  3. Lettuce seeds production in hydroponic system

    OpenAIRE

    Menezes, Nilson Lemos de; Santos, Osmar Souza dos; Schmidt, Denise

    2001-01-01

    Sementes de alface das cultivares Deyse e Regina foram produzidas em estufa, no sistema hidropônico, com elevados rendimentos por planta e boa qualidade de sementes, quando comparados a resultados de sistema convencional, de canteiros em campo. Esses dados sugerem estudos de produção de sementes de alface em cultivo protegido.Lettuce seeds of Deyse and Regina cultivars were produced in greenhouse, in hydroponic system, with excelents rendiments per plant and seed quality, when compared to con...

  4. Effects of Al and Mn, alone and in combination, on growth and nutrient status of red pine seedlings hydroponically grown in nutrient culture solution; Suiko saibaishita akamatsunae no seicho oyobi eiyo jotai ni taisuru Al to Mn no tandoku oyobi fukugo eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.; Izuta, T.; Aoki, M.; Totsuka, T. [Tokyo University of Agriculture and Technology, Tokyo (Japan). Faculty of Agriculture

    1997-09-10

    Experiments have made clear the effects of Al and Mn on growth of red pine seedlings hydroponically grown. Analysis was performed on components of plants grown in culture solution into which Al and Mn were added alone or in combination. Photosynthesis velocity and dark respiration velocity of the seedlings were measured when they have fully grown. The following results were obtained: the Al addition reduces dry seedling weight, the T/R ratio (T is dry weight of a seedling above the ground and R is that under the ground) decreases as the addition amount is increased, and the photosynthesis velocity decreases; Al accumulates in roots reducing physiological function of the roots and concentrations of Ca and Mg; the dry weight decreases with increasing Mn addition, but does not affect the T/R ratio; the Mn addition reduces the photosynthesis velocity lowering chlorophyll content in needle leaves; the dark respiration velocity decreases as the Mn amount is increased, but does not affect that for trunks; Ca and Mg concentrations decrease in the trunks and roots; no significant compound effects of Al and Mn are recognized, and the effects are additive; and the concentration at which growth decrease appears is 10 ppm or higher for Al and 60 ppm or higher for Mn. 32 refs., 2 figs., 11 tabs.

  5. Hydroponic cultivation techniques: good results with Eg system

    Energy Technology Data Exchange (ETDEWEB)

    Mimiola, G; Sigliuzzo, C [Tecnagro, Valenzano (Italy)

    1988-12-01

    This report describes results obtained at the Tecnagro agronomic institute (Valenzano, Italy) in which research is being carried out on the use of the Eg hydroponic system developed in Israel. The research program examined the following: composition of nutritive solutions for ornamental plants and vegetables, methods of application of nutritive substances, breeding densities for ornamental plants and vegetables. Successful nutritive formulas were obtained which resulted, in the case of ornamental plants, in increases in plant height (from 30 to 50%), foliage area (50%), as well as, in shortened growth cycles. For vegetables, shortened growth cycles were developed along with a greater and more consistant production. From the economics point of view, tomatoes proved to be the best choice of vegetable for cultivation with the Eg technique.

  6. Production of deuterated switchgrass by hydroponic cultivation.

    Science.gov (United States)

    Evans, Barbara R; Bali, Garima; Foston, Marcus; Ragauskas, Arthur J; O'Neill, Hugh M; Shah, Riddhi; McGaughey, Joseph; Reeves, David; Rempe, Caroline S; Davison, Brian H

    2015-07-01

    The bioenergy crop switchgrass was grown hydroponically from tiller cuttings in 50 % D 2 O to obtain biomass with 34 % deuterium substitution and physicochemical properties similar to those of H 2 O-grown switchgrass controls. Deuterium enrichment of biological materials can potentially enable expanded experimental use of small angle neutron scattering (SANS) to investigate molecular structural transitions of complex systems such as plant cell walls. Two key advances have been made that facilitate cultivation of switchgrass, an important forage and biofuel crop, for controlled isotopic enrichment: (1) perfusion system with individual chambers and (2) hydroponic growth from tiller cuttings. Plants were grown and maintained for several months with periodic harvest. Photosynthetic activity was monitored by measurement of CO2 in outflow from the growth chambers. Plant morphology and composition appeared normal compared to matched controls grown with H2O. Using this improved method, gram quantities of switchgrass leaves and stems were produced by continuous hydroponic cultivation using growth medium consisting of basal mineral salts in 50 % D2O. Deuterium incorporation was confirmed by detection of the O-D and C-D stretching peaks with FTIR and quantified by (1)H- and (2)H-NMR. This capability to produce deuterated lignocellulosic biomass under controlled conditions will enhance investigation of cell wall structure and its deconstruction by neutron scattering and NMR techniques.

  7. Influence of hydroponic and soil cultivation on quality and shelf life of ready-to-eat lamb's lettuce (Valerianella locusta L. Laterr).

    Science.gov (United States)

    Manzocco, Lara; Foschia, Martina; Tomasi, Nicola; Maifreni, Michela; Dalla Costa, Luisa; Marino, Marilena; Cortella, Giovanni; Cesco, Stefano

    2011-06-01

    Nowadays, there is an increasing interest in the hydroponic floating system to cultivate leafy vegetables for ready-to-eat salads. It is reasonable that different growing systems could affect the quality and shelf life of these salads. The quality and shelf life of ready-to-eat lamb's lettuce grown in protected environment in soil plot or in soil-less system over hydroponic solution with or without the addition of 30 µmol L⁻¹ silicon were evaluated. Minimum effects were observed on colour, firmness and microbial counts. Hydroponic cultivation largely affected plant tissue hydration, leading to weight loss and structural modifications during refrigerated storage. The shelf life of lamb's lettuce was limited by the development of visually detectable unpleasant sensory properties. Shelf life, calculated by survival analysis of consumer acceptability data, resulted about 7 days for soil-cultivated salad and 2 days for the hydroponically grown ones. The addition of silicon to the hydroponic solution resulted in an interesting strategy to increase plant tissue yield and reduce nitrate accumulation. Although hydroponic cultivation may have critical consequences on product quality and shelf life, these disadvantages could be largely counterbalance by increased yield and a reduction of nitrate accumulation when cultivation is performed on nutritive solutions with supplemental addition of silicon. Copyright © 2011 Society of Chemical Industry.

  8. Search for a plant for phytoremediation--what can we learn from field and hydroponic studies?

    Science.gov (United States)

    Zabłudowska, E; Kowalska, J; Jedynak, L; Wojas, S; Skłodowska, A; Antosiewicz, D M

    2009-10-01

    The main aim of the study was to evaluate the strategies for coping with arsenic toxicity developed by the mine species (Calamagrostis arundinacea, Fragaria vesca, Stachys sylvatica, and Epilobium parviflorum), and to compare results obtained from plants exposed to arsenic present in contaminated soil (2000-3500 mg/kg dw) and in hydroponic solution (2 microM and 12 microM arsenate). Here we report basic differences in plant responses to arsenic depending on growth conditions (hydroponic/soil) with respect to uptake, root-to-shoot translocation, distribution, and detoxification/speciation. Calamagrostis has the highest level of As-tolerance among the tested species. When grown in soil, it accumulated the highest amount of As in roots and shoots relative to other species, however, when exposed to arsenic in hydroponics, it had lower As concentrations. The efficiency of arsenic root-to-shoot translocation was also different, being less effective in soil-grown Calamagrostis compared with hydroponics. Furthermore, in Calamagrostis exposed to arsenate in liquid medium, As(III) was the predominant arsenic form, in contrast to plants grown in As-contaminated soil, in which As(V) predominated. In addition, comparison of the level of phytochelatins showed that only PC2 was detected in plants from hydroponics, whereas in those from soil, additionally PC3 and PC4 were found. The results show that the basic components of a plant's response to arsenic, including uptake, accumulation as well as detoxification, change depending on the experimental conditions (arsenic in liquid medium or contaminated soil).

  9. Evaluation of different biomass production systems hydroponic corn

    Directory of Open Access Journals (Sweden)

    Néstor Vicente Acosta Lozano

    2017-02-01

    Full Text Available It was assessed the effect of three nutritive solutions (Hoagland, La Molina y FAO and three harvesting time (12, 15 and 18 days on forage yield and nutritive value of green fodder hydroponic from maize (Zea mays, L.. The experiment was developed in “La Sevilla” farm placed in San Marcos town, municipality and province of Santa Elena, Ecuador. The maize seeds 2,5 kg/m2 were washed, disinfected, soaked during 24 hours and placed in germination plates (1 x 1 x 0,04 m in dark condition during three days. It was applied to a fully randomized design with factorial arrangement without interaction 4 x 3 (3 nutritive solutions + 1 control (water x 3 harvesting time and 3 repetitions per treatments. The highest yields in terms of dry matter (137 and 114 kg DM/m2/year and crude protein (21,3 y 15,5 kg CP/m2/year were reached with the Hoagland and FAO solutions at 12 days of age, respectively. It was concluded that the best harvesting time independently of the nutritive solution was at 12 days and in all harvesting time the Hoagland and FAO solutions showed the best agronomic and chemical results.

  10. Ultra-violet radiation for the inactivation of microorganisms in hydroponics

    International Nuclear Information System (INIS)

    Buyanosvsky, G.; Gale, J.; Degani, N.

    1981-01-01

    The growth of microorganisms in the nutrient solution of a circulating hydroponic system was suppressed by ultra-violet radiation. Applied for three hours daily (572 Jm -2 h -1 ) throughout experiments in which tomato and corn were grown, it was effective in reducing the population of microorganisms from between 500-800 x 10 3 to 10-50 x 10 3 cells per ml. (orig.)

  11. Ultra-violet radiation for the inactivation of microorganisms in hydroponics

    Energy Technology Data Exchange (ETDEWEB)

    Buyanosvsky, G; Gale, J [Ben-Gurion Univ. of the Negev, Beersheva (Israel). Jacob Blaustein Inst. for Desert Research; Degani, N [Israel Atomic Energy Commission, Beersheba. Nuclear Research Center-Negev

    1981-01-01

    The growth of microorganisms in the nutrient solution of a circulating hydroponic system was suppressed by ultra-violet radiation. Applied for three hours daily (572 Jm/sup -2/h/sup -1/) throughout experiments in which tomato and corn were grown, it was effective in reducing the population of microorganisms from between 500-800 x 10/sup 3/ to 10-50 x 10/sup 3/ cells per ml.

  12. Wheat phytotoxicity from arsenic and cadmium separately and together in solution culture and in a calcareous soil

    Energy Technology Data Exchange (ETDEWEB)

    Cao Qing [Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Hu Qinhong [Lawrence Livermore National Laboratory, University of California, Livermore, CA 94550 (United States); Khan, Sardan [Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Department of Environmental Sciences, University of Peshawar, 25120 Peshawar (Pakistan); Wang Zijian [Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Lin Aijun [College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Du Xin [Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Zhu Yongguan [Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China)], E-mail: ygzhu@rcees.ac.cn

    2007-09-05

    The toxicity of two toxic elements, arsenic (As) and cadmium (Cd) (individually or in combination) on root elongation of wheat seedlings (Triticum aestivum, L.) were investigated both in hydroponics and in soils freshly spiked with the toxic elements. Median effective concentration (EC{sub 50}) and non-observed effect concentration (NOEC) were used to investigate the toxic thresholds and potencies of the two elements. The EC{sub 50} for As was 0.97 {mu}M in hydroponics and 196 mg kg{sup -1} in soil, and 4.32 {mu}M and 449 mg kg{sup -1} for Cd, respectively. Toxic unit (TU) and additive index (AI) concepts were introduced to determine the combined outcomes, and different behaviors were obtained: synergism in solution culture (EC{sub 50mix} = 0.36TU{sub mix} and AI: 1.76) and antagonism in soil experiments (EC{sub 50mix} = 1.49TU{sub mix} and AI: -0.33). Furthermore, the data of soil bioavailable As and Cd cannot explain the discrepancy between the results derived from soil and hydroponics experiments.

  13. Wheat phytotoxicity from arsenic and cadmium separately and together in solution culture and in a calcareous soil

    International Nuclear Information System (INIS)

    Cao Qing; Hu Qinhong; Khan, Sardan; Wang Zijian; Lin Aijun; Du Xin; Zhu Yongguan

    2007-01-01

    The toxicity of two toxic elements, arsenic (As) and cadmium (Cd) (individually or in combination) on root elongation of wheat seedlings (Triticum aestivum, L.) were investigated both in hydroponics and in soils freshly spiked with the toxic elements. Median effective concentration (EC 50 ) and non-observed effect concentration (NOEC) were used to investigate the toxic thresholds and potencies of the two elements. The EC 50 for As was 0.97 μM in hydroponics and 196 mg kg -1 in soil, and 4.32 μM and 449 mg kg -1 for Cd, respectively. Toxic unit (TU) and additive index (AI) concepts were introduced to determine the combined outcomes, and different behaviors were obtained: synergism in solution culture (EC 50mix = 0.36TU mix and AI: 1.76) and antagonism in soil experiments (EC 50mix = 1.49TU mix and AI: -0.33). Furthermore, the data of soil bioavailable As and Cd cannot explain the discrepancy between the results derived from soil and hydroponics experiments

  14. Wheat phytotoxicity from arsenic and cadmium separately and together in solution culture and in a calcareous soil

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Q; Hu, Q; Khan, S; Wang, Z; Lin, A; Du, X; Zhu, Y

    2007-03-05

    The toxicity effect of two deleterious elements of arsenic (As) and cadmium (Cd) (individually or in combination) on root elongation of wheat seedlings (Triticum aestivum, L.) were investigated both in hydroponics and in soils freshly spiked with the toxic elements. Median effective concentration (EC{sub 50}) and non-observed effect concentration (NOEC) were used to investigate the toxic thresholds and potencies of the two elements. The EC{sub 50} for As was 0.97 {mu}M in hydroponics and 196 mg {center_dot} kg{sup -1} in soil, and 4.32 {mu}M and 449 mg {center_dot} kg{sup -1} for Cd, respectively. Toxic unit (TU) and additive index (AI) concepts were introduced to determine the combined outcomes, and different behaviors were obtained: synergism in solution culture (EC{sub 50mix} = 0.36 TU{sub mix} and AI: 1.76) and antagonism in soil experiments (EC{sub 50mix} = 1.49 TU{sub mix} and AI: -0.33). Furthermore, the data of soil bioavailable As and Cd can not explain the discrepancy between the results derived from soil and hydroponics experiments.

  15. Bacterial community analysis of Tatsoi cultivated by hydroponics.

    Science.gov (United States)

    Koo, Ok K; Kim, Hun; Kim, Hyun J; Baker, Christopher A; Ricke, Steven C

    2016-07-02

    Tatsoi (Brassica narinosa) is a popular Asian salad green that is mostly consumed as a source of fresh produce. The purpose of this study was to assess the microbial diversity of Tatsoi cultivated in a hydroponic system and of its ecosystem. Tatsoi leaves, nutrient solution, and perlite/earth samples from a trickle feed system (TFS) and an ebb-and-flow system (EFS) were collected and their microbial communities were analyzed by pyrosequencing analysis. The results showed that most bacteria in the leaves from the TFS contained genus Sporosarcina (99.6%), while Rhizobium (60.4%) was dominant in the leaves from the EFS. Genus Paucibacter (18.21%) and Pelomonas (12.37%) were the most abundant microbiota in the nutrient solution samples of the TFS. In the EFS, the nutrient solution samples contained mostly genus Rhodococcus and Acinetobacter. Potential microbial transfer between the leaves and the ecosystem was observed in the EFS, while samples in the TFS were found to share only one species between the leaves, nutrient solution, and earth. Together, these results show that the bacterial populations in Tatsoi and in its ecosystem are highly diverse based on the cultivation system.

  16. Evaluating irrigation scheduling of hydroponic tomato in Navarra, Spain

    NARCIS (Netherlands)

    Lizarraga, H.J.; Boesveld, H.; Huibers, F.P.; Robles, H.

    2003-01-01

    The correct supply of water and nutrients is important in hydroponic growing systems in order to use water efficiently, avoid stress situations, and control production. The present study was conducted to evaluate two irrigation scheduling techniques for hydroponic tomato production in Navarra,

  17. Relative bioavailability of a newly developed 5-mg levomethadone hydrochloride IR tablet (L-Polamidon® 5 mg tablets) in comparison with the 5-mg levomethadone hydrochloride oral solution (L-Polamidon® solution for substitution) as reference product.

    Science.gov (United States)

    Blume, Henning H; Wedemeyer, Ralf-Steven; Donath, Frank; Roscher, Katrin; Elvert, Gerd; Wagner, Daniel; Bley, Oliver; Vuia, Alexander; Todorova-Sanjari, Marina; Villalobos, Ramon; Schug, Barbara

    2015-04-01

    To establish the relative bioavailability (rBA) between two p.o. 5-mg levomethadone hydrochloride formulations, i.e., L-Polamidon® 5 mg tablets (test) vs. L-Polamidon® solution for substitution (reference). To assess the safety and tolerability of both formulations. A total of 33 healthy male subjects, aged 29 ± 6 years (BMI: 23.9 ± 2.5 kg/m2) completed this single center, open-label, randomized, 2-period cross-over study with single dose administrations under fasting conditions and coadministration with naltrexone for safety reasons. Administrations of both investigational products were separated by a washout period of at least 2 weeks, i.e., 13 treatmentfree days. The total dose for each subject was 2 x 5 mg resulting in 10 mg levomethadone hydrochloride. For pharmacokinetic evaluation, blood samples were withdrawn until 72 hours postdose. A validated non-stereoselective liquid chromatography-tandem mass spectroscopy method (LC-MS/MS) was applied for the determination of levomethadone in plasma. The lower limit of quantitation was 0.100 ng/mL. Adverse events were descriptively analyzed in the study population. The geometric means of the parameters related with the extent of total exposure of levomethadone, i.e., AUC(0-tlast) and AUC(0-∞), were 244.422 ng x h/mL and 332.999 ng x h/mL for test and 246.837 ng x h/mL and 329.467 ng×h/mL for reference, respectively. The geometric means of the peak exposure for levomethadone, i.e., Cmax, were 8.923 ng/mL for test and 8.635 ng/mL for reference. The point estimates (PEs) of the Test/Reference (T/R) adjusted geometric mean ratios of AUC(0-last), AUC(0-∞), and C(max) were 99.20%, 101.42%, and 104.11%, respectively, and all of them showed 90%-confidence intervals (CIs) within the range of 80.00 - 125.00% as suggested by regulatory requirements for bioequivalence assessment In total, 21 subjects experienced 55 AEs during the study, the most frequently reported AE, i.e., headache, accounted for 13 out of the total

  18. Improved Chromatographic Bioavailability Estimations

    National Research Council Canada - National Science Library

    Dorsey, John

    1996-01-01

    .... Since the inception of reversed phase liquid chromatography there have been many attempts to correlate chromatographic retention with bioavailability and the most often used bulk measure, the octanol...

  19. Hydroponic Green Farming Initiative : increasing water use efficiency by use of hydroponic cultivation methods in Jordan : final report

    NARCIS (Netherlands)

    Blok, Chris; Os, van Erik; Daoud, Raed; Waked, Laith; Hasan, A.

    2017-01-01

    Hydroponic Green Farming Initiative was executed in Jordan. Wageningen UR Greenhouse Horticultureanalysed the present situation at hydroponic farmers with the aim to adapt and to improve where possibleand to disseminate results and knowledge to other farmers in training sessions. With large amounts

  20. Nutritional status and ion uptake response of Gynura bicolor DC. between Porous-tube and traditional hydroponic growth systems

    Science.gov (United States)

    Wang, Minjuan; Fu, Yuming; Liu, Hong

    2015-08-01

    Hydroponic culture has traditionally been used for Bioregenerative Life Support Systems (BLSS) because the optimal environment for roots supports high growth rates. Recent developments in Porous-tube Nutrient Delivery System (PTNDS) also offer high control of the root environment which is designed to provide a means for accurate environmental control and to allow for two-phase flow separation in microgravity. This study compared the effects of PTNDS and traditional hydroponic cultures on biomass yield, nutritional composition and antioxidant defense system (T-AOC, GSH, H2O2 and MDA) of G. bicolor, and ionic concentration (NH4+, K+, Mg2+, Ca2+, NO3-, H2 PO4-, SO42-) of nutrient solution during planting period in controlled environment chambers. The results indicated that the biomass production and yield of G. bicolor grown in PTNDS were higher than in hydroponic culture, although Relative water content (RWC), leaf length and shoot height were not significantly different. PTNDS cultivation enhanced calories from 139.5 to 182.3 kJ/100 g dry matter, and carbohydrate from 4.8 to 7.3 g/100 g dry matter and reduced the amount of protein from 7.3 to 4.8 g/100 g dry matter and ash from 1.4 to1.0 g/100 g dry matter, compared with hydroponic culture. PTNDS cultivation accumulated the nutrition elements of Ca, Cu, Fe and Zn, and reduced Na concentration. T-AOC and GSH contents were significantly lower in PTNDS than in hydroponic culture in the first harvest. After the first harvest, the contents of MDA and H2O2 were significantly higher in PTNDS than in hydroponic culture. However, the activity of T-AOC and GSH and H2O2 and MDA contents had no significant differences under both cultures after the second and third harvest. Higher concentrations of K+, Mg2+ and Ca2+ were found in nutrient solution of plants grown in hydroponics culture compared to PTNDS, wherein lower concentrations of NO3-, H2 PO4- and SO42- occurred. Our results demonstrate that PTNDS culture has more

  1. Flavonoid Bioavailability and Attempts for Bioavailability Enhancement

    Science.gov (United States)

    Thilakarathna, Surangi H.; Rupasinghe, H. P. Vasantha

    2013-01-01

    Flavonoids are a group of phytochemicals that have shown numerous health effects and have therefore been studied extensively. Of the six common food flavonoid classes, flavonols are distributed ubiquitously among different plant foods whereas appreciable amounts of isoflavones are found in leguminous plant-based foods. Flavonoids have shown promising health promoting effects in human cell culture, experimental animal and human clinical studies. They have shown antioxidant, hypocholesterolemic, anti-inflammatory effects as well as ability to modulate cell signaling and gene expression related disease development. Low bioavailability of flavonoids has been a concern as it can limit or even hinder their health effects. Therefore, attempts to improve their bioavailability in order to improve the efficacy of flavonoids are being studied. Further investigations on bioavailability are warranted as it is a determining factor for flavonoid biological activity. PMID:23989753

  2. Hydroponic systems and water management in aquaponics: A review

    Directory of Open Access Journals (Sweden)

    Carmelo Maucieri

    2017-09-01

    Full Text Available Aquaponics (AP, the integrated multi-trophic fish and plants production in quasi-closed recirculating system, is one of the newest sustainable food production systems. The hydroponic component of the AP directly influences water quality (in turn influencing fish growth and health, and water consumption (through evapotranspiration of the entire system. In order to assess the role of the design and the management of the hydroponic component on the overall performance, and water consumption of the aquaponics, 122 papers published from 1979 to 2017 were reviewed. Although no unequivocal results were found, the nutrient film technique appears in several aspects less efficient than medium-based or floating raft hydroponics. The best system performance in terms of fish and plant growth, and the highest nutrient removal from water was achieved at water flow between 0.8 L min–1 and 8.0 L min–1. Data on water consumption of aquaponics are scarce, and no correlation between the ratio of hydroponic unit surface/fish tank volume and the system water loss was found. However, daily water loss was positively correlated with the hydroponic surface/fish tank volume ratio if the same experimental conditions and/or systems were compared. The plant species grown in hydroponics influenced the daily water loss in aquaponics, whereas no effect was exerted by the water flow (reciprocating flood/drain cycle or constant flow or type (medium-based, floating or nutrient film technique of hydroponics.

  3. Root Zone Respiration on Hydroponically Grown Wheat Plant Systems

    Science.gov (United States)

    Soler-Crespo, R. A.; Monje, O. A.

    2010-01-01

    Root respiration is a biological phenomenon that controls plant growth and physiological development during a plant's lifespan. This process is dependent on the availability of oxygen in the system where the plant is located. In hydroponic systems, where plants are submerged in a solution containing vital nutrients but no type of soil, the availability of oxygen arises from the dissolved oxygen concentration in the solution. This oxygen concentration is dependent on the , gas-liquid interface formed on the upper surface of the liquid, as given by Henry's Law, depending on pressure and temperature conditions. Respiration rates of the plants rise as biomass and root zone increase with age. The respiration rate of Apogee wheat plants (Triticum aestivum) was measured as a function of light intensity (catalytic for photosynthesis) and CO2 concentration to determine their effect on respiration rates. To determine their effects on respiration rate and plant growth microbial communities were introduced into the system, by Innoculum. Surfactants were introduced, simulating gray-water usage in space, as another factor to determine their effect on chemical oxygen demand of microbials and on respiration rates of the plants. It is expected to see small effects from changes in CO2 concentration or light levels, and to see root respiration decrease in an exponential manner with plant age and microbial activity.

  4. Prediction system of hydroponic plant growth and development using algorithm Fuzzy Mamdani method

    Science.gov (United States)

    Sudana, I. Made; Purnawirawan, Okta; Arief, Ulfa Mediaty

    2017-03-01

    Hydroponics is a method of farming without soil. One of the Hydroponic plants is Watercress (Nasturtium Officinale). The development and growth process of hydroponic Watercress was influenced by levels of nutrients, acidity and temperature. The independent variables can be used as input variable system to predict the value level of plants growth and development. The prediction system is using Fuzzy Algorithm Mamdani method. This system was built to implement the function of Fuzzy Inference System (Fuzzy Inference System/FIS) as a part of the Fuzzy Logic Toolbox (FLT) by using MATLAB R2007b. FIS is a computing system that works on the principle of fuzzy reasoning which is similar to humans' reasoning. Basically FIS consists of four units which are fuzzification unit, fuzzy logic reasoning unit, base knowledge unit and defuzzification unit. In addition to know the effect of independent variables on the plants growth and development that can be visualized with the function diagram of FIS output surface that is shaped three-dimensional, and statistical tests based on the data from the prediction system using multiple linear regression method, which includes multiple linear regression analysis, T test, F test, the coefficient of determination and donations predictor that are calculated using SPSS (Statistical Product and Service Solutions) software applications.

  5. Uptake and translocation of sulfamethazine by alfalfa grown under hydroponic conditions.

    Science.gov (United States)

    Kurwadkar, Sudarshan; Struckhoff, Garrett; Pugh, Kameron; Singh, Om

    2017-03-01

    Antibiotics are routinely used in intensive animal agriculture operations collectively known as Concentrated Animal Feed Operations (CAFO) which include dairy, poultry and swine farms. Wastewater generated by CAFOs often contains low levels of antibiotics and is typically managed in an anaerobic lagoon. The objective of this research is to investigate the uptake and fate of aqueous sulfamethazine (SMN) antibiotic by alfalfa (Medicago sativa) grass grown under hydroponic conditions. Uptake studies were conducted using hydroponically grown alfalfa in a commercially available nutrient solution supplemented with 10mg/L of SMN antibiotic. Analysis of alfalfa sap, root zone, middle one-third, and top portion of the foliage showed varying uptake rate and translocation of SMN. The highest average amount of SMN (8.58μg/kg) was detected in the root zone, followed by the top portion (1.89μg/kg), middle one-third (1.30μg/kg), and sap (0.38μg/kg) samples, indicating a clear distribution of SMN within the sampled regions. The ultraviolet (UV) spectra of parent SMN and translocated SMN identified in different parts of the plant present the possibility of metabolization during the uptake process. Uptake of SMN using alfalfa grown under hydroponic conditions has potential as a promising remediation technology for removal of similar antibiotics from wastewater lagoons. Copyright © 2016. Published by Elsevier B.V.

  6. Integrating biological treatment of crop residue into a hydroponic sweetpotato culture

    Science.gov (United States)

    Trotman, A. A.; David, P. P.; Bonsi, C. K.; Hill, W. A.; Mortley, D. G.; Loretan, P. A.

    1997-01-01

    Residual biomass from hydroponic culture of sweetpotato [Ipomoea batatas (L.) Lam.] was degraded using natural bacterial soil isolates. Sweetpotato was grown for 120 days in hydroponic culture with a nutrient solution comprised of a ratio of 80% modified half Hoagland solution to 20% filtered effluent from an aerobic starch hydrolysis bioreactor. The phytotoxicity of the effluent was assayed with `Waldmann's Green' lettuce (Lactuca sativa L.) and the ratio selected after a 60-day bioassay using sweetpotato plants propagated vegetatively from cuttings. Controlled environment chamber experiments were conducted to investigate the impact of filtrate from biological treatment of crop residue on growth and storage root production with plants grown in a modified half Hoagland solution. Incorporation of bioreactor effluent, reduced storage root yield of `Georgia Jet' sweetpotato but the decrease was not statistically significant when compared with yield for plants cultured in a modified half Hoagland solution without filtrate. However, yield of `TU-82-155' sweetpotato was significantly reduced when grown in a modified half Hoagland solution into which filtered effluent had been incorporated. Total biomass was significantly reduced for both sweetpotato cultivars when grown in bioreactor effluent. The leaf area and dry matter accumulation were significantly (P < 0.05) reduced for both cultivars when grown in solution culture containing 20% filtered effluent.

  7. Produção de melão rendilhado em sistema hidropônico com rejeito da dessalinização de água em solução nutritiva Melon yield in a hydroponic system with wastewater from desalination plant added in the nutrient solution

    Directory of Open Access Journals (Sweden)

    Nildo da S. Dias

    2010-07-01

    Full Text Available Desenvolveu-se esta pesquisa visando o aproveitamento do rejeito da dessalinização da água no cultivo hidropônico do meloeiro. O experimento foi conduzido no Departamento de Ciências Ambientais da UFERSA, localizado no município de Mossoró, RN, em vasos com substrato de fibra de coco sob condições protegidas. O delineamento experimental utilizado foi blocos ao acaso, com 3 repetições cujos tratamentos corresponderam a cinco níveis de salinidade da solução nutritiva obtidos com ou sem a necessidade de diluição do rejeito da dessalinização da água (2,1; 3,6; 4,9; 6,0 e 7,0 dS m-1. Avaliaram-se: altura de plantas, diâmetro de colo, área foliar, rendimento total e comercial de frutos por planta e, ainda, peso médio de frutos comerciais e totais. Em geral, as variáveis estudadas decresceram linearmente com o incremento da salinidade da solução nutritiva demonstrando que a salinidade da solução com água de rejeito reduz a disponibilidade de água para as plantas, devido ao efeito osmótico.To use of waster water from desalting in the hydroponic cultivation, an experiment was carried out at the Department of Environmental Science of the Universidade Federal Rural do Semi-Árido-UFERSA, in the municipal district of Mossoró-RN, in pots with substrates of coconut fiber under greenhouse conditions. The experimental design was in randomized blocks, with three repetitions. Treatments were composed of five levels of salinity of the nutrient solution obtained with, and without, dilution of the waster water from desalting (2.1, 3.6, 4.9, 6.0 and 7.0 dS m-1. The variables plant height, stem diameter, leaf area, mean weight of fruit and total and marketable yield were detemined. In general, the variables decreased linearly with the increase of the salinity of the nutrient solution, showing that the salinity with waster water from desalting reduces the absorption of water by the plants due to the osmotic effect.

  8. Protocol: optimising hydroponic growth systems for nutritional and physiological analysis of Arabidopsis thaliana and other plants

    Science.gov (United States)

    2013-01-01

    Background Hydroponic growth systems are a convenient platform for studying whole plant physiology. However, we found through trialling systems as they are described in the literature that our experiments were frequently confounded by factors that affected plant growth, including algal contamination and hypoxia. We also found the way in which the plants were grown made them poorly amenable to a number of common physiological assays. Results The drivers for the development of this hydroponic system were: 1) the exclusion of light from the growth solution; 2) to simplify the handling of individual plants, and 3) the growth of the plant to allow easy implementation of multiple assays. These aims were all met by the use of pierced lids of black microcentrifuge tubes. Seed was germinated on a lid filled with an agar-containing germination media immersed in the same solution. Following germination, the liquid growth media was exchanged with the experimental solution, and after 14-21 days seedlings were transferred to larger tanks with aerated solution where they remained until experimentation. We provide details of the protocol including composition of the basal growth solution, and separate solutions with altered calcium, magnesium, potassium or sodium supply whilst maintaining the activity of the majority of other ions. We demonstrate the adaptability of this system for: gas exchange measurement on single leaves and whole plants; qRT-PCR to probe the transcriptional response of roots or shoots to altered nutrient composition in the growth solution (we demonstrate this using high and low calcium supply); producing highly competent mesophyll protoplasts; and, accelerating the screening of Arabidopsis transformants. This system is also ideal for manipulating plants for micropipette techniques such as electrophysiology or SiCSA. Conclusions We present an optimised plant hydroponic culture system that can be quickly and cheaply constructed, and produces plants with similar

  9. Hydroponic vs. Soilless Media: Interaction with Plant Density

    OpenAIRE

    Pinnock, Derek R.; Bugbee, Bruce

    2000-01-01

    Water stress can cause early heading in some plant species. ‘Super Dwarf’ rice was grown in hydroponic culture and soilless media to determine if a slight water stress, caused by the soilless media, would cause earlier heading.

  10. Childhood hypersensitivity pneumonitis associated with fungal contamination of indoor hydroponics.

    Science.gov (United States)

    Engelhart, Steffen; Rietschel, Ernst; Exner, Martin; Lange, Lars

    2009-01-01

    Childhood hypersensitivity pneumonitis (HP) is often associated with exposure to antigens in the home environment. We describe a case of HP associated with indoor hydroponics in a 14-year-old girl. Water samples from hydroponics revealed Aureobasidium pullulans as the dominant fungal micro-organism (10(4)CFU/ml). The diagnosis is supported by the existence of serum precipitating antibodies against A. pullulans, lymphocytic alveolitis on bronchoalveolar lavage (BAL) fluid, a corresponding reaction on a lung biopsy, and the sustained absence of clinical symptoms following the removal of hydroponics from the home. We conclude that hydroponics should be considered as potential sources of fungal contaminants when checking for indoor health complaints.

  11. Effects of different hydroponic substrate combinations and watering ...

    African Journals Online (AJOL)

    Background: Production of medicinal plants in controlled environments, particularly hydroponic technology, provides opportunities for high quality biomass accumulation and optimizes production of secondary metabolites. Applying special watering regimes in combination with efficient soil draining is an encouraging new ...

  12. Hydroponic technology for lily flowers and bulbs production using ...

    African Journals Online (AJOL)

    Aghomotsegin

    2015-07-22

    Jul 22, 2015 ... the utilization of the hydroponic technology to produce flower and bulb of Asiatic ... when they became 2 cm long and mother bulb scales were removed at ..... cell layer culture system in Lilium:Rgeneration and transformation.

  13. A thin film hydroponic system for plant studies

    Science.gov (United States)

    Hines, Robert; Prince, Ralph; Muller, Eldon; Schuerger, Andrew

    1990-01-01

    The Land Pavillion, EPCOT Center, houses a hydroponic, thin film growing system identical to that residing in NASA's Biomass Production Chamber at Kennedy Space Center. The system is targeted for plant disease and nutrition studies. The system is described.

  14. Identification of suitable media based on hydroponic culture for production Zucchini squash

    Directory of Open Access Journals (Sweden)

    TP Suvo

    2016-12-01

    Full Text Available An experiment was conducted to identify the hydroponic culture based suitable media for the production of Zucchini Squash in the Biochemistry Laboratory, Patuakhali Science and Technology University, Dumki, Patuakhali, Bangladesh during 2014. Zucchini plant (Cucurbita pepo L. were grown in closed soilless systems to determine the effect of four different hydroponics media on plant growth, yield and nutrient contents (fruit moisture content, ascorbic acid content on fruit, fruit protein content, protein content in leaves. Three types of substrates (coconut husk, jute, cotton along with Hoagland solution were used in this experiment. Result revealed that media using Jute fiber showed significant effect on plant growth and nutritional values than the other media (media of cotton with Hoagland solution, coconut husk with Hoagland solution and only Hoagland solution. The plant grown using jute media showed the highest plant height (60.33 cm, number of leaves (17.33, yield (1.5 kg plant-1, fruit moisture content (97.33%, Ascorbic acid content in fruit (28.73 mg 100g-1, protein percentage in fruit (1.406% and percentage (1.326% in leaves than the other media. Therefore, with the controlled nutrient supply, less expense, less labor, no use of pesticides or fertilizer with controlled environment the use of jute fiber as a substrate with Hoagland solution can be an effective one.

  15. Vegetable Cultivation Hydroponics System In Community Economic Zone KEM Kanagarian Tikalak Subdistrict X Koto Singkarak Districts Solok

    Directory of Open Access Journals (Sweden)

    I Ketut Budaraga

    2017-05-01

    Full Text Available Current conditions especially in urban agricultural land is getting narrower due to the rapid development. If left untreated it can lead to food security and environmental problems. One solution to allow the fulfillment of foodstuffs such as vegetables can be fulfilled for the people to exploit the potential of the narrow yard with continuous production of hydroponic systems. Interest dedication to the community to find ways to introduce a hydroponic vegetable crops that can supplement the family income of farmers. Benefits of the service is expected to increase peoples income and the public generally in Community Economic Zone KEM Kanagarian Tikalak in particular and can provide lucrative benefits for the environment. Devotion execution method implemented by a lecture and demonstration. The materials used such as husks seeds of vegetables kale collards caisin hydroponic media such as slug biogas rope bamboo to place the plants grow. The results of this activity the community has been able to make a hydroponic vegetable cultivation system and has been applied to plant vegetables such as kale collards and caisin.

  16. Bioavailability of intranasal metoclopramide.

    OpenAIRE

    Ward, M J; Buss, D C; Ellershaw, J; Nash, A; Routledge, P A

    1989-01-01

    After intranasal administration of metoclopramide, (5 mg in 0.5 ml sterile water) the maximum plasma concentration of 13.5 +/- 7.3 (mean +/- s.d.) ng ml-1 was achieved. Absolute bioavailability was 50.5 +/- 29.5%, 110 +/- 41 min later. We conclude that the intranasal route does not allow rapid absorption of the drug and is not associated with greater bioavailability than the oral route.

  17. Rice-arsenate interactions in hydroponics: whole genome transcriptional analysis.

    Science.gov (United States)

    Norton, Gareth J; Lou-Hing, Daniel E; Meharg, Andrew A; Price, Adam H

    2008-01-01

    Rice (Oryza sativa) varieties that are arsenate-tolerant (Bala) and -sensitive (Azucena) were used to conduct a transcriptome analysis of the response of rice seedlings to sodium arsenate (AsV) in hydroponic solution. RNA extracted from the roots of three replicate experiments of plants grown for 1 week in phosphate-free nutrient with or without 13.3 muM AsV was used to challenge the Affymetrix (52K) GeneChip Rice Genome array. A total of 576 probe sets were significantly up-regulated at least 2-fold in both varieties, whereas 622 were down-regulated. Ontological classification is presented. As expected, a large number of transcription factors, stress proteins, and transporters demonstrated differential expression. Striking is the lack of response of classic oxidative stress-responsive genes or phytochelatin synthases/synthatases. However, the large number of responses from genes involved in glutathione synthesis, metabolism, and transport suggests that glutathione conjugation and arsenate methylation may be important biochemical responses to arsenate challenge. In this report, no attempt is made to dissect differences in the response of the tolerant and sensitive variety, but analysis in a companion article will link gene expression to the known tolerance loci available in the BalaxAzucena mapping population.

  18. Rice–arsenate interactions in hydroponics: whole genome transcriptional analysis

    Science.gov (United States)

    Norton, Gareth J.; Lou-Hing, Daniel E.; Meharg, Andrew A.; Price, Adam H.

    2008-01-01

    Rice (Oryza sativa) varieties that are arsenate-tolerant (Bala) and -sensitive (Azucena) were used to conduct a transcriptome analysis of the response of rice seedlings to sodium arsenate (AsV) in hydroponic solution. RNA extracted from the roots of three replicate experiments of plants grown for 1 week in phosphate-free nutrient with or without 13.3 μM AsV was used to challenge the Affymetrix (52K) GeneChip Rice Genome array. A total of 576 probe sets were significantly up-regulated at least 2-fold in both varieties, whereas 622 were down-regulated. Ontological classification is presented. As expected, a large number of transcription factors, stress proteins, and transporters demonstrated differential expression. Striking is the lack of response of classic oxidative stress-responsive genes or phytochelatin synthases/synthatases. However, the large number of responses from genes involved in glutathione synthesis, metabolism, and transport suggests that glutathione conjugation and arsenate methylation may be important biochemical responses to arsenate challenge. In this report, no attempt is made to dissect differences in the response of the tolerant and sensitive variety, but analysis in a companion article will link gene expression to the known tolerance loci available in the Bala×Azucena mapping population. PMID:18453530

  19. Phytoremediation of arsenic by Trapa natans in a hydroponic system.

    Science.gov (United States)

    Baruah, Sangita; Borgohain, Jayasree; Sarma, K P

    2014-05-01

    Phytoremediation of arsenic (As) by water chestnut (Trapa natans) in a hydroponic system was studied. Plants were grown at two concentrations of arsenic, 1.28 mg/L and 10.80 mg/L, in a single metal solution. Scanning Electron Microscope-Energy Dispersive X-ray (SEM-EDX) confirmed highest arsenic concentration in the roots, followed by shoots and leaves. SEM-EDX also confirmed internalization of arsenic in T. natans and the damage caused due to arsenic exposure. Fourier Transform Infra Red Spectroscopy (FT-IRS) indicated that the binding characteristics of the arsenic ions involved the hydroxyl, amide, amino, and thiol groups in the biomass. Chlorophyll concentration decreased with increasing metal concentration and duration of exposure, but proline content increases with increasing concentration in the plant. Morphological changes were studied on the 3rd, 5th and 7th day. Unhealthy growth and chlorosis were found to be related with arsenic toxicity. From the above studies it is clear that T. natans can be used successfully for the removal of arsenic ions by a phytoremediation process.

  20. Uptake of cadmium from hydroponic solutions by willows (Salix spp ...

    African Journals Online (AJOL)

    DR. NJ TONUKARI

    2011-11-16

    Nov 16, 2011 ... which indicated that cadmium uptake across the plasma membrane was ... to cadmium pollution in water-soil-plant systems because .... plants were separated into roots and shoots, blotted dry with paper tissue .... Analysis of the kinetic constants for cadmium uptake ..... proteins (Welch and Norvell, 1999).

  1. Effects of different combinations of Hoagland's solution and Azolla ...

    African Journals Online (AJOL)

    The assessments of photosynthetic rate, stomatal conductance, evapotranspiration, intercellular CO2 concentration and chlorophyll content in Beta vulgaris subsp. cycla 'Fordhook Giant' grown in hydroponic cultures containing different compositions of hydroponic solutions were evaluated in this study. The aim of the study ...

  2. Effervescent N-Acetylcysteine Tablets versus Oral Solution N-Acetylcysteine in Fasting Healthy Adults: An Open-Label, Randomized, Single-Dose, Crossover, Relative Bioavailability Study

    Directory of Open Access Journals (Sweden)

    Spencer C. Greene, MD, FACEP, FACMT

    2016-01-01

    Conclusions: Data from this study of a single dose of 11 g oral NAC demonstrated that effervescent NAC tablets and oral solution NAC met the regulatory criteria for bioequivalence in fasting healthy adult subjects. Effervescent NAC tablets appear to be a more palatable alternative for treatment of acetaminophen overdose. ClinicalTrials.gov identifier: NCT02723669.

  3. Stable isotopic composition of perchlorate and nitrate accumulated in plants: Hydroponic experiments and field data.

    Science.gov (United States)

    Estrada, Nubia Luz; Böhlke, J K; Sturchio, Neil C; Gu, Baohua; Harvey, Greg; Burkey, Kent O; Grantz, David A; McGrath, Margaret T; Anderson, Todd A; Rao, Balaji; Sevanthi, Ritesh; Hatzinger, Paul B; Jackson, W Andrew

    2017-10-01

    Natural perchlorate (ClO 4 - ) in soil and groundwater exhibits a wide range in stable isotopic compositions (δ 37 Cl, δ 18 O, and Δ 17 O), indicating that ClO 4 - may be formed through more than one pathway and/or undergoes post-depositional isotopic alteration. Plants are known to accumulate ClO 4 - , but little is known about their ability to alter its isotopic composition. We examined the potential for plants to alter the isotopic composition of ClO 4 - in hydroponic and field experiments conducted with snap beans (Phaseolus vulgaris L.). In hydroponic studies, anion ratios indicated that ClO 4 - was transported from solutions into plants similarly to NO 3 - but preferentially to Cl - (4-fold). The ClO 4 - isotopic compositions of initial ClO 4 - reagents, final growth solutions, and aqueous extracts from plant tissues were essentially indistinguishable, indicating no significant isotope effects during ClO 4 - uptake or accumulation. The ClO 4 - isotopic composition of field-grown snap beans was also consistent with that of ClO 4 - in varying proportions from irrigation water and precipitation. NO 3 - uptake had little or no effect on NO 3 - isotopic compositions in hydroponic solutions. However, a large fractionation effect with an apparent ε ( 15 N/ 18 O) ratio of 1.05 was observed between NO 3 - in hydroponic solutions and leaf extracts, consistent with partial NO 3 - reduction during assimilation within plant tissue. We also explored the feasibility of evaluating sources of ClO 4 - in commercial produce, as illustrated by spinach, for which the ClO 4 - isotopic composition was similar to that of indigenous natural ClO 4 - . Our results indicate that some types of plants can accumulate and (presumably) release ClO 4 - to soil and groundwater without altering its isotopic characteristics. Concentrations and isotopic compositions of ClO 4 - and NO 3 - in plants may be useful for determining sources of fertilizers and sources of ClO 4 - in their growth

  4. MINERAL NUTRITION OF CRISPHEAD LETTUCE GROWN IN A HYDROPONIC SYSTEM WITH BRACKISH WATER

    Directory of Open Access Journals (Sweden)

    HAMMADY RAMALHO E SOARES

    2016-01-01

    Full Text Available Water availability in the Brazilian semiarid is restricted and often the only water source available has high salt concentrations. Hydroponics allows using these waters for production of various crops, including vegetables, however, the water salinity can cause nutritional disorders. Thus, two experiments were conducted in a greenhouse at the Department of Agricultural Engineering of the Federal Rural University of Pernambuco, to evaluate the effects of salinity on the mineral nutrition of crisphead lettuce, cultivar Taina, in a hydroponic system (Nutrient Film Technique, using brackish water in the nutrient solution, which was prepared by adding NaCl to the local water (0.2 dS m-1. A randomized blocks experimental design was used in both experiments. The treatments consisted of water of different salinity levels (0.2, 1.2, 2.2, 3.2, 4.2 and 5.2 dS m-1 with four replications, totaling 24 plots for each experiment. The water added to compensate for the water-depth loss due to evapotranspiration (WCET was the brackish water of each treatment in Experiment I and the local water without modifications in Experiment II. The increase in the salinity of the water used for the nutrient solution preparation reduced the foliar phosphorus and potassium contents and increased the chloride and sodium contents, regardless of the WCET. Foliar nitrogen, calcium, magnesium and sulfur contents were not affected by increasing the water salinity used for the nutrient solution preparation.

  5. Phytoremediation of imazalil and tebuconazole by four emergent wetland plant species in hydroponic medium.

    Science.gov (United States)

    Lv, Tao; Zhang, Yang; Casas, Mònica E; Carvalho, Pedro N; Arias, Carlos A; Bester, Kai; Brix, Hans

    2016-04-01

    Pollution from pesticide residues in aquatic environments is of increasing concern. Imazalil and tebuconazole, two commonly used systemic pesticides, are water contaminants that can be removed by constructed wetlands. However, the phytoremediation capability of emergent wetland plants for imazalil and tebuconazole, especially the removal mechanisms involved, is poorly understood. This study compared the removal of both pesticides by four commonly used wetland plants, Typha latifolia, Phragmites australis, Iris pseudacorus and Juncus effusus, and aimed to understand the removal mechanisms involved. The plants were individually exposed to an initial concentration of 10 mg/L in hydroponic solution. At the end of the 24-day study period, the tebuconazole removal efficiencies were relatively lower (25%-41%) than those for imazalil (46%-96%) for all plant species studied. The removal of imazalil and tebuconazole fit a first-order kinetics model, with the exception of tebuconazole removal in solutions with I. pseudacorus. Changes in the enantiomeric fraction for imazalil and tebuconazole were detected in plant tissue but not in the hydroponic solutions; thus, the translocation and degradation processes were enantioselective in the plants. At the end of the study period, the accumulation of imazalil and tebuconazole in plant tissue was relatively low and constituted 2.8-14.4% of the total spiked pesticide in each vessel. Therefore, the studied plants were able to not only take up the pesticides but also metabolise them. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Study of buffer substrate and Arenga wood fiber size on hydroponic Kailan (Brassica alboglabra)

    Science.gov (United States)

    Harjoko, D.; Anggraheny, M. D.; Arniputri, R. B.

    2018-03-01

    Kailan is a kind of vegetable that has high economic value, however its prospect is not well developed. One of obstacles in Kailan cultivation is the limitation of fertile soil, that can be solved by using hydroponic substrate. Considering its amount and potential, the fiber waste of Arenga wood was selected as substrate candidate. For that, this research aims to study the growth and yield of Kailan with different soaking treatment using buffer solution and size of Arenga wood fiber in the hydroponic substrate. Research was conducted at Green House Laboratory, Faculty of Agriculture Sebelas Maret University Surakarta from February to May 2017. The treatments were soaking buffer solution with EC 1.2 mScm-1; 1.4 mScm-1; and 1.6 mScm-1 and the size of Arenga fiber <1 cm, 1-2 cm and 2-3 cm. In this experiment, sand media was used as control. Result show that, soaking in 1.6 mScm-1 EC buffer solution with Arenga fiber size lower than 3 cm gives higher root volume compared to other treatments combination.

  7. Smart System for Bicarbonate Control in Irrigation for Hydroponic Precision Farming

    Directory of Open Access Journals (Sweden)

    Carlos Cambra

    2018-04-01

    Full Text Available Improving the sustainability in agriculture is nowadays an important challenge. The automation of irrigation processes via low-cost sensors can to spread technological advances in a sector very influenced by economical costs. This article presents an auto-calibrated pH sensor able to detect and adjust the imbalances in the pH levels of the nutrient solution used in hydroponic agriculture. The sensor is composed by a pH probe and a set of micropumps that sequentially pour the different liquid solutions to maintain the sensor calibration and the water samples from the channels that contain the nutrient solution. To implement our architecture, we use an auto-calibrated pH sensor connected to a wireless node. Several nodes compose our wireless sensor networks (WSN to control our greenhouse. The sensors periodically measure the pH level of each hydroponic support and send the information to a data base (DB which stores and analyzes the data to warn farmers about the measures. The data can then be accessed through a user-friendly, web-based interface that can be accessed through the Internet by using desktop or mobile devices. This paper also shows the design and test bench for both the auto-calibrated pH sensor and the wireless network to check their correct operation.

  8. Solução nutritiva e composição mineral de três espécies de menta cultivadas no sistema hidropônico Nutrient solution and mineral composition of three mint species grown in hydroponic system

    Directory of Open Access Journals (Sweden)

    Tânea Maria Bisognin Garlet

    2008-08-01

    Full Text Available O objetivo do estudo foi determinar o teor e a acumulação de nutrientes em três espécies de Mentha e testar o desempenho de solução nutritiva calculada para o cultivo de menta, a partir de dados anteriores de produção de matéria seca e de quantidade de nutrientes extraídos por M. arvensis, no sistema hidropônico NFT Técnica do Fluxo Laminar de Nutrientes (NFT. O trabalho foi conduzido em casa de vegetação de 250m² do Departamento de Fitotecnia da UFSM, RS, Brasil, no período de outubro a dezembro de 2004. Empregou-se delineamento experimental inteiramente casualizado, com três tratamentos (órgãos da planta e cinco repetições. Estacas de plantas matrizes foram enraizadas em espuma fenólica por 20 dias em berçário e após foram transferidas para bancadas de produção final. As plantas foram colhidas aos 62 (M. arvensis, 69 (M. x gracilis e 76 (M. x piperita var. citrata dias após o plantio, separadas em partes (raízes, hastes, folhas e secas em estufa a 70°C para determinação de matéria seca e análise de tecidos. Nitrogênio, cálcio e potássio foram os macronutrientes com maior concentração em todas as partes das plantas, já os micronutrientes foram ferro, manganês e zinco. Houve maior acúmulo de macronutrientes nas folhas, seguidas pelas hastes e raízes. Constatou-se que a solução nutritiva elaborada garantiu elevada produção de fitomassa, sem que as plantas apresentassem sintomas visuais de deficiência ou toxicidade de macro e micronutrientes.The intention of this study was to determine the levels and accumulation of nutrients in three Mentha species and to test the performance of the nutrient solution for the growth of mint, obtained from previous data of dry matter production and quantity of nutrients extracted by M. arvensis, in NFT (Nutrient Film Technique hydroponic system. The research was carried out at the Departament of Fitotecny, Universidade Federal de Santa Maria (UFSM, RS, Brazil, from

  9. Biocompatibility of sweetpotato and peanut in a hydroponic system

    Science.gov (United States)

    Mortley, D. G.; Loretan, P. A.; Hill, W. A.; Bonsi, C. K.; Morris, C. E.; Hall, R.; Sullen, D.

    1998-01-01

    'Georgia Red' peanut (Arachis hypogaea L.) and TU-82-155 sweetpotato [Ipomoea batatas (L.) Lam] were grown in monocultured or intercropped recirculating hydroponic systems in a greenhouse using the nutrient film technique (NFT). The objective was to determine whether growth and subsequent yield would be affected by intercropping. Treatments were sweetpotato monoculture (SP), peanut monoculture (PN), and sweetpotato and peanut grown in separate NFT channels but sharing a common nutrient solution (SP-PN). Greenhouse conditions ranged from 24 to 33 degrees C, 60% to 90% relative humidity (RH), and photosynthetic photon flux (PPF) of 200 to 1700 micromoles m-2 s-1. Sweetpotato cuttings (15 cm long) and 14-day-old seedlings of peanuts were planted into growth channels (0.15 x 0.15 x 1.2 m). Plants were spaced 25 cm apart within and 25 cm apart between growing channels. A modified half-Hoagland solution with a 1 N: 2.4 K ratio was used. Solution pH was maintained between 5.5 and 6.0 for treatments involving SP and 6.4 and 6.7 for PN. Electrical conductivity (EC) ranged between 1100 and 1200 microS cm-1. The number of storage roots per sweetpotato plant was similar for both SP and SP-PN. Storage root fresh and dry mass were 29% and 36% greater, respectively, for plants in the SP-PN treatment than for plants in the SP treatment. The percent dry mass of the storage roots, dry mass of fibrous and pencil roots, and the length-to-diameter ratio of storage roots were similar for SP and SP-PN sweetpotato plants. Likewise, foliage fresh and dry mass and harvest index were not significantly influenced by treatment. Total dry mass was 37% greater for PN than for SP-PN peanut plants, and pod dry mass was 82% higher. Mature and total seed dry mass and fibrous root dry mass were significantly greater for PN than for SP-PN plants. Harvest index (HI) was similar for both treatments. Root length tended to be lower for seedlings grown in the nutrient solution from the SP-PN treatment.

  10. Hydroponic cultivation of Physalis angulata L.: growth and production under nitrogen doses

    Directory of Open Access Journals (Sweden)

    Romeu da Silva Leite

    2017-06-01

    Full Text Available The Physalis angulata L. species has attracted interest due to the production of compounds with pharmacological activity and its potential for fruiticulture. Given that it is a fast-growing and highly productive species, determining the most adequate nitrogen (N doses could contribute to higher crop yields. This study aimed at assessing the influence of N concentrations, in a hydroponic system, on the growth and production of P. angulata, as well as determining the critical N level in leaves. The experiment was conducted in individual pots with nutrient solutions, applying a completely randomized design and twelve replications, using five N doses (0 mg L-1, 56 mg L-1, 112 mg L-1, 168 mg L-1 and 224 mg L-1. Growth and production indices, amount of total N on leaves and stems and critical N levels were assessed. The increase of N doses in the nutrient solution influenced plant growth and fruit production, as well as the accumulation of total N in the leaves and stems. Based on the maximum economic yield, a dose of 162 mg L-1 of N is recommended for hydroponics, which provided a fruit yield of 7.27 g m-2 and critical total N level in leaves of 51.98 g kg-1.

  11. Vertical farming increases lettuce yield per unit area compared to conventional horizontal hydroponics.

    Science.gov (United States)

    Touliatos, Dionysios; Dodd, Ian C; McAinsh, Martin

    2016-08-01

    Vertical farming systems (VFS) have been proposed as an engineering solution to increase productivity per unit area of cultivated land by extending crop production into the vertical dimension. To test whether this approach presents a viable alternative to horizontal crop production systems, a VFS (where plants were grown in upright cylindrical columns) was compared against a conventional horizontal hydroponic system (HHS) using lettuce ( Lactuca sativa L . cv. "Little Gem") as a model crop. Both systems had similar root zone volume and planting density. Half-strength Hoagland's solution was applied to plants grown in perlite in an indoor controlled environment room, with metal halide lamps providing artificial lighting. Light distribution (photosynthetic photon flux density, PPFD) and yield (shoot fresh weight) within each system were assessed. Although PPFD and shoot fresh weight decreased significantly in the VFS from top to base, the VFS produced more crop per unit of growing floor area when compared with the HHS. Our results clearly demonstrate that VFS presents an attractive alternative to horizontal hydroponic growth systems and suggest that further increases in yield could be achieved by incorporating artificial lighting in the VFS.

  12. Implicitly defined criteria for vector optimization in technological process of hydroponic germination of wheat grain

    Science.gov (United States)

    Koneva, M. S.; Rudenko, O. V.; Usatikov, S. V.; Bugaets, N. A.; Tereshchenko, I. V.

    2018-05-01

    To reduce the duration of the process and to ensure the microbiological purity of the germinated material, an improved method of germination has been developed based on the complex use of physical factors: electrochemically activated water (ECHA-water), electromagnetic field of extremely low frequencies (EMF ELF) with round-the-clock artificial illumination by LED lamps. The increase in the efficiency of the "numerical" technology for solving computational problems of parametric optimization of the technological process of hydroponic germination of wheat grains is considered. In this situation, the quality criteria are contradictory and part of them is given by implicit functions of many variables. A solution algorithm is offered without the construction of a Pareto set in which a relatively small number of elements of a set of alternatives is used to obtain a linear convolution of the criteria with given weights, normalized to their "ideal" values from the solution of the problems of single-criterion private optimizations. The use of the proposed mathematical models describing the processes of hydroponic germination of wheat grains made it possible to intensify the germination process and to shorten the time of obtaining wheat sprouts "Altayskaya 105" for 27 hours.

  13. The effects of irrigation timing on growth, yield, and physiological traits of hydroponic lettuce

    Directory of Open Access Journals (Sweden)

    Md. Jahedur Rahman

    2018-01-01

    Full Text Available Crop-specific timing of irrigation is necessary to conserve irrigation water and improve yield of vegetables. Therefore, the experiment was conducted to identify the optimum irrigation timings for hydroponic lettuce plants. Three nutrient solution timings, T1(once a day at 0900 hours, T2(once on alternative days at 0900 hours, and T3(once at two-day intervals, and three varieties, ‘Legacy’ (V1, ‘Red fire’ (V2, and ‘Green wave’ (V3 were evaluated. Growth and yield parameters, including number of leaves, leaf length, leaf diameter, and fresh weight of leaves, and growth parameters, including leaf area (LA, leaf area ratio (LAR, leaf mass ratio (LMR, root weight ratio (RWR, relative growth rate (RGR, and net assimilation rate (NAR were determined. The values of growth parameters were the highest for T1. The highest and lowest NAR and RGR values were obtained for T1 and T3, respectively. The values of most growth traits, including fresh weight, NAR, and RGR were higher for V1 than other varieties. T1 provides high yield with comparatively less irrigation water and nutrient solution so it can be used to culture lettuce using aggregate hydroponics as.

  14. Fate of pharmaceutical compounds in hydroponic mesocosms planted with Scirpus validus.

    Science.gov (United States)

    Zhang, Dong Qing; Gersberg, Richard M; Hua, Tao; Zhu, Junfei; Goyal, Manish Kumar; Ng, Wun Jern; Tan, Soon Keat

    2013-10-01

    A systematic approach to assess the fate of selected pharmaceuticals (carbamazepine, naproxen, diclofenac, clofibric acid and caffeine) in hydroponic mesocosms is described. The overall objective was to determine the kinetics of depletion (from solution) and plant uptake for these compounds in mesocosms planted with S. validus growing hydroponically. The potential for translocation of these pharmaceuticals from the roots to the shoots was also assessed. After 21 days of incubation, nearly all of the caffeine, naproxen and diclofenac were eliminated from solution, whereas carbamazepine and clofibric acid were recalcitrant to both photodegradation and biodegradation. The fact that the BAFs for roots for carbamazepine and clofibric acid were greater than 5, while the BAFs for naproxen, diclofenac and caffeine were less than 5, implied that the latter two compounds although recalcitrant to biodegradation, still had relatively high potential for plant uptake. Naproxen was sensitive to both photodegradation (30-42%) and biodegradation (>50%), while diclofenac was particularly sensitive (>70%) to photodegradation alone. No significant correlations (p > 0.05) were found between the rate constants of depletion or plant tissue levels of the pharmaceuticals and either log Kow or log Dow. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Comparison of two possible routes of pathogen contamination of spinach leaves in a hydroponic cultivation system.

    Science.gov (United States)

    Koseki, Shigenobu; Mizuno, Yasuko; Yamamoto, Kazutaka

    2011-09-01

    The route of pathogen contamination (from roots versus from leaves) of spinach leaves was investigated with a hydroponic cultivation system. Three major bacterial pathogens, Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes, were inoculated into the hydroponic solution, in which the spinach was grown to give concentrations of 10⁶ and 10³ CFU/ml. In parallel, the pathogens were inoculated onto the growing leaf surface by pipetting, to give concentrations of 10⁶ and 10³ CFU per leaf. Although contamination was observed at a high rate through the root system by the higher inoculum (10⁶ CFU) for all the pathogens tested, the contamination was rare when the lower inoculum (10³ CFU) was applied. In contrast, contamination through the leaf occurred at a very low rate, even when the inoculum level was high. For all the pathogens tested in the present study, the probability of contamination was promoted through the roots and with higher inoculum levels. The probability of contamination was analyzed with logistic regression. The logistic regression model showed that the odds ratio of contamination from the roots versus from the leaves was 6.93, which suggested that the risk of contamination from the roots was 6.93 times higher than the risk of contamination from the leaves. In addition, the risk of contamination by L. monocytogenes was about 0.3 times that of Salmonella enterica subsp. enterica serovars Typhimurium and Enteritidis and E. coli O157:H7. The results of the present study indicate that the principal route of pathogen contamination of growing spinach leaves in a hydroponic system is from the plant's roots, rather than from leaf contamination itself.

  16. Cs phytoremediation by Sorghum bicolor cultivated in soil and in hydroponic system.

    Science.gov (United States)

    Wang, Xu; Chen, Can; Wang, Jianlong

    2017-04-03

    Cs accumulation characteristics by Sorghum bicolor were investigated in hydroponic system (Cs level at 50-1000 μmol/L) and in soil (Cs-spiked concentration was 100 and 400 mg/kg soil). Two varieties of S. bicolor Cowly and Nengsi 2# grown on pot soil during the entire growth period (100 days) did not show significant differences on the height, dry weight (DW), and Cs accumulation. S. bicolor showed the potential phytoextraction ability for Cs-contaminated soil with the bioaccumulation factor (BCF) and the translocation factor (TF) values usually higher than 1 in soil system and in hydroponic system. The aerial parts of S. bicolor contributed to 86-92% of the total removed amounts of Cs from soil. Cs level in solution at 100 μmol/L gave the highest BCF and TF values of S. bicolor. Cs at low level tended to transfer to the aerial parts, whereas Cs at high level decreased the transfer ratio from root to shoot. In soil, the plant grew well when Cs spiked level was 100 mg/kg soil, but was inhibited by Cs at 400 mg/kg soil with Cs content in sorghum reaching 1147 mg/kg (roots), 2473 mg/kg (stems), and 2939 mg/kg (leaves). In hydroponic system, average Cs level in sorghum reached 5270 mg/kg (roots) and 4513 mg/kg (aerial parts), without significant damages to its biomass at 30 days after starting Cs treatment. Cs accumulation in sorghum tissues was positively correlated with the metal concentration in medium.

  17. Rethinking the role of aquatic ecology in hydroponic cultivation

    NARCIS (Netherlands)

    Vermeulen, T.; Streminska, M.; Beerens, N.; Eveleens, B.; Blok, C.

    2017-01-01

    Hydroponic production systems are challenged by root diseases, but can be made less susceptible to infection. While the systems are mostly unchallenged by nematodes, pathogens that can live and spread though water still cause loss of yield. Common diseases would be Phytophthora, Pythium, Fusarium

  18. Growth and Tissue Elemental Composition Response of Butterhead Lettuce (Lactuca sativa, cv. Flandria to Hydroponic and Aquaponic Conditions

    Directory of Open Access Journals (Sweden)

    Tyler S. Anderson

    2017-07-01

    Full Text Available The primary objective of this research was to compare lettuce performance under conventional hydroponics at pH 5.8 (referred to as H5, hydroponics at pH 7.0 (referred to as H7, and recirculated aquaponic water at pH 7.0 (referred to as A7. Aquaponic nutrients were supplied by continuously recirculating water between a fish rearing system (recirculating aquaculture system or RAS and the lettuce growing system (with the sole addition being chelated iron. This paper builds upon our previous research where we found that H7 produced 26% less shoot fresh weight (FW growth than H5 and an 18% reduction in dry weight (DW. In this research, we also evaluated the inorganic hydroponics nutrient solution at pH 7.0 (H7 to provide continuity between experiments and to isolate the pH effect. The A7 plant biomass responses were not different from H5 in all biomass response categories. H7 was different from H5 in shoot FW, DW, and DW/FW, as well as root FW and DW. H7 was different from the A7 in shoot FW, DW/FW, and root DW. There were no tissue elemental differences between H5 and H7 except Cu. The Ca and Na contents differed between H5 and A7, while the microelements Mn, Mo, and Zn differed. Generally, the elemental tissue differences between treatments were proportional to the differences for the same elements in the nutrient solutions. Aquaponic systems are often viewed to be more complicated and more risky because two complex systems are being joined (hydroponics plus RAS. However, the aquaponics system proved to be surprisingly simple to manage in daily operations. Our data suggested that the aquaponics system (A7, which was operated at a higher pH 7.0, was able to offset any negative biomass and elemental effects that occurred in the inorganic hydroponic pH 7.0 treatment (H7 from its increased pH and less optimized nutrient solution elemental concentrations.

  19. [Yeast irrigation enhances the nutritional content in hydroponic green maize fodder].

    Science.gov (United States)

    Bedolla-Torres, Martha H; Palacios Espinosa, Alejandro; Palacios, Oskar A; Choix, Francisco J; Ascencio Valle, Felipe de Jesús; López Aguilar, David R; Espinoza Villavicencio, José Luis; de Luna de la Peña, Rafael; Guillen Trujillo, Ariel; Avila Serrano, Narciso Y; Ortega Pérez, Ricardo

    2015-01-01

    The objective of this study was to evaluate the effect of irrigation with yeasts (Debaryomyces hansenii var. Fabry, Yarowia lipolytica YIBCS002, Yarowia lipolytica var. BCS and Candida pseudointermedia) on the final nutritional content of hydroponic green maize fodder (Zea Zea mays L.), applied at different fodder growth stages (1. seed-seedling stage, 2. seedling-plant 20cm, 3. during all the culture). Irrespective of the fodder growth stages at which they were applied, all yeasts tested enhanced the content of raw protein, lipids, ash, moisture and energy. The percentage of electrolytes (Na, K, Cl, sulphates, Ca and Mg) showed different responses depending on the kind of yeast applied; D. hansenii exhibited the highest increment in all electrolytes, except for phosphorous. We conclude that the addition of yeasts belonging to the genera Debaryomyces, Candida and Yarowia to the irrigation solution of hydroponic systems enhances the nutrient content of green fodder. This kind of irrigation can be applied to generate high commercial value cultures in limited spaces. Copyright © 2014 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  20. The influence of different hydroponic conditions on thorium uptake by Brassica juncea var. foliosa.

    Science.gov (United States)

    Wang, Dingna; Zhou, Sai; Liu, Li; Du, Liang; Wang, Jianmei; Huang, Zhenling; Ma, Lijian; Ding, Songdong; Zhang, Dong; Wang, Ruibing; Jin, Yongdong; Xia, Chuanqin

    2015-05-01

    The effects of different hydroponic conditions (such as concentration of thorium (Th), pH, carbonate, phosphate, organic acids, and cations) on thorium uptake by Brassica juncea var. foliosa were evaluated. The results showed that acidic cultivation solutions enhanced thorium accumulation in the plants. Phosphate and carbonate inhibited thorium accumulation in plants, possibly due to the formation of Th(HPO4)(2+), Th(HPO4)2, or Th(OH)3CO3 (-) with Th(4+), which was disadvantageous for thorium uptake in the plants. Organic aids (citric acid, oxalic acid, lactic acid) inhibited thorium accumulation in roots and increased thorium content in the shoots, which suggested that the thorium-organic complexes did not remain in the roots and were beneficial for thorium transfer from the roots to the shoots. Among three cations (such as calcium ion (Ca(2+)), ferrous ion (Fe(2+)), and zinc ion (Zn(2+))) in hydroponic media, Zn(2+) had no significant influence on thorium accumulation in the roots, Fe(2+) inhibited thorium accumulation in the roots, and Ca(2+) was found to facilitate thorium accumulation in the roots to a certain extent. This research will help to further understand the mechanism of thorium uptake in plants.

  1. Fate of pharmaceutical compounds in hydroponic mesocosms planted with Scirpus validus

    International Nuclear Information System (INIS)

    Zhang, Dong Qing; Gersberg, Richard M.; Hua, Tao; Zhu, Junfei; Goyal, Manish Kumar; Ng, Wun Jern; Tan, Soon Keat

    2013-01-01

    A systematic approach to assess the fate of selected pharmaceuticals (carbamazepine, naproxen, diclofenac, clofibric acid and caffeine) in hydroponic mesocosms is described. The overall objective was to determine the kinetics of depletion (from solution) and plant uptake for these compounds in mesocosms planted with S. validus growing hydroponically. The potential for translocation of these pharmaceuticals from the roots to the shoots was also assessed. After 21 days of incubation, nearly all of the caffeine, naproxen and diclofenac were eliminated from solution, whereas carbamazepine and clofibric acid were recalcitrant to both photodegradation and biodegradation. The fact that the BAFs for roots for carbamazepine and clofibric acid were greater than 5, while the BAFs for naproxen, diclofenac and caffeine were less than 5, implied that the latter two compounds although recalcitrant to biodegradation, still had relatively high potential for plant uptake. Naproxen was sensitive to both photodegradation (30–42%) and biodegradation (>50%), while diclofenac was particularly sensitive (>70%) to photodegradation alone. No significant correlations (p > 0.05) were found between the rate constants of depletion or plant tissue levels of the pharmaceuticals and either log K ow or log D ow . -- Highlights: •All of pharmaceuticals were removed from solution efficiently after 21 d of incubation. •Effects of photodegradation and biodegradation on pharmaceutical removal were studied. •The pharmaceutical concentrations in the plant tissues were detected. •No correlation was found between pharmaceutical levels in plant tissues and log K ow or log D ow . •Log K ow is the most significant parameter for predicting pharmaceutical levels. -- All the tested pharmaceuticals (carbamazepine, naproxen, diclofenac, clofibric acid and caffeine) were efficiently removed from nutrient solution

  2. Evaluation of the safety and efficacy of Glycyrrhiza uralensis root extracts produced using artificial hydroponic and artificial hydroponic-field hybrid cultivation systems.

    Science.gov (United States)

    Akiyama, H; Nose, M; Ohtsuki, N; Hisaka, S; Takiguchi, H; Tada, A; Sugimoto, N; Fuchino, H; Inui, T; Kawano, N; Hayashi, S; Hishida, A; Kudo, T; Sugiyama, K; Abe, Y; Mutsuga, M; Kawahara, N; Yoshimatsu, K

    2017-01-01

    Glycyrrhiza uralensis roots used in this study were produced using novel cultivation systems, including artificial hydroponics and artificial hydroponic-field hybrid cultivation. The equivalency between G. uralensis root extracts produced by hydroponics and/or hybrid cultivation and a commercial Glycyrrhiza crude drug were evaluated for both safety and efficacy, and there were no significant differences in terms of mutagenicity on the Ames tests. The levels of cadmium and mercury in both hydroponic roots and crude drugs were less than the limit of quantitation. Arsenic levels were lower in all hydroponic roots than in the crude drug, whereas mean lead levels in the crude drug were not significantly different from those in the hydroponically cultivated G. uralensis roots. Both hydroponic and hybrid-cultivated root extracts showed antiallergic activities against contact hypersensitivity that were similar to those of the crude drug extracts. These study results suggest that hydroponic and hybrid-cultivated roots are equivalent in safety and efficacy to those of commercial crude drugs. Further studies are necessary before the roots are applicable as replacements for the currently available commercial crude drugs produced from wild plant resources.

  3. Neuroprotective activity of hydroponic Teucrium polium following bilateral ovariectomy.

    Science.gov (United States)

    Simonyan, K V; Chavushyan, V A

    2015-06-01

    Ovariectomy is known as "surgical menopause" with decreased levels of estrogen in female rodents. Its reported risks and adverse effects include cognitive impairment. The action of hydroponic Teucrium polium on nucleus basalis of Meynert (bnM) neurons following 6 weeks of ovariectomy was carried out. The analysis of spike activity was observed by on-line selection and the use of a software package. Early and late tetanic, - posttetanic potentiation and depression of neurons to high frequency stimulation of hippocampus were studied. The complex averaged peri-event time and frequency histograms were constructed. The histochemical study of the activity of Са(2+)-dependent acid phosphatase was observed. In conditions of hydroponic Teucrium polium administration, positive changes in neurons and gain of metabolism leading to cellular survival were revealed. The administration of Teucrium polium elicited neurodegenerative changes in bnM.

  4. Root-Contact/Pressure-Plate Assembly For Hydroponic System

    Science.gov (United States)

    Morris, Carlton E.; Loretan, Philip A.; Bonsi, Conrad K.; Hill, Walter A.

    1994-01-01

    Hydroponic system includes growth channels equipped with rootcontact/pressure-plate assemblies. Pump and associated plumbing circulate nutrient liquid from reservoir, along bottom of growth channels, and back to reservoir. Root-contact/pressure-plate assembly in each growth channel stimulates growth of roots by applying mild contact pressure. Flat plate and plate connectors, together constitute pressure plate, free to move upward to accommodate growth of roots. System used for growing sweetpotatoes and possibly other tuber and root crops.

  5. Suitability of Gray Water for Hydroponic Crop Production Following Biological and Physical Chemical and Biological Subsystems

    Science.gov (United States)

    Bubenheim, David L.; Harper, Lynn D.; Wignarajah, Kanapathipillai; Greene, Catherine

    1994-01-01

    The water present in waste streams from a human habitat must be recycled in Controlled Ecological Life Support Systems (CELSS) to limit resupply needs and attain self-sufficiency. Plants play an important role in providing food, regenerating air, and producing purified water via transpiration. However, we have shown that the surfactants present in hygiene waste water have acute toxic effects on plant growth (Bubenheim et al. 1994; Greene et al., 1994). These phytotoxic affects can be mitigated by allowing the microbial population on the root surface to degrade the surfactant, however, a significant suppression (several days) in crop performance is experienced prior to reaching sub-toxic surfactant levels and plant recovery. An effective alternative is to stabilize the microbial population responsible for degradation of the surfactant on an aerobic bioreactor and process the waste water prior to utilization in the hydroponic solution (Wisniewski and Bubenheim, 1993). A sensitive bioassay indicates that the surfactant phytotoxicity is suppressed by more than 90% within 5 hours of introduction of the gray water to the bioreactor; processing for more than 12 hours degrades more than 99% of the phytotoxin. Vapor Compression Distillation (VCD) is a physical / chemical method for water purification which employees sequential distillation steps to separate water from solids and to volatilize contaminants. The solids from the waste water are concentrated in a brine and the pure product water (70 - 90% of the total waste water volume depending on operating conditions) retains non of the phytotoxic effects. Results of the bioassay were used to guide evaluations of the suitability of recovered gray water following biological and VCD processing for hydroponic lettuce production in controlled environments. Lettuce crops were grown for 28 days with 100% of the input water supplied with recovered water from the biological processor or VCD. When compared with the growth of plants

  6. A hydroponic system for microgravity plant experiments

    Science.gov (United States)

    Wright, B. D.; Bausch, W. C.; Knott, W. M.

    1988-01-01

    The construction of a permanently manned space station will provide the opportunity to grow plants for weeks or months in orbit for experiments or food production. With this opportunity comes the need for a method to provide plants with a continuous supply of water and nutrients in microgravity. The Capillary Effect Root Environment System (CERES) uses capillary forces to maintain control of circulating plant nutrient solution in the weightless environment of an orbiting spacecraft. The nutrient solution is maintained at a pressure slightly less than the ambient air pressure while it flows on one side of a porous membrane. The root, on the other side of the membrane, is surrounded by a thin film of nutrient solution where it contacts the moist surface of the membrane. The root is provided with water, nutrients and air simultaneously. Air bubbles in the nutrient solution are removed using a hydrophobic/hydrophilic membrane system. A model scaled to the size necessary for flight hardware to test CERES in the space shuttle was constructed.

  7. Genotypic variation in phytoremediation potential of Indian mustard exposed to nickel stress: a hydroponic study.

    Science.gov (United States)

    Ansari, Mohd Kafeel Ahmad; Ahmad, Altaf; Umar, Shahid; Zia, Munir Hussain; Iqbal, Muhammad; Owens, Gary

    2015-01-01

    Ten Indian mustard (Brassica juncea L.) genotypes were screened for their nickel (Ni) phytoremediation potential under controlled environmental conditions. All ten genotypes were grown hydroponically in aqueous solution containing Ni concentrations (as nickel chloride) ranging from 0 to 50 μM and changes in plant growth, biomass and total Ni uptake were evaluated. Of the ten genotypes (viz. Agrini, BTO, Kranti, Pusa Basant, Pusa Jai Kisan, Pusa Bahar, Pusa Bold, Vardhan, Varuna, and Vaibhav), Pusa Jai Kisan was the most Ni tolerant genotype accumulating up to 1.7 μg Ni g(-1) dry weight (DW) in its aerial parts. Thus Pusa Jai Kisan had the greatest potential to become a viable candidate in the development of practical phytoremediation technologies for Ni contaminated sites.

  8. Hartig' net formation of Tricholoma vaccinum-spruce ectomycorrhiza in hydroponic cultures.

    Science.gov (United States)

    Henke, Catarina; Jung, Elke-Martina; Kothe, Erika

    2015-12-01

    For re-forestation of metal-contaminated land, ectomycorrhizal trees may provide a solution. Hence, the study of the interaction is necessary to allow for comprehensive understanding of the mutually symbiotic features. On a structural level, hyphal mantle and the Hartig' net formed in the root apoplast are essential for plant protection and mycorrhizal functioning. As a model, we used the basidiomycete Tricholoma vaccinum and its host spruce (Picea abies). Using an optimized hydroponic cultivation system, both features could be visualized and lower stress response of the tree was obtained in non-challenged cultivation. Larger spaces in the apoplasts could be shown with high statistical significance. The easy accessibility will allow to address metal stress or molecular responses in both partners. Additionally, the proposed cultivation system will enable for other experimental applications like addressing flooding, biological interactions with helper bacteria, chemical signaling, or other biotic or abiotic challenges relevant in the natural habitat.

  9. A Reliable Wireless Control System for Tomato Hydroponics.

    Science.gov (United States)

    Ibayashi, Hirofumi; Kaneda, Yukimasa; Imahara, Jungo; Oishi, Naoki; Kuroda, Masahiro; Mineno, Hiroshi

    2016-05-05

    Agricultural systems using advanced information and communication (ICT) technology can produce high-quality crops in a stable environment while decreasing the need for manual labor. The system collects a wide variety of environmental data and provides the precise cultivation control needed to produce high value-added crops; however, there are the problems of packet transmission errors in wireless sensor networks or system failure due to having the equipment in a hot and humid environment. In this paper, we propose a reliable wireless control system for hydroponic tomato cultivation using the 400 MHz wireless band and the IEEE 802.15.6 standard. The 400 MHz band, which is lower than the 2.4 GHz band, has good obstacle diffraction, and zero-data-loss communication is realized using the guaranteed time-slot method supported by the IEEE 802.15.6 standard. In addition, this system has fault tolerance and a self-healing function to recover from faults such as packet transmission failures due to deterioration of the wireless communication quality. In our basic experiments, the 400 MHz band wireless communication was not affected by the plants' growth, and the packet error rate was less than that of the 2.4 GHz band. In summary, we achieved a real-time hydroponic liquid supply control with no data loss by applying a 400 MHz band WSN to hydroponic tomato cultivation.

  10. Application of Open Garden Sensor on Hydroponic Maintenance Management

    Science.gov (United States)

    Nasution, S.; Siregar, B.; Kurniawan, M.; Pranoto, H.; Andayani, U.; Fahmi, F.

    2018-03-01

    Hydroponic farming system is an agricultural system that uses direct water as a nutrient without using soil as a planting medium. This system allows smallholder farmers to have the opportunity to develop their crop production with less capital. In addition, hydroponic planting has also been widely adapted by individuals as a personal hobby. Application of technology has penetrated various fields including agricultural fields. One of the technologies that can be applied in a hydroponic farming system is the sensor. Sensors are devices that used to convert a physical quantity into a quantity of electricity so that it can be analyse with a certain electrical circuit. In this study, the technology to be applied is wireless sensor technology applied in human life to help get information quickly and accurately. Sensors to be used in this study are pH sensors, conductivity sensors, temperature sensors and humidity. In addition to sensors, the study also involved Arduino technology. Arduino is a microcontroller board that is used to interact with the environment based on programs that have been made. The final results of the application testing show that the system success to display diagram in real-time in an environment from Arduino board to database and web server.

  11. Plant-uptake of uranium: Hydroponic and soil system studies

    Science.gov (United States)

    Ramaswami, A.; Carr, P.; Burkhardt, M.

    2001-01-01

    Limited information is available on screening and selection of terrestrial plants for uptake and translocation of uranium from soil. This article evaluates the removal of uranium from water and soil by selected plants, comparing plant performance in hydroponic systems with that in two soil systems (a sandy-loam soil and an organic-rich soil). Plants selected for this study were Sunflower (Helianthus giganteus), Spring Vetch (Vicia sativa), Hairy Vetch (Vicia villosa), Juniper (Juniperus monosperma), Indian Mustard (Brassica juncea), and Bush Bean (Phaseolus nanus). Plant performance was evaluated both in terms of the percent uranium extracted from the three systems, as well as the biological absorption coefficient (BAC) that normalized uranium uptake to plant biomass. Study results indicate that uranium extraction efficiency decreased sharply across hydroponic, sandy and organic soil systems, indicating that soil organic matter sequestered uranium, rendering it largely unavailable for plant uptake. These results indicate that site-specific soils must be used to screen plants for uranium extraction capability; plant behavior in hydroponic systems does not correlate well with that in soil systems. One plant species, Juniper, exhibited consistent uranium extraction efficiencies and BACs in both sandy and organic soils, suggesting unique uranium extraction capabilities.

  12. A Reliable Wireless Control System for Tomato Hydroponics

    Science.gov (United States)

    Ibayashi, Hirofumi; Kaneda, Yukimasa; Imahara, Jungo; Oishi, Naoki; Kuroda, Masahiro; Mineno, Hiroshi

    2016-01-01

    Agricultural systems using advanced information and communication (ICT) technology can produce high-quality crops in a stable environment while decreasing the need for manual labor. The system collects a wide variety of environmental data and provides the precise cultivation control needed to produce high value-added crops; however, there are the problems of packet transmission errors in wireless sensor networks or system failure due to having the equipment in a hot and humid environment. In this paper, we propose a reliable wireless control system for hydroponic tomato cultivation using the 400 MHz wireless band and the IEEE 802.15.6 standard. The 400 MHz band, which is lower than the 2.4 GHz band, has good obstacle diffraction, and zero-data-loss communication is realized using the guaranteed time-slot method supported by the IEEE 802.15.6 standard. In addition, this system has fault tolerance and a self-healing function to recover from faults such as packet transmission failures due to deterioration of the wireless communication quality. In our basic experiments, the 400 MHz band wireless communication was not affected by the plants’ growth, and the packet error rate was less than that of the 2.4 GHz band. In summary, we achieved a real-time hydroponic liquid supply control with no data loss by applying a 400 MHz band WSN to hydroponic tomato cultivation. PMID:27164105

  13. Recycle of Inorganic Nutrients for Hydroponic Crop Production Following Incineration of Inedible Biomass

    Science.gov (United States)

    Bubenheim, David L.; Wignarajah, Kanapathipillai; Kliss, Mark H. (Technical Monitor)

    1996-01-01

    Recovery of resources from waste streams is essential for future implementation and reliance on a regenerative life support system. The major waste streams of concern are from human activities and plant wastes. Carbon, water and inorganics are the primary desired raw materials of interest. The goal of resource recovery is maintenance of product quality to insure support of reliable and predictable levels of life support function performance by the crop plant component. Further, these systems must be maintained over extended periods of time, requiring maintenance of nutrient solutions to avoid toxicity and deficiencies. Today, reagent grade nutrients are used to make nutrient solutions for hydroponic culture and these solutions are frequently changed during the life cycle or sometimes managed for only one crop life cycle. The focus of this study was to determine the suitability of the ash product following incineration of inedible biomass as a source of inorganic nutrients for hydroponic crop production. Inedible wheat biomass was incinerated and ash quality characterized. The incinerator ash was dissolved in adequate nitric acid to establish a consistent nitrogen concentration in all nutrient solution treatments. Four experimental nutrient treatments were included: control, ash only, ash supplemented to match control, and ash only quality formulated with reagent grade chemicals. When nutrient solutions are formulated using only ash following-incineration of inedible biomass, a balance in solution is established representing elemental retention following incineration and nutrient proportions present in the original biomass. The resulting solution is not identical to the control. This imbalance resulted in suppression of crop growth. When the ash is supplemented with nutrients to establish the same balance as in the control, growth is identical to the control. The ash appears to carry no phytotoxic materials. Growth in solution formulated with reagent grade chemicals

  14. Application of an in vivo swine model for the determination of arsenic bioavailability in contaminated vegetables.

    Science.gov (United States)

    Juhasz, Albert L; Smith, Euan; Weber, John; Rees, Matthew; Rofe, Allan; Kuchel, Tim; Sansom, Lloyd; Naidu, Ravi

    2008-05-01

    Considerable information is available in the literature regarding the uptake of arsenic (As) from contaminated soil and irrigation water by vegetables. However, few studies have investigated As speciation in these crops while a dearth of information is available on As bioavailability following their consumption. In this study, the concentration and speciation of As in chard, radish, lettuce and mung beans was determined following hydroponic growth of the vegetables using As-contaminated water. In addition, As bioavailability was assessed using an in vivo swine feeding assay. While As concentrations ranged from 3.0 to 84.2mg As kg(-1) (dry weight), only inorganic As (arsenite and arsenate) was detected in the edible portions of the vegetables. When As bioavailability was assessed through monitoring blood plasma As concentrations following swine consumption of As-contaminated vegetables, between 50% and 100% of the administered As dose was absorbed and entered systemic circulation. Arsenic bioavailability decreased in the order mung beans>radish>lettuce=chard.

  15. First results of the application of a new Neemazal powder formulation in hydroponics against different pest insects.

    Science.gov (United States)

    Hummel, Edmund; Kleeberg, Hubertus

    2002-01-01

    NeemAzal PC (0.5% Azadirachtin) is a new standardised powder formulation from the seed kernels of the tropical Neem tree (Azadirachta indica A. Juss) with an inert carrier. First experiments with beans--as a model-system for hydroponics--show that active ingredient is taken up by the plants through the roots and is transported efficiently with the plant sap to the leaves. After application of NeemAzal PC solution (0.01-1%) to the roots sucking (Aphis fabae Hom., Aphididae) and free feeding (Heliothis armigera Lep., Noctuidae) pest insects can be controlled efficiently. The effects are concentration and time dependent.

  16. Growth and Tissue Elemental Composition Response of Spinach (Spinacia oleracea) to Hydroponic and Aquaponic Water Quality Conditions

    OpenAIRE

    Daniel A. Vandam; Tyler S. Anderson; David de Villiers; Michael B. Timmons

    2017-01-01

    Spinach (Spinacia oleracea cv. Carmel) was grown in a conventional glass greenhouse under three different nutrient solution treatments. Lighting and temperature conditions were identical. Six growing systems were used to provide a duplicate trough system for each of these three treatments. Six trials were harvested from each system over a two month time period. Two treatments received hydroponic nutrient inputs, with one treatment at pH 7.0 (referred to as H7) and the other at pH 5.8 (H5), an...

  17. Effect of Pseudomonas fluorescens and pyoverdine on the phytoextraction of cesium by red clover in soil pots and hydroponics.

    Science.gov (United States)

    Hazotte, Alice; Péron, Olivier; Gaudin, Pierre; Abdelouas, Abdesselam; Lebeau, Thierry

    2018-05-12

    With the aim of improving the phytoextraction rate of cesium (Cs), the effect of Pseudomonas fluorescens ATCC 17400 and its siderophore pyoverdine (PVD) on the uptake of Cs by red clover was studied in soil pots. This work also provides a mechanistic understanding of the Cs-bacteria (or PVD)-illite-plant interactions by using a simplified experimental design, i.e., hydroponics with either Cs in solution or Cs-spiked illite in suspension. For soil spiked with 11.2 mmol kg -1 (1480 mg kg -1 ) of Cs, 0.43% of total Cs was taken up by red clover in 12 days (119 μmol g -1 (16 mg g -1 ) of Cs dry matter in roots and 40 μmol g -1 (5 mg g -1 ) in shoots). In hydroponics with Cs in solution (0.1 mmol L -1 or 13 mg L -1 ), 75% of Cs was taken up vs. only 0.86% with Cs-spiked illite suspension. P. fluorescens and PVD did not increase Cs concentrations in aboveground parts and roots of red clover and even decreased them. The damaging effect of PVD on red clover growth was demonstrated with the biomass yielding 66% of the control in soil pots (and 100% mortality after 12 days of exposition) and only 56% in hydroponics (78% with illite in suspension). Nonetheless, PVD and, to a lesser extent, P. fluorescens increased the translocation factor up to a factor of 2.8. This study clearly showed a direct damaging effect of PVD and to a lower extent the retention of Cs by biofilm covering both the roots and illite, both resulting in the lower phytoextraction efficiency.

  18. Bioavailability of zinc and copper in biosolids compared to their soluble salts

    International Nuclear Information System (INIS)

    Heemsbergen, Diane A.; McLaughlin, Mike J.; Whatmuff, Mark; Warne, Michael St.J.; Broos, Kris; Bell, Mike; Nash, David; Barry, Glenn; Pritchard, Deb; Penney, Nancy

    2010-01-01

    For essential elements, such as copper (Cu) and zinc (Zn), the bioavailability in biosolids is important from a nutrient release and a potential contamination perspective. Most ecotoxicity studies are done using metal salts and it has been argued that the bioavailability of metals in biosolids can be different to that of metal salts. We compared the bioavailability of Cu and Zn in biosolids with those of metal salts in the same soils using twelve Australian field trials. Three different measures of bioavailability were assessed: soil solution extraction, CaCl 2 extractable fractions and plant uptake. The results showed that bioavailability for Zn was similar in biosolid and salt treatments. For Cu, the results were inconclusive due to strong Cu homeostasis in plants and dissolved organic matter interference in extractable measures. We therefore recommend using isotope dilution methods to assess differences in Cu availability between biosolid and salt treatments. - Metals in biosolids are not necessarily less bioavailable than their soluble salt.

  19. Bioavailability of zinc and copper in biosolids compared to their soluble salts

    Energy Technology Data Exchange (ETDEWEB)

    Heemsbergen, Diane A., E-mail: diane.heemsbergen@csiro.a [Centre for Environmental Contaminants Research, CSIRO Land and Water, PMB 2, Glen Osmond, Adelaide, SA 5064 (Australia); McLaughlin, Mike J., E-mail: mike.mclaughlin@csiro.a [Centre for Environmental Contaminants Research, CSIRO Land and Water, PMB 2, Glen Osmond, Adelaide, SA 5064 (Australia); School of Earth and Environmental Sciences, University of Adelaide, Adelaide, SA 5064 (Australia); Whatmuff, Mark, E-mail: mark.whatmuff@csiro.a [Centre for Environmental Contaminants Research, CSIRO Land and Water, PMB 2, Glen Osmond, Adelaide, SA 5064 (Australia); NSW Department of Primary Industries, Locked Bag 4 Richmond, NSW 2753 (Australia); Warne, Michael St.J., E-mail: michael.warne@csiro.a [Centre for Environmental Contaminants Research, CSIRO Land and Water, PMB 2, Glen Osmond, Adelaide, SA 5064 (Australia); Broos, Kris, E-mail: kris.broos@vito.b [Centre for Environmental Contaminants Research, CSIRO Land and Water, PMB 2, Glen Osmond, Adelaide, SA 5064 (Australia); Bell, Mike, E-mail: Mike.Bell@dpi.qld.gov.a [Department of Primary Industries, Kingaroy, Queensland 4610 (Australia); Nash, David, E-mail: David.Nash@dpi.vic.gov.a [Department of Primary Industries, Ellinbank, Victoria 3821 (Australia); Barry, Glenn, E-mail: Glenn.Barry@nrw.qld.gov.a [Department of Natural Resources and Mines, Indooroopilly, Queensland 4068 (Australia); Pritchard, Deb, E-mail: D.Pritchard@curtin.edu.a [Curtin University of Technology, Muresk Institute, Northam, Western Australia 6401 (Australia); Penney, Nancy, E-mail: Nancy.Penney@WaterCorporation.com.a [Water Corporation of Western Australia, Leederville, Western Australia 6001 (Australia)

    2010-05-15

    For essential elements, such as copper (Cu) and zinc (Zn), the bioavailability in biosolids is important from a nutrient release and a potential contamination perspective. Most ecotoxicity studies are done using metal salts and it has been argued that the bioavailability of metals in biosolids can be different to that of metal salts. We compared the bioavailability of Cu and Zn in biosolids with those of metal salts in the same soils using twelve Australian field trials. Three different measures of bioavailability were assessed: soil solution extraction, CaCl{sub 2} extractable fractions and plant uptake. The results showed that bioavailability for Zn was similar in biosolid and salt treatments. For Cu, the results were inconclusive due to strong Cu homeostasis in plants and dissolved organic matter interference in extractable measures. We therefore recommend using isotope dilution methods to assess differences in Cu availability between biosolid and salt treatments. - Metals in biosolids are not necessarily less bioavailable than their soluble salt.

  20. Soybean cultivar selection for Bioregenerative Life Support Systems (BLSSs) - Hydroponic cultivation

    Science.gov (United States)

    Paradiso, R.; Buonomo, R.; De Micco, V.; Aronne, G.; Palermo, M.; Barbieri, G.; De Pascale, S.

    2012-12-01

    Four soybean cultivars ('Atlantic', 'Cresir', 'Pr91m10' and 'Regir'), selected through a theoretical procedure as suitable for cultivation in BLSS, were evaluated in terms of growth and production. Germination percentage and Mean Germination Time (MGT) were measured. Plants were cultivated in a growth chamber equipped with a recirculating hydroponic system (Nutrient Film Technique). Cultivation was performed under controlled environmental conditions (12 h photoperiod, light intensity 350 μmol m-2 s-1, temperature regime 26/20 °C light/dark, relative humidity 65-75%). Fertigation was performed with a standard Hoagland solution, modified for soybean specific requirements, and EC and pH were kept at 2.0 dS m-1 and 5.5 respectively. The percentage of germination was high (from 86.9% in 'Cresir' to 96.8% in 'Regir')and the MGT was similar for all the cultivars (4.3 days). The growing cycle lasted from 114 in 'Cresir' to 133 days on average in the other cultivars. Differences in plant size were recorded, with 'Pr91m10' plants being the shortest (58 vs 106 cm). Cultivars did not differ significantly in seed yield (12 g plant-1) and in non edible biomass (waste), water consumption and biomass conversion efficiency (water, radiation and acid use indexes). 'Pr91m10' showed the highest protein content in the seeds (35.6% vs 33.3% on average in the other cultivars). Results from the cultivation experiment showed good performances of the four cultivars in hydroponics. The overall analysis suggests that 'Pr91m10' could be the best candidate for the cultivation in a BLSS, coupling the small plant size and the good yield with high resource use efficiency and good seed quality.

  1. Aquaponics: integrating fish feeding rates and ion waste production for strawberry hydroponics

    International Nuclear Information System (INIS)

    Villarroel, M.; Alvarino, J. M. R.; Duran, J. M.

    2011-01-01

    Aquaponics is the science of integrating intensive fish aquaculture with plant production in recirculating water systems. Although ion waste production by f ish cannot satisfy all plant requirements, less is known about the relationship between total feed provided for f ish and the production of milliequivalents (mEq) of different macronutrients for plants, especially for nutrient flow hydroponics used for strawberry production in Spain. That knowledge is essential to consider the amount of macronutrients available in aquaculture systems so that farmers can estimate how much nutrient needs to be supplemented in the waste water from fish, to produce viable plant growth. In the present experiment, tilapia (Oreochromis niloticus L.) were grown in a small-scale recirculating system at two different densities while growth and feed consumption were noted every week for five weeks. At the same time points, water samples were taken to measure pH, EC 2 5, HCO3 - , Cl - , NH + 4 , NO 2 - , NO 3 - , H 2 PO 4 - , SO 4 2 -, Na + , K + , Ca 2 + and Mg 2 + build up. The total increase in mEq of each ion per kg of feed provided to the fish was highest for NO 3 - , followed, in decreasing order, by Ca 2 +, H 2 PO 4 - , K + , Mg 2 + and SO 4 2 -. The total amount of feed required per mEq ranged from 1.61- 13.1 kg for the four most abundant ions (NO 3 - , Ca 2 +, H 2 PO 4 - and K + ) at a density of 2 kg fish m3, suggesting that it would be rather easy to maintain small populations of fish to reduce the cost of hydroponic solution supplementation for strawberries. (Author) 16 refs.

  2. Soybean cultivation for Bioregenerative Life Support Systems (BLSSs): The effect of hydroponic system and nitrogen source

    Science.gov (United States)

    Paradiso, Roberta; Buonomo, Roberta; Dixon, Mike A.; Barbieri, Giancarlo; De Pascale, Stefania

    2014-02-01

    Soybean [Glycine max (L.) Merr.] is one of the plant species selected within the European Space Agency (ESA) Micro-Ecological Life Support System Alternative (MELiSSA) project for hydroponic cultivation in Biological Life Support Systems (BLSSs), because of the high nutritional value of seeds. Root symbiosis of soybean with Bradirhizobium japonicum contributes to plant nutrition in soil, providing ammonium through the bacterial fixation of atmospheric nitrogen. The aim of this study was to evaluate the effects of two hydroponic systems, Nutrient Film Technique (NFT) and cultivation on rockwool, and two nitrogen sources in the nutrient solution, nitrate (as Ca(NO3)2 and KNO3) and urea (CO(NH2)2), on root symbiosis, plant growth and seeds production of soybean. Plants of cultivar 'OT8914', inoculated with B. japonicum strain BUS-2, were grown in a growth chamber, under controlled environmental conditions. Cultivation on rockwool positively influenced root nodulation and plant growth and yield, without affecting the proximate composition of seeds, compared to NFT. Urea as the sole source of N drastically reduced the seed production and the harvest index of soybean plants, presumably because of ammonium toxicity, even though it enhanced root nodulation and increased the N content of seeds. In the view of large-scale cultivation for space colony on planetary surfaces, the possibility to use porous media, prepared using in situ resources, should be investigated. Urea can be included in the nutrient formulation for soybean in order to promote bacterial activity, however a proper ammonium/nitrate ratio should be maintained.

  3. [Effects of LED spectrum combinations on the absorption of mineral elements of hydroponic lettuce].

    Science.gov (United States)

    Chen, Xiao-Li; Guo, Wen-Zhong; Xue, Xu-Zhang; Mmanake Beauty, Morewane

    2014-05-01

    Lettuce (Lactuca sativa) was hydroponically cultured in a completely enclosed plant factory, in which spectrum proportion-adjustable LED panels were used as sole light source for plant growth. Absorption and content of eleven mineral elements such as K, P, Ca, Mg, Na, Fe, Mn, Zn, Cu, B and Mo in Lactuca sativa under different spectral component conditions were studied by ICP -AES technology. The results showed that: (1) Single or combined spectrums corresponding to the absorbing peaks of chlorophyll a and b (450, 660 nm) could enhance the absorbing ability of roots especially for mineral elements Na, Fe, Mn, Cu and Mo, the single red spectrum had the most significant promoting effect under which contents of those four elements were respectively 7. 8, 4. 2, 4. 0 and 3. 7 times more than that under FL; (2) Absorption of K and B was the highest under FL which was 10. 309 mg g-1 and 32. 6 microg g-1 while the values decreased significantly under single or combined spectrum of red and blue; (3) Plants grown under single blue spectrum had the lowest absorption of Ca and Mg which respectively decreased by 35% and 33% than FL; (4) Lettuce grown under the spectrum combination of 30% blue and 70% red had the highest accumulations of biomass while those grown under 20% blue and 80% red had the highest accumulations of the following seven elements Ca, Mg, Na, Fe, Mn, Zn and B. The results provided theoretical basis for adjusting nutrient solution formula and selecting light spectrum of hydroponic lettuce.

  4. Zinc bioavailability in the chick

    International Nuclear Information System (INIS)

    Hempe, J.M.

    1987-01-01

    Methods for assessing zinc bioavailability were evaluated in the chick. A low-zinc chick diet was developed using rehydrated, spray-dried egg white autoclaved at 121 C for 30 min as the primary protein source. The relative bioavailability of zinc from soy flour and beef was determined by whole-body retention of extrinsic 65 Zn, and in slope ratio assays for growth rate and tissue zinc. Compared to zinc carbonate added to an egg white-based diet, all methods gave similar estimates of approximately 100% zinc bioavailability for beef but estimates for soy flour varied widely. The slope ratio assay for growth rate gave the best estimate of zinc bioavailability for soy flour. True absorption, as measured by percent isotope retention from extrinsically labeled soy flour, was 47%

  5. Optical dating of the hydroponic farm at Korea

    International Nuclear Information System (INIS)

    Hong, D.G.; Galloway, R.B.; Kim, M.J.; Park, S.B.

    2003-01-01

    For age determination, the single aliquot regenerative-dose (SAR) method was applied to quartz from archaeological materials, using luminescence stimulated by blue light. The quartz samples were extracted from sediment from the hydroponic farm related to rice cultivation in an area of archaeological interest in Buyeo, south of Seoul. The optically stimulated luminescence (OSL) dates obtained offered good agreement with the ages derived by typological assessment and 14 C ages. These ages should contribute significantly to interpretation of the history of rice cultivation in Korea. (author)

  6. Stimulating productivity of hydroponic lettuce in controlled environments with triacontanol

    Science.gov (United States)

    Knight, S. L.; Mitchell, C. A.

    1987-01-01

    Triacontanol (1-triacontanol) applied as a foliar spray at 10(-7) M to 4-day-old, hydroponically grown leaf lettuce (Lactuca sativa L.) seedlings in a controlled environment increased leaf fresh and dry weight 13% to 20% and root fresh and dry weight 13% to 24% 6 days after application, relative to plants sprayed with water. When applied at 8 as well as 4 days after seeding, triacontanol increased plant fresh and dry weight, leaf area, and mean relative growth rate 12% to 37%. There was no benefit of repeating application of triacontanol in terms of leaf dry weight gain.

  7. Recycling of treated domestic effluent from an on-site wastewater treatment system for hydroponics.

    Science.gov (United States)

    Oyama, N; Nair, J; Ho, G E

    2005-01-01

    An alternative method to conserve water and produce crops in arid regions is through hydroponics. Application of treated wastewater for hydroponics will help in stripping off nutrients from wastewater, maximising reuse through reduced evaporation losses, increasing control on quality of water and reducing risk of pathogen contamination. This study focuses on the efficiency of treated wastewater from an on-site aerobic wastewater treatment unit. The experiment aimed to investigate 1) nutrient reduction 2) microbial reduction and 3) growth rate of plants fed on wastewater compared to a commercial hydroponics medium. The study revealed that the chemical and microbial quality of wastewater after hydroponics was safe and satisfactory for irrigation and plant growth rate in wastewater hydroponics was similar to those grown in a commercial medium.

  8. Design and construction of a vertical hydroponic system with semi-continuous and continuous nutrient cycling

    Science.gov (United States)

    Siswanto, Dian; Widoretno, Wahyu

    2017-11-01

    Problems due to the increase in agricultural land use change can be solved by hydroponic system applications. Many hydroponic studies have been conducted in several countries while their applications in Indonesia requires modification and adjustment. This research was conducted to design and construct a hydroponic system with semi-continuous and continuous nutrition systems. The hydroponic system which was used adapts the ebb and flow system, and the nutrient film technique (NFT). This hydroponic system was made from polyvinyl chloride (PVC) pipes with a length of 197 cm, a diameter of 16 cm, and a slope of 4°. It was constructed from four PVC pipes. In semi-continuous irrigation treatment, nutrients flow four to six times for each of ten minutes depending on plant development and the estimated evapotranspiration occurring, while in a continuous nutrient system the nutrients are streamed for twenty-four hours without stopping at a maximum flow rate of 13.7 L per second.

  9. Bioavailability of seocalcitol IV

    DEFF Research Database (Denmark)

    Grove, Mette; Nielsen, Jeanet L; Pedersen, Gitte P

    2006-01-01

    PURPOSE: To study the use of long chain triglycerides (LCT) as a lymphotropic carrier of (3)H-seocalcitol by comparing the lymphatic transport and the portal absorption of (3)H-seocalcitol when dissolved in a (1) LCT solution or a (2) reference solution without lipid containing propylene glycol (...

  10. Growth and Tissue Elemental Composition Response of Spinach (Spinacia oleracea to Hydroponic and Aquaponic Water Quality Conditions

    Directory of Open Access Journals (Sweden)

    Daniel A. Vandam

    2017-05-01

    Full Text Available Spinach (Spinacia oleracea cv. Carmel was grown in a conventional glass greenhouse under three different nutrient solution treatments. Lighting and temperature conditions were identical. Six growing systems were used to provide a duplicate trough system for each of these three treatments. Six trials were harvested from each system over a two month time period. Two treatments received hydroponic nutrient inputs, with one treatment at pH 7.0 (referred to as H7 and the other at pH 5.8 (H5, and the third treatment was aquaponic (A7, receiving all of its nutrients from a single fish tank with koi (Cyprinus carpio except for chelated iron. System pH was regulated by adding K2CO3 to aquaponic systems and KOH to hydroponic systems. Comparisons made between treatments were total yield, leaf surface area, tissue elemental content, and dry weight to fresh weight ratio. Dry weight biomass yield values were not different in pairwise comparisons between treatments (A7 vs. H5: p = 0.59 fresh weight, p = 0.42 dry weight. Similarly, surface area results were not different between treatments. The important comparison was that A7 achieved the same growth as H5, the conventional pH with a complete inorganic nutrient solution, despite unbalanced and less than “ideal” nutrient concentrations in the A7 condition.

  11. Accumulation of anthropogenic radionuclides in crops in conditions of water stream and classical hydroponics

    Energy Technology Data Exchange (ETDEWEB)

    Mayrapetyan, Khachatur; Hovsepyan, Albert; Daryadar, Mahsa; Alexanyan, Julietta; Tovmasyan, Anahit; Ghalachyan, Laura; Tadevosyan, Anna; Mayrapetyan, Stepan [Institute of Hydroponics Problems, NAS, Noragyugh 108, 0082, Yerevan (Armenia)

    2014-07-01

    Natural and artificial radionuclides (RN) dangerous for health are emitted into ecosystems because of human anthropogenic activities in the field of nuclear energetics. Biologically artificial RN {sup 90}Sr(T{sub 1/2}=28,6 years) and {sup 137}Cs (T{sub 1/2}=30,1 years)are very dangerous. Therefore obtaining radio-ecologically safe raw material of high quality is a very urgent problem now. Taking into account the above mentioned, in order to obtain ecologically safe raw material we carried out comparative radiochemical investigations on essential oil and medicinal plants peppermint(Mentha piperita L.) and sweet basil (Ocimum basilicum L.) grown in new water-stream (continuous, gully, cylindrical) and classical hydroponics, with the aim of revealing accumulation peculiarities of {sup 90}Sr and {sup 137}Cs. The results of experiments have shown that in classical hydroponics peppermint and sweet basil exceeded the same indices of water-stream hydroponics with {sup 90}Sr and {sup 137}Cs content 1,1-1,2; 1,2-1,3 and 1,5-1,8; 1,4-1,8 times, respectively. Moreover, sweet basil exceeded peppermint in water-stream hydroponics {sup 90}Sr 1,3-1,6; {sup 137}Cs 1,2-1,4 times and in classical hydroponics {sup 90}Sr 1,6; {sup 137}Cs 1,2 times. The content of controlled artificial RN in raw material did not exceed the allowed concentration limit (ACL). New water-stream hydroponics system worked out in Institute of Hydroponics Problems is a radio-ecologically more profitable method for producing raw material than classical hydroponics. At the same time water-stream hydroponics system in comparison with classical hydroponics promoted productivity (dry raw material) increase of peppermint and sweet basil 1,1-1,4 times. (authors)

  12. Effects of cultivation conditions on the uptake of arsenite and arsenic chemical species accumulated by Pteris vittata in hydroponics.

    Science.gov (United States)

    Hatayama, Masayoshi; Sato, Takahiko; Shinoda, Kozo; Inoue, Chihiro

    2011-03-01

    The physiological responses of the arsenic-hyperaccumulator, Pteris vittata, such as arsenic uptake and chemical transformation in the fern, have been investigated. However, a few questions remain regarding arsenic treatment in hydroponics. Incubation conditions such as aeration, arsenic concentration, and incubation period might affect those responses of P. vittata in hydroponics. Arsenite uptake was low under anaerobic conditions, as previously reported. However, in an arsenite uptake experiment, phosphorous (P) starvation-dependent uptake of arsenate was observed under aerobic conditions. Time course-dependent analysis of arsenite oxidation showed that arsenite was gradually oxidized to arsenate during incubation. Arsenite oxidation was not observed in any of the control conditions, such as exposure to a nutrient solution or to culture medium only, or with the use of dried root; arsenite oxidation was only observed when live root was used. This result suggests that sufficient aeration allows the rhizosphere system to oxidize arsenite and enables the fern to efficiently take up arsenite as arsenate. X-ray absorption near edge structure (XANES) analyses showed that long-duration exposure to arsenic using a hydroponic system led to the accumulation of arsenate as the dominant species in the root tips, but not in the whole roots, partly because up-regulation of arsenate uptake by P starvation of the fern was caused and retained by long-time incubation. Analysis of concentration-dependent arsenate uptake by P. vittata showed that the uptake switched from a high-affinity transport system to a low-affinity system at high arsenate concentrations, which partially explains the increased arsenate abundance in the whole root. Copyright © 2010 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. Possible Internalization of an Enterovirus in Hydroponically Grown Lettuce.

    Science.gov (United States)

    Carducci, Annalaura; Caponi, Elisa; Ciurli, Adriana; Verani, Marco

    2015-07-17

    Several studies have shown that enteric viruses can be transferred onto the surface of vegetables and fruits through spray irrigation, but, recently, reports have suggested viral contamination of vegetables sub-irrigated with reused wastewater. Hydroponic cultures, used to grow ready to eat fresh lettuce, have also been used to study the possibility of viral absorption through roots. This study was conducted to assess a possible risk of viral contamination in lettuce from contaminated water. The leaves of lettuce plants grown in hydroponic cultures where the roots were exposed to water containing Coxsakievirus B2, were analysed for evidence of the virus. The plants and water were sampled at different times and virus was measured using quantitative RT-PCR and infectivity assay. In leaf samples, the lowest observed infective data were lower than the qRT-PCR detection limits, suggesting that free viral RNA or damaged viruses are eliminated rapidly while infectious particles remain stable for a longer time. The obtained data revealed that the leaves were contaminated at a water concentration of 4.11 ± 1 Log Most Probable Number/L (8.03 ± 1 Log GC/L) a concentration observed in contaminated untreated water of wastewater treatment plants. However, the absorption dynamics and whether the virus is inactive in the leaves still remains to be clarified. Nevertheless, this work has practical implications for risk management in using reclaimed water for agricultural use; when irrigated vegetables are destined for raw consumption, virological contamination in water sources should be evaluated.

  14. Ion distribution and gas exchange of hydroponically grown sunflower plants as affected by salinity

    Directory of Open Access Journals (Sweden)

    Anna Rita Rivelli

    2006-09-01

    Full Text Available This paper reports the results of a trial carried out on sunflower plants (Helianthus annuus L., Romsun HS90 grown in the greenhouse using inert substrate and two automatic and closed hydroponic systems: one of them hosting the control (C with plants grown under optimal conditions on Hoagland nutrient solution, the other one, the salt treatment (S, with plants exposed to constant salt stress through adding 150 mM of NaCl to the nutrient solution. Salt supply caused a sharp reduction in leaf area development and dry matter production, especially in the first 4 weeks when leaves showed to be more sensitive than stem and roots. Such a reduction is attributable to the drop in net CO2 assimilation rate, transpiration and stomatal conductance and it was, on average, equal to 30, 26 and 40%, respectively, with respect to the control. The investigated genotype was not able to exclude Cl- and Na+ and considerable amounts accumulated in leaves, stem and roots. Concentration increased in leaves in the basipetal direction. Though sunflower has an efficient endogenous adaptation system by which it redistributes ions in the whole plant, with greater accumulation in older leaves, growth inhibition could be attributed to specific ion toxicity effects, and of chlorine in particular, on metabolic processes and thus on photosynthesis.

  15. Salinity Reduction and Biomass Accumulation in Hydroponic Growth of Purslane (Portulaca oleracea).

    Science.gov (United States)

    de Lacerda, Laís Pessôa; Lange, Liséte Celina; Costa França, Marcel Giovanni; Zonta, Everaldo

    2015-01-01

    In many of the world's semi-arid and arid regions, the increase in demand for good quality water associated with the gradual and irreversible salinisation of the soil and water have raised the development of techniques that facilitate the safe use of brackish and saline waters for agronomic purposes. This study aimed to evaluate the salinity reduction of experimental saline solutions through the ions uptake capability of purslane (Portulaca oleracea), as well as its biomass accumulation. The hydroponic system used contained three different nutrient solutions composed of fixed concentrations of macro and micronutrients to which three different concentrations of sodium chloride had been added. Two conditions were tested, clipped and intact plants. It was observed that despite there being a notable removal of magnesium and elevated biomass accumulation, especially in the intact plants, purslane did not present the expected removal quantity of sodium and chloride. We confirmed that in the research conditions of the present study, purslane is a saline-tolerant species but accumulation of sodium and chloride was not shown as previously described in the literature.

  16. Ion distribution and gas exchange of hydroponically grown sunflower plants as affected by salinity

    Directory of Open Access Journals (Sweden)

    Anna Rita Rivelli

    Full Text Available This paper reports the results of a trial carried out on sunflower plants (Helianthus annuus L., Romsun HS90 grown in the greenhouse using inert substrate and two automatic and closed hydroponic systems: one of them hosting the control (C with plants grown under optimal conditions on Hoagland nutrient solution, the other one, the salt treatment (S, with plants exposed to constant salt stress through adding 150 mM of NaCl to the nutrient solution. Salt supply caused a sharp reduction in leaf area development and dry matter production, especially in the first 4 weeks when leaves showed to be more sensitive than stem and roots. Such a reduction is attributable to the drop in net CO2 assimilation rate, transpiration and stomatal conductance and it was, on average, equal to 30, 26 and 40%, respectively, with respect to the control. The investigated genotype was not able to exclude Cl- and Na+ and considerable amounts accumulated in leaves, stem and roots. Concentration increased in leaves in the basipetal direction. Though sunflower has an efficient endogenous adaptation system by which it redistributes ions in the whole plant, with greater accumulation in older leaves, growth inhibition could be attributed to specific ion toxicity effects, and of chlorine in particular, on metabolic processes and thus on photosynthesis.

  17. Cadmium accumulation by jack-bean and sorghum in hydroponic culture.

    Science.gov (United States)

    Francato Zancheta, Ariana Carramaschi; De Abreu, Cleide Aparecida; Zambrosi, Fernando César Bachiega; de Magalhães Erismann, Norma; Andrade Lagôa, Ana Maria Magalhães

    2015-01-01

    Among the technologies used to recuperate cadmium (Cd) contaminated soils, phytoextraction are particularly important, where the selection of suitable plants is critical to the success of the soil remediation. Thus, the objectives of this study were to evaluate the responses of jack-bean and sorghum to Cd supply and to quantify Cd accumulation by these species grown in hydroponic culture. The plants were subjected to 0, 15, 30, or 60 μmol Cd L(-1) in the nutrient solution, and gas exchange, plant growth and Cd accumulation were measured at 25 days after starting Cd treatments. The Cd supply severely reduced growth of shoots and roots in both species. In jack-bean, Cd decreased photosynthesis by 56-86%, stomatal conductance by 59-85% and transpiration by 48-80%. The concentrations and amounts of Cd accumulated in the plant tissues were proportional to the metal supply in the nutrient solution. Sorghum was more tolerant than jack-bean to Cd toxicity, but the latter showed a greater metal concentration and accumulation in the shoot. Therefore, jack-bean would be more suitable than sorghum for use in Cd phytoremediation programs based on phytoextraction.

  18. Role of plants in nitrogen and sulfur transformations in floating hydroponic root mats: A comparison of two helophytes.

    Science.gov (United States)

    Saad, Rania A B; Kuschk, Peter; Wiessner, Arndt; Kappelmeyer, Uwe; Müller, Jochen A; Köser, Heinz

    2016-10-01

    Knowledge about the roles helophytes play in constructed wetlands (CWs) is limited, especially regarding their provision of organic rhizodeposits. Here, transformations of inorganic nitrogen and sulfur were monitored in a CW variety, floating hydroponic root mat (FHRM), treating synthetic wastewater containing low concentration of organic carbon. Two helophytes, Phragmites australis and Juncus effusus, were compared in duplicates. Striking differences were found between the FHRM of the two helophytes. Whereas ammonium was removed in all FHRMs to below detection level, total nitrogen of 1.15 ± 0.4 g m(-2) d(-1) was removed completely only in P. australis systems. The mats with J. effusus displayed effective nitrification but incomplete denitrification as 77% of the removed ammonium-nitrogen accumulated as nitrate. Furthermore, the P. australis treatment units showed on average 3 times higher sulfate-S removal rates (1.1 ± 0.45 g m(-2) d(-1)) than the systems planted with J. effusus (0.37 ± 0.29 g m(-2) d(-1)). Since the influent organic carbon was below the stoichiometric requirement for the observed N and S transformation processes, helophytes' organic rhizodeposits apparently contributed to these transformations, while P. australis provided about 6 times higher bioavailable organic rhizodeposits than J. effusus. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Influence of irradiated chitosan on rice plants growing in hydroponic medium contaminated with salt and heavy metals

    International Nuclear Information System (INIS)

    Lam, N.D.; Diep, T.B.; Kume, Tamikazu

    2000-01-01

    Effect of chitosan and radiation-degraded chitosan on rice seedlings of a Vietnam's original variety was investigated. Potential of irradiated chitosan in plant tolerance for several stress factors (salt, zinc, and vanadium) also was studied as well. Chitosan represented in hydroponic medium clearly inhibited the growth of rice seedlings at concentrations arranging from 50 ppm. Radiation processing of chitosan with dose higher than 100 kGy reduced toxicity of chitosan and the efficacy was of dose proportion. Rice plant of 203 origin was almost normally grown in hydroponic solution containing chitosan that has been irradiated with dose of 150 and 200 kGy. Irradiated chitosan increased plant resistance to environmental stress caused by vanadium (V); thereby the seedlings could be recovered completely, even gained in biomass. This effect was not appeared when applied chitosan to rice in media contaminated by zinc (Zn) and salt (NaCl). The selectness of irradiated chitosan on various stress factors partly clarified the assistant action of chitosan in the vanadium intoxication because chelating with metal ions could not be evaluated as main mechanism. (author)

  20. Effects of goat manure liquid fertilizer combined with AB-MIX on foliage vegetables growth in hydroponic

    Science.gov (United States)

    Sunaryo, Y.; Purnomo, D.; Darini, M. T.; Cahyani, V. R.

    2018-03-01

    Hydroponic as one of the protected cultivation practices is very important to be developed in Indonesia due to not only the reduction of arable agricultural lands in lines with increasing of residential demand and other public facilities but also due to the negative influences of climate change as well global warming to plant growth. The effects of liquid fertilizer made from goat manure (LFGM) in combination with AB-Mix on three kinds of foliage vegetable growth was examined in hydroponics. The research was conducted by 3 x 4 factorial experiment and arranged in Completely Randomized Design with 3 replications. The first factor was foliage vegetable consisting of 3 levels: Mustard Green, Lettuce, and Red Spinach. The second factor was the mixture composition of nutrient solution consisting of 4 levels: LFGM + AB-Mix (v/v: 1:1), LFGM + AB-Mix (v/v: 1:3), LFGM + AB-Mix (v/v: 3:1), and A/B mix as control. Results indicated that the application of LFGM + AB-Mix (v/v: 1:3) resulted in similar plant growth as control (AB-Mix application), and also resulted in the highest chlorophyll content of Mustard green.

  1. Optimization of soaking stage in technological process of wheat germination by hydroponic method when objective function is defined implicitly

    Science.gov (United States)

    Koneva, M. S.; Rudenko, O. V.; Usatikov, S. V.; Bugayets, N. A.; Tamova, M. Yu; Fedorova, M. A.

    2018-05-01

    The increase in the efficiency of the "numerical" technology for solving computational problems of parametric optimization of the technological process of hydroponic germination of wheat grains is considered. In this situation, the quality criteria are contradictory and a part of them is given by implicit functions of many variables. One of the main stages, soaking, determining the time and quality of germinated wheat grain is studied, when grain receives the required amount of moisture and air oxygen for germination and subsequently accumulates enzymes. A solution algorithm for this problem is suggested implemented by means of software packages Statistica v.10 and MathCAD v.15. The use of the proposed mathematical models describing the processes of hydroponic soaking of spring soft wheat varieties made it possible to determine optimal conditions of germination. The results of investigations show that the type of aquatic environment used for soaking has a great influence on the process of water absorption, especially the chemical composition of the germinated material. The use of the anolyte of electrochemically activated water (ECHA-water) intensifies the process from 5.83 to 4 hours for wheat variety «Altayskaya 105» and from 13 to 8.8 hours - for «Pobla Runo».

  2. Comparison of aerobically-treated and untreated crop residue as a source of recycled nutrients in a recirculating hydroponic system

    Science.gov (United States)

    Mackowiak, C. L.; Garland, J. L.; Strayer, R. F.; Finger, B. W.; Wheeler, R. M.

    1996-01-01

    This study compared the growth of potato plants on nutrients recycled from inedible potato biomass. Plants were grown for 105 days in recirculating, thin-film hydroponic systems containing four separate nutrient solution treatments: (1) modified half-strength Hoagland's (control), 2) liquid effluent from a bioreactor containing inedible potato biomass, 3) filtered (0.2 micrometer) effluent, and 4) the water soluble fraction of inedible potato biomass (leachate). Approximately 50% of the total nutrient requirement in treatments 2-4 were provided (recycled) from the potato biomass. Leachate had an inhibitory effect on leaf conductance, photosynthetic rate, and growth (50% reduction in plant height and 60% reduction in tuber yield). Plants grown on bioreactor effluent (filtered or unfiltered) were similar to the control plants. These results indicated that rapidly degraded, water soluble organic material contained in the inedible biomass, i.e., material in leachate, brought about phytotoxicity in the hydroponic culture of potato. Recalcitrant, water soluble organic material accumulated in all nutrient recycling treatments (650% increase after 105 days), but no increase in rhizosphere microbial numbers was observed.

  3. Environmental impacts of urban hydroponics in Europe: a case study in Lyon

    DEFF Research Database (Denmark)

    Romeo, Daina; Vea, Eldbjørg Blikra; Thomsen, Marianne

    2018-01-01

    to deliver positive environmental and social benefits. However, its efficacy depends on several variables, including the type of UA and the geographical location of the city. This paper analyses ReFarmers’ pilot farm, a vertical high-yield hydroponic croft located in the urban area of Lyon, France, from...... a life cycle perspective. The results show that the hydroponic farm performs better than cultivations in heated greenhouses, and similarly to conventional open field farms. Moreover, the source of the electricity input is a determinant factor that, if carbon neutral (e.g. wind energy) allows vertical...... hydroponic production to outperform the two conventional types of agriculture....

  4. Microbial Community Dynamics and Response to Plant Growth-Promoting Microorganisms in the Rhizosphere of Four Common Food Crops Cultivated in Hydroponics.

    Science.gov (United States)

    Sheridan, C; Depuydt, P; De Ro, M; Petit, C; Van Gysegem, E; Delaere, P; Dixon, M; Stasiak, M; Aciksöz, S B; Frossard, E; Paradiso, R; De Pascale, S; Ventorino, V; De Meyer, T; Sas, B; Geelen, D

    2017-02-01

    Plant growth promoting microorganisms (PGPMs) of the plant root zone microbiome have received limited attention in hydroponic cultivation systems. In the framework of a project aimed at the development of a biological life support system for manned missions in space, we investigated the effects of PGPMs on four common food crops (durum and bread wheat, potato and soybean) cultivated in recirculating hydroponic systems for a whole life cycle. Each crop was inoculated with a commercial PGPM mixture and the composition of the microbial communities associated with their root rhizosphere, rhizoplane/endosphere and with the recirculating nutrient solution was characterised through 16S- and ITS-targeted Illumina MiSeq sequencing. PGPM addition was shown to induce changes in the composition of these communities, though these changes varied both between crops and over time. Microbial communities of PGPM-treated plants were shown to be more stable over time. Though additional development is required, this study highlights the potential benefits that PGPMs may confer to plants grown in hydroponic systems, particularly when cultivated in extreme environments such as space.

  5. A hydroponic method for plant growth in microgravity

    Science.gov (United States)

    Wright, B. D.

    1985-01-01

    A hydroponic apparatus under development for long-term microgravity plant growth is described. The capillary effect root environment system (CERES) is designed to keep separate the nutrient and air flows, although both must be simultaneously available to the roots. Water at a pressure slightly under air pressure is allowed to seep into a plastic depression covered by a plastic screen and a porous membrane. A root in the air on the membrane outer surface draws the moisture through it. The laboratory model has a wire-based 1.241 mm mesh polyethylene screen and a filter membrane with 0.45 micron pores, small enough to prohibit root hair penetration. The design eliminates the need to seal-off the plant environment. Problems still needing attention include scaling up of the CERES size, controlling biofouling of the membrane, and extending the applications to plants without fibrous root systems.

  6. Recycling crop residues for use in recirculating hydroponic crop production

    Science.gov (United States)

    Mackowiak, C. L.; Garland, J. L.; Sager, J. C.

    1996-01-01

    As part of bioregenerative life support feasibility testing by NASA, crop residues are being used to resupply elemental nutrients to recirculating hydroponic crop production systems. Methods for recovering nutrients from crop residues have evolved from water soaking (leaching) to rapid aerobic bioreactor processing. Leaching residues recovered the majority of elements but it also recovered significant amounts of soluble organics. The high organic content of leachates was detrimental to plant growth. Aerobic bioreactor processing reduced the organic content ten-fold, which reduced or eliminated phytotoxic effects. Wheat and potato production studies were successful using effluents from reactors having with 8- to 1-day retention times. Aerobic bioreactor effluents supplied at least half of the crops elemental mass needs in these studies. Descriptions of leachate and effluent mineral content, biomass productivity, microbial activity, and nutrient budgets for potato and wheat are presented.

  7. Possible Internalization of an Enterovirus in Hydroponically Grown Lettuce

    Directory of Open Access Journals (Sweden)

    Annalaura Carducci

    2015-07-01

    Full Text Available Several studies have shown that enteric viruses can be transferred onto the surface of vegetables and fruits through spray irrigation, but, recently, reports have suggested viral contamination of vegetables sub-irrigated with reused wastewater. Hydroponic cultures, used to grow ready to eat fresh lettuce, have also been used to study the possibility of viral absorption through roots. This study was conducted to assess a possible risk of viral contamination in lettuce from contaminated water. The leaves of lettuce plants grown in hydroponic cultures where the roots were exposed to water containing Coxsakievirus B2, were analysed for evidence of the virus. The plants and water were sampled at different times and virus was measured using quantitative RT-PCR and infectivity assay. In leaf samples, the lowest observed infective data were lower than the qRT-PCR detection limits, suggesting that free viral RNA or damaged viruses are eliminated rapidly while infectious particles remain stable for a longer time. The obtained data revealed that the leaves were contaminated at a water concentration of 4.11 ± 1 Log Most Probable Number/L (8.03 ± 1 Log GC/L a concentration observed in contaminated untreated water of wastewater treatment plants. However, the absorption dynamics and whether the virus is inactive in the leaves still remains to be clarified. Nevertheless, this work has practical implications for risk management in using reclaimed water for agricultural use; when irrigated vegetables are destined for raw consumption, virological contamination in water sources should be evaluated.

  8. Bioavailability: implications for science/cleanup policy

    Energy Technology Data Exchange (ETDEWEB)

    Denit, Jeffery; Planicka, J. Gregory

    1998-12-01

    This paper examines the role of bioavailability in risk assessment and cleanup decisions. Bioavailability refers to how chemicals ''behave'' and their ''availability'' to interact with living organisms. Bioavailability has significant implications for exposure risks, cleanup goals, and site costs. Risk to human health and the environment is directly tied to the bioavailability of the chemicals of concern.

  9. Bioavailability of Promethazine during Spaceflight

    Science.gov (United States)

    Boyd, Jason L.; Wang, Zuwei; Putcha, Lakshmi

    2009-01-01

    Promethazine (PMZ) is the choice anti-motion sickness medication for treating space motion sickness (SMS) during flight. The side effects associated with PMZ include dizziness, drowsiness, sedation, and impaired psychomotor performance which could impact crew performance and mission operations. Early anecdotal reports from crewmembers indicate that these central nervous system side effects of PMZ are absent or greatly attenuated in microgravity, potentially due to changes in pharmacokinetics (PK) and pharmacodynamics in microgravity. These changes could also affect the therapeutic effectiveness of drugs in general and PMZ, in particular. In this investigation, we examined bioavailability and associated pharmacokinetics of PMZ in astronauts during and after space flight. Methods. Nine astronauts received, per their preference, PMZ (25 or 50 mg as intramuscular injection, oral tablet, or rectal suppository) on flight day one for the treatment of SMS and subsequently collected saliva samples and completed sleepiness scores for 72 h post dose. Thirty days after the astronauts returned to Earth, they repeated the protocol. Bioavailability and PK parameters were calculated and compared between flight and ground. Results. Maximum concentration (Cmax) was lower and time to reach Cmax (tmax) was longer in flight than on the ground. Area under the curve (AUC), a measure of bioavailability, was lower and biological half-life (t1/2) was longer in flight than on the ground. Conclusion. Results indicate that bioavailability of PMZ is reduced during spaceflight. Number of samples, sampling method, and sampling schedule significantly affected PK parameter estimates.

  10. Aluminum bioavailability from tea infusion.

    Science.gov (United States)

    Yokel, Robert A; Florence, Rebecca L

    2008-12-01

    The objective was to estimate oral Al bioavailability from tea infusion in the rat, using the tracer (26)Al. (26)Al citrate was injected into tea leaves. An infusion was prepared from the dried leaves and given intra-gastrically to rats which received concurrent intravenous (27)Al infusion. Oral Al bioavailability (F) was calculated from the area under the (26)Al, compared to (27)Al, serum concentration x time curves. Bioavailability from tea averaged 0.37%; not significantly different from water (F=0.3%), or basic sodium aluminum phosphate (SALP) in cheese (F=0.1-0.3%), but greater than acidic SALP in a biscuit (F=0.1%). Time to maximum serum (26)Al concentration was 1.25, 1.5, 8 and 4.8h, respectively. These results of oral Al bioavailability x daily consumption by the human suggest tea can provide a significant amount of the Al that reaches systemic circulation. This can allow distribution to its target organs of toxicity, the central nervous, skeletal and hematopoietic systems. Further testing of the hypothesis that Al contributes to Alzheimer's disease may be more warranted with studies focusing on total average daily food intake, including tea and other foods containing appreciable Al, than drinking water.

  11. Uptake of 2,4,6-Trinitrotoluene (TNT) by Vetiver grass (Vetiviera ziznoides L.) -- Preliminary results from a hydroponic study

    Science.gov (United States)

    Shakya, K. M.; Sarkar, D.; Datta, R.; Makris, K.; Pachanoor, D.

    2006-05-01

    2,4,6-Trinitrotoluene(TNT) is a potent mutagen and a Group C human carcinogen that has been widely used to produce munitions and explosives. As a result, vast areas that have been previously used as military ranges, munition burning and open detonation sites have been heavily contaminated with TNT. Conventional remedial activities in such contaminated sites commonly rely on methods such as incineration, land filling and soil composting. Phytoremediation offers a cost-effective solution, utilizing plants to phytoextract TNT from the contaminated soil. We propose the use of vetiver grass (Vetiveria zizanoides) to remove TNT from such contaminated soils. Vetiver is a fast-growing and adaptive grass, enabling its use in TNT-contaminated sites in a wide variety of soil types and climate. We also hypothesized that TNT removal by vetiver grass will be enhanced by utilizing a chaotropic agent (urea) to alter rhizosphere/root hair chemical environment. The objectives of this preliminary hydroponic study were: i) to investigate the effectiveness of vetiver grass in removing TNT from solution, and ii) to evaluate the use of a common agrochemical (urea) in enhancing TNT removal by vetiver grass. Vetiver plants were grown in a hydroponic system with five different TNT concentrations (0, 5, 10, 25, and 50 mg TNT L-1) and three urea concentrations (0, 0.01 and 0.1%). A plant density of 10 g L-1 and three replicate vessels per treatment were used. Aliquots were collected at several time intervals up to 192 hour, and were analyzed for TNT with HPLC. Results showed that vetiver was able to remove TNT from hydroponic solutions. The overall magnitude and kinetics of TNT removal by vetiver grass was enhanced in the presence of urea. TNT removal kinetics depended on TNT and urea initial concentrations, suggestive of second-order kinetic reactions. Preliminary results are encouraging, but in need for verification using more detailed studies involving TNT-contaminated soils. Ongoing

  12. How-to-Do-It. Hydroponics and Aquaculture in the High School Classroom.

    Science.gov (United States)

    Nicol, Ernest

    1990-01-01

    The construction of a hydroponic system for use in the classroom is described. Provided are construction details, a list of materials with approximate cost, a diagram of the setup, and a sample test. Several activities are suggested. (CW)

  13. Study On The Application Of Nutrient Immobilized Hydrogel As A Substrate For Hydroponics Culture

    International Nuclear Information System (INIS)

    Vo Thi Thu Ha; Le Quang Luan; Nguyen Thi Nu; Nguyen Thi Vang; Phan Dinh Thai Son; Nguyen Quang Khanh

    2007-01-01

    The aim of this study is preparation of a nutrient hydrogel from CMC by irradiation for hydroponics culture. The hydrogel with different swelling prepared from CMC combined with PAM, nutrient and alginate by gamma-Co-60 irradiation. The hydrogel prepared by irradiation of the component with 20% CMC, 20% PAM, 1% alginate and nutrients at 15 kGy was suitable for the growth and development of plants. In particularly, the hydrogel showed a positive effect on germination ratio of seeds, the growth of 14 days seedling and the growth of lettuce and Chinese mustard in hydroponics cultivation. The hydrogel was completely collapsed after 5 weeks use in a hydroponics culture. The hydrogel showed a promising for application in hydroponics culture, a new technique for production of high yield and high quality vegetables. (NHA)

  14. ANALYSIS OF HYDROPONIC FERTILIZER MATRIXES FOR PERCHLORATE: COMPARISON OF ANALYTICAL TECHNIQUES

    Science.gov (United States)

    Seven retail hydroponic nitrate fertilizer products, two liquid and five solid, were comparatively analyzed for the perchlorate anion (ClO4-) by ion chromatography (IC) with suppressed conductivity detection, complexation electrospray ionization mass spectrometry (cESI-MS), norma...

  15. Nanoparticulation improves bioavailability of Erlotinib.

    Science.gov (United States)

    Yang, Kyung Mi; Shin, In Chul; Park, Joo Won; Kim, Kab-Sig; Kim, Dae Kyong; Park, Kyungmoon; Kim, Kunhong

    2017-09-01

    Nanoparticulation using fat and supercritical fluid (NUFS TM ) is a drug delivery platform technology enabling efficient and effective formulation of poorly soluble drugs. We performed experiments to examine whether NUFS™ could improve poor bioavailability and reduce fed-fasted bioavailability variances of erlotinib (Ert). NUFS-Ert was prepared using NUFS™ technology; its physical properties were characterized, and drug release was measured. Furthermore, in vitro and in vivo efficacy tests and pharmacokinetic analysis were performed. NUFS-Ert nanoparticles had an average size of 250 nm and were stable for 2 months at 40 °C, 4 °C, and room temperature. The dissolution rate of NUFS-Ert increased in bio-relevant dissolution media. NUFS-Ert was more potent in inhibiting EGF signaling and in suppressing the proliferation of A549, a human non-small cell lung cancer cell line. Furthermore, A549 xenografts in BALB/c nude mice treated with NUFS-Ert regressed more efficiently than those in the mice treated with vehicle or Tarceva ® . In addition, experimental lung metastasis was more efficiently inhibited by NUFS-Ert than by Tarceva ® . The relative bioavailability of NUFS-Ert compared with that of Tarceva ® was 550% and the ratio of the area under the concentration-time curve (AUC) of fed state to the AUC of fasted state was 1.8 for NUFS-Ert and 5.8 for Tarceva ® . NUFS-Ert could improve poor bioavailability and reduce fed-fasted bioavailability variances of Ert. NUFS-Ert was more efficacious than Tarceva ® .

  16. Comparison of Land, Water, and Energy Requirements of Lettuce Grown Using Hydroponic vs. Conventional Agricultural Methods.

    Science.gov (United States)

    Barbosa, Guilherme Lages; Gadelha, Francisca Daiane Almeida; Kublik, Natalya; Proctor, Alan; Reichelm, Lucas; Weissinger, Emily; Wohlleb, Gregory M; Halden, Rolf U

    2015-06-16

    The land, water, and energy requirements of hydroponics were compared to those of conventional agriculture by example of lettuce production in Yuma, Arizona, USA. Data were obtained from crop budgets and governmental agricultural statistics, and contrasted with theoretical data for hydroponic lettuce production derived by using engineering equations populated with literature values. Yields of lettuce per greenhouse unit (815 m2) of 41 ± 6.1 kg/m2/y had water and energy demands of 20 ± 3.8 L/kg/y and 90,000 ± 11,000 kJ/kg/y (±standard deviation), respectively. In comparison, conventional production yielded 3.9 ± 0.21 kg/m2/y of produce, with water and energy demands of 250 ± 25 L/kg/y and 1100 ± 75 kJ/kg/y, respectively. Hydroponics offered 11 ± 1.7 times higher yields but required 82 ± 11 times more energy compared to conventionally produced lettuce. To the authors' knowledge, this is the first quantitative comparison of conventional and hydroponic produce production by example of lettuce grown in the southwestern United States. It identified energy availability as a major factor in assessing the sustainability of hydroponics, and it points to water-scarce settings offering an abundance of renewable energy (e.g., from solar, geothermal, or wind power) as particularly attractive regions for hydroponic agriculture.

  17. Aquaponics: integrating fish feeding rates and ion waste production for strawberry hydroponics

    Energy Technology Data Exchange (ETDEWEB)

    Villarroel, M; Alvarino, J M. R.; Duran, J M

    2011-07-01

    Aquaponics is the science of integrating intensive fish aquaculture with plant production in recirculating water systems. Although ion waste production by fish cannot satisfy all plant requirements, less is known about the relationship between total feed provided for fish and the production of milliequivalents (mEq) of different macronutrients for plants, especially for nutrient flow hydroponics used for strawberry production in Spain. That knowledge is essential to consider the amount of macronutrients available in aquaculture systems so that farmers can estimate how much nutrient needs to be supplemented in the waste water from fish, to produce viable plant growth. In the present experiment, tilapia (Oreochromis niloticus L.) were grown in a small-scale recirculating system at two different densities while growth and feed consumption were noted every week for five weeks. At the same time points, water samples were taken to measure pH, EC25, HCO3{sup -}, Cl{sup -}, NH{sup +}{sub 4}, NO{sub 2}{sup -}, NO{sub 3}{sup -}, H{sub 2}PO{sub 4}{sup -}, SO{sub 4}{sup 2}-, Na{sup +}, K{sup +}, Ca{sup 2}+ and Mg{sup 2}+ build up. The total increase in mEq of each ion per kg of feed provided to the fish was highest for NO{sub 3}{sup -}, followed, in decreasing order, by Ca{sup 2}+, H{sub 2}PO{sub 4}{sup -}, K{sup +}, Mg{sup 2}+ and SO{sub 4}{sup 2}-. The total amount of feed required per mEq ranged from 1.61 - 13.1 kg for the four most abundant ions (NO{sub 3}{sup -}, Ca{sup 2}+, H{sub 2}PO{sub 4}{sup -} and K{sup +}) at a density of 2 kg fish m{sup -3}, suggesting that it would be rather easy to maintain small populations of fish to reduce the cost of hydroponic solution supplementation for strawberries. (Author) 16 refs.

  18. Selection and hydroponic growth of potato cultivars for bioregenerative life support systems

    Science.gov (United States)

    Molders, K.; Quinet, M.; Decat, J.; Secco, B.; Dulière, E.; Pieters, S.; van der Kooij, T.; Lutts, S.; Van Der Straeten, D.

    2012-07-01

    As part of the ESA-funded MELiSSA program, Ghent University and the Université catholique de Louvain investigated the suitability, growth and development of four potato cultivars in hydroponic culture under controlled conditions with the aim to incorporate such cultivation system in an Environmental Control and Life Support System (ECLSS). Potato plants can fulfill three major functions in an ECLSS in space missions: (a) fixation of CO2 and production of O2, (b) production of tubers for human nutrition and (c) production of clean water after condensation of the water vapor released from the plants by transpiration. Four cultivars (Annabelle, Bintje, Desiree and Innovator) were selected and grown hydroponically in nutrient film technique (NFT) gullies in a growth chamber under controlled conditions. The plant growth parameters, tuber harvest parameters and results of tuber nutritional analysis of the four cultivars were compared. The four potato cultivars grew well and all produced tubers. The growth period lasted 127 days for all cultivars except for Desiree which needed 145 days. Annabelle (1.45 kg/m2) and Bintje (1.355 kg/m2) were the best performing of the four cultivars. They also produced two times more tubers than Desiree and Innovator. Innovator produced the biggest tubers (20.95 g/tuber) and Desiree the smallest (7.67 g/tuber). The size of Annabelle and Bintje potatoes were intermediate. Bintje plants produced the highest total biomass in term of DW. The highest non-edible biomass was produced by Desiree, which showed both the highest shoot and root DW. The manual length and width measurements were also used to predict the total tuber mass. The energy values of the tubers remained in the range of the 2010 USDA and Souci-Fachmann-Kraut food composition databases. The amount of Ca determined was slightly reduced compared to the USDA value, but close to the Souci-Fachmann-Kraut value. The concentration of Cu, Zn and P were high compared to both databases

  19. Effects of zinc toxicity on sugar beet (Beta vulgaris L.) plants grown in hydroponics.

    Science.gov (United States)

    Sagardoy, R; Morales, F; López-Millán, A-F; Abadía, A; Abadía, J

    2009-05-01

    The effects of high Zn concentration were investigated in sugar beet (Beta vulgaris L.) plants grown in a controlled environment in hydroponics. High concentrations of Zn sulphate in the nutrient solution (50, 100 and 300 microm) decreased root and shoot fresh and dry mass, and increased root/shoot ratios, when compared to control conditions (1.2 microm Zn). Plants grown with excess Zn had inward-rolled leaf edges and a damaged and brownish root system, with short lateral roots. High Zn decreased N, Mg, K and Mn concentrations in all plant parts, whereas P and Ca concentrations increased, but only in shoots. Leaves of plants treated with 50 and 100 microm Zn developed symptoms of Fe deficiency, including decreases in Fe, chlorophyll and carotenoid concentrations, increases in carotenoid/chlorophyll and chlorophyll a/b ratios and de-epoxidation of violaxanthin cycle pigments. Plants grown with 300 microm Zn had decreased photosystem II efficiency and further growth decreases but did not have leaf Fe deficiency symptoms. Leaf Zn concentrations of plants grown with excess Zn were high but fairly constant (230-260 microg.g(-1) dry weight), whereas total Zn uptake per plant decreased markedly with high Zn supply. These data indicate that sugar beet could be a good model to investigate Zn homeostasis mechanisms in plants, but is not an efficient species for Zn phytoremediation.

  20. Production and characterization of cyanocobalamin-enriched lettuce (Lactuca sativa L.) grown using hydroponics.

    Science.gov (United States)

    Bito, Tomohiro; Ohishi, Noriharu; Hatanaka, Yuka; Takenaka, Shigeo; Nishihara, Eiji; Yabuta, Yukinori; Watanabe, Fumio

    2013-04-24

    When lettuces (Lactuca sativa L.) grown for 30 days in hydroponic culture were treated with various concentrations of cyanocobalamin for 24 h, its content in their leaves increased significantly from nondetectable to 164.6 ± 74.7 ng/g fresh weight. This finding indicated that consumption of only two or three of these fresh leaves is sufficient to meet the Recommended Dietary Allowance for adults of 2.4 μg/day. Analyses using a cobalamin-dependent Escherichia coli 215 bioautogram and LC/ESI-MS/MS demonstrated that the cyanocobalamin absorbed from the nutrient solutions by the leaves did not alter any other compounds such as coenzymes and inactive corrinoids. Gel filtration indicated that most (86%) of the cyanocobalamin in the leaves was recovered in the free cyanocobalamin fractions. These results indicated that cyanocobalamin-enriched lettuce leaves would be an excellent source of free cyanocobalamin, particularly for strict vegetarians or elderly people with food-bound cobalamin malabsorption.

  1. Hydroponics Database and Handbook for the Advanced Life Support Test Bed

    Science.gov (United States)

    Nash, Allen J.

    1999-01-01

    During the summer 1998, I did student assistance to Dr. Daniel J. Barta, chief plant growth expert at Johnson Space Center - NASA. We established the preliminary stages of a hydroponic crop growth database for the Advanced Life Support Systems Integration Test Bed, otherwise referred to as BIO-Plex (Biological Planetary Life Support Systems Test Complex). The database summarizes information from published technical papers by plant growth experts, and it includes bibliographical, environmental and harvest information based on plant growth under varying environmental conditions. I collected 84 lettuce entries, 14 soybean, 49 sweet potato, 16 wheat, 237 white potato, and 26 mix crop entries. The list will grow with the publication of new research. This database will be integrated with a search and systems analysis computer program that will cross-reference multiple parameters to determine optimum edible yield under varying parameters. Also, we have made preliminary effort to put together a crop handbook for BIO-Plex plant growth management. It will be a collection of information obtained from experts who provided recommendations on a particular crop's growing conditions. It includes bibliographic, environmental, nutrient solution, potential yield, harvest nutritional, and propagation procedure information. This handbook will stand as the baseline growth conditions for the first set of experiments in the BIO-Plex facility.

  2. HYDROPONIC AND AQUAPONIC PRODUCTION OF SWEET BASIL (Ocimum basilicum AND GIANT RIVER PRAWN (Macrobrachium rosenbergii

    Directory of Open Access Journals (Sweden)

    Marisol Ronzón Ortega

    2012-11-01

    Full Text Available In order to promote sustainable aquaculture in production units and to take care of the water resource is needed to integrate biotechnology tools to the activity, as is the aquaponics. In the present study we evaluated the production efficiency of a crop of basil (Ocimum basilicum in a hydroponic system (SH vs. acuaponic system (SA associated with the semi-intensive culture of Malaysian prawn (Macrobrachium rosenbergii. The production of basil was conducted in two geomembrane plastic rectangular tanks (4.0 m long x 0.80 m wide and 0.30 m high, divided into two sections: in the first section setting of the seedlings were done in a substrate of silica sand and volcanic rock , whereas in the second were seeded into plastic containers using the same substrate. SH plants got their nutrients from the metabolites derived from the cultivation of 800 postlarval shrimp in two circular tanks of 25 m3 (16 organisms m-2 (Pond 1: initial weight 0.13 g, Pond 2: 2.19 g; while in the SH was used a commercial nutrient solution (1.5 g L. The results indicate that SH plants initially had higher survival (90%, height and number of leaves per plant (p

  3. Growth, physiological response and phytoremoval capability of two willow clones exposed to ibuprofen under hydroponic culture.

    Science.gov (United States)

    Iori, Valentina; Zacchini, Massimo; Pietrini, Fabrizio

    2013-11-15

    Ibuprofen (IBU) is one of the most widespread pharmaceuticals in the aquatic ecosystem, despite the high removal rate that occurs in wastewater treatment plants. Phytoremediation represents a technology to improve the performance of existing wastewater treatment. This study was conducted under hydroponics to evaluate the ability of Salicaceae plants to tolerate and reduce IBU concentration in contaminated water. To this end, we combined growth, physiological and biochemical data to study the effects of different IBU concentrations on two clones of Salix alba L. Data demonstrated that clone SS5 was more tolerant and showed a higher ability to reduce IBU concentration in the solution than clone SP3. The high tolerance to IBU shown by SS5 was likely due to several mechanisms including the capacity to maintain an elevated photosynthetic activity and an efficient antioxidative defence. These results illustrate the remarkable potential of willow to phytoremediate IBU-contaminated waters in natural and constructed wetlands. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Hydroponic screening of black locust families for heavy metal tolerance and accumulation.

    Science.gov (United States)

    Župunski, Milan; Borišev, Milan; Orlović, Saša; Arsenov, Danijela; Nikolić, Nataša; Pilipović, Andrej; Pajević, Slobodanka

    2016-01-01

    Present work examines phytoextraction potential of four black locust families (half-sibs 54, 56, 115, and 135) grown hydroponically. Plants were treated with 6 ppm of cadmium (Cd), 100 ppm of nickel (Ni), and 40 ppm of lead (Pb) added in Hoagland nutrient solution, accompanying with simultaneously applied all three metals. Responses to metals exposure among families were different, ranging from severe to slight reduction of root and shoot biomass production of treated plants. Calculated tolerance indices are indicating tested families as highly tolerant (Ti > 60). Family 135 had the lowest tolerance index, pointing that it was highly susceptible to applied metals. Comparing photosynthetic activities of tested families it has been noticed that they were highly sensitive to stress induced by heavy metals. Net photosynthetic rate of nickel treated plants was the most affected by applied concentration. Cadmium and nickel concentrations in stems and leaves of black locust families exceeded 100 mg Cd kg(-1) and 1000 mg Ni kg(-1), in both single and multipollution context. On the contrary, accumulation of lead in above ground biomass was highly affected by multipollution treatment. Tf and BCF significantly varied between investigated treatments and families of black locust. Concerning obtained results of heavy metals accumulation and tolerance of black locust families can be concluded that tested families might be a promising tool for phytoextraction purposes, but it takes to be further confirmed in field trials.

  5. Stabilization of pH in solid-matrix hydroponic systems

    Science.gov (United States)

    Frick, J.; Mitchell, C. A.

    1993-01-01

    2-[N-morpholino]ethanesulfonic acid (MES) buffer or Amberlite DP-1 (cation-exchange resin beads) were used to stabilize substrate pH of passive-wicking, solid-matrix hydroponic systems in which small canopies of Brassica napus L. (CrGC 5-2, genome : ACaacc) were grown to maturity. Two concentrations of MES (5 or 10 mM) were included in Hoagland 1 nutrient solution. Alternatively, resin beads were incorporated into the 2 vermiculite : 1 perlite (v/v) growth medium at 6% or 12% of total substrate volume. Both strategies stabilized pH without toxic side effects on plants. Average seed yield rates for all four pH stabilization treatments (13.3 to 16.9 g m-2 day-1) were about double that of the control (8.2 g m-2 day-1), for which there was no attempt to buffer substrate pH. Both the highest canopy seed yield rate (16.9 g m-2 day-1) and the highest shoot harvest index (19.5%) occurred with the 6% resin bead treatment, even though the 10 mM MES and 12% bead treatments maintained pH within the narrowest limits. The pH stabilization methods tested did not significantly affect seed oil and protein contents.

  6. Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture.

    Science.gov (United States)

    Radzki, W; Gutierrez Mañero, F J; Algar, E; Lucas García, J A; García-Villaraco, A; Ramos Solano, B

    2013-09-01

    Iron is one of the essential elements for a proper plant development. Providing plants with an accessible form of iron is crucial when it is scant or unavailable in soils. Chemical chelates are the only current alternative and are highly stable in soils, therefore, posing a threat to drinking water. The aim of this investigation was to quantify siderophores produced by two bacterial strains and to determine if these bacterial siderophores would palliate chlorotic symptoms of iron-starved tomato plants. For this purpose, siderophore production in MM9 medium by two selected bacterial strains was quantified, and the best was used for biological assay. Bacterial culture media free of bacteria (S) and with bacterial cells (BS), both supplemented with Fe were delivered to 12-week-old plants grown under iron starvation in hydroponic conditions; controls with full Hoagland solution, iron-free Hoagland solution and water were also conducted. Treatments were applied twice along the experiment, with a week in between. At harvest, plant yield, chlorophyll content and nutritional status in leaves were measured. Both the bacterial siderophore treatments significantly increased plant yield, chlorophyll and iron content over the positive controls with full Hoagland solution, indicating that siderophores are effective in providing Fe to the plant, either with or without the presence of bacteria. In summary, siderophores from strain Chryseobacterium C138 are effective in supplying Fe to iron-starved tomato plants by the roots, either with or without the presence of bacteria. Based on the amount of siderophores produced, an effective and economically feasible organic Fe chelator could be developed.

  7. The effect of EDDS and citrate on the uptake of lead in hydroponically grown Matthiola flavida.

    Science.gov (United States)

    Mohtadi, Ahmad; Ghaderian, Seyed Majid; Schat, Henk

    2013-10-01

    Root and shoot lead concentrations and the impact of chelating agents on these were investigated in two populations of the novel metallophyte Matthiola flavida. Plants were exposed in hydroponics to Pb(NO3)2, supplied alone, or in combination with citric acid, or EDDS. When supplied at concentrations expected to bind about 95% of the Pb in a solution containing 1-μM Pb (1000 μM citrate or 3.1 μM EDDS, respectively), the root and shoot Pb concentrations were dramatically lowered, in comparison with a 1-μM free ionic Pb control exposure. A 1-mM EDDS+1-μM Pb treatment decreased the plants' Pb concentrations further, even to undetectable levels in one population. At 100 μM Pb in a 1-mM EDDS-amended solution the Pb concentration increased strongly in shoots, but barely in roots, in comparison with the 1-μM Pb+1-mM EDDS treatment, without causing toxicity symptoms. Further increments of the Pb concentration in the 1-mM EDDS-amended solution, i.e. to 800 and 990 μM, caused Pb hyperaccumulation, both in roots and in shoots, associated with a complete arrest of root growth and foliar necrosis. M. flavida seemed to be devoid of constitutive mechanisms for uptake of Pb-citrate or Pb-EDDS complexes. Hyperaccumulation of Pb-EDDS occurred only at high exposure levels. Pb-EDDS was toxic, but is much less so than free Pb. Free EDDS did not seem to be toxic at the concentrations tested. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Cilioprotists as biological indicators for estimating the efficiency of using Gravel Bed Hydroponics System in domestic wastewater treatment.

    Science.gov (United States)

    El-Serehy, Hamed A; Bahgat, Magdy M; Al-Rasheid, Khaled; Al-Misned, Fahad; Mortuza, Golam; Shafik, Hesham

    2014-07-01

    Interest has increased over the last several years in using different methods for treating sewage. The rapid population growth in developing countries (Egypt, for example, with a population of more than 87 millions) has created significant sewage disposal problems. There is therefore a growing need for sewage treatment solutions with low energy requirements and using indigenous materials and skills. Gravel Bed Hydroponics (GBH) as a constructed wetland system for sewage treatment has been proved effective for sewage treatment in several Egyptian villages. The system provided an excellent environment for a wide range of species of ciliates (23 species) and these organisms were potentially very useful as biological indicators for various saprobic conditions. Moreover, the ciliates provided excellent means for estimating the efficiency of the system for sewage purification. Results affirmed the ability of this system to produce high quality effluent with sufficient microbial reduction to enable the production of irrigation quality water.

  9. Etiology and epidemiology of Pythium root rot in hydroponic crops: current knowledge and perspectives

    Directory of Open Access Journals (Sweden)

    John Clifford Sutton

    2006-09-01

    Full Text Available The etiology and epidemiology of Pythium root rot in hydroponically-grown crops are reviewed with emphasis on knowledge and concepts considered important for managing the disease in commercial greenhouses. Pythium root rot continually threatens the productivity of numerous kinds of crops in hydroponic systems around the world including cucumber, tomato, sweet pepper, spinach, lettuce, nasturtium, arugula, rose, and chrysanthemum. Principal causal agents include Pythium aphanidermatum, Pythium dissotocum, members of Pythium group F, and Pythium ultimum var. ultimum. Perspectives are given of sources of initial inoculum of Pythium spp. in hydroponic systems, of infection and colonization of roots by the pathogens, symptom development and inoculum production in host roots, and inoculum dispersal in nutrient solutions. Recent findings that a specific elicitor produced by P. aphanidermatum may trigger necrosis (browning of the roots and the transition from biotrophic to necrotrophic infection are considered. Effects on root rot epidemics of host factors (disease susceptibility, phenological growth stage, root exudates and phenolic substances, the root environment (rooting media, concentrations of dissolved oxygen and phenolic substances in the nutrient solution, microbial communities and temperature and human interferences (cropping practices and control measures are reviewed. Recent findings on predisposition of roots to Pythium attack by environmental stress factors are highlighted. The commonly minor impact on epidemics of measures to disinfest nutrient solution as it recirculates outside the crop is contrasted with the impact of treatments that suppress Pythium in the roots and root zone of the crop. New discoveries that infection of roots by P. aphanidermatum markedly slows the increase in leaf area and whole-plant carbon gain without significant effect on the efficiency of photosynthesis per unit area of leaf are noted. The platform of

  10. Arsenic bioavailability in soils before and after soil washing: the use of Escherichia coli whole-cell bioreporters.

    Science.gov (United States)

    Yoon, Youngdae; Kang, Yerin; Chae, Yooeun; Kim, Sunghoon; Lee, Youngshim; Jeong, Seung-Woo; An, Youn-Joo

    2016-02-01

    We investigated the quantification of bioavailable arsenic in contaminated soils and evaluation of soil-washing processes in the aspect of bioavailability using a novel bacterial bioreporter developed in present study. The whole-cell bioreporter (WCB) was genetically engineered by fusing the promoter of nik operon from Escherichia coli and green fluorescent protein as a sensing domain and reporter domain. Among eight well-known hazardous heavy metals and metalloid, this system responded specifically to arsenic, thereby inferring association of As(III) with NikR inhibits the repression. Moreover, the response was proportional to the concentration of As(III), thereby it was capable to determine the amount of bioavailable arsenic quantitatively in contaminated soils. The bioavailable portion of arsenic was 5.9 (3.46-10.96) and 0.9 (0.27-1.74) % of total from amended and site soils, respectively, suggesting the bioavailability of arsenic in soils was related to the soil properties and duration of aging. On the other hand, only 1.37 (0.21-2.97) % of total arsenic was extracted into soil solutions and 19.88 (11.86-28.27) % of arsenic in soil solution was bioavailable. This result showed that the soluble arsenic is not all bioavailable and most of bioavailable arsenic in soils is water non-extractable. In addition, the bioavailable arsenic was increased after soil-washing while total amount was decreased, thereby suggesting the soil-washing processes release arsenic associated with soil materials to be bioavailable. Therefore, it would be valuable to have a tool to assess bioavailability and the bioavailability should be taken into consideration for soil remediation plans.

  11. Preliminary investigations of the rhizosphere nature of hydroponically grown lettuces

    Science.gov (United States)

    Antunes, Inês; Paille, Christel; Lasseur, Christophe

    Due to capabilities of current launchers, future manned exploration beyond the Earth orbit will imply long journeys and extended stays on planet surfaces. For this reason, it is of a great importance to develop a Regenerative Life Support System that enables the crew to be, to a very large extent, metabolic consumables self-sufficient. In this context, the European Space Agency, associated with a scientific and engineering con-sortium, initiated in 1989 the Micro-Ecological Life Support System Alternative (MELiSSA) project. This concept, inspired on a terrestrial ecosystem (i.e. a lake), comprises five intercon-nected compartments inhabited by micro-organisms and higher-plants aiming to produce food, fresh water, and oxygen from organic waste, carbon dioxide, and minerals. Given the important role of the higher-plant compartment for the consumption of carbon dioxide and the production of oxygen, potable water, and food, it was decided to study the microbial communities present in the root zone of the plants (i.e. the rhizosphere), and their synergistic and antagonistic influences in the plant growth. This understanding is important for later investigations concerning the technology involved in the higher plant compartment, since the final goal is to integrate this compartment inside the MELiSSA loop and to guarantee a healthy and controlled environment for the plants to grow under reduced-gravity conditions. To perform a preliminary assessment of the microbial populations of the root zone, lettuces were grown in a hydroponic system and their growth was characterized in terms of nutrient uptake, plant diameter, and plant wet and dry weights. In parallel, the microbial population, bacteria and fungi, present in the hydroponic medium and also inside and outside the roots were analyzed in terms of quantity and nature. The goal of this presentation is to give a preliminary review in the plant root zone of the micro-organisms communities and as well their proportions

  12. Mobility, bioavailability, and toxic effects of cadmium in soil samples

    International Nuclear Information System (INIS)

    Prokop, Z.; Cupr, P.; Zlevorova-Zlamalikova V.; Komarek, J.; Dusek, L.; Holoubek, I.

    2003-01-01

    Total concentration is not a reliable indicator of metal mobility or bioavailability in soils. The physicochemical form determines the behavior of metals in soils and hence the toxicity toward terrestrial biota. The main objectives of this study were the application and comparison of three approaches for the evaluation of cadmium behavior in soil samples. The mobility and bioavailability of cadmium in five selected soil samples were evaluated using equilibrium speciation (Windermere humic aqueous mode (WHAM)), extraction procedures (Milli-Q water, DMSO, and DTPA), and a number of bioassays (Microtox, growth inhibition test, contact toxicity test, and respiration). The mobility, represented by the water-extractable fraction corresponded well with the amount of cadmium in the soil solution, calculate using the WHAM (r 2 =0.96, P<0.001). The results of the ecotoxicologica evaluation, which represent the bioavailable fraction of cadmium, correlated well with DTPA extractability and also with the concentration of free cadmium ion, which is recognized as the most bioavailable metal form. The results of the WHAM as well as the results of extraction experiments showed a strong binding of cadmium to organic matter and a weak sorption of cadmium to clay minerals

  13. Short-term alteration of nitrogen supply prior to harvest affects quality in hydroponic-cultivated spinach (Spinacia oleracea).

    Science.gov (United States)

    Lin, Xian Yong; Liu, Xiao Xia; Zhang, Ying Peng; Zhou, Yuan Qing; Hu, Yan; Chen, Qiu Hui; Zhang, Yong Song; Jin, Chong Wei

    2014-03-30

    Quality-associated problems, such as excessive in planta accumulation of oxalate, often arise in soillessly cultivated spinach (Spinacia oleracea). Maintaining a higher level of ammonium (NH₄⁺) compared to nitrate (NO₃⁻) during the growth period can effectively decrease the oxalate content in hydroponically cultivated vegetables. However, long-term exposure to high concentrations of NH₄⁺ induces toxicity in plants, and thus decreases the biomass production. Short-term application of NH₄⁺ before harvesting in soilless cultivation may provide an alternative strategy to decrease oxalate accumulation in spinach, and minimise the yield reduction caused by NH₄⁺ toxicity. The plants were pre-cultured in 8 mmol L⁻¹ NO₃⁻ nutrient solution. Next, 6 days before harvest, the plants were transferred to a nutrient solution containing 4 mmol L⁻¹ NO₃⁻ and 4 mmol L⁻¹ NH₄⁺. This new mix clearly reduced oxalate accumulation, increased levels of several antioxidant compounds, and enhanced antioxidant capacity in the edible parts of spinach plants, but it did not affect biomass production. However, when the 8 mmol L⁻¹ NO₃⁻ was shifted to either nitrogen-free, 4 mmol L⁻¹ NH₄⁺ or 8 mmol L⁻¹ NH₄⁺ treatments, although some of the quality indexes were improved, yields were significantly reduced. Short-term alteration of nitrogen supply prior to harvest significantly affects quality and biomass of spinach plants, and we strongly recommend to simultaneously use NO₃⁻ and NH₄⁺ in hydroponic cultivation, which improves vegetable quality without decreasing biomass production. © 2013 Society of Chemical Industry.

  14. ZnCl{sub 2}- and NH{sub 4}Cl-hydroponics gel electrolytes for zinc-carbon batteries

    Energy Technology Data Exchange (ETDEWEB)

    Khalid, N.H.; Ismail, Y.M. Baba; Mohamad, A.A. [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia)

    2008-01-21

    Absorbency testing is used to determine the percentage of ZnCl{sub 2} or NH{sub 4}Cl solution absorbed by a hydroponics gel (HPG). It is found that the absorbency of ZnCl{sub 2} or NH{sub 4}Cl solution decreases with increasing solution concentration. The conductivity of ZnCl{sub 2}- and NH{sub 4}Cl-HPG electrolytes is dependent on the solution concentration. A mixture of salt solution with HPG yields excellent gel polymer electrolytes with conductivities of 0.026 and 0.104 S cm{sup -1} at 3 M ZnCl{sub 2} and 7 M NH{sub 4}Cl, respectively. These gel electrolytes are then used to produce zinc-carbon cells. The fabricated cells give capacities of 8.8 and 10.0 mAh, have an internal resistance of 25.4 and 19.8 {omega}, a maximum power density of 12.7 and 12.2 mW cm{sup -2}, and a short-circuit current density of 29.1 and 33.9 mA cm{sup -2} for ZnCl{sub 2}- and NH{sub 4}Cl-HPG electrolytes, respectively. (author)

  15. ZnCl 2- and NH 4Cl-hydroponics gel electrolytes for zinc-carbon batteries

    Science.gov (United States)

    Khalid, N. H.; Ismail, Y. M. Baba; Mohamad, A. A.

    Absorbency testing is used to determine the percentage of ZnCl 2 or NH 4Cl solution absorbed by a hydroponics gel (HPG). It is found that the absorbency of ZnCl 2 or NH 4Cl solution decreases with increasing solution concentration. The conductivity of ZnCl 2- and NH 4Cl-HPG electrolytes is dependent on the solution concentration. A mixture of salt solution with HPG yields excellent gel polymer electrolytes with conductivities of 0.026 and 0.104 S cm -1 at 3 M ZnCl 2 and 7 M NH 4Cl, respectively. These gel electrolytes are then used to produce zinc-carbon cells. The fabricated cells give capacities of 8.8 and 10.0 mAh, have an internal resistance of 25.4 and 19.8 Ω, a maximum power density of 12.7 and 12.2 mW cm -2, and a short-circuit current density of 29.1 and 33.9 mA cm -2 for ZnCl 2- and NH 4Cl-HPG electrolytes, respectively.

  16. Towards Phosphate Detection in Hydroponics Using Molecularly Imprinted Polymer Sensors.

    Science.gov (United States)

    Storer, Christopher S; Coldrick, Zachary; Tate, Daniel J; Donoghue, Jack Marsden; Grieve, Bruce

    2018-02-10

    An interdigitated electrode sensor was designed and microfabricated for measuring the changes in the capacitance of three phosphate selective molecularly imprinted polymer (MIP) formulations, in order to provide hydroponics users with a portable nutrient sensing tool. The MIPs investigated were synthesised using different combinations of the functional monomers methacrylic acid (MAA) and N -allylthiourea, against the template molecules diphenyl phosphate, triethyl phosphate, and trimethyl phosphate. A cross-interference study between phosphate, nitrate, and sulfate was carried out for the MIP materials using an inductance, capacitance, and resistance (LCR) meter. Capacitance measurements were taken by applying an alternating current (AC) with a potential difference of 1 V root mean square (RMS) at a frequency of 1 kHz. The cross-interference study demonstrated a strong binding preference to phosphate over the other nutrient salts tested for each formulation. The size of template molecule and length of the functional monomer side groups also determined that a short chain functional monomer in combination with a template containing large R-groups produced the optimal binding site conditions when synthesising a phosphate selective MIP.

  17. Hydroponic root mats for wastewater treatment-a review.

    Science.gov (United States)

    Chen, Zhongbing; Cuervo, Diego Paredes; Müller, Jochen A; Wiessner, Arndt; Köser, Heinz; Vymazal, Jan; Kästner, Matthias; Kuschk, Peter

    2016-08-01

    Hydroponic root mats (HRMs) are ecotechnological wastewater treatment systems where aquatic vegetation forms buoyant filters by their dense interwoven roots and rhizomes, sometimes supported by rafts or other floating materials. A preferential hydraulic flow is created in the water zone between the plant root mat and the bottom of the treatment system. When the mat touches the bottom of the water body, such systems can also function as HRM filter; i.e. the hydraulic flow passes directly through the root zone. HRMs have been used for the treatment of various types of polluted water, including domestic wastewater; agricultural effluents; and polluted river, lake, stormwater and groundwater and even acid mine drainage. This article provides an overview on the concept of applying floating HRM and non-floating HRM filters for wastewater treatment. Exemplary performance data are presented, and the advantages and disadvantages of this technology are discussed in comparison to those of ponds, free-floating plant and soil-based constructed wetlands. Finally, suggestions are provided on the preferred scope of application of HRMs.

  18. Uptake and translocation of plutonium in two plant species using hydroponics.

    Science.gov (United States)

    Lee, J H; Hossner, L R; Attrep, M; Kung, K S

    2002-01-01

    This study presents determinations of the uptake and translocation of Pu in Indian mustard (Brassica juncea) and sunflower (Helianthus annuus) from Pu contaminated solution media. The initial activity levels of Pu were 18.50 and 37.00 Bq ml(-1), for Pu-nitrate [239Pu(NO3)4] and for Pu-citrate [239Pu(C6H5O7)+] in nutrient solution. Plutonium-diethylenetriaminepentaacetic acid (DTPA: [239Pu-C14H23O10N3] solution was prepared by adding 0, 5, 10, and 50 microg of DTPA ml(-1) with 239Pu(NO3)4 in nutrient solution. Concentration ratios (CR, Pu concentration in dry plant material/Pu concentration in nutrient solution) and transport indices (Tl, Pu content in the shoot/Pu content in the whole plant) were calculated to evaluate Pu uptake and translocation. All experiments were conducted in hydroponic solution in an environmental growth chamber. Plutonium concentration in the plant tissue was increased with increased Pu contamination. Plant tissue Pu concentration for Pu-nitrate and Pu-citrate application was not correlated and may be dependent on plant species. For plants receiving Pu-DTPA, the Pu concentration was increased in the shoots but decreased in the roots resulting in a negative correlation between the Pu concentrations in the plant shoots and roots. The Pu concentration in shoots of Indian mustard was increased for application rates up to 10 microg DTPA ml(-1) and up to 5 microg DTPA ml(-1) for sunflower. Similar trends were observed for the CR of plants compared to the Pu concentration in the shoots and roots, whereas the Tl was increased with increasing DTPA concentration. Plutonium in shoots of Indian mustard was up to 10 times higher than that in shoots of sunflower. The Pu concentration in the apparent free space (AFS) of plant root tissue of sunflower was more affected by concentration of DTPA than that of Indian mustard.

  19. Probing Phosphorus Efficient Low Phytic Acid Content Soybean Genotypes with Phosphorus Starvation in Hydroponics Growth System.

    Science.gov (United States)

    Kumar, Varun; Singh, Tiratha Raj; Hada, Alkesh; Jolly, Monica; Ganapathi, Andy; Sachdev, Archana

    2015-10-01

    Phosphorus is an essential nutrient required for soybean growth but is bound in phytic acid which causes negative effects on both the environment as well as the animal nutrition. Lowering of phytic acid levels is associated with reduced agronomic characteristics, and relatively little information is available on the response of soybean plants to phosphorus (P) starvation. In this study, we evaluated the effects of different P starvation concentrations on the phytic acid content, growth, and yield of seven mutant genotypes along with the unirradiated control, JS-335, in a hydroponics growth system. The low phytic acid containing mutant genotypes, IR-JS-101, IR-DS-118, and IR-V-101, showed a relatively high growth rate in low P concentration containing nutrient solution (2 μM), whereas the high P concentration (50 μM) favored the growth of IR-DS-111 and IR-DS-115 mutant genotypes containing moderate phytate levels. The mutant genotypes with high phytic acid content, IR-DS-122, IR-DS-114, and JS-335, responded well under P starvation and did not have any significant effect on the growth and yield of plants. Moreover, the reduction of P concentration in nutrient solution from 50 to 2 μM also reduced the phytic acid content in the seeds of all the soybean genotypes under study. The desirable agronomic performance of low phytic acid containing mutant genotype IR-DS-118 reported in this study suggested it to be a P-efficient genotype which could be considered for agricultural practices under P limiting soils.

  20. Responses of Szarvasi-1 energy grass to sewage sludge treatments in hydroponics.

    Science.gov (United States)

    Rév, Ambrus; Tóth, Brigitta; Solti, Ádám; Sipos, Gyula; Fodor, Ferenc

    2017-09-01

    Sewage sludge (SS) originating from communal wastewater is a hazardous material but have a potentially great nutritive value. Its disposal after treatment in agricultural lands can be a very economical and safe way of utilization once fast growing, high biomass, perennial plants of renewable energy production are cultivated. Szarvasi-1 energy grass (Elymus elongatus subsp. ponticus cv. Szarvasi-1), a good candidate for this application, was grown in hydroponics in order to assess its metal accumulation and tolerance under increasing SS amendments. The applied SS had a composition characteristic to SS from communal wastes and did not contain any toxic heavy metal contamination from industrial sludge in high concentration. Toxic effects was assessed in quarter strength Hoagland nutrient solution and only the two highest doses (12.5-18.75 g dm -3 ) caused decreases in root growth, shoot water content and length and stomatal conductance whereas shoot growth, root water content, chlorophyll concentration and the maximal quantum efficiency of photosystem II was unaffected. Shoot K, Ca, Mg, Mn, Zn and Cu content decreased but Na and Ni increased in the shoot compared to the unamended control. The nutritive effect was tested in 1/40 strength Hoagland solution and only the highest dose (12.5 g dm -3 ) decreased root growth and stomatal conductance significantly while lower doses (1.25-6.25 g dm -3 ) had a stimulative effect. Shoot K, Na, Fe and Ni increased and Ca, Mg, Mn, Zn and Cu decreased in this treatment. It was concluded that SS with low heavy metal content can be a potentially good fertilizer for high biomass non-food crops such as Szarvasi-1 energy grass. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Przydatność węgla brunatnego z kopalń Turów i Konin jako ściółki w uprawie hydroponicznej [Utility of brown coal from Turów and Konin mines as the seedbed in hydroponic cultures

    Directory of Open Access Journals (Sweden)

    Z. Gumińska

    2015-06-01

    Full Text Available In experiments with 5 vegetables and 5 decorative species – coal from both mines proved to be appropriate as the seedbed. Both types of coal stimulated root growth and maintained iron in soluble form. In general, better and earlier crops were obtained in hydroponic cultures than in pots filled either with soil or with coal watered with nutrient solution.

  2. Using SPME fibers and Tenax to predict the bioavailability of pyrethroids and chlorpyrifos in field sediments

    International Nuclear Information System (INIS)

    Harwood, Amanda D.; Landrum, Peter F.; Weston, Donald P.; Lydy, Michael J.

    2013-01-01

    The presence of pyrethroids in both urban and agricultural sediments at levels lethal to invertebrates has been well documented. However, variations in bioavailability among sediments make accurate predictions of toxicity based on whole sediment concentrations difficult. A proposed solution to this problem is the use of bioavailability-based estimates, such as solid phase microextraction (SPME) fibers and Tenax beads. This study compared three methods to assess the bioavailability and ultimately toxicity of pyrethroid pesticides including field-deployed SPME fibers, laboratory-exposed SPME fibers, and a 24-h Tenax extraction. The objective of the current study was to compare the ability of these methods to quantify the bioavailable fraction of pyrethroids in contaminated field sediments that were toxic to benthic invertebrates. In general, Tenax proved a more sensitive method than SPME fibers and a correlation between Tenax extractable concentrations and mortality was observed. - Highlights: ► Can use bioavailability-based methods for pyrethroids in sediments. ► Tenax was a more sensitive technique. ► Tenax extractable concentrations relate to invertebrate mortality. - This research provides an important first step in using bioavailability-based techniques for estimating the bioavailability and toxicity of hydrophobic pesticides in field sediments.

  3. In Vitro Iron Bioavailability of Brazilian Food-Based by-Products.

    Science.gov (United States)

    Chiocchetti, Gabriela M; De Nadai Fernandes, Elisabete A; Wawer, Anna A; Fairweather-Tait, Susan; Christides, Tatiana

    2018-05-16

    Background : Iron deficiency is a public health problem in many low- and middle-income countries. Introduction of agro-industrial food by-products, as additional source of nutrients, could help alleviate this micronutrient deficiency, provide alternative sources of nutrients and calories in developed countries, and be a partial solution for disposal of agro-industry by-products. Methods : The aim of this study was to determine iron bioavailability of 5 by-products from Brazilian agro-industry (peels from cucumber, pumpkin, and jackfruit, cupuaçu seed peel, and rice bran), using the in vitro digestion/ Caco-2 cell model; with Caco-2 cell ferritin formation as a surrogate marker of iron bioavailability. Total and dialyzable Fe, macronutrients, the concentrations of iron-uptake inhibitors (phytic acid, tannins, fiber) and their correlation with iron bioavailability were also evaluated. Results : The iron content of all by-products was high, but the concentration of iron and predicted bioavailability were not related. Rice bran and cupuaçu seed peel had the highest amount of phytic acid and tannins, and lowest iron bioavailability. Cucumber peels alone, and with added extrinsic Fe, and pumpkin peels with extrinsic added iron, had the highest iron bioavailability. Conclusion : The results suggest that cucumber and pumpkin peel could be valuable alternative sources of bioavailable Fe to reduce iron deficiency in at-risk populations.

  4. Hydroponic cultivation improves the nutritional quality of soybean and its products.

    Science.gov (United States)

    Palermo, Mariantonella; Paradiso, Roberta; De Pascale, Stefania; Fogliano, Vincenzo

    2012-01-11

    Hydroponic cultivation allows the control of environmental conditions, saves irrigation water, increases productivity, and prevents plant infections. The use of this technique for large commodities such as soybean is not a relevant issue on fertile soils, but hydroponic soybean cultivation could provide proteins and oil in adverse environmental conditions. In this paper, the compositions of four cultivars of soybean seeds and their derivates, soy milk and okara, grown hydroponically were compared to that of the same cultivar obtained from soil cultivation in an open field. Besides proximal composition, the concentrations of phytic acid and isoflavones were monitored in the seeds, soy milk, and okara. Results demonstrated that, independent from the cultivar, hydroponic compared to soil cultivation promoted the accumulation of fats (from 17.37 to 21.94 g/100 g dry matter) and total dietary fiber (from 21.67 to 28.46 g/100 g dry matter) and reduced isoflavones concentration (from 17.04 to 7.66 mg/kg dry matter), whereas protein concentration was unaffected. The differences found in seed composition were confirmed in the respective okara products, but the effect of cultivation system was not significant looking at the soy milk composition. Data showed that hydroponic cultivation improved the nutritional quality of soybean seeds with regard to fats and dietary fiber. They also suggest that specific cultivars should be selected to obtain the desired nutritional features of the soybean raw material depending on its final destination.

  5. Study of solution speciation, soil retention and soil-plant transfer of zirconium

    International Nuclear Information System (INIS)

    Ferrand, E.

    2005-12-01

    Within the framework of the risks prevention policy of Andra, the radioactive zirconium introduction ( 93 Zr and 95 Zr) into the environment could be carried out starting from the nuclear waste whose storage is envisaged in deep geological layers. Thus, the goal of this study was to evaluate the parameters and phenomena influencing speciation (various chemical forms) and the soil-plant transfer of zirconium. Experiments of adsorption/desorption of zirconium with different ligands likely to be present in soils (goethite and humic acid) and with two soils, with contrasted characteristics, close to the underground research laboratory of Andra (Meuse) were carried out. These results of adsorption were then confronted with those obtained by the MUSIC and NICA-DONNAN models carried out using the computer code ECOSAT. Zr presents a strong affinity for the two types of soils and the soils constituents. Specific interactions of internal sphere type with the goethite were highlighted using the model. Soil-solution partition coefficients, or K d , values increase with pH and contact time. Various types of edible plants, pea (Pisum sativum L.) and tomato (Lycopersicon esculentum L cv. St Pierre) were cultivated in hydroponic conditions and in soils spiked with various sources of Zirconium. The maximum zirconium contents are mainly measured in the roots of the plants. The soil-plant transfer factors measured during these experiments show a weak bioavailability of zirconium. An influence of speciation on Zr bioavailability is however highlighted. Some chemical forms, such as oxychloride or acetate, are more easily mobilized than others by the plant. (author)

  6. Relative Bioavailability and Bioaccessability and Speciation of ...

    Science.gov (United States)

    Background: Assessment of soil arsenic (As) bioavailability may profoundly affect the extent of remediation required at contaminated sites by improving human exposure estimates. Because small adjustments in soil As bioavailability estimates can significantly alter risk assessments and remediation goals, convenient, rapid, reliable, and inexpensive tools are needed to determine soil As bioavailability. Objectives: We evaluated inexpensive methods for assessing As bioavailability in soil as a means to improve human exposure estimates and potentially reduce remediation costs. Methods: Nine soils from residential sites affected by mining or smelting activity and two National Institute of Standards and Technology standard reference materials were evaluated for As bioavailability, bioaccessibility, and speciation. Arsenic bioavailability was determined using an in vivo mouse model, and As bioaccessibility was determined using the Solubility/Bioavailability Research Consortium in vitro assay. Arsenic speciation in soil and selected soil physicochemical properties were also evaluated to determine whether these parameters could be used as predictors of As bio¬availability and bioaccessibility. Results: In the mouse assay, we compared bioavailabilities of As in soils with that for sodium arsenate. Relative bioavailabilities (RBAs) of soil As ranged from 11% to 53% (mean, 33%). In vitro soil As bioaccessibility values were strongly correlated with soil As RBAs (R

  7. Topical bioavailability of diclofenac from locally-acting, dermatological formulations.

    Science.gov (United States)

    Cordery, S F; Pensado, A; Chiu, W S; Shehab, M Z; Bunge, A L; Delgado-Charro, M B; Guy, R H

    2017-08-30

    Assessment of the bioavailability of topically applied drugs designed to act within or beneath the skin is a challenging objective. A number of different, but potentially complementary, techniques are under evaluation. The objective of this work was to evaluate in vitro skin penetration and stratum corneum tape-stripping in vivo as tools with which to measure topical diclofenac bioavailability from three approved and commercialized products (two gels and one solution). Drug uptake into, and its subsequent clearance from, the stratum corneum of human volunteers was used to estimate the input rate of diclofenac into the viable skin layers. This flux was compared to that measured across excised porcine skin in conventional diffusion cells. Both techniques clearly demonstrated (a) the superiority in terms of drug delivery from the solution, and (b) that the two gels performed similarly. There was qualitative and, importantly, quantitative agreement between the in vitro and in vivo measurements of drug flux into and beyond the viable skin. Evidence is therefore presented to support an in vivo - in vitro correlation between methods to assess topical drug bioavailability. The potential value of the stratum corneum tape-stripping technique to quantify drug delivery into (epi)dermal and subcutaneous tissue beneath the barrier is demonstrated. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. An improved, low-cost, hydroponic system for growing Arabidopsis and other plant species under aseptic conditions.

    Science.gov (United States)

    Alatorre-Cobos, Fulgencio; Calderón-Vázquez, Carlos; Ibarra-Laclette, Enrique; Yong-Villalobos, Lenin; Pérez-Torres, Claudia-Anahí; Oropeza-Aburto, Araceli; Méndez-Bravo, Alfonso; González-Morales, Sandra-Isabel; Gutiérrez-Alanís, Dolores; Chacón-López, Alejandra; Peña-Ocaña, Betsy-Anaid; Herrera-Estrella, Luis

    2014-03-21

    Hydroponics is a plant growth system that provides a more precise control of growth media composition. Several hydroponic systems have been reported for Arabidopsis and other model plants. The ease of system set up, cost of the growth system and flexibility to characterize and harvest plant material are features continually improved in new hydroponic system reported. We developed a hydroponic culture system for Arabidopsis and other model plants. This low cost, proficient, and novel system is based on recyclable and sterilizable plastic containers, which are readily available from local suppliers. Our system allows a large-scale manipulation of seedlings. It adapts to different growing treatments and has an extended growth window until adult plants are established. The novel seed-holder also facilitates the transfer and harvest of seedlings. Here we report the use of our hydroponic system to analyze transcriptomic responses of Arabidopsis to nutriment availability and plant/pathogen interactions. The efficiency and functionality of our proposed hydroponic system is demonstrated in nutrient deficiency and pathogenesis experiments. Hydroponically grown Arabidopsis seedlings under long-time inorganic phosphate (Pi) deficiency showed typical changes in root architecture and high expression of marker genes involved in signaling and Pi recycling. Genome-wide transcriptional analysis of gene expression of Arabidopsis roots depleted of Pi by short time periods indicates that genes related to general stress are up-regulated before those specific to Pi signaling and metabolism. Our hydroponic system also proved useful for conducting pathogenesis essays, revealing early transcriptional activation of pathogenesis-related genes.

  9. An efficient method for estimating bioavailability of arsenic in soils: a comparison with acid leachates

    Energy Technology Data Exchange (ETDEWEB)

    Ng, J.C.; Hertle, A.; Seawright, A.A. [Queensland Univ., Brisbane (Australia). National Research Centre for Environmental Toxicology; Mcdougall, K.W. [Wollongbar Agricultural Institute (Australia)

    1997-12-31

    With the view of estimating bioavailability of metals from contaminated sites and risk assessment, a rat model is used for a comparative bioavailability test in which groups of rats were given via the oral route a slurry of arsenic contaminated soils, a solution of sodium arsenate or sodium arsenite, or calcium arsenite spiked wheat flour. Blood samples are collected 96 hours after dosing for the arsenic determination. The comparative bioavailability (CBA) is calculated from the ratio of arsenic results obtained from the soil group and arsenic control group dosed with sodium arsenate or arsenite. CBA results show a good correlation with 0.5 M HCl and 1.0 M HCl acid leachates. The rat model process to be a sensitive indicator using the blood for the study of bioavailability of arsenic in soils

  10. Understanding Water-Stress Responses in Soybean Using Hydroponics System-A Systems Biology Perspective.

    Science.gov (United States)

    Tripathi, Prateek; Rabara, Roel C; Shulaev, Vladimir; Shen, Qingxi J; Rushton, Paul J

    2015-01-01

    The deleterious changes in environmental conditions such as water stress bring physiological and biochemical changes in plants, which results in crop loss. Thus, combating water stress is important for crop improvement to manage the needs of growing population. Utilization of hydroponics system in growing plants is questionable to some researchers, as it does not represent an actual field condition. However, trying to address a complex problem like water stress we have to utilize a simpler growing condition like the hydroponics system wherein every input given to the plants can be controlled. With the advent of high-throughput technologies, it is still challenging to address all levels of the genetic machinery whether a gene, protein, metabolite, and promoter. Thus, using a system of reduced complexity like hydroponics can certainly direct us toward the right candidates, if not completely help us to resolve the issue.

  11. Understanding Water-Stress Responses in Soybean Using Hydroponics System—A Systems Biology Perspective

    Science.gov (United States)

    Tripathi, Prateek; Rabara, Roel C.; Shulaev, Vladimir; Shen, Qingxi J.; Rushton, Paul J.

    2015-01-01

    The deleterious changes in environmental conditions such as water stress bring physiological and biochemical changes in plants, which results in crop loss. Thus, combating water stress is important for crop improvement to manage the needs of growing population. Utilization of hydroponics system in growing plants is questionable to some researchers, as it does not represent an actual field condition. However, trying to address a complex problem like water stress we have to utilize a simpler growing condition like the hydroponics system wherein every input given to the plants can be controlled. With the advent of high-throughput technologies, it is still challenging to address all levels of the genetic machinery whether a gene, protein, metabolite, and promoter. Thus, using a system of reduced complexity like hydroponics can certainly direct us toward the right candidates, if not completely help us to resolve the issue. PMID:26734044

  12. Automated Liquid-Level Control of a Nutrient Reservoir for a Hydroponic System

    Science.gov (United States)

    Smith, Boris; Asumadu, Johnson A.; Dogan, Numan S.

    1997-01-01

    A microprocessor-based system for control of the liquid level of a nutrient reservoir for a plant hydroponic growing system has been developed. The system uses an ultrasonic transducer to sense the liquid level or height. A National Instruments' Multifunction Analog and Digital Input/Output PC Kit includes NI-DAQ DOS/Windows driver software for an IBM 486 personal computer. A Labview Full Development system for Windows is the graphical programming system being used. The system allows liquid level control to within 0.1 cm for all levels tried between 8 and 36 cm in the hydroponic system application. The detailed algorithms have been developed and a fully automated microprocessor based nutrient replenishment system has been described for this hydroponic system.

  13. A hydroponic system for growing gnotobiotic vs. sterile plants to study phytoremediation processes.

    Science.gov (United States)

    Kurzbaum, E; Kirzhner, F; Armon, R

    2014-01-01

    In some phytoremediation studies it is desirable to separate and define the specific contribution of plants and root-colonizing bacteria towards contaminant removal. Separating the influence of plants and associated bacteria is a difficult task for soil root environments. Growing plants hydroponically provides more control over the biological factors in contaminant removal. In this study, a hydroponic system was designed to evaluate the role of sterile plant roots, rhizodeposition, and root-associated bacteria in the removal of a model contaminant, phenol. A strain of Pseudomonas pseudoalcaligenes that grows on phenol was inoculated onto plant roots. The introduced biofilm persisted in the root zone and promoted phenol removal over non-augmented controls. These findings indicate that this hydroponic system can be a valuable tool for phytoremediation studies that investigate the effects of biotic and abiotic factors on pollution remediation.

  14. Antimony bioavailability in mine soils

    International Nuclear Information System (INIS)

    Flynn, Helen C.; Meharg, Andy A.; Bowyer, Phillipa K.; Paton, Graeme I.

    2003-01-01

    Antimony has low bioavailability in mining and smelting contaminated soils and bacterial biosensors are not suitable for its detection. - Five British former mining and smelting sites were investigated and found to have levels of total Sb of up to 700 mg kg -1 , indicating high levels of contamination which could be potentially harmful. However, this level of Sb was found to be biologically unavailable over a wide range of pH values, indicating that Sb is relatively unreactive and immobile in the surface layers of the soil, remaining where it is deposited rather than leaching into lower horizons and contaminating ground water. Sb, sparingly soluble in water, was unavailable to the bacterial biosensors tested. The bioluminescence responses were correlated to levels of co-contaminants such as arsenic and copper, rather than to Sb concentrations. This suggests that soil contamination by Sb due to mining and smelting operations is not a severe risk to the environment or human health provided that it is present as immobile species and contaminated sites are not used for purposes which increase the threat of exposure to identified receptors. Co-contaminants such as arsenic and copper are more bioavailable and may therefore be seen as a more significant risk

  15. Use of hydroponics culture to assess nutrient supply by treated wastewater.

    Science.gov (United States)

    Adrover, Maria; Moyà, Gabriel; Vadell, Jaume

    2013-09-30

    The use of treated wastewater for irrigation is increasing, especially in those areas where water resources are limited. Treated wastewaters contain nutrients that are useful for plant growth and help to reduce fertilizers needs. Nutrient content of these waters depends on the treatment system. Nutrient supply by a treated wastewater from a conventional treatment plant (CWW) and a lagooned wastewater from the campus of the University of Balearic Islands (LWW) was tested in an experiment in hydroponics conditions. Half-strength Hoagland nutrient solution (HNS) was used as a control. Barley (Hordeum vulgare L.) seedlings were grown in 4 L containers filled with the three types of water. Four weeks after planting, barley was harvested and root and shoot biomass was measured. N, P, K, Ca, Mg, Na and Fe contents were determined in both tissues and heavy metal concentrations were analysed in shoots. N, P and K concentrations were lower in LWW than in CWW, while HNS had the highest nutrient concentration. Dry weight barley production was reduced in CWW and LWW treatments to 49% and 17%, respectively, comparing to HNS. However, to a lesser extent, reduction was found in shoot and root N content. Treated wastewater increased Na content in shoots and roots of barley and Ca and Cr content in shoots. However, heavy metals content was lower than toxic levels in all the cases. Although treated wastewater is an interesting water resource, additional fertilization is needed to maintain a high productivity in barley seedlings. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Silicon alleviates Cd stress of wheat seedlings (Triticum turgidum L. cv. Claudio) grown in hydroponics.

    Science.gov (United States)

    Rizwan, M; Meunier, J-D; Davidian, J-C; Pokrovsky, O S; Bovet, N; Keller, C

    2016-01-01

    We investigated the potential role of silicon in improving tolerance and decreasing cadmium (Cd) toxicity in durum wheat (Triticum turgidum L. durum) either through a reduced Cd uptake or exclusion/sequestration in non-metabolic tissues. For this, plants were grown in hydroponic conditions for 10 days either in presence or absence of 1 mM Si and for 11 additional days in various Cd concentrations (0, 0.5, 5.0 and 50 μM). After harvesting, morphological and physiological parameters as well as elemental concentrations were recorded. Cadmium caused reduction in growth parameters, photosynthetic pigments and mineral nutrient concentrations both in shoots and roots. Shoot and root contents of malate, citrate and aconitate increased, while contents of phosphate, nitrate and sulphate decreased with increasing Cd concentrations in plants. Addition of Si to the nutrient solution mitigated these adverse effects: Cd concentration in shoots decreased while concentration of Cd adsorbed at the root cell apoplasmic level increased together with Zn uptake by roots. Overall, total Cd uptake decreased in presence of Si. There was no co-localisation of Cd and Si either at the shoot or at the root levels. No Cd was detected in leaf phytoliths. In roots, Cd was mainly detected in the cortical parenchyma and Si at the endodermis level, while analysis of the outer thin root surface of the plants grown in the 50 μM Cd + 1 mM Si treatment highlighted non-homogeneous Cd and Si enrichments. These data strongly suggest the existence of a root localised protection mechanism consisting in armoring the root surface by Si- and Cd-bearing compounds and in limiting root-shoot translocation.

  17. Stimulation of nodulation in field peas (Pisum sativum) by low concentrations of ammonium in hydroponic culture

    Science.gov (United States)

    Waterer, J. G.; Vessey, J. K.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1992-01-01

    Although the inhibitory effects of high concentrations of mineral N (> 1.0 mM) on nodule development and function have often been studied, the effects of low, static concentrations of NH4+ (hydroponic culture on nodule establishment and nitrogenase activity in field peas [Pisum sativum L. cv. Express (Svalof AB)] for the initial 28 days after planting (DAP). Peas grown in the presence of low concentrations of NH4+ had significantly greater nodule numbers (up to 4-fold) than plants grown without NH4+. Nodule dry weight per plant was significantly higher at 14, 21 and 28 DAP in plants grown in the presence of NH4+, but individual nodule mass was lower than in plants grown without NH4+. The nodulation pattern of the plants supplied with NH4+ was similar to that often reported for supernodulating mutants, however the plants did not express other growth habits associated with supernodulation. Estimates of N2 fixation indicate that the plus-NH4+ peas fixed as much or more N2 than the plants supplied with minus-NH4+ nutrient solution. There were no significant differences in nodule numbers, nodule mass or NH4+ uptake between the plants grown at the two concentrations of NH4+. Nodulation appeared to autoregulate by 14 DAP in the minus-NH4+ treatment. Plant growth and N accumulation in the minus-NH4+ plants lagged behind those of the plus-NH4+ treatments prior to N2 fixation becoming well established in the final week of the experiment. The plus-NH4+ treatments appeared not to elicit autoregulation and plants continued to initiate nodules throughout the experiment.

  18. Hydroponics gel as a new electrolyte gelling agent for alkaline zinc-air cells

    Science.gov (United States)

    Othman, R.; Basirun, W. J.; Yahaya, A. H.; Arof, A. K.

    The viability of hydroponics gel as a new alkaline electrolyte gelling agent is investigated. Zinc-air cells are fabricated employing 12 wt.% KOH electrolyte immobilised with hydroponics gel. The cells are discharged at constant currents of 5, 50 and 100 mA. XRD and SEM analysis of the anode plates after discharge show that the failure mode is due to the formation of zinc oxide insulating layers and not due to any side reactions between the gel and the plate or the electrolyte.

  19. Composição e manejo da solução nutritiva visando a diminuição do teor de nitrato nas folhas de alface hidropônica Nutrient solution control in order to decrease nitrate content in leaves of hydroponic lettuce

    Directory of Open Access Journals (Sweden)

    Hideaki W Takahashi

    2007-03-01

    Full Text Available As hortaliças folhosas têm elevada capacidade de acumular nitrato nas folhas e pecíolos, mas o consumo excessivo de nitrato pode ser prejudicial à saúde humana. Determinou-se a melhor combinação de doses e fontes de N e época de fornecimento na solução nutritiva para obter diminuição do teor de nitrato em folhas de alface, cv. Vera. Os tratamentos foram (T1 210 mg L-1 de N como nitrato (N-NO3- do transplante à colheita; (T2 189 mg L-1 (90% de N-NO3- associado com 21 mg L-1 (10% de N como amônio (N-NH4+; (T3 210 mg L-1 de N-NO3- até 24 dias após transplante e substituição por 189 mg L-1 de N-NO3- e 21 mg L-1 de N-NH4- até o final do ciclo; (T4 210 mg L-1 de N-NO3- até o 24º dia e redução para105 mg L-1 de N-NO3- no final do ciclo e (T5 210 mg L-1 de N-NO3- até o 24º dia do transplante e redução para 52,5 mg L-1 de N-NO3- no final do ciclo. Os melhores resultados foram obtidos com os tratamentos 2 e 3, obtendo teores de nitrato na parte aérea de 1.756 a 1.920 mg kg-1 na matéria fresca e produtividade equivalente ao tratamento 1. A redução de nitrato em solução nutritiva no final do ciclo não reduziu o teor de nitrato em folhas.The edible vegetables have a high capacity to accumulate nitrate in the leaves and stem. The excessive consumption of nitrate can be harmful to human health. The best combination of doses and sources of N and supply time were determined in the nutritious solution to reduce the nitrate concentration in cv. Vera leaves of lettuce. The treatments were (T1 210 mg L-1 of N as nitrate (N-NO3- from transplantation to harvest; (T2 189 mg L-1 (90% of N as nitrate (N-NO3- associated with 21 mg L-1 (10% of N as ammonium (N-NH4+; (T3 210 mg L-1 of nitrate until the 24th day and substitution for 189 mg L-1 of nitrate and 21 mg L-1 N-NH4+ until the end of the cycle; (T4 210 mg L-1 of N-NO3- until the 24th day of the transplant and reduction to 105 mg L-1 of N-NO3- until the end of the cycle; (T5 210 mg L

  20. Bioavailability and biodistribution of nanodelivered lutein

    Science.gov (United States)

    The aim of the study was to evaluate the ability of poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NP) to enhance lutein bioavailability. The bioavailability of free lutein and PLGA-NP lutein in rats was assessed by determining plasma pharmacokinetics and deposition in selected tissues. Lutein ...

  1. Pharmaceutical and pharmacological approaches for bioavailability

    Indian Academy of Sciences (India)

    Much research has been done to determine drug–drug and herb–drug interactions for improving the bioavailability of etoposide. The present article gives insight on pharmaceutical and pharmacological attempts made from time to time to overcome the erratic inter- and intra-patient variability for improving the bioavailability ...

  2. Bioavailability of voriconazole in hospitalised patients

    NARCIS (Netherlands)

    Veringa, Anette; Geling, Sanne; Span, Lambert F R; Vermeulen, Karin M; Zijlstra, Jan G; van der Werf, Tjip S; Kosterink, Jos G W; Alffenaar, Jan-Willem C

    An important element in antimicrobial stewardship programmes is early switch from intravenous (i.v.) to oral antimicrobial treatment, especially for highly bioavailable drugs. The antifungal agent voriconazole is available both in i.v. and oral formulations and bioavailability is estimated to be

  3. Bioavailability as a tool in site management

    NARCIS (Netherlands)

    Harmsen, J.; Naidu, R.

    2013-01-01

    Bioavailability can form the basis for describing potential risks that contaminants pose to the environment and human health, and for determining remedial options to reduce risks of contaminant dispersal and toxicity. In assessments of polluted sites, methods to measure bioavailability can lead to a

  4. In vivo efficacy and bioavailability of lumefantrine: Evaluating the application of Pheroid technology.

    Science.gov (United States)

    du Plessis, Lissinda H; Govender, Katya; Denti, Paolo; Wiesner, Lubbe

    2015-11-01

    The oral absorption of compounds with low aqueous solubility, such as lumefantrine, is typically limited by the dissolution rate in the gastro-intestinal tract, resulting in erratic absorption and highly variable bioavailability. In previous studies we reported on the ability of Pheroid vesicles to improve the bioavailability of poorly soluble drugs. In the present study a Pro-Pheroid formulation, a modification of the previous formulation, was applied to improve the solubility of lumefantrine after oral administration and compared to lumefantrine in DMSO:water (1:9 v/v) solution (reference solution). A bioavailability study of lumefantrine was conducted in a mouse model in fed and fasted states. When using the reference solution, the bioavailability of the lumefantrine heavily depended on food intake, resulting in a 2.7 times higher bioavailability in the fed state when compared to the fasted state. It also showed large between-subject variability. When formulated using Pro-Pheroid, the bioavailability of lumefantrine was 3.5 times higher as compared to lumefantrine in the reference solution and fasting state. Pro-Pheroid also dramatically reduced the effects of food intake and the between-subject variability for bioavailability observed with the reference. In vivo antimalarial efficacy was also evaluated with lumefantrine formulated using Pro-Pheroid technology compared to the reference solution. The results indicated that lumefantrine in Pro-Pheroid formulation exhibited improved antimalarial activity in vitro by 46.8%, when compared to the reference. The results of the Peters' 4-day suppressive test indicated no significant difference in the efficacy or mean survival time of the mice in the Pro-Pheroid formulation and reference test groups when compared to the positive control, chloroquine. These findings suggest that using the Pro-Pheroid formulation improves the bioavailability of lumefantrine, eliminates the food effect associated with lumefantrine as well

  5. Effect of bacterial root symbiosis and urea as source of nitrogen on performance of soybean plants grown hydroponically for Bioregenerative Life Support Systems (BLSSs).

    Science.gov (United States)

    Paradiso, Roberta; Buonomo, Roberta; Dixon, Mike A; Barbieri, Giancarlo; De Pascale, Stefania

    2015-01-01

    Soybean is traditionally grown in soil, where root symbiosis with Bradyrhizobium japonicum can supply nitrogen (N), by means of bacterial fixation of atmospheric N2. Nitrogen fertilizers inhibit N-fixing bacteria. However, urea is profitably used in soybean cultivation in soil, where urease enzymes of telluric microbes catalyze the hydrolysis to ammonium, which has a lighter inhibitory effect compared to nitrate. Previous researches demonstrated that soybean can be grown hydroponically with recirculating complete nitrate-based nutrient solutions. In Space, urea derived from crew urine could be used as N source, with positive effects in resource procurement and waste recycling. However, whether the plants are able to use urea as the sole source of N and its effect on root symbiosis with B. japonicum is still unclear in hydroponics. We compared the effect of two N sources, nitrate and urea, on plant growth and physiology, and seed yield and quality of soybean grown in closed-loop Nutrient Film Technique (NFT) in growth chamber, with or without inoculation with B. japonicum. Urea limited plant growth and seed yield compared to nitrate by determining nutrient deficiency, due to its low utilization efficiency in the early developmental stages, and reduced nutrients uptake (K, Ca, and Mg) throughout the whole growing cycle. Root inoculation with B. japonicum did not improve plant performance, regardless of the N source. Specifically, nodulation increased under fertigation with urea compared to nitrate, but this effect did not result in higher leaf N content and better biomass and seed production. Urea was not suitable as sole N source for soybean in closed-loop NFT. However, the ability to use urea increased from young to adult plants, suggesting the possibility to apply it during reproductive phase or in combination with nitrate in earlier developmental stages. Root symbiosis did not contribute significantly to N nutrition and did not enhance the plant ability to use

  6. The Nutraceutical Bioavailability Classification Scheme: Classifying Nutraceuticals According to Factors Limiting their Oral Bioavailability.

    Science.gov (United States)

    McClements, David Julian; Li, Fang; Xiao, Hang

    2015-01-01

    The oral bioavailability of a health-promoting dietary component (nutraceutical) may be limited by various physicochemical and physiological phenomena: liberation from food matrices, solubility in gastrointestinal fluids, interaction with gastrointestinal components, chemical degradation or metabolism, and epithelium cell permeability. Nutraceutical bioavailability can therefore be improved by designing food matrices that control their bioaccessibility (B*), absorption (A*), and transformation (T*) within the gastrointestinal tract (GIT). This article reviews the major factors influencing the gastrointestinal fate of nutraceuticals, and then uses this information to develop a new scheme to classify the major factors limiting nutraceutical bioavailability: the nutraceutical bioavailability classification scheme (NuBACS). This new scheme is analogous to the biopharmaceutical classification scheme (BCS) used by the pharmaceutical industry to classify drug bioavailability, but it contains additional factors important for understanding nutraceutical bioavailability in foods. The article also highlights potential strategies for increasing the oral bioavailability of nutraceuticals based on their NuBACS designation (B*A*T*).

  7. An experimental set-up to study carbon, water, and nitrate uptake rates by hydroponically grown plants.

    Science.gov (United States)

    Andriolo, J L; Le Bot, J; Gary, C; Sappe, G; Orlando, P; Brunel, B; Sarrouy, C

    1996-01-01

    The experimental system described allows concomitant hourly measurements of CO2, H2O, and NO3 uptake rates by plants grown hydroponically in a greenhouse. Plants are enclosed in an airtight chamber through which air flows at a controlled speed. Carbon dioxide exchange and transpiration rates are determined from respective differences of concentrations of CO2 and water vapor of the air at the system inlet and outlet. This set-up is based on the "open-system" principle with improvements made on existing systems. For instance, propeller anemometers are used to monitor air flow rates in the chamber. From their signal it is possible to continuously adjust air speed to changing environmental conditions and plant activity. The air temperature inside the system therefore never rises above that outside. Water and NO3 uptake rates are calculated at time intervals from changes in the volume and the NO3 concentration of the nutrient solution in contact with the roots. The precise measurement of the volume of solution is achieved using a balance which has a higher precision than any liquid level sensors. Nitrate concentration is determined in the laboratory from aliquots of solution sampled at time intervals. A number of test runs are reported which validate the measurements and confirm undisturbed conditions within the system. Results of typical diurnal changes in CO2, H2O, and NO3 uptake rates by fruiting tomato plants are also presented.

  8. [Bioavailability and factors influencing its rate].

    Science.gov (United States)

    Vraníková, Barbora; Gajdziok, Jan

    Bioavailability can be defined as the rate and range of active ingredient absorption, when it becomes available in the systemic circulation or at the desired site of drug action, respectively. Drug bioavailability after oral administration is affected by anumber of different factors, including physicochemical properties of the drug, physiological aspects, the type of dosage form, food intake, biorhythms, and intra- and interindividual variability of the human population. This article is the first from the series dealing with the bioavailability and methods leading to its improvement. The aim of the present paper is to provide an overview of aspects influencing the rate of bioavailability after oral administration of the active ingredient. Subsequentarticles will provide detailed descriptions of methods used for dug bioavailability improvement, which are here only summarized.

  9. Organoclays reduce arsenic bioavailability and bioaccessibility in contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Binoy; Naidu, Ravi; Rahman, Mohammad Mahmudur; Megharaj, Mallavarapu; Xi, Yunfei [South Australia Univ., Mawson Lakes, SA (AU). Centre for Environmental Risk Assessment and Remediation (CERAR); South Australia Univ., Mawson Lakes, SA (AU). Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE)

    2012-05-15

    Purpose: Naturally occurring layer silicate clay minerals can be value added by modifying their surface properties to enhance their efficacy in the remediation of environmental contaminants. Silicate clay minerals modified by the introduction of organic molecules into the mineral structure are known as organoclays and show much promise for environmental remediation applications. The present study assesses the extent of decrease in bioavailable and bioaccessible arsenic (As) via enhanced adsorption by soil treated with organoclays. Materials and methods: Organoclays were prepared from hexadecyl trimethylammonium bromide (HDTMA) and Arquad {sup registered} 2HT-75 (Arquad) at surfactant loadings equivalent to twice the cation exchange capacity (CEC) of an Australian bentonite and characterised by X-ray diffraction (XRD). Batch experiments were conducted to evaluate the adsorption of arsenate onto the organoclays from aqueous solutions. Encouraged by these results, the organoclays were applied to As-spiked soils, at 10% and 20% (w/w) rates, to assess their capacity to stabilise soil As. After 1 month of incubation in the laboratory, bioavailable (1 mM Ca(NO{sub 3}){sub 2} extractable) and bioaccessible (1 M glycine extractable) As from the spiked soils were assessed. Results and discussion: Both the organobentonites effectively removed As from aqueous solutions. The adsorbent prepared with Arquad adsorbed 23% more As from aqueous phase than adsorbent prepared with HDTMA. Adsorption of As was controlled by anion exchange and electrostatic attraction. When applied to As-contaminated soils, the organoclays reduced the bioavailable As by as much as 81%. The extent of reduction of bioaccessible As was only up to 58%. The adsorbents were not as efficient in reducing bioaccessible As in contaminated soils as compared with bioavailable As. It could be attributed to the extreme pH condition (pH = 3) of the extractant used in the physiologically based extraction test method for

  10. Soil parameters are key factors to predict metal bioavailability to snails based on chemical extractant data

    International Nuclear Information System (INIS)

    Pauget, B.; Gimbert, F.; Scheifler, R.; Coeurdassier, M.; Vaufleury, A. de

    2012-01-01

    Although soil characteristics modulate metal mobility and bioavailability to organisms, they are often ignored in the risk assessment of metal transfer. This paper aims to determine the ability of chemical methods to assess and predict cadmium (Cd), lead (Pb) and zinc (Zn) environmental bioavailability to the land snail Cantareus aspersus. Snails were exposed in the laboratory for 28 days to 17 soils from around a former smelter. The soils were selected for their range of pH, organic matter, clay content, and Cd, Pb and Zn concentrations. The influence of soil properties on environmental availability (estimated using HF-HClO 4 , EDTA, CaCl 2 , NH 4 NO 3 , NaNO 3 , free ion activity and total dissolved metal concentration in soil solution) and on environmental bioavailability (modelled using accumulation kinetics) was identified. Among the seven chemical methods, only the EDTA and the total soil concentration can be used to assess Cd and Pb environmental bioavailability to snails (r² adj = 0.67 and 0.77, respectively). For Zn, none of the chemical methods were suitable. Taking into account the influence of the soil characteristics (pH and CEC) allows a better prediction of Cd and Pb environmental bioavailability (r² adj = 0.82 and 0.83, respectively). Even though alone none of the chemical methods tested could assess Zn environmental bioavailability to snails, the addition of pH, iron and aluminium oxides allowed the variation of assimilation fluxes to be predicted. A conceptual and practical method to use soil characteristics for risk assessment is proposed based on these results. We conclude that as yet there is no universal chemical method to predict metal environmental bioavailability to snails, and that the soil factors having the greatest impact depend on the metal considered. - Highlights: ► New approach to identify chemical methods able to predict metal bioavailability to snails. ► Bioavailability of cadmium, lead and zinc to snails was determined by

  11. Soil parameters are key factors to predict metal bioavailability to snails based on chemical extractant data

    Energy Technology Data Exchange (ETDEWEB)

    Pauget, B.; Gimbert, F., E-mail: frederic.gimbert@univ-fcomte.fr; Scheifler, R.; Coeurdassier, M.; Vaufleury, A. de

    2012-08-01

    Although soil characteristics modulate metal mobility and bioavailability to organisms, they are often ignored in the risk assessment of metal transfer. This paper aims to determine the ability of chemical methods to assess and predict cadmium (Cd), lead (Pb) and zinc (Zn) environmental bioavailability to the land snail Cantareus aspersus. Snails were exposed in the laboratory for 28 days to 17 soils from around a former smelter. The soils were selected for their range of pH, organic matter, clay content, and Cd, Pb and Zn concentrations. The influence of soil properties on environmental availability (estimated using HF-HClO{sub 4}, EDTA, CaCl{sub 2}, NH{sub 4}NO{sub 3}, NaNO{sub 3}, free ion activity and total dissolved metal concentration in soil solution) and on environmental bioavailability (modelled using accumulation kinetics) was identified. Among the seven chemical methods, only the EDTA and the total soil concentration can be used to assess Cd and Pb environmental bioavailability to snails (r Superscript-Two {sub adj} = 0.67 and 0.77, respectively). For Zn, none of the chemical methods were suitable. Taking into account the influence of the soil characteristics (pH and CEC) allows a better prediction of Cd and Pb environmental bioavailability (r Superscript-Two {sub adj} = 0.82 and 0.83, respectively). Even though alone none of the chemical methods tested could assess Zn environmental bioavailability to snails, the addition of pH, iron and aluminium oxides allowed the variation of assimilation fluxes to be predicted. A conceptual and practical method to use soil characteristics for risk assessment is proposed based on these results. We conclude that as yet there is no universal chemical method to predict metal environmental bioavailability to snails, and that the soil factors having the greatest impact depend on the metal considered. - Highlights: Black-Right-Pointing-Pointer New approach to identify chemical methods able to predict metal bioavailability

  12. Relative oral bioavailability of morphine and naltrexone derived from crushed morphine sulfate and naltrexone hydrochloride extended-release capsules versus intact product and versus naltrexone solution: a single-dose, randomized-sequence, open-label, three-way crossover trial in healthy volunteers.

    Science.gov (United States)

    Johnson, Franklin K; Stark, Jeffrey G; Bieberdorf, Frederick A; Stauffer, Joe

    2010-06-01

    Morphine sulfate/sequestered naltrexone hydrochloride (HCl) (MS-sNT) extended-release fixed-dose combination capsules, approved by the US Food and Drug Administration (FDA) in August 2009 for chronic moderate to severe pain, contain extended-release morphine pellets with a sequestered core of the opioid antagonist naltrexone. MS-sNT was designed so that if the product is tampered with by crushing, the naltrexone becomes bioavailable to mitigate morphine-induced subjective effects, rendering the product less attractive for tampering. The primary aim of this study was to compare the oral bioavailability of naltrexone and its metabolite 6-beta-naltrexol, derived from crushed pellets from MS-sNT capsules, to naltrexone solution. This study also assessed the relative bioavailability of morphine from crushed pellets from MS-sNT capsules and that from the whole, intact product. This single-dose, randomized-sequence, open-label, 3-period, 3-treatment crossover trial was conducted in healthy volunteers. Adults admitted to the study center underwent a 10-hour overnight fast before study drug administration. Each subject received all 3 of the following treatments, 1 per session, separated by a 14-day washout: tampered pellets (crushed for >or=2 minutes with a mortar and pestle) from a 60-mg MS-sNT capsule (60 mg morphine/2.4 mg naltrexone); 60-mg whole, intact MS-sNT capsule; and oral naltrexone HCl (2.4 mg) solution. Plasma concentrations of naltrexone and 6-beta-naltrexol were measured 0 to 168 hours after administration. Morphine pharmaco-kinetics of crushed and whole pellets were determined 0 to 72 hours after administration. The analysis of relative bioavailability was based on conventional FDA criteria for assuming bioequivalence; that is, 90% CIs for ratios of geometric means (natural logarithm [In]-transformed C(max) and AUC) fell within the range of 80% to 125%. Subjects underwent physical examinations, clinical laboratory tests, and ECG at screening and study

  13. Study of solution speciation, soil retention and soil-plant transfer of zirconium; Etude de la speciation en solution, de la retention dans les sols et du transfert sol-plante du zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Ferrand, E

    2005-12-15

    Within the framework of the risks prevention policy of Andra, the radioactive zirconium introduction ({sup 93}Zr and {sup 95}Zr) into the environment could be carried out starting from the nuclear waste whose storage is envisaged in deep geological layers. Thus, the goal of this study was to evaluate the parameters and phenomena influencing speciation (various chemical forms) and the soil-plant transfer of zirconium. Experiments of adsorption/desorption of zirconium with different ligands likely to be present in soils (goethite and humic acid) and with two soils, with contrasted characteristics, close to the underground research laboratory of Andra (Meuse) were carried out. These results of adsorption were then confronted with those obtained by the MUSIC and NICA-DONNAN models carried out using the computer code ECOSAT. Zr presents a strong affinity for the two types of soils and the soils constituents. Specific interactions of internal sphere type with the goethite were highlighted using the model. Soil-solution partition coefficients, or K{sub d}, values increase with pH and contact time. Various types of edible plants, pea (Pisum sativum L.) and tomato (Lycopersicon esculentum L cv. St Pierre) were cultivated in hydroponic conditions and in soils spiked with various sources of Zirconium. The maximum zirconium contents are mainly measured in the roots of the plants. The soil-plant transfer factors measured during these experiments show a weak bioavailability of zirconium. An influence of speciation on Zr bioavailability is however highlighted. Some chemical forms, such as oxychloride or acetate, are more easily mobilized than others by the plant. (author)

  14. Removal of micro-organisms in a small-scale hydroponics wastewater treatment system.

    Science.gov (United States)

    Ottoson, J; Norström, A; Dalhammar, G

    2005-01-01

    To measure the microbial removal capacity of a small-scale hydroponics wastewater treatment plant. Paired samples were taken from untreated, partly-treated and treated wastewater and analysed for faecal microbial indicators, i.e. coliforms, Escherichia coli, enterococci, Clostridium perfringens spores and somatic coliphages, by culture based methods. Escherichia coli was never detected in effluent water after >5.8-log removal. Enterococci, coliforms, spores and coliphages were removed by 4.5, 4.1, 2.3 and 2.5 log respectively. Most of the removal (60-87%) took place in the latter part of the system because of settling, normal inactivation (retention time 12.7 d) and sand filtration. Time-dependent log-linear removal was shown for spores (k = -0.17 log d(-1), r(2) = 0.99). Hydroponics wastewater treatment removed micro-organisms satisfactorily. Investigations on the microbial removal capacity of hydroponics have only been performed for bacterial indicators. In this study it has been shown that virus and (oo)cyst process indicators were removed and that hydroponics can be an alternative to conventional wastewater treatment.

  15. Hydroponics on a chip: analysis of the Fe deficient Arabidopsis thylakoid membrane proteome.

    Science.gov (United States)

    Laganowsky, Arthur; Gómez, Stephen M; Whitelegge, Julian P; Nishio, John N

    2009-04-13

    The model plant Arabidopsis thaliana was used to evaluate the thylakoid membrane proteome under Fe-deficient conditions. Plants were cultivated using a novel hydroponic system, called "hydroponics on a chip", which yields highly reproducible plant tissue samples for physiological analyses, and can be easily used for in vivo stable isotope labeling. The thylakoid membrane proteome, from intact chloroplasts isolated from Fe-sufficient and Fe-deficient plants grown with hydroponics on a chip, was analyzed using liquid chromatography coupled to mass spectrometry. Intact masses of thylakoid membrane proteins were measured, many for the first time, and several proteins were identified with post-translational modifications that were altered by Fe deficiency; for example, the doubly phosphorylated form of the photosystem II oxygen evolving complex, PSBH, increased under Fe-deficiency. Increased levels of photosystem II protein subunit PSBS were detected in the Fe-deficient samples. Antioxidant enzymes, including ascorbate peroxidase and peroxiredoxin Q, were only detected in the Fe-deficient samples. We present the first biochemical evidence that the two major LHC IIb proteins (LHCB1 and LHCB2) may have significantly different functions in the thylakoid membrane. The study illustrates the utility of intact mass proteomics as an indispensable tool for functional genomics. "Hydroponics on a chip" provides the ability to grow A. thaliana under defined conditions that will be useful for systems biology.

  16. Silicon alleviates Cd stress of wheat seedlings (Triticum turgidum L. cv. Claudio) grown in hydroponics

    DEFF Research Database (Denmark)

    Rizwan, M.; Meunier, J. D.; Davidian, J. C.

    2016-01-01

    We investigated the potential role of silicon in improving tolerance and decreasing cadmium (Cd) toxicity in durum wheat (Triticum turgidum L. durum) either through a reduced Cd uptake or exclusion/sequestration in non-metabolic tissues. For this, plants were grown in hydroponic conditions for 10...

  17. Improvement of sheep welfare and milk production fed on diet containing hydroponically germinating seeds

    Directory of Open Access Journals (Sweden)

    Antonia Zarrilli

    2010-01-01

    Full Text Available Plasma cortisol and milk production responses of 45 lactating Comisana sheeps (4th- 5th parity, divided into three homogeneous groups of 15 subject each, were used to evaluate the effects of two different levels of partial substitution of a complete feed with hydroponically germinating seeds. Germinated oat was employed after 7 days of hydroponic growth. The three groups received the following diets: Control group (T received only complete feed. The other 2 groups were fed on diet containing different levels of hydroponically germinating oat (1,5 kg – group A; 3 kg – group B. All the subjects have shown to accept the diets because the per capita ration was always completely consumed. In the second month, the A and B groups showed lower average values of cortisol (P<0.01 and a statistically significant increase in milk production as compared to T (P<0.05 and P<0.001. The obtained data induced to conclude that integration with hydroponically germinating oat in partial substitution of the complete feed does not modify biochemical and hematological parameters and seems to produce an improvement in animal welfare and production of milk.

  18. Environmental impacts of urban hydroponics in Europe: a case study in Lyon

    DEFF Research Database (Denmark)

    Romeo, Daina; Vea, Eldbjørg Blikra; Thomsen, Marianne

    2018-01-01

    a life cycle perspective. The results show that the hydroponic farm performs better than cultivations in heated greenhouses, and similarly to conventional open field farms. Moreover, the source of the electricity input is a determinant factor that, if carbon neutral (e.g. wind energy) allows vertical...

  19. Proliferation of Escherichia coli O157:H7 in soil and hydroponic microgreen production systems

    Science.gov (United States)

    Radish (Raphanus sativus var. longipinnatus) microgreens were produced from seeds inoculated with Escherichia coli O157: H7 using soil substitute and hydroponic production systems. E. coli populations on the edible and inedible parts of harvested microgreen plants and in growth medium were examined....

  20. Hydroponic isotope labeling of entire plants and high-performance mass spectrometry for quantitative plant proteomics.

    Science.gov (United States)

    Bindschedler, Laurence V; Mills, Davinia J S; Cramer, Rainer

    2012-01-01

    Hydroponic isotope labeling of entire plants (HILEP) combines hydroponic plant cultivation and metabolic labeling with stable isotopes using (15)N-containing inorganic salts to label whole and mature plants. Employing (15)N salts as the sole nitrogen source for HILEP leads to the production of healthy-looking plants which contain (15)N proteins labeled to nearly 100%. Therefore, HILEP is suitable for quantitative plant proteomic analysis, where plants are grown in either (14)N- or (15)N-hydroponic media and pooled when the biological samples are collected for relative proteome quantitation. The pooled (14)N-/(15)N-protein extracts can be fractionated in any suitable way and digested with a protease for shotgun proteomics, using typically reverse phase liquid chromatography nanoelectrospray ionization tandem mass spectrometry (RPLC-nESI-MS/MS). Best results were obtained with a hybrid ion trap/FT-MS mass spectrometer, combining high mass accuracy and sensitivity for the MS data acquisition with speed and high-throughput MS/MS data acquisition, increasing the number of proteins identified and quantified and improving protein quantitation. Peak processing and picking from raw MS data files, protein identification, and quantitation were performed in a highly automated way using integrated MS data analysis software with minimum manual intervention, thus easing the analytical workflow. In this methodology paper, we describe how to grow Arabidopsis plants hydroponically for isotope labeling using (15)N salts and how to quantitate the resulting proteomes using a convenient workflow that does not require extensive bioinformatics skills.

  1. Rapid and sensitive Nitrosomonas europaea biosensor assay for quantification of bioavailable ammonium sensu strictu in soil.

    Science.gov (United States)

    Nguyen, Minh Dong; Risgaard-Petersen, Nils; Sørensen, Jan; Brandt, Kristian K

    2011-02-01

    Knowledge on bioavailable ammonium sensu strictu (i.e., immediately available for cellular uptake) in soil is required to understand nutrient uptake processes in microorganisms and thus of vital importance for plant production. We here present a novel ammonium biosensor approach based on the lithoautotrophic ammonia-oxidizing bacterium Nitrosomonas europaea transformed with a luxAB sensor plasmid. Bioluminescence-based ammonium detection was achieved within 10 min with a quantification limit in liquid samples of ∼20 μM and a linear response range up to 400 μM. Biosensor and conventional chemical quantification of ammonium in soil solutions agreed well across a range of sample and assay conditions. The biosensor was subsequently applied for a solid phase-contact assay allowing for direct interaction of biosensor cells with soil particle-associated (i.e., exchangeable plus fixed) ammonium. The assay successfully quantified bioavailable ammonium even in unfertilized soil and demonstrated markedly higher ratios of bioavailable ammonium to water- or 2 M KCl-exchangeable ammonium in anoxic soil than in corresponding oxic soil. Particle-associated ammonium contributed by at least 74% and 93% of the total bioavailable pool in oxic and anoxic soil, respectively. The N. europaea biosensor should have broad relevance for environmental monitoring of bioavailable ammonium and processes depending on ammonium bioavailability.

  2. Incorporation of metal bioavailability into regulatory frameworks-metal exposure in water and sediment

    Energy Technology Data Exchange (ETDEWEB)

    Ahlf, Wolfgang [Inst. of Environmental Tech. and Energy Economics, TUHH, Hamburg (Germany); Drost, Wiebke [Umweltpruefung Chemikalien IV, Umweltbundesamt, Dessau (Germany); Heise, Susanne [Dept. of Life Sciences, HAW, Hamburg (Germany)

    2009-10-15

    Background, aim, and scope The cause for this position paper is the impression that risk assessors consider primarily the concentration of free metal ions dissolved in solution controlling metal bioavailability in aquatic systems. Aiming at a more realistic risk assessment of metals, bioavailability has to be discussed under the scope of main uptake routes of metals to organisms. Materials and methods On the basis of a review on the literature relating to bioavailability approaches, this work discusses the incorporation of metal bioavailability into the risk assessment of metals in the context of metal exposure. Results The biotic ligand model (BLM) and the concept of sulfide bound metals described by the ratio of simultaneously extracted metals and acid volatile sulfide concept (AVS) have been developed to consider the bioavailability of metals. Both approaches assume that the free ion concentration is the most relevant exposure pathway. However, apart from geochemical conditions, which control free metal concentration, bioavailability is additionally a result of contaminant/particle interaction and of organisms' activity. Asking for the relevant exposure pathways for inorganic metals to organisms, the compartments' water and sediment have been evaluated and also the importance of contaminated food. (orig.)

  3. Bioavailability in rats of metal adsorbed to soils

    International Nuclear Information System (INIS)

    Rubenstein, R.; Griffin, S.; Irene, S.; DeRosa, C.; Choudhury, H.

    1990-01-01

    The toxicity of metals to humans and animals has been well documented, however little data are available on the physiological bioavailability of metals from various soil types. These studies were designed to assess the bioavailability of sodium 75 selenate (NaS), 63 nickel chloride (NiCl) and 109 cadmium chloride (CdCl) adsorbed to sand or clay loam in rats. Each test compound was administered in seven dose groups: Group 1 - intravenously, Group 2 and 3 - oral aqueous solution by gavage, Groups 4-7 - aqueous suspension adsorbed to each soil type by gavage. Blood was collected from the jugular vein at intervals up to 48 hours post dosing and analyzed for radio-activity. Both NiCl and CdCl were poorly adsorbed from the soils. Approximately 3% of the CdCl bound to sand and 1.5% of the NiCl bound to clay loam were absorbed into the bloodstream. Approximately 0.5% and 0.1% of the CdCl bound to sand and clay, respectively were absorbed. NaS was well absorbed following oral administration with approximately 85% of the compound bound to sand and 94% bound to clay being absorbed into the blood. Bioavailability of metals from soil appears to be primarily affected by the ionic state of the metal. Anions, such as selenium, are more mobile in an acid environment and may leach more readily from soil. Cations, such as Ni and Cd may bind to soil more tightly, thus soil type becomes a factor affecting bioavailability

  4. Detection of nitrogen deficiency QTL in juvenile wild barley introgression lines growing in a hydroponic system.

    Science.gov (United States)

    Hoffmann, Astrid; Maurer, Andreas; Pillen, Klaus

    2012-10-20

    In this report we studied the genetic regulation of juvenile development of wild barley introgression lines (S42ILs) under two contrasting hydroponic nitrogen (N) supplies. Ten shoot and root related traits were examined among 42 S42ILs and the recurrent parent 'Scarlett'. The traits included tiller number, leaf number, plant height, leaf and root length, leaf to root length ratio, shoots and root dry weight, shoot to root weight ratio, and chlorophyll content. Our aims were (1) to test the suitability of a hydroponic system for early detection of favourable S42ILs, (2) to locate quantitative trait loci (QTL) that control the examined traits, (3) to identify favourable wild barley alleles that improve trait performances in regard to N treatment and, finally, (4) to validate the identified QTL through comparison with previously reported QTL originating from the same parental cross. The phenotypic data were analysed in a mixed model association study to detect QTL. The post-hoc Dunnett test identified 28 S42ILs that revealed significant (P hydroponic N study corresponded to QTL that were also detected in field trials with adult plants of a similar S42IL set or of the original S42 population. For instance, S42IL-135, -136 and -137, revealed increasing Hsp effects for tiller number, leaf number, leaf length, plant height and leaf to root ratio on the long arm of chromosome 7H. These QTL correspond to QTL for ears per plant and plant height that were previously detected in field trials conducted with the same S42ILs or with the S42 population. Our results suggest that the QTL we identified under hydroponic N cultivation partly correspond to QTL detected in field experiments. Due to this finding, screening of plants in early developmental stages grown in a hydroponic system may be a fast and cost effective method for early QTL detection and marker-assisted allelic selection, potentially speeding up elite barley breeding programs.

  5. Uptake, translocation and biotransformation of N-ethyl perfluorooctanesulfonamide (N-EtFOSA) by hydroponically grown plants.

    Science.gov (United States)

    Zhao, Shuyan; Zhou, Tao; Zhu, Lingyan; Wang, Bohui; Li, Ze; Yang, Liping; Liu, Lifen

    2018-04-01

    N-ethyl perfluorooctane sulfonamide (N-EtFOSA) is an important perfluorooctanesulfonate (PFOS) precursor (PreFOS) which is used in sulfluramid. The present work studied the uptake, translocation and metabolism of N-EtFOSA in wheat (Triticum aestivum L.), soybean (Glycine max L. Merrill) and pumpkin (Cucurbita maxima L.) by hydroponic exposure. Except for parent N-EtFOSA, its metabolites of perfluorooctane sulfonamide acetate (FOSAA), perfluorooctane sulfonamide (PFOSA), PFOS, perfluorohexane sulfonate (PFHxS) and perfluorobutane sulfonate (PFBS) were detected in the roots and shoots of all the three plant species examined. This suggested that plant roots could take up N-EtFOSA from solutions efficiently, and translocate to shoots. A positive correlation was found between root concentration factors (RCFs) of N-EtFOSA and root lipid content. Much higher proportion of N-EtFOSA transformation products in plant tissues than in the solutions suggested that N-EtFOSA could be in vivo metabolized in plant roots and shoots to FOSAA, PFOSA and PFOS, and other additional shorter-chain perfluoroalkane sulfonates (PFSAs), including PFHxS and PFBS. The results suggested that plants had biotransformation pathways to N-EtFOSA that were different than those from microorganisms and animals. This study provides important information about the uptake and metabolism of PreFOSs in plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Bioavailability of heavy metals in soils: definitions and practical implementation--a critical review.

    Science.gov (United States)

    Kim, Rog-Young; Yoon, Jeong-Ki; Kim, Tae-Seung; Yang, Jae E; Owens, Gary; Kim, Kwon-Rae

    2015-12-01

    Worldwide regulatory frameworks for the assessment and remediation of contaminated soils have moved towards a risk-based approach, taking contaminant bioavailability into consideration. However, there is much debate on the precise definition of bioavailability and on the standardization of methods for the measurement of bioavailability so that it can be reliably applied as a tool for risk assessment. Therefore, in this paper, we reviewed the existing definitions of heavy metal bioavailability in relation to plant uptake (phytoavailability), in order to better understand both the conceptual and operational aspects of bioavailability. The related concepts of specific and non-specific adsorption, as well as complex formation and organic ligand affinity were also intensively discussed to explain the variations of heavy metal solubility and mobility in soils. Further, the most frequently used methods to measure bioavailable metal soil fractions based on both chemical extractions and mechanistic geochemical models were reviewed. For relatively highly mobile metals (Cd, Ni, and Zn), a neutral salt solution such as 0.01 M CaCl2 or 1 M NH4NO3 was recommended, whereas a strong acid or chelating solution such as 0.43 M HNO3 or 0.05 M DTPA was recommended for strongly soil-adsorbed and less mobile metals (Cu, Cr, and Pb). While methods which assessed the free metal ion activity in the pore water such as DGT and DMT or WHAM/Model VI, NICA-Donnan model, and TBLM are advantageous for providing a more direct measure of bioavailability, few of these models have to date been properly validated.

  7. 21 CFR 320.38 - Retention of bioavailability samples.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Retention of bioavailability samples. 320.38... (CONTINUED) DRUGS FOR HUMAN USE BIOAVAILABILITY AND BIOEQUIVALENCE REQUIREMENTS Procedures for Determining the Bioavailability or Bioequivalence of Drug Products § 320.38 Retention of bioavailability samples...

  8. Removal of 4-chlorobenzoic acid from spiked hydroponic solution by willow trees (Salix viminalis)

    Czech Academy of Sciences Publication Activity Database

    Deavers, K.; Macek, Tomáš; Karlson, U. G.; Trapp, S.

    2010-01-01

    Roč. 17, č. 7 (2010), s. 1355-1361 ISSN 0944-1344 R&D Projects: GA ČR GA203/06/0563 Institutional research plan: CEZ:AV0Z40550506 Keywords : chlorobenzoic acid * degradation * metabolism * PCB Subject RIV: EI - Biotechnology ; Bionics Impact factor: 2.870, year: 2010

  9. Accumulation of radioiodine from aqueous solution by hydroponically cultivated sunflower (Helianthus annuus L.)

    Czech Academy of Sciences Publication Activity Database

    Soudek, Petr; Tykva, Richard; Vaňková, Radomíra; Vaněk, Tomáš

    2006-01-01

    Roč. 57, č. 3 (2006), s. 220-225 ISSN 0098-8472 R&D Projects: GA MŠk(CZ) 1P05OC042 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z50380511 Keywords : radiophytoremediation * Helianthus annuus * radioiodine Subject RIV: DK - Soil Contamination ; De-contamination incl. Pesticides Impact factor: 1.820, year: 2006

  10. Nutrient uptake of ornamental plants exposed to arsenic in hydroponic solution

    Science.gov (United States)

    Arsenic-based agro-chemicals have contaminated considerable acreage on turf-farms, orchards, and around horticultural production structures. A study was undertaken to evaluate iris (Iris virginica), switchgrass (Panicum virgatum), Tithonia rotundiflora, Coreopsis lanceolata, Sunflower (Helianthus an...

  11. Uptake kinetics of arsenic by lettuce cultivars under hydroponics ...

    African Journals Online (AJOL)

    Arsenic (As) uptake ability based on kinetic parameters by two lettuce cultivars; Sijibaiye (SJBY) and Texuanyanlingsun (TXYLS) was investigated in nutrient solution containing eight levels of arsenic (As). Depletion of As from solution was monitored over a period of 24 h at regular time to estimate As uptake kinetics of the ...

  12. Dietary factors that affect carotenoid bioavailability

    NARCIS (Netherlands)

    Hof, van het K.H.

    1999-01-01

    Carotenoids are thought to contribute to the beneficial effects of increased vegetable consumption. To better understand the potential benefits of carotenoids, we investigated the bioavailability of carotenoids from vegetables and dietary factors which might influence carotenoid

  13. Enhancement of Solubility and Bioavailability of Candesartan ...

    African Journals Online (AJOL)

    Purpose: To enhance the otherwise poor solubility and bioavailability of candesartan cilexetil (CDS). Methods: This ... PEG 6000-based solid dispersions showed 1st order drug release kinetics. ..... the liver due to quercetin's inhibitory effect on.

  14. Bioavailability of glucosinolates and their breakdown products

    DEFF Research Database (Denmark)

    Barba Orellana, Francisco Jose; Nikmaram, Nooshin; Roohinejad, Shahin

    2016-01-01

    Glucosinolates are a large group of plant secondary metabolites with nutritional effects, and are mainly found in cruciferous plants. After ingestion, glucosinolates could be partially absorbed in their intact form through the gastrointestinal mucosa. However, the largest fraction is metabolized ...... the bioavailability of glucosinolates and their breakdown products. This review paper summarizes the assimilation, absorption, and elimination of these molecules, as well as the impact of processing on their bioavailability....

  15. Bioavailability in the boris assessment model

    International Nuclear Information System (INIS)

    Norden, M.; Avila, R.; Gonze, M.A.; Tamponnet, C.

    2004-01-01

    The fifth framework EU project BORIS (Bioavailability Of Radionuclides In Soils: role of biological components and resulting improvement of prediction models) has three scientific objectives. The first is to improve understanding of the mechanisms governing the transfer of radionuclides to plants. The second is to improve existing predictive models of radionuclide interaction with soils by incorporating the knowledge acquired from the experimental results. The last and third objective is to extract from the experimental results some scientific basis for the development of bioremediation methods of radionuclides contaminated soils and to apprehend the role of additional non-radioactive pollutants on radionuclide bio-availability. This paper is focused on the second objective. The purpose of the BORIS assessment model is to describe the behaviour of radionuclides in the soil-plant system with the aim of making predictions of the time dynamics of the bioavailability of radionuclides in soil and the radionuclides concentrations in plants. To be useful the assessment model should be rather simple and use only a few parameters, which are commonly available or possible to measure for different sites. The model shall take into account, as much as possible, the results of the experimental studies and the mechanistic models developed in the BORIS project. One possible approach is to introduce in the assessment model a quantitative relationship between bioavailability of the radionuclides in soil and the soil properties. To do this an operational definition of bioavailability is needed. Here operational means experimentally measurable, directly or indirectly, and that the bioavailability can be translated into a mathematical expression. This paper describes the reasoning behind the chosen definition of bioavailability for the assessment model, how to derive operational expressions for the bioavailability and how to use them in the assessment model. (author)

  16. Nutrient and salinity concentrations effects on quality and storability of cherry tomato fruits grown by hydroponic system

    Directory of Open Access Journals (Sweden)

    Mohammad Zahirul Islam

    2018-04-01

    Full Text Available ABSTRACT This study was conducted to investigate the effects of nutrient and salinity concentrations on the quality of deepflow technique hydroponic system cultivated cherry tomatoes (Lycopersicon esculentum Mill ‘Unicorn’. The conditions were: (1 control (NS-1 × nutrient Solution, Electrical Conductivity – EC: 2.5 mS∙cm–1; (2 2 × NS (2 × NS-Double NS, EC: 5 mS∙cm–1; (3 NS + 4.23 mM NaCl (NaCl-Sodium Chloride, EC: 5 mS∙cm–1; and (4 NS + 13.70 mM Sea Water – SW (EC: 7.5 mS∙cm–1. NS + 13.70 mM SW treatment showed the lowest fresh weight loss. Visual quality as well as shelf life was the longest in NS (1 × nutrient solution treated tomato fruits. The longest shelf life at 5 °C, 11 °C, and 24 °C were 21, 16, and 8 days, respectively, in NS (1 × nutrient solution treated tomato fruits. The highest firmness was recorded in NS (1 × nutrient solution treated tomato fruits, which was retained after storage. Moreover, NS + 13.70 mM SW treatment increased the cherry tomato fruit’s quality, especially soluble solids and sugar contents. These results indicate that salinity concentration has effect the soluble solids and sugar of cherry tomato fruits. In addition, nutrient concentration influenced the shelf life and firmness of cherry tomato fruits.

  17. Bioavailability in ecological risk. Assessment for radionuclides

    International Nuclear Information System (INIS)

    Garnier-Laplace, J.; Gilbin, R.; Della-Vedova, C.; Adam, C.; Simon, O.; Denison, F.; Beaugelin, K.

    2005-01-01

    The guidance for performing Ecological Risk Assessments (ERA) in Europe has been published in 2003 in the EC's Technical Guidance Document. This document constitutes the official reference in which current water quality standards and risk assessment approach for metals/metalloids are still mainly based on total or dissolved concentrations. However, it has been recognized that accurate assessment of the bio-available metal fraction is crucial, even if the way to incorporate bioavailability into these procedures is still under discussion. The speciation of a pollutant in the exposure medium is the first factor that regulates its bioavailability and consequently its bioaccumulation and the induced biological effects. Therefore, within any ecological risk assessment, bioavailability has obvious implications: firstly in exposure analysis which aim is to determine Predicted Exposure Concentration (PEC); secondly in effect analysis while deriving the so-called Predicted No-Effect Concentrations (PNEC) as toxicity is often linked to the amount of the contaminant incorporated into the tissues of biota. Similarities between metals/metalloids and radionuclides are limited to the biogeochemical behaviour of the element considered and to the need to use bioavailability models. In addition, for radionuclides, emitted ionising radiations (type and energy) need to be taken into account for both exposure and effect analyses whilst performing dosimetric calculations appropriate to the exposure scenarios. A methodology for properly implementing bioavailability models is explained and illustrated for aqueous U(VI), starting from a comprehensive review of the thermodynamic data relevant to environmentally-realistic physico-chemical conditions. Then, the use of thermodynamic equilibrium modelling as a tool for interpreting the bioavailability of U(VI) is presented. Using a systematic approach, different bioavailability models of increasing complexity were tested to model U bio

  18. Uptake and subcellular distribution of triclosan in typical hydrophytes under hydroponic conditions.

    Science.gov (United States)

    He, Yupeng; Nie, Enguang; Li, Chengming; Ye, Qingfu; Wang, Haiyan

    2017-01-01

    The increasing discharge of pharmaceuticals and personal care products (PPCPs) into the environment has generated serious public concern. The recent awareness of the environmental impact of this emerging class of pollutants and their potential adverse effects on human health have been documented in many reports. However, information regarding uptake and intracellular distribution of PPCPs in hydrophytes under hydroponic conditions, and potential human exposure is very limited. A laboratory experiment was conducted using 14 C-labeled triclosan (TCS) to investigate uptake and distribution of TCS in six aquatic plants (water spinach, purple perilla, cress, penny grass, cane shoot, and rice), and the subcellular distribution of 14 C-TCS was determined in these plants. The results showed that the uptake and removal rate of TCS from nutrient solution by hydrophytes followed the order of cress (96%) > water spinach (94%) > penny grass (87%) > cane shoot (84%) > purple perilla (78%) > rice (63%) at the end of incubation period (192 h). The range of 14 C-TCS content in the roots was 94.3%-99.0% of the added 14 C-TCS, and the concentrations in roots were 2-3 orders of magnitude greater than those in shoots. Furthermore, the subcellular fraction-concentration factor (3.6 × 10 2 -2.6 × 10 3  mL g -1 ), concentration (0.58-4.47 μg g -1 ), and percentage (30%-61%) of 14 C-TCS in organelles were found predominantly greater than those in cell walls and/or cytoplasm. These results indicate that for these plants, the roots are the primary storage for TCS, and within plant cells organelles are the major domains for TCS accumulation. These findings provide a better understanding of translocation and accumulation of TCS in aquatic plants at the cellular level, which is valuable for environmental and human health assessments of TCS. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Characterizing nutrient uptake kinetics for efficient crop production during Solanum lycopersicum var. cerasiforme Alef. growth in a closed indoor hydroponic system.

    Science.gov (United States)

    Lee, Ju Yeon; Rahman, Arifur; Azam, Hossain; Kim, Hyung Seok; Kwon, Man Jae

    2017-01-01

    A balanced nutrient supply is essential for the healthy growth of plants in hydroponic systems. However, the commonly used electrical conductivity (EC)-based nutrient control for plant cultivation can provide amounts of nutrients that are excessive or inadequate for proper plant growth. In this study, we investigated the kinetics of major and minor nutrient uptake in a nutrient solution during the growth of tomato (Solanum lycopersicum var. cerasiforme Alef.) in a closed hydroponic system. The concentrations of major and minor ions in the nutrient solution were determined by various analytical methods including inductively coupled plasma-optical emission spectroscopy (ICP-OES), ion chromatography (IC), ion specific electrodes, and/or colorimetric methods. The concentrations of the individual nutrient ions were compared with changes in the EC. The EC of the nutrient solution varied according to the different growth stages of tomato plants. Variation in the concentrations of NO3-, SO42-, Mg2+, Ca2+, and K+ was similar to the EC variation. However, in the cases of PO43-, Na+, Cl-, dissolved Fe and Mn, Cu2+, and Zn2+, variation did not correspond with that of EC. These ions were generally depleted (to 0 mg L-1) during tomato growth, suggesting that these specific ions should be monitored individually and their supply increased. Nutrient uptake rates of major ions increased gradually at different growth stages until harvest (from 15 mg L-1 d-1). Saturation indices determined by MINEQL+ simulation and a mineral precipitation experiment demonstrated the potential for amorphous calcium phosphate precipitation, which may facilitate the abiotic adsorptive removal of dissolved Fe, dissolved Mn, Cu2+, and Zn2+.

  20. Effect of Ni and Urea on Growth, Nitrate and Nutrients Concentration in Lettuce (Lactuca sativa Grown in Hydroponics

    Directory of Open Access Journals (Sweden)

    Hosein Nazari Mamaqani

    2017-02-01

    Full Text Available Introduction: The N source used in commercial hydroponic culture of vegetables is mainly NO3-N. The rate of NO3- uptake is usually high, particularly in leafy vegetables and it can be markedly increased when the NO3- supply in the environment is high. An abundant N supply leads to a high NO3-N absorption and accumulation in plants. When NO3- rich vegetables are consumed, various harmful effects on human health may occur such as met-hemoglobinemia (Blue Baby Syndrome and cancer. Keeping levels of NO3- below limits of FAO seems to be impossible without changing conventional fertilizer application techniques. The suitability of urea for the cultivation of field crops has been well documented. Urea is used as the main source of N fertilizer for crops grown in soil. Its use as N source for crops grown under the hydroponic system has yet to be evaluated. To hydrolyze urea, the enzyme urease requires Ni as a component. Substitution of urea for commonly used N03-N fertilizers in hydroponic culture of vegetables would not only enable to avoid excessive accumulation of N03- in plants but would also reduce the cost of production. Leafy vegetable crops, such as lettuce and spinach, contain large amounts of N03-N. Therefore, it is important to reduce N03- concentrations in hydroponically grown with lowest negative effects on yield. Materials and Methods: The experiments were carried outin greenhouse hydroponicsResearchFaculty of Agriculture, University of Tabriz in randomized complete block designwithtwo factors ureaatfivelevels of 0,25, 50, 75and100milligrams perliter(U0, U25,U50, U75, U100andnickelattwo levels of0and2mg per liter (Ni0, Ni2ofnickelsulfate(NiSO4in4replicatesusinglettuce(Lactuca sativa cv. Siyahoo. Plants fed with the modifiedHoagland solutionorhalf theconcentration. Treatments added to nutrient solution when plants were in four leaf stage. Plants were harvested 50 days after treatment. Different organs (leaves, stems and roots were separated

  1. Hydroponics: A Versatile System to Study Nutrient Allocation and Plant Responses to Nutrient Availability and Exposure to Toxic Elements.

    Science.gov (United States)

    Nguyen, Nga T; McInturf, Samuel A; Mendoza-Cózatl, David G

    2016-07-13

    Hydroponic systems have been utilized as one of the standard methods for plant biology research and are also used in commercial production for several crops, including lettuce and tomato. Within the plant research community, numerous hydroponic systems have been designed to study plant responses to biotic and abiotic stresses. Here we present a hydroponic protocol that can be easily implemented in laboratories interested in pursuing studies on plant mineral nutrition. This protocol describes the hydroponic system set up in detail and the preparation of plant material for successful experiments. Most of the materials described in this protocol can be found outside scientific supply companies, making the set up for hydroponic experiments less expensive and convenient. The use of a hydroponic growth system is most advantageous in situations where the nutrient media need to be well controlled and when intact roots need to be harvested for downstream applications. We also demonstrate how nutrient concentrations can be modified to induce plant responses to both essential nutrients and toxic non-essential elements.

  2. Polyphenols: Extraction Methods, Antioxidative Action, Bioavailability and Anticarcinogenic Effects

    Directory of Open Access Journals (Sweden)

    Eva Brglez Mojzer

    2016-07-01

    Full Text Available Being secondary plant metabolites, polyphenols represent a large and diverse group of substances abundantly present in a majority of fruits, herbs and vegetables. The current contribution is focused on their bioavailability, antioxidative and anticarcinogenic properties. An overview of extraction methods is also given, with supercritical fluid extraction highlighted as a promising eco-friendly alternative providing exceptional separation and protection from degradation of unstable polyphenols. The protective role of polyphenols against reactive oxygen and nitrogen species, UV light, plant pathogens, parasites and predators results in several beneficial biological activities giving rise to prophylaxis or possibly even to a cure for several prevailing human diseases, especially various cancer types. Omnipresence, specificity of the response and the absence of or low toxicity are crucial advantages of polyphenols as anticancer agents. The main problem represents their low bioavailability and rapid metabolism. One of the promising solutions lies in nanoformulation of polyphenols that prevents their degradation and thus enables significantly higher concentrations to reach the target cells. Another, more practiced, solution is the use of mixtures of various polyphenols that bring synergistic effects, resulting in lowering of the required therapeutic dose and in multitargeted action. The combination of polyphenols with existing drugs and therapies also shows promising results and significantly reduces their toxicity.

  3. Bioavailability of zinc from sweet potato roots and leaves

    International Nuclear Information System (INIS)

    Baiden, H.N.; Ercanli-Huffman, F.G.

    1986-01-01

    Bioavailability of zinc from sweet potato (SP) roots and leaves were determined, by extrinsic labeling technique, in rats fed control and zinc deficient diets. Weanling male Sprague Dawley (SD) rats (60-75g) were divided into 4 groups, and fed laboratory chow, a control diet (ad libitum and pair fed) and a zinc deficient diet, for 4 weeks. Each group then was divided into at least 2 sub groups, containing 6 rats, which were intubated with one of 3 tubing solutions extrinsically labeled with 65 Zn; baked sweet potato roots (BSPR), raw sweet potato leaves (RSPL) and cooked sweet potato leaves (CSPL). Five hours after intubation the rats were sacrificed, blood, liver, testes, spleen, heart, brain, thymus and lungs were removed. Feces, urine, and GI tract contents were collected and their 65 Zn activity was determined in a gamma counter. In all treatment groups zinc bioavailability from BSPR, RSPL or CSPL were not significantly different. Zinc deficient rats absorbed significantly more (P 65 Zn (86-90% of the dose), regardless of type of tubing solution than the pairfed or control animals (35-58% of the dose). The highest retention of 65 Zn was found in the liver (12-20% of absorbed dose), GI tract (6-17% of absorbed dose), kidney (2-8% of absorbed dose), and blood (1-5% of absorbed dose). The lowest retention was found in the brain, heart, thymus and testes. (< 1% of absorbed dose)

  4. Amyloid fibril systems reduce, stabilize and deliver bioavailable nanosized iron

    Science.gov (United States)

    Shen, Yi; Posavec, Lidija; Bolisetty, Sreenath; Hilty, Florentine M.; Nyström, Gustav; Kohlbrecher, Joachim; Hilbe, Monika; Rossi, Antonella; Baumgartner, Jeannine; Zimmermann, Michael B.; Mezzenga, Raffaele

    2017-07-01

    Iron-deficiency anaemia (IDA) is a major global public health problem. A sustainable and cost-effective strategy to reduce IDA is iron fortification of foods, but the most bioavailable fortificants cause adverse organoleptic changes in foods. Iron nanoparticles are a promising solution in food matrices, although their tendency to oxidize and rapidly aggregate in solution severely limits their use in fortification. Amyloid fibrils are protein aggregates initially known for their association with neurodegenerative disorders, but recently described in the context of biological functions in living organisms and emerging as unique biomaterial building blocks. Here, we show an original application for these protein fibrils as efficient carriers for iron fortification. We use biodegradable amyloid fibrils from β-lactoglobulin, an inexpensive milk protein with natural reducing effects, as anti-oxidizing nanocarriers and colloidal stabilizers for iron nanoparticles. The resulting hybrid material forms a stable protein-iron colloidal dispersion that undergoes rapid dissolution and releases iron ions during acidic and enzymatic in vitro digestion. Importantly, this hybrid shows high in vivo iron bioavailability, equivalent to ferrous sulfate in haemoglobin-repletion and stable-isotope studies in rats, but with reduced organoleptic changes in foods. Feeding the rats with these hybrid materials did not result in abnormal iron accumulation in any organs, or changes in whole blood glutathione concentrations, inferring their primary safety. Therefore, these iron-amyloid fibril hybrids emerge as novel, highly effective delivery systems for iron in both solid and liquid matrices.

  5. Vanadium bioavailability in soils amended with blast furnace slag

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Maja A., E-mail: maja.larsson@slu.se [Department of Soil and Environment, Swedish University of Agricultural Sciences, P.O. Box 7014, 750 07 Uppsala (Sweden); Baken, Stijn, E-mail: stijn.baken@ees.kuleuven.be [Department of Earth and Environmental Sciences, Leuven University, Kasteelpark Arenberg 20 bus 2459, 3001 Leuven (Belgium); Smolders, Erik, E-mail: erik.smolders@ees.kuleuven.be [Department of Earth and Environmental Sciences, Leuven University, Kasteelpark Arenberg 20 bus 2459, 3001 Leuven (Belgium); Cubadda, Francesco, E-mail: francesco.cubadda@iss.it [Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161 (Italy); Gustafsson, Jon Petter, E-mail: jon-petter.gustafsson@slu.se [Department of Soil and Environment, Swedish University of Agricultural Sciences, P.O. Box 7014, 750 07 Uppsala (Sweden); Division of Land and Water Resources Engineering, KTH Royal Institute of Technology, Brinellvägen 28, 100 44 Stockholm (Sweden)

    2015-10-15

    Blast furnace (BF) slags are commonly applied as soil amendments and in road fill material. In Sweden they are also naturally high in vanadium. The aim of this study was to assess the vanadium bioavailability in BF slags when applied to soil. Two soils were amended with up to 29% BF slag (containing 800 mg V kg{sup −1}) and equilibrated outdoors for 10 months before conducting a barley shoot growth assay. Additional soil samples were spiked with dissolved vanadate(V) for which assays were conducted two weeks (freshly spiked) and 10 months (aged) after spiking. The BF slag vanadium was dominated by vanadium(III) as shown by V K-edge XANES spectroscopy. In contrast, results obtained by HPLC-ICP-MS showed that vanadium(V), the most toxic vanadium species, was predominant in the soil solution. Barley shoot growth was not affected by the BF slag additions. This was likely due to limited dissolution of vanadium from the BF slag, preventing an increase of dissolved vanadium above toxic thresholds. The difference in vanadium bioavailability among treatments was explained by the vanadium concentration in the soil solution. It was concluded that the vanadium in BF slag is sparingly available. These findings should be of importance in environmental risk assessment.

  6. Do rhizospheric processes linked to P nutrition participate in U absorption by Lupinus albus grown in hydroponics?

    International Nuclear Information System (INIS)

    Tailliez, Antoine; Pierrisnard, Sylvie; Camilleri, Virginie; Keller, Catherine; Henner, Pascale

    2013-01-01

    Phosphate (P) is an essential element for plant development but is generally present in limiting amount in the soil solution. Plant species have developed different mechanisms promoting the solubilization of this element in soils to ensure a sufficient supply for their growth. One of these mechanisms is based on the ability of certain species such as L. albus to exude large amounts of citrate through specific tertiary roots called cluster-roots. Uranium (U) is an ubiquitous contaminant known firstly for its chemical toxicity and secondly for its high affinity for P with which it forms low-soluble complexes in soils. We highlight the effects of P–U interaction on the physiology of L. albus and particularly on citrate exudation, and the impact of this root process on the phytoavailability of U and its accumulation in plants in a hydroponic study. Different levels of P (1 and 100 μM) and U (0 and 20 μM) have been tested. Our results show no toxicity of U on the development of L. albus with an adequate P supply, whereas the effects of P starvation are amplified by the presence of U in the growth medium, except for the production of cluster-roots. Citrate exudation is totally inhibited by U in a low-P environment whereas it increases in the presence of U when its toxicity is lowered by the addition of P. The differences observed in terms of toxicity and accumulation are partly explained by the microphotographs obtained by electron microscopy (TEM-EDX): in the absence of P, U penetrates deep into the roots and causes lethal damages, whereas in presence of P, we observe the formation of U–P complexes which limit the internalization of the pollutant and so its toxicity. -- Highlights: • The behavior of white lupine ±P and ±U exposure is studied in hydroponics. • The toxicity of 20 μM U is the strongest under low-P-condition. • P starvation induces citrate exudation only in P deficient plant not exposed to U. • U promotes exudation of citrate in P

  7. Bioavailability of cerium oxide nanoparticles to Raphanus sativus L. in two soils.

    Science.gov (United States)

    Zhang, Weilan; Musante, Craig; White, Jason C; Schwab, Paul; Wang, Qiang; Ebbs, Stephen D; Ma, Xingmao

    2017-01-01

    Cerium oxide nanoparticles (CeO 2 NP) are a common component of many commercial products. Due to the general concerns over the potential toxicity of engineered nanoparticles (ENPs), the phytotoxicity and in planta accumulation of CeO 2 NPs have been broadly investigated. However, most previous studies were conducted in hydroponic systems and with grain crops. For a few studies performed with soil grown plants, the impact of soil properties on the fate and transport of CeO 2 NPs was generally ignored even though numerous previous studies indicate that soil properties play a critical role in the fate and transport of environmental pollutants. The objectives of this study were to evaluate the soil fractionation and bioavailability of CeO 2 NPs to Raphanus sativus L (radish) in two soil types. Our results showed that the silty loam contained slightly higher exchangeable fraction (F1) of cerium element than did loamy sand soil, but significantly lower reducible (F2) and oxidizable (F3) fractions as CeO 2 NPs concentration increased. CeO 2 NPs associated with silicate minerals or the residue fraction (F4) dominated in both soils. The cerium concentration in radish storage root showed linear correlation with the sum of the first three fractions (r 2  = 0.98 and 0.78 for loamy sand and silty loam respectively). However, the cerium content in radish shoots only exhibited strong correlations with F1 (r 2  = 0.97 and 0.89 for loamy sand and silty loam respectively). Overall, the results demonstrated that soil properties are important factors governing the distribution of CeO 2 NPs in soil and subsequent bioavailability to plants. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  8. Effect of Se on Yield and Vegetative Characteristics of Brussels Sprouts in Hydroponics

    Directory of Open Access Journals (Sweden)

    rozita khademi astaneh

    2017-10-01

    and Methods: This experiment was tested in a controlled condition hydroponic greenhouse of Horticulture Department, College of Agriculture, University of Tabriz, The greenhouse was covered with polyethylene monolayer and equipped with a cooling and fogging systems to control the temperature in the warm months and humidity, respectively. Daily temperatures were setted3 ± 20 3 ± 16. Seeds of Gemmifera varieties brussels cabbage weregerminated in petri dishes. Seedlings were transferred to the plastic cups (to the floating system with perlite in four leaf stage. . Plants root system were floated in solution. Modified Hoagland nutrient solution (Table 1 was prepared (12 liters per container with 40 and 32 cm height and diameter, respectively. Results and Discussion: Results of vegetative Brussels sprouts button showed that selenium significantly increased leaf, stem and root dry weight, leaf number and leaf area. Leaf area, leaves, stems and roots fresh and dry weight increased with increasing selenium up to 8 mg L- but then decreased due to a high concentration of selenium toxicity. There were no significant difference in the treatments on stem length, stem diameter. Number of buds was significantly (P≤0.05 affected by selenium treatments and the highest number of sprouts were in two levels of 8 and 16 mg selenium per liter, respectively. Yield and shoot dry weight showed a significant increase (at 1 percent with increasing levels of selenium,.Conclusions Plants yield significantly (P≤0.01 affected by selenium treatments, so that selenium concentration in the nutrient solution increased from 0 to 8 mg L-1increased yield and reduced afterward. The maximum yield was observed at a concentration of 8 mg L-compared with control. Based on the findings of this study, selenium concentration can be up to 8 mg L-1 in order to improve plant growth to nutrient solution.

  9. Lead phytotoxicity in soils and nutrient solutions is related to lead induced phosphorus deficiency

    International Nuclear Information System (INIS)

    Cheyns, Karlien; Peeters, Sofie; Delcourt, Dorien; Smolders, Erik

    2012-01-01

    This study was set up to relate lead (Pb) bioavailability with its toxicity to plants in soils. Tomato and barley seedlings were grown in six different PbCl 2 spiked soils (pH: 4.7–7.4; eCEC: 4.2–41.7 cmol c /kg). Soils were leached and pH corrected after spiking to exclude confounding factors. Plant growth was halved at 1600–6500 mg Pb/kg soil for tomato and at 1900–8300 mg Pb/kg soil for barley. These soil Pb threshold were unrelated to soil pH, organic carbon, texture or eCEC and neither soil solution Pb nor Pb 2+ ion activity adequately explained Pb toxicity among soils. Shoot phosphorus (P) concentrations significantly decreased with increasing soil Pb concentrations. Tomato grown in hydroponics at either varying P supply or at increasing Pb (equal initial P) illustrated that shoot P explained growth response in both scenarios. The results suggest that Pb toxicity is partially related to Pb induced P deficiency, likely due to lead phosphate precipitation. - Highlights: ► Tomato and barley shoot growth was affected by Pb toxicity in six different soils. ► Soil properties did not explain differences in plant Pb toxicity among soils. ► Neither soil solution Pb nor Pb 2+ ion activity explained Pb toxicity among soils. ► Shoot phosphorus concentration decreased with increasing soil Pb concentrations. ► Lead induced a P deficiency in plants, likely due to lead phosphate precipitation. - Soil properties did not explain differences in plant lead toxicity among different soils. Shoot phosphorus concentration decreased with increasing soil lead concentrations.

  10. Cadmium tolerance and accumulation of Elsholtzia argyi origining from a zinc/lead mining site - a hydroponics experiment.

    Science.gov (United States)

    Li, Siliang; Wang, Fengping; Ru, Mei; Ni, Wuzhong

    2014-01-01

    In this study, a hydroponics experiment was conducted to investigate the characteristics of Cd tolerance and accumulation of Elsholtzia argyi natively growing on the soil with high levels of heavy metals in a Zn/Pb mining site. Seedlings of E. argyi grown for 4 weeks and then were treated with 0(CK), 5,10,15, 20, 25, 30, 40, 50,100 umM Cd for 21 days. Each treatment had three replications. No visual toxic symptoms on shoots of E. argyi were observed at Cd level < or = 50 muM. The results indicated that the dry biomass of each tissue and the whole plants of the treatments with < or =40 umM cadmium were similar to that of the control, implying that E. argyi was a cadmium tolerant plant. The results also showed that the shoot Cd concentration significantly (P < 0.05) increased with the increase in the Cd level in nutrient solution. The shoot Cd concentration of the treatment with 40 umM Cd was as high as 237.9 mg kg(-1), which was higher than 100 mg kg(-1), normally used as the threshold concentration for identifying the Cd hyperaccumulating plant. It could be concluded that E. argyi was a Cd tolerant and accumulating plant species.

  11. Mild Fe-deficiency improves biomass production and quality of hydroponic-cultivated spinach plants (Spinacia oleracea L.).

    Science.gov (United States)

    Jin, Chong-Wei; Liu, Yue; Mao, Qian-Qian; Wang, Qian; Du, Shao-Ting

    2013-06-15

    It is of great practical importance to improve yield and quality of vegetables in soilless cultures. This study investigated the effects of iron-nutrition management on yield and quality of hydroponic-cultivated spinach (Spinacia oleracea L.). The results showed that mild Fe-deficient treatment (1 μM FeEDTA) yielded a greater biomass of edible parts than Fe-omitted treatment (0 μM FeEDTA) or Fe-sufficient treatments (10 and 50 μM FeEDTA). Conversely, mild Fe-deficient treatment had the lowest nitrate concentration in the edible parts out of all the Fe treatments. Interestingly, all the concentrations of soluble sugar, soluble protein and ascorbate in mild Fe-deficient treatments were higher than Fe-sufficient treatments. In addition, both phenolic concentration and DPPH scavenging activity in mild Fe-deficient treatments were comparable with those in Fe-sufficient treatments, but were higher than those in Fe-omitted treatments. Therefore, we concluded that using a mild Fe-deficient nutrition solution to cultivate spinach not only would increase yield, but also would improve quality. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Effects of elevated atmospheric carbon dioxide concentrations on water and acid requirements of soybeans grown in a recirculating hydroponic system

    Science.gov (United States)

    Mackowiak, C. L.; Wheeler, R. M.; Lowery, W.; Sager, J. C.

    1990-01-01

    Establishing mass budgets of various crop needs, i.e. water and nutrients, in different environments is essential for the Controlled Ecological Life Support System (CELSS). The effects of CO2 (500 and 1000 umol mol (exp -1)) on water and acid use (for pH control) by soybeans in a recirculating hydroponic system were examined. Plants of cvs. McCall and Pixie were grown for 90 days using the nutrient film technique (NFT) and a nitrate based nutrient solution. System acid use for both CO2 levels peaked near 4 weeks during a phase of rapid vegetative growth, but acid use decreased more rapidly under 500 compared to 1000 umol mol (exp GR) CO2. Total system water use by 500 and 1000 umol mol (exp -1) plants was similar, leaving off at 5 weeks and declining as plants senesced (ca. 9 weeks). However, single leaf transpiration rates were consistently lower at 1000 umol mol (exp -1). The data suggest that high CO2 concentrations increase system acid (and nutrient) use because of increased vegetative growth, which in turn negates the benefit of reduced water use (lower transpiration rates) per unit leaf area.

  13. Effects of plant growth stage on the bioavailability of cesium and strontium in rhizosphere soil

    International Nuclear Information System (INIS)

    Nakamaru, Yasuo

    2006-01-01

    The effects of plant growth stage on the bioavailability of Cs and Sr in rhizosphere soil were studied by soybean pot experiments. Soybean seeds were sown into 12 pots and the plants were grown in a greenhouse for 84 d. Three pots were kept unplanted. The concentrations of Mg, K, Ca, Sr and Cs in plants and in soil solutions at different growth periods were measured. The mass flow of the elements from soil solution to the root surface was calculated from the concentrations in the soil solution and daily transpiration of the soybean plant. The concentrations of elements in the soil solution decreased as the soybean plants grew. The decrease of Mg, K, Ca, and Sr was high in planted pots. The differences in Mg, K, Ca, and Sr concentrations between the planted and the unplanted pots indicated that the active uptake of these elements by the soybean plants caused the drop in their concentrations. However, no obvious difference in Cs concentrations was seen between the planted and the unplanted ports. Although the ratio of mass flow to actual uptake of Cs was 1.4 for the vegetative growth stage, it increased to 4.2 for the podding stage. This meant that the Cs mass flow was in excess of what was absorbed by the plants, so the Cs uptake was inhibited near the roots for the podding stage. It was assumed that the increase of Cs sorption due to the K concentration decrease in soil solution decreased the Cs bioavailability in the rhizosphere soil. The bioavailability of Cs and Sr in the rhizosphere was examined in a small-scale pot experiment. The soil-soil solution distribution coefficients (K d ) of Cs and Sr were observed as an index of their sorption level. K d of Cs increased in the rhizosphere soil after cultivation. The decrease of bioavailable fraction of soil Cs was also observed. The exchangeable Cs in the rhizosphere soil clearly decreased. On the other hand, no specific rhizosphere effect was observed for Sr bioavailability. These results showed that the Cs

  14. Quality and Quantity of Sorghum Hydroponic Fodder from Different Varieties and Harvest Time

    Science.gov (United States)

    Chrisdiana, R.

    2018-02-01

    This experiment was designed to compare different varieties and harvest time of sorghum hydroponic fodder based on nutrient content and biomass production. Experimental design for fodder productivity was completely randomized design with 2 x 3 factorial, i.e., sorghum varieties (KD 4 and Super-1) and time of harvesting the sorghum hydroponic fodder (8,12 and 16 d). Total biomass and DM production, were affected significantly (p<0.05) on harvest time. Total biomass and nutrient content were increased in longer harvest time. The nutrient content were increased with decreasing total value of DM. Super-1 varieties produce larger biomass and nutrient content higher than KD4 (p<0.05). Based on sorghum hidroponic fodder quality and quantity, sorghum hidroponic fodder with Super-1 varieties harvested at 12 d had a good quality of fodder and it can be alternative of technology providing quality forage and land saving with a short time planting period and continous production.

  15. Evaluation of soil metal bioavailability estimates using two plant species (L. perenne and T. aestivum) grown in a range of agricultural soils treated with biosolids and metal salts

    International Nuclear Information System (INIS)

    Black, Amanda; McLaren, Ronald G.; Reichman, Suzanne M.; Speir, Thomas W.; Condron, Leo M.

    2011-01-01

    Few studies have quantified the accuracy of soil metal bioavailability assays using large datasets. A meta-analysis from experiments spanning 6 months to 13 years on 12 soil types, compared bioavailability estimate efficiencies for wheat and ryegrass. Treatments included biosolids ± metals, comparing total metal, Ca(NO 3 ) 2 , EDTA, soil solution, DGT and free ion activity. The best correlations between soil metal bioavailability and shoot concentrations were for Ni using Ca(NO 3 ) 2 (r 2 = 0.72) which also provided the best estimate of Zn bioavailability (r 2 = 0.64). DGT provided the best estimate of Cd bioavailability, accounting for 49% of shoot Cd concentrations. There was no reliable descriptor of Cu bioavailability, with less than 35% of shoot Cu concentrations defined. Thus interpretation of data obtained from many soil metal bioavailability assays is unreliable and probably flawed, and there is little justification to look beyond Ca(NO 3 ) 2 for Ni and Zn, and DGT for Cd. - Highlights: → A meta-analysis evaluated the efficacy of soil metal bioavailability assays. → DGT could explain 49% of shoot Cd concentration. → There is little justification to look beyond Ca(NO 3 ) 2 for Ni and Zn. - A meta-analysis of soil metal bioavailability estimates for 12 soil types concluded that there is little justification to look beyond Ca(NO 3 ) 2 for Ni and Zn, and DGT for Cd.

  16. Evaluation of soil metal bioavailability estimates using two plant species (L. perenne and T. aestivum) grown in a range of agricultural soils treated with biosolids and metal salts

    Energy Technology Data Exchange (ETDEWEB)

    Black, Amanda, E-mail: amanda.black@lincoln.ac.nz [Department of Soil and Physical Sciences, Faculty of Agriculture and Life Sciences, Lincoln University, PO Box 84, Lincoln 7647, Christchurch (New Zealand); McLaren, Ronald G. [Department of Soil and Physical Sciences, Faculty of Agriculture and Life Sciences, Lincoln University, PO Box 84, Lincoln 7647, Christchurch (New Zealand); Reichman, Suzanne M. [School of Civil, Environmental and Chemical Engineering, RMIT University, GPO Box 2476, Melbourne 3001 (Australia); Speir, Thomas W. [Institute of Environmental Science and Research Ltd (ESR), PO Box 50348, Porirua 5240 (New Zealand); Condron, Leo M. [Department of Soil and Physical Sciences, Faculty of Agriculture and Life Sciences, Lincoln University, PO Box 84, Lincoln 7647, Christchurch (New Zealand)

    2011-06-15

    Few studies have quantified the accuracy of soil metal bioavailability assays using large datasets. A meta-analysis from experiments spanning 6 months to 13 years on 12 soil types, compared bioavailability estimate efficiencies for wheat and ryegrass. Treatments included biosolids {+-} metals, comparing total metal, Ca(NO{sub 3}){sub 2}, EDTA, soil solution, DGT and free ion activity. The best correlations between soil metal bioavailability and shoot concentrations were for Ni using Ca(NO{sub 3}){sub 2} (r{sup 2} = 0.72) which also provided the best estimate of Zn bioavailability (r{sup 2} = 0.64). DGT provided the best estimate of Cd bioavailability, accounting for 49% of shoot Cd concentrations. There was no reliable descriptor of Cu bioavailability, with less than 35% of shoot Cu concentrations defined. Thus interpretation of data obtained from many soil metal bioavailability assays is unreliable and probably flawed, and there is little justification to look beyond Ca(NO{sub 3}){sub 2} for Ni and Zn, and DGT for Cd. - Highlights: > A meta-analysis evaluated the efficacy of soil metal bioavailability assays. > DGT could explain 49% of shoot Cd concentration. > There is little justification to look beyond Ca(NO{sub 3}){sub 2} for Ni and Zn. - A meta-analysis of soil metal bioavailability estimates for 12 soil types concluded that there is little justification to look beyond Ca(NO{sub 3}){sub 2} for Ni and Zn, and DGT for Cd.

  17. Detection of nitrogen deficiency QTL in juvenile wild barley introgression lines growing in a hydroponic system

    Directory of Open Access Journals (Sweden)

    Hoffmann Astrid

    2012-10-01

    Full Text Available Abstract Background In this report we studied the genetic regulation of juvenile development of wild barley introgression lines (S42ILs under two contrasting hydroponic nitrogen (N supplies. Ten shoot and root related traits were examined among 42 S42ILs and the recurrent parent ‘Scarlett’. The traits included tiller number, leaf number, plant height, leaf and root length, leaf to root length ratio, shoots and root dry weight, shoot to root weight ratio, and chlorophyll content. Our aims were (1 to test the suitability of a hydroponic system for early detection of favourable S42ILs, (2 to locate quantitative trait loci (QTL that control the examined traits, (3 to identify favourable wild barley alleles that improve trait performances in regard to N treatment and, finally, (4 to validate the identified QTL through comparison with previously reported QTL originating from the same parental cross. Results The phenotypic data were analysed in a mixed model association study to detect QTL. The post-hoc Dunnett test identified 28 S42ILs that revealed significant (P Hsp effects for tiller number, leaf number, leaf length, plant height and leaf to root ratio on the long arm of chromosome 7H. These QTL correspond to QTL for ears per plant and plant height that were previously detected in field trials conducted with the same S42ILs or with the S42 population. Conclusion Our results suggest that the QTL we identified under hydroponic N cultivation partly correspond to QTL detected in field experiments. Due to this finding, screening of plants in early developmental stages grown in a hydroponic system may be a fast and cost effective method for early QTL detection and marker-assisted allelic selection, potentially speeding up elite barley breeding programs.

  18. The sensitivity of an hydroponic lettuce root elongation bioassay to metals, phenol and wastewaters.

    Science.gov (United States)

    Park, Jihae; Yoon, Jeong-Hyun; Depuydt, Stephen; Oh, Jung-Woo; Jo, Youn-Min; Kim, Kyungtae; Brown, Murray T; Han, Taejun

    2016-04-01

    The root elongation bioassay is one of the most straightforward test methods used for environmental monitoring in terms of simplicity, rapidity and economy since it merely requires filter paper, distilled water and Petri dishes. However, filter paper as a support material is known to be problematic as it can reduce the sensitivity of the test. The newly developed hydroponic method reported here differs from the conventional root elongation method (US EPA filter paper method) in that no support material is used and the exposure time is shorter (48 h in this test versus 120 h in the US EPA test). For metals, the hydroponic test method was 3.3 (for Hg) to 57 (for Cu) times more sensitive than the US EPA method with the rank orders of sensitivity, estimated from EC50 values, being Cu≥Cd>Ni≥Zn≥Hg for the former and Hg≥Cu≥Ni≥Cd≥Zn for the latter methods. For phenol, the results did not differ significantly; EC50 values were 124 mg L(-1) and 108-180 mg L(-1) for the hydroponic and filter paper methods, respectively. Lettuce was less sensitive than daphnids to wastewaters, but the root elongation response appears to be wastewater-specific and is especially sensitive for detecting the presence of fluorine. The new hydroponic test thus provides many practical advantages, especially in terms of cost and time-effectiveness requiring only a well plate, a small volume of distilled water and short exposure period; furthermore, no specialist expertise is required. The method is simpler than the conventional EPA technique in not using filter paper which can influence the sensitivity of the test. Additionally, plant seeds have a long shelf-life and require little or no maintenance. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Green Fodder Production and Water Use Efficiency of Some Forage Crops under Hydroponic Conditions

    OpenAIRE

    Ghazi N. Al-Karaki; M. Al-Hashimi

    2012-01-01

    The objectives of this study were to evaluate five forage crops (alfalfa (Medicago sativa), barley (Hordeum vulgare), cowpea (Vigna unguiculata), sorghum (Sorghum bicolor), and wheat (Triticum aestivum)) for green fodder production and water use efficiency under hydroponic conditions. The experiment has been conducted under temperature-controlled conditions (24 ± 1°C) and natural window illumination at growth room of Soilless Culture Laboratory, Arabian Gulf University, Manama, Bahrain. The r...

  20. Safety assessment of greenhouse hydroponic tomatoes irrigated with reclaimed and surface water.

    Science.gov (United States)

    Lopez-Galvez, Francisco; Allende, Ana; Pedrero-Salcedo, Francisco; Alarcon, Juan Jose; Gil, Maria Isabel

    2014-11-17

    The impact of reclaimed and surface water on the microbiological safety of hydroponic tomatoes was assessed. Greenhouse tomatoes were irrigated with reclaimed and surface water and grown on two hydroponic substrates (coconut fiber and rock wool). Water samples (n=208) were taken from irrigation water, with and without the addition of fertilizers and drainage water, and hydroponic tomatoes (n=72). Samples were analyzed for indicator microorganisms, generic Escherichia coli and Listeria spp., and pathogenic bacteria such as Salmonella spp. and Shiga-toxigenic E. coli (STEC), using multiplex real-time PCR (RT-PCR) after enrichment. The correlation between climatological parameters such as temperature and the levels of microorganisms in water samples was also determined. In irrigation water, generic E. coli counts were higher in reclaimed than in surface water whereas Listeria spp. numbers increased after adding the fertilizers in both water sources. In drainage water, no clear differences in E. coli and Listeria numbers were observed between reclaimed and surface water. No positive samples for STEC were found in irrigation water. Presumptive positives for Salmonella spp. were found in 7.7% of the water samples and 62.5% of these samples were reclaimed water. Salmonella-positive samples by RT-PCR could not be confirmed by conventional methods. Higher concentrations of E. coli were associated with Salmonella-presumptive positive samples. Climatological parameters, such as temperature, were not correlated with the E. coli and Listeria spp. counts. Tomato samples were negative for bacterial pathogens, while generic E. coli and Listeria spp. counts were below the detection limit. The prevalence of presumptive Salmonella spp. found in irrigation water (reclaimed and surface water) was high, which might present a risk of contamination. The absence of pathogens on greenhouse hydroponic tomatoes indicates that good agricultural practices (GAP) were in place, avoiding the

  1. Factors influencing zinc bioavailability in rats

    International Nuclear Information System (INIS)

    Mahalko, J.R.; Johnson, P.E.; Swan, P.B.

    1986-01-01

    The amount of Zn fed, its source, and the Zn status of experimental animals may affect Zn bioavailability. To test this, rats were fed doses of Zn from ZnCl 2 or from various foods labeled extrinsically. Three weeks before and after the test meal, rats were fed an AIN diet modified in Zn content. Absorption was calculated by monitoring whole body retention and extrapolating to zero time. In rats fed 12 ppm Zn and test doses of 6 to 275 μg, absorption decreased from 80 to 50%, and the amount absorbed increased quadratically (r 2 = 0.998), but turnover was unaffected. Rats fed 38 or 77 ppm Zn absorbed less of test doses of 290, 613, or 1700 μg Zn than did those fed 12 ppm, and their Zn turnover rate was higher. In two 2 x 7 factorial experiments, rats fed 12 or 38 ppm Zn were given 16 or 98 μg Zn from 7 Zn sources. Bioavailability from some foods was higher than from ZnCl 2 except in rats eating only 12 ppm Zn and receiving the small dose. There were greater differences in bioavailability among foods when tested at the higher Zn status or dose. This may explain inconsistencies seen in comparing Zn bioavailability by traditional growth assay with that seen in 65 Zn tracer studies. The authors conclude that Zn status of the experimental animal, as well as the amount of Zn and its source, will affect Zn bioavailability

  2. Bioavailability enhancers of herbal origin: An overview

    Science.gov (United States)

    Kesarwani, Kritika; Gupta, Rajiv

    2013-01-01

    Recently, the use of herbal medicines has been increased all over the world due to their therapeutic effects and fewer adverse effects as compared to the modern medicines. However, many herbal drugs and herbal extracts despite of their impressive in-vitro findings demonstrates less or negligible in-vivo activity due to their poor lipid solubility or improper molecular size, resulting in poor absorption and hence poor bioavailability. Nowadays with the advancement in the technology, novel drug delivery systems open the door towards the development of enhancing bioavailability of herbal drug delivery systems. For last one decade many novel carriers such as liposomes, microspheres, nanoparticles, transferosomes, ethosomes, lipid based systems etc. have been reported for successful modified delivery of various herbal drugs. Many herbal compounds including quercetin, genistein, naringin, sinomenine, piperine, glycyrrhizin and nitrile glycoside have demonstrated capability to enhance the bioavailability. The objective of this review is to summarize various available novel drug delivery technologies which have been developed for delivery of drugs (herbal), and to achieve better therapeutic response. An attempt has also been made to compile a profile on bioavailability enhancers of herbal origin with the mechanism of action (wherever reported) and studies on improvement in drug bioavailability, exhibited particularly by natural compounds. PMID:23620848

  3. Bioavailability of nanoparticulate hematite to Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Marusenko, Yevgeniy; Shipp, Jessie; Hamilton, George A.; Morgan, Jennifer L.L.; Keebaugh, Michael; Hill, Hansina; Dutta, Arnab; Zhuo, Xiaoding; Upadhyay, Nabin; Hutchings, James; Herckes, Pierre; Anbar, Ariel D.; Shock, Everett; Hartnett, Hilairy E.

    2013-01-01

    The environmental effects and bioavailability of nanoparticulate iron (Fe) to plants are currently unknown. Here, plant bioavailability of synthesized hematite Fe nanoparticles was evaluated using Arabidopsis thaliana (A. thaliana) as a model. Over 56-days of growing wild-type A. thaliana, the nanoparticle-Fe and no-Fe treatments had lower plant biomass, lower chlorophyll concentrations, and lower internal Fe concentrations than the Fe-treatment. Results for the no-Fe and nanoparticle-Fe treatments were consistently similar throughout the experiment. These results suggest that nanoparticles (mean diameter 40.9 nm, range 22.3–67.0 nm) were not taken up and therefore not bioavailable to A. thaliana. Over 14-days growing wild-type and transgenic (Type I/II proton pump overexpression) A. thaliana, the Type I plant grew more than the wild-type in the nanoparticle-Fe treatment, suggesting Type I plants cope better with Fe limitation; however, the nanoparticle-Fe and no-Fe treatments had similar growth for all plant types. -- Highlights: ► Iron nanoparticles were synthesized and assessed for bioavailability to Arabidopsis. ► Arabidopsis grew better in the presence of EDTA-bound iron than nanoparticulate iron. ► Arabidopsis grew the same in the presence of nanoparticulate iron compared to no iron. -- Synthesized iron nanoparticles were not bioavailable to Arabidopsis thaliana in agar nutrient media

  4. Continuous hydroponic wheat production using a recirculating system

    Science.gov (United States)

    Mackowiak, C. L.; Owens, L. P.; Hinkle, C. R.; Prince, R. P.

    1989-01-01

    Continuous crop production, where plants of various ages are growing simultaneously in a single recirculating nutrient solution, is a possible alternative to batch production in a Controlled Ecological Life Support System. A study was conducted at John F. Kennedy Space Center where 8 trays (0.24 sq m per tray) of Triticum aestivum L. Yecora Rojo were grown simultaneously in a growth chamber at 23 C, 65 percent relative humidity, 1000 ppm CO2, continuous light, with a continuous flow, thin film nutrient delivery system. The same modified Hoagland nutrient solution was recirculated through the plant trays from an 80 L reservoir throughout the study. It was maintained by periodic addition of water and nutrients based on chemical analyses of the solution. The study was conducted for 216 days, during which 24 trays of wheat were consecutively planted (one every 9 days), 16 of which were grown to maturity and harvested. The remaining 8 trays were harvested on day 216. Grain yields averaged 520 g m(exp -2), and had an average edible biomass of 32 percent. Consecutive yields were unaffected by nutrient solution age. It was concluded that continual wheat production will work in this system over an extended period of time. Certain micronutrient deficiencies and toxicities posed problems and must be addressed in future continuous production systems.

  5. Computer-operated analytical platform for the determination of nutrients in hydroponic systems.

    Science.gov (United States)

    Rius-Ruiz, F Xavier; Andrade, Francisco J; Riu, Jordi; Rius, F Xavier

    2014-03-15

    Hydroponics is a water, energy, space, and cost efficient system for growing plants in constrained spaces or land exhausted areas. Precise control of hydroponic nutrients is essential for growing healthy plants and producing high yields. In this article we report for the first time on a new computer-operated analytical platform which can be readily used for the determination of essential nutrients in hydroponic growing systems. The liquid-handling system uses inexpensive components (i.e., peristaltic pump and solenoid valves), which are discretely computer-operated to automatically condition, calibrate and clean a multi-probe of solid-contact ion-selective electrodes (ISEs). These ISEs, which are based on carbon nanotubes, offer high portability, robustness and easy maintenance and storage. With this new computer-operated analytical platform we performed automatic measurements of K(+), Ca(2+), NO3(-) and Cl(-) during tomato plants growth in order to assure optimal nutritional uptake and tomato production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Use of cross-flow membrane filtration in a recirculating hydroponic system to suppress root disease in pepper caused by Pythium myriotylum.

    Science.gov (United States)

    Schuerger, Andrew C; Hammer, William

    2009-05-01

    Zoosporic pathogens in the genera Pythium and Phytophthora cause extensive root disease epiphytotics in recirculating hydroponic vegetable-production greenhouses. Zoospore cysts of Pythium myriotylum Drechsler were used to evaluate the effectiveness of cross-flow membrane filters to control pythiaceous pathogens in recirculating hydroponic systems. Four membrane filter brands (Honeycomb, Polypure, Polymate, and Absolife) were tested alone or in combination to determine which filters would effectively remove infective propagules of P. myriotylum from solutions and reduce disease incidence and severity. Zoospore cysts of P. myriotylum generally measured 8 to 10 microm, and it was hypothesized that filters with pore-sizespepper plants from root infection. Single-filter assays with Honeycomb and Polypure brands removed 85 to 95% of zoospore cysts when pore sizes were rated at 1, 5, 10, 20, or 30 microm. Single-filter assays of Polymate and Absolife brands were more effective, exhibiting apparently 100% removal of zoospore cysts from nutrient solutions on filters rated at 1 to 10 microm. However, plant bioassays with Honeycomb and Polymate single filters failed to give long-term protection of pepper plants. Double-filter assays with 1- and 0.5-microm Polymate filters significantly increased the protection of pepper plants grown in nutrient film technique systems but, eventually, root disease and plant wilt could be observed. Insect transmissions by shore flies were not factors in disease development. Scanning electron microscopy images of zoospore cysts entrapped on Polymate filters revealed zoospore cysts that were either fully encysted, partially encysted, or of unusually small size (3 microm in diameter). It was concluded that either the atypically small or pliable pleomorphic zoospore cysts were able to penetrate filter membranes that theoretically should have captured them.

  7. Bioavailability of Metal Ions and Evolutionary Adaptation

    Directory of Open Access Journals (Sweden)

    Rolando P. Hong Enriquez

    2012-10-01

    Full Text Available The evolution of life on earth has been a long process that began nearly 3,5 x 109 years ago. In their initial moments, evolution was mainly influenced by anaerobic environments; with the rise of O2 and the corresponding change in bioavailability of metal ions, new mechanisms of survival were created. Here we review the relationships between ancient atmospheric conditions, metal ion bioavailability and adaptation of metals homeostasis during early evolution. A general picture linking geochemistry, biochemistry and homeostasis is supported by the reviewed literature and is further illustrated in this report using simple database searches.

  8. Estudo da utilização do efluente de biodigestor no cultivo hidropônico do meloeiro Utilization of biodigestor effluent in the hydroponic cultivation of melon

    Directory of Open Access Journals (Sweden)

    Luiz V. E. Villela Junior

    2003-04-01

    (nutrient film technique with use of organic-mineral nutrient solution (biofertilizer with mineral complementation; 2 hydroponic cultivation in closed system type NFT with use of 100% mineral solution; 3 hydroponic cultivation in open system, with substrate and organic-mineral nutrient solution and 4 hydroponic cultivation in an open system, with substrate and 100% mineral solution. The biofertilizer and the substrate were obtained from biodigestor effluent produced with cowdung. Plant development in treatment 1 was affected due to accumulation of solid particles in the root system. Treatment 2 provided to the plants rapid vegetative development and higher productivity. The fruits produced in treatment 2 presented higher weight, more elongated shape and higher total soluble solid content. A partial substitution of mineral fertilizers by biofertilizers showed viability of hydroponic cultivation of the melon plant in an open system with substrate.

  9. Mouse Assay for Determination of Arsenic Bioavailability in Contaminated Soils

    Science.gov (United States)

    Background: Accurate assessment of human exposure estimates from arsenic-contaminated soils depends upon estimating arsenic (As) soil bioavailability. Development of bioavailability assays provides data needed for human health risk assessments and supports development and valida...

  10. Microbiological profile and incidence of Salmonella and Listeria monocytogenes on hydroponic bell peppers and greenhouse cultivation environment.

    Science.gov (United States)

    Avila-Vega, Dulce E; Alvarez-Mayorga, Beatriz; Arvizu-Medrano, Sofía M; Pacheco-Aguilar, Ramiro; Martínez-Peniche, Ramón; Hernández-Iturriaga, Montserrat

    2014-11-01

    The aim of this study was to generate information regarding the microbiological profile, including Salmonella and Listeria monocytogenes incidence, of hydroponically grown bell peppers and materials associated with their production in greenhouses located in Mexico. Samples of coconut fiber (24), knives (30), drippers (20), conveyor belts (161), pepper transportation wagons (30), air (178), water (16), nutrient solution for plant irrigation (78), and bell pepper fruits (528) were collected during one cycle of production (2009 to 2010) for the quantification of microbial indicators (aerobic plate counts [APC], molds, coliforms, and Escherichia coli) and the detection of Salmonella and L. monocytogenes. With regard to surfaces (conveyor belts and wagons) and utensils (knives and drippers), the APC, coliform, and mold counts ranged from 3.0 to 6.0, from 1.4 to 6.3, and from 3.6 to 5.2 log CFU/100 cm(2) or per utensil, respectively. The air in the greenhouse contained low median levels of APC (1.2 to 1.4 log CFU/100 liters) and molds (2.2 to 2.5 log CFU/100 liters). The median content of APC and coliforms in water were 0.5 log CFU/ml and 0.3 log MPN/100 ml, respectively. The median content of coliforms in nutrient solution ranged from 1.8 to 2.4 log MPN/100 ml, and E. coli was detected in 18 samples (range, fruit, respectively; E. coli was detected in 5.1% of the samples (range, 0.23 to 1.4 log MPN per fruit). Salmonella was isolated from only one sample (1.6%) of conveyor belt located at the packing area and in four bell pepper samples (3%). L. monocytogenes was not detected. This information could help producers to establish effective control measures to prevent the presence of foodborne pathogens in bell peppers based on a scientific approach.

  11. In Vitro Bioavailability Study of an Antiviral Compound Enisamium Iodide

    Directory of Open Access Journals (Sweden)

    Eleonore Haltner-Ukomadu

    2018-01-01

    Full Text Available An investigation into the biopharmaceutics classification and a study of the in vitro bioavailability (permeability and solubility of the antiviral compound enisamium iodide (4-(benzylcarbamoyl-1-methylpyridinium iodide were carried out. The solubility of enisamium iodide was determined in four different buffers. Apparent intestinal permeability (Papp of enisamium iodide was assessed using human colon carcinoma (Caco-2 cells at three concentrations. The solubility of enisamium iodide in four buffer solutions from pH 1.2 to 7.5 is about 60 mg/mL at 25 °C, and ranges from 130 to 150 mg/mL at 37 °C, depending on the pH. Based on these results, enisamium iodide can be classified as highly soluble. Enisamium iodide demonstrated low permeability in Caco-2 experiments in all tested concentrations of 10–100 μM with permeability coefficients between 0.2 × 10−6 cm s−1 and 0.3 × 10−6 cm s−1. These results indicate that enisamium iodide belongs to class III of the Biopharmaceutics Classification System (BCS due to its high solubility and low permeability. The bioavailability of enisamium iodide needs to be confirmed in animal and human studies.

  12. Chemical oxifertigation through the irrigation of greenhouse hydroponic tomato crop.

    Directory of Open Access Journals (Sweden)

    Freddy Soto-Bravo

    2015-06-01

    Full Text Available   The aim of this study was to evaluate the effect of hydrogen peroxide (H2O2 as an oxygen source in the rhizosphere, in grafted tomato (cv. Durinta/cv Maxifor and using coconut fiber as substrate The study was conducted from 2009 to 2010. Two treatments were used: a control without (H2O2 (T0 and the other with H2O2 (T1 applied in each irrigation. The parameters evaluated were i- fertigation: oxygen concentration ([O2], pH, electrical conductivity (EC, and drainage percentage; ii- growth: basal diameter and plant height; iii- yield and iv- fruit quality: firmness, Brix degrees, dry weight, and pH. The average value of [O2] in the irrigation solution through out the crop cycle increased from 9,92 mg/l at T0 to 12,1 mg/l at T1 (P<0,05, meanwhile in the drained solution the value increased from 8,75 mg/l at T0 to 9,22 mg/l at T1 (P<0,05. Although significant differences (P<0.05 were reached in the [O2] between treatments during some periods of the crop cycle, the [O2] in the T0 did not reach a critical threshold that would affect the proper oxygenation of the roots. Therefore, there was no effect of hydrogen peroxide treatment on the growth, productivity and quality of the fruit.

  13. Effects of hypertonic buffer composition on lymph node uptake and bioavailability of rituximab, after subcutaneous administration.

    Science.gov (United States)

    Fathallah, Anas M; Turner, Michael R; Mager, Donald E; Balu-Iyer, Sathy V

    2015-03-01

    The subcutaneous administration of biologics is highly desirable; however, incomplete bioavailability after s.c. administration remains a major challenge. In this work we investigated the effects of excipient dependent hyperosmolarity on lymphatic uptake and plasma exposure of rituximab as a model protein. Using Swiss Webster (SW) mice as the animal model, we compared the effects of NaCl, mannitol and O-phospho-L-serine (OPLS) on the plasma concentration of rituximab over 5 days after s.c. administration. An increase was observed in plasma concentrations in animals administered rituximab in hypertonic buffer solutions, compared with isotonic buffer. Bioavailability, as estimated by our pharmacokinetic model, increased from 29% in isotonic buffer to 54% in hypertonic buffer containing NaCl, to almost complete bioavailability in hypertonic buffers containing high dose OPLS or mannitol. This improvement in plasma exposure is due to the improved lymphatic trafficking as evident from the increase in the fraction of dose trafficked through the lymph nodes in the presence of hypertonic buffers. The fraction of the dose trafficked through the lymphatics, as estimated by the model, increased from 0.05% in isotonic buffer to 13% in hypertonic buffer containing NaCl to about 30% for hypertonic buffers containing high dose OPLS and mannitol. The data suggest that hypertonic solutions may be a viable option for improving s.c. bioavailability. Copyright © 2014 John Wiley & Sons, Ltd.

  14. Chemodynamics of chromium reduction in soils: Implications to bioavailability

    Energy Technology Data Exchange (ETDEWEB)

    Choppala, Girish [Centre for Environmental Risk Assessment and Remediation, Building-X, University of South Australia, Mawson Lakes, South Australia 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, PO Box 486, Salisbury, South Australia 5106 (Australia); Bolan, Nanthi, E-mail: Nanthi.Bolan@unisa.edu.au [Centre for Environmental Risk Assessment and Remediation, Building-X, University of South Australia, Mawson Lakes, South Australia 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, PO Box 486, Salisbury, South Australia 5106 (Australia); Seshadri, Balaji [Centre for Environmental Risk Assessment and Remediation, Building-X, University of South Australia, Mawson Lakes, South Australia 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, PO Box 486, Salisbury, South Australia 5106 (Australia)

    2013-10-15

    Highlights: • Examined the effects of sorption, pH and C sources on Cr(VI) reduction and toxicity. • The rate of Cr(VI) reduction decreased with an increase in Cr(VI) adsorption and pH. • The proton dynamics in Cr(VI) reduction was assessed in relation to remediation. • A novel black carbon showed the highest reduction rate of Cr(VI) in soils. • Black carbon decreased the bioavailability and phytotoxicity of Cr(VI) in soils. -- Abstract: Chromium toxicity in soils can be mitigated by reduction of Cr(VI) to Cr(III) which is influenced by the presence of free Cr(VI) species in soil solution, and the supply of protons and electrons. In this study, the effects of Cr(VI) adsorption (i.e. availability of free Cr(VI) species in soil solution), soil pH (i.e. supply of protons) and three electron donor carbon sources [black carbon (BC), chicken manure biochar (CMB) and cow manure (CM)] on the reduction of Cr(VI) to Cr(III) in soils were investigated. The results indicated that the rate of Cr(VI) reduction decreased with an increase in Cr(VI) adsorption and soil pH, which is attributed to decreased supply of free Cr(VI) ions and protons, respectively. Among the three different amendments tested, BC showed the highest rate of Cr(VI) reduction followed by CM and CMB. Furthermore, addition of BC, CM and CMB decreased the bioavailability of Cr(VI) in contaminated soils. The high efficiency of BC on Cr(VI) reduction was due to the electron donor's functional groups such as phenolic, hydroxyl, carbonyl and amides. The study demonstrated that free form of Cr(VI) ions in soil solution and carbon amendments enriched with acidic functional groups favored the reduction of Cr(VI), thereby mitigating its bioavailability and toxicity in contaminated soils.

  15. Bioavailability of cadmium from linseed and cocoa

    DEFF Research Database (Denmark)

    Hansen, Max; Sloth, Jens Jørgen; Rasmussen, Rie Romme

    In Denmark and EU the exposure of cadmium from food is at a level that is relatively close to the Tolerable Daily Intake (TDI). This report describes an investigation of the bioavailability of cadmium in selected food items known to contain high levels of cadmium. The purpose was to provide data...

  16. Phosphorous bioavailability along a soil chronosequence

    Science.gov (United States)

    Roberts, K.; Vokhshoori, N. L.; Rosenthanl, A.; Turner, B. L.; Condron, L.; Paytan, A.

    2011-12-01

    In humid environments, as soils age nutrient loss through leaching and chemical trasformations affect the succession and composition of the biological communities. In particular phosphorus (P), often a limiting nutrient in terrestrial systems, tends to evolve into less bio-available forms over time, compounding loss through leaching. Thus P availability has the potential to strongly affect community productivity and structure. Low standing stock of P may not necessarily imply P limitation as the bio-available P pool is continuously recycled and re-utilized. Thus extensive recycling can reduce to varying extents the effect of P limitation. The bio-availability and recycling rates of P are difficult to measure; multiple sequential extraction processes have been developed to try to define and quantify the bio-availability of both inorganic and organic forms of P. In this preliminary study, we will present results of P concentrations in different soil fractions and oxygen isotopes in phosphate. These data together increase our understanding of P dynamics as soils age. The work is being done with a well characterized and dated chronosequence from the west coast of the South Island of New Zealand near the Haast River.

  17. Nitric oxide bioavailability dysfunction involves in atherosclerosis.

    Science.gov (United States)

    Chen, Jing-Yi; Ye, Zi-Xin; Wang, Xiu-Fen; Chang, Jian; Yang, Mei-Wen; Zhong, Hua-Hua; Hong, Fen-Fang; Yang, Shu-Long

    2018-01-01

    The pathological characteristics of atherosclerosis (AS) include lipid accumulation, fibrosis formation and atherosclerotic plaque produced in artery intima, which leads to vascular sclerosis, lumen stenosis and irritates the ischemic changes of corresponding organs. Endothelial dysfunction was closely associated with AS. Nitric oxide (NO) is a multifunctional signaling molecule involved in the maintenance of metabolic and cardiovascular homeostasis. NO is also a potent endogenous vasodilator and enters for the key processes that suppresses the formation vascular lesion even AS. NO bioavailability indicates the production and utilization of endothelial NO in organisms, its decrease is related to oxidative stress, lipid infiltration, the expressions of some inflammatory factors and the alteration of vascular tone, which plays an important role in endothelial dysfunction. The enhancement of arginase activity and the increase in asymmetric dimethylarginine and hyperhomocysteinemia levels all contribute to AS by intervening NO bioavailability in human beings. Diabetes mellitus, obesity, chronic kidney disease and smoking, etc., also participate in AS by influencing NO bioavailability and NO level. Here, we reviewed the relationship between NO bioavailability and AS according the newest literatures. Copyright © 2017. Published by Elsevier Masson SAS.

  18. Enhanced bioavailability of opiates after intratracheal administration

    International Nuclear Information System (INIS)

    Findlay, J.W.A.; Jones, E.C.; McNulty, M.J.

    1986-01-01

    Several opiate analgesics have low oral bioavailabilities in the dog because of presystemic metabolism. Intratracheal administration may circumvent this first-pass effect. Three anesthetized beagles received 5-mg/kg doses of codeine phosphate intratracheally (i.t.), orally (p.o.) and intravenously (i.v.) in a crossover study. The following drugs were also studied in similar experiments: ethylmorphine hydrochloride (5 mg/kg), pholcodine bitartrate (10 mg/kg, hydrocodone bitartrate (4 mg/kg) and morphine sulfate (2.5 mg/kg). Plasma drug concentrations over the 24- to 48-hr periods after drug administrations were determined by radioimmunoassays. I.t. bioavailabilities [codeine (84%), ethylmorphine (100%), and morphine (87%)] of drugs with poor oral availabilities were all markedly higher than the corresponding oral values (14, 26, and 23%, respectively). I.t. bioavailabilities of pholcodine (93%) and hydrocodone (92%), which have good oral availabilities (74 and 79%, respectively), were also enhanced. In all cases, peak plasma concentrations occurred more rapidly after i.t. (0.08-0.17 hr) than after oral (0.5-2 hr) dosing and i.t. disposition often resembled i.v. kinetics. I.t. administration may be a valuable alternative dosing route, providing rapid onset of pharmacological activity for potent drugs with poor oral bioavailability

  19. Bioavailability of curcumin: problems and promises.

    Science.gov (United States)

    Anand, Preetha; Kunnumakkara, Ajaikumar B; Newman, Robert A; Aggarwal, Bharat B

    2007-01-01

    Curcumin, a polyphenolic compound derived from dietary spice turmeric, possesses diverse pharmacologic effects including anti-inflammatory, antioxidant, antiproliferative and antiangiogenic activities. Phase I clinical trials have shown that curcumin is safe even at high doses (12 g/day) in humans but exhibit poor bioavailability. Major reasons contributing to the low plasma and tissue levels of curcumin appear to be due to poor absorption, rapid metabolism, and rapid systemic elimination. To improve the bioavailability of curcumin, numerous approaches have been undertaken. These approaches involve, first, the use of adjuvant like piperine that interferes with glucuronidation; second, the use of liposomal curcumin; third, curcumin nanoparticles; fourth, the use of curcumin phospholipid complex; and fifth, the use of structural analogues of curcumin (e.g., EF-24). The latter has been reported to have a rapid absorption with a peak plasma half-life. Despite the lower bioavailability, therapeutic efficacy of curcumin against various human diseases, including cancer, cardiovascular diseases, diabetes, arthritis, neurological diseases and Crohn's disease, has been documented. Enhanced bioavailability of curcumin in the near future is likely to bring this promising natural product to the forefront of therapeutic agents for treatment of human disease.

  20. Enhanced bioavailable contaminant stripping (EBCS): metal bioavailability for evaluation of phytoextraction success

    OpenAIRE

    Petruzzelli, Gianniantonio; Pedron, Francesca; Gorini, Francesca; Pezzarossa, Beatrice; Tassi, Eliana; Barbafieri, Meri

    2013-01-01

    Phytoextraction may be applied at field scale when the removal of bioavailable metals is the specific target of the technology. Residual metals in soil can be considered substantially inert or to be evaluated by site specific risk analysis.

  1. Chemical oxifertigation through the irrigation of greenhouse hydroponic tomato crop

    International Nuclear Information System (INIS)

    Soto-Bravo, Freddy

    2015-01-01

    Evaluate the effect of hydrogen peroxide (H_2O_2) as an oxygen source in the rhizosphere, in grafted tomato (cv. Durinta/cv Maxifor) and using coconut fiber as substrate. The study was conducted form 2009 to 2010 the study. Two treatments were used: a control without (H_2O_2) (T_0) and the other with used: a control without (H_2O_2) (T_1) applied in each irrigation. The parameters evaluated were: i- fertigation: oxygen concentration ([O_2]). pH, electrical conductivity (EC), and drainage percentage; ii- growth: basal diameter and plant height; iii- yield and iv- fruit quality: firmness, Brix degrees, dry weight, and pH. The average value of [O_2] in the irrigation solution through out the crop cycle increased from 9,92 mg/l at T_0 to 12,1 mg/ at T_1 (P [es

  2. Prebiotics increase heme iron bioavailability and do not affect non-heme iron bioavailability in humans.

    Science.gov (United States)

    Weinborn, Valerie; Valenzuela, Carolina; Olivares, Manuel; Arredondo, Miguel; Weill, Ricardo; Pizarro, Fernando

    2017-05-24

    The aim of this study was to establish the effect of a prebiotic mix on heme and non-heme iron (Fe) bioavailability in humans. To this purpose, twenty-four healthy women were randomized into one of two study groups. One group ate one yogurt per day for 12 days with a prebiotic mix (prebiotic group) and the other group received the same yogurt but without the prebiotic mix (control group). Before and after the intake period, the subjects participated in Fe absorption studies. These studies used 55 Fe and 59 Fe radioactive isotopes as markers of heme Fe and non-heme Fe, respectively, and Fe absorption was measured by the incorporation of radioactive Fe into erythrocytes. The results showed that there were no significant differences in heme and non-heme Fe bioavailability in the control group. Heme Fe bioavailability of the prebiotic group increased significantly by 56% post-prebiotic intake. There were no significant differences in non-heme Fe bioavailability in this group. We concluded that daily consumption of a prebiotic mix increases heme Fe bioavailability and does not affect non-heme iron bioavailability.

  3. Impact of rhizobial inoculation and reduced N supply on biomass production and biological N2 fixation in common bean grown hydroponically.

    Science.gov (United States)

    Kontopoulou, Charis-Konstantina; Liasis, Epifanios; Iannetta, Pietro Pm; Tampakaki, Anastasia; Savvas, Dimitrios

    2017-10-01

    Testing rhizobial inoculation of common bean (Phaseolus vulgaris L.) in hydroponics enables accurate quantification of biological N 2 fixation (BNF) and provides information about the potential of reducing inorganic N fertilizer use. In view of this background, common bean grown on pumice was inoculated with Rhizobium tropici CIAT899 (Rt) and supplied with either full-N (total nitrogen 11.2 mmol L -1 ), 1/3 of full-N or N-free nutrient solution (NS). BNF was quantified at the early pod-filling stage using the 15 N natural abundance method. Full-N supply to Rt-inoculated plants resulted in markedly smaller nodules than less- or zero-N supply, and no BNF. Rt inoculation of full-N-treated plants did not increase biomass and pod yield compared with non-inoculation. Restriction (1/3 of full-N) or omission of inorganic N resulted in successful nodulation and BNF (54.3 and 49.2 kg N ha -1 , corresponding to 58 and 100% of total plant N content respectively) but suppressed dry shoot biomass from 191.7 (full-N, +Rt) to 107.4 and 43.2 g per plant respectively. Nutrient cation uptake was reduced when inorganic N supply was less or omitted. Rt inoculation of hydroponic bean provides no advantage when full-N NS is supplied, while 1/3 of full-N or N-free NS suppresses plant biomass and yield, partly because the restricted NO 3 - supply impairs cation uptake. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. Porównawcze badania nad występowaniem bakterii w hydroponicznych uprawach sałaty (Lactuca sativa L. z azotanowaą i amonową formą azotu w pożywce [Comparative studies on the occurrence of bacteria in hydroponic cultures of lettuce (Lactuca sativa L. enriched with nitrate or ammonia forms of nitrogen in the nutrient medium

    Directory of Open Access Journals (Sweden)

    Z. Kobierzyńska-Gołąb

    2015-06-01

    Full Text Available The experiment demonstrated the greatest number of bacteria on the surface of roots immersed in nutrient solution, next on the epidermis of the parts of roots remaining in the air space above the nutrient solution and on the roots growing in the seed-bed; a smaller number in the seed-bed itself and the smallest number in the nutrient solution. The population of bacteria consisted of up to 90% short rod of bacilli. The total number of bacteria in hydroponic culture with ammonium was higher than in that with nitrate. As a rule the bacteria belonging to the separate physiological groups, participating in nitrogen metabolism (ammonifying, proteolytic, proteinizing, denitrifying and oligonitrophilic bacteria appeared to be more numerus in the culture with ammonium than in that with nitrate. The growth of plants in hydroponic culture with ammonium was weaker than in that with nitrate.

  5. Hydroponic Phytoremediation of Nickel by Coriander (Coriandrum sativum

    Directory of Open Access Journals (Sweden)

    Mozhgan Tagharobiyan

    2015-09-01

    Full Text Available Environmental stresses are one of the most important factors of agricultural products reduction in the world. The influence of different concentrations of nickel nitrate (0, 100, 200 and 500 μM in Hoagland’s solution on dry matter, catalase enzyme, flavonoids, hydrogen peroxide, peroxidase Enzyme, MDA and accumulation of Ni were studied in coriander (Coriandrum sativum plants. Treatment with Ni led to significant increase in flavonoids, hydrogen peroxide, MDA and other aldehyde. Exposure of coriander plant to Ni altered catalase enzymes, leading to significant decrease in their contents. In both shoots and roots of coriander plants, significant decrease in dry matter was observed. Ni accumulation increased significantly in shoots and roots. Ni increased in the roots more than the shoots. According to a more accumulation of Ni in the roots, the expansion of plants root can help to better adaptability with the toxicity of metals. It may be used as an indicator to illustrate the differences between plant species.

  6. Accumulation of 90Sr, Ca, Mg, K and Na in crane's-bill plants cultavated on soil and hydroponics

    International Nuclear Information System (INIS)

    Analyan, V.L.; Sarkisyan, G.A.

    1981-01-01

    Accumulation of 90 Sr in plants under the conditions of soil and hydroponic cultures from the viewpoint of the possibility of obtaining ''pure'' vegetable production has been studied. Predominant absorption of 90 Sr by soil plants as compared with calcium is shown. In the course of using the hydroponic cultivation method redominant radiostrontium absorption has been manifested to all investigated nuclides including potassium. The accumulation coefficients analysis has shown that among soil plants the fisarst place is occupied by potassium, while the 90 Sr coefficients are greater than Ca on hydroponics, where the true, not distorted by soil sorption processes absorptive plant capacity has been manifested, the first places in the series are occupied by 90 Sr and K, then come Ca and Mg

  7. An improved, simple, inexpensive and highly flexible hydroponic setup for root mitochondria isolation from arabidopsis and nicotiana pants

    International Nuclear Information System (INIS)

    Hameed, M. W.; Udddin, A.

    2015-01-01

    Hydroponic setups are frequently developed and improved as they are convenient platforms for studying whole plant physiology. Mostly, the available systems produce small amounts of plant material and are therefore, unsuitable for studies requiring large quantities of plant material like isolation of mitochondria. To address this issue, we have modified a hydroponic setup that can sustain hundreds of Arabidopsis and tobacco plants until adult plants are established. The setup is very flexible and easy to construct. It is based on the use of recyclable and sterilizable plastic-net-pots and media containers, which are easily available from the local suppliers. The modified seed-pots and styrofoam sheets facilitate the transfer and harvesting of seedlings. We have used the Percoll based two-step density gradient centrifugation method for the isolation of root mitochondria from the hydroponically grown plants. (author)

  8. Accumulation of /sup 90/Sr, Ca, Mg, K and Na in crane's-bill plants cultivated on soil and hydroponics

    Energy Technology Data Exchange (ETDEWEB)

    Analyan, V L; Sarkisyan, G A [AN Armyanskoj SSR, Erevan. Inst. Agrokhimicheskikh Problem i Gidroponiki

    1981-01-01

    Accumulation of /sup 90/Sr in plants under the conditions of soil and hydroponic cultures from the viewpoint of the possibility of obtaining ''pure'' vegetable production has been studied. Predominant absorption of /sup 90/Sr by soil plants as compared with calcium is shown. In the course of using the hydroponic cultivation method predominant radiostrontium absorption has been manifested to all investigated nuclides including potassium. The accumulation coefficients analysis has shown that among soil plants the first place is occupied by potassium, while the /sup 90/Sr coefficients are greater than Ca on hydroponics, where the true, not distorted by soil sorption processes absorptive plant capacity has been manifested, the first places in the series are occupied by /sup 90/Sr and K, then come Ca and Mg.

  9. Accumulation of some heavy metals in spice herbs in open-air hydroponics and soil cultures of the Ararat valley

    International Nuclear Information System (INIS)

    Ghalachyan, L.M.; Kocharyan, K.A.; Aristakesyan, A.A.; Asatryan, A.Z.

    2015-01-01

    Peculiarities of some heavy metals (HM), (Mn, Ni, Ti, V, Co, Cu, Pb, Mo, Cr, Zr) accumulation have been studied in spice herbs (basil, dill, coriander, savory) grown in open-air hydroponics and soil cultures of the Ararat Valley. It turned out that the amount of HM content in spice herbs grown in open-air hydroponic conditions was less than in the ones grown in soil conditions. The content of Pb and Ni in spice herbs exceeded the allowed concentration limits (ACL), especially in soil plants. Practical recommendations on obtaining ecologically safe agricultural products have been prepared. The biotechnological hydroponics method of producing spice herbs in the Ararat Valley is ecologically more beneficial than the soil method. Practical proposals of obtaining ecologically safe agricultural products have been developed

  10. Use of planted biofilters in integrated recirculating aquaculture-hydroponics systems in the Mekong Delta, Vietnam

    DEFF Research Database (Denmark)

    Trang, N.T.D.; Brix, Hans

    2014-01-01

    The feasibility of using planted biofilters for purification of recirculated aquaculture water in the Mekong Delta of Vietnam was assessed. The plant trenches were able to clean tilapia aquaculture water and to maintain good water quality in the fish tanks without renewal of the water. NH4-N was ...... rates of 725 kg N and 234 kg P ha-1 year-1. This research demonstrates that integrated recirculating aquaculture-hydroponics (aquaponics) systems provide significant water savings and nutrient recycling as compared with traditional fish ponds....

  11. ANALYSIS OF THE STRATEGY OF BREEDING OF TOMATO WITH DGENES FOR MULTILEVEL NARROWSHELVE HYDROPONIC SYSTEM

    OpenAIRE

    I. T. Balashova; S. M. Sirota; E. G. Kozar

    2015-01-01

    Using the sporophyte selection accelerates in three times the breeding process of new tomato forms with dgenes for the multilevel narrow-shelve hydroponic technology. Analysis two breeding approaches is presented in this paper: the individual selection of recombinant forms from populations and the target hybridization. The target hybridization increases the productivity of the plant and the weight of one fruit in two times.

  12. Survival and Transfer of Murine Norovirus within a Hydroponic System during Kale and Mustard Microgreen Harvesting

    Science.gov (United States)

    Wang, Qing

    2015-01-01

    Hydroponically grown microgreens are gaining in popularity, but there is a lack of information pertaining to their microbiological safety. The potential risks associated with virus contamination of crops within a hydroponic system have not been studied to date. Here a human norovirus (huNoV) surrogate (murine norovirus [MNV]) was evaluated for its ability to become internalized from roots to edible tissues of microgreens. Subsequently, virus survival in recirculated water without adequate disinfection was assessed. Kale and mustard seeds were grown on hydroponic pads (for 7 days with harvest at days 8 to 12), edible tissues (10 g) were cut 1 cm above the pads, and corresponding pieces (4 cm by 4 cm) of pads containing only roots were collected separately. Samples were collected from a newly contaminated system (recirculated water inoculated with ∼3 log PFU/ml MNV on day 8) and from a previously contaminated system. (A contaminated system without adequate disinfection or further inoculation was used for production of another set of microgreens.) Viral titers and RNA copies were quantified by plaque assay and real-time reverse transcription (RT)-PCR. The behaviors of MNV in kale and mustard microgreens were similar (P > 0.05). MNV was detected in edible tissues and roots after 2 h postinoculation, and the levels were generally stable during the first 12 h. Relatively low levels (∼2.5 to ∼1.5 log PFU/sample of both edible tissues and roots) of infectious viruses were found with a decreasing trend over time from harvest days 8 to 12. However, the levels of viral RNA present were higher and consistently stable (∼4.0 to ∼5.5 log copies/sample). Recirculated water maintained relatively high levels of infectious MNV over the period of harvest, from 3.54 to 2.73 log PFU/ml. Importantly, cross-contamination occurred easily; MNV remained infectious in previously contaminated hydroponic systems for up to 12 days (2.26 to 1.00 PFU/ml), and MNV was detected in both

  13. Survival and Transfer of Murine Norovirus within a Hydroponic System during Kale and Mustard Microgreen Harvesting.

    Science.gov (United States)

    Wang, Qing; Kniel, Kalmia E

    2016-01-15

    Hydroponically grown microgreens are gaining in popularity, but there is a lack of information pertaining to their microbiological safety. The potential risks associated with virus contamination of crops within a hydroponic system have not been studied to date. Here a human norovirus (huNoV) surrogate (murine norovirus [MNV]) was evaluated for its ability to become internalized from roots to edible tissues of microgreens. Subsequently, virus survival in recirculated water without adequate disinfection was assessed. Kale and mustard seeds were grown on hydroponic pads (for 7 days with harvest at days 8 to 12), edible tissues (10 g) were cut 1 cm above the pads, and corresponding pieces (4 cm by 4 cm) of pads containing only roots were collected separately. Samples were collected from a newly contaminated system (recirculated water inoculated with ∼3 log PFU/ml MNV on day 8) and from a previously contaminated system. (A contaminated system without adequate disinfection or further inoculation was used for production of another set of microgreens.) Viral titers and RNA copies were quantified by plaque assay and real-time reverse transcription (RT)-PCR. The behaviors of MNV in kale and mustard microgreens were similar (P > 0.05). MNV was detected in edible tissues and roots after 2 h postinoculation, and the levels were generally stable during the first 12 h. Relatively low levels (∼2.5 to ∼1.5 log PFU/sample of both edible tissues and roots) of infectious viruses were found with a decreasing trend over time from harvest days 8 to 12. However, the levels of viral RNA present were higher and consistently stable (∼4.0 to ∼5.5 log copies/sample). Recirculated water maintained relatively high levels of infectious MNV over the period of harvest, from 3.54 to 2.73 log PFU/ml. Importantly, cross-contamination occurred easily; MNV remained infectious in previously contaminated hydroponic systems for up to 12 days (2.26 to 1.00 PFU/ml), and MNV was detected in both

  14. Mineralogy affects geoavailability, bioaccessibility and bioavailability of zinc

    International Nuclear Information System (INIS)

    Molina, Ramon M.; Schaider, Laurel A.; Donaghey, Thomas C.; Shine, James P.; Brain, Joseph D.

    2013-01-01

    We correlated mineralogical and particle characteristics of Zn-containing particles with Zn geoavailability, bioaccessibility, and bioavailability following gavage and intranasal (IN) administration in rats. We compared samples of Zn/Pb mine waste and five pulverized pure-phase Zn minerals ( 65 Zn. We assessed geoavailability using sequential extractions and bioaccessibility using in vitro extraction tests simulating various pH and biological conditions. Zn in vivo bioavailability and in vitro bioaccessibility decreased as follows: mine waste > hydrozincite > hemimorphite > zincite ≈ smithsonite >> sphalerite. We found significant correlations among geoavailability, bioaccessibility and bioavailability. In particular, Zn bioavailability post-gavage and post-IN was significantly correlated with bioaccessibility in simulated phagolysosomal fluid and gastric fluid. These data indicate that solid phase speciation influences biological uptake of Zn and that in vitro tests can be used to predict Zn bioavailability in exposure assessment and effective remediation design. Highlights: •Zinc particle mineralogy influences bioaccessibility and bioavailability. •Zn bioavailability via gavage was 1.2–1.6 times higher than via intranasal route. •Zn particle geoavailability correlates with bioaccessibility. •In vitro bioaccessibility tests can predict in vivo Zn bioavailability. •Metal speciation and geochemical alterations can impact Zn bioavailability. -- Zinc mineralogy influences in vitro bioaccessibility and in vivo bioavailability and in vitro extraction tests can be used to predict Zn bioavailability from particles

  15. Bioavailability of indomethacin-saccharin cocrystals.

    Science.gov (United States)

    Jung, Min-Sook; Kim, Jeong-Soo; Kim, Min-Soo; Alhalaweh, Amjad; Cho, Wonkyung; Hwang, Sung-Joo; Velaga, Sitaram P

    2010-11-01

    Pharmaceutical cocrystals are new solid forms with physicochemical properties that appear promising for drug product development. However, the in-vivo bioavailability of cocrystals has rarely been addressed. The cocrystal of indomethacin (IND), a Biopharmaceutical Classification System class II drug, with saccharin (SAC) has been shown to have higher solubility than IND at all pH. In this study, we aimed to evaluate the in-vitro dissolution and in-vivo bioavailability of IND-SAC cocrystals in comparison with IND in a physical mixture and the marketed product Indomee. Scale-up of the cocrystals was undertaken using cooling batch crystallisation without seeding. The chemical and physical purity of the up-scaled material was verified using high-performance liquid chromatography, differential scanning calorimetry and powder X-ray diffraction. The IND-SAC cocrystals and IND plus SAC were mixed with lactose and the formulations were placed into gelatin capsules. In-vitro dissolution studies were then performed using the rotating basket dissolution method. The intrinsic dissolution rate of IND and IND-SAC cocrystals was also determined. Finally, a bioavailability study for the formulations was conducted in beagle dogs. The plasma samples were analysed using high-performance liquid chromatography and the pharmacokinetic data were analysed using standard methodologies.   The bulk cocrystals (i.e. scaled-up material) were chemically and physically pure. The in-vitro dissolution rate of the cocrystals was higher than that of IND and similar to that of Indomee at pH 7.4 and pH 1.2. The in-vivo bioavailability of the IND-SAC cocrystals in dogs was significantly higher (ANOVA, P0.05). The study indicates that the improved aqueous solubility of the cocrystals leads to improved bioavailability of IND. Thus, the cocrystals are a viable alternative solid form that can improve the dissolution rate and bioavailability of poorly soluble drugs. © 2010 The Authors. JPP © 2010 Royal

  16. Do rhizospheric processes linked to P nutrition participate in U absorption by Lupinus albus grown in hydroponics?

    Science.gov (United States)

    Tailliez, Antoine; Pierrisnard, Sylvie; Camilleri, Virginie; Keller, Catherine; Henner, Pascale

    2013-10-01

    Phosphate (P) is an essential element for plant development but is generally present in limiting amount in the soil solution. Plant species have developed different mechanisms promoting the solubilization of this element in soils to ensure a sufficient supply for their growth. One of these mechanisms is based on the ability of certain species such as L. albus to exude large amounts of citrate through specific tertiary roots called cluster-roots. Uranium (U) is an ubiquitous contaminant known firstly for its chemical toxicity and secondly for its high affinity for P with which it forms low-soluble complexes in soils. We highlight the effects of P-U interaction on the physiology of L. albus and particularly on citrate exudation, and the impact of this root process on the phytoavailability of U and its accumulation in plants in a hydroponic study. Different levels of P (1 and 100 μM) and U (0 and 20 μM) have been tested. Our results show no toxicity of U on the development of L. albus with an adequate P supply, whereas the effects of P starvation are amplified by the presence of U in the growth medium, except for the production of cluster-roots. Citrate exudation is totally inhibited by U in a low-P environment whereas it increases in the presence of U when its toxicity is lowered by the addition of P. The differences observed in terms of toxicity and accumulation are partly explained by the microphotographs obtained by electron microscopy (TEM-EDX): in the absence of P, U penetrates deep into the roots and causes lethal damages, whereas in presence of P, we observe the formation of U-P complexes which limit the internalization of the pollutant and so its toxicity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Variations in Metal Tolerance and Accumulation in Three Hydroponically Cultivated Varieties of Salix integra Treated with Lead

    Science.gov (United States)

    Sun, Haijing; Chen, Yitai; Pan, Hongwei; Yang, Xiaoe; Rafiq, Tariq

    2014-01-01

    Willow species have been suggested for use in the remediation of contaminated soils due to their high biomass production, fast growth, and high accumulation of heavy metals. The tolerance and accumulation of metals may vary among willow species and varieties, and the assessment of this variability is vital for selecting willow species/varieties for phytoremediation applications. Here, we examined the variations in lead (Pb) tolerance and accumulation of three cultivated varieties of Salix integra (Weishanhu, Yizhibi and Dahongtou), a shrub willow native to northeastern China, using hydroponic culture in a greenhouse. In general, the tolerance and accumulation of Pb varied among the three willow varieties depending on the Pb concentration. All three varieties had a high tolerance index (TI) and EC50 value (the effective concentration of Pb in the nutrient solution that caused a 50% inhibition on biomass production), but a low translocation factor (TF), indicating that Pb sequestration is mainly restricted in the roots of S. integra. Among the three varieties, Dahogntou was more sensitive to the increased Pb concentration than the other two varieties, with the lowest EC50 and TI for root and above-ground tissues. In this respect, Weishanhu and Yizhibi were more suitable for phytostabilization of Pb-contaminated soils. However, our findings also indicated the importance of considering the toxicity symptoms when selecting willow varieties for the use of phytoremediation, since we also found that the three varieties revealed various toxicity symptoms of leaf wilting, chlorosis and inhibition of shoot and root growth under the higher Pb concentrations. Such symptoms could be considered as a supplementary index in screening tests. PMID:25268840

  18. Variations in metal tolerance and accumulation in three hydroponically cultivated varieties of Salix integra treated with lead.

    Directory of Open Access Journals (Sweden)

    Shufeng Wang

    Full Text Available Willow species have been suggested for use in the remediation of contaminated soils due to their high biomass production, fast growth, and high accumulation of heavy metals. The tolerance and accumulation of metals may vary among willow species and varieties, and the assessment of this variability is vital for selecting willow species/varieties for phytoremediation applications. Here, we examined the variations in lead (Pb tolerance and accumulation of three cultivated varieties of Salix integra (Weishanhu, Yizhibi and Dahongtou, a shrub willow native to northeastern China, using hydroponic culture in a greenhouse. In general, the tolerance and accumulation of Pb varied among the three willow varieties depending on the Pb concentration. All three varieties had a high tolerance index (TI and EC50 value (the effective concentration of Pb in the nutrient solution that caused a 50% inhibition on biomass production, but a low translocation factor (TF, indicating that Pb sequestration is mainly restricted in the roots of S. integra. Among the three varieties, Dahogntou was more sensitive to the increased Pb concentration than the other two varieties, with the lowest EC50 and TI for root and above-ground tissues. In this respect, Weishanhu and Yizhibi were more suitable for phytostabilization of Pb-contaminated soils. However, our findings also indicated the importance of considering the toxicity symptoms when selecting willow varieties for the use of phytoremediation, since we also found that the three varieties revealed various toxicity symptoms of leaf wilting, chlorosis and inhibition of shoot and root growth under the higher Pb concentrations. Such symptoms could be considered as a supplementary index in screening tests.

  19. Influence of Se concentrations and species in hydroponic cultures on Se uptake, translocation and assimilation in non-accumulator ryegrass.

    Science.gov (United States)

    Versini, Antoine; Di Tullo, Pamela; Aubry, Emmanuel; Bueno, Maïté; Thiry, Yves; Pannier, Florence; Castrec-Rouelle, Maryse

    2016-11-01

    The success of biofortification and phytoremediation practices, addressing Se deficiency and Se pollution issues, hinges crucially on the fate of selenium in the plant media in response to uptake, translocation and assimilation processes. We investigate the fate of selenium in root and shoot compartments after 3 and 6 weeks of experiment using a total of 128 plants grown in hydroponic solution supplied with 0.2, 2, 5, 20 and 100 mg L -1 of selenium in the form of selenite, selenate and a mixture of both species. Selenate-treated plants exhibited higher root-to-shoot Se translocation and total Se uptake than selenite-treated plants. Plants took advantage of the selenate mobility and presumably of the storage capacity of leaf vacuoles to circumvent selenium toxicity within the plant. Surprisingly, 28% of selenate was found in shoots of selenite-treated plants, questioning the ability of plants to oxidize selenite into selenate. Selenomethionine and methylated organo-selenium amounted to 30% and 8% respectively in shoots and 35% and 9% in roots of the identified Se, suggesting that selenium metabolization occurred concomitantly in root and shoot plant compartments and demonstrating that non-accumulator plants can synthesize notable quantities of precursor compound for volatilization. The present study demonstrated that non-accumulator plants can develop the same strategies as hyper-accumulator plants to limit selenium toxicity. When both selenate and selenite were supplied together, plants used selenate in a storage pathway and selenite in an assimilation pathway. Plants might thereby benefit from mixed supplies of selenite and selenate by saving enzymes and energy required for selenate reduction. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. Growth and Tissue Elemental Composition Response of Butterhead Lettuce (Lactuca sativa, cv. Flandria) to Hydroponic and Aquaponic Conditions

    OpenAIRE

    Tyler S. Anderson; David de Villiers; Michael B. Timmons

    2017-01-01

    The primary objective of this research was to compare lettuce performance under conventional hydroponics at pH 5.8 (referred to as H5), hydroponics at pH 7.0 (referred to as H7), and recirculated aquaponic water at pH 7.0 (referred to as A7). Aquaponic nutrients were supplied by continuously recirculating water between a fish rearing system (recirculating aquaculture system or RAS) and the lettuce growing system (with the sole addition being chelated iron). This paper builds upon our previous...

  1. Mobility and Bioavailability of Radionuclides in Soils

    International Nuclear Information System (INIS)

    Iurian, A.; Olufemi Phaneuf, M.; Mabit, L.

    2016-01-01

    It is crucial to understand the behavior of radionuclides in the environment, their potential mobility and bioavailability related to long-term persistence, radiological hazards, and impact on human health. Such key information is used to develop strategies that support policy decisions. The environmental behavior of radionuclides depends on ecosystem characteristics. A given soil’s capacity to immobilize radionuclides has been proved to be the main factor responsible for their resulting activity concentrations in plants. The mobility and bioavailability of radionuclides in soils is complex, depending on clay-sized soil fraction, clay mineralogy, organic matter, cation exchange capacity, pH and quantities of competing cations. Moreover, plant species have different behaviors regarding radionuclide absorption depending on soil and plan characteristics

  2. Bioavailability and variability of biphasic insulin mixtures

    DEFF Research Database (Denmark)

    Søeborg, Tue; Rasmussen, Christian Hove; Mosekilde, Erik

    2012-01-01

    Absorption of subcutaneously administered insulin is associated with considerable variability. Some of this variability was quantitatively explained for both soluble insulin and insulin suspensions in a recent contribution to this journal (Søeborg et al., 2009). In the present article......, the absorption kinetics for mixtures of insulins is described. This requires that the bioavailability of the different insulins is considered. A short review of insulin bioavailability and a description of the subcutaneous depot thus precede the presentation of possible mechanisms associated with subcutaneous...... insulin degradation. Soluble insulins are assumed to be degraded enzymatically in the subcutaneous tissue. Suspended insulin crystals form condensed heaps that are assumed to be degraded from their surface by invading macrophages. It is demonstrated how the shape of the heaps affects the absorption...

  3. Growth and Tissue Elemental Composition Response of Butterhead Lettuce (Lactuca sativa, cv. Flandria to Hydroponic Conditions at Different pH and Alkalinity

    Directory of Open Access Journals (Sweden)

    Tyler S. Anderson

    2017-07-01

    Full Text Available Biomass and tissue elemental differences were quantified for lettuce grown in deep-water conventional hydroponic conditions at two pH and alkalinity conditions. Nutrient solutions were created using inorganic salts and either reverse osmosis (RO water or municipal water with high alkalinity. Three treatments were evaluated: (a nutrient solution created with reverse osmosis (RO water and maintained at pH 5.8 (H5; (b same as H5 but maintained at pH 7.0 (H7; and (c nutrient solution created using municipal water and maintained at pH 7.0, referred to as HA7. Averaged across three trials, the HA7 and H7 treatments produced 26% less shoot fresh weight (FW than the H5 treatment with an 18% reduction in dry weight (DW. The H5 treatment had the least biomass in root FW and DW. In tissue elemental analyses, both the pH 7.0 treatments showed lower concentrations than H5 in Cu, N, Mo, and Sr, and increased concentrations in Ba, Mg, Na, and Zn. There were no differences in Al, C, Ca, Fe, K, Mn, Ni, P, S, and Si concentrations among treatments (p = 0.05. The results from this experiment can be used to isolate the effects of pH and alkalinity in aquaponic conditions where pH and alkalinity will mimic HA7 conditions.

  4. Extraction, bioavailability, and bioefficacy of capsaicinoids

    Directory of Open Access Journals (Sweden)

    Muwen Lu

    2017-01-01

    Full Text Available Capsaicinoids are active constituents responsible for the pungent and spicy flavor in chili peppers. During the past few decades, various extraction methods of capsaicinoids from peppers have been developed with high yields. Through biological studies, pharmacological benefits have been reported such as pain relief, antiinflammation, anticancer, cardio-protection, as well as weight loss. In this paper, the extraction methods and bioavailability of capsaicinoids are reviewed and discussed. In addition, the pharmacological effects and their underlying mechanisms are also studied.

  5. Extraction, bioavailability, and bioefficacy of capsaicinoids

    OpenAIRE

    Muwen Lu; Chi-Tang Ho; Qingrong Huang

    2017-01-01

    Capsaicinoids are active constituents responsible for the pungent and spicy flavor in chili peppers. During the past few decades, various extraction methods of capsaicinoids from peppers have been developed with high yields. Through biological studies, pharmacological benefits have been reported such as pain relief, antiinflammation, anticancer, cardio-protection, as well as weight loss. In this paper, the extraction methods and bioavailability of capsaicinoids are reviewed and discussed. In ...

  6. KIRLIANOGRAPHY ESTIMATION OF BIOAVAILABILITY OF SUBSTANCE

    Directory of Open Access Journals (Sweden)

    M. V. Kuryk

    2013-11-01

    The method of classical kirlianography with X ray film allows assessing the bioavailability condition, which is important for the prediction of absorption and physiological effects of a man consumed food and phytomedicines. Therefore, these studies are relevant and require further development. Used such standard methods of mathematical processing as histograms and pixel brightness profile for the analysis of Kirlian images are informative enough for the individual samples, and can be the basis for the batch processing of data.

  7. Sugars increase non-heme iron bioavailability in human epithelial intestinal and liver cells.

    Directory of Open Access Journals (Sweden)

    Tatiana Christides

    Full Text Available Previous studies have suggested that sugars enhance iron bioavailability, possibly through either chelation or altering the oxidation state of the metal, however, results have been inconclusive. Sugar intake in the last 20 years has increased dramatically, and iron status disorders are significant public health problems worldwide; therefore understanding the nutritional implications of iron-sugar interactions is particularly relevant. In this study we measured the effects of sugars on non-heme iron bioavailability in human intestinal Caco-2 cells and HepG2 hepatoma cells using ferritin formation as a surrogate marker for iron uptake. The effect of sugars on iron oxidation state was examined by measuring ferrous iron formation in different sugar-iron solutions with a ferrozine-based assay. Fructose significantly increased iron-induced ferritin formation in both Caco-2 and HepG2 cells. In addition, high-fructose corn syrup (HFCS-55 increased Caco-2 cell iron-induced ferritin; these effects were negated by the addition of either tannic acid or phytic acid. Fructose combined with FeCl3 increased ferrozine-chelatable ferrous iron levels by approximately 300%. In conclusion, fructose increases iron bioavailability in human intestinal Caco-2 and HepG2 cells. Given the large amount of simple and rapidly digestible sugars in the modern diet their effects on iron bioavailability may have important patho-physiological consequences. Further studies are warranted to characterize these interactions.

  8. Bioavailability of cadmium from linseed and cocoa

    DEFF Research Database (Denmark)

    Hansen, Max; Rasmussen, Rie Romme; Sloth, Jens Jørgen

    2014-01-01

    The exposure of the European population to cadmium from food is high compared with the tolerable weekly intake of 2.5 μg/kg bodyweight set by EFSA in 2009. Only few studies on the bioavailability of cadmium from different food sources has been performed but this information in very important...... for the food authorities in order to give correct advises to the population. The aim of this study was to investigate the bioavailability of cadmium from whole linseed, crushed linseed, cocoa and cadmium chloride in rats. An experiment where 40 rats were divided into 4 groups and a control group and dosed...... be measured in the kidney compared to the calculated total intake was as follows: Control 2.0 %, Crushed linseed 0.9 %, whole linseed, 1.5 %, cocoa 0.7 % and CdCl2 4.6 %. Based on this study it could not be concluded that the bioavailability in rats form whole linseed is lower that for crushed linseed...

  9. Potassium Intake, Bioavailability, Hypertension, and Glucose Control

    Directory of Open Access Journals (Sweden)

    Michael S. Stone

    2016-07-01

    Full Text Available Potassium is an essential nutrient. It is the most abundant cation in intracellular fluid where it plays a key role in maintaining cell function. The gradient of potassium across the cell membrane determines cellular membrane potential, which is maintained in large part by the ubiquitous ion channel the sodium-potassium (Na+-K+ ATPase pump. Approximately 90% of potassium consumed (60–100 mEq is lost in the urine, with the other 10% excreted in the stool, and a very small amount lost in sweat. Little is known about the bioavailability of potassium, especially from dietary sources. Less is understood on how bioavailability may affect health outcomes. Hypertension (HTN is the leading cause of cardiovascular disease (CVD and a major financial burden ($50.6 billion to the US public health system, and has a significant impact on all-cause morbidity and mortality worldwide. The relationship between increased potassium supplementation and a decrease in HTN is relatively well understood, but the effect of increased potassium intake from dietary sources on blood pressure overall is less clear. In addition, treatment options for hypertensive individuals (e.g., thiazide diuretics may further compound chronic disease risk via impairments in potassium utilization and glucose control. Understanding potassium bioavailability from various sources may help to reveal how specific compounds and tissues influence potassium movement, and further the understanding of its role in health.

  10. Rapid screening assay for calcium bioavailability studies

    International Nuclear Information System (INIS)

    Luhrsen, K.R.; Hudepohl, G.R.; Smith, K.T.

    1986-01-01

    Calcium bioavailability has been studied by numerous techniques. The authors report here the use of the gamma emitting isotope of calcium ( 47 Ca) in a whole body retention assay system. In this system, calcium sources are administered by oral gavage and subsequent counts are determined and corrected for isotopic decay. Unlike iron and zinc retention curves, which exhibit a 2-3 day equilibration period, calcium reaches equilibration after 24 hours. Autoradiographic analysis of the femurs indicate that the newly absorbed calcium is rapidly distributed to the skeletal system. Moreover, the isotope is distributed along the entire bone. Comparisons of calcium bioavailability were made using intrinsic/extrinsic labeled milk from two species i.e. rat and goat as well as CaCO 3 . In addition, extrinsic labeled cow milk was examined. In the rat, the extrinsic labeled calcium from milk was better absorbed than the intrinsic calcium. This was not the case in goat milk or the calcium carbonate which exhibited no significant differences. Chromatographic analysis of the labeled milk indicates a difference in distribution of the 47 Ca. From these data, the authors recommend the use of this assay system in calcium bioavailability studies. The labeling studies and comparisons indicate caution should be used, however, in labeling techniques and species milk comparison

  11. Potential of domestic sewage effluent treated as a source of water and nutrients in hydroponic lettuce

    Directory of Open Access Journals (Sweden)

    Renata da Silva Cuba

    2015-07-01

    Full Text Available The search for alternative sources of water for agriculture makes the use of treated sewage sludge an important strategy for achieving sustainability. This study evaluated the feasibility of reusing treated sewage effluent as alternative source of water and nutrients for the hydroponic cultivation of lettuce (Lactuca sativa L. The experiment was conducted in the greenhouse of the Center for Agricultural Sciences - UFSCar, in Araras, SP. The cultivation took place from February to March 2014. The hydroponic system used was the Nutrient Film Technique, and included three treatments: 1 water supply and mineral fertilizers (TA; 2 use of effluent treated and complemented with mineral fertilizers based on results of previous chemical analysis (TRA; and 3 use of treated effluent (TR. The applied experimental design was four randomly distributed blocks. We evaluated the fresh weight, nutritional status, the microbiological quality of the culture, and the amount of mineral fertilizers used in the treatments. The fresh weights were subjected to analysis of variance and means were compared by the Tukey test at 5% probability. Only the TR treatment showed a significant difference in the evaluated variables, as symptoms of nutritional deficiencies in plants and significant reduction in fresh weights (p <0.01 were found. There was no detectable presence of Escherichia coli in any treatment, and it was possible to use less of some fertilizers in the TRA treatment compared to TA.

  12. Production of strawberry cultivars in closed hydroponic systems and coconut fibre substrate

    Directory of Open Access Journals (Sweden)

    Fabio Rodrigues de Miranda

    Full Text Available The objective of this work was to evaluate yield and average fruit weight of strawberry cultivars Albion, Camarosa, Festival and Oso Grande, in two closed hydroponic systems (gutters and grow bags, using coconut fibre as substrate. The experimental design was of randomised blocks, divided into strips, with five replications. The hydroponic systems did not differ significantly as to yield, with advantages, such as savings in water and fertilizer and reduced environmental impact, over open systems. The most productive cultivar was Festival, followed by Oso Grande, with average yields of 6.99 kg m-2 and 5.56 kg m-2 respectively. The cultivars with the greatest fruit weight were Oso Grande and Albion, having averages of 11.8 and 11.1 g respectively, with the former being significantly superior to the latter. The highest yield (7.4 kg m-2 was obtained from the cultivar Festival under the gutter system. The Ibiapaba region has conditions which are favourable to strawberry production in relation to precocity (harvesting starts in the 6th week of growth and production continues throughout the year; however there is a need to test new cultivars and to improve the cultivation techniques with an aim to producing larger-sized fruit.

  13. Garlic exerts allelopathic effects on pepper physiology in a hydroponic co-culture system

    Directory of Open Access Journals (Sweden)

    Haiyan Ding

    2016-05-01

    Full Text Available A hydroponic co-culture system was adopted to determine the allelopathic potential of garlic on the growth of pepper plants. Different numbers of garlic plants (0, 2, 4, 8 and 12 were hydroponically co-cultured with two pepper plants to investigate allelopathic effects on the growth attributes and antioxidative defense system of the test pepper plants. The responses of the pepper plants depended on the number of garlic plants included in the co-culture system, indicating an association of pepper growth with the garlic root exudate concentration. When grown at a pepper/garlic ratio of 1:1 or 1:2, the pepper plant height, chlorophyll content, and peroxidase (POD, catalase (CAT and phenylalanine ammonia-lyase (PAL activities were significantly increased after 30 days of co-culture; in contrast, reduction in methane dicarboxylic aldehyde (MDA content was observed. However, when the pepper/garlic ratio was 1:4 or higher, these morphological indices and protective enzyme activities were significantly inhibited, whereas MDA levels in the pepper leaves were significantly increased due to severe membrane lipid peroxidation. The results indicate that although low concentrations of garlic root exudates appear to induce protective enzyme systems and promote pepper growth, high concentrations have deleterious effects. These findings suggest that further investigations should optimize the co-culture pepper/garlic ratio to reduce continuous cropping obstacles in pepper production.

  14. Tomato Productivity and Quality in Aquaponics: Comparison of Three Hydroponic Methods

    Directory of Open Access Journals (Sweden)

    Zala Schmautz

    2016-11-01

    Full Text Available Aquaponics (AP is a food production system that combines hydroponic (HP crop production with recirculating aquaculture. Different types of hydroponic systems have been used for growing crops in aquaponics. However, very few studies have compared their suitability and efficiency in an aquaponic context. The study presented here compares tomato yield, morphological (external and biochemical (internal fruit quality, and overall tomato plant vitality from three different HP systems (nutrient film technique, drip irrigation system, and floating raft culture and examines the distribution of nutrients in different parts of the tomato plant. Three replicate AP systems were set up, each incorporating the three different HP systems coupled with a separate recirculating aquaculture unit growing Nile tilapia. The results showed that the choice of the cultivation system had little influence on most of the above-mentioned properties. Tomato fruit mineral content was found to be in similar range for N, P, K, Ca, Mg, Fe, and Zn as reported in the literature. Yield and fruit quality were similar in all three systems. However, the drip irrigation system did perform slightly better. The slightly higher oxygen radical absorbance capacity (ORAC of the fruits grown in AP in comparison to commercially produced and supermarket derived tomatoes might indicate a potential for producing fruits with higher health value for humans.

  15. Survival of Potentially Pathogenic Human-Associated Bacteria in the Rhizosphere of Hydroponically Grown Wheat

    Science.gov (United States)

    Morales, Anabelle; Garland, Jay L.; Lim, Daniel V.

    1996-01-01

    Plants may serve as reservoirs for human-associated bacteria (H-AB) in long-term space missions containing bioregenerative life support systems. The current study examined the abilities of five human-associated potential pathogens, Pseudomonas aeruginosa, Pseudomonas cepacia, Staphylococcus aureus, Streptococcus pyogenes, and Escherichia coli, to colonize and grow in the rhizosphere of hydroponically grown wheat, a candidate crop for life support. All of these bacteria have been recovered from past NASA missions and present potential problems for future missions. The abilities of these organisms to adhere to the roots of axenic five-day-old wheat (Triticum aestivum L. cv. Yecora rojo) were evaluated by enumeration of the attached organisms after a one hour incubation of roots in a suspension (approximately 10(exp 8 cu/ml)) of the H-AB. Results showed that a greater percentage of P. aeruginosa cells adhered to the wheat roots than the other four H-AB. Similarly incubated seedlings were also grown under attempted axenic conditions for seven days to examine the potential of each organism to proliferate in the rhizosphere (root colonization capacity). P. cepacia and P. aeruginosa showed considerable growth. E. coli and S. aureus showed no significant growth, and S. pyogenes died off in the wheat rhizosphere. Studies examining the effects of competition on the survival of these microorganisms indicated that P. aeruginosa was the only organism that survived in the rhizosphere of hydroponically grown wheat in the presence of different levels of microbial competition.

  16. Treatment and utilization of septic tank effluent using vertical-flow constructed wetlands and vegetable hydroponics.

    Science.gov (United States)

    Cui, Li-Hua; Luo, Shi-Ming; Zhu, Xi-Zhen; Liu, Ying-Hu

    2003-01-01

    Vertical flow constructed wetlands is a typical ecological sanitation system for sewage treatment. The removal rates for COD, BOD5, SS, TN, and TP were 60%, 80%, 74%, 49% and 79%, respectively, when septic tank effluent was treated by vertical flow filter. So the concentration of COD and BOD5 in the treated effluent could meet the quality standard for irrigation water. After that the treated effluent was used for hydroponic cultivation of water spinach and romaine lettuce, the removal efficiencies of the whole system for COD, BOD5, SS, TN and TP were 71.4%, 97.5%, 96.9%, 86.3%, and 87.4%, respectively. And it could meet the integrated wastewater discharge standard for secondary biological treatment plant. It was found that using treated effluent for hydroponic cultivation of vegetables could reduce the nitrate content in vegetables. The removal rates for total bacteria and coliform index by using vertical flow bed system with cinder substrate were 80%-90% and 85%-96%, respectively.

  17. A comparison of hydroponic and soil-based screening methods to identify salt tolerance in the field in barley

    Science.gov (United States)

    Tavakkoli, Ehsan; Fatehi, Foad; Rengasamy, Pichu; McDonald, Glenn K.

    2012-01-01

    Success in breeding crops for yield and other quantitative traits depends on the use of methods to evaluate genotypes accurately under field conditions. Although many screening criteria have been suggested to distinguish between genotypes for their salt tolerance under controlled environmental conditions, there is a need to test these criteria in the field. In this study, the salt tolerance, ion concentrations, and accumulation of compatible solutes of genotypes of barley with a range of putative salt tolerance were investigated using three growing conditions (hydroponics, soil in pots, and natural saline field). Initially, 60 genotypes of barley were screened for their salt tolerance and uptake of Na+, Cl–, and K+ at 150 mM NaCl and, based on this, a subset of 15 genotypes was selected for testing in pots and in the field. Expression of salt tolerance in saline solution culture was not a reliable indicator of the differences in salt tolerance between barley plants that were evident in saline soil-based comparisons. Significant correlations were observed in the rankings of genotypes on the basis of their grain yield production at a moderately saline field site and their relative shoot growth in pots at ECe 7.2 [Spearman’s rank correlation (rs)=0.79] and ECe 15.3 (rs=0.82) and the crucial parameter of leaf Na+ (rs=0.72) and Cl– (rs=0.82) concentrations at ECe 7.2 dS m−1. This work has established screening procedures that correlated well with grain yield at sites with moderate levels of soil salinity. This study also showed that both salt exclusion and osmotic tolerance are involved in salt tolerance and that the relative importance of these traits may differ with the severity of the salt stress. In soil, ion exclusion tended to be more important at low to moderate levels of stress but osmotic stress became more important at higher stress levels. Salt exclusion coupled with a synthesis of organic solutes were shown to be important components of salt

  18. Mechanisms of Fe biofortification and mitigation of Cd accumulation in rice (Oryza sativa L.) grown hydroponically with Fe chelate fertilization.

    Science.gov (United States)

    Chen, Zhe; Tang, Ye-Tao; Zhou, Can; Xie, Shu-Ting; Xiao, Shi; Baker, Alan J M; Qiu, Rong-Liang

    2017-05-01

    Cadmium contaminated rice from China has become a global food safety issue. Some research has suggested that chelate addition to substrates can affect metal speciation and plant metal content. We investigated the mitigation of Cd accumulation in hydroponically-grown rice supplied with EDTANa 2 Fe(II) or EDDHAFe(III). A japonica rice variety (Nipponbare) was grown in modified Kimura B solution containing three concentrations (0, 10, 100 μΜ) of the iron chelates EDTANa 2 Fe(II) or EDDHAFe(III) and 1 μΜ Cd. Metal speciation in solution was simulated by Geochem-EZ; growth and photosynthetic efficiency of rice were evaluated, and accumulation of Cd and Fe in plant parts was determined. Net Cd fluxes in the meristematic zone, growth zone, and maturation zone of roots were monitored by a non-invasive micro-test technology. Expression of Fe- and Cd-related genes in Fe-sufficient or Fe-deficient roots and leaves were studied by QRT-PCR. Compared to Fe deficiency, a sufficient or excess supply of Fe chelates significantly enhanced rice growth by elevating photosynthetic efficiency. Both Fe chelates increased the Fe content and decreased the Cd content of rice organs, except for the Cd content of roots treated with excess EDDHAFe(III). Compared to EDDHAFe(III), EDTANa 2 Fe(II) exhibited better mitigation of Cd accumulation in rice by generating the EDTANa 2 Cd complex in solution, decreasing net Cd influx and increasing net Cd efflux in root micro-zones. Application of EDTANa 2 Fe(II) and EDDHAFe(III) also reduced Cd accumulation in rice by inhibiting expression of genes involved in transport of Fe and Cd in the xylem and phloem. The 'win-win' situation of Fe biofortification and Cd mitigation in rice was achieved by application of Fe chelates. Root-to-stem xylem transport of Cd and redistribution of Cd in leaves by phloem transport can be regulated in rice through the use of Fe chelates that influence Fe availability and Fe-related gene expression. Fe fertilization

  19. Simulated bioavailability of phosphorus from aquatic macrophytes and hytoplankton by aqueous suspension and incubation with alkaline phosphatase

    Science.gov (United States)

    Bioavailability of phosphorus (P) in aquatic macrophytes and algae on lake eutrophication was studied by evaluation their P forms and quantities in their water suspensions and impact by alkaline phosphatase hydrolysis. using solution 31P-nuclear magnetic resonance (NMR). The laboratory suspension an...

  20. Dynamics of Short-Term Phosphorus Uptake by Intact Mycorrhizal and Non-mycorrhizal Maize Plants Grown in a Circulatory Semi-Hydroponic Cultivation System.

    Science.gov (United States)

    Garcés-Ruiz, Mónica; Calonne-Salmon, Maryline; Plouznikoff, Katia; Misson, Coralie; Navarrete-Mier, Micaela; Cranenbrouck, Sylvie; Declerck, Stéphane

    2017-01-01

    A non-destructive cultivation system was developed to study the dynamics of phosphorus (Pi) uptake by mycorrhizal and non-mycorrhizal maize plantlets. The system consisted of a plant container connected via silicon tubes to a glass bottle containing a nutrient solution supplemented with Pi. The nutrient solution is pumped with a peristaltic pump to the upper part of the container via the silicon tubes and the solution percolate through the plantlet container back into the glass bottle. Pi is sampled from the glass bottle at regular intervals and concentration evaluated. Maize plantlets were colonized by the AMF Rhizophagus irregularis MUCL 41833 and Pi uptake quantified at fixed intervals (9, 21, and 42 h) from the depletion of the Pi in the nutrient solution flowing through the plantlets containers. Plants and fungus grew well in the perlite substrate. The concentration of Pi in the bottles followed an almost linear decrease over time, demonstrating a depletion of Pi in the circulating solution and a concomitant uptake/immobilization by the plantlet-AMF associates in the containers. The Pi uptake rate was significantly increased in the AMF-colonized plantlets (at 9 and 21 h) as compared to non-colonized plantlets, although no correlation was noticed with plant growth or P accumulation in shoots. The circulatory semi-hydroponic cultivation system developed was adequate for measuring Pi depletion in a nutrient solution and by corollary Pi uptake/immobilization by the plant-AMF associates. The measurements were non-destructive so that the time course of Pi uptake could be monitored without disturbing the growth of the plant and its fungal associate. The system further opens the door to study the dynamics of other micro and macro-nutrients as well as their uptake under stressed growth conditions such as salinity, pollution by hydrocarbon contaminants or potential toxic elements.

  1. Dynamics of Short-Term Phosphorus Uptake by Intact Mycorrhizal and Non-mycorrhizal Maize Plants Grown in a Circulatory Semi-Hydroponic Cultivation System

    Directory of Open Access Journals (Sweden)

    Mónica Garcés-Ruiz

    2017-08-01

    Full Text Available A non-destructive cultivation system was developed to study the dynamics of phosphorus (Pi uptake by mycorrhizal and non-mycorrhizal maize plantlets. The system consisted of a plant container connected via silicon tubes to a glass bottle containing a nutrient solution supplemented with Pi. The nutrient solution is pumped with a peristaltic pump to the upper part of the container via the silicon tubes and the solution percolate through the plantlet container back into the glass bottle. Pi is sampled from the glass bottle at regular intervals and concentration evaluated. Maize plantlets were colonized by the AMF Rhizophagus irregularis MUCL 41833 and Pi uptake quantified at fixed intervals (9, 21, and 42 h from the depletion of the Pi in the nutrient solution flowing through the plantlets containers. Plants and fungus grew well in the perlite substrate. The concentration of Pi in the bottles followed an almost linear decrease over time, demonstrating a depletion of Pi in the circulating solution and a concomitant uptake/immobilization by the plantlet-AMF associates in the containers. The Pi uptake rate was significantly increased in the AMF-colonized plantlets (at 9 and 21 h as compared to non-colonized plantlets, although no correlation was noticed with plant growth or P accumulation in shoots. The circulatory semi-hydroponic cultivation system developed was adequate for measuring Pi depletion in a nutrient solution and by corollary Pi uptake/immobilization by the plant-AMF associates. The measurements were non-destructive so that the time course of Pi uptake could be monitored without disturbing the growth of the plant and its fungal associate. The system further opens the door to study the dynamics of other micro and macro-nutrients as well as their uptake under stressed growth conditions such as salinity, pollution by hydrocarbon contaminants or potential toxic elements.

  2. Single-tube hydroponics as a novel idea for small-scale production of crop seed in a plant incubator.

    Science.gov (United States)

    Kuroda, Masaharu; Ikenaga, Sachiko

    2015-01-01

    We present a novel protocol for small-scale production of crop seed in a plant incubator termed "Single-tube hydroponics." Our protocol minimizes the materials and methods for cultivation whereby a large number of independent plants can be cultured in a limited space. This study may aid in the improvement of crop seed components, especially in the cultivation of transgenic plants.

  3. Fate of trivalent chromium in presence of organic acids - a hydroponic study on soyabean plant using radiotracer

    International Nuclear Information System (INIS)

    Srivastava, Sonal; Prakash, Satya; Srivastava, M.M.

    1999-01-01

    Hydroponic experiments have been conducted to examine the uptake and translocation of root absorbed trivalent chromium in the presence of organic acid supplementation. Statistically significant increase in chromium accumulation in various plant tissues with increasing concentration of organic acids has been observed. Potentiality of organic acids to form labile organically bound Cr III is explored. (author)

  4. High-yield production of a human monoclonal IgG by rhizosecretion in hydroponic tobacco cultures

    NARCIS (Netherlands)

    Madeira, L.M.; Szeto, T.H.; Henquet, Maurice; Raven, Nicole; Runions, John; Huddleston, Jon; Garrard, Ian; Drake, P.M.W.; Ma, Julian K.C.

    2016-01-01

    Rhizosecretion of recombinant pharmaceuticals from in vitro hydroponic transgenic plant cultures is a simple, low cost, reproducible and controllable production method. Here, we demonstrate the application and adaptation of this manufacturing platform to a human antivitronectin IgG1

  5. Effect of some detergents, humate, and composition of seedbed on crop of tomato plants in a hydroponic culture

    Science.gov (United States)

    Guminka, A. Z.; Gracz-Nalepka, M.; Lukasiewicz, B.; Sobolewicz, E.; Turkiewicz, I. T.

    1978-01-01

    It is established that single detergent doses distinctly stimulate vegetative development of plants in the initial stage when humates are available. When detergents are applied every four weeks in a hydroponic culture, in which the seedbed does not contain active humates, the crop is reduced by 50%. This adverse effect does not occur when the seedbed is a mixture of brown coal and peat.

  6. Speciation Matters: Bioavailability of Silver and Silver Sulfide Nanoparticles to Alfalfa (Medicago sativa).

    Science.gov (United States)

    Stegemeier, John P; Schwab, Fabienne; Colman, Benjamin P; Webb, Samuel M; Newville, Matthew; Lanzirotti, Antonio; Winkler, Christopher; Wiesner, Mark R; Lowry, Gregory V

    2015-07-21

    Terrestrial crops are directly exposed to silver nanoparticles (Ag-NPs) and their environmentally transformed analog silver sulfide nanoparticles (Ag2S-NPs) when wastewater treatment biosolids are applied as fertilizer to agricultural soils. This leads to a need to understand their bioavailability to plants. In the present study, the mechanisms of uptake and distribution of silver in alfalfa (Medicago sativa) were quantified and visualized upon hydroponic exposure to Ag-NPs, Ag2S-NPs, and AgNO3 at 3 mg total Ag/L. Total silver uptake was measured in dried roots and shoots, and the spatial distribution of elements was investigated using transmission electron microscopy (TEM) and synchrotron-based X-ray imaging techniques. Despite large differences in release of Ag(+) ions from the particles, Ag-NPs, Ag2S-NPs, and Ag(+) became associated with plant roots to a similar degree, and exhibited similarly limited (<1%) amounts of translocation of silver into the shoot system. X-ray fluorescence (XRF) mapping revealed differences in the distribution of Ag into roots for each treatment. Silver nanoparticles mainly accumulated in the (columella) border cells and elongation zone, whereas Ag(+) accumulated more uniformly throughout the root. In contrast, Ag2S-NPs remained largely adhered to the root exterior, and the presence of cytoplasmic nano-SixOy aggregates was observed. Exclusively in roots exposed to particulate silver, NPs smaller than the originally dosed NPs were identified by TEM in the cell walls. The apparent accumulation of Ag in the root apoplast determined by XRF, and the presence of small NPs in root cell walls suggests uptake of partially dissolved NPs and translocation along the apoplast.

  7. Bioavailability of cadmium adsorbed on various oxides minerals to wetland plant species Phragmites australis

    International Nuclear Information System (INIS)

    Wang He; Jia Yongfeng; Wang Shaofeng; Zhu Huijie; Wu Xing

    2009-01-01

    The bioavailability of heavy metals strongly depends on their speciation in the environment. The effect of different chemical speciations of cadmium ions (i.e. adsorbed on different oxide minerals) on its bioavailability to wetland plant Phragmites australis was studied. Goethite, magnetite, gibbsite, alumina, and manganese oxide were chosen as representatives of metal (hydr)oxides commonly present in sediment. The cultivar system with Hoagland solution as nutrition supply, and single metal oxide with adsorbed Cd as contaminant was applied to study Cd accumulation by P. australis. The bioaccumulation degree in root after the 45-day treatment followed the order: Al(OH) 3 > Al 2 O 3 > Fe 3 O 4 > MnO 2 > FeOOH. The concentration of Cd in stem and leaf followed a similar order although it was considerably lower than that in root. Low-molecular-weight organic acids (LMWOAs), acetic acid, malic acid and citric acid were used to evaluate the desorbability of Cd from different oxides, which can be indicative of Cd-oxide bonding strength and Cd bioavailability. Desorption of Cd by acetic acid and malic acid followed the order: Al(OH) 3 > Fe 3 O 4 > Al 2 O 3 > FeOOH > MnO 2 , while by citric acid: Al(OH) 3 ≥ Al 2 O 3 > Fe 3 O 4 > FeOOH > MnO 2 . This was consistent with the Cd accumulation degree in the plant. Cd adsorbed on Al(OH) 3 was the most easily desorbable species and most bioavailable to P. australis among the oxide minerals, whereas MnO 2 adsorbed Cd was least desorbable by LMWOAs hence constituted the least bioavailable Cd species adsorbed on the oxide minerals.

  8. Bioavailability of cadmium adsorbed on various oxides minerals to wetland plant species Phragmites australis

    Energy Technology Data Exchange (ETDEWEB)

    Wang He, E-mail: he.wangworld@yahoo.com.cn [Key Laboratory of Terrestrial Ecological Process, Institute of Applied Ecology, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016 (China); Graduate School, Chinese Academy of Sciences, Beijing 100049 (China); Jia Yongfeng, E-mail: yongfeng.jia@iae.ac.cn [Key Laboratory of Terrestrial Ecological Process, Institute of Applied Ecology, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016 (China); Wang Shaofeng [Key Laboratory of Terrestrial Ecological Process, Institute of Applied Ecology, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016 (China); Zhu Huijie; Wu Xing [Key Laboratory of Terrestrial Ecological Process, Institute of Applied Ecology, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016 (China); Graduate School, Chinese Academy of Sciences, Beijing 100049 (China)

    2009-08-15

    The bioavailability of heavy metals strongly depends on their speciation in the environment. The effect of different chemical speciations of cadmium ions (i.e. adsorbed on different oxide minerals) on its bioavailability to wetland plant Phragmites australis was studied. Goethite, magnetite, gibbsite, alumina, and manganese oxide were chosen as representatives of metal (hydr)oxides commonly present in sediment. The cultivar system with Hoagland solution as nutrition supply, and single metal oxide with adsorbed Cd as contaminant was applied to study Cd accumulation by P. australis. The bioaccumulation degree in root after the 45-day treatment followed the order: Al(OH){sub 3} > Al{sub 2}O{sub 3} > Fe{sub 3}O{sub 4} > MnO{sub 2} > FeOOH. The concentration of Cd in stem and leaf followed a similar order although it was considerably lower than that in root. Low-molecular-weight organic acids (LMWOAs), acetic acid, malic acid and citric acid were used to evaluate the desorbability of Cd from different oxides, which can be indicative of Cd-oxide bonding strength and Cd bioavailability. Desorption of Cd by acetic acid and malic acid followed the order: Al(OH){sub 3} > Fe{sub 3}O{sub 4} > Al{sub 2}O{sub 3} > FeOOH > MnO{sub 2}, while by citric acid: Al(OH){sub 3} {>=} Al{sub 2}O{sub 3} > Fe{sub 3}O{sub 4} > FeOOH > MnO{sub 2}. This was consistent with the Cd accumulation degree in the plant. Cd adsorbed on Al(OH){sub 3} was the most easily desorbable species and most bioavailable to P. australis among the oxide minerals, whereas MnO{sub 2} adsorbed Cd was least desorbable by LMWOAs hence constituted the least bioavailable Cd species adsorbed on the oxide minerals.

  9. [A hydroponic cultivation system for rapid high-yield transient protein expression in Nicotiana plants under laboratory conditions].

    Science.gov (United States)

    Mo, Qianzhen; Mai, Rongjia; Yang, Zhixiao; Chen, Minfang; Yang, Tiezhao; Lai, Huafang; Yang, Peiliang; Chen, Qiang; Zhou, Xiaohong

    2012-06-01

    To develop a hydroponic Nicotiana cultivation system for rapid and high-yield transient expression of recombinant proteins under laboratory conditions. To establish the hydroponic cultivation system, several parameters were examined to define the optimal conditions for the expression of recombinant proteins in plants. We used the green fluorescent protein (GFP) and the geminiviral plant transient expression vector as the model protein/expression vector. We examined the impact of Nicotiana species, the density and time of Agrobacterium infiltration, and the post-infiltration growth period on the accumulation of GFP. The expression levels of GFP in Nicotiana leaves were then examined by Western blotting and ELISA. Our data indicated that a hydroponic Nicotiana cultivation system with a light intensity of 9000 LX/layer, a light cycle of 16 h day/8 h night, a temperature regime of 28 degrees celsius; day/21 degrees celsius; night, and a relative humidity of 80% could support the optimal plant growth and protein expression. After agroinfiltration with pBYGFPDsRed.R/LBA4404, high levels of GFP expression were observed in both N. benthamiana and N. tobaccum (cv. Yuyan No.5) plants cultured with this hydroponic cultivation system. An optimal GFP expression was achieved in both Nicotiana species leaves 4 days after infiltration by Agrobacterium with an OD(600) of 0.8. At a given time point, the average biomass of N. tobaccum (cv. Yuyan No.5) was significantly higher than that of N. benthamiana. The leaves from 6-week-old N. benthamiana plants and 5-week-old N. tobaccum (cv. Yuyan No.5) plants could be the optimal material for agroinfiltration. We have established a hydroponic cultivation system that allows robust growth of N. benthamiana and N. tobaccum (cv. Yuyan No.5) plants and the optimal GFP expression in the artificial climate box.

  10. High-yield production of a human monoclonal IgG by rhizosecretion in hydroponic tobacco cultures.

    Science.gov (United States)

    Madeira, Luisa M; Szeto, Tim H; Henquet, Maurice; Raven, Nicole; Runions, John; Huddleston, Jon; Garrard, Ian; Drake, Pascal M W; Ma, Julian K-C

    2016-02-01

    Rhizosecretion of recombinant pharmaceuticals from in vitro hydroponic transgenic plant cultures is a simple, low cost, reproducible and controllable production method. Here, we demonstrate the application and adaptation of this manufacturing platform to a human antivitronectin IgG1 monoclonal antibody (mAb) called M12. The rationale for specific growth medium additives was established by phenotypic analysis of root structure and by LC-ESI-MS/MS profiling of the total protein content profile of the hydroponic medium. Through a combination of optimization approaches, mAb yields in hydroponic medium reached 46 μg/mL in 1 week, the highest figure reported for a recombinant mAb in a plant secretion-based system to date. The rhizosecretome was determined to contain 104 proteins, with the mAb heavy and light chains the most abundant. This enabled evaluation of a simple, scalable extraction and purification protocol and demonstration that only minimal processing was necessary prior to protein A affinity chromatography. MALDI-TOF MS revealed that purified mAb contained predominantly complex-type plant N-glycans, in three major glycoforms. The binding of M12 purified from hydroponic medium to vitronectin was comparable to its Chinese hamster ovary (CHO)-derived counterpart. This study demonstrates that in vitro hydroponic cultivation coupled with recombinant protein rhizosecretion can be a practical, low-cost production platform for monoclonal antibodies. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  11. Impact of two iron(III) chelators on the iron, cadmium, lead and nickel accumulation in poplar grown under heavy metal stress in hydroponics.

    Science.gov (United States)

    Mihucz, Victor G; Csog, Árpád; Fodor, Ferenc; Tatár, Enikő; Szoboszlai, Norbert; Silaghi-Dumitrescu, Luminiţa; Záray, Gyula

    2012-04-15

    Poplar (Populus jacquemontiana var. glauca cv. Kopeczkii) was grown in hydroponics containing 10 μM Cd(II), Ni(II) or Pb(II), and Fe as Fe(III) EDTA or Fe(III) citrate in identical concentrations. The present study was designed to compare the accumulation and distribution of Fe, Cd, Ni and Pb within the different plant compartments. Generally, Fe and heavy-metal accumulation were higher by factor 2-7 and 1.6-3.3, respectively, when Fe(III) citrate was used. Iron transport towards the shoot depended on the Fe(III) chelate and, generally, on the heavy metal used. Lead was accumulated only in the root. The amounts of Fe and heavy metals accumulated by poplar were very similar to those of cucumber grown in an identical way, indicating strong Fe uptake regulation of these two Strategy I plants: a cultivar and a woody plant. The Strategy I Fe uptake mechanism (i.e. reducing Fe(III) followed by Fe(II) uptake), together with the Fe(III) chelate form in the nutrient solution had significant effects on Fe and heavy metal uptake. Poplar appears to show phytoremediation potential for Cd and Ni, as their transport towards the shoot was characterized by 51-54% and 26-48% depending on the Fe(III) supply in the nutrient solution. Copyright © 2012 Elsevier GmbH. All rights reserved.

  12. Micropropagation of Achillea millefolium L. on half-strength ms medium and direct rooting and acclimatization of microshoots in hydroponic culture

    Directory of Open Access Journals (Sweden)

    Marković Marija

    2015-01-01

    Full Text Available The aim of this study was to determine the possibility of micropropagation of the medicinal plant A. millefolium on half-strength MS medium and ex vitro rooting and acclimatization of the obtained microshoots in hydroculture in order to establish an efficient production method. Two explant types were used: basal and terminal cuttings, and better results were achieved when terminal cuttings were used. The development of shoots in the multiplication phase was successful with a regeneration percentage of 100%. Ex vitro rooting in a modified Hoagland nutrient solution was successful (83%, but the percentage of in vitro rooting on half-strength MS medium without hormones was higher (95%. However, bearing in mind that mass production of A. millefolium is more efficient when the phase of in vitro rooting is excluded, this method could be recommended for commercial propagation of this medicinal plant. It is necessary to conduct additional research in order to optimize the composition, EC and pH value of the hydroponic nutrient solution. [Projekat Ministarstva nauke Republike Srbije, br. 43007

  13. Effects of organic ligands on fractionation of rare earth elements (REEs) in hydroponic plants: an application to the determination of binding capacities by humic acid for modeling.

    Science.gov (United States)

    Ding, ShiMing; Liang, Tao; Zhang, ChaoSheng; Yan, JunCai; Zhang, ZiLi

    2006-12-01

    Previous studies have revealed the fractionation processes of rare earth elements (REEs) in hydroponic plants, with a heavy REE (HREE, the elements from Gd to Lu) enrichment in leaves. In this study, effects on the HREE enrichment in soybean leaves with additions of carboxylic acids (acetate, malate, citrate, NTA, EDTA and DTPA) and two soil humic acids (HAs) were investigated. REE speciation in carboxylic acid and HA solutions was simulated using Visual MINTEQ and Model V, respectively. The results showed that the effects caused by carboxylic acids were strongly dependent on the differences between their binding strengths for light REEs (LREEs, the elements from La to Eu) and those for HREEs. A good correlation existed between these effects and the changes of free REE ions in solutions. This relationship was also observed for the HA treatments, provided that the intrinsic equilibrium constants of REEs for cation-proton exchange with HA (i.e., pK(MHA)) in Model V were estimated using a free-energy relationship with the stability constants for REE complexation with lactic acid. It is suggested that this set of pK(MHA) values is more suitable for use in Model V for the simulation of REE complexation with HA.

  14. Selection and hydroponic growth of bread wheat cultivars for bioregenerative life support systems

    Science.gov (United States)

    Page, V.; Feller, U.

    2013-08-01

    As part of the ESA-funded MELiSSA program, the suitability, the growth and the development of four bread wheat cultivars were investigated in hydroponic culture with the aim to incorporate such a cultivation system in an Environmental Control and Life Support System (ECLSS). Wheat plants can fulfill three major functions in space: (a) fixation of CO2 and production of O2, (b) production of grains for human nutrition and (c) production of cleaned water after condensation of the water vapor released from the plants by transpiration. Four spring wheat cultivars (Aletsch, Fiorina, Greina and CH Rubli) were grown hydroponically and compared with respect to growth and grain maturation properties. The height of the plants, the culture duration from germination to harvest, the quantity of water used, the number of fertile and non-fertile tillers as well as the quantity and quality of the grains harvested were considered. Mature grains could be harvested after around 160 days depending on the varieties. It became evident that the nutrient supply is crucial in this context and strongly affects leaf senescence and grain maturation. After a first experiment, the culture conditions were improved for the second experiment (stepwise decrease of EC after flowering, pH adjusted twice a week, less plants per m2) leading to a more favorable harvest (higher grain yield and harvest index). Considerably less green tillers without mature grains were present at harvest time in experiment 2 than in experiment 1. The harvest index for dry matter (including roots) ranged from 0.13 to 0.35 in experiment 1 and from 0.23 to 0.41 in experiment 2 with modified culture conditions. The thousand-grain weight for the four varieties ranged from 30.4 to 36.7 g in experiment 1 and from 33.2 to 39.1 g in experiment 2, while market samples were in the range of 39.4-46.9 g. Calcium levels in grains of the hydroponically grown wheat were similar to those from field-grown wheat, while potassium, magnesium

  15. Lipids, fatty acids composition and carotenoids of Chlorella vulgaris cultivated in hydroponic wastewater

    Directory of Open Access Journals (Sweden)

    Barcelos Oliveira, Jorge Luiz

    2006-09-01

    Full Text Available Alternative culture media have been evaluated for the cultivation of microalgae, among them are, industrial and agriculture wastewaters, that make residue recycling possible by bioconverting it into a rich, nourishing biomass that can be used as a feeding complement in aquaculture and in diverse areas. The objective of this research is to determine the lipid, fatty acid profile and carotenoid produced by the microalgae Chlorella vulgaris cultivated in a hydroponic wastewater, with different dilutions. The results showed that lipid contents did not present significant differences. Fatty acids were predominantly 16:0, 18:0, 18:1 and 18:3n-6. For total carotenoids, the dilution of hydroponic wastewater did not stimulate the production of these pigments. From this study, it was determined that, the use of hydroponic wastewater as an alternative culture medium for  the cultivation of Chlorella vulgaris generates good perspectives for lipid, fatty acid and carotenoid production.Medios de cultivo alternativos vienen siendo evaluados para el cultivo de microalgas, entre ellos, están los afluentes industriales y agrícolas, que posibilitan la reciclaje del residuo, bioconvirtiéndose en una biomasa enriquecida bajo el punto de vista nutricional, que puede ser utilizada como complemento alimenticio, para la acuacultura y en varias otras áreas de actuación. El presente trabajo tuvo como objetivo determinar los contenidos de lípidos, composición de ácidos grasos y carotenoides producidos por la microalga Chlorella vulgaris cultivada en solución hidropónica residual, con diferentes diluciones. Los resultados de los contenidos de lípidos totales no presentaron diferencia significativa. Los ácidos grasos predominantes fueron los 16:0, 18:0, 18:1 e 18:3n-6. Para los carotenoides totales, la dilución de la solución hidropónica residual no estimuló la producción de estos pigmentos por la microalga. La utilización de la solución hidrop

  16. Bioavailability of bioactive food compounds: a challenging journey to bioefficacy

    Science.gov (United States)

    Rein, Maarit J.; Renouf, Mathieu; Cruz‐Hernandez, Cristina; Actis‐Goretta, Lucas; Thakkar, Sagar K.; da Silva Pinto, Marcia

    2013-01-01

    Bioavailability is a key step in ensuring bioefficacy of bioactive food compounds or oral drugs. Bioavailability is a complex process involving several different stages: liberation, absorption, distribution, metabolism and elimination phases (LADME). Bioactive food compounds, whether derived from various plant or animal sources, need to be bioavailable in order to exert any beneficial effects. Through a better understanding of the digestive fate of bioactive food compounds we can impact the promotion of health and improvement of performance. Many varying factors affect bioavailability, such as bioaccessibility, food matrix effect, transporters, molecular structures and metabolizing enzymes. Bioefficacy may be improved through enhanced bioavailability. Therefore, several technologies have been developed to improve the bioavailability of xenobiotics, including structural modifications, nanotechnology and colloidal systems. Due to the complex nature of food bioactive compounds and also to the different mechanisms of absorption of hydrophilic and lipophilic bioactive compounds, unravelling the bioavailability of food constituents is challenging. Among the food sources discussed during this review, coffee, tea, citrus fruit and fish oil were included as sources of food bioactive compounds (e.g. (poly)phenols and polyunsaturated fatty acids (PUFAs)) since they are examples of important ingredients for the food industry. Although there are many studies reporting on bioavailability and bioefficacy of these bioactive food components, understanding their interactions, metabolism and mechanism of action still requires extensive work. This review focuses on some of the major factors affecting the bioavailability of the aforementioned bioactive food compounds. PMID:22897361

  17. Incorporation of Heavy metals bioavailability into risk characterization

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Hyerim; Chung, Jae Shik; Nam, Taekwoo; Nam, Kyoungphile [Department of Civil and Environmental Engineering, Seoul National University, Seoul (Korea, Republic of); Moon, Hee Sun [School of Earth and Environmental Sciences, Seoul National University, Seoul (Korea, Republic of)

    2010-09-15

    The bioavailability of field-aged Cd and Cu was calculated, and compared to the total concentrations determined by acid digestion. Only 0.60-4.15% for Cd and 0.59-9.43% for Cu were found to be bioavailable when determined by stomach-phase extraction. The incorporation of bioavailability reduced more than 90% of the calculated risk of the metals at the site of study. It should be noted that such a reduction may not be generalized and the site-specific bioavailability needs to be determined case by case. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  18. The bioavailability of chemicals in soil for earthworms

    Science.gov (United States)

    Lanno, R.; Wells, J.; Conder, Jason M.; Bradham, K.; Basta, N.

    2004-01-01

    The bioavailability of chemicals to earthworms can be modified dramatically by soil physical/chemical characteristics, yet expressing exposure as total chemical concentrations does not address this problem. In order to understand the effects of modifying factors on bioavailability, one must measure and express chemical bioavailability to earthworms in a consistent, logical manner. This can be accomplished by direct biological measures of bioavailability (e.g., bioaccumulation, critical body residues), indirect biological measures of bioavailability (e.g., biomarkers, reproduction), or indirect chemical measures of bioavailability (e.g., chemical or solid-phase extracts of soil). If indirect chemical measures of bioavailability are to be used, they must be correlated with some biological response. Bioavailability can be incorporated into ecological risk assessment during risk analysis, primarily in the estimation of exposure. However, in order to be used in the site-specific ecological risk assessment of chemicals, effects concentrations must be developed from laboratory toxicity tests based on exposure estimates utilizing techniques that measure the bioavailable fraction of chemicals in soil, not total chemical concentrations. ?? 2003 Elsevier Inc. All rights reserved.

  19. Bioavailability of diclofenac potassium at low doses

    Science.gov (United States)

    Hinz, Burkhard; Chevts, Julia; Renner, Bertold; Wuttke, Henrike; Rau, Thomas; Schmidt, Andreas; Szelenyi, Istvan; Brune, Kay; Werner, Ulrike

    2005-01-01

    Aim Diclofenac-K has been recently launched at low oral doses in different countries for over-the-counter use. However, given the considerable first-pass metabolism of diclofenac, the degree of absorption of diclofenac-K at low doses remained to be determined. The aim of this study was to determine the bioavailability of low-dose diclofenac-K. Methods A randomized, three-way, cross-over study was performed in 10 subjects. Each received diclofenac-K, 22.5 mg via short-term i.v. infusion and orally at single doses of 12.5 mg and 25 mg. Results Mean (± SD) times to maximal plasma concentration (tmax) of diclofenac were 0.48 ± 0.28 h (12.5 mg) and 0.93 ± 0.96 h (25 mg). The absolute bioavailability of diclofenac-K after oral administration did not differ significantly in the 12.5-mg and 25-mg dose group (63.1 ± 12.6% vs. 65.1 ± 19.4%, respectively). The 90% confidence intervals for the AUC∞ and AUCt ratios for the two oral regimes were 82.6, 103.4% (point estimate 92.4%) and 86.2, 112.9% (point estimate 98.6%), respectively. These values were within the acceptance criteria for bioequivalence (80–125%). Conclusions Our data indicate that diclofenac-K is rapidly and well absorbed at low dose, and are consistent with a rapid onset of action of the drug. Abbreviations AUC, area under plasma concentraton-time curve; Cmax, peak plasma concentration; CI, confidence interval; COX, cyclooxygenase; D, dose; F, absolute bioavailability; tmax, time to reach Cmax. PMID:15606444

  20. Atovaquone oral bioavailability enhancement using electrospraying technology.

    Science.gov (United States)

    Darade, Aditya; Pathak, Sulabha; Sharma, Shobhona; Patravale, Vandana

    2018-01-01

    Atovaquone in combination with proguanil hydrochloride, marketed as Malarone® tablets by GlaxoSmithKline (GSK), is prescribed for the treatment of malaria. High dose and poor bioavailability are the main hurdles associated with atovaquone oral therapy. The present study reports development of atovaquone nanoparticles, using in house designed and fabricated electrospraying equipment, and the assessment of bioavailability and therapeutic efficacy of the nanoparticles after oral administration. Solid nanoparticles of atovaquone were successfully produced by electrospraying and were characterized for particle size and flow properties. Differential Scanning Calorimetry, X-ray Diffraction, Fourier Transform Infrared Spectroscopy studies were also carried out. Atovaquone nanoparticles along with proguanil hydrochloride and a suitable wetting agent were filled in size 2 hard gelatin capsules. The formulation was compared with Malarone® tablets (GSK) and Mepron® suspension (GSK) in terms of in vitro release profile and in vivo pharmacokinetic studies. It showed 2.9-fold and 1.8-fold improved bioavailability in rats compared to Malarone® tablets and Mepron® suspension respectively. Therapeutic efficacy of the formulation was determined using modified Peter's 4-day suppressive tests and clinical simulation studies using Plasmodium berghei ANKA infected Swiss mice and compared to Malarone®. The developed formulation showed a 128-fold dose reduction in the modified Peter's 4-day suppressive tests and 32-fold dose reduction in clinical simulation studies. Given that only one capsule a day of developed formulation is required to be administered orally compared to 4 Malarone® tablets once a day and that too at a significantly reduced dose, this nanoparticle formulation will definitely reduce the side-effects of the treatment and is also likely to increase patient compliance. Copyright © 2017. Published by Elsevier B.V.

  1. Chemical properties of neossolos flúvicos after application of irrigation of rejects desalt machine and of hydroponic system | Propriedades químicas de neossolos flúvicos depois da aplicação de lâminas de irrigação de rejeitos de dessalinizador e de hidro

    Directory of Open Access Journals (Sweden)

    Ricardo Andrade Wanderley

    2016-04-01

    Full Text Available ABSTRACT: Aiming to evaluate the soil salty process of the Ibimirim – PE irrigation project, submitted to the application of the rejects from desalt machine and from hydroponic solution, also primarily originated from desalt machine reject, it was realized an experiment in soil columns, installed in the Soil Mechanic and Residue Use Laboratory of the Universidade Federal Rural de Pernambuco. The treatments were delineated in a randomized blocks with factorial arrangement of two soils (claily and sandy, two types of reject (reject of desalt machine and reject of the hydroponic system and five salty concentrations (0.53; 1.16; 1.90; 3.52; 4.60 dS m-1, with three replicates. The evaluated variables in the extract of the saturated paste were the electric conductivity (EC and the relationship of sodium adsorption relationship (SAR. The use of the leaching depths equivalent to three volumes of pores, using rejects both of desalt machine and of hydroponic system didn't provide the neither salty process nor sodium process of the soils studied (EC > 4,00 dS m-1 and SAR 4,00 dS m-1 quando foi utilizados os maiores níveis de condutividade elétrica , entretanto, não ocasionou a sodificação dos solos (RAS < 13 mmol L-1 ½. Palavras-chave: Salinização, meio ambiente e dessalinização.

  2. Extraction, bioavailability, and bioefficacy of capsaicinoids.

    Science.gov (United States)

    Lu, Muwen; Ho, Chi-Tang; Huang, Qingrong

    2017-01-01

    Capsaicinoids are active constituents responsible for the pungent and spicy flavor in chili peppers. During the past few decades, various extraction methods of capsaicinoids from peppers have been developed with high yields. Through biological studies, pharmacological benefits have been reported such as pain relief, antiinflammation, anticancer, cardio-protection, as well as weight loss. In this paper, the extraction methods and bioavailability of capsaicinoids are reviewed and discussed. In addition, the pharmacological effects and their underlying mechanisms are also studied. Copyright © 2016. Published by Elsevier B.V.

  3. Animal bioavailability of defined xenobiotic lignin metabolites

    International Nuclear Information System (INIS)

    Sandermann, H. Jr.; Arjmand, M.; Gennity, I.; Winkler, R.; Struble, C.B.; Aschbacher, P.W.

    1990-01-01

    Lignin has been recognized as a major component of bound pesticide residues in plants and is thought to be undigestible in animals. Two defined ring-U- 14 C-labeled chloroaniline/lignin metabolites have now been fed to rats, where a release of ∼66% of the bound xenobiotic occurred in the form of simple chloroaniline derivatives. The observed high degree of bioavailability indicates that bound pesticidal residues may possess ecotoxicological significance. In parallel studies, the white-rot fungus Phanerochaete chrysosporium was more efficient, and a soil system was much less efficient, in the degradation of the [ring-U- 14 C]chloroaniline/lignin metabolites

  4. Enhanced Bioavailable Contaminant Stripping (EBCS: metal bioavailability for evaluation of phytoextraction success

    Directory of Open Access Journals (Sweden)

    Petruzzelli G.

    2013-04-01

    Full Text Available Phytoextraction may be applied at field scale when the removal of bioavailable metals is the specific target of the technology. Residual metals in soil can be considered substantially inert or to be evaluated by site specific risk analysis.

  5. Migration and bioavailability of 137Cs in forest soil of southern Germany

    International Nuclear Information System (INIS)

    Konopleva, I.; Klemt, E.; Konoplev, A.; Zibold, G.

    2009-01-01

    To give a quantitative description of the radiocaesium soil-plant transfer for fern (Dryopteris carthusiana) and blackberry (Rubus fruticosus), physical and chemical properties of soils in spruce and mixed forest stands were investigated. Of special interest was the selective sorption of radiocaesium, which was determined by measuring the Radiocaesium Interception Potential (RIP). Forest soil and plants were taken at 10 locations of the Altdorfer Wald (5 sites in spruce forest and 5 sites in mixed forest). It was found that the bioavailability of radiocaesium in spruce forest was on average seven times higher than in mixed forest. It was shown that important factors determining the bioavailability of radiocaesium in forest soil were its exchangeability and the radiocaesium interception potential (RIP) of the soil. Low potassium concentration in soil solution of forest soils favors radiocaesium soil-plant transfer. Ammonium in forest soils plays an even more important role than potassium as a mobilizer of radiocaesium. The availability factor - a function of RIP, exchangeability and cationic composition of soil solution - characterized reliably the soil-plant transfer in both spruce and mixed forest. For highly organic soils in coniferous forest, radiocaesium sorption at regular exchange sites should be taken into account when its bioavailability is considered

  6. Migration and bioavailability of {sup 137}Cs in forest soil of southern Germany

    Energy Technology Data Exchange (ETDEWEB)

    Konopleva, I.; Klemt, E. [Hochschule Ravensburg-Weingarten, University of Applied Sciences, 88250 Weingarten (Germany); Konoplev, A. [Scientific Production Association ' TYPHOON' , Obninsk (Russian Federation); Zibold, G. [Hochschule Ravensburg-Weingarten, University of Applied Sciences, 88250 Weingarten (Germany)], E-mail: zibold@hs-weingarten.de

    2009-04-15

    To give a quantitative description of the radiocaesium soil-plant transfer for fern (Dryopteris carthusiana) and blackberry (Rubus fruticosus), physical and chemical properties of soils in spruce and mixed forest stands were investigated. Of special interest was the selective sorption of radiocaesium, which was determined by measuring the Radiocaesium Interception Potential (RIP). Forest soil and plants were taken at 10 locations of the Altdorfer Wald (5 sites in spruce forest and 5 sites in mixed forest). It was found that the bioavailability of radiocaesium in spruce forest was on average seven times higher than in mixed forest. It was shown that important factors determining the bioavailability of radiocaesium in forest soil were its exchangeability and the radiocaesium interception potential (RIP) of the soil. Low potassium concentration in soil solution of forest soils favors radiocaesium soil-plant transfer. Ammonium in forest soils plays an even more important role than potassium as a mobilizer of radiocaesium. The availability factor - a function of RIP, exchangeability and cationic composition of soil solution - characterized reliably the soil-plant transfer in both spruce and mixed forest. For highly organic soils in coniferous forest, radiocaesium sorption at regular exchange sites should be taken into account when its bioavailability is considered.

  7. Bioavailability of the Nano-Unit 14C-Agrochemicals Under Various Water Potential.

    Science.gov (United States)

    Jung, S C; Kim, H G; Kuk, Y I; Ahn, H G; Senseman, S A; Lee, D J

    2015-08-01

    The study was conducted to investigate the effects of water potential on bioavailability of the nano-unit 14C-cafenstrole, 14C-pretilachlor, 14C-benfuresate, 14C-simetryn and 14C-oxyfluorfen applied with or without dimepiperate or daimuron under various water potential conditions. The highest bioavailable concentration in soil solution (BCSS) was found at 60% soil moisture, while the lowest occurred at 50% soil moisture for soil-applied alone or in combination. All water potential conditions differed significantly from each other with variations in total bioavailable amount in soil solution (TBSS) when either dimepiperate or daimuron were added to the soil, and changes were directly proportional to variations in water potential. Across all treatments, TBSS at 80% soil moisture was three to four times greater than that at 50% soil moisture when applied alone or in combination with dimepiperate or daimuron. Cafenstrole and simetryn had distribution coefficient (Kd) values <64 ml g-1 and a TBSS ranging from 10 to 44 ng g-1 soil, regardless of water potential conditions applied alone or in combination. Pretilachlor and benfuresate had Kd values <15 ml g-1 and a TBSS range of 38 to 255 ng g-1 soil when applied with or without dimepiperate or daimuron.

  8. The effects of plant diversity on nitrous oxide emissions in hydroponic microcosms

    Science.gov (United States)

    Sun, Hongying; Zhang, Chongbang; Song, Changchun; Chang, Scott X.; Gu, Baojing; Chen, Zhengxin; Peng, Changhui; Chang, Jie; Ge, Ying

    2013-10-01

    Previous studies have shown that plant diversity can improve the wastewater purification efficiency of constructed wetlands (CWs), but its effect on the nitrous oxide (N2O) emission in CWs has been unknown. To investigate the effect of plant diversity on the N2O emission, we established four plant species richness levels (each level containing 1, 2, 3 and 4 species, respectively) by using 96 hydroponic microcosms. Results showed that plant species richness enhanced the N2O emission, ranging from 27.1 to 115.4 μg N2O m-2 d-1, and improved nitrate removal (P 0.05), but improved nitrogen removal (P < 0.001). Hence, our study highlights the importance of both plant species richness and species identity in mediating the N2O emission and nitrogen removal in CWs.

  9. PIXE analysis on the absorption of strontium by plants under hydroponic culture

    International Nuclear Information System (INIS)

    Oguri, Yoshiyuki; Kondo, Kotaro

    2016-01-01

    90 Sr is one of the most toxic radioactive nuclides emitted from nuclear disasters. By experiments using the compounds of stable isotopes of Sr, the behavior of this nuclide in plants can be simulated very well (R. S. Russell and H. M. Squire: J. Exp. Bot., Vol. 9, No. 2, pp. 262-276 (1958)). In this paper, we present an application of PIXE (Particle-Induced X-ray Emission) analysis (S. A. E. Johansson, et al.: Particle-Induced X-Ray Emission Spectrometry (PIXE), Wiley-Interscience, New York, ISBN-13: 978-0471589440 (1995)) in the study of Sr absorption by a herbal plant grown in a compact hydroponic setup. (J.P.N.)

  10. Inflorescence and leaves essential oil composition of hydroponically grown Ocimum basilicum L

    Directory of Open Access Journals (Sweden)

    MOHAMMAD BAGHER HASSANPOURAGHDAM

    2010-10-01

    Full Text Available In order to characterize the essential oils of leaves and inflorescences, water distilled volatile oils of hydroponically grown Ocimum basilicum L. were analyzed by GC/EI-MS. Fifty components were identified in the inflorescence and leaf essential oils of the basil plants, accounting for 98.8 and 99.9 % of the total quantified components respectively. Phenylpropanoids (37.7 % for the inflorescence vs. 58.3 % for the leaves were the predominant class of oil constituents, followed by sesquiterpenes (33.3 vs. 19.4 % and monoterpenes (27.7 vs. 22.1 %. Of the monoterpenoid compounds, oxygenated monoterpenes (25.2 vs. 18.9 % were the main subclass. Sesquiterpene hydrocarbons (25 vs. 15.9 % were the main subclass of sesquiterpenoidal compounds. Methyl chavicol, a phenylpropane derivative, (37.2 vs. 56.7 % was the principle component of both organ oils, with up to 38 and 57 % of the total identified components of the inflorescence and leaf essential oils, respectively. Linalool (21.1 vs. 13.1 % was the second common major component followed by α-cadinol (6.1 vs. 3 %, germacrene D (6.1 vs. 2.7 % and 1,8-cineole (2.4 vs. 3.5 %. There were significant quantitative but very small qualitative differences between the two oils. In total, considering the previous reports, it seems that essential oil composition of hydroponically grown O. basilicum L. had volatile constituents comparable with field grown counterparts, probably with potential applicability in the pharmaceutical and food industries.

  11. Starch accumulation during hydroponic growth of spinach and basil plants under carbon dioxide enrichment

    Energy Technology Data Exchange (ETDEWEB)

    Holbrook, G P; Hansen, J; Wallick, K; Zinnen, T M [North Illinois University, de Kalb, IL (USA). Dept. of Biological Sciences

    1993-04-01

    The effects of CO[sub 2] enrichment, photoperiod duration, and inorganic phosphate levels on growth and starch accumulaton by spinach and basil plants were studied in a commercial hydroponic facility. During a 3-week growth period, both species exhibited increased whole-plant fresh weight as a result of an increase in atmospheric CO[sub 2] concentration from 400 to 1500 mul/1. However, basil leaves exhibited a 1.5- to 2-fold greater increase in specific leaf weight (SLW), and accumulated starch to much greater levels than did leaves of spinach. At 1500 mul CO[sub 2]/1, starch accounted for up to 38% of SLW with basil compared to [lt] 10% of SLW with spinach. The maximum ratio of starch/chlorophyll was 55.0 in basil leaves vs 8.0 in spinach leaves. High ratio values were associated with the appearance of chlorotic symptoms in leaves of basil grown under CO[sub 2] enrichment, whereas spinach did not exhibit chlorosis. Increasing inorganic phosphate concentrations from 0.7 to 1.8 mM in the hydroponic medium did not appreciably affect leaf starch accumulation in either species. Starch accumulation in basil leaves was not consistently related to the duration of the photoperiod. However, photoperiod-induced changes in leaf starch levels were much greater in basil than spinach. The results clearly indicate that different horticultural crops can show diverse responses to CO[sub 2] enrichment, and thus highlight the need to develop individual growth strategies to optimize production quality of each species.

  12. Production of pre-basic potato seed by polyvinyl chloride PVC: articulate gutters hydroponic system

    Directory of Open Access Journals (Sweden)

    Jonny Everson Scherwinski-Pereira

    2009-10-01

    Full Text Available The development of more efficient and productive systems for pre-basic seed potato production would improve the quality of the propagative material used by the potato growers, directly affecting the crop yields. A two-year experiment was carried out to evaluate the potato pre-basic seed production by two types of hydroponic systems (fibrocement tiles and articulated PVC gutters, two cultivars (`Baronesa` and `Eliza` and two types of propagative material (plants coming from in vitro culture and minitubers. The PVC gutters system was highly efficient. When using minitubers, this system reached multiplication rates up to 74 tubers per plant. Minitubers were more productive than in vitro plants, independent of cultivar and hydroponic system utilized.Um experimento realizado por dois anos consecutivos avaliou a produção de sementes pré-básicas de batata por meio de sistemas de cultivo hidropônico. O trabalho testou a combinação de dois sistemas de cultivo (telha de fibrocimento e calhas de PVC articuladas, duas cultivares (Baronesa e Eliza e dois tipos de material propagativo (plântulas oriundas do cultivo in vitro e minitubérculos. O sistema de calhas de PVC foi altamente eficiente. Quando foi utilizado minitubérculos, este sistema alcançou taxas de multiplicação de até 74 tubérculos por planta. De modo geral, o uso de minitubérculos como material propagativo apresentou os melhores resultados de produtividade quando comparada ao material in vitro, independentemente da cultivar e sistemas hidropônicos utilizados.

  13. Influence of lifestyle on vitamin bioavailability.

    Science.gov (United States)

    van den Berg, Henk; van der Gaag, Martijn; Hendriks, Henk

    2002-01-01

    In this review the effects of lifestyle factors, especially alcohol consumption, on vitamin bioavailability are summarized and discussed. Alcohol effects are clearly dose-dependent. Excessive chronic alcohol intake is generally associated with vitamin deficiency (especially folate, thiamine, and vitamin B6) due to malnutrition, malabsorption, and ethanol toxicity. Effects of moderate alcohol use are mainly explained by a lower vitamin intake. In the case of vitamin A and beta-carotene, effects on post-absorptive (lipoprotein) metabolism have been demonstrated. In one diet-controlled crossover study, alcohol consumption resulted in an increase in the plasma vitamin B6 (PLP) content, especially after beer consumption (containing vitamin B6), but also after wine and spirit consumption (not containing vitamin B6). Smoking is also associated with a lower dietary vitamin intake. In the case of vitamin C, B12, folate, and beta-carotene, evidence has been presented for effects on postabsorptive metabolism, due to smoke-induced oxidative stress and/or vitamin inactivation. For vitamin E a direct effect of smoking on absorption has been demonstrated. There is no convincing evidence that low-fat diets negatively affect fat-soluble vitamin absorption, but cholesterol-lowering compounds (diets), or unabsorbable fat substitutes, may do so. Vitamin bioavailability may be compromised from certain vegetables (particularly raw), and/or from high-fiber foods, because of limited digestion and inefficient release of vitamins from the food matrix.

  14. Solubility and bioavailability improvement of pazopanib hydrochloride.

    Science.gov (United States)

    Herbrink, Maikel; Groenland, Stefanie L; Huitema, Alwin D R; Schellens, Jan H M; Beijnen, Jos H; Steeghs, Neeltje; Nuijen, Bastiaan

    2018-06-10

    The anti-cancer drug pazopanib hydrochloride (PZH) has a very low aqueous solubility and a variable oral bioavailability. A new pharmaceutical formulation with an improved solubility may enhance the bioavailability and reduce the variability. A broad selection of polymer excipients was tested for their compatibility and solubilizing properties by conventional microscopic, thermal and spectrometric techniques. A wet milling and mixing technique was used to produce homogenous powder mixtures. The dissolution properties of the formulation were tested by a pH-switch dissolution model. The final formulation was tested in vivo in cancer patient following a dose escalation design. Of the tested mixture formulations, the one containing the co-block polymer Soluplus® in a 8:1 ratio with PZH performed best in terms of in vitro dissolution properties. The in vivo results indicated that 300 mg of the developed formulation yields similar exposure and a lower variability (379 μg/mL∗h (36.7% CV)) than previously reported values for the standard PZH formulation (Votrient®) at the approved dose of 800 mg. Furthermore, the expected plasma-C through levels (27.2 μg/mL) exceeds the defined therapeutic efficacy threshold of 20 μg/mL. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Bioavailability and Uptake of Lead by Coffeeweed (Sesbania exaltata Raf.

    Directory of Open Access Journals (Sweden)

    Gloria Miller

    2008-12-01

    Full Text Available Lead (Pb is recognized as one of the most pervasive environmental health concerns in the industrialized world. While there has been a substantial reduction in the use of Pb in gasoline, water pipes, and Pb-based residential paint, residual Pb from their use is still in the environment and constitutes an important source of Pb in the atmosphere, water, and soil. Soil acts as a sink for these anthropogenic sources of Pb, accumulating the deposits over time in the upper 2 - 5 cm of undisturbed soil. Generally, Pb binds strongly to soil particles and renders a significant soil-metal fraction insoluble and largely unavailable for phytoremediation or plant uptake. A major objective of current phytoremediation research, therefore, is to induce desorption of Pb from the soil matrix into solution and increase the propensity for plant uptake. We hypothesized that the bioavailability of Pb for plant uptake can be increased through chelate amendments. To test this hypothesis, we mixed delta top soil and peat (2:1 and added lead nitrate [Pb (NO32] to generate a Pb-contaminated soil concentration of 2000 mg Pb/kg dry soil. After incubating the Pb-spiked soil in a greenhouse for 6 weeks, Sesbania plants were grown in the soil and harvested at 6, 8, and 10 weeks after emergence. Six days before each harvest, a chelating agent, ethylenediaminetetraacetic acid (EDTA was applied to the root zone as an aqueous solution in a 1:1 ratio with the Pb concentration in the soil. Sequential extraction procedures were used to assess selective chemical fractions of Pb in the soil. Our results showed that a higher exchangeable fraction of Pb was available for plant uptake after chelate amendment compared to pre-chelate amendment. We also saw higher root and shoot Pb uptake after chelate amendment compared to pre-chelate amendment, especially at 10 weeks after emergence. Together, these results suggest that chelate amendments can promote the bioavailability of Pb in the soil

  16. Estimating Lead (Pb) Bioavailability In A Mouse Model

    Science.gov (United States)

    Children are exposed to Pb through ingestion of Pb-contaminated soil. Soil Pb bioavailability is estimated using animal models or with chemically defined in vitro assays that measure bioaccessibility. However, bioavailability estimates in a large animal model (e.g., swine) can be...

  17. Protein and amino acid bioavailability estimates for canine foods

    NARCIS (Netherlands)

    Hendriks, W.H.; Bakker, E.J.; Bosch, G.

    2015-01-01

    Estimates of nutrient bioavailability are required for establishing dietary nutrient requirements and to evaluate the nutritional value of food ingredients or foods that are exposed to processing or extended storage. This study aimed to generate estimates for the bioavailability of dietary CP and AA

  18. The bioavailability of oxalate from Oca (Oxalis tuberosa).

    Science.gov (United States)

    Albihn, P B; Savage, G P

    2001-08-01

    It is believed that soluble oxalate has higher bioavailability than insoluble oxalate. Oca (Oxalis tuberosa) is moderately high in oxalate and contains oxalate in soluble form only. We estimated the bioavailability of oxalate in oca based on the urinary excretion of oxalate after oxalate loading with oca to estimate the bioavailability of oxalate in oca. We also clarified whether bioavailability differs in various oxalate loads from the same food source and studied the effect of an additional calcium source on the bioavailability of oxalate from oca. Four men and 4 women ingested 50, 100 and 150 gm. oca as well as 100 gm. oca with 100 gm. sour cream. Oxalate was measured in a 6-hour urine sample from each volunteer. The mean bioavailability of oxalate from oca plus or minus standard deviation was 1.44% +/- 1.31% during the 6-hour period after intake. There was no significant difference in oxalate bioavailability among oxalate intake levels in this study, although oca consumption with sour cream significantly decreased the uptake of oxalate (p oca appears to be similar to that in spinach. However, bioavailability varies among individuals and depends on other constituents of a combined meal.

  19. Computational modeling of human oral bioavailability: what will be next?

    Science.gov (United States)

    Cabrera-Pérez, Miguel Ángel; Pham-The, Hai

    2018-06-01

    The oral route is the most convenient way of administrating drugs. Therefore, accurate determination of oral bioavailability is paramount during drug discovery and development. Quantitative structure-property relationship (QSPR), rule-of-thumb (RoT) and physiologically based-pharmacokinetic (PBPK) approaches are promising alternatives to the early oral bioavailability prediction. Areas covered: The authors give insight into the factors affecting bioavailability, the fundamental theoretical framework and the practical aspects of computational methods for predicting this property. They also give their perspectives on future computational models for estimating oral bioavailability. Expert opinion: Oral bioavailability is a multi-factorial pharmacokinetic property with its accurate prediction challenging. For RoT and QSPR modeling, the reliability of datasets, the significance of molecular descriptor families and the diversity of chemometric tools used are important factors that define model predictability and interpretability. Likewise, for PBPK modeling the integrity of the pharmacokinetic data, the number of input parameters, the complexity of statistical analysis and the software packages used are relevant factors in bioavailability prediction. Although these approaches have been utilized independently, the tendency to use hybrid QSPR-PBPK approaches together with the exploration of ensemble and deep-learning systems for QSPR modeling of oral bioavailability has opened new avenues for development promising tools for oral bioavailability prediction.

  20. ASSESSING SOIL ARSENIC BIOAVAILABILITY IN THE LABORATORY MOUSE

    Science.gov (United States)

    Variation among soils in the bioavailability of arsenic can be a critical determinant of the risk posed by exposure to these soils. Although in vitro techniques can provide vital data on aspects of bioavailability of metals and metalloids from soils, these results must be valida...

  1. Changes in Leaf Anatomical Traits Enhanced Photosynthetic Activity of Soybean Grown in Hydroponics with Plant Growth-Promoting Microorganisms.

    Science.gov (United States)

    Paradiso, Roberta; Arena, Carmen; De Micco, Veronica; Giordano, Maria; Aronne, Giovanna; De Pascale, Stefania

    2017-01-01

    The use of hydroponic systems for cultivation in controlled climatic conditions and the selection of suitable genotypes for the specific environment help improving crop growth and yield. We hypothesized that plant performance in hydroponics could be further maximized by exploiting the action of plant growth-promoting organisms (PGPMs). However, the effects of PGPMs on plant physiology have been scarcely investigated in hydroponics. Within a series of experiments aimed to identify the best protocol for hydroponic cultivation of soybean [ Glycine max (L.) Merr.], we evaluated the effects of a PGPMs mix, containing bacteria, yeasts, mycorrhiza and trichoderma beneficial species on leaf anatomy, photosynthetic activity and plant growth of soybean cv. 'Pr91m10' in closed nutrient film technique (NFT). Plants were grown in a growth chamber under semi-aseptic conditions and inoculated at seed, seedling and plant stages, and compared to non-inoculated (control) plants. Light and epi-fluorescence microscopy analyses showed that leaves of inoculated plants had higher density of smaller stomata (297 vs. 247 n/mm 2 ), thicker palisade parenchyma (95.0 vs. 85.8 μm), and larger intercellular spaces in the mesophyll (57.5% vs. 52.2%), compared to non-inoculated plants. The modifications in leaf functional anatomical traits affected gas exchanges; in fact starting from the reproductive phase, the rate of leaf net photosynthesis (NP) was higher in inoculated compared to control plants (8.69 vs. 6.13 μmol CO 2 m -2 s -1 at the beginning of flowering). These data are consistent with the better maximal PSII photochemical efficiency observed in inoculated plants (0.807 vs. 0.784 in control); conversely no difference in leaf chlorophyll content was found. The PGPM-induced changes in leaf structure and photosynthesis lead to an improvement of plant growth (+29.9% in plant leaf area) and seed yield (+36.9%) compared to control. Our results confirm that PGPMs may confer benefits in

  2. Changes in Leaf Anatomical Traits Enhanced Photosynthetic Activity of Soybean Grown in Hydroponics with Plant Growth-Promoting Microorganisms

    Directory of Open Access Journals (Sweden)

    Roberta Paradiso

    2017-05-01

    Full Text Available The use of hydroponic systems for cultivation in controlled climatic conditions and the selection of suitable genotypes for the specific environment help improving crop growth and yield. We hypothesized that plant performance in hydroponics could be further maximized by exploiting the action of plant growth-promoting organisms (PGPMs. However, the effects of PGPMs on plant physiology have been scarcely investigated in hydroponics. Within a series of experiments aimed to identify the best protocol for hydroponic cultivation of soybean [Glycine max (L. Merr.], we evaluated the effects of a PGPMs mix, containing bacteria, yeasts, mycorrhiza and trichoderma beneficial species on leaf anatomy, photosynthetic activity and plant growth of soybean cv. ‘Pr91m10’ in closed nutrient film technique (NFT. Plants were grown in a growth chamber under semi-aseptic conditions and inoculated at seed, seedling and plant stages, and compared to non-inoculated (control plants. Light and epi-fluorescence microscopy analyses showed that leaves of inoculated plants had higher density of smaller stomata (297 vs. 247 n/mm2, thicker palisade parenchyma (95.0 vs. 85.8 μm, and larger intercellular spaces in the mesophyll (57.5% vs. 52.2%, compared to non-inoculated plants. The modifications in leaf functional anatomical traits affected gas exchanges; in fact starting from the reproductive phase, the rate of leaf net photosynthesis (NP was higher in inoculated compared to control plants (8.69 vs. 6.13 μmol CO2 m-2 s-1 at the beginning of flowering. These data are consistent with the better maximal PSII photochemical efficiency observed in inoculated plants (0.807 vs. 0.784 in control; conversely no difference in leaf chlorophyll content was found. The PGPM-induced changes in leaf structure and photosynthesis lead to an improvement of plant growth (+29.9% in plant leaf area and seed yield (+36.9% compared to control. Our results confirm that PGPMs may confer benefits in

  3. Micronutrient bioavailability: Dietary Reference Intakes and a future perspective1234

    Science.gov (United States)

    2010-01-01

    This article provides a review of how the challenge of bioavailability was approached in establishing the Dietary Reference Intakes, with a special focus on folic acid, vitamin B-12, β-carotene, iron, selenium, and zinc, the targeted micronutrients for this workshop. In a future perspective, the necessity of having a clear working definition of bioavailability is emphasized. The bioavailability of micronutrients should be considered, with advantage, under subheadings determined by the broad factors that affect bioavailability. Special emphasis is given to giving greater and specific attention to factors involved in the maintenance of homeostasis. These factors, it is argued, are best considered separately from even a broad definition of bioavailability and have the potential to provide new insights into some micronutrient requirements. PMID:20200261

  4. Reducing the bioavailability of PCBs in soil to plant by biochars assessed with triolein-embedded cellulose acetate membrane technique

    International Nuclear Information System (INIS)

    Wang, Yu; Wang, Yu-Jun; Wang, Lei; Fang, Guo-Dong; Cang, Long; Herath, H.M.S.K.; Zhou, Dong-Mei

    2013-01-01

    Coupling with triolein-embedded cellulose acetate membrane (TECAM) technique, hydroxypropyl β-cyclodextrins (HPCD) extraction method, and the greenhouse pot experiments, the influences of biochars on polychlorinated biphenyls (PCBs) bioavailability in soil to plant (Brassica chinensis L. and Daucus carota) were investigated. Addition of 2% biochars to soils significantly reduced the uptake of PCBs in plant, especially for di-, tri- and tetra-chlorobiphenyls. PCBs concentrations in the roots of B. chinensis and D. carota were reduced for 61.5–93.7%, and 12.7–62.4%, respectively in the presence of biochars. The kinetic study showed that in the soils amended with/without biochars, PCBs concentrations accumulated in TECAM, as well as in the HPCD extraction solution, followed significant linear relationships with those in plant roots. Application of biochars to soil is a potentially promising method to reduce PCBs bioavailability whereas TECAM technique can be a useful tool to predict the bioavailability of PCBs in soil. -- Highlights: ► Application of biochars significantly reduced the uptake of PCBs in plant. ► TECAM was a new and effective method to predict the PCBs bioavailability in soil. ► PCBs accumulated in TECAM followed significant linear relationships with plant. ► PCBs in TECAM were more similar with the plant uptake than HPCD solution. -- The reduced PCBs concentrations in plant roots by biochars show good linear relationship with those in TECAM

  5. Impact of nitrogen source and supply level on growth, yield and nutritional value of two contrasting ecotypes of Cichorium spinosum L. grown hydroponically.

    Science.gov (United States)

    Chatzigianni, Martina; Alkhaled, Bara'a; Livieratos, Ioannis; Stamatakis, Aristidis; Ntatsi, Georgia; Savvas, Dimitrios

    2018-03-01

    In the present study, two contrasting stamnagathi (Cichorium spinosum L.) ecotypes originating either from a mountainous or from a seaside habitat were grown hydroponically and supplied with a nutrient solution differing in the total-N level (4 or 16 mmol L -1 ) and the N source (NH 4 + -N/total-N: 0.05, 0.25 or 0.50). The aim was to search for genotypic differences in nitrogen nutrition. At commercial maturity, the dry weight of mountainous plants was higher than that of seaside plants. The shoot mineral concentrations were higher in seaside plants than in mountainous plants in both harvests. The leaf nitrate concentration was influenced by the levels of both total-N and NH 4 + -N/total-N at both harvests, whereas plants with a seaside origin exhibited higher nitrate concentrations than those originating from a mountainous site in all total-N and NH 4 + -N/total-N treatments. The two stamnagathi ecotypes differed considerably in their responses to nitrogen nutrition and tissue nitrate content. The mountainous ecotype was superior in terms of growth, tissue nitrate concentration and antioxidant capacity, whereas the seaside ecotype accumulated more nutrient microcations in leaves. A low total-N concentration (up to 4 mmol L -1 ) combined with a high NH 4 + -N/total-N ratio (up to 0.05) could minimize tissue NO 3 - concentrations without compromising yield. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  6. Effect of external potassium (K) supply on the uptake of 137Cs by spring wheat (Triticum aestivum cv. Tonic): a large-scale hydroponic study

    International Nuclear Information System (INIS)

    Zhu, Y.-G.

    2001-01-01

    A large-scale hydroponic experiment was carried out in a non-controlled greenhouse. Spring wheat plants were grown to maturity at four levels of external K concentration (2, 4, 20 and 40 mg l -1 ) and one concentration of radiocaesium (8 Bq ml -1 ). Concentrations of K and radiocaesium in the growth solution were closely monitored, and replenishments were made upon depletion. K effectively competed with radiocaesium in terms of root uptake. Activity concentrations of radiocaesium in plants differed significantly between the four K treatments; the activity concentration at the lowest external K concentration being 100 times higher than that at the highest K level. The relationship between radiocaesium uptake and external K level could be described by a negative power function; this showed that when the K level reached around 12 mg l -1 , further increases in the external K level resulted only in slight changes in its inhibitory effect. As a result of this inhibitory effect of potassium supply, concentrations of radiocaesium in plant tissues, grains in particular, were greatly reduced at high external K concentration. Mechanisms involved in Cs-K interaction in root uptake are also discussed

  7. Effect of Different Elicitors and Preharvest Day Application on the Content of Phytochemicals and Antioxidant Activity of Butterhead Lettuce (Lactuca sativa var. capitata) Produced under Hydroponic Conditions.

    Science.gov (United States)

    Moreno-Escamilla, Jesús Omar; Alvarez-Parrilla, Emilio; de la Rosa, Laura A; Núñez-Gastélum, José Alberto; González-Aguilar, Gustavo A; Rodrigo-García, Joaquín

    2017-07-05

    The effect of four elicitors on phytochemical content in two varieties of lettuce was evaluated. The best preharvest day for application of each elicitor was chosen. Solutions of arachidonic acid (AA), salicylic acid (SA), methyl jasmonate (MJ), and Harpin protein (HP) were applied by foliar aspersion on lettuce leaves while cultivating under hydroponic conditions. Application of elicitors was done at 15, 7, 5, 3, or 1 day before harvest. Green lettuce showed the highest increase in phytochemical content when elicitors (AA, SA, and HP) were applied on day 7 before harvest. Similarly, antioxidant activity rose in all treatments on day 7. In red lettuce, the highest content of bioactive molecules occurred in samples treated on day 15. AA, SA, and HP were the elicitors with the highest effect on phytochemical content for both varieties, mainly on polyphenol content. Antioxidant activity also increased in response to elicitation. HPLC-MS showed an increase in the content of phenolic acids in green and red lettuce, especially after elicitation with SA, suggesting activation of the caffeic acid pathway due to elicitation.

  8. Effect of external potassium (K) supply on the uptake of {sup 137}Cs by spring wheat (Triticum aestivum cv. Tonic): a large-scale hydroponic study

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Y.-G. E-mail: yongguan.zhu@adelaide.edu.au

    2001-07-01

    A large-scale hydroponic experiment was carried out in a non-controlled greenhouse. Spring wheat plants were grown to maturity at four levels of external K concentration (2, 4, 20 and 40 mg l{sup -1}) and one concentration of radiocaesium (8 Bq ml{sup -1}). Concentrations of K and radiocaesium in the growth solution were closely monitored, and replenishments were made upon depletion. K effectively competed with radiocaesium in terms of root uptake. Activity concentrations of radiocaesium in plants differed significantly between the four K treatments; the activity concentration at the lowest external K concentration being 100 times higher than that at the highest K level. The relationship between radiocaesium uptake and external K level could be described by a negative power function; this showed that when the K level reached around 12 mg l{sup -1}, further increases in the external K level resulted only in slight changes in its inhibitory effect. As a result of this inhibitory effect of potassium supply, concentrations of radiocaesium in plant tissues, grains in particular, were greatly reduced at high external K concentration. Mechanisms involved in Cs-K interaction in root uptake are also discussed.

  9. Bioavailability of magnetic nanoparticles to the brain

    International Nuclear Information System (INIS)

    Huang, B.-R.; Chen, P.-Y.; Huang, C.-Y.; Jung, S.-M.; Ma, Y.-H.; Wu, Tony; Chen, J.-P.; Wei, K.-C.

    2009-01-01

    This study investigates the bioavailability of carboxymethyl dextran-coated magnetic nanoparticles (CMD-MNP) to the brain. The cytotoxicity of CMD-MNP was assessed by co-culture with C6, a rat glioma cell line. To investigate the effects of an external magnetic field on the biodistribution of nanoparticles in a rat model, a magnet of 0.3 Tesla was applied externally over the cranium and the particles injected via the external jugular vein. Nanoparticles were also injected into rats implanted with C6 tumor cells. Staining of histological samples with Prussian blue to detect iron particles revealed that the external magnetic field enhanced the aggregation of nanoparticles in the rat brain; this enhancement was even more pronounced in the tumor region.

  10. Biodisponibilidade do licopeno Bioavailability of lycopene

    Directory of Open Access Journals (Sweden)

    Bettina Moritz

    2006-04-01

    Full Text Available Esta revisão procura reunir diversos estudos que avaliam os fatores que influenciam a biodisponibilidade do licopeno, bem como os alimentos fontes e a recomendação de ingestão desse carotenóide. Para tanto, foi realizado um levantamento bibliográfico, mediante consulta às bases de dados Medline (National Library of Medicine, USA e Lilacs (Bireme, Brasil nas quais foram selecionadas publicações científicas em português e inglês, nos últimos quinze anos, que utilizaram os temas: licopeno, carotenóides e/ou biosponibilidade. O licopeno é um carotenóide sem atividade de pró-vitamina A, mas um potente antioxidante, sendo essa função possivelmente associada à redução do risco da ocorrência do câncer e certas doenças crônicas. Esse nutriente é encontrado em um número limitado de alimentos, e, além disso, o organismo não é capaz de sintetizá-lo; dessa forma, o licopeno é obtido exclusivamente por meio da dieta alimentar. A quantidade sugerida de ingestão de licopeno varia de 4 a 35mg/dia. Estudos mostram que existem vários fatores que podem interferir na biodisponibilidade do licopeno, tais como absorção intestinal, quantidade de licopeno no alimento fonte, formas de apresentação (isômeros e sintéticos, presença da matriz alimentar, presença de outros nutrientes na refeição (como gordura, fibra, outros carotenóides, entre outros, ingestão de drogas, processamento do alimento, além da individualidade biológica e do estado nutricional do indivíduo. Estudos da biodisponibilidade do licopeno têm sido desenvolvidos a partir do tomate e seus produtos, por esse ser a fonte mais comumente consumida. O desenvolvimento do estudo enfatizou a importância da melhor forma de absorção desse nutriente, relevante que é para a prevenção de inúmeras doenças.This review collets several papers that evaluated the factors that influence the bioavailability of licopene, as well as the food sources of this nutrient and

  11. Bioavailability of magnetic nanoparticles to the brain

    Energy Technology Data Exchange (ETDEWEB)

    Huang, B.-R. [Department of Neurosurgery, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 5 Fushing Street, Kweishan, Taoyuan 333, Taiwan (China); Chen, P.-Y. [Department of Neurosurgery, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 5 Fushing Street, Kweishan, Taoyuan 333, Taiwan (China); Graduate Institute of Biomedical Sciences, Chang-Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Taoyuan 333, Taiwan (China); Huang, C.-Y. [Department of Neurosurgery, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 5 Fushing Street, Kweishan, Taoyuan 333, Taiwan (China); Jung, S.-M. [Department of Pathology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 5 Fushing Street, Kweishan, Taoyuan 333, Taiwan (China); Ma, Y.-H. [Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan (China); Wu, Tony [Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, 5 Fushing Street, Kweishan, Taoyuan 333, Taiwan (China); Chen, J.-P. [Department of Chemical and Material Engineering, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan (China)], E-mail: jpchen@mail.cgu.edu.tw; Wei, K.-C. [Department of Neurosurgery, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 5 Fushing Street, Kweishan, Taoyuan 333, Taiwan (China)], E-mail: kuochenwei@adm.cgmh.org.tw

    2009-05-15

    This study investigates the bioavailability of carboxymethyl dextran-coated magnetic nanoparticles (CMD-MNP) to the brain. The cytotoxicity of CMD-MNP was assessed by co-culture with C6, a rat glioma cell line. To investigate the effects of an external magnetic field on the biodistribution of nanoparticles in a rat model, a magnet of 0.3 Tesla was applied externally over the cranium and the particles injected via the external jugular vein. Nanoparticles were also injected into rats implanted with C6 tumor cells. Staining of histological samples with Prussian blue to detect iron particles revealed that the external magnetic field enhanced the aggregation of nanoparticles in the rat brain; this enhancement was even more pronounced in the tumor region.

  12. Effect of EDTA on Pb(II) Uptake and Translocation by Tumbleweed (Salsola Kali): Agar and Hydroponics Studies

    Energy Technology Data Exchange (ETDEWEB)

    de la Rosa, Guadalupe; Gardea-Torresdey, Jorge L.; Peralta-Videa, Jose R.; Aldrich, Mary

    2004-03-31

    Environmental accumulation of Pb represents a worldwide health hazard. While conventional cleanup techniques are generally expensive and soil disturbing, phytoremediation represents an inexpensive friendly option for the removal of contaminants from soil and water. In this research, tumbleweed (Salsola kali) plants exposed for 15 days to Pb(NO3)2 at 80 and 125 ppm in hydroponics and agar media, demonstrated a high capacity to uptake lead. The results showed that the plants cultivated in agar accumulated 25563, 5534 and 2185 mg Pb kg-1 DW in roots, stems and leaves, respectively. Moreover, Pb concentrations found in hydroponically grown tumbleweed plants tissues were 30744, 1511 and 1421 mg kg-1 DW in roots, stems and leaves, respectively. It was observed that EDTA enhanced Pb translocation. No Pb phytotoxic effects were observed during the experimental time period. Cellular structural features were also observed using TEM.

  13. Antihyperglycemic and Antihyperlipidemic Activity of Hydroponic Stevia rebaudiana Aqueous Extract in Hyperglycemia Induced by Immobilization Stress in Rabbits

    Directory of Open Access Journals (Sweden)

    Anush Aghajanyan

    2017-01-01

    Full Text Available Diabetes mellitus (DM is a serious worldwide problem related to human hyperglycemia. Thus, herbal preparations with antihyperglycemic properties especially leaf extracts of hydroponic Stevia rebaudiana (SR would be useful in hyperglycemia treatment. The antihyperglycemic potential of this medicinal plant grown using hydroponics methods has been evaluated. Significant reduction of some biochemical characteristics for sugars and fatty acids in blood, liver, and muscle especially fasting glucose levels, serum triglycerides, LDL-cholesterol, total cholesterol levels, and increased HDL-cholesterol ones was shown with SR aqueous extract treatment. Therefore, the aqueous extract of SR is suggested to have antihyperglycemic and antihyperlipidemic activity and to restore liver and muscle glycogen levels (hepatoprotective effects in hyperglycemia induced by immobilization stress in rabbits and might be recommended for treatment of DM (hyperglycemia.

  14. Antihyperglycemic and Antihyperlipidemic Activity of Hydroponic Stevia rebaudiana Aqueous Extract in Hyperglycemia Induced by Immobilization Stress in Rabbits

    Science.gov (United States)

    Aghajanyan, Anush; Movsisyan, Zaruhi

    2017-01-01

    Diabetes mellitus (DM) is a serious worldwide problem related to human hyperglycemia. Thus, herbal preparations with antihyperglycemic properties especially leaf extracts of hydroponic Stevia rebaudiana (SR) would be useful in hyperglycemia treatment. The antihyperglycemic potential of this medicinal plant grown using hydroponics methods has been evaluated. Significant reduction of some biochemical characteristics for sugars and fatty acids in blood, liver, and muscle especially fasting glucose levels, serum triglycerides, LDL-cholesterol, total cholesterol levels, and increased HDL-cholesterol ones was shown with SR aqueous extract treatment. Therefore, the aqueous extract of SR is suggested to have antihyperglycemic and antihyperlipidemic activity and to restore liver and muscle glycogen levels (hepatoprotective effects) in hyperglycemia induced by immobilization stress in rabbits and might be recommended for treatment of DM (hyperglycemia). PMID:28758125

  15. Bioavailability of cadmium from soy isolate

    International Nuclear Information System (INIS)

    Lee, Y.H.; Fox, M.R.S.; Tao, S.H.

    1986-01-01

    Studies with 109 Cd showed that more Cd was taken up by duodenum (D) and jejunum-ileum (J-I) of Japanese Quail (JQ) with soy isolate (SI) than with casein gelatin (CG) diet. The purpose of this study was to compare the bioavailability of endogenous Cd from SI with CdCl 2 added to a CG diet. Day-old JQ were fed either SI or CG diet containing 121 ppb of Cd. Beginning at 7 d of age, 109 CdCl 2 was incorporated into both diets at 100 uci/kg and a group of birds from each diet was killed on 8, 9, 11, 14 and 21 d. Growth was normal with both diets and food intake was similar. Cd concentration (determined by ICAP and AAS furnace) was significantly higher with CG than with SI on all days in D and up to 11 d of age in J-I. Although much less Cd accumulated in liver and kidneys than in D and J-I, the levels were also higher with CG. Total Cd uptake by liver and kidneys increased gradually with CG whereas there was little increase with SI. Specific activity of Cd in D and J-I with CG remained the same throughout the experiment, but increased significantly with SI up to 11 d of age. The specific activity of Cd in liver and kidneys from both CG and SI increased with time but the rate was greater with SI. The patterns of specific activity indicate differences among tissues and between CG and SI for time required to reach equilibrium between 109 Cd and non-radioactive Cd. These data also show that endogenous Cd in SI is less bioavailable than CdCl 2 added to CG diet

  16. Gender differences on bioavailability of ofloxacin

    International Nuclear Information System (INIS)

    Hassan, Z.U.; Naseer, R.

    2008-01-01

    The fluoroquinolones are currently enjoying extensive worldwide clinical applications because of their good bioavailability and pharmacokinetic profile. Investigation into several aspects of the pharmacokinetic of all clinically relevant fluoroquinolones, have been carried out notably in Europe, USA and Japan. In view of the geonetical (geographical influences on genetics-pharmacogenetics) differences, it is important that for the optimal therapeutic outcome, biodisposition studies on drugs are better conducted in the population and environments where wide and extensive use of the drug is anticipated. The Objectives of study were to see the pharmacokinetic parameters in healthy young male and female volunteers. This comparative study was conducted King Edward Medical University, Lahore, Pakistan, from July 2005 to December 2005. In Pakistan where the use of antibiotics is more frequent by the general practitioners it is important to elucidate certain dose parameters it is also noticed that side effects are more in females than males so present study is conducted to calculate any differences in bioavailability on the basis of sex. The pharmacokinetic parameters of ofloxacin were determined in each of the clinically health eight young girls and boys (mean age 23.9 and 25.1 years, respectively) following a single oral dose of 400 mg tablet. The method adopted was microbiological assay. The blood samples collected at predetermined time intervals after drug administration revealed almost twice as high concentration of the drug in plasma of the girls than that in the boys. The pharmacokinetic parameters revealed significantly (p<0.01) higher values for area under curve (AUC) and Cmax, and lower total body clearance (TBC) and volume of distribution in the girls than in the boys. The gender differences in pharmacokinetic parameters indicate that the dose adjustment should be considered in male and female. (author)

  17. Dissolution of different zinc salts and zn uptake by Sedum alfredii and maize in mono- and co-cropping under hydroponic culture.

    Science.gov (United States)

    Jiang, Cheng'ai; Wu, Qitang; Zeng, Shucai; Chen, Xian; Wei, Zebin; Long, Xinxian

    2013-09-01

    Previous soil pot and field experiments demonstrated that co-cropping the hyperaccumulator Sedum alfredii with maize increased Zn phytoextraction by S. alfredii and decreased Zn uptake by maize shoots. This hydroponic experiment was conducted to investigate whether the facilitation of Zn phytoextraction by S. alfredii resulted from improved dissolution in this co-cropping system and its relation to root exudates. S. alfredii and maize were mono- and co-cropped (without a root barrier) in nutrient solution spiked with four Zn compounds, ZnS, ZnO, Zn3(PO4)2 and 5ZnO x 2CO3-4H2O (represented as ZnCO3) at 1000 mg/L Zn for 15 days without renewal of nutrient solution after pre-culture. The root exudates were collected under incomplete sterilization and analyzed. The results indicated that the difference in Zn salts had a greater influence on the Zn concentration in maize than for S. alfredii, varying from 210-2603 mg/kg for maize shoots and 6445-12476 mg/kg for S. alfredii in the same order: ZnCO3 > ZnO > Zn3(PO4)2 > ZnS. For the four kinds of Zn sources in this experiment, co-cropping with maize did not improve Zn phytoextraction by S. alfredii. In most cases, compared to co-cropped and mono-cropped maize, mono-cropped S. alfredii resulted in the highest Zn2+ concentration in the remaining nutrient solution, and also had a higher total concentration of low molecular weight organic acids (LMWOA) and lower pH of root exudation. Root exudates did partly influence Zn hyperaccumulation in S. alfredii.

  18. Acute inhibition of iron bioavailability by zinc: studies in humans.

    Science.gov (United States)

    Olivares, Manuel; Pizarro, Fernando; Ruz, Manuel; de Romaña, Daniel López

    2012-08-01

    Iron (Fe) and zinc (Zn) deficiencies constitute two of the most important nutritional and public health problems affecting developing countries. Combined supplementation or fortification with Zn and Fe are strategies that can be used to improve the Zn and Fe status of a population. However, there is concern about potential negative interactions between these two micronutrients due to a competitive binding to DMT1 and Zip14 transporter. Studies performed in humans have shown an inhibitory effect of Zn on Fe absorption when both minerals are given together as a solution in fasting conditions. We found that at low doses of iron (0.5 mg) the threshold for the inhibition of iron bioavailability was at a Zn:Fe wt/wt ratio ≥5.9:1, whereas at higher doses of Fe (10 mg) this inhibition occurred at 1:1 Zn:Fe wt/wt ratio. This differential response could be explained by the variation in the abundance of both cations as they compete for a limited number of shared transporters at the enterocyte. Conflicting results have been obtained when this interaction was studied in different food matrices. A negative interaction was not observed when Fe and Zn were provided in a composite hamburger meal, premature formula, human milk, or cow milk. A decrease on Fe absorption was observed in only 1 of 3 studies when Fe and Zn were supplied in wheat flour. The possibility of a negative interaction should be considered for supplementation or fortification programs with both microminerals.

  19. Bioavailability of radiostrontium in soil: Experimental study and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Sysoeva, A.A. [Russian Institute of Agricultural Radiology and Agroecology, 249032 Obninsk (Russian Federation)]. E-mail: lab22@riarae.obninsk.org; Konopleva, I.V. [Russian Institute of Agricultural Radiology and Agroecology, 249032 Obninsk (Russian Federation); Sanzharova, N.I. [Russian Institute of Agricultural Radiology and Agroecology, 249032 Obninsk (Russian Federation)

    2005-07-01

    Parameters related to {sup 90}Sr mobility in the soil-plant system are reported: exchangeable content, selectivity coefficient, and transfer factor. Large mobility of {sup 90}Sr in different soil types was shown. The fraction of exchangeable {sup 90}Sr varied between 70 and 90%. The selectivity coefficient K {sub C}({sup 90}Sr/Ca) values were in the range 1.3-2.5. The radionuclide transfer factors (TF) varied by a factor of 9.6 for barley seedlings and by a factor of 6.6 for lupine seedlings. The exchangeable Ca content was the determinant soil parameter responsible for differences in {sup 90}Sr biological availability. A static model was devised that describes {sup 90}Sr sorption from soil solution by soil and on the root surface. The parameter of {sup 90}Sr bioavailability (A) has been suggested. Parameter A was calculated from data on soil exchangeable Ca content and {sup 90}Sr mobility indicators - exchangeable fraction of the radionuclide and the selectivity coefficient K {sub C}({sup 90}Sr/Ca). A correlation was found between TF and parameter A.

  20. Bioavailability of radiostrontium in soil: Experimental study and modeling

    International Nuclear Information System (INIS)

    Sysoeva, A.A.; Konopleva, I.V.; Sanzharova, N.I.

    2005-01-01

    Parameters related to 90 Sr mobility in the soil-plant system are reported: exchangeable content, selectivity coefficient, and transfer factor. Large mobility of 90 Sr in different soil types was shown. The fraction of exchangeable 90 Sr varied between 70 and 90%. The selectivity coefficient K C ( 90 Sr/Ca) values were in the range 1.3-2.5. The radionuclide transfer factors (TF) varied by a factor of 9.6 for barley seedlings and by a factor of 6.6 for lupine seedlings. The exchangeable Ca content was the determinant soil parameter responsible for differences in 90 Sr biological availability. A static model was devised that describes 90 Sr sorption from soil solution by soil and on the root surface. The parameter of 90 Sr bioavailability (A) has been suggested. Parameter A was calculated from data on soil exchangeable Ca content and 90 Sr mobility indicators - exchangeable fraction of the radionuclide and the selectivity coefficient K C ( 90 Sr/Ca). A correlation was found between TF and parameter A

  1. Bioavailability of Cd in 110 polluted topsoils to recombinant bioluminescent sensor bacteria. Effect of soil particulate matter

    Energy Technology Data Exchange (ETDEWEB)

    Ivask, Angela; Pollumaa, Lee; Kahru, Anne [National Inst. of Chemical Physics and Biophysics, Lab. of Molecular Genetics, Tallin (Estonia); Dubourguier, Henri-Charles [National Inst. of Chemical Physics and Biophysics, Lab. of Molecular Genetics, Tallin (Estonia); Estonian Univ. of Life Sciences, Tartu (Estonia); Inst. Superieur d' Agriculture, Lille (France)

    2011-02-15

    In this study, bioavailability and water extractability of Cd in a panel of 110 natural aged heavy metal-polluted soils from northern France containing up to 20.1 mg of Cd per kilogramme was evaluated. Materials and methods Particulate matter was removed by differential centrifugation of soil-water suspensions (liquid to solid ratio 10) resulting in soil-water extracts containing different size of particles. Chemical analysis of Cd and analysis of bioavailable Cd with recombinant bioluminescent Cd-sensing bacteria were applied in parallel to these fractionated soil solutions. Results and Discussion Extractability of Cd from soil to the aqueous phase was low-only 0.13% of the soil total Cd as a mean; however, Cd-sensing recombinant luminescent bacteria Bacillus subtilis incubated in soil-water suspensions for 2 h showed that in the conditions of contact exposure, the bioavailable fraction of Cd increased about 30-fold being 3.74% of the soil total Cd as a mean value. The total Cd content of soils was not a good predictor of either bioavailable or water-extracted fraction of Cd, but these fractions were rather determined by the combination of soil total Cd and physico-chemical properties-texture and organic matter content. Analysis of two selected ''model'' soils with Cd sensor bacteria showed that about 90% of the bioavailable Cd was associated with larger soil particles that were removed from the soil suspensions by centrifugation at 4,500 x g, and even settling of the soil suspensions for 2 h removed already 65% of bioavailable Cd. Conclusions Thus, our results indicate a potential for remarkably higher environmental hazard for soil-associated heavy metals than just aqueous exposure. (orig.)

  2. Influence of bacteria on Pb and Zn speciation, mobility and bioavailability in soil: A laboratory study

    International Nuclear Information System (INIS)

    Wu, S.C.; Luo, Y.M.; Cheung, K.C.; Wong, M.H.

    2006-01-01

    A soil column experiment was carried out to investigate the effects of inoculation of bacteria on metal bioavailability, mobility and potential leachability through single chemical extraction, consequential extraction and in situ soil solution extraction technologies. Results showed that bacteria inoculated, including Azotobacter chroococcum, Bacillus megaterium and Bacillus mucilaginosus, may pose both positive and negative impacts on bioavailability and mobility of heavy metals in soil, depending on the chemical nature of the metals. The activities of bacteria led to an increase of water dissolved organic carbon (DOC) concentration and a decrease of pH value, which enhanced metal mobility and bioavailability (e.g. an increase of water-soluble and HOAc-soluble Zn). On the other hand, bacteria could immobilize metals (e.g. a great reduction of water-soluble Pb) due to the adsorption by bacterial cell walls and possible sedimentation reactions with phosphate or other anions produced through bacterial metabolism. - Influence of bacterial activities on heavy metal is two-edged

  3. Increased mineral oil bioavailability in slurries by monovalent cation-induced dispersion

    International Nuclear Information System (INIS)

    Jonge, H. de; Verstraten, J.M.

    1995-01-01

    Bioavailability of apolar contaminants is an important limiting factor for microbial reclamation of polluted soils. This paper describes a laboratory study of the relation between microaggregate stability and bioavailability of mineral oil in soil-water slurries. The stability of microaggregates in slurries is regulated by the valence and surface affinity of the cations in the system, and by the complexing anion P 2 O 7 4- (metaphosphate). A silt loam, contaminated with a weathered gas oil, was collected from an oil refinery site. Degradation rates were monitored in small-scale incubations at solid:liquid ratios of 1:5 (w/w). The solution contained Ca, Na, or K as the dominant cation. The levels of nutrients and metaphosphate were varied. Biodegradation rates increased with the sequence Ca 2 treatment. Measurements of the particle size distribution the slurry showed that an increase in the finer fractions qualitatively correlated with enhanced biodegradation. This is a strong indication that dispersion of the microaggregates increased bioavailability of the contaminant

  4. Production, Characterization and Evaluation of Kaempferol Nanosuspension for Improving Oral Bioavailability.

    Science.gov (United States)

    Qian, Yew S; Ramamurthy, Srinivasan; Candasamy, Mayuren; Shadab, Md; Kumar, Ravindran H; Meka, Venkata S

    2016-01-01

    Kaempferol has a large particle size and poor water solubility, leading to poor oral bioavailability. The present work aimed to develop a kaempferol nanosuspension (KNS) to improve pharmacokinetics and absolute bioavailability. A nanosuspension was prepared using high pressure homogenization (HPH) techniques. The physico-chemical properties of the kaempferol nanosuspension (KNS) were characterized using photon correlation spectroscopy (PCS), transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FTIR) and x-ray diffractometry (XRD). A reversephase high performance liquid chromatography (RP-HPLC) method for the analysis of the drug in rat plasma was developed and validated as per ICH guidelines. In vivo pharmacokinetic parameters of oral pure kaempferol solution, oral kaempferol nanosuspension and intravenous pure kaempferol were assessed in rats. The kaempferol nanosuspension had a greatly reduced particle size (426.3 ± 5.8 nm), compared to that of pure kaempferol (1737 ± 129 nm). The nanosuspension was stable under refrigerated conditions. No changes in physico-chemical characteristics were observed. In comparison to pure kaempferol, kaempferol nanosuspension exhibited a significantly (Pkaempferol. These results demonstrate enhanced oral bioavailability of kaempferol when formulated as a nanosuspension.

  5. Effect of activated carbon on microbial bioavailability of phenanthrene in soils

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Y.; Hunter, W.; Tao, S.; Crowley, D.; Gan, J. [University of California Riverside, Riverside, CA (United States). Dept. of Environmental Science

    2009-11-15

    Bioavailability is a governing factor that controls the rate of biological degradation of hydrophobic organic contaminants in soil. Among the solid phases that can adsorb hydrophobic organic contaminants in soil, black carbon (BC) exerts a particularly significant effect on phase distribution. However, knowledge on the effect of BC on the microbial availability of polycyclic aromatic hydrocarbons in soil is still limited. In the present study, the effect of a coal-derived activated carbon on the bioavailability of phenanthrene (PHE) during its degradation by Mycobacterium vanbaalenii PYR-1 was measured in three soils. The freely dissolved concentration of PHE was concurrently determined in soil solutions using disposable polydimethylsiloxane fibers. The results showed that PHE mineralization was significantly inhibited after addition of activated carbon in all test soils. After 216 h, only 5.20, 5.83, and 6.85% of PHE was degraded in the 0.5% BC-amended soils initially containing organic carbon at 0.23, 2.1, and 7.1%, respectively. Significant correlation was found between PHE degradability and freely dissolved concentration, suggesting that BC affected PHE bioavailability by decreasing chemical activity. The effect of activated carbon in the amended soils was attributed to its enhancement of soil surface areas and pore volumes. Results from the present study clearly highlighted the importance of BC for influencing the microbial availability of polycyclic aromatic hydrocarbons in soils.

  6. Methodology adjustments for organic acid tolerance studies in oat under hydroponic systems

    Directory of Open Access Journals (Sweden)

    Mauricio Marini Kopp

    2009-06-01

    Full Text Available The occurrence of anaerobic conditions in hydromorphic soils favors the development of anaerobic microorganisms that produce phytotoxic substances representing primarily by organic acids. The selection of promising oat (Avena sativa L. genotypes for use in those situations requires field evaluations that can be cumbersome, making hydroponics a viable alternative. The objective of this work was to adjust a methodology to use in studies of tolerance to organic acids in oat under hydroponic systems. For such goal, the best germination system was determined in order to reduce the seedling initial establishment effects under hydroponics, the ideal concentration for screening genotypes and the best variable for stress evaluation. It was found that the most efficient germination system was "pleated germination paper" with small and husked seeds. The best concentration for studying organic acid tolerance ranged from 2.3 to 6.2 mM and the most suitable variable for the evaluation was root length.A ocorrência de condições anaeróbias nos solos hidromórficos favorece o desenvolvimento de microrganismos anaeróbios que produzem substâncias fitotóxicas representadas principalmente pelos ácidos orgânicos. A seleção de constituições genéticas de aveia (Avena sativa L. promissoras para utilização nestas situações requer avaliações de difícil execução no campo, tornando a utilização de sistemas hidropônicos mais vantajosa. O objetivo deste trabalho foi ajustar uma metodologia para ser utilizada em estudos de tolerância a ácidos orgânicos em aveia através de sistemas hidropônicos. Para tal fim foi determinada uma forma adequada de promover a germinação das sementes de maneira a reduzir os efeitos do estabelecimento inicial das plântulas na hidroponia, uma faixa de concentração ideal para discriminação dos genótipos e as variáveis de maior interesse para avaliação. O sistema de germinação mais eficiente é através de

  7. Screening of willow species for resistance to heavy metals: comparison of performance in a hydroponics system and field trials.

    Science.gov (United States)

    Watson, C; Pulford, I D; Riddell-Black, D

    2003-01-01

    The aim of this study was to ascertain whether metal resistance in willow (Salix) clones grown in a hydroponics screening test correlated with data from the same clones grown independently in a field trial. If so, results from a short-term, glasshouse-based system could be extrapolated to the field, allowing rapid identification of willows suitable for planting in metal-contaminated substrates without necessitating longterm field trials. Principal Components Analysis was used to show groups of clones and to assess the relative importance of the parameters measured in both the hydroponics system and the field; including plant response factors such as increase in stem height, as well as metal concentrations in plant tissues. The clones tested fell into two distinct groups. Salix viminalis clones and the basket willow Black Maul (S. triandra) were less resistant to elevated concentrations of heavy metals than a group of hardier clones, including S. burjatica 'Germany,' S.x dasyclados, S. candida and S. spaethii. The more resistant clones produced more biomass in the glasshouse and field, and had higher metal concentrations in the wood. The less resistant clones had greater concentrations of Cu and Ni in the bark, and produced less biomass in the glasshouse and field. Significant relationships were found between the response of the same clones grown the in short-term glasshouse hydroponics system and in the field.

  8. Evaluation of economical efficiency of the Osaki large hydroponic facilities; Osaki ogata suiko shisetsu no keizaisei hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Yonezawa, K [Chugoku Electric Power Co. Inc., Hiroshima (Japan)

    1996-03-25

    A demonstrative test was conducted to verify economical efficiency of practical scale hydroponic horticulture under structure making use of a part of the Osaki thermal power plant to be constructed. In the test, the hydroponic culture of leek and tomatoes was carried out for six years starting 1989 to study its economical efficiency. Using the M-type hydroponic culture facilities, the structures are 1200m wide, 29m long, and 21 tons in the culture liquid level in case of leek, and 350m wide, 29m long, and 10 tons in the culture liquid level in case of tomatoes. The evaluation was made estimating the crop amount of leek as about 35 tons and that of tomatoes as about 60 tons and regarding that the sales amount is equal to the crop amount. The sales amount of leek is 28 million yen, and when seeking income/expenditure from expenses, deficit of 1 million yen per 30 a cannot be avoided excluding the equipment depreciation cost. As to tomatoes, the shipment cost is approximately 14 million yen without the equipment depreciation cost, but the sales amount is approximately 13-19 million yen largely affected by the unit price. A study on the sale method is needed. 7 figs., 11 tabs.

  9. Polyethylene Glycol (PEG-Treated Hydroponic Culture Reduces Length and Diameter of Root Hairs of Wheat Varieties

    Directory of Open Access Journals (Sweden)

    Arif Hasan Khan Robin

    2015-10-01

    Full Text Available Wheat is an important cereal crop worldwide that often suffers from moisture deficits at the reproductive stage. Polyethylene glycol (PEG-treated hydroponic conditions create negative osmotic potential which is compared with moisture deficit stress. An experiment was conducted in a growth chamber to study the effects of PEG on root hair morphology and associated traits of wheat varieties. Plants of 13 wheat varieties were grown hydroponically and three different doses of PEG 6000 (w/v: 0% (control, 0.3% and 0.6% (less than −1 bar were imposed on 60 days after sowing for 20 days’ duration. A low PEG concentration was imposed to observe how initial low moisture stress might affect root hair development. PEG-treated hydroponic culture significantly decreased root hair diameter and length. Estimated surface area reduction of root hairs at the main axes of wheat plants was around nine times at the 0.6% PEG level compared to the control plants. Decrease in root hair diameter and length under PEG-induced culture decreased “potential” root surface area per unit length of main root axis. A negative association between panicle traits, length and dry weight and the main axis length of young roots indicated competition for carbon during their development. Data provides insight into how a low PEG level might alter root hair development.

  10. Development of suitable hydroponics system for phytoremediation of arsenic-contaminated water using an arsenic hyperaccumulator plant Pteris vittata.

    Science.gov (United States)

    Huang, Yi; Miyauchi, Keisuke; Inoue, Chihiro; Endo, Ginro

    2016-01-01

    In this study, we found that high-performance hydroponics of arsenic hyperaccumulator fern Pteris vittata is possible without any mechanical aeration system, if rhizomes of the ferns are kept over the water surface level. It was also found that very low-nutrition condition is better for root elongation of P. vittata that is an important factor of the arsenic removal from contaminated water. By the non-aeration and low-nutrition hydroponics for four months, roots of P. vittata were elongated more than 500 mm. The results of arsenate phytofiltration experiments showed that arsenic concentrations in water declined from the initial concentrations (50 μg/L, 500 μg/L, and 1000 μg/L) to lower than the detection limit (0.1 μg/L) and about 80% of arsenic removed was accumulated in the fern fronds. The improved hydroponics method for P. vittata developed in this study enables low-cost phytoremediation of arsenic-contaminated water and high-affinity removal of arsenic from water.

  11. Effect of corn steep liquor on lettuce root rot (Fusarium oxysporum f.sp. lactucae) in hydroponic cultures.

    Science.gov (United States)

    Chinta, Yufita D; Kano, Kazuki; Widiastuti, Ani; Fukahori, Masaru; Kawasaki, Shizuka; Eguchi, Yumi; Misu, Hideyuki; Odani, Hiromitsu; Zhou, Songying; Narisawa, Kazuhiko; Fujiwara, Kazuki; Shinohara, Makoto; Sato, Tatsuo

    2014-08-01

    Recent reports indicate that organic fertilisers have a suppressive effect on the pathogens of plants grown under hydroponic systems. Furthermore, microorganisms exhibiting antagonistic activity to diseases have been observed in organic hydroponic systems. This study evaluated the effect of corn steep liquor (CSL) on controlling lettuce root rot disease [Fusarium oxysporum f.sp. lactucae (FOL)] in a hydroponic system. The effect of CSL and Otsuka A (a chemical fertiliser) on the inhibition of FOL in terms of mycelial growth inhibition was tested in vivo. Addition of CSL suppressed FOL infection rates. CSL inhibited FOL infection by 26.3-42.5% from 2 days after starting incubation. In comparison, Otsuka A inhibited FOL growth by 5.5-19.4%. In addition, four of 10 bacteria isolated from the nutrient media containing CSL exhibited inhibition zones preventing FOL mycelial growth. We found that CSL suppressed FOL in lettuce via its antifungal and biostimulatory effects. We suggest that activation of beneficial microorganisms present in CSL may be used to decrease lettuce root rot disease and contribute to lettuce root growth. © 2014 Society of Chemical Industry.

  12. Proliferation of Escherichia coli O157:H7 in Soil-Substitute and Hydroponic Microgreen Production Systems.

    Science.gov (United States)

    Xiao, Zhenlei; Bauchan, Gary; Nichols-Russell, Lydia; Luo, Yaguang; Wang, Qin; Nou, Xiangwu

    2015-10-01

    Radish (Raphanus sativus var. longipinnatus) microgreens were produced from seeds inoculated with Escherichia coli O157:H7 by using peat moss-based soil-substitute and hydroponic production systems. E. coli populations on the edible and inedible parts of harvested microgreen plants (7 days postseeding) and in growth medium were examined. E. coli O157:H7 was shown to survive and proliferate significantly during microgreen growth in both production systems, with a higher level in the hydroponic production system. At the initial seed inoculation level of 3.7 log CFU/g, E. coli O157:H7 populations on the edible part of microgreen plants reached 2.3 and 2.1 log CFU/g (overhead irrigation and bottom irrigation, respectively) for microgreens from the soil-substitute production system and reached 5.7 log CFU/g for those hydroponically grown. At a higher initial inoculation of 5.6 log CFU/g seeds, the corresponding E. coli O157:H7 populations on the edible parts of microgreens grown in these production systems were 3.4, 3.6, and 5.3 log CFU/g, respectively. Examination of the spatial distribution of bacterial cells on different parts of microgreen plants showed that contaminated seeds led to systematic contamination of whole plants, including both edible and inedible parts, and seed coats remained the focal point of E. coli O157:H7 survival and growth throughout the period of microgreen production.

  13. Assessing the bioavailability and risk from metal-contaminated ...

    Science.gov (United States)

    Exposure to contaminated soil and dust is an important pathway in human health risk assessment. Physical and chemical characteristics, as well as biological factors, determine the bioaccessibility/bioavailability of soil and dust contaminants. Within a single sample, contamination may arise from multiple sources of toxic elements that may exist as different forms (species) which impact bioavailability. In turn, the bioaccessibility/bioavailability of soil and dust contaminants has a direct impact on human health risk assessment and risk management practices. Novel research efforts focusing on development and application of in vitro and in vivo methods to measure the bioaccessibility/bioavailability of metal contaminated soils have advanced in the past few years. The objective of this workshop was to focus on recent developments in assessing the bioaccessibility/bioavailability of arsenic contaminated soils, metal contamination in urban residences in Canada and potential children’s exposures to toxic elements in house dust, a community-based study known as the West Oakland Residential Lead Assessment , studies of the bioavailability of soil cadmium, chromium, nickel and mercury and human exposures to contaminated Brownfield soils. These presentations covered issues related to human health and bioavailability along with the most recent studies on community participation in assessing metal contamination, studies of exposures to residential contamination, and

  14. Bioavailability of zinc, copper, and manganese from infant diets

    International Nuclear Information System (INIS)

    Bell, J.G.

    1987-01-01

    A series of trace element absorption experiments were performed using the Sprague-Dawley suckling rat put and infant rhesis monkey (Macaca mulatta) with extrinsic radiolabeling to assess the bioavailability of Zn, Cu, and Mn from infant diets and to examine specific factors that affect absorption of these essential nutrients. Bioavailability of Cu as assessed by 6 h liver uptake (% of 64 Cu dose) was highest from human milk and cow milk based formula and significantly lower from cow milk and soy based formula. Copper bioavailability from infant cereal products as assessed by whole body uptake (% of 64 Cu dose) in d 20 rats, 9 h postintubation, was low compared to the bioavailability from cow milk or human milk alone. 65 Zn uptake in d 20 rats, 9 h postintubation, was significantly lower from cereals fed alone or in combination with cow or human milk as compared to the uptake from the milks fed alone. Zn bioavailability varied among cereal diets, (lowest from cereals containing phytate and highest from cereal/fruit products). Mn bioavailability from infant diets was assessed using a modified suckling rat pup model. Bioavailability (24 h whole body retention of 54 Mn) was high from all milks and commercial formulas tested

  15. Preparation, characterization and bioavailability by oral administration of O/W curcumin nanoemulsions stabilized with lysophosphatidylcholine.

    Science.gov (United States)

    Chávez-Zamudio, Rubi; Ochoa-Flores, Angélica A; Soto-Rodríguez, Ida; Garcia-Varela, Rebeca; García, Hugo Sergio

    2017-09-20

    Curcumin is the main and most abundant bioactive component in Curcuma longa L. with documented properties in the prevention and treatment of chronic degenerative and infectious diseases. However, curcumin has low solubility in aqueous media, hence low bioavailability when administered orally. The use of nanoemulsions as carriers can provide a partial solution to bioavailability restrictions. In our study, O/W nanoemulsions of curcumin were prepared using lysophosphatidylcholine, a phospholipid with proven emulsification capacity; nevertheless, such qualities have not been previously reported in the preparation of nanoemulsions. Lysophosphatidylcholine was obtained by enzymatic removal of one fatty acid residue from phosphatidylcholine. The objective of our work was to formulate stable curcumin nanoemulsions and evaluate their bioavailability in BALB/c mice plasma after oral administration. Formulated nanoemulsions had a droplet size mean of 154.32 ± 3.10 nm, a polydispersity index of 0.34 ± 0.07 and zeta potential of -10.43 ± 1.10 mV; stability was monitored for 12 weeks. Lastly, in vivo pharmacokinetic parameters, using BALB/c mice, were obtained; namely, C max of 610 ± 65.0 μg mL -1 and T max of 2 h. Pharmacokinetic data revealed a higher bioavailability of emulsified as opposed to free curcumin. Research regarding other potential emulsifiers that may provide better health benefits and carry nano-encapsulated bioactive compounds more effectively, is necessary. This study provides important data on the preparation and design of nanoencapsulated Curcumin using lysophosphatidylcholine as an emulsifier.

  16. Microclimatic effects of planted hydroponic structures in urban environment: measurements and simulations

    Science.gov (United States)

    Katsoulas, N.; Antoniadis, D.; Tsirogiannis, I. L.; Labraki, E.; Bartzanas, T.; Kittas, C.

    2017-05-01

    The objectives of this effort was to study the effect of vertical (green wall) and horizontal (pergola) green structures on the microclimate conditions of the building surroundings and estimate the thermal perception and heat stress conditions near the two structures. The experimental data were used to validate the results simulated by the recent version (V4.0 preview III) of ENVI-met software which was used to simulate the effect of different design parameters of a pergola and a green façade on microclimate and heat stress conditions. Further aim is to use these results for better design of green structures. The microclimate measurements were carried out in real scale structures (hydroponic pergola and hydroponic green wall) at the Kostakii Campus of the Technological Education Institute of Epirus (Arta, Greece). The validation results showed a very good agreement between measured and simulated values of air temperature, with Tair,sim = 0.98 Tair,meas in the Empty atrium and Tair,sim = 0.99 Tair,meas in the Atrium with pergola, with a determination coefficient R 2 of 0.98 and 0.93, respectively. The model was used to predict the effects of green structures on air temperature (Tair), relative humidity (RH), and mean radiant temperature (Tmrt). The output values of these parameters were used as input data in the RayMan pro (V 2.1) model for estimating the physiologically equivalent temperature (PET) of different case scenarios. The average daytime value of simulated air temperature in the atrium for the case without and with pergola during three different days was 29.2 and 28.9 °C while the corresponding measured values were 29.7 and 29.2 °C. The results showed that compared to the case with no pergola in the atrium, covering 100% the atrium area with a planted pergola reduced at the hottest part of the day Tmrt and PET values by 29.4 and 17.9 °C, respectively. Although the values of air temperature (measured and simulated) were not greatly affected by the

  17. Growth Response of Aboveground and Belowground of Eustoma grandiflorum to Elevated Co2 in Hydroponic Culture

    Directory of Open Access Journals (Sweden)

    mahin nikoo

    2018-03-01

    Full Text Available Introduction: One of the climate change sign is variation in greenhouse gases in the Earth's atmosphere. Carbon dioxide is the most important greenhouse gas that is released into the atmosphere by humans. It is expected that addition of carbon dioxide could effect the energy balance and global climate. Climate change is effective on agricultural productions. It is clear that different plants have different responses to Co2 variation. These responses are consisting of yield, growth characteristic and variation in root/shoot ratio of plants. On the other hand, using growing media are expanding for plants because of their advantages such as plants nutrient control, reducing the incidence of diseases and pests and increasing the quantity and quality rather than soil cultivation. Properties of various materials as substrates influence directly or indirectly on plant growth and crop production., Hydroponic method can be considered as one of the important methods to optimize water use in agriculture, especially in many countries are located in arid and semi-arid regions that have water crisis. Lisianthus is one of the most beautiful flowers with folded petals in white, blue and purple. I-ts scientific name is Eustoma grandiflorum from the family of Gentianaceae and native to North America. It has variety of annual, biennial or short-lived perennial. The aim of this study was to explore the effect of Co2 enrichment on growth response of aboveground and belowground of Eustoma grandiflorum under increasing of Co2 greenhouse gases in hydroponic culture. Materials and Methods: The experiment was done as a split-plot based on completely randomized experimental design with three replications at greenhouse of Ferdowsi University of Mashhad. The treatments were consists of three concentrations of carbon dioxide (380 as controls, 750 and 1050 ppm as main plots and two cultivars Yodel white and GCREC-blue as subplots. Some characteristic such as plant height

  18. The effect of dietary factors on strawberry anthocyanins oral bioavailability.

    Science.gov (United States)

    Xiao, Di; Sandhu, Amandeep; Huang, Yancui; Park, Eunyoung; Edirisinghe, Indika; Burton-Freeman, Britt M

    2017-11-15

    Strawberries are a dietary source of anthocyanins, particularly pelargonidin glycosides. Dietary anthocyanins have received increasing attention among researchers and consumers due to their health benefits. The oral bioavailability of anthocyanins is reported to be low and various dietary factors may influence their oral bioavailability further. Milk is suggested to reduce (poly)phenols' oral bioavailability. However, the effect of milk on anthocyanin oral bioavailability remains uncertain. Likewise, mixed nutrient meals may influence the oral bioavailability of anthocyanins. Therefore, the purpose of this study was to assess the effect of milk on the oral bioavailability and other pharmacokinetic (PK) variables of strawberry anthocyanins consumed with and without a meal. Nine healthy participants consumed a strawberry beverage prepared in milk or water with a standard meal on two occasions. On two additional occasions, the beverages were given to a subset (n = 4) of participants to determine the impact of the meal on anthocyanin PK variables, including oral bioavailability. Independent of the meal, beverages prepared in milk significantly reduced the peak plasma concentrations (C max ) of pelargonidin-3-O-glucoside (P-3-G), pelargonidin-glucuronide (PG) and pelargonidin-3-O-rutinoside (P-3-R), as well as the PG and P-3-R area under the curve (AUC) (p bioavailability of pelargonidin anthocyanins under meal conditions; however, the oral relative bioavailability of pelargonidin anthocyanins was reduced by ∼50% by milk under without meal conditions (p < 0.05). Consuming strawberry beverages made with milk and consuming those made with water with and without a meal influenced different aspects of strawberry anthocyanin PKs. The significance of this effect on clinical efficacy requires additional research.

  19. Bioavailability of bioactive food compounds: a challenging journey to bioefficacy.

    Science.gov (United States)

    Rein, Maarit J; Renouf, Mathieu; Cruz-Hernandez, Cristina; Actis-Goretta, Lucas; Thakkar, Sagar K; da Silva Pinto, Marcia

    2013-03-01

    Bioavailability is a key step in ensuring bioefficacy of bioactive food compounds or oral drugs. Bioavailability is a complex process involving several different stages: liberation, absorption, distribution, metabolism and elimination phases (LADME). Bioactive food compounds, whether derived from various plant or animal sources, need to be bioavailable in order to exert any beneficial effects. Through a better understanding of the digestive fate of bioactive food compounds we can impact the promotion of health and improvement of performance. Many varying factors affect bioavailability, such as bioaccessibility, food matrix effect, transporters, molecular structures and metabolizing enzymes. Bioefficacy may be improved through enhanced bioavailability. Therefore, several technologies have been developed to improve the bioavailability of xenobiotics, including structural modifications, nanotechnology and colloidal systems. Due to the complex nature of food bioactive compounds and also to the different mechanisms of absorption of hydrophilic and lipophilic bioactive compounds, unravelling the bioavailability of food constituents is challenging. Among the food sources discussed during this review, coffee, tea, citrus fruit and fish oil were included as sources of food bioactive compounds (e.g. (poly)phenols and polyunsaturated fatty acids (PUFAs)) since they are examples of important ingredients for the food industry. Although there are many studies reporting on bioavailability and bioefficacy of these bioactive food components, understanding their interactions, metabolism and mechanism of action still requires extensive work. This review focuses on some of the major factors affecting the bioavailability of the aforementioned bioactive food compounds. © 2012 Nestec S. A.. British Journal of Clinical Pharmacology © 2012 The British Pharmacological Society.

  20. On definition and use of the term bioavailability.

    Science.gov (United States)

    Rescigno, A; Thakur, A K; Marzo, A

    1994-10-01

    In common usage, the rate of absorption of an active ingredient or its therapeutic moiety is generally not mentioned in the context of bioavailability. In this communication it is shown that exclusion of the rate of absorption may have serious consequence on the interpretation of bioavailability depending on the underlying model for the system under study. In the case of endogenous substances, the term "bioavailability" is ambiguous unless one specifies whether it refers to availability of the exogenous substance only or the sum total of the exogenous and endogenous substances.

  1. 226Ra bioavailability of plants at urgeirica uranium mill tailings

    International Nuclear Information System (INIS)

    Madruga, M.J.; Brogueira, A.

    2002-01-01

    Large amounts of solid wastes (tailings) resulting from the exploitation and treatment of uranium ore at the Urgeirica mine (north of Portugal) have been accumulated in dams (tailing ponds). To reduce the dispersion of natural radionuclides into the environment some dams were revegetated with eucalyptus (Eucalyptus globolus) and pines (Pinus pinea). Besides, some shrubs (Cytisus s.p.) are growing at some of the dams. The objective of this study is to determine the 226 Ra bioavailability from uranium mill tailings through the quantification of the total and available fraction of radium in the solid wastes and to estimate its transfer to the plants growing on the tailing piles. Plants and solid waste samples were randomly collected at dams. Activity concentration of 226 Ra in plants (aerial part and roots) and solid wastes were measured by gamma spectrometry. The exchangeable fraction of radium in solid wastes was quantified using one single step extraction with 1 mol dm -3 ammonium acetate (pH=7) or 1 mol dm -3 calcium chloride solutions. The results obtained for the 226 Ra uptake by plants show that 226 Ra concentration ratios for eucalyptus and pines decrease at low 226 Ra concentration in the solid wastes and appear relatively constant at higher radium concentrations. For shrubs, the concentration ratios increase at higher 226 Ra solid waste concentrations approaching a saturation value. Percentage values of 16.0±8.3 and 12.9±8.9, for the fraction of radium extracted from the solid wastes, using 1 mol dm -3 ammonium acetate or calcium chloride solutions respectively, were obtained. The 226 Ra concentration ratios determined on the basis of exchangeable radium are one order of magnitude higher than those based on total radium. It can be concluded that, within the standard error values, more consistent 226 Ra concentration ratios were obtained when calculated on the basis of available radium than when total radium was considered, for all the dams. (author)

  2. Application of UV-ozonization to treat complex cyanide and hydroponic solution. Ozone shigaisen heiyo mizushori hoho no oyorei

    Energy Technology Data Exchange (ETDEWEB)

    Wakou, H; Yasuda, M [Industrial Research Institute of Kanagawa Prefecture, Kanagawa (Japan)

    1993-04-15

    Water oxidizing treatment which simultaneously uses both ozone and ultraviolet rays is not widely used because of its large electric power consumption and inappropriate high concentration treatment. However, it is characterized by its small sludge production and non-residual oxidant after the treatment. Its existing examples of application comprise production of drinking water to be urgently used, superpure water to be used for the semiconductor production and water to be used in the cosmic space, disinfection of fish-breeding ponds, and deodorization of chemical factories. As a new purpose of use, it is applied to disinfection of nutrient liquid for the fertilizer. It is necessary to prohibit the discharge of unabsorbed and untreated nutrient liquid for the fertilizer. For the recycling utilization, it is further necessary to disinfect the pathogenic bacteria and prevent the accumulation of organic secretion from the roots. Disinfection could be made by applying the present treatment method to a cultivation of tomatoes with water. The sedimentation of ferrous rust could be prevented by using an appropriate ferrous complex in the nutrient liquid. The decomposition loss of complex was compensated with a quantitative equivalence. When cyanic plating waste water is made innocuous by chlorine or sodium hypophosphite, a large quantity of sludge is produced. However by applying the present treatment method to it, the cyanic complex could be decomposed, and separated and recovered as an insoluble matter. 11 refs., 3 figs.

  3. Plant-specific responses to zinc contamination in a semi-field lysimeter and on hydroponics

    International Nuclear Information System (INIS)

    Bernhard, Roland; Verkleij, Jos A.C.; Nelissen, Hans J.M.; Vink, Jos P.M.

    2005-01-01

    The species Agrostis stolonifera, Brassica napus and Trifolium repens representing different ecological strategies, were selected to study the effect of Zn contamination on Zn tolerance, uptake and accumulation patterns. Parallel tests were carried out with increasing concentrations of Zn in a semi-field lysimeter and hydroponics in the climate chamber. A significant reduction in biomass production or root length and an increase in shoot Zn concentration was observed for all species at increasing external Zn concentrations. However, shoot biomass production, Zn tolerance and Zn accumulation differed significantly among the tested species. The results in both experimental set-ups were quite similar concerning Zn tolerance and accumulation and improved the validity of the findings. The rather specific responses of the different plant species to Zn contamination interfere with the more generic approach used in risk assessment studies. Maximum amounts of Zn in shoot are not likely to cause a risk to herbivores. - Effects of Zn contamination showed different responses in uptake and accumulation patterns of site-specific plant species, which were similar in a semi-field experiment and under controlled conditions

  4. Effect of pyoverdine supply on cadmium and nickel complexation and phytoavailability in hydroponics.

    Science.gov (United States)

    Ferret, C; Cornu, J Y; Elhabiri, M; Sterckeman, T; Braud, A; Jezequel, K; Lollier, M; Lebeau, T; Schalk, I J; Geoffroy, V A

    2015-02-01

    Siderophores are chelators with a high selectivity for Fe(III) and a good affinity for divalent metals, including Cd(II) and Ni(II). Inoculation with siderophore-producing bacteria (SPB) has thus been proposed as an alternative to chelator supply in phytoremediation. Accurate assessments of the potential of this association require a dissection of the interaction of siderophores with metals at the soil-root interface. This study focuses on pyoverdine (Pvd), the main siderophore produced by Pseudomonas aeruginosa. We first assessed the ability of Pvd to coordinate Ni(II). The stability constant of Pvd-Ni(II) (log K (L'Ni) = 10.9) was found to be higher than that of Pvd-Cd(II) (log K (L'Cd) = 8.2). We then investigated the effect of a direct supply of Pvd on the mobilization, speciation, and phytoavailability of Cd and Ni in hydroponics. When supplied at a concentration of 50 μM, Pvd selectively promoted Ni mobilization from smectite. It decreased plant Ni and Cd contents and the free ionic fractions of these two metals, consistent with the free ion activity model. Pvd had a more pronounced effect for Ni than for Cd, as predicted from its coordination properties. Inoculation with P. aeruginosa had a similar effect on Ni phytoavailability to the direct supply of Pvd.

  5. Analysis of microbial community and nitrogen transition with enriched nitrifying soil microbes for organic hydroponics.

    Science.gov (United States)

    Saijai, Sakuntala; Ando, Akinori; Inukai, Ryuya; Shinohara, Makoto; Ogawa, Jun

    2016-06-27

    Nitrifying microbial consortia were enriched from bark compost in a water system by regulating the amounts of organic nitrogen compounds and by controlling the aeration conditions with addition of CaCO 3 for maintaining suitable pH. Repeated enrichment showed reproducible mineralization of organic nitrogen via the conversion of ammonium ions ([Formula: see text]) and nitrite ions ([Formula: see text]) into nitrate ions ([Formula: see text]). The change in microbial composition during the enrichment was investigated by PCR-DGGE analysis with a focus on prokaryote, ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, and eukaryote cell types. The microbial transition had a simple profile and showed clear relation to nitrogen ions transition. Nitrosomonas and Nitrobacter were mainly detected during [Formula: see text] and [Formula: see text] oxidation, respectively. These results revealing representative microorganisms acting in each ammonification and nitrification stages will be valuable for the development of artificial simple microbial consortia for organic hydroponics that consisted of identified heterotrophs and autotrophic nitrifying bacteria.

  6. Plant-specific responses to zinc contamination in a semi-field lysimeter and on hydroponics

    Energy Technology Data Exchange (ETDEWEB)

    Bernhard, Roland [Department of Ecology and Physiology of Plants, Vrije Universiteit, De Boelelaan 1085, NL-1081 HV Amsterdam (Netherlands); Verkleij, Jos A.C. [Department of Ecology and Physiology of Plants, Vrije Universiteit, De Boelelaan 1085, NL-1081 HV Amsterdam (Netherlands)]. E-mail: jos.verkleij@falw.vu.nl; Nelissen, Hans J.M. [Department of Ecology and Physiology of Plants, Vrije Universiteit, De Boelelaan 1085, NL-1081 HV Amsterdam (Netherlands); Vink, Jos P.M. [Department of Chemistry and Ecotoxicology, RIZA, PO Box 17, NL-8200 AA Lelystad (Netherlands)

    2005-11-15

    The species Agrostis stolonifera, Brassica napus and Trifolium repens representing different ecological strategies, were selected to study the effect of Zn contamination on Zn tolerance, uptake and accumulation patterns. Parallel tests were carried out with increasing concentrations of Zn in a semi-field lysimeter and hydroponics in the climate chamber. A significant reduction in biomass production or root length and an increase in shoot Zn concentration was observed for all species at increasing external Zn concentrations. However, shoot biomass production, Zn tolerance and Zn accumulation differed significantly among the tested species. The results in both experimental set-ups were quite similar concerning Zn tolerance and accumulation and improved the validity of the findings. The rather specific responses of the different plant species to Zn contamination interfere with the more generic approach used in risk assessment studies. Maximum amounts of Zn in shoot are not likely to cause a risk to herbivores. - Effects of Zn contamination showed different responses in uptake and accumulation patterns of site-specific plant species, which were similar in a semi-field experiment and under controlled conditions.

  7. Evaluation of the cadmium and lead phytoextraction by castor bean (Ricinus communis L.) in hydroponics

    Science.gov (United States)

    Niu, Z. X.; Sun, L. N.

    2017-06-01

    Phytoextraction has been considered as an innovative method to remove toxic metals from soil; higher biomass plants such as castor bean (Ricinus communis L.) have already been considered as a hyperaccumulating candidate. In the present study, castor bean was used to accumulate the cadmium and lead in hydroponic culture, and the root exudates and biomass changes were analyzed. Results demonstrated that ratios of aerial biomass/ root biomass (AW/RW) in treatments declined with concentrations of Cd or Pb. Optical density (OD) at 190 nm and 280 nm of root exudates observed in Cd and Pb treatments were lower than the control. In single Cd or Pb treatments, bioconcentration factors (BCF) of Cd or Pb increased with time and decreased with concentrations, the highest BCFs appeared in Cd5 (14.36) and Pb50 (6.48), respectively. Cd-BCF or Pb-BCF showed positive correlations with AW/RW ratios and OD values, and they were negative correlated with Cd and Pb concentration. Results in this study may supply useful information for phytoremediation of soil contaminated with cadmium and lead in situ.

  8. Folate Biofortification in Hydroponically Cultivated Spinach by the Addition of Phenylalanine.

    Science.gov (United States)

    Watanabe, Sho; Ohtani, Yuta; Tatsukami, Yohei; Aoki, Wataru; Amemiya, Takashi; Sukekiyo, Yasunori; Kubokawa, Seiichi; Ueda, Mitsuyoshi

    2017-06-14

    Folate is an important vitamin mainly ingested from vegetables, and folate deficiency causes various health problems. Recently, several studies demonstrated folate biofortification in plants or food crops by metabolic engineering through genetic modifications. However, the production and sales of genetically modified foods are under strict regulation. Here, we developed a new approach to achieve folate biofortification in spinach (Spinacia oleracea) without genetic modification. We hydroponically cultivated spinach with the addition of three candidate compounds expected to fortify folate. As a result of liquid chromatography tandem mass spectrometry analysis, we found that the addition of phenylalanine increased the folate content up to 2.0-fold (306 μg in 100 g of fresh spinach), representing 76.5% of the recommended daily allowance for adults. By measuring the intermediates of folate biosynthesis, we revealed that phenylalanine activated folate biosynthesis in spinach by increasing the levels of pteridine and p-aminobenzoic acid. Our approach is a promising and practical approach to cultivate nutrient-enriched vegetables.

  9. Structural analysis of Gossypium hirsutum fibers grown under greenhouse and hydroponic conditions.

    Science.gov (United States)

    Natalio, Filipe; Tahir, Muhammad Nawaz; Friedrich, Norman; Köck, Margret; Fritz-Popovski, Gerhard; Paris, Oskar; Paschke, Reinhard

    2016-06-01

    Cotton is the one of the world's most important crops. Like any other crop, cotton growth/development and fiber quality is highly dependent on environmental factors. Increasing global weather instability has been negatively impacting its economy. Cotton is a crop that exerts an intensive pressure over natural resources (land and water) and demands an overuse of pesticides. Thus, the search for alternative cotton culture methods that are pesticide-free (biocotton) and enable customized standard fiber quality should be encouraged. Here we describe a culture of Gossypium hirsutum ("Upland" Cotton) utilizing a greenhouse and hydroponics in which the fibers are morphological similar to conventional cultures and structurally fit into the classical two-phase cellulose I model with 4.19nm crystalline domains surrounded by amorphous regions. These fibers exhibit a single crystalline form of cellulose I-Iß, monoclinic unit cell. Fiber quality bulk analysis shows an improved length, strength, whiteness when compared with soil-based cultures. Finally, we show that our fibers can be spun, used for production of non-woven fabrics and indigo-vat stained demonstrating its potential in industrial and commercial applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Water use efficiency of coriander produced in a low-cost hydroponic system

    Directory of Open Access Journals (Sweden)

    José A. Santos Júnior

    2015-12-01

    Full Text Available ABSTRACT The increase of water use efficiency in crop production is a clear need in areas with restricted access to this resource and, in these cases, the adoption of forms of cultivation contextualized to local conditions are essential. Thus, the implications of the variation in the amount of seeds per cell (0.5, 1.0, 1.5 and 2.0 g and spacing between cells (7.0, 10.0 and 15.0 cm on variables related to consumption and water use efficiency for the production of coriander (cv. Tabocas in a low-cost hydroponic system, an alternative for semiarid regions, were evaluated. A completely randomized experimental design, analysed in 4 x 3 factorial scheme with three replicates, was adopted, and the data were subjected to analysis of variance at 0.05 probability level. It was found that the reduction in the spacing between cells has a better cost-benefit ratio with respect to water consumption, biomass produced and cost of seeds. Therefore, it is recommended the adoption of a spacing of 7.0 cm between cells and the use of 1.0 g seeds per cell; this configuration promoted efficiency of 81.59 g L-1 in shoot green mass production and total mass of 62.4 g coriander bunches.

  11. The Effect of Anaerobic and Aerobic Fish Sludge Supernatant on Hydroponic Lettuce

    Directory of Open Access Journals (Sweden)

    Simon Goddek

    2016-06-01

    Full Text Available The mobilization of nutrients from fish sludge (i.e., feces and uneaten feed plays a key role in optimizing the resource utilization and thus in improving the sustainability of aquaponic systems. While several studies have documented the aerobic and anaerobic digestion performance of aquaculture sludge, the impact of the digestate on plant growth has yet to be understood. The present study examines the impact of either an aerobic or an anaerobic digestion effluent on lettuce plant growth, by enriching a mixture of aquaculture and tap water with supernatants from both aerobic and anaerobic batch reactors. The lettuce plants grown in the hydroponic system supplied with supernatant from an anaerobic reactor had significantly better performance with respect to weight gain than both, those in the system where supernatant from the aerobic reactor was added, as well as the control system. It can be hypothesized that this effect was caused by the presence of NH4+ as well as dissolved organic matter, plant growth promoting rhizobacteria and fungi, and humic acid, which are predominantly present in anaerobic effluents. This study should therefore be of value to researchers and practitioners wishing to further develop sludge remineralization in aquaponic systems.

  12. Study on recycling of waste rubbers as medium components for hydroponic culture of rose

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin-Kuk; Lee, Hyung-Gyu; Jeong, Byoung-Ryong; Hwang, Seung-Jae [Gyeongsang National Univ., Kumi(Korea)

    2000-06-30

    Recently, the efficient disposal of the waste rubber is necessary due to increasing amount of the waste rubbers. In this paper, method of recycling waste rubbers as components of medium for hydroponic rose culture was suggested. We investigated growth of rose, and macro- and micro-elements, pH and EC of the media amended with waste rubber. In the beginning of culture, stress symptoms such as thin brittle stem and incipient wilting were observed, but they disappeared in a few weeks. Concentration of Zn{sup 2+} in media at flowering increased in proportion to contents of waste tire in the media. pH of media at flowering were in the range of 5.70 to 6.35. Rose growth in all media, except in waste rock wool mixed with EPDM powder at 9:3 ratio, was normal and equivalent to the control in terms of stem length, number of stems harvested and fresh weight. (author). 10 refs., 5 tabs., 4 figs.

  13. Accumulation and localization of cadmium in Echinochloa polystachya grown within a hydroponic system

    Energy Technology Data Exchange (ETDEWEB)

    Solis-Dominguez, F.A. [CINVESTAV-IPN, Dpto. de Biotecnologia y Bioingenieria, Av. Instituto Politecnico Nacional No. 2508, 07360 Mexico, D.F. (Mexico); Gonzalez-Chavez, M.C. [Colegio de Postgraduados en Ciencias Agricolas, IRENAT, Carr. Mex-Texcoco km 36.5, Montecillo, Estado de Mexico 56230 (Mexico); Carrillo-Gonzalez, R. [Colegio de Postgraduados en Ciencias Agricolas, IRENAT, Carr. Mex-Texcoco km 36.5, Montecillo, Estado de Mexico 56230 (Mexico); Rodriguez-Vazquez, R. [CINVESTAV-IPN, Dpto. de Biotecnologia y Bioingenieria, Av. Instituto Politecnico Nacional No. 2508, 07360 Mexico, D.F. (Mexico)]. E-mail: rerovaz@yahoo.com.mx

    2007-03-22

    Phytoremediation is a technology for extracting or inactivating pollutants. Echinochloa polystachya [(H.B.K.) Hitchcock] (Poaceae) is a fast-growing perennial grass that is common in tropical areas and is often found in oil-polluted soils that contain high concentrations of heavy metals. However, its tolerance to heavy metals, and its ability to accumulate them, has yet to be investigated. Here we test the hypothesis that E. polystachya is able to accumulate high concentrations of cadmium (Cd). Plants were grown hydroponically with different levels of Cd{sup 2+} (0, 0.25, 1, 2, 10, 50, and 100 mg L{sup -1}), and were found to be tolerant to Cd{sup 2+} at all levels. No metal-toxicity symptoms were observed at any Cd{sup 2+} level. Root and leaves Cd concentrations were 299 {+-} 13.93 and 233 {+-} 8.77 mg kg{sup -1} (on a dry weight basis), respectively. Scanning electron microscopy showed the inclusion of Cd within the xylem; this result was confirmed by energy dispersive X-ray spectrometry. Leaf tissues also accumulated Cd, especially within the bulliform cells of the epidermis. We conclude that E. polystachya is a hyperaccumulator of Cd. While data for other metals are not yet available, E. polystachya shows promise in the phytoextraction of Cd from polluted tropical sites.

  14. Composition of hydroponic lettuce: effect of time of day, plant size, and season.

    Science.gov (United States)

    Gent, Martin P N

    2012-02-01

    The diurnal variation of nitrate and sugars in leafy green vegetables may vary with plant size or the ability of plants to buffer the uptake, synthesis, and use of metabolites. Bibb lettuce was grown in hydroponics in a greenhouse and sampled at 3 h intervals throughout one day in August 2007 and another day in November 2008 to determine fresh weight, dry matter, and concentration of nitrate and sugars. Plantings differing in size and age were sampled on each date. The dry/fresh weight ratio increased during the daylight period. This increase was greater for small compared to large plants. On a fresh weight basis, tissue nitrate of small plants was only half that of larger plants. The variation in concentration with time was much less for nitrate than for soluble sugars. Soluble sugars were similar for all plant sizes early in the day, but they increased far more for small compared to large plants in the long days of summer. The greatest yield on a fresh weight basis was obtained by harvesting lettuce at dawn. Although dry matter or sugar content increased later in the day, there is no commercial benefit to delaying harvest as consumers do not buy lettuce for these attributes. Copyright © 2011 Society of Chemical Industry.

  15. Hydroponic uptake of atrazine and lambda-cyhalothrin in Juncus effusus and Ludwigia peploides.

    Science.gov (United States)

    Bouldin, J L; Farris, J L; Moore, M T; Smith, S; Cooper, C M

    2006-11-01

    Phytoremediation encompasses an array of plant-associated processes known to mitigate contaminants from soil, sediment, and water. Modification of pesticides associated with agricultural runoff includes processes directly associated with aquatic macrophytes in addition to changes in soil geochemistry and associated rhizospheric degradation. Remediation attributes of two vegetative species common to agricultural drainages in the Mississippi Delta, USA, were assessed using atrazine and lambda-cyhalothrin. Concentrations used in 8-d hydroponic