WorldWideScience

Sample records for hydrophilic disulfonated polyarylene

  1. High Temperature, Low Relative Humidity, Polymer-type Membranes Based on Disulfonated Poly(arylene ether) Block and Random Copolymers Optionally Incorporating Protonic Conducting Layered Water insoluble Zirconium Fillers

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, James E.; Baird, Donald G.

    2010-06-03

    Our research group has been engaged in the past few years in the synthesis of biphenol based partially disulfonated poly(arylene ether sulfone) random copolymers as potential PEMs. This series of polymers are named as BPSH-xx, where BP stands for biphenol, S stands for sulfonated, H stands for acidified and xx represents the degree of disulfonation. All of these sulfonated copolymers phase separate to form nano scale hydrophilic and hydrophobic morphological domains. The hydrophilic phase containing the sulfonic acid moieties causes the copolymer to absorb water. Water confined in hydrophilic pores in concert with the sulfonic acid groups serve the critical function of proton (ion) conduction and water transport in these systems. Both Nafion and BPSH show high proton conductivity at fully hydrated conditions. However proton transport is especially limited at low hydration level for the BPSH random copolymer. It has been observed that the diffusion coefficients of both water and protons change with the water content of the pore. This change in proton and water transport mechanisms with hydration level has been attributed to the solvation of the acid groups and the amount of bound and bulk-like water within a pore. At low hydration levels most of the water is tightly associated with sulfonic groups and has a low diffusion coefficient. This tends to encourage isolated domain morphology. Thus, although there may be significant concentrations of protons, the transport is limited by the discontinuous morphological structure. Hence the challenge lies in how to modify the chemistry of the polymers to obtain significant protonic conductivity at low hydration levels. This may be possible if one can alter the chemical structure to synthesize nanophase separated ion containing block copolymers. Unlike the BPSH copolymers, where the sulfonic acid groups are randomly distributed along the chain, the multiblock copolymers will feature an ordered sequence of hydrophilic and

  2. High performance disulfonated poly(arylene sulfone) co- and terpolymers for proton exchange membranes for fuel cell and transducer applications: Synthesis, characterization and fabrication of ion conducting membranes

    Science.gov (United States)

    Wiles, Kenton Broyhill

    2005-07-01

    The results described in this dissertation have demonstrated several alternative proton exchange membranes (PEM) for hydrogen-air and direct methanol fuel cells (DMFC) that perform as well or better than the state of the art Nafion perfluorosulfonic acid membrane. Direct aromatic nucleophilic substitution polycondensations of disodium 3,3'-disulfonate-4,4 '-difluorodiphenylsulfone (SDFDPS), 4,4'-difluorodiphenylsulfone (DFDPS) (or their chlorinated analogs, SDCDPS, DCDPS) and 4,4' -thiobisbenzenethiol (TBBT) in the presence of potassium carbonate were investigated. Electrophilic aromatic substitution was employed to synthesize the SDFDPS or SDCDPS comonomers in high yields and purity. High molecular weight disulfonated poly(arylene thioether sulfone) (PATS) copolymers were easily obtained using the SDFDPS monomers, but in general, slower rates and a lower molecular weight copolymer was obtained using the analogous chlorinated monomers. Tough and ductile membranes were solution cast from N,N-dimethylacetamide for both series of copolymers. The degrees of disulfonation (20--50%, PATS 20--50) were controlled by varying the ratio of disulfonated to unsulfonated comonomers. Composite membranes were prepared by homogeneous solution blending the copolymers with phosphotungstic acid (PTA) in dimethylacetamide (DMAc). The composite PATS membranes exhibited moderate PTA molecule water extraction after acidification treatments performed at either room or boiling temperatures. The membranes containing HPA showed improved conductivity at high temperatures (120°C) and low relative humidities when compared to the pure copolymers. Molecular weight of the copolymers plays a critical role in the overall copolymer physical behavior. It is well known that molecular weight has an enormous impact on practically all of the physical properties of polymeric systems. This dissertation discusses the influence of molecular weight on the characteristics of a specific family of PEM PATS

  3. Hyperbranched Polyarylenes from Copolycyclotrimerization

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    High molecular weight hyperbranched polyarylenes were synthesized in high yields by one-pot copolycyclotrimerizations of 2,5-diethynylthiophene (1), 4,4'-biphenyldiyne (2) and 2,7-diethynylfluorenes (3) with 1-heptyne (4) and 1-dodecyne (5) using TaCl5*Ph4Sn catalysts in toluene.The structures and properties of the polymers were characterized and evaluated by IR,NMR,TGA,UV,fluorescence and optical limiting analyses.All the polymers possess high thermal stability and emit strong blue light upon UV irradiation, whose intensities are higher than that from poly(1-phenyl-1-octyne) (PPO),a well-known highly luminescent disubstituted polyacetylene.Little aggregation-induced red shift in the photoluminescence is observed in the thin films of the polymers.

  4. Polymer Electrolyte Membrane Fuel Cell Performance of a Sulfonated Poly(Arylene Ether Benzimidazole Copolymer Membrane

    Directory of Open Access Journals (Sweden)

    Hasan Ferdi Gerçel

    2016-01-01

    Full Text Available Disodium-3,3′-disulfonate-4,4′-dichlorodiphenylsulfone (SDCDPS and 5,5′-bis[2-(4-hydroxyphenylbenzimidazole] (HPBI monomers were synthesized. Binding these monomers via nucleophilic aromatic polycondensation reaction, a sulfonated poly(arylene ether benzimidazole copolymer was synthesized. Structures of monomers and copolymer were confirmed by proton nuclear magnetic resonance spectroscopy (1H NMR and Fourier transform infrared (FTIR spectroscopy analyses. Proton exchange membrane was prepared by dissolving copolymer in dimethylacetamide (DMAc and casting onto a glass plate. Copolymer membrane was doped with sulfuric acid to ensure proton exchange character. Single cell performance of the copolymer membrane was tested in a polymer electrolyte membrane fuel cell test station. The highest power density of the membrane was measured as 23.7 mW cm−2 at 80°C. Thermogravimetric analysis (TGA showed that as the degree of disulfonation is increased thermal stability of the copolymer is increased.

  5. Pendant dual sulfonated poly(arylene ether ketone) proton exchange membranes for fuel cell application

    Science.gov (United States)

    Nguyen, Minh Dat Thinh; Yang, Sungwoo; Kim, Dukjoon

    2016-10-01

    Poly(arylene ether ketone) (PAEK) possessing carboxylic groups at the pendant position is synthesized, and the substitution degree of pendant carboxylic groups is controlled by adjusting the ratio of 4,4-bis(4-hydroxyphenyl)valeric acid and 2,2-bis(4-hydroxyphenyl)propane. Dual sulfonated 3,3-diphenylpropylamine (SDPA) is grafted onto PAEK as a proton-conducting moiety via the amidation reaction with carboxylic groups. The transparent and flexible membranes with different degrees of sulfonation are fabricated so that we can test and compare their structure and properties with a commercial Nafion® 115 membrane for PEMFC applications. All prepared PAEK-SDPA membranes exhibit good oxidative and hydrolytic stability from Fenton's and high temperature water immersion test. SAXS analysis illustrates an excellent phase separation between the hydrophobic backbone and hydrophilic pendant groups, resulting in big ionic clusters. The proton conductivity was measured at different relative humidity, and its behavior was analyzed by hydration number of the membrane. Among a series of membranes, some samples (including B20V80-SDPA) show not only higher proton conductivity, but also higher integrated cell performance than those of Nafion® 115 at 100% relative humidity, and thus we expect these to be good candidate membranes for proton exchange membrane fuel cells (PEMFCs).

  6. A facile synthesis of highly stable multiblock poly(arylene ether)s based alkaline membranes for fuel cells

    Science.gov (United States)

    Jasti, Amaranadh; Shahi, Vinod K.

    2014-12-01

    Herein, we are disclosing simple route for the preparation of alkaline membranes (AMs) based on aminated multiblock poly(arylene ether)s (AMPEs) synthesized by nucleophilic substitution-poly condensation followed by quaternization and alkalization reactions. In this procedure, four quaternary ammonium groups are successfully introduced without use of carcinogenic reagents such as chloromethylmethyl ether (CMME). Hydrophilic/hydrophobic phase separation is responsible for their high hydroxide conductivity (∼150 mS cm-1 at 80 °C) due to development of interconnected ion transport pathway. AMs are exhibiting good alkaline stability due to the presence of two vicinal quaternary ammonium groups and avoid degradation such as Sommelet-Hauser rearrangement and Hofmann elimination. Vicinal quaternary ammonium groups also resist nucleophilic (OH-) attack and suppress the Stevens rearrangement as well as SN2 substitution reaction due to stearic hindrance. Optimized AM (AMPE-M20N15 (55% DCM)) exhibits about 0.95 V open circuit voltage (OCV) and 48.8 mW cm-2 power density at 65 °C in alkaline direct methanol fuel cell (ADMFC) operation. These results suggest promising begin for the preparation of stable and conductive AMs for ADMFC applications and useful for developing hydroxide conductive materials.

  7. Bis(4-carbamoylpiperidinium biphenyl-4,4′-disulfonate

    Directory of Open Access Journals (Sweden)

    Graham Smith

    2010-12-01

    Full Text Available In the title isonipecotamide salt 2C6H13N2O+·C12H8O6S22−, the asymmetric unit comprises one biphenyl-4,4′-disulfonate dianion which lies across a crystallographic inversion centre and another in a general position [dihedral angle between the two phenyl rings is 37.1 (1°], together with three isonipecotamide cations. Two of these cations give a cyclic homomeric amide–amide dimer interaction [graph set R22(8], the other giving a similar dimeric interaction but across an inversion centre, both dimers then forming lateral cyclic R42(8 pyrimidinium–amide N—H...O interactions. These units are linked both laterally and longitudinally to the sulfonate groups of the dianions through piperidinium N—H...O hydrogen bonds, giving a three-dimensional framework structure.

  8. Photodynamic inactivation of prions by disulfonated hydroxyaluminium phthalocyanine.

    Science.gov (United States)

    Janouskova, Olga; Rakusan, Jan; Karaskova, Marie; Holada, Karel

    2012-11-01

    Sulfonated phthalocyanines (Pcs) are cyclic tetrapyrroles that constitute a group of photosensitizers. In the presence of visible light and diatomic oxygen, Pcs produce singlet oxygen and other reactive oxygen species that have known degradation effects on lipids, proteins and/or nucleic acids. Pcs have been used successfully in the treatment of bacterial, yeast and fungal infections, but their use in the photodynamic inactivation of prions has never been reported. Here, we evaluated the photodynamic activity of the disodium salt of disulfonated hydroxyaluminium phthalocyanine (PcDS) against mouse-adapted scrapie RML prions in vitro. PcDS treatment of RML brain homogenate resulted in a time- and dose-dependent inactivation of prions. The photodynamic potential of Pcs offers a new way to inactivate prions using biodegradable compounds at room temperature and normal pressure, which could be useful for treating thermolabile materials and liquids.

  9. Chemistry and properties of poly(arylene ether 1,3,4-oxadiazole)s and poly(arylene ether 1,2,4-triazole)s

    Science.gov (United States)

    Connell, J. W.; Hergenrother, P. M.; Wolf, P.

    1992-01-01

    Poly(arylene ether)s containing l,3,4-oxadiazole and 1,2,4-triazole units were prepared by the aromatic nucleophilic displacement reaction of bisphenol oxadiazole and bisphenol triazole compounds with activated aromatic dihalides. The polymers exhibited glass transition temperatures (Tg) ranging from 182 to 242 C, and several polymers exhibited melting transitions (Tm) ranging from 265 to 390 C. Inherent viscosities ranged from 1.02 to 3.40 dl/g, indicating relatively high molecular weights. Thin films exhibited tensile strengths, moduli, and elongations at 23 C of 90-110 MPa, 2.7-3.6 GPa, and 4-7 percent, respectively. Titanium-to-titanium tensile shear specimens of a poly(arylene ether 1,3,4-oxadiazole) exhibited tensile shear strengths at 23 and 150 C of 22.1 and 17.9 MPa, respectively.

  10. High temperature fuel cell membranes based on poly(arylene ether)s containing benzimidazole groups

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Sik [Los Alamos National Laboratory; Kim, Yu Seung [Los Alamos National Laboratory; Lee, Kwan - Soo [Los Alamos National Laboratory; Boncella, James M [Los Alamos National Laboratory; Kuiper, David [Los Alamos National Laboratory; Guiver, Michael D [CANADA

    2009-01-01

    Development of new high-performance polymer membranes that retain their proton conductivity under low humidity conditions is one of the most critical requirements to commercialize PEMFC systems. Current sulfonated proton exchange membranes acquire proton conductivity by water that solvates ion and carries proton. Consequently, a loss of water under low RH conditions immediately results in a loss of proton conductivity. One approach to maintain proton conductivity under low RH conditions is to replace water with a less volatile proton solvent. Kreuer has pointed out the possibility to develop fully polymeric proton-conducting membranes based on nitrogen-containing heterocycles such as imidazole, benzimidazole, and pyrazole. We have attempted to blend those less volatile proton solvent with sulfonated copolymers such as polystyrene sulfonic acid, Nafion, poly(arylene ether sulfone, BPSH-xx). [Ref. DOE review meeting 2007 and 2008] However, we observed that imidazole was slowly sublimated out as temperature and humidity increases which could cause poisoning of electro-catalyst, corrosion and losing conductivity. In this presentation, we report the synthesis of novel poly(arylene ether sulfone)s containing benzimidazole groups These benzimidazole containing polymer was blended with sulfonated poly(arylene ether sulfone). In the blend system, benzimidazole group attached to the polysulfone acts as a medium through the basic nitrogen for transfer of protons between the sulfonic acid groups. Proton conductivity of the blend membranes was investigated as a function of water content at 80 C and compared the performance with water based proton conduction system.

  11. Synthesis, Structure and Properties of Poly(arylene imino)s

    Institute of Scientific and Technical Information of China (English)

    ZhANG Lin; CHANG Guanjun

    2009-01-01

    A series of poly(arylene imino)s (PAI) with high molecular weights and small polydispersity indices have been synthesized by the condensation polymerization of different diiodobenzenes with aromatic primary diiminos via two different methods. Their structures were characterized by means of FT-IR, 1H NMR spectroscopy and elemen-tal analysis. DSC and TG measurements show that the polymers possess high glass transition temperatures (Tg>150 ℃) and good thermal stability with high decomposition temperatures (TD>400 ℃). These novel polymers also exhibit good solubility in organic solvents.

  12. Synthesis and chemosensing properties of cinnoline-containing poly(arylene ethynylenes

    Directory of Open Access Journals (Sweden)

    Natalia A. Danilkina

    2015-03-01

    Full Text Available Novel poly(arylene ethynylenes comprising a cinnoline core were prepared in high yields via a three-step methodology. A Richter-type cyclization of 2-ethynyl- and 2-(buta-1,3-diynylaryltriazenes was used for cinnoline ring formation, followed by a Sonogashira coupling for the introduction of trimethylsilylethynyl moieties and a sila-Sonogashira coupling as the polycondensation technique. The fluorescence of the cinnoline-containing polymers in THF was highly sensitive to quenching by Pd2+ ions.

  13. Crosslinked polyarylene ether nitrile film as flexible dielectric materials with ultrahigh thermal stability

    Science.gov (United States)

    Yang, Ruiqi; Wei, Renbo; Li, Kui; Tong, Lifen; Jia, Kun; Liu, Xiaobo

    2016-11-01

    Dielectric film with ultrahigh thermal stability based on crosslinked polyarylene ether nitrile is prepared and characterized. The film is obtained by solution-casting of polyarylene ether nitrile terminated phthalonitrile (PEN-Ph) combined with post self-crosslinking at high temperature. The film shows a 5% decomposition temperature over 520 °C and a glass transition temperature (Tg) around 386 °C. Stable dielectric constant and low dielectric loss are observed for this film in the frequency range of 100–200 kHz and in the temperature range of 25–300 °C. The temperature coefficient of dielectric constant is less than 0.001 °C‑1 even at 400 °C. By cycling heating and cooling up to ten times or heating at 300 °C for 12 h, the film shows good reversibility and robustness of the dielectric properties. This crosslinked PEN film will be a potential candidate as high performance film capacitor electronic devices materials used at high temperature.

  14. Preparation of Anion Exchange Membrane Based on Imidazolium Functionalized Poly(arylene ether ketone)

    Institute of Scientific and Technical Information of China (English)

    ZHOU Hao; ZHANG Na; MA Wen-jia; ZHAO Cheng-ji; NA Hui

    2013-01-01

    The authors presented a novel synthetic route for the imidazolium functionalized poly(arylene ether ketone)s,derived from an engineering plastics polymer,a poly(arylene ether ketone) with 3,3',5,5'-tetramethyl-4,4'-dihydroxybiphenyl moiety(PAEK-TM).The preparation of anion exchange membranes comprised converting benzylic methyl groups to bromomethyl groups by a radical reaction,followed by the functionalization of bromomethylated PAEK with alkyl imidazoles,i.e.,methyl,butyl or vinyl imidazole.The structure of imidazolium functionalized PAEK was proved by 1H NMR spectra.A class of flexible and tough membranes was then achieved by subsequent film-forming and anion exchange processes.The water uptake and hydroxide conductivities of membranes are comparable or superior to those of quaternary ammonium(QA) anion exchange membranes.This work demonstrated a new route for non-QA anion exchange membrane design,avoiding the chloromethylation reagent and precisely controlling the degree and location of imidazolium groups.

  15. Bis(1H-imidazol-3-ium naphthalene-1,5-disulfonate

    Directory of Open Access Journals (Sweden)

    Bin Wei

    2012-05-01

    Full Text Available The asymmetric unit of the title organic salt, 2C3H5N2+·C10H6O6S22−, consists of an imidazolium cation and half a naphthalene-1,5-disulfonate dianion, completed to the full dianion through an inversion center. N—H...S and N—H...O hydrogen bonds link cations and anions in the crystal, forming a chain propagating along [101].

  16. Chlorine resistant desalination membranes based on directly sulfonated poly(arylene ether sulfone) copolymers

    Science.gov (United States)

    McGrath, James E.; Park, Ho Bum; Freeman, Benny D.

    2011-10-04

    The present invention provides a membrane, kit, and method of making a hydrophilic-hydrophobic random copolymer membrane. The hydrophilic-hydrophobic random copolymer membrane includes a hydrophilic-hydrophobic random copolymer. The hydrophilic-hydrophobic random copolymer includes one or more hydrophilic monomers having a sulfonated polyarylsulfone monomer and a second monomer and one or more hydrophobic monomers having a non-sulfonated third monomer and a fourth monomer. The sulfonated polyarylsulfone monomer introduces a sulfonate into the hydrophilic-hydrophobic random copolymer prior to polymerization.

  17. Free Volume in Glassy Poly(arylene Ether Ketone)s

    Science.gov (United States)

    Hinkley, J. A.; Eftekhari, A.; Crook, R. A.; Jensen, B. J.; Singh, J. J.

    1996-01-01

    Amorphous polyarylene ether ketones were examined in the glassy state by positron annihilation lifetime spectroscopy ( PALS ) and in the melt by standard rheological techniques. Specimens were well-characterized fractions of two isomeric structures. PALS clearly shows that the polymer with meta linkages in its backbone contains larger voids (greater than 0.25 nm radius). Thus despite their similar bulk densities, the two materials must pack very differently on a local scale. On the other hand, the free volumes inferred from the WLF treatment of melt viscosity data are practically identical in both materials ca. 4% at T(sub g). The comparison between techniques sheds some light on the distribution of free volume.

  18. Controlled synthesis of silver nanostructures stabilized by fluorescent polyarylene ether nitrile

    Science.gov (United States)

    Jia, Kun; Shou, Hongguo; Wang, Pan; Zhou, Xuefei; Liu, Xiaobo

    2016-07-01

    In this work, the intrinsically fluorescent polyarylene ether nitrile (PEN) was explored to realize the controlled synthesis of fluorescent silver nanostructures with different morphology for the first time. Specifically, it was found that silver nitrate (AgNO3) can be effectively reduced to silver nanoparticles using PEN as both reducing and surface capping agents in N, N-dimethylformamide (DMF). More interestingly, the morphology of obtained fluorescent silver nanostructures can be tuned from nanospheres to nanorods by simple variation of reaction time at 130 °C using a relative PEN:AgNO3 molar concentration ratio of 1:8. Meanwhile, the obtained Ag nanostructures exhibited both localized surface plasmon resonance (LSPR) band and fluorescent emission around 420 nm, which would find potential applications in biochemical sensing and optical devices fields.

  19. SYNTHESIS AND CHARACTERISTICS OF POLY(ARYLENE ETHER DIKETONE)S

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    Poly(arylene ether diketone)s were prepared by the aromatic nucleophilic displacement reaction of 4,4'-difluorobenzil with different bisphenols in the presence of anhydrous potassium carbonate in diphenylsulfone at elevated temperature. The polymers obtained had inherent viscosity of 0.51 ~ 0.63 dL/g, and exhibited glass transition temperature ranging from 136 ~ 217℃ mainly depending on the bisphenols used in the polymer synthesis. Thermogravimetry of these polymers showed excellent thermal stability, indicating that 10% weight losses of the polymers were observed in the range above 428℃ and 438℃ in air and nitrogen, respectively. The mechanical properties of these polymers were also described and the permeability of five polymers for H2, O2 and N2 was determined at 30℃.

  20. Improved Performance of Sulfonated Polyarylene Ethers for Proton Exchange Membrane Fuel Cell

    Institute of Scientific and Technical Information of China (English)

    D. Xing; J. Kerres; F. Sch(o)nberger

    2005-01-01

    @@ 1Introduction The proton exchange membrane (PEM) is one of key components in fuel cell system. Its properties are very important in determining PEMFC performance. The membranes presently used in fuel cell are perfluorosulfonic polymers, such as Nafion(R) from Dupont. Although they have high proton conductivity and excellent chemical stability, their too high production cast and methanol permeability lead to failure of fuel cell application. Therefore, various partially fluorinated and non-fluorinated polymer electrolytes are under development for PEMFC application since one decade. In the middle of non-fluorinated polymer electrolytes, sulfonated poly(arylene ether)s display high thermal stability, good mechanical properties and exceptional resistance to oxidation and acid catalyzed hydrolysis. They have been regarded as well-suited proton exchange membrane candidates for fuel cells.

  1. Cyclic Oligomers of Phenolphthalein Polyarylene Ether Sulfone (Ketone):Preparation Through Cyclo-depolymerisation of Corresponding Polymers

    Institute of Scientific and Technical Information of China (English)

    Hong Hua WANG; Jin Ying DING; Tian Lu CHEN

    2004-01-01

    Cyclic oligomers of phenolphthalein polyarylene ether sulfone(ketone) were prepared through cyclo-depolymerisation of corresponding polymers using CsF as the catalyst in dipolar aprotic solvent DMAc and DMF, and a family of macrocycles containing from dimer up to at least heptamer were confirmed by GPC, HPLC and MALDI-TOF-MS. The yields of cyclics get as high as 86.3% and 87.9% respectively.

  2. Hydrophilic Carotenoids: Recent Progress

    Directory of Open Access Journals (Sweden)

    Attila Agócs

    2012-04-01

    Full Text Available Carotenoids are substantially hydrophobic antioxidants. Hydrophobicity is this context is rather a disadvantage, because their utilization in medicine as antioxidants or in food chemistry as colorants would require some water dispersibility for their effective uptake or use in many other ways. In the past 15 years several attempts were made to synthetize partially hydrophilic carotenoids. This review compiles the recently synthetized hydrophilic carotenoid derivatives.

  3. Bis(2-methyl-1H-imidazol-3-ium naphthalene-1,5-disulfonate dihydrate

    Directory of Open Access Journals (Sweden)

    Yu-feng Wang

    2012-06-01

    Full Text Available The asymmetric unit of the title organic salt, 2C4H7N2+·C10H6O6S22−·2H2O, consists of a 2-methylimidazolium cation, a half of a naphthalene-1,5-disulfonate anion, which lies about a center of symmetry, and a water molecule. In the crystal, N—H...O and O—H...O hydrogen bonds link the cations, anions and water molecules into the layers parallel to (111.

  4. trans-Tetraaquabis(nicotinamide-κNcadmium(II biphenyl-4,4′-disulfonate

    Directory of Open Access Journals (Sweden)

    Changlun Shao

    2008-02-01

    Full Text Available In the title compound, [Cd(C6H6N2O2(H2O4](C10H8O6S2, the CdII ion is located on a crystallographic inversion centre. An octahedral coordination geometry is defined by four water molecules in one plane, and two trans N-atom donors of the nicotinamide ligands. The biphenyl-4,4′-disulfonate anion also lies on a crystallographic inversion centre. In the crystal structure, the complex cations are connected to the counter-anions via N—H...O and O—H...O hydrogen bonds, forming a three-dimensional network.

  5. CTAB induced emission from water soluble polyarylene ether nitrile carboxylate and selective sensing of Fe (III) ions

    Science.gov (United States)

    Wei, Shiliang; Jia, Kun; Shou, Hongguo; Zhou, Xuefei; Wang, Pan; Liu, Xiaobo

    2017-06-01

    Polyarylene ether nitrile (PEN) is traditionally used as high performance thermoplastics in various advanced engineering materials fields. However, the preparation of optically active PEN based materials, especially in aqueous solution, is still a great challenge. In this work, the side chain carboxylated PEN can be readily dissolved in alkaline solution but showing strongly quenched luminescence. Fortunately, the cationic surfactant of cetyltrimethylammonium bromide (CTAB) was able to recover the fluorescence emission of water soluble PEN, which can be subsequently quenched by Fe3+ ions, leading to the selective determination of Fe3+ ions in aqueous solution.

  6. Hydrophilic nanoporous materials

    DEFF Research Database (Denmark)

    2010-01-01

    The present application discloses a method for preparing and rendering hydrophilic a nanoporous material of a polymer matrix which has a porosity of 0.1-90 percent (v/v), such that the ratio between the final water absorption (percent (w/w)) and the porosity (percent (v/v)) is at least 0.05, the ......The present application discloses a method for preparing and rendering hydrophilic a nanoporous material of a polymer matrix which has a porosity of 0.1-90 percent (v/v), such that the ratio between the final water absorption (percent (w/w)) and the porosity (percent (v/v)) is at least 0.......05, the method comprising the steps of: (a) preparing a precursor material comprising at least one polymeric component and having a first phase and a second phase; (b) removal of at least a part of the first phase of the precursor material prepared in step (a) so as to leave behind a nanoporous material...... of the polymer matrix; (c) irradiating at least a part of said nanoporous material with light of a wave length of in the range of 250-400 nm (or 200-700 nm) in the presence of oxygen and/or ozone. Corresponding hydrophilic nanoporous materials are also disclosed. L...

  7. Dual-mode fluorescence switching induced by self-assembly of well-defined poly(arylene ether sulfone)s containing pyrene and amide moieties.

    Science.gov (United States)

    Park, Jeyoung; Kim, Jisung; Seo, Myungeun; Lee, Jinhee; Kim, Sang Youl

    2012-11-04

    A new class of fluorescent organogelators, pyrene-containing poly(arylene ether sulfone)s, showed two fluorescence switching modes in different gelation solvents. The THF gel exhibited excimer emission due to dimerization of the pyrene groups. In contrast, excimer emission was quenched after gelation in MC because of stacking among the pyrene groups.

  8. Synthesis and characterization of sulfonated cardo poly(arylene ether sulfone)s for fuel cell proton exchange membrane application

    Energy Technology Data Exchange (ETDEWEB)

    Islam, M.M.; Jang, H.H.; Lim, Y.D.; Seo, D.W.; Kim, W.G. [Department of Applied Chemistry, Konkuk University, Chungju, Chungbuk (Korea, Republic of); Kim, T.H.; Hong, Y.T. [Energy Material Research Center, Korea Research Institute of Chemical Technology, Daejeon (Korea, Republic of); Kim, D.M. [Material Engineering and Science, Hongik Univ, Jochiwon-eup, Yeongi-gun, Chungnam (Korea, Republic of)

    2012-12-15

    Sulfonated cardo poly(arylene ether sulfone)s (SPPA-PES) with various degrees of sulfonation (DS) were prepared by post-sulfonation of synthesized phenolphthalein anilide (PPA; N-phenyl-3,3'-bis(4-hydroxyphenyl)-1-isobenzopyrolidone) poly(arylene ether sulfone)s (PPA-PES) by using concentrated sulfuric acid. PPA-PES copolymers were synthesized by direct polycondensation of PPA with bis-(4-fluorophenyl)-sulfone and 4,4'-sulfonyldiphenol. The DS was varied with different mole ratios of PPA (24, 30, 40, 50 mol.%) in the polymer. The structure of the resulting SPPA-PES copolymers and the different contents of the sulfonated unit were studied by Fourier transform infrared (FT-IR) spectroscopy, {sup 1}H NMR spectroscopy, and thermogravimetric analysis (TGA). Sorption experiments were conducted to observe the interaction of sulfonated polymer with water. The ion exchange capacity (IEC) and proton conductivity of SPPA-PES were evaluated according to the increase of DS. The water uptake (WU) of the resulting SPPA-PES membranes was in the range of 20-72%, compared with 28% for Nafion 211 registered. The SPPA-PES membranes showed proton conductivities of 23-82 mS cm{sup -1}, compared with 194 mS cm{sup -1} for Nafion 211 registered, under 100% relative humidity (RH) at 80 C. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. 有机二磺酸镉配合物%Organic-Disulfonate Ligand Cadmium(Ⅱ) Coordination Compound

    Institute of Scientific and Technical Information of China (English)

    谢永荣; 叶琼

    2005-01-01

    The crystal structure of [Cd(DBDA)(phen)2(H2O)](H2O)2 (1) (DBDA=2,2'-dimethoxy-1,1'-binaphthylene6,6'-disulfonate, phen=1,10-phenanthroline) composes of a cadmium center which is surrounded by four nitrogenatoms from 1,10-phenathroline as well as two oxygen atoms from water and sulfonate group of DBDA that also participates in H-bonding interactions to form 3D network. CCDC: 277920.

  10. SYNTHESIS AND PROPERTIES OF SULFONATED POLY(ARYLENE ETHER) CONTAINING TRIPHENYL METHANE MOIETIES FROM ISOCYNATE MASKED BISPHENOL

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A novel sulfonated poly(arylene ether) containing triphenylmethane moieties was synthesized by the sulfonation of a designed parent polymer using chlorosulfonic acid as sulfonation agent. The sulfonation took place at the para position of the pendant phenyl rings because of the specially designed parent polymer. The position and degree of sulfonation were characterized by 1H-NMR and elemental analysis. The sulfonated polymers are highly soluble in common organic solvents, such as dimethylsulfoxide, N,N'-dimethylacetamide, dimethylformamide, ethylene glycol monomethyl ether, and can be readily cast into tough and smooth films from solutions. The films showed good thermal and hydrolysis stabilities. Moreover, Fenton's reagent test revealed that the films exhibited superior stability to oxidation. The proton conductivities of the films were comparable with Nation 117 under same conditions. The membrane electrode assembly (MEA) prepared with the asmade film (706 EW, 100 μm dry thickness) shows better cell performance than Nation 115-MEA in the whole current density range.

  11. Summary of GPC/DV results for space exposed poly(arylene ether phosphine oxide)s

    Science.gov (United States)

    Siochi, Emilie

    1995-01-01

    Gel Permeation Chromatography (GPC) was used to analyze poly(arylene ether phosphine oxide)s whose backbones were identical except for the ketone content and placement. These samples were exposed to low Earth orbit environment (predominantly atomic oxygen) on space shuttle flights. The materials and their unexposed controls were then characterized by GPC to investigate the effect of atomic oxygen on the molecular weight distributions. Analysis of the soluble portion of the samples revealed that there was significant loss of high molecular weight species. The presence of insoluble material also suggested that crosslinking was induced by the atomic oxygen exposure and that this very likely occurred at the high molecular weight portion of the molecular weight distribution.

  12. Synthesis and characterization of disulfonated thionines. Redox mediators for electrochemical energy conversion systems

    Energy Technology Data Exchange (ETDEWEB)

    Albery, W.J.; Bartlett, P.N.; Lithgow, A.M.; Riefkoehl, J.L.; Rodriguez, L.A.; Romero, L.; Souto, F.A.

    1985-03-08

    A general synthetic strategy for the preparation of disubstituted thionines is described. A new method based on the nucleophilic coupling of a p-phenylenediamine with the synthetic equivalent of an aniline has resulted in considerable improvement, regarding particularly the suppression of byproducts (15-20% yield). The relatively low yields obtained still with the new route are an indication that thionation and ring closure of diphenylamines are difficult when electron-withdrawing groups are present. The new route has enabled the unambiguous structural characterization of two isomeric DST's known as DST-1 and DST-2 to be 4,6- and 2,6-DST, respectively. The 470-MHz /sup 1/H NMR and the UV-vis spectra for thionine, 2,6-DST, and 4,6-DST are reported. The effect of the sulfonates in the visible region has been slightly hypsochromic, the lambda/sub max/ not deviating much from that of thionine. This shift has been accounted for in terms of Dewar's rules for substituent effects in the UV-vis spectrum of odd alternate aromatic hydrocarbons. The effect in diffusion and extinction coefficients has been negligible. Disulfonation has resulted in an increased solubility in 50 mM H/sub 2/SO/sub 4/ (about 10/sup -3/ M) and less tendency to form ground-state molecular aggregates, around 10/sup -4/ M, compared to thionine, 10/sup -4/ and 10/sup -6/ M, respectively. It is concluded that it is potentially possible to design dye derivatives with improved characteristics while maintaining the best existing basic features of thionine. Derivatization of thionine with anionic substituents has permitted its solubilization in positively functionalized surfactant assemblies. This is not possible with the parent cationic thionine and can provide much higher solubilities than those observed. 33 references, 1 figure, 2 tables.

  13. Organic-Disulfonate Ligand Manganese(Ⅱ) Coordination Compound%有机二磺酸锰配合物

    Institute of Scientific and Technical Information of China (English)

    宋玉梅; 庞洁

    2005-01-01

    The crystal structure of [Mn (BDA) (bpy)2(H2O)] (H2O)2 (1)(BDA =6,6' -dibromo-2,2' -dimethoxy- 1,1' -bi-naphthylene-4,4'-disulfonate, bpy=2,2'-bipyridine) composes of a manganese center which is surrounded by twonitrogen atoms from 2,2'-bipyridine and four oxygen atoms from three water and sulfonate group of BDA that alsoparticipate in H-bonding interactions to form 3D network as well as some uncoordinated water. CCDC: 277922.

  14. Aromatic poly(arylene ether urea) with high dipole moment for high thermal stability and high energy density capacitors

    Science.gov (United States)

    Cheng, Zhaoxi; Lin, Minren; Wu, Shan; Thakur, Yash; Zhou, Yue; Jeong, Dae-Yong; Shen, Qundong; Zhang, Q. M.

    2015-05-01

    Developing dielectric polymers with higher dielectric constant without sacrificing loss and thermal stability is of great importance for next generation of high energy density capacitors. We show here that by replacing the CH2 group in the aromatic polyurea (ArPU) with the polar ether group, thus raising the dipole moment of the molecular unit, poly(arylene ether urea) (PEEU) shows an increased dielectric constant of 4.7, compared with 4.2 of ArPU. Moreover, PEEU maintains the low dielectric loss and is thermally stable up to 250 °C. As a result, the polymer delivers 13 J/cm3 discharged energy density at room temperature and 9 J/cm3 at 120 °C. The high quality films perform well in terms of both breakdown strength (at 700 MV/m at room temperature) and leakage current from room temperature to elevated temperature. At 120 °C, the breakdown strength is 600 MV/m and the conductivity is 1.58 × 10-14 S/cm measured under 100 MV/m.

  15. Hydrophilic-Core Microcapsules and Their Formation

    Science.gov (United States)

    Calle, Luz M. (Inventor); Li, Wenyan (Inventor); Buhrow, Jerry W. (Inventor); Jolley, Scott T. (Inventor)

    2016-01-01

    Hydrophilic-core microcapsules and methods of their formation are provided. A hydrophilic-core microcapsule may include a shell that encapsulates water with the core substance dissolved or dispersed therein. The hydrophilic-core microcapsules may be formed from an emulsion having hydrophilic-phase droplets dispersed in a hydrophobic phase, with shell-forming compound contained in the hydrophilic phase or the hydrophobic phase and the core substance contained in the hydrophilic phase. The shells of the microcapsules may be capable of being broken down in response to being contacted by an alkali, e.g., produced during corrosion, contacting the shell.

  16. Role of Geobacter sulfurreducens outer surface c-type cytochromes in reduction of soil humic acid and anthraquinone-2,6-disulfonate.

    Science.gov (United States)

    Voordeckers, James W; Kim, Byoung-Chan; Izallalen, Mounir; Lovley, Derek R

    2010-04-01

    Deleting individual genes for outer surface c-type cytochromes in Geobacter sulfurreducens partially inhibited the reduction of humic substances and anthraquinone-2,6,-disulfonate. Complete inhibition was obtained only when five of these genes were simultaneously deleted, suggesting that diverse outer surface cytochromes can contribute to the reduction of humic substances and other extracellular quinones.

  17. Distribution of aluminum phthalocyanine disulfonate in an oral squamous cell carcinoma model. In vivo fluorescence imaging compared with ex vivo analytical methods

    NARCIS (Netherlands)

    Witjes, MJH; Mank, AJG; Speelman, OC; Posthumus, R; Nooren, CAAM; Nauta, JM; Roodenburg, JLN

    1997-01-01

    Photosensitizer-induced fluorescence is studied as a technique for the detection of cancer, Therefore we investigated the ability of a photosensitizer, aluminum phthalocyanine disulfonate (AlPcS2), to localize in tumor tissue. In vivo endoscopic fluorescence imaging, fluorescence microscopy, convent

  18. Hydrophilic structures for condensation management in appliances

    Science.gov (United States)

    Kuehl, Steven John; Vonderhaar, John J.; Wu, Guolian; Wu, Mianxue

    2016-02-02

    An appliance that includes a cabinet having an exterior surface; a refrigeration compartment located within the cabinet; and a hydrophilic structure disposed on the exterior surface. The hydrophilic structure is configured to spread condensation. The appliance further includes a wicking structure located in proximity to the hydrophilic structure, and the wicking structure is configured to receive the condensation.

  19. Novel quaternized poly(arylene ether sulfone)/Nano-ZrO₂ composite anion exchange membranes for alkaline fuel cells.

    Science.gov (United States)

    Li, Xiuhua; Yu, Yingfeng; Meng, Yuezhong

    2013-02-01

    A series of composite anion exchange membranes based on novel quaternized poly(arylene ether sulfone)/nanozirconia (QPAES/nano-ZrO₂) composites are prepared using a solution casting method. The QPAES/nano-ZrO₂ composite membranes are characterized by FTIR, X-ray diffraction (XRD), and scanning electron microscopy/energy-dispersive X-ray analysis (SEM/EDX). The ion exchange capacity (IEC), water uptake, swelling ratio, hydroxide ion conductivity, mechanical properties, thermal stability, and chemical stability of the composite membranes are measured to evaluate their applicability in fuel cells. The introduction of nano-ZrO₂ induces the crystallization of the matrix and enhances the IEC of the composite membranes. The modification with nano-ZrO₂ improves water uptake, dimension stability, hydroxide ion conductivity, mechanical properties, and thermal and chemical stabilities of the composite membranes. The QPAES/nano-ZrO₂ composite membranes show hydroxide ion conductivities over 25.7 mS cm⁻¹ at a temperature above 60 °C. Especially, the QPAES/nano-ZrO₂ composite membranes with the nano-ZrO₂ content above 7.5% display hydroxide ion conductivities over 41.4 mS cm⁻¹ at 80 °C. The E(a) values of the QPAES/nano-ZrO₂ composite membranes with the nano-ZrO₂ content above 5% are lower than 11.05 kJ mol⁻¹. The QPAES/7.5% nano-ZrO₂ composite membrane displays the lowest E(a) value and the best comprehensive properties and constitutes a good potential candidate for alkaline fuel cells.

  20. Considerations of the Effects of Naphthalene Moieties on the Design of Proton-Conductive Poly(arylene ether ketone) Membranes for Direct Methanol Fuel Cells.

    Science.gov (United States)

    Wang, Baolong; Hong, Lihua; Li, Yunfeng; Zhao, Liang; Wei, Yuxue; Zhao, Chengji; Na, Hui

    2016-09-14

    Novel sulfonated poly(arylene ether ketones) (SDN-PAEK-x), consisting of dual naphthalene and flexible sulfoalkyl groups, were prepared via polycondensation, demethylation, and sulfobutylation grafting reaction. Among them, SDN-PAEK-1.94 membrane with the highest ion exchange capacity (IEC = 2.46 mequiv·g(-1)) exhibited the highest proton conductivity, which was 0.147 S· cm(-1) at 25 °C and 0.271 S·cm(-1) at 80 °C, respectively. The introduction of dual naphthalene moieties is expected to achieve much enhanced properties compared to those of sulfonated poly(arylene ether ketones) (SNPAEK-x), consisting of single naphthalene and flexible sulfoalkyl groups. Compared with SNPAEK-1.60 with a similar IEC, SDN-PAEK-1.74 membrane showed higher proton conductivity, higher IEC normalized conductivity, and higher effective proton mobility, although it had lower analytical acid concentration. The SDN-PAEK-x membranes with IECs higher than 1.96 mequiv·g(-1) also exhibited higher proton conductivity than that of recast Nafion membrane. Furthermore, SDN-PAEK-1.94 displayed a better single cell performance with a maximum power density of 60 mW·cm(-2) at 80 °C. Considering its high proton conductivity, excellent single cell performance, good mechanical stabilities, low membrane swelling, and methanol permeability, SDN-PAEK-x membranes are promising candidates as alternative polymer electrolyte membranes to Nafion for direct methanol fuel cell applications.

  1. Protective Effects of Quercetin and Quercetin-5',8-Disulfonate against Carbon Tetrachloride-Caused Oxidative Liver Injury in Mice

    Directory of Open Access Journals (Sweden)

    Yanmang Cui

    2013-12-01

    Full Text Available Oxidative stress is one of the major factors in the pathogenesis of liver disease. Quercetin is a plant-based antioxidant traditionally used as a treatment for hepatic injury, but its poor solubility affects its bioavailability. We here report the regulative effects on hepatoprotection and absorption in mice of quercetin sulfation to form quercetin-5',8-disulfonate (QS, a novel synthetic compound. Oral administration of both QS and the parent quercetin at 100, 200 and 500 mg/kg·bw prior to acute CCl4 oxidative damage in mice, effectively attenuated serum alanine aminotransferase (ALT, aspartate aminotransferase (AST and lactate dehydrogenase (LDH activities and hepatic malondialdehyde (MDA levels (p < 0.05, and suppressed the CCl4-induced depletion of glutathione peroxidase (GSH-Px and total superoxide dismutase (T-SOD. Selective 5',8-sulfation of quercetin increased the hepatoprotective effect, and its relative absorption relative to quercetin (p < 0.05 as indicated by an improved 24-hour urinary excretion and a decreased fecal excretion determined by HPLC. These results and histopathological observations collectively demonstrate that quercetin sulfation increases its hepatoprotective effects and absorption in mice, and QS has potential as a chemopreventive and chemotherapeutic agent for liver diseases.

  2. Synthesis of fluorinated poly(arylene ether)s with dibenzodioxin and spirobisindane units from new bis(pentafluorophenyl)- and bis(nonafluorobiphenyl)-containing monomers

    DEFF Research Database (Denmark)

    Tkachenko, Ihor M.; Belov, Nikolay A.; Kobzar, Yaroslav L.

    2017-01-01

    -substituted compounds were synthesised. Fluorinated poly(arylene ether)s having perfluorinated aromatic units as well as both rigid dibenzodioxin and spirobisindane fragments were successfully obtained by interaction of the synthesized core-fluorinated monomers with 5,5′,6,6′-tetrahydroxy-3,3,3′,3′-tetramethyl-1......(nonafluorophenyl)-containing monomers have higher average molecular masses (Mw) in the range 47,000–88,300 and are able to form robust, solvent-cast films. Good thermal stabilities in air (up to 350 °C) were observed in all fluorinated polymers. The Brunauer–Emmett–Teller specific surface area and the pore size of polymers can...

  3. Accelerated anaerobic dechlorination of DDT in slurry with Hydragric Acrisols using citric acid and anthraquinone-2,6-disulfonate (AQDS).

    Science.gov (United States)

    Liu, Cuiying; Xu, Xianghua; Fan, Jianling

    2015-12-01

    The application of electron donor and electron shuttle substances has a vital influence on electron transfer, thus may affect the reductive dechlorination of 1,1,1-trichoro-2,2-bis(p-chlorophenyl)ethane (DDT) in anaerobic reaction systems. To evaluate the roles of citric acid and anthraquinone-2,6-disulfonate (AQDS) in accelerating the reductive dechlorination of DDT in Hydragric Acrisols that contain abundant iron oxide, a batch anaerobic incubation experiment was conducted in a slurry system with four treatments of (1) control, (2) citric acid, (3) AQDS, and (4) citric acid+AQDS. Results showed that DDT residues decreased by 78.93%-92.11% of the initial quantities after 20days of incubation, and 1,1-dichloro-2,2-bis(4-chlorophenyl)-ethane (DDD) was the dominant metabolite. The application of citric acid accelerated DDT dechlorination slightly in the first 8days, while the methanogenesis rate increased quickly, and then the acceleration effect improved after the 8th day while the methanogenesis rate decreased. The amendment by AQDS decreased the Eh value of the reaction system and accelerated microbial reduction of Fe(III) oxides to generate Fe(II), which was an efficient electron donor, thus enhancing the reductive dechlorination rate of DDT. The addition of citric acid+AQDS was most efficient in stimulating DDT dechlorination, but no significant interaction between citric acid and AQDS on DDT dechlorination was observed. The results will be of great significance for developing an efficient in situ remediation strategy for DDT-contaminated sites. Copyright © 2015. Published by Elsevier B.V.

  4. Enhanced reduction of Fe(III) oxides and methyl orange by Klebsiella oxytoca in presence of anthraquinone-2-disulfonate.

    Science.gov (United States)

    Yu, Lei; Wang, Shi; Tang, Qing-Wen; Cao, Ming-Yue; Li, Jia; Yuan, Kun; Wang, Ping; Li, Wen-Wei

    2016-05-01

    Klebsiella oxytoca GS-4-08 is capable of azo dye reduction, but its quinone respiration and Fe(III) reduction abilities have not been reported so far. In this study, the abilities of this strain were reported in detail for the first time. As the biotic reduction of Fe(III) plays an important role in the biogeochemical cycles, two amorphous Fe(III) oxides were tested as the sole electron acceptor during the anaerobic respiration of strain GS-4-08. For the reduction of goethite and hematite, the biogenic Fe(II) concentrations reached 0.06 and 0.15 mM, respectively. Humic acid analog anthraquinone-2-disulfonate (AQS) was found to serve as an electron shuttle to increase the reduction of both methyl orange (MO) and amorphous Fe(III) oxides, and improve the dye tolerance of the strain. However, the formation of Fe(II) was not accelerated by biologically reduced AQS (B-AH2QS) because of the high bioavailability of soluble Fe(III). For the K. oxytoca strain, high soluble Fe(III) concentrations (above 1 mM) limit its growth and decolorization ability, while lower soluble Fe(III) concentrations produce an electron competition with MO initially, and then stimulate the decolorization after the electron couples of Fe(III)/Fe(II) are formed. With the ability to respire both soluble Fe(III) and insoluble Fe(III) oxides, this formerly known azo-reducer may be used as a promising model organism for the study of the interaction of these potentially competing processes in contaminated environments.

  5. Efficient decomposition of a new fluorochemical surfactant: perfluoroalkane disulfonate to fluoride ions in subcritical and supercritical water.

    Science.gov (United States)

    Hori, Hisao; Saito, Hiroki; Sakai, Hidenori; Kitahara, Toshiyuki; Sakamoto, Takehiko

    2015-06-01

    Decomposition of (-)O3SC3F6SO3(-) in subcritical and supercritical water was investigated, and the results were compared with the results for C3F7SO3(-). This is the first report on the decomposition of perfluoroalkane disulfonates, which are being introduced in electronics industry as greener alternatives to environmentally persistent and bioaccumulative perfluoroalkyl surfactants. Addition of zerovalent iron to the reaction system dramatically increased the yield of F(-) in the reaction solution: when the reaction of (-)O3SC3F6SO3(-) was carried out in subcritical water at 350°C for 6h, the F(-) yield was 70%, which was 23times the yield without zerovalent iron. Prolonged reaction increased the F(-) formation: after 18h, the F(-) yield from the reaction of (-)O3SC3F6SO3(-) reached 81%, which was 2.1times the F(-) yield from the reaction of C3F7SO3(-). Although the reactivity of FeO toward these substrates was lower than zerovalent iron in subcritical water, the reactivity was enhanced when the reaction temperature was elevated to supercritical state, at which temperature FeO underwent in situ disproportionation to form zerovalent iron, which acted as the reducing agent. When the reaction of (-)O3SC3F6SO3(-) was carried out in the presence of FeO in supercritical water at 380°C for 18h, the F(-) yield reached 92%, which was the highest yield among tested.

  6. Cd(Ⅱ) Complex with Disulfonate Atropisomeric Ligand%含轴手性磺酸配体的镉配合物

    Institute of Scientific and Technical Information of China (English)

    唐云志; 周挺

    2005-01-01

    The crystal structure of [Cd(BDA)(phen)2(H2O)](H2O)2 (1) (BDA=6,6'-dibromo-2,2'-dimethoxy-1,1'-binaphthylene-4,4'-disulfonate, phen=1,10-phenanthroline)consists of a cadmium center whose coordination environment can be best described as a slightly distorted octahedron defined four nitrogen atoms from two phen lig ands and two oxygen atoms differently from BDA ligand and water. There are strong hydrogen-bonding interactions between water and sulfonate group of BDA ligands to construct the 3D network. CCDC: 277921.

  7. Composite hydrophilic coating for conditioner aluminum fins

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    To solve the so-called "white rust" and 'water bridge" problems of the aluminum fins for heat exchanger of automobile air conditioner, aimed at nationalizing the art of hydrophilic coating technology, the choice of coating forming and curing materials was investigated. By measuring the water contact angle, SEM surface scanning and ingredients analysis of the coating, optimal parameters and composition are acquired. The coating forming mechanisms of the composition was also expatiated. The coating obtained has good hydrophilic and other properties.

  8. Modification and Applications of Hydrophilic Polypropylene Membrane

    Science.gov (United States)

    Ariono, Danu; Kusuma Wardani, Anita

    2017-07-01

    Polypropylene (PP) is one of the most important polymers for microporous membrane due to its high void volume, well-controlled porosity, high thermal and chemical stability, and low cost. However, the hydrophobicity of PP becomes a limitation to broaden its applications. Furthermore, membrane fouling occurs more seriously on hydrophobic membranes than hydrophilic ones. To solve this problem, surface modifications have been developed to enhance PP membrane hydrophilicity without changing its bulk properties. Graft polymerization and plasma treatment are the most popular techniques for surface hydrophilization. Some studies showed that highly hydrophilic PP membranes with water contact angle less than 20° could be obtained by plasma treatment and graft polymerization. Furthermore, during plasma treatment, polar groups were formed on the PP membrane surface thus increased water uptake. To bring brief explanation on various research trends for PP modification, this paper provides a review of surface hydrophilization of microporous PP membrane, including plasma treatment and graft polymerization. The effects of surface modification on PP membrane performance such as porosity, water contact angle, and water flux are also discussed. In addition, the applications of modified PP membrane are presented as well.

  9. Performance comparison of three types of high-speed counter-current chromatographs for the separation of components of hydrophilic and hydrophobic color additives.

    Science.gov (United States)

    Weisz, Adrian; Ito, Yoichiro

    2011-09-09

    The performance of three types of high-speed counter-current chromatography (HSCCC) instruments was assessed for their use in separating components in hydrophilic and hydrophobic dye mixtures. The HSCCC instruments compared were: (i) a J-type coil planet centrifuge (CPC) system with a conventional multilayer-coil column, (ii) a J-type CPC system with a spiral-tube assembly-coil column, and (iii) a cross-axis CPC system with a multilayer-coil column. The hydrophilic dye mixture consisted of a sample of FD&C Blue No. 2 that contained mainly two isomeric components, 5,5'- and 5,7'-disulfonated indigo, in the ratio of ∼7:1. The hydrophobic dye mixture consisted of a sample of D&C Red No. 17 (mainly Sudan III) and Sudan II in the ratio of ∼4:1. The two-phase solvent systems used for these separations were 1-butanol/1.3M HCl and hexane/acetonitrile. Each of the three instruments was used in two experiments for the hydrophilic dye mixture and two for the hydrophobic dye mixture, for a total of 12 experiments. In one set of experiments, the lower phase was used as the mobile phase, and in the second set of experiments, the upper phase was used as the mobile phase. The results suggest that: (a) use of a J-type instrument with either a multilayer-coil column or a spiral-tube assembly column, applying the lower phase as the mobile phase, is preferable for separating the hydrophilic components of FD&C Blue No. 2; and (b) use of a J-type instrument with multilayer-coil column, while applying either the upper phase or the lower phase as the mobile phase, is preferable for separating the hydrophobic dye mixture of D&C Red No. 17 and Sudan II.

  10. Organic-inorganic crosslinked and hybrid membranes derived from sulfonated poly(arylene ether sulfone)/silica via sol-gel process

    Science.gov (United States)

    Feng, Shaoguang; Shang, Yuming; Wang, Yingzi; Xie, Xiaofeng; Mathur, V. K.; Xu, Jingming

    A series of covalently crosslinkable organic-inorganic hybrid membranes have been prepared from sulfonated poly(arylene ether sulfone) (SPAES) with pendant propenyl moiety and various amounts of vinyl substituted silica via sol-gel process which are then thermally crosslinked in the presence of benzoyl peroxide (BPO) initiator. The obtained membranes are characterized in terms of oxidative stability, thermal property, ion exchange capacity (IEC), water uptake, swelling ratio in methanol aqueous solution, proton conductivity, and methanol permeability coefficient. The results indicate that the oxidative stability and thermal stability of the hybrid membranes are improved. Moreover, introduction of silica reduces the water uptake and methanol swelling of membranes. The swelling ratio of membranes in 2 mol L -1 methanol aqueous solution at 80 °C slowly decreases from 26 to 19% with the increase of SiO 2 content from 0 to 12 wt.%. Furthermore, with the increase in silica content, the methanol permeability coefficient of the hybrid membranes decreases at first and then increases. When the silica content reaches 8 wt.%, the methanol permeability coefficient is at the minimum of 6.02 × 10 -7 cm 2 s -1, a 2.64-fold decrease compared with that of the pristine SPAES membrane. Moreover, the proton conductivity is found to be at about 95% of that of pristine polymer at that silica content.

  11. Crosslinked sulfonated poly(arylene ether ketone) membranes bearing quinoxaline and acid-base complex cross-linkages for fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xinbing; Chen, Pei; An, Zhongwei [Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an 710062 (China); Chen, Kangcheng; Okamoto, Kenichi [Graduate School of Science and Engineering, Yamaguchi University, Tokiwadai 2-16-1, Ube, Yamaguchi 755-8611 (Japan)

    2011-02-15

    A series of crosslinkable sulfonated poly(arylene ether ketone)s (SPAEKs) were synthesized by copolymerization of 4,4'-biphenol with 2,6-difluorobenzil and 5,5'-carbonyl-bis(2-fluorobenzene-sulfonate). A facile crosslinking method was successfully developed, based on the cyclocondensation reaction of benzil moieties in polymer chain with 3,3'-diaminobenzidine to form quinoxaline groups acting as covalent and acid-base ionic crosslinking. The uncrosslinked and crosslinked SPAEK membranes showed high mechanical properties and the isotropic membrane swelling, while the later became insoluble in tested polar aprotic solvents. The crosslinking significantly improved the membrane performance, i.e., the crosslinked membranes had the lower membrane dimensional change, lower methanol permeability and higher oxidative stability than the corresponding precursor membranes, with keeping the reasonably high proton conductivity. The crosslinked membrane (C-B4) with an ion exchange capacity of 2.02 mequiv. g{sup -1} showed a reasonably high proton conductivity of 111 mS cm{sup -1} with a low water uptake of 42 wt% at 80 C. C-B4 exhibited a low methanol permeability of 0.55 x 10{sup -6} cm{sup 2} s{sup -1} for 32 wt% methanol solution at 25 C. The crosslinked SPAEK membranes have potential for PEFC and DMFC applications. (author)

  12. Nafion-assisted cross-linking of sulfonated poly(arylene ether ketone) bearing carboxylic acid groups and their composite membranes for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Haidan; Zhao, Chengji; Na, Hui [Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Qianjin street 2699, Changchun 130012, Jilin (China)

    2010-06-01

    In this study, a new type of cross-linked composite membrane is prepared and considered for its potential applications in direct methanol fuel cell. Nafion and sulfonated poly(arylene ether ketone) bearing carboxylic acid groups (SPAEK-C) are blended and subsequently cross-linked by a Friedel-Craft reaction using the carboxylic acid groups in the SPAEK-C to achieve lower methanol permeability. The perfluoroalkyl sulfonic acid groups of Nafion act as a benign solid catalyst, which assist the cross-linking of SPAEK-C. The physical and chemical characterizations of the cross-linked composite membranes are performed by varying the contents of SPAEK-C. The c-Nafion-15% membrane exhibits appropriate water uptake (10.49-25.22%), low methanol permeability (2.57 x 10{sup -7} cm{sup 2} s{sup -1}), and high proton conductivity (0.179 S cm{sup -1} at 80 C). DSC and FTIR analyze suggest the cross-linking reaction. These results show that the self-cross-linking of SPAEK-C in the Nafion membrane can effectively reduce methanol permeability while maintaining high proton conductivity. (author)

  13. Composites Based on Core-Shell Structured HBCuPc@CNTs-Fe3O4 and Polyarylene Ether Nitriles with Excellent Dielectric and Mechanical Properties

    Science.gov (United States)

    Pu, Zejun; Zhong, Jiachun; Liu, Xiaobo

    2017-10-01

    Core-shell structured magnetic carbon nanotubes (CNTs-Fe3O4) coated with hyperbranched copper phthalocyanine (HBCuPc) (HBCuPc@CNTs-Fe3O4) hybrids were prepared by the solvent-thermal method. The results indicated that the HBCuPc molecules were decorated on the surface of CNTs-Fe3O4 through coordination behavior of phthalocyanines, and the CNTs-Fe3O4 core was completely coaxial wrapped by a functional intermediate HBCuPc shell. Then, polymer-based composites with a relatively high dielectric constant and low dielectric loss were fabricated by using core-shell structured HBCuPc@CNTs-Fe3O4 hybrids as fillers and polyarylene ether nitriles (PEN) as the polymer matrix. The cross-sectional scanning electron microscopy (SEM) images of composites showed that there is almost no agglomeration and internal delamination. In addition, the rheological analysis reveals that the core-shell structured HBCuPc@CNTs-Fe3O4 hybrids present better dispersion and stronger interface adhesion with the PEN matrix than CNTs-Fe3O4, thus resulting in significant improvement of the mechanical, thermal and dielectric properties of polymer-based composites.

  14. Imidazolium-Functionalized Poly(arylene ether sulfone) Anion-Exchange Membranes Densely Grafted with Flexible Side Chains for Fuel Cells.

    Science.gov (United States)

    Guo, Dong; Lai, Ao Nan; Lin, Chen Xiao; Zhang, Qiu Gen; Zhu, Ai Mei; Liu, Qing Lin

    2016-09-28

    With the intention of optimizing the performance of anion-exchange membranes (AEMs), a set of imidazolium-functionalized poly(arylene ether sulfone)s with densely distributed long flexible aliphatic side chains were synthesized. The membranes made from the as-synthesized polymers are robust, transparent, and endowed with microphase segregation capability. The ionic exchange capacity (IEC), hydroxide conductivity, water uptake, thermal stability, and alkaline resistance of the AEMs were evaluated in detail for fuel cell applications. Morphological observation with the use of atomic force microscopy and small-angle X-ray scattering reveals that the combination of high-local-density-type and side-chain-type architectures induces distinguished nanophase separation in the AEMs. The as-prepared membranes have advantages in effective water management and ionic conductivity over traditional main-chain polymers. Typically, the conductivity and IEC were in the ranges of 57.3-112.5 mS cm(-1) and 1.35-1.84 mequiv g(-1) at 80 °C, respectively. Furthermore, the membranes exhibit good thermal and alkaline stability and achieve a peak power density of 114.5 mW cm(-2) at a current density of 250.1 mA cm(-2). Therefore, the present polymers containing clustered flexible pendent aliphatic imidazolium promise to be attractive AEM materials for fuel cells.

  15. Organic-inorganic crosslinked and hybrid membranes derived from sulfonated poly(arylene ether sulfone)/silica via sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Shaoguang; Shang, Yuming; Wang, Yingzi; Xie, Xiaofeng; Xu, Jingming [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Mathur, V.K. [Department of Chemical Engineering, University of New Hampshire, NH 03824 (United States)

    2010-05-01

    A series of covalently crosslinkable organic-inorganic hybrid membranes have been prepared from sulfonated poly(arylene ether sulfone) (SPAES) with pendant propenyl moiety and various amounts of vinyl substituted silica via sol-gel process which are then thermally crosslinked in the presence of benzoyl peroxide (BPO) initiator. The obtained membranes are characterized in terms of oxidative stability, thermal property, ion exchange capacity (IEC), water uptake, swelling ratio in methanol aqueous solution, proton conductivity, and methanol permeability coefficient. The results indicate that the oxidative stability and thermal stability of the hybrid membranes are improved. Moreover, introduction of silica reduces the water uptake and methanol swelling of membranes. The swelling ratio of membranes in 2 mol L{sup -1} methanol aqueous solution at 80 C slowly decreases from 26 to 19% with the increase of SiO{sub 2} content from 0 to 12 wt.%. Furthermore, with the increase in silica content, the methanol permeability coefficient of the hybrid membranes decreases at first and then increases. When the silica content reaches 8 wt.%, the methanol permeability coefficient is at the minimum of 6.02 x 10{sup -7} cm{sup 2} s{sup -1}, a 2.64-fold decrease compared with that of the pristine SPAES membrane. Moreover, the proton conductivity is found to be at about 95% of that of pristine polymer at that silica content. (author)

  16. Hydrophilic fluorescent nanogel thermometer for intracellular thermometry.

    Science.gov (United States)

    Gota, Chie; Okabe, Kohki; Funatsu, Takashi; Harada, Yoshie; Uchiyama, Seiichi

    2009-03-01

    The first methodology to measure intracellular temperature is described. A highly hydrophilic fluorescent nanogel thermometer developed for this purpose stays in the cytoplasm and emits stronger fluorescence at a higher temperature. Thus, intracellular temperature variations associated with biological processes can be monitored by this novel thermometer with a temperature resolution of better than 0.5 degrees C.

  17. Preparation of hydrophilic molecularly imprinted polymers for tetracycline antibiotics recognition

    Institute of Scientific and Technical Information of China (English)

    Peng Wang; Xiao Fang Fu; Jing Li; Jing Luo; Xiao Ya Zhao; Ming Jun Sun; Yin Zhu Shang; Cheng Ye

    2011-01-01

    Hydrophilic molecularly imprinted polymers (MIPs) were prepared using tetracycline as template, methacrylic acid as monomer and glycidilmethacrylate as pro-hydrophilic co-monomer. Compared with common MIPs, the imprinting effect and adsorption amounts of hydrophilic MIPs for tetracycline (TC) were greatly improved in water media. Furthermore, the electrochemical sensor fabricated by modifying hydrophilic MIPs on glassy carbon electrode was developed for the determination of TC in foodstuff samples.

  18. 21 CFR 872.3300 - Hydrophilic resin coating for dentures.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hydrophilic resin coating for dentures. 872.3300... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3300 Hydrophilic resin coating for dentures. (a) Identification. A hydrophilic resin coating for dentures is a device that consists of a...

  19. 21 CFR 201.319 - Water-soluble gums, hydrophilic gums, and hydrophilic mucilloids (including, but not limited to...

    Science.gov (United States)

    2010-04-01

    ... hydrophilic mucilloids (including, but not limited to agar, alginic acid, calcium polycarbophil... gum, kelp, methylcellulose, plantago seed (psyllium), polycarbophil tragacanth, and xanthan gum) as..., and hydrophilic mucilloids (including, but not limited to agar, alginic acid, calcium...

  20. Condensing Heat Exchanger with Hydrophilic Antimicrobial Coating

    Science.gov (United States)

    Thomas, Christopher M. (Inventor); Ma, Yonghui (Inventor)

    2014-01-01

    A multi-layer antimicrobial hydrophilic coating is applied to a substrate of anodized aluminum, although other materials may form the substrate. A silver layer is sputtered onto a thoroughly clean anodized surface of the aluminum to about 400 nm thickness. A layer of crosslinked, silicon-based macromolecular structure about 10 nm thickness overlies the silver layer, and the outermost surface of the layer of crosslinked, silicon-based macromolecular structure is hydroxide terminated to produce a hydrophilic surface with a water drop contact angle of less than 10.degree.. The coated substrate may be one of multiple fins in a condensing heat exchanger for use in the microgravity of space, which has narrow channels defined between angled fins such that the surface tension of condensed water moves water by capillary flow to a central location where it is pumped to storage. The antimicrobial coating prevents obstruction of the capillary passages.

  1. Photocatalytic, highly hydrophilic porcelain stoneware slabs

    Science.gov (United States)

    Raimondo, M.; Guarini, G.; Zanelli, C.; Marani, F.; Fossa, L.; Dondi, M.

    2011-10-01

    Photocatalytic, highly hydrophilic industrial porcelain stoneware large slabs were realized by deposition of nanostructured TiO2 coatings. Different surface finishing and experimental conditions were considered in order to assess the industrial feasibility. Photocatalytic and wetting behaviour of functionalized slabs mainly depends on surface phase composition in terms of anatase/rutile ratio, this involving - as a key issue - the deposition of TiO2 on industrially sintered products with an additional annealing step to strengthen coatings' performances and durability.

  2. Wetting transitions on textured hydrophilic surfaces

    Science.gov (United States)

    Ishino, C.; Okumura, K.

    2008-04-01

    We consider the quasi-static energy of a drop on a textured hydrophilic surface, with taking the contact angle hysteresis (CAH) into account. We demonstrate how energy varies as the contact state changes from the Cassie state (in which air is trapped at the drop bottom) to the Wenzel state (in which liquid fills the texture at the drop bottom) assuming that the latter state nucleates from the center of the drop bottom. When the textured substrate is hydrophilic enough to allow spontaneous penetration of liquid film of the texture thickness, the present theory asserts that the drop develops into an experimentally observed state in which a drop looks like an egg fried without flipped over (sunny-side up) with a well-defined radius of “the egg yolk.” Otherwise, the final contact state of the drop becomes like a Wenzel state, but with the contact circle smaller than the original Wenzel state due to the CAH. We provide simple analytical estimations for the yolk radius of the “sunny-side-up” state and for the final radius of the contact circle of the pseudo-Wenzel state.

  3. Sonochemical synthesis of versatile hydrophilic magnetite nanoparticles.

    Science.gov (United States)

    Marchegiani, G; Imperatori, P; Mari, A; Pilloni, L; Chiolerio, A; Allia, P; Tiberto, P; Suber, L

    2012-07-01

    Hydrophilic magnetite nanoparticles in the size range 30-10nm are easily and rapidly prepared under ultrasonic irradiation of Fe(OH)(2) in di- and tri-ethylene glycol/water solution with volume ratio varying between 7:3 and 3:7. Structural (XRD) and morphological (SEM) characterization reveal good crystalline and homogeneous particles whereas, when solvothermally prepared, the particles are inhomogeneous and aggregated. The sonochemically prepared particles are versatile, i.e. well suited to covalently bind molecules because of the free glycol hydroxylic groups on their surface or exchange the diethylene or triethylene glycol ligand. They can be easily transferred in hydrophobic solvents too. Room-temperature magnetic hysteresis properties measured by means of Vibrating Sample Magnetometer (VSM) display a nearly superparamagnetic character. The sonochemical preparation is easily scalable to meet industrial demand. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Capillary rise of water in hydrophilic nanopores

    CERN Document Server

    Gruener, Simon; Wallacher, Dirk; Kityk, Andriy V; Huber, Patrick; 10.1103/PhysRevE.79.067301

    2009-01-01

    We report on the capillary rise of water in three-dimensional networks of hydrophilic silica pores with 3.5nm and 5nm mean radii, respectively (porous Vycor monoliths). We find classical square root of time Lucas-Washburn laws for the imbibition dynamics over the entire capillary rise times of up to 16h investigated. Provided we assume two preadsorbed strongly bound layers of water molecules resting at the silica walls, which corresponds to a negative velocity slip length of -0.5nm for water flow in silica nanopores, we can describe the filling process by a retained fluidity and capillarity of water in the pore center. This anticipated partitioning in two dynamic components reflects the structural-thermodynamic partitioning in strongly silica bound water layers and capillary condensed water in the pore center which is documented by sorption isotherm measurements.

  5. Hydrophilic Polymer-associated Ischemic Enterocolitis.

    Science.gov (United States)

    Chavez, Jesus A; Chen, Wei; Frankel, Wendy L; Arnold, Christina A

    2017-02-01

    Hydrophilic polymer coating of medical devices serves to lubricate the device and prevent device-related complications. The coating can be mechanically disrupted and result in downstream injury via presumed thromboembolism. This process has been reported in the brain, heart, lung, and skin, and has been replicated through animal studies and in vitro histologic processing of the polymer coating. We report the first description of hydrophilic polymer-associated ischemic enterocolitis in a series of 7 specimens (small bowel=2, colon=4, aortic thrombus=1) from 3 patients. We report a 4% incidence among all patients with an ischemic bowel resection between April 29, 2014 and August 8, 2016. All patients developed bowel ischemia within 1 day of aortic repair, and all bowel resection specimens showed polymers, mainly in the submucosal vessels in areas of extensive ischemia. The polymers appeared as basophilic, intravascular, serpiginous structures. In a patient who developed acute paralysis after the aortic repair, identical polymers were identified in the aortic thrombus and the ischemic bowel segment. We demonstrate that the polymers display an altered morphology over time and with various graft types, and that the degrading polymers are associated with a foreign body giant cell reaction. Special stains can aid in diagnosis, with the polymers turquoise on a colloidal iron stain, pink on von Kossa and mucicarmine stains, and pale blue on trichrome. Clinical follow-up was available up to 115 weeks: 1 patient died, and 2 are alive and well. In summary, we report a new diagnostic entity to be considered in the differential diagnosis of iatrogenic ischemic injuries in the gastrointestinal tract. Awareness of this entity is important to elucidate the cause of ischemia and to prevent misdiagnosis of the polymers and their associated giant cell reaction as a parasitic infection, granulomatous vasculitis, sarcoidosis, and idiopathic inflammatory bowel disease.

  6. Equilibrium and kinetics studies on the adsorption of substituted phenols by a Cu–Al layered double hydroxide intercalated with 1-naphthol-3,8-disulfonate

    Energy Technology Data Exchange (ETDEWEB)

    Kameda, Tomohito, E-mail: kameda@env.che.tohoku.ac.jp; Uchiyama, Tomomi; Yoshioka, Toshiaki

    2016-06-15

    Cu–Al layered double hydroxides (Cu–Al LDHs) intercalated with 1-naphthol-3,8-disulfonate (1-N-3,8-DS{sup 2−}) were confirmed to easily take up substituted phenols with electron-poor benzene rings from aqueous solution. The uptake of the substituted phenols by the 1-N-3,8-DS• Cu–Al LDH was better expressed by the Langmuir-type than the Dubinin−Radushkevich (DR) adsorption model. The negative values of ΔG for all substituted phenols indicate that the adsorption process is spontaneous regardless of the temperature. The |ΔH| values for all substituted phenols are less than 20 kJ mol{sup −1}, indicating that the phenol uptake by this LDH can be considered a physical adsorption process caused by π–π stacking interactions. Although the uptake of the substituted phenols by the 1-N-3,8-DS• Cu–Al LDH can be considered a physical adsorption process caused by π–π stacking interactions, it is closely related chemically to Langmuir-type adsorption. The uptake of various substituted phenols by 1-N-3,8-DS• Cu–Al LDH followed the pseudo-second-order kinetic model. By fitting the results of phenol uptake by 1-N-3,8-DS• Cu–Al LDH to the Eyring equation, it was found that positive values of ΔH{sup ‡} and ΔG{sup ‡} indicated the presence of an energy barrier in the adsorption process. Furthermore, the positive value of ΔH{sup ‡} confirmed that the process was endothermic. - Highlights: • The uptake of the substituted phenols was better expressed by the Langmuir-type. • The uptake can be considered a physical adsorption process caused by π–π stacking interactions. • The uptake followed the pseudo-second-order kinetic model.

  7. A spectroscopic study of the effect of ligand complexation on the reduction of uranium(VI) by anthraquinone-2,6-disulfonate (AH{sub 2}DS)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z.; Wagnon, K.B.; Ainsworth, C.C.; Liu, C.; Rosso, K.M.; Fredrickson, J.K. [Pacific Northwest National Lab., Richland, WA (United States)

    2008-07-01

    In this paper, the reduction rate of uranyl complexes with hydroxide, carbonate, EDTA, and desferriferrioxamine B (DFB) by anthraquinone-2,6-disulfonate (AH{sub 2}DS) is studied by stopped-flow kinetic technique under anoxic atmosphere. The apparent reaction rates varied with ligand type, solution pH, and U(VI) concentration. For each ligand, a single largest pseudo-1{sup st} order reaction rate constant, k{sub obs}, within the studied pH range was observed, suggesting the influence of pH-dependent speciation on the U(VI) reduction rate. The maximum reaction rate found in each case followed the order of OH{sup -} > CO{sub 3}{sup 2-} > EDTA > DFB, in reverse order of the trend of the thermodynamic stability of the uranyl complexes and ionic sizes of the ligands. The pH-dependent rates were modeled using a second-order rate expression that was assumed to be dependent on a single U(VI) complex and an AH{sub 2}DS species. By quantitatively comparing the calculated and measured apparent rate constants as a function of pH, species AHDS{sup 3-} was suggested as the primary reductant in all cases examined. Species UO{sub 2}CO{sub 3}(aq), UO{sub 2}HEDTA{sup -}, and (UO{sub 2}){sub 2}(OH){sub 2}{sup 2+} were suggested as the principal electron acceptors among the U(VI) species mixture in each of the carbonate, EDTA, and hydroxyl systems, respectively. (orig.)

  8. Recent applications of hydrophilic interaction liquid chromatography in pharmaceutical analysis.

    Science.gov (United States)

    Zhang, Qian; Yang, Feng-Qing; Ge, Liya; Hu, Yuan-Jia; Xia, Zhi-Ning

    2017-01-01

    Hydrophilic interaction liquid chromatography, an alternative liquid chromatography mode, is of particular interest in separating hydrophilic and polar ionic compounds. Compared with traditional liquid chromatography techniques, hydrophilic interaction liquid chromatography offers specific advantages mainly including: (1) relatively green and water-soluble mobile phase composition, which enhances the solubility of hydrophilic and polar ionic compounds; (2) no need for ion-pairing reagents and high content of organic solvent, which benefits mass spectrometry detection; (3) high orthogonality to reverse-phase liquid chromatography, well adapted to two-dimensional liquid chromatography for complicated samples. Therefore, hydrophilic interaction liquid chromatography has been rapidly developed in many areas over the past decades. This review summarizes the recent progress (from 2012 to July 2016) of hydrophilic interaction liquid chromatography in pharmaceutical analysis, with the focus on detecting chemical drugs in various matrices, charactering active compounds of natural products and assessing biotherapeutics through typical structure unit. Moreover, the retention mechanism and behavior of analytes in hydrophilic interaction liquid chromatography as well as some novel hydrophilic interaction liquid chromatography columns used for pharmaceutical analysis are also described.

  9. Hydrophilic interaction chromatographic analysis of anthocyanins.

    Science.gov (United States)

    Willemse, Chandré M; Stander, Maria A; de Villiers, André

    2013-12-06

    Hydrophilic interaction chromatography (HILIC) provides an alternative separation mode for the analysis of phenolic compounds, in which aqueous-organic mobile phases with polar stationary phases are used. This paper reports the evaluation of HILIC for the analysis of the natural pigments anthocyanins, which are of importance because of their chromophoric properties and a range of health benefits associated with their consumption. Several HILIC stationary phases (silica, diol, amine, cyanopropyl and amide) and mobile phase combinations were evaluated, with the latter proving particularly important due to the distinctive chromatographic behaviour of anthocyanins. Diode array detection was used for selective detection of anthocyanins, while high resolution quadrupole-time-of-flight mass spectrometry (Q-TOF-MS) was used for compound identification. The potential of HILIC separation is demonstrated for a range of anthocyanins varying in glycosylation and acylation patterns found in blueberries, grape skins, black beans, red cabbage and red radish. HILIC is shown to be a complementary separation method to reversed phase liquid chromatography (RP-LC) due to the alternative retention mechanism.

  10. 21 CFR 878.4018 - Hydrophilic wound dressing.

    Science.gov (United States)

    2010-04-01

    ... a wound and to absorb exudate. It consists of nonresorbable materials with hydrophilic properties that are capable of absorbing exudate (e.g., cotton, cotton derivatives, alginates, dextran, and...

  11. Treatment of ASP produced water with hydrophilic fibre ball filtration

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The conventional treatment process cannot meet the need for treatment of produced water from alkaline/surfactant/polymer flooding( ASP produced water) in Daqing oilfield. In this study, a new type of hydrophilic fibre ball medium was developed through surface modification method. The hydrophilic property of the surface modified fibre ball was tested with ASP produced liquid at laboratory. The results showed that this fibre ball had higher oil degreasing efficiency. The surface components were also observed by Scanning Electron Microscope and X-ray Photoelectron Spectroscopy, the result showed that the hydrophilic fibre' s surface was covered by sulfonic group. Using hydrophilic fibre ball as filter medium, a new type of filter was designed to treat ASP produced water in pilot-scale experiments. The obtained results indicated that this type of filter had high capability and efficiency for the treatment of ASP produced water. This filter should have a better application prospect in oilfield produced water treatment.

  12. Mechanism of Hydrophilicity by Radiation-Induced Surface Activation

    Science.gov (United States)

    Honjo, Yoshio; Furuya, Masahiro; Takamasa, Tomoji; Okamoto, Koji

    When a metal oxide is irradiated by gamma rays, the irradiated surface becomes hydrophilic. This surface phenomenon is called as radiation-induced surface activation (RISA) hydrophilicity. In order to investigate gamma ray-induced and photoinduced hydrophilicity, the contact angles of water droplets on a titanium dioxide surface were measured in terms of irradiation intensity and time for gamma rays of cobalt-60 and for ultraviolet rays. Reciprocals of the contact angles increased in proportion to the irradiation time before the contact angles reached its super-hydrophilic state. The irradiation time dependency is equal to each other qualitatively. In addition, an effect of ambient gas was investigated. In pure argon gas, the contact angle remains the same against the irradiation time. This clearly indicates that certain humidity is required in ambient gas to take place of RISA hydrophilicity. A single crystal titanium dioxide (100) surface was analyzed by X-ray photoelectron spectrometry (XPS). After irradiation with gamma rays, a peak was found in the O1s spectrum, which indicates the adsorption of dissociative water to a surface 5-fold coordinate titanium site, and the formation of a surface hydroxyl group. We conclude that the RISA hydrophilicity is caused by chemisorption of the hydroxyl group on the surface.

  13. (△,∧)-[Tris (1,10-phenanthroline)Zn(Ⅱ)][(R,S)-6,6'-dibromo-2,2'-dimethoxy-1,1'-binaphthylene-4,4'-disulfonate]%消旋的有机二磺酸三邻菲咯啉锌配合物

    Institute of Scientific and Technical Information of China (English)

    黄雪峰; 钱坤

    2005-01-01

    Compound [Zn (phen)3] [BDA] (1) (BDA =6,6' -dibromo-2,2' -dimethoxy- 1,1' -binaphthylene-4,4' -disulfonate, phen= 1,10-phenanthroline) composes of the anion part (racemic-(R,S)-6,6'-dibromo-2,2'-dimethoxy- 1, 1'binaphthylene-4,4'-disulfonate ) and the cation part which consists of a racemic octahedrally coordinated zinc center defined six nitrogen atoms from three phen rings to form an inorganic chirality that can be resolution by chiral organic ligand, the 3D framework was formed through the strong H-bonding interaction between sulfonate and water. CCDC: 277924.

  14. [Bis(1,10-phenanthroline)-diauqa-Zn(Ⅱ)][(R,S)-2,2'-dimethoxy-1,1'-binaphthylene-6,6'-disulfonate]%有机二磺酸二邻菲咯啉二水合锌配合物

    Institute of Scientific and Technical Information of China (English)

    谢永荣; 叶琼

    2005-01-01

    The crystal structure of [Zn(H2O)2(phen)j[DBDA] (1) (DBDA=2,2'-dimethoxy-1,1'-binaphthylene-6,6'-disulfonate, phen =1,10-phenanthroline) involves the anion part (2,2' -dimethoxy-1,1' -binaphthylene-6,6' -disulfonate ) and the cation part which compose of a octahedron coordinated zinc center surrounded by two water and four nitrogen atoms from two phen rings, the 3D packing structure was formed through the strong H-bonding interaction between sulfonate and water. CCDC: 277923.

  15. Enchanced methods of hydrophilized CdSe quantum dots synthesis

    Science.gov (United States)

    Potapkin, D. V.; Zharkova, I. S.; Goryacheva, I. Y.

    2015-03-01

    Quantum dots are bright and stable fluorescence signal sources, but for most of applications they need an additional hydrophilization step. Unfortunately, most of existing approaches lead to QD's fluorescence quenching, so there is a need for additional enhancing of hydrophilized QD's brightness like UV irradiation, which can be used both on water insoluble QD's with oleic acid ligands (in toluene) and on hydrophilized QD's covered with UV-stable polymer (in aqueous solution). For synthesis of bright water-soluble fluorescent labels CdSe/CdS/ZnS colloidal quantum dots were covered with PAMAM dendrimer and irradiated with UV lamp in quartz cuvettes for 3 hours at the room temperature and then compared with control sample.

  16. Study on hydrophilicity of polymer surfaces improved by plasma treatment

    Science.gov (United States)

    Lai, Jiangnan; Sunderland, Bob; Xue, Jianming; Yan, Sha; Zhao, Weijiang; Folkard, Melvyn; Michael, Barry D.; Wang, Yugang

    2006-03-01

    Surface properties of polycarbonate (PC), polypropylene (PP), polyethylene terephthalate (PET) samples treated by microwave-induced argon plasma have been studied with contact angle measurement, X-ray photoelectron spectroscopy (XPS) and scanned electron microscopy (SEM). It is found that plasma treatment modified the surfaces both in composition and roughness. Modification of composition makes polymer surfaces tend to be highly hydrophilic, which mainly depended on the increase of ratio of oxygen-containing group as same as other papers reported. And this experiment further revealed that C dbnd O bond is the key factor to the improvement of the hydrophilicity of polymer surfaces. Our SEM observation on PET shown that the roughness of the surface has also been improved in micron scale and it has influence on the surface hydrophilicity.

  17. Study on hydrophilicity of polymer surfaces improved by plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Lai Jiangnan [Key Laboratory of Heavy Ion Physics, Peking University, MOE, Beijing (China); Sunderland, Bob [Gray Cancer Institute, Mount Vernon Hospital, Northwood, Middlesex (United Kingdom); Xue Jianming [Key Laboratory of Heavy Ion Physics, Peking University, MOE, Beijing (China); Yan, Sha [Key Laboratory of Heavy Ion Physics, Peking University, MOE, Beijing (China); Zhao Weijiang [Key Laboratory of Heavy Ion Physics, Peking University, MOE, Beijing (China); Folkard, Melvyn [Gray Cancer Institute, Mount Vernon Hospital, Northwood, Middlesex (United Kingdom); Michael, Barry D. [Gray Cancer Institute, Mount Vernon Hospital, Northwood, Middlesex (United Kingdom); Wang Yugang [Key Laboratory of Heavy Ion Physics, Peking University, MOE, Beijing (China)]. E-mail: ygwang@pku.edu.cn

    2006-03-15

    Surface properties of polycarbonate (PC), polypropylene (PP), polyethylene terephthalate (PET) samples treated by microwave-induced argon plasma have been studied with contact angle measurement, X-ray photoelectron spectroscopy (XPS) and scanned electron microscopy (SEM). It is found that plasma treatment modified the surfaces both in composition and roughness. Modification of composition makes polymer surfaces tend to be highly hydrophilic, which mainly depended on the increase of ratio of oxygen-containing group as same as other papers reported. And this experiment further revealed that C=O bond is Key factor to the improvement of the hydrophilicity of polymer surfaces. Our SEM observation on PET shown that the roughness of the surface has also been improved in micron scale and it has influence on the surface hydrophilicity.

  18. Softec HD hydrophilic acrylic intraocular lens: biocompatibility and precision

    Directory of Open Access Journals (Sweden)

    Ladan Espandar

    2011-01-01

    Full Text Available Ladan Espandar1, Shameema Sikder2, Majid Moshirfar31Department of Ophthalmology, Tulane University, New Orleans, LA, USA; 2Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA; 3John A Moran Eye Center, University of Utah, Salt Lake City, UT, USAAbstract: Intraocular lens development is driven by higher patient expectations for ideal visual outcomes. The recently US Food and Drug Administration-approved Softec HD™ lens is an aspheric, hydrophilic acrylic intraocular lens (IOL. The hydrophilic design of the lens is optimized to address dysphotopsia while maintaining biocompatibility, optical clarity, resistance to damage, and resistance to biocontamination. Aspheric lenses decrease postoperative spherical aberration. The addition of the Softec lens provides clinicians with another option for IOL placement; however, randomized comparative studies of this lens to others already on the market remain to be completed.Keywords: hydrophilic acrylic intraocular lens, Softec HD intraocular lens, aspheric intraocular lens, IOL

  19. Frictional forces between hydrophilic and hydrophobic particle coated nanostructured surfaces

    DEFF Research Database (Denmark)

    Hansson, Petra M; Claesson, Per M.; Swerin, Agne;

    2013-01-01

    by utilizing the atomic force microscope (AFM). The chemistry of the surfaces and the probe was varied between hydrophilic silica and hydrophobized silica. For hydrophilic silica surfaces, the friction coefficient was significantly higher for the particle coated surfaces than on the flat reference surface. All...... the particle coated surfaces exhibited similar friction coefficients, from which it may be concluded that the surface geometry, and not the roughness amplitude per se, influenced the measured friction. During measurements with hydrophobic surfaces, strong adhesive forces related to the formation of a bridging...... air cavity were evident from both normal force and friction force measurements. In contrast to the frictional forces between the hydrophilic surfaces, the friction coefficient for hydrophobic surfaces was found to depend on the surface structure and we believe that this dependence is related...

  20. Neutral hydrophilic cathode catalyst binders for microbial fuel cells

    KAUST Repository

    Saito, Tomonori

    2011-01-01

    Improving oxygen reduction in microbial fuel cell (MFC) cathodes requires a better understanding of the effects of the catalyst binder chemistry and properties on performance. A series of polystyrene-b-poly(ethylene oxide) (PS-b-PEO) polymers with systematically varying hydrophilicity were designed to determine the effect of the hydrophilic character of the binder on cathode performance. Increasing the hydrophilicity of the PS-b-PEO binders enhanced the electrochemical response of the cathode and MFC power density by ∼15%, compared to the hydrophobic PS-OH binder. Increased cathode performance was likely a result of greater water uptake by the hydrophilic binder, which would increase the accessible surface area for oxygen reduction. Based on these results and due to the high cost of PS-b-PEO, the performance of an inexpensive hydrophilic neutral polymer, poly(bisphenol A-co-epichlorohydrin) (BAEH), was examined in MFCs and compared to a hydrophilic sulfonated binder (Nafion). MFCs with BAEH-based cathodes with two different Pt loadings initially (after 2 cycles) had lower MFC performance (1360 and 630 mW m-2 for 0.5 and 0.05 mg Pt cm-2) than Nafion cathodes (1980 and 1080 mW m -2 for 0.5 and 0.05 mg Pt cm-2). However, after long-term operation (22 cycles, 40 days), power production of each cell was similar (∼1200 and 700-800 mW m-2 for 0.5 and 0.05 mg Pt cm-2) likely due to cathode biofouling that could not be completely reversed through physical cleaning. While binder chemistry could improve initial electrochemical cathode performance, binder materials had less impact on overall long-term MFC performance. This observation suggests that long-term operation of MFCs will require better methods to avoid cathode biofouling. © 2011 The Royal Society of Chemistry.

  1. Wetting of soap bubbles on hydrophilic, hydrophobic and superhydrophobic surfaces

    CERN Document Server

    Arscott, Steve

    2013-01-01

    Wetting of sessile bubbles on solid and liquid surfaces has been studied. A model is presented for the contact angle of a sessile bubble based on a modified Young equation - the experimental results agree with the model. A hydrophilic surface results in a bubble contact angle of 90 deg whereas on a superhydrophobic surface one observes 134 deg. For hydrophilic surfaces, the bubble angle diminishes with bubble radius - whereas on a superhydrophobic surface, the bubble angle increases. The size of the Plateau borders governs the bubble contact angle - depending on the wetting of the surface.

  2. STUDY ON A HYDROPHOBIC-HYDROPHILIC GRADIENT ROD

    Institute of Scientific and Technical Information of China (English)

    Jun Ma; Bai-yu Li; Hai-yun Liu; Zhi-min Zheng; Jian Xu

    2004-01-01

    A hydrophobic-hydrophilic gradient rod with a length of 40 mm and a diameter of 3 mm was prepared by heating a polymethylsilsesquioxane rod in a cylindrical stove with temperature gradient. The rod was thus pyrolyzed under a temperature gradient condition. The organic end of the gradient rod appears hydrophobic with a contact angle of 109.9° while the other end is hydrophilic with a contact angle of 62.4°. The gradient chemical structure and the gradient microstructure along the rod were characterized by FTIR and SEM, respectively.

  3. Forces involved in bacterial adhesion to hydrophilic and hydrophobic surfaces

    NARCIS (Netherlands)

    Boks, N.P.; Norde, W.; Meil, H.C.; Busscher, H.J.

    2008-01-01

    Using a parallel-plate flow chamber, the hydrodynamic shear forces to prevent bacterial adhesion (F-prev) and to detach adhering bacteria (F-det) were evaluated for hydrophilic glass, hydrophobic, dimethyldichlorosilane (DDS)-coated glass and six different bacterial strains, in order to test the

  4. Forces involved in bacterial adhesion to hydrophilic and hydrophobic surfaces

    NARCIS (Netherlands)

    Boks, Niels P.; Norde, Willem; van der Mei, Henny C.; Busscher, Henk J.

    2008-01-01

    Using a parallel-plate flow chamber, the hydrodynamic shear forces to prevent bacterial adhesion (F(prev)) and to detach adhering bacteria (F(det)) were evaluated for hydrophilic glass, hydrophobic, dimethyldichlorosilane (DDS)-coated glass and six different bacterial strains, in order to test the

  5. Hydrophilic treatment of porous PTFE for intractable glaucoma implant devices

    Science.gov (United States)

    Murahara, Masataka M.; Sato, Yuji; Fernandez, Viviana; Fantes, Francisco; Nose, Izuru; Lee, William E.; Milne, Peter J.; Parel, Jean-Marie A.

    2001-06-01

    Intractable glaucoma results from hindrances in the eyeball aqueous humor pathways that increase the intraocular pressure above normal physiological levels (over 20 mmHg). In this study porous PTFE membranes were made hydrophilic with a photochemical method that use ethyl alcohol and water for the chemical solution.

  6. Materials comprising polydienes and hydrophilic polymers and related methods

    Science.gov (United States)

    Mays, Jimmy W.; Deng, Suxiang; Mauritz, Kenneth A.; Hassan, Mohammad K.; Gido, Samuel P.

    2011-11-22

    Materials prepared from polydienes, such as poly(cyclohexadiene), and hydrophilic polymers, such as poly(alkylene oxide), are described. Methods of making the materials and their use in fuel cell membranes, batteries, breathable chemical-biological protective materials, and templates for sol-gel polymerization are also provided. The materials can be crosslinked and sulfonated, and can include copolymers and polymer blends.

  7. Analysis of moniliformin in maize plants using hydrophilic interaction chromatography

    DEFF Research Database (Denmark)

    Sørensen, Jens Laurids; Nielsen, Kristian Fog; Thrane, Ulf

    2007-01-01

    A novel HPLC method was developed for detection of the Fusarium mycotoxin, moniliformin in whole maize plants. The method is based on hydrophilic interaction chromatography (HILIC) on a ZIC zwitterion column combined with diode array detection and negative electrospray mass spectrometry (ESI...

  8. Hydrophilic behavior of graphene and graphene-based materials.

    Science.gov (United States)

    Accordino, Sebastián R; Montes de Oca, Joan Manuel; Rodriguez Fris, J Ariel; Appignanesi, Gustavo A

    2015-10-21

    Graphene and the graphene-based materials like graphite, carbon nanotubes, and fullerenes are not only usually regarded as hydrophobic but also have been widely employed as paradigms for the investigation of the behavior of water under nonpolar confinement, a question of major concern for fields ranging from biology to materials design. However, some experimental and theoretical insights seem to contradict, at least partially, such a picture. In this work, we will provide firm evidence for a neat hydrophilic nature of graphene surfaces. Our molecular dynamics studies will demonstrate that parallel graphene sheets present a strong tendency to remain fully hydrated for moderately long times (even when the equilibrium state is indeed the collapse of the plates), and thus, they are less prone to self-assembly than model hydrophobic surfaces we shall employ as control which readily undergo a hydrophobic collapse. Potential of mean force calculations will indeed make evident that the solvent exerts a repulsive contribution on the self-assembly of graphene surfaces. Moreover, we shall also quantify graphene hydrophilicity by means of the calculation of water density at two pressures and water density fluctuations. This latter study has never been performed on graphene and represents a means both to confirm and to quantify its neat hydrophilic behavior. We shall also make evident the relevance of the mildly attractive water-carbon interactions, since their artificial weakening will be shown to revert from typically hydrophilic to typically hydrophobic behavior.

  9. Developing a general interaction potential for hydrophobic and hydrophilic interactions.

    Science.gov (United States)

    Donaldson, Stephen H; Røyne, Anja; Kristiansen, Kai; Rapp, Michael V; Das, Saurabh; Gebbie, Matthew A; Lee, Dong Woog; Stock, Philipp; Valtiner, Markus; Israelachvili, Jacob

    2015-02-24

    We review direct force measurements on a broad class of hydrophobic and hydrophilic surfaces. These measurements have enabled the development of a general interaction potential per unit area, W(D) = -2γ(i)Hy exp(-D/D(H)) in terms of a nondimensional Hydra parameter, Hy, that applies to both hydrophobic and hydrophilic interactions between extended surfaces. This potential allows one to quantitatively account for additional attractions and repulsions not included in the well-known combination of electrostatic double layer and van der Waals theories, the so-called Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. The interaction energy is exponentially decaying with decay length D(H) ≈ 0.3-2 nm for both hydrophobic and hydrophilic interactions, with the exact value of D(H) depending on the precise system and conditions. The pre-exponential factor depends on the interfacial tension, γ(i), of the interacting surfaces and Hy. For Hy > 0, the interaction potential describes interactions between partially hydrophobic surfaces, with the maximum hydrophobic interaction (i.e., two fully hydrophobic surfaces) corresponding to Hy = 1. Hydrophobic interactions between hydrophobic monolayer surfaces measured with the surface forces apparatus (SFA) are shown to be well described by the proposed interaction potential. The potential becomes repulsive for Hy < 0, corresponding to partially hydrophilic (hydrated) interfaces. Hydrated surfaces such as mica, silica, and lipid bilayers are discussed and reviewed in the context of the values of Hy appropriate for each system.

  10. Hydroglyphics: Demonstration of Selective Wetting on Hydrophilic and Hydrophobic Surfaces

    Science.gov (United States)

    Kim, Philseok; Alvarenga, Jack; Aizenberg, Joanna; Sleeper, Raymond S.

    2013-01-01

    A visual demonstration of the difference between hydrophilic and hydrophobic surfaces has been developed. It involves placing a shadow mask on an optically clear hydrophobic plastic dish, corona treating the surface with a modified Tesla coil, removing the shadow mask, and visualizing the otherwise invisible message or pattern by applying water,…

  11. Forces involved in bacterial adhesion to hydrophilic and hydrophobic surfaces

    NARCIS (Netherlands)

    Boks, N.P.; Norde, W.; Meil, H.C.; Busscher, H.J.

    2008-01-01

    Using a parallel-plate flow chamber, the hydrodynamic shear forces to prevent bacterial adhesion (F-prev) and to detach adhering bacteria (F-det) were evaluated for hydrophilic glass, hydrophobic, dimethyldichlorosilane (DDS)-coated glass and six different bacterial strains, in order to test the fol

  12. Forces involved in bacterial adhesion to hydrophilic and hydrophobic surfaces

    NARCIS (Netherlands)

    Boks, Niels P.; Norde, Willem; van der Mei, Henny C.; Busscher, Henk J.

    2008-01-01

    Using a parallel-plate flow chamber, the hydrodynamic shear forces to prevent bacterial adhesion (F(prev)) and to detach adhering bacteria (F(det)) were evaluated for hydrophilic glass, hydrophobic, dimethyldichlorosilane (DDS)-coated glass and six different bacterial strains, in order to test the f

  13. Hydrophilic polyurethane matrix promotes chondrogenesis of mesenchymal stem cells.

    Science.gov (United States)

    Nalluri, Sandeep M; Krishnan, G Rajesh; Cheah, Calvin; Arzumand, Ayesha; Yuan, Yuan; Richardson, Caley A; Yang, Shuying; Sarkar, Debanjan

    2015-09-01

    Segmental polyurethanes exhibit biphasic morphology and can control cell fate by providing distinct matrix guided signals to increase the chondrogenic potential of mesenchymal stem cells (MSCs). Polyethylene glycol (PEG) based hydrophilic polyurethanes can deliver differential signals to MSCs through their matrix phases where hard segments are cell-interactive domains and PEG based soft segments are minimally interactive with cells. These coordinated communications can modulate cell-matrix interactions to control cell shape and size for chondrogenesis. Biphasic character and hydrophilicity of polyurethanes with gel like architecture provide a synthetic matrix conducive for chondrogenesis of MSCs, as evidenced by deposition of cartilage-associated extracellular matrix. Compared to monophasic hydrogels, presence of cell interactive domains in hydrophilic polyurethanes gels can balance cell-cell and cell-matrix interactions. These results demonstrate the correlation between lineage commitment and the changes in cell shape, cell-matrix interaction, and cell-cell adhesion during chondrogenic differentiation which is regulated by polyurethane phase morphology, and thus, represent hydrophilic polyurethanes as promising synthetic matrices for cartilage regeneration.

  14. Micellar Structures of Hydrophilic/Lipophilic and Hydrophilic/Fluorophilic Poly(2-oxazoline) Diblock Copolymers in Water

    DEFF Research Database (Denmark)

    Ivanova, Ruzha; Komenda, Thomas; Bonné, Tune B.

    2008-01-01

    Amphiphilic poly(2-alkyl-2-oxazoline) diblock copolymers of 2-methyl-2-oxazoline (MOx) building the hydrophilic block and either 2-nonyl-2-oxazoline (NOx) for the hydrophobic or 2-(1H,1H',2H,2H'-perfluorohexyl)-2-oxazoline (FOx) for the fluorophilic block were synthesized by sequential living...

  15. Hydrophilicity Modification of Addition-cured Room Temperature Vulcanization Silicone Rubber

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Allyl terminated polyether was used to improve the hydrophilicity of addition-cured room temperature vulcanization silicone rubber. With the increasing of the polyether, both the hydrophilicity and water absorbed of the vulcanizates were increased. The mechanical properties were also improved by adding the polyether. The result showed that 1.5wt% of the polyether provided the silicone rubber with proper hydrophilicity.

  16. Initial treatment of descemetocele with hydrophilic contact lenses.

    Science.gov (United States)

    Leibowitz, H M; Berrospi, A R

    1975-09-01

    A hydrophilic contact lens was used as the initial mode of therapy in 5 cases of descemetocele. The lens was left in place over the descemetocele continuously for periods ranging from 2 to 15 months. Corneal perforation did not occur, and the anterior chamber remained formed in all cases. The device seemingly provides sufficient structural reinforcement to Descemet's membrane to prevent its distension by the intraocular pressure. It also maintains Descemet's membrane in a moist state and protects the descemetocele from the trauma of the lid margins during blinking. This series of cases indicates that a hydrophilic contact lens can be a very effective temporizing measure for the treatment of descemetocele, enabling the surgeon initially to cope with an ocular emergency in a very simple manner, and to convert the ultimate surgical repair to a scheduled, carefully planned procedure with a much greater potential for success.

  17. Antioxidant activity of hydrophilic and lipophilic extracts of Brazilian blueberries.

    Science.gov (United States)

    Pertuzatti, Paula Becker; Barcia, Milene Teixeira; Rodrigues, Daniele; da Cruz, Pollyanna Nogueira; Hermosín-Gutiérrez, Isidro; Smith, Robert; Godoy, Helena Teixeira

    2014-12-01

    Hydrophilic and lipophilic extracts of ten cultivars of Highbush and Rabbiteye Brazilian blueberries (Vaccinium corymbosum L. and Vacciniumashei Reade, respectively) that are used for commercial production were analysed for antioxidant activity by the FRAP, ORAC, ABTS and β-carotene-linoleate methods. Results were correlated to the amounts of carotenoids, total phenolics and anthocyanins. Brazilian blueberries had relatively high concentration of total phenolics (1,622-3,457 mg gallic acid equivalents per 100 g DW) and total anthocyanins (140-318 mg cyanidin-3-glucoside equivalents per 100 g DW), as well as being a good source of carotenoids. There was a higher positive correlation between the amounts of these compounds and the antioxidant activity of hydrophilic compared to lipophilic extracts. There were also significant differences in the level of bioactive compounds and antioxidant activities between different cultivars, production location and year of cultivation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Wetting failure of hydrophilic surfaces promoted by surface roughness

    Science.gov (United States)

    Zhao, Meng-Hua; Chen, Xiao-Peng; Wang, Qing

    2014-06-01

    Wetting failure is of vital importance to many physical phenomena, such as industrial coating and drop emission. Here we show when and how the surface roughness promotes the destabilization of a moving contact line on a hydrophilic surface. Beyond the balance of the driving force and viscous resistance where a stable wetting interface is sustained, wetting failure occurs and is modified by the roughness of the surface. The promoting effect arises only when the wetting velocity is high enough to create a gas-liquid-solid composite interface in the vicinity of the moving contact line, and it is a function of the intrinsic contact angle and proportion of solid tops. We propose a model to explain splashes of rough solid spheres impacting into liquids. It reveals a novel concept that dynamic wetting on hydrophilic rough surfaces can be similar to that on hydrophobic surfaces, and brings a new way to design surfaces with specific wetting properties.

  19. Pretreatment and Membrane Hydrophilic Modification to Reduce Membrane Fouling

    Directory of Open Access Journals (Sweden)

    Huaqiang Chu

    2013-09-01

    Full Text Available The application of low pressure membranes (microfiltration/ultrafiltration has undergone accelerated development for drinking water production. However, the major obstacle encountered in its popularization is membrane fouling caused by natural organic matter (NOM. This paper firstly summarizes the two factors causing the organic membrane fouling, including molecular weight (MW and hydrophilicity/hydrophobicity of NOM, and then presents a brief introduction of the methods which can prevent membrane fouling such as pretreatment of the feed water (e.g., coagulation, adsorption, and pre-oxidation and membrane hydrophilic modification (e.g., plasma modification, irradiation grafting modification, surface coating modification, blend modification, etc.. Perspectives of further research are also discussed.

  20. Recyclable hydrophilic-hydrophobic micropatterns on glass for microarray applications.

    Science.gov (United States)

    Zhang, Hua; Lee, Yong Yeow; Leck, Kwong Joo; Kim, Namyong Y; Ying, Jackie Y

    2007-04-24

    A novel method for fabricating recyclable hydrophilic-hydrophobic micropatterns on glass chips is presented. TiOx patterns (100-2000 microm) were sputtered on glass chips via a through-hole mask. The patterned chips were then vapor-coated with fluoroalkylsilane, for example, (heptadecafluoro-1,1,2,2-tetrahydrodecyl)triethoxysilane (FTES) to form a hydrophobic coating layer. The fluoroalkyl chain of FTES film on TiOx patterns was photocleaved under UV irradiation, exposing the fresh hydrophilic TiOx patterns. The resulting chip could be used multiple times by repeating the coating and photocleaving processes with negligible deterioration of the hydrophobic FTES film coated on glass. If desired, bare glass patterns could also be generated by removing the TiOx patterns with KOH. The patterned glass chips have been successfully used for microarray fabrication.

  1. Late opacification of a hydrophilic acrylic intraocular lens

    Directory of Open Access Journals (Sweden)

    Al-Bdour Muawyah

    2008-01-01

    Full Text Available Cataract extraction and intraocular lens implantation is considered to be a safe procedure in most cases. However, the new advances in the surgical technique namely phacoemulsification and hence the increased use of foldable intraocular lenses have given rise to new complications including late opacification of intraocular lenses. In this case we report late opacification of a foldable hydrophilic acrylic intraocular lens and the surgical technique for its exchange.

  2. Softec HD hydrophilic acrylic intraocular lens: biocompatibility and precision

    OpenAIRE

    Ladan Espandar; Shameema Sikder; Majid Moshirfar

    2011-01-01

    Ladan Espandar1, Shameema Sikder2, Majid Moshirfar31Department of Ophthalmology, Tulane University, New Orleans, LA, USA; 2Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA; 3John A Moran Eye Center, University of Utah, Salt Lake City, UT, USAAbstract: Intraocular lens development is driven by higher patient expectations for ideal visual outcomes. The recently US Food and Drug Administration-approved Softec HD™ lens is an aspheric, hydrophilic acrylic intraocular le...

  3. Fluctuations of water near extended hydrophobic and hydrophilic surfaces

    OpenAIRE

    Patel, Amish J.; Chandler, David

    2009-01-01

    We use molecular dynamics simulations of the SPC-E model of liquid water to derive probability distributions for water density fluctuations in probe volumes of different shapes and sizes, both in the bulk as well as near hydrophobic and hydrophilic surfaces. To obtain our results, we introduce a biased sampling of coarse-grained densities, which in turn biases the actual solvent density. The technique is easily combined with molecular dynamics integration algorithms. Our principal result is t...

  4. Hydrophilic nanoporous polystyrenes and 1,2-polybutadienes

    DEFF Research Database (Denmark)

    Guo, Fengxiao; Jankova Atanasova, Katja; Vigild, Martin Etchells;

    2008-01-01

    Nanoporous polymers from ordered block copolymers having hydrophilic cavity surfaces were successfully prepared by two methodologies: ' 1. Nanoporous polystyrenes fromPtBA-b-PS diblock or PDMS-b-PtBA-b-PS triblock copolymer precursors by atom transfer radical polymerization (ATRP), or combination...... different pathways for the conversion of the double bonds of 1,2-PB to bromoisobutyrate by using one to three steps chemical modification. Grafting polyacrylate layers of PPEGMA, PHEMA etc. onto themon...

  5. Can the hydrophilicity of functional monomers affect chemical interaction?

    Science.gov (United States)

    Feitosa, V P; Ogliari, F A; Van Meerbeek, B; Watson, T F; Yoshihara, K; Ogliari, A O; Sinhoreti, M A; Correr, A B; Cama, G; Sauro, S

    2014-02-01

    The number of carbon atoms and/or ester/polyether groups in spacer chains may influence the interaction of functional monomers with calcium and dentin. The present study assessed the chemical interaction and bond strength of 5 standard-synthesized phosphoric-acid ester functional monomers with different spacer chain characteristics, by atomic absorption spectroscopy (AAS), ATR-FTIR, thin-film x-ray diffraction (TF-XRD), scanning electron microscopy (SEM), and microtensile bond strength (μTBS). The tested functional monomers were 2-MEP (two-carbon spacer chain), 10-MDP (10-carbon), 12-MDDP (12-carbon), MTEP (more hydrophilic polyether spacer chain), and CAP-P (intermediate hydrophilicity ester spacer). The intensity of monomer-calcium salt formation measured by AAS differed in the order of 12-MDDP=10-MDP>CAP-P>MTEP>2-MEP. FTIR and SEM analyses of monomer-treated dentin surfaces showed resistance to rinsing for all monomer-dentin bonds, except with 2-MEP. TF-XRD confirmed the weaker interaction of 2-MEP. Highest µTBS was observed for 12-MDDP and 10-MDP. A shorter spacer chain (2-MEP) of phosphate functional monomers induced formation of unstable monomer-calcium salts, and lower chemical interaction and dentin bond strength. The presence of ester or ether groups within longer spacer carbon chains (CAP-P and MTEP) may affect the hydrophilicity, μTBS, and also the formation of monomer-calcium salts.

  6. Water aging reverses residual stresses in hydrophilic dental composites.

    Science.gov (United States)

    Park, J W; Ferracane, J L

    2014-02-01

    Dental composites develop residual stresses during polymerization due to shrinkage. These stresses may change with time because of relaxation and water sorption in the oral environment. This phenomenon is likely dependent on the composition of the materials, specifically their hydrophilic characteristics, and could result in deleterious stresses on restorative materials and tooth structure. The purpose of this experiment was to use the thin ring-slitting method to compare the residual stress generated within composite materials of varying hydrophilicity when aged in wet and dry conditions after polymerization. Water sorption, solubility, elastic modulus, and residual stresses were measured in 6 commercial composites/cements aged in water and dry conditions. The self-adhesive resin cement showed the highest water sorption and solubility. All composites showed initial residual contraction stresses, which were maintained when aged dry. Residual stresses in 2 of the self-adhesive cements and the polyacid-modified composite aged in wet conditions resulted in a net expansion. This experiment verified that residual shrinkage stresses in dental composites can be reversed during aging in water, resulting in a net expansion, with the effect directly related to their hydrophilic properties.

  7. A hydrophilic dental implant surface exhibits thrombogenic properties in vitro.

    Science.gov (United States)

    Hong, Jaan; Kurt, Seta; Thor, Andreas

    2013-02-01

    Surface modifications of dental implants have gained attention during several years and the thrombotic response from blood components with these materials has become more important during recent years. The aims of this study were to evaluate the thrombogenic response of whole blood, in contact with clinically used dental surfaces, Sandblasted Large grit Acid etched titanium (SLA) and Sandblasted Large grit Acid etched, and chemically modified titanium with hydrophilic properties (SLActive). An in vitro slide chamber model, furnished with heparin, was used in which whole blood came in contact with slides of the test surfaces. After incubation (60-minute rotation at 22 rpm in a 37°C water bath), blood was mixed with ethylenediaminetetraacetic acid (EDTA) or citrate, further centrifuged at +4°C. Finally, plasma was collected pending analysis. Whole blood in contact with surfaces resulted in significantly higher binding of platelets to the hydrophilic surface, accompanied by a significant increase of contact activation of the coagulation cascade. In addition, the platelet activation showed a similar pattern with a significant elevated release of β-TG from platelet granule. The conclusion that can be drawn from the results in our study is that the hydrophilic modification seems to augment the thrombogenic properties of titanium with implications for healing into bone of, that is titanium dental implants. © 2011 Wiley Periodicals, Inc.

  8. Water flow boiling behaviors in hydrophilic and hydrophobic microchannels

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chiwoong; Yu, Dongin; Kim, Moohwan [Pohang University of Science and Technology (Korea, Republic of). Dept. of Mechanical Engineering

    2009-07-01

    The wettability is one of issues on two-phase flow in a microchannel. However, previous studies of wettability effect on two-phase flow have conducted only isothermal condition. Moreover, most studies have used conventional micro/mini-tubes due to difficulties of their fabrication. The objective of our study is to understand the wettability effect on flow boiling in a rectangular microchannel. In the first, new micro-electro-mechanical-system (MEMS) fabrication technique was developed to obtain a single glass rectangular microchannel and localized six micro heaters. A photosensitive glass was used as base material. The photosensitive glass is hydrophilic, so the hydrophobic microchannel was prepared by coating SAM, flow boiling experiments were conducted in hydrophilic and hydrophobic microchannels with micro heaters. The experiment range was the mass flux of 25 and 75 kg/m{sup 2}s, the heat flux of 30 - 430 k W/m2 and quality of 0 - 0.3. A working fluid was de-ionized and degassed water. The local heat transfer coefficient was evaluated at the local micro heater section. Also, flow regimes in the microchannel were visualized by using a high-speed camera with a long-distance microscope. Heat transfer was analyzed with visualization results. Heat transfer in the hydrophobic microchannel was enhanced by higher nucleation site density and delayed local dryout. The pressure drop in the hydrophobic microchannel was higher than that in the hydrophilic microchannel. (author)

  9. Oral pulsatile delivery systems based on swellable hydrophilic polymers.

    Science.gov (United States)

    Gazzaniga, Andrea; Palugan, Luca; Foppoli, Anastasia; Sangalli, Maria Edvige

    2008-01-01

    Upon contact with aqueous fluids, swellable hydrophilic polymers undergo typical chain relaxation phenomena that coincide with a glassy-rubbery transition. In the rubbery phase, these polymers may be subject to swelling, dissolution and erosion processes or, alternatively, form an enduring gel barrier when cross-linked networks (hydrogels) are dealt with. Because of the peculiar hydration and biocompatibility properties, such materials are widely exploited in the pharmaceutical field, particularly as far as hydrophilic cellulose derivatives are concerned. In oral delivery, they have for long been employed in the manufacturing of prolonged release matrices and, more recently, for pulsatile (delayed) release devices as well. Pulsatile delivery, which is meant as the liberation of drugs following programmed lag phases, has drawn increasing interest especially in view of emerging chronotherapeutic approaches. In pursuit of pulsatile release, various design strategies have been proposed, chiefly including reservoir, capsular and osmotic formulations. In most cases, water-swellable polymers play a key role in the overall delivery mechanism after being activated by physiological media. Based on these premises, the aim of the present review is to survey the main oral pulsatile delivery systems, for which swelling, dissolution and/or erosion of hydrophilic polymers are primarily involved in the control of release.

  10. Fracture resistance of roots obturated with novel hydrophilic obturation systems

    Science.gov (United States)

    Hegde, Vibha; Arora, Shashank

    2015-01-01

    Aim: Comparative assessment of fracture resistance of roots obturated with three hydrophilic systems — novel CPoint system, Resilon/Epiphany system, and EndoSequence BC sealer; and one hydrophobic gold standard gutta-percha/AHPlus system. Materials and Methods: Ninety freshly extracted, human, single-rooted mandibular premolars were selected. The specimens were decoronated and standardized to a working length of 13 mm. The teeth were randomly divided into six groups (n = 15). In Group A, teeth were left unprepared and unfilled (negative control). Rest of the groups were prepared by using ProTaper system up to a master apical file F3; followed by which Group B was left unobturated (positive control); Group C, novel CPoint System; group D, Resilon/Epiphany system, Group E EndoSequence BC sealer, and Group F gutta-percha and AH Plus. Specimens were stored for 2 weeks at 100% humidity. Each group was then subjected to fracture testing by using a universal testing machine. The force required to fracture each specimen was recorded and the data was analyzed statistically using analysis of variance (ANOVA) test and Tukey's post-hoc test. Results: The hydrophilic obturation systems have shown to exhibit significantly higher fracture resistance as shown by the values in Groups C, D, and E (P 0.05). Conclusion: In contrast to hydrophobic systems, hydrophilic systems showed higher fracture resistance in a single-rooted premolar. PMID:26069417

  11. Resolving Isomeric Glycopeptide Glycoforms with Hydrophilic Interaction Chromatography (HILIC).

    Science.gov (United States)

    Huang, Yining; Nie, Yongxin; Boyes, Barry; Orlando, Ron

    2016-09-01

    The ability to resolve glycans while attached to tryptic peptides would greatly facilitate glycoproteomics, as this would enable site-specific glycan characterization. Peptide/glycopeptide separations are typically performed using reversed-phase liquid chromatography (RPLC), where retention is driven by hydrophobic interaction. As the hydrophilic glycans do not interact significantly with the RPLC stationary phase, it is difficult to resolve glycopeptides that differ only in their glycan structure, even when these differences are large. Alternatively, glycans interact extensively with the stationary phases used in hydrophilic interaction chromatography (HILIC), and consequently, differences in glycan structure have profound chromatographic shifts in this chromatographic mode. Here, we evaluate HILIC for the separation of isomeric glycopeptide mixtures that have the same peptide backbone but isomeric glycans. Hydrophilic functional groups on both the peptide and the glycan interact with the HILIC stationary phase, and thus, changes to either of these moieties can alter the chromatographic behavior of a glycopeptide. The interactive processes permit glycopeptides to be resolved from each other based on differences in their amino acid sequences and/or their attached glycans. The separations of glycans in HILIC are sufficient to permit resolution of isomeric N-glycan structures, such as sialylated N-glycan isomers differing in α2-3 and α2-6 linkages, while these glycans remain attached to peptides.

  12. Preparation and characterization of dopamine-decorated hydrophilic carbon black

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Lijun; Lu Yonglai [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing 100029 (China); Wang Yiqing [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing 100029 (China); Zhang Liqun [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing 100029 (China); Wang Wencai, E-mail: wangw@mail.buct.edu.cn [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing 100029 (China)

    2012-05-01

    Inspired by the bio-adhesive proteins secreted by mussels for attachment to almost all wet substrates, a facile method involving oxidative polymerization of dopamine was proposed to prepare highly hydrophilic carbon black (CB) particles. A self-assembled polydopamine (PDA) ad-layer was formed via the oxidative polymerization of dopamine on the surface of CB simply by dipping the CB into an alkaline dopamine solution and mildly stirring at room temperature. The process is simple, controllable, and environment-friendly. The surface composition and structure of the CB were characterized by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). The surface morphology of the CB was observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results showed that the PDA ad-layer was successfully deposited on the CB surfaces. The PDA-functionalized CB (CB-PDA) gave a stable colloidal dispersion in water. Contact angle measurement results indicated that the hydrophilicity of CB was significantly improved after dopamine modification. TGA results confirmed that the modified CB maintained good heat resistance. The method provided a facile route to prepare hydrophilic CB having terminal hydroxyl groups.

  13. Experimental Study of Water Transport through Hydrophilic Nanochannels

    Science.gov (United States)

    Alibakhshi, Mohammad Amin; Xie, Quan; Li, Yinxiao; Duan, Chuanhua

    2015-11-01

    In this paper, we investigate one of the fundamental aspects of Nanofluidics, which is the experimental study of water transport through nanoscale hydrophilic conduits. A new method based on spontaneous filling and a novel hybrid nanochannel design is developed to measure the pure mass flow resistance of single nanofluidic channels/tubes. This method does not require any pressure and flow sensors and also does not rely on any theoretical estimations, holding the potential to be standards for nanofluidic flow characterization. We have used this method to measure the pure mass flow resistance of single 2-D hydrophilic silica nanochannels with heights down to 7 nm. Our experimental results quantify the increased mass flow resistance as a function of nanochannel height, showing a 45% increase for a 7nm channel compared with classical hydrodynamics, and suggest that the increased resistance is possibly due to formation of a 7-angstrom-thick stagnant hydration layer on the hydrophilic surfaces. It has been further shown that this method can reliably measure a wide range of pure mass flow resistances of nanoscale conduits, and thus is promising for advancing studies of liquid transport in hydrophobic graphene nanochannels, CNTs, as well as nanoporous media. The work is supported by the American Chemical Society Petroleum Research Fund (ACS PRF # 54118-DNI7) and the Faculty Startup Fund (Boston University, USA).

  14. Anionic and cationic Hofmeister effects on hydrophobic and hydrophilic surfaces.

    Science.gov (United States)

    Schwierz, Nadine; Horinek, Dominik; Netz, Roland R

    2013-02-26

    Using a two-step modeling approach, we address the full spectrum of direct, reversed, and altered ionic sequences as the charge of the ion, the charge of the surface, and the surface polarity are varied. From solvent-explicit molecular dynamics simulations, we extract single-ion surface interaction potentials for halide and alkali ions at hydrophilic and hydrophobic surfaces. These are used within Poisson-Boltzmann theory to calculate ion density and electrostatic potential distributions at mixed polar/unpolar surfaces for varying surface charge. The resulting interfacial tension increments agree quantitatively with experimental data and capture the Hofmeister series, especially the anomaly of lithium, which is difficult to obtain using continuum theory. Phase diagrams that feature different Hofmeister series as a function of surface charge, salt concentration, and surface polarity are constructed from the long-range force between two surfaces interacting across electrolyte solutions. Large anions such as iodide have a high hydrophobic surface affinity and increase the effective charge magnitude on negatively charged unpolar surfaces. Large cations such as cesium also have a large hydrophobic surface affinity and thereby compensate an external negative charge surface charge most efficiently, which explains the well-known asymmetry between cations and anions. On the hydrophilic surface, the size-dependence of the ion surface affinity is reversed, explaining the Hofmeister series reversal when comparing hydrophobic with hydrophilic surfaces.

  15. Do surfaces with mixed hydrophilic and hydrophobic areas enhance pool boiling?

    CERN Document Server

    Betz, Amy; Qiu, Huihe; Attinger, Daniel

    2010-01-01

    We demonstrate that smooth and flat surfaces combining hydrophilic and hydrophobic patterns improve pool boiling performance. Compared to a hydrophilic surface with 7^\\circ wetting angle, the measured critical heat flux and heat transfer coefficients of the enhanced surfaces are up to respectively 65 and 100% higher. Different networks combining hydrophilic and hydrophobic regions are characterized. While all tested networks enhance the heat transfer coefficient, large enhancements of critical heat flux are typically found for hydrophilic networks featuring hydrophobic islands. Hydrophilic networks indeed are shown to prevent the formation of an insulating vapor layer.

  16. Evidence for interaction between the triheme cytochrome PpcA from Geobacter sulfurreducens and anthrahydroquinone-2,6-disulfonate, an analog of the redox active components of humic substances.

    Science.gov (United States)

    Dantas, Joana M; Morgado, Leonor; Catarino, Teresa; Kokhan, Oleksandr; Pokkuluri, P Raj; Salgueiro, Carlos A

    2014-06-01

    The bacterium Geobacter sulfurreducens displays an extraordinary respiratory versatility underpinning the diversity of electron donors and acceptors that can be used to sustain anaerobic growth. Remarkably, G. sulfurreducens can also use as electron donors the reduced forms of some acceptors, such as the humic substance analog anthraquinone-2,6-disulfonate (AQDS), a feature that confers environmentally competitive advantages to the organism. Using UV-visible and stopped-flow kinetic measurements we demonstrate that there is electron exchange between the triheme cytochrome PpcA from Gs and AQDS. 2D-(1)H-(15)N HSQC NMR spectra were recorded for (15)N-enriched PpcA samples, in the absence and presence of AQDS. Chemical shift perturbation measurements, at increasing concentration of AQDS, were used to probe the interaction region and to measure the binding affinity of the PpcA-AQDS complex. The perturbations on the NMR signals corresponding to the PpcA backbone NH and heme substituents showed that the region around heme IV interacts with AQDS through the formation of a complex with a definite life time in the NMR time scale. The comparison of the NMR data obtained for PpcA in the presence and absence of AQDS showed that the interaction is reversible. Overall, this study provides for the first time a clear illustration of the formation of an electron transfer complex between AQDS and a G. sulfurreducens triheme cytochrome, shedding light on the electron transfer pathways underlying the microbial oxidation of humics.

  17. Spectral and Polarizing Properties of Anisotropic Films Based on Polyvinyl Alcohol and 4,4'-Bis[4-(Phenylamino)-6-(Methoxy-1,3,5-Triazin-2-YL) Amino]Stilbene-2,2'-Disulfonic Acid

    Science.gov (United States)

    Bondarev, S. L.; Ariko, N. G.; Filippovich, L. N.; Karoza, A. G.; Stupak, A. P.

    2016-09-01

    The spectral and polarization characteristics of optically anisotropic polyvinyl alcohol (PVA) films containing 4,4'-bis[4-(phenylamino)-6-(methoxy-1,3,5-triazin-2-yl)amino]stilbene-2,2'-disulfonic acid as dichroic dye, which has intense blue fluorescence, were investigated by polarized luminescence and absorptionspectroscopy in the IR and UV regions. With fourfold uniaxial stretching of the film the orientation parameter of the dye amounts to 0.82-0.86, the maximum polarizing ability of the film is 96% (at the maximum of the absorption band at 375 nm), and the degree of polarization and quantum yield of fluorescence at the optimum concentration of the dye amount to 0.90 and 0.91. The degree of orientation of the dye molecules depends weakly on the concentration (0.01-0.50 wt.%) and increases with increase of the uniaxial stretching of the film. The insertion of the dye molecules between the PVA chains leads to a reduction of the crystallinity of the polymeric matrix.

  18. Dequenching of Cu(I)-bathocuproine disulfonate complexes for high-performance liquid chromatographic determination of phytochelatins, heavy-metal-binding peptides produced by the primitive red alga Cyanidioschyzon merolae.

    Science.gov (United States)

    Shirabe, Tomoo; Ito, Kyoko; Yoshimura, Etsuro

    2008-12-01

    A novel method has been devised for the determination of phytochelatins (PCs), heavy-metal-tolerant peptides produced by higher plants and algae. The method is based on the facts that fluorescence of bathocuproine disulfonate (BCS) is quenched by Cu(I) ions as a result of Cu(I)-BCS complex formation and that PCs compete with BCS for Cu(I). Detection of PCs via recovered fluorescence of BCS using the Cu(I)-BCS complex as a postcolumn reagent, following separation of peptides on an octyldecylsilane column, demonstrated a highly sensitive method for determination of PCs. PCs in the primitive red alga, Cyanidioschyzon merolae, grown in the presence or absence of added Cd(II) were successfully determined by this protocol. Unlike other methods for the determination of PCs, which rely on the SH groups in the peptides, the proposed method is unique in that detection is based on the chemical nature of PCs, which favors the formation of complexes with Cu(I). In this context, the new method yields chromatograms based on the strength of binding Cu(I) ions.

  19. 烷基二苯醚双磺酸盐的合成及应用研究进展%Advances in synthesis and applications of alkyl diphenyloxide disulfonates

    Institute of Scientific and Technical Information of China (English)

    刘晓臣; 牛金平

    2012-01-01

    Advances in synthesis and applications of alkyl diphenyloxide disulfonate were reviewed. Corresponding catalysts for alkylation of diphenyloxide with alkyl ha/ides, olefins or fatty alcohols as alkylating agent, and applications of alkyl diphenyloxide disuffonates in emulsion polymerization, concentrated liquid detergent and tertiary oil recovery were mainly introduced. It is considered that both alkylation catalyst for fatty alcohol and particular reactor suited for highly viscous sulfonates should be developed.%介绍了烷基二苯醚双磺酸盐的合成及应用研究进展。重点阐述了卤代烷、烯烃和脂肪醇为烷基化剂时相应的烷基化催化剂以及烷基二苯醚双磺酸盐在乳液聚合、浓缩液洗和三次采油中的应用。提出应开发脂肪醇为烷基化剂的催化剂和适合高黏度磺化产物的磺化反应器。

  20. Changing water affinity from hydrophobic to hydrophilic in hydrophobic channels.

    Science.gov (United States)

    Ohba, Tomonori; Yamamoto, Shotaro; Kodaira, Tetsuya; Hata, Kenji

    2015-01-27

    The behavior of water at hydrophobic interfaces can play a significant role in determining chemical reaction outcomes and physical properties. Carbon nanotubes and aluminophosphate materials have one-dimensional hydrophobic channels, which are entirely surrounded by hydrophobic interfaces. Unique water behavior was observed in such hydrophobic channels. In this article, changes in the water affinity in one-dimensional hydrophobic channels were assessed using water vapor adsorption isotherms at 303 K and grand canonical Monte Carlo simulations. Hydrophobic behavior of water adsorbed in channels wider than 3 nm was observed for both adsorption and desorption processes, owing to the hydrophobic environment. However, water showed hydrophilic properties in both adsorption and desorption processes in channels narrower than 1 nm. In intermediate-sized channels, the hydrophobic properties of water during the adsorption process were seen to transition to hydrophilic behavior during the desorption process. Hydrophilic properties in the narrow channels for both adsorption and desorption processes are a result of the relatively strong water-channel interactions (10-15 kJ mol(-1)). In the 2-3 nm channels, the water-channel interaction energy of 4-5 kJ mol(-1) was comparable to the thermal translational energy. The cohesive water interaction was approximately 35 kJ mol(-1), which was larger than the others. Thus, the water affinity change in the 2-3 nm channels for the adsorption and desorption processes was attributed to weak water-channel interactions and strong cohesive interactions. These results are inherently important to control the properties of water in hydrophobic environments.

  1. Skin Delivery of Hydrophilic Biomacromolecules Using Marine Sponge Spicules.

    Science.gov (United States)

    Zhang, Saiman; Ou, Huilong; Liu, Chunyun; Zhang, Yuan; Mitragotri, Samir; Wang, Dexiang; Chen, Ming

    2017-09-05

    We report the development of sponge Haliclona sp. spicules, referred to as SHS, and its topical application in skin delivery of hydrophilic biomacromolecules, a series of fluorescein isothiocyanate-dextrans (FDs). SHS are silicious oxeas which are sharp-edged and rod-shaped (∼120 μm in length and ∼7 μm in diameter). SHS can physically disrupt skin in a dose-dependent manner and retain within the skin over at least 72 h, which allows sustained skin penetration of hydrophilic biomacromolecules. The magnitude of enhancement of FD delivery into skin induced by SHS treatment was dependent on its molecular weight. Specifically, SHS topical application enhanced FD-10 (MW: 10 kDa) penetration into porcine skin in vitro by 33.09 ± 7.16-fold compared to control group (p < 0.01). SHS dramatically increased the accumulation of FD-10 into and across the dermis by 62.32 ± 13.48-fold compared to the control group (p < 0.01). In vivo experiments performed using BALB/c mice also confirmed the effectiveness of SHS topical application; the skin absorption of FD-10 with SHS topical application was 72.14 ± 48.75-fold (p < 0.05) and 15.39 ± 9.91-fold (p < 0.05) higher than those from the PBS and Dermaroller microneedling, respectively. Further, skin irritation study and transepidermal water loss (TEWL) measurement using guinea pig skin in vivo indicated that skin disruption induced by SHS treatment is self-limited and can be recovered with time and efficiently. SHS can offer a safe, effective, and sustained skin delivery of hydrophilic biomacromolecules and presents a promising platform technology for a wide range of cosmetic and medical applications.

  2. Periodicity-dependent stiffness of periodic hydrophilic-hydrophobic heteropolymers

    Science.gov (United States)

    Chowdhury, Debashish; Stauffer, Dietrich; Strey, Reinhard

    1999-08-01

    From extensive Monte Carlo simulations of a Larson model of perfectly periodic heteropolymers (PHP) in water, a striking stiffening is observed as the period of the alternating hydrophobic and hydrophilic blocks is shortened. At short period and low temperature needlelike conformations are the stable conformations. As temperature is increased thermal fluctuations induce kinks and bends. At large periods compact oligomeric globules are observed. From the generalized Larson prescription, originally developed for modeling surfactant molecules in aqueous solutions, we find that the shorter the period is the more stretched the PHP is. This novel effect is expected to stimulate polymer synthesis and trigger research on the rheology of aqueous periodic heteropolymer solutions.

  3. Hydrophilic-oleophobic stimuli-responsive materials and surfaces

    Science.gov (United States)

    Howarter, John A.

    Due to their high surface energy, hydrophilic surfaces are susceptible to contamination which is difficult to remove and often ruins the surface. Hydrophilic-oleophobic coatings have a diverse engineering potential including applications as self-cleaning surfaces, extended life anti-fog coatings, and environmental remediation in the selective filtration of oil-in-water mixtures. A successful design model for hydrophilic-oleophobic behavior has been developed using perfluorinated surfactants covalently bound to a surface. Within this design model, a variety of materials have been explored which the surfactants are covalently bound to a substrate; similarly, the surfactants may also be incorporated as a monomer into bulk copolymers. Surfactant based surfaces exhibited simultaneous hydrophilicity, necessary for anti-fogging, and oleophobicity, necessary for contamination resistance. The combination of these features rendered the surface as self-cleaning. Surfactant based brushes, composed of polyethylene glycol and perfluorinated constituents were grafted on to silica surfaces. The relationship between brush density and stimuli-responsiveness was determined by varying grafting conditions. The resultant surfaces were characterized with respect to chemical composition, brush thickness, and wetting behavior of water and hexadecane. Optimized surfaces exhibited stimuli-responsive behavior such that the surfaces will be wetted by water but not by oil. Surfactants were incorporated into random copolymers to create self-cleaning polymers which could be easily coated on to surfaces post-synthesis. Acrylic acid, methyl methacrylate, and hydroxyethyl methacrylate were used as comonomers; feed ratio was varied to establish compositional limits of stimuli-responsive behavior. Polymer composition dictated coating durability and self-cleaning performance as determined by water and hexadecane contact angle. The ability of select coatings to mitigate fogging was assessed in two

  4. Fabrication of zero contact angle ultra-super hydrophilic surfaces.

    Science.gov (United States)

    Jothi Prakash, C G; Clement Raj, C; Prasanth, R

    2017-01-05

    Zero contact angle surfaces have been created with the combined effect of nanostructure and UV illumination. The contact angle of titanium surface has been optimized to 3.25°±1°. with nanotubular structures through electrochemical surface modification. The porosity and surface energy of tubular TiO2 layer play critical role over the surface wettability and the hydrophilicity of the surface. The surface free energy has been enhanced from 23.72mJ/m(2) (bare titanium surface) to 87.11mJ/m(2) (nanotubular surface). Similar surface with TiO2 nanoparticles coating shows superhydrophilicity with contact angle up to 5.63°±0.95°. This implies liquid imbibition and surface curvature play a crucial role in surface hydrophilicity. The contact angle has been further reduced to 0°±0.86° by illuminating the surface with UV radiation. Results shows that by tuning the nanotube morphology, highly porous surfaces can be fabricated to reduce contact angle and enhance wettability. This study provides an insight into the inter-relationship between surface structural factors and ultra-superhydrophilic surfaces which can help to optimize thermal hydraulic and self cleaning surfaces.

  5. Properties of Hydrophilic Mineral Wool for Desalination of Historical Masonry

    Directory of Open Access Journals (Sweden)

    Iñigo ANTEPARA

    2016-05-01

    Full Text Available Hydrophilic mineral wool (HMW is considered as a possible alternative to the commonly used cellulose in desalination of historical masonry. HMW also allows water and salt solutions transport along the hydrophilic fibres, which is the necessary condition for its possible application for desalination measures, but contrary to cellulose it is inorganic material, which reduces maintenance of the poultice. On this account, the hygric transport and storage properties of newly developed HMW is determined in the paper. In order to get detailed information on HMW performance, its thermal properties are measured as well. For its basic characterization, bulk density, matrix density, saturation moisture and salt content, and apparent total open porosity are accessed. The results are in good agreement with those published in literature for similar types of HMW. The process of drying of three different types of sandstone, as typical materials frequently used in historical buildings, using HMW board is monitored to analyse the practical applicability of the proposed desalination treatment. The obtained results show that HMW slows the drying process. However, the final level of drying is the same as without the HMW, which indicates the possible applicability of studied HMW for desalination purposes.

  6. ENHANCED OIL RECOVERY BY FLOODING WITH HYDROPHILIC NANOPARTICLES

    Institute of Scientific and Technical Information of China (English)

    Binshan Ju; Tailiang Fan; Mingxue Ma

    2006-01-01

    In this paper, the mechanism of enhanced oil recovery using lipophobic and hydrophilic polysilicon (LHP)nanoparticles ranging in size from 10 to 500 nm for changing the wettability of porous media was analysed theoretically. A one-dimensional two-phase mathematical model considering the migration and adsorption of LHP and wettability change in reservoir rock was proposed, and a simulator was developed to quantitatively predict the changes in relative and effective permeability of the oil and water phases and the oil recovery in sandstone after water driving. Numerical simulations were conducted to study the distribution of the particle concentration, the reduction in porosity and absolute permeability, the LHP volume retention on pore walls and in pore throats along a dimensionless distance, and oil production performance. In conclusion, oil recovery can obviously be improved by flooding with hydrophilic nanometer powders though permeability declines for the retention of nanoparticles in porous media. It is suggested that an LHP concentration ranging from 0.02 to 0.03 is preferable to enhance oil recovery.

  7. Unusual properties of water at hydrophilic/hydrophobic interfaces.

    Science.gov (United States)

    Gun'ko, V M; Turov, V V; Bogatyrev, V M; Zarko, V I; Leboda, R; Goncharuk, E V; Novza, A A; Turov, A V; Chuiko, A A

    2005-12-30

    The behaviour of water at mosaic hydrophilic/hydrophobic surfaces of different silicas and in biosystems (biomacromolecules, yeast cells, wheat seeds, bone and muscular tissues) was studied in different dispersion media over wide temperature range using 1H NMR spectroscopy with layer-by-layer freezing-out of bulk water (close to 273 K) and interfacial water (180 water and water bound to hydrophilic/hydrophobic interfaces can be assigned to different structural types. There are (i) weakly associated interfacial water (1H NMR chemical shift delta(H) = 1.1-1.7 ppm) that can be assigned to high-density water (HDW) with collapsed structure (CS), representing individual molecules in hydrophobic pockets, small clusters and interstitial water with strongly distorted hydrogen bonds or without them, and (ii) strongly associated interfacial water (delta(H) = 4-5 ppm) with larger clusters, nano- and microdomains, and continuous interfacial layer with both HDW and low-density water (LDW). The molecular mobility of weakly associated bound water is higher (because hydrogen bonds are distorted and weakened and their number is smaller than that for strongly associated water) than that of strongly associated bound water (with strong hydrogen bonds but nevertheless weaker than that in ice Ih) that results in the difference in the temperature dependences of the 1H NMR spectra at T waters are also appear in changes in the IR and TSDC spectra.

  8. Stability of triglyceride liquid films on hydrophilic and hydrophobic glasses.

    Science.gov (United States)

    Vazquez, Rosa; Nogueira, Rui; Orfão, Marta; Mata, José Luís; Saramago, Benilde

    2006-07-01

    Wetting and dewetting of solid surfaces by oily fluids were investigated in terms of the stability of the liquid film formed between an air bubble and the solid surface. With the objective of understanding how molecules with low polarity but relatively complex molecular structure behave at the solid/liquid interface, three liquid triglycerides with different chain length and saturation were chosen, namely, tributyrin, tricaprylin, and triolein. Tributyrin and tricaprylin exist in milkfat while triolein is present in vegetable oils. The stability of the liquid films may be inferred from the shape of the disjoining pressure isotherms, which represent the dependence of the disjoining pressure on the film thickness. Disjoining pressure isotherms for films of the three triglycerides on hydrophilic and hydrophobic glasses were obtained using a recently developed apparatus, based on the interferometric technique. The experimental curves are compared with the theoretical predictions of London-Hamaker. The deviations between theory and experiment are interpreted in terms of a structural component of the disjoining pressure. All triglycerides form metastable films on both hydrophilic and hydrophobic glasses which means that for disjoining pressures higher than a critical value, pi(c), a wetting transition occurs and the film ruptures. The mechanisms for film rupture are discussed and a correlation between film stability and the apolar (Lifshitz-van der Waals) and the polar components of the spreading coefficient is proposed.

  9. Research on the Hydrophilic Modified of LDPE for the New Biological Suspended Filler

    Directory of Open Access Journals (Sweden)

    Kang Weijia

    2016-01-01

    Full Text Available Urban sewage is one of the main pollution sources of the city, which pollute soil, deteriorate the water quality and increase the water shortages and urban load. LDPE is low cost and widely used as the basic material of wastewater treatment, but LDPE’s hydrophilic is not good enough to meet the need of suspended filler in wastewater treatment. In this paper the hydrophilic modified of LDPE for the new biological suspended filler was studied and the preparation and processing technique based on LDPE was researched. The hydrophilic and mechanic performance of the hydrophilic modified materials was tested. Results shown that the new type of hydrophilic modified materials has good hydrophilic and meets the demand of urban sewage treatment. The research on the new suspended filler materials has great meaning in solving the problem of urban sewage and recycling.

  10. 电解质对十二烷基二苯醚双磺酸钠与癸烷间界面张力的影响%Effect of electrolyte on interface tension between disodium dodecyl diphenyloxide disulfonate and decane

    Institute of Scientific and Technical Information of China (English)

    刘晓臣; 沈宏; 牛金平; 王晓宇

    2015-01-01

    The effect of electrolyte (NaCl, CaCl2 and MgCl2) on interfacial tension of disodium dodecyl di⁃phenyloxide disulfonate aqueous solution and decane was investigated. Addition of NaCl, CaCl2 or MgCl2 could decrease interfacial tension, and the interfacial tension could be kept in the range of 10-1 mN/m. The time re⁃quired for interfacial tension to reach equilibrium decreased with the increase of electrolyte concentration. Ef⁃fect of CaCl2 and MgCl2 concentration on equilibrium interfacial tension was almost the same. When NaCl and CaCl2 were added at the same time, effect of CaCl2 concentration on the time required for interfacial tension reaching equilibrium decreased with the NaCl concentration increasing.%研究了电解质NaCl、CaCl2和MgCl2对十二烷基二苯醚双磺酸钠水溶液/癸烷间界面张力的影响.NaCl、CaCl2和MgCl2的加入可以降低界面张力,且界面张力保持在10-1 mN/m数量级.随着电解质浓度的增加,界面张力达到平衡所需时间减少.CaCl2和MgCl2质量浓度对平衡界面张力的影响基本一致.同时加入电解质NaCl和CaCl2,当NaCl质量浓度增大时,CaCl2质量浓度对界面张力达到平衡所需时间的影响减小.

  11. Heterojunction of hydrophobic poly(1,4-phenylenevinylene) and hydrophilic PEDOT:PSS on hydrophilic CdS nanoparticles.

    Science.gov (United States)

    Lee, Wonjoo; Baek, Su Jin; Min, Sun Ki; Cai, Gangri; Lee, Joong Ki; Cho, Byung Won; Lee, Soo-Hyoung; Han, Sung-Hwan

    2008-09-01

    Heterojunction of hydrophobic poly(1,4-phenylenevinylene) (PPV) on hydrophilic CdS nanoparticles was successfully prepared by the multi-layering of poly(p-xylene tetrahydrothiophenium chloride) (pre-PPV: precursor of PPV polymer) and poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) (PEDOT:PSS) in an aqueous solution followed by a thermal treatment. CdS nanoparticles thin films were prepared on tin-doped indium oxide (ITO) by a chemical-bath-deposition method. The CdS surface was hydrophilic with low water contact angle of 15 degrees. Positively charged and water-soluble pre-PPV was used to form multilayers with PEDOT:PSS by a layer-by-layer deposition method. Pre-PPV is easily converted to conjugated PPV polymer by a thermal treatment. The CdS nanoparticles-(PPV/PEDOT:PSS) multilayer films constitute efficient acceptor-sensitizer dyad systems, which generate a photocurrent of 2,660 nA/cm2 under the air mass (AM) 1.5 conditions (I=100 mW/cm2) for sample with 4.5 bilayers.

  12. Separation of carbohydrates using hydrophilic interaction liquid chromatography.

    Science.gov (United States)

    Fu, Qing; Liang, Tu; Li, Zhenyu; Xu, Xiaoyong; Ke, Yanxiong; Jin, Yu; Liang, Xinmiao

    2013-09-20

    A strategy was developed to rapidly evaluate chromatographic properties of hydrophilic interaction chromatography (HILIC) columns for separating carbohydrates. Seven HILIC columns (Silica, Diol, TSK Amide-80, XAmide, Click Maltose, Click β-CD, and Click TE-Cys columns) were evaluated by using three monosaccharide and seven disaccharides as probes. The influence of column temperature on the peak shape and tautomerization of carbohydrates, as well as column selectivity were investigated. The influence of surface charge property on the retention was also studied by using glucose, glucuronic acid, and glucosamine, which indicated that buffer salt concentration and pH value in mobile phase was necessary to control the ionic interactions between ionic carbohydrates and HILIC columns. According to evaluation results, the XAmide column was selected as an example to establish experimental schemes for separation of complex mixtures of oligosaccharide.

  13. Kinetics of aqueous lubrication in the hydrophilic hydrogel Gemini interface.

    Science.gov (United States)

    Dunn, Alison C; Pitenis, Angela A; Urueña, Juan M; Schulze, Kyle D; Angelini, Thomas E; Sawyer, W Gregory

    2015-12-01

    The exquisite sliding interfaces in the human body share the common feature of hydrated dilute polymer mesh networks. These networks, especially when they constitute a sliding interface such as the pre-corneal tear film on the ocular interface, are described by the molecular weight of the polymer chains and a characteristic size of a minimum structural unit, the mesh size, ξ. In a Gemini interface where hydrophilic hydrogels are slid against each other, the aqueous lubrication behavior has been shown to be a function of sliding velocity, introducing a sliding timescale competing against the time scales of polymer fluctuation and relaxation at the surface. In this work, we examine two recent studies and postulate that when the Gemini interface slips faster than the single-chain relaxation time, chains must relax, suppressing the amplitude of the polymer chain thermal fluctuations.

  14. [Analysis of carbapenems by hydrophilic interaction chromatography and its application].

    Science.gov (United States)

    Zhu, Yinfang; Ji, Shunli; Li, Shaohui; Li, Cheng; Zhang, Feifang; Liang, Xinmiao

    2015-09-01

    A hydrophilic interaction chromatographic (HILIC) method has been developed for the determination of the four carbapenems in human urine and tap water. The parameters including acetonitrile amount, buffer concentration and pH on the retention behavior of the four carbapenem antibiotics on an XAmide column were explored and the possible HILIC retention mechanism was proposed. Good linearities were obtained over the mass concentration ranges of 0.1-250 mg/L for biapenem, doripenem and ertapenem with correlation coefficients (R2) = 0.999 9 and while it was 0.5-250 mg/L with R2 = 0.999 8 for meropenem. The limits of quantification (LOQs) of all carbapenems were 0.1-0.5 mg/L. The spiked recoveries were within 100.4%-111.9% (RSD carbapenems in human urine samples and tap water samples.

  15. Estimation hydrophilic-lipophilic balance number of surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Pawignya, Harsa, E-mail: harsa-paw@yahoo.co.id [Chemical Engineering Department Diponegoro University (Indonesia); Chemical Engineering Departement University of Pembangunan Nasional Yogyakarta (Indonesia); Prasetyaningrum, Aji, E-mail: ajiprasetyaningrum@gmail.com; Kusworo, Tutuk D.; Pramudono, Bambang, E-mail: Pramudono2004@yahoo.com [Chemical Engineering Department Diponegoro University (Indonesia); Dyartanti, Endah R. [Chemical Engineering Department Diponegoro University (Indonesia); Chemical Enginering Departement Sebelas Maret University (Indonesia)

    2016-02-08

    Any type of surfactant has a hydrophilic-lipophilic balance number (HLB number) of different. There are several methods for determining the HLB number, with ohysical properties of surfactant (solubility cloud point and interfacial tension), CMC methods and by thermodynamics properties (Free energy Gibbs). This paper proposes to determined HLB numbers from interfelation methods. The result of study indicated that the CMC method described by Hair and Moulik espesially for nonionic surfactant. The application of exess Gibbs free energy and by implication activity coefficient provides the ability to predict the behavior of surfactants in multi component mixtures of different concentration. Determination of HLB number by solubility and cloud point parameter is spesific for anionic and nonionic surfactant but this methods not available for cationic surfactants.

  16. Transforming plastic surfaces with electrophilic backbones from hydrophobic to hydrophilic.

    Science.gov (United States)

    Kim, Samuel; Bowen, Raffick A R; Zare, Richard N

    2015-01-28

    We demonstrate a simple nonaqueous reaction scheme for transforming the surface of plastics from hydrophobic to hydrophilic. The chemical modification is achieved by base-catalyzed trans-esterification with polyols. It is permanent, does not release contaminants, and causes no optical or mechanical distortion of the plastic. We present contact angle measurements to show successful modification of several types of plastics including poly(ethylene terephthalate) (PET) and polycarbonate (PC). Its applicability to blood analysis is explored using chemically modified PET blood collection tubes and found to be quite satisfactory. We expect this approach will reduce the cost of manufacturing plastic devices with optimized wettability and can be generalized to other types of plastic materials having an electrophilic linkage as its backbone.

  17. Stability and selectivity of alkaline proteases in hydrophilic solvents

    DEFF Research Database (Denmark)

    Pedersen, Lars Haastrup; Ritthitham, Sinthuwat; Pleissner, Daniel

    2008-01-01

    proteases, but at higher concentrations and particularly in anhydrous systems most enzymes including alkaline proteases will denature and consequently loose activity [1]. However, partial denaturing and increased structural flexibility due to the interaction between hydrophilic solvents and alkaline...... proteases has been agued as the primary reasons for increasing activity, influencing regio-selectivity and improving the enantio-selectivity of these enzymes [2]. Alkaline proteases have been shown to be active not only on peptides, but on a wide range of renewable resources for synthesis of biologically...... active molecules and carriers, and in synthesis of carbohydrate derivatives with designed functional properties.  When it comes to regio-selectivity of alkaline proateses on carbohydrates both the properties of the particular enzyme and the influence of the solvent is determining for the position...

  18. Hydrophilic carbon clusters as therapeutic, high capacity antioxidants

    Science.gov (United States)

    Samuel, Errol L. G.; Duong, MyLinh T.; Bitner, Brittany R.; Marcano, Daniela C.; Tour, James M.; Kent, Thomas A.

    2014-01-01

    Oxidative stress reflects an excessive accumulation of reactive oxygen species (ROS) and is a hallmark of several acute and chronic human pathologies. While many antioxidants have been investigated, the majority have demonstrated poor efficacy in clinical trials. Here, we discuss limitations of current antioxidants and describe a new class of nanoparticle antioxidants, poly(ethylene glycol)-functionalized hydrophilic carbon clusters (PEG-HCCs). PEG-HCCs show high capacity to annihilate ROS such as superoxide and hydroxyl radicals, show no reactivity toward nitric oxide, and can be functionalized with targeting moieties without loss of activity. Given these properties, we propose that PEG-HCCs offer an exciting new area of study for treatment of numerous ROS-induced human pathologies. PMID:25175886

  19. Preparation and dyeing of super hydrophilic polyethylene terephthalate fabric

    Science.gov (United States)

    Zheng, D. D.; Zhou, J. F.; Xu, F.; Zhang, F. X.; Zhang, G. X.

    2016-07-01

    In this study, the dyeing properties of PET fabrics modified with sulfuric acid was investigated using disperse red E-4B and disperse blue 2BLNG-L at high temperature and high pressure. The results revealed that the sulfuric acid modification improved the K/S value of dyeing PET fabrics, and the modified PET fabric could be dyed uniformly. The a, b, C, L and H of modified PET fabric were almost the same as that of original PET fabric. The water contact angles were still 0o after 10s, indicating that the hydrophilic property of modified PET fabrics still kept excellent. The wash fastness of dyed PET fabrics after modification was generally good.

  20. Droplet Transport Mechanism on Horizontal Hydrophilic/Hydrophobic Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Myong, Hyon Kook [Kookmin University, Seoul (Korea, Republic of)

    2014-06-15

    A fluid transport technique is a key issue for the development of microfluidic systems. In this study, the movement of a droplet on horizontal hydrophilic/hydrophobic surfaces, which is a new concept to transport droplets without external power sources that was recently proposed by the author, was simulated using an in-house solution code(PowerCFD). This code employs an unstructured cell-centered method based on a conservative pressure-based finite-volume method with interface capturing method(CICSAM) in a volume of fluid(VOF) scheme for phase interface capturing. The droplet transport mechanism is examined through numerical results that include velocity vectors, pressure contours, and total kinetic energy inside and around the droplet.

  1. Influence of roughness on capillary forces between hydrophilic surfaces

    Science.gov (United States)

    van Zwol, P. J.; Palasantzas, G.; de Hosson, J. Th. M.

    2008-09-01

    Capillary forces have been measured by atomic force microscopy in the plate-sphere setup between gold, borosilicate glass, GeSbTe, titanium, and UV-irradiated amorphous titanium-dioxide surfaces. The force measurements were performed as a function contact time and surface roughness in the range 0.2-15nm rms and relative humidity ranging between 2% and 40%. It is found that even for the lowest attainable relative humidity (˜2%±1%) very large capillary forces are still present. The latter suggests the persistence of a nanometers-thick adsorbed water layer that acts as a capillary bridge between contacting surfaces. Moreover, we found a significantly different scaling behavior of the force with rms roughness for materials with different hydrophilicity as compared to gold-gold surfaces.

  2. Controlled release of hydrophilic guest molecules from photoresponsive nucleolipid vesicles.

    Science.gov (United States)

    Sun, Yawei; Yan, Yongfeng; Wang, Mingqing; Chen, Cuixia; Xu, Hai; Lu, Jian R

    2013-07-10

    Amphiphilic hybrid nucleolipids bear the structural and functional hallmarks of both lipids and nucleic acids and hold great potential for biotechnological applications. However, further tailoring of their structures and properties for specific applications represents a major challenge. We here report a novel design and synthesis of a light-responsive nucleolipid by introducing an o-nitrobenzyl group that acts as a linker between a nucleotide and a lipid. The nucleolipid was applied readily to preparing smart vesicles and encapsulating hydrophilic guest molecules 5(6)-carboxyfluorescein (CF) in their inner aqueous phase. Upon light irradiation, their vesicular structure was disrupted as a result of the photolytic degradation of the nucleotide, resulting in CF release. Furthermore, temporally controlled CF release from these vesicles could be readily realized by turning on and off light. By demonstrating the molecular assembly and photodisassembly cycle, this report aims to stimulate further research exploring practical applications of nucleolipids.

  3. Hydrophilic and size-controlled graphene nanopores for protein detection

    Science.gov (United States)

    Goyal, Gaurav; Bok Lee, Yong; Darvish, Armin; Ahn, Chi Won; Kim, Min Jun

    2016-12-01

    This paper describes a general approach for transferring clean single-layer graphene onto silicon nitride nanopore devices and the use of the electron beam of a transmission electron microscope (TEM) to drill size-controlled nanopores in freely suspended graphene. Besides nanopore drilling, we also used the TEM to heal and completely close the unwanted secondary holes formed by electron beam damage during the drilling process. We demonstrate electron beam assisted shrinking of irregularly shaped 40-60 nm pores down to 2 nm, exhibiting an exquisite control of graphene nanopore diameter. Our fabrication workflow also rendered graphene nanopores hydrophilic, allowing easy wetting and use of the pores for studying protein translocation and protein-protein interaction with a high signal to noise ratio.

  4. Understanding the drop impact on moving hydrophilic and hydrophobic surfaces.

    Science.gov (United States)

    Almohammadi, H; Amirfazli, A

    2017-03-08

    In this paper, a systematic study was performed to understand the drop impact on hydrophilic and hydrophobic surfaces that were moving in the horizontal direction. Drops (D0 = 2.5 mm) of liquids with three different viscosities were used. Wide ranges of drop normal velocity (0.5 to 3.4 m s(-1)) and surface velocity (0 to 17 m s(-1)) were studied. High speed imaging from the top and side was used to capture the impact phenomena. It was found that drop impact behavior on a moving surface significantly differs from that on a stationary surface at both the lamella extension stage (i.e. t ≤ tmax) and the retraction stage (t > tmax). Starting with the lamella extension stage, it was observed that the drop spreads asymmetrically over a moving surface. It was also found that the splashing behavior of the drop upon impact on a moving surface, unlike the understanding in the literature, is azimuthally different along the lamella contact line. In the case of the drop spreading over a moving surface, the surface movement stretches the expanded lamella in the direction of the surface motion. For hydrophilic surfaces, the stretched lamella pins to the surface and moves with the surface velocity; however, for hydrophobic surfaces, the lamella recoils during such stretching. A new model was developed to determine the splashing threshold of the drop impact on a moving surface. The model is capable of describing the azimuthally different behavior of the splashing which is a function of normal capillary and Weber numbers, surface velocity, and surface wettability. It was also found that the increase of the viscosity decreases the splashing threshold. Finally, comprehensive regime maps of the drop impact outcome on a moving surface were provided for both t ≤ tmax and t > tmax stages.

  5. Selective enrichment and desalting of hydrophilic peptides using graphene oxide.

    Science.gov (United States)

    Jiang, Miao; Qi, Linyu; Liu, Peiru; Wang, Zijun; Duan, Zhigui; Wang, Ying; Liu, Zhonghua; Chen, Ping

    2016-08-01

    The wide variety and low abundance of peptides in tissue brought great difficulties to the separation and identification of peptides, which is not in favor of the development of peptidomics. RP-HPLC, which could purify small molecules based on their hydrophobicity, has been widely used in the separation and enrichment of peptide due to its fast, good reproducibility and high resolution. However, RP-HPLC requires the instrument and expensive C18 column and its sample capacity is also limited. Recently, graphene oxide has been applied to the adsorption of amino acids. However, the enrichment efficiency and selectivity of graphene oxide for peptides remain unclear. In this study, the adsorption efficiency and selectivity of graphene oxide and RP-C18 matrix were compared on trypsinized α-actin and also on tissue extracts from pituitary gland and hippocampus. For α-actin, there exhibit similar elution peaks for total trypsinized products and those adsorpted by GO and C18 matrix. But peptides adsorbed by GO showed the higher hydrophilic peaks than which adsorbed by C18 matrix. The resulted RP-HPLC profile showed that most of peptides enriched by graphene oxide were eluted at low concentration of organic solvent, while peptides adsorbed by RP-C18 matrix were mostly eluted at relatively high concentration. Moreover, mass spectrometry analysis suggested that, in pituitary sample, there were 495 peptides enriched by graphene oxide, 447 peptides enriched by RP-C18 matrix while in hippocampus sample 333 and 243 peptides respectively. The GRAVY value analysis suggested that the graphene oxide has a stronger adsorption for highly hydrophilic peptides compared to the RP-C18 matrix. Furthermore, the combination of these two methods could notably increase the number of identification peptides but also the number of predicted protein precursors. Our study provided a new thought to the role of graphene oxide during the enrichment of peptides from tissue which should be useful for

  6. Staphylococcus epidermidis adhesion on hydrophobic and hydrophilic textured biomaterial surfaces.

    Science.gov (United States)

    Xu, Li-Chong; Siedlecki, Christopher A

    2014-06-01

    It is of great interest to use nano- or micro-structured surfaces to inhibit microbial adhesion and biofilm formation and thereby to prevent biomaterial-associated infection, without modification of the surface chemistry or bulk properties of the materials and without use of the drugs. Our previous study showed that a submicron textured polyurethane surface can inhibit staphylococcal bacterial adhesion and biofilm formation. To further understand the effect of the geometry of textures on bacterial adhesion as well as the underlying mechanism, in this study, submicron and micron textured polyurethane surfaces featuring ordered arrays of pillars were fabricated and modified to have different wettabilities. All the textured surfaces were originally hydrophobic and showed significant reductions in Staphylococcus epidermidis RP62A adhesion in phosphate buffered saline or 25% platelet poor plasma solutions under shear, as compared to smooth surfaces. After being subjected to an air glow discharge plasma treatment, all polyurethane surfaces were modified to hydrophilic, and reductions in bacterial adhesion on surfaces were subsequently found to be dependent on the size of the patterns. The submicron patterned surfaces reduced bacterial adhesion, while the micron patterned surfaces led to increased bacterial adhesion. The extracellular polymeric substances (EPS) from the S. epidermidis cell surfaces were extracted and purified, and were coated on a glass colloidal surface so that the adhesion force and separation energy in interactions of the EPS and the surface could be measured by colloidal probe atomic force microscopy. These results were consistent with the bacterial adhesion observations. Overall, the data suggest that the increased surface hydrophobicity and the decreased availability of the contact area contributes to a reduction in bacterial adhesion to the hydrophobic textured surfaces, while the availability of the contact area is the primary determinant factor

  7. Forces involved in bacterial adhesion to hydrophilic and hydrophobic surfaces.

    Science.gov (United States)

    Boks, Niels P; Norde, Willem; van der Mei, Henny C; Busscher, Henk J

    2008-10-01

    Using a parallel-plate flow chamber, the hydrodynamic shear forces to prevent bacterial adhesion (F(prev)) and to detach adhering bacteria (F(det)) were evaluated for hydrophilic glass, hydrophobic, dimethyldichlorosilane (DDS)-coated glass and six different bacterial strains, in order to test the following three hypotheses. 1. A strong hydrodynamic shear force to prevent adhesion relates to a strong hydrodynamic shear force to detach an adhering organism. 2. A weak hydrodynamic shear force to detach adhering bacteria implies that more bacteria will be stimulated to detach by passing an air-liquid interface (an air bubble) through the flow chamber. 3. DLVO (Derjaguin, Landau, Verwey, Overbeek) interactions determine the characteristic hydrodynamic shear forces to prevent adhesion and to detach adhering micro-organisms as well as the detachment induced by a passing air-liquid interface. F(prev) varied from 0.03 to 0.70 pN, while F(det) varied from 0.31 to over 19.64 pN, suggesting that after initial contact, strengthening of the bond occurs. Generally, it was more difficult to detach bacteria from DDS-coated glass than from hydrophilic glass, which was confirmed by air bubble detachment studies. Calculated attractive forces based on the DLVO theory (F(DLVO)) towards the secondary interaction minimum were higher on glass than on DDS-coated glass. In general, all three hypotheses had to be rejected, showing that it is important to distinguish between forces acting parallel (hydrodynamic shear) and perpendicular (DLVO, air-liquid interface passages) to the substratum surface.

  8. PLASMA POLYMERIZATION OF HYDROPHILIC AND HYDROPHOBIC MONOMERS FOR SURFACE MODIFICATION OF NUCLE-MICROPOROUS MEMBRANE

    Institute of Scientific and Technical Information of China (English)

    LI Xuefen; LI Zhifen; CHEN Chuanfu; WU Wenhui

    1990-01-01

    Surface modification of nucle-microporous membrane by plasma polymerization of HEMA, NVP and D4 has been studied. The hydrophilicity of membranes was increased with increasing of plasma polymerization time of hydrophilic monomers HEMA and NVP. The flow rate of water through the membrane was increased remarkably after plasma polymerization of HEMA on it.

  9. Droplet nucleation on a well-defined hydrophilic-hydrophobic surface of 10 nm order resolution.

    Science.gov (United States)

    Yamada, Yutaka; Ikuta, Tatsuya; Nishiyama, Takashi; Takahashi, Koji; Takata, Yasuyuki

    2014-12-01

    Water condensation on a hybrid hydrophilic-hydrophobic surface was investigated to reveal nucleation mechanisms at the microscale. Focused ion beam (FIB) irradiation was used to change the wettability of the hydrophobic surface with 10 nm order spatial resolution. Condensation experiments were conducted using environmental scanning electron microscopy; droplets, with a minimum diameter of 800 nm, lined up on the FIB-irradiated hydrophilic lines. The heterogeneous nucleation theory was extended to consider the water molecules attracted to the hydrophilic area, thereby enabling explanation of the nucleation mechanism under unsaturated conditions. Our results showed that the effective surface coverage of the water molecules on the hydrophilic region was 0.1-1.1 at 0.0 °C and 560 Pa and was dependent on the width of the FIB-irradiated hydrophilic lines and hydrophobic area. The droplet nucleation mechanism unveiled in this work would enable the design of new surfaces with enhanced dropwise condensation heat transfer.

  10. Evaluation of a silicon oxynitride hydrophilic interaction liquid chromatography column in saccharide and glycoside separations.

    Science.gov (United States)

    Wan, Huihui; Sheng, Qianying; Zhong, Hongmin; Guo, Xiujie; Fu, Qing; Liu, Yanfang; Xue, Xingya; Liang, Xinmiao

    2015-05-01

    The retention characteristics of a silicon oxynitride stationary phase for carbohydrate separation were studied in hydrophilic interaction chromatography mode. Four saccharides including mono-, di-, and trisaccharides were employed to investigate the effects of water content and buffer concentration in the mobile phase on hydrophilic interaction liquid chromatography retention. For the tested saccharides, the silicon oxynitride column demonstrated excellent performance in terms of separation efficiency, hydrophilicity, and interesting separation selectivity for carbohydrates compared to the bare silica stationary phase. Finally, the silicon oxynitride hydrophilic interaction liquid chromatography column was employed in the separation of complex samples of fructooligosaccharides, saponins, and steviol glycoside from natural products. The resulting chromatograms demonstrated good separation efficiency and longer retention compared with silica, which further confirmed the advantages and potential application of silicon oxynitride stationary phase for hydrophilic interaction liquid chromatography separation.

  11. Surface hydrophilicity of PLGA fibers governs in vitro mineralization and osteogenic differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Minnah; Arora, Aditya; Katti, Dhirendra S., E-mail: dsk@iitk.ac.in

    2014-12-01

    Interfacial properties of biomaterials play an important role in governing their interaction with biological microenvironments. This work investigates the role of surface hydrophilicity of electrospun poly(lactide-co-glycolide) (PLGA) fibers in determining their biological response. For this, PLGA is blended with varying amounts of Pluronic®F-108 and electrospun to fabricate microfibers with varying surface hydrophilicity. The results of mineralization study in simulated body fluid (SBF) demonstrate a significant enhancement in mineralization with an increase in surface hydrophilicity. While presence of serum proteins in SBF reduces absolute mineral content, mineralization continues to be higher on samples with higher surface hydrophilicity. The results from in vitro cell culture studies demonstrate a marked improvement in mesenchymal stem cell —adhesion, elongation, proliferation, infiltration, osteogenic differentiation and matrix mineralization on hydrophilized fibers. Therefore, hydrophilized PLGA fibers are advantageous both in terms of mineralization and elicitation of favorable cell response. Since most of the polymeric materials being used in orthopedics are hydrophobic in nature, the results from this study have strong implications in the future design of interfaces of such hydrophobic materials. In addition, the work proposes a facile method for the modification of electrospun fibers of hydrophobic polymers by blending with a poloxamer for improved bone tissue regeneration. - Highlights: • Surface hydrophilicity of PLGA modulated by blending with Pluronic F-108. • Hydrophilized fibers support better in vitro mineralization. • Mineralization trends retained in the presence of adsorbed serum proteins. • Hydrophilized fibers promote better cell adhesion and proliferation. • Hydrophilized fibers also enable better osteogenic differentiation.

  12. Develop Hydrophilic Conductive Coating Technology with High Oxidation Resistance for Non-Flow-Through PEM Fuel Cells and Electrolyzers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ElectroChem proposes to develop oxidation resistant, electrically conductive, hydrophilic coatings in PEM fuel cells and in PEM electrolyzers. The use of hydrophilic...

  13. Dissociation of dicarboxylate and disulfonate dianions

    NARCIS (Netherlands)

    Ard, S.; Mirsaleh-Kohan, N.; Steill, J. D.; Oomens, J.; Nielsen, S. B.; Compton, R. N.

    2010-01-01

    Collision-induced dissociation (CID), along with infrared multiple photon dissociation/detachment (IRMPD) techniques, is utilized to study a series of doubly substituted aromatic dianions containing sulfonate and carboxylate functionalities (1,2- and 1,3-benzenedisulfonate, 1,5-naphthalenedisulfonat

  14. Synthesis and Characterization of Hydrophilic and Semiconductor Cadmium Chromite Nanostructures

    Science.gov (United States)

    Mousavi, Zahra; Salavati-Niasari, Masoud; Soofivand, Faezeh; Esmaeili-Zare, Mahdiyeh; Hamadanian, Masood

    2016-11-01

    Cadmium chromite nanostructures were synthesized in high yield by a simple co-precipitation method. CdCr2O4 nanostructures have been achieved using cadmium nitrate tetrahydrate and CrCl3·6H2O as precursors by a co-precipitation method. The effects of various parameters including alkaline agent, pH value, reaction temperature, and surfactant type were investigated to discover the optimum conditions, and it was found that the size and morphology of products can be affected by these parameters. The structure, morphology and surface chemistry of CdCr2O4 powder were investigated by x-ray diffraction, scanning electron microscopy and energy dispersive x-ray spectroscopy. X-ray diffraction patterns indicated the chromite spinel phase with good crystallinity and an average crystallite size of approximately 20 nm. The hydrophilicity of the calcined oxides was investigated by wetting experiments and the sessile drop technique which were carried out at room temperature in air to determine the surface and interfacial interactions.

  15. PLGA/alginate composite microspheres for hydrophilic protein delivery.

    Science.gov (United States)

    Zhai, Peng; Chen, X B; Schreyer, David J

    2015-11-01

    Poly(lactic-co-glycolic acid) (PLGA) microspheres and PLGA/alginate composite microspheres were prepared by a novel double emulsion and solvent evaporation technique and loaded with bovine serum albumin (BSA) or rabbit anti-laminin antibody protein. The addition of alginate and the use of a surfactant during microsphere preparation increased the encapsulation efficiency and reduced the initial burst release of hydrophilic BSA. Confocal laser scanning microcopy (CLSM) of BSA-loaded PLGA/alginate composite microspheres showed that PLGA, alginate, and BSA were distributed throughout the depths of microspheres; no core/shell structure was observed. Scanning electron microscopy revealed that PLGA microspheres erode and degrade more quickly than PLGA/alginate composite microspheres. When loaded with anti-laminin antibody, the function of released antibody was well preserved in both PLGA and PLGA/alginate composite microspheres. The biocompatibility of PLGA and PLGA/alginate microspheres were examined using four types of cultured cell lines, representing different tissue types. Cell survival was variably affected by the inclusion of alginate in composite microspheres, possibly due to the sensitivity of different cell types to excess calcium that may be released from the calcium cross-linked alginate.

  16. Universal hydrophilic coating of thermoplastic polymers currently used in microfluidics.

    Science.gov (United States)

    Zilio, Caterina; Sola, Laura; Damin, Francesco; Faggioni, Lucia; Chiari, Marcella

    2014-02-01

    A number of materials used to fabricate disposable microfluidic devices are hydrophobic in nature with water contact angles on their surface ranging from 80° to over 100°. This characteristic makes them unsuitable for a number of microfluidic applications. Both the wettability and analyte adsorption parameters are highly dependent on the surface hydrophobicity. In this article, we propose a general method to coat the surface of five materials: polydimethylsiloxane (PDMS), cyclic olefin copolymer (COC), polyethylene terephthalate (PET), polycarbonate (PC), and polytetrafluoroethylene (PTFE). This fast and robust process, which is easily implementable in any laboratory including microfabrication clean room facilities, was devised by combining gas-phase and wet chemical modification processes. Two different coatings that improve the surface hydrophilicity were prepared via the "dip and rinse" approach by immersing the plasma oxidized materials into an aqueous solution of two different poly(dimethylacrylamide) copolymers incorporating a silane moiety and functionalized with either N-acryloyloxysuccinimide (NAS) (poly(DMA-NAS-MAPS) or glycidyl methacrylate (GMA) (poly(DMA-GMA-MAPS). The coating formation was confirmed by contact angle (CA) analysis comparing the variation of CAs of uncoated and coated surfaces subjected to different aging treatments. The antifouling character of the polymer was demonstrated by fluorescence and interferometric detection of proteins adsorbed on the surafce. This method is of great interest in microfluidics due to its broad applicability to a number of materials with varying chemical compositions.

  17. Thin shell vesicles composed of hydrophilic plate-like nanoparticles

    Science.gov (United States)

    Subramaniam, Anand; Wan, Jiandi; Gopinath, Arvind; Stone, Howard

    2011-03-01

    Nanopowders of graphene oxide, montmorillonite and laponite spontaneously delaminate into ultrathin nanoscopic plates when dispersed in water. These plates, which are typically ~ 1 nm thick and microns in lateral dimension, have found many uses as precursors to graphene, ceramics, layer-by-layer structures, and as structural modifiers of nanocomposites. Here we show that mechanical forces due to shear in a narrow gap can assemble hydrophilic plate-like particles on air bubbles, forming stable nanoplated armored bubbles. Translucent inorganic vesicles (vesicles defined here as closed thin-shelled structures with the same liquid inside and outside) of these particles are produced when the nanoplated armored bubbles are exposed to common water-miscible organic liquids and surfactants. These inorganic vesicles are mechanically robust, have walls that are about six nanometres thick, and are perforated with pores of submicron dimensions. We characterize the phenomenon and find that a wetting transition at the scale of the nanoparticles is the primary mechanism of formation. The discovery of these novel inorganic structures raises a wealth of questions of fundamental interest in materials and surface science.

  18. PLGA/alginate composite microspheres for hydrophilic protein delivery

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Peng [Department of Anatomy and Cell Biology, University of Saskatchewan, S7N5E5 (Canada); Division of Biomedical Engineering, University of Saskatchewan, S7N5A9 (Canada); Chen, X.B. [Department of Mechanical Engineering, University of Saskatchewan, S7N5A9 (Canada); Division of Biomedical Engineering, University of Saskatchewan, S7N5A9 (Canada); Schreyer, David J., E-mail: david.schreyer@usask.ca [Department of Anatomy and Cell Biology, University of Saskatchewan, S7N5E5 (Canada); Division of Biomedical Engineering, University of Saskatchewan, S7N5A9 (Canada)

    2015-11-01

    Poly(lactic-co-glycolic acid) (PLGA) microspheres and PLGA/alginate composite microspheres were prepared by a novel double emulsion and solvent evaporation technique and loaded with bovine serum albumin (BSA) or rabbit anti-laminin antibody protein. The addition of alginate and the use of a surfactant during microsphere preparation increased the encapsulation efficiency and reduced the initial burst release of hydrophilic BSA. Confocal laser scanning microcopy (CLSM) of BSA-loaded PLGA/alginate composite microspheres showed that PLGA, alginate, and BSA were distributed throughout the depths of microspheres; no core/shell structure was observed. Scanning electron microscopy revealed that PLGA microspheres erode and degrade more quickly than PLGA/alginate composite microspheres. When loaded with anti-laminin antibody, the function of released antibody was well preserved in both PLGA and PLGA/alginate composite microspheres. The biocompatibility of PLGA and PLGA/alginate microspheres were examined using four types of cultured cell lines, representing different tissue types. Cell survival was variably affected by the inclusion of alginate in composite microspheres, possibly due to the sensitivity of different cell types to excess calcium that may be released from the calcium cross-linked alginate. - Highlights: • A double emulsion technique is used to prepare protein-loaded PLGA or PLGA/alginate microspheres. • PLGA, alginate and protein are distributed evenly within microsphere structure. • Addition of alginate improves loading efficiency and slows degradation and protein release. • PLGA/alginate microspheres have favorable biocompatibility.

  19. Chromatographic analysis of olopatadine in hydrophilic interaction liquid chromatography.

    Science.gov (United States)

    Maksić, Jelena; Jovanović, Marko; Rakić, Tijana; Popović, Igor; Ivanović, Darko; Jančić-Stojanović, Biljana

    2015-01-01

    In this paper, chromatographic analysis of active substance olopatadine hydrochloride, which is used in eye drops as antihistaminic agent, and its impurity E isomer by hydrophilic interaction liquid chromatography (HILIC) and application of design of experiments (DoE) methodology are presented. In addition, benzalkonium chloride is very often used as a preservative in eye drops. Therefore, the evaluation of its chromatographic behavior in HILIC was carried out as well. In order to estimate chromatographic behavior and set optimal chromatographic conditions, DoE methodology was applied. After the selection of important chromatographic factors, Box-Behnken design was utilized, and on the basis of the obtained models factor effects were examined. Then, multi-objective robust optimization is performed aiming to obtain chromatographic conditions that comply with several quality criteria simultaneously: adequate and robust separation of critical peak pair and maximum retention of the first eluting peak. The optimal conditions are identified by using grid point search methodology. The experimental verification confirmed the adequacy of the defined optimal conditions. Finally, under optimal chromatographic conditions, the method was validated and applicability of the proposed method was confirmed.

  20. [The rheology properties of common hydrophilic gel excipients].

    Science.gov (United States)

    Hou, Yan-Long; Li, He-Ran; Gao, Ya-Nan; Wang, Yan; Wang, Qi-Fang; Xu, Lu; Liu, Zhen-Yun; Chen, Hong-Tao; Li, San-Ming

    2014-08-01

    To investigate theological properties of common hydrophilic gel excipients such as Carbopol based on viscosity, the viscosity was determined by rotation method and falling-ball method. Linear regression was made between ln(eta) and concentration, the slope of which was used to explore the relation between viscosity and concentration of different excipients. The viscosity flow active energy (E(eta)) was calculated according to Arrhenius equation and was used to investigate the relation between viscosity and temperature of different excipients. The results showed that viscosities measured by two methods were consistent. Concentration of guargum (GG) and hydroxypropylmethyl cellulose (HPMC) solution had a great influence on the viscosity, k > 5; while concentration of polyvinylpyrrolidone-K30 (PVP-K30) and polyethylene glycol 6000 (PEG6000) exerted a less effect on viscosity, k < 0.2; viscosity flow active energy of different excipients were close, which ranged from 30 to 40 kJ x mol(-1). Therefore, theological properties study could provide the basis for application of excipients and establish a foundation for the research of relation between excipients structure, property and function.

  1. Kinetic Limited Water Evaporation in Hydrophilic Nanofluidic Channels

    Science.gov (United States)

    Li, Yinxiao; Alibakhshi, Mohammad Amin; Xie, Quan; Duan, Chuanhua

    2015-11-01

    Capillary evaporation is one of the most efficient approaches for heat and mass transfer, but the interfacial resistance in capillary evaporation governed by the kinetic theory has remained poorly understood. Here we report experimental studies of the kinetic-limited water capillary evaporation in 2-D hydrophilic nanochannels. A novel hybrid nanochannel design is employed to guarantee sufficient water supply to the liquid/vapor evaporation interface and to enable precise evaporation rate measurements. We study the effects of confinement (16 ~ 105nm), temperature (20 ~ 40 °C), and relative humidity (0% ~ 60%) on the evaporation rate and the evaporation coefficient. A maximum evaporation flux of 21287 micron/s is obtained in 16-nm nanochannels at 40°C and RH =0%, which corresponds to a heat flux of 4804 W/cm°. The evaporation coefficient is found to be independent on geometrical confinement, but shows a clear dependence on temperature, decreasing from 0.55 at 20°C to 0.5 at 40 °C. These findings have implications for understanding heat and mass transport in nanofluidic devices and porous media, and shed light on further development of evaporation-based technologies for thermal management, membrane purification and lab-on-a-chip devices. The work is supported by the American Chemical Society Petroleum Research Fund (ACS PRF # 54118-DNI7) and the Faculty Startup Fund (Boston University, USA).

  2. Drop impact and wettability: From hydrophilic to superhydrophobic surfaces

    Science.gov (United States)

    Antonini, Carlo; Amirfazli, Alidad; Marengo, Marco

    2012-10-01

    Experiments to understand the effect of surface wettability on impact characteristics of water drops onto solid dry surfaces were conducted. Various surfaces were used to cover a wide range of contact angles (advancing contact angle from 48° to 166°, and contact angle hysteresis from 5° to 56°). Several different impact conditions were analyzed (12 impact velocities on 9 different surfaces, among which 2 were superhydrophobic). Results from impact tests with millimetric drops show that two different regimes can be identified: a moderate Weber number regime (30 200), in which wettability effect is secondary, because capillary forces are overcome by inertial effects. In particular, results show the role of advancing contact angle and contact angle hysteresis as fundamental wetting parameters to allow understanding of different phases of drop spreading and beginning of recoiling. It is also shown that drop spreading on hydrophilic and superhydrophobic surfaces occurs with different time scales. Finally, if the surface is superhydrophobic, eventual impalement, i.e., transition from Cassie to Wenzel wetting state, which might occur in the vicinity of the drop impact area, does not influence drop maximum spreading.

  3. Hydrophilic actinide complexation studied by solvent extraction radiotracer technique

    Energy Technology Data Exchange (ETDEWEB)

    Rydberg, J. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Nuclear Chemistry and Radiochemistry Consultant Group, Vaestra Froelunda (Sweden)

    1996-10-01

    Actinide migration in the ground water is enhanced by the formation of water soluble complexes. It is essential to the risk analysis of a wet repository to know the concentration of central atoms and the ligands in the ground water, and the stability of complexes formed between them. Because the chemical behavior at trace concentrations often differ from that at macro concentrations, it is important to know the chemical behavior of actinides at trace concentrations in ground water. One method used for such investigations is the solvent extraction radiotracer (SXRT) technique. This report describes the SXRT technique in some detail. A particular reason for this analysis is the claim that complex formation constants obtained by SXRT are less reliable than results obtained by other techniques. It is true that several difficulties are encountered in the application of SXRT technique to actinide solution, such as redox instability, hydrophilic complexation by side reactions and sorption, but it is also shown that a careful application of the SXRT technique yields results as reliable as by any other technique. The report contains a literature survey on solvent extraction studies of actinide complexes formed in aqueous solutions, particularly by using the organic reagent thenoyltrifluoroacetone (TTA) dissolved in benzene or chloroform. Hydrolysis constants obtained by solvent extraction are listed as well as all actinide complexes studied by SX with inorganic and organic ligands. 116 refs, 11 tabs.

  4. Fabrication of a biocomposite reinforced with hydrophilic eggshell proteins

    Energy Technology Data Exchange (ETDEWEB)

    Kim, GeunHyung [Bio-Mechatronics Team, Division of Nano-Mechanical System, Korea Institute of Machinery and Materials (KIMM), 171 Jang-dong, Yuseong-gu, Daejeon 305-343 (Korea, Republic of); Min, Taijin [Bio-Mechatronics Team, Division of Nano-Mechanical System, Korea Institute of Machinery and Materials (KIMM), 171 Jang-dong, Yuseong-gu, Daejeon 305-343 (Korea, Republic of); Park, Su A [Bio-Mechatronics Team, Division of Nano-Mechanical System, Korea Institute of Machinery and Materials (KIMM), 171 Jang-dong, Yuseong-gu, Daejeon 305-343 (Korea, Republic of); Kim, Wan Doo [Bio-Mechatronics Team, Division of Nano-Mechanical System, Korea Institute of Machinery and Materials (KIMM), 171 Jang-dong, Yuseong-gu, Daejeon 305-343 (Korea, Republic of); Koh, Young Ho [1605-4 Gwanyang-dong, Dongan-Gu, ILSONG Institute of Life Science, Hallym Medical School, Hallym University, Anyang, Kyunggi-do 431-060 (Korea, Republic of)

    2007-12-15

    Soluble eggshell proteins were used as a reinforcing material of electrospun micro/nanofibers for tissue engineering. A biocomposite composed of poly({epsilon}-caprolactone) (PCL) micro/nanofibers and soluble eggshell protein was fabricated with a two-step fabrication method, which is an electrospinning process followed by an air-spraying process. To achieve a stable electrospinning process, we used an auxiliary cylindrical electrode connected with a spinning nozzle. PCL biocomposite was characterized in water contact angle and mechanical properties as well as cell proliferation for its application as a tissue engineering material. It showed an improved hydrophilic characteristic compared with that of a micro/nanofiber web generated from a pure PCL solution using a typical electrospinning process. Moreover, the fabricated biocomposite had good mechanical properties compared to a typical electrospun micro/nanofiber mat. The fabricated biocomposite made human dermal fibroblasts grow better than pure PCL. From the results, the reinforced polymeric micro/nanofiber scaffold can be easily achieved with these modified processes.

  5. Enhanced catalytic activity and inhibited biofouling of cathode in microbial fuel cells through controlling hydrophilic property

    Science.gov (United States)

    Li, Da; Liu, Jia; Wang, Haiman; Qu, Youpeng; Zhang, Jie; Feng, Yujie

    2016-11-01

    The hydrophilicity of activated carbon cathode directly determines the distribution of three-phase interfaces where oxygen reduction occurs. In this study, activated carbon cathodes are fabricated by using hydrophobic polytetrafluoroethylene (PTFE) and amphiphilic LA132 at various weight ratio to investigate the effect of hydrophilic property on cathode performance. Contact angle tests confirm the positive impact of LA132 content on hydrophilicity. Cathode with 67 wt% LA132 content shows the highest electrochemical activity as exchange current density increases by 71% and charge transfer resistance declines by 44.6% compared to that of PTFE cathode, probably due to the extended reaction interfaces by optimal hydrophilicity of cathode so that oxygen reduction is facilitated. As a result, the highest power density of 1171 ± 71 mW m-2 is obtained which is 14% higher than PTFE cathode. In addition to the hydrophilicity, this cathode had more negative charged surface of catalyst layer, therefore the protein content of cathodic biofilm decreased by 47.5%, indicating the effective bacterial inhibition when 67 wt% LA132 is used. This study shows that the catalytic activity of cathode is improved by controlling proper hydrophilicity of cathode, and that biofilm can be reduced by increasing hydrophilicity and lowering the surface potential.

  6. Tuning surface hydrophilicity/hydrophobicity of hydrocarbon proton exchange membranes (PEMs).

    Science.gov (United States)

    He, Chenfeng; Mighri, Frej; Guiver, Michael D; Kaliaguine, Serge

    2016-03-15

    The effect of annealing on the surface hydrophilicity of various representative classes of hydrocarbon-based proton exchange membranes (PEMs) is investigated. In all cases, a more hydrophilic membrane surface develops after annealing at elevated temperatures. The annealing time also had some influence, but in different ways depending on the class of PEM. Longer annealing times resulted in more hydrophilic membrane surfaces for copolymerized sulfonated poly(ether ether ketone) (SPEEK-HQ), while the opposite behavior occurred in sulfonated poly(aryl ether ether ketone) (Ph-SPEEK), sulfonated poly(aryl ether ether ketone ketone) (Ph-m-SPEEKK) and sulfonated poly (aryl ether ether nitrile) (SPAEEN-B). Increased surface hydrophilicity upon annealing results from ionic cluster decomposition, according to the "Eisenberg-Hird-Moore model" (EHM). The increased surface hydrophilicity is supported by contact angle (CA) measurements, and the cluster decomposition is auxiliarily supported by probing the level of atomic sulfur (sulfonic acid) within different surface depths using angle-dependent XPS as well as ATR-FTIR. Membrane acidification leads to more hydrophilic surfaces by elimination of the hydrogen bonding that occurs between strongly-bound residual solvent (dimethylacetamide, DMAc) and PEM sulfonic acid groups. The study of physicochemical tuning of surface hydrophilicity/hydrophobicity of PEMs by annealing and acidification provides insights for improving membrane electrode assembly (MEA) fabrication in fuel cell (FC).

  7. The control of transmembrane helix transverse position in membranes by hydrophilic residues.

    Science.gov (United States)

    Krishnakumar, Shyam S; London, Erwin

    2007-12-14

    The ability of hydrophilic residues to shift the transverse position of transmembrane (TM) helices within bilayers was studied in model membrane vesicles. Transverse shifts were detected by fluorescence measurements of the membrane depth of a Trp residue at the center of a hydrophobic sequence. They were also estimated from the effective length of the TM-spanning sequence, derived from the stability of the TM configuration under conditions of negative hydrophobic mismatch. Hydrophilic residues (at the fifth position in a 21-residue hydrophobic sequence composed of alternating Leu and Ala residues and flanked on both ends by two Lys) induced transverse shifts that moved the hydrophilic residue closer to the membrane surface. At pH 7, the dependence of the extent of shift upon the identity of the hydrophilic residue increased in the order: L snorkeling). Additional experiments showed that shift was also modulated by the position of the hydrophilic residue in the sequence and the hydrophobicity of the sequence moved out of the bilayer core upon shifting. Combined, these studies show that the insertion boundaries of TM helices are very sensitive to sequence, and can be altered even by weakly hydrophilic residues. Thus, many TM helices may have the capacity to exist in more than one transverse position. Knowledge of the magnitudes of transverse shifts induced by different hydrophilic residues should be useful for design of mutagenesis studies measuring the effect of transverse TM helix position upon function.

  8. Effects of Substrate Hydrophobicity/Hydrophilicity on Height Measurement of Individual DNA Molecules

    Institute of Scientific and Technical Information of China (English)

    WANG Hua-Bin; ZHOU Xing-Fei; AN Hong-Jie; GUO Yun-Chang; SUN Jie-Lin; ZHANG Yi; HU Jun

    2007-01-01

    Effects of substrate hydrophobicity/hydrophilicity on height measurement of individual ds-DNA molecules are investigated with tapping mode atomic force microscopy (TMAFM) and vibrating mode scanning polarization force microscopy (VSPFM). The measured heights of ds-DNA on hydrophobic highly oriented pyrolytic graphite (HOPG) are remarkably less than those on hydrophilic bare mica and Ni2+ treated mica in both TMAFM and VSPFM. By analysing the results, we propose that the hydrophobicity/hydrophilicity of substrate can greatly influence the height measurement of DNA molecules.

  9. Disinfection of bacterially contaminated hydrophilic PVS impression materials.

    Science.gov (United States)

    Estafanous, Emad Wadie; Palenik, Charles John; Platt, Jeffrey A

    2012-01-01

    This study evaluated disinfection of bacterially contaminated hydrophilic polyvinylsiloxane (PVS) and polyether impressions. Four light-bodied PVS (Examix, Genie, Take 1, Aquasil) and one polyether (Impregum) impression materials were evaluated using three disinfectants (EcoTru [EnviroSystems], ProSpray [Certol], and bleach [diluted 1:9]) as spray and immersion disinfections for 10-minute exposures. Pseudomonas aeruginosa ATCC 15442, Salmonella choleraesius ATCC 10708, and Staphylococcus aureus ATCC 6538 was the microbial challenge. Test specimens were prepared using aluminum molds with ten tapered cones. Mucin covered each cone, followed by 0.01 mL of each bacterium. Impressions were made using low viscosity impression material that was injected over the cones and filled custom trays. One-half of the impressions were spray disinfected, while the others underwent immersion disinfection. Trays that were contaminated but not disinfected served as positive controls, while those not bacterially contaminated or disinfected served as negative controls. The impressions were poured with Silky Rock Die Stone, and after setting, two cones were placed within a sterile capsule and triturated into powder. Four milliliters of TRIS buffer (0.05 M, pH 7.0) containing sodium thiosulfate (0.0055% w/v) were poured in each tube. After mixing, the solution was serially diluted and spread-plated onto selective agars. After incubation, colony counting occurred. No viable bacteria transferred to casts from either spray- or immersion-disinfected impressions. Negative controls produced no microbial colonies. Positive controls produced on average 3.35 × 10(5) bacterial cells. Results suggest the methods used could disinfect contaminated impression materials. Microbial transfer from nondisinfected impressions to cones approached 33.5%. © 2011 by the American College of Prosthodontists.

  10. Improvement of PET surface hydrophilicity and roughness through blending

    Energy Technology Data Exchange (ETDEWEB)

    Kolahchi, Ahmad Rezaei; Ajji, Abdellah; Carreau, Pierre J. [CREPEC, Chemical Engineering Department, Polytechnique Montreal, 2500 chemin de Polytechnique, Quebec, Montreal (Canada)

    2015-05-22

    Controlling the adhesion of the polymer surface is a key issue in surface science, since polymers have been a commonly used material for many years. The surface modification in this study includes two different aspects. One is to enhance the hydrophilicity and the other is to create the roughness on the PET film surface. In this study we developed a novel and simple approach to modify polyethylene terephthalate (PET) film surface through polymer blending in twin-screw extruder. One example described in the study uses polyethylene glycol (PEG) in polyethylene terephthalate (PET) host to modify a PET film surface. Low content of polystyrene (PS) as a third component was used in the system to increase the rate of migration of PEG to the surface of the film. Surface enrichment of PEG was observed at the polymer/air interface of the polymer film containing PET-PEG-PS whereas for the PET-PEG binary blend more PEG was distributed within the bulk of the sample. Furthermore, a novel method to create roughness at the PET film surface was proposed. In order to roughen the surface of PET film, a small amount of PKHH phenoxy resin to change PS/PET interfacial tension was used. The compatibility effect of PKHH causes the formation of smaller PS droplets, which were able to migrate more easily through PET matrix. Consequently, resulting in a locally elevated concentration of PS near the surface of the film. The local concentration of PS eventually reached a level where a co-continuous morphology occurred, resulting in theinstabilities on the surface of the film.

  11. Assembly of citrate gold nanoparticles on hydrophilic monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Vikholm-Lundin, Inger, E-mail: inger.vikholm-lundin@uta.fi [University of Tampere, BioMediTech, Tampere (Finland); Fimlab Laboratories Ltd., Tampere (Finland); Rosqvist, Emil; Ihalainen, Petri [Abo Akademi University, Center for Functional Materials, Laboratory of Physical Chemistry (Finland); Munter, Tony [VTT Technical Research Centre of Finland, Process Chemistry end Environmental Engineering, Tampere (Finland); Honkimaa, Anni [University of Tampere, Department of Virology, School of Medicine, Tampere (Finland); Marjomäki, Varpu [University of Jyväskylä, Department of Biological and Environmental Science, Nanoscience Center, Jyväskylä (Finland); Albers, Willem M. [BioNavis Oy Ltd., Ylöjärvi, Tampere (Finland); Peltonen, Jouko [Abo Akademi University, Center for Functional Materials, Laboratory of Physical Chemistry (Finland)

    2016-08-15

    Highlights: • The self-assembled layers were all hydrophilic with Lipa-pTHMMAA exhibiting close to full wetting. • The polyacrylamide layers smoothen the gold surface to a higher extent than the polyethylene glycol and lipoic acid terminated with an amino group. • SPR resonance curves shift to higher angles and become increasingly damped when large nanoparticles assembled on the surface. • Topographical images confirmed that the highest number of particles were assembled on the polyethylene glycol monolayer. • By increasing the interaction time more particles could be assembled on the surface. - Abstract: Self-assembled monolayers (SAMs) as model surfaces were linked onto planar gold films thorough lipoic acid or disulfide groups. The molecules used were polyethylene glycol (EG-S-S), N-[tris-(hydroxymethyl)methyl]acrylamide polymers with and without lipoic acid (Lipa-pTHMMAA and pTHMMAA) and a lipoic acid triazine derivative (Lipa-MF). All the layers, but Lipa-MF with a primary amino group were hydroxyl terminated. The layers were characterized by contact angle measurements and atomic force microscopy, AFM. Citrate stabilized nanoparticles, AuNPs in water and phosphate buffer were allowed to assemble on the layers for 10 min and the binding was followed in real-time with surface plasmon resonance, SPR. The SPR resonance curves were observed to shift to higher angles and become increasingly damped, while also the peaks strongly broaden when large nanoparticles assembled on the surface. Both the angular shift and the damping of the curve was largest for nanoparticles assembling on the EG-S-S monolayer. High amounts of particles were also assembled on the pTHMMAA layer without the lipoic acid group, but the damping of the curve was considerably lower with a more even distribution of the particles. Topographical images confirmed that the highest number of particles were assembled on the polyethylene glycol monolayer. By increasing the interaction time more

  12. TOOL FOR MONITORING HYDROPHILIC CONTAMINANTS IN WATER: POLAR ORGANIC CHEMICAL INTEGRATIVE SAMPLER (POCIS)

    Science.gov (United States)

    Global emissions of persistent bioconcentratable organic chemicals have resulted in a wide range of adverse ecological effects. Consequently, industry was led to develop less persistent, more water soluble, polar or hydrophilic organic compounds (HpOCs), which generally have low ...

  13. Distal Embolization of Hydrophilic-Coating Material From Coronary Guidewires After Percutaneous Coronary Interventions

    NARCIS (Netherlands)

    Grundeken, Maik J.; Li, Xiaofei; Kurpershoek, C. Eline; Kramer, Miranda C.; Vink, Aryan; Piek, Jan J.; Tijssen, Jan G. P.; Koch, Karel T.; Wykrzykowska, Joanna J.; de Winter, Robbert J.; van der Wal, Allard C.

    2015-01-01

    Background-Coronary guidewires are indispensable during percutaneous coronary interventions. Nowadays, most guidewires have hydrophilic coatings to improve their trackability, allowing easy lesion passage and facilitating balloon and stent positioning. Recent reports, however, have raised concerns a

  14. Hydrophilic Mineral Coating of Membrane Substrate for Reducing Internal Concentration Polarization (ICP) in Forward Osmosis

    Science.gov (United States)

    Liu, Qing; Li, Jingguo; Zhou, Zhengzhong; Xie, Jianping; Lee, Jim Yang

    2016-01-01

    Internal concentration polarization (ICP) is a major issue in forward osmosis (FO) as it can significantly reduce the water flux in FO operations. It is known that a hydrophilic substrate and a smaller membrane structure parameter (S) are effective against ICP. This paper reports the development of a thin film composite (TFC) FO membrane with a hydrophilic mineral (CaCO3)-coated polyethersulfone (PES)-based substrate. The CaCO3 coating was applied continuously and uniformly on the membrane pore surfaces throughout the TFC substrate. Due to the intrinsic hydrophilicity of the CaCO3 coating, the substrate hydrophilicity was significantly increased and the membrane S parameter was reduced to as low as the current best of cellulose-based membranes but without the mechanical fragility of the latter. As a result, the ICP of the TFC-FO membrane could be significantly reduced to yield a remarkable increase in water flux without the loss of membrane selectivity.

  15. Utilizing ion-pairing hydrophilic interaction chromatography solid phase extraction for efficient glycopeptide enrichment in glycoproteomics

    DEFF Research Database (Denmark)

    Mysling, Simon; Palmisano, Giuseppe; Højrup, Peter;

    2010-01-01

    Glycopeptide enrichment is a prerequisite to enable structural characterization of protein glycosylation in glycoproteomics. Here we present an improved method for glycopeptide enrichment based on zwitter-ionic hydrophilic interaction chromatography solid phase extraction (ZIC-HILIC SPE...

  16. TOOL FOR MONITORING HYDROPHILIC CONTAMINANTS IN WATER: POLAR ORGANIC CHEMICAL INTEGRATIVE SAMPLER (POCIS)

    Science.gov (United States)

    Global emissions of persistent bioconcentratable organic chemicals have resulted in a wide range of adverse ecological effects. Consequently, industry was led to develop less persistent, more water soluble, polar or hydrophilic organic compounds (HpOCs), which generally have low ...

  17. Dual hydrophilic and salt responsive schizophrenic block copolymers – synthesis and study of self-assembly

    NARCIS (Netherlands)

    Vasantha, Vivek Arjunan; Jana, Satyasankar; Lee, Serina Siew Chen; Lim, Chin-Sing; Teo, Serena Lay Ming; Parthiban, Anbanandam; Vancso, Julius G.

    2015-01-01

    A new class of dual hydrophilic diblock copolymers (BCPs) possessing poly(ethylene glycol) (PEG) and zwitterionic polysulfabetaine (PSB) was synthesized by reversible addition–fragmentation chain transfer (RAFT) polymerization. These BCPs formed schizophrenic micelles undergoing core–shell transitio

  18. A NOVEL HYDROPHILIC POLYMER MEMBRANE FOR THE DEHYDRATION OF ORGANIC SOLVENTS

    Science.gov (United States)

    Novel hydrophilic polymer membranes based on polyallylamine ydrochloride- polyvinylalcohol are developed. The high selectivity and flux characteristics of these membranes for the dehydration of organic solvents are evaluated using pervaporation technology and are found to be ver...

  19. Residence time dependent desorption of Staphylococcus epidermidis from hydrophobic and hydrophilic substrata.

    Science.gov (United States)

    Boks, Niels P; Kaper, Hans J; Norde, Willem; Busscher, Henk J; van der Mei, Henny C

    2008-12-01

    Adhesion and desorption are simultaneous events during bacterial adhesion to surfaces, although desorption is far less studied than adhesion. Here, desorption of Staphylococcus epidermidis from substratum surfaces is demonstrated to be residence time dependent. Initial desorption rate coefficients were similar for hydrophilic and hydrophobic dimethyldichlorosilane (DDS)-coated glass, likely because initial desorption is controlled by attractive Lifshitz-Van der Waals interactions, which are comparable on both substratum surfaces. However, significantly slower decay times of the desorption rate coefficients are found for hydrophilic glass than for hydrophobic DDS-coated glass. This difference is suggested to be due to the acid-base interactions between staphylococci and these surfaces, which are repulsive on hydrophilic glass and attractive on hydrophobic DDS-coated glass. Final desorption rate coefficients are higher on hydrophilic glass than on hydrophobic DDS-coated glass, due to the so called hydrophobic effect, facilitating a closer contact on hydrophobic DDS-coated glass.

  20. A water-like model under confinement for hydrophobic and hydrophilic particle-plate interaction potentials

    OpenAIRE

    Krott, Leandro B.; BARBOSA, Marcia C.

    2013-01-01

    Molecular dynamic simulations were employed to study a water-like model confined between hydrophobic and hydrophilic plates. The phase behavior of this system is obtained for different distances between the plates and particle-plate potentials. For both hydrophobic and hydrophilic walls there are the formation of layers. Crystallization occurs at lower temperature at the contact layer than at the middle layer. In addition, the melting temperature decreases as the plates become more hydrophobi...

  1. Surface hydrophilicity of PLGA fibers governs in vitro mineralization and osteogenic differentiation.

    Science.gov (United States)

    Thomas, Minnah; Arora, Aditya; Katti, Dhirendra S

    2014-12-01

    Interfacial properties of biomaterials play an important role in governing their interaction with biological microenvironments. This work investigates the role of surface hydrophilicity of electrospun poly(lactide-co-glycolide) (PLGA) fibers in determining their biological response. For this, PLGA is blended with varying amounts of Pluronic®F-108 and electrospun to fabricate microfibers with varying surface hydrophilicity. The results of mineralization study in simulated body fluid (SBF) demonstrate a significant enhancement in mineralization with an increase in surface hydrophilicity. While presence of serum proteins in SBF reduces absolute mineral content, mineralization continues to be higher on samples with higher surface hydrophilicity. The results from in vitro cell culture studies demonstrate a marked improvement in mesenchymal stem cell-adhesion, elongation, proliferation, infiltration, osteogenic differentiation and matrix mineralization on hydrophilized fibers. Therefore, hydrophilized PLGA fibers are advantageous both in terms of mineralization and elicitation of favorable cell response. Since most of the polymeric materials being used in orthopedics are hydrophobic in nature, the results from this study have strong implications in the future design of interfaces of such hydrophobic materials. In addition, the work proposes a facile method for the modification of electrospun fibers of hydrophobic polymers by blending with a poloxamer for improved bone tissue regeneration.

  2. Water vapor adsorption in activated carbon modified with hydrophilic organic salts

    Institute of Scientific and Technical Information of China (English)

    姚小龙; 李立清; 李海龙; 池东

    2015-01-01

    Five different kinds of hydrophilic organic salts were used to modify commercial activated carbon in order to prepare hydrophilic carbon materials. Properties of the samples were analyzed by surface area analyzer and SEM-EDX. The hydrophilic organic salts with different properties were introduced into activated carbon and significantly affected the properties of the samples. During adsorption experiments, the water vapor adsorption amount in modified samples increases by 0.57−17.12 times in temperature range from 303 to 323 K and at relative pressure below 0.50. Water molecules combined with surface hydrophilic groups through H-bonding exhibit good thermo stability. The effects of temperature, oxygen content and properties of the hydrophilic organic salts on water vapor adsorption were studied. It is indicated that water vapor adsorption in modified samples is mainly affected by the surface oxygen content. The carboxylate radicals in the hydrophilic organic salts greatly affect the micropore structure of the modified samples, while the metal ions in them exhibit limited influence. Different adsorption capacity of modified samples can be explained with the electronegativity of elements presented by Pauling.

  3. Influence of hydrophilic polymers on the complexation of carbamazepine with hydroxypropyl-β-cyclodextrin.

    Science.gov (United States)

    Medarević, Djordje; Kachrimanis, Kyriakos; Djurić, Zorica; Ibrić, Svetlana

    2015-10-12

    In this study binary carbamazepine-hydroxypropyl-β-cyclodextrin, as well as ternary carbamazepine-hydroxypropyl-β-cyclodextrin-hydrophilic polymer systems were used to improve dissolution rate of carbamazepine. It has been shown that addition of hydrophilic polymers (Soluplus® and two types of hydroxypropyl methylcellulose-Metolose® 90SH-100 and Metolose® 65SH-1500) significantly increased solubilization capacity of hydroxypropyl-β-cyclodextrin for carbamazepine. Evaluation of carbamazepine-hydroxypropyl-β-cyclodextrin-hydrophilic polymer interactions using molecular modeling techniques showed interactions between carbamazepine, which dissociates from inclusion complexes and hydroxypropyl methylcellulose that can prevent crystallization of dissolved carbamazepine. These results can contribute to better understanding of drug-cyclodextrin-hydrophilic polymer interactions which are still not well understood. After evaluation of carbamazepine solubilization with hydroxypropyl-β-cyclodextrin and hydrophilic polymers, both binary carbamazepine-hydroxypropyl-β-cyclodextrin and ternary carbamazepine-hydroxypropyl-β-cyclodextrin-hydrophilic polymer systems were prepared by spray drying. The results of solid state characterization methods showed amorphous nature of carbamazepine in all spray dried systems, which together with the results of molecular modeling techniques indicates inclusion complex formation. Carbamazepine dissolution rate was significantly improved from spray dried formulations compared to pure drug. Binary carbamazepine-hydroxypropyl-β-cyclodextrin and ternary carbamazepine-hydroxypropyl-β-cyclodextrin-Soluplus® systems exhibited the fastest carbamazepine release, wherein the entire amount of carbamazepine was released during first 5 min.

  4. Highly selective creation of hydrophilic micro-craters on super hydrophobic surface using electrohydrodynamic jet printing

    Science.gov (United States)

    Lee, Jaehyun; Hwang, Sangyeon; Prasetyo, Fariza Dian; Nguyen, Vu Dat; Hong, Jungwoo; Shin, Jennifer H.; Byun, Doyoung

    2014-11-01

    Selective surface modification is considered as an alternative to conventional printing techniques in high resolution patterning. Here, we present fabrication of hydrophilic patterns on the super hydrophobic surface, which makes structure on the hydrophilic region. The super hydrophobic surface is able to be chemically changed to hydrophilic with alcohols. As a consecutive process, electrohydrodynamic (EHD) jet printing was utilized to fabricate local hydrophilic craters with 30-200 μm sizes. 3 kinds of target liquids were deposited well on hydrophilic region; PEDOT (poly 3,4 ethylenediocythiophene), polystyrene nano-particles, and salmonella bacteria medium. Additionally, qualitative analysis were presented for modification mechanism and surface properties on super hydrophobic/hydrophilic by analysis of surface energy with contact angle, SEM (scanning electron microscopy) image, and SIMS (secondary ion mass spectroscopy) analysis. This new simple modification method provides possibility to be utilizing in bio-patterning engineering such as cell culturing microchip and lab on a chip. This research was supported by the Basi Science Research Program through the National Research Foundation of Korea (NRF) (Grand Number: 2014-023284).

  5. Fabricating Nanometer-Thick Simultaneously Oleophobic/Hydrophilic Polymer Coatings via a Photochemical Approach.

    Science.gov (United States)

    Wang, Yongjin; Dugan, Michael; Urbaniak, Brian; Li, Lei

    2016-07-05

    The simultaneously oleophobic/hydrophilic coatings are highly desirable in antifogging, oil-water separation, and detergent-free cleaning. However, such coatings require special chemical structure, i.e., perfluorinated backbone and polar end-groups, and are too expensive for real-life application. Here, we have developed an UV-based photochemical approach to make nanometer-thick perfluoropolyethers without polar end-groups, which are not intrinsically simultaneously oleophobic/hydrophilic but cost-effective, become simultaneously oleophobic/hydrophilic. The contact angle, ellipsometry, and X-ray photoelectron spectroscopy (XPS) results indicated that the UV irradiation results in the covalent bonding between the polymer and the substrate, which renders more ordered packing of polymer chains and thus the appropriately small interchain distance. As a result, the small water molecules penetrate the polymer network while large oil molecules do not. As a result, the oil contact angle is larger than the water contact angle and the coating shows the simultaneous oleophobicity/hydrophilicity. Moreover, we also demonstrated that this nanometer-thick simultaneously oleophobic/hydrophilic coating has improved long-term antifogging performance and detergent-free cleaning capability and is mechanically robust. The photochemical approach established here potentially can be applied on many other polymers and greatly accelerate the development and application of simultaneously oleophobic/hydrophilic coatings.

  6. Preparation and in vitro evaluation of hydrophilic fenretinide nanoparticles.

    Science.gov (United States)

    Ledet, Grace A; Graves, Richard A; Glotser, Elena Y; Mandal, Tarun K; Bostanian, Levon A

    2015-02-20

    Fenretinide is an effective anti-cancer drug with high in vitro cytotoxicity and low in vivo systemic toxicity. In clinical trials, fenretinide has shown poor therapeutic efficacy following oral administration - attributed to its low bioavailability and solubility. The long term goal of this project is to develop a formulation for the oral delivery of fenretinide. The purpose of this part of the study was to prepare and characterize hydrophilic nanoparticle formulations of fenretinide. Three different ratios of polyvinyl pyrrolidone (PVP) to fenretinide were used, namely, 3:1, 4:1, and 5:1. Both drug and polymer were dissolved in a mixture of methanol and dichloromethane (2:23 v/v). Rotary evaporation was used to remove the solvents, and, following reconstitution with water, a high pressure homogenizer was used to form nanoparticles. The particle size and polydispersity index were measured before and after lyophilization. The formulations were studied by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and X-ray powder diffraction (XRPD). The effectiveness of the formulations was assessed by release studies and Caco-2 cell permeability assays. As the PVP content increased, the recovered particle size following lyophilization became more consistent with the pre-lyophilization particle size, especially for those formulations with less lactose. The DSC scans of the formulations did not show any fenretinide melting endotherms, indicating that the drug was either present in an amorphous form in the formulation or that a solid solution of the drug in PVP had formed. For the release studies, the highest drug release among the formulations was 249.2±35.5ng/mL for the formulation with 4:1 polymer-to-drug. When the permeability of the formulations was evaluated in a Caco-2 cell model, the mean normalized flux for each treatment group was significantly higher (p<0.05) from the fenretinide control. The formulation containing 4:1 polymer

  7. Mitigation of water repellency in burned soils applying hydrophillic polymers

    Science.gov (United States)

    Neris, Jonay; de la Torre, Sara; Vidal-Vazquez, Eva; Lado, Marcos

    2017-04-01

    In this study, the effect of fire on water repellency was analyzed in soils from different parent materials, as well as the suitability of anionic polyacrylamide (PAM) to reduce water repellency in these soils. Samples were collected in four different sites where wildfires took place: two in the Canary Islands, with soils developed on volcanic materials, and two in Galicia (NW Spain), with soils developed on plutonic rocks. In Galicia, two soil samples were collected in each site, one in the burnt area and one in an adjacent unburnt area. In the Canary Islands, four samples were collected from each site, three inside the burnt area where the soils were affected by different fire intensities, and one in an unburnt adjacent area. Samples were air-dried and sieved by a 2-mm mesh sieve. Water repellency was measured using the Water Drop Penetration Time test. An amount of 10 g of soil was placed in a tray. Five drops of deionized water were place on the soil surface with a pipette, and the time for each drop to fully penetrate into the soil was recorded. PAM solution was applied to the burnt soils simulating a field application rate of 1gm-2. The polymer used was Superfloc A-110 (Kemira Water Solutions BV, Holland) with 1x107 Da molecular weigth and 15% hydrolysis. PAM was sprayed on the soil surface as solution with a concentration 0.2 g/L. After the application, the samples were dried and the WDPT test was performed. Three replicates for each treatment and soil were used, and the treatments included: dry soil, dry soil after a wetting treatment, dry PAM-treated soil. The results showed that water repellency was modified by fire differently in the various soils. In hydrophilic soils and soils with low water repellency, water repellency was increased after the action of fire. In soils with noticeable initial water repellency, this was reduced or eliminated after the fire. Wetting repellent soils caused a decrease in water repellency most probably because of the spatial

  8. Hydrophilicity of dentin bonding systems influences in vitro Streptococcus mutans biofilm formation

    Science.gov (United States)

    Brambilla, Eugenio; Ionescu, Andrei; Mazzoni, Annalisa; Cadenaro, Milena; Gagliani, Massimo; Ferraroni, Monica; Tay, Franklin; Pashley, David; Breschi, Lorenzo

    2014-01-01

    Objectives To evaluate in vitro Streptococcus mutans (S. mutans) biofilm formation on the surface of five light-curing experimental dental bonding systems (DBS) with increasing hydrophilicity. The null hypothesis tested was that resin chemical composition and hydrophilicity does not affect S. mutans biofilm formation. Methods Five light-curing versions of experimental resin blends with increasing hydrophilicity were investigated (R1, R2, R3, R4 and R5). R1 and R2 contained ethoxylated BisGMA/TEGDMA or BisGMA/TEGDMA, respectively, and were very hydrophobic, were representative of pit-and-fissure bonding agents. R3 was representative of a typical two-step etch- and-rinse adhesive, while R4 and R5 were very hydrophilic resins analogous to self-etching adhesives. Twenty-eight disks were prepared for each resin blend. After a 24 h-incubation at 37 °C, a multilayer monospecific biofilm of S. mutans was obtained on the surface of each disk. The adherent biomass was determined using the MTT assay and evaluated morphologically with confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). Results R2 and R3 surfaces showed the highest biofilm formation while R1 and R4 showed a similar intermediate biofilm formation. R5 was more hydrophilic and acidic and was significantly less colonized than all the other resins. A significant quadratic relationship between biofilm formation and hydrophilicity of the resin blends was found. CLSM and SEM evaluation confirmed MTT assay results. Conclusions The null hypothesis was rejected since S. mutans biofilm formation was influenced by hydrophilicity, surface acidity and chemical composition of the experimental resins. Further studies using a bioreactor are needed to confirm the results and clarify the role of the single factors. PMID:24954666

  9. Biodegradable hydrophobic-hydrophilic hybrid hydrogels: swelling behavior and controlled drug release.

    Science.gov (United States)

    Wu, Da-Qing; Chu, Chih-Chang

    2008-01-01

    The objective of this work was to investigate a new family of hydrophobic-hydrophilic biodegradable hybrid hydrogels as drug carriers. A series of hydrophobic-hydrophilic biodegradable hybrid hydrogels was formulated via photo means from hydrophobic three-arm poly (epsilon-caprolactone) maleic acid (PGCL-Ma) and hydrophilic dextran maleic acid (Dex-Ma) precursors over a wide range of the two precursors' feed ratio (PGCL-Ma/Dex-Ma at 100:0, 70:30, 50:50, 30:70 and 0:100). A low-molecular-weight and hydrophilic drug, the alpha-7 agonist cocaine methiodide, was used as the model drug for the release study from the hybrid hydrogels in pH 7.4 phosphate buffer solution at 37 degrees C. The swelling data of these hybrid hydrogels depended on the hydrophobic to hydrophilic precursors' feed ratio, and there were several-fold differences in swelling ratios between a pure hydrophilic Dex-Ma and a pure hydrophobic PGCL-Ma hydrogels. The presence of the hydrophobic PGCL-Ma component significantly reduced the initial burst swelling of the hybrid hydrogels. Depending on the two precursors' feed ratios, the swelling data during the early period obeyed either Fickian diffusion (for 50:50 PGCL-Ma/Dex-Ma hydrogel), non-Fickian or anomalous transport (for 70:30 and 100:0 PGCL-Ma/Dex-Ma), or relaxation-controlled (for 30:70 and 0:100 PGCL-Ma/Dex-Ma). A wide range of cocaine methiodide release profiles was achieved by controlling hydrophobic to hydrophilic precursors' feed ratios. Initial drug burst release was significantly reduced as the concentration of the hydrophobic PGCL-Ma component increased in the hybrid hydrogels. The bulk of cocaine methiodide released during the 160-h period was via diffusion-controlled mechanism, while degradation-controlled mechanism dominated thereafter.

  10. Effect of hydrophilic polymers on isradipine complexation with hydroxypropyl β-cyclodextrin.

    Science.gov (United States)

    Mummidi, Varalakshmi; Jayanthi, Vijayaratna

    2013-07-01

    Complexation of isradipine with hydroxypropyl β-cyclodextrin (HPβCD) in the presence and absence of 3 hydrophilic polymers-polyvinyl pyrrolidone (PVP), hydroxypropyl methylcellulose (HPMC), and polyethylene glycol (PEG)-was investigated with an objective of evaluating the effect of hydrophilic polymers on the complexation and solubilizing efficiencies of HPβCD and on the dissolution rate of isradipine from the HPβCD complexes. The phase solubility studies indicated the formation of isradipine-HPβCD inclusion complexes at a 1:1M ratio in solution in both the presence and the absence of hydrophilic polymers. The complexes formed were quite stable. Addition of hydrophilic polymers markedly improved the complexation and solubilizing efficiencies of HPβCD. Solid inclusion complexes of isradipine-HPβCD were prepared in 1:1 and 1:2 ratios by the kneading method, with and without the addition of hydrophilic polymers. The solubility and dissolution rate of isradipine were significantly improved by complexation with HPβCD. The isradipine-HPβCD (1:2) inclusion complex yielded a 9.66-fold increase in the dissolution rate of isradipine. The addition of hydrophilic polymers also markedly improved the dissolution rate of isradipine from HPβCD complexes: a 11.72-, 17.01-, and 39.23-fold increase was observed with PVP, PEG, and HPMC respectively. X-ray diffractometry and differential scanning calorimetry indicated stronger drug amorphization and entrapment in HPβCD because of the combined action of HPβCD and the hydrophilic polymers.

  11. Hydrophilicity of dentin bonding systems influences in vitro Streptococcus mutans biofilm formation.

    Science.gov (United States)

    Brambilla, Eugenio; Ionescu, Andrei; Mazzoni, Annalisa; Cadenaro, Milena; Gagliani, Massimo; Ferraroni, Monica; Tay, Franklin; Pashley, David; Breschi, Lorenzo

    2014-08-01

    To evaluate in vitro Streptococcus mutans (S. mutans) biofilm formation on the surface of five light-curing experimental dental bonding systems (DBS) with increasing hydrophilicity. The null hypothesis tested was that resin chemical composition and hydrophilicity does not affect S. mutans biofilm formation. Five light-curing versions of experimental resin blends with increasing hydrophilicity were investigated (R1, R2, R3, R4 and R5). R1 and R2 contained ethoxylated BisGMA/TEGDMA or BisGMA/TEGDMA, respectively, and were very hydrophobic, were representative of pit-and-fissure bonding agents. R3 was representative of a typical two-step etch-and-rinse adhesive, while R4 and R5 were very hydrophilic resins analogous to self-etching adhesives. Twenty-eight disks were prepared for each resin blend. After a 24h-incubation at 37°C, a multilayer monospecific biofilm of S. mutans was obtained on the surface of each disk. The adherent biomass was determined using the MTT assay and evaluated morphologically with confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). R2 and R3 surfaces showed the highest biofilm formation while R1 and R4 showed a similar intermediate biofilm formation. R5 was more hydrophilic and acidic and was significantly less colonized than all the other resins. A significant quadratic relationship between biofilm formation and hydrophilicity of the resin blends was found. CLSM and SEM evaluation confirmed MTT assay results. The null hypothesis was rejected since S. mutans biofilm formation was influenced by hydrophilicity, surface acidity and chemical composition of the experimental resins. Further studies using a bioreactor are needed to confirm the results and clarify the role of the single factors. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  12. Electronic properties of interfaces produced by silicon wafer hydrophilic bonding

    Energy Technology Data Exchange (ETDEWEB)

    Trushin, Maxim

    2011-07-15

    The thesis presents the results of the investigations of electronic properties and defect states of dislocation networks (DNs) in silicon produced by wafers direct bonding technique. A new insight into the understanding of their very attractive properties was succeeded due to the usage of a new, recently developed silicon wafer direct bonding technique, allowing to create regular dislocation networks with predefined dislocation types and densities. Samples for the investigations were prepared by hydrophilic bonding of p-type Si (100) wafers with same small misorientation tilt angle ({proportional_to}0.5 ), but with four different twist misorientation angles Atw (being of < , 3 , 6 and 30 , respectively), thus giving rise to the different DN microstructure on every particular sample. The main experimental approach of this work was the measurements of current and capacitance of Schottky diodes prepared on the samples which contained the dislocation network at a depth that allowed one to realize all capabilities of different methods of space charge region spectroscopy (such as CV/IV, DLTS, ITS, etc.). The key tasks for the investigations were specified as the exploration of the DN-related gap states, their variations with gradually increasing twist angle Atw, investigation of the electrical field impact on the carrier emission from the dislocation-related states, as well as the establishing of the correlation between the electrical (DLTS), optical (photoluminescence PL) and structural (TEM) properties of DNs. The most important conclusions drawn from the experimental investigations and theoretical calculations can be formulated as follows: - DLTS measurements have revealed a great difference in the electronic structure of small-angle (SA) and large-angle (LA) bonded interfaces: dominating shallow level and a set of 6-7 deep levels were found in SA-samples with Atw of 1 and 3 , whereas the prevalent deep levels - in LA-samples with Atw of 6 and 30 . The critical twist

  13. On hydrophilicity improvement of the porous anodic alumina film by hybrid nano/micro structuring

    Science.gov (United States)

    Wang, Weichao; Zhao, Wei; Wang, Kaige; Wang, Lei; Wang, Xuewen; Wang, Shuang; Zhang, Chen; Bai, Jintao

    2017-09-01

    In both, laboratory and industry, tremendous attention is paid to discover an effective technique to produce uniform, controllable and (super) hydrophilic surfaces over large areas that are useful in a wide range of applications. In this investigation, by combing porous anodic alumina (PAA) film with nano-structures and microarray of aluminum, the hydrophilicity of hybrid nano-micro structure has been significantly improved. It is found some factors can affect the hydrophilicity of film, such as the size and aspect ratio of microarray, the thickness of nano-PAA film etc. Comparing with pure nano-PAA films and microarray, the hybrid nano-micro structure can provide uniform surface with significantly better hydrophilicity. The improvement can be up to 84%. Also, this technique exhibits good stability and repeatability for industrial production. By optimizing the thickness of nano-PAA film and aspect ratio of micro-structures, super-hydrophilicity can be reached. This study has obvious prospect in the fields of chemical industry, biomedical engineering and lab-on-a-chip applications.

  14. Switchable hydrophobic-hydrophilic layer obtained onto porous alumina by plasma-enhanced fluorination

    Institute of Scientific and Technical Information of China (English)

    A.TRESSAUD; C.LABRUG(E)RE; E.DURAND; C.BRIGOULEIX; H.ANDRIESSEN

    2009-01-01

    Conventional lithographic printing processes using porous alumina for offset applications generally use "wet" routes. Recently "dry" processes have been developed which are based on a heat-induced hydrophilic/oleophilic conversion of one or more layers of the coating so that a stronger affinity to-wards ink or water fountain is created at the exposed areas with respect to the surface of the unex-posed coating. Treatments involving rf plasma-enhanced fluorination (PEF) constitute exceptional tools for modifying the surface properties of materials. Many advantages of these techniques can be indeed outlined, when compared to more conventional methods: room-temperature reactions, chemical modi-fications limited to surface only without changing the bulk properties, possible non-equilibrium reac-tions. The influence of PEF treatments on porous alumina layer used in printing plates has been tested with various fluorinated gases (CF4, C3F8and C4F8) and characterized by XPS. The hydrophobic prop-erties of the fluorinated layer have been deduced from contact angle measurements. Using C4Fs rf-PEF treatment, the outmost surface of the hydrophilic alumina substrate used for lithographic printing is hydrophobized, or in other words, the hydrophilic substrate is converted into a support with hydro-phobic properties. Once being hydrophobized, the surface layer may be rendered hydrophilic using a heat pulse, thus giving rise to switchable hydrophobic-hydrophilic properties of the material.

  15. Properties of mixed monolayers of clinical lung surfactant, serum albumin and hydrophilic polymers.

    Science.gov (United States)

    Minkov, I; Mircheva, K; Grozev, N; Tz, Ivanova; Panaiotov, I

    2013-01-01

    It is now established that the surface activity of the clinically used lung surfactant is reduced by serum proteins and can be restored by adding the hydrophilic polymers. The mechanisms of lung surfactant inactivation by serum proteins and restoring effect by the hydrophilic polymers remain not completely understood. In this paper the state and rheological dilatational properties of surface films formed from clinical lung surfactant Exosurf, Survanta, Curosurf and Alveofact in the presence of serum albumin (BSA) and hydrophilic polymers polyvinylpyrrolidone (PVP), polyethylene glycol (PEG) and Dextran were studied. The obtained results suggest that the lung surfactant and BSA mixtures spread at air-water interface form a DPPC/BSA mixed monolayers with lower content of DPPC. The presence of hydrophilic polymers PVP, PEG and Dextran restore the DPPC content in the surface film. The effectiveness of the DPPC spreading and formation of better compacted film increases in order Exosurf, Survanta, Curosurf, Alveofact. The obtained results are in accordance with the generally admitted ideas about the mechanisms of serum protein inactivation and restoring effect of hydrophilic polymers based on the previously studies of the lung surfactant adsorption rate.

  16. Influence of Annealing and UV Irradiation on Hydrophilicity of Ag-TiO Nanostructured Thin Films

    Directory of Open Access Journals (Sweden)

    Fanming Meng

    2012-01-01

    Full Text Available Ag-TiO2 nanostructured thin films with silver content of 5 vol% have been deposited on silicon, glass, and quartz substrates by RF magnetron sputtering and annealed in ambient air at 900°C for 15, 30, 60, 90, and 120 min. Their crystal structure, surface morphology, and hydrophilicity have been characterized by X-ray diffractometer, atomic force microscope, and water contact angle apparatus, respectively. The influence of annealing time and UV irradiation time on hydrophilic property of Ag-TiO2 thin films have been studied in detail. It is shown that annealing time influences crystal structure of Ag-TiO2 thin films. The unannealed film is amorphous and shows poor hydrophilicity. With the increase of annealing time from 15 to 120 min, the grain-size slowly increases and tends to uniformity. A suitable annealing time can significantly enhance the hydrophilic behavior of Ag-TiO2 films. Water contact angle decreases with the increase of irradiation time. The mechanism of hydrophilicity has been proposed and can be attributed to the increase of oxygen anion radicals O2− and reactive center of surface Ti3+.

  17. Applications of hydrophilic interaction chromatography to amino acids, peptides, and proteins.

    Science.gov (United States)

    Periat, Aurélie; Krull, Ira S; Guillarme, Davy

    2015-02-01

    This review summarizes the recent advances in the analysis of amino acids, peptides, and proteins using hydrophilic interaction chromatography. Various reports demonstrate the successful analysis of amino acids under such conditions. However, a baseline resolution of the 20 natural amino acids has not yet been published and for this reason, there is often a need to use mass spectrometry for detection to further improve selectivity. Hydrophilic interaction chromatography is also recognized as a powerful technique for peptide analysis, and there are a lot of papers showing its applicability for proteomic applications (peptide mapping). It is expected that its use for peptide mapping will continue to grow in the future, particularly because this analytical strategy can be combined with reversed-phase liquid chromatography, in a two-dimensional setup, to reach very high resolving power. Finally, the interest in hydrophilic interaction chromatography for intact proteins analysis is less evident due to possible solubility issues and a lack of suitable hydrophilic interaction chromatography stationary phases. To date, it has been successfully employed only for the characterization of membrane proteins, histones, and the separation of glycosylated isoforms of an intact glycoprotein. From our point of view, the number of hydrophilic interaction chromatography columns compatible with intact proteins (higher upper temperature limit, large pore size, etc.) is still too limited.

  18. The double effects of silver nanoparticles on the PVDF membrane: Surface hydrophilicity and antifouling performance

    Science.gov (United States)

    Li, Jian-Hua; Shao, Xi-Sheng; Zhou, Qing; Li, Mi-Zi; Zhang, Qi-Qing

    2013-01-01

    In this study, silver nanoparticles were used to endow poly(vinylidene fluoride) (PVDF) membrane with excellent surface hydrophilicity and outstanding antifouling performance. Silver nanoparticles were successfully immobilized onto PVDF membrane surface under the presence of poly(acrylic acid) (PAA). The double effects of silver nanoparticles on PVDF membrane, i.e., surface hydrophilicity and anti-fouling performance, were systematically investigated. Judging from result of water static contact measurement, silver nanoparticles had provided a significant improvement in PVDF membrane surface hydrophilicity. And the possible explanation on the improvement of PVDF membrane surface hydrophilicity with silver nanoparticles was firstly proposed in this study. Membrane permeation and anti-bacterial tests were carried out to characterize the antifouling performance of PVDF membrane. Flux recovery ratio (FRR) increased about 40% after the presence of silver nanoparticles on the PVDF membrane surface, elucidating the anti-organic fouling performance of PVDF membrane was elevated by silver nanoparticles. Simultaneously, anti-bacterial test confirmed that PVDF membrane showed superior anti-biofouling activity because of silver nanoparticles. The above-mentioned results clarified that silver nanoparticles can endow PVDF membrane with both excellent surface hydrophilicity and outstanding antifouling performance in this study.

  19. Effect of hydrophilicity of end-grafted polymers on protein adsorption behavior: A Monte Carlo study.

    Science.gov (United States)

    Han, Yuanyuan; Jin, Jing; Cui, Jie; Jiang, Wei

    2016-06-01

    Monte Carlo simulation is employed to investigate protein adsorption behavior on end-grafted polymers. The effect of hydrophilicity of end-grafted polymers on protein adsorption behavior is investigated in detail. The simulation results indicate that the hydrophilicity of the end-grafted polymers can affect both the amount and speed of protein adsorption. An increase in the hydrophilicity of the end-grafted polymers can significantly decrease the amount and speed of protein adsorption first. However, a further increase in the hydrophilicity of the end-grafted polymers results in the increase in the amount and speed of protein adsorption. This phenomenon is easier to be observed in the end-grafted polymer systems with lower grafting density and longer chain length. In addition, the investigation of the chain conformation of the end-grafted polymers reveals that the end-grafted polymers with mediate hydrophilicity have relatively small size difference along the parallel and perpendicular directions to the substrate, and these end-grafted polymers have relatively wide height distribution. Such characteristics favor covering the space above the hydrophobic substrate and thus can effectively resist protein adsorption.

  20. Intelligent hydrophilic nanoparticles fabricated via alkaline hydrolysis of crosslinked polyacrylonitrile nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y., E-mail: zhyw@dhu.edu.cn; Wu, Q.; Zhang, H.; Zhao, J. [Donghua University, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Chemical Fibers Research Institute (China)

    2013-07-15

    Crosslinked polyacrylonitrile (PAN) nanolatex, with an average hydrodynamic diameter of 84 nm and a polydispersity index of 0.06, was successfully synthesized at a high monomer concentration and low surfactant content via a modified emulsion polymerization. Three measurements were adopted to control the nucleation and growth processes. Taking advantage of the chemical activity of nitrile groups, intelligent hydrophilic polymeric nanoparticles were fabricated via simple alkaline hydrolysis treatment of the crosslinked PAN nanolatex. Dynamic light scattering, electrophoretic light scattering, FT-IR spectroscopy, elemental analysis, and TEM observations were used to monitor the changes in the composition, structure, and morphology of the nanoparticles during the hydrolysis process. The sizes, chemical composition, morphology, and pH-responsive behavior of the intelligent hydrophilic nanoparticles could be adjusted by simply changing the hydrolysis time. As the hydrolysis was prolonged, the following nanoparticles could be obtained, crosslinked PAN nanoparticles with hydrophilic surfaces, amphiphilic nanoparticles with a hydrophobic PAN core and a hydrophilic polymeric shell composed of acrylamide and acrylic acid units, or carboxylic polyacrylamide nanoparticles. These modified nanoparticles all display good hydrophilicity, good biocompatibility, pH-sensitivity, as well as carboxyl functional groups, and thus are ideal candidates for various biomedical applications.

  1. Switchable hydrophobic-hydrophilic layer obtained onto porous alumina by plasma-enhanced fluorination

    Institute of Scientific and Technical Information of China (English)

    A.; TRESSAUD; C.; LABRUGèRE; E.; DURAND; C.; BRIGOULEIX; H.; ANDRIESSEN

    2009-01-01

    Conventional lithographic printing processes using porous alumina for offset applications generally use "wet" routes. Recently "dry" processes have been developed which are based on a heat-induced hydrophilic/oleophilic conversion of one or more layers of the coating so that a stronger affinity to-wards ink or water fountain is created at the exposed areas with respect to the surface of the unex-posed coating. Treatments involving rf plasma-enhanced fluorination (PEF) constitute exceptional tools for modifying the surface properties of materials. Many advantages of these techniques can be indeed outlined, when compared to more conventional methods: room-temperature reactions, chemical modi-fications limited to surface only without changing the bulk properties, possible non-equilibrium reac-tions. The influence of PEF treatments on porous alumina layer used in printing plates has been tested with various fluorinated gases (CF4, C3F8 and C4F8) and characterized by XPS. The hydrophobic prop-erties of the fluorinated layer have been deduced from contact angle measurements. Using C4F8 rf-PEF treatment, the outmost surface of the hydrophilic alumina substrate used for lithographic printing is hydrophobized, or in other words, the hydrophilic substrate is converted into a support with hydro-phobic properties. Once being hydrophobized, the surface layer may be rendered hydrophilic using a heat pulse, thus giving rise to switchable hydrophobic-hydrophilic properties of the material.

  2. Effects of hydrophobic and hydrophilic modifications on gene delivery of amphiphilic chitosan based nanocarriers.

    Science.gov (United States)

    Wang, Bingqing; He, Chunbai; Tang, Cui; Yin, Chunhua

    2011-07-01

    The structure-activity relationships between hydrophobic and hydrophilic modification on chitosan and resultant physicochemical properties along with performances in dealing with critical gene delivery barriers were investigated through amphiphilic linoleic acid(LA) and poly (β-malic acid) (PMLA) double grafted chitosan (LMC)/plasmid DNA (pDNA) nanocomplexes. LMC polymers with various LA and PMLA substitution degrees were synthesized and their hydrophilicity/hydrophobicity was characterized. Compared to chitosan, LMC nanoparticles retained the pDNA binding ability at pH 5.5 when they formed nanocomplexes with pDNA encoding enhanced green fluorescence protein (pEGFP) and the resultant complexes showed diameters below 300 nm. Hydrophobic LA and hydrophilic PMLA substitution contributed to suppressed non-specific adsorption, reduced interactions inside LMC/pDNA nanocomplexes, and enhanced pDNA dissociation. However, enzymatic degradation resistance, cell adsorption, and cellular uptake through clathrin-mediated pathway were promoted by hydrophobic LA grafting while being inhibited by hydrophilic PMLA substitution. In vitro transfection assay suggested the optimal LMC/pEGFP nanocomplexes mediated an 8.0-fold improved transfection compared to chitosan/pEGFP nanocomplexes. The 4.2-fold and 2.2-fold higher intramuscular gene expression in mice compared to chitosan/pEGFP and polyethyleneimine (PEI)/pEGFP nanocomplexes further demonstrated the superiority of LMC/pDNA nanocomplexes. Therefore, amphiphilic chitosan derivates with appropriate combination of hydrophobic and hydrophilic modification would be promising gene delivery nanocarriers.

  3. Bionic design for surface optimization combining hydrophilic and negative charged biological macromolecules.

    Science.gov (United States)

    Ran, Fen; Song, Haiming; Niu, Xiaoqin; Yang, Aimei; Nie, Shengqiang; Wang, Lingren; Li, Jie; Sun, Shudong; Zhao, Changsheng

    2014-06-01

    While polyethersulfone (PES) membrane represents a promising option for blood purification, the blood compatibility must be dramatically enhanced to meet today's ever-increasing demands for many emerging application. In this study, we report a bionic design for optimization and development of a modified PES membrane combining hydrophilic and negative charged biological macromolecules on its surface. The hydrophilic and ionic charged biological macromolecules sulfonated poly(styrene)-b-poly(methyl methacrylate)-b-poly-(styrene) (PSSMSS) and poly(vinyl pyrrolidone)-b-poly(methyl methacrylate)-b-poly-(vinyl pyrrolidone) were synthesized via reversible addition-fragmentation chain transfer polymerization and used together to modify PES membranes by blending method. A hydrophilic membrane surface with negative charged surface coating was obtained, imitating the hydrophilic and negatively charged structure feature of heparin. The modified PES membranes showed suppressed platelet adhesion, and a prolonged blood clotting time, and thereby improved blood compatibility. In addition, the blood clotting time of the modified membranes increased with the blended PSSMSS amounts increment, indicating that both the hydrophilic and negative charged groups play important roles in improving the blood compatibility of PES membranes.

  4. Novel combination of hydrophilic/hydrophobic surface for large wettability difference and its application to liquid manipulation.

    Science.gov (United States)

    Kobayashi, Taizo; Shimizu, Kazunori; Kaizuma, Yoshihiro; Konishi, Satoshi

    2011-02-21

    This paper reports a novel combination of hydrophilic/hydrophobic materials for the evolution of liquid manipulation. Droplet generation based on a hydrophilic/hydrophobic mechanism is a promising method for highly accurate liquid manipulations. Although several droplet manipulation devices utilizing hydrophilic/hydrophobic patterns have been reported, it has been difficult to split fluid into droplets solely through hydrophilic/hydrophobic patterns in a microchannel. In this study, a material combination for fabricating hydrophilic/hydrophobic patterns was investigated and their wettability difference was enhanced for droplet generation. To improve hydrophilicity, we attempted to increase the surface area of silicon oxide through pulsed plasma chemical vapor deposition (PPCVD). To improve hydrophobicity, the damage to the hydrophobic patterns in the fabrication process was reduced. We successfully enhanced the difference in contact angles from 54.3° to 86.6° by combining the developed hydrophilic material and hydrophobic material. The developed material combination could successfully split fluid into a quantitative droplet of 14.1 nL in a microfluidic chip. Because the developed hydrophilic/hydrophobic combination enables the formation of a droplet with desirable shape in microchannels, the developed hydrophilic/hydrophobic combination is a promising component for lab-on-a-chip applications.

  5. Determination of nucleosides and nucleotides in baby foods by hydrophilic interaction chromatography coupled to tandem mass spectrometry in the presence of hydrophilic ion-pairing reagents.

    Science.gov (United States)

    Mateos-Vivas, María; Rodríguez-Gonzalo, Encarnación; Domínguez-Álvarez, Javier; García-Gómez, Diego; Carabias-Martínez, Rita

    2016-11-15

    In this work we propose a rapid and efficient method for the joint determination of nucleosides and nucleotides in dairy and non-dairy baby foods based on hydrophilic interaction chromatography coupled to tandem mass spectrometry in the presence of diethylammonium (DEA) as a hydrophilic ion-pairing reagent (IP-HILIC-MS/MS). Sample treatment of the baby food included dilution with water and centrifugal ultrafiltration (CUF) with an additional washing step that notably improved the global performance of the process. Later dilution of the extract with acetonitrile allowed adequate separation in the HILIC system. With the proposed treatment, we obtained extraction recoveries higher than 80% and, additionally, no matrix effects were observed. The CUF-IP-HILIC-MS/MS method was validated according to the 2002/657/EC decision and was used for the quantification of nucleotides and nucleosides in sixteen samples of commercial baby foods. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Comparison of hydrophilic variation and bioethanol production of furfural residues after delignification pretreatment.

    Science.gov (United States)

    Bu, Lingxi; Tang, Yong; Xing, Yang; Zhang, Weiming; Shang, Xinhui; Jiang, Jianxin

    2014-01-01

    Furfural residue (FR) is a waste lignocellulosic material with enormous potential for bioethanol production. In this study, bioethanol production from FR after delignification was compared. Hydrophilic variation was measured by conductometric titration to detect the relationship between hydrophilicity and bioethanol production. It was found that ethanol yield increased as delignification enhanced, and it reached up to 75.6% of theoretical yield for samples with 8.7% lignin. The amount of by-products decreased as delignification increased. New inflection points appeared in conductometric titration curves of samples that were partially delignified, but they vanished in the curves of the highly delignified samples. Total charges and carboxyl levels increased after slight delignification, and they decreased upon further delignification. These phenomena suggested some new hydrophilic groups were formed during pretreated delignification, which would be beneficial to enzymatic hydrolysis. However, some newly formed groups may act as toxicant to the yeast during simultaneous saccharification and fermentation.

  7. Heterogeneous ice nucleation controlled by the coupling of surface crystallinity and surface hydrophilicity

    CERN Document Server

    Bi, Yuanfei; Li, Tianshu

    2015-01-01

    The microscopic mechanisms controlling heterogeneous ice nucleation are complex and remain poorly understood. Although good ice nucleators are generally believed to match ice lattice and to bind water, counter examples are often identified. Here we show, by advanced molecular simulations, that the heterogeneous nucleation of ice on graphitic surface is controlled by the coupling of surface crystallinity and surface hydrophilicity. Molecular level analysis reveals that the crystalline graphitic lattice with an appropriate hydrophilicity may indeed template ice basal plane by forming a strained ice layer, thus significantly enhancing its ice nucleation efficiency. Remarkably, the templating effect is found to transit from within the first contact layer of water to the second as the hydrophilicity increases, yielding an oscillating distinction between the crystalline and amorphous graphitic surfaces in their ice nucleation efficiencies. Our study sheds new light on the long-standing question of what constitutes ...

  8. Hydrophilic C terminus of Salicornia europaea vacuolar Na+/H+ antiporter is necessary for its function

    Indian Academy of Sciences (India)

    Guangxia Wu; Gang Wang; Jing Ji; Xiaowei Tian; Hailing Gao; Qing Zhao; Jing Li; Yurong Wang

    2014-08-01

    Plant vacuolar Na+/H+ antiporters play important roles in cellular ion homeostasis,vacuolar pH regulation and sequestration of Na+ ions into the vacuole. Previous research showed that hydrophilic C-terminal region of Arabidopsis AtNHX1 negatively regulates the Na+/H+ transporting activity. In this study, we truncated the hydrophilic C terminus of a vacuolar Na+/H+ antiporter gene from Salicornia europaea (SeNHX1) to generate its derivative, SeNHX1-C. Expression of SeNHX1 and SeNHX1-C in yeast mutant showed that SeNHX1 significantly improved the tolerance to NaCl; however, the expression of SeNHX1-C enormously decreased the tolerance to NaCl. Overall, these results suggest that the hydrophilic C-terminal region of SeNHX1 is required for Na+/H+ exchanging activity of SeNHX1.

  9. Facile transformation of superhydrophobicity to hydrophilicity by silica/poly(ε-caprolactone) composite film

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhengxin [Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Zhai, Xianglin [Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803 (United States); Wang, Chengyu, E-mail: wangcy@nefu.edu.cn [Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin 150040 (China)

    2015-12-30

    Graphical abstract: - Highlights: • The superhydrophobic wood was prepared by an effective method with simple immersion and pipetting steps. • The superhydrophobic wood shows fast thermo-response wettability transition between superhydrophobicity and hydrophilicity. • The modified wood surface is stable to the corrosive liquids. - Abstract: A smart surface with thermo-responsive wettability was fabricated on the cross section of wood with simple bench chemistry. The surface showed fast response between superhydrophobic and hydrophilic under different temperatures. The reversible wettability from superhydrophobicity to hydrophilicity can be easily achieved by adjusting the temperature between 25 and 60 °C. This reversible wettability is resulted from the synergistic effect of the crystallinity transition of the polymer coated on the surface and the optimized roughness controlled by the silica particles with different sizes. Furthermore, the modified wood surface showed an excellent chemical stability to corrosive liquids under ambient conditions.

  10. Interaction forces for symmetric hydrophilic and hydrophobic systems in aqueous isopropanol solutions.

    Science.gov (United States)

    Hupka, Lukasz; Nalaskowski, Jakub; Miller, Jan D

    2010-02-16

    Interaction force measurements were performed for a silica-silica hydrophilic system and for a silanated silica-silanated silica hydrophobic system using the atomic force microscopy colloidal probe technique. The influence of the solution composition on interaction forces was investigated. The hydrophilic silica-silica interactions were found to be described as a typical Derjaguin-Landau-Verwey-Overbeek (DLVO) system in solutions of various compositions, whereas silanated silica-silanated silica interactions were dominated by a long-range hydrophobic force. An increase in the isopropyl alcohol content of the solution diminishes both the repulsive forces in the case of the hydrophilic system and the attractive interactions in the case of the hydrophobic system.

  11. Encapsulation, protection, and release of hydrophilic active components: potential and limitations of colloidal delivery systems.

    Science.gov (United States)

    McClements, David Julian

    2015-05-01

    There have been major advances in the development of edible colloidal delivery systems for hydrophobic bioactives in recent years. However, there are still many challenges associated with the development of effective delivery systems for hydrophilic bioactives. This review highlights the major challenges associated with developing colloidal delivery systems for hydrophilic bioactive components that can be utilized in foods, pharmaceuticals, and other products intended for oral ingestion. Special emphasis is given to the fundamental physicochemical phenomena associated with encapsulation, stabilization, and release of these bioactive components, such as solubility, partitioning, barriers, and mass transport processes. Delivery systems suitable for encapsulating hydrophilic bioactive components are then reviewed, including liposomes, multiple emulsions, solid fat particles, multiple emulsions, biopolymer particles, cubosomes, and biologically-derived systems. The advantages and limitations of each of these delivery systems are highlighted. This information should facilitate the rational selection of the most appropriate colloidal delivery systems for particular applications in the food and other industries.

  12. A Comparative Study of Hydrophilic Modification of Polypropylene Membranes by Remote and Direct Ar Plasma

    Institute of Scientific and Technical Information of China (English)

    ZHANG Suzhen; CHENG Cheng; LAN Yan; MENG Yuedong

    2009-01-01

    Surface modification of polypropylene membrane by argon (Ar) plasma-induced graft polymerization with hydrophilic monomer [acrylic acid (AA) in this work]was investigated.It was found that both the distance of the membrane from the Ar plasma center and the plasma power had a strong influence on the surface modification,hydrophilicity and graft yield (GY) of the treated membrane.Results suggest that remote plasma treatment with a proper sample position,plasma power and graft polymerization leads to a membrane surface with not only less damage,but also more permanent hydrophilicity,than direct plasma treatment does.By analyzing the morphology and the chemical composition of the membrane surface by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS),as well as Fourier transform infrared attenuated total reflection spectroscopy (FTIR-ATR) respectively,a possible mechanism was tentatively revealed.

  13. Influence of hydrophilic pre-treatment on resin bonding to zirconia ceramics.

    Science.gov (United States)

    Noro, Akio; Kameyama, Atsushi; Haruyama, Akiko; Takahashi, Toshiyuki

    2015-01-01

    Atmospheric plasma or ultraviolet (UV) treatment alters the surface characteristics of tetragonal zirconia polycrystal (TZP), increasing its hydrophilicity by reducing the contact angle against water to zero. This suggests that such treatment would increase the wettability of bonding resin. The purpose of this study was to determine how increasing the hydrophilicity of TZP through plasma irradiation, UV treatment, or application of ceramic primer affected initial bonding with resin composites. Here, the effect of each pre-treatment on the hydrophilicity of TZP surfaces was determined by evaluating change in shear bond strength. Plasma irradiation, UV, or ceramic primer pre-treatment showed no significant effect on bonding strength between TZP surfaces and resin composites. In addition, alumina blasting yielded no significant increase in bond strength. Plasma irradiation, UV treatment, or ceramic primer pre-treatment did not lead to significant increase in bond strength between TZP and resin composites.

  14. "Clickable" Polymeric Nanofibers through Hydrophilic-Hydrophobic Balance: Fabrication of Robust Biomolecular Immobilization Platforms.

    Science.gov (United States)

    Kalaoglu-Altan, Ozlem I; Sanyal, Rana; Sanyal, Amitav

    2015-05-11

    Fabrication of hydrophilic polymeric nanofibers that undergo facile and selective functionalization through metal catalyst-free Diels-Alder "click" reaction in aqueous environment is outlined. Electrospinning of copolymers containing an electron-rich furan moiety, hydrophobic methyl methacrylate units and hydrophilic poly(ethylene glycol)s as side chains provide specifically functionalizable yet antibiofouling fibers that remain stable in aqueous media due to appropriate hydrophobic hydrophilic balance. Efficient functionalization of these nanofibers is accomplished through the Diels-Alder reaction by exposing them to maleimide-containing molecules and ligands. Diels-Alder conjugation based functionalization is demonstrated through attachment of fluorescein-maleimide and a maleimide tethered biotin ligand. Biotinylated nanofibers were utilized to mediate immobilization of the protein streptavidin, as well as streptavidin coated quantum dots. Facile fabrication from readily available polymers and their effective functionalization under mild and reagent-free conditions in aqueous media make these "clickable" nanofibers attractive candidates as functionalizable scaffolds for various biomedical applications.

  15. Effect of Hydrophobic and Hydrophilic Surfaces on the Stability of Double-Stranded DNA.

    Science.gov (United States)

    Elder, Robert M; Pfaendtner, Jim; Jayaraman, Arthi

    2015-06-08

    DNA hybridization is the foundation for numerous technologies like DNA origami and DNA sensing/microarrays. Using molecular simulations, enhanced-sampling methods, and free-energy calculations, we show the effects of hydrophilic and hydrophobic surfaces on DNA hybridization. Hydrophilic surfaces compete with terminal bases' H-bonds but stabilize central base stacking. Hydrophobic surfaces strengthen terminal H-bonds but destabilize central base stacking. Regardless of surface chemistry, for terminal bases, melting proceeds through breaking H-bonds, followed by unstacking from the neighboring base. For central bases in bulk or near hydrophobic surfaces, melting proceeds by disruption of H-bonds, followed by unstacking, whereas on hydrophilic surfaces, unstacking from one neighboring base precedes complete disruption of the H-bonds, followed by unstacking from the second neighboring base. Kinetic barriers to melting and hybridization show that the central bases melt rapidly near hydrophobic surfaces, which can accelerate conformational searching and thereby accelerate folding into the desired conformation.

  16. Enhancement of Water Evaporation on Solid Surfaces with Nanoscale Hydrophobic-Hydrophilic Patterns.

    Science.gov (United States)

    Wan, Rongzheng; Wang, Chunlei; Lei, Xiaoling; Zhou, Guoquan; Fang, Haiping

    2015-11-06

    Using molecular dynamics simulations, we show that the evaporation of nanoscale water on hydrophobic-hydrophilic patterned surfaces is unexpectedly faster than that on any surfaces with uniform wettability. The key to this phenomenon is that, on the patterned surface, the evaporation rate from the hydrophilic region only slightly decreases due to the correspondingly increased water thickness; meanwhile, a considerable number of water molecules evaporate from the hydrophobic region despite the lack of water film. Most of the evaporated water from the hydrophobic region originates from the hydrophilic region by diffusing across the contact lines. Further analysis shows that the evaporation rate from the hydrophobic region is approximately proportional to the total length of the contact lines.

  17. Plasma lipid analysis by hydrophilic interaction liquid chromatography coupled with electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Sonomura, Kazuhiro; Kudoh, Shinobu; Sato, Taka-Aki; Matsuda, Fumihiko

    2015-06-01

    A novel method for the analysis of endogenous lipids and related compounds was developed employing hydrophilic interaction liquid chromatography with electrospray ionization tandem mass spectrometry. A hydrophilic interaction liquid chromatography with carbamoyl stationary phase achieved clear separation of phosphatidylcholine, lysophosphatidylcholine, sphingomyelin, ceramide, and mono-hexsosyl ceramide groups with good peak area repeatability (RSD% 0.99). The established method was applied to human plasma assays and a total of 117 endogenous lipids were successfully detected and reproducibly identified. In addition, we investigated the simultaneous detection of small polar metabolites such as amino and organic acids co-existing in the same biological samples processed in a single analytical run with lipids. Our results show that hydrophilic interaction liquid chromatography is a useful tool for human plasma lipidome analysis and offers more comprehensive metabolome coverage.

  18. Hydrophilic fraction of natural organic matter causing irreversible fouling of microfiltration and ultrafiltration membranes.

    Science.gov (United States)

    Yamamura, Hiroshi; Okimoto, Kenji; Kimura, Katsuki; Watanabe, Yoshimasa

    2014-05-01

    Although membrane filtration is a promising technology in the field of drinking water treatment, persistent membrane fouling remains a major disadvantage. For more efficient operation, causative agents of membrane fouling need to be identified. Membrane fouling can be classified into physically reversible and irreversible fouling on basis of the removability of the foulants by physical cleaning. Four types of natural organic matter (NOM) in river water used as a source of drinking water were fractionated into hydrophobic and hydrophilic fractions, and their potential to develop irreversible membrane fouling was evaluated by a bench-scale filtration experiment together with spectroscopic and chromatographic analyses. In this study, only dissolved NOM was investigated without consideration of interactions of NOM fractions with particulate matter. Results demonstrated that despite identical total organic carbon (TOC), fouling development trends were significantly different between hydrophilic and hydrophobic fractions. The hydrophobic fractions did not increase membrane resistance, while the hydrophilic fractions caused severe loss of membrane permeability. These results were identical with the case when the calcium was added to hydrophobic and hydrophilic fractions. The largest difference in NOM characteristics between hydrophobic and hydrophilic fractions was the presence or absence of macromolecules; the primary constituent causing irreversible fouling was inferred to be "biopolymers", including carbohydrates and proteins. In addition, the results demonstrated that the extent of irreversible fouling was considerably different depending on the combination of membrane materials and NOM characteristics. Despite identical nominal pore size (0.1 μm), a polyvinylidene fluoride (PVDF) membrane was found to be more rapidly fouled than a PE membrane. This is probably explained by the generation of strong hydrogen bonding between hydroxyl groups of biopolymers and fluorine

  19. The hydrophilicity vs. ion interaction selectivity plot revisited: The effect of mobile phase pH and buffer concentration on hydrophilic interaction liquid chromatography selectivity behavior.

    Science.gov (United States)

    Iverson, Chad D; Gu, Xinyun; Lucy, Charles A

    2016-08-05

    This work systematically investigates the selectivity changes on many HILIC phases from w(w)pH 3.7-6.8, at 5 and 25mM buffer concentrations. Hydrophilicity (kcytosine/kuracil) vs. ion interaction (kBTMA/kuracil) selectivity plots developed by Ibrahim et al. (J. Chromatogr. A 1260 (2012) 126-131) are used to investigate the effect of mobile phase changes on the selectivity of 18 HILIC columns from various classes. "Selectivity change plots" focus on the change in hydrophilicity and ion interaction that the columns exhibit upon changing mobile phase conditions. In general, the selectivity behavior of most HILIC columns is dominated by silanol activity. Minimal changes in selectivity are observed upon changing pH between w(w)pH 5 and 6.8. However, a reduction in ionic interaction is observed when the buffer concentration is increased at w(w)pH≥5.0 due to ionic shielding. Reduction of the w(w)pH to<5.0 results in decreasing cation exchange activity due to silanol protonation. Under all eluent conditions, the majority of phases show little change in their hydrophilicity.

  20. Measurement of surface crystallinity of PAA and PAANa coatings and its effect on hydrophilicity of coatings

    Institute of Scientific and Technical Information of China (English)

    潘春跃; 刘清泉; 徐先华; 陈振华

    2003-01-01

    The solutions of poly(acrylic acid)(PAA), poly(acrylic acid sodium)(PAANa) were coated on aluminium fins by roll coating method. The coatings with different crystallinity were obtained by varying baking time and temperature. Their surface crystallinity and surface tension were measured, and their spreading speed constant and equilibrium contact angle were tested also. The correlation of surface crystallinity, surface tension, spreading speed constant and surface hydrophilicity was discussed. It is demonstrated that surface tension and spreading speed constant increase, while equilibrium contact angle declines with increasing surface crystallinity of coatings, that is to say, the hydrophilicity of coatings is improved with surface crystallinity of coatings increasing.

  1. SYNTHESIS OF NOVEL HYDROPHILIC BIODEGRADABLE POLYESTER WITH FUNCTIONALIZED SIDE CHAIN GROUPS

    Institute of Scientific and Technical Information of China (English)

    Ji-yuan Yang; Jian Yu; Huai-zhong Pan; Zhong-wei Gu; Wei-xiao Caoa; Xin-de Feng

    2001-01-01

    A substituted glycolide, 3-benzyloxymethyl-1,4-dioxane-2,5-dione, was synthesized. It is a suitable precursor for the preparation of a new hydrophilic biodegradable poly(a-hydroxy acid). The polymerizations were carried out in bulk in the presence of Sn(Oct)2 at 120-140℃. The resulting polymers were subjected to hydrogenolysis with a Pd/C catalyst in a mixed solvent to remove the protecting benzyl groups. A novel poly(a-hydroxy acid) with pendant hydroxy groups was obtained. The hydrophilicity of the resulting polymer was evaluated preliminarily.``

  2. Effect of hydrophilic walls on the hydration of sodium cations in planar nanopores

    Science.gov (United States)

    Shevkunov, S. V.

    2016-09-01

    A computer simulation of the structure of Na+ ion hydration shells with sizes in the range of 1 to 100 molecules in a planar model nanopore 0.7 nm wide with structureless hydrophilic walls is performed using the Monte Carlo method at a temperature of 298 K. A detailed model of many-body intermolecular interactions, calibrated with reference to experimental data on the free energy and enthalpy of reactions after gaseous water molecules are added to a hydration shell, is used. It is found that perturbations produced by hydrophilic walls cause the hydration shell to decay into two components that differ in their spatial arrangement and molecular orientational order.

  3. Dimensional Accuracy of Hydrophilic and Hydrophobic VPS Impression Materials Using Different Impression Techniques - An Invitro Study.

    Science.gov (United States)

    Basapogu, Sreeramulu; Pilla, Ajai; Pathipaka, Suman

    2016-02-01

    The dimensional stability of the impression material could have an influence on the accuracy of the final restoration. Vinyl Polysiloxane Impression materials (VPS) are most frequently used as the impression material in fixed prosthodontics. As VPS is hydrophobic when it is poured with gypsum products, manufacturers added intrinsic surfactants and marketed as hydrophilic VPS. These hydrophilic VPS have shown increased wettability with gypsum slurries. VPS are available in different viscosities ranging from very low to very high for usage under different impression techniques. To compare the dimensional accuracy of hydrophilic VPS and hydrophobic VPS using monophase, one step and two step putty wash impression techniques. To test the dimensional accuracy of the impression materials a stainless steel die was fabricated as prescribed by ADA specification no. 19 for elastomeric impression materials. A total of 60 impressions were made. The materials were divided into two groups, Group1 hydrophilic VPS (Aquasil) and Group 2 hydrophobic VPS (Variotime). These were further divided into three subgroups A, B, C for monophase, one-step and two-step putty wash technique with 10 samples in each subgroup. The dimensional accuracy of the impressions was evaluated after 24 hours using vertical profile projector with lens magnification range of 20X-125X illumination. The study was analyzed through one-way ANOVA, post-hoc Tukey HSD test and unpaired t-test for mean comparison between groups. Results showed that the three different impression techniques (monophase, 1-step, 2-step putty wash techniques) did cause significant change in dimensional accuracy between hydrophilic VPS and hydrophobic VPS impression materials. One-way ANOVA disclosed, mean dimensional change and SD for hydrophilic VPS varied between 0.56% and 0.16%, which were low, suggesting hydrophilic VPS was satisfactory with all three impression techniques. However, mean dimensional change and SD for hydrophobic VPS

  4. Facile transformation of superhydrophobicity to hydrophilicity by silica/poly(ɛ-caprolactone) composite film

    Science.gov (United States)

    Gao, Zhengxin; Zhai, Xianglin; Wang, Chengyu

    2015-12-01

    A smart surface with thermo-responsive wettability was fabricated on the cross section of wood with simple bench chemistry. The surface showed fast response between superhydrophobic and hydrophilic under different temperatures. The reversible wettability from superhydrophobicity to hydrophilicity can be easily achieved by adjusting the temperature between 25 and 60 °C. This reversible wettability is resulted from the synergistic effect of the crystallinity transition of the polymer coated on the surface and the optimized roughness controlled by the silica particles with different sizes. Furthermore, the modified wood surface showed an excellent chemical stability to corrosive liquids under ambient conditions.

  5. Model of waterlike fluid under confinement for hydrophobic and hydrophilic particle-plate interaction potentials.

    Science.gov (United States)

    Krott, Leandro B; Barbosa, Marcia C

    2014-01-01

    Molecular dynamic simulations were employed to study a waterlike model confined between hydrophobic and hydrophilic plates. The phase behavior of this system is obtained for different distances between the plates and particle-plate potentials. For both hydrophobic and hydrophilic walls, there are the formation of layers. Crystallization occurs at lower temperature at the contact layer than at the middle layer. In addition, the melting temperature decreases as the plates become more hydrophobic. Similarly, the temperatures of maximum density and extremum diffusivity decrease with hydrophobicity.

  6. Embedding of Hollow Polymer Microspheres with Hydrophilic Shell in Nafion Matrix as Proton and Water Micro-Reservoir

    Directory of Open Access Journals (Sweden)

    Zhaolin Liu

    2012-08-01

    Full Text Available Assimilating hydrophilic hollow polymer spheres (HPS into Nafion matrix by a loading of 0.5 wt % led to a restructured hydrophilic channel, composed of the pendant sulfonic acid groups (–SO3H and the imbedded hydrophilic hollow spheres. The tiny hydrophilic hollow chamber was critical to retaining moisture and facilitating proton transfer in the composite membranes. To obtain such a tiny cavity structure, the synthesis included selective generation of a hydrophilic polymer shell on silica microsphere template and the subsequent removal of the template by etching. The hydrophilic HPS (100–200 nm possessed two different spherical shells, the styrenic network with pendant sulfonic acid groups and with methacrylic acid groups, respectively. By behaving as microreservoirs of water, the hydrophilic HPS promoted the Grotthus mechanism and, hence, enhanced proton transport efficiency through the inter-sphere path. In addition, the HPS with the –SO3H borne shell played a more effective role than those with the –CO2H borne shell in augmenting proton transport, in particular under low humidity or at medium temperatures. Single H2-PEMFC test at 70 °C using dry H2/O2 further verified the impactful role of hydrophilic HPS in sustaining higher proton flux as compared to pristine Nafion membrane.

  7. Synthesis and Characterization of a Hydrophilic/Hydrophobic IPN Composed of Poly(vinyl alcohol) and Polystyrene

    Institute of Scientific and Technical Information of China (English)

    Yi Zhen TAN; Man Cai XU; Hai Tao LI

    2005-01-01

    A hydrophilic/hydrophobic interpenetrating polymer network (IPN) of poly (vinyl alcohol) /polystyrene was prepared by conversion of the IPN of poly (vinyl acetate)/polystyrene. The hydrophilic/hydrophobic IPN was characterized by FT-IR and DSC, and the swelling ratios of the IPN in different solvents were measured.

  8. New approach of long-term modification of Topas® to acquire surface hydrophilicity for chromosome spreading

    DEFF Research Database (Denmark)

    Mednova, Olga; Kwasny, Dorota; Rozlosnik, Noemi;

    2014-01-01

    A modified and improved photografting procedure of Topas® surface hydrophilization is investigated in order to obtain stable modification of the polymer for long term storage. The achieved hydrophilicity and monitoring of the wettability during one month of storage are presented as well as a desc...

  9. The hydrophilic/hydrophobic ratio vs. dissolved organics removal by coagulation – A review

    Directory of Open Access Journals (Sweden)

    Djamel Ghernaout

    2014-07-01

    Full Text Available This review discusses the hydrophilic/hydrophobic ratio as a function of the hydrophilic and hydrophobic contents removal by coagulation process. It is well established that coagulation process could bring a reduction in dissolved organic carbon of around 30–60% by increasing the coagulant dose and optimising reaction pH, in which large organic molecules with hydrophobic property was removed preferentially. Furthermore, the literature affirmed that the greater removal of UV-absorbing substances indicates that alum coagulation preferentially removed the hydrophobic fraction of the total organic carbon. For the hydrophobic fraction, it needs to be removed entirely without its transformation into hydrophilic fractions by coagulation process avoiding pre-chlorination/pre-oxidation due to the risk of organic molecules fragmentation. Determining the exact numerical values of the hydrophilic/hydrophobic ratio for raw water and treated water at different stages of the treatment processes in a water treatment plant, as for the DCO/DBO5 ratio in the case of wastewater treatment, would help on more focusing on OM control and removal.

  10. [Research development of surface hydrophilicity and lubrication modification of interventional guide wire].

    Science.gov (United States)

    Zhao, Bing; Liu, Xiaohong; Yuan, Ting

    2015-01-01

    Surface lubricity is one of the important performance criteria for interventional guide wire. In this paper, a review of the methods of surface hydrophilicity and lubrication modification of interventional guide wire is presented, including their fundamental principles, effects and some relative applications. These methods all have their own advantages and disadvantages, therefore, limitations of experimental conditions need to be taken into account.

  11. Oxidized potato starch based thermoplastic films : Effect of combination of hydrophilic and amphiphilic plasticizers

    NARCIS (Netherlands)

    Niazi, Muhammad Bilal Khan; Broekhuis, Antonius A.

    2016-01-01

    Different combinations of hydrophilic (glycerol and water) and amphiphilic (isoleucine) plasticizers were studied in the production of thermoplastic starch (TPS) powders and films from oxidized potato starch. All powder samples had an irregular and shrivelled morphology. In all mixtures containing i

  12. A Simple Hydrophilic Treatment of SU-8 Surfaces for Cell Culturing and Cell Patterning

    DEFF Research Database (Denmark)

    Wang, Zhenyu; Stangegaard, Michael; Dufva, Hans Martin

    2005-01-01

    SU-8, an epoxy-based photoresist, widely used in constitution different mTAS systems, is incompatible with mammalian cell adhesion and culture in its native form. Here, we demonstrate a simple, cheap and robust two-step method to render a SU-8 surface hydrophilic and compatible with cell culture...

  13. Hydrophilization of poly(ether ether ketone) films by surface-initiated atom transfer radical polymerization

    DEFF Research Database (Denmark)

    Fristrup, Charlotte Juel; Jankova Atanasova, Katja; Hvilsted, Søren

    2010-01-01

    Surface-Initiated Atom Transfer Radical Polymerization (SI-ATRP) has been exploited to hydrophilize PEEK. The ketone groups on the PEEK surface were reduced to hydroxyl groups which were converted to bromoisobutyrate initiating sites for SI-ATRP. The modification steps were followed by contact...

  14. Comparison of a hydrophilic and a hydrophobic apodized diffractive multifocal intraocular lens.

    NARCIS (Netherlands)

    Linden, J.W.M. van der; Meulen, I.J. van der; Mourits, M.P.; Lapid-Gortzak, R.

    2013-01-01

    To compare outcomes between a new design apodized diffractive hydrophilic multifocal intraocular lens (IOL) (Seelens MF; study group), and a well-known apodized diffractive hydrophobic multifocal IOL (SN6AD1; control group). A comparative case series comparing refractive and visual outcomes at dista

  15. Species-specific activation time-lags can explain habitat restrictions in hydrophilic lichens.

    Science.gov (United States)

    Lidén, Marlene; Jonsson Cabrajić, Anna V; Ottosson-Löfvenius, Mikaell; Palmqvist, Kristin; Lundmark, Tomas

    2010-05-01

    Photosystem II (PSII) activation after hydration with water or humid air was measured in four hydrophilic and a generalist lichen to test the hypothesis that slow activation might explain habitat restriction in the former group. For the hydrophilic species, activation was after 4 h nearly completed in Lobaria amplissima and Platismatia norvegica, while only c. 50% for Bryoria bicolor and Usnea longissima. The generalist Platismatia glauca was activated instantaneously. The effect of this on lichen field performance was investigated using a dynamic model separating the two water sources rain and humid air. Model simulations were made using the species-specific characteristics and climate data from 12 stream microhabitats. For U. longissima, slow PSII activation could reduce realized photosynthesis by a factor of five. Bryoria bicolor was almost as severely affected, while P. norvegica displayed moderate reductions. Lobaria amplissima displayed longer realized activity periods even in unfavourable microclimates, possibly because of a higher water loss resistance. Both close proximity to streams and presence of turbulent water had a positive impact on realized activity among the slowly activated species, coinciding with observed distribution patterns of hydrophilic species. The results presented here may thus partly explain observed habitat restrictions of rare hydrophilic lichens.

  16. Highly stable hydrophilic surfaces of PDMS thin layer obtained by UV radiation and oxygen plasma treatments

    Energy Technology Data Exchange (ETDEWEB)

    Menezes Atayde, Cleuson de; Doi, Ioshiaki [Center for Semiconductor Components, University of Campinas - UNICAMP, Campinas, SP (Brazil); School of Electrical and Computer Engineering, University of Campinas - UNICAMP, Campinas, SP (Brazil)

    2010-02-15

    Surface modification of polydimethylsiloxane (PDMS, Sylgard 184) was carried out by O{sub 2} plasma and UV in broadband mode/O{sub 2} plasma treatments with different exposure times, and studied in terms of hydrophilic stability. Water contact angle measurements, Fourier Transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM) were used for the analysis of the modified surface and hydrophilic stability of the PDMS films. The results show reasonably good hydrophilic stability in the range of a week with a contact angle of around 70 for O{sub 2} plasma treated samples, whereas a more high hydrophilic stability, with a low contact angle of 65 up to 15 days, was observed for UV/O{sub 2} plasma treated PDMS. FTIR analysis of the samples reveals significant oxidation noted by large presence of Si-O-Si, and Si-OH bonds on the PDMS surface, which improves the affinity with water molecules and increases the hydrophilicy. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Influence of hydrophilic polymers on functional properties and wound healing efficacy of hydrocolloid based wound dressings.

    Science.gov (United States)

    Jin, Sung Giu; Yousaf, Abid Mehmood; Kim, Kyeong Soo; Kim, Dong Wuk; Kim, Dong Shik; Kim, Jin Ki; Yong, Chul Soon; Youn, Yu Seok; Kim, Jong Oh; Choi, Han-Gon

    2016-03-30

    The purpose of this study was to investigate the influence of different hydrophilic polymers on the swelling, bioadhesion and mechanical strength of hydrocolloid wound dressings (HCDs) in order to provide an appropriate composition for a hydrocolloid wound dressing system. In this study, the HCDs were prepared with styrene-isoprene-styrene copolymer (SIS) and polyisobutylene (PIB) as the base using a hot melting method. Additionally, numerous SIS/PIB-based HCDs were prepared with six hydrophilic polymers, and their wound dressing properties were assessed. Finally, the wound healing efficacy of the selected formulations was compared to a commercial wound dressing. The swelling ratio, bioadhesive force and mechanical strengths of HCDs were increased in the order of sodium alginate>sodium CMC=poloxamer=HPMC>PVA=PVP, sodium alginate>sodium CMC=poloxamer>PVA>HPMC=PVP and sodium alginate≥PVA>PVP=HPMC=sodium CMC>poloxamer, respectively. Among the hydrophilic polymers tested, sodium alginate most enhanced the swelling capacity, bioadhesive force and mechanical strengths. Thus, the hydrophilic polymers played great role in the swelling, bioadhesion and mechanical strength of SIS/PIB-based HCDs. The HCD formulation composed of PIB, SIS, liquid paraffin and sodium alginate at the weight ratio of 20/25/12/43 gave better wound dressing properties and more excellent wound healing efficacy than the commercial wound dressing. Therefore, the novel HCD formulation could be a promising hydrocolloid system for wound dressings.

  18. Gas Permeation Related to the Moisture Sorption in Films of Glassy Hydrophilic Polymers

    NARCIS (Netherlands)

    Laksmana, F. L.; Kok, P. J. A. Hartman; Frijlink, H. W.; Vromans, H.; Maarschalk, K. Van Der Voort

    2010-01-01

    The purpose of this article is to elucidate the effect of integral sorption of moisture on gas permeation in glassy hydrophilic polymers. The oxygen and the simultaneous moisture sorption into various hydroxypropyl methylcellulose (HPMC) films were measured under a wide range of relative humidities

  19. RF plasma based selective modification of hydrophilic regions on super hydrophobic surface

    Science.gov (United States)

    Lee, Jaehyun; Hwang, Sangyeon; Cho, Dae-Hyun; Hong, Jungwoo; Shin, Jennifer H.; Byun, Doyoung

    2017-02-01

    Selective modification and regional alterations of the surface property have gained a great deal of attention to many engineers. In this paper, we present a simple, a cost-effective, and amendable reforming method for disparate patterns of hydrophilic regions on super-hydrophobic surfaces. Uniform super-hydrophobic layer (Contact angle; CA > 150°, root mean square (RMS) roughness ∼0.28 nm) can be formed using the atmospheric radio frequency (RF) plasma on top of the selective hydrophilic (CA ∼ 70°, RMS roughness ∼0.34 nm) patterns imprinted by electrohydrodynamic (EHD) jet printing technology with polar alcohols (butyl carbitol or ethanol). The wettability of the modified surface was investigated qualitatively utilizing scanning electron microscopy (SEM), atomic force microscopy (AFM), and wavelength scanning interferometer (WSI). Secondary ion mass spectroscopy (SIMS) analysis showed that the alcohol addiction reaction changed the types of radicals on the super-hydrophobic surface. The wettability was found to depend sensitively on chemical radicals on the surface, not on surface morphology (particle size and surface roughness). Furthermore, three different kinds of representative hydrophilic samples (polystyrene nano-particle aqueous solution, Salmonella bacteria medium, and poly(3,4-ethylenediocythiophene) ink) were tested for uniform deposition onto the desired hydrophilic regions. This simple strategy would have broad applications in various research fields that require selective deposition of target materials.

  20. Patterned Hydrophilization of Nanoporous 1,2‐PB by Thiol‐ene Photochemistry

    DEFF Research Database (Denmark)

    Berthold, Anton; Sagar, Kaushal Shashikant; Ndoni, Sokol

    2011-01-01

    is monitored by FT‐IR, UV–Vis, contact angle, and gravimetry. Overall quantum yields are calculated for the two thiol‐ene “click” reactions in nano‐confinement, neatly revealing their chain‐like nature. Top–down photolithographic patterning is demonstrated, realizing hydrophilic nanoporous “corridors...

  1. Bond-Strengthening in Staphylococcal Adhesion to Hydrophilic and Hydrophobic Surfaces Using Atomic Force Microscopy

    NARCIS (Netherlands)

    Boks, N.P.; Busscher, H.J.; Mei, van der H.C.; Norde, W.

    2008-01-01

    Time-dependent bacterial adhesion forces of four strains of Staphylococcus epidermidis to hydrophobic and hydrophilic surfaces were investigated. Initial adhesion forces differed significantly between the two surfaces and hovered around -0.4 nN. No unambiguous effect of substratum surface

  2. Photocatalysis and photoinduced hydrophilicity of WO3 thin films with underlying Pt nanoparticles.

    Science.gov (United States)

    Miyauchi, Masahiro

    2008-11-07

    The photocatalytic oxidation and photoinduced hydrophilicity of thin tungsten trioxide (WO(3)) films coupled with platinum (Pt) nanoparticles were investigated. WO(3) films with underlying Pt nanoparticles (WO(3)/Pt/substrate) and those with overlying Pt nanoparticles (Pt/WO(3)/substrate) were synthesized by sputtering and sol-gel methods. Between these films, underlying Pt nanoparticles greatly enhanced the photocatalytic oxidation activity of WO(3) without decreasing the photoinduced hydrophilic conversion. However, overlying Pt nanoparticles deteriorated the hydrophilicity of WO(3) because the Pt nanoparticle surface was hydrophobic. The enhanced photocatalytic reaction by the Pt nanoparticles was attributed to the multi-electron reduction in Pt, which is caused by the injected electrons from the conduction band of WO(3). The relationship between photocatalytic activity and thin film structure, including the size of Pt nanoparticles, the thickness and porosity of the WO(3) layer, were investigated. Consequently, the optimum structure for high performance in both photocatalysis and photoinduced hydrophilicity was WO(3) (50 nm)/Pt(1.5 nm)/substrate, and this film exhibited a significant self-cleaning property even under visible light irradiation.

  3. Gas Permeation Related to the Moisture Sorption in Films of Glassy Hydrophilic Polymers

    NARCIS (Netherlands)

    Laksmana, F. L.; Kok, P. J. A. Hartman; Frijlink, H. W.; Vromans, H.; Maarschalk, K. Van Der Voort

    2010-01-01

    The purpose of this article is to elucidate the effect of integral sorption of moisture on gas permeation in glassy hydrophilic polymers. The oxygen and the simultaneous moisture sorption into various hydroxypropyl methylcellulose (HPMC) films were measured under a wide range of relative humidities

  4. Radius ratio rule for surface hydrophilization of polydimethyl siloxane and silica nanoparticle composite

    Energy Technology Data Exchange (ETDEWEB)

    Toutam, Vijaykumar, E-mail: toutamvk@nplindia.org [Quantum Phenomena and Applications Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Jain, Puneet; Sharma, Rina [Quantum Phenomena and Applications Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Bathula, Sivaiah; Dhar, Ajay [Material Physics and Engineering Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India)

    2015-09-15

    Graphical abstract: - Highlights: • Binary hard sphere silica nanoparticle system based PDMS composite. • Enhanced hydrophilization and retainability of the composite. • Restriction of uncured PDMS from diffusion. • Increased Debye length of electrostatic double layer, measured by F-D Spectroscopy. - Abstract: Polydimethyl siloxane (PDMS) and Silica (SiO{sub 2}) nanoparticle composite blocks of three different batches (CB1–CB3) made by varying the size of SiO{sub 2} nanoparticles (NP), are studied for the degree of hydrophilization and retainability after oxidation by contact angle measurements (CA) and force distance spectroscopy (FDS) using Atomic Force Microscope (AFM). While CA measurements have shown high hydrophilization and retainability for CB3, F-D spectroscopy has reiterated the observation and has shown long range interactive forces and high Debye length of the electrostatic double layer formed. These results are in agreement with the radius ratio rule of binary sphere system for high density packing in the composite and thereby for strong hydrophilization and retainability due to reinforcement and restricted diffusion of uncured polymer.

  5. An efficient hydrophilic interaction liquid chromatography separation of 7 phospholipid classes based on a diol column

    NARCIS (Netherlands)

    Zhu, C.; Dane, A.; Spijksma, G.; Wang, M.; Greef, J. van der; Luo, G.; Hankemeier, T.; Vreeken, R.J.

    2012-01-01

    A hydrophilic interaction liquid chromatography (HILIC) - ion trap mass spectrometry method was developed for separation of a wide range of phospholipids. A diol column which is often used with normal phase chromatography was adapted to separate different phospholipid classes in HILIC mode using a m

  6. Hydrophilic quantum dots stability against an external low-strength electric field

    Energy Technology Data Exchange (ETDEWEB)

    Goftman, Valentina V., E-mail: Valentina.Goftman@UGent.be [Department of General and Inorganic Chemistry, Chemistry Institute, Saratov State University, Astrakhanskaya 83, 410012 Saratov (Russian Federation); Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent (Belgium); Pankratov, Vladislav A.; Markin, Alexey V. [Department of General and Inorganic Chemistry, Chemistry Institute, Saratov State University, Astrakhanskaya 83, 410012 Saratov (Russian Federation); Ginste, Dries Vande [IBCN/Electromagnetics Group, Department of Information Technology, Ghent University/iMinds, Sint-Pietersnieuwstraat 41, 9000 B-Gent (Belgium); De Saeger, Sarah [Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent (Belgium); Goryacheva, Irina Yu. [Department of General and Inorganic Chemistry, Chemistry Institute, Saratov State University, Astrakhanskaya 83, 410012 Saratov (Russian Federation)

    2016-02-15

    Graphical abstract: - Highlights: • Silica-coated and polymer-covered hydrophilic quantum dots are synthesized and characterized. • Impact of low-strength electric field is compared for both hydrophilic shells. • Silica shell protects the quantum dots fluorescent core when being subjected to a low-strength electric field. - Abstract: Since the stability of nanobiolabels plays a key role in their application, we thoroughly investigated how an external, low-strength electric field impacts on the fluorescent properties of hydrophilic quantum dots (QDs). Two fundamentally different approaches were applied to make the QDs water-soluble, i.e. ligand exchange (namely silica covering) and encapsulation with an amphiphilic polymer. It is shown that, even under a low-strength electric field, the polymer-coated QDs could lose 90% of their brightness because of the weak interaction between the QD's surface and the polymeric molecule. Silica-covered QDs, on the contrary, stay bright and stable owing to the covalently attached dense silica shell. These findings, which are clearly explained and illustrated in the present paper, are of critical importance in the context of hydrophilic QDs’ bioapplication.

  7. Evaluating the hydrophilic-lipophilic nature of asphaltenic oils and naphthenic amphiphiles using microemulsion models.

    Science.gov (United States)

    Kiran, Sumit K; Acosta, Edgar J; Moran, Kevin

    2009-08-01

    Asphaltenes and naphthenic acid derivatives, which are polar and surface-active species, are known to interfere with the recovery of heavy crude oil by promoting the formation of stable emulsions. In this study, previously established microemulsion phase behavior models were applied to quantify the hydrophilic-lipophilic nature of asphaltenic oils (bitumen, deasphalted bitumen, asphalt, naphthalene) and surface-active species found in heavy oils (naphthenic compounds and asphaltenes). For the test oils, the equivalent alkane carbon number (EACN) was determined by evaluating the "salinity shifts" of microemulsions formulated with a reference surfactant (sodium dihexyl sulfosuccinate--SDHS) and a reference oil (toluene) as a function of test oil volume fraction. Similarly, the characteristic curvature (C(C)) of surface-active species was determined by evaluating the salinity shifts as a function of the molar fraction of the surface-active species in mixture with SDHS. As a part of the oil phase, asphaltenes and asphaltene-like species are highly hydrophilic, which lead to low EACN values despite their large molecular weight. As a surface-active material, asphaltenes are hydrophobic species that lead to the formation of water-in-oil emulsions. Naphthenates, particularly sodium naphthenates, are highly hydrophilic compounds that lead to the formation of oil-in-water emulsions. These hydrophilic-lipophilic characterization parameters, and the methods used to determine them, can be used in the future to understand the phase behavior of complex oil-water systems.

  8. Protein repellent hydrophilic grafts prepared by surface-initiated atom transfer radical polymerization from polypropylene

    DEFF Research Database (Denmark)

    Fristrup, Charlotte Juel; Jankova Atanasova, Katja; Eskimergen, Rüya

    2012-01-01

    Grafting of poly(ethylene glycol)methacrylate (PEGMA) and N,N-dimethylacrylamide (DMAAm) from UV-initiator modified polypropylene (PP) was performed by Surface-Initiated Atom Transfer Radical Polymerization (SI-ATRP). The modification and hydrophilization of the PP substrates were confirmed...

  9. Ultralow Friction with Hydrophilic Polymer Brushes in Water as Segregated from Silicone Matrix

    DEFF Research Database (Denmark)

    Røn, Troels; Javakhishvili, Irakli; Hvilsted, Søren

    2015-01-01

    Lubrication is essential to minimize damage to underlying material and ensure low energy dissipation in biological and man-made mechanical sys- tems. Surface grafting of hydrophilic polymer brushes is a powerful means to render materials that are slippery in aqueous environments. However, present...

  10. Nisin adsorption on hydrophilic and hydrophobic surfaces: evidence of its interactions and antibacterial activity.

    Science.gov (United States)

    Karam, Layal; Jama, Charafeddine; Nuns, Nicolas; Mamede, Anne-Sophie; Dhulster, Pascal; Chihib, Nour-Eddine

    2013-06-01

    Study of peptides adsorption on surfaces remains a current challenge in literature. A complementary approach, combining X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used to investigate the antimicrobial peptide nisin adsorption on hydrophilic and hydrophobic surfaces. The native low density polyethylene was used as hydrophobic support and it was grafted with acrylic acid to render it hydrophilic. XPS permitted to confirm nisin adsorption and to determine its amount on the surfaces. ToF-SIMS permitted to identify the adsorbed bacteriocin type and to observe its distribution and orientation behavior on both types of surfaces. Nisin was more oriented by its hydrophobic side to the hydrophobic substrate and by its hydrophilic side to the outer layers of the adsorbed peptide, in contrast to what was observed on the hydrophilic substrate. A correlation was found between XPS and ToF-SIMS results, the types of interactions on both surfaces and the observed antibacterial activity. Such interfacial studies are crucial for better understanding the peptides interactions and adsorption on surfaces and must be considered when setting up antimicrobial surfaces.

  11. Delivering hydrophilic and hydrophobic chemotherapeutics simultaneously by magnetic mesoporous silica nanoparticles to inhibit cancer cells.

    Science.gov (United States)

    Liu, Qian; Zhang, Jixi; Sun, Wei; Xie, Qian Reuben; Xia, Weiliang; Gu, Hongchen

    2012-01-01

    Using nanoparticles to deliver chemotherapeutics offers new opportunities for cancer therapy, but challenges still remain when they are used for the delivery of multiple drugs, especially for the synchronous delivery of hydrophilic and hydrophobic drugs in combination therapies. In this paper, we developed an approach to deliver hydrophilic-hydrophobic anticancer drug pairs by employing magnetic mesoporous silica nanoparticles (MMSNs). We prepared 50 nm-sized MMSNs with uniform pore size and evaluated their capability for the loading of two combinations of chemotherapeutics, namely doxorubicin-paclitaxel and doxorubicin-rapamycin, by means of sequential adsorption from the aqueous solution of doxorubicin and nonaqueous solutions of paclitaxel or rapamycin. Experimental results showed that the present strategy successfully realized the co-loading of hydrophilic and hydrophobic drugs with high-loading content and widely tunable ratio range. We elaborate on the theory behind the molecular interaction between the silica hydroxyl groups and drug molecules, which underlie the controllable loading, and the subsequent release of the drug pairs. Then we demonstrate that the multidrug-loaded MMSNs could be easily internalized by A549 human pulmonary adenocarcinoma cells, and produce enhanced tumor cell apoptosis and growth inhibition as compared to single-drug loaded MMSNs. Our study thus realized simultaneous and dose-tunable delivery of hydrophilic and hydrophobic drugs, which were endowed with improved anticancer efficacy. This strategy could be readily extended to other chemotherapeutic combinations and might have clinically translatable significance.

  12. Patterned hydrophobic and hydrophilic surfaces of ultra-smooth nanocrystalline diamond layers

    Science.gov (United States)

    Mertens, M.; Mohr, M.; Brühne, K.; Fecht, H. J.; Łojkowski, M.; Święszkowski, W.; Łojkowski, W.

    2016-12-01

    In this work, we show that ultra nanocrystalline diamond (UNCD) surfaces have been modified to add them hydrophobic and hydrophilic properties. The nanocrystalline diamond films were deposited using the hot filament chemical vapor deposition (HFCVD) technique. This allows growing diamond on different substrates which can be even 3D or structured. Silicon and, for optical applications, transparent quartz glass are the preferred substrates for UNCD layers growth. Fluorine termination leads to strong hydrophobic properties as indicated by a high contact angle for water of more than 100°. Hydrogen termination shows lesser hydrophobic behavior. Hydrophilic characteristics has been realised with oxygen termination. X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX) measurements confirm the oxygen and fluorine- termination on the nanocrystalline diamond surface. Further, by micropatterning using photolithography, multi-terminated layers have been created with both hydrophobic and hydrophilic areas. In addition, we have shown that retermination is achieved, and the properties of the surface have been changed from hydrophobic to hydrophilic and vice versa. Micro- roughness and stress in the grown film influences slightly the wetting angle as well. The opportunity to realize local differences in hydrophobicity on nanocrystalline diamond layers, in any size or geometry, offers interesting applications for example in microbiological investigations. Multi-terminated arrays show identical surface roughness and at the same time differences in hydrophobicity. These arrays have been visualized with scanning electron microscopy (SEM) and lateral force microscopy (LFM).

  13. Bond-Strengthening in Staphylococcal Adhesion to Hydrophilic and Hydrophobic Surfaces Using Atomic Force Microscopy

    NARCIS (Netherlands)

    Boks, Niels P.; Busscher, Henk J.; van der Mei, Henny C.; Norde, Willem

    2008-01-01

    Time-dependent bacterial adhesion forces of four strains of Staphylococcus epidermidis to hydrophobic and hydrophilic surfaces were investigated. Initial adhesion forces differed significantly between the two surfaces and hovered around -0.4 nN. No unambiguous effect of substratum surface hydrophobi

  14. Mobile and immobile adhesion of staphylococcal strains to hydrophilic and hydrophobic surfaces.

    Science.gov (United States)

    Boks, Niels P; Kaper, Hans J; Norde, Willem; van der Mei, Henny C; Busscher, Henk J

    2009-03-01

    Staphylococcus epidermidis adheres to hydrophilic glass and hydrophobic dimethyldichlorosilane (DDS)-coated glass in similar numbers, but in different modes. Real-time observation of staphylococcal adhesion under a shear rate of 15 s(-1) revealed different adhesion dynamics on both substrata. The number of adsorption and desorption events to achieve a similar number of adhering bacteria was twofold higher on hydrophilic than on hydrophobic DDS-coated glass. Moreover, 22% of all staphylococci on glass slid over the surface prior to adhering on a fixed site ("mobile adhesion mode"), but mobile adhesion was virtually absent (1%) on DDS-coated glass. Sliding preceded desorption on hydrophilic glass in about 20% of all desorption events, while on hydrophobic DDS-coated glass 2% of all staphylococci desorbed straight from their adhesion site. Since acid-base interactions between the staphylococci and a hydrophobic DDS-coating are attractive, it is suggested that these interactions facilitate a closer approach of the bacteria and therewith enhance immobile adhesion at local, high affinity sites. Alternatively, if the local site is low affinity, this may lead to desorption. In the absence of attractive acid-base interactions, as on hydrophilic glass, bacteria can be captured in the minimum of the DLVO-interaction energy curve, but this does not prevent them from sliding under flow at a fixed distance from a substratum surface until immobilization or desorption at or from a local high or low affinity site, respectively.

  15. Mobile and immobile adhesion of staphylococcal strains to hydrophilic and hydrophobic surfaces

    NARCIS (Netherlands)

    Boks, Niels P.; Kaper, Hans J.; Norde, Willem; van der Mei, Henny C.; Busscher, Henk J.

    2009-01-01

    Staphylococcus epidermidis adheres to hydrophilic glass and hydrophobic dimethyldichlorosilane (DDS)-coated glass in similar numbers, but in different modes. Real-time observation of staphylococcal adhesion under a shear rate of 15 s(-1) revealed different adhesion dynamics on both substrata. The nu

  16. Polymerization- and solvent-induced phase separation in hydrophilic-rich dentin adhesive mimic.

    Science.gov (United States)

    Abedin, Farhana; Ye, Qiang; Good, Holly J; Parthasarathy, Ranganathan; Spencer, Paulette

    2014-07-01

    Current dental resin undergoes phase separation into hydrophobic-rich and hydrophilic-rich phases during infiltration of the over-wet demineralized collagen matrix. Such phase separation undermines the integrity and durability of the bond at the composite/tooth interface. This study marks the first time that the polymerization kinetics of model hydrophilic-rich phase of dental adhesive has been determined. Samples were prepared by adding varying water content to neat resins made from 95 and 99 wt.% hydroxyethylmethacrylate and 5 and 1 wt.% (2,2-bis[4-(2-hydroxy-3-methacryloxypropoxy)phenyl1]-propane prior to light curing. Viscosity of the formulations decreased with increased water content. The photopolymerization kinetics study was carried out with a time-resolved Fourier transform infrared spectrometer. All of the samples exhibited two-stage polymerization behavior which has not been reported previously for dental resin formulation. The lowest secondary rate maxima were observed for water contents of 10-30 wt.%. Differential scanning calorimetry (DSC) showed two glass transition temperatures for the hydrophilic-rich phase of dental adhesive. The DSC results indicate that the heterogeneity within the final polymer structure decreased with increasing water content. The results suggest a reaction mechanism involving both polymerization-induced phase separation and solvent-induced phase separation for the model hydrophilic-rich phase of dental resin.

  17. A Simple Hydrophilic Treatment of SU-8 Surfaces for Cell Culturing and Cell Patterning

    DEFF Research Database (Denmark)

    Wang, Zhenyu; Stangegaard, Michael; Dufva, Hans Martin;

    2005-01-01

    SU-8, an epoxy-based photoresist, widely used in constitution different mTAS systems, is incompatible with mammalian cell adhesion and culture in its native form. Here, we demonstrate a simple, cheap and robust two-step method to render a SU-8 surface hydrophilic and compatible with cell culture...

  18. Blood contamination effect on shear bond strength of an orthodontic hydrophilic resin

    Directory of Open Access Journals (Sweden)

    Taís de Morais Alves da Cunha

    2012-02-01

    Full Text Available OBJECTIVE: The aim of this study was to assess the impact of blood contamination on shear bond strength (SBS and bond failure pattern of metallic brackets bonded using a new hydrophilic resin. MATERIAL AND METHODS: Eighty human premolars were randomly allocated into 4 groups (n=20 according to the bonding material and contamination pattern. GI: brackets bonded with the Transbond XT conventional system without contamination; GII: brackets bonded with the Transbond XT conventional system with blood contamination; GIII: brackets bonded with the Transbond Self Etching Primer and Transbond Plus Color without contamination; GIV: brackets bonded with the Transbond Self Etching Primer and Transbond Plus Color with blood contamination. The specimens were stored in distilled water at 37°C for 24 h and then submitted to SBS test at a crosshead speed of 0.5 mm/min. After bond failure, the enamel surfaces were observed under an optical microscope at 40x magnification. RESULTS: Blood contamination decreased (P<0.05 shear bond strength when both the hydrophobic (GII and the hydrophilic resin (GIV were used. However, the bond strength of Transbond Color Change group was significantly higher (P<0.05 than that of the Transbond XT conventional system group under blood contamination condition. Under dry conditions no difference was observed between the hydrophobic and hydrophilic resin groups. Regarding the bond failure pattern, when blood contaminated the enamel, the adhesive remnant index (ARI showed predominance of scores 0 and 1, which indicates low adhesion to enamel. CONCLUSIONS: Although there was a significant decrease in the shear bond strength for both adhesive systems under blood contamination, the hydrophilic system showed significantly higher bond strength than the hydrophobic resin adhesive. Therefore, it is advisable to use the hydrophilic resin under risk of blood contamination.

  19. Exploring the effect of hydrophilic and hydrophobic structure of grafted polymeric micelles on drug loading.

    Science.gov (United States)

    Shi, Chenjun; Sun, Yujiao; Wu, Haiyang; Zhu, Chengyun; Wei, Guoguang; Li, Jinfeng; Chan, Tenglan; Ouyang, Defang; Mao, Shirui

    2016-10-15

    The objective of this paper is to explore the effect of hydrophilic and hydrophobic structure of grafted polymeric micelles on drug loading, and elucidate whether drug-polymer compatibility, as predicted by Hansen solubility parameters (HSPs), can be used as a tool for drug-polymer pairs screening and guide the design of grafted polymeric micelles. HSPs of 27 drugs and three grafted copolymers were calculated according to group contribution method. The drug-polymer compatibilities were evaluated using the approaches of Flory-Huggins interaction parameters (χFH) and polarity difference (△Xp). Two models, model A and B, were put forward for drug-polymer compatibility prediction. In model A, hydrophilic/hydrophobic part as a whole was regarded as one segment. And, in model B, hydrophilic and hydrophobic segments were evaluated individually. First of all, using chitosan (CS)-grafted-glyceryl monooeate (GMO) based micelle as an example, the suitability of model A and model B for predicating drug-polymer compatibility was evaluated theoretically. Thereafter, corresponding experiments were carried out to check the validity of the theoretical prediction. It was demonstrated that Model B, which evaluates drug compatibility with both hydrophilic and hydrophobic segments of the copolymer, is more reliable for drug-polymer compatibility prediction. Moreover, the approach of model B allows for the selection of a defined grafted polymer with for a specific drug and vice versa. Thus, drug compatibility evaluation via HSPs with both hydrophilic and hydrophobic segments is a suitable tool for the rational design of grafted polymeric micelles. The molecular dynamics (MD) simulation study provided further support to the established model and experimental results.

  20. Preparation and Characterization of Hydrophilically Modified PVDF Membranes by a Novel Nonsolvent Thermally Induced Phase Separation Method

    Directory of Open Access Journals (Sweden)

    Ningen Hu

    2016-11-01

    Full Text Available In this study, a nonsolvent thermally-induced phase separation (NTIPS method was first proposed to fabricate hydrophilically-modified poly(vinylidene fluoride (PVDF membranes to overcome the drawbacks of conventional thermally-induced phase separation (TIPS and nonsolvent-induced phase separation (NIPS methods. Hydrophilically-modified PVDF membranes were successfully prepared by blending in hydrophilic polymer polyvinyl alcohol (PVA at 140 °C. A series of PVDF/PVA blend membranes was prepared at different total polymer concentrations and blend ratios. The morphological analysis via SEM indicated that the formation mechanism of these hydrophilically-modified membranes was a combined NIPS and TIPS process. As the total polymer concentration increased, the tensile strength of the membranes increased; meanwhile, the membrane pore size, porosity and water flux decreased. With the PVDF/PVA blend ratio increased from 10:0 to 8:2, the membrane pore size and water flux increased. The dynamic water contact angle of these membranes showed that the hydrophilic properties of PVDF/PVA blend membranes were prominently improved. The higher hydrophilicity of the membranes resulted in reduced membrane resistance and, hence, higher permeability. The total resistance Rt of the modified PVDF membranes decreased significantly as the hydrophilicity increased. The irreversible fouling related to pore blocking and adsorption fouling onto the membrane surface was minimal, indicating good antifouling properties.

  1. Quantitative and qualitative evaluation of adsorption/desorption of bovine serum albumin on hydrophilic and hydrophobic surfaces.

    Science.gov (United States)

    Jeyachandran, Y L; Mielczarski, E; Rai, B; Mielczarski, J A

    2009-10-06

    We studied the adsorption of bovine serum albumin (BSA) from phosphate-buffered saline (pH 7.4) to hydrophilic and hydrophobic surfaces. Attenuated total reflection Fourier transform infrared spectroscopy, supported by spectral simulation, allowed us to determine with high precision the amount of BSA adsorbed (surface coverage) and its structural composition. The adsorbed BSA molecules had an alpha-helical structure on both hydrophobic and hydrophilic surfaces but had different molecular conformations and adsorption strengths on the two types of surface. Adsorption of BSA was saturated at around 50% surface coverage on the hydrophobic surface, whereas on the hydrophilic surface the adsorption reached 95%. The BSA molecules adsorbed to the hydrophilic surface with a higher interaction strength than to the hydrophobic surface. Very little adsorbed BSA could be desorbed from the hydrophilic surface, even using 0.1 M sodium dodecyl sulfate, a strong detergent solution. The formation of BSA-phosphate surface complexes was observed under different BSA adsorption conditions on hydrophobic and hydrophilic surfaces. The formation of these complexes correlated with the more efficient blocking of nonspecific interactions by the adsorbed BSA layer. Results from the molecular modeling of BSA interactions with hydrophobic and hydrophilic surfaces support the spectroscopic findings.

  2. Assembly of light-emitting diode based on hydrophilic CdTe quantum dots incorporating dehydrated silica gel.

    Science.gov (United States)

    Du, Jinhua; Wang, Chunlei; Xu, Xiaojing; Wang, Zhuyuan; Xu, Shuhong; Cui, Yiping

    2016-03-01

    Stable photoluminescence QD light-emitting diodes (QD-LEDs) were made based on hydrophilic CdTe quantum dots (QDs). A quantum dot-inorganic nanocomposite (hydrophilic CdTe QDs incorporating dehydrated silica gel) was prepared by two methods (rotary evaporation and freeze drying). Taking advantage of its viscosity, plasticity and transparency, dehydrated silica gel could be coated on the surface of ultraviolet (UV) light LEDs to make photoluminescence QD-LEDs. This new photoluminescence QD-LED, which is stable, environmentally non-toxic, easy to operate and low cost, could expand the applications of hydrophilic CdTe QDs in photoluminescence. Copyright © 2015 John Wiley & Sons, Ltd.

  3. New hydrophilic interaction/reversed-phase mixed-mode stationary phase and its application for analysis of nonionic ethoxylated surfactants.

    Science.gov (United States)

    Liu, Xiaodong; Pohl, Christopher

    2008-05-16

    We have developed a new stationary phase that combines both hydrophilic interaction and reversed-phase characteristics. The new phase is based on high-purity, porous and spherical silica gel functionalized with a silyl ligand consisting of both hydrophilic and hydrophobic functionalities. This phase can be operated in both HILIC mode (high organic solvent) and RPLC mode (low organic solvent). An optimal balance of hydrophilic and hydrophobic moieties on the silica surface provides unique chromatographic properties that make it useful for determination of alkyl chain distribution and degree of ethoxylation (EO number) of nonionic ethoxylated surfactants.

  4. Switchable-Hydrophilicity Solvents for Product Isolation and Catalyst Recycling in Organocatalysis.

    Science.gov (United States)

    Großeheilmann, Julia; Vanderveen, Jesse R; Jessop, Philip G; Kragl, Udo

    2016-04-01

    Switchable-hydrophilicity solvents (SHSs) are solvents that can switch reversibly between a water-miscible state to a state that forms a biphasic mixture with water. In this case study, SHSs have been studied for easy product/catalyst separation as well as catalyst recycling. A series of tertiary amine SHSs have been identified for the extraction of the hydrophilic product from the postreaction mixture. Here, we determined high extraction efficiencies for the product (>84%) and low extraction rates for the catalyst (catalyst recycling experiments, we isolated the product in high purity (>98%) without further purification steps. At the same time, the catalyst was reused without any loss of activity (>91% enantiomeric excess, >99% yield) four times. Furthermore, we optimized the extraction efficiency by working with a microextractor. In addition, with the use of a falling-film microreactor, we obtained the product with high enantioselectivity by working at ambient conditions.

  5. Unusual ultra-hydrophilic, porous carbon cuboids for atmospheric-water capture.

    Science.gov (United States)

    Hao, Guang-Ping; Mondin, Giovanni; Zheng, Zhikun; Biemelt, Tim; Klosz, Stefan; Schubel, René; Eychmüller, Alexander; Kaskel, Stefan

    2015-02-02

    There is significant interest in high-performance materials that can directly and efficiently capture water vapor, particularly from air. Herein, we report a class of novel porous carbon cuboids with unusual ultra-hydrophilic properties, over which the synergistic effects between surface heterogeneity and micropore architecture is maximized, leading to the best atmospheric water-capture performance among porous carbons to date, with a water capacity of up to 9.82 mmol g(-1) at P/P0 =0.2 and 25 °C (20% relative humidity or 6000 ppm). Benefiting from properties, such as defined morphology, narrow pore size distribution, and high heterogeneity, this series of functional carbons may serve as model materials for fundamental research on carbon chemistry and the advance of new types of materials for water-vapor capture as well as other applications requiring combined highly hydrophilic surface chemistry, developed hierarchical porosity, and excellent stability.

  6. How to decrease the hydrophilicity of wood flour to process efficient composite materials

    Science.gov (United States)

    Pouzet, M.; Gautier, D.; Charlet, K.; Dubois, M.; Béakou, A.

    2015-10-01

    Dynamic fluorination and static fluorination were applied to wood flour to decrease its hydrophilic character, aiming at processing wood-polymer composites with good properties. Fourier-Transform infrared spectra and 19F solid state NMR (Nuclear Magnetic Resonance) results proved the successful covalent bonding of fluorine atoms onto the wood's chemical structure. It revealed that static fluorination brings about a less damaged and less hydrophilic fluorinated wood than with dynamic fluorination. Composites manufactured from this fluorinated wood presented a hydrophobic character directly related to the hydrophicity of these wood reinforcements. A composite made with fluorinated wood and polyester exhibited a higher hydrophobicity than the neat polyester and than the composite made with non-treated wood. Moreover, the further fluorination of a composite made of fluorinated wood led to a contact angle comparable to that of some metals (steel, gold) due to the etching of the composite surface during fluorination.

  7. Trace Material Capture by Controlled Liquid Droplets on a Superhydrophobic/Hydrophilic Surface.

    Science.gov (United States)

    Fukada, Kenta; Kawamura, Naoya; Shiratori, Seimei

    2017-09-15

    A liquid droplet in contact with a superhydrophobic surface can be used to collect dissolved trace materials after evaporating the solvent. This process effect enhances detection limits, but a liquid droplet easily rolls off a superhydrophobic surface. Keeping it at a specific collecting spot area is challenging. Here the means for controlling and capturing a liquid droplet on a superhydrophobic surface is demonstrated. To induce a liquid droplet to a collecting spot, its rolling direction was controlled by two superhydrophobic fabric guides. The liquid droplet was then captured by hydrophilic polymer and hydrophilic nanoparticles at the measuring spot. After removing the solvent, the trace compounds were evaluated with a colorimetric analysis visible to the naked eye.

  8. Selective extraction and determination of chlorogenic acid in fruit juices using hydrophilic magnetic imprinted nanoparticles.

    Science.gov (United States)

    Hao, Yi; Gao, Ruixia; Liu, Dechun; He, Gaiyan; Tang, Yuhai; Guo, Zengjun

    2016-06-01

    In this paper, the novel hydrophilic magnetic molecularly imprinted nanoparticles were developed for selective separation and determination of chlorogenic acid in aqueous fruit juices. The polymers were prepared by using amino-functionalized magnetic nanoparticles as carriers, branched polyethyleneimine as functional monomer, and chlorogenic acid as template molecule. Branched polyethyleneimine with abundant active amino groups could react with template sufficiently, and its unique dendritic structure may amplify the number of the imprinted cavities. Meanwhile, it would improve the hydrophilicity of imprinted materials for attaining high extraction efficiency. The resulted polymers exhibit fast kinetics, high adsorption capacity, and favorable selectivity. In addition, the obtained nanoparticles were used as solid-phase extraction sorbents for selective isolation and determination of chlorogenic acid in peach, apple, and grape juices (0.92, 4.21, and 0.75 μg mL(-1), respectively).

  9. Preparation of nano-sized hydrophilic aluminum fins coating materials for air conditioner

    Institute of Scientific and Technical Information of China (English)

    陈志明; 韩峰; 邵利

    2002-01-01

    Semicontinuous seeded emulsion copolymerization of acrylic acid, acrylamide and divinylbenzene was carried out at 80℃ with ammonium persulphate as the initiator and the polyether with comb configuration as the emulsifier to prepare approximately mono-dispersed nano-sized polymer particles with average diameter 90nm. The particles were used to combine with special polyether and de-ionized water was added to obtain nano-sized hydrophilic aluminum fins coating materials with solid content of 10%. The aluminum fins were coated with the materials to get the film showing self-assembly properties in some degree. The obtained hydrophilic fins have contact angles <5° with de-ionized water, minimum value 0°, after 4 cycles of wet and dry, contact angles <10° with de-ionized water.

  10. PLATINUM: a web tool for analysis of hydrophobic/hydrophilic organization of biomolecular complexes.

    Science.gov (United States)

    Pyrkov, Timothy V; Chugunov, Anton O; Krylov, Nikolay A; Nolde, Dmitry E; Efremov, Roman G

    2009-05-01

    The PLATINUM (Protein-Ligand ATtractions Investigation NUMerically) web service is designed for analysis and visualization of hydrophobic/hydrophilic properties of biomolecules supplied as 3D-structures. Furthermore, PLATINUM provides a number of tools for quantitative characterization of the hydrophobic/hydrophilic match in biomolecular complexes e.g. in docking poses. These complement standard scoring functions. The calculations are based on the concept of empirical Molecular Hydrophobicity Potential (MHP). The PLATINUM web tool as well as detailed documentation and tutorial are available free of charge for academic users at http://model.nmr.ru/platinum/. PLATINUM requires Java 5 or higher and Adobe Flash Player 9. Supplementary data are available at Bioinformatics online.

  11. Hydrophilic trans-Cyclooctenylated Noncanonical Amino Acids for Fast Intracellular Protein Labeling.

    Science.gov (United States)

    Kozma, Eszter; Nikić, Ivana; Varga, Balázs R; Aramburu, Iker Valle; Kang, Jun Hee; Fackler, Oliver T; Lemke, Edward A; Kele, Péter

    2016-08-17

    Introduction of bioorthogonal functionalities (e.g., trans-cyclooctene-TCO) into a protein of interest by site-specific genetic encoding of non-canonical amino acids (ncAAs) creates uniquely targetable platforms for fluorescent labeling schemes in combination with tetrazine-functionalized dyes. However, fluorescent labeling of an intracellular protein is usually compromised by high background, arising from the hydrophobicity of ncAAs; this is typically compensated for by hours-long washout to remove excess ncAAs from the cellular interior. To overcome these problems, we designed, synthesized, and tested new, hydrophilic TCO-ncAAs. One derivative, DOTCO-lysine was genetically incorporated into proteins with good yield. The increased hydrophilicity shortened the excess ncAA washout time from hours to minutes, thus permitting rapid labeling and subsequent fluorescence microscopy.

  12. Anodic, cathodic, and annihilation electrochemiluminescence emissions from hydrophilic conjugated polymer dots in aqueous medium.

    Science.gov (United States)

    Dai, Ruiping; Wu, Fanmin; Xu, Huifeng; Chi, Yuwu

    2015-07-22

    Hydrophilic poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) conjugated polymer dots (CP-dots) capped by Triton X-100 were synthesized. For the first time, the electrochemiluminescence (ECL) emission of CP-dots was investigated in aqueous solution. At the glassy carbon/water interface, the CP-dots have excellent and multichannel ECL properties, such as having annihilation ECL activity in the absence of coreactants, and give bright anodic and cathodic ECL emission (590 nm) in the presence of tri-n-propylamine (TPrA) and peroxydisulfate (S2O8(2-)), respectively. The versatile ECL properties of the hydrophilic CP-dots combined with their low cytotoxicity, good biocompatibility, and easy bioconjugation may suggest promising applications of this new type of ECL nanomaterial in novel biosensing and bioimaging, and new types of light-emitting devices.

  13. Behavior of particles in an evaporating didisperse colloid droplet on a hydrophilic surface.

    Science.gov (United States)

    Jung, Jung-Yeul; Kim, Young Won; Yoo, Jung Yul

    2009-10-01

    It is well-known that the liquid and the nanoparticles in an evaporating colloid droplet on a hydrophilic surface move radially outward for the contact line to maintain its position. However, the motion of micro/nanoparticles in an evaporating didisperse colloid droplet has not been reported to date. In this study, an experiment on an evaporating didisperse colloid droplet on the hydrophilic surface is carried out. It is found that nanoparticles move radially outward and remain at the contact line while microparticles move inward toward the center of the droplet. Furthermore, the mechanism of the microparticles moving toward the center of the droplet is found to be due to the surface tension force of the liquid.

  14. First principles study on the hydrophilic and conductive graphene doped with Al atoms.

    Science.gov (United States)

    Jiang, Q G; Ao, Z M; Jiang, Q

    2013-07-14

    The effect of the Al dopant on the dissociative adsorption of a H2O molecule on graphene is investigated using first principles calculations. It is found that doping Al into graphene can facilitate the dissociative adsorption of H2O molecules. The dissociative energy barrier is reduced from 3.609 eV on pristine graphene to 0.456 eV on Al-doped graphene and the reaction releases an energy of 0.413 eV, which indicates a smooth dissociative adsorption on Al-doped graphene at room temperature. In addition, the dissociative adsorption of H2O molecules can convert the Al-doped graphene from hydrophobic to hydrophilic while obtaining conductive graphene with doping concentration higher than 5.56%. This hydrophilic and conductive graphene has potential applications in supercapacitors and biomaterial supports.

  15. The hydrophobic effect: Molecular dynamics simulations of water confined between extended hydrophobic and hydrophilic surfaces

    DEFF Research Database (Denmark)

    Jensen, Morten Østergaard; Mouritsen, Ole G.; Peters, Günther H.J.

    2004-01-01

    experimental data from x-ray reflectivity measurements, reveal a uniform weak de-wetting characteristic for the extended hydrophobic surface, while the hydrophilic surface is weakly wetted. These microscopic data are consistent with macroscopic contact angle measurements. Specific water orientation is present......-correlation functions reveal that water molecules have characteristic diffusive behavior and orientational ordering due to the lack of hydrogen bonding interactions with the surface. These observations suggest that the altered dynamical properties of water in contact with extended hydrophobic surfaces together......Structural and dynamic properties of water confined between two parallel, extended, either hydrophobic or hydrophilic crystalline surfaces of n-alkane C36H74 or n-alcohol C35H71OH, are studied by molecular dynamics simulations. Electron density profiles, directly compared with corresponding...

  16. A thin transition film formed by plasma exposure contributes to the germanium surface hydrophilicity

    Science.gov (United States)

    Shumei, Lai; Danfeng, Mao; Zhiwei, Huang; Yihong, Xu; Songyan, Chen; Cheng, Li; Wei, Huang; Dingliang, Tang

    2016-09-01

    Plasma treatment and 10% NH4OH solution rinsing were performed on a germanium (Ge) surface. It was found that the Ge surface hydrophilicity after O2 and Ar plasma exposure was stronger than that of samples subjected to N2 plasma exposure. This is because the thin GeO x film formed on Ge by O2 or Ar plasma is more hydrophilic than GeO x N y formed by N2 plasma treatment. A flat (RMS direct wafer bonding. Project supported by the Key Project of Natural Science Foundation of China (No. 61534005), the National Science Foundation of China (No. 61474081), the National Basic Research Program of China (No. 2013CB632103), the Natural Science Foundation of Fujian Province (No. 2015D020), and the Science and Technology Project of Xiamen City (No. 3502Z20154091).

  17. Characterization of hydrophobic and hydrophilic coatings as deicing and anti-icing

    Science.gov (United States)

    Aoki, Akihito; Morita, Katsuaki; Konno, Akihisa; Sakaue, Hirotaka

    2010-11-01

    Anti-icing is necessary in various fields, such as aeronautics, roads, power lines, ships, and architectures. Deicing fluids, and sometimes hot water, work to prevent from icing. Due to environmental issue, deicing fluids are not always welcome to use. We study hydrophobic and hydrophilic coatings for anti-icing. By coating these to a target surface, it prevents icing without damaging the environment. We present a characterization method of hydrophobic and hydrophilic coatings for deicing and anti-icing. We provide a temperature-control room to create an icing condition, such as -10 to 0 degrees C. Under the controlled room, the contact angle measurement as well as the force measurement is employed. Total 15 coatings are characterized. Based on the tests of all coatings, we propose a combined coating from some characterized ones.

  18. An improved hydrophilicity via electrospinning for enhanced cell attachment and proliferation.

    Science.gov (United States)

    Kim, Chi Hun; Khil, Myung Seob; Kim, Hak Yong; Lee, Hyun Uk; Jahng, Kwang Yeop

    2006-08-01

    The wettability of electrospun poly(epsilon-caprolactone) (PCL) mats was improved by co-electrospinning with poly(vinyl alcohol) (PVA), by double-spinneret electrospinning method. The improved hydrophilicity of the hybrid PCL/PVA mats was confirmed by water contact angle measurement. The in vitro cell attachment on the hydrophobic PCL and hydrophilically modified PCL/PVA mats was compared by culture studies using human prostate epithelial cells (HPECs). The stability of water-soluble PVA component in the electrospun PCL/PVA mats was checked by thermogravimetric analysis and intensity of fluorescence material after immersion in water for 7 days. The images from scanning electron microscopy, field emission scanning electron microscopy, and optical microscopy showed that the attachment and proliferation rate of HPECs were improved by introducing PVA into the electrospun PCL mats.

  19. Hydrophobic core/hydrophilic shell structured mesoporous silica nanospheres: enhanced adsorption of organic compounds from water.

    Science.gov (United States)

    Li, Shuru; Jiao, Xuan; Yang, Hengquan

    2013-01-29

    Inspired by the structure features of micelle, we attempt to synthesize a novel functionalized mesoporous silica nanosphere consisting of a hydrophobic core and a hydrophilic shell. The obtained solid materials were structurally confirmed by N(2) sorption, X-ray diffraction (XRD), and transmission electron microscopy (TEM). Their compositions were characterized by Fourier transfer infrared spectroscopy (FT-IR), solid state NMR, X-ray photoelectron spectroscopy (XPS), and elemental analysis. Its fundamental properties such as dispersibility in water or organic phase, wettability, and adsorption ability toward hydrophobic organics in water were investigated. It was revealed that these important properties could be facilely adjusted through varying structure and composition. In particular, these materials showed much better adsorption ability toward hydrophobic organic molecules in water than conventional monofunctionalized mesoporous materials, owing to possessing the hydrophobic/hydrophilic domain-segregated and hierarchically functionalized mesoporous structures. The intriguing properties would make mesoporous materials more accessible to many important applications, especially in aqueous systems.

  20. Recent advances in amphiphilic polymers for simultaneous delivery of hydrophobic and hydrophilic drugs.

    Science.gov (United States)

    Martin, Chloe; Aibani, Noorjahan; Callan, John F; Callan, Bridgeen

    2016-01-01

    Nanomedicine has evolved with the use of biological compounds such as proteins, peptides and DNA. These hydrophilic and often highly charged compounds require a delivery system to allow effective transport and release at the site of action. These new biological therapeutics have not replaced the more traditional smaller molecule, but instead are working synergistically to the benefit of the end user. To that end, drug delivery systems are now required to encapsulate both larger hydrophilic compounds as well as the smaller and generally more hydrophobic compound. This review highlights the emerging role in drug delivery of amphiphilic polymers that by their very nature can associate with compounds of differing physicochemical properties, in particular the role of micelles, polymersomes and nanocapsules.

  1. Boundary slip study on hydrophilic, hydrophobic, and superhydrophobic surfaces with dynamic atomic force microscopy.

    Science.gov (United States)

    Bhushan, Bharat; Wang, Yuliang; Maali, Abdelhamid

    2009-07-21

    Slip length has been measured using the dynamic atomic force microscopy (AFM) method. Unlike the contact AFM method, the sample surface approaches an oscillating sphere with a very low velocity in the dynamic AFM method. During this process, the amplitude and phase shift data are recorded to calculate the hydrodynamic damping coefficient, which is then used to obtain slip length. In this study, a glass sphere with a large radius was glued to the end of an AFM cantilever to measure the slip length on rough surfaces. Experimental results for hydrophilic, hydrophobic, and superhydrophobic surfaces show that the hydrodynamic damping coefficient decreases from the hydrophilic surface to the hydrophobic surface and from the hydrophobic one to the superhydrophobic one. The slip lengths obtained on the hydrophobic and superhydrophobic surfaces are 43 and 236 nm, respectively, which indicates increasing boundary slip from the hydrophobic surface to the superhydrophobic one.

  2. Standard practice for fluorescent liquid penetrant testing using the hydrophilic Post-Emulsification process

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice covers procedures for fluorescent penetrant examination utilizing the hydrophilic post-emulsification process. It is a nondestructive testing method for detecting discontinuities that are open to the surface such as cracks, seams, laps, cold shuts, laminations, isolated porosity, through leaks, or lack of fusion and is applicable to in-process, final, and maintenance examination. It can be effectively used in the examination of nonporous, metallic materials, both ferrous and nonferrous, and of nonmetallic materials such as glazed or fully densified ceramics and certain nonporous plastics and glass. 1.2 This practice also provides a reference: 1.2.1 By which a fluorescent penetrant examination hydrophilic post-emulsification process recommended or required by individual organizations can be reviewed to ascertain their applicability and completeness. 1.2.2 For use in the preparation of process specifications dealing with the fluorescent penetrant examination of materials and parts using the hy...

  3. Hydrophilicity and antifouling property of membrane materials from cellulose acetate/polyethersulfone in DMAc.

    Science.gov (United States)

    Sun, Zhonghua; Chen, Fushan

    2016-10-01

    In this study, cellulose acetate (CA) was blended with polyethersulfone (PES) to endow the ultrafiltration membrane with the improved hydrophilicity and antifouling property by using N,N-dimethylacetamide (DMAc) as the solvent. The effects of blend composition and evaporation time on the mechanical strength and pure water flux were investigated. It was found that the optimal composition of the casting solution was: 18wt% (PES), 4wt% (Polyvinylpyrrolidone K30), 3wt% (CA) and 20s (Evaporation time). The characteristics of CA-PES blend membranes were investigated through the methods of contact angle goniometer, antifouling property, compatibility, thermo gravimetric analysis and SEM. The results showed that the hydrophilicity and antifouling property of CA-PES ultrafiltration membranes were enhanced in comparison with the pure PES membranes. The CA-PES membranes exhibited semi-compatibility and good thermal stability below 270°C. This study provided a potential industrial application prospect of CA-PES membranes prepared in DMAc.

  4. CHARACTERIZATION OF TERNARY SYSTEM OF POORLY SOLUBLE DRUG IN VARIOUS HYDROPHILIC CARRIERS

    OpenAIRE

    Vijay Kumar; Shankaraiah MM; Venkatesh JS; Rangaraju D; Nagesh, C.

    2011-01-01

    The present study aims to experiment the solid dispersion of poorly water soluble drug fenbendazole as model drug. Fenbendazole is an Antihelmintic drug (BCS class 2).The purpose of this study was to enhance the dissolution of Fenbendazole by solid dispersions consisting of the drug, a polymeric carrier, Binary and ternary system were prepared by kneading method using hydrophilic polymers like polyvinylpyrrolidone K-25 (PVP K25), beta-cyclodextrin (BCD),mannitol and urea. The prepared form...

  5. Conservation of Hydrophobic and Hydrophilic Residues in Four-Helix Bundle

    Institute of Scientific and Technical Information of China (English)

    秦猛; 王骏; 王炜

    2003-01-01

    The conservation of the hydrophobic and the hydrophilic residue sites obtained from 1000 designed sequences with the Z-score method for a four-helix bundle has been studied. The folding dynamic and thermodynamic features of the designed sequences and their different mutations are also studied. It is found that this conservation is related to the stability and the fast folding of the model proteins. Our results are consistent with the experimental results.

  6. Hydrophilic PCU scaffolds prepared by grafting PEGMA and immobilizing gelatin to enhance cell adhesion and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Changcan; Yuan, Wenjie; Khan, Musammir; Li, Qian [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Feng, Yakai, E-mail: yakaifeng@tju.edu.cn [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300072 (China); Tianjin University-Helmholtz-Zentrum Geesthacht, Joint Laboratory for Biomaterials and Regenerative Medicine, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) Tianjin 300072 (China); Yao, Fanglian [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300072 (China); Tianjin University-Helmholtz-Zentrum Geesthacht, Joint Laboratory for Biomaterials and Regenerative Medicine, Tianjin 300072 (China); Zhang, Wencheng, E-mail: wenchengzhang@yahoo.com [Department of Physiology and Pathophysiology, Logistics University of Chinese People' s Armed Police Force, Tianjin 300162 (China)

    2015-05-01

    Gelatin contains many functional motifs which can modulate cell specific adhesion, so we modified polycarbonate urethane (PCU) scaffold surface by immobilization of gelatin. PCU-g-gelatin scaffolds were prepared by direct immobilizing gelatins onto the surface of aminated PCU scaffolds. To increase the immobilization amount of gelatin, poly(ethylene glycol) methacrylate (PEGMA) was grafted onto PCU scaffolds by surface initiated atom transfer radical polymerization. Then, following amination and immobilization, PCU-g-PEGMA-g-gelatin scaffolds were obtained. Both modified scaffolds were characterized by chemical and biological methods. After immobilization of gelatin, the microfiber surface became rough, but the original morphology of scaffolds was maintained successfully. PCU-g-PEGMA-g-gelatin scaffolds were more hydrophilic than PCU-g-gelatin scaffolds. Because hydrophilic PEGMA and gelatin were grafted and immobilized onto the surface, the PCU-g-PEGMA-g-gelatin scaffolds showed low platelet adhesion, perfect anti-hemolytic activity and excellent cell growth and proliferation capacity. It could be envisioned that PCU-g-PEGMA-g-gelatin scaffolds might have potential applications in tissue engineering artificial scaffolds. - Graphical abstract: PCU-g-gelatin scaffolds were prepared by direct immobilizing gelatin onto the surface of aminated PCU scaffolds (method a). To increase the immobilization amount of gelatin, PEGMAs were grafted onto the scaffold surface by SI-ATRP. PCU-g-PEGMA-g-gelatin scaffolds were prepared by method b. The gelatin modified scaffolds exhibited high hydrophilicity, low platelet adhesion, perfect anti-hemolytic activity, and excellent cell adhesion and proliferation capacity. They might have potential applications as tissue engineering scaffolds for artificial blood vessels. - Highlights: • Hydrophilic scaffolds were prepared by grafting PEGMA and immobilization of gelatins. • Grafting PEGMA enhanced the immobilization amount of gelatin

  7. Comparison of the performances of four hydrophilic polymers as supports for lipase immobilisation

    OpenAIRE

    Toscano, Lydia; Montero, Gisela; Stoytcheva, Margarita; Cervantes, Lourdes; Gochev, Velizar

    2014-01-01

    Four hydrophilic polymers in the form of beads – chitosan, alginate, alginate/polyvinyl alcohol (PVA), and chitosan-coated alginate – were used as supports for lipase immobilisation. Hydrogel beads were characterised by bead-size-distribution estimation, surface morphology studies, and polymer interactions assessment. Matrix performances – loading efficiency, immobilisation yield, enzyme activity, and stability retention – were evaluated and compared. Although the loading efficiency of the ch...

  8. Testing the Effect of Hydrophilic and Hydrophobic Coatings on the Speed of a Ball through Water

    CERN Document Server

    Wiegand, Natalie

    2013-01-01

    Data is presented that confirms that hydrophobic coatings reduce friction between objects and water. The results show that the average time it took for the ball with the hydrophobic coating traveled at an average of about 6 inches per second. The ball with the hydrophilic coating traveled at a slower pace, moving at an average of about 5 inches per second and the ball without a coating traveled at an average of about 4.8 inches per second.

  9. Design and Fabrication of a Hybrid Superhydrophobic-Hydrophilic Surface That Exhibits Stable Dropwise Condensation.

    Science.gov (United States)

    Mondal, Bikash; Mac Giolla Eain, Marc; Xu, QianFeng; Egan, Vanessa M; Punch, Jeff; Lyons, Alan M

    2015-10-28

    Condensation of water vapor is an essential process in power generation, water collection, and thermal management. Dropwise condensation, where condensed droplets are removed from the surface before coalescing into a film, has been shown to increase the heat transfer efficiency and water collection ability of many surfaces. Numerous efforts have been made to create surfaces which can promote dropwise condensation, including superhydrophobic surfaces on which water droplets are highly mobile. However, the challenge with using such surfaces in condensing environments is that hydrophobic coatings can degrade and/or water droplets on superhydrophobic surfaces transition from the mobile Cassie to the wetted Wenzel state over time and condensation shifts to a less-effective filmwise mechanism. To meet the need for a heat-transfer surface that can maintain stable dropwise condensation, we designed and fabricated a hybrid superhydrophobic-hydrophilic surface. An array of hydrophilic needles, thermally connected to a heat sink, was forced through a robust superhydrophobic polymer film. Condensation occurs preferentially on the needle surface due to differences in wettability and temperature. As the droplet grows, the liquid drop on the needle remains in the Cassie state and does not wet the underlying superhydrophobic surface. The water collection rate on this surface was studied using different surface tilt angles, needle array pitch values, and needle heights. Water condensation rates on the hybrid surface were shown to be 4 times greater than for a planar copper surface and twice as large for silanized silicon or superhydrophobic surfaces without hydrophilic features. A convection-conduction heat transfer model was developed; predicted water condensation rates were in good agreement with experimental observations. This type of hybrid superhydrophobic-hydrophilic surface with a larger array of needles is low-cost, robust, and scalable and so could be used for heat

  10. Are all polar molecules hydrophilic? Hydration numbers of nitro compounds and nitriles in aqueous solution.

    Science.gov (United States)

    Sagawa, Naoya; Shikata, Toshiyuki

    2014-07-14

    The hydration numbers of typical aprotic polar substances bearing dipole moments larger than 3 D, such as nitro compounds and nitriles, were precisely determined in aqueous solution using high frequency dielectric relaxation techniques up to a frequency of 50 GHz at 25 °C. The hydration number is one of the most quantitative parameters for determining the hydrophilicity or hydrophobicity of a compound. The hydration numbers of various nitriles, such as acetonitrile, propionitrile and n-butyronitrile bearing cyano groups, were determined to be ca. 0, irrespective of the species of molecule. Moreover, the hydration numbers of various nitro compounds, such as nitromethane, nitroethane and 1-nitropropane, were also evaluated to be ca. 0. These findings clearly reveal that neither cyano nor nitro functional groups form strong hydrogen bonds to water molecules. Consequently, neither nitro compounds nor nitriles are hydrophilic, despite their high polarities due to their large dipole moments. Rather, these compounds are "hydroneutral," with hydrophilicities intermediate between those of hydrophilic and hydrophobic molecules. The molecular motions of the examined highly polar molecules in aqueous solution were well described with single Debye-type rotational relaxation modes without strong interactions between the solute and water molecules, but with relatively strong interactions between the polar solute molecules due to the Kirkwood factor being less than unity. This small Kirkwood factor indicated that both nitro and cyano groups have a tendency to align in an anti-parallel intermolecular configuration due to their strong dipole-dipole interactions as a result of their dipole moments greater than 3 D.

  11. Study on the improvement of hydrophilic character on polyvinylalcohol treated polyester fabric

    OpenAIRE

    S. Pitchai; J. Jeyakodi Moses; Natarajan Swarna

    2014-01-01

    Polyester fabric was treated with polyvinyl alcohol in alkaline medium. The moisture regain, water retention and wettability of the PVA treated polyester fabric were tested. The PVA treated PET fabric was dyed with disperse dye. The presence of PVA in the treated PET fabric was assessed by spot test. The treated fabric was also characterized by scanning electron microscope, FTIR and differential scanning calorimetry. The PVA treated polyester fabric showed improved hydrophilic character over ...

  12. Comparison of Clinical Outcomes of Hydrophilic and Lipophilic Statins in Patients with Acute Myocardial Infarction

    Science.gov (United States)

    Kim, Min Chul; Jang, Su Young; Cho, Kyung Hoon; Hwang, Seung Hwan; Lee, Min Goo; Ko, Jum Suk; Park, Keun Ho; Sim, Doo Sun; Yoon, Nam Sik; Yoon, Hyun Ju; Kim, Kye Hun; Hong, Young Joon; Park, Hyung Wook; Kim, Ju Han; Jeong, Myung Ho; Cho, Jeong Gwan; Park, Jong Chun; Kang, Jung Chaee

    2011-01-01

    Background/Aims A controversy exists about which statin is preferable for patients with acute myocardial infarction (AMI), and clinical impacts of different statins according to lipophilicity have not been established. Methods The 1,124 patients with AMI included in the present study were divided into hydrophilic- and lipophilic-statin groups. In-hospital complications (defined as death, cardiogenic shock, ventricular arrhythmia, infection, bleeding, and renal insufficiency, and other fatal arrhythmias), major adverse cardiac events (MACE), all-cause death, re-myocardial infarction, re-percutaneous coronary intervention (re-PCI), and surgical revascularization were analyzed during a 1-year clinical follow-up. Results Baseline characteristics were similar between the two groups, and in-hospital complication rates showed no between-group differences (11.7% vs. 12.8%, p = 0.688). Although MACE at the 1- and 6-month clinical follow-ups occurred more in hydrophilic statin group I (1 month: 10.0% vs. 4.4%, p = 0.001; 6 month: 19.9% vs. 14.2%, p = 0.022), no significant difference in MACE was observed at the 1-year follow-up (21.5% vs. 17.9%, p = 0.172). Both statin groups showed similar efficacy for reducing serum lipid concentrations. A Cox-regression analysis showed that the use of a hydrophilic statin did not predict 1-year MACE, all-cause death, AMI, or re-PCI. Conclusions Although short-term cardiovascular outcomes were better in the lipophilic-statin group, 1-year outcomes were similar in patients with AMI who were administered hydrophilic and lipophilic statins. In other words, the type of statin did not influence 1-year outcomes in patients with AMI. PMID:22016590

  13. The extraction of aromatic amino acids with binary and ternary mixtures of hydrophilic solvents

    Science.gov (United States)

    Mokshina, N. Ya.; Pakhomova, O. A.; Niftaliev, S. I.

    2007-11-01

    The extraction of tyrosine and phenylalanine with binary and ternary mixtures of hydrophilic solvents from aqueous salt solutions was studied, and several tendencies were observed. Simplex-lattice planning of experiment was used for the optimization of the composition of solvent mixtures. It was shown that the extraction systems developed could be employed for the almost complete extraction of tyrosine and phenylalanine from aqueous solutions.

  14. Hydrophilic modification of polyester fabric by applying nanocrystalline cellulose containing surface finish.

    Science.gov (United States)

    Zaman, Masuduz; Liu, Hongbin; Xiao, Huning; Chibante, Felipe; Ni, Yonghao

    2013-01-16

    In this study, polyethylene terephthalate (PET) fabric was modified by applying a hydrophilic surface finishing agent that contains nanocrystalline cellulose (NCC). To impart superior hydrophilicity, NCC was further cationically modified through quaternization by grafting glycidyl tri-methyl ammonium chloride (GTMAC). A textile binder, PrintRite595(®), was added to the finishing system. The surface finish was applied on the fabric using a rolling-drying-curing process. The modified fabric was characterized in terms of coating durability, moisture regain, and wettability. The durability of the surface finish was tested by six repeated washing steps. The surface properties of the fabric changed from hydrophobic to hydrophilic after heat treatment with the NCC-containing surface finishing agent. The results from the washing fastness, SEM, FTIR, and EDX analyses confirmed that the cationic NCC-containing textile surface finish showed superior adhesion onto the cationic dyeable (anionic) PET surface over the un-modified NCC. Furthermore, the cationic textile surface finish was capable of withstanding multiple washing cycles. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Antibiotic-eluting hydrophilized PMMA bone cement with prolonged bactericidal effect for the treatment of osteomyelitis.

    Science.gov (United States)

    Oh, Eun Jo; Oh, Se Heang; Lee, In Soo; Kwon, Oh Soo; Lee, Jin Ho

    2016-05-01

    Osteomyelitis is still considered to be one of the major challenges for orthopedic surgeons despite advanced antiseptic surgical procedures and pharmaceutical therapeutics. In this study, hydrophilized poly(methyl methacrylate) (PMMA) bone cements containing Pluronic F68 (EG79PG28EG79) as a hydrophilic additive and vancomycin (F68-VAcements) were prepared to allow the sustained release of the antibiotic for adequate periods of time without any significant loss of mechanical properties. The compressive strengths of the bone cements with Pluronic F68 compositions less than 7 wt% were not significantly different compared with the control vancomycin-loaded bone cement (VAcement). TheF68 (7 wt%)-VAcement showed sustained release of the antibiotic for up to 11 weeks and almost 100% release from the bone cement. It also prohibited the growth ofS. aureus(zone of inhibition) over six weeks (the required period to treat osteomyelitis), and it did not show any notable cytotoxicity. From an animal study using a femoral osteomyelitis rat model, it was observed that theF68 (7 wt%)-VAcement was effective for the treatment of osteomyelitis, probably as a result of the prolonged release of antibiotic from the PMMA bone cement. On the basis of these findings, it can be suggested that the use of Pluronic F68 as a hydrophilic additive for antibiotic-eluting PMMA bone cement can be a promising strategy for the treatment of osteomyelitis.

  16. Microscopic analysis of an opacified OFT CRYL® hydrophilic acrylic intraocular lens

    Directory of Open Access Journals (Sweden)

    Bruna Vieira Ventura

    Full Text Available ABSTRACT A 51-year-old patient underwent posterior vitrectomy with perfluoropropane gas injection, phacoemulsification, and implantation of an Oft Cryl® hydrophilic acrylic intraocular lens (IOL because of traumatic retinal detachment and cataract in the right eye. On the first postoperative day, gas was filling the anterior chamber because of patient's non-compliance in terms of head positioning, and was reabsorbed within one week. Eight months later, the patient returned complaining of a significant decrease in vision. IOL opacification was noticed by slit-lamp examination. The lens was explanted to undergo gross and light microscopic analysis. The lens was also stained with the alizarin red method for calcium identification. Light microscopic analysis confirmed the presence of granular deposits, densely distributed in an overall circular pattern in the central part of the lens optic. The granules stained positive for calcium. This is the first case of the opacification of this type of hydrophilic lens. Surgeons should be aware of this potential postoperative complication, and the use of hydrophilic IOLs should be avoided in procedures involving intracameral gas because of the risk of IOL opacification.

  17. Solid lipid nanoparticles for encapsulation of hydrophilic drugs by an organic solvent free double emulsion technique.

    Science.gov (United States)

    Becker Peres, Luana; Becker Peres, Laize; de Araújo, Pedro Henrique Hermes; Sayer, Claudia

    2016-04-01

    Encapsulation of hydrophilic compounds for drug delivery systems with high loading efficiency is not easily feasible and remains a challenge, mainly due to the leaking of the drug to the outer aqueous phase during nanoparticle production. Usually, encapsulation of hydrophilic drugs is achieved by using double emulsion or inverse miniemulsion systems that often require the use of organic solvents, which may generate toxicological issues arising from solvent residues. Herein, we present the preparation of solid lipid nanoparticles loaded with a hydrophilic compound by a novel organic solvent free double emulsion/melt dispersion technique. The main objective of this study was to investigate the influence of important process and formulation variables, such as lipid composition, surfactant type, sonication parameters and lipid solidification conditions over physicochemical characteristics of SLN dispersion. Particle size and dispersity, as well as dispersion stability were used as responses. SLN dispersions with average size ranging from 277 to 550 nm were obtained, showing stability for over 60 days at 4 °C depending on the chosen emulsifying system. Entrapment efficiency of fluorescent dyes used as model markers was assessed by fluorescence microscopy and UV-vis spectrophotometry and results suggest that the obtained lipid based nanoparticles could be potentially applied as a delivery system of water soluble drugs.

  18. Iontophoretic delivery of lipophilic and hydrophilic drugs from lipid nanoparticles across human skin.

    Science.gov (United States)

    Charoenputtakun, Ponwanit; Li, S Kevin; Ngawhirunpat, Tanansait

    2015-11-10

    The combined effects of iontophoresis and lipid nanoparticles on drug delivery across human epidermal membrane (HEM) were investigated. The delivery of lipophilic and hydrophilic drugs, all trans-retinoic acid (ATRA), salicylate (SA), and acyclovir (ACV), across HEM from lipid nanoparticles, solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC), was compared in passive and iontophoresis experiments in vitro. Iontophoresis experiments were also performed with synthetic Nuclepore membrane for comparison. Drug distribution in the skin after iontophoretic delivery with the lipid nanoparticles was examined using a model probe rhodamine B base (RhoB). The drug-loaded lipid nanoparticles had average sizes of ∼ 118-169 nm and a negative zeta potential. Iontophoresis did not enhance the delivery of ATRA across HEM from SLN and NLC. However, HEM distribution study of RhoB suggested that lipophilic drugs could be delivered into the deeper layer of the skin following iontophoretic delivery of the drugs from the lipid nanoparticles. Iontophoresis enhanced the delivery of hydrophilic drug SA with the lipid nanoparticles. Similarly, iontophoresis enhanced the delivery of ACV when it was loaded in SLN. These results suggest that lipid nanoparticles are a promising drug delivery method that can be combined with iontophoresis to improve skin delivery of hydrophilic drugs.

  19. Analysis of plant nucleotide sugars by hydrophilic interaction liquid chromatography and tandem mass spectrometry.

    Science.gov (United States)

    Ito, Jun; Herter, Thomas; Baidoo, Edward E K; Lao, Jeemeng; Vega-Sánchez, Miguel E; Michelle Smith-Moritz, A; Adams, Paul D; Keasling, Jay D; Usadel, Björn; Petzold, Christopher J; Heazlewood, Joshua L

    2014-03-01

    Understanding the intricate metabolic processes involved in plant cell wall biosynthesis is limited by difficulties in performing sensitive quantification of many involved compounds. Hydrophilic interaction liquid chromatography is a useful technique for the analysis of hydrophilic metabolites from complex biological extracts and forms the basis of this method to quantify plant cell wall precursors. A zwitterionic silica-based stationary phase has been used to separate hydrophilic nucleotide sugars involved in cell wall biosynthesis from milligram amounts of leaf tissue. A tandem mass spectrometry operating in selected reaction monitoring mode was used to quantify nucleotide sugars. This method was highly repeatable and quantified 12 nucleotide sugars at low femtomole quantities, with linear responses up to four orders of magnitude to several 100pmol. The method was also successfully applied to the analysis of purified leaf extracts from two model plant species with variations in their cell wall sugar compositions and indicated significant differences in the levels of 6 out of 12 nucleotide sugars. The plant nucleotide sugar extraction procedure was demonstrated to have good recovery rates with minimal matrix effects. The approach results in a significant improvement in sensitivity when applied to plant samples over currently employed techniques.

  20. Microscopic analysis of an opacified OFT CRYL® hydrophilic acrylic intraocular lens.

    Science.gov (United States)

    Ventura, Bruna Vieira; MacLean, Kyle Douglas; Lira, Wagner; Oliveira, Daniele Mendes de; Ventura, Camila Vieira; Werner, Liliana

    2016-01-01

    A 51-year-old patient underwent posterior vitrectomy with perfluoropropane gas injection, phacoemulsification, and implantation of an Oft Cryl® hydrophilic acrylic intraocular lens (IOL) because of traumatic retinal detachment and cataract in the right eye. On the first postoperative day, gas was filling the anterior chamber because of patient's non-compliance in terms of head positioning, and was reabsorbed within one week. Eight months later, the patient returned complaining of a significant decrease in vision. IOL opacification was noticed by slit-lamp examination. The lens was explanted to undergo gross and light microscopic analysis. The lens was also stained with the alizarin red method for calcium identification. Light microscopic analysis confirmed the presence of granular deposits, densely distributed in an overall circular pattern in the central part of the lens optic. The granules stained positive for calcium. This is the first case of the opacification of this type of hydrophilic lens. Surgeons should be aware of this potential postoperative complication, and the use of hydrophilic IOLs should be avoided in procedures involving intracameral gas because of the risk of IOL opacification.

  1. Characterization of the antioxidant properties of hydrophilic and lipophilic extracts of Jute (Corchorus olitorius) leaf.

    Science.gov (United States)

    Oboh, G; Raddatz, H; Henle, T

    2009-01-01

    Corchorus olitorius (jute) is a native plant of tropical Africa and Asia, and has since spread to Australia, South America and some parts of Europe. Its leafy vegetable is popularly used in soup preparation and folk medicine for the treatment of fever, chronic cystitis, cold and tumours. A comparative study of the antioxidant properties of hydrophilic extract (HE) and lipophilic extract (LE) constituents of the leafy vegetable has been assessed. HE and LE of the leaf were prepared using water and hexane, respectively and their antioxidant properties were determined. HE had a significantly higher (P0.05) in their Fe(II) chelating ability (HE, 57.7-66.7%; LE, 56.4-61.1%). The higher 1,1-diphenyl-2-picrylhydrazyl radical-scavenging ability, reducing power and trolox equivalent antioxidant capacity of the hydrophilic extract may be due to its significantly higher (P<0.05) total phenol (630.8 mg/100 g), total flavonoid (227.8 mg/100 g) and non-flavonoid polyphenols (403.0 mg/100 g), and its high ascorbic acid content (32.6 mg/100 g). While the higher OH. scavenging ability of LE may be due to its high total carotenoid content (42.5 mg/100 g). Therefore, the additive/synergistic antioxidant activities of the hydrophilic and lipophilic constituents may contribute to the medicinal properties of C. olitorius leaf.

  2. Efficacy of highly hydrophilic soft contact lenses for persistent corneal epithelial defects after anterior segment surgery

    Directory of Open Access Journals (Sweden)

    Zhi-Wei Peng

    2015-02-01

    Full Text Available AIM:To investigate the efficacy of highly hydrophilic soft contact lenses for persistent corneal epithelial defects.METHODS:In this retrospective case analysis, 28 patients(28 eyeswith persistent corneal epithelial defects after anterior segment surgery from January 2011 to June 2013 in our hospital were reviewed. After regular treatment for at least 2wk, the persistent corneal epithelial defects were treated with highly hydrophilic soft contact lenses, until the corneal epithelial healing. Continued to wear the same lens no more than 3wk, or in need of replacement the new one. All cases were followed up for 6mo. Key indicators of corneal epithelial healling, corneal fluorescein staining and ocular symptoms improvement were observed.RESULTS: Twenty-one eyes were cured(75.00%, markedly effective in 5 eyes(17.86%, effective in 2 eyes(7.14%, no invalid cases, the total efficiency of 100.00%. Ocular symptoms of 25 cases(89.29%relieved within 2d, the rest 3 cases(10.71%relieved within 1wk. The corneal epithelial of 6 cases(21.43%repaired in 3wk, 13 cases(46.43%in 6wk, 7 cases(25.00%in 9wk, 2 cases(7.14%over 12wk. There were no signs of secondary infection. And no evidence of recurrence in 6mo. CONCLUSION: Highly hydrophilic soft contact lenses could repair persistent corneal epithelial defects after anterior segment surgery significantly, while quickly and effectively relieve a variety of ocular irritation.

  3. High flux filtration medium based on nanofibrous substrate with hydrophilic nanocomposite coating.

    Science.gov (United States)

    Wang, Xuefen; Chen, Xuming; Yoon, Kyunghwan; Fang, Dufei; Hsiao, Benjamin S; Chu, Benjamin

    2005-10-01

    A novel high flux filtration medium, consisting of a three-tier composite structure, i.e., a nonporous hydrophilic nanocomposite coating top layer, an electrospun nanofibrous substrate midlayer, and a conventional nonwoven microfibrous support, was demonstrated for oil/water emulsion separations for the first time. The nanofibrous substrate was prepared by electrospinning of poly(vinyl alcohol) (PVA) followed by chemical cross-linking with glutaraldehyde (GA) in acetone. The resulting cross-linked PVA substrates showed excellent water resistance and good mechanical properties. The top coating was based on a nanocomposite layer containing hydrophilic polyether-b-polyamide copolymer or a cross-linked PVA hydrogel incorporated with surface-oxidized multiwalled carbon nanotubes (MWNTs). Scanning electron microscopy (SEM) examinations indicated that the nanocomposite layer was nonporous within the instrumental resolution and MWNTs were well dispersed in the polymer matrix. Oil/ water emulsion tests showed that this unique type of filtration media exhibited a high flux rate (up to 330 L/m2-h at the feed pressure of 100 psi) and an excellent total organic solute rejection rate (99.8%) without appreciable fouling. The increase in the concentration of surface-oxidized MWNT in the coating layer generally improves the flux rate, which can be attributed to the generation of more effective hydrophilic nanochannels for water passage in the composite membranes.

  4. Hydrophilic modification of PVDF microfiltration membranes by adsorption of facial amphiphile cholic acid.

    Science.gov (United States)

    Hu, Meng-Xin; Li, Ji-Nian; Zhang, Shi-Lin; Li, Liang; Xu, Zhi-Kang

    2014-11-01

    Amphiphilic molecules have been widely used in surface modification of polymeric materials. Bile acids are natural biological compounds and possess special facial amphiphilic structure with a unusual distribution of hydrophobic and hydrophilic regions. Based on the facial amphiphilicity, cholic acid (CA), one of the bile acids, was utilized for the hydrophilic modification of poly(vinylidene fluoride) (PVDF) microfiltration membranes via the hydrophobic interactions between the hydrophobic face of CA and the membrane surfaces. Ethanol, methanol, and water were respectively used as solvent during CA adsorption procedure. Their polarity affects the CA adsorption amount, as similar to CA concentration and adsorption time. There are no changes on the membrane surface morphology after CA adsorption. The hydrophilicity of PVDF membranes is greatly enhanced and the water drops permeates into the CA modified membranes quickly after modification. All these factors benefit to the permeation flux of membrane for water. When CA concentration is higher than 0.088 M, the water permeation flux is doubled as compared with the nascent PVDF membrane and shows a good stability during filtration procedure. These results reveal the promising potential of facial amphiphilic bile acids for the surface modification of polymeric materials.

  5. Impacts of hydrophilic colanic acid on bacterial attachment to microfiltration membranes and subsequent membrane biofouling.

    Science.gov (United States)

    Yoshida, Keitaro; Tashiro, Yosuke; May, Thithiwat; Okabe, Satoshi

    2015-06-01

    In order to examine the interactions between physicochemical properties of specific extracellular polymeric substances (EPS) and membrane biofouling, we investigated the impacts of hydrophilic colanic acid, as a model extracellular polysaccharide component, on initial bacterial attachment to different microfiltration (MF) membranes and membrane biofouling by using Escherichia coli strains producing different amounts of colanic acid. In a newly designed microtiter plate assay, the bacterial attachment by an E. coli strain RcsF(+), which produces massive amounts of colanic acid, decreased only to a hydrophobic membrane because the colanic acid made cell surfaces more hydrophilic, resulting in low cell attachment to hydrophobic membranes. The bench-scale cross-flow filtration tests followed by filtration resistance measurement revealed that RcsF(+) caused severe irreversible membrane fouling (i.e., pore-clogging), whereas less extracellular polysaccharide-producing strains caused moderate but reversible fouling to all membranes used in this study. Further cross-flow filtration tests indicated that colanic acid liberated in the bulk phase could rapidly penetrate pre-accumulated biomass layers (i.e., biofilms) and then directly clogged membrane pores. These results indicate that colanic acid, a hydrophilic extracellular polysaccharide, and possible polysaccharides with similar characteristics with colanic acid are considered as a major cause of severe irreversible membrane fouling (i.e., pore-clogging) regardless of biofilm formation (dynamic membrane).

  6. Hydrophilic block azidation of PCL-b-PEO block copolymers from epichlorohydrin.

    Science.gov (United States)

    Liu, Junjie; Gan, Zhihua

    2014-05-01

    Amphiphilic diblock copolymers poly(ϵ-caprolactone)-b-poly(ethylene oxide) (PCL-b-PEO) with well-controlled pendant azido groups along the hydrophilic PEO block, that is, poly(ϵ-caprolactone)-b-poly(ethylene oxide-co-glycidyl azide) (PCL-b-P(EO-co-GA)), are synthesized from poly(ϵ-caprolactone)-b-poly(ethylene oxide-co-epichlorohydrin) (PCL-b-P(EO-co-ECH)). The further conversion of those azido groups along the hydrophilic block of copolymers into amino or carboxyl groups via click chemistry is studied. The micelles self-assembled from PCL-b-P(EO-co-GA) with azido groups on the shell are crosslinked by the dialkynyl-PEO. The micelles with crosslinked shell show better stability, higher drug loading capacities, subsequent faster drug release rate, and higher cytotoxicity to cancer cells. The introduction of azido groups into PCL-b-PEO amphiphilic diblock copolymers from epichlorohydrin in PEO hydrophilic block in this work provides a new method for biofunctionalization of micelles via mild click chemistry.

  7. Boron nitride nanotubes coated with organic hydrophilic agents: Stability and cytocompatibility studies

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Tiago Hilário; Soares, Daniel Crístian Ferreira; Moreira, Luciana Mara Costa; Ornelas da Silva, Paulo Roberto [Serviço de Nanotecnologia, Centro de Desenvolvimento da Tecnologia Nuclear CDTN/CNEN, Avenida Presidente Antônio Carlos, 6.627, Campus da UFMG, Pampulha, CEP 31270-901 Belo Horizonte, Minas Gerais (Brazil); Gouvêa dos Santos, Raquel [Laboratório de Radiobiologia, Centro de Desenvolvimento da Tecnologia Nuclear CNEN/CDTN, Av. Presidente Antônio Carlos 6.627, Campus da UFMG, Pampulha, 31270-901 Belo Horizonte, Minas Gerais (Brazil); Barros de Sousa, Edésia Martins, E-mail: sousaem@cdtn.br [Serviço de Nanotecnologia, Centro de Desenvolvimento da Tecnologia Nuclear CDTN/CNEN, Avenida Presidente Antônio Carlos, 6.627, Campus da UFMG, Pampulha, CEP 31270-901 Belo Horizonte, Minas Gerais (Brazil)

    2013-12-01

    In the present study, Boron Nitride Nanotubes (BNNTs) were synthesized and functionalized with organic hydrophilic agents constituted by glucosamine (GA), polyethylene glycol (PEG){sub 1000}, and chitosan (CH) forming new singular systems. Their size, distribution, and homogeneity were determined by photon correlation spectroscopy, while their surface charge was determined by laser Doppler anemometry. The morphology and structural organization were evaluated by Transmission Electron Microscopy. The functionalization was evaluated by Thermogravimetry analysis and Fourier Transformer Infrared Spectroscopy. The results showed that BNNTs were successfully obtained and functionalized, reaching a mean size and dispersity deemed adequate for in vitro studies. The in vitro stability tests also revealed a good adhesion of functionalized agents on BNNT surfaces. Finally, the in vitro cytocompatibility of functionalized BNNTs against MCR-5 cells was evaluated, and the results revealed that none of the different functionalization agents disturbed the propagation of normal cells up to the concentration of 50 μg/mL. Furthermore, in this concentration, no significantly chromosomal or morphologic alterations or increase in ROS (Reactive Oxygen Species) could be observed. Thus, findings from the present study reveal an important stability and cytocompatibility of functionalized BNNTs as new potential drugs or radioisotope nanocarriers to be applied in therapeutic procedures. - Highlights: • BNNTs were synthesized and functionalized with organic hydrophilic agents. • Hydrophilic molecules do not alter the biocompatibility profile of BNNTs. • No significantly chromosomal or morphologic alterations in ROS could be observed.

  8. HYDROPHILIC MODIFICATION OF PPESK POROUS MEMBRANES VIA AQUEOUS SURFACE-INITIATED ATOM TRANSFER RADICAL POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    Zhuan Yi; You-yi Xu; Li-ping Zhu; Han-bang Dong; Bao-ku Zhu

    2009-01-01

    Hydrophilic surface modification of poly(phthalazinone ether sulfone ketone)(PPESK)porous membranes was achieved via surface-initiated atom transfer radical polymerization(ATRP)in aqueous medium.Prior to ATRP,chloromethyl groups were introduced onto PPESK main chains by chloromethylation.Chloromethylated PPESK(CMPPESK)was fabricated into porous membrane through phase inversion technique.Hydrophilic poly(poly(ethylene glycol)methyl ether methacrylate)(P(PEGMA))brushes were grafted from CMPPESK membrane under the initiation of benzyl chloride groups on membrane surface.The results of Fourier transform infrared(FT-IR)spectroscopy and X-ray photoelectron spectroscopy (XPS)confirmed the grafting of P(PEGMA)chains.Water contact angle measurements and protein adsorption experiments suggested that the hydrophilicity and anti-fouling ability of PPESK membrane were remarkably improved after the grafting of P(PEGMA)brushes.The addition of small amount of water in the reaction solvent apparently accelerated the progress of the grafting reaction.The use of CuCl2 in the catalyst system promoted the controllability of the ATRP reaction.

  9. Adsorption of ethyl cellulose on asphaltene- or bitumen-coated hydrophilic silica surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shengqun; Segin, Nataliya; Wang, Ke; Masliyah, Jacob H.; Xu, Zhenghe [Department of Chemical and Materials Engineering, University of Alberta (Canada)], email: zhenghe.xu@ualberta.ca

    2010-07-01

    Previous studies show that ethyl cellulose (EC) is a biodegradable, greener demulsifier for water-oil emulsions that significantly reduces diluted bitumen-water interfacial tension. In this study, the molecular mechanism of EC demulsifiers is investigated using an atomic force microscope (AFM) and a quartz crystal microbalance (QCM). Asphaltenes and bitumen were adsorbed from toluene on a hydrophilic silica wafer, which was soaked in an EC-in-toluene solution for varying periods of time. The EC gradually displaced the asphaltene/bitumen aggregates, pushing them into larger aggregates. The process reached equilibrium in about 7 hours, with EC covering most of the silica surface with large, sporadically scattered aggregates. The EC-dominated surface became more hydrophilic than asphaltene/bitumen-adsorbed surfaces. The QCM study showed that the displacement of pre-adsorbed asphaltenes by EC is irreversible. The affinity of EC to hydrophilic silica surface is stronger than that of asphaltenes, providing further insights into demulsification mechanisms of EC for breaking w/o emulsions. EC also has potential in altering a solid from oil-wet to water-wet.

  10. Sealing ability of a novel hydrophilic vs. conventional hydrophobic obturation systems: A bacterial leakage study

    Science.gov (United States)

    Hegde, Vibha; Arora, Shashank

    2015-01-01

    Aim: Comparative assessment of apical sealing ability of a novel Smart-Seal System, Resilon, and conventional Gutta-Percha system using a bacterial leakage model. Materials and Methods: Seventy freshly extracted human single rooted teeth with fully formed apices were randomly divided into three groups (20 each) and two control groups (5 positive and 5 negative). Teeth were de-coronated, and roots were standardized to a working length of 16 mm. Root canal preparation was done with rotary pro-taper file system in all groups. Group A was obturated using Smart-Seal system (Hydrophilic), Group B using Resilon/Epiphany system (Hydrophilic), and Group C using Gutta-Percha (GP)/AH plus system (Hydrophobic) in a single cone technique. Using Enterococcus faecalis, a split chamber bacterial leakage model was developed to evaluate the sealing ability of three obturation systems. Samples will be monitored every 24 hours for 60 days. Results: All three groups have shown leakage. Novel Smart-Seal System and Resilon have shown similar results and relatively lesser samples leaked in comparison to GP obturations at the end of the observation period. There was no significant difference amongst Resilon and Smart-Seal System (P > 0.05) but there was a significant difference amongst them when compared to GP obturations (P < 0.05). Conclusion: Hydrophilic obturations of the root canal shows a better resistance to bacterial leakage as compared to hydrophobic obturations. PMID:25657530

  11. Study of surface-bonded dicationic ionic liquids as stationary phases for hydrophilic interaction chromatography.

    Science.gov (United States)

    Qiao, Lizhen; Li, Hua; Shan, Yuanhong; Wang, Shuangyuan; Shi, Xianzhe; Lu, Xin; Xu, Guowang

    2014-02-21

    In the present study, several geminal dicationic ionic liquids based on 1,4-bis(3-allylimidazolium)butane and 1,8-bis(3-allylimidazolium)octane in combination with different anions bromide and bis(trifluoromethanesulphonyl)imide were prepared and then bonded to the surface of 3-mercaptopropyl modified silica materials through the "thiol-ene" click chemistry as stationary phases for hydrophilic interaction chromatography (HILIC). Compared with their monocationic analogues, the dicationic ionic liquids stationary phases presented effective retention and good selectivity for typical hydrophilic compounds under HILIC mode with the column efficiency as high as 130,000 plates/m. Moreover, the influence of different alkyl chain spacer between dications and combined anions on the retention behavior and selectivity of the dicationic ionic liquids stationary phases under HILIC mode was displayed. The results indicated that the longer linkage chain would decrease the hydrophilicity and retention on the dicationic ionic liquid stationary phase, and while differently combined anions had no difference due to the exchangeability under the common HILIC mobile phase with buffer salt. Finally, the retention mechanism was investigated by evaluating the effect of chromatographic factors on retention, including the water content in the mobile phase, the mobile phase pH and buffer salt concentration. The results showed that the dicationic ionic liquids stationary phases presented a mixed-mode retention behavior with HILIC mechanism and anion exchange.

  12. Enhanced Hydrophilicity and Biocompatibility of Dental Zirconia Ceramics by Oxygen Plasma Treatment

    Directory of Open Access Journals (Sweden)

    Ching-Chou Wu

    2015-02-01

    Full Text Available Surface properties play a critical role in influencing cell responses to a biomaterial. The objectives of this study were (1 to characterize changes in surface properties of zirconia (ZrO2 ceramic after oxygen plasma treatment; and (2 to determine the effect of such changes on biological responses of human osteoblast-like cells (MG63. The results indicated that the surface morphology was not changed by oxygen plasma treatment. In contrast, oxygen plasma treatment to ZrO2 not only resulted in an increase in hydrophilicity, but also it retained surface hydrophilicity after 5-min treatment time. More importantly, surface properties of ZrO2 modified by oxygen plasma treatment were beneficial for cell growth, whereas the surface roughness of the materials did not have a significant efficacy. It is concluded that oxygen plasma treatment was certified to be effective in modifying the surface state of ZrO2 and has the potential in the creation and maintenance of hydrophilic surfaces and the enhancement of cell proliferation and differentiation.

  13. Heat Transfer and Friction Characteristics of Wavy Fin with Hydrophilic Coating under Dehumidifying Conditions

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yuan-ming; DING Guo-liang; MA Xiao-kui

    2007-01-01

    An experimental study on the airside heat transfer and friction characteristics of seven hydrophilic-coated wavy finned tube heat exchangers is performed under dehumidifying conditions. The effects of fin pitch, number of tube rows and inlet air relative humidity on the airside characteristics are investigated. The airside heat transfer and friction characteristics are presented in the form of Colburn factor and friction factor, respectively. The test results indicate that the Colburn factor and friction factor increase with decreasing fin pitch. The Colburn factor of 2tube row heat exchanger is higher than that of 3 row heat exchanger, while their friction factors are nearly equal. As the inlet relative humidity increases, the Colburn factor increases and the friction factor is almost unchanged. The airside heat transfer and friction correlations are proposed for the hydrophilic-coated wavy fin with mean deviations of 6.5% and 9.1%, respectively. They can be used to design or evaluate hydrophilic-coated wavy fin-and-tube heat exchangers.

  14. How to decrease the hydrophilicity of wood flour to process efficient composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Pouzet, M.; Gautier, D.; Charlet, K. [Institut Pascal, UMR 6602 UBP/CNRS/IFMA, BP 265, Aubière 63175 (France); Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, Clermont-Ferrand 63000 (France); CNRS, UMR 6296, Institut de Chimie de Clermont-Ferrand, Aubière 63177 (France); Dubois, M., E-mail: Marc.DUBOIS@univ-bpclermont.fr [Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, Clermont-Ferrand 63000 (France); CNRS, UMR 6296, Institut de Chimie de Clermont-Ferrand, Aubière 63177 (France); Béakou, A. [Institut Pascal, UMR 6602 UBP/CNRS/IFMA, BP 265, Aubière 63175 (France)

    2015-10-30

    Graphical abstract: Evolution of the contact angle of a water drop on sample (θ{sub c}) according to the fluorinated material. - Highlights: • Fluorination was applied to wood flour. • Covalent attachment of fluorine atoms onto wood surface decreases its hydrophilicity. • Fluorinated wood flour was added into composites with polyester. • Fluorination enhances the interface between wood flour and polymer matrix. - Abstract: Dynamic fluorination and static fluorination were applied to wood flour to decrease its hydrophilic character, aiming at processing wood-polymer composites with good properties. Fourier-Transform infrared spectra and {sup 19}F solid state NMR (Nuclear Magnetic Resonance) results proved the successful covalent bonding of fluorine atoms onto the wood's chemical structure. It revealed that static fluorination brings about a less damaged and less hydrophilic fluorinated wood than with dynamic fluorination. Composites manufactured from this fluorinated wood presented a hydrophobic character directly related to the hydrophicity of these wood reinforcements. A composite made with fluorinated wood and polyester exhibited a higher hydrophobicity than the neat polyester and than the composite made with non-treated wood. Moreover, the further fluorination of a composite made of fluorinated wood led to a contact angle comparable to that of some metals (steel, gold) due to the etching of the composite surface during fluorination.

  15. Long term hydrophilic coating on poly(dimethylsiloxane) substrates for microfluidic applications

    Energy Technology Data Exchange (ETDEWEB)

    Maheshwari, Nidhi [Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai (India); Centre for Nanoelectronics, Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai (India); Kottantharayil, Anil [Centre for Nanoelectronics, Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai (India); Kumar, Mahesh [Surface Physics and Nanostructures Group, National Physical Laboratory, New Delhi (India); Mukherji, Soumyo, E-mail: mukherji@iitb.ac.in [Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai (India); Centre for Nanoelectronics, Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai (India)

    2010-11-01

    Poly(dimethylsiloxane) (PDMS) has been used extensively for microfluidic components and as substrates for biological applications. Since the native nature of PDMS is hydrophobic it requires a functionalization step for use in conjunction with aqueous media. Commonly, oxygen plasma treatment is used for the formation of hydrophilic groups on the surface. However, the hydrophilic nature of these surfaces is short lived and the surfaces quickly revert back to their original hydrophobic state. In this work, branched-polyethylenimine (b-PEI) was used for long term modification of plasma treated PDMS surface. Contact angle, X-ray photoelectron spectroscopy (XPS) and Atomic force microscopy (AFM) were used for characterization of the modified surfaces and their stability with time was studied. The results obtained demonstrate that comparatively higher stability, hydrophilic, positively charged surfaces can be obtained after b-PEI treatment. These b-PEI treated PDMS surfaces can be used as fluidic channels for the separation of molecules as well as a substrate for the adherence of bio-molecules or biological cells.

  16. Evaporation Flux Distribution of Drops on a Hydrophilic or Hydrophobic Flat Surface by Molecular Simulations.

    Science.gov (United States)

    Xie, Chiyu; Liu, Guangzhi; Wang, Moran

    2016-08-16

    The evaporation flux distribution of sessile drops is investigated by molecular dynamic simulations. Three evaporating modes are classified, including the diffusion dominant mode, the substrate heating mode, and the environment heating mode. Both hydrophilic and hydrophobic drop-substrate interactions are considered. To count the evaporation flux distribution, which is position dependent, we proposed an azimuthal-angle-based division method under the assumption of spherical crown shape of drops. The modeling results show that the edge evaporation, i.e., near the contact line, is enhanced for hydrophilic drops in all the three modes. The surface diffusion of liquid molecular absorbed on solid substrate for hydrophilic cases plays an important role as well as the space diffusion on the enhanced evaporation rate at the edge. For hydrophobic drops, the edge evaporation flux is higher for the substrate heating mode, but lower than elsewhere of the drop for the diffusion dominant mode; however, a nearly uniform distribution is found for the environment heating mode. The evidence shows that the temperature distribution inside drops plays a key role in the position-dependent evaporation flux.

  17. A new soft lithographic route for the facile fabrication of hydrophilic sandwich microchips.

    Science.gov (United States)

    Li, Li; Bi, Xiaodong; Yu, Jianzhao; Ren, Carolyn L; Liu, Zhen

    2012-08-01

    Manufacturing materials are an essential element for the fabrication of microfluidic chips. PDMS, the most widely used polymeric material, is associated with apparent disadvantages such as hydrophobic nature, while other materials also suffer from some limitations. In this paper, a new soft lithographic route was proposed for the facile manufacturing of hydrophilic sandwich microchips, using bisphenol A based epoxy acrylate (BABEA) as a new patterning material. The BABEA copolymers are hydrophilic, highly transparent in visible range while highly untransparent when the wavelength is less than 290 nm, and of high replication fidelity. By combining with appropriate monomers, including glycidyl methacrylate, methylmethacrylate, and acrylic acid, the copolymers contain active functional groups, which allows for easy postmodification for desirable functional units. A fabrication procedure was proposed for manufacturing hybrid quartz/BABEA copolymer/quartz microchips. In the procedure, no micromachining equipments, wet etching, or imprinting techniques were involved, making the fabrication approach applicable in ordinary chemistry laboratories. The performance of the prepared microchips was demonstrated in terms of CIEF with UV-whole channel imaging detection. The hydrophilic microchannel ensures stable focusing while the polymeric middle layer acts as a perfectly aligned optical slit for whole channel UV absorbance detection.

  18. Fabrication of hydrophilic paclitaxel-loaded PLA-PEG-PLA microparticles via SEDS process

    Institute of Scientific and Technical Information of China (English)

    Ping OUYANG; Yun-qing KANG; Guang-fu YIN; Zhong-bing HUANG; Ya-dong YAO; Xiao-ming LIAO

    2009-01-01

    In this work, chemically bonded poly(D, L-lactide)-polyethylene glycol-poly(D, L-lactide) (PLA-PEG-PLA) triblock copolymers with various PEG contents and PLA homopolymer were synthesized via melt polymerization, and were confirmed by FTIR and 1 H-NMR results. The molecular weight and polydispersity of the synthesized PLA and PLA-PEG-PLA copolymers were investigated by gel permeation chromatography. Hydro-philicity of the copolymers was identified by contact angle measurement. PLA-PEG-PLA and PLA microparticles loaded with and without PTX were then produced via solution enhanced dispersion by supercritical CO2 (SEDS) process. The effect of the PEG content on the particle size distribution, morphology, drug load, and encapsulation efficiency of the fabricated microparticles was also studied. Results indicate that PLA and PLA-PEG-PLA micropar-ticles all exhibit sphere-like shape with smooth surface, when PEG content is relatively low. The produced microparticles have narrow particle size distributions and small particle sizes. The drug load and encapsulation efficiency of the produced microparticles decreases with higher PEG content in the copolymer matrix. Moreover, high hydrophilicity is found when PEG is chemically attached to originally hydrophobic PLA, providing the produced drug-loaded microparticles with high hydrophi-licity, biocompatibility, and prolonged circulation time, which are considered of vital importance for vessel-circulating drug delivery system.

  19. Unstructured hydrophilic sequences in prokaryotic proteomes correlate with dehydration tolerance and host association.

    Science.gov (United States)

    Kriško, Anita; Smole, Zlatko; Debret, Gaelle; Nikolić, Nela; Radman, Miroslav

    2010-10-08

    Water loss or desiccation is among the most life-threatening stresses. It leads to DNA double-strand breakage, protein aggregation, cell shrinkage, and low water activity precluding all biological functions. Yet, in all kingdoms of life, rare organisms are resistant to desiccation through prevention or reversibility of such damage. Here, we explore possible hallmarks of prokaryotic desiccation tolerance in their proteomes. The content of unstructured, low complexity (LC) regions was analyzed in a total of 460 bacterial and archaeal proteomes. It appears that species endowed with proteomes abundant in unstructured hydrophilic LC regions are desiccation-tolerant or sporulating bacteria, halophilic archaea and bacteria, or host-associated species. In the desiccation- and radiation-resistant bacterium Deinococcus radiodurans, most proteins that contain large hydrophilic LC regions have unassigned function, but those with known function are mostly involved in diverse cellular recovery processes. Such LC regions are typically absent in orthologous proteins in desiccation-sensitive species. D. radiodurans encodes also special LC proteins, akin to those associated with desiccation resistance of plant seeds and some plants and animals. Therefore, we postulate that large unstructured hydrophilic LC regions and proteins provide for cellular resistance to dehydration and we discuss mechanisms of their protective activity. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Dextran vesicular carriers for dual encapsulation of hydrophilic and hydrophobic molecules and delivery into cells.

    Science.gov (United States)

    Pramod, P S; Takamura, Kathryn; Chaphekar, Sonali; Balasubramanian, Nagaraj; Jayakannan, M

    2012-11-12

    Dextran vesicular nanoscaffolds were developed based on polysaccharide and renewable resource alkyl tail for dual encapsulation of hydrophilic and hydrophobic molecules (or drugs) and delivery into cells. The roles of the hydrophobic segments on the molecular self-organization of dextran backbone into vesicles or nanoparticles were investigated in detail. Dextran vesicles were found to be a unique dual carrier in which water-soluble molecules (like Rhodamine-B, Rh-B) and polyaromatic anticancer drug (camptothecin, CPT) were selectively encapsulated in the hydrophilic core and hydrophobic layer, respectively. The dextran vesicles were capable of protecting the plasma-sensitive CPT lactone pharmacophore against the hydrolysis by 10× better than the CPT alone in PBS. The aliphatic ester linkage connecting the hydrophobic tail with dextran was found to be cleaved by esterase under physiological conditions for fast releasing of CPT or Rh-B. Cytotoxicity of the dextran vesicle and its drug conjugate were tested on mouse embryonic fibroblast cells (MEFs) using MTT assay. The dextran vesicular scaffold was found to be nontoxic to living cells. CPT loaded vesicles were found to be 2.5-fold more effective in killing fibroblasts compared to that of CPT alone in PBS. Confocal microscopic images confirmed that both Rh-B and CPT loaded vesicles to be taken up by fibroblasts compared to CPT alone, showing a distinctly perinuclear localization in cells. The custom designed dextran vesicular provides new research opportunities for dual loading and delivering of hydrophilic and hydrophobic drug molecules.

  1. Adsorption characteristics of selected hydrophilic and hydrophobic micropollutants in water using activated carbon.

    Science.gov (United States)

    Nam, Seung-Woo; Choi, Dae-Jin; Kim, Seung-Kyu; Her, Namguk; Zoh, Kyung-Duk

    2014-04-15

    In this study, we investigated adsorption characteristics of nine selected micropollutants (six pharmaceuticals, two pesticides, and one endocrine disruptor) in water using an activated carbon. The effects of carbon dosage, contact time, pH, DOM (dissolved organic matter), and temperature on the adsorption removal of micropollutants were examined. Increasing carbon dosage and contact time enhanced the removal of micropollutants. Sorption coefficients of hydrophilic compounds (caffeine, acetaminophen, sulfamethoxazole, and sulfamethazine) fit a linear isotherm and hydrophobic compounds (naproxen, diclofenac, 2, 4-D, triclocarban, and atrazine) fit a Freundlich isotherm. The removal of hydrophobic pollutants and caffeine were independent of pH changes, but acetaminophen, sulfamethazine, and sulfamethoxazole were adsorbed by mainly electrostatic interaction with activated carbon and so were affected by pH. The decrease in adsorption removal in surface water samples was observed and this decrease was more significant for hydrophobic than hydrophilic compounds. The decline in the adsorption capacity in surface water samples is caused by the competitive inhibition of DOM with micropollutants onto activated carbon. Low temperature (5°C) also decreased the adsorption removal of micropollutants, and affected hydrophobic compounds more than hydrophilic compounds. The results obtained in this study can be applied to optimize the adsorption capacities of micropollutants using activated carbon in water treatment process.

  2. Hydrophilic-hydrophobic polymer blend for modulation of crystalline changes and molecular interactions in solid dispersion.

    Science.gov (United States)

    Van Ngo, Hai; Nguyen, Phuc Kien; Van Vo, Toi; Duan, Wei; Tran, Van-Thanh; Tran, Phuong Ha-Lien; Tran, Thao Truong-Dinh

    2016-11-20

    This research study aimed to develop a new strategy for using a polymer blend in solid dispersion (SD) for dissolution enhancement of poorly water-soluble drugs. SDs with different blends of hydrophilic-hydrophobic polymers (zein/hydroxypropyl methylcellulose - zein/HPMC) were prepared using spray drying to modulate the drug crystal and polymer-drug interactions in SDs. Physicochemical characterizations, including power X-ray diffraction and Fourier transform infrared spectroscopy, were performed to elucidate the roles of the blends in SDs. Although hydrophobic polymers played a key role in changing the model drug from a crystal to an amorphous state, the dissolution rate was limited due to the wetting property. Fortunately, the hydrophilic-hydrophobic blend not only reduced the drug crystallinity but also resulted in a hydrogen bonding interaction between the drugs and the polymer for a dissolution rate improvement. This work may contribute to a new generation of solid dispersion using a blend of hydrophilic-hydrophobic polymers for an effective dissolution enhancement of poorly water-soluble drugs.

  3. Different assembly of type IV collagen on hydrophilic and hydrophobic substrata alters endothelial cells interaction.

    Science.gov (United States)

    Coelho, N Miranda; González-García, C; Planell, J A; Salmerón-Sánchez, M; Altankov, G

    2010-06-09

    Considering the structural role of type IV collagen (Col IV) in the assembly of the basement membrane (BM) and the perspective of mimicking its organization for vascular tissue engineering purposes, we studied the adsorption pattern of this protein on model hydrophilic (clean glass) and hydrophobic trichloro(octadecyl)silane (ODS) surfaces known to strongly affect the behavior of other matrix proteins. The amount of fluorescently labeled Col IV was quantified showing saturation of the surface for concentration of the adsorbing solution of about 50microg/ml, but with approximately twice more adsorbed protein on ODS. AFM studies revealed a fine - nearly single molecular size - network arrangement of Col IV on hydrophilic glass, which turns into a prominent and growing polygonal network consisting of molecular aggregates on hydrophobic ODS. The protein layer forms within minutes in a concentration-dependent manner. We further found that human umbilical vein endothelial cells (HUVEC) attach less efficiently to the aggregated Col IV (on ODS), as judged by the significantly altered cell spreading, focal adhesions formation and the development of actin cytoskeleton. Conversely, the immunofluorescence studies for integrins revealed that the fine Col IV network formed on hydrophilic substrata is better recognized by the cells via both alpha1 and alpha2 heterodimers which support cellular interaction, apart from these on hydrophobic ODS where almost no clustering of integrins was observed.

  4. Effect of membranes with various hydrophobic/hydrophilic properties on lipase immobilized activity and stability.

    Science.gov (United States)

    Chen, Guan-Jie; Kuo, Chia-Hung; Chen, Chih-I; Yu, Chung-Cheng; Shieh, Chwen-Jen; Liu, Yung-Chuan

    2012-02-01

    In this study, three membranes: regenerated cellulose (RC), glass fiber (GF) and polyvinylidene fluoride (PVDF), were grafted with 1,4-diaminobutane (DA) and activated with glutaraldehyde (GA) for lipase covalent immobilization. The efficiencies of lipases immobilized on these membranes with different hydrophobic/hydrophilic properties were compared. The lipase immobilized on hydrophobic PVDF-DA-GA membrane exhibited more than an 11-fold increase in activity compared to its immobilization on a hydrophilic RC-DA-GA membrane. The relationship between surface hydrophobicity and immobilized efficiencies was investigated using hydrophobic/hydrophilic GF membranes which were prepared by grafting a different ratio of n-butylamine/1,4-diaminobutane (BA/DA). The immobilized lipase activity on the GF membrane increased with the increased BA/DA ratio. This means that lipase activity was exhibited more on the hydrophobic surface. Moreover, the modified PVDF-DA membrane was grafted with GA, epichlorohydrin (EPI) and cyanuric chloride (CC), respectively. The lipase immobilized on the PVDF-DA-EPI membrane displayed the highest specific activity compared to other membranes. This immobilized lipase exhibited more significant stability on pH, thermal, reuse, and storage than did the free enzyme. The results exhibited that the EPI modified PVDF is a promising support for lipase immobilization.

  5. Structure and Hydrogen Bonding of Water in Polyacrylate Gels: Effects of Polymer Hydrophilicity and Water Concentration.

    Science.gov (United States)

    Mani, Sriramvignesh; Khabaz, Fardin; Godbole, Rutvik V; Hedden, Ronald C; Khare, Rajesh

    2015-12-10

    The ability to tune the hydrophilicity of polyacrylate copolymers by altering their composition makes these materials attractive candidates for membranes used to separate alcohol-water mixtures. The separation behavior of these polyacrylate membranes is governed by a complex interplay of factors such as water and alcohol concentrations, water structure in the membrane, polymer hydrophilicity, and temperature. We use molecular dynamics simulations to investigate the effect of polymer hydrophilicity and water concentration on the structure and dynamics of water molecules in the polymer matrix. Samples of poly(n-butyl acrylate) (PBA), poly(2-hydroxyethyl acrylate) (PHEA), and a 50/50 copolymer of BA and HEA were synthesized in laboratory, and their properties were measured. Model structures of these systems were validated by comparing the simulated values of their volumetric properties with the experimental values. Molecular simulations of polyacrylate gels swollen in water and ethanol mixtures showed that water exhibits very different affinities toward the different (carbonyl, alkoxy, and hydroxyl) functional groups of the polymers. Water molecules are well dispersed in the system at low concentrations and predominantly form hydrogen bonds with the polymer. However, water forms large clusters at high concentrations along with the predominant formation of water-water hydrogen bonds and the acceleration of hydrogen bond dynamics.

  6. Different assembly of type IV collagen on hydrophilic and hydrophobic substrata alters endothelial cells interaction

    Directory of Open Access Journals (Sweden)

    NM Coelho

    2010-06-01

    Full Text Available Considering the structural role of type IV collagen (Col IV in the assembly of the basement membrane (BM and the perspective of mimicking its organization for vascular tissue engineering purposes, we studied the adsorption pattern of this protein on model hydrophilic (clean glass and hydrophobic trichloro(octadecylsilane (ODS surfaces known to strongly affect the behavior of other matrix proteins. The amount of fluorescently labeled Col IV was quantified showing saturation of the surface for concentration of the adsorbing solution of about 50μg/ml, but with approximately twice more adsorbed protein on ODS. AFM studies revealed a fine – nearly single molecular size – network arrangement of Col IV on hydrophilic glass, which turns into a prominent and growing polygonal network consisting of molecular aggregates on hydrophobic ODS. The protein layer forms within minutes in a concentration-dependent manner. We further found that human umbilical vein endothelial cells (HUVEC attach less efficiently to the aggregated Col IV (on ODS, as judged by the significantly altered cell spreading, focal adhesions formation and the development of actin cytoskeleton. Conversely, the immunofluorescence studies for integrins revealed that the fine Col IV network formed on hydrophilic substrata is better recognized by the cells via both α1 and α2 heterodimers which support cellular interaction, apart from these on hydrophobic ODS where almost no clustering of integrins was observed.

  7. Radical graft polymerization of an allyl monomer onto hydrophilic polymers and their antibacterial nanofibrous membranes.

    Science.gov (United States)

    Wang, Dong; Xu, Weilin; Sun, Gang; Chiou, Bor-Sen

    2011-08-01

    Hydrophilic poly (vinyl alcohol-co-ethylene) (PVA-co-PE) copolymers with 27 mol %, 32 mol % and 44 mol % ethylene were functionalized by melt radical graft copolymerization with 2,4-diamino-6-diallylamino-1,3,5-triazine (NDAM) using reactive extrusion. This functionalization imparts antibacterial properties. The covalent attachments of the NDAM as side chains onto the PVA-co-PE polymer backbones were confirmed. The effects of initiator concentrations and ethylene contents in PVA-co-PE polymers on grafting of NDAM were studied. The chain scissions of PVA-co-PE polymers during reactive extrusion were investigated by monitoring changes in the melt torque and FTIR spectra. The NDAM grafted PVA-co-PE polymers were successfully fabricated into hydrophilic nanofibers and nanofibrous membranes with sufficient surface exposure of the grafted NDAM. The hydrophilicity of the PVA-co-PE polymers and the large specific surface area offered by the nanofiber membranes significantly facilitated the chlorine activation process, enhanced the active chlorine contents of the grafted PVA-co-PE nanofiber membranes, and therefore led to their superior antibacterial properties.

  8. PREPARATION OF 4,4′-DIAMINOSTILBENE-2,2′-DISULFONIC ACID BY CATALYTIC HYDROGENATION%催化加氢法制备4,4′-二氨基二苯乙烯-2,2′-二磺酸

    Institute of Scientific and Technical Information of China (English)

    赵晓波; 陈宏博; 张淑芬

    2003-01-01

    @@ INTRODUCTION 4,4′-Diaminostilbene-2,2′-disulfonic acid(DAS) is an important intermediate which is widely used in synthesis of fluorescent whitening agents, direct dyes and reactive dyes[1,2].So far, the conventional procedure using Fe as catalyst for the production of DAS in China is greatly limited, due to industrial waste water, high labor intensity and low production capability. The electrochemical reduction method has been reported[3] overseas, but it is not suitable for China considering its large equipment investment, lower yield and great power consumption. Compared with the methods mentioned above, the catalytic hydrogenation method has attracted a great deal of attention in view of its simple and easy operation, high production capacity and high production efficiency[4-6].The relatively cheap Raney nickel is not used here since it shows a low safety performance in preparing DAS at a high reaction temperature and high pressure. In this paper, highly reactive and recyclable palladium-carbon is chosen as the catalyst. DAS of high purity and high yield is prepared under mild conditions. The catalytic hydrogenation method is a prospective method in producing DAS.

  9. Predicting the oral uptake efficiency of chemicals in mammals: Combining the hydrophilic and lipophilic range

    Energy Technology Data Exchange (ETDEWEB)

    O' Connor, Isabel A., E-mail: i.oconnor@science.ru.nl [Radboud University Nijmegen, Institute for Water and Wetland Research, Department of Environmental Science, P.O. Box 9010, NL-6500 GL, Nijmegen (Netherlands); Huijbregts, Mark A.J., E-mail: m.huijbregts@science.ru.nl [Radboud University Nijmegen, Institute for Water and Wetland Research, Department of Environmental Science, P.O. Box 9010, NL-6500 GL, Nijmegen (Netherlands); Ragas, Ad M.J., E-mail: a.ragas@science.ru.nl [Radboud University Nijmegen, Institute for Water and Wetland Research, Department of Environmental Science, P.O. Box 9010, NL-6500 GL, Nijmegen (Netherlands); Open University, School of Science, P.O. Box 2960,6401 DL Heerlen (Netherlands); Hendriks, A. Jan, E-mail: a.j.hendriks@science.ru.nl [Radboud University Nijmegen, Institute for Water and Wetland Research, Department of Environmental Science, P.O. Box 9010, NL-6500 GL, Nijmegen (Netherlands)

    2013-01-01

    Environmental risk assessment requires models for estimating the bioaccumulation of untested compounds. So far, bioaccumulation models have focused on lipophilic compounds, and only a few have included hydrophilic compounds. Our aim was to extend an existing bioaccumulation model to estimate the oral uptake efficiency of pollutants in mammals for compounds over a wide K{sub ow} range with an emphasis on hydrophilic compounds, i.e. compounds in the lower K{sub ow} range. Usually, most models use octanol as a single surrogate for the membrane and thus neglect the bilayer structure of the membrane. However, compounds with polar groups can have different affinities for the different membrane regions. Therefore, an existing bioaccumulation model was extended by dividing the diffusion resistance through the membrane into an outer and inner membrane resistance, where the solvents octanol and heptane were used as surrogates for these membrane regions, respectively. The model was calibrated with uptake efficiencies of environmental pollutants measured in different mammals during feeding studies combined with human oral uptake efficiencies of pharmaceuticals. The new model estimated the uptake efficiency of neutral (RMSE = 14.6) and dissociating (RMSE = 19.5) compounds with logK{sub ow} ranging from − 10 to + 8. The inclusion of the K{sub hw} improved uptake estimation for 33% of the hydrophilic compounds (logK{sub ow} < 0) (r{sup 2} = 0.51, RMSE = 22.8) compared with the model based on K{sub ow} only (r{sup 2} = 0.05, RMSE = 34.9), while hydrophobic compounds (logK{sub ow} > 0) were estimated equally by both model versions with RMSE = 15.2 (K{sub ow} and K{sub hw}) and RMSE = 15.7 (K{sub ow} only). The model can be used to estimate the oral uptake efficiency for both hydrophilic and hydrophobic compounds. -- Highlights: ► A mechanistic model was developed to estimate oral uptake efficiency. ► Model covers wide logK{sub ow} range (- 10 to + 8) and several mammalian

  10. Simple and improved approaches to long-lasting, hydrophilic silicones derived from commercially available precursors.

    Science.gov (United States)

    Nguyen, Lien; Hang, Mimi; Wang, Wanxin; Tian, Ye; Wang, Liming; McCarthy, Thomas J; Chen, Wei

    2014-12-24

    Three types of commercially derived methylsilicone materials, Sylgard-184, Q(V)Q(H) (an MQ-based silicone containing no dimethylsiloxane, D units), and D(V)D(H) (a D-based silicone with no additives), were judiciously chosen to study the conditions under which long-lasting hydrophilicity after oxygen plasma treatment can be obtained. A 30 s plasma treatment time under controlled conditions was found to be optimal in terms of achieving the lowest initial advancing and receding contact angles of θ(A)/θ(R) = 10°/5° with undetectable surface damage. Vacuum treatment, a necessary step prior to plasma ignition that has been overlooked in previous studies, as well as room temperature curing were explored as means to remove low molecular weight species. For thin films (a few micrometers), 40 min vacuum treatment was sufficient to achieve low dynamic contact angles of θ(A)/θ(R) = 51-56°/38-43° on all three types of silicones measured more than 30 days after the plasma treatments. These values indicate superior hydrophilicity relative to what has been reported. The small and slow rise in contact angle over time is likely caused by the intrinsic nature of the silicone materials, i.e., surface reorientation of hydrophilic functional groups to the bulk and condensation of surface silanol groups, and is thus unavoidable. For thick films (∼1 mm), room temperature curing in addition to vacuum treatment was required to reduce hydrophobic recovery and to achieve long-lasting hydrophilicity. The final contact angles for thick samples were slightly higher than the corresponding thin film samples due to the greater "reservoir" depth and migration length for mobile species. In particular, Sylgard exhibited inferior performance among the thick samples, and we attribute this to the additives in its commercial formulation. Furthermore, unlike polydimethylsiloxane-based silicones, Q(V)Q(H) does not contain equilibration products of the Dn-type; its thin films perform as well as

  11. Adsorption of an endoglucanase from the hyperthermophilic Pyrococcus furiosus of hydrophobic (polysterene) and hydrophilic (silica) surfaces increases protein heat stability

    NARCIS (Netherlands)

    Koutsopoulos, S.; Oost, van der J.; Norde, W.

    2004-01-01

    The interaction of an endoglucanase from the hyperthermophilic microorganism Pyrococcus furiosus with two types of surfaces, that is, hydrophobic polystyrene and hydrophilic silica, was investigated, and the adsorption isotherms were determined. The adsorbed hyperthermostable enzyme did not undergo

  12. Adsorption of an endoglucanase from the hyperthermophilic Pyrococcus furiosus on hydrophobic (polystyrene) and hydrophilic (silica) surfaces increases protein heat stability

    NARCIS (Netherlands)

    Koutsopoulos, S.; van der Oost, J.; Norde, Willem

    2004-01-01

    The interaction of an endoglucanase from the hyperthermophilic microorganism Pyrococcus furiosus with two types of surfaces, that is, hydrophobic polystyrene and hydrophilic silica, was investigated, and the adsorption isotherms were determined. The adsorbed hyperthermostable enzyme did not undergo

  13. Losartan potassium loaded sustained release matrix tablets: Influence of various hydrophilic and hydrophobic polymers on drug release behaviour

    Directory of Open Access Journals (Sweden)

    D D Vohra

    2012-01-01

    Full Text Available Losartan potassium is an angiotensin II receptor antagonist readily absorbed from the GIT, following oral administration. It has low bioavailability as it undergoes extensive first pass metabolism and low elimination half-life. The present study was aimed at studying sustained release behaviour of the drug using hydrophilic and hydrophobic polymers and to optimise using a 32 full factorial design. Eudragit and HPMC were used to evaluate the effect of hydrophilic and hydrophobic polymers on the release pattern of the drug. A full factorial was implemented at 20, 30 and 40% concentration of hydrophilic polymer and 2.5, 5 and 7.5% of hydrophobic polymer correlating with the release behaviour. Process variables were investigated and the results showed excellent adaptability in releasing drug over prolonged periods. Based on the results, it was found suitable to formulate a dosage form using optimum concentration of hydrophobic polymer along with hydrophilic polymer to vary the release behaviour for over 12 hours.

  14. Monitoring the ripening process of Cheddar cheese based on hydrophilic component profiling using gas chromatography-mass spectrometry

    National Research Council Canada - National Science Library

    Ochi, H; Sakai, Y; Koishihara, H; Abe, F; Bamba, T; Fukusaki, E

    2013-01-01

    ... cheese to make practical use of hydrophilic low-molecular-weight compound profiling using gas chromatography-mass spectrometry to design optimal conditions and quality monitoring of the cheese ripening process...

  15. What makes zeolitic imidazolate frameworks hydrophobic or hydrophilic? The impact of geometry and functionalization on water adsorption.

    Science.gov (United States)

    Ortiz, Aurélie U; Freitas, Alexy P; Boutin, Anne; Fuchs, Alain H; Coudert, François-Xavier

    2014-06-07

    We demonstrate, by means of Grand Canonical Monte Carlo simulation on different members of the ZIF family, how topology, geometry, and linker functionalization drastically affect the water adsorption properties of these materials, tweaking the ZIF materials from hydrophobic to hydrophilic. We show that adequate functionalization of the linkers allows one to tune the host-guest interactions, even featuring dual amphiphilic materials whose pore space features both hydrophobic and hydrophilic regions. Starting from an initially hydrophobic material (ZIF-8), various degrees of hydrophilicity could be obtained, with a gradual evolution from a type V adsorption isotherm in the liquid phase to a type I isotherm in the gas phase. This behavior is similar to what was described earlier in families of hydrophobic all-silica zeolites, with hydrophilic "defects" of various strength, such as silanol nests or the presence of extra-framework cations.

  16. Adsorption of phthalic acid esters (PAEs) by amphiphilic polypropylene nonwoven from aqueous solution: the study of hydrophilic and hydrophobic microdomain.

    Science.gov (United States)

    Zhou, Xiangyu; Wei, Junfu; Zhang, Huan; Liu, Kai; Wang, Han

    2014-05-30

    A kind of amphiphilic polypropylene nonwoven with hydrophilic and hydrophobic microdomain was prepared through electron beam induced graft polymerization and subsequent ring opening reaction and then utilized in the adsorption of phthalic acid esters (PAEs). To elucidate the superiority of such amphiphilic microdomain, a unique structure without hydrophilic part was constructed as comparison. In addition, the adsorption behaviors including adsorption kinetics, isotherms and pH effect were systematically investigated. The result indicated that the amphiphilic structure and the synergy between hydrophilic and hydrophobic microdomain could considerably improve the adsorption capacities, rate and affinity. Particularly the existence of hydrophilic microdomain could reduce the diffusion resistance and energy barrier in the adsorption process. These adsorption results showed that the amphiphilic PP nonwoven have the potential to be used in environmental application.

  17. Development of hydrophilic dental wax without surfactant using a non-thermal air atmospheric pressure plasma jet

    Science.gov (United States)

    Lee, Jung-Hwan; Kim, Yong-Hee; Choi, Eun-Ha; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2014-06-01

    Dental wax (DW), a low-melting and high-molecular-weight organic mixture, is widely used in dentistry for forming moulds of teeth. Hydrophilicity is an important property for DW, as a wet dental investment is used to surround the wax before wax burnout is performed. However, recent attempts to improve the hydrophilicity of DW using a surfactant have resulted in the reduced mechanical properties of the dental investment, leading to the failure of the dental restoration. This study applied a non-thermal air atmospheric pressure plasma jet (AAPPJ) for DW surface treatment and investigated its effect on both DW hydrophilicity and the dental investment's mechanical properties. The results showed that the application of the AAPPJ significantly improved the hydrophilicity of the DW, and that the results were similar to that of cleaner-treated DW using commercially available products with surfactant. A surface chemical analysis indicated that the improvement of hydrophilicity was related to an increase in the number of oxygen-related bonds on the DW surface following the removal of carbon hydrate in both AAPPJ and cleaner-treated DW. However, cleaner treatment compromised the mechanical property of the dental investment when the dental investment was in contact with the treated DW, while the AAPPJ treatment did not. Therefore, the use of AAPPJ to treat DW is a promising method for accurate dental restoration, as it induces an improvement in hydrophilicity without harming the dental investment.

  18. Reversible Interactions of Proteins with Mixed Shell Polymeric Micelles: Tuning the Surface Hydrophobic/Hydrophilic Balance toward Efficient Artificial Chaperones.

    Science.gov (United States)

    Wang, Jianzu; Song, Yiqing; Sun, Pingchuan; An, Yingli; Zhang, Zhenkun; Shi, Linqi

    2016-03-22

    Molecular chaperones can elegantly fine-tune its hydrophobic/hydrophilic balance to assist a broad spectrum of nascent polypeptide chains to fold properly. Such precious property is difficult to be achieved by chaperone mimicking materials due to limited control of their surface characteristics that dictate interactions with unfolded protein intermediates. Mixed shell polymeric micelles (MSPMs), which consist of two kinds of dissimilar polymeric chains in the micellar shell, offer a convenient way to fine-tune surface properties of polymeric nanoparticles. In the current work, we have fabricated ca. 30 kinds of MSPMs with finely tunable hydrophilic/hydrophobic surface properties. We investigated the respective roles of thermosensitive and hydrophilic polymeric chains in the thermodenaturation protection of proteins down to the molecular structure. Although the three kinds of thermosensitive polymers investigated herein can form collapsed hydrophobic domains on the micellar surface, we found distinct capability to capture and release unfolded protein intermediates, due to their respective affinity for proteins. Meanwhile, in terms of the hydrophilic polymeric chains in the micellar shell, poly(ethylene glycol) (PEG) excels in assisting unfolded protein intermediates to refold properly via interacting with the refolding intermediates, resulting in enhanced chaperone efficiency. However, another hydrophilic polymer-poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) severely deteriorates the chaperone efficiency of MSPMs, due to its protein-resistant properties. Judicious combination of thermosensitive and hydrophilic chains in the micellar shell lead to MSPM-based artificial chaperones with optimal efficacy.

  19. Study of the critical points of HPMC hydrophilic matrices for controlled drug delivery.

    Science.gov (United States)

    Miranda, Antonia; Millán, Mónica; Caraballo, Isidoro

    2006-03-27

    The knowledge of the percolation thresholds of a system results in a clear improvement of the design of controlled release dosage forms such as inert matrices. Despite hydrophilic matrices are one of the most used controlled delivery systems in the world, but actuality, the mechanisms of drug release from these systems continue to be a matter of debate nowadays. The objective of the present paper is to apply the percolation theory to study the release and hydration rate of hydrophilic matrices. Matrix tablets have been prepared using KCl as a drug model and HPMC K4M as matrix-forming material, employing five different excipient/drug particle size ratios (ranging from 0.42 to 2.33). The formulations studied containing a drug loading in the range of 20-90% (w/w). Dissolution studies were carried out using the paddle method and the water uptake measurements were performed using a modified Enslin apparatus. In order to estimate the percolation threshold, the behaviour of the kinetic parameters with respect to the volumetric fraction of each component at time zero, was studied. The percolation theory has been applied for the first time to the study of matrix type controlled delivery systems. The application of this theory allowed to explain changes in the release and hydration kinetics of these matrices. The critical points observed in dissolution and water uptake studies can be attributed to the excipient percolation threshold, being this threshold one of the main factors governing the gel layer formation and consequently, the drug release control from hydrophilic matrices.

  20. 3D Printing PDMS Elastomer in a Hydrophilic Support Bath via Freeform Reversible Embedding

    Science.gov (United States)

    2016-01-01

    Polydimethylsiloxane (PDMS) elastomer is used in a wide range of biomaterial applications including microfluidics, cell culture substrates, flexible electronics, and medical devices. However, it has proved challenging to 3D print PDMS in complex structures due to its low elastic modulus and need for support during the printing process. Here we demonstrate the 3D printing of hydrophobic PDMS prepolymer resins within a hydrophilic Carbopol gel support via freeform reversible embedding (FRE). In the FRE printing process, the Carbopol support acts as a Bingham plastic that yields and fluidizes when the syringe tip of the 3D printer moves through it, but acts as a solid for the PDMS extruded within it. This, in combination with the immiscibility of hydrophobic PDMS in the hydrophilic Carbopol, confines the PDMS prepolymer within the support for curing times up to 72 h while maintaining dimensional stability. After printing and curing, the Carbopol support gel releases the embedded PDMS prints by using phosphate buffered saline solution to reduce the Carbopol yield stress. As proof-of-concept, we used Sylgard 184 PDMS to 3D print linear and helical filaments via continuous extrusion and cylindrical and helical tubes via layer-by-layer fabrication. Importantly, we show that the 3D printed tubes were manifold and perfusable. The results demonstrate that hydrophobic polymers with low viscosity and long cure times can be 3D printed using a hydrophilic support, expanding the range of biomaterials that can be used in additive manufacturing. Further, by implementing the technology using low cost open-source hardware and software tools, the FRE printing technique can be rapidly implemented for research applications.

  1. HYDROPHILIC NANOFILTRATION MEMBRANES WITH SELF-POLYMERIZED AND STRONGLY-ADHERED POLYDOPAMINE AS SEPARATING LAYER

    Institute of Scientific and Technical Information of China (English)

    Xiao-lin Li; Li-ping Zhu; Jin-hong Jiang; Zhuan Yi; Bao-ku Zhu; You-yi Xu

    2012-01-01

    Inspired by the self-polymerization and strong adhesion characteristics of dopamine in aqueous conditions,a novel hydrophilic nanofiltration (NF) membrane was fabricated by simply dipping polysulfone (PSf) ultrafiltration (UF) substrate in dopamine solution.The changes in surface chemical composition and morphology of membranes were determined by Fourier transform infrared spectroscopy (FTIR-ATR),X-ray photoelectron spectroscopy (XPS),scanning electron microscopy (SEM) and atomic force microscopy (AFM).The experimental results indicated that the self-polymerized dopamine formed an ultrathin and defect-free barrier layer on the PSf UF membrane.The surface hydrophilicity of membranes was evaluated through water contact angle measurements.It was found that membrane hydrophilicity was significantly improved after coating a polydopamine (pDA) layer,especially after double coating.The dyes filtration experiments showed that the double-coated membranes were able to reject completely the dyes of brilliant blue,congo red and methyl orange with a pure water flux of 83.7 L/(m2·h) under 0.6 MPa.The zeta potential determination revealed the positively-charged characteristics of PSf/pDA composite membrane in NF process.The salt rejection of the membranes was characterized by 0.01 mmol/L of salts filtration experiment.It was demonstrated that the salts rejections followed the sequence:NaCl < Na2SO4 < MgSO4 < MgCl2 < CaCl2,and the rejection to CaCl2 reached 68.7%.Moreover,the composite NF membranes showed a good stability in water-phase filtration process.

  2. Interaction mechanism between hydrophobic and hydrophilic surfaces: using polystyrene and mica as a model system.

    Science.gov (United States)

    Faghihnejad, Ali; Zeng, Hongbo

    2013-10-08

    The interactions between hydrophobic and hydrophilic molecules, particles, or surfaces occur in many biological phenomena and industrial processes. In this work, polystyrene (PS) and mica were chosen as a model system to investigate the interaction mechanism between hydrophilic and hydrophobic surfaces. Using a surface forces apparatus (SFA) coupled with a top-view optical microscope, interaction forces between PS and mica surfaces were directly probed in five different electrolyte solutions (i.e., NaCl, CaCl2, NaOH, HCl, and CH3COOH) of various concentrations. Long-range repulsion was observed in low electrolyte concentration (e.g., 0.001 M) which was mainly due to the presence of microscopic and submicroscopic bubbles on PS surface. A modified Derjaguin-Landau-Verwey-Overbeek (DLVO) theory well fits the interaction forces by taking into account the effect of bubbles on PS surface. The range of the repulsion was dramatically reduced in 1.0 M solutions of NaCl, CaCl2, and NaOH but did not significantly change in 1.0 M HCl and CH3COOH, which was due to ion specificity effect on the formation and stability of bubbles on PS surface. The range of repulsion was also significantly reduced to forces dominate the interaction between hydrophilic surface (i.e., mica) and hydrophobic polymer (i.e., PS), while the types of electrolytes (ion specificity), electrolyte concentration, degassing, and surface hydrophobicity can significantly affect the formation and stability of bubbles on the interacting surfaces, thus affecting the range and magnitude of the interaction forces.

  3. Novel lubricated surface of titanium alloy based on porous structure and hydrophilic polymer brushes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kun; Xiong, Dangsheng, E-mail: xiongds@163.com; Niu, Yuxiang

    2014-10-30

    Graphical abstract: - Highlights: • Lubricated Ti6Al4V was fabricated by anodic oxidation and hydrophilic polymer grafting. • Surface composition and tribological properties were estimated. • Proper surface micropores formed at optimum voltage of 100 V. • Combined effect of porous structure and polymer brushes decreased friction coefficient and wear. • Hydrated lubricating layer and hydrodynamic lubrication contributed to lubricated surface. - Abstract: On the purpose of improving the tribological properties of titanium alloy through mimicking natural articular cartilage, porous structure was prepared on the surface of Ti6Al4V alloy by anodic oxidation method, and then hydrophilic polymer brushes were grafted onto its surface. Surface morphology of porous oxidized film was investigated by metalloscope and scanning electron microscope (SEM). The composition and structure of modified surface were characterized by Fourier-transform infrared spectroscopy with attenuated total reflection (FTIR/ATR), and the wettability was also evaluated. Friction and wear properties of modified alloys sliding against ultra-high molecular weight polyethylene (UHMWPE) were tested by a pin-on-disc tribometer in physiological saline. The results showed that, the optimum porous structure treated by anodic oxidation formed when the voltage reached as high as 100 V. Hydrophilic monomers [Acrylic acid (AA) and 3-dimethyl-(3-(N-methacrylamido) propyl) ammonium propane sulfonate (DMMPPS)] were successfully grafted onto porous Ti6Al4V surface to form polymer brushes by UV radiation. The change of contact angle showed that wettability of modified Ti6Al4V was improved significantly. The friction coefficient of modified Ti6Al4V was much lower and more stable than untreated ones. The lowest friction coefficient was obtained when the sample was anodized at 100 V and grafted with DMMPPS, and the value was 0.132. The wear of modified samples was also obviously improved.

  4. 3D Printing PDMS Elastomer in a Hydrophilic Support Bath via Freeform Reversible Embedding.

    Science.gov (United States)

    Hinton, Thomas J; Hudson, Andrew; Pusch, Kira; Lee, Andrew; Feinberg, Adam W

    2016-10-10

    Polydimethylsiloxane (PDMS) elastomer is used in a wide range of biomaterial applications including microfluidics, cell culture substrates, flexible electronics, and medical devices. However, it has proved challenging to 3D print PDMS in complex structures due to its low elastic modulus and need for support during the printing process. Here we demonstrate the 3D printing of hydrophobic PDMS prepolymer resins within a hydrophilic Carbopol gel support via freeform reversible embedding (FRE). In the FRE printing process, the Carbopol support acts as a Bingham plastic that yields and fluidizes when the syringe tip of the 3D printer moves through it, but acts as a solid for the PDMS extruded within it. This, in combination with the immiscibility of hydrophobic PDMS in the hydrophilic Carbopol, confines the PDMS prepolymer within the support for curing times up to 72 h while maintaining dimensional stability. After printing and curing, the Carbopol support gel releases the embedded PDMS prints by using phosphate buffered saline solution to reduce the Carbopol yield stress. As proof-of-concept, we used Sylgard 184 PDMS to 3D print linear and helical filaments via continuous extrusion and cylindrical and helical tubes via layer-by-layer fabrication. Importantly, we show that the 3D printed tubes were manifold and perfusable. The results demonstrate that hydrophobic polymers with low viscosity and long cure times can be 3D printed using a hydrophilic support, expanding the range of biomaterials that can be used in additive manufacturing. Further, by implementing the technology using low cost open-source hardware and software tools, the FRE printing technique can be rapidly implemented for research applications.

  5. Glycidol-modified gels for molecular-sieve chromatography. Surface hydrophilization and pore size reduction.

    Science.gov (United States)

    Eriksson, K O

    1987-11-01

    Divinyl sulfone-crosslinked agarose gels were made hydrophilic by coupling glycidol to the agarose chains. The concentration of glycidol in the reaction mixture determines the pore size of the gels (the glycidol molecules probably form polymers, the degree of polymerization increasing with the glycidol concentration). Gels prepared with moderate glycidol concentrations are still porous enough to be used for separation of proteins and peptides. Gels with a high degree of glycidol polymerization are suited for desalting of low-molecular-weight compounds, for instance peptides.

  6. Thermochemical Properties of Hydrophilic Polymers from Cashew and Khaya Exudates and Their Implications on Drug Delivery.

    Science.gov (United States)

    Olorunsola, Emmanuel O; Bhatia, Partap G; Tytler, Babajide A; Adikwu, Michael U

    2016-01-01

    Characterization of a polymer is essential for determining its suitability for a particular purpose. Thermochemical properties of cashew gum (CSG) extracted from exudates of Anacardium occidentale L. and khaya gum (KYG) extracted from exudates of Khaya senegalensis were determined and compared with those of acacia gum BP (ACG). The polymers were subjected to different thermal and chemical analyses. Exudates of CSG contained higher amount of hydrophilic polymer. The pH of 2% w/v gum dispersions was in the order KYG application of cashew gum for formulation of basic and oxidizable drugs while using khaya gum for acidic drugs.

  7. Poly[tetraaquatriglutaratodicerium(III) decahydrate], a novel luminescent metal-organic framework possessing hydrophilic hexagonal channels

    Indian Academy of Sciences (India)

    REMYA M NAIR; M R SUDARSANAKUMAR; S SUMA; M R PRATHAPACHANDRA KURUP; P K SUDHADEVI ANTHARJANAM

    2016-09-01

    A novel 2D metal–organic framework poly[tetraaquatriglutaratodicerium(III) decahydrate] with an open framework structure has been successfully grown by single gel diffusion technique. Sodium metasilicate was used for gel preparation. The structure was determined by single crystal X-ray diffraction. The compoundcrystallizes in orthorhombic space group Pnma and possesses a structure consisting of [CeO₁₀] polyhedra and H₂O molecules with hydrophilic hexagonal channels. The crystals were further characterized by elemental analysis, FT-IR and UV-Visible spectroscopy, powder X-ray diffraction and thermogravimetry. The luminescent property and magnetic susceptibility of the complex were also investigated.

  8. Investigation of a new approach to measuring contact angles for hydrophilic impression materials.

    Science.gov (United States)

    Kugel, Gerard; Klettke, Thomas; Goldberg, Jeffrey A; Benchimol, Jaques; Perry, Ronald D; Sharma, Shradha

    2007-01-01

    The purpose of this investigation was to examine the initial water contact angles of seven unset impression materials using commercially available equipment, in an effort to determine whether polyether impression materials (Impregum) have lower contact angles and are, therefore, more hydrophilic than VPS impression materials. The hydrophilic properties of unset polyether and VPS impression materials were analyzed with respect to their water contact angle measurements using the commercially available Drop Shape Analysis System DSA 10. Twenty-five data points per second were collected via video analysis. There was no delay from start of measurement and data collection. Data was collected for approximately 12 s. Droplet size was determined on the thickness of canula. If the droplets became too small in volume, the water that evaporated during the measurement was large in comparison to the volume of the droplet. Therefore, 5 microl was chosen as the lowest volume. Five trials were conducted per series for each featured material. Contact angles were calculated using the circle fitting method. Three tests using this technique were designed to control the variables of contact angle measurement with regard to time, the varying amount of fluid in contact with impression material during clinical use, and material thickness. Sample thickness of impression material was controlled by stripping the paste flat on a glass plate using a marking template to ensure a constant film thickness. Tests were conducted in a climatized room at 24 degrees C +/- 1 degree C. Deionized water was used as the fluid. The device was calibrated according to manufacturer's instruction for Young-Laplace fitting prior to the measurements. Results were analyzed using One-Way ANOVA, Tukey test, and t-test, as appropriate. Comparing the fast setting impression materials by One-Way ANOVA and Tukey tests (p water in contact with the impression material, the polyether impression materials showed a

  9. SYNTHESIS OF HYDROPHILIC ZnS NANOCRYSTALS AND THEIR APPLICATION IN PHOTOCATALYTIC DEGRADATION OF DYE POLLUTANTS

    Institute of Scientific and Technical Information of China (English)

    Junping Li; Yao Xu; Yong Liu; Dong Wu; Yuhan Sun

    2004-01-01

    Hydrophilic ZnS nanocrystals with narrow size distribution were synthesized via homogeneous precipitation using EDTA as stabilizer. The as-synthesized products were characterized with XRD, TEM, HRTEM and UV-Vis spectrum. UV-Vis spectra showed that ZnS nanocrystals exhibited strong quantum-confined effect with a blue shift in the band gap of light absorbance. The photocatalytic activity of these nanocrystals was also investigated for the liquid phase photocatalytic degradation of Basic Violet 5BN (BV5) dye under UV irradiation. It was found that the ZnS nanocrystals had good catalytic activity for photodegradation of BV5.

  10. Reason for the loss of hydrophilicity of TiO2 film and its photocatalytic regeneration

    Institute of Scientific and Technical Information of China (English)

    殷好勇; 金振声; 张顺利; 王守斌; 张治军

    2002-01-01

    TiO2 film was prepared on soda-lime glass by sol-gel method. The water contact angle (θw) of the fresh TiO2 film is 0o. During storage in air, the surface of TiO2 film is gradually converted to the hydrophobic state. XPS and ITD results reveal that it is due to the adsorption of organic contaminants on TiO2 surface in air ambience. The lost hydrophilicity of TiO2 film can be regenerated by UV illumination.

  11. Effect of shape of protrusions and roughness on the hydrophilicity of a surface

    Science.gov (United States)

    Chowdhury, Sheelan Sengupta; Pandey, Prithvi Raj; Kumar, Rajnish; Roy, Sudip

    2017-10-01

    We have investigated wetting of model rough surfaces made up of hydrophilic triangular and hexagonal pillars (protrusions). The surface roughnesses are altered by varying the area of the rough surface, the height of the pillars, and the surface interactions to the water. We have established a correlation between structure i.e., the shape of a pillar, which actually depends on the number of edges (due to shape), and the wetting phenomena. We have found that surface with higher number of edges repels water at lower roughness value. We explain the correlation by analyzing the variation of interactions energy components and density profiles of water on the structured surfaces.

  12. Study on the improvement of hydrophilic character on polyvinylalcohol treated polyester fabric

    Directory of Open Access Journals (Sweden)

    S. Pitchai

    2014-12-01

    Full Text Available Polyester fabric was treated with polyvinyl alcohol in alkaline medium. The moisture regain, water retention and wettability of the PVA treated polyester fabric were tested. The PVA treated PET fabric was dyed with disperse dye. The presence of PVA in the treated PET fabric was assessed by spot test. The treated fabric was also characterized by scanning electron microscope, FTIR and differential scanning calorimetry. The PVA treated polyester fabric showed improved hydrophilic character over intact and sodium hydroxide treated PET fabrics.

  13. Free surface entropic lattice Boltzmann simulations of film condensation on vertical hydrophilic plates

    DEFF Research Database (Denmark)

    Hygum, Morten Arnfeldt; Karlin, Iliya; Popok, Vladimir

    2015-01-01

    A model for vapor condensation on vertical hydrophilic surfaces is developed using the entropic lattice Boltzmann method extended with a free surface formulation of the evaporation–condensation problem. The model is validated with the steady liquid film formation on a flat vertical wall....... It is shown that the model is in a good agreement with the classical Nusselt equations for the laminar flow regime. Comparisons of the present model with other empirical models also demonstrate good agreement beyond the laminar regime. This allows the film condensation modeling at high film Reynolds numbers...

  14. Myocardial capillary permeability for small hydrophilic indicators during normal physiological conditions and after ischemia and reperfusion

    DEFF Research Database (Denmark)

    Svendsen, Jesper Hastrup

    1991-01-01

    of the injected indicator molecules in an extracted and a transmitted fraction of molecules. In open chest dog hearts measurements performed during normal physiological conditions gave mean capillary extraction values of 43.5-47.5% and the corresponding calculated PdS values were 47.1 - 57.5 ml.(100g.min)-1. From......Myocardial capillary permeability for small hydrophilic solutes (51Cr-EDTA or 99mTc-DTPA) has been measured using intracoronary indicator bolus injection and external radioactivity registration (the single injection, residue detection method). The method is based on kinetic separation...

  15. Heparin stability by determining unsubstituted amino groups using hydrophilic interaction chromatography mass spectrometry.

    Science.gov (United States)

    Fu, Li; Li, Lingyun; Cai, Chao; Li, Guoyun; Zhang, Fuming; Linhardt, Robert J

    2014-09-15

    The thermal instability of the anticoagulant heparin is associated, in part, with the solvolytic loss of N-sulfo groups. This study describes a new method to assess the increased content of unsubstituted amino groups present in thermally stressed and autoclave-sterilized heparin formulations. N-Acetylation of heparin samples with acetic anhydride-d6 is followed by exhaustive heparinase treatment and disaccharide analysis by hydrophilic interaction chromatography mass spectrometry (HILIC-MS). The introduction of a stable isotopic label provides a sensitive probe for the detection and localization of the lost N-sulfo groups, potentially providing valuable insights into the degradation mechanism and the reasons for anticoagulant potency loss.

  16. On the possibility of controlling the hydrophilic/hydrophobic characteristics of toroid Mo138 nanocluster polyoxometalates

    Science.gov (United States)

    Grzhegorzhevskii, K. V.; Adamova, L. V.; Eremina, E. V.; Ostroushko, A. A.

    2017-03-01

    The possibility of changing the hydrophilic (polar) surfaces of toroid nanocluster polyoxomolibdates to hydrophobic (nonpolar) surfaces via the modification of Mo138 nanoclusters by surfactant molecules (dodecylpyridinium chloride) as a result of the interaction between these compounds in solutions is demonstrated. Benzene and methanol are used as molecular probes (indicators of the condition of nanocluster surfaces). Comparative characteristics of the equilibrium sorption of benzene and methanol vapors on the initial and modified surfaces of the solid polyoxometalate, and data on the sorption of organic molecules on the surfaces of Rhodamine B-modified nanoclusters of the toroid (Mo138) and keplerate (Mo132) types are obtained.

  17. Desorption of water from hydrophilic MCM-41 mesopores: positron annihilation, FTIR and MD simulation studies

    Science.gov (United States)

    Maheshwari, Priya; Dutta, D.; Muthulakshmi, T.; Chakraborty, B.; Raje, N.; Pujari, P. K.

    2017-02-01

    The desorption mechanism of water from the hydrophilic mesopores of MCM-41 was studied using positron annihilation lifetime spectroscopy (PALS) and attenuated total reflection Fourier transform infrared spectroscopy supplemented with molecular dynamics (MD) simulation. PALS results indicated that water molecules do not undergo sequential evaporation in a simple layer-by-layer manner during desorption from MCM-41 mesopores. The results suggested that the water column inside the uniform cylindrical mesopore become stretched during desorption and induces cavitation (as seen in the case of ink-bottle type pores) inside it, keeping a dense water layer at the hydrophilic pore wall, as well as a water plug at both the open ends of the cylindrical pore, until the water was reduced to a certain volume fraction where the pore catastrophically empties. Before being emptied, the water molecules formed clusters inside the mesopores. The formation of molecular clusters below a certain level of hydration was corroborated by the MD simulation study. The results are discussed.

  18. Development of a passive, in situ, integrative sampler for hydrophilic organic contaminants in aquatic environments

    Science.gov (United States)

    Alvarez, D.A.; Petty, J.D.; Huckins, J.N.; Jones-Lepp, T. L.; Getting, D.T.; Goddard, J.P.; Manahan, S.E.

    2004-01-01

    Increasingly it is being realized that a holistic hazard assessment of complex environmental contaminant mixtures requires data on the concentrations of hydrophilic organic contaminants including new generation pesticides, pharmaceuticals, personal care products, and many chemicals associated with household, industrial, and agricultural wastes. To address this issue, we developed a passive in situ sampling device (the polar organic chemical integrative sampler [POCIS]) that integratively concentrates trace levels of complex mixtures of hydrophilic environmental contaminants, enables the determination of their time-weighted average water concentrations, and provides a method of estimating the potential exposure of aquatic organisms to the complex mixture of waterborne contaminants. Using a prototype sampler, linear uptake of selected herbicides and pharmaceuticals with log KowS < 4.0 was observed for up to 56 d. Estimation of the ambient water concentrations of chemicals of interest is achieved by using appropriate uptake models and determination of POCIS sampling rates for appropriate exposure conditions. Use of POCIS in field validation studies targeting the herbicide diuron in the United Kingdom resulted in the detection of the chemical at estimated concentrations of 190 to 600 ng/L. These values are in agreement with reported levels found in traditional grab samples taken concurrently.

  19. Hydrophilicity-controlled ordered mesoporous carbon for lithium-sulfur batteries.

    Science.gov (United States)

    Bae, Suyeon; Jin, Xing; Park, Gwi Ok; Kim, Ji Man

    2014-12-01

    Ordered mesoporous carbon (OMC) materials were synthesized from a mesoporous silica KIT-6 (3-D cubic la3d meso-structure) as the hard-template via a nano-replication method. Hydrophilic and hydrophobic OMC materials were prepared using different carbon precursors including sucrose (suc-OMC) and phenanthrene (phe-OMC) at different carbonization temperatures of 700 degrees C and 1100 degrees C, respectively. The OMC materials thus obtained exhibit high surface areas, uniform mesopore sizes and highly ordered meso-structure. To investigate the hydrophilicity effect of OMC materials on the performance of lithium-sulfur battery, we prepared the samples having different ratios of the suc-OMC to phe-OMC, which were 100:0, 75:25, 50:50, 25:75 and 0:100. As a result, the mixed OMC materials (with ratios of 75:25, 50:50 and 25:75) exhibited better cycle performances, compared to those of the suc-OMC and phe-OMC.

  20. Surfactant-assisted water exposed electrospinning of novel super hydrophilic polycaprolactone based fibers.

    Science.gov (United States)

    Zargarian, S Sh; Haddadi-Asl, V

    2016-05-17

    Hybrid scaffolds prepared by blend electrospinning of Polycaprolactone and Pluronic solution benefit from enhanced fiber hydrophilicity and may offer satisfactory cell attachment and proliferation. To improve hybrid scaffold wettability and water swelling ratio, adequate amount of hydrophilic polymer is required; though this amount is limited by fiber surface enrichment of Pluronic and cannot be exceeded without affecting the scaffold mechanical properties. To overcome this problem, a routine blend electrospinning setup was modified by exposing the blend solution to water in order to attract Pluronic chains toward the surface of the charged jet. Morphology of scaffolds produced by the routine blend electrospinning and modified method was studied. A 50 nm thick Pluronic layer with linty appearance on the surface of the fibers fabricated by the modified method was detected. Drug-loaded fibers from modified method showed a moderate initial burst and then a prolonged release period while an abnormal two-stage phased release profile was observed for the routine blend method. The latter was associated to Pluronic/drug accumulations within the fibers fabricated by the routine method which resulted in fiber disintegration and a subsequent second burst release.

  1. A new experimental design method to optimize formulations focusing on a lubricant for hydrophilic matrix tablets.

    Science.gov (United States)

    Choi, Du Hyung; Shin, Sangmun; Khoa Viet Truong, Nguyen; Jeong, Seong Hoon

    2012-09-01

    A robust experimental design method was developed with the well-established response surface methodology and time series modeling to facilitate the formulation development process with magnesium stearate incorporated into hydrophilic matrix tablets. Two directional analyses and a time-oriented model were utilized to optimize the experimental responses. Evaluations of tablet gelation and drug release were conducted with two factors x₁ and x₂: one was a formulation factor (the amount of magnesium stearate) and the other was a processing factor (mixing time), respectively. Moreover, different batch sizes (100 and 500 tablet batches) were also evaluated to investigate an effect of batch size. The selected input control factors were arranged in a mixture simplex lattice design with 13 experimental runs. The obtained optimal settings of magnesium stearate for gelation were 0.46 g, 2.76 min (mixing time) for a 100 tablet batch and 1.54 g, 6.51 min for a 500 tablet batch. The optimal settings for drug release were 0.33 g, 7.99 min for a 100 tablet batch and 1.54 g, 6.51 min for a 500 tablet batch. The exact ratio and mixing time of magnesium stearate could be formulated according to the resulting hydrophilic matrix tablet properties. The newly designed experimental method provided very useful information for characterizing significant factors and hence to obtain optimum formulations allowing for a systematic and reliable experimental design method.

  2. Inhibition of pulmonary surfactant adsorption by serum and the mechanisms of reversal by hydrophilic polymers: theory

    DEFF Research Database (Denmark)

    Zasadzinski, Joseph A; Alig, T F; Alonso, Coralie

    2005-01-01

    A theory based on the Smolukowski analysis of colloid stability shows that the presence of charged, surface-active serum proteins at the alveolar air-liquid interface can severely reduce or eliminate the adsorption of lung surfactant from the subphase to the interface, consistent with the observa......A theory based on the Smolukowski analysis of colloid stability shows that the presence of charged, surface-active serum proteins at the alveolar air-liquid interface can severely reduce or eliminate the adsorption of lung surfactant from the subphase to the interface, consistent...... with the observations reported in the companion article (pages 1769-1779). Adding nonadsorbing, hydrophilic polymers to the subphase provides a depletion attraction between the surfactant aggregates and the interface, which can overcome the steric and electrostatic resistance to adsorption induced by serum....... The depletion force increases with polymer concentration as well as with polymer molecular weight. Increasing the surfactant concentration has a much smaller effect than adding polymer, as is observed. Natural hydrophilic polymers, like the SP-A present in native surfactant, or hyaluronan, normally present...

  3. Hydrophilic/hydrophobic film patterning by photodegradation of self-assembled alkylsilane multilayers and its applications.

    Science.gov (United States)

    Ni, Lingli; Dietlin, Céline; Chemtob, Abraham; Croutxé-Barghorn, Céline; Brendlé, Jocelyne

    2014-08-26

    While the photopatterning of self-assembled monolayers (SAMs) has been extensively investigated, much less attention has been given to highly ordered multilayer systems. By being both thicker (0.5-2 μm) and more stable (cross-linked) than SAMs, patterned hybrid multilayers lend themselves more easily to the development of technology-relevant materials and characterization. This paper describes a facile two-step UV approach to patterning an alkylsilane multilayer by combining photoinduced self-assembly for multilayer synthesis and photodegradation through a mask for creating patterns within the film. In this second stage, a spatially resolved removal of the alkyl tail via a photooxidation mechanism took place, yielding regular and uniform silica microdomains. The result was a regular array of features (alkylsiloxane/silica) differing in chemical composition (hybrid/inorganic), ordering (crystal-like/disordered), and wettability (hydrophobic/hydrophilic). Such a photopatterned film was of utility for a range of applications in which water droplets, inorganic crystals, or aqueous polymer dispersions were selectively deposited in the hydrophilic silica microwells.

  4. Effect of poly-L-arginine on intestinal absorption of hydrophilic macromolecules in rats.

    Science.gov (United States)

    Yamaki, Tsutomu; Uchida, Masaki; Kuwahara, Yusuke; Shimazaki, Yohei; Ohtake, Kazuo; Kimura, Mitsutoshi; Uchida, Hiroyuki; Kobayashi, Jun; Ogihara, Masahiko; Morimoto, Yasunori; Natsume, Hideshi

    2013-01-01

    We have already reported that poly-L-arginine (PLA) remarkably enhanced the in vivo nasal absorption of hydrophilic macromolecules without producing any significant epithelial damage in rats. In the present study, we examined whether PLA could enhance the absorption of a model hydrophilic macromolecule, fluorescein isothiocyanate-dextran (FD-4), across the intestinal mucosa, as well as the nasal mucosa, by an in situ closed-loop method using the rat intestine. PLA was found to enhance the intestinal absorption of FD-4 in a concentration-dependent manner within the concentrations investigated in this study, but segment-specific differences were found to be associated with this effect (ileum>jejunum>duodenum≧colon). The factors responsible for the segment-specific differences were also investigated by intestinal absorption studies using aprotinin, a trypsin inhibitor, and an analysis of the expression of occludin, a tight junction protein. In the small intestine, the differences in the effect of PLA on the absorption of FD-4 may be related to the enzymatic degradation of PLA. In the colon, the reduced effect of PLA on the absorption of FD-4 may be related to the smaller surface area for absorption and the higher expression of occludin compared with other segments.

  5. Co-delivery of a hydrophobic small molecule and a hydrophilic peptide by porous silicon nanoparticles.

    Science.gov (United States)

    Liu, Dongfei; Bimbo, Luis M; Mäkilä, Ermei; Villanova, Francesca; Kaasalainen, Martti; Herranz-Blanco, Barbara; Caramella, Carla M; Lehto, Vesa-Pekka; Salonen, Jarno; Herzig, Karl-Heinz; Hirvonen, Jouni; Santos, Hélder A

    2013-09-10

    Nanoparticulate drug delivery systems offer remarkable opportunities for clinical treatment. However, there are several challenges when they are employed to deliver multiple cargos/payloads, particularly concerning the synchronous delivery of small molecular weight drugs and relatively larger peptides. Since porous silicon (PSi) nanoparticles (NPs) can easily contain high payloads of drugs with various properties, we evaluated their carrier potential in multi-drug delivery for co-loading of the hydrophobic drug indomethacin and the hydrophilic human peptide YY3-36 (PYY3-36). Sequential loading of these two drugs into the PSi NPs enhanced the drug release rate of each drug and also their amount permeated across Caco-2 and Caco-2/HT29 cell monolayers. Regardless of the loading approach used, dual or single, the drug permeation profiles were in good correlation with their drug release behaviour. Furthermore, the permeation studies indicated the critical role of the mucus intestinal layer and the paracellular resistance in the permeation of the therapeutic compounds across the intestinal wall. Loading with PYY3-36 also greatly improved the cytocompatibility of the PSi NPs. Conformational analysis indicated that the PYY3-36 could still display biological activity after release from the PSi NPs and permeation across the intestinal cell monolayers. These results are the first demonstration of the promising potential of PSi NPs for simultaneous multi-drug delivery of both hydrophobic and hydrophilic compounds.

  6. Modification of bone graft by blending with lecithin to improve hydrophilicity and biocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y; Cui, F Z; Jiao, Y P; Hu, K [Biomaterials Laboratory, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Fan, D D [Department of Chemical Engineering, Northwest University, Xi' an 710069 (China)], E-mail: cuifz@mail.tsinghua.edu.cn

    2008-03-01

    Lecithin was blended to improve the hydrophilicity and biocompatibility of bone graft containing poly(l-lactic acid) (PLLA). Solution blending and freeze drying were used to fabricate symmetrical scaffolds containing different percentages of lecithin (lecithin: PLLA = 0, 5, 10 wt%). Scanning electron microscopy showed that the scaffolds maintained the three-dimensional porous structure. A water uptake experiment proved the significant improvement of hydrophilicity of the blend scaffold. With the addition of lecithin, the compressive strength and compressive modulus decreased. When the weight ratio of lecithin to PLLA was up to 10%, the compressive strength was still more than the lower limit of natural cancellous bone. To test the biocompatibility of the scaffolds, cell culture in vitro and subcutaneous implantation in vivo were performed. MC3T3-E1 preosteoblastic cells were cultured on the scaffolds for 7 days. Methylthiazol tetrazolium assay and laser scanning confocal microscopy were used to exhibit proliferation and morphology of the cells. The subcutaneous implantation in rats tested inflammatory response to the scaffolds. The results proved the better biocompatibility and milder inflammatory reactions of the blend scaffold (lecithin: PLLA = 5%) compared with the scaffold without lecithin. The modified scaffold containing lecithin is promising for bone tissue engineering.

  7. Enhancing hydrophilicity and water permeability of PET track-etched membranes by advanced oxidation process

    Science.gov (United States)

    Korolkov, Ilya V.; Mashentseva, Anastassiya A.; Güven, Olgun; Zdorovets, Maxim V.; Taltenov, Abzal A.

    2015-12-01

    In this study we present results on the application of advanced oxidation systems for effective and non-toxic oxidation of poly(ethylene terephthalate) track-etched membranes (PET TeMs) to improve their wettability and water transport properties. Two oxidizing systems: H2O2 under UV irradiation (H2O2/UV) and Fenton system under visible light (Fenton/H2O2/Vis) were compared. The surface of functionalized PET TeMs was characterized by using colorimetric assay, contact angle measurements and X-ray photoelectron spectroscopy (XPS). Results clearly showed that water permeability of PET TeMs treated with H2O2/UV was improved by 28 ± 5% compared with etched-only membrane, the same parameter was found to increase by 13 ± 4% in the case of Fenton/H2O2/Vis treatment. The proposed oxidation technique is very simple, environment friendly and not requiring special equipment or expensive chemicals. The surface hydrophilicity of the membranes stored for 360 days in air between paper sheets was analyzed by contact angle test, colorimetric assay to measure concentration of carboxylic groups on the surface with toluidine blue and XPS analysis. The hydrophilic properties of oxidized PET TeMs were found to be stable for a long period of time.

  8. Change of trace elements content in sewage water under the influence of hydrophilic macrophytes

    Science.gov (United States)

    Akhmed-Ogly, K. V.; Savichev, O. G.

    2014-08-01

    According to the researches carried out by authors in 2013, the estimate of the effectiveness of domestic sewage treatment with the help of hydrophilic vegetation was received. It has been shown that if sewage is treated with the help of macrophytes, copper and lead concentration reduces. Thus, if the volume of sewage treated by reed mace is 500 ml and 1 l, lead concentration decreases 5 and 3,5 times, if sewage is treated by reed, lead concentration decreases 2,5 times in both cases; if sewage is treated by reed mace copper concentration decreases 0,9 and 1,8 times (if the volume of sewage is 500 ml and 1 l), if sewage is treated by reed, copper concentration decreases 1,4 and 1,5 times respectively. The conclusion has been drawn: in West Siberia it is possible to use the shallow reservoirs with natural aeration and hydrophilic vegetation for effective sewage treatment from such heavy metals as lead and copper.

  9. Chapter 8 Tool for monitoring hydrophilic contaminants in water: polar organic chemical integrative sampler (POCIS)

    Science.gov (United States)

    Alvarez, David A.; Huckins, James N.; Petty, Jimmie D.; Jones-Lepp, Tammy L.; Stuer-Lauridsen, Frank; Getting, Dominic T.; Goddard, Jon P.; Gravell, Anthony

    2007-01-01

    The development of the polar organic chemical integrative sampler (POCIS) provides environmental scientists and policy makers a tool for assessing the presence and potential impacts of the hydrophilic component of these organic contaminants. The POCIS provides a means for determining the time-weighted average (TWA) concentrations of targeted chemicals that can be used in risk assessments to determine the biological impact of hydrophilic organic compounds (HpOCs) on the health of the impacted ecosystem. Field studies have shown that the POCIS has advantages over traditional sampling methods in sequestering and concentrating ultra-trace to trace levels of chemicals over time resulting in increased method sensitivity, ability to detect chemicals with a relatively short residence time or variable concentrations in the water, and simplicity in use. POCIS extracts can be tested using bioassays and can be used in organism dosing experiments for determining toxicological significance of the complex mixture of chemicals sampled. The POCIS has been successfully used worldwide under various field conditions ranging from stagnant ponds to shallow creeks to major river systems in both fresh and brackish water.

  10. Hydrophilic Acrylic Intraocular Lens Opacification after Descemet Stripping Automated Endothelial Keratoplasty

    Science.gov (United States)

    Norouzpour, Amir; Zarei-Ghanavati, Siamak

    2016-01-01

    Purpose: To report hydrophilic acylic intraocular lens (IOL) opacification after Descemet Stripping Automated Endothelial Keratoplasty (DSAEK) in an eye with multiple prior intraocular surgeries and iatrogenic aniridia. Case Report: A 34-year-old woman with history of penetrating keratoplasty (PKP) for advanced keratoconus and subsequent Urrets-Zavalia Syndrome (UZS) underwent phacoemulsification and hydrophilic acrylic IOL implantation for her cataract. In order to control post-PKP glaucoma, multiple glaucoma surgeries including two glaucoma drainage implants were performed. As the original corneal graft failed, the patient subsequently underwent re-PKP. Four years later, she underwent DSAEK for treatment of the second graft failure. Ten months after DSAEK, a double semi-circular pattern of IOL opacification was observed on the anterior surface of the IOL. The patient did not report any complaints and we decided not to exchange the IOL. Conclusion: In an eye with UZS and iatrogenic aniridia, IOL opacification may result from direct contact between the IOL surface and exogenous air. Aniridia can be a risk factor for development of IOL opacification after DSAEK. Further studies are required to confirm this hypothesis. PMID:27413506

  11. Hydrophilic nanofibers as new supports for thin film composite membranes for engineered osmosis.

    Science.gov (United States)

    Bui, Nhu-Ngoc; McCutcheon, Jeffrey R

    2013-02-05

    Engineered osmosis (e.g., forward osmosis, pressure-retarded osmosis, direct osmosis) has emerged as a new platform for applications to water production, sustainable energy, and resource recovery. The lack of an adequately designed membrane has been the major challenge that hinders engineered osmosis (EO) development. In this study, nanotechnology has been integrated with membrane science to build a next generation membrane for engineered osmosis. Specifically, hydrophilic nanofiber, fabricated from different blends of polyacrylonitrile and cellulose acetate via electrospinning, was found to be an effective support for EO thin film composite membranes due to its intrinsically wetted open pore structure with superior interconnectivity. The resulting composite membrane exhibits excellent permselectivity while also showing a reduced resistance to mass transfer that commonly impacts EO processes due to its thin, highly porous nanofiber support layer. Our best membrane exhibited a two to three times enhanced water flux and 90% reduction in salt passage when compared to a standard commercial FO membrane. Furthermore, our membrane exhibited one of the lowest structural parameters reported in the open literature. These results indicate that hydrophilic nanofiber supported thin film composite membranes have the potential to be a next generation membrane for engineered osmosis.

  12. Assessing interactions of hydrophilic nanoscale TiO{sub 2} with soil water

    Energy Technology Data Exchange (ETDEWEB)

    Priester, John H.; Ge, Yuan; Chang, Vivian [University of California, Santa Barbara, Bren School of Environmental Science and Management (United States); Stoimenov, Peter K. [University of California, Santa Barbara, Department of Chemistry and Biochemistry (United States); Schimel, Joshua P. [University of California, Santa Barbara, Earth Research Institute (United States); Stucky, Galen D. [University of California, Santa Barbara, UC Center for the Environmental Implications of Nanotechnology (United States); Holden, Patricia A., E-mail: holden@bren.ucsb.edu [University of California, Santa Barbara, Bren School of Environmental Science and Management (United States)

    2013-09-15

    The implications of manufactured nanoscale materials (MNMs) in unsaturated soil are mostly unknown. Owing to its widespread use, nanoscale (n) TiO{sub 2} is expected to enter soils where its accumulation could impact soil processes. Yet fundamental information is lacking regarding nTiO{sub 2} in situ wettability, i.e., interactions with soil water that relate to nTiO{sub 2} exposure and bioavailability. To probe nTiO{sub 2} interactions with soil water, we amended a natural soil with 20 mg per g of P25 nTiO{sub 2}, a high-production, hydrophilic MNM that, based on its small size (25 nm nominal), provides ample specific surface area (SSA) for water sorption. We then measured nTiO{sub 2}-amended soil SSA, and conducted a dynamic water vapor conditioning experiment. Early time-course water sorption into soil, with and without nTiO{sub 2}, was clearly diffusional. Over 9 months, soil water content asymptotically equilibrated. However, despite amending with nTiO{sub 2} levels that increased the soil SSA by 16 %, measured water sorption rates and endpoint soil water contents were mostly unchanged by P25 nTiO{sub 2}. Our results indicate that as-manufactured hydrophilic P25 nTiO{sub 2} was hydrophobic in soil, a finding relevant to nTiO{sub 2} bioavailability and transport.

  13. Enhancing hydrophilicity and water permeability of PET track-etched membranes by advanced oxidation process

    Energy Technology Data Exchange (ETDEWEB)

    Korolkov, Ilya V.; Mashentseva, Anastassiya A. [Institute of Nuclear Physics, Ibrahimov Str., 1, 050032 Almaty (Kazakhstan); The L.N. Gumilyov Eurasian National University, Satpaev Str., 5, 010008 Astana (Kazakhstan); Güven, Olgun [Department of Chemistry, Hacettepe University, 06800 Beytepe, Ankara (Turkey); Zdorovets, Maxim V. [Institute of Nuclear Physics, Ibrahimov Str., 1, 050032 Almaty (Kazakhstan); The L.N. Gumilyov Eurasian National University, Satpaev Str., 5, 010008 Astana (Kazakhstan); Taltenov, Abzal A. [The L.N. Gumilyov Eurasian National University, Satpaev Str., 5, 010008 Astana (Kazakhstan)

    2015-12-15

    In this study we present results on the application of advanced oxidation systems for effective and non-toxic oxidation of poly(ethylene terephthalate) track-etched membranes (PET TeMs) to improve their wettability and water transport properties. Two oxidizing systems: H{sub 2}O{sub 2} under UV irradiation (H{sub 2}O{sub 2}/UV) and Fenton system under visible light (Fenton/H{sub 2}O{sub 2}/Vis) were compared. The surface of functionalized PET TeMs was characterized by using colorimetric assay, contact angle measurements and X-ray photoelectron spectroscopy (XPS). Results clearly showed that water permeability of PET TeMs treated with H{sub 2}O{sub 2}/UV was improved by 28 ± 5% compared with etched-only membrane, the same parameter was found to increase by 13 ± 4% in the case of Fenton/H{sub 2}O{sub 2}/Vis treatment. The proposed oxidation technique is very simple, environment friendly and not requiring special equipment or expensive chemicals. The surface hydrophilicity of the membranes stored for 360 days in air between paper sheets was analyzed by contact angle test, colorimetric assay to measure concentration of carboxylic groups on the surface with toluidine blue and XPS analysis. The hydrophilic properties of oxidized PET TeMs were found to be stable for a long period of time.

  14. Cefdinir Solid Dispersion Composed of Hydrophilic Polymers with Enhanced Solubility, Dissolution, and Bioavailability in Rats

    Directory of Open Access Journals (Sweden)

    Hyun-Jong Cho

    2017-02-01

    Full Text Available The aim of this work was to develop cefdinir solid dispersions (CSDs prepared using hydrophilic polymers with enhanced dissolution/solubility and in vivo oral bioavailability. CSDs were prepared with hydrophilic polymers such as hydroxypropyl-methylcellulose (HPMC; CSD1, carboxymethylcellulose-Na (CMC-Na; CSD2, polyvinyl pyrrolidone K30 (PVP K30; CSD3 at the weight ratio of 1:1 (drug:polymer using a spray-drying method. The prepared CSDs were characterized by aqueous solubility, differential scanning calorimetry (DSC, powder X-ray diffraction (p-XRD, scanning electron microscopy (SEM, aqueous viscosity, and dissolution test in various media. The oral bioavailability of CSDs was also evaluated in rats and compared with cefdinir powder suspension. The cefdinir in CSDs was amorphous form, as confirmed in the DSC and p-XRD measurements. The developed CSDs commonly resulted in about 9.0-fold higher solubility of cefdinir and a significantly improved dissolution profile in water and at pH 1.2, compared with cefdinir crystalline powder. Importantly, the in vivo oral absorption (represented as AUCinf was markedly increased by 4.30-, 6.77- and 3.01-fold for CSD1, CSD2, and CSD3, respectively, compared with cefdinir suspension in rats. The CSD2 prepared with CMC-Na would provide a promising vehicle to enhance dissolution and bioavailability of cefdinir in vivo.

  15. Enhancement of Mechanical and Thermal Properties of Polylactic Acid/Polycaprolactone Blends by Hydrophilic Nanoclay

    Directory of Open Access Journals (Sweden)

    Chern Chiet Eng

    2013-01-01

    Full Text Available The effects of hydrophilic nanoclay, Nanomer PGV, on mechanical properties of Polylactic Acid (PLA/Polycaprolactone (PCL blends were investigated and compared with hydrophobic clay, Montmorillonite K10. The PLA/PCL/clay composites were prepared by melt intercalation technique and the composites were characterized by X-ray Diffraction (XRD, Fourier Transform Infrared Spectroscopy (FTIR, Thermogravimetric Analysis (TGA, Dynamic Mechanical Analysis (DMA, Scanning Electron Microscopy (SEM, and Transmission Electron Microscopy (TEM. FTIR spectra indicated that formation of hydrogen bond between hydrophilic clay with the matrix. XRD results show that shifting of basal spacing when clay incorporated into polymer matrix. TEM micrographs reveal the formation of agglomerate in the composites. Based on mechanical properties results, addition of clay Nanomer PGV significantly enhances the flexibility of PLA/PCL blends about 136.26%. TGA showed that the presence of clay improve thermal stability of blends. DMA show the addition of clay increase storage modulus and the presence of clay Nanomer PGV slightly shift two Tg of blends become closer suggest that the presence of clay slightly compatibilizer the PLA/PCL blends. SEM micrographs revealed that presence of Nanomer PGV in blends influence the miscibility of the blends. The PLA/PCL blends become more homogeneous and consist of single phase morphology.

  16. Hydraulic transport across hydrophilic and hydrophobic nanopores: Flow experiments with water and n-hexane.

    Science.gov (United States)

    Gruener, Simon; Wallacher, Dirk; Greulich, Stefanie; Busch, Mark; Huber, Patrick

    2016-01-01

    We experimentally explore pressure-driven flow of water and n-hexane across nanoporous silica (Vycor glass monoliths with 7- or 10-nm pore diameters, respectively) as a function of temperature and surface functionalization (native and silanized glass surfaces). Hydraulic flow rates are measured by applying hydrostatic pressures via inert gases (argon and helium, pressurized up to 70 bar) on the upstream side in a capacitor-based membrane permeability setup. For the native, hydrophilic silica walls, the measured hydraulic permeabilities can be quantitatively accounted for by bulk fluidity provided we assume a sticking boundary layer, i.e., a negative velocity slip length of molecular dimensions. The thickness of this boundary layer is discussed with regard to previous capillarity-driven flow experiments (spontaneous imbibition) and with regard to velocity slippage at the pore walls resulting from dissolved gas. Water flow across the silanized, hydrophobic nanopores is blocked up to a hydrostatic pressure of at least 70 bar. The absence of a sticking boundary layer quantitatively accounts for an enhanced n-hexane permeability in the hydrophobic compared to the hydrophilic nanopores.

  17. Hydrophilic and photocatalytic performances of lanthanum doped titanium dioxide thin films

    Institute of Scientific and Technical Information of China (English)

    杜军; 李不悔; 黄晶晶; 张文龙; 彭海龙; 邹建国

    2013-01-01

    Pure and La-doped TiO2 thin films were prepared on glass by sol-gel method using tetrabutyl titanate as Ti precursors. Their chemical composition, structure and properties were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), UV-Visible spectrophotometer and optical contact angle measuring instrument, respectively. The results showed that the content of La was the key factor for hydrophilic and photocatalytic activity. LaTiO3 could be formed in La-doped TiO2 thin films, which caused the TiO2 lattice distortion and restrained the transition from anatase to rutile. By adding 0.3 wt.%La to the TiO2 thin films, the optimal hydrophilic character could be obtained and the contact angle was only 9.6º. La-doped TiO2 thin films could ex-pand the wavelength response range of TiO2, and thus increase the speed of the photocatalytic reaction. 92.02%of methylene blue was finally degraded when the concentration of La was 0.3 wt.%. The expressions of ln(CA0/CA) as functions of photocatalytic time were deduced which were well consistent with the experimental results.

  18. CFD analysis of Newtonian and non-Newtonian droplets impinging on heated hydrophilic and hydrophobic surfaces

    Science.gov (United States)

    Khojasteh, Danial; Mousavi, Seyed Mahmood; Kamali, Reza

    2016-11-01

    In the present study, the behaviors of Newtonian and shear-thinning non-Newtonian droplets impinging on heated hydrophilic and hydrophobic surfaces have been investigated numerically using Ansys-Fluent. In this context, the volume-of-fluid technique is applied to track the free-surface of the liquid, and variable time-step is also utilized to control the Courant number. Furthermore, we have considered the dependence of viscosity, density and surface tension on temperature during the simulation. The results are compared to available experimental data at the same conditions, such as boundary conditions. The results demonstrate that there is a good agreement between the obtained results and the experimental trends, concerning normalized diameter profiles at various Weber numbers. Therefore, the focus of the present study is an assessment of the effects of variations in Weber number, contact angle and surface temperature for Newtonian and non-Newtonian liquids on dynamics behavior of droplet in collision with hydrophobic and hydrophilic surfaces. The results represent that the behaviors of Newtonian and non-Newtonian droplets are totally different, indicating the droplet sensitivity to the working parameters.

  19. Influence of Different Polymer Types on the Overall Release Mechanism in Hydrophilic Matrix Tablets

    Directory of Open Access Journals (Sweden)

    Bengt Wittgren

    2009-07-01

    Full Text Available The effect of three different types of polymer chain structures on the polymer release from hydrophilic matrix tablets was investigated by comparing a synthetic semi-crystalline linear polymer (PEO, a branched amorphous polysaccharide (dextran and an amorphous substituted cellulose derivative (HPMC. The polymer release rates for tablets containing mixtures of high and low molecular weight grades in different ratios were determined by using a modified USP II method and a SEC-RI chromatography system. The results showed that independent of polymer type: (i plots of the release versus time had similar shapes, (ii the release of long and short polymer chains was equal and no fractionation occurred during the release and (iii the release rate could be related to the average intrinsic viscosity of the polymer mixtures. This confirms the hypothesis that the release rate can be related to a constant viscosity on the surface of the hydrophilic matrix tablet and that it is valid for all the investigated polymers.

  20. Preparation of hydrophilic vinyl chloride copolymer hollow fiber membranes with antifouling properties

    Science.gov (United States)

    Rajabzadeh, Saeid; Sano, Rie; Ishigami, Toru; Kakihana, Yuriko; Ohmukai, Yoshikage; Matsuyama, Hideto

    2015-01-01

    Hydrophilic vinyl chloride copolymer hollow fiber membranes with antifouling properties were prepared from brominated vinyl chloride-hydroxyethyl methacrylate copolymer (poly(VC-co-HEMA-Br)). The base membrane was grafted with two different zwitterionic monomers, (2-methacryloyloxyethylphosphorylcholine) (MPC) and [2-(methacryloyloxy) ethyl] dimethyl (3-sulfopropyl) ammonium hydroxide) (MEDSAH), and poly(ethylene glycol) methyl ether methacrylate (PEGMA). The effect of the grafting on the base membrane hydrophilicity and antifouling properties was investigated. For comparison of the results, the pure water permeabilities and pore sizes at the outer surfaces of the grafted hollow fiber membranes were controlled to be similar. A poly(VC-co-HEMA-Br) hollow fiber membrane with similar pure water permeability and pore size was also prepared as a control membrane. A BSA solution was used as a model fouling solution for evaluation of the antifouling properties. Grafting with zwitterionic monomers and PEGMA improved the antifouling properties compared with the control membrane. The PEGMA grafted membrane showed the best antifouling properties among the grafted membranes

  1. Use of Hydrophilic Insoluble Polymers in the Restoration of Metal-Contaminated Soils

    Directory of Open Access Journals (Sweden)

    Guiwei Qu

    2009-01-01

    Full Text Available To develop cost-effective techniques that contribute to phytostabilization of severely metal-contaminated soils is a necessary task in environmental research. Hydrophilic insoluble polymers have been used for some time in diapers and other hygienic products and to increase the water-holding capacity of coarse-textured soils. These polymers contain groups, such as carboxyl groups, that are capable of forming bonds with metallic cations, thereby decreasing their bioavailability in soils. The use of polyacrylate polymers as soil amendments to restore metal-contaminated soils has been investigated in the Technical University of Lisbon since the late nineties. Plant growth and plant nutrients concentrations, extractable levels of metals in soil, and soil enzyme activities were used to monitor the improvement in soil quality following the application of these polymers. In contaminated soils, hydrophilic insoluble polymers can create microcosms that are rich in water and nutrients (counterions but only contain small concentrations of toxic elements; the conditions of these microenvironments are favorable to roots and microorganisms. In this paper we described the most relevant information available about this topic.

  2. From hydration repulsion to dry adhesion between asymmetric hydrophilic and hydrophobic surfaces.

    Science.gov (United States)

    Kanduč, Matej; Netz, Roland R

    2015-10-01

    Using all-atom molecular dynamics (MD) simulations at constant water chemical potential in combination with basic theoretical arguments, we study hydration-induced interactions between two overall charge-neutral yet polar planar surfaces with different wetting properties. Whether the water film between the two surfaces becomes unstable below a threshold separation and cavitation gives rise to long-range attraction, depends on the sum of the two individual surface contact angles. Consequently, cavitation-induced attraction also occurs for a mildly hydrophilic surface interacting with a very hydrophobic surface. If both surfaces are very hydrophilic, hydration repulsion dominates at small separations and direct attractive force contribution can-if strong enough-give rise to wet adhesion in this case. In between the regimes of cavitation-induced attraction and hydration repulsion we find a narrow range of contact angle combinations where the surfaces adhere at contact in the absence of cavitation. This dry adhesion regime is driven by direct surface-surface interactions. We derive simple laws for the cavitation transition as well as for the transition between hydration repulsion and dry adhesion, which favorably compare with simulation results in a generic adhesion state diagram as a function of the two surface contact angles.

  3. Development of hydrophilic GO-ZnO/PES membranes for treatment of pharmaceutical wastewater.

    Science.gov (United States)

    Mahlangu, O T; Nackaerts, R; Mamba, B B; Verliefde, A R D

    2017-07-01

    Membrane application in water reclamation is challenged by fouling which deteriorates membrane performance in terms of permeate flux and solute rejection. Several studies focusing on antifouling membranes incorporated with nanoparticles have been carried out, but these membranes are not yet a viable solution due to their high energy requirements and inability to completely remove or degrade trace organic compounds (TOrCs). Therefore, this study aims at fabricating polyethersulfone (PES) membranes for treatment of pharmaceutical wastewater by using a unique membrane synthesis approach. PES membranes were synthesised by casting two different solutions before coagulation. Therefore, the synthesis technique was called 'double-casting phase inversion'. The membranes were impregnated with nanohybrid graphene oxide-zinc oxide (GO-ZnO) to increase their hydrophilicity, rejection of pharmaceuticals (by decreasing membrane-solute hydrophobic interactions), resistance to organic fouling and photodegradation properties. The addition of GO-ZnO increased membrane hydrophilicity and pure water permeability. The rejection of TOrCs and anti-fouling properties were also improved due to a reduction in membrane-solute and membrane-foulant hydrophobic interactions, respectively. In addition to improved TOrC rejection properties and resistance to fouling, GO-ZnO/PES membranes degraded Brilliant Black.

  4. Hydrophilic modification of polyethersulfone porous membranes via a thermal-induced surface crosslinking approach

    Science.gov (United States)

    Mu, Li-Jun; Zhao, Wen-Zhen

    2009-05-01

    A thermal-induced surface crosslinking process was employed to perform a hydrophilic surface modification of PES porous membranes. Difunctional poly(ethylene glycol) diacrylate (PEGDA) was used as the main crosslinking modifier. The addition of trifunctional trimethylolpropane trimethylacrylate (TMPTMA) into the reaction solutions accelerated the crosslinking progress of PEGDA on PES membranes. The membrane surface morphology and chemical composition were characterized by scanning electron microscopy (SEM) and FTIR-ATR spectroscopy. The mass gains (MG) of the modified membranes could be conveniently modulated by varying the PEGDA concentration and crosslinking time. The measurements of water contact angle showed that the hydrophilicity of PES membranes was remarkably enhanced by the coating of crosslinked PEGDA layer. When a moderate mass gain of about 150 μg/cm 2 was reached, both the permeability and anti-fouling ability of PES membranes could be significantly improved. Excessive mass gain not only contributed little to the anti-fouling ability, but also brought a deteriorated permeability to PES membranes.

  5. Experimental study on effect of surface vibration on micro textured surfaces with hydrophobic and hydrophilic materials

    Science.gov (United States)

    Yao, Chun-Wei; Lai, Chen-Ling; Alvarado, Jorge L.; Zhou, Jiang; Aung, Kendrick T.; Mejia, Jose E.

    2017-08-01

    Artificial hydrophobic surfaces have been studied in the last ten years in an effort to understand the effects of structured micro- and nano-scale features on droplet motion and self-cleaning mechanisms. Among these structured surfaces, micro-textured surfaces consisting of a combination of hydrophilic and hydrophobic materials have been designed, fabricated and characterized to understand how surface properties and morphology affect enhanced self-cleaning mechanisms. However, use of micro textured surfaces leads to a strong pinning effect that takes place between the droplets and the hydrophobic-hydrophilic edge, leading to a significant contact angle hysteresis effect. This research study focuses on the effects of surface vibrations on droplet shedding at different inclined angles on micro-textured surfaces. Surface vibration and shedding processes were experimentally characterized using a high speed imaging system. Experimental results show that droplets under the influence of surface vibration depict different contour morphologies when vibrating at different resonance frequencies. Moreover, droplet sliding angles can be reduced through surface vibration when the proper combination of droplet size and surface morphology is prescribed.

  6. Evaluation of the Efficacy of Highly Hydrophilic Polyurethane Foam Dressing in Treating a Diabetic Foot Ulcer.

    Science.gov (United States)

    Jung, Jae-A; Yoo, Ki-Hyun; Han, Seung-Kyu; Dhong, Eun-Sang; Kim, Woo-Kyung

    2016-12-01

    To demonstrate the efficacy of a highly hydrophilic polyurethane foam dressing in the treatment of diabetic ulcers. Diabetic foot ulcers often pose a difficult treatment problem. Polyurethane foam dressings have been used worldwide to accelerate wound healing, but only a few clinical studies demonstrate the effect of foam dressing on the healing of diabetic ulcers. Medical records of 1342 patients with diabetic ulcers who were admitted and treated at the authors' institution were reviewed. A total of 208 patients met the study's inclusion criteria. Of these 208 patients, 137 were treated with a highly hydrophilic polyurethane foam dressing, and 71 were treated with saline gauze (control group). Except for the application of polyurethane foam dressing, the treatment method was identical for patients in both groups. The wound healing outcomes of the 2 groups were compared. Complete wound healing occurred in 87 patients (63.5%) in the polyurethane foam dressing group and in 28 patients (39.4%) in the control group within 12 weeks (P polyurethane foam dressing and control groups, respectively (P polyurethane foam dressing may provide an effective treatment strategy for diabetic foot ulcers.

  7. Structure Prediction Based on Hydrophobic to Hydrophilic Volume Ratios in Small Molecule Amphiphilic Organic Crystals

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The structure type for the crystal of 4,4'-bis-(2-hydroxy-ethoxyl)-biphenyl 1 has been predicted by using the previously developed interfacial model for small organic molecules. Based on the calculated hydrophobic to hydrophilic volume of 1, this model predicts the crystal structure to be of lamellar or bicontinuous type, which has been confirmed by the X-ray single-crystal structure analysis (C20H26O6, monoclinic, P21/c, a = 16.084(1), b = 6.0103(4), c = 9.6410(7)(A), β = 103.014(2)°, V = 908.1(1)(A)3, Z = 2, Dc = 1.325 g/cm3, F(000)=388, μ = 0.097 mm-1, MoKα radiation, λ = 0.71073 (A), R = 0.0382 and wR = 0.0882 with I > 2σ(I) for 7121 reflections collected, 1852 unique reflections and 170 parameters). As predicted, the hydrophobic and hydrophilic portions of 1 form in the lamellae. The same interfacial model is applied to other amphilphilic small molecule organic systems for structural type prediction.

  8. Comparative study of lipophilic and hydrophilic antioxidants from in vivo and in vitro grown Coriandrum sativum.

    Science.gov (United States)

    Dias, Maria Inês; Barros, Lillian; Sousa, Maria João; Ferreira, Isabel C F R

    2011-06-01

    Coriander is commonly used for medicinal purposes, food applications, cosmetics and perfumes. Herein, the production of antioxidants in vegetative parts (leaves and stems) of in vivo and in vitro grown samples was compared. In vitro samples were clone A- with notorious purple pigmentation in stems and leaves and clone B- green. Seeds were also studied as they are used to obtain in vivo and in vitro vegetative parts. Lipophilic (tocopherols, carotenoids and chlorophylls) and hydrophilic (sugars, ascorbic acid, phenolics, flavonols and anthocyanins) compounds were quantified. The antioxidant activity was evaluated by radical scavenging activity, reducing power and lipid peroxidation inhibition. The in vivo sample showed the highest antioxidant activity mainly due to its highest levels of hydrophilic compounds. Otherwise, in vitro samples, mainly clone A, gave the highest concentration in lipophilic compounds but a different profile when compared to the in vivo sample. Clones A and B revealed a lack of β-carotene, β- and δ-tocopherols, a decrease in α-tocopherol, and an increase in γ-tocopherol and clorophylls in comparison to the in vivo sample. In vitro culture might be useful to explore the plants potentialities for industrial applications, controlling environmental conditions to produce higher amounts of some bioactive products.

  9. Sorption of nano-C60 clusters in soil: hydrophilic or hydrophobic interactions?

    Science.gov (United States)

    Forouzangohar, Mohsen; Kookana, Rai S

    2011-05-01

    We studied the sorption behaviour of fullerene nano-C(60) particles (nC(60)) in soil from binary solvent mixtures of ethanol-water in order to critically evaluate the previous reports in the literature that the partitioning mechanism explains the soil sorption of fullerene C(60) as hydrophobic molecules. The sorption of nC(60) particles was studied in a range of solvent mixtures by changing volume fractions of ethanol from 20 to 100 percent. Sorption and particle characteristics were found to be very different in ethanol : water mixtures above and below 60% ethanol. In the range of 20-60% ethanol, sorption increased from 1.2 to 14.6 L kg(-1) accompanied by a change in zeta (ζ) potential from -32.4 to -7.2 mV. This observation can be attributed to hydrophilic interactions that negatively charged nC(60) particles undergo with soil colloids and water molecules. From 60% to 100% ethanol volume fractions, hydrophobic interactions of weakly charged nanoparticles may control the overall extent of soil sorption. The findings of this study indicate the importance of hydrophilic forces in controlling the sorption behaviour of nC(60) particles which are stabilized in water dominated solvent mixtures. The validity of the partitioning mechanism and K(OC) modelling approach in describing and estimating the sorption of nC(60) particles in soil (previously suggested in the literature) are, therefore, questioned.

  10. Cooperative hydrophobic/hydrophilic interactions in the hydration of dimethyl ether.

    Science.gov (United States)

    Utiramerur, S; Paulaitis, M E

    2010-04-21

    Cooperative interactions in the hydration of dimethyl ether (DME) relative to its purely hydrophobic analog, propane, are analyzed by expressing the free energy of hydration in terms of an "inner-shell" contribution from water molecular packing and chemical association, and an "outer-shell" contribution described by the mean binding energy of the solute to the solution and fluctuations in this binding energy. We find that nonadditive, cooperative interactions associated with strong correlations in the binding energy fluctuations of the methyl groups and ether oxygen play a dominant role in the hydration of DME relative to propane. The electrostatic nature of these interactions is revealed in a multi-Gaussian analysis of hydration substates, which shows that the formation of favorable ether oxygen-water hydrogen bonds is correlated with less favorable methyl group-water interactions, and vice versa. We conclude that the group additive distinction between the hydrophobic hydration of the DME methyl groups and hydrophilic hydration of the ether oxygen is lost in the context of these cooperative interactions. Our results also suggest that the binding energy fluctuations of constituent hydrophobic/hydrophilic groups are more sensitive than local water density fluctuations for characterizing the hydration of heterogeneous interfaces.

  11. Formation of controllable hydrophilic/hydrophobic drug delivery systems by electrospinning of vesicles.

    Science.gov (United States)

    Li, Wei; Luo, Tian; Yang, Yanjuan; Tan, Xiuniang; Liu, Lifei

    2015-05-12

    Novel multifunctional poly(ethylene oxide) (PEO) nanofibrous membrane, which contains vesicles constructed by mixed surfactant cetyltrimethylammonium bromide (CTAB)/sodium dodecylbenzenesulfonate (SDBS), has been designed as dual drug-delivery system and fabricated via the electrospinning process. 5-FU and paeonolum, which are hydrophilic and hydrophobic anticancer model drugs, can be dissolved in vesicle solution's bond water and lipid bilayer membranes, respectively. The physicochemical properties of the electrospun nanofibrous membrane were systematically studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR), and X-ray diffraction (XRD). Drug release behaviors of the electrospun nanofibrous membrane fabricated with different molar ratio of CTAB/SDBS vesicle solution were investigated. The result showed that the releasing amount of hydrophilic drug presented an ascending release manner, while the hydrophobic one showed a descending release behavior with increasing of the molar ratio of CTAB/SDBS. Moreover, the release amount of drugs from drug delivery system can be controlled by the molar ratio of CTAB/SDBS in the vesicle solution easily and conveniently. The distinct properties can be utilized to encapsulate environmental demanding and quantificational materials.

  12. Correlation between the hydrophilic character and affinity towards carbon dioxide of montmorillonite-supported polyalcohols.

    Science.gov (United States)

    Nousir, Saadia; Platon, Nicoleta; Ghomari, Kamel; Sergentu, Andrei-Sergiu; Shiao, Tze Chieh; Hersant, Grégory; Bergeron, Jean-Yves; Roy, René; Azzouz, Abdelkrim

    2013-07-15

    Polyalcohol incorporation was found to enhance the hydrophilic character of montmorillonite and its affinity towards carbon dioxide. CO2 adsorption occurred in both dry and humid conditions, but higher amounts were retained in the presence of moisture. This suggests two adsorption pathways: 1. direct OH-CO2 interaction and 2. more predominantly via indirect ternary OH-H2O-CO2 interactions. The retained amounts of water and CO2 increased almost proportionally with the number of OH groups incorporated, thus providing clear evidence that these groups act as adsorption sites. The improvement of the CO2 retention capacity (CRC) appears to be also due to the enhancement of the hydrophilic character of the adsorbent. The CRC value was found to strongly depend on the operating conditions. The major part of the retained CO2 was desorbed at 60-70°C from hydrated matrices, but at 20-50°C from dry adsorbents. CO2 can be easily released even at room temperature through forced convection under a gas stream, or under static conditions in dry and CO2-free media, e.g. in the presence of KOH pellets. It results that the CO2 retention also involves physical interactions. These results open new prospects for the reversible capture of other gases on low-cost hybrid adsorbents without thermal regeneration. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  13. A novel thermo-mechanical system enhanced transdermal delivery of hydrophilic active agents by fractional ablation.

    Science.gov (United States)

    Sintov, Amnon C; Hofmann, Maja A

    2016-09-25

    The Tixel is a novel device based on a thermo-mechanical ablation technology that combines a sophisticated motion and a temperature control. The fractional technology is used to transfer a very precise thermal energy to the skin thereby creating an array of microchannels, accompanying by no signs of pain or inconvenience. This study aimed to evaluate the effect of the Tixel on the skin permeability of three hydrophilic molecular models: verapamil hydrochloride, diclofenac sodium, and magnesium ascorbyl phosphate. Tixel's gold-platted stainless steel tip heated to a temperature of 400°C was applied on skin for 8ms or 9ms at a protrusion of 400μm (the distance in which the tip protrudes beyond the distance gauge). The experiments were carried out partly in vivo in humans using a fluorescent dye and a confocal microscopy and partly in vitro using porcine skin and a Franz diffusion cell system. The results obtained in this study have shown that (a) no significant collateral damage to the skin tissue and no necrosis or dermal coagulation have been noted, (b) the microchannels remained open and endured for at least 6h, and (c) the skin permeability of hydrophilic molecules, which poorly penetrate the lipophilic stratum corneum barrier, was significantly enhanced by using Tixel's pretreatment.

  14. Dissolved organic matter: precautions for the study of hydrophilic substances using XAD resins.

    Science.gov (United States)

    Labanowski, Jerome; Feuillade, Geneviève

    2011-01-01

    This study concerns the possible changes in the repartition and the molecular characteristics of hydrophilic substances (HyS) isolated by XAD resins from the same source of organic matter as a function of the distribution coefficient k' and the DOM concentration. We tested that on two different sources of organic matter (a surface water and a landfill leachate). Breakthrough curves column experiments highlighted a modification of the repartition between hydrophilic and humic substances according to the k' value applied. But, we find that the composition of HyS is significantly modified between k' = 50 and 100. Our observations tend to suggest a higher contribution of humic-like matter (high-molecular weight aromatic compounds) with an increase of the k' value. This results in a shift of fluorescence bands to longer wavelengths and changing patterns of the SEC profiles and molecular fingerprints performed by flash pyrolysis. Our results show that DOM concentration also influences the composition of HyS while little effect is observed on their quantification at k' = 50 or 100.

  15. Effect of hydrophilic and hydrophobic polymers on release kinetics of metoprolol succinate extended release tablets

    Directory of Open Access Journals (Sweden)

    Ramani Gade

    2011-01-01

    Full Text Available The purpose of the present work is to design and evaluate extended release matrix tablets of metoprolol succinate to reduce the dosing frequency and to improve patient compliance. The matrix tablets were prepared by the combination of hydrophilic and hydrophobic polymers, using methocel 10000 Cps in combination with ethyl cellulose 7 Cps, Eudragit® RS100, Eudragit® S100, and Eudragit® L100.The tablets were prepared by direct compression technique. Prepared formulations were evaluated for various parameters like weight variation, thickness, hardness, friability, and % drug content. Tablets were subjected to in vitro drug release studies. The formulations containing methocel 10000 Cps, Eudragit® L100 showed good release retardation. All the prepared formulations showed first-order release kinetics with matrix diffusion mechanism of release. The formulation containing 52.06% w/w of methocel 10000 Cps, 8.75% Eudragit® L100 offered the required release rate according to USP Pharmacopoeial guidelines. The combination of hydrophilic and hydrophobic polymers can effectively control the drug release for freely water-soluble drugs in case of extended release formulations which are the upcoming dosage forms for patient compliance in all aspects.

  16. Nitric Acid-Treated Carbon Fibers with Enhanced Hydrophilicity for Candida tropicalis Immobilization in Xylitol Fermentation

    Directory of Open Access Journals (Sweden)

    Le Wang

    2016-03-01

    Full Text Available Nitric acid (HNO3-treated carbon fiber (CF rich in hydrophilic groups was applied as a cell-immobilized carrier for xylitol fermentation. Using scanning electron microscopy, we characterized the morphology of the HNO3-treated CF. Additionally, we evaluated the immobilized efficiency (IE of Candida tropicalis and xylitol fermentation yield by investigating the surface properties of nitric acid treated CF, specifically, the acidic group content, zero charge point, degree of moisture and contact angle. We found that adhesion is the major mechanism for cell immobilization and that it is greatly affected by the hydrophilic–hydrophilic surface properties. In our experiments, we found 3 hto be the optimal time for treating CF with nitric acid, resulting in an improved IE of Candida tropicalis of 0.98 g∙g−1 and the highest xylitol yield and volumetric productivity (70.13% and 1.22 g∙L−1∙h−1, respectively. The HNO3-treated CF represents a promising method for preparing biocompatible biocarriers for multi-batch fermentation.

  17. Fabrication of Hydrophilic and Hydrophobic Sites on Polypropylene Nonwoven for Oil Spill Cleanup: Two Dilemmas Affecting Oil Sorption.

    Science.gov (United States)

    Zhou, Xiangyu; Wang, Feifei; Ji, Yali; Chen, Weiting; Wei, Junfu

    2016-04-05

    This article mainly deals with the following dilemmas, which affect oil sorption and sorbent preparation: (1) hydrophobization could facilitate oil sorption but has adverse impacts on emulsion sorption; (2) micropores of conventional oil sorbent do not exhibit effective emulsion sorption. To solve the above contradictions, hydrophilic and hydrophobic sites were fabricated onto polypropylene (PP) nonwoven through electron beam radiation and subsequent ring-opening reaction. Further, a similar structure without a hydrophilic site was constructed as comparison to verify the dilemmas. An oil sorption and emulsion adsorption experiment revealed that the PP nonwoven with specific hydrophilic and hydrophobic sites is more suitable for oil cleanup. The hydrophobic site preserved its hydrophobicity and sorption capacity, and the hydrophilic site on PP surface effectively increased the affinity between the hydrophilic interface of emulsion and sorbent. The overlapped and intertwined structures could provide spaces large enough to accommodate oil and emulsion. In addition, the oil and emulsion sorption behaviors were systematically analyzed. The PP nonwoven fabricated in this study may find practical application in the cleanup of oil spills and the removal of organic pollutants from water surfaces.

  18. Effects of hydrophilic macropore fillings and coatings on the infiltration into water repellent porous media

    Science.gov (United States)

    Suetsugu, A.; Mori, Y.

    2012-12-01

    Macropores generate rapid flow paths in the surface soils by their high permeability under saturated/near-saturated moisture conditions. In natural soils, some macropores are filled/coated with various materials including decayed plant roots (Meek et al., 1989), exudates from plants/soil organisms (Jegou et al., 2001), iron oxides or other precipitates from preferentially-introduced solutes/colloids to the macropores (Rasmussen et al., 2001), or the surrounding soils with reduced bulk density (Ela et al., 1992). When we expect infiltration into water repellent soils through macropores or hydrophilic patches created from the macropore cementation processes, hydrophilicity of the macropore fillings/coatings should be understood. In the present study, we conducted an infiltration experiment with water repellent porous media and some macropore fillings/coatings, in order to clarify the roles of hydrophilic macropore fillings/coatings in infiltration. Ponding depth and flow distribution were monitored with a micro-focus X-ray computational tomography apparatus (SMX-90CT, Shimadzu Corp., Kyoto, Japan) at 90 kV and 110 μA. Dilute CsCl(aq) (density: 1.04 Mg m-3) was used as the contrast media to avoid density-driven alteration of the flows. Water repellency of the samples was evaluated by the water drop penetration time (WDPT, Van't Woudt, 1959). A glass beads (mean diameter: 0.46 mm, BZ-04, ASONE Corp., Osaka, Japan) was used as water repellent porous media. The glass beads sample was packed in 50-mL polypropylene centrifugation tubes at 1.55 Mg m-3 bulk density. A 2-mm hole was made at the bottom of each centrifugation tube for ventilation. The hole was covered with mesh cloth. Macroporous structure was made at the center of each tube from the surface. Each macroporous structure had 4-mm diameter and 30-mm length. Six types of macropores were prepared including 1) no macropore, 2) empty macropore, 3) an aluminum (Al) pipe (4-mm inner diameter, 5-mm outer diameter), 4) a

  19. Well-defined hydrophilic molecularly imprinted polymer microspheres for efficient molecular recognition in real biological samples by facile RAFT coupling chemistry.

    Science.gov (United States)

    Zhao, Man; Chen, Xiaojing; Zhang, Hongtao; Yan, Husheng; Zhang, Huiqi

    2014-05-12

    A facile and highly efficient new approach (namely RAFT coupling chemistry) to obtain well-defined hydrophilic molecularly imprinted polymer (MIP) microspheres with excellent specific recognition ability toward small organic analytes in the real, undiluted biological samples is described. It involves the first synthesis of "living" MIP microspheres with surface-bound vinyl and dithioester groups via RAFT precipitation polymerization (RAFTPP) and their subsequent grafting of hydrophilic polymer brushes by the simple coupling reaction of hydrophilic macro-RAFT agents (i.e., hydrophilic polymers with a dithioester end group) with vinyl groups on the "living" MIP particles in the presence of a free radical initiator. The successful grafting of hydrophilic polymer brushes onto the obtained MIP particles was confirmed by SEM, FT-IR, static contact angle and water dispersion studies, elemental analyses, and template binding experiments. Well-defined MIP particles with densely grafted hydrophilic polymer brushes (∼1.8 chains/nm(2)) of desired chemical structures and molecular weights were readily obtained, which showed significantly improved surface hydrophilicity and could thus function properly in real biological media. The origin of the high grafting densities of the polymer brushes was clarified and the general applicability of the strategy was demonstrated. In particular, the well-defined characteristics of the resulting hydrophilic MIP particles allowed the first systematic study on the effects of various structural parameters of the grafted hydrophilic polymer brushes on their water-compatibility, which is of great importance for rationally designing more advanced real biological sample-compatible MIPs.

  20. Surface modification of CNTs and enhanced photocatalytic activity of TiO{sub 2} coated on hydrophilically modified CNTs

    Energy Technology Data Exchange (ETDEWEB)

    Yang Hanpei, E-mail: yanghanpei@hhu.edu.cn [Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098 (China); Wu Sha; Duan Yunping; Fu Xiaofei; Wu Junming [Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098 (China)

    2012-01-15

    A new method to enhance photocatalytic performance of TiO{sub 2} by dispersing it onto hydrophilically surface modified carbon nanotubes is reported. The hydrophilically surface functionalized CNTs and as prepared composite CNTs-TiO{sub 2} photocatalysts were characterized using FT-IR, XPS, XRD, BET adsorption analysis and TEM. The composite samples were evaluated for their photocatalytic activity toward the degradation of methyl orange in aqueous solution under both UV and visible light irradiation. The results indicated that the hydrophilic functional groups were grafted covalently on the surface of CNTs successfully, and the functionalized CNTs exhibit higher BET specific surface area and aquatic solubility. The improved photocatalytic activity of CNTs-TiO{sub 2} was mainly attributed to the high dispersion of TiO{sub 2} on CNTs and the intimate contact between TiO{sub 2} and CNTs resulting in dense heterojunctions at the interface of TiO{sub 2} and CNTs.

  1. Physical stability of coconut oil lotions formulated using hydrophile-lipophile balance system of various emulsifier pairs.

    Science.gov (United States)

    Boonme, Prapaporn; Maneenuan, Duangkhae; Channarong, Sunee

    2013-01-01

    The aim of this study was to prepare coconut oil lotions using a hydrophile-lipophile balance system to calculate the proportion of each nonionic surfactant used. The effects of emulsifier pairs in the formulations on physical properties (i.e., appearance, emulsion type, pH, flow type, viscosity) were investigated. The physical stability of the lotions was determined at ambient temperature (approximatley 30 degrees C) after the lotions were kept for 30 as well as 60 days and in accelerated conditions (6 freeze-thaw cycles). It was found that the formulations most tolerant to such harsh conditions were F1 and F2, o/w lotions containing 40% w/w coconut oil, 50% w/w water and 10% w/w of the mixed emulsifier of a low hydrophile-lipophile balance surfactant (sorbitan monostearate) and a high hydrophile-lipophile balance surfactant (either polyoxyethylene [20] sorbitan monooleate or polyethylene [20] sorbitan monolaurate).

  2. Micropatterning of hydrogels on locally hydrophilized regions on PDMS by stepwise solution dipping and in situ gelation.

    Science.gov (United States)

    Sugaya, Sari; Kakegawa, Shunta; Fukushima, Shizuka; Yamada, Masumi; Seki, Minoru

    2012-10-02

    This study presents a simple but highly versatile method of fabricating picoliter-volume hydrogel patterns on poly(dimethylsiloxane) (PDMS) substrates. Hydrophilic regions were prepared on hydrophobic PDMS plates by trapping and melting functional polymer particles and performing subsequent reactions with partially oxidized dextran. Small aliquots of a gelation solution were selectively trapped on the hydrophilic areas by a simple dipping process that was utilized to make thin hydrogel patterns by the in situ gelation of a sol solution. Using this process, we successfully formed calcium alginate, collagen I, and chitosan hydrogels with a thickness of several micrometers and shapes that followed the hydrophilized regions. In addition, alginate and collagen gel patterns were used to capture cells with different adhesion properties selectively on or off the hydrogel structures. The presented strategy could be applicable to the preparation of a variety of hydrogels for the development of functional biosensors, bioreactors, and cell cultivation platforms.

  3. Hydrophilic solid-phase extraction of melamine with ampholine-modified hybrid organic-inorganic silica material.

    Science.gov (United States)

    Wang, Tingting; Zhu, Yiming; Ma, Junfeng; Xuan, Rongrong; Gao, Haoqi; Liang, Zhen; Zhang, Lihua; Zhang, Yukui

    2015-01-01

    In this work, an ampholine-functionalized hybrid organic-inorganic silica sorbent was successfully used to extract melamine from a milk formula sample by a hydrophilic interaction solid-phase extraction protocol. Primary factors affecting the extraction efficiency of the material such as extraction solvent, elution solvent, sample loading volume, and elution volume have been thoroughly optimized. Under the optimized hydrophilic solid-phase extraction conditions, the recoveries of melamine spiked in milk formula samples ranged from 86.2 to 101.8% with relative standard deviations of 4.1-9.4% (n = 3). The limit of detection (S/N = 3) was 0.32 μg/g. The adsorption capacity toward melamine was 30 μg of melamine per grams of sorbent. Due to its simplicity, rapidity and cost effectiveness, the newly developed hydrophilic solid-phase extraction method should provide a promising tool for daily monitoring of doped melamine in milk formula.

  4. Polylactide block copolymers using trimethylene carbonate with methoxyethoxy side groups for dual modification of hydrophilicity and biodegradability.

    Science.gov (United States)

    Ajiro, Hiroharu; Takahashi, Yoshikazu; Akashi, Mitsuru; Fujiwara, Tomoko

    2012-10-01

    Novel block copolymers using the monomers 5-(2-methoxyethyoxymethyl)-5-methyl-[1,3]-dioxa-2-one (TMCM-MOE1OM) as a hydrophilic segment and lactides as a hydrophobic segment were designed in order to prepare controllable degradation polymers by dynamic polymer rearrangement based on the hydrophilicity. When the copolymer film contacted water, the hydrophobic polylactide (PLA) segments tend to be buried under the TMCM-MOE1OM segments due to the hydrophilicity of the methoxyethoxy groups. The copolymers were hardly degraded by both proteinase K and lipase, while both of their homopolymers, poly(trimethylene carbonate) and PLA, were degraded, which suggests that the rearrangement of the TMCM-MOE1OM segments at the outermost surface significantly improved the degradation ratio. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Interactions between nano-TiO{sub 2} and the oral cavity: Impact of nanomaterial surface hydrophilicity/hydrophobicity

    Energy Technology Data Exchange (ETDEWEB)

    Teubl, Birgit J.; Schimpel, Christa [Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, University of Graz, 8010 (Austria); Leitinger, Gerd [Institute of Cell Biology, Histology and Embryology, Research Unit Electron Microscopic Techniques, Medical University of Graz, 8010 (Austria); Center for Medical Research, Medical University of Graz, 8010 (Austria); BioTechMed, Graz 8010 (Austria); Bauer, Bettina [Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, University of Graz, 8010 (Austria); Fröhlich, Eleonore [Center for Medical Research, Medical University of Graz, 8010 (Austria); BioTechMed, Graz 8010 (Austria); Zimmer, Andreas [Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, University of Graz, 8010 (Austria); BioTechMed, Graz 8010 (Austria); Roblegg, Eva, E-mail: eva.roblegg@uni-graz.at [Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, University of Graz, 8010 (Austria); BioTechMed, Graz 8010 (Austria)

    2015-04-09

    Highlights: • Hydrophilic as well as hydrophobic TiO{sub 2} NPs agglomerated under oral physiological conditions. • Particles penetrated the upper and lower buccal epithelium, independent on the degree of hydrophilicity. • Most of the hydrophobic particles were found in vesicular structures, while hydrophilic particles were freely distributed in the cytoplasm. • Hydrophilic particles had a higher potential to trigger toxic effects (e.g., ROS) than hydrophobic particles. - Abstract: Titanium dioxide (TiO{sub 2}) nanoparticles are available in a variety of oral applications, such as food additives and cosmetic products. Thus, questions about their potential impact on the oro-gastrointestinal route rise. The oral cavity represents the first portal of entry and is known to rapidly interact with nanoparticles. Surface charge and size contribute actively to the particle–cell interactions, but the influence of surface hydrophilicity/hydrophobicity has never been shown before. This study addresses the biological impact of hydrophilic (NM 103, rutile, 20 nm) and hydrophobic (NM 104, rutile, 20 nm) TiO{sub 2} particles within the buccal mucosa. Particle characterization was addressed with dynamic light scattering and laser diffraction. Despite a high agglomeration tendency, 10% of the particles/agglomerates were present in the nanosized range and penetrated into the mucosa, independent of the surface properties. However, significant differences were observed in intracellular particle localization. NM 104 particles were found freely distributed in the cytoplasm, whereas their hydrophobic counterparts were engulfed in vesicular structures. Although cell viability/membrane integrity was not affected negatively, screening assays demonstrated that NM 104 particles showed a higher potential to decrease the physiological mitochondrial membrane potential than NM 103, resulting in a pronounced generation of reactive oxygen species.

  6. Assessment of home environments with a fungal index using hydrophilic and xerophilic fungi as biologic sensors.

    Science.gov (United States)

    Abe, K

    2012-06-01

      Previously, the author proposed a 'fungal index' that quantifies the capacity for fungal growth in a test environment where a device (fungal detector) encapsulating spores of a xerophilic sensor fungus Eurotium herbariorum was placed. It was also found that an extremely xerophilic fungus, Aspergillus penicillioides, was suitable as a sensor fungus at sites with lower relative humidity (RH). In this report, the hydrophilic fungus Alternaria alternata was added to sensor fungi for the determination of the index in extremely humid environments. Measurements of the index and observations of the formation of spores by the sensor fungi were made in stable climates in moisture chambers, under natural conditions in homes, and in bathrooms prepared in an artificial climate chamber. Higher index values and earlier sporulation were obtained at higher RH in stable climates. The hydrophilic Alt. alternata showed the greatest response at 100% and 97.3% RH, the moderately xerophilic Eur. herbariorum, at 94%, 84%, and 75% RH, and the extremely xerophilic Asp. penicillioides, at 71% RH. In homes, the hydrophilic fungus was most active in water-usage areas, and the xerophilic fungi were most active in non-water-usage areas. Sporulation was observed on sensor fungi in fungal detectors placed in rooms where the index exceeded 18 ru/week after one-month exposure. Sites where the index exceeded 18 ru/week were referred to as damp, where fungal contamination seems to be unavoidable. Evaluations of ventilation systems in bathrooms with extremely humid climates showed typical examples of a countermeasure to fungal contamination. The purpose of this study is to establish a fungal index applicable in home environments with extremely high to relatively low relative humidity climates. The sensor fungus that showed the greatest response in a fungal detector (a device encapsulating spores of sensor fungi) served as not only a quantitative but also a qualitative indicator of the environment

  7. One-step routes from di- and triblock copolymer precursors to hydrophilic nanoporous poly(acrylic acid)-b-polystyrene

    DEFF Research Database (Denmark)

    Guo, Fengxiao; Jankova Atanasova, Katja; Schulte, Lars;

    2008-01-01

    Nanoporous polystyrene with hydrophilic pores was prepared from di- and triblock copolymer precursors. The precursor material was either a poly(tert-butyl acryl ate)-b-polystyrene (PtBA-b-PS) diblock copolymer synthesized by atom transfer radical polymerization (ATRP) or a polydimethylsiloxane......-b-poly(tertbutyl acrylate)-b-polystyrene (PDMS-b-PtBA-b-PS) triblock copolymer synthesized by a combination of living anionic polymerization and ATRP. In the latter copolymer, PS was the matrix and mechanically stable component, PtBA was converted by acidic deprotection to hydrophilic poly(acrylic acid) (PAA) providing...

  8. Healthcare resource consumption for intermittent urinary catheterisation: cost-effectiveness of hydrophilic catheters and budget impact analyses.

    Science.gov (United States)

    Rognoni, Carla; Tarricone, Rosanna

    2017-01-17

    This study presents a cost-effectiveness analysis comparing hydrophilic coated to uncoated catheters for patients performing urinary intermittent catheterisation. A national budget impact analysis is also included to evaluate the impact of intermittent catheterisation for management of bladder dysfunctions over a period of 5 years. A Markov model (lifetime horizon, 1 year cycle length) was developed to project health outcomes (life years and quality-adjusted life years) and economic consequences related to patients using hydrophilic coated or uncoated catheters. The model was populated with catheter-related clinical efficacy data retrieved from randomised controlled trials and quality-of-life data (utility weights) from the literature. Cost data (EUR, 2015) were estimated on the basis of healthcare resource consumption derived from an e-survey addressed to key opinion leaders in the field. Italian Healthcare Service perspective. Patients with spinal cord injury performing intermittent urinary catheterisation in the home setting. Incremental cost-effectiveness and cost-utility ratios (ICER and ICUR) of hydrophilic coated versus uncoated catheters and associated healthcare budget impact. The base-case ICER and ICUR associated with hydrophilic coated catheters were €20 761 and €24 405, respectively. This implies that hydrophilic coated catheters are likely to be cost-effective in comparison to uncoated ones, as proposed Italian threshold values range between €25 000 and €66 400. Considering a market share at year 5 of 89% hydrophilic catheters and 11% uncoated catheters, the additional cost for Italy is approximately €12 million in the next 5 years (current market share scenario for year 0: 80% hydrophilic catheters and 20% uncoated catheters). Considered over a lifetime, hydrophilic coated catheters are potentially a cost-effective choice in comparison to uncoated ones. These findings can assist policymakers in evaluating intermittent

  9. Role of the hydrophobic and hydrophilic sites in the dynamic crossover of the protein-hydration water

    Science.gov (United States)

    Köhler, Mateus Henrique; Barbosa, Rafael C.; da Silva, Leandro B.; Barbosa, Marcia C.

    2017-02-01

    Molecular dynamics simulations were performed to study the water structure and dynamics in the hydration shell of the globular TS-Kappa protein. The results show that for a wide range of temperatures the diffusion coefficient of water near the protein surface is lower than in bulk. A crossover in the diffusion behavior of hydration water is observed at different temperatures for hydrophilic and hydrophobic vicinities. We have found a correlation between the crossover in the hydrophilic case and the protein dynamical transition. An explanation in terms of the competition between water-water water-protein H-bond formation is provided based on H-bond network analysis.

  10. Manifesting Subtle Differences of Neutral Hydrophilic Guest Isomers in a Molecular Container by Phase Transfer.

    Science.gov (United States)

    Lee, Hyun Hee L; Lee, Jong Wha; Jang, Yoonjung; Ko, Young Ho; Kim, Kimoon; Kim, Hugh I

    2016-07-11

    Achieving strong host-guest interactions between synthetic hosts and hydrophilic guests in solution is challenging because solvation effects overwhelm other effects. To resolve this issue, we transferred complexes of cucurbit[7]uril (CB[7]) and monosaccharides to the gas phase and report here their intrinsic host-guest chemistry in the absence of solvation effects. It was observed that effective host-guest interactions in the gas phase mediated by ammonium cations allow the differentiation of the monosaccharide isomers in complex with CB[7] upon vibrational excitation. The potential of the unique observation was extended to a quantitative supramolecular analytical method for the monosaccharide guests. The combination of host-guest chemistry and phase transfer presented in this study is an effective approach to overcome current limitations in supramolecular chemistry.

  11. [Systematic evaluation of retention behavior of carbohydrates in hydrophilic interaction liquid chromatography].

    Science.gov (United States)

    Fu, Qing; Wang, Jun; Liang, Tu; Xu, Xiaoyong; Jin, Yu

    2013-11-01

    A systematic evaluation of retention behavior of carbohydrates in hydrophilic interaction liquid chromatography (HILIC) was performed. The influences of mobile phase, stationary phase and buffer salt on the retention of carbohydrates were investigated. According to the results, the retention time of carbohydrates decreased as the proportion of acetonitrile in mobile phase decreased. Increased time of carbohydrates was observed as the concentration of buffer salt in mobile phase increased. The retention behavior of carbohydrates was also affected by organic solvent and HILIC stationary phase. Furthermore, an appropriate retention equation was used in HILIC mode. The retention equation lnk = a + blnC(B) + cC(B) could quantitatively describe the retention factors of carbohydrates of plant origin with good accuracy: the relative error of the predicted time to actual time was less than 0.3%. The evaluation results could provide guidance for carbohydrates to optimize the experimental conditions in HILIC method development especially for carbohydrate separation

  12. Evaluation of Hydrophilized Graphite Felt for Electrochemical Heavy Metals Detection (Pb2+, Hg2+

    Directory of Open Access Journals (Sweden)

    Laila Bouabdalaoui

    2015-01-01

    Full Text Available Hydrophilized graphite felt has been used, for the first time, for the electrochemical detection of Hg2+ ions both as single metal species and via its simultaneous detection with Pb2+. To do so, square wave voltammetry (SWV method was developed with alginate modified graphite felt as working electrode. The structure of the graphite felt such as its high porosity and specific surface area coupled with its good electrical conductivity allows achieving large peak currents via the SWV method, suggesting that the alginate coating helps to preconcentrate metals at the carbon surface. The as-described electrode has low cost, it is easy to manipulate, and the electrochemical analysis can be performed by simple immersion of the felt in the metal solution.

  13. Enzymatic Synthesis and Characterization of Hydrophilic Sugar Based Polyesters and Their Modification with Stearic Acid

    Directory of Open Access Journals (Sweden)

    Muhammad Humayun Bilal

    2016-03-01

    Full Text Available Biodegradable and hydrophilic functional polyesters were synthesized enzymatically using xylitol or d-sorbitol together with divinyl adipate and lipase B from Candida antartica (CAL-B. The resulting polyesters had pendant OH-groups from their sugar units which were esterified to different degrees with stearic acid chloride. The structure and the degrees of polymerization of the resulting graft copolymers based on poly(xylitol adipate and poly(d-sorbitol adipate were characterized by 1H NMR spectroscopy and SEC. DSC, WAXS and SAXS measurements indicated that a phase separation between polymer backbone and stearoyl side chains occurred in the graft copolymers, and, additionally, the side chains were able to crystallize which resulted in the formation of a lamellar morphology. Additionally, nanoparticles of the graft copolymers in an aqueous environment were studied by DLS and negative stain TEM.

  14. Hydraulic Transport Across Hydrophilic and Hydrophobic Nanopores: Flow Experiments with Water and n-Hexane

    CERN Document Server

    Gruener, Simon; Greulich, Stefanie; Busch, Mark; Huber, Patrick

    2015-01-01

    We experimentally explore pressure-driven flow of water and n-hexane across nanoporous silica (Vycor glass monoliths with 7 or 10 nm pore diameters, respectively) as a function of temperature and surface functionalization (native and silanized glass surfaces). Hydraulic flow rates are measured by applying hydrostatic pressures via inert gases (argon and helium, pressurized up to 70 bar) on the upstream side in a capacitor-based membrane permeability setup. For the native, hydrophilic silica walls, the measured hydraulic permeabilities can be quantitatively accounted for by bulk fluidity provided we assume a sticking boundary layer, i.e. a negative velocity slip length of molecular dimensions. The thickness of this boundary layer is discussed with regard to previous capillarity-driven flow experiments (spontaneous imbibition) and with regard to velocity slippage at the pore walls resulting from dissolved gas. Water flow across the silanized, hydrophobic nanopores is blocked up to a hydrostatic pressure of at l...

  15. Rapid Glycopeptide Enrichment Using Cellulose Hydrophilic Interaction/Reversed-Phase StageTips

    Science.gov (United States)

    Ohta, Yuki; Kameda, Kotaro; Matsumoto, Mei; Kawasaki, Nana

    2017-01-01

    Because the ionization efficiency for glycopeptides is lower than that of peptides in electrospray ionization, it is frequently necessary to enrich them prior to their analysis using liquid chromatography coupled with tandem mass spectrometry. Although some methods for selectively enriching glycopeptides (e.g., lectin, agarose, and cellulose methods) have been reported, they are time-consuming (procedures that require several hours) and may not be applicable to submicrogram-sized samples. Here, we report on a rapid, simple method for enriching glycopeptides in small sample amounts using cellulose hydrophilic interaction (cellulose HILIC)/reversed-phase (RP) stop-and-go extraction tips (StageTips). Using the cellulose HILIC/RP StageTips, glycopeptide-selective enrichment can be achieved at the nanogram level within a few minutes. PMID:28852604

  16. Morphology-controlled growth of perylene derivative induced by double-hydrophilic block copolymers

    Directory of Open Access Journals (Sweden)

    Minghua Huang

    2016-01-01

    Full Text Available Controlled growth of technically relevant perylene derivative 3, 4, 9, 10-perylenetetracarboxylic acid potassium salt (PTCAPS, with tuneable morpologies, has been successfully realized by a recrystallization method using a double-hydrophilic block copolymer poly (ethylene glycol-block poly (ethyleneimine (PEG-b-PEI as the structure directing agent. The {001} faces of PTCAPS are most polar and adsorb the oppositively charged polymer additive PEG-b-PEI well by electrostatic attraction. By simply adjusting the PEG-b-PEI concentration, systematic morphogenesis of PTCAPS from plates to microparticles composed of various plates splaying outwards could be realized. Furthermore, the variation of pH value of the recrystallization solution could induce the change of the interaction strength between PEG-b-PEI additive and PTCAPS and thus modify the morphology of PTCAPS from microparticles composed of various plates to ultralong microbelts.

  17. Calcification of a hydrophilic acrylic intraocular lens: case report with laboratory analysis.

    Science.gov (United States)

    Bodnar, Z M; Rozot, P; Leishman, L; Ollerton, A; Michelson, J; Plasse-Fauque, S; Werner, L

    2013-09-01

    We analyzed a single-piece plate-type hydrophilic acrylic posterior chamber intraocular lens (IOL) that was explanted due to a progressive loss of vision, which occurred 6 years after uncomplicated phacoemulsification. Gross and light microscopy, as well as anterior segment optical coherence tomography (OCT) revealed granular deposits below the IOL surface. Light scattering, as measured with Scheimpflug photography and densitometry analyses was found to be increased; spectrophotometry demonstrated a decrease in the light transmittance of the explanted lens. The granular deposits within the IOL material were found to be composed of calcium by histochemical methods (alizarin red and Von Kossa stains). To our knowledge this is the only report of calcification of this IOL design. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  18. A covalent modified hydrophilic capillary for enhanced capillary electrophoresis of biopolymers

    Institute of Scientific and Technical Information of China (English)

    Lian Guo Shan; Xue Yu; Yin Mao Wei; Xiao Hui Zheng; Jian Bin Zheng

    2009-01-01

    δ-Gluconolactone was covalently coupled to aminopropyl derivatized capillary,which created hydrophilic brushes on the inner wall of the capillary.The coated capillary was shown to generate a stable electroosmotic flow(EOF)in the investigated pH range of 2.0-9.0 and to suppress effectively the adsorption of proteins.And it enabled separation of some biopolymer mixtures including basic proteins,DNA and tryptic digested bovine serum albumin(BSA)within 15 min with efficiencies up to 450,000 plates/m.The intra-and inter-day reproducibility of the coating referring to the retention times of proteins were satisfactory with mean relative standard deviations(R.S.D.)of 0.8 and 1.7%,respectively.

  19. Enhanced ileal absorption of a hydrophilic macromolecule, pentosan polysulfate sodium (PPS).

    Science.gov (United States)

    Dong, Liang; Yum, Alicia; Nguyen, Joe; Wong, Pat

    2004-01-01

    An in situ gelling, bioadhesive liquid formulation was developed to enhance the bioavailbility (BA) of a polysaccharide, pentosan polysulfate sodium (PPS). The formulation was tested to determine its bioavailability enhancement in a non-flush/non-ligated rat ileal model. A potent synergistic effect was found with a gelling agent Cremophor and a permeation enhancer sodium salicylate. The absolute bioavailabilities were 1.9%, 4.6%, 6.3% and 46.4%, respectively, for the PPS solution in saline, sodium salicylate/PPS, Cremophor/PPS and Cremophor/sodium salicylate/PPS. Therefore, we successfully demonstrated the approach of utilizing an in situ gelling/bioadhesive liquid carrier to enhancing the bioavailability of a hydrophilic macromolecule at the distal small intestine.

  20. Comparative sessile drop and dip pen nanolithography investigation for various hydrophilic ink/surface systems.

    Science.gov (United States)

    Yadav, Pradeep K; Lemoine, Patrick

    2012-01-01

    We present a dip pen nanolithography study of various hydrophilic ink/surface systems with application in the field of biosensors and novel nano-materials. The inking process was investigated by studying a number of inks, such as Deoxyribonucleic acid (DNA), Bovine serum albumin (BSA), Streptavidin, 16-mercaptohexadecanoic acid (MHA) and a 20 nm nanosphere (NS) polystyrene solution onto a range of substrates, namely glass, silicon, gold and tetrahedral amorphous carbon (taC). In the majority of cases, this resulted in patterns with sub-100 nm line widths and dot diameters. Importantly, contact angle measurements in the microl range showed a decrease of contact angle with drop volume, interpreted as a line tension effect. The significance of this to the nanoscale wetting behaviour is discussed. The effect of dwell time and writing speed indicates that the inking process is not solely defined by surface diffusion but also influenced by the ink dissolution rate from the tip.

  1. A cost-effectiveness analysis of long-term intermittent catheterisation with hydrophilic and uncoated catheters

    DEFF Research Database (Denmark)

    Clark, J F; Mealing, S J; Scott, D A

    2016-01-01

    includes the long-term sequelae of impaired renal function and urinary tract infection (UTI). SETTING: Analysis based on a UK perspective. METHODS: A probabilistic Markov decision model was constructed, to compare lifetime costs and quality-adjusted life years, taking renal and UTI health states......STUDY DESIGN: Cost-effectiveness analysisObjective:To establish a model to investigate the cost effectiveness for people with spinal cord injury (SCI), from a lifetime perspective, for the usage of two different single-use catheter designs: hydrophilic-coated (HC) and uncoated (UC). The model...... into consideration, as well as other catheter-related events. UTI event rates for the primary data set were based on data from hospital settings to ensure controlled and accurate reporting. A sensitivity analysis was applied to evaluate best- and worst-case scenarios. RESULTS: The model predicts that a 36-year...

  2. Microemulsions as model fluids for enhanced oil recovery: dynamics adjacent to planar hydrophilic walls

    Directory of Open Access Journals (Sweden)

    Mattauch S.

    2012-10-01

    Full Text Available After the dynamics of microemulsions adjacent to a planar hydrophilic wall have been characterized using grazing incidence neutron spin echo spectroscopy, the model of Seifert was employed to explain the discovered acceleration for the surface near lamellar ordered membranes. Reflections of hydrodynamic waves by the wall – or the volume conservation between the membrane and the wall – explain faster relaxations and, therefore, a lubrication effect that is important for flow fields in narrow pores. The whole scenery is now spectated by using different scenarios of a bicontinuous microemulsion exposed to clay particles and of a lamellar microemulsion adjacent to a planar wall. The Seifert concept could successfully be transferred to the new problems.

  3. Tin oxide nanosheet assembly for hydrophobic/hydrophilic coating and cancer sensing.

    Science.gov (United States)

    Masuda, Yoshitake; Ohji, Tatsuki; Kato, Kazumi

    2012-03-01

    Tin oxide nanosheets were crystallized on transparent conductive oxide substrates of fluorine-doped tin oxide in aqueous solutions. The nanosheets had chemical ratio of Sn:O:F = 1:1.85:0.076, suggesting fluorine doping into SnO(2). They were hydrophobic surfaces with contact angle of 140°. They were converted to hydrophilic surfaces with contact angle of below 1° by light irradiation. The simple water process will be applied to surface coating of polymers, metals, biomaterials, papers, etc. Furthermore, the tin oxide nanosheets were modified with dye-labeled monoclonal antibody. Monoclonal antibody reacts with human alpha-fetoprotein in blood serum of hepatocellular cancer patient. Photoluminescence and photocurrent were obtained from the nanosheets under excitation light. Photoelectric conversion was an essence in the sensing system. The tin oxide nanosheets with dye-labeled prostate specific antigen will be used for electrodes of prostate cancer sensors.

  4. Application of Hydrophilic Interaction Liquid Chromatography for the Quantification of Flavonoids in Genista tinctoria Extract

    Directory of Open Access Journals (Sweden)

    Aleksandra Sentkowska

    2016-01-01

    Full Text Available Hydrophilic interaction chromatography (HILIC was employed to investigate chromatographic behavior of selected flavonoids from their different subgroups differing in polarity. Chromatographic measurements were performed on two different HILIC columns: unmodified silica (Atlantis-HILIC and zwitterionic sulfoalkylbetaine (SeQuant ZIC-HILIC. Separation parameters such as content and type of organic modifier were studied. On ZIC column retention factors were observed to be inversely proportional to the buffer content in the mobile phase, which is the typical partitioning mechanism. In the case of bare silica column more or less apparent dual retention mechanism was observed, depending on the water component content in the mobile phase. ZIC-HILIC showed better selectivity (in comparison to silica column with the detection limit of 0.01 mg/L (only for rutin was 0.05 mg/L. Finally, this chromatographic procedure was validated and applied for the determination of some flavonoids in Genista tinctoria L. extract.

  5. Molecular explanation for why talc surfaces can be both hydrophilic and hydrophobic

    CERN Document Server

    Rotenberg, Benjamin; Chandler, David

    2011-01-01

    While individual water molecules adsorb strongly on a talc surface (hydrophilic behavior), a droplet of water beads up on the same surface (hydrophobic behavior). To rationalize this dichotomy, we investigate the influence of the microscopic structure of the surface and the strength of adhesive (surface-water) interactions on surface hydrophobicity. We show that at low relative humidity, the competition between adhesion and the favorable entropy of being in the vapor phase determines the surface coverage. However, at saturation, it is the competition between adhesion and cohesion (water-water interactions) that determines surface hydrophobicity. The adhesive interactions in talc are strong enough to overcome the unfavorable entropy, and water adsorbs strongly on talc surfaces. However, they are too weak to overcome the cohesive interactions, and water thus beads up on talc surfaces. Surprisingly, even (talc-like) surfaces that are highly adhesive, do not fully wet at saturation. Instead, a water droplet forms...

  6. Shape-Memory Hydrogels: Evolution of Structural Principles To Enable Shape Switching of Hydrophilic Polymer Networks.

    Science.gov (United States)

    Löwenberg, Candy; Balk, Maria; Wischke, Christian; Behl, Marc; Lendlein, Andreas

    2017-02-15

    The ability of hydrophilic chain segments in polymer networks to strongly interact with water allows the volumetric expansion of the material and formation of a hydrogel. When polymer chain segments undergo reversible hydration depending on environmental conditions, smart hydrogels can be realized, which are able to shrink/swell and thus alter their volume on demand. In contrast, implementing the capacity of hydrogels to switch their shape rather than volume demands more sophisticated chemical approaches and structural concepts. In this Account, the principles of hydrogel network design, incorporation of molecular switches, and hydrogel microstructures are summarized that enable a spatially directed actuation of hydrogels by a shape-memory effect (SME) without major volume alteration. The SME involves an elastic deformation (programming) of samples, which are temporarily fixed by reversible covalent or physical cross-links resulting in a temporary shape. The material can reverse to the original shape when these molecular switches are affected by application of a suitable stimulus. Hydrophobic shape-memory polymers (SMPs), which are established with complex functions including multiple or reversible shape-switching, may provide inspiration for the molecular architecture of shape-memory hydrogels (SMHs), but cannot be identically copied in the world of hydrophilic soft materials. For instance, fixation of the temporary shape requires cross-links to be formed also in an aqueous environment, which may not be realized, for example, by crystalline domains from the hydrophilic main chains as these may dissolve in presence of water. Accordingly, dual-shape hydrogels have evolved, where, for example, hydrophobic crystallizable side chains have been linked into hydrophilic polymer networks to act as temperature-sensitive temporary cross-links. By incorporating a second type of such side chains, triple-shape hydrogels can be realized. Considering the typically given light

  7. Single Crystal Si Layers on Glass Fabricated by Hydrophilic Fusion Bonding and Smart-Cut Technology

    Institute of Scientific and Technical Information of China (English)

    ZHEN Wan-Bao; LIU Wei-Li; SONG Zhi-Tang; FENG Song-Lin; ZHU Shi-Fu; ZHAO Bei-Jun

    2004-01-01

    @@ A single crystal Si thin film on a glass substrate has been obtained successfully by hydrophilic fusion bonding and the smart-cut technology. Tensile strength testing shows that the bonded interface has strong adhesion and the bonding strength is about 8.7 MPa. Crystallinity and microstructure of the samples have been characterized by transmission electron microscopy (TEM). Electrical properties have also been investigated by Hall measurements and four-point probe. The mobility of the transferred Si layer on glass is about 122cm2/V.s. The results show that the single-crystal silicon layer transferred onto glass by direct bonding keeps good quality for the applications of integrated circuits, transducers, and flat panel display.

  8. Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit.

    Science.gov (United States)

    Garay-Arroyo, A; Colmenero-Flores, J M; Garciarrubio, A; Covarrubias, A A

    2000-02-25

    The late embryogenesis abundant (LEA) proteins are plant proteins that are synthesized at the onset of desiccation in maturing seeds and in vegetative organs exposed to water deficit. Here, we show that most LEA proteins are comprised in a more widespread group, which we call "hydrophilins." The defining characteristics of hydrophilins are high glycine content (>6%) and a high hydrophilicity index (>1.0). By data base searching, we show that this criterion selectively differentiates most known LEA proteins as well as additional proteins from different taxons. We found that within the genomes of Escherichia coli and Saccharomyces cerevisiae, only 5 and 12 proteins, respectively, meet our criterion. Despite their deceivingly loose definition, hydrophilins usually represent stress. Evidence for the participation of one of the E. coli hydrophilins in the adaptive response to hyperosmotic conditions is presented. Apparently, hydrophilins represent analogous adaptations to a common problem in such diverse taxons as prokaryotes and eukaryotes.

  9. Rapid amorphization of molecular crystals by absorption of solvent molecules in the presence of hydrophilic matrices

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, S., E-mail: nakayama@nara-m.co.j [Technofarm Axesz Co., Ltd., 3-45-4 Kamiishihara, Chofu, Tokyo 182-0035 (Japan); Nara Machinery Co., Ltd., 2-5-7 Jounan-jima, Tokyo 143-0002 (Japan); Watanabe, T. [Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522 (Japan); Senna, M. [Technofarm Axesz Co., Ltd., 3-45-4 Kamiishihara, Chofu, Tokyo 182-0035 (Japan); Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522 (Japan)

    2009-08-26

    Two organic molecular crystalline species, ibuprophen (IB) and indomethacine (IM) were subjected to methanol absorption in the presence of hydrophilic organic matrix, hydroxypropyl methylcellulose (HPMC). While spraying of 8-10% methanol or water on the drug-matrix mixture decreased the subsequent milling time for amorphization, absorption of methanol in a closed container caused spontaneous amorphization of IB was observed to give a nanocomposites with macroscopic agglomerates up to 250 mum after methanol absorption for overnight. Gentle mechanical homogenization under saturated methanol vapor with a newly developed apparatus, a tandem rotation mill (TRM), brought about homogeneous grains of IB-HPMC nanocomposites with the average particle size, 30 mum. We observed amorphous particles of IB in 60 nm regime dispersed in HPMC matrix under a transmission electron microscope (TEM). In the case of IM, mechanical homogenization with TRM was indispensable to obtain similar nanocomposites with HPMC.

  10. Interplay between hydrophilicity and surface barriers on water transport in zeolite membranes

    Science.gov (United States)

    Fasano, Matteo; Humplik, Thomas; Bevilacqua, Alessio; Tsapatsis, Michael; Chiavazzo, Eliodoro; Wang, Evelyn N.; Asinari, Pietro

    2016-10-01

    A comprehensive understanding of molecular transport within nanoporous materials remains elusive in a broad variety of engineering and biomedical applications. Here, experiments and atomistic simulations are synergically used to elucidate the non-trivial interplay between nanopore hydrophilicity and surface barriers on the overall water transport through zeolite crystals. At these nanometre-length scales, these results highlight the dominating effect of surface imperfections with reduced permeability on the overall water transport. A simple diffusion resistance model is shown to be sufficient to capture the effects of both intracrystalline and surface diffusion resistances, thus properly linking simulation to experimental evidence. This work suggests that future experimental work should focus on eliminating/overcoming these surface imperfections, which promise an order of magnitude improvement in permeability.

  11. Molecular dynamics simulations of water on a hydrophilic silica surface at high air pressures

    DEFF Research Database (Denmark)

    Zambrano, H.A.; Walther, Jens Honore; Jaffe, R.L.

    2014-01-01

    of air in water at different pressures. Using the calibrated force field, we conduct MD simulations to study the interface between a hydrophilic silica substrate and water surrounded by air at different pressures. We find that the static water contact angle is independent of the air pressure imposed......Wepresent a force field forMolecular Dynamics (MD) simulations ofwater and air in contactwith an amorphous silica surface. We calibrate the interactions of each species present in the systemusing dedicated criteria such as the contact angle of a water droplet on a silica surface, and the solubility...... on the system. Our simulations reveal the presence of a nanometer thick layer of gas at the water–silica interface. We believe that this gas layer could promote nucleation and stabilization of surface nanobubbles at amorphous silica surfaces. © 2014 Elsevier B.V. All rights reserved....

  12. Turning hydrophilic bacteria into biorenewable hydrophobic material with potential antimicrobial activity via interaction with chitosan.

    Science.gov (United States)

    Hanpanich, Orakan; Wongkongkatep, Pravit; Pongtharangkul, Thunyarat; Wongkongkatep, Jirarut

    2017-04-01

    Alteration of a bacteriocin-producing hydrophilic bacterium, Lactococcus lactis IO-1, into a hydrophobic material with potential antimicrobial activity using chitosan was investigated and compared with five other bacterial species with industrial importance. The negatively charged bacterial cells were neutralized by positively charged chitosan, resulting in a significant increase in the hydrophobicity of the bacterial cell surface. The largest Gram-positive B. megaterium ATCC 14581 showed a moderate response to chitosan while the smaller E. coli DH5α, L. lactis IO-1 and P. putida F1 exhibited a significant response to an increase in chitosan concentration. Because L. lactis IO-1 is a good source for natural peptide lantibiotic that is highly effective against several strains of food spoilage organisms and pathogens, hydrophobic material derived from L. lactis IO-1 and chitosan is a promising novel material with antimicrobial activity for the food and pharmaceutical industries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Bubble dynamics and heat transfer for pool boiling on hydrophilic, superhydrophobic and biphilic surfaces

    Science.gov (United States)

    Teodori, E.; Palma, T.; Valente, T.; Moita, A. S.; Moreira, A. L. N.

    2016-09-01

    This paper proposes a detailed analysis of bubble dynamics to describe pool boiling heat transfer in extreme wetting scenarios (superhydrophobic vs hydrophilic). A mechanistic approach, based on extensive post-processing allows quantifying the relative advantage of the superhydrophobic surfaces to endorse the onset of boiling at very low superheats (1-2K) vs their worse heat transfer performance associated to the swift formation of an insulating vapour film. Based on this analysis, a simple biphilic surface is created. The results suggest that for high heat fluxes, bubble dynamics is dominated by the emission of very small bubbles, which seems to affect the interaction mechanisms, precluding the emission of the large bubbles from the surface, thus compromising the good performance of the biphilic surfaces.

  14. Expression of a hydrophilic surface protein in infective stages of Leishmania major.

    Science.gov (United States)

    Flinn, H M; Rangarajan, D; Smith, D F

    1994-06-01

    A family of differentially expressed genes from Leishmania major contains one sequence (Gene B) that encodes a novel, hydrophilic protein found on the surface of infective parasite stages. The 177-residue, acidic Gene B protein is characterised by an amino acid repetitive element, comprising 45% of the total molecule, that is related to the cell-wall binding domain of protein A from Staphylococcus aureus. No identifiable signal peptide, membrane-spanning domain or consensus for glycosylphosphatidylinositol anchor attachment to the cell surface is found elsewhere in the deduced protein sequence. In vitro, the Gene B protein fractionates with the parasite cell surface glycoconjugates, lipophosphoglycan and the glycoinositolphospholipids. This protein is the first characterised surface peptide marker for infective stages of the Leishmania life cycle.

  15. Hydroxylation of Benzene to Phenol via Hydrogen Peroxide in Hydrophilic Triethylammonium Acetate Ionic Liquid

    Institute of Scientific and Technical Information of China (English)

    HU Xiao-ke; ZHU Liang-fang; GUO Bin; LIU Qiu-yuan; LI Gui-ying; HU Chang-wei

    2011-01-01

    A new Fenton-like system in a medium of hydrophilic triethylammonium type of ionic liquid(IL) was used for the hydroxylation of benzene to phenol. The triethylammonium acetate([Et3NH][CH3COO]) IL exhibited retardation performance for the decomposition of H2O2 and protection performance for the further oxidation of phenol,thus the yield and selectivity to phenol were promoted greatly. The acidity of the system was proved to be an important factor for the selectivity to phenol. The utilization of H2O2 and the selectivity to phenol, as well as the Turnover number(TON) of the catalyst were effectively enhanced by a benzene-[Et3NH][CH3COO] bi-phase system. The catalyst with [Et3NH][CH3COO] IL was recycled with stable catalytic performance.

  16. Development and evaluation of a hydrophilic matrix as a buccoadhesive system containing diclofenac sodium

    Directory of Open Access Journals (Sweden)

    Thaiz Cristina Wypych

    2011-10-01

    Full Text Available The aim of this work was to study the development and evaluation of a hydrolphilic matrix as a buccoadhesive system containing diclofenac sodium. Eleven formulations were prepared containing the following bioadhesive polymers: hydroxylpropylmethylcellulose, polycarbophil, guar gum and xanthan gum individually and in combination. All the formulations were evaluated for the swelling index, adhesive index, and the time of adhesive and drug release profile (%. The results showed that the formulations that presented the most swelling index were the F3 (PAA/GX and F6 (GG/GX. The smaller index swelling was for F1 (PAA/CM and F10 (HPCMC/CM. The F4 (PAA/HPMC formulation presented the best adhesive index and F10 (HPMC/CM the worst. F1 (PAA/CM was the best matrix hydrophilic adhesive for controlled release. The hydroxylpropylmethylcellulose, guar and xanthan gum when used individually presented low adhesiveness.

  17. Determination of metformin and its prodrugs in human and rat blood by hydrophilic interaction liquid chromatography.

    Science.gov (United States)

    Huttunen, Kristiina M; Rautio, Jarkko; Leppänen, Jukka; Vepsäläinen, Jouko; Keski-Rahkonen, Pekka

    2009-10-15

    Simple and specific hydrophilic interaction liquid chromatography (HILIC) method with ultraviolet (UV) detection was developed for the simultaneous determination of highly water-soluble metformin and its more lipophilic prodrugs in human and rat blood samples. The sample preparation was accomplished by precipitating proteins with acetonitrile, which enabled the direct injection of supernatants to the HPLC. Chromatographic separation was performed on an analytical normal phase silica column using a mixture of 0.01 M ammonium acetate pH 5.0 and acetonitrile (40:60, v/v) as a mobile phase at flow rate of 1 ml/min and at the wavelength of 235 nm. The method was validated in terms of specificity, linearity, accuracy, precision, recovery, and analyte stability. The UV-HILIC method was suitable for detecting both metformin and one of its more lipophilic prodrugs simultaneously in human and rat blood samples.

  18. Numerical analysis of the movement of an initially hemispherical droplet hydrophilic/hydrophobic surface

    Energy Technology Data Exchange (ETDEWEB)

    Myong, Hyong Kook; Kwon, Young Hoo [Dept. of Mechanical Engineering, Kookmin University, Seoul (Korea, Republic of)

    2015-03-15

    Fluid transport is a key issue in the development of microfluidic systems. Recently, Myong (2014) has proposed a new concept for droplet transport without external power sources and numerically validated the results for a hypothetical 2D, initially having a hemicylindrical droplet. In this paper, the movement of an actual water droplet, initially having a 3D hemispherical shape, on horizontal hydrophilic/hydrophobic surfaces is simulated using a commercial computational fluid dynamics (CFD) package, Fluent, with VOF (volume of fluid) method. The results are compared with the 2D analysis of Myong (2014), and the transport mechanism for the actual water droplet is examined based on the numerical results of the time evolution of the droplet shape, as well as the total kinetic, gravitational, surface free and pressure energies inside the droplet.

  19. A New Concept to Transport a Droplet on Horizontal Hydrophilic/Hydrophobic Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Myong, Hyon Kook [Kookmin Univ., Seoul (Korea, Republic of)

    2014-03-15

    A fluid transport technique is a key issue for the development of microfluidic systems. In this paper, a new concept for transporting a droplet without external power sources is proposed and verified numerically. The proposed device is a heterogeneous surface which has both hydrophilic and hydrophobic horizontal surfaces. The numerical simulation to demonstrate the new concept is conducted by an in-house solution code (PowerCFD) which employs an unstructured cell-centered method based on a conservative pressure-based finite-volume method with interface capturing method (CICSAM) in a volume of fluid (VOF) scheme for phase interface capturing. It is found that the proposed concept for droplet transport shows superior performance for droplet transport in microfluidic systems.

  20. Transport mechanism of an initially spherical droplet on a combined hydrophilic/hydrophobic surface

    Energy Technology Data Exchange (ETDEWEB)

    Myong, Hyon Kook; Kwon, Young Hoo [Dept. of Mechanical Engineering, Kookmin University, Seoul (Korea, Republic of)

    2015-11-15

    Fluid transport is a key issue in the development of microfluidic systems. Recently, Myong (2014) has proposed a new concept for droplet transport without external power sources, and numerically validated the results for a hypothetical 2D shape, initially having a hemicylindrical droplet shape. Myong and Kwon (2015) have also examined the transport mechanism for an actual water droplet, initially having a 3D hemispherical shape, on a horizontal hydrophilic/hydrophobic surface, based on the numerical results of the time evolution of the droplet shape, as well as the total kinetic, gravitational, pressure and surface free energies inside the droplet. In this study, a 3D numerical analysis of an initially spherical droplet is carried out to establish a new concept for droplet transport. Further, the transport mechanism of an actual water droplet is examined in detail from the viewpoint of the capillarity force imbalance through the numerical results of droplet shape and various energies inside the droplet.

  1. Hydrophilicity improvement in polyphenylsulfone nanofibrous filtration membranes through addition of polyethylene glycol

    Science.gov (United States)

    Kiani, Shirin; Mousavi, Seyed Mahmoud; Shahtahmassebi, Nasser; Saljoughi, Ehsan

    2015-12-01

    Novel hydrophilic polyphenylsulfone (PPSU) nanofibrous membrane was prepared by electrospinning of the PPSU solution blended with polyethylene glycol 400 (PEG 400). The influence of the PEG concentration on the membrane characteristics was studied using scanning electron microscopy (SEM), water contact angle measurement, and tensile test. Filtration performance of the membranes was investigated by measurement of pure water flux (PWF) and determination of the rejection values of the pollution indices during treatment of canned beans production wastewater. According to the results, blending the PPSU solution with 10 wt.% PEG 400 resulted in formation of a nanofibrous membrane with high porosity and increased mechanical strength which exhibited a low water contact angle of 8.9° and high water flux of 7920 L/m2h. Flux recovery of the mentioned membrane which was assessed by filtration of a solution containing bovine serum albumin (BSA) was 83% indicating a noticeable antifouling property.

  2. Reversible Self-Assembly of Hydrophilic Inorganic Polyelectrolytes into Highly Conservative, Vesicle-like Structures

    Science.gov (United States)

    Kistler, Melissa; Bhatt, Anish; Liu, Guang; Liu, Tianbo

    2007-03-01

    The hydrophilic polyoxometalate (POM) macroanions are inorganic polyelectrolytes which offer a direct connection between simple ions and organic polyelectrolytes. POM solutions are perfect model systems for studying polyelectrolyte solutions because they are identical in size, shape, mass and charges, with easily tunable charge density. Many types of POM macroanions are highly soluble but undergo reversible self-assembly to form uniform, stable, soft, single-layer vesicle-like ``blackberry'' structures containing >1000 individual POMs in dilute solutions. The driving force of the blackberry formation is likely counterion-mediated attraction (like-charge attraction). The blackberry size can be accurately controlled by solvent quality, or the charge density on macroions. Many unexpected phenomena have been observed in these novel systems. Blackberry structures may be analogous to virus shell structures formed by capsid proteins. References: Nature, 2003, 426, 59; JACS, 2002, 124, 10942; 2003, 125, 312; 2004, 126, 16690; 2005, 127, 6942; 2006, 128, 10103.

  3. Strong Attractions with Controllable Size between Hydrophilic Inorganic Macroanions and Reversible Supramolecular Formations

    Science.gov (United States)

    Kistler, Melissa; Bhatt, Anish; Liu, Guang; Liu, Tianbo

    2007-03-01

    The polyoxometalate (POM) hydrophilic macroionic solutions, offer a direct connection between traditional fields of simple inorganic ions, colloidal suspensions, polyelectrolytes, particularly proteins and DNAs. Many types of POM macroanions are highly soluble, but undergo reversible self-assembly to form uniform, stable, soft, single-layer vesicle-like ``blackberry'' structures containing >1000 individual POMs in dilute solutions. Blackberry structures represent a new state of soluble inorganic ions. The driving forces of the POM self-assembly are unlike those of surfactant micelles or colloid aggregates. The POM driving forces are most likely counterion-mediated attraction (like-charge attraction). Blackberry size is controlled by the solvent quality, or the charge density of macroions. Blackberry structures may be analogous to virus shell structures formed by capsid proteins. Unexpected phenomena have been observed in the novel POM systems. References: JACS. 2005, 127, 6942; 2003, 125, 312; 2002, 124, 10942. Nature, 2003, 426, 59. J. Clust. Sci, 2006, 17, 427.

  4. The formation of hydrophilic Np(IV) complexes and their potential application in nuclear fuel reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    May, I.; Taylor, R.J.; Brown, G. [British Nuclear Fuels Ltd., Sellafield (United Kingdom)

    1998-06-12

    A series of organic ligands have been screened for their effectiveness as complexants for Np(IV) in a neptunium rejection stage of an advanced PUREX process. Four of these species, formohydroxamic acid, acetohydroxamic acid, glycolic acid and pyruvic acid, readily form hydrophilic complexes with Np(IV) and can strip the actinide from 30% TBP/OK (30% tributylphosphate in odourless kerosene) into nitric acid. Near infra-red spectroscopy has been used to monitor Np(IV) complexation in nitric acid. Distribution experiments have been undertaken between nitric acid and 30% TBP/OK to examine the effect of ligand and nitric acid concentration on Np(IV) stripping. Finally, it has been shown that the extractability of U(VI) is unaffected by the presence of these ligands and all can be used to selectively strip Np(IV) from a U(VI) product stream in an advanced PUREX process. (orig.) 11 refs.

  5. Extraction of phenols from lignin microwave-pyrolysis oil using a switchable hydrophilicity solvent.

    Science.gov (United States)

    Fu, Dongbao; Farag, Sherif; Chaouki, Jamal; Jessop, Philip G

    2014-02-01

    Microwave pyrolysis of lignin, an aromatic polymer byproduct from paper-pulping industry, produces char, gases, and lignin pyrolysis oil. Within the oil are valuable phenolic compounds such as phenol, guaiacol and catechol. In this work, we describe a method using switchable hydrophilicity solvents (SHS) to extract phenols as a mixture from lignin microwave-pyrolysis oil at the scale of 10 g of bio-oil. Even at this small scale, losses are small; 96% of the bio-oil was recovered in its three fractions, 72% of guaiacol and 70% of 4-methylguaiacol, the most abundant phenols in the bio-oil, were extracted and 91% of the solvent SHS was recovered after extraction. The starting material (lignin microwave-pyrolysis oil) and the three fractions resulted from SHS extraction were characterized by GC-MS and quantitative (13)C{(1)H} and (31)P{(1)H} NMR spectroscopy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Surface modification with both phosphorylcholine and stearyl groups to adjust hydrophilicity and hydrophobicity

    Energy Technology Data Exchange (ETDEWEB)

    Lv Jiuan; Ma Jiani; Huangfu Pengbo; Yang Shan [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry, Northwest University, Xi' an 710069 (China); Gong Yongkuan [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry, Northwest University, Xi' an 710069 (China)], E-mail: gongyk@nwu.edu.cn

    2008-11-15

    A new monolayer film with tunable hydrophilicity and hydrophobicity was constructed on glass coverslips by stepwise grafting with both phosphorylcholine (PC) and stearyl groups. The glass coverslips were firstly hydroxylized to provide reactive sites on the surfaces. Subsequently, chlorodimethyl-n-octadecylsilane was chemically adsorbed onto the surface to impart the required hydrophobicity. The remaining hydroxyl groups were grafted with 1,6-diisocyanatohexane. Finally, 2-hydroxy-2-ethylphosphorylcholine was grafted onto the attached isocyanate groups. Dynamic contact angle (DCA) measurement and X-ray photoelectron spectroscopy (XPS) analysis confirmed that the step-by-step modification process was successful. The adsorption of bovine serum albumin and bovine plasma fibrinogen, as well as the adhesion and aggregation of platelets were suppressed with the introduction of phospholipid moieties on the surfaces. This tunable surface may have potential applications in the fields of separation science, tissue engineering, cytobiology, drug delivery and gene therapy.

  7. OPTIMISATION OF A HYDROPHILIC INTERACTION LIQUID CHROMATOGRAPHY METHOD FOR CATECHOLAMINES AND RELATED MOLECULES ANALYSIS

    Directory of Open Access Journals (Sweden)

    RALUCA-IOANA CHIRITA-TAMPU

    2017-03-01

    Full Text Available A simple and specific method for the analysis of 11 compounds (catecholamines, their precursors and their metabolites has been developed using hydrophilic interaction chromatography. Adrenaline, noradrenalin, dopamine, serotonin, 3,4-dihydroxy-phenylalanine, 3-methoxytyramine, tryptophan, homovanillic acid, tyrosine, 3,4-dihydroxy-phenylacetic acid, 5-hydroxyindole-3-acetic acid and 3,4-dihydroxybenzylalanine (as internal standard were separated on a TSK gel amide 80 column. The influence of parameters such as organic modifier type and content, salt nature and concentration, pH as well as column temperature on the selectivity were investigated. The optimized mobile phase consisted of a 20 mM ammonium acetate aqueous solution buffered at pH 3 and acetonitrile (20:80 v/v mixture.

  8. Magnetic resonance imaging on complications of breast augmentation with injected hydrophilic polyacrylamide gel

    Institute of Scientific and Technical Information of China (English)

    XU Li-ying; KONG Xiang-quan; TIAN Zhi-xiong; QIU Da-sheng

    2006-01-01

    @@ The injection augmentation mammaplasty for cosmetic purpose has been popular recently in China. Two kinds of injectable material are used clinically, autologous fat and biomaterial. The fat injection for breast augmentation is in question with the major problems of progressive fat re-absorption,microcalcification, and fat liquefaction.1 Now, the principal alloplastic biomaterial for injection augmentation mammaplasty in China is hydrophilic polyacrylamide gel (HPAAG). Although thousands of breasts have been augmented with HPAAG and it seems to be a good biocompatible material, some complications develop after HPAAG injection augmentation mammaplasty.2-4 The patients had to undergo surgery to remove the injected HPAAG and associated lesions. Ultrasonography or magnetic resonance imaging (MRI) should be taken preoperatively to demonstrate the distribution of injected HPAAG and associated lesions.5 In this report, the diagnostic value and clinical significance of MRI on the complications of HPAAG breast augmentation were discussed.

  9. A novel amide stationary phase for hydrophilic interaction liquid chromatography and ion chromatography.

    Science.gov (United States)

    Shen, Guobin; Zhang, Feifang; Yang, Bingcheng; Chu, Changhu; Liang, Xinmiao

    2013-10-15

    A novel amide stationary phase (ASP) for hydrophilic interaction liquid chromatography (HILIC) has been prepared via the Click chemistry method. It was based on the strategy that the amino group of Asparagine was easily transferred to the corresponding azido group and then clicked onto terminal alkyne-silica gel in the presence of Cu(I)-based catalyst. For the tested polar compounds including nucleosides and nucleic acid bases, ASP-based column has demonstrated good performance in terms of separation efficiency and column stability, and the retention mechanism was found to match well the typical HILIC retention. In addition, the ASP described here showed much better selectivity in separation of inorganic anions under ion chromatography mode relative to other kinds of commercial ASP.

  10. Rendering graphene supports hydrophilic with non-covalent aromatic functionalization for transmission electron microscopy

    CERN Document Server

    Pantelic, Radosav S; Schoenenberger, Christian; Stahlberg, Henning

    2014-01-01

    Amorphous carbon films have been routinely used to enhance the preparation of frozen-hydrated transmission electron microscopy (TEM) samples, either in retaining protein concentration, providing mechanical stability or dissipating sample charge. However, strong background signal from the amorphous carbon support obstructs that of the sample, and the insulating properties of amorphous carbon films preclude any efficiency in dispersing charge. Graphene addresses the limitations of amorphous carbon. Graphene is a crystalline material with virtually no phase or amplitude contrast and unparalleled, high electrical carrier mobility. However, the hydrophobic properties of graphene have prevented its routine application in Cryo-TEM. This letter reports a method for rendering graphene TEM supports hydrophilic - a convenient approach maintaining graphene's structural and electrical properties based on non-covalent, aromatic functionalization.

  11. On the slip number choice in computations of liquid droplet impinging on a hydrophilic surface

    CERN Document Server

    Ganesan, Sashikumaar

    2015-01-01

    A mesh-dependent relation for the slip number in the Navier-slip with friction boundary condition for computations of impinging droplets is proposed. The relation is obtained as a function of the Reynolds number, the Weber number and the mesh size. The proposed relation is validated for several test cases by comparing the numerically obtained wetting diameter with the experimental results. Further, the computationally obtained maximum wetting diameter using the proposed slip relation is verified with the theoretical predictions. The relative error between the computationally obtained maximum wetting diameter and the theoretical predictions is less than 10\\% for impinging droplet on a hydrophilic surface, and the error increases in the case of hydrophobic surface.

  12. Charge-transfer reactions between C{sub 60} and hydrophilic solutes

    Energy Technology Data Exchange (ETDEWEB)

    Dimitrijevic, N.M.; Nedeljkovic, J.M.; Saponjic, Z.V. [Institute for Nuclear Sciences ``Vinca``, Belgrade (Yugoslavia)

    1998-10-01

    Two different procedures for dissolving fullerene molecule C{sub 60} into aqueous solutions have been developed. Embedding C{sub 60} clusters into a water-soluble host molecule of {gamma}-cyclodextrin resulted in relatively low concentration of C{sub 60} (5-10 {mu}M). Prepare of a stable ionic surfactant/water/oil microemulsion provided a method for dissolving C{sub 60} in relatively high concentrations (1 mM). In both cases charge-transfer reactions between hydrophobic molecule of C{sub 60} and hydrophilic solutes were examined. Anion radical C{sub 60}{sup -} was detected in reaction with radiolytically produced radicals (e{sub aq}{sup -}, (CH{sub 3}){sub 2}COH or MV{sup +}), and in reaction with excess electrons stored onto nanometer-sized metal (Ag) or quantized semiconductor (TiO{sub 2}) particles. (orig.) 33 refs.

  13. Formulation of gastroretentive floating drug delivery system using hydrophilic polymers and its in vitro characterization

    Directory of Open Access Journals (Sweden)

    Venkata Srikanth Meka

    2014-04-01

    Full Text Available The aim of the present research is to formulate and evaluate the gastroretentive floating drug delivery system of antihypertensive drug, propranolol HCl. Gastroretentive floating tablets (GRFT were prepared by using a synthetic hydrophilic polymer polyethylene oxide of different grades such as PEO WSR N-12 K and PEO 18 NF as release retarding polymers and calcium carbonate as gas generating agent. The GRFT were compressed by direct compression strategy and the tablets were evaluated for physico-chemical properties, in vitro buoyancy, swelling studies, in vitro dissolution studies and release mechanism studies. From the dissolution and buoyancy studies, F 9 was selected as an optimized formulation. The optimized formulation followed zero order rate kinetics with non-Fickian diffusion mechanism. The optimized formulation was characterised with FTIR studies and observed no interaction between the drug and the polymers.

  14. A comparative study of three different synthesis routes for hydrophilic fluorophore-doped silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Shahabi, Shakiba [University of Bremen, Advanced Ceramics (Germany); Treccani, Laura, E-mail: treccani@petroceramics.com [Petroceramics S.p.A., Kilometro Rosso Science Park (Italy); Rezwan, Kurosch [University of Bremen, Advanced Ceramics (Germany)

    2016-01-15

    The synthesis of fluorophore-doped silica nanoparticles (FDS NPs) with two conventional approaches, Stöber and microemulsion, as well as a novel amino acid-catalyzed seeds regrowth technique (ACSRT) is presented. The efficiency of each applied synthesis route toward incorporation of selected hydrophilic fluorophores, including rhodamine B isothiocyanate and fluorescein isothiocyanate, without and with an amine-containing crosslinker, into silica matrix was systematically studied. Our results clearly highlight the advantages of ACSRT to obtain FDS NPs with a remarkable encapsulation efficiency, high quantum yield, and enhanced stability against bleaching and dye leaking due to efficient embedding of the dyes inside silica network even without the amine-containing silane reagent. Moreover, evaluation of photostability of FDNPs internalized in human bone cells demonstrates the merits of ACSRT.

  15. Highly Hydrophilic Polyvinylidene Fluoride (PVDF) Ultrafiltration Membranes via Postfabrication Grafting of Surface-Tailored Silica Nanoparticles

    KAUST Repository

    Liang, Shuai

    2013-07-24

    Polyvinylidene fluoride (PVDF) has drawn much attention as a predominant ultrafiltration (UF) membrane material due to its outstanding mechanical and physicochemical properties. However, current applications suffer from the low fouling resistance of the PVDF membrane due to the intrinsic hydrophobic property of the membrane. The present study demonstrates a novel approach for the fabrication of a highly hydrophilic PVDF UF membrane via postfabrication tethering of superhydrophilic silica nanoparticles (NPs) to the membrane surface. The pristine PVDF membrane was grafted with poly(methacrylic acid) (PMAA) by plasma induced graft copolymerization, providing sufficient carboxyl groups as anchor sites for the binding of silica NPs, which were surface-tailored with amine-terminated cationic ligands. The NP binding was achieved through a remarkably simple and effective dip-coating technique in the presence or absence of the N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC)/N-hydroxysuccinimide (NHS) cross-linking process. The properties of the membrane prepared from the modification without EDC/NHS cross-linking were comparable to those for the membrane prepared with the EDC/NHS cross-linking. Both modifications almost doubled the surface energy of the functionalized membranes, which significantly improved the wettability of the membrane and converted the membrane surface from hydrophobic to highly hydrophilic. The irreversibly bound layer of superhydrophilic silica NPs endowed the membranes with strong antifouling performance as demonstrated by three sequential fouling filtration runs using bovine serum albumin (BSA) as a model organic foulant. The results suggest promising applications of the postfabrication surface modification technique in various membrane separation areas. © 2013 American Chemical Society.

  16. Bioremediation of aqueous pollutants using biomass embedded in hydrophilic foam. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wilde, E.W.; Radway, J.C.; Santo Domingo, J.; Zingmark, R.G.; Whitaker, M.J.

    1996-12-31

    The major objective of this project was to examine the potential of a novel hydrophilic polyurethane foam as an immobilization medium for algal, bacteria, and other types of biomass, and to test the resulting foam/biomass aggregates for their use in cleaning up waters contaminated with heavy metals, radionuclides and toxic organic compounds. Initial investigations focused on the bioremoval of heavy metals from wastewaters at SRS using immobilized algal biomass. This effort met with limited success for reasons which included interference in the binding of biomass and target metals by various non-target constituents in the wastewater, lack of an appropriate wastewater at SRS for testing, and the unavailability of bioreactor systems capable of optimizing contact of target pollutants with sufficient biomass binding sites. Subsequent studies comparing algal, bacterial, fungal, and higher plant biomass demonstrated that other biomass sources were also ineffective for metal bioremoval under the test conditions. Radionuclide bioremoval using a Tc-99 source provided more promising results than the metal removal studies with the various types of biomass, and indicated that the alga Cyanidium was the best of the tested sources of biomass for this application. However, all of the biomass/foam aggregates tested were substantially inferior to a TEVA resin for removing Tc-99 in comparative testing. The authors also explored the use of hydrophilic polyurethane foam to embed Burkholderia cepacia, which is an efficient degrader of trichloroethylene (TCE), a contaminant of considerable concern at SRS and elsewhere. The embedded population proved to be incapable of growth on nutrient media, but retained respiratory activity. Lastly, the degradative capabilities of embedded G4 were examined. Phenol- or benzene-induced bacteria retained the ability to degrade TCE and benzene. The authors were successful in inducing enzyme activity after the organisms had already been embedded.

  17. Prevention of capsular bag opacification with a modified hydrophilic acrylic disk-shaped intraocular lens.

    Science.gov (United States)

    Leishman, Lisa; Werner, Liliana; Bodnar, Zachary; Ollerton, Andrew; Michelson, Jennifer; Schmutz, Mason; Mamalis, Nick

    2012-09-01

    To evaluate the stability and capsular bag opacification with a modified disk-shaped 1-piece hydrophilic acrylic intraocular lens (IOL) suspended between 2 complete haptic rings connected by a pillar of the haptic material and with a commercially available 1-piece hydrophilic acrylic IOL. John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, USA. Experimental study. Study and control IOLs were implanted into the left eyes and right eyes of 5 New Zealand rabbits. Eyes were examined at the slitlamp from 1 through 4 weeks. At 4 weeks, the globes were enucleated and evaluated under a very-high-frequency ultrasound. Photographs were taken and capsular bag opacification scored from the posterior aspect (Miyake-Apple view), and the eyes were processed for complete histopathology. At 4 weeks, the posterior capsule opacification score was 0.0 in the study group and 1.75 ± 0.5 (SD) in the control group (P=.005, paired t test). Ultrasound examination showed that 2 of the study IOLs had no contact between the posterior optic surface and the posterior capsule. Minimal proliferative cortical material was confined to the peripheral space between anterior and posterior rings of the study IOL haptics in localized areas at the equatorial region of the capsular bag. Anterior capsule opacification was absent in all eyes. The study IOL is a modification of a previous design, incorporating haptic perforations between the peripheral rings. By maintaining an open capsular bag and enhancing endocapsular inflow of aqueous, this modified design appears to prevent capsular bag opacification. Copyright © 2012 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  18. Surface morphological modification of crosslinked hydrophilic co-polymers by nanosecond pulsed laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Primo, Gastón A.; Alvarez Igarzabal, Cecilia I. [IMBIV (CONICET), Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Edificio de Ciencias II, Ciudad Universitaria, Córdoba X5000HUA (Argentina); Pino, Gustavo A.; Ferrero, Juan C. [INFIQC (CONICET), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, and Centro Láser de Ciencias Moleculares, Universidad Nacional de Córdoba, Córdoba X5000IUS (Argentina); Rossa, Maximiliano, E-mail: mrossa@fcq.unc.edu.ar [INFIQC (CONICET), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, and Centro Láser de Ciencias Moleculares, Universidad Nacional de Córdoba, Córdoba X5000IUS (Argentina)

    2016-04-30

    Graphical abstract: - Highlights: • Laser-induced surface modification of crosslinked hydrophilic co-polymers by ns pulses. • Formation of ablation craters observed under most of the single-pulse experimental conditions. • UV laser foaming of dried hydrogel samples resulting from single- and multiple-pulse experiments. • Threshold values of the incident laser fluence reported for the observed surface modifications. • Lower threshold fluences for acrylate-based, compared to acrylamide-based hydrogels. - Abstract: This work reports an investigation of the surface modifications induced by irradiation with nanosecond laser pulses of ultraviolet and visible wavelengths on crosslinked hydrophilic co-polymeric materials, which have been functionalized with 1-vinylimidazole as a co-monomer. A comparison is made between hydrogels differing in the base co-monomer (N,N-dimethylaminoethyl methacrylate and N-[3-(dimethylamino)propyl] methacrylamide) and in hydration state (both swollen and dried states). Formation of craters is the dominant morphological change observed by ablation in the visible at 532 nm, whereas additional, less aggressive surface modifications, chiefly microfoams and roughness, are developed in the ultraviolet at 266 nm. At both irradiation wavelengths, threshold values of the incident laser fluence for the observation of the various surface modifications are determined under single-pulse laser irradiation conditions. It is shown that multiple-pulse irradiation at 266 nm with a limited number of laser shots can be used alternatively for generating a regular microfoam layer at the surface of dried hydrogels based on N,N-dimethylaminoethyl methacrylate. The observations are rationalized on the basis of currently accepted mechanisms for laser-induced polymer surface modification, with a significant contribution of the laser foaming mechanism. Prospective applications of the laser-foamed hydrogel matrices in biomolecule immobilization are suggested.

  19. Permanent hydrophilic modification of polypropylene and poly(vinyl alcohol) films by vacuum ultraviolet radiation

    Energy Technology Data Exchange (ETDEWEB)

    Belmonte, Guilherme Kretzmann [Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Bento Gonçalves 9500, 91501-970 Porto Alegre, RS (Brazil); Charles, German [Centro de Química Aplicada (CEQUIMAP), Facultad de Ciencias Químicas, Unversidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Edificio de Ciencias II, Ciudad Universitaria, Córdoba 5000 (Argentina); Strumia, Miriam Cristina [Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, IPQA-Conicet, Haya de la Torre y Medina Allende, Edificio de Ciencias II, Ciudad Universitaria, Córdoba 5000 (Argentina); Weibel, Daniel Eduardo, E-mail: danielw@iq.ufrgs.br [Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Bento Gonçalves 9500, 91501-970 Porto Alegre, RS (Brazil)

    2016-09-30

    Highlights: • Polypropylene and Poly(vinyl alcohol) were surface modified by vacuum ultraviolet (VUV) irradiation. • The hydrophilicity of the treated films was permanent and resisted aging for several months. • Grafting of styrene monomer was only observed in the VUV irradiated regions. • The obtained results showed the potential in the use of VUV treatment for surface modification and processing of polymers which lack chromophores in the UV region. - Abstract: Polypropylene (PP) and Poly(vinyl alcohol) (PVA) both synthetics polymers but one of them biodegradable, were surface modified by vacuum ultraviolet (VUV) irradiation. After VUV irradiation in an inert nitrogen atmosphere, the films were exposed to oxygen gas. The treated films were characterized by water contact angle measurements (WCA), optical profilometry, FTIR-ATR, XPS, UPS and NEXAFS techniques. PP and PVA VUV-treated films reached superhydrophilic conditions (WCAs <10°) in about 30 min of irradiation under our experimental conditions. It was observed that when the WCAs reached about 35–40° the hydrophilicity was permanent in both polymers. These results contrasted with typical plasma treatments were a rapid hydrophobic recovery with aging time is usually observed. UPS and XPS data showed the presence of new functionalities on the PP and PVA surfaces that were assigned to COO, C=O, C−O and C=C functional groups. Finally, grafting of styrene (ST) as a typical monomer was tested on PP films. It was confirmed that only in the VUV irradiated region an efficient grafting of ST or polymerized ST was found. Outside the irradiated regions no ST grafted was observed. Our results showed the potential use of VUV treatment for surface modification and processing of polymers which lack chromophores in the UV region.

  20. Hydrophilic polysulfone film prepared from polyethylene glycol monomethylether via coupling graft

    Science.gov (United States)

    Du, Ruikui; Gao, Baojiao; Li, Yanbin

    2013-06-01

    In the presence of acid-acceptor Na2CO3, the nucleophilic substitution between chloromethylated polysulfone (CMPSF) and polyethylene glycol monomethylether (PEGME) was conducted. Polyethylene glycol (PEG) was coupling-grafted onto the side chains of polysulfone (PSF) so that the graft copolymer PSF-g-PEG was prepared and the hydrophilic modification of polysulfone membrane material was realized. The chemical structure of PSF-g-PEG was characterized by FTIR and 1H NMR. The influence of the main factors on the coupling graft reaction was investigated. The water static contact angle of PSF-g-PEG membrane was determined and its property of resisting protein pollution was examined by using bovine serum albumin (BSA) as a model protein. The experimental results show that the coupling graft reaction between CMPSF and PEGME can proceed successfully, and the reaction of chloromethyl groups of CMPSF with the hydroxyl end groups of PEGME is a typical SN1 nucleophilic substitution reaction. The polarity of the solvents and the reaction temperature greatly influence the reaction. The suitable solvent is dimethyl acetamide with stronger polarity and 70 °C is a suitable reaction temperature. After reaction of 36 h, the grafting degree of PEG can reach 48 g/100 g and the product yield is about 73.6%. The contact angle of PSF-g-PEG membrane declines rapidly with the increase of PEG grafting degree, displaying the obvious enhancement of the hydrophilicity. The adsorption capacity of BSA on PSF-g-PEG membrane decreases remarkably with the increase of PEG grafting degree, showing excellent antifouling ability of PSF-g-PEG membrane for proteins.

  1. Evaluation of CC2 as a Decontaminant in Various Hydrophilic and Lipophilic Formulations Against Sulphur Mustard

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    To evaluate CC2 (N, N' -dichloro-bis [2, 4, 6-trichlorophenyl] urea) in various hydrophilic and lipophilic formulations as a personnel decontaminant for sulphur mustard (SM). Methods Twenty percent of CC2 was prepared as a suspension or ointment with various chemical agents and its stability was evaluated by active chlorine assay. The efficacy was evaluated in mice by recording the mortality after applying 29 LD50 of SM (LD50 =8.1 mg/kg dermally) and decontaminating it after 2 min with 200 mg of the formulation.Studies were also carried out with 10% and 20% CC2 in acacia and hydroxypropyl cellulose,and the suspensions were stored in polyethylene containers. The stability of the suspensions was evaluated by active chlorine assay. The efficacy was evaluated by recording the mortality after applying 29 LD50 of SM in mice and 12 LD50 of SM in rats (LD50 = 2.4 mg/kg dermally), and decontaminating it with the formulations. LD50 by different routes and primary skin irritation test of CC2 were also carried out. Results CC2 reacted with peanut oil and neem oil, and was unstable in povidone iodine and Fuller's earth. Good stability was achieved with petroleum jelly, honey, polyvinyl pyrrolidone, calamine lotion, acacia and hydroxypropyl cellulose. Though CC2 was stable in lipophilic formulations, it did not protect the animals. The hydrophilic formulations particularly acacia and hydroxypropyl cellulose gave very good protection and was stable in the polyethylene containers for a period of 1 year. The efficacy of 20% CC2 was better than 10% CC2. The oral and dermal LD50 of CC2 was found to be above 5.0 g/kg. CC2 was also found to be nonirritant.Conclusion Twenty percent of CC2 in hydroxypropyl cellulose is better with respect to stability, efficacy and ease of decontamination. CC2 is also a safe chemical.

  2. International Space Station Common Cabin Air Assembly Condensing Heat Exchanger Hydrophilic Coating Failures and Lessons Learned

    Science.gov (United States)

    Balistreri, Steven F.; Shaw, Laura A.; Laliberte, Yvon

    2010-01-01

    The ability to control the temperature and humidity of an environment or habitat is critical for human survival. These factors are important to maintaining human health and comfort, as well as maintaining mechanical and electrical equipment in good working order to support the human and to accomplish mission objectives. The temperature and humidity of the International Space Station (ISS) United States On-orbit Segment (USOS) cabin air is controlled by the Common Cabin Air Assembly (CCAA). The CCAA consists of a fan, a condensing heat exchanger (CHX), an air/water separator, temperature and liquid sensors, and electrical controlling hardware and software. The CHX is the primary component responsible for control of temperature and humidity. The CCAA CHX contains a chemical coating that was developed to be hydrophilic and thus attract water from the humid influent air. This attraction forms the basis for water removal and therefore cabin humidity control. However, there have been several instances of CHX coatings becoming hydrophobic and repelling water. When this behavior is observed in an operational CHX, the unit s ability to remove moisture from the air is compromised and the result is liquid water carryover into downstream ducting and systems. This water carryover can have detrimental effects on the cabin atmosphere quality and on the health of downstream hardware. If the water carryover is severe and widespread, this behavior can result in an inability to maintain humidity levels in the USOS. This paper will describe the operation of the five CCAAs within in the USOS, the potential causes of the hydrophobic condition, and the impacts of the resulting water carryover to downstream systems. It will describe the history of this behavior and the actual observed impacts to the ISS USOS. Information on mitigation steps to protect the health of future CHX hydrophilic coatings and potential remediation techniques will also be discussed.

  3. Evaluation of hydrophobic and hydrophilic kaolin particle films for peach crop, arthropod and disease management.

    Science.gov (United States)

    Lalancette, Norman; Belding, Robert D; Shearer, Peter W; Frecon, Jerome L; Tietjen, William H

    2005-01-01

    Hydrophobic and/or hydrophilic kaolin particle film treatments to peach (Prunus persica (L) Batsch) trees were evaluated for crop and pest management capabilities in six studies from 1997 to 2000. Unsprayed control and standard treatments, the latter consisting of a commercial pesticide program, were included for comparison. Treatments in initial studies were applied via handgun, which resulted in a uniform and heavy deposit of kaolin after the first application. In contrast, treatments in subsequent studies used airblast equipment, which provided a uniform but less dense coverage, even after multiple applications. Results showed that both formulations of kaolin provided control of oriental fruit moth (Grapholita molesta (Busck)), plum curculio (Conotrachelus nenuphar (Herbst)) and Japanese beetle (Popillia japonica Newman) that was comparable with or better than the standard pesticide program. Effective management of late season catfacing insects (tarnished plant bugs Lygus lineolaris (Palisot de Beauvois) and stinkbugs Acrosternum hilare (Say), Euschistus servus (Say), and E tristigmus (Say)) and leafrollers (undetermined species) was also observed, although kaolin applications significantly increased phytophagous mite (Panonychus ulmi (Koch)) levels. In contrast to arthropod management, kaolin failed to control either peach scab (Cladosporium carpophilum (Von Thumen)) or rusty spot (Podosphaera leucotricha (Ell and Ev) ES Salmon) in any of the 4 years of the study. However, hydrophobic kaolin provided effective brown rot (Monilinia fructicola (G Winter) Honey) control when applied via handgun, and partial control when applied via airblast; hydrophilic kaolin failed to provide any control. These results suggest that hydrophobicity and deposit density may be important factors for effective disease management. The application of kaolin significantly delayed fruit maturation, increased fruit size and increased soluble solids relative to the standard. This effect

  4. Deconvoluting the effects of buffer salt concentration in hydrophilic interaction chromatography on a zwitterionic stationary phase.

    Science.gov (United States)

    West, Caroline; Auroux, Emeline

    2016-08-26

    Quantitative structure-retention relationships (QSRRs) furnish a detailed and reliable description of the role and extent of different molecular interactions that can be established between the analytes and the chromatographic system. Among QSRRs, the solvation parameter model using Abraham descriptors has gained acceptance as a general tool to explore the factors affecting retention in chromatographic systems. We have previously shown how a modified version of the solvation parameter model, with two extra terms to take account of interactions occurring with ionic and ionizable species (with positive and/or negative charges), could be applied to the characterization of hydrophilic interaction chromatographic (HILIC) systems. In the present study, we will show how this methodology can be used to evaluate the effects of increasing buffer salt concentration on retention and separation in a HILIC system. A commercial stationary phase possessing a sulfobetaine zwitterionic bonded ligand (Nucleodur HILIC) was used with a mobile phase composed of 80% acetonitrile and 20% pwwH4 ammonium acetate buffer, with aqueous buffer concentrations varying from 10 to 100mM, resulting in overall concentrations ranging from 2 to 20mM in the mobile phase. Retention factors were measured for a selection of 76 probe analytes. The chosen compounds are small molecules presenting a wide diversity of molecular structures and are relevant to biomedical and pharmaceutical applications. The QSRR models obtained allow for a rationalization of the interactions contributing to retention and separation in the HILIC system considered and shed some light on the effect of varying buffer salt concentration, namely the progressive transition from ion-exchange and electrostatic-repulsion mechanisms to hydrophilic partitioning.

  5. Hydrophobic Clusters Raise the Threshold Hydrophilicity for Insertion of Transmembrane Sequences in Vivo.

    Science.gov (United States)

    Stone, Tracy A; Schiller, Nina; Workewych, Natalie; von Heijne, Gunnar; Deber, Charles M

    2016-10-11

    Insertion of a nascent membrane protein segment by the translocon channel into the bilayer is naturally promoted by high segmental hydrophobicity, but its selection as a transmembrane (TM) segment is complicated by the diverse environments (aqueous vs lipidic) the protein encounters and by the fact that most TM segments contain a substantial amount (∼30%) of polar residues, as required for protein structural stabilization and/or function. To examine the contributions of these factors systematically, we designed and synthesized a peptide library consisting of pairs of compositionally identical, but sequentially different, peptides with 19-residue core sequences varying (i) in Leu positioning (with five or seven Leu residues clustered into a contiguous "block" in the middle of the segment or "scrambled" throughout the sequence) and (ii) in Ser content (0-6 residues). The library was analyzed by a combination of biophysical and biological techniques, including HPLC retention times, circular dichroism measurements of helicity in micelle and phospholipid bilayer media, and relative blue shifts in Trp fluorescence maxima, as well as by the extent of membrane insertion in a translocon-mediated assay using microsomal membranes from dog pancreas endoplasmic reticulum. We found that local blocks of high hydrophobicity heighten the translocon's propensity to insert moderately hydrophilic sequences, until a "threshold hydrophilicity" is surpassed whereby segments no longer insert even in the presence of Leu blocks. This study codifies the prerequisites of apolar/polar content and residue positioning that define nascent TM segments, illustrates the accuracy in their prediction, and highlights how a single disease-causing mutation can tip the balance toward anomalous translocation/insertion.

  6. Anion exchangers with branched functional ion exchange layers of different hydrophilicity for ion chromatography.

    Science.gov (United States)

    Shchukina, O I; Zatirakha, A V; Smolenkov, A D; Nesterenko, P N; Shpigun, O A

    2015-08-21

    Novel polystyrene-divinylbenzene (PS-DVB) based anion exchangers differing from each other in the structure of the branched functional ion exchange layer are prepared to investigate the role of linker and functional site on ion exchange selectivity. The proposed method of synthesis includes the obtaining of aminated PS-DVB particles by means of their acylation with following reductive amination with methylamine. Further modification of the obtained secondary aminogroups is provided by the alkylation with either 1,4-butanediol diglycidyl ether (1,4-BDDGE) or resorcinol diglycidyl ether (RDGE), which form the linkers of different hydrophobicity, and amination of terminal epoxide rings with trimethylamine (TMA), dimethylethanolamine (DMEA), methyldiethanolamine (MDEA) or triethanolamine (TEA). The variation of the structure and hydrophobicity of the linker and terminal quaternary ammonium sites in the functional layer allows the alteration of selectivity and separation efficiency of the obtained adsorbents. The ion exchange selectivity and separation efficiency of the anion exchangers are evaluated using the model mixtures of anions (F(-), HCOO(-), Cl(-), NO2(-), Br(-), NO3(-), HPO4(2-) and SO4(2-)) in potassium hydroxide eluents. The adsorbents show the decrease of selectivity with increasing the hydrophilicity of the terminal functional site. The anion exchangers having more flexible and hydrophilic 1,4-BDDGE linker provide smaller separation factors for most of the analytes as compared with RDGE-containing adsorbents with the same terminal ion exchange sites, but are characterized with higher column efficiencies and better peak symmetry for polarizable anions. In case of 1,4-BDDGE-modified anion exchangers of the particle size of 3.3μm functionalized with DMEA and MDEA the calculated values of column efficiencies for polarizable NO3(-) and Br(-) are up to 49,000 and 53,000N/m, respectively, which is almost twice higher than the values obtained for the RDGE

  7. Super-hydrophilic surfaces by photo-induced micro-folding

    Energy Technology Data Exchange (ETDEWEB)

    Bahners, Thomas, E-mail: bahners@dtnw.de [Deutsches Textilforschungszentrum Nord-West e.V., Adlerstr. 1, 47798 Krefeld (Germany); Prager, Lutz; Kriehn, Stefanie [Leibniz-Institut fuer Oberflaechenmodifizierung e.V., Permoserstr. 15, 04318 Leipzig (Germany); Gutmann, Jochen S. [Deutsches Textilforschungszentrum Nord-West e.V., Adlerstr. 1, 47798 Krefeld (Germany); Universitaet Duisburg-Essen, Physikalische Chemie, Universitaetsstr. 5, 45141 Essen (Germany)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Totally wetting surfaces were prepared from UV cured acrylate layers. Black-Right-Pointing-Pointer The process of photo-induced micro-folding was employed for large area treatments. Black-Right-Pointing-Pointer Up to roughness factors of 1.2, the spreading followed a Wenzel-type behavior. Black-Right-Pointing-Pointer Spreading on surfaces of more pronounced roughness was governed by surface features. - Abstract: A two-step UV curing process of thin acrylate layers was employed to prepare micro-rough top-coats on polymer film. The concept of the process (known as 'photonic micro-folding') is to apply a thin acrylate layer on a substrate and cure the layer by subsequent exposures to VUV and broad band UV radiation. The first curing step leads to curing of the skin of the acrylate layer alone, which induces shrinkage and folding. This structure is fixed in the second curing step which affects the bulk of the acrylate layer. The process is easily applied to any substrate and large areas. By using hydrophilic hydroxypropylacrylate and polyethylenglycolmonoacrylate as the main components of the applied acrylate, perfectly wetting - super-hydrophilic - surfaces were obtained. This basically is in accordance with the concept of Wenzel's equation which relates the apparent contact angle to a roughness factor r given by the ratio of true and projected surface area. The analysis of the data of this work, however, shows that the spreading of a droplet on surfaces with r > 1.2 is governed by geometric effects such as blockage by the surface features and cannot by described by Wenzel's equation.

  8. Asymmetric electrostatic and hydrophobic-hydrophilic interaction forces between mica surfaces and silicone polymer thin films.

    Science.gov (United States)

    Donaldson, Stephen H; Das, Saurabh; Gebbie, Matthew A; Rapp, Michael; Jones, Louis C; Roiter, Yuri; Koenig, Peter H; Gizaw, Yonas; Israelachvili, Jacob N

    2013-11-26

    We have synthesized model hydrophobic silicone thin films on gold surfaces by a two-step covalent grafting procedure. An amino-functionalized gold surface reacts with monoepoxy-terminated polydimethylsiloxane (PDMS) via a click reaction, resulting in a covalently attached nanoscale thin film of PDMS, and the click chemistry synthesis route provides great selectivity, reproducibility, and stability in the resulting model hydrophobic silicone thin films. The asymmetric interaction forces between the PDMS thin films and mica surfaces were measured with the surface forces apparatus in aqueous sodium chloride solutions. At an acidic pH of 3, attractive interactions are measured, resulting in instabilities during both approach (jump-in) and separation (jump-out from adhesive contact). Quantitative analysis of the results indicates that the Derjaguin-Landau-Verwey-Overbeek theory alone, i.e., the combination of electrostatic repulsion and van der Waals attraction, cannot fully describe the measured forces and that the additional measured adhesion is likely due to hydrophobic interactions. The surface interactions are highly pH-dependent, and a basic pH of 10 results in fully repulsive interactions at all distances, due to repulsive electrostatic and steric-hydration interactions, indicating that the PDMS is negatively charged at high pH. We describe an interaction potential with a parameter, known as the Hydra parameter, that can account for the extra attraction (low pH) due to hydrophobicity as well as the extra repulsion (high pH) due to hydrophilic (steric-hydration) interactions. The interaction potential is general and provides a quantitative measure of interfacial hydrophobicity/hydrophilicity for any set of interacting surfaces in aqueous solution.

  9. The Effect of Hydrophilic and Hydrophobic Structure of Amphiphilic Polymeric Micelles on Their Transportation in Rats.

    Science.gov (United States)

    Deng, Feiyang; Yu, Chao; Zhang, Hua; Dai, Wenbing; He, Bing; Zheng, Ying; Wang, Xueqing; Zhang, Qiang

    2016-01-01

    In the previous study, we have clarified how the hydrophilic and hydrophobic structures of amphiphilic polymers impact the transport of their micelles (PEEP-PCL, PEG-PCL and PEG-DSPE micelles) in epithelial MDCK cells (Biomaterials 2013, 34: 6284-6298). In this study, we attempt to clarify the behavior of the three micelles in rats. Coumarin-6 loaded micelles were injected into different sections of intestine of rats and observed by confocal laser scanning microscope (CLSM) or orally administrated and conducted pharmacokinetic study. All of the three kinds of micelles were able to cross the intestinal epithelial cells and enter blood circulation. The PEEP-PCL micelles demonstrated the fastest distribution mainly in duodenum, while the PEGDSPE micelles showed the longest distribution with the highest proportion in ileum of the three. No significant difference was observed among the pharmacokinetic parameters of the three micelles. The results were consistent in the two analysis methods mentioned above, yet there were some differences between in vivo and in vitro results reported previously. It might be the distinction between the environments in MDCK model and intestine that led to the discrepancy. The hydrophobicity of nanoparticles could both enhance uptake and hinder the transport across the mucus. However, there was no intact mucus in MDCK model, which preferred hydrophobic nanoparticles. PEEP was the most hydrophilic material constructing the micelles in the study and its uptake would be increased in rats compared to that in MDCK model, while DSPE was more hydrophobic than the others and MDCK model would be more ideal for its uptake. Considering the inconsistency of the results in the two models, whether the methods researchers were generally using at present were reasonable needs further investigation.

  10. Simultaneous screening for lipophilic and hydrophilic toxins in marine harmful algae using a serially coupled reversed-phase and hydrophilic interaction liquid chromatography separation system with high-resolution mass spectrometry.

    Science.gov (United States)

    Chen, Junhui; Gao, Liyuan; Li, Zhaoyong; Wang, Shuai; Li, Jingxi; Cao, Wei; Sun, Chengjun; Zheng, Li; Wang, Xiaoru

    2016-03-31

    The presence of toxins in harmful algal blooms (HABs) poses considerable concerns because of their potential adverse effects on ecological environments and human health. When marine HABs occur, efficient screening and identification of toxins in different kinds of HAB algae remains a challenge. In this study, the applicability of serial coupling of reversed-phase liquid chromatography (RPLC) and hydrophilic interaction chromatography (HILIC) combined with high resolution mass spectrometry (HR-MS) for the simultaneous screening and identification of various kinds of known lipophilic and hydrophilic toxins in HAB algae was investigated for the first time. Ultrasound-assisted extraction (UAE) was explored to extract both lipophilic and hydrophilic toxins in algae simultaneously. As in most cases, toxin standards were not available; therefore, an identification procedure based on accurate mass data and chromatographic behavior was proposed. According to this procedure, eight known lipophilic toxins and 11 hydrophilic toxins were successfully detected in a single injection, and the proposed method was validated. Satisfactory sensitivity, repeatability (RSD marine algal toxins in a single run. Using this method, several known toxins in different marine toxigenic algae including Alexandrium tamarense, Alexandrium minutum and Prorocentrum lima were successfully observed and identified. This work demonstrates that RPLC/HILIC-HR-MS combined with an accurate mass list of known marine algal toxins may be used as a powerful tool for screening of different classes of known toxins in marine harmful algae. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Application of at-line two-dimensional liquid chromatography-mass spectrometry for identification of small hydrophilic angiotensin I-inhibiting peptides in milk hydrolysates

    NARCIS (Netherlands)

    van Platerink, C.J.; Janssen, H.-G.M.; Haverkamp, J.

    2008-01-01

    A two-dimensional chromatographic method with mass spectrometric detection has been developed for identification of small, hydrophilic angiotensin I-inhibiting peptides in enzymatically hydrolysed milk proteins. The method involves the further separation of the poorly retained hydrophilic fraction f

  12. Lipid-drug conjugate nanoparticles of the hydrophilic drug diminazene-cytotoxicity testing and mouse serum adsorption

    NARCIS (Netherlands)

    Olbrich, C.; Gessner, A.; Schroder, W.; Kayser, Oliver; Muller, R.H.

    2004-01-01

    Sleeping sickness is a widely distributed disease in great parts of Africa. It is caused by Trypanosoma brucei gambiense and rhodiense, transmitted by the Tse-Tse fly. After a hemolymphatic stage, the parasites enter the central nervous system where they cannot be reached by hydrophilic drugs. To

  13. Comprehensive analysis of pharmaceutical products using simultaneous mixed-mode (ion-exchange/reversed-phase) and hydrophilic interaction liquid chromatography.

    Science.gov (United States)

    Kazarian, Artaches A; Nesterenko, Pavel N; Soisungnoen, Phimpha; Burakham, Rodjana; Srijaranai, Supalax; Paull, Brett

    2014-08-01

    Liquid chromatographic assays were developed using a mixed-mode column coupled in sequence with a hydrophilic interaction liquid chromatography column to allow the simultaneous comprehensive analysis of inorganic/organic anions and cations, active pharmaceutical ingredients, and excipients (carbohydrates). The approach utilized dual sample injection and valve-mediated column switching and was based upon a single high-performance liquid chromatography gradient pump. The separation consisted of three distinct sequential separation mechanisms, namely, (i) ion-exchange, (ii) mixed-mode interactions under an applied dual gradient (reversed-phase/ion-exchange), and (iii) hydrophilic interaction chromatography. Upon first injection, the Scherzo SS C18 column (Imtakt) provided resolution of inorganic anions and cations under isocratic conditions, followed by a dual organic/salt gradient to elute active pharmaceutical ingredients and their respective organic counterions and potential degradants. At the top of the mixed-mode gradient (high acetonitrile content), the mobile phase flow was switched to a preconditioned hydrophilic interaction liquid chromatography column, and the standard/sample was reinjected for the separation of hydrophilic carbohydrates, some of which are commonly known excipients in drug formulations. The approach afforded reproducible separation and resolution of up to 23 chemically diverse solutes in a single run. The method was applied to investigate the composition of commercial cough syrups (Robitussin®), allowing resolution and determination of inorganic ions, active pharmaceutical ingredients, excipients, and numerous well-resolved unknown peaks.

  14. Permeation of Hydrophilic Molecules across Glycated Skin Is Differentially Regulated by the Stratum Corneum and Epidermis-Dermis.

    Science.gov (United States)

    Yokota, Mami; Tokudome, Yoshihiro

    2015-01-01

    The effects of glycation on skin permeation and accumulation of compounds were evaluated using an in vitro glycated skin model. Glycation of the skin of hairless mice was induced using vertical diffusion cells and incubation with phosphate-buffered saline containing 50 mM glyoxal for 24 h. Flux and accumulation in the skin were determined by applying hydrophilic and lipophilic molecules (Sodium fluorescein; FL-Na and Nile red, respectively) to this in vitro glycated skin model. Furthermore, to investigate the effect of glycation on epidermal-dermal barrier properties, we conducted diffusion experiments with FL-Na and fluorescein isothiocyanate-dextran using stratum corneum (SC)-stripped glycated skin. The in vitro glycated skin model demonstrated characteristic glycation alterations like a yellowish change in skin color and surface roughness. For low-molecular weight (MW) hydrophilic molecules, flux across glycated full-thickness skin was higher than that across normal skin, although there was no difference with lipophilic molecules. However, glycated epidermis-dermis showed lower flux, and the difference increased with the MW of the compound. Furthermore, the amount of high-MW hydrophilic molecules accumulated in glycated epidermis-dermis was decreased. These results suggest that glycated SC and epidermis-dermis differentially regulate the permeability of hydrophilic molecules and highlight the importance of controlling drug delivery by modifying the formulation or method of application depending on skin condition.

  15. Lipid-drug conjugate nanoparticles of the hydrophilic drug diminazene-cytotoxicity testing and mouse serum adsorption

    NARCIS (Netherlands)

    Olbrich, C.; Gessner, A.; Schroder, W.; Kayser, Oliver; Muller, R.H.

    2004-01-01

    Sleeping sickness is a widely distributed disease in great parts of Africa. It is caused by Trypanosoma brucei gambiense and rhodiense, transmitted by the Tse-Tse fly. After a hemolymphatic stage, the parasites enter the central nervous system where they cannot be reached by hydrophilic drugs. To po

  16. Development of high performance nano-porous polyethersulfone ultrafiltration membranes with hydrophilic surface and superior antifouling properties

    Energy Technology Data Exchange (ETDEWEB)

    Rahimpour, Ahmad, E-mail: ahmadrahimpour@yahoo.com [Nanobiotechnology Research Laboratory, Faculty of Chemical Engineering, Babol University of Technology, Babol (Iran, Islamic Republic of); Madaeni, Sayed Siavash [Membrane Research Center, Department of Chemical Engineering, Razi University, Kermanshah (Iran, Islamic Republic of); Jahanshahi, Mohsen [Nanobiotechnology Research Laboratory, Faculty of Chemical Engineering, Babol University of Technology, Babol (Iran, Islamic Republic of); Mansourpanah, Yaghoub [Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad (Iran, Islamic Republic of); Mortazavian, Narmin [Nanobiotechnology Research Laboratory, Faculty of Chemical Engineering, Babol University of Technology, Babol (Iran, Islamic Republic of)

    2009-08-30

    Hydrophilic nano-porous polyethersulfone ultrafiltration membranes were developed for milk concentration. The membranes were prepared from new dope solution containing polyethersulfone (PES)/polyvinylpirrolidone (PVP)/polyethyleneglycole (PEG)/cellulose acetate phthalate (CAP)/acrylic acid/Triton X-100 using phase inversion induced by immersion precipitation technique. This casting solution leads to formation of new hydrophilic membranes. The morphological studies were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). In addition, the hydrophilicity and performance of membranes were examined by contact angel measurements and cross-flow filtration (pure water flux, milk water permeation, protein rejection and antifouling measurements). The contact angle measurements indicate that a surface with superior hydrophilicity was obtained for PES membranes. Two concentrations of PES (16 and 14.4 wt.%) and two different non-solvents (pure water and mixtures of water and IPA) were used for preparation of membranes. The morphological studies showed that the higher concentration of PES and the presence of IPA in the gelation media results in formation of a membrane with a dense top and sub-layer with small pores on the surface. The pure water flux of membranes was decreased when higher polymer concentration and mixtures of water and IPA were employed for membrane formation. On the other hand, the milk water permeation and protein rejection were increased using mixtures of water and IPA as non-solvent. Furthermore, the fouling analysis of the membranes demonstrated that the membrane surface with fewer tendencies for fouling was obtained.

  17. Conversion of an electrospun nanofibrous cellulose acetate mat from a super-hydrophilic to super-hydrophobic surface

    Science.gov (United States)

    Ding, Bin; Li, Chunrong; Hotta, Yoshio; Kim, Jinho; Kuwaki, Oriha; Shiratori, Seimei

    2006-09-01

    We report a new approach to convert an electrospun nanofibrous cellulose acetate mat surface from super-hydrophilic to super-hydrophobic. Super-hydrophilic cellulose acetate nanofibrous mats can be obtained by electrospinning hydrophilic cellulose acetate. The surface properties of the fibrous mats were modified from super-hydrophilic to super-hydrophobic with a simple sol-gel coating of decyltrimethoxysilane (DTMS) and tetraethyl orthosilicate (TEOS). The resultant samples were characterized by field emission scanning electron microscopy (FE-SEM), x-ray photoelectron spectroscopy (XPS), water contact angle, Brunauer-Emmett-Teller (BET) surface area, atomic force microscopy (AFM), and UV-visible measurements. The results of FE-SEM and XPS showed that the sol-gel (I) films were formed on the rough fibrous mats only after immersion in sol-gel. After the sol-gel (I) coating, the cellulose acetate fibrous mats formed in both 8 and 10 wt% cellulose acetate solutions showed the super-hydrophobic surface property. Additionally, the average sol-gel film thickness coated on 10 wt% cellulose acetate fibrous mats was calculated to be 80 nm. The super-hydrophobicity of fibrous mats was attributed to the combined effects of the high surface roughness of the electrospun nanofibrous mats and the hydrophobic DTMS sol-gel coating. Additionally, hydrophobic sol-gel nanofilms were found to be transparent according to UV-visible measurements.

  18. Modulation of tight junctions does not predict oral absorption of hydrophilic compounds: use of Caco-2 and Calu-3 cells.

    Science.gov (United States)

    Kamath, Amrita V; Morrison, Richard A; Mathias, Neil R; Dando, Sandra A; Marino, Anthony M; Chong, Saeho

    2007-08-01

    Permeability estimates using Caco-2 cells do not accurately predict the absorption of hydrophilic drugs that are primarily absorbed via the paracellular pathway. The objective of this study was to investigate whether modulation of tight junctions would help differentiation of paracellularly absorbed compounds. Tight junctions in Caco-2 cell monolayers were manipulated using calcium depletion approaches to decrease the transepithelial electrical resistance (TEER) of the monolayers, and permeability of hydrophilic compounds were measured under these conditions. Permeability of these compounds were also measured in Calu-3 cells, which have tighter junctions than Caco-2 cells. Calcium depletion loosened the tight junctions of Caco-2 cells to varying levels as measured by the decrease in TEER values of the monolayers. While the absolute permeability of all the model compounds increased as the tight junctions were loosened, the ratios of their permeability relative to mannitol permeability were similar. The permeability of these compounds in the tighter Calu-3 cells were also found to be similar to each other. Altering the tight junctions of Caco-2 cells to obtain leakier cell monolayers, or using a cell line with tighter junctions like Calu-3 cells, did not improve differentiation between well absorbed and poorly absorbed hydrophilic drugs. Mere manipulation of the tight junctions to increase or decrease transepithelial electrical resistance does not appear to be a viable approach to predict human absorption for hydrophilic compounds that are primarily absorbed via the paracellular pathway.

  19. In-the-bag decentration of a hydrophilic radially asymmetric multifocal intraocular lens secondary to capsule contraction.

    NARCIS (Netherlands)

    Linden, J.W.M. van der; Meulen, I.J. van der; Mourits, M.P.; Lapid-Gortzak, R.

    2013-01-01

    We report a case of in-the-bag decentration and tilt of a hydrophilic rotationally asymmetric multifocal intraocular lens (IOL) of the M Plus type secondary to capsule contraction. After uneventful surgery and follow-up for 3 months, progressive decentering and tilting of the IOL secondary to capsul

  20. Investigating critical effects of variegated lubricants, glidants and hydrophilic additives on lag time of press coated ethylcellulose tablets.

    Science.gov (United States)

    Patadia, Riddhish; Vora, Chintan; Mittal, Karan; Mashru, Rajashree

    2016-01-01

    The research envisaged focuses on vital impacts of variegated lubricants, glidants and hydrophilic additives on lag time of press coated ethylcellulose (EC) tablets using prednisone as a model drug. Several lubricants and glidants such as magnesium stearate, colloidal SiO2, sodium stearyl fumarate, talc, stearic acid, polyethylene glycol (6000) and glyceryl behenate were investigated to understand their effects on lag time by changing their concentrations in outer coat. Further, the effects of hydrophilic additives on lag time were examined for hydroxypropylmethylcellulose (E5), hydroxypropylcellulose (EF and SSL), povidone (K30), copovidone, polyethylene glycol (4000), lactose and mannitol. In vitro drug release testing revealed that each selected lubricant/glidant, if present even at concentration of 0.25% w/w, significantly reduced the lag time of press coated tablets. Specifically, colloidal SiO2 and/or magnesium stearate were detrimental while other lubricants/glidants were relatively less injurious. Among hydrophilic additives, freely water soluble fillers had utmost influence in lag time, whereas, comparatively less impact was observed with polymeric binders. Concisely, glidant and lubricant should be chosen to have minimal impact on lag time and further judicious selection of hydrophilic additives should be exercised for modulating lag time of pulsatile release formulations.

  1. Hydrophilic interaction chromatography-mass spectrometry for anionic metabolic profiling of urine from antibiotic-treated rats

    NARCIS (Netherlands)

    Kok, Miranda G M; Swann, Jonathan R; Wilson, Ian D; Somsen, Govert W; de Jong, Gerhardus J

    2014-01-01

    Hydrophilic interaction chromatography-mass spectrometry (HILIC-MS) was used for anionic metabolic profiling of urine from antibiotic-treated rats to study microbial-host co-metabolism. Rats were treated with the antibiotics penicillin G and streptomycin sulfate for four or eight days and compared t

  2. On the stability of the polymer brushes formed by adsorption of Ionomer Complexes on hydrophilic and hydrophobic surfaces

    NARCIS (Netherlands)

    Brzozowska, A. M.; Spruijt, E.; de Keizer, A.; Stuart, M. A. Cohen; Norde, W.

    2011-01-01

    We have studied the effect of normal forces and shear forces on the stability and functionality of a polymer brush layer formed upon adsorption of polymeric micelles on hydrophilic and hydrophobic surfaces. The micelles consist of oppositely charged polyelectrolyte blocks (poly(acrylic acid) and pol

  3. Versatile, Fast, and Easy One-Step Method for the Synthesis of Hydrophilic Lanthanide-Doped Nanoparticles

    NARCIS (Netherlands)

    Grana Suarez, Laura; Verboom, Willem; Sarkar, Shyam; Mahalingam, V.; Huskens, Jurriaan

    2016-01-01

    The preparation of hydrophilic lanthanide-doped nanoparticles (NPs) following a versatile one-step colloidal method at low temperature and short reaction time with different doped lanthanides, capping ligands, and fluoride sources is presented. The photoluminescence of the particles, via both

  4. Extraction efficiency of hydrophilic and lipophilic antioxidants from lyophilized foods using pressurized liquid extraction and manual extraction.

    Science.gov (United States)

    Watanabe, Jun; Oki, Tomoyuki; Takebayashi, Jun; Takano-Ishikawa, Yuko

    2014-09-01

    The efficient extraction of antioxidants from food samples is necessary in order to accurately measure their antioxidant capacities. α-Tocopherol and gallic acid were spiked into samples of 5 lyophilized and pulverized vegetables and fruits (onion, cabbage, Satsuma mandarin orange, pumpkin, and spinach). The lipophilic and hydrophilic antioxidants in the samples were sequentially extracted with a mixed solvent of n-hexane and dichloromethane, and then with acetic acid-acidified aqueous methanol. Duplicate samples were extracted: one set was extracted using an automated pressurized liquid extraction apparatus, and the other set was extracted manually. Spiked α-tocopherol and gallic acid were recovered almost quantitatively in the extracted lipophilic and hydrophilic fractions, respectively, especially when pressurized liquid extraction was used. The expected increase in lipophilic oxygen radical absorbance capacity (L-ORAC) due to spiking with α-tocopherol, and the expected increase in 2,2-diphenyl-1-picrylhydrazyl radical scavenging activities and total polyphenol content due to spiking with gallic acid, were all recovered in high yield. Relatively low recoveries, as reflected in the hydrophilic ORAC (H-ORAC) value, were obtained following spiking with gallic acid, suggesting an interaction between gallic acid and endogenous antioxidants. The H-ORAC values of gallic acid-spiked samples were almost the same as those of postadded (spiked) samples. These results clearly indicate that lipophilic and hydrophilic antioxidants are effectively extracted from lyophilized food, especially when pressurized liquid extraction is used.

  5. Lipophilic and hydrophilic moisturizers show different actions on human skin as revealed by cryo scanning electron microscopy

    NARCIS (Netherlands)

    Caussin, J.; Groenink, H.W.W.; Graaff, de A.M.; Gooris, G.S.; Wiechers, J.W.; Aelst, van A.C.; Bouwstra, J.A.

    2007-01-01

    To study the mode of action of moisturizers on human skin, hydrophilic moisturizers in water and neat lipophilic moisturizers were applied on excised skin for 24 h at 32°C. Samples of the treated skin were subsequently visualized in a cryoscanning electron microscope. The stratum corneum (SC)

  6. Breast Fibromatosis after Hydrophilic Polyacrylamide Gel Injection for Breast Augmentation: a Case Report and Review of the Literature

    Institute of Scientific and Technical Information of China (English)

    Xiao Long; Qun Qiao

    2011-01-01

    @@ BREAST fibromatosis is a rare kind of lesion.The average incidence is about 2-4 per million every year.1 So far there have been about 100 cases reported altogether.2 In this report, we describe a case of breast fibromatosis developed after hydrophilic polyacrylamide gel (HPG) injection for breast augmenta-Received for publication December 10, 2010.

  7. [Structure of heterotrophic plankton in the littoral zone of the plain reservoir under effect of hydrophilic birds].

    Science.gov (United States)

    Krylov, A V; Kosolapov, D B; Kosolapova, N G; Rumiantseva, E V

    2013-01-01

    The eutrophic effect of products of vital activity of colonies of hydrophilic birds on the community of heterotrophic plankton in shallow parts of the plain reservoir is shown. The strongest effect of birds is observed in a protected part of the reservoir. Specific changes in some characteristics of zooplankton as distinct from the response to the anthropogenic effect are found.

  8. Hydrophilic extract from Posidonia oceanica inhibits activity and expression of gelatinases and prevents HT1080 human fibrosarcoma cell line invasion.

    Science.gov (United States)

    Barletta, Emanuela; Ramazzotti, Matteo; Fratianni, Florinda; Pessani, Daniela; Degl'Innocenti, Donatella

    2015-01-01

    Posidonia oceanica (L.) Delile is an endemic Mediterranean sea-grass distributed in the infralittoral zones, where it forms meadows playing a recognized ecological role in the coastal marine habitat. Although its use as a traditional herbal remedy is poorly documented, recent literature reports interesting pharmacological activities as antidiabetic, antioxidant and vasoprotective. Differently from previous literature, this study presents a hydrophilic extraction method that recovers metabolites that may be tested in biological buffers. We showed for the first time in the highly invasive HT1080 human fibrosarcoma cell line that our hydrophilic extract from P. oceanica was able to strongly decrease gene and protein expression of gelatinases MMP-2 and MMP-9 and to directly inhibit in a dose-dependent manner gelatinolytic activity in vitro. Moreover, we have revealed that our extract strongly inhibited HT1080 cell migration and invasion. Biochemical analysis of the hydrophilic extract showed that catechins were the major constituents with minor contribution of gallic acid, ferulic acid and chlorogenic plus a fraction of uncharacterized phenols. However, if each individual compound was tested independently, none by itself was able to induce a direct inhibition of gelatinases as strong as that observed in total extract, opening up new routes to the identification of novel compounds. These results indicate that our hydrophilic extract from P. oceanica might be a source of new pharmacological natural products for treatment or prevention of several diseases related to an altered MMP-2 and MMP-9 expression.

  9. Evaporative properties and pinning strength of laser-ablated, hydrophilic sites on lotus-leaf-like, nanostructured surfaces.

    Science.gov (United States)

    McLauchlin, Melissa L; Yang, Dongqing; Aella, P; Garcia, Antonio A; Picraux, S T; Hayes, Mark A

    2007-04-24

    Wetting, evaporative, and pinning strength properties of hydrophilic sites on superhydrophobic, nanostructured surfaces were examined. Understanding these properties is important for surface characterization and designing features in self-cleaning, lotus-leaf-like surfaces. Laser-ablated, hydrophilic spots between 250 mum and 2 mm in diameter were prepared on silicon nanowire (NW) superhydrophobic surfaces. For larger circumference pinning sites, initial contact angle measurements resemble the contact angle of the surface within the pinning site: 65-69 degrees . As the drop volume is increased, the contact angles approach the contact angle of the NW surface without pinning sites: 171-176 degrees . The behavior of water droplets on the pinning sites is governed by how much of the water droplet is being influenced by the superhydrophobic NW surfaces versus the hydrophilic areas. During the evaporation of sinapic acid solution, drops are pinned by the spots except for the smaller circumference sites. Pinning strengths of the hydrophilic sites are a linear function of the pinning spot circumference. Protein samples prepared and deposited on the pinning sites for analysis by matrix-assisted laser desorption ionization indicate an improvement in sensitivity from that of a standard plate analysis by a factor of 5.

  10. A Cytoplasmic Protein Ssl3829 Is Important for NDH-1 Hydrophilic Arm Assembly in Synechocystis sp. Strain PCC 6803.

    Science.gov (United States)

    Wang, Xiaozhuo; Gao, Fudan; Zhang, Jingsong; Zhao, Jiaohong; Ogawa, Teruo; Ma, Weimin

    2016-06-01

    Despite significant progress in clarifying the subunit compositions and functions of the multiple NDH-1 complexes in cyanobacteria, the assembly factors and their roles in assembling these NDH-1 complexes remain elusive. Two mutants sensitive to high light for growth and impaired in NDH-1-dependent cyclic electron transport around photosystem I were isolated from Synechocystis sp. strain PCC 6803 transformed with a transposon-tagged library. Both mutants were tagged in the ssl3829 gene encoding an unknown protein, which shares significant similarity with Arabidopsis (Arabidopsis thaliana) CHLORORESPIRATORY REDUCTION7. The ssl3829 product was localized in the cytoplasm and associates with an NDH-1 hydrophilic arm assembly intermediate (NAI) of about 300 kD (NAI300) and an NdhI maturation factor, Slr1097. Upon deletion of Ssl3829, the NAI300 complex was no longer visible on gels, thereby impeding the assembly of the NDH-1 hydrophilic arm. The deletion also abolished Slr1097 and consequently reduced the amount of mature NdhI in the cytoplasm, which repressed the dynamic assembly process of the NDH-1 hydrophilic arm because mature NdhI was essential to stabilize all functional NAIs. Therefore, Ssl3829 plays an important role in the assembly of the NDH-1 hydrophilic arm by accumulating the NAI300 complex and Slr1097 protein in the cytoplasm.

  11. Root desiccation and drought stress responses of bareroot Quercus rubra seedlings treated with a hydrophilic polymer root dip

    Science.gov (United States)

    Kent G. Apostol; Douglass F. Jacobs; R. Kasten Dumroese

    2009-01-01

    Root hydrogel, a hydrophilic polymer, has been used to improve transplanting success of bareroot conifer seedlings through effects on water holding capacity. We examined mechanisms by which Terra-sorb Fine Hydrogel reduces damage that occurs when roots of 1-year old, dormant northern red oak (Quercus rubra L.) were subjected to shortterm (1, 3, and 5...

  12. Self-assembly of amphiphilic peptide (AF)6H5K15 derivatives: roles of hydrophilic and hydrophobic residues.

    Science.gov (United States)

    Thota, Naresh; Jiang, Jianwen

    2014-03-13

    A molecular dynamics simulation study is reported to investigate the roles of hydrophilic and hydrophobic residues in the self-assembly of (AF)6H5K15 peptide derivatives. The peptide, as well as water and counterions, are represented by the MARTINI coarse-grained model. The assembly is observed to follow a three-step process: formation of small clusters, large clusters, and micelles. With increasing length of hydrophilic Lys residues in (AF)6H5Kn (n = 10, 15, 20, and 25), assembly capability is found to be reduced with the formation of smaller micelles or the presence of individual peptide chains. Upon replacing Ala by more hydrophobic Phe in AmFnH5K15 (m + n = 12), larger micelles are formed. With increasing length of hydrophobic Phe residues in FnH5K15 (n = 4, 8, 12, and 16), micelle size increases and the morphology shifts from spherical to fiber-like. The simulation study provides mechanistic insight into the crucial roles of hydrophilicity and hydrophobicity in the assembly of (AF)6H5K15 derivatives; it reveals that assembly capability is reduced by increasing hydrophilicity, whereas increasing hydrophobicity leads to morphology transition.

  13. Simultaneous separation of hydrophobic and hydrophilic peptides with a silica hydride stationary phase using aqueous normal phase conditions.

    Science.gov (United States)

    Boysen, Reinhard I; Yang, Yuanzhong; Chowdhury, Jamil; Matyska, Maria T; Pesek, Joseph J; Hearn, Milton T W

    2011-11-04

    The application of a silica hydride modified stationary phase with low organic loading has been investigated as a new type of chromatographic material suitable for the separation and analysis of peptides with electrospray ionization mass spectrometric detection. Retention maps were established to delineate the chromatographic characteristics of a series of peptides with physical properties ranging from strongly hydrophobic to very hydrophilic and encompassing a broad range of pI values (pI 5.5-9.4). The effects of low concentrations of two additives (formic acid and acetic acid) in the mobile phase were also investigated with respect to their contribution to separation selectivity and retention under comparable conditions. Significantly, strong retention of both the hydrophobic and the hydrophilic peptides was observed when high-organic low-aqueous mobile phases were employed, thus providing a new avenue to achieve high resolution peptide separations. For example, simultaneous separation of hydrophobic and hydrophilic peptides was achieved under aqueous normal phase (ANP) chromatographic conditions with linear gradient elution procedures in a single run, whilst further gradient optimization enabled improved peak efficiencies of the more strongly retained hydrophobic and hydrophilic peptides.

  14. A facile strategy for the fabrication of a bioinspired hydrophilic-superhydrophobic patterned surface for highly efficient fog-harvesting

    KAUST Repository

    Wang, Yuchao

    2015-08-10

    Fog water collection represents a meaningful effort in the places where regular water sources, including surface water and ground water, are scarce. Inspired by the amazing fog water collection capability of Stenocara beetles in the Namib Desert and based on the recent work in biomimetic water collection, this work reported a facile, easy-to-operate, and low-cost method for the fabrication of hydrophilic-superhydrophobic patterned hybrid surface toward highly efficient fog water collection. The essence of the method is incorporating a (super)hydrophobically modified metal-based gauze onto the surface of a hydrophilic polystyrene (PS) flat sheet by a simple lab oven-based thermal pressing procedure. The produced hybrid patterned surfaces consisted of PS patches sitting within the holes of the metal gauzes. The method allows for an easy control over the pattern dimension (e.g., patch size) by varying gauze mesh size and thermal pressing temperature, which is then translated to an easy optimization of the ultimate fog water collection efficiency. Given the low-cost and wide availability of both PS and metal gauze, this method has a great potential for scaling-up. The results showed that the hydrophilic-superhydrophobic patterned hybrid surfaces with a similar pattern size to Stenocara beetles’s back pattern produced significantly higher fog collection efficiency than the uniformly (super)hydrophilic or (super)hydrophobic surfaces. This work contributes to general effort in fabricating wettability patterned surfaces and to atmospheric water collection for direct portal use.

  15. The effect of polymer surface modification on polymer-protein interaction via interfacial polymerization and hydrophilic polymer grafting

    Science.gov (United States)

    Protein membrane separation is prone to fouling on the membrane surface resulting from protein adsorption onto the surface. Surface modification of synthetic membranes is one way to reduce fouling. We investigated surface modification of polyethersulfone (PES) as a way of improving hydrophilicity ...

  16. Interfacial thiol-isocyanate reactions for functional nanocarriers: a facile route towards tunable morphologies and hydrophilic payload encapsulation.

    Science.gov (United States)

    Kuypers, Sören; Pramanik, Sumit Kumar; D'Olieslaeger, Lien; Reekmans, Gunter; Peters, Martijn; D'Haen, Jan; Vanderzande, Dirk; Junkers, Thomas; Adriaensens, Peter; Ethirajan, Anitha

    2015-11-11

    Functional nanocarriers were synthesized using an in situ inverse miniemulsion polymerization employing thiol-isocyanate reactions at the droplet interface to encapsulate hydrophilic payloads. The morphology of the nanocarriers is conveniently tunable by varying the reaction conditions and the dispersions are easily transferable to the aqueous phase.

  17. Diammonium biphenyl-4,4′-disulfonate

    Directory of Open Access Journals (Sweden)

    Graham Smith

    2008-01-01

    Full Text Available In the title salt, 2NH4+·C12H8O6S22−, the dianion has crystallographic inversion symmetry. A three-dimensional framework is formed from primary hydrogen-bonded sheet structures comprising ammonium N—H...Osulfonate interactions and is linked peripherally through the biphenyl residues of the anions. This open framework has 43 Å3 solvent-accessible voids.

  18. The effect of hydrophilic and hydrophobic structure of amphiphilic polymeric micelles on their transport in epithelial MDCK cells.

    Science.gov (United States)

    Yu, Chao; He, Bing; Xiong, Meng-Hua; Zhang, Hua; Yuan, Lan; Ma, Ling; Dai, Wen-Bing; Wang, Jun; Wang, Xing-Lin; Wang, Xue-Qing; Zhang, Qiang

    2013-08-01

    The interaction of nanocarriers with cells including their transcellular behavior is vital not only for a drug delivery system, but also for the safety of nanomaterials. In an attempt to clarify how the structures of polymers impact the transport mechanisms of their nanocarriers in epithelial cells, three amphiphilic polymers (PEEP-PCL, PEG-PCL and PEG-DSPE) with different hydrophilic or hydrophobic blocks were synthesized or chosen to form different micelle systems here. The endocytosis, exocytosis, intracellular colocalization, paracellular permeability and transcytosis of these micelle systems were compared using Förster resonance energy transfer analysis, real-time confocal images, colocalization assay, transepithelial electrical resistance study, and so on. All micelle systems were found intact during the studies with cells. The endocytosis and exocytosis studies with undifferentiated MDCK cells and the transcytosis study with differentiated MDCK monolayers all indicated the fact that PEG-DSPE micelles achieved the most and fastest transport, followed by PEG-PCL and PEEP-PCL in order. These might be because DSPE has higher hydrophobicity than PCL while PEG has lower hydrophilicity than PEEP. Different in hydrophilic or hydrophobic structures, all kinds of micelles demonstrated similar pathways during endocytosis and exocytosis, both caveolae- and clathrin-mediated but with difference in degree. The colocalization studies revealed different behaviors in intracellular trafficking among the three polymer micelles, suggesting the decisive role of hydrophilic shells on this process. Finally, all micelle systems did not impact the paracellular permeability of test cell monolayer. In conclusion, the hydrophilic and hydrophobic structures of test micelles could influence their transport ability, intracellular trafficking and the transport level under each pathway in MDCK cells.

  19. Moisture dependent thermal properties of hydrophilic mineral wool: application of the effective media theory

    Directory of Open Access Journals (Sweden)

    Iñigo Antepara

    2015-09-01

    Full Text Available Thermal properties of mineral wool based materials appear to be of particular importance for their practical applications because the majority of them is used in the form of thermal insulation boards. Every catalogue list of any material producer of mineral wool contains thermal conductivity, sometimes also specific heat capacity, but they give only single characteristic values for dry state of material mostly. Exposure to outside climate or any other environment containing moisture can negatively affect the thermal insulation properties of mineral wool. Nevertheless, the mineral wool materials due to their climatic loading and their environmental exposure contain moisture that can negatively affect their thermal insulation properties. Because the presence of water in mineral wool material is undesirable for the majority of applications, many products are provided with hydrophobic substances. Hydrophilic additives are seldom used in mineral wool products. However, this kind of materials has a good potential for application for instance in interior thermal insulation systems, masonry desalination, green roofs, etc. For these materials, certain moisture content must be estimated and thus their thermal properties will be different than for the dry state. On this account, moisture dependent thermal properties of hydrophilic mineral wool (HMW are studied in a wide range of moisture content using a pulse technique. The experimentally determined thermal conductivity data is analysed using several homogenization formulas based on the effective media theory. In terms of homogenization, a porous material is considered as a mixture of two or three phases. In case of dry state, material consists from solid and gaseous phase. When moistened, liquid phase is also present. Mineral wool consists of the solid phase represented by basalt fibers, the liquid phase by water and the gaseous phase by air. At first, the homogenization techniques are applied for the

  20. Synthesis of novel polymeric nanoparticles for hydrophobic and hydrophilic drug delivery

    Science.gov (United States)

    Sartor, Marta

    Modern medicine has achieved extraordinary results with the use of nanotechnologies. The combination of the two disciplines created the modern field of nanomedicine, in which drug delivery is one of the most prominent branches. Several aspects are involved in drug delivery; this work will focus on the drug delivery vehicle. In particular three aspects will be investigated: building material, internal structure and material compatibility. In a first project DNA was proposed as an innovative building material. DNA nanoparticles were made from self-folding of long concatameric repeats of a single strand sequence. Nanoparticles with different sequences created a library that was biopanned against dendritic cells (DC). Particles from the enriched library were sequenced and individually tested for affinity towards DC. The use of DNA as building material offers several advantages. For instance DNA binding drugs (such as Doxorubicin) can be easily incorporated, and immunostimulatory sequences (such as GpC) and any other encoding sequence can be integrated within the concatamers. In addition, any other molecule or small particle of interest can be conjugated to a short complementary sequence and hybridized on the outer layer of the DNA nanoparticle. DNA nanoparticles' payloads are limited to hydrophilic drugs. In addition to an hydrophobic payload, some therapies require a high loading and steady release. To achieve such results a gradient structure was created within the core of a polymeric nanoparticle. Physical and chemical gradient were considered. A chemical gradient was created by combining a low molecular weigh polycaprolactone (PCL) to a higher molecular weigh poly(lactic-co-glycolic acid) (PLGA). PCL and PLGA have different degradation rate and hydrophobicity. The particles created by combining the two polymers showed properties (such as loading) dependent on the two polymers' proportion into the composition. The chemical gradient nanoparticles are characterized by