Sample records for hydrological runoff modelling

  1. Estimating Runoff From Roadcuts With a Distributed Hydrologic Model (United States)

    Cuhaciyan, C.; Luce, C.; Voisin, N.; Lettenmaier, D.; Black, T.


    Roads can have a substantial effect on hydrologic patterns of forested watersheds; the most noteworthy being the resurfacing of shallow groundwater at roadcuts. The influence of roads on hydrology has compelled hydrologists to include water routing and storage routines in rainfall-runoff models, such as those in the Distributed Hydrologic Soil Vegetation Model (DHSVM). We tested the ability of DHSVM to match observed runoff in roadcuts of a watershed in the Coast Range of Oregon. Eight roadcuts were instrumented using large tipping bucket gauges designed to capture only the water entering the roadside ditch from an 80-m long roadcut. The roadcuts were categorized by the topography of the upstream hillside as either swale, planar, or ridge. The simulation was run from December 2002 to December 2003 at a relatively fine spatial resolution (10-m). Average observed soil depths are 1.8-m across the watershed, below which there lies deep and highly weathered sandstone. DHSVM was designed for relatively impermeable bedrock and shallow soils; therefore it does not provide a mechanism for deep groundwater movement and storage. In the geologic setting of the study basin, however, water is routed through the sandstone allowing water to pass under roads through the parent material. For this reason a uniformly deep soil of 6.5-m with a decreased decay in conductivity with depth was used in the model to allow water to be routed beneath roadcuts that are up to 5.5-m in height. Up to three, typically shallow, soil layers can be modeled in DHSVM. We used the lowest of the three soil layers to mimic the hydraulically-well-connected sandstone exposed at deeper roadcuts. The model was calibrated against observed discharge at the outlet of the watershed. While model results closely matched the observed hydrograph at the watershed outlet, simulated runoff at an upstream gauge and the roadside ditches were varied and often higher than those observed in the field. The timing of the field

  2. Description of the National Hydrologic Model for use with the Precipitation-Runoff Modeling System (PRMS) (United States)

    Regan, R. Steven; Markstrom, Steven L.; Hay, Lauren E.; Viger, Roland J.; Norton, Parker A.; Driscoll, Jessica M.; LaFontaine, Jacob H.


    This report documents several components of the U.S. Geological Survey National Hydrologic Model of the conterminous United States for use with the Precipitation-Runoff Modeling System (PRMS). It provides descriptions of the (1) National Hydrologic Model, (2) Geospatial Fabric for National Hydrologic Modeling, (3) PRMS hydrologic simulation code, (4) parameters and estimation methods used to compute spatially and temporally distributed default values as required by PRMS, (5) National Hydrologic Model Parameter Database, and (6) model extraction tool named Bandit. The National Hydrologic Model Parameter Database contains values for all PRMS parameters used in the National Hydrologic Model. The methods and national datasets used to estimate all the PRMS parameters are described. Some parameter values are derived from characteristics of topography, land cover, soils, geology, and hydrography using traditional Geographic Information System methods. Other parameters are set to long-established default values and computation of initial values. Additionally, methods (statistical, sensitivity, calibration, and algebraic) were developed to compute parameter values on the basis of a variety of nationally-consistent datasets. Values in the National Hydrologic Model Parameter Database can periodically be updated on the basis of new parameter estimation methods and as additional national datasets become available. A companion ScienceBase resource provides a set of static parameter values as well as images of spatially-distributed parameters associated with PRMS states and fluxes for each Hydrologic Response Unit across the conterminuous United States.

  3. Lumped hydrological models is an Occam' razor for runoff modeling in large Russian Arctic basins


    Ayzel Georgy


    This study is aimed to investigate the possibility of three lumped hydrological models to predict daily runoff of large-scale Arctic basins for the modern period (1979-2014) in the case of substantial data scarcity. All models were driven only by meteorological forcing reanalysis dataset without any additional information about landscape, soil or vegetation cover properties of studied basins. We found limitations of model parameters calibration in ungauged basins using global optimization alg...

  4. Inverse modeling of hydrologic parameters using surface flux and runoff observations in the Community Land Model (United States)

    Sun, Y.; Hou, Z.; Huang, M.; Tian, F.; Leung, L. Ruby


    This study demonstrates the possibility of inverting hydrologic parameters using surface flux and runoff observations in version 4 of the Community Land Model (CLM4). Previous studies showed that surface flux and runoff calculations are sensitive to major hydrologic parameters in CLM4 over different watersheds, and illustrated the necessity and possibility of parameter calibration. Both deterministic least-square fitting and stochastic Markov-chain Monte Carlo (MCMC)-Bayesian inversion approaches are evaluated by applying them to CLM4 at selected sites with different climate and soil conditions. The unknowns to be estimated include surface and subsurface runoff generation parameters and vadose zone soil water parameters. We find that using model parameters calibrated by the sampling-based stochastic inversion approaches provides significant improvements in the model simulations compared to using default CLM4 parameter values, and that as more information comes in, the predictive intervals (ranges of posterior distributions) of the calibrated parameters become narrower. In general, parameters that are identified to be significant through sensitivity analyses and statistical tests are better calibrated than those with weak or nonlinear impacts on flux or runoff observations. Temporal resolution of observations has larger impacts on the results of inverse modeling using heat flux data than runoff data. Soil and vegetation cover have important impacts on parameter sensitivities, leading to different patterns of posterior distributions of parameters at different sites. Overall, the MCMC-Bayesian inversion approach effectively and reliably improves the simulation of CLM under different climates and environmental conditions. Bayesian model averaging of the posterior estimates with different reference acceptance probabilities can smooth the posterior distribution and provide more reliable parameter estimates, but at the expense of wider uncertainty bounds.

  5. HYSOGs250m, global gridded hydrologic soil groups for curve-number-based runoff modeling. (United States)

    Ross, C Wade; Prihodko, Lara; Anchang, Julius; Kumar, Sanath; Ji, Wenjie; Hanan, Niall P


    Hydrologic soil groups (HSGs) are a fundamental component of the USDA curve-number (CN) method for estimation of rainfall runoff; yet these data are not readily available in a format or spatial-resolution suitable for regional- and global-scale modeling applications. We developed a globally consistent, gridded dataset defining HSGs from soil texture, bedrock depth, and groundwater. The resulting data product-HYSOGs250m-represents runoff potential at 250 m spatial resolution. Our analysis indicates that the global distribution of soil is dominated by moderately high runoff potential, followed by moderately low, high, and low runoff potential. Low runoff potential, sandy soils are found primarily in parts of the Sahara and Arabian Deserts. High runoff potential soils occur predominantly within tropical and sub-tropical regions. No clear pattern could be discerned for moderately low runoff potential soils, as they occur in arid and humid environments and at both high and low elevations. Potential applications of this data include CN-based runoff modeling, flood risk assessment, and as a covariate for biogeographical analysis of vegetation distributions.

  6. Analysis of runoff for the Baltic basin with an integrated Atmospheric-Ocean-Hydrology Model

    Directory of Open Access Journals (Sweden)

    K.-G. Richter


    Full Text Available A fully integrated Atmospheric-Ocean-Hydrology Model (BALTIMOS = Baltic Integrated Model System has been developed using existing model components. Experiment and model design has been adapted to the Baltic basin with a catchment area of approximately 1 750 000 km2. A comprehensive model validation has been completed using large meteorological and hydrological measurement database. Comparing the calculated runoff from the integrated and non-integrated model system with measurements for three different representative subbasins and the entire Baltic basin, the effect of the integrated model is described. The results display a good agreement between measured and calculated runoff. The effect of the integrated model is rather negligible looking at computed mean values: There is no significant difference between mean monthly runoff of the integrated and non-integrated model during the year with the exception of spring. There is a delay of one month with regard to peak runoff for the non-integrated model in spring caused by different interactive processes during the melting period.

  7. Bayesian analysis of data and model error in rainfall-runoff hydrological models (United States)

    Kavetski, D.; Franks, S. W.; Kuczera, G.


    A major unresolved issue in the identification and use of conceptual hydrologic models is realistic description of uncertainty in the data and model structure. In particular, hydrologic parameters often cannot be measured directly and must be inferred (calibrated) from observed forcing/response data (typically, rainfall and runoff). However, rainfall varies significantly in space and time, yet is often estimated from sparse gauge networks. Recent work showed that current calibration methods (e.g., standard least squares, multi-objective calibration, generalized likelihood uncertainty estimation) ignore forcing uncertainty and assume that the rainfall is known exactly. Consequently, they can yield strongly biased and misleading parameter estimates. This deficiency confounds attempts to reliably test model hypotheses, to generalize results across catchments (the regionalization problem) and to quantify predictive uncertainty when the hydrologic model is extrapolated. This paper continues the development of a Bayesian total error analysis (BATEA) methodology for the calibration and identification of hydrologic models, which explicitly incorporates the uncertainty in both the forcing and response data, and allows systematic model comparison based on residual model errors and formal Bayesian hypothesis testing (e.g., using Bayes factors). BATEA is based on explicit stochastic models for both forcing and response uncertainty, whereas current techniques focus solely on response errors. Hence, unlike existing methods, the BATEA parameter equations directly reflect the modeler's confidence in all the data. We compare several approaches to approximating the parameter distributions: a) full Markov Chain Monte Carlo methods and b) simplified approaches based on linear approximations. Studies using synthetic and real data from the US and Australia show that BATEA systematically reduces the parameter bias, leads to more meaningful model fits and allows model comparison taking

  8. Global evaluation of runoff from ten state-of-the-art hydrological models (United States)

    Beck, Hylke; de Roo, Ad; van Dijk, Albert; Schellekens, Jaap; Dutra, Emanuel; Fink, Gabriel; Orth, Rene


    Observed streamflow data from 966 medium sized catchments (1000 to 5000 km2) around the globe were used to comprehensively evaluate the daily runoff estimates (1979-2012) of six global hydrological models (GHMs) and four land surface models (LSMs) produced as part of Tier-1 of the eartH2Observe project. The models were all driven by the WATCH Forcing Data ERA-Interim (WFDEI) meteorological dataset, but used different datasets for non-meteorologic inputs and were run at various spatial and temporal resolutions, although all data were re-sampled to a common 0.5° spatial and daily temporal resolution. For the evaluation, we used a broad range of performance metrics related to important aspects of the hydrograph. We found pronounced inter-model performance differences, underscoring the importance of hydrological model uncertainty in addition to climate input uncertainty, for example in studies assessing the hydrological impacts of climate change. The (uncalibrated) GHMs were found to perform better than the LSMs in snow-dominated regions, and the ensemble mean was found to perform only slightly worse than the best (calibrated) model. The models generally showed an early bias in the spring snowmelt peak. We further found that, despite adjustments using gauge observations, the WFDEI precipitation data still contain substantial biases which propagate in the simulated runoff. Overall, more effort should be devoted to calibrating and regionalizing the parameters of macro-scale models.

  9. Modelling runoff and erosion for a semi-arid catchment using a multi-scale approach based on hydrological connectivity

    NARCIS (Netherlands)

    Lesschen, J.P.; Schoorl, J.M.; Cammeraat, L.H.


    Runoff and erosion processes are often non-linear and scale dependent, which complicate runoff and erosion modelling at the catchment scale. One of the reasons for scale dependency is the influence of sinks, i.e. areas of infiltration and sedimentation, which lower hydrological connectivity and

  10. Regional drought assessment using a distributed hydrological model coupled with Standardized Runoff Index

    Directory of Open Access Journals (Sweden)

    H. Shen


    Full Text Available Drought assessment is essential for coping with frequent droughts nowadays. Owing to the large spatio-temporal variations in hydrometeorology in most regions in China, it is very necessary to use a physically-based hydrological model to produce rational spatial and temporal distributions of hydro-meteorological variables for drought assessment. In this study, the large-scale distributed hydrological model Variable Infiltration Capacity (VIC was coupled with a modified standardized runoff index (SRI for drought assessment in the Weihe River basin, northwest China. The result indicates that the coupled model is capable of reasonably reproducing the spatial distribution of drought occurrence. It reflected the spatial heterogeneity of regional drought and improved the physical mechanism of SRI. This model also has potential for drought forecasting, early warning and mitigation, given that accurate meteorological forcing data are available.

  11. Runoff of small rocky headwater catchments: Field observations and hydrological modeling (United States)

    Gregoretti, C.; Degetto, M.; Bernard, M.; Crucil, G.; Pimazzoni, A.; De Vido, G.; Berti, M.; Simoni, A.; Lanzoni, S.


    In dolomitic headwater catchments, intense rainstorms of short duration produce runoff discharges that often trigger debris flows on the scree slopes at the base of rock cliffs. In order to measure these discharges, we placed a measuring facility at the outlet (elevation 1770 m a.s.l.) of a small, rocky headwater catchment (area ˜0.032 km2, average slope ˜320%) located in the Venetian Dolomites (North Eastern Italian Alps). The facility consists of an approximately rectangular basin, ending with a sharp-crested weir. Six runoff events were recorded in the period 2011-2014, providing a unique opportunity for characterizing the hydrological response of the catchment. The measured hydrographs display impulsive shapes, with an abrupt raise up to the peak, followed by a rapidly decreasing tail, until a nearly constant plateau is eventually reached. This behavior can be simulated by means of a distributed hydrological model if the excess rainfall is determined accurately. We show that using the Soil Conservation Service Curve-Number (SCS-CN) method and assuming a constant routing velocity invariably results in an underestimated peak flow and a delayed peak time. A satisfactory prediction of the impulsive hydrograph shape, including peak value and timing, is obtained only by combining the SCS-CN procedure with a simplified version of the Horton equation, and simulating runoff routing along the channel network through a matched diffusivity kinematic wave model. The robustness of the proposed methodology is tested through a comparison between simulated and observed timings of runoff or debris flow occurrence in two neighboring alpine basins.

  12. Global evaluation of runoff from 10 state-of-the-art hydrological models (United States)

    Beck, Hylke E.; van Dijk, Albert I. J. M.; de Roo, Ad; Dutra, Emanuel; Fink, Gabriel; Orth, Rene; Schellekens, Jaap


    Observed streamflow data from 966 medium sized catchments (1000-5000 km2) around the globe were used to comprehensively evaluate the daily runoff estimates (1979-2012) of six global hydrological models (GHMs) and four land surface models (LSMs) produced as part of tier-1 of the eartH2Observe project. The models were all driven by the WATCH Forcing Data ERA-Interim (WFDEI) meteorological dataset, but used different datasets for non-meteorologic inputs and were run at various spatial and temporal resolutions, although all data were re-sampled to a common 0. 5° spatial and daily temporal resolution. For the evaluation, we used a broad range of performance metrics related to important aspects of the hydrograph. We found pronounced inter-model performance differences, underscoring the importance of hydrological model uncertainty in addition to climate input uncertainty, for example in studies assessing the hydrological impacts of climate change. The uncalibrated GHMs were found to perform, on average, better than the uncalibrated LSMs in snow-dominated regions, while the ensemble mean was found to perform only slightly worse than the best (calibrated) model. The inclusion of less-accurate models did not appreciably degrade the ensemble performance. Overall, we argue that more effort should be devoted on calibrating and regionalizing the parameters of macro-scale models. We further found that, despite adjustments using gauge observations, the WFDEI precipitation data still contain substantial biases that propagate into the simulated runoff. The early bias in the spring snowmelt peak exhibited by most models is probably primarily due to the widespread precipitation underestimation at high northern latitudes.

  13. Global evaluation of runoff from 10 state-of-the-art hydrological models

    Directory of Open Access Journals (Sweden)

    H. E. Beck


    Full Text Available Observed streamflow data from 966 medium sized catchments (1000–5000 km2 around the globe were used to comprehensively evaluate the daily runoff estimates (1979–2012 of six global hydrological models (GHMs and four land surface models (LSMs produced as part of tier-1 of the eartH2Observe project. The models were all driven by the WATCH Forcing Data ERA-Interim (WFDEI meteorological dataset, but used different datasets for non-meteorologic inputs and were run at various spatial and temporal resolutions, although all data were re-sampled to a common 0. 5° spatial and daily temporal resolution. For the evaluation, we used a broad range of performance metrics related to important aspects of the hydrograph. We found pronounced inter-model performance differences, underscoring the importance of hydrological model uncertainty in addition to climate input uncertainty, for example in studies assessing the hydrological impacts of climate change. The uncalibrated GHMs were found to perform, on average, better than the uncalibrated LSMs in snow-dominated regions, while the ensemble mean was found to perform only slightly worse than the best (calibrated model. The inclusion of less-accurate models did not appreciably degrade the ensemble performance. Overall, we argue that more effort should be devoted on calibrating and regionalizing the parameters of macro-scale models. We further found that, despite adjustments using gauge observations, the WFDEI precipitation data still contain substantial biases that propagate into the simulated runoff. The early bias in the spring snowmelt peak exhibited by most models is probably primarily due to the widespread precipitation underestimation at high northern latitudes.

  14. A simple rainfall-runoff model for the single and long term hydrological performance of green roofs

    DEFF Research Database (Denmark)

    Locatelli, Luca; Mark, Ole; Mikkelsen, Peter Steen

    Green roofs are being widely implemented for storm water control and runoff reduction. There is need for incorporating green roofs into urban drainage models in order to evaluate their impact. These models must have low computational costs and fine time resolution. This paper aims to develop...... a model of green roof hydrological performance. A simple conceptual model for the long term and single event hydrological performance of green roofs, shows to be capable of reproducing observed runoff measurements. The model has surface and subsurface storage components representing the overall retention...... capacity of the green roof. The runoff from the system is described by the non-linear reservoir method and the storage capacity of the green roof is continuously re-established by evapotranspiration. Runoff data from a green roof in Denmark are collected and used for parameter calibration....

  15. HYDROSCAPE: A SCAlable and ParallelizablE Rainfall Runoff Model for Hydrological Applications (United States)

    Piccolroaz, S.; Di Lazzaro, M.; Zarlenga, A.; Majone, B.; Bellin, A.; Fiori, A.


    In this work we present HYDROSCAPE, an innovative streamflow routing method based on the travel time approach, and modeled through a fine-scale geomorphological description of hydrological flow paths. The model is designed aimed at being easily coupled with weather forecast or climate models providing the hydrological forcing, and at the same time preserving the geomorphological dispersion of the river network, which is kept unchanged independently on the grid size of rainfall input. This makes HYDROSCAPE particularly suitable for multi-scale applications, ranging from medium size catchments up to the continental scale, and to investigate the effects of extreme rainfall events that require an accurate description of basin response timing. Key feature of the model is its computational efficiency, which allows performing a large number of simulations for sensitivity/uncertainty analyses in a Monte Carlo framework. Further, the model is highly parsimonious, involving the calibration of only three parameters: one defining the residence time of hillslope response, one for channel velocity, and a multiplicative factor accounting for uncertainties in the identification of the potential maximum soil moisture retention in the SCS-CN method. HYDROSCAPE is designed with a simple and flexible modular structure, which makes it particularly prone to massive parallelization, customization according to the specific user needs and preferences (e.g., rainfall-runoff model), and continuous development and improvement. Finally, the possibility to specify the desired computational time step and evaluate streamflow at any location in the domain, makes HYDROSCAPE an attractive tool for many hydrological applications, and a valuable alternative to more complex and highly parametrized large scale hydrological models. Together with model development and features, we present an application to the Upper Tiber River basin (Italy), providing a practical example of model performance and

  16. A simple rainfall-runoff model based on hydrological units applied to the Teba catchment (south-east Spain) (United States)

    Donker, N. H. W.


    A hydrological model (YWB, yearly water balance) has been developed to model the daily rainfall-runoff relationship of the 202 km2 Teba river catchment, located in semi-arid south-eastern Spain. The period of available data (1976-1993) includes some very rainy years with intensive storms (responsible for flooding parts of the town of Malaga) and also some very dry years.The YWB model is in essence a simple tank model in which the catchment is subdivided into a limited number of meaningful hydrological units. Instead of generating per unit surface runoff resulting from infiltration excess, runoff has been made the result of storage excess. Actual evapotranspiration is obtained by means of curves, included in the software, representing the relationship between the ratio of actual to potential evapotranspiration as a function of soil moisture content for three soil texture classes.The total runoff generated is split between base flow and surface runoff according to a given baseflow index. The two components are routed separately and subsequently joined. A large number of sequential years can be processed, and the results of each year are summarized by a water balance table and a daily based rainfall runoff time series. An attempt has been made to restrict the amount of input data to the minimum.Interactive manual calibration is advocated in order to allow better incorporation of field evidence and the experience of the model user. Field observations allowed for an approximate calibration at the hydrological unit level.

  17. A comparative analysis of projected impacts of climate change on river runoff from global and catchment-scale hydrological models (United States)

    Gosling, S. N.; Taylor, R. G.; Arnell, N. W.; Todd, M. C.


    We present a comparative analysis of projected impacts of climate change on river runoff from two types of distributed hydrological model, a global hydrological model (GHM) and catchment-scale hydrological models (CHM). Analyses are conducted for six catchments that are global in coverage and feature strong contrasts in spatial scale as well as climatic and developmental conditions. These include the Liard (Canada), Mekong (SE Asia), Okavango (SW Africa), Rio Grande (Brazil), Xiangxi (China) and Harper's Brook (UK). A single GHM (Mac-PDM.09) is applied to all catchments whilst different CHMs are applied for each catchment. The CHMs include SLURP v. 12.2 (Liard), SLURP v. 12.7 (Mekong), Pitman (Okavango), MGB-IPH (Rio Grande), AV-SWAT-X 2005 (Xiangxi) and Cat-PDM (Harper's Brook). The CHMs typically simulate water resource impacts based on a more explicit representation of catchment water resources than that available from the GHM and the CHMs include river routing, whereas the GHM does not. Simulations of mean annual runoff, mean monthly runoff and high (Q5) and low (Q95) monthly runoff under baseline (1961-1990) and climate change scenarios are presented. We compare the simulated runoff response of each hydrological model to (1) prescribed increases in global-mean air temperature of 1.0, 2.0, 3.0, 4.0, 5.0 and 6.0 °C relative to baseline from the UKMO HadCM3 Global Climate Model (GCM) to explore response to different amounts of climate forcing, and (2) a prescribed increase in global-mean air temperature of 2.0 °C relative to baseline for seven GCMs to explore response to climate model structural uncertainty. We find that the differences in projected changes of mean annual runoff between the two types of hydrological model can be substantial for a given GCM (e.g. an absolute GHM-CHM difference in mean annual runoff percentage change for UKMO HadCM3 2 °C warming of up to 25%), and they are generally larger for indicators of high and low monthly runoff. However

  18. A comparative analysis of projected impacts of climate change on river runoff from global and catchment-scale hydrological models

    Directory of Open Access Journals (Sweden)

    S. N. Gosling


    Full Text Available We present a comparative analysis of projected impacts of climate change on river runoff from two types of distributed hydrological model, a global hydrological model (GHM and catchment-scale hydrological models (CHM. Analyses are conducted for six catchments that are global in coverage and feature strong contrasts in spatial scale as well as climatic and developmental conditions. These include the Liard (Canada, Mekong (SE Asia, Okavango (SW Africa, Rio Grande (Brazil, Xiangxi (China and Harper's Brook (UK. A single GHM (Mac-PDM.09 is applied to all catchments whilst different CHMs are applied for each catchment. The CHMs include SLURP v. 12.2 (Liard, SLURP v. 12.7 (Mekong, Pitman (Okavango, MGB-IPH (Rio Grande, AV-SWAT-X 2005 (Xiangxi and Cat-PDM (Harper's Brook. The CHMs typically simulate water resource impacts based on a more explicit representation of catchment water resources than that available from the GHM and the CHMs include river routing, whereas the GHM does not. Simulations of mean annual runoff, mean monthly runoff and high (Q5 and low (Q95 monthly runoff under baseline (1961–1990 and climate change scenarios are presented. We compare the simulated runoff response of each hydrological model to (1 prescribed increases in global-mean air temperature of 1.0, 2.0, 3.0, 4.0, 5.0 and 6.0 °C relative to baseline from the UKMO HadCM3 Global Climate Model (GCM to explore response to different amounts of climate forcing, and (2 a prescribed increase in global-mean air temperature of 2.0 °C relative to baseline for seven GCMs to explore response to climate model structural uncertainty.

    We find that the differences in projected changes of mean annual runoff between the two types of hydrological model can be substantial for a given GCM (e.g. an absolute GHM-CHM difference in mean annual runoff percentage change for UKMO HadCM3 2 °C warming of up to 25%, and they are generally larger for indicators of high and low monthly runoff

  19. Insight into runoff characteristics using hydrological modeling in the data-scarce southern Tibetan Plateau: Past, present, and future. (United States)

    Cai, Mingyong; Yang, Shengtian; Zhao, Changsen; Zhou, Qiuwen; Hou, Lipeng


    Regional hydrological modeling in ungauged regions has attracted growing attention in water resources research. The southern Tibetan Plateau often suffers from data scarcity in watershed hydrological simulation and water resources assessment. This hinders further research characterizing the water cycle and solving international water resource issues in the area. In this study, a multi-spatial data based Distributed Time-Variant Gain Model (MS-DTVGM) is applied to the Yarlung Zangbo River basin, an important international river basin in the southern Tibetan Plateau with limited meteorological data. This model is driven purely by spatial data from multiple sources and is independent of traditional meteorological data. Based on the methods presented in this study, daily snow cover and potential evapotranspiration data in the Yarlung Zangbo River basin in 2050 are obtained. Future (2050) climatic data (precipitation and air temperature) from the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR5) are used to study the hydrological response to climate change. The result shows that river runoff will increase due to precipitation and air temperature changes by 2050. Few differences are found between daily runoff simulations from different Representative Concentration Pathway (RCP) scenarios (RCP2.6, RCP4.5 and RCP8.5) for 2050. Historical station observations (1960-2000) at Nuxia and model simulations for two periods (2006-2009 and 2050) are combined to study inter-annual and intra-annual runoff distribution and variability. The inter-annual runoff variation is stable and the coefficient of variation (CV) varies from 0.21 to 0.27. In contrast, the intra-annual runoff varies significantly with runoff in summer and autumn accounting for more than 80% of the total amount. Compared to the historical period (1960-2000), the present period (2006-2009) has a slightly uneven intra-annual runoff temporal distribution, and becomes more balanced in

  20. Insight into runoff characteristics using hydrological modeling in the data-scarce southern Tibetan Plateau: Past, present, and future.

    Directory of Open Access Journals (Sweden)

    Mingyong Cai

    Full Text Available Regional hydrological modeling in ungauged regions has attracted growing attention in water resources research. The southern Tibetan Plateau often suffers from data scarcity in watershed hydrological simulation and water resources assessment. This hinders further research characterizing the water cycle and solving international water resource issues in the area. In this study, a multi-spatial data based Distributed Time-Variant Gain Model (MS-DTVGM is applied to the Yarlung Zangbo River basin, an important international river basin in the southern Tibetan Plateau with limited meteorological data. This model is driven purely by spatial data from multiple sources and is independent of traditional meteorological data. Based on the methods presented in this study, daily snow cover and potential evapotranspiration data in the Yarlung Zangbo River basin in 2050 are obtained. Future (2050 climatic data (precipitation and air temperature from the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR5 are used to study the hydrological response to climate change. The result shows that river runoff will increase due to precipitation and air temperature changes by 2050. Few differences are found between daily runoff simulations from different Representative Concentration Pathway (RCP scenarios (RCP2.6, RCP4.5 and RCP8.5 for 2050. Historical station observations (1960-2000 at Nuxia and model simulations for two periods (2006-2009 and 2050 are combined to study inter-annual and intra-annual runoff distribution and variability. The inter-annual runoff variation is stable and the coefficient of variation (CV varies from 0.21 to 0.27. In contrast, the intra-annual runoff varies significantly with runoff in summer and autumn accounting for more than 80% of the total amount. Compared to the historical period (1960-2000, the present period (2006-2009 has a slightly uneven intra-annual runoff temporal distribution, and becomes more

  1. Application of the Precipitation Runoff Modeling System to measure impacts of forest fire on watershed hydrology (United States)

    Driscoll, J. M.


    Precipitation in the southwestern United States falls primarily in areas of higher elevation. Drought conditions over the past five years have limited snowpack and rainfall, increasing the vulnerability to and frequency of forest fires in these montane regions. In June 2012, the Little Bear fire burned approximately 69 square miles (44,200 acres) in high-elevation forests of the Rio Hondo headwater catchments, south-central New Mexico. Burn severity was high or moderate on 53 percent of the burn area. The Precipitation Runoff Modeling System (PRMS) is a publically-available watershed model developed by the U.S. Geological Survey (USGS). PRMS data are spatially distributed using a 'Geospatial Fabric' developed at a national scale to define Hydrologic Response Units (HRUs), based on topography and points of interest (such as confluences and streamgages). The Little Bear PRMS study area is comprised of 22 HRUs over a 587 square-mile area contributing to the Rio Hondo above Chavez Canyon streamgage (USGS ID 08390020), in operation from 2008 to 2014. Model input data include spatially-distributed climate data from the National Aeronautics and Space Administration (NASA) DayMet and land cover (such as vegetation and soil properties) data from the USGS Geo Data Portal. Remote sensing of vegetation over time has provided a spatial distribution of recovery and has been applied using dynamic parameters within PRMS on the daily timestep over the study area. Investigation into the source and timing of water budget components in the Rio Hondo watershed may assist water planners and managers in determining how the surface-water and groundwater systems will react to future land use/land cover changes. Further application of PRMS in additional areas will allow for comparison of streamflow before and following wildfire conditions, and may lead to better understanding of the changes in watershed-scale hydrologic processes in the Southwest through post-fire watershed recovery.

  2. Development of a transient, lumped hydrologic model for geomorphologic units in a geomorphology based rainfall-runoff modelling framework (United States)

    Vannametee, E.; Karssenberg, D.; Hendriks, M. R.; de Jong, S. M.; Bierkens, M. F. P.


    We propose a modelling framework for distributed hydrological modelling of 103-105 km2 catchments by discretizing the catchment in geomorphologic units. Each of these units is modelled using a lumped model representative for the processes in the unit. Here, we focus on the development and parameterization of this lumped model as a component of our framework. The development of the lumped model requires rainfall-runoff data for an extensive set of geomorphological units. Because such large observational data sets do not exist, we create artificial data. With a high-resolution, physically-based, rainfall-runoff model, we create artificial rainfall events and resulting hydrographs for an extensive set of different geomorphological units. This data set is used to identify the lumped model of geomorphologic units. The advantage of this approach is that it results in a lumped model with a physical basis, with representative parameters that can be derived from point-scale measurable physical parameters. The approach starts with the development of the high-resolution rainfall-runoff model that generates an artificial discharge dataset from rainfall inputs as a surrogate of a real-world dataset. The model is run for approximately 105 scenarios that describe different characteristics of rainfall, properties of the geomorphologic units (i.e. slope gradient, unit length and regolith properties), antecedent moisture conditions and flow patterns. For each scenario-run, the results of the high-resolution model (i.e. runoff and state variables) at selected simulation time steps are stored in a database. The second step is to develop the lumped model of a geomorphological unit. This forward model consists of a set of simple equations that calculate Hortonian runoff and state variables of the geomorphologic unit over time. The lumped model contains only three parameters: a ponding factor, a linear reservoir parameter, and a lag time. The model is capable of giving an appropriate

  3. A CN-Based Ensembled Hydrological Model for Enhanced Watershed Runoff Prediction

    Directory of Open Access Journals (Sweden)

    Muhammad Ajmal


    Full Text Available A major structural inconsistency of the traditional curve number (CN model is its dependence on an unstable fixed initial abstraction, which normally results in sudden jumps in runoff estimation. Likewise, the lack of pre-storm soil moisture accounting (PSMA procedure is another inherent limitation of the model. To circumvent those problems, we used a variable initial abstraction after ensembling the traditional CN model and a French four-parameter (GR4J model to better quantify direct runoff from ungauged watersheds. To mimic the natural rainfall-runoff transformation at the watershed scale, our new parameterization designates intrinsic parameters and uses a simple structure. It exhibited more accurate and consistent results than earlier methods in evaluating data from 39 forest-dominated watersheds, both for small and large watersheds. In addition, based on different performance evaluation indicators, the runoff reproduction results show that the proposed model produced more consistent results for dry, normal, and wet watershed conditions than the other models used in this study.

  4. Assimilating Merged Remote Sensing and Ground based Snowpack Information for Runoff Simulation and Forecasting using Hydrological Models (United States)

    Infante Corona, J. A.; Lakhankar, T.; Khanbilvardi, R.; Pradhanang, S. M.


    Stream flow estimation and flood prediction influenced by snow melting processes have been studied for the past couple of decades because of their destruction potential, money losses and demises. It has been observed that snow, that was very stationary during its seasons, now is variable in shorter time-scales (daily and hourly) and rapid snowmelt can contribute or been the cause of floods. Therefore, good estimates of snowpack properties on ground are necessary in order to have an accurate prediction of these destructive events. The snow thermal model (SNTHERM) is a 1-dimensional model that analyzes the snowpack properties given the climatological conditions of a particular area. Gridded data from both, in-situ meteorological observations and remote sensing data will be produced using interpolation methods; thus, snow water equivalent (SWE) and snowmelt estimations can be obtained. The soil and water assessment tool (SWAT) is a hydrological model capable of predicting runoff quantity and quality of a watershed given its main physical and hydrological properties. The results from SNTHERM will be used as an input for SWAT in order to have simulated runoff under snowmelt conditions. This project attempts to improve the river discharge estimation considering both, excess rainfall runoff and the snow melting process. Obtaining a better estimation of the snowpack properties and evolution is expected. A coupled use of SNTHERM and SWAT based on meteorological in situ and remote sensed data will improve the temporal and spatial resolution of the snowpack characterization and river discharge estimations, and thus flood prediction.

  5. Efficiency assessment of runoff harvesting techniques using a 3D coupled surface-subsurface hydrological model

    International Nuclear Information System (INIS)

    Verbist, K.; Cronelis, W. M.; McLaren, R.; Gabriels, D.; Soto, G.


    In arid and semi-arid zones runoff harvesting techniques are often applied to increase the water retention and infiltration on steep slopes. Additionally, they act as an erosion control measure to reduce land degradation hazards. Both in literature and in the field, a large variety of runoff collecting systems are found, as well as large variations in design and dimensions. Therefore, detailed measurements were performed on a semi-arid slope in central Chile to allow identification of the effect of a simple water harvesting technique on soil water availability. For this purpose, twenty two TDR-probes were installed and were monitored continuously during and after a simulated rainfall event. These data were used to calibrate the 3D distributed flow model HydroGeoSphere, to assess the runoff components and soil water retention as influenced by the water harvesting technique, both under simulated and natural rainfall conditions. (Author) 6 refs.

  6. Spatiotemporal impacts of LULC changes on hydrology from the perspective of runoff generation mechanism using SWAT model with evolving parameters (United States)

    Li, Y.; Chang, J.; Luo, L.


    It is of great importance for water resources management to model the truly hydrological process under changing environment, especially under significant changes of underlying surfaces like the Wei River Bain (WRB) where the subsurface hydrology is highly influenced by human activities, and to systematically investigate the interactions among LULC change, streamflow variation and changes in runoff generation process. Therefore, we proposed the idea of evolving parameters in hydrological model (SWAT) to reflect the changes in physical environment with different LULC conditions. Then with these evolving parameters, the spatiotemporal impacts of LULC changes on streamflow were quantified, and qualitative analysis was conducted to further explore how LULC changes affect the streamflow from the perspective of runoff generation mechanism. Results indicate the following: 1) evolving parameter calibration is not only effective but necessary to ensure the validity of the model when dealing with significant changes in underlying surfaces due to human activities. 2) compared to the baseline period, the streamflow in wet seasons increased in the 1990s but decreased in the 2000s. While at yearly and dry seasonal scales, the streamflow decreased in both two decades; 3) the expansion of cropland is the major contributor to the reduction of surface water component, thus causing the decline in streamflow at yearly and dry seasonal scales. While compared to the 1990s, the expansions of woodland in the middle stream and grassland in the downstream are the main stressors that increased the soil water component, thus leading to the more decline of the streamflow in the 2000s.

  7. Development of a hydrological model for simulation of runoff from catchments unbounded by ridge lines (United States)

    Vema, Vamsikrishna; Sudheer, K. P.; Chaubey, I.


    Watershed hydrological models are effective tools for simulating the hydrological processes in the watershed. Although there are a plethora of hydrological models, none of them can be directly applied to make water conservation decisions in irregularly bounded areas that do not confirm to topographically defined ridge lines. This study proposes a novel hydrological model that can be directly applied to any catchment, with or without ridge line boundaries. The model is based on the water balance concept, and a linear function concept to approximate the cross-boundary flow from upstream areas to the administrative catchment under consideration. The developed model is tested in 2 watersheds - Riesel Experimental Watershed and a sub-basin of Cedar Creek Watershed in Texas, USA. Hypothetical administrative catchments that did not confirm to the location of ridge lines were considered for verifying the efficacy of the model for hydrologic simulations. The linear function concept used to account the cross boundary flow was based on the hypothesis that the flow coming from outside the boundary to administrative area was proportional to the flow generated in the boundary grid cell. The model performance was satisfactory with an NSE and r2 of ≥0.80 and a PBIAS of administrative catchments of the watersheds were in good agreement with the observed hydrographs, indicating a satisfactory performance of the model in the administratively bounded areas.

  8. Distributed hydrological modelling of total dissolved phosphorus transport in an agricultural landscape, part I: distributed runoff generation

    Directory of Open Access Journals (Sweden)

    P. Gérard-Marchant


    Full Text Available Successful implementation of best management practices for reducing non-point source (NPS pollution requires knowledge of the location of saturated areas that produce runoff. A physically-based, fully-distributed, GIS-integrated model, the Soil Moisture Distribution and Routing (SMDR model was developed to simulate the hydrologic behavior of small rural upland watersheds with shallow soils and steep to moderate slopes. The model assumes that gravity is the only driving force of water and that most overland flow occurs as saturation excess. The model uses available soil and climatic data, and requires little calibration. The SMDR model was used to simulate runoff production on a 164-ha farm watershed in Delaware County, New York, in the headwaters of New York City water supply. Apart from land use, distributed input parameters were derived from readily available data. Simulated hydrographs compared reasonably with observed flows at the watershed outlet over a eight year simulation period, and peak timing and intensities were well reproduced. Using off-site weather input data produced occasional missed event peaks. Simulated soil moisture distribution agreed well with observed hydrological features and followed the same spatial trend as observed soil moisture contents sampled on four transects. Model accuracy improved when input variables were calibrated within the range of SSURGO-available parameters. The model will be a useful planning tool for reducing NPS pollution from farms in landscapes similar to the Northeastern US.

  9. Evaluating the effectiveness of management practices on hydrology and water quality at watershed scale with a rainfall-runoff model. (United States)

    Liu, Yaoze; Bralts, Vincent F; Engel, Bernard A


    The adverse influence of urban development on hydrology and water quality can be reduced by applying best management practices (BMPs) and low impact development (LID) practices. This study applied green roof, rain barrel/cistern, bioretention system, porous pavement, permeable patio, grass strip, grassed swale, wetland channel, retention pond, detention basin, and wetland basin, on Crooked Creek watershed. The model was calibrated and validated for annual runoff volume. A framework for simulating BMPs and LID practices at watershed scales was created, and the impacts of BMPs and LID practices on water quantity and water quality were evaluated with the Long-Term Hydrologic Impact Assessment-Low Impact Development 2.1 (L-THIA-LID 2.1) model for 16 scenarios. The various levels and combinations of BMPs/LID practices reduced runoff volume by 0 to 26.47%, Total Nitrogen (TN) by 0.30 to 34.20%, Total Phosphorus (TP) by 0.27 to 47.41%, Total Suspended Solids (TSS) by 0.33 to 53.59%, Lead (Pb) by 0.30 to 60.98%, Biochemical Oxygen Demand (BOD) by 0 to 26.70%, and Chemical Oxygen Demand (COD) by 0 to 27.52%. The implementation of grass strips in 25% of the watershed where this practice could be applied was the most cost-efficient scenario, with cost per unit reduction of $1m3/yr for runoff, while cost for reductions of two pollutants of concern was $445 kg/yr for Total Nitrogen (TN) and $4871 kg/yr for Total Phosphorous (TP). The scenario with very high levels of BMP and LID practice adoption (scenario 15) reduced runoff volume and pollutant loads from 26.47% to 60.98%, and provided the greatest reduction in runoff volume and pollutant loads among all scenarios. However, this scenario was not as cost-efficient as most other scenarios. The L-THIA-LID 2.1 model is a valid tool that can be applied to various locations to help identify cost effective BMP/LID practice plans at watershed scales. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Calibration of a rainfall-runoff hydrological model and flood simulation using data assimilation (United States)

    Piacentini, A.; Ricci, S. M.; Thual, O.; Coustau, M.; Marchandise, A.


    Rainfall-runoff models are crucial tools for long-term assessment of flash floods or real-time forecasting. This work focuses on the calibration of a distributed parsimonious event-based rainfall-runoff model using data assimilation. The model combines a SCS-derived runoff model and a Lag and Route routing model for each cell of a regular grid mesh. The SCS-derived runoff model is parametrized by the initial water deficit, the discharge coefficient for the soil reservoir and a lagged discharge coefficient. The Lag and Route routing model is parametrized by the velocity of travel and the lag parameter. These parameters are assumed to be constant for a given catchment except for the initial water deficit and the velocity travel that are event-dependent (landuse, soil type and moisture initial conditions). In the present work, a BLUE filtering technique was used to calibrate the initial water deficit and the velocity travel for each flood event assimilating the first available discharge measurements at the catchment outlet. The advantages of the BLUE algorithm are its low computational cost and its convenient implementation, especially in the context of the calibration of a reduced number of parameters. The assimilation algorithm was applied on two Mediterranean catchment areas of different size and dynamics: Gardon d'Anduze and Lez. The Lez catchment, of 114 km2 drainage area, is located upstream Montpellier. It is a karstic catchment mainly affected by floods in autumn during intense rainstorms with short Lag-times and high discharge peaks (up to 480 m3.s-1 in September 2005). The Gardon d'Anduze catchment, mostly granite and schistose, of 545 km2 drainage area, lies over the departements of Lozère and Gard. It is often affected by flash and devasting floods (up to 3000 m3.s-1 in September 2002). The discharge observations at the beginning of the flood event are assimilated so that the BLUE algorithm provides optimal values for the initial water deficit and the

  11. Derivation of flood frequency curves in poorly gauged Mediterranean catchments using a simple stochastic hydrological rainfall-runoff model (United States)

    Aronica, G. T.; Candela, A.


    SummaryIn this paper a Monte Carlo procedure for deriving frequency distributions of peak flows using a semi-distributed stochastic rainfall-runoff model is presented. The rainfall-runoff model here used is very simple one, with a limited number of parameters and practically does not require any calibration, resulting in a robust tool for those catchments which are partially or poorly gauged. The procedure is based on three modules: a stochastic rainfall generator module, a hydrologic loss module and a flood routing module. In the rainfall generator module the rainfall storm, i.e. the maximum rainfall depth for a fixed duration, is assumed to follow the two components extreme value (TCEV) distribution whose parameters have been estimated at regional scale for Sicily. The catchment response has been modelled by using the Soil Conservation Service-Curve Number (SCS-CN) method, in a semi-distributed form, for the transformation of total rainfall to effective rainfall and simple form of IUH for the flood routing. Here, SCS-CN method is implemented in probabilistic form with respect to prior-to-storm conditions, allowing to relax the classical iso-frequency assumption between rainfall and peak flow. The procedure is tested on six practical case studies where synthetic FFC (flood frequency curve) were obtained starting from model variables distributions by simulating 5000 flood events combining 5000 values of total rainfall depth for the storm duration and AMC (antecedent moisture conditions) conditions. The application of this procedure showed how Monte Carlo simulation technique can reproduce the observed flood frequency curves with reasonable accuracy over a wide range of return periods using a simple and parsimonious approach, limited data input and without any calibration of the rainfall-runoff model.

  12. Hydrological scenarios of future seasonal runoff distribution in Central Slovakia

    International Nuclear Information System (INIS)

    Hlavcova, K; Szolgay, J; Kohnova, S; Balint, G


    The hydrological scenarios of future seasonal distributions of runoff in the upper Hron River basin, which was chosen as a representative mountainous region in Central Slovakia, were evaluated. Changes in the future climate were expressed by three different climate change scenarios developed within the framework of the Central and Eastern Europe Climate Change Impact and Vulnerability Assessment Project (CECILIA). The climate change scenarios were constructed using the pattern scaling method from the outputs of transient simulations made by 3 GCMs - ECHAM4/OPYC3, HadCM2 and NCAR DOE-PCM. A conceptual hydrological balance model calibrated with data from the period 1971-2000 was used for modelling changes in runoff with monthly time steps. The runoff change scenarios for the selected basin in the future time horizons of 2025, 2050 and 2100 show changes in the seasonal runoff distribution.

  13. Assessment of runoff contributing catchment areas in rainfall runoff modelling

    DEFF Research Database (Denmark)

    Thorndahl, Søren; Johansen, C.; Schaarup-Jensen, Kjeld


    In numerical modelling of rainfall caused runoff in urban sewer systems an essential parameter is the hydrological reduction factor which defines the percentage of the impervious area contributing to the surface flow towards the sewer. As the hydrological processes during a rainfall are difficult...... to determine with significant precision the hydrological reduction factor is implemented to account all hydrological losses except the initial loss. This paper presents an inconsistency between calculations of the hydrological reduction factor, based on measurements of rainfall and runoff, and till now...... recommended literature values for residential areas. It is proven by comparing rainfall-runoff measurements from four different residential catchments that the literature values of the hydrological reduction factor are over-estimated for this type of catchment. In addition, different catchment descriptions...

  14. A glacier runoff extension to the Precipitation Runoff Modeling System (United States)

    A. E. Van Beusekom; R. J. Viger


    A module to simulate glacier runoff, PRMSglacier, was added to PRMS (Precipitation Runoff Modeling System), a distributed-parameter, physical-process hydrological simulation code. The extension does not require extensive on-glacier measurements or computational expense but still relies on physical principles over empirical relations as much as is feasible while...

  15. Estimating soil hydrological response by combining precipitation-runoff modeling and hydro-functional soil homogeneous units (United States)

    Aroca-Jimenez, Estefania; Bodoque, Jose Maria; Diez-Herrero, Andres


    Flash floods constitute one of the natural hazards better able to generate risk, particularly with regard to Society. The complexity of this process and its dependence on various factors related to the characteristics of the basin and rainfall make flash floods are difficult to characterize in terms of their hydrological response.To do this, it is essential a proper analysis of the so called 'initial abstractions'. Among all of these processes, infiltration plays a crucial role in explaining the occurrence of floods in mountainous basins.For its characterization the Green-Ampt model , which depends on the characteristics of rainfall and physical properties of soil has been used in this work.This is a method enabling to simulate floods in mountainous basins where hydrological response is sub-daily. However, it has the disadvantage that it is based on physical properties of soil which have a high spatial variability. To address this difficulty soil mapping units have been delineated according to the geomorphological landforms and elements. They represent hydro-functional mapping units that are theoretically homogeneous from the perspective of the pedostructure parameters of the pedon. So the soil texture of each homogeneous group of landform units was studied by granulometric analyses using standarized sieves and Sedigraph devices. In addition, uncertainty associated with the parameterization of the Green-Ampt method has been estimated by implementing a Monte Carlo approach, which required assignment of the proper distribution function to each parameter.The suitability of this method was contrasted by calibrating and validating a hydrological model, in which the generation of runoff hydrograph has been simulated using the SCS unit hydrograph (HEC-GeoHMS software), while flood wave routing has been characterized using the Muskingum-Cunge method. Calibration and validation of the model was from the use of an automatic routine based on the employ of the search algorithm

  16. Integration of Spatially Hydrological Modelling on Bentong Catchment, Pahang, Peninsular Malaysia Using Distributed GIS-based Rainfall Runoff Model

    Directory of Open Access Journals (Sweden)

    Rosli, M.H.


    Full Text Available With the advance of GIS technology, hydrology model can simulated at catchment wide scale. The objective is to integrate National Resource Conservation Service (NRCS Curve Number (CN with kinematic wave and manning’s equation using GIS to develop a simple GIS-based distributed model to simulate rainfall runoff in Bentong catchment. Model was built using Spatial Distributed Direct Hydrograph (SDDH concept and applying the time area (TA approach in presenting the predicted discharge hydrograph. The effective precipitation estimation was first calculated using the NRCS CN method. Then, the core maps that consists of digital elevation model (DEM, soil and land use map in grid. DEM was used to derive slope, flow direction and flow accumulation while soil and land use map used to derive roughness coefficient and CN. The overland velocity and channel velocity estimation derived from combination of kinematic wave theory with Manning’s equation. To capture the time frame, the travel time map was divided into isochrones in order to generate the TA histogram and finally. The creation of SDDH using the TA histogram which will lead to the estimation of travel time for the catchment. Simulated hydrograph was plotted together with the observed discharge for comparison. Six storm events used for model performance evaluation using statistical measure such as Nash-Sutcliffe efficiency (NSE, percent bias (PBIAS and coefficient of determination (R2;. SDDH model performed quite well as NSE gave result ranging from 0.55 to 0.68 with mean of 0.6. PBIAS indicate that the model slightly over predicted compared to observed hydrograph with result ranges from -46.71 (the most over predicted to +4.83 (the most under predicted with average of -20.73%. R2; ranges between 0.55 to 0.82 with mean of 0.67. When comparing the time to peak, (tp, min, and peak discharge, (pd, m3/s, results gave NSEtp 0.82, PBIAStp 0.65, R2tp 0.32, NSEpd 0.95, PBIASpd 14.49 and R2pd 0

  17. The impact of runoff and surface hydrology on Titan's climate (United States)

    Faulk, Sean; Lora, Juan; Mitchell, Jonathan


    Titan’s surface liquid distribution has been shown by general circulation models (GCMs) to greatly influence the hydrological cycle. Simulations from the Titan Atmospheric Model (TAM) with imposed polar methane “wetlands” reservoirs realistically produce many observed features of Titan’s atmosphere, whereas “aquaplanet” simulations with a global methane ocean are not as successful. In addition, wetlands simulations, unlike aquaplanet simulations, demonstrate strong correlations between extreme rainfall behavior and observed geomorphic features, indicating the influential role of precipitation in shaping Titan’s surface. The wetlands configuration is, in part, motivated by Titan’s large-scale topography featuring low-latitude highlands and high-latitude lowlands, with the implication being that methane may concentrate in the high-latitude lowlands by way of runoff and subsurface flow. However, the extent to which topography controls the surface liquid distribution and thus impacts the global hydrological cycle by driving surface and subsurface flow is unclear. Here we present TAM simulations wherein the imposed wetlands reservoirs are replaced by a surface runoff scheme that allows surface liquid to self-consistently redistribute under the influence of topography. To isolate the singular impact of surface runoff on Titan’s climatology, we run simulations without parameterizations of subsurface flow and topography-atmosphere interactions. We discuss the impact of surface runoff on the surface liquid distribution over seasonal timescales and compare the resulting hydrological cycle to observed cloud and surface features, as well as to the hydrological cycles of the TAM wetlands and aquaplanet simulations. While still idealized, this more realistic representation of Titan’s hydrology provides new insight into the complex interaction between Titan’s atmosphere and surface, demonstrates the influence of surface runoff on Titan’s global climate

  18. Applying a regional hydrology model to evaluate locations for groundwater replenishment with hillslope runoff under different climate and land use scenarios in an agricultural basin, central coastal California (United States)

    Beganskas, S.; Young, K. S.; Fisher, A. T.; Lozano, S.; Harmon, R. E.; Teo, E. K.


    We are applying a regional hydrology model, Precipitation-Runoff Modeling System (PRMS), to evaluate locations for groundwater replenishment with hillslope runoff in the Pajaro Valley Groundwater Basin (PVGB), central coastal California. Stormwater managed aquifer recharge (MAR) projects collect hillslope runoff before it reaches a stream and infiltrate it into underlying aquifers, improving groundwater supply. The PVGB is a developed agricultural basin where groundwater provides >85% of water for irrigation and municipal needs; stormwater-MAR projects are being considered to address chronic overdraft and saltwater intrusion. We are applying PRMS to assess on a subwatershed scale (10-100 ha; 25-250 acres) where adequate runoff is generated to supply stormwater-MAR in coincidence with suitable conditions for infiltration and recharge. Data from active stormwater-MAR projects in the PVGB provide ground truth for model results. We are also examining how basinwide hydrology responds to changing land use and climate, and the potential implications for future water management. To prepare extensive input files for PRMS models, we developed ArcGIS and Python tools to delineate a topographic model grid and incorporate high-resolution soil, vegetation, and other physical data into each grid region; we also developed tools to analyze and visualize model output. Using historic climate records, we generated dry, normal, and wet climate scenarios, defined as having approximately 25th, 50th, and 75th percentile annual rainfall, respectively. We also generated multiple land use scenarios by replacing developed areas with native vegetation. Preliminary results indicate that many parts of the PVGB generate significant runoff and have suitable infiltration/recharge conditions. Reducing basinwide overdraft by 10% would require collecting less than 5% of total hillslope runoff, even during the dry scenario; this demonstrates that stormwater-MAR could be an effective water management

  19. Hydrologic conditions controlling runoff generation immediately after wildfire (United States)

    Ebel, Brian A.; Moody, John A.; Martin, Deborah A.


    We investigated the control of postwildfire runoff by physical and hydraulic properties of soil, hydrologic states, and an ash layer immediately following wildfire. The field site is within the area burned by the 2010 Fourmile Canyon Fire in Colorado, USA. Physical and hydraulic property characterization included ash thickness, particle size distribution, hydraulic conductivity, and soil water retention curves. Soil water content and matric potential were measured indirectly at several depths below the soil surface to document hydrologic states underneath the ash layer in the unsaturated zone, whereas precipitation and surface runoff were measured directly. Measurements of soil water content showed that almost no water infiltrated below the ash layer into the near-surface soil in the burned site at the storm time scale (i.e., minutes to hours). Runoff generation processes were controlled by and highly sensitive to ash thickness and ash hydraulic properties. The ash layer stored from 97% to 99% of rainfall, which was critical for reducing runoff amounts. The hydrologic response to two rain storms with different rainfall amounts, rainfall intensity, and durations, only ten days apart, indicated that runoff generation was predominantly by the saturation-excess mechanism perched at the ash-soil interface during the first storm and predominantly by the infiltration-excess mechanism at the ash surface during the second storm. Contributing area was not static for the two storms and was 4% (saturation excess) to 68% (infiltration excess) of the catchment area. Our results showed the importance of including hydrologic conditions and hydraulic properties of the ash layer in postwildfire runoff generation models.

  20. Integrated Landsat Image Analysis and Hydrologic Modeling to Detect Impacts of 25-Year Land-Cover Change on Surface Runoff in a Philippine Watershed

    Directory of Open Access Journals (Sweden)

    Enrico Paringit


    Full Text Available Landsat MSS and ETM+ images were analyzed to detect 25-year land-cover change (1976–2001 in the critical Taguibo Watershed in Mindanao Island, Southern Philippines. This watershed has experienced historical modifications of its land-cover due to the presence of logging industries in the 1950s, and continuous deforestation due to illegal logging and slash-and-burn agriculture in the present time. To estimate the impacts of land-cover change on watershed runoff, land-cover information derived from the Landsat images was utilized to parameterize a GIS-based hydrologic model. The model was then calibrated with field-measured discharge data and used to simulate the responses of the watershed in its year 2001 and year 1976 land-cover conditions. The availability of land-cover information on the most recent state of the watershed from the Landsat ETM+ image made it possible to locate areas for rehabilitation such as barren and logged-over areas. We then created a “rehabilitated” land-cover condition map of the watershed (re-forestation of logged-over areas and agro-forestation of barren areas and used it to parameterize the model and predict the runoff responses of the watershed. Model results showed that changes in land-cover from 1976 to 2001 were directly related to the significant increase in surface runoff. Runoff predictions showed that a full rehabilitation of the watershed, especially in barren and logged-over areas, will be likely to reduce the generation of a huge volume of runoff during rainfall events. The results of this study have demonstrated the usefulness of multi-temporal Landsat images in detecting land-cover change, in identifying areas for rehabilitation, and in evaluating rehabilitation strategies for management of tropical watersheds through its use in hydrologic modeling.

  1. Impacts of Changing Climatic Drivers and Land use features on Future Stormwater Runoff in the Northwest Florida Basin: A Large-Scale Hydrologic Modeling Assessment (United States)

    Khan, M.; Abdul-Aziz, O. I.


    Potential changes in climatic drivers and land cover features can significantly influence the stormwater budget in the Northwest Florida Basin. We investigated the hydro-climatic and land use sensitivities of stormwater runoff by developing a large-scale process-based rainfall-runoff model for the large basin by using the EPA Storm Water Management Model (SWMM 5.1). Climatic and hydrologic variables, as well as land use/cover features were incorporated into the model to account for the key processes of coastal hydrology and its dynamic interactions with groundwater and sea levels. We calibrated and validated the model by historical daily streamflow observations during 2009-2012 at four major rivers in the basin. Downscaled climatic drivers (precipitation, temperature, solar radiation) projected by twenty GCMs-RCMs under CMIP5, along with the projected future land use/cover features were also incorporated into the model. The basin storm runoff was then simulated for the historical (2000s = 1976-2005) and two future periods (2050s = 2030-2059, and 2080s = 2070-2099). Comparative evaluation of the historical and future scenarios leads to important guidelines for stormwater management in Northwest Florida and similar regions under a changing climate and environment.

  2. Application of artificial neural networks in hydrological modeling: A case study of runoff simulation of a Himalayan glacier basin (United States)

    Buch, A. M.; Narain, A.; Pandey, P. C.


    The simulation of runoff from a Himalayan Glacier basin using an Artificial Neural Network (ANN) is presented. The performance of the ANN model is found to be superior to the Energy Balance Model and the Multiple Regression model. The RMS Error is used as the figure of merit for judging the performance of the three models, and the RMS Error for the ANN model is the latest of the three models. The ANN is faster in learning and exhibits excellent system generalization characteristics.


    Directory of Open Access Journals (Sweden)

    S. H. Ali


    Full Text Available The hydrology of Upper Indus basin is not recognized well due to the intricacies in the climate and geography, and the scarcity of data above 5000 m a.s.l where most of the precipitation falls in the form of snow. The main objective of this study is to measure the contributions of different components of runoff in Upper Indus basin. To achieve this goal, the Modified positive degree day model (MPDDM was used to simulate the runoff and investigate its components in two catchments of Upper Indus basin, Hunza and Gilgit River basins. These two catchments were selected because of their different glacier coverage, contrasting area distribution at high altitudes and significant impact on the Upper Indus River flow. The components of runoff like snow-ice melt and rainfall-base flow were identified by the model. The simulation results show that the MPDDM shows a good agreement between observed and modeled runoff of these two catchments and the effects of snow and ice are mainly reliant on the catchment characteristics and the glaciated area. For Gilgit River basin, the largest contributor to runoff is rain-base flow, whereas large contribution of snow-ice melt observed in Hunza River basin due to its large fraction of glaciated area. This research will not only contribute to the better understanding of the impacts of climate change on the hydrological response in the Upper Indus, but will also provide guidance for the development of hydropower potential and water resources assessment in these catchments.

  4. A comparison of changes in river runoff from multiple global and catchment-scale hydrological models under global warming scenarios of 1 °C, 2 °C and 3 °C

    NARCIS (Netherlands)

    Gosling, S.N.; Zaherpour, J.J.; Mount, N.J.; Hattermann, F.F.; Dankers, R.; Arheimer, B.; Breuer, L.; Ding, J.; Haddeland, I.; Kumar, R.; Kundu, D.; Liu, J.; van Griensven, A.; Veldkamp, T.I.E.; Vetter, T.; Wang, X.; Zhang, X.


    We present one of the first climate change impact assessments on river runoff that utilises an ensemble of global hydrological models (Glob-HMs) and an ensemble of catchment-scale hydrological models (Cat-HMs), across multiple catchments: the upper Amazon, Darling, Ganges, Lena, upper Mississippi,

  5. Hydrological control of large hurricane-induced lahars: evidence from rainfall-runoff modeling, seismic and video monitoring (United States)

    Capra, Lucia; Coviello, Velio; Borselli, Lorenzo; Márquez-Ramírez, Víctor-Hugo; Arámbula-Mendoza, Raul


    The Volcán de Colima, one of the most active volcanoes in Mexico, is commonly affected by tropical rains related to hurricanes that form over the Pacific Ocean. In 2011, 2013 and 2015 hurricanes Jova, Manuel and Patricia, respectively, triggered tropical storms that deposited up to 400 mm of rain in 36 h, with maximum intensities of 50 mm h -1. The effects were devastating, with the formation of multiple lahars along La Lumbre and Montegrande ravines, which are the most active channels in sediment delivery on the south-southwest flank of the volcano. Deep erosion along the river channels and several marginal landslides were observed, and the arrival of block-rich flow fronts resulted in damages to bridges and paved roads in the distal reaches of the ravines. The temporal sequence of these flow events is reconstructed and analyzed using monitoring data (including video images, seismic records and rainfall data) with respect to the rainfall characteristics and the hydrologic response of the watersheds based on rainfall-runoff numerical simulation. For the studied events, lahars occurred 5-6 h after the onset of rainfall, lasted several hours and were characterized by several pulses with block-rich fronts and a maximum flow discharge of 900 m3 s -1. Rainfall-runoff simulations were performer using the SCS-curve number and the Green-Ampt infiltration models, providing a similar result in the detection of simulated maximum watershed peaks discharge. Results show different behavior for the arrival times of the first lahar pulses that correlate with the simulated catchment's peak discharge for La Lumbre ravine and with the peaks in rainfall intensity for Montegrande ravine. This different behavior is related to the area and shape of the two watersheds. Nevertheless, in all analyzed cases, the largest lahar pulse always corresponds with the last one and correlates with the simulated maximum peak discharge of these catchments. Data presented here show that flow pulses

  6. Toward an operational tool to simulate green roof hydrological impact at the basin scale: a new version of the distributed rainfall-runoff model Multi-Hydro. (United States)

    Versini, Pierre-Antoine; Gires, Auguste; Tchinguirinskaia, Ioulia; Schertzer, Daniel


    Currently widespread in new urban projects, green roofs have shown a positive impact on urban runoff at the building scale: decrease and slow-down of the peak discharge, and decrease of runoff volume. The present work aims to study their possible impact at the catchment scale, more compatible with stormwater management issues. For this purpose, a specific module dedicated to simulating the hydrological behaviour of a green roof has been developed in the distributed rainfall-runoff model (Multi-Hydro). It has been applied on a French urban catchment where most of the building roofs are flat and assumed to accept the implementation of a green roof. Catchment responses to several rainfall events covering a wide range of meteorological situations have been simulated. The simulation results show green roofs can significantly reduce runoff volume and the magnitude of peak discharge (up to 80%) depending on the rainfall event and initial saturation of the substrate. Additional tests have been made to assess the susceptibility of this response regarding both spatial distributions of green roofs and precipitation. It appears that the total area of greened roofs is more important than their locations. On the other hand, peak discharge reduction seems to be clearly dependent on spatial distribution of precipitation.

  7. An Implementation of Estimation Techniques to a Hydrological Model for Prediction of Runoff to a Hydroelectric Power-Station

    Directory of Open Access Journals (Sweden)

    Magne Fjeld


    Full Text Available Parameter and state estimation algorithms have been applied to a hydrological model of a catchment area in southern Norway to yield improved control of the household of water resources and better economy and efficiency in the running of the power station, as experience proves since the system was installed on-line in the summer of 1978.

  8. Combined Hydrologic (AGWA-KINEROS2) and Hydraulic (HEC2) Modeling for Post-Fire Runoff and Inundation Risk Assessment through a Set of Python Tools (United States)

    Barlow, J. E.; Goodrich, D. C.; Guertin, D. P.; Burns, I. S.


    Wildfires in the Western United States can alter landscapes by removing vegetation and changing soil properties. These altered landscapes produce more runoff than pre-fire landscapes which can lead to post-fire flooding that can damage infrastructure and impair natural resources. Resources, structures, historical artifacts and others that could be impacted by increased runoff are considered values at risk. .The Automated Geospatial Watershed Assessment tool (AGWA) allows users to quickly set up and execute the Kinematic Runoff and Erosion model (KINEROS2 or K2) in the ESRI ArcMap environment. The AGWA-K2 workflow leverages the visualization capabilities of GIS to facilitate evaluation of rapid watershed assessments for post-fire planning efforts. High relative change in peak discharge, as simulated by K2, provides a visual and numeric indicator to investigate those channels in the watershed that should be evaluated for more detailed analysis, especially if values at risk are within or near that channel. Modeling inundation extent along a channel would provide more specific guidance about risk along a channel. HEC-2 and HEC-RAS can be used for hydraulic modeling efforts at the reach and river system scale. These models have been used to address flood boundaries and, accordingly, flood risk. However, data collection and organization for hydraulic models can be time consuming and therefore a combined hydrologic-hydraulic modeling approach is not often employed for rapid assessments. A simplified approach could streamline this process and provide managers with a simple workflow and tool to perform a quick risk assessment for a single reach. By focusing on a single reach highlighted by large relative change in peak discharge, data collection efforts can be minimized and the hydraulic computations can be performed to supplement risk analysis. The incorporation of hydraulic analysis through a suite of Python tools (as outlined by HEC-2) with AGWA-K2 will allow more rapid

  9. Daily Streamflow Predictions in an Ungauged Watershed in Northern California Using the Precipitation-Runoff Modeling System (PRMS): Calibration Challenges when nearby Gauged Watersheds are Hydrologically Dissimilar (United States)

    Dhakal, A. S.; Adera, S.


    Accurate daily streamflow prediction in ungauged watersheds with sparse information is challenging. The ability of a hydrologic model calibrated using nearby gauged watersheds to predict streamflow accurately depends on hydrologic similarities between the gauged and ungauged watersheds. This study examines daily streamflow predictions using the Precipitation-Runoff Modeling System (PRMS) for the largely ungauged San Antonio Creek watershed, a 96 km2 sub-watershed of the Alameda Creek watershed in Northern California. The process-based PRMS model is being used to improve the accuracy of recent San Antonio Creek streamflow predictions generated by two empirical methods. Although San Antonio Creek watershed is largely ungauged, daily streamflow data exists for hydrologic years (HY) 1913 - 1930. PRMS was calibrated for HY 1913 - 1930 using streamflow data, modern-day land use and PRISM precipitation distribution, and gauged precipitation and temperature data from a nearby watershed. The PRMS model was then used to generate daily streamflows for HY 1996-2013, during which the watershed was ungauged, and hydrologic responses were compared to two nearby gauged sub-watersheds of Alameda Creek. Finally, the PRMS-predicted daily flows between HY 1996-2013 were compared to the two empirically-predicted streamflow time series: (1) the reservoir mass balance method and (2) correlation of historical streamflows from 80 - 100 years ago between San Antonio Creek and a nearby sub-watershed located in Alameda Creek. While the mass balance approach using reservoir storage and transfers is helpful for estimating inflows to the reservoir, large discrepancies in daily streamflow estimation can arise. Similarly, correlation-based predicted daily flows which rely on a relationship from flows collected 80-100 years ago may not represent current watershed hydrologic conditions. This study aims to develop a method of streamflow prediction in the San Antonio Creek watershed by examining PRMS

  10. Assessment of CREAMS [Chemicals, Runoff, and Erosion from Agricultural Management Systems] and ERHYM-II [Ekalaka Rangeland Hydrology and Yield Model] computer models for simulating soil water movement on the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Laundre, J.W.


    The major goal of radioactive waste management is long-term containment of radioactive waste. Long-term containment is dependent on understanding water movement on, into, and through trench caps. Several computer simulation models are available for predicting water movement. Of the several computer models available, CREAMS (Chemicals, Runoff, and Erosion from Agricultural Management Systems) and ERHYM-II (Ekalaka Rangeland Hydrology and Yield Model) were tested for use on the Idaho National Engineering Laboratory (INEL). The models were calibrated, tested for sensitivity, and used to evaluate some basic trench cap designs. Each model was used to postdict soil moisture, evapotranspiration, and runoff of two watersheds for which such data were already available. Sensitivity of the models was tested by adjusting various input parameters from high to low values and then comparing model outputs to those generated from average values. Ten input parameters of the CREAMS model were tested for sensitivity. 17 refs., 23 figs., 20 tabs

  11. Assessment of Runoff Contributing Catchment Areas in Rainfall Runoff Modelling

    DEFF Research Database (Denmark)

    Thorndahl, Søren Liedtke; Johansen, C.; Schaarup-Jensen, Kjeld


    to determine with significant precision the hydrological reduction factor is implemented to account all hydrological losses except the initial loss. This paper presents an inconsistency between calculations of the hydrological reduction factor, based on measurements of rainfall and runoff, and till now...... recommended literary values for residential areas. It is proven by comparing rainfall-runoff measurements from four different residential catchments that the literary values of the hydrological reduction factor are over-estimated for this type of catchments. In addition, different catchment descriptions...

  12. The paradoxical evolution of runoff in the pastoral Sahel: analysis of the hydrological changes over the Agoufou watershed (Mali) using the KINEROS-2 model (United States)

    Gal, Laetitia; Grippa, Manuela; Hiernaux, Pierre; Pons, Léa; Kergoat, Laurent


    In recent decades, the Sahel has witnessed a paradoxical increase in surface water despite a general precipitation decline. This phenomenon, commonly referred to as the Sahelian paradox, is not completely understood yet. The role of cropland expansion due to the increasing food demand by a growing population has been often put forward to explain this situation for the cultivated Sahel. However, this hypothesis does not hold in pastoral areas where the same phenomenon is observed. Several other processes, such as the degradation of natural vegetation following the major droughts of the 1970s and the 1980s, the development of crusted topsoils, the intensification of the rainfall regime and the development of the drainage network, have been suggested to account for this situation. In this paper, a modeling approach is proposed to explore, quantify and rank different processes that could be at play in pastoral Sahel. The kinematic runoff and erosion model (KINEROS-2) is applied to the Agoufou watershed (245 km2), in the Gourma region in Mali, which underwent a significant increase of surface runoff during the last 60 years. Two periods are simulated, the past case (1960-1975) preceding the Sahelian drought and the present case (2000-2015). Surface hydrology and land cover characteristics for these two periods are derived by the analysis of aerial photographs, available in 1956, and high-resolution remote sensing images in 2011. The major changes identified are (1) a partial crusting of isolated dunes, (2) an increase of drainage network density, (3) a marked decrease in vegetation with the nonrecovery of tiger bush and vegetation growing on shallow sandy soils, and (4) important changes in soil properties with the apparition of impervious soils instead of shallow sandy soil. The KINEROS-2 model was parameterized to simulate these changes in combination or independently. The results obtained by this model display a significant increase in annual discharge between the

  13. Assessment of groundwater response to droughts in a complex runoff-dominated watershed by using an integrated hydrologic model (United States)

    Woolfenden, L. R.; Hevesi, J. A.; Nishikawa, T.


    Groundwater is an important component of the water supply, especially during droughts, within the Santa Rosa Plain watershed (SRPW), California, USA. The SRPW is 680 km2 and includes a network of natural and engineered stream channels. Streamflow is strongly seasonal, with high winter flows, predominantly intermittent summer flows, and comparatively rapid response time to larger storms. Groundwater flow is influenced primarily by complex geology, spatial and temporal variation in recharge, and pumping for urban, agricultural, and rural demands. Results from an integrated hydrologic model (GSFLOW) for the SRPW were analyzed to assess the effect of droughts on groundwater resources during water years 1976-2010. Model results indicate that, in general, below-average precipitation during historical drought periods reduced groundwater recharge (focused within stream channels and diffuse outside of channels on alluvial plains), groundwater evapotranspiration (ET), and groundwater discharge to streams (baseflow). In addition, recharge during wet periods was not sufficient to replenish groundwater-storage losses caused by drought and groundwater pumping, resulting in an overall 150 gigaliter loss in groundwater storage for water years 1976-2010. During drought periods, lower groundwater levels from reduced recharge broadly increased the number and length of losing-stream reaches, and seepage losses in streams became a higher percentage of recharge relative to the diffuse recharge outside of stream channels (for example, seepage losses in streams were 36% of recharge in 2006 and 57% at the end of the 2007-09 drought). Reductions in groundwater storage during drought periods resulted in decreased groundwater ET (loss of riparian habitat) and baseflow, especially during the warmer and dryer months (May through September) when groundwater is the dominant component of streamflow.

  14. Surface runoff in flat terrain: How field topography and runoff generating processes control hydrological connectivity

    NARCIS (Netherlands)

    Appels, W.M.; Bogaart, P.W.; Bogaart, P.W.; Zee, van der S.E.A.T.M.


    In flat lowland agricultural catchments in temperate climate zones with highly permeable sandy soils, surface runoff is a rare process with a large impact on the redistribution of sediments and solutes and stream water quality. We examine hydrological data obtained on two field sites in the

  15. Rainfall-runoff modelling and palaeoflood hydrology applied to reconstruct centennial scale records of flooding and aquifer recharge in ungauged ephemeral rivers

    Directory of Open Access Journals (Sweden)

    G. Benito


    Full Text Available In this study we propose a multi-source data approach for quantifying long-term flooding and aquifer recharge in ungauged ephemeral rivers. The methodology is applied to the Buffels River, at 9000 km2 the largest ephemeral river in Namaqualand (NW South Africa, a region with scarce stream flow records limiting research investigating hydrological response to global change. Daily discharge and annual flood series (1965–2006 were estimated from a distributed rainfall-runoff hydrological model (TETIS using rainfall gauge records located within the catchment. The model was calibrated and validated with data collected during a two year monitoring programme (2005–2006 at two stream flow stations, one each in the upper and lower reaches of the catchment. In addition to the modelled flow records, non-systematic flood data were reconstructed using both sedimentary and documentary evidence. The palaeoflood record identified at least 25 large floods during the last 700 yr; with the largest floods reaching a minimum discharge of 255 m3 s−1 (450 yr return period in the upper basin, and 510 m3 s−1 (100 yr return period in the lower catchment. Since AD 1925, the flood hydrology of the Buffels River has been characterised by a decrease in the magnitude and frequency of extreme floods, with palaeoflood discharges (period 1500–1921 five times greater than the largest modelled floods during the period 1965–2006. Large floods generated the highest hydrograph volumes, however their contribution to aquifer recharge is limited as this depends on other factors such as flood duration and storage capacity of the unsaturated zone prior to the flood. Floods having average return intervals of 5–10 yr (120–140 m3 s−1 and flowing for 12 days are able to fully saturate the Spektakel aquifer in the lower Buffels River basin. Alluvial aquifer storage capacity limiting potential recharge

  16. A glacier runoff extension to the Precipitation Runoff Modeling System (United States)

    Van Beusekom, Ashley E.; Viger, Roland


    A module to simulate glacier runoff, PRMSglacier, was added to PRMS (Precipitation Runoff Modeling System), a distributed-parameter, physical-process hydrological simulation code. The extension does not require extensive on-glacier measurements or computational expense but still relies on physical principles over empirical relations as much as is feasible while maintaining model usability. PRMSglacier is validated on two basins in Alaska, Wolverine, and Gulkana Glacier basin, which have been studied since 1966 and have a substantial amount of data with which to test model performance over a long period of time covering a wide range of climatic and hydrologic conditions. When error in field measurements is considered, the Nash-Sutcliffe efficiencies of streamflow are 0.87 and 0.86, the absolute bias fractions of the winter mass balance simulations are 0.10 and 0.08, and the absolute bias fractions of the summer mass balances are 0.01 and 0.03, all computed over 42 years for the Wolverine and Gulkana Glacier basins, respectively. Without taking into account measurement error, the values are still within the range achieved by the more computationally expensive codes tested over shorter time periods.

  17. The paradoxical evolution of runoff in the pastoral Sahel: analysis of the hydrological changes over the Agoufou watershed (Mali using the KINEROS-2 model

    Directory of Open Access Journals (Sweden)

    L. Gal


    Full Text Available In recent decades, the Sahel has witnessed a paradoxical increase in surface water despite a general precipitation decline. This phenomenon, commonly referred to as the Sahelian paradox, is not completely understood yet. The role of cropland expansion due to the increasing food demand by a growing population has been often put forward to explain this situation for the cultivated Sahel. However, this hypothesis does not hold in pastoral areas where the same phenomenon is observed. Several other processes, such as the degradation of natural vegetation following the major droughts of the 1970s and the 1980s, the development of crusted topsoils, the intensification of the rainfall regime and the development of the drainage network, have been suggested to account for this situation. In this paper, a modeling approach is proposed to explore, quantify and rank different processes that could be at play in pastoral Sahel. The kinematic runoff and erosion model (KINEROS-2 is applied to the Agoufou watershed (245 km2, in the Gourma region in Mali, which underwent a significant increase of surface runoff during the last 60 years. Two periods are simulated, the past case (1960–1975 preceding the Sahelian drought and the present case (2000–2015. Surface hydrology and land cover characteristics for these two periods are derived by the analysis of aerial photographs, available in 1956, and high-resolution remote sensing images in 2011. The major changes identified are (1 a partial crusting of isolated dunes, (2 an increase of drainage network density, (3 a marked decrease in vegetation with the nonrecovery of tiger bush and vegetation growing on shallow sandy soils, and (4 important changes in soil properties with the apparition of impervious soils instead of shallow sandy soil. The KINEROS-2 model was parameterized to simulate these changes in combination or independently. The results obtained by this model display a significant increase in annual

  18. Short review of runoff and erosion physically based models

    Directory of Open Access Journals (Sweden)

    Gabrić Ognjen


    Full Text Available Processes of runoff and erosion are one of the main research subjects in hydrological science. Based on the field and laboratory measurements, and analogous with development of computational techniques, runoff and erosion models based on equations which describe the physics of the process are also developed. Several models of runoff and erosion which describes entire process of genesis and sediment transport on the catchment are described and compared.

  19. Evaluation of radar-derived precipitation estimates using runoff simulation : report for the NFR Energy Norway funded project 'Utilisation of weather radar data in atmospheric and hydrological models'

    Energy Technology Data Exchange (ETDEWEB)

    Abdella, Yisak; Engeland, Kolbjoern; Lepioufle, Jean-Marie


    This report presents the results from the project called 'Utilisation of weather radar data in atmospheric and hydrological models' funded by NFR and Energy Norway. Three precipitation products (radar-derived, interpolated and combination of the two) were generated as input for hydrological models. All the three products were evaluated by comparing the simulated and observed runoff at catchments. In order to expose any bias in the precipitation inputs, no precipitation correction factors were applied. Three criteria were used to measure the performance: Nash, correlation coefficient, and bias. The results shows that the simulations with the combined precipitation input give the best performance. We also see that the radar-derived precipitation estimates give reasonable runoff simulation even without a region specific parameters for the Z-R relationship. All the three products resulted in an underestimation of the estimated runoff, revealing a systematic bias in measurements (e.g. catch deficit, orographic effects, Z-R relationships) that can be improved. There is an important potential of using radar-derived precipitation for simulation of runoff, especially in catchments without precipitation gauges inside.(Author)

  20. An Overview of Rainfall-Runoff Model Types (United States)

    This report explores rainfall-runoff models, their generation methods, and the categories under which they fall. Runoff plays an important role in the hydrological cycle by returning excess precipitation to the oceans and controlling how much water flows into stream systems. Mode...

  1. Multi-linear model of transformation of runoff in river-basins

    International Nuclear Information System (INIS)

    Szolgay, J.; Kubes, R.


    The component part of atmospheric precipitations-runoff model of Hron River is a individual model of transformation of flows in river network, too, which transforms runoff from separate partial catchment basin into terminal profile. This component of precipitations-runoff model can also be used as individual hydrologic transformation model of runoff waves in river-basin. Identification and calibration of this model is realised independently on precipitations-runoff model of Hron River, which is described in this chapter in detail.

  2. Hydrology in a mediterranean mountain environment. The Vallcebre research catchment (north eastern Spain) II. Rainfall-runoff relationships and runoff processes

    International Nuclear Information System (INIS)

    Latron, J.; Solar, M.; Nord, G.; Llorens, P.; Gallart, F.


    Hydrological response and runoff processes have been studied in the Vallcebre research basins (North Eastern Spain) for almost 20 years. Results obtained allowed to build a more complete perceptual model of the hydrological functioning of Mediterranean mountains basins. On a seasonal and monthly scale, there was no simple relationship between rainfall and runoff depths. Monthly rainfall and runoff values revealed the existence of a threshold in the relationship between rainfall and runoff depths. At the event scale, the storm-flow coefficient had a clear seasonal pattern. The effect of the water table position on how rainfall and runoff volumes relate was observed. Examination of soil water potential and water table dynamics during representative floods helped to identify 3 types of characteristic hydrological behaviour during the year. Under dry conditions, runoff was generated essentially as infiltration excess runoff in low permeable areas, whereas saturation excess runoff dominated during wetting-up and wet conditions. During wetting-up transition, saturated areas resulted from the development of scattered perched water tables, whereas in wet conditions they were linked to the rise of the shallow water table. (Author) 8 refs.

  3. Hydrological model parameterization using NDVI values to account for the effects of land-cover change on the rainfall-runoff response (United States)

    Classic rainfall-runoff models usually use historical data to estimate model parameters and mean values of parameters are considered for predictions. However, due to climate changes and human effects, the parameters of model change temporally. To overcome this problem, Normalized Difference Vegetati...

  4. Hydrological modelling in sandstone rocks watershed (United States)

    Ponížilová, Iva; Unucka, Jan


    The contribution is focused on the modelling of surface and subsurface runoff in the Ploučnice basin. The used rainfall-runoff model is HEC-HMS comprising of the method of SCS CN curves and a recession method. The geological subsurface consisting of sandstone is characterised by reduced surface runoff and, on the contrary, it contributes to subsurface runoff. The aim of this paper is comparison of the rate of influence of sandstone on reducing surface runoff. The recession method for subsurface runoff was used to determine the subsurface runoff. The HEC-HMS model allows semi- and fully distributed approaches to schematisation of the watershed and rainfall situations. To determine the volume of runoff the method of SCS CN curves is used, which results depend on hydrological conditions of the soils. The rainfall-runoff model assuming selection of so-called methods of event of the SCS-CN type is used to determine the hydrograph and peak flow rate based on simulation of surface runoff in precipitation exceeding the infiltration capacity of the soil. The recession method is used to solve the baseflow (subsurface) runoff. The method is based on the separation of hydrograph to direct runoff and subsurface or baseflow runoff. The study area for the simulation of runoff using the method of SCS CN curves to determine the hydrological transformation is the Ploučnice basin. The Ploučnice is a hydrologically significant river in the northern part of the Czech Republic, it is a right tributary of the Elbe river with a total basin area of 1.194 km2. The average value of CN curves for the Ploučnice basin is 72. The geological structure of the Ploučnice basin is predominantly formed by Mesozoic sandstone. Despite significant initial loss of rainfall the basin response to the causal rainfall was demonstrated by a rapid rise of the surface runoff from the watershed and reached culmination flow. Basically, only surface runoff occures in the catchment during the initial phase of

  5. The Influence of Runoff and Surface Hydrology on Titan's Weather and Climate (United States)

    Faulk, S.; Lora, J. M.; Mitchell, J.; Moon, S.


    Titan's surface liquid distribution has been shown by general circulation models (GCMs) to greatly influence the hydrological cycle, producing characteristic weather and seasonal climate patterns. Simulations from the Titan Atmospheric Model (TAM) with imposed polar methane "wetlands" reservoirs realistically produce observed cloud features and temperature profiles of Titan's atmosphere, whereas "aquaplanet" simulations with a global methane ocean are not as successful. In addition, wetlands simulations, unlike aquaplanet simulations, demonstrate strong correlations between extreme rainfall behavior and observed geomorphic features, indicating the influential role of precipitation in shaping Titan's surface. The wetlands configuration is, in part, motivated by Titan's large-scale topography featuring low-latitude highlands and high-latitude lowlands, with the implication being that methane may concentrate in the high-latitude lowlands by way of runoff and subsurface flow of a global or regional methane table. However, the extent to which topography controls the surface liquid distribution and thus impacts the global hydrological cycle by driving surface and subsurface flow is unclear. Here we present TAM simulations wherein the imposed wetlands reservoirs are replaced by a surface runoff scheme that allows surface liquid to self-consistently redistribute under the influence of topography. We discuss the impact of surface runoff on the surface liquid distribution over seasonal timescales and compare the resulting hydrological cycle to observed cloud and surface features, as well as to the hydrological cycles of the TAM wetlands and aquaplanet simulations. While still idealized, this more realistic representation of Titan's hydrology provides new insight into the complex interaction between Titan's atmosphere and surface, demonstrates the influence of surface runoff on Titan's global climate, and lays the groundwork for further surface hydrology developments in Titan

  6. Evaluation, Calibration and Comparison of the Precipitation-Runoff Modeling System (PRMS) National Hydrologic Model (NHM) Using Moderate Resolution Imaging Spectroradiometer (MODIS) and Snow Data Assimilation System (SNODAS) Gridded Datasets (United States)

    Norton, P. A., II; Haj, A. E., Jr.


    The United States Geological Survey is currently developing a National Hydrologic Model (NHM) to support and facilitate coordinated and consistent hydrologic modeling efforts at the scale of the continental United States. As part of this effort, the Geospatial Fabric (GF) for the NHM was created. The GF is a database that contains parameters derived from datasets that characterize the physical features of watersheds. The GF was used to aggregate catchments and flowlines defined in the National Hydrography Dataset Plus dataset for more than 100,000 hydrologic response units (HRUs), and to establish initial parameter values for input to the Precipitation-Runoff Modeling System (PRMS). Many parameter values are adjusted in PRMS using an automated calibration process. Using these adjusted parameter values, the PRMS model estimated variables such as evapotranspiration (ET), potential evapotranspiration (PET), snow-covered area (SCA), and snow water equivalent (SWE). In order to evaluate the effectiveness of parameter calibration, and model performance in general, several satellite-based Moderate Resolution Imaging Spectroradiometer (MODIS) and Snow Data Assimilation System (SNODAS) gridded datasets including ET, PET, SCA, and SWE were compared to PRMS-simulated values. The MODIS and SNODAS data were spatially averaged for each HRU, and compared to PRMS-simulated ET, PET, SCA, and SWE values for each HRU in the Upper Missouri River watershed. Default initial GF parameter values and PRMS calibration ranges were evaluated. Evaluation results, and the use of MODIS and SNODAS datasets to update GF parameter values and PRMS calibration ranges, are presented and discussed.

  7. Land Cover Influence on Wet Season Storm Runoff Generation and Hydrologic Flowpaths in Central Panama (United States)

    Birch, A. L.; Stallard, R. F.; Barnard, H. R.


    While relationships between land use/land cover and hydrology are well studied and understood in temperate parts of the world, little research exists in the humid tropics, where hydrologic research is often decades behind. Specifically, quantitative information on how physical and biological differences across varying land covers influence runoff generation and hydrologic flowpaths in the humid tropics is scarce; frequently leading to poorly informed hydrologic modelling and water policy decision making. This research effort seeks to quantify how tropical land cover change may alter physical hydrologic processes in the economically important Panama Canal Watershed (Republic of Panama) by separating streamflow into its different runoff components using end member mixing analysis. The samples collected for this project come from small headwater catchments of four varying land covers (mature tropical forest, young secondary forest, active pasture, recently clear-cut tropical forest) within the Smithsonian Tropical Research Institute's Agua Salud Project. During the past three years, samples have been collected at the four study catchments from streamflow and from a number of water sources within hillslope transects, and have been analyzed for stable water isotopes, major cations, and major anions. Major ion analysis of these samples has shown distinct geochemical differences for the potential runoff generating end members sampled (soil moisture/ preferential flow, groundwater, overland flow, throughfall, and precipitation). Based on this finding, an effort was made from May-August 2017 to intensively sample streamflow during wet season storm events, yielding a total of 5 events of varying intensity in each land cover/catchment, with sampling intensity ranging from sub-hourly to sub-daily. The focus of this poster presentation will be to present the result of hydrograph separation's done using end member mixing analysis from this May-August 2017 storm dataset. Expected


    Directory of Open Access Journals (Sweden)

    L. Malekani


    Full Text Available Runoff is one of most important hydrological variables that are used in many civil works, planning for optimal use of reservoirs, organizing rivers and warning flood. The runoff curve number (CN is a key factor in determining runoff in the SCS (Soil Conservation Service based hydrologic modeling method. The traditional SCS-CN method for calculating the composite curve number consumes a major portion of the hydrologic modeling time. Therefore, geographic information systems (GIS are now being used in combination with the SCS-CN method. This work uses a methodology of determining surface runoff by Geographic Information System model and applying SCS-CN method that needs the necessary parameters such as land use map, hydrologic soil groups, rainfall data, DEM, physiographic characteristic of the basin. The model is built by implementing some well known hydrologic methods in GIS like as ArcHydro, ArcCN-Runoff for modeling of Zilberchai basin runoff. The results show that the high average weighted of curve number indicate that permeability of the basin is low and therefore likelihood of flooding is high. So the fundamental works is essential in order to increase water infiltration in Zilberchai basin and to avoid wasting surface water resources. Also comparing the results of the computed and observed runoff value show that use of GIS tools in addition to accelerate the calculation of the runoff also increase the accuracy of the results. This paper clearly demonstrates that the integration of GIS with the SCS-CN method provides a powerful tool for estimating runoff volumes in large basins.

  9. Application of GIS in Modeling Zilberchai Basin Runoff (United States)

    Malekani, L.; Khaleghi, S.; Mahmoodi, M.


    Runoff is one of most important hydrological variables that are used in many civil works, planning for optimal use of reservoirs, organizing rivers and warning flood. The runoff curve number (CN) is a key factor in determining runoff in the SCS (Soil Conservation Service) based hydrologic modeling method. The traditional SCS-CN method for calculating the composite curve number consumes a major portion of the hydrologic modeling time. Therefore, geographic information systems (GIS) are now being used in combination with the SCS-CN method. This work uses a methodology of determining surface runoff by Geographic Information System model and applying SCS-CN method that needs the necessary parameters such as land use map, hydrologic soil groups, rainfall data, DEM, physiographic characteristic of the basin. The model is built by implementing some well known hydrologic methods in GIS like as ArcHydro, ArcCN-Runoff for modeling of Zilberchai basin runoff. The results show that the high average weighted of curve number indicate that permeability of the basin is low and therefore likelihood of flooding is high. So the fundamental works is essential in order to increase water infiltration in Zilberchai basin and to avoid wasting surface water resources. Also comparing the results of the computed and observed runoff value show that use of GIS tools in addition to accelerate the calculation of the runoff also increase the accuracy of the results. This paper clearly demonstrates that the integration of GIS with the SCS-CN method provides a powerful tool for estimating runoff volumes in large basins.


    Directory of Open Access Journals (Sweden)

    A. Cilek


    Full Text Available The development and the application of rainfall-runoff models have been a corner-stone of hydrological research for many decades. The amount of rainfall and its intensity and variability control the generation of runoff and the erosional processes operating at different scales. These interactions can be greatly variable in Mediterranean catchments with marked hydrological fluctuations. The aim of the study was to evaluate the performance of rainfall-runoff model, for rainfall-runoff simulation in a Mediterranean subcatchment. The Pan-European Soil Erosion Risk Assessment (PESERA, a simplified hydrological process-based approach, was used in this study to combine hydrological surface runoff factors. In total 128 input layers derived from data set includes; climate, topography, land use, crop type, planting date, and soil characteristics, are required to run the model. Initial ground cover was estimated from the Landsat ETM data provided by ESA. This hydrological model was evaluated in terms of their performance in Goksu River Watershed, Turkey. It is located at the Central Eastern Mediterranean Basin of Turkey. The area is approximately 2000 km2. The landscape is dominated by bare ground, agricultural and forests. The average annual rainfall is 636.4mm. This study has a significant importance to evaluate different model performances in a complex Mediterranean basin. The results provided comprehensive insight including advantages and limitations of modelling approaches in the Mediterranean environment.

  11. How runoff begins (and ends): characterizing hydrologic response at the catchment scale (United States)

    Mirus, Benjamin B.; Loague, Keith


    Improved understanding of the complex dynamics associated with spatially and temporally variable runoff response is needed to better understand the hydrology component of interdisciplinary problems. The objective of this study was to quantitatively characterize the environmental controls on runoff generation for the range of different streamflow-generation mechanisms illustrated in the classic Dunne diagram. The comprehensive physics-based model of coupled surface-subsurface flow, InHM, is employed in a heuristic mode. InHM has been employed previously to successfully simulate the observed hydrologic response at four diverse, well-characterized catchments, which provides the foundation for this study. The C3 and CB catchments are located within steep, forested terrain; the TW and R5 catchments are located in gently sloping rangeland. The InHM boundary-value problems for these four catchments provide the corner-stones for alternative simulation scenarios designed to address the question of how runoff begins (and ends). Simulated rainfall-runoff events are used to systematically explore the impact of soil-hydraulic properties and rainfall characteristics. This approach facilitates quantitative analysis of both integrated and distributed hydrologic responses at high-spatial and temporal resolution over the wide range of environmental conditions represented by the four catchments. The results from 140 unique simulation scenarios illustrate how rainfall intensity/depth, subsurface permeability contrasts, characteristic curve shapes, and topography provide important controls on the hydrologic-response dynamics. The processes by which runoff begins (and ends) are shown, in large part, to be defined by the relative rates of rainfall, infiltration, lateral flow convergence, and storage dynamics within the variably saturated soil layers.

  12. Transient catchment hydrology after wildfires in a Mediterranean basin: runoff, sediment and woody debris

    Directory of Open Access Journals (Sweden)


    Full Text Available The transient effect of forest fires on runoff, erosion and yield of woody biomass has been investigated by combining the experimental approach with mathematical models of hydrological processes. The case study is the Branega creek in Liguria, Italy, where a forest fire in August 2003 caused substantial changes to soil and vegetation, and left a considerable amount of woody debris on the ground. Immediately after the fire, rainfall simulator experiments in adjacent burned and unburned plots showed the extent to which fire had increased runoff and erosion rates. A distributed hydrological model using the tube-flux approach, calibrated on experimental measurements, has been used to investigate hill slope and channel erosion in a small sub-catchment, 1.5 ha in area, nested in the Branega basin. Simulation runs show that the model accommodates the observed variability of runoff and erosion under disturbed and undisturbed conditions. A model component describing the delivery of wood from hill slopes to the channel in post-fire conditions, validated against local survey data, showed that the removal and transport of woody biomass can be reproduced using an integrated hydrological approach. Hence, transient complexity after wildfires can be addressed by such an approach with empirically determined physically-based parameters.

  13. Modeling rainfall-runoff relationship using multivariate GARCH model (United States)

    Modarres, R.; Ouarda, T. B. M. J.


    The traditional hydrologic time series approaches are used for modeling, simulating and forecasting conditional mean of hydrologic variables but neglect their time varying variance or the second order moment. This paper introduces the multivariate Generalized Autoregressive Conditional Heteroscedasticity (MGARCH) modeling approach to show how the variance-covariance relationship between hydrologic variables varies in time. These approaches are also useful to estimate the dynamic conditional correlation between hydrologic variables. To illustrate the novelty and usefulness of MGARCH models in hydrology, two major types of MGARCH models, the bivariate diagonal VECH and constant conditional correlation (CCC) models are applied to show the variance-covariance structure and cdynamic correlation in a rainfall-runoff process. The bivariate diagonal VECH-GARCH(1,1) and CCC-GARCH(1,1) models indicated both short-run and long-run persistency in the conditional variance-covariance matrix of the rainfall-runoff process. The conditional variance of rainfall appears to have a stronger persistency, especially long-run persistency, than the conditional variance of streamflow which shows a short-lived drastic increasing pattern and a stronger short-run persistency. The conditional covariance and conditional correlation coefficients have different features for each bivariate rainfall-runoff process with different degrees of stationarity and dynamic nonlinearity. The spatial and temporal pattern of variance-covariance features may reflect the signature of different physical and hydrological variables such as drainage area, topography, soil moisture and ground water fluctuations on the strength, stationarity and nonlinearity of the conditional variance-covariance for a rainfall-runoff process.

  14. Influence of spatial variations of microtopography and infiltration on surface runoff and field scale hydrological connectivity

    NARCIS (Netherlands)

    Appels, W.M.; Bogaart, P.W.; Zee, van der S.E.A.T.M.


    Surface runoff on agricultural fields arises when rainfall exceeds infiltration. Excess water ponding in and flowing through local microtopography increases the hydrological connectivity of fields. In turn, an increased level of hydrological connectivity leads to a higher surface runoff flux at the


    Directory of Open Access Journals (Sweden)

    Ewa Burszta-Adamiak


    Full Text Available Apart from direct measurements, modelling of runoff from green roofs is valuable source of information about effectiveness of this type of structure from hydrological point of view. Among different type of models, the most frequently used are numerical models. They allow to assess the impact of green roofs on decrease and attenuation of runoff, reduction of peak runoff and value of water retention. This paper presents preliminary results of research on computing the rate of runoff from green roofs using GARDENIA model. The analysis has been carried out for selected rainfall events registered during measuring campaign on pilot-scale green roofs. Obtained results are promising and show good fit between observed and simulated runoff.

  16. Impact of Cryosphere Hydrological Changes on the River Runoff in the Tibetan Plateau (United States)

    Wang, Y.; Yang, D.


    The Tibetan Plateau is the headwaters of many major rivers in Asia, the change in streamflow is significant for social and economic development and natural ecology in the middle and lower reaches. Located in the alpine region, streamflow in the plateau is mainly affected by the cryosphere hydrological processes. Due to global warming in recent decades, the Tibetan Plateau is experiencing glaciers shrinking and permafrost degradation. Accelerated glacier melt led to the increasing meltwater, thus affecting the streamflow. Permafrost is an important factor in stabilizing the water cycle and streamflow, the ecological degradation and the significant changes of rivers, lakes, swamps, wetlands and other hydrological environment in recent decades in the Tibetan plateau is closely related to permafrost degradation. Therefore, it is important to explore the impact of cryosphere hydrological changes on the streamflow for the future water management. This study uses a method of base flow separation and a stepwise multiple regression model to investigate the reasons for the runoff changes in different regions of the Tibetan Plateau during 1960-2000. The contribution of glacier melt to annual runoff is particularly estimated to explore the possible influences of soil freezing and thawing on annual runoff changes. The results show an increasing trend of the annual runoff in the upstream of Nujiang River, Lancang River and Qilian Mountains, dominated by the increasing of base flow; and a decreasing trend of the runoff in the upper reach of the Yarlung Zangbo River, Yellow River and Yangtze River, dominated by the reduction of quick flow. Change in the amount of runoff was mainly due to change in precipitation. Rising temperature accelerates the melting of glaciers and increases the summer quick flow. In addition, rising temperature may reduce the quick flow and increase the base flow due to change of the active permafrost layers, which leads to the increase of soil water storage

  17. Impacts of Changing Climate, Hydrology and Land Use on the Stormwater Runoff of Urbanizing Central Florida (United States)

    Huq, E.; Abdul-Aziz, O. I.


    We computed the historical and future storm runoff scenarios for the Shingle Creek Basin, including the growing urban centers of central Florida (e.g., City of Orlando). Storm Water Management Model (SWMM 5.1) of US EPA was used to develop a mechanistic hydrologic model for the basin by incorporating components of urban hydrology, hydroclimatological variables, and land use/cover features. The model was calibrated and validated with historical streamflow of 2004-2013 near the outlet of the Shingle Creek. The calibrated model was used to compute the sensitivities of stormwater budget to reference changes in hydroclimatological variables (rainfall and evapotranspiration) and land use/cover features (imperviousness, roughness). Basin stormwater budgets for the historical (2010s = 2004-2013) and future periods (2050s = 2030-2059; 2080s = 2070-2099) were also computed based on downscaled climatic projections of 20 GCMs-RCMs representing the coupled model intercomparison project (CMIP5), and anticipated changes in land use/cover. The sensitivity analyses indicated the dominant drivers of urban runoff in the basin. Comparative assessment of the historical and future stormwater runoff scenarios helped to locate basin areas that would be at a higher risk of future stormwater flooding. Importance of the study lies in providing valuable guidelines for managing stormwater flooding in central Florida and similar growing urban centers around the world.

  18. Hydrological changes impacts on annual runoff distribution in seasonally dry basins (United States)

    Viola, F.; Caracciolo, D.; Feng, X.


    Runoff is expected to be modified in the next future by climate change as well as by land use change. Given its importance for water supply and ecosystem functioning, it is therefore imperative to develop adaptation strategies and new policies for regional water resources management and planning. To do so, the identification and attribution of natural flow regime shifts as a result of climate and land use changes are of crucial importance. In this context, the Budyko's curve has begun to be widely adopted to separate the contributions of climate and land use changes to the variation of runoff over long-term periods by using the multi-year averages of hydrological variables. In this study, a framework based on Fu's equation is proposed and applied to separate the impacts of climate and land use changes on the future annual runoff distribution in seasonally dry basins, such as those in Mediterranean climates. In particular, this framework improves a recently developed method to obtain annual runoff probability density function (pdf) in seasonally dry basins from annual rainfall and potential evapotranspiration statistics, and from knowledge of the Fu's equation parameter ω. The effect of climate change has been taken into account through the variation of the first order statistics of annual rainfall and potential evapotranspiration, consistent with general circulation models' outputs, while the Fu's equation parameter ω has been changed to represent land use change. The effects of the two factors of change (i.e., climate and land use) on the annual runoff pdf have been first independently and then jointly analyzed, by reconstructing the annual runoff pdfs for the current period and, based on likely scenarios, within the next 100 years. The results show that, for large basins, climate change is the dominant driver of the decline in annual runoff, while land use change is a secondary but important factor.

  19. Regionalising Parameters of a Conceptual Rainfall-Runoff Model for ...

    African Journals Online (AJOL)

    IHACRES, a lumped conceptual rainfall-runoff model, was calibrated to six catchments ranging in size from 49km2 to 600 km2 within the upper Tana River basin to obtain a set of model parameters that characterise the hydrological behaviour within the region. Physical catchment attributes indexing topography, soil and ...

  20. Nested Tracer Studies In Catchment Hydrology: Towards A Multiscale Understanding of Runoff Generation and Catchment Funtioning (United States)

    Soulsby, C.; Rodgers, P.; Malcolm, I. A.; Dunn, S.

    Geochemical and isotopic tracers have been shown to have widespread utility in catch- ment hydrology in terms of identifying hydrological source areas and characterising residence time distributions. In many cases application of tracer techniques has pro- vided insights into catchment functioning that could not be obtained from hydromet- ric and/or modelling studies alone. This paper will show how the use of tracers has contributed to an evolving perceptual model of hydrological pathways and runoff gen- eration processes in catchments in the Scottish highlands. In particular the paper will focus on the different insights that are gained at three different scales of analysis; (a) nested sub-catchments within a mesoscale (ca. 200 square kilometers) experimen- tal catchment; (b) hillslope-riparian interactions and (c) stream bed fluxes. Nested hydrometric and hydrochemical monitoring within the mesoscale Feugh catchment identified three main hydrological response units: (i) plateau peatlands which gener- ated saturation overland flow in the catchment headwaters, (ii) steep valley hillslopes which drain from the plateaux into (iii) alluvial and drift aquifers in the valley bottoms. End Member Mixing Analysis (EMMA) in 8 nested sub-catchments indicated that that stream water tracer concentrations can be modelled in terms of 2 dominant runoff pro- cesses; overland flow from the peat and groundwater from the drift aquifers. Ground- water contributions generally increased with catchment size, though this was moder- ated by the characteristics of individual sub-basins, with drift cover being particularly important. Hillslope riparian interactions were also examined using tracers, hydromet- ric data and a semi-distributed hydrological model. This revealed that in the glaciated, drift covered terrain of the Scottish highlands, extensive valley bottom aquifers effec- tively de-couple hillslope waters from the river channel. Thus, riparian groundwater appears to significantly


    African Journals Online (AJOL)

    K. Benzineb, M. Remaoun


    Sep 1, 2016 ... The hydrologic behaviour modelling of w. Journal of ... i Ouahrane's basin from rainfall-runoff relation which is non-linea networks ... will allow checking efficiency of formal neural networks for flows simulation in semi-arid zone.

  2. Simulation of green roof runoff under different substrate depths and vegetation covers by coupling a simple conceptual and a physically based hydrological model. (United States)

    Soulis, Konstantinos X; Valiantzas, John D; Ntoulas, Nikolaos; Kargas, George; Nektarios, Panayiotis A


    In spite of the well-known green roof benefits, their widespread adoption in the management practices of urban drainage systems requires the use of adequate analytical and modelling tools. In the current study, green roof runoff modeling was accomplished by developing, testing, and jointly using a simple conceptual model and a physically based numerical simulation model utilizing HYDRUS-1D software. The use of such an approach combines the advantages of the conceptual model, namely simplicity, low computational requirements, and ability to be easily integrated in decision support tools with the capacity of the physically based simulation model to be easily transferred in conditions and locations other than those used for calibrating and validating it. The proposed approach was evaluated with an experimental dataset that included various green roof covers (either succulent plants - Sedum sediforme, or xerophytic plants - Origanum onites, or bare substrate without any vegetation) and two substrate depths (either 8 cm or 16 cm). Both the physically based and the conceptual models matched very closely the observed hydrographs. In general, the conceptual model performed better than the physically based simulation model but the overall performance of both models was sufficient in most cases as it is revealed by the Nash-Sutcliffe Efficiency index which was generally greater than 0.70. Finally, it was showcased how a physically based and a simple conceptual model can be jointly used to allow the use of the simple conceptual model for a wider set of conditions than the available experimental data and in order to support green roof design. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. [Hydrology and pollution characteristics of urban runoff: Beijing as a sample]. (United States)

    Dong, Xin; Du, Peng-Fei; Li, Zhi-Yi; Yu, Zheng-Rong; Wang, Rui; Huang, Jin-Liang


    The purpose of this study is identification and characterization of hydrological process of urban runoff, as well as concentration variation of pollutants in it. Samples were collected in 4 rainfall events in Beijing from Jun. 2006 to Aug. 2006. Hydrology and pollution of the rainfall-runoff process were analyzed on roof and road. Study results show that the shapes of hydrological curves of runoff, despite for a 5 - 20 min delay and a milder tendency, are similar to rainfall curves. Runoff coefficients of roof are 0.80 - 0.98, while 0.87 - 0.97 of road. Event mean concentrations (EMC) of pollutants are influenced by build-up and wash-off features, which leads to a higher concentration in road runoff than in roof runoff. Major pollutants that excess the water quality standards are COD, TN, and TP. Evident correlations (> 0.1) are found between pollutants. Correlation with particles are higher for COD and SO4(2-) (> 0.5), while lower for nutrients (pollutant variety, types of land covers, and rainfall intensity. FFE are found more intense in SS, more frequently in road runoff, and more difficult to form for COD and nutrients with low rainfall intensity. Therefore, control of first period of runoff would be an effective approach for runoff management in Beijing.

  4. Real time adjustment of slow changing flow components in distributed urban runoff models

    DEFF Research Database (Denmark)

    Borup, Morten; Grum, M.; Mikkelsen, Peter Steen


    In many urban runoff systems infiltrating water contributes with a substantial part of the total inflow and therefore most urban runoff modelling packages include hydrological models for simulating the infiltrating inflow. This paper presents a method for deterministic updating of the hydrological...... improvements for regular simulations as well as up to 10 hour forecasts. The updating method reduces the impact of non-representative precipitation estimates as well as model structural errors and leads to better overall modelling results....

  5. Grey Box Modelling of Hydrological Systems

    DEFF Research Database (Denmark)

    Thordarson, Fannar Ørn

    of two papers where the stochastic differential equation based model is used for sewer runoff from a drainage system. A simple model is used to describe a complex rainfall-runoff process in a catchment, but the stochastic part of the system is formulated to include the increasing uncertainty when...... rainwater flows through the system, as well as describe the lower limit of the uncertainty when the flow approaches zero. The first paper demonstrates in detail the grey box model and all related transformations required to obtain a feasible model for the sewer runoff. In the last paper this model is used......The main topic of the thesis is grey box modelling of hydrologic systems, as well as formulation and assessment of their embedded uncertainties. Grey box model is a combination of a white box model, a physically-based model that is traditionally formulated using deterministic ordinary differential...

  6. On the role of model structure in hydrological modeling : Understanding models

    NARCIS (Netherlands)

    Gharari, S.


    Modeling is an essential part of the science of hydrology. Models enable us to formulate what we know and perceive from the real world into a neat package. Rainfall-runoff models are abstract simplifications of how a catchment works. Within the research field of scientific rainfall-runoff modeling,

  7. Modeling of the Monthly Rainfall-Runoff Process Through Regressions

    Directory of Open Access Journals (Sweden)

    Campos-Aranda Daniel Francisco


    Full Text Available To solve the problems associated with the assessment of water resources of a river, the modeling of the rainfall-runoff process (RRP allows the deduction of runoff missing data and to extend its record, since generally the information available on precipitation is larger. It also enables the estimation of inputs to reservoirs, when their building led to the suppression of the gauging station. The simplest mathematical model that can be set for the RRP is the linear regression or curve on a monthly basis. Such a model is described in detail and is calibrated with the simultaneous record of monthly rainfall and runoff in Ballesmi hydrometric station, which covers 35 years. Since the runoff of this station has an important contribution from the spring discharge, the record is corrected first by removing that contribution. In order to do this a procedure was developed based either on the monthly average regional runoff coefficients or on nearby and similar watershed; in this case the Tancuilín gauging station was used. Both stations belong to the Partial Hydrologic Region No. 26 (Lower Rio Panuco and are located within the state of San Luis Potosi, México. The study performed indicates that the monthly regression model, due to its conceptual approach, faithfully reproduces monthly average runoff volumes and achieves an excellent approximation in relation to the dispersion, proved by calculation of the means and standard deviations.

  8. Hillslope runoff processes and models (United States)

    Kirkby, Mike


    Hillslope hydrology is concerned with the partition of precipitation as it passes through the vegetation and soil between overland flow and subsurface flow. Flow follows routes which attenuate and delay the flow to different extents, so that a knowledge of the relevant mechanisms is important. In the 1960s and 1970s, hillslope hydrology developed as a distinct topic through the application of new field observations to develop a generation of physically based forecasting models. In its short history, theory has continually been overturned by field observation. Thus the current tendency, particularly among temperate zone hydrologists, to dismiss all Hortonian overland flow as a myth, is now being corrected by a number of significant field studies which reveal the great range in both climatic and hillslope conditions. Some recent models have generally attempted to simplify the processes acting, for example including only vertical unsaturated flow and lateral saturated flows. Others explicitly forecast partial or contributing areas. With hindsight, the most complete and distributed models have generally shown little forecasting advantage over simpler approaches, perhaps trending towards reliable models which can run on desk top microcomputers. The variety now being recognised in hillslope hydrological responses should also lead to models which take account of more complex interactions, even if initially with a less secure physical and mathematical basis than the Richards equation. In particular, there is a need to respond to the variety of climatic responses, and to spatial variability on and beneath the surface, including the role of seepage macropores and pipes which call into question whether the hillside can be treated as a Darcian flow system.

  9. Simulating runoff under changing climatic conditions: Revisiting an apparent deficiency of conceptual rainfall-runoff models (United States)

    Fowler, Keirnan J. A.; Peel, Murray C.; Western, Andrew W.; Zhang, Lu; Peterson, Tim J.


    Hydrologic models have potential to be useful tools in planning for future climate variability. However, recent literature suggests that the current generation of conceptual rainfall runoff models tend to underestimate the sensitivity of runoff to a given change in rainfall, leading to poor performance when evaluated over multiyear droughts. This research revisited this conclusion, investigating whether the observed poor performance could be due to insufficient model calibration and evaluation techniques. We applied an approach based on Pareto optimality to explore trade-offs between model performance in different climatic conditions. Five conceptual rainfall runoff model structures were tested in 86 catchments in Australia, for a total of 430 Pareto analyses. The Pareto results were then compared with results from a commonly used model calibration and evaluation method, the Differential Split Sample Test. We found that the latter often missed potentially promising parameter sets within a given model structure, giving a false negative impression of the capabilities of the model. This suggests that models may be more capable under changing climatic conditions than previously thought. Of the 282[347] cases of apparent model failure under the split sample test using the lower [higher] of two model performance criteria trialed, 155[120] were false negatives. We discuss potential causes of remaining model failures, including the role of data errors. Although the Pareto approach proved useful, our aim was not to suggest an alternative calibration strategy, but to critically assess existing methods of model calibration and evaluation. We recommend caution when interpreting split sample results.

  10. Rainfall-runoff and hydraulic modelling integration in the Blatina River

    International Nuclear Information System (INIS)

    Timko, J.


    This paper investigates the use and integration of rainfall-runoff modelling and hydrologic modelling of Blatina river catchment. Characteristics of physical-geographical sphere and its components were created within the model, enhancing the robustness of input data for the mathematical modelling of landscape runoff. Rainfall-runoff model HEC-HMS utilised in this research allows using a wide range of methodologies to determine the movement of water in the riverbed, water losses in the basin, hydraulic and hydrological methods of transformation and base-flow. Loss and transformation of water in the basin were modeled with curve numbers method SCS-CN. The simulated hydrograph was calibrated using rainfall-runoff event from June 2009. The same event was also modelled after the deforestation of the focus area. Using hydraulic model MIKE 21, a flood of focus rainfall-runoff area was simulated under both current real and changed land cover scenarios. (authors)

  11. Robust Initial Wetness Condition Framework of an Event-Based Rainfall–Runoff Model Using Remotely Sensed Soil Moisture


    Wooyeon Sunwoo; Minha Choi


    Runoff prediction in limited-data areas is vital for hydrological applications, such as the design of infrastructure and flood defenses, runoff forecasting, and water management. Rainfall–runoff models may be useful for simulation of runoff generation, particularly event-based models, which offer a practical modeling scheme because of their simplicity. However, there is a need to reduce the uncertainties related to the estimation of the initial wetness condition (IWC) prior to a rainfall even...

  12. Sensitivity-Based Modeling of Evaluating Surface Runoff and Sediment Load using Digital and Analog Mechanisms

    Directory of Open Access Journals (Sweden)

    Olotu Yahaya


    Full Text Available Analyses of runoff- sediment measurement and evaluation using automated and convectional runoff-meters was carried out at Meteorological and Hydrological Station of Auchi Polytechnic, Auchi using two runoff plots (ABCDa and EFGHm of area 2m 2 each, depth 0.26 m and driven into the soil to the depth of 0.13m. Runoff depths and intensities were measured from each of the positioned runoff plot. Automated runoff-meter has a measuring accuracy of ±0.001l/±0.025 mm and rainfall depth-intensity was measured using tipping-bucket rainguage during the period of 14-month of experimentation. Minimum and maximum rainfall depths of 1.2 and 190.3 mm correspond to measured runoff depths (MRo of 0.0 mm for both measurement approaches and 60.4 mm and 48.9 mm respectively. Automated runoffmeter provides precise, accurate and instantaneous result over the convectional measurement of surface runoff. Runoff measuring accuracy for automated runoff-meter from the plot (ABCDa produces R 2 = 0.99; while R 2 = 0.96 for manual evaluation in plot (EFGHm. WEPP and SWAT models were used to simulate the obtained hydrological variables from the applied measurement mechanisms. The outputs of sensitivity simulation analysis indicate that data from automated measuring systems gives a better modelling index and such could be used for running robust runoff-sediment predictive modelling technique under different reservoir sedimentation and water management scenarios.

  13. Prediction of hydrological reduction factor and initial loss in urban surface runoff from small ungauged catchments

    DEFF Research Database (Denmark)

    Arnbjerg-Nielsen, K.; Harremoës, P.


    An advanced runoff model is compared to a simple one employing only a runoff coefficient and a regression parameter allowing for initial loss. The present study shows that the more detailed description of the runoff processes cannot be justified due to the uncertainty from using only one gauge...... in the evaluation of the yearly discharges. In the case of extreme events, the uncertainty of the predicted runoff of the single event should also be taken into account....

  14. Assessing the water balance in the Sahel : Impact of small scale rainfall variability on runoff. Part 2 : Idealized modeling of runoff sensitivity


    Vischel, Théo; Lebel, Thierry


    As in many other semi-arid regions in the world, the Sahelian hydrological environment is characterized by a mosaic of small endoreic catchments with dry soil surface conditions producing mostly Hortonian runoff. Using an SCS-type event based rainfall-runoff model, an idealized modeling experiment of a Sahelian environment is set up to study the sensitivity of runoff to small scale rainfall variability. A set of 548 observed rain events is used to force the hydrological model to study the sen...

  15. A hydrological-modeling study of the impact of land use/land cover and climate change on runoff in a watershed in the western Brazilian Amazonia | Um estudo de modelagem hidrológica do impacto do uso da terra / cobertura da terra e mudanças climáticas ..


    Ranyere Silva Nóbrega


    In this work we investigate the effect of land use and land cover in the Jamari sub river basin, located in the Brazilian Amazonian. The objective is twofold: 1) to study the impact of deforestation and climate change on the basin's runoff, and 2) to test the feasibility of using a semi-distributed hydrological model  for studying runoff of a low-slope river basin such as Jamari. We use a wide variety of data such as Landsat imagery, digital elevation data as well as conventional precipitatio...

  16. Exploring uncertainty and model predictive performance concepts via a modular snowmelt-runoff modeling framework (United States)

    Tyler Jon Smith; Lucy Amanda Marshall


    Model selection is an extremely important aspect of many hydrologic modeling studies because of the complexity, variability, and uncertainty that surrounds the current understanding of watershed-scale systems. However, development and implementation of a complete precipitation-runoff modeling framework, from model selection to calibration and uncertainty analysis, are...

  17. Modelo hidrológico para estimativa do escoamento superficial em áreas agrícolas A hydrologic model to estimate the surface runoff in agricultural lands

    Directory of Open Access Journals (Sweden)

    Fernando F. Pruski


    Full Text Available Desenvolveu-se um modelo hidrológico para estimar o escoamento superficial em áreas sob condições agrícolas. O modelo é baseado na análise dos diversos processos associados ao balanço hídrico e nele se usa a equação de intensidade, duração e freqüência da precipitação para estimar a intensidade de precipitação e a equação de Green-Ampt modificada por Mein-Larson, para estimar a velocidade de infiltração permitindo, também, a consideração da interceptação pela cobertura vegetal e do armazenamento de água sobre a superfície do solo por meio de diferentes metodologias. O escoamento superficial começa após a capacidade de armazenamento sobre a superfície do solo ter sido preenchida, e é calculado subtraindo-se a velocidade de infiltração da água no solo da intensidade de precipitação durante o intervalo de tempo em que a intensidade da chuva é maior que a velocidade de infiltração. Resultados de um experimento de validação do modelo e duas aplicações práticas são apresentados, sendo que os resultados obtidos com o modelo foram muito próximos daqueles observados no campo.A hydrologic model was developed to estimate the surface runoff under agricultural conditions. The model is process-based and uses the intensity-duration-frequency equation to calculate the rainfall intensity and the Green-Ampt-Mein-Larson equation to estimate the infiltration rate. The runoff begins after the maximum surface storage on the soil surface has been reached. It is calculated by subtracting the infiltration rate from the rainfall intensity during the interval of time that the rainfall intensity is greater than the infiltration rate. The model also allows the calculation of the deep percolation and the actual soil-water content. Results from a validation experiment and two practical applications of the model are also presented. The results obtained with the model were approximately the same as those observed in the field.

  18. ERM model analysis for adaptation to hydrological model errors (United States)

    Baymani-Nezhad, M.; Han, D.


    Hydrological conditions are changed continuously and these phenomenons generate errors on flood forecasting models and will lead to get unrealistic results. Therefore, to overcome these difficulties, a concept called model updating is proposed in hydrological studies. Real-time model updating is one of the challenging processes in hydrological sciences and has not been entirely solved due to lack of knowledge about the future state of the catchment under study. Basically, in terms of flood forecasting process, errors propagated from the rainfall-runoff model are enumerated as the main source of uncertainty in the forecasting model. Hence, to dominate the exciting errors, several methods have been proposed by researchers to update the rainfall-runoff models such as parameter updating, model state updating, and correction on input data. The current study focuses on investigations about the ability of rainfall-runoff model parameters to cope with three types of existing errors, timing, shape and volume as the common errors in hydrological modelling. The new lumped model, the ERM model, has been selected for this study to evaluate its parameters for its use in model updating to cope with the stated errors. Investigation about ten events proves that the ERM model parameters can be updated to cope with the errors without the need to recalibrate the model.

  19. A hydrological-modeling study of the impact of land use/land cover and climate change on runoff in a watershed in the western Brazilian Amazonia | Um estudo de modelagem hidrológica do impacto do uso da terra / cobertura da terra e mudanças climáticas ..

    Directory of Open Access Journals (Sweden)

    Ranyere Silva Nóbrega


    Full Text Available In this work we investigate the effect of land use and land cover in the Jamari sub river basin, located in the Brazilian Amazonian. The objective is twofold: 1 to study the impact of deforestation and climate change on the basin's runoff, and 2 to test the feasibility of using a semi-distributed hydrological model  for studying runoff of a low-slope river basin such as Jamari. We use a wide variety of data such as Landsat imagery, digital elevation data as well as conventional precipitation and near-surface data. We defined scenarios ranging from a completely forested basin to a completely man-modified one. In addition, we tested realistic scenarios for the ongoing deforestation process with 20% and 30% deforestation and tested scenarios hypothetic for climate change.  Our scenarios suggest that for extreme and realistic scenarios there is an increase of runoff when deforestation occurs, since less water is intercepted in canopy, evapotranspiration and groundwater tends to decrease with deforestation. In climate change scenarios, increase temperature and precipitation tends to increase evapotranspiration and runoff and, increase temperature and decrease precipitation tend to increase evapotranspiration and decrease runoff and groundwater. The results suggest that Semi-distributed Land Use-based Runoff Processes (SLURP is suitable for use in the Jamari sub river basin with the advantage of being a light model, in terms of internal parameters. The proposed methodology is suitable for use in other basins of the region.

  20. netherland hydrological modeling instrument (United States)

    Hoogewoud, J. C.; de Lange, W. J.; Veldhuizen, A.; Prinsen, G.


    Netherlands Hydrological Modeling Instrument A decision support system for water basin management. J.C. Hoogewoud , W.J. de Lange ,A. Veldhuizen , G. Prinsen , The Netherlands Hydrological modeling Instrument (NHI) is the center point of a framework of models, to coherently model the hydrological system and the multitude of functions it supports. Dutch hydrological institutes Deltares, Alterra, Netherlands Environmental Assessment Agency, RWS Waterdienst, STOWA and Vewin are cooperating in enhancing the NHI for adequate decision support. The instrument is used by three different ministries involved in national water policy matters, for instance the WFD, drought management, manure policy and climate change issues. The basis of the modeling instrument is a state-of-the-art on-line coupling of the groundwater system (MODFLOW), the unsaturated zone (metaSWAP) and the surface water system (MOZART-DM). It brings together hydro(geo)logical processes from the column to the basin scale, ranging from 250x250m plots to the river Rhine and includes salt water flow. The NHI is validated with an eight year run (1998-2006) with dry and wet periods. For this run different parts of the hydrology have been compared with measurements. For instance, water demands in dry periods (e.g. for irrigation), discharges at outlets, groundwater levels and evaporation. A validation alone is not enough to get support from stakeholders. Involvement from stakeholders in the modeling process is needed. There fore to gain sufficient support and trust in the instrument on different (policy) levels a couple of actions have been taken: 1. a transparent evaluation of modeling-results has been set up 2. an extensive program is running to cooperate with regional waterboards and suppliers of drinking water in improving the NHI 3. sharing (hydrological) data via newly setup Modeling Database for local and national models 4. Enhancing the NHI with "local" information. The NHI is and has been used for many

  1. Random Modeling of Daily Rainfall and Runoff Using a Seasonal Model and Wavelet Denoising

    Directory of Open Access Journals (Sweden)

    Chien-ming Chou


    Full Text Available Instead of Fourier smoothing, this study applied wavelet denoising to acquire the smooth seasonal mean and corresponding perturbation term from daily rainfall and runoff data in traditional seasonal models, which use seasonal means for hydrological time series forecasting. The denoised rainfall and runoff time series data were regarded as the smooth seasonal mean. The probability distribution of the percentage coefficients can be obtained from calibrated daily rainfall and runoff data. For validated daily rainfall and runoff data, percentage coefficients were randomly generated according to the probability distribution and the law of linear proportion. Multiplying the generated percentage coefficient by the smooth seasonal mean resulted in the corresponding perturbation term. Random modeling of daily rainfall and runoff can be obtained by adding the perturbation term to the smooth seasonal mean. To verify the accuracy of the proposed method, daily rainfall and runoff data for the Wu-Tu watershed were analyzed. The analytical results demonstrate that wavelet denoising enhances the precision of daily rainfall and runoff modeling of the seasonal model. In addition, the wavelet denoising technique proposed in this study can obtain the smooth seasonal mean of rainfall and runoff processes and is suitable for modeling actual daily rainfall and runoff processes.

  2. Hydrological land surface modelling

    DEFF Research Database (Denmark)

    Ridler, Marc-Etienne Francois

    Recent advances in integrated hydrological and soil-vegetation-atmosphere transfer (SVAT) modelling have led to improved water resource management practices, greater crop production, and better flood forecasting systems. However, uncertainty is inherent in all numerical models ultimately leading...... temperature are explored in a multi-objective calibration experiment to optimize the parameters in a SVAT model in the Sahel. The two satellite derived variables were effective at constraining most land-surface and soil parameters. A data assimilation framework is developed and implemented with an integrated...... and disaster management. The objective of this study is to develop and investigate methods to reduce hydrological model uncertainty by using supplementary data sources. The data is used either for model calibration or for model updating using data assimilation. Satellite estimates of soil moisture and surface...

  3. The precipitation-/runoff model ZEMOKOST: development of a practical model for the determination of flood runoff in the catchment areas of torrents, including improved data field

    International Nuclear Information System (INIS)

    Kohl, B.


    In hydrology a basic task is the estimation of design discharges and runoff changes in ungauged catchments. However, traditional empirical rules of thumb as well as regionalization of measured discharges are subject to uncertainty. It seems that precipitation-runoff modelling is the only comprehensible way to predict discharge alterations due to changes in ungauged basins, even though the results are perhaps not less uncertain. In order to minimize this uncertainty this work presents a new methodology for discharge estimation in ungauged basins by introducing runoff coefficients derived from field assessment, by a new adapted precipitation-runoff model (ZEMOKOST) and routines for a plausibility check. Subsequently ten gauged Austrian catchments were used as hypothetical ungauged catchments for application and verification of this method. Except for special questions in karst- and glacier-hydrology the procedure showed satisfying results. (author) [de

  4. [Impacts of forest and precipitation on runoff and sediment in Tianshui watershed and GM models]. (United States)

    Ouyang, H


    This paper analyzed the impacts of foret stand volume and precipitation on annual erosion modulus, mean sediment, maximum sediment, mean runoff, maximum runoff, minimum runoff, mean water level, maximum water level and minimum water level in Tianshui watershed, and also analyzed the effect of the variation of forest stand volume on monthly mean runoff, minimum runoff and mean water level. The dynamic models of grey system GM(1, N) were constructed to simulate the changes of these hydrological elements. The dynamic GM models on the impact of stand volumes of different forest types(Chinese fir, masson pine and broad-leaved forests) with different age classes(young, middle-aged, mature and over-mature) and that of precipitation on the hydrological elements were also constructed, and their changes with time were analyzed.

  5. Modeling Ballasted Tracks for Runoff Coefficient C (United States)


    In this study, the Regional Transportation District (RTD)s light rail tracks were modeled to determine the Rational Method : runoff coefficient, C, values corresponding to ballasted tracks. To accomplish this, a laboratory study utilizing a : rain...

  6. Hydrological models are mediating models (United States)

    Babel, L. V.; Karssenberg, D.


    Despite the increasing role of models in hydrological research and decision-making processes, only few accounts of the nature and function of models exist in hydrology. Earlier considerations have traditionally been conducted while making a clear distinction between physically-based and conceptual models. A new philosophical account, primarily based on the fields of physics and economics, transcends classes of models and scientific disciplines by considering models as "mediators" between theory and observations. The core of this approach lies in identifying models as (1) being only partially dependent on theory and observations, (2) integrating non-deductive elements in their construction, and (3) carrying the role of instruments of scientific enquiry about both theory and the world. The applicability of this approach to hydrology is evaluated in the present article. Three widely used hydrological models, each showing a different degree of apparent physicality, are confronted to the main characteristics of the "mediating models" concept. We argue that irrespective of their kind, hydrological models depend on both theory and observations, rather than merely on one of these two domains. Their construction is additionally involving a large number of miscellaneous, external ingredients, such as past experiences, model objectives, knowledge and preferences of the modeller, as well as hardware and software resources. We show that hydrological models convey the role of instruments in scientific practice by mediating between theory and the world. It results from these considerations that the traditional distinction between physically-based and conceptual models is necessarily too simplistic and refers at best to the stage at which theory and observations are steering model construction. The large variety of ingredients involved in model construction would deserve closer attention, for being rarely explicitly presented in peer-reviewed literature. We believe that devoting

  7. Thermal-hydrological models

    Energy Technology Data Exchange (ETDEWEB)

    Buscheck, T., LLNL


    This chapter describes the physical processes and natural and engineered system conditions that affect thermal-hydrological (T-H) behavior in the unsaturated zone (UZ) at Yucca Mountain and how these effects are represented in mathematical and numerical models that are used to predict T-H conditions in the near field, altered zone, and engineered barrier system (EBS), and on waste package (WP) surfaces.

  8. A "total parameter estimation" method in the varification of distributed hydrological models (United States)

    Wang, M.; Qin, D.; Wang, H.


    Conventionally hydrological models are used for runoff or flood forecasting, hence the determination of model parameters are common estimated based on discharge measurements at the catchment outlets. With the advancement in hydrological sciences and computer technology, distributed hydrological models based on the physical mechanism such as SWAT, MIKESHE, and WEP, have gradually become the mainstream models in hydrology sciences. However, the assessments of distributed hydrological models and model parameter determination still rely on runoff and occasionally, groundwater level measurements. It is essential in many countries, including China, to understand the local and regional water cycle: not only do we need to simulate the runoff generation process and for flood forecasting in wet areas, we also need to grasp the water cycle pathways and consumption process of transformation in arid and semi-arid regions for the conservation and integrated water resources management. As distributed hydrological model can simulate physical processes within a catchment, we can get a more realistic representation of the actual water cycle within the simulation model. Runoff is the combined result of various hydrological processes, using runoff for parameter estimation alone is inherits problematic and difficult to assess the accuracy. In particular, in the arid areas, such as the Haihe River Basin in China, runoff accounted for only 17% of the rainfall, and very concentrated during the rainy season from June to August each year. During other months, many of the perennial rivers within the river basin dry up. Thus using single runoff simulation does not fully utilize the distributed hydrological model in arid and semi-arid regions. This paper proposed a "total parameter estimation" method to verify the distributed hydrological models within various water cycle processes, including runoff, evapotranspiration, groundwater, and soil water; and apply it to the Haihe river basin in

  9. Hydrological catchment modelling: past, present and future

    Directory of Open Access Journals (Sweden)


    Full Text Available This paper discusses basic issues in hydrological modelling and flood forecasting, ranging from the roles of physically-based and data-driven rainfall runoff models, to the concepts of predictive uncertainty and equifinality and their implications. The evolution of a wide range of hydrological catchment models employing the physically meaningful and data-driven approaches introduces the need for objective test beds or benchmarks to assess the merits of the different models in reconciling the alternative approaches. In addition, the paper analyses uncertainty in models and predictions by clarifying the meaning of uncertainty, by distinguishing between parameter and predictive uncertainty and by demonstrating how the concept of equifinality must be addressed by appropriate and robust inference approaches. Finally, the importance of predictive uncertainty in the decision making process is highlighted together with possible approaches aimed at overcoming the diffidence of end-users.

  10. Hydrological Modelling the Middle Magdalena Valley (Colombia) (United States)

    Arenas, M. C.; Duque, N.; Arboleda, P.; Guadagnini, A.; Riva, M.; Donado-Garzon, L. D.


    Hydrological distributed modeling is key point for a comprehensive assessment of the feedback between the dynamics of the hydrological cycle, climate conditions and land use. Such modeling results are markedly relevant in the fields of water resources management, natural hazards and oil and gas industry. Here, we employ TopModel (TOPography based hydrological MODEL) for the hydrological modeling of an area in the Middle Magdalena Valley (MMV), a tropical basin located in Colombia. This study is located over the intertropical convergence zone and is characterized by special meteorological conditions, with fast water fluxes over the year. It has been subject to significant land use changes, as a result of intense economical activities, i.e., and agriculture, energy and oil & gas production. The model employees a record of 12 years of daily precipitation and evapotranspiration data as inputs. Streamflow data monitored across the same time frame are used for model calibration. The latter is performed by considering data from 2000 to 2008. Model validation then relies on observations from 2009 to 2012. The robustness of our analyses is based on the Nash-Sutcliffe coefficient (values of this metric being 0.62 and 0.53, respectively for model calibration and validation). Our results reveal high water storage capacity in the soil, and a marked subsurface runoff, consistent with the characteristics of the soil types in the regions. A significant influence on runoff response of the basin to topographical factors represented in the model is evidenced. Our calibrated model provides relevant indications about recharge in the region, which is important to quantify the interaction between surface water and groundwater, specially during the dry season, which is more relevant in climate-change and climate-variability scenarios.

  11. Gridded Surface Subsurface Hydrologic Analysis (GSSHA) User's Manual; Version 1.43 for Watershed Modeling System 6.1

    National Research Council Canada - National Science Library

    Downer, Charles W; Ogden, Fred L


    The need to simulate surface water flows in watersheds with diverse runoff production mechanisms has led to the development of the physically-based hydrologic model Gridded Surface Subsurface Hydrologic Analysis (GSSHA...

  12. The role of soil in the generation of urban runoff : development and evaluation of a 2D model




    A two-dimensional numerical model is developed to determine the role of soil in the formation of urban catchment runoff. The model is based on a modeling unit, called the Urban Hydrological Element (UHE), which corresponds to the cross-section of an urban cadastral parcel. Water flow in the soil of a UHE is explicitly simulated with a finite element code for solving the Richards' equation. Two runoff components, dependent on soil behavior, are represented: runoff from natural surfaces and dra...

  13. An urban runoff model designed to inform stormwater management decisions. (United States)

    Beck, Nicole G; Conley, Gary; Kanner, Lisa; Mathias, Margaret


    We present an urban runoff model designed for stormwater managers to quantify runoff reduction benefits of mitigation actions that has lower input data and user expertise requirements than most commonly used models. The stormwater tool to estimate load reductions (TELR) employs a semi-distributed approach, where landscape characteristics and process representation are spatially-lumped within urban catchments on the order of 100 acres (40 ha). Hydrologic computations use a set of metrics that describe a 30-year rainfall distribution, combined with well-tested algorithms for rainfall-runoff transformation and routing to generate average annual runoff estimates for each catchment. User inputs include the locations and specifications for a range of structural best management practice (BMP) types. The model was tested in a set of urban catchments within the Lake Tahoe Basin of California, USA, where modeled annual flows matched that of the observed flows within 18% relative error for 5 of the 6 catchments and had good regional performance for a suite of performance metrics. Comparisons with continuous simulation models showed an average of 3% difference from TELR predicted runoff for a range of hypothetical urban catchments. The model usually identified the dominant BMP outflow components within 5% relative error of event-based measured flow data and simulated the correct proportionality between outflow components. TELR has been implemented as a web-based platform for use by municipal stormwater managers to inform prioritization, report program benefits and meet regulatory reporting requirements ( Copyright © 2017. Published by Elsevier Ltd.

  14. PATHS groundwater hydrologic model

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, R.W.; Schur, J.A.


    A preliminary evaluation capability for two-dimensional groundwater pollution problems was developed as part of the Transport Modeling Task for the Waste Isolation Safety Assessment Program (WISAP). Our approach was to use the data limitations as a guide in setting the level of modeling detail. PATHS Groundwater Hydrologic Model is the first level (simplest) idealized hybrid analytical/numerical model for two-dimensional, saturated groundwater flow and single component transport; homogeneous geology. This document consists of the description of the PATHS groundwater hydrologic model. The preliminary evaluation capability prepared for WISAP, including the enhancements that were made because of the authors' experience using the earlier capability is described. Appendixes A through D supplement the report as follows: complete derivations of the background equations are provided in Appendix A. Appendix B is a comprehensive set of instructions for users of PATHS. It is written for users who have little or no experience with computers. Appendix C is for the programmer. It contains information on how input parameters are passed between programs in the system. It also contains program listings and test case listing. Appendix D is a definition of terms.

  15. Hydrological regime shift in a constructed catchment: Effect of vegetation encroachment on surface runoff (United States)

    Hinz, C.; Caviedes-Voullieme, D.; Andezhath Mohanan, A.; Brueck, Y.; Zaplata, M.


    The Hühnerwasser catchment (Chicken Creek) was constructed to provide discharge for a small stream in the post-mining landscape of Lusatia, Germany. It has an area of 6 ha and quaternary sands with a thickness of 2-4 m were dumped on to a clay liner to prevent deep drainage. After completion of the construction the catchment was left to develop on its own without intervention and has been monitored since 2005. The upper part of the catchment discharges water and sediment into the lower part forming an alluvial fan. Below the alluvial fan is a pond receiving all surface and subsurface water from the upper catchment. After the formation of the drainage network vegetation started growing and surface runoff decreased until the water balance was dominated by evapotranspiration. This regime shift and the rate at which it happened depends on the vegetation encroachment into the rills and the interrill areas. Based on the hypothesis that vegetation will increase surface roughness and infiltration behavior, aerial photos were used to map rills and vegetation within and outside the rills for the last 10 years to obtain a time series of change. Observational evidence clearly shows that vegetation encroaches from the bottom, from the interrill areas as well as from the top. The rills themselves did not change their topology, however, the width of the erosion rills and gully increased at the bottom. For a subcatchment area a high resolution a physical based numerical model of overland flow was developed to explicitly assess the importance of increasing roughness and infiltration capacity for surface runoff. For the purpose of analyzing the effect of rainfall variability a rainfall generator was developed to carry out large sets of simulations. The simulations provide a means to assess how the roughness/infiltration feedback affects the rate of regime shift for a set of parameters that are consistent with the observed hydrological behavior of the drainage network.

  16. Soil Surface Runoff Scheme for Improving Land-Hydrology and Surface Fluxes in Simple SiB (SSiB) (United States)

    Sud, Y. C.; Mocko, David M.


    Evapotranspiration on land is hard to measure and difficult to simulate. On the scale of a GCM grid, there is large subgrid-scale variability of orography, soil moisture, and vegetation. Our hope is to be able to tune the biophysical constants of vegetation and soil parameters to get the most realistic space-averaged diurnal cycle of evaporation and its climatology. Field experiments such as First ISLSCP Field Experiment (FIFE), Boreal Ecosystem-Atmosphere Study (BOREAS), and LBA help a great deal in improving our evapotranspiration schemes. However, these improvements have to be matched with, and coupled to, consistent improvement in land-hydrology; otherwise, the runoff problems will intrinsically reflect on the soil moisture and evapotranspiration errors. Indeed, a realistic runoff simulation also ensures a reasonable evapotranspiration simulation provided the precipitation forcing is reliable. We have been working on all of the above problems to improve the simulated hydrologic cycle. Through our participation in the evaluation and intercomparison of land-models under the behest of Global Soil Wetness Project (GSWP), we identified a few problems with Simple SiB (SSIB; Xue et al., 1991) hydrology in regions of significant snowmelt. Sud and Mocko (1999) show that inclusion of a separate snowpack model, with its own energy budget and fluxes with the atmosphere aloft and soil beneath, helps to ameliorate some of the deficiencies of delayed snowmelt and excessive spring season runoff. Thus, much more realistic timing of melt water generation was simulated with the new snowpack model in the subsequent GSWP re-evaluations using 2 years of ISLSCP Initiative I forcing data for 1987 and 1988. However, we noted an overcorrection of the low meltwater infiltration of SSiB. While the improvement in snowmelt timing was found everywhere, the snowmelt infiltration has became excessive in some regions, e.g., Lena river basin. This leads to much reduced runoff in many basins as

  17. Hydrological models for environmental management

    National Research Council Canada - National Science Library

    Bolgov, Mikhail V


    .... Stochastic modelling and forecasting cannot at present adequately represent the characteristics of hydrological regimes, nor analyze the influence of water on processes that arise in biological...

  18. Modeling the Hydrologic Processes of a Permeable Pavement System (United States)

    A permeable pavement system can capture stormwater to reduce runoff volume and flow rate, improve onsite groundwater recharge, and enhance pollutant controls within the site. A new unit process model for evaluating the hydrologic performance of a permeable pavement system has be...

  19. A note on estimating urban roof runoff with a forest evaporation model

    NARCIS (Netherlands)

    Gash, J.H.C.; Rosier, P.T.W.; Ragab, R.


    A model developed for estimating the evaporation of rainfall intercepted by forest canopies is applied to estimate measurements of the average runoff from the roofs of six houses made in a previous study of hydrological processes in an urban environment. The model is applied using values of the mean

  20. Effects of pasture renovation on hydrology, nutrient runoff, and forage yield. (United States)

    de Koff, J P; Moore, P A; Formica, J; Van Eps, M; DeLaune, P B


    Proper pasture management is important in promoting optimal forage growth and reducing runoff and nutrient loss. Pasture renovation is a management tool that improves aeration by mechanically creating holes or pockets within the soil. Pasture renovation was performed before manure application (poultry litter or swine slurry) on different pasture soils and rainfall simulations were conducted to identify the effects of pasture renovation on nutrient runoff and forage growth. Renovation of small plots resulted in significant and beneficial hydrological changes. During the first rainfall simulation, runoff volumes were 45 to 74% lower for seven out of eight renovated treatments, and infiltration rates increased by 3 to 87% for all renovated treatments as compared with nonrenovated treatments. Renovation of pasture soils fertilized with poultry litter led to significant reductions in dissolved reactive P (DRP) (74-87%), total P (TP) (76-85%), and total nitrogen (TN) (72-80%) loads in two of the three soils studied during the first rainfall simulation. Renovation did not result in any significant differences in forage yields. Overall, beneficial impacts of renovation lasted up to 3 mo, the most critical period for nutrient runoff following manure application. Therefore, renovation could be an important best management practice in these areas.

  1. Generation of Natural Runoff Monthly Series at Ungauged Sites Using a Regional Regressive Model

    Directory of Open Access Journals (Sweden)

    Dario Pumo


    Full Text Available Many hydrologic applications require reliable estimates of runoff in river basins to face the widespread lack of data, both in time and in space. A regional method for the reconstruction of monthly runoff series is here developed and applied to Sicily (Italy. A simple modeling structure is adopted, consisting of a regression-based rainfall–runoff model with four model parameters, calibrated through a two-step procedure. Monthly runoff estimates are based on precipitation, temperature, and exploiting the autocorrelation with runoff at the previous month. Model parameters are assessed by specific regional equations as a function of easily measurable physical and climate basin descriptors. The first calibration step is aimed at the identification of a set of parameters optimizing model performances at the level of single basin. Such “optimal” sets are used at the second step, part of a regional regression analysis, to establish the regional equations for model parameters assessment as a function of basin attributes. All the gauged watersheds across the region have been analyzed, selecting 53 basins for model calibration and using the other six basins exclusively for validation. Performances, quantitatively evaluated by different statistical indexes, demonstrate relevant model ability in reproducing the observed hydrological time-series at both the monthly and coarser time resolutions. The methodology, which is easily transferable to other arid and semi-arid areas, provides a reliable tool for filling/reconstructing runoff time series at any gauged or ungauged basin of a region.

  2. Multi-model approach to assess the impact of climate change on runoff (United States)

    Dams, J.; Nossent, J.; Senbeta, T. B.; Willems, P.; Batelaan, O.


    The assessment of climate change impacts on hydrology is subject to uncertainties related to the climate change scenarios, stochastic uncertainties of the hydrological model and structural uncertainties of the hydrological model. This paper focuses on the contribution of structural uncertainty of hydrological models to the overall uncertainty of the climate change impact assessment. To quantify the structural uncertainty of hydrological models, four physically based hydrological models (SWAT, PRMS and a semi- and fully distributed version of the WetSpa model) are set up for a catchment in Belgium. Each model is calibrated using four different objective functions. Three climate change scenarios with a high, mean and low hydrological impact are statistically perturbed from a large ensemble of climate change scenarios and are used to force the hydrological models. This methodology allows assessing and comparing the uncertainty introduced by the climate change scenarios with the uncertainty introduced by the hydrological model structure. Results show that the hydrological model structure introduces a large uncertainty on both the average monthly discharge and the extreme peak and low flow predictions under the climate change scenarios. For the low impact climate change scenario, the uncertainty range of the mean monthly runoff is comparable to the range of these runoff values in the reference period. However, for the mean and high impact scenarios, this range is significantly larger. The uncertainty introduced by the climate change scenarios is larger than the uncertainty due to the hydrological model structure for the low and mean hydrological impact scenarios, but the reverse is true for the high impact climate change scenario. The mean and high impact scenarios project increasing peak discharges, while the low impact scenario projects increasing peak discharges only for peak events with return periods larger than 1.6 years. All models suggest for all scenarios a

  3. Towards simplification of hydrologic modeling: Identification of dominant processes (United States)

    Markstrom, Steven; Hay, Lauren E.; Clark, Martyn P.


    The Precipitation–Runoff Modeling System (PRMS), a distributed-parameter hydrologic model, has been applied to the conterminous US (CONUS). Parameter sensitivity analysis was used to identify: (1) the sensitive input parameters and (2) particular model output variables that could be associated with the dominant hydrologic process(es). Sensitivity values of 35 PRMS calibration parameters were computed using the Fourier amplitude sensitivity test procedure on 110 000 independent hydrologically based spatial modeling units covering the CONUS and then summarized to process (snowmelt, surface runoff, infiltration, soil moisture, evapotranspiration, interflow, baseflow, and runoff) and model performance statistic (mean, coefficient of variation, and autoregressive lag 1). Identified parameters and processes provide insight into model performance at the location of each unit and allow the modeler to identify the most dominant process on the basis of which processes are associated with the most sensitive parameters. The results of this study indicate that: (1) the choice of performance statistic and output variables has a strong influence on parameter sensitivity, (2) the apparent model complexity to the modeler can be reduced by focusing on those processes that are associated with sensitive parameters and disregarding those that are not, (3) different processes require different numbers of parameters for simulation, and (4) some sensitive parameters influence only one hydrologic process, while others may influence many

  4. Multi-criteria evaluation of hydrological models (United States)

    Rakovec, Oldrich; Clark, Martyn; Weerts, Albrecht; Hill, Mary; Teuling, Ryan; Uijlenhoet, Remko


    Over the last years, there is a tendency in the hydrological community to move from the simple conceptual models towards more complex, physically/process-based hydrological models. This is because conceptual models often fail to simulate the dynamics of the observations. However, there is little agreement on how much complexity needs to be considered within the complex process-based models. One way to proceed to is to improve understanding of what is important and unimportant in the models considered. The aim of this ongoing study is to evaluate structural model adequacy using alternative conceptual and process-based models of hydrological systems, with an emphasis on understanding how model complexity relates to observed hydrological processes. Some of the models require considerable execution time and the computationally frugal sensitivity analysis, model calibration and uncertainty quantification methods are well-suited to providing important insights for models with lengthy execution times. The current experiment evaluates two version of the Framework for Understanding Structural Errors (FUSE), which both enable running model inter-comparison experiments. One supports computationally efficient conceptual models, and the second supports more-process-based models that tend to have longer execution times. The conceptual FUSE combines components of 4 existing conceptual hydrological models. The process-based framework consists of different forms of Richard's equations, numerical solutions, groundwater parameterizations and hydraulic conductivity distribution. The hydrological analysis of the model processes has evolved from focusing only on simulated runoff (final model output), to also including other criteria such as soil moisture and groundwater levels. Parameter importance and associated structural importance are evaluated using different types of sensitivity analyses techniques, making use of both robust global methods (e.g. Sobol') as well as several

  5. Mid- and long-term runoff predictions by an improved phase-space reconstruction model

    International Nuclear Information System (INIS)

    Hong, Mei; Wang, Dong; Wang, Yuankun; Zeng, Xiankui; Ge, Shanshan; Yan, Hengqian; Singh, Vijay P.


    In recent years, the phase-space reconstruction method has usually been used for mid- and long-term runoff predictions. However, the traditional phase-space reconstruction method is still needs to be improved. Using the genetic algorithm to improve the phase-space reconstruction method, a new nonlinear model of monthly runoff is constructed. The new model does not rely heavily on embedding dimensions. Recognizing that the rainfall–runoff process is complex, affected by a number of factors, more variables (e.g. temperature and rainfall) are incorporated in the model. In order to detect the possible presence of chaos in the runoff dynamics, chaotic characteristics of the model are also analyzed, which shows the model can represent the nonlinear and chaotic characteristics of the runoff. The model is tested for its forecasting performance in four types of experiments using data from six hydrological stations on the Yellow River and the Yangtze River. Results show that the medium-and long-term runoff is satisfactorily forecasted at the hydrological stations. Not only is the forecasting trend accurate, but also the mean absolute percentage error is no more than 15%. Moreover, the forecast results of wet years and dry years are both good, which means that the improved model can overcome the traditional ‘‘wet years and dry years predictability barrier,’’ to some extent. The model forecasts for different regions are all good, showing the universality of the approach. Compared with selected conceptual and empirical methods, the model exhibits greater reliability and stability in the long-term runoff prediction. Our study provides a new thinking for research on the association between the monthly runoff and other hydrological factors, and also provides a new method for the prediction of the monthly runoff. - Highlights: • The improved phase-space reconstruction model of monthly runoff is established. • Two variables (temperature and rainfall) are incorporated

  6. Mid- and long-term runoff predictions by an improved phase-space reconstruction model

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Mei [Research Center of Ocean Environment Numerical Simulation, Institute of Meteorology and oceanography, PLA University of Science and Technology, Nanjing (China); Wang, Dong, E-mail: [Key Laboratory of Surficial Geochemistry, Ministry of Education, Department of Hydrosciences, School of Earth Sciences and Engineering, Collaborative Innovation Center of South China Sea Studies, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210093 (China); Wang, Yuankun; Zeng, Xiankui [Key Laboratory of Surficial Geochemistry, Ministry of Education, Department of Hydrosciences, School of Earth Sciences and Engineering, Collaborative Innovation Center of South China Sea Studies, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210093 (China); Ge, Shanshan; Yan, Hengqian [Research Center of Ocean Environment Numerical Simulation, Institute of Meteorology and oceanography, PLA University of Science and Technology, Nanjing (China); Singh, Vijay P. [Department of Biological and Agricultural Engineering Zachry Department of Civil Engineering, Texas A & M University, College Station, TX 77843 (United States)


    In recent years, the phase-space reconstruction method has usually been used for mid- and long-term runoff predictions. However, the traditional phase-space reconstruction method is still needs to be improved. Using the genetic algorithm to improve the phase-space reconstruction method, a new nonlinear model of monthly runoff is constructed. The new model does not rely heavily on embedding dimensions. Recognizing that the rainfall–runoff process is complex, affected by a number of factors, more variables (e.g. temperature and rainfall) are incorporated in the model. In order to detect the possible presence of chaos in the runoff dynamics, chaotic characteristics of the model are also analyzed, which shows the model can represent the nonlinear and chaotic characteristics of the runoff. The model is tested for its forecasting performance in four types of experiments using data from six hydrological stations on the Yellow River and the Yangtze River. Results show that the medium-and long-term runoff is satisfactorily forecasted at the hydrological stations. Not only is the forecasting trend accurate, but also the mean absolute percentage error is no more than 15%. Moreover, the forecast results of wet years and dry years are both good, which means that the improved model can overcome the traditional ‘‘wet years and dry years predictability barrier,’’ to some extent. The model forecasts for different regions are all good, showing the universality of the approach. Compared with selected conceptual and empirical methods, the model exhibits greater reliability and stability in the long-term runoff prediction. Our study provides a new thinking for research on the association between the monthly runoff and other hydrological factors, and also provides a new method for the prediction of the monthly runoff. - Highlights: • The improved phase-space reconstruction model of monthly runoff is established. • Two variables (temperature and rainfall) are incorporated

  7. Selection of an appropriately simple storm runoff model

    Directory of Open Access Journals (Sweden)

    A. I. J. M. van Dijk


    Full Text Available An appropriately simple event runoff model for catchment hydrological studies was derived. The model was selected from several variants as having the optimum balance between simplicity and the ability to explain daily observations of streamflow from 260 Australian catchments (23–1902 km2. Event rainfall and runoff were estimated from the observations through a combination of baseflow separation and storm flow recession analysis, producing a storm flow recession coefficient (kQF. Various model structures with up to six free parameters were investigated, covering most of the equations applied in existing lumped catchment models. The performance of alternative structures and free parameters were expressed in Aikake's Final Prediction Error Criterion (FPEC and corresponding Nash-Sutcliffe model efficiencies (NSME for event runoff totals. For each model variant, the number of free parameters was reduced in steps based on calculated parameter sensitivity. The resulting optimal model structure had two or three free parameters; the first describing the non-linear relationship between event rainfall and runoff (Smax, the second relating runoff to antecedent groundwater storage (CSg, and a third that described initial rainfall losses (Li, but which could be set at 8 mm without affecting model performance too much. The best three parameter model produced a median NSME of 0.64 and outperformed, for example, the Soil Conservation Service Curve Number technique (median NSME 0.30–0.41. Parameter estimation in ungauged catchments is likely to be challenging: 64% of the variance in kQF among stations could be explained by catchment climate indicators and spatial correlation, but corresponding numbers were a modest 45% for CSg, 21% for Smax and none for Li, respectively. In gauged catchments, better

  8. Evaluation of Three Models for Simulating Pesticide Runoff from Irrigated Agricultural Fields. (United States)

    Zhang, Xuyang; Goh, Kean S


    Three models were evaluated for their accuracy in simulating pesticide runoff at the edge of agricultural fields: Pesticide Root Zone Model (PRZM), Root Zone Water Quality Model (RZWQM), and OpusCZ. Modeling results on runoff volume, sediment erosion, and pesticide loss were compared with measurements taken from field studies. Models were also compared on their theoretical foundations and ease of use. For runoff events generated by sprinkler irrigation and rainfall, all models performed equally well with small errors in simulating water, sediment, and pesticide runoff. The mean absolute percentage errors (MAPEs) were between 3 and 161%. For flood irrigation, OpusCZ simulated runoff and pesticide mass with the highest accuracy, followed by RZWQM and PRZM, likely owning to its unique hydrological algorithm for runoff simulations during flood irrigation. Simulation results from cold model runs by OpusCZ and RZWQM using measured values for model inputs matched closely to the observed values. The MAPE ranged from 28 to 384 and 42 to 168% for OpusCZ and RZWQM, respectively. These satisfactory model outputs showed the models' abilities in mimicking reality. Theoretical evaluations indicated that OpusCZ and RZWQM use mechanistic approaches for hydrology simulation, output data on a subdaily time-step, and were able to simulate management practices and subsurface flow via tile drainage. In contrast, PRZM operates at daily time-step and simulates surface runoff using the USDA Soil Conservation Service's curve number method. Among the three models, OpusCZ and RZWQM were suitable for simulating pesticide runoff in semiarid areas where agriculture is heavily dependent on irrigation. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  9. Assimilation of remote sensing observations into a continuous distributed hydrological model: impacts on the hydrologic cycle (United States)

    Laiolo, Paola; Gabellani, Simone; Campo, Lorenzo; Cenci, Luca; Silvestro, Francesco; Delogu, Fabio; Boni, Giorgio; Rudari, Roberto


    The reliable estimation of hydrological variables (e.g. soil moisture, evapotranspiration, surface temperature) in space and time is of fundamental importance in operational hydrology to improve the forecast of the rainfall-runoff response of catchments and, consequently, flood predictions. Nowadays remote sensing can offer a chance to provide good space-time estimates of several hydrological variables and then improve hydrological model performances especially in environments with scarce in-situ data. This work investigates the impact of the assimilation of different remote sensing products on the hydrological cycle by using a continuous physically based distributed hydrological model. Three soil moisture products derived by ASCAT (Advanced SCATterometer) are used to update the model state variables. The satellite-derived products are assimilated into the hydrological model using different assimilation techniques: a simple nudging and the Ensemble Kalman Filter. Moreover two assimilation strategies are evaluated to assess the impact of assimilating the satellite products at model spatial resolution or at the satellite scale. The experiments are carried out for three Italian catchments on multi year period. The benefits on the model predictions of discharge, LST, evapotranspiration and soil moisture dynamics are tested and discussed.

  10. Updating of states in operational hydrological models (United States)

    Bruland, O.; Kolberg, S.; Engeland, K.; Gragne, A. S.; Liston, G.; Sand, K.; Tøfte, L.; Alfredsen, K.


    Operationally the main purpose of hydrological models is to provide runoff forecasts. The quality of the model state and the accuracy of the weather forecast together with the model quality define the runoff forecast quality. Input and model errors accumulate over time and may leave the model in a poor state. Usually model states can be related to observable conditions in the catchment. Updating of these states, knowing their relation to observable catchment conditions, influence directly the forecast quality. Norway is internationally in the forefront in hydropower scheduling both on short and long terms. The inflow forecasts are fundamental to this scheduling. Their quality directly influence the producers profit as they optimize hydropower production to market demand and at the same time minimize spill of water and maximize available hydraulic head. The quality of the inflow forecasts strongly depends on the quality of the models applied and the quality of the information they use. In this project the focus has been to improve the quality of the model states which the forecast is based upon. Runoff and snow storage are two observable quantities that reflect the model state and are used in this project for updating. Generally the methods used can be divided in three groups: The first re-estimates the forcing data in the updating period; the second alters the weights in the forecast ensemble; and the third directly changes the model states. The uncertainty related to the forcing data through the updating period is due to both uncertainty in the actual observation and to how well the gauging stations represent the catchment both in respect to temperatures and precipitation. The project looks at methodologies that automatically re-estimates the forcing data and tests the result against observed response. Model uncertainty is reflected in a joint distribution of model parameters estimated using the Dream algorithm.

  11. Hydrological Process Simulation of Inland River Watershed: A Case Study of the Heihe River Basin with Multiple Hydrological Models

    Directory of Open Access Journals (Sweden)

    Lili Wang


    Full Text Available Simulating the hydrological processes of an inland river basin can help provide the scientific guidance to the policies of water allocation among different subbasins and water resource management groups within the subbasins. However, it is difficult to simulate the hydrological processes of an inland river basin with hydrological models due to the non-consistent hydrological characteristics of the entire basin. This study presents a solution to this problem with a case study about the hydrological process simulation in an inland river basin in China, Heihe River basin. It is divided into the upper, middle, and lower reaches based on the distinctive hydrological characteristics in the Heihe River basin, and three hydrological models are selected, applied, and tested to simulate the hydrological cycling processes for each reach. The upper reach is the contributing area with the complex runoff generation processes, therefore, the hydrological informatic modeling system (HIMS is utilized due to its combined runoff generation mechanisms. The middle reach has strong impacts of intensive human activities on the interactions of surface and subsurface flows, so a conceptual water balance model is applied to simulate the water balance process. For the lower reach, as the dissipative area with groundwater dominating the hydrological process, a groundwater modeling system with the embedment of MODFLOW model is applied to simulate the groundwater dynamics. Statistical parameters and water balance analysis prove that the three models have excellent performances in simulating the hydrological process of the three reaches. Therefore, it is an effective way to simulate the hydrological process of inland river basin with multiple hydrological models according to the characteristics of each subbasin.

  12. Distributed physically-based precipitation-runoff models for continuous simulation of daily runoff in the Columbia River Basin, British Columbia

    International Nuclear Information System (INIS)

    Chin, W.Q.; Salmon, G.M.; Luo, W.


    The need to accurately forecast precipitation and water runoff is essential to the operations of hydroelectric power plants. In 1993, BC Hydro established a program to develop, test and improve new and existing atmospheric and hydrologic models that would be suitable for application over the mountainous terrain of British Columbia. The objective was to improve the reliability and accuracy of hydrological models that simulate and forecast precipitation and runoff. Another objective was to develop a modelling system for hydrologic risk assessment in dam safety evaluation. This paper describes progress made in implementing timely measures to resolve problems of reservoir operation in balancing the need for generation of hydroelectric power with conflicting requirements for flood control, fisheries, recreation and other environmental concerns. 23 refs., 11 figs

  13. Uncertainty in hydrological change modelling

    DEFF Research Database (Denmark)

    Seaby, Lauren Paige

    applied at the grid scale. Flux and state hydrological outputs which integrate responses over time and space showed more sensitivity to precipitation mean spatial biases and less so on extremes. In the investigated catchments, the projected change of groundwater levels and basin discharge between current......Hydrological change modelling methodologies generally use climate models outputs to force hydrological simulations under changed conditions. There are nested sources of uncertainty throughout this methodology, including choice of climate model and subsequent bias correction methods. This Ph.......D. study evaluates the uncertainty of the impact of climate change in hydrological simulations given multiple climate models and bias correction methods of varying complexity. Three distribution based scaling methods (DBS) were developed and benchmarked against a more simplistic and commonly used delta...

  14. A simple topography-driven, calibration-free runoff generation model (United States)

    Gao, H.; Birkel, C.; Hrachowitz, M.; Tetzlaff, D.; Soulsby, C.; Savenije, H. H. G.


    Determining the amount of runoff generation from rainfall occupies a central place in rainfall-runoff modelling. Moreover, reading landscapes and developing calibration-free runoff generation models that adequately reflect land surface heterogeneities remains the focus of much hydrological research. In this study, we created a new method to estimate runoff generation - HAND-based Storage Capacity curve (HSC) which uses a topographic index (HAND, Height Above the Nearest Drainage) to identify hydrological similarity and partially the saturated areas of catchments. We then coupled the HSC model with the Mass Curve Technique (MCT) method to estimate root zone storage capacity (SuMax), and obtained the calibration-free runoff generation model HSC-MCT. Both the two models (HSC and HSC-MCT) allow us to estimate runoff generation and simultaneously visualize the spatial dynamic of saturated area. We tested the two models in the data-rich Bruntland Burn (BB) experimental catchment in Scotland with an unusual time series of the field-mapped saturation area extent. The models were subsequently tested in 323 MOPEX (Model Parameter Estimation Experiment) catchments in the United States. HBV and TOPMODEL were used as benchmarks. We found that the HSC performed better in reproducing the spatio-temporal pattern of the observed saturated areas in the BB catchment compared with TOPMODEL which is based on the topographic wetness index (TWI). The HSC also outperformed HBV and TOPMODEL in the MOPEX catchments for both calibration and validation. Despite having no calibrated parameters, the HSC-MCT model also performed comparably well with the calibrated HBV and TOPMODEL, highlighting the robustness of the HSC model to both describe the spatial distribution of the root zone storage capacity and the efficiency of the MCT method to estimate the SuMax. Moreover, the HSC-MCT model facilitated effective visualization of the saturated area, which has the potential to be used for broader

  15. An Educational Model for Hands-On Hydrology Education (United States)

    AghaKouchak, A.; Nakhjiri, N.; Habib, E. H.


    This presentation provides an overview of a hands-on modeling tool developed for students in civil engineering and earth science disciplines to help them learn the fundamentals of hydrologic processes, model calibration, sensitivity analysis, uncertainty assessment, and practice conceptual thinking in solving engineering problems. The toolbox includes two simplified hydrologic models, namely HBV-EDU and HBV-Ensemble, designed as a complement to theoretical hydrology lectures. The models provide an interdisciplinary application-oriented learning environment that introduces the hydrologic phenomena through the use of a simplified conceptual hydrologic model. The toolbox can be used for in-class lab practices and homework assignments, and assessment of students' understanding of hydrological processes. Using this modeling toolbox, students can gain more insights into how hydrological processes (e.g., precipitation, snowmelt and snow accumulation, soil moisture, evapotranspiration and runoff generation) are interconnected. The educational toolbox includes a MATLAB Graphical User Interface (GUI) and an ensemble simulation scheme that can be used for teaching more advanced topics including uncertainty analysis, and ensemble simulation. Both models have been administered in a class for both in-class instruction and a final project, and students submitted their feedback about the toolbox. The results indicate that this educational software had a positive impact on students understanding and knowledge of hydrology.

  16. Data assimilation in hydrological modelling

    DEFF Research Database (Denmark)

    Drecourt, Jean-Philippe

    Data assimilation is an invaluable tool in hydrological modelling as it allows to efficiently combine scarce data with a numerical model to obtain improved model predictions. In addition, data assimilation also provides an uncertainty analysis of the predictions made by the hydrological model....... In this thesis, the Kalman filter is used for data assimilation with a focus on groundwater modelling. However the developed techniques are general and can be applied also in other modelling domains. Modelling involves conceptualization of the processes of Nature. Data assimilation provides a way to deal...... with model non-linearities and biased errors. A literature review analyzes the most popular techniques and their application in hydrological modelling. Since bias is an important problem in groundwater modelling, two bias aware Kalman filters have been implemented and compared using an artificial test case...

  17. Stochastic Modelling of Hydrologic Systems

    DEFF Research Database (Denmark)

    Jonsdottir, Harpa


    In this PhD project several stochastic modelling methods are studied and applied on various subjects in hydrology. The research was prepared at Informatics and Mathematical Modelling at the Technical University of Denmark. The thesis is divided into two parts. The first part contains...... an introduction and an overview of the papers published. Then an introduction to basic concepts in hydrology along with a description of hydrological data is given. Finally an introduction to stochastic modelling is given. The second part contains the research papers. In the research papers the stochastic methods...... are described, as at the time of publication these methods represent new contribution to hydrology. The second part also contains additional description of software used and a brief introduction to stiff systems. The system in one of the papers is stiff....

  18. Sink plot for runoff measurements on semi-flat terrains: preliminary data and their potential hydrological and ecological implications

    Directory of Open Access Journals (Sweden)

    Kidron Giora J.


    Full Text Available In arid and semiarid regions where water is the main limiting factor, water redistribution is regarded as an important hydrological process of great ecological value. By providing additional water to certain loci, moist pockets of great productivity are formed, characterized by high plant biomass and biological activity. These moist pockets are often a result of runon. Yet, although runoff may take place on semi-flat undulating surfaces, runoff measurements are thus far confined to slopes, where a sufficient gradient facilitates downslope water harvesting. On undulating surfaces of mounds and depressions, such as in interdunes, no quantification of the amount of water reaching depressions is feasible due to the fact that no reliable method for measuring the runoff amounts in semi-flat terrains is available. The current paper describes specific runoff plots, designed to measure runoff in depressions (sinks. These plots, termed sink plots (SPs, were operative in the Hallamish dunefield (Negev Desert, Israel. The paper presents measurements of runoff yield that were carried out between January 2013 and January 2014 on SPs and compared them to runoff obtained from crusted slope plots and fine-grained (playa surfaces. The potential hydrological and ecological implications of water redistribution within semi-flat terrains for this and other arid ecosystems are discussed.

  19. Green roof hydrologic performance and modeling: a review. (United States)

    Li, Yanling; Babcock, Roger W


    Green roofs reduce runoff from impervious surfaces in urban development. This paper reviews the technical literature on green roof hydrology. Laboratory experiments and field measurements have shown that green roofs can reduce stormwater runoff volume by 30 to 86%, reduce peak flow rate by 22 to 93% and delay the peak flow by 0 to 30 min and thereby decrease pollution, flooding and erosion during precipitation events. However, the effectiveness can vary substantially due to design characteristics making performance predictions difficult. Evaluation of the most recently published study findings indicates that the major factors affecting green roof hydrology are precipitation volume, precipitation dynamics, antecedent conditions, growth medium, plant species, and roof slope. This paper also evaluates the computer models commonly used to simulate hydrologic processes for green roofs, including stormwater management model, soil water atmosphere and plant, SWMS-2D, HYDRUS, and other models that are shown to be effective for predicting precipitation response and economic benefits. The review findings indicate that green roofs are effective for reduction of runoff volume and peak flow, and delay of peak flow, however, no tool or model is available to predict expected performance for any given anticipated system based on design parameters that directly affect green roof hydrology.

  20. Dynamic Hydrological Modeling in Drylands with TRMM Based Rainfall

    Directory of Open Access Journals (Sweden)

    Elena Tarnavsky


    Full Text Available This paper introduces and evaluates DryMOD, a dynamic water balance model of the key hydrological process in drylands that is based on free, public-domain datasets. The rainfall model of DryMOD makes optimal use of spatially disaggregated Tropical Rainfall Measuring Mission (TRMM datasets to simulate hourly rainfall intensities at a spatial resolution of 1-km. Regional-scale applications of the model in seasonal catchments in Tunisia and Senegal characterize runoff and soil moisture distribution and dynamics in response to varying rainfall data inputs and soil properties. The results highlight the need for hourly-based rainfall simulation and for correcting TRMM 3B42 rainfall intensities for the fractional cover of rainfall (FCR. Without FCR correction and disaggregation to 1 km, TRMM 3B42 based rainfall intensities are too low to generate surface runoff and to induce substantial changes to soil moisture storage. The outcomes from the sensitivity analysis show that topsoil porosity is the most important soil property for simulation of runoff and soil moisture. Thus, we demonstrate the benefit of hydrological investigations at a scale, for which reliable information on soil profile characteristics exists and which is sufficiently fine to account for the heterogeneities of these. Where such information is available, application of DryMOD can assist in the spatial and temporal planning of water harvesting according to runoff-generating areas and the runoff ratio, as well as in the optimization of agricultural activities based on realistic representation of soil moisture conditions.

  1. Hydrological Modeling of the Jiaoyi Watershed (China) Using HSPF Model (United States)

    Yan, Chang-An; Zhang, Wanchang; Zhang, Zhijie


    A watershed hydrological model, hydrological simulation program-Fortran (HSPF), was applied to simulate the spatial and temporal variation of hydrological processes in the Jiaoyi watershed of Huaihe River Basin, the heaviest shortage of water resources and polluted area in China. The model was calibrated using the years 2001–2004 and validated with data from 2005 to 2006. Calibration and validation results showed that the model generally simulated mean monthly and daily runoff precisely due to the close matching hydrographs between simulated and observed runoff, as well as the excellent evaluation indicators such as Nash-Sutcliffe efficiency (NSE), coefficient of correlation (R 2), and the relative error (RE). The similar simulation results between calibration and validation period showed that all the calibrated parameters had a certain representation in Jiaoyi watershed. Additionally, the simulation in rainy months was more accurate than the drought months. Another result in this paper was that HSPF was also capable of estimating the water balance components reasonably and realistically in space through the whole watershed. The calibrated model can be used to explore the effects of climate change scenarios and various watershed management practices on the water resources and water environment in the basin. PMID:25013863

  2. Integration of field data into operational snowmelt-runoff models

    International Nuclear Information System (INIS)

    Brandt, M.; Bergström, S.


    Conceptual runoff models have become standard tools for operational hydrological forecasting in Scandinavia. These models are normally based on observations from the national climatological networks, but in mountainous areas the stations are few and sometimes not representative. Due to the great economic importance of good hydrological forecasts for the hydro-power industry attempts have been made to improve the model simulations by support from field observations of the snowpack. The snowpack has been mapped by several methods; airborne gamma-spectrometry, airborne georadars, satellites and by conventional snow courses. The studies cover more than ten years of work in Sweden. The conclusion is that field observations of the snow cover have a potential for improvement of the forecasts of inflow to the reservoirs in the mountainous part of the country, where the climatological data coverages is poor. This is pronounced during years with unusual snow distribution. The potential for model improvement is smaller in the climatologically more homogeneous forested lowlands, where the climatological network is denser. The costs of introduction of airborne observations into the modelling procedure are high and can only be justified in areas of great hydropower potential. (author)

  3. Hydrology in a mediterranean mountain environment. The Vallcebre research catchment (north eastern Spain) II. Rainfall-runoff relationships and runoff processes; Hidrologia de un ambiente Mediterraneo de montana. Las cuencas de Vallcebre (Pirineo Oriental) II. Relaciones precipitacion-escorrentia y procesos hidrologicos

    Energy Technology Data Exchange (ETDEWEB)

    Latron, J.; Solar, M.; Nord, G.; Llorens, P.; Gallart, F.


    Hydrological response and runoff processes have been studied in the Vallcebre research basins (North Eastern Spain) for almost 20 years. Results obtained allowed to build a more complete perceptual model of the hydrological functioning of Mediterranean mountains basins. On a seasonal and monthly scale, there was no simple relationship between rainfall and runoff depths. Monthly rainfall and runoff values revealed the existence of a threshold in the relationship between rainfall and runoff depths. At the event scale, the storm-flow coefficient had a clear seasonal pattern. The effect of the water table position on how rainfall and runoff volumes relate was observed. Examination of soil water potential and water table dynamics during representative floods helped to identify 3 types of characteristic hydrological behaviour during the year. Under dry conditions, runoff was generated essentially as infiltration excess runoff in low permeable areas, whereas saturation excess runoff dominated during wetting-up and wet conditions. During wetting-up transition, saturated areas resulted from the development of scattered perched water tables, whereas in wet conditions they were linked to the rise of the shallow water table. (Author) 8 refs.

  4. Statistical analysis and modelling of surface runoff from arable fields in central Europe

    Directory of Open Access Journals (Sweden)

    P. Fiener


    runoff rate (RSME: 5.2 mm and 0.23 mm min−1, respectively, while RMSE of runoff volume predicted by the curve number model was 50% higher (7.7 mm. Stone cover, if it exceeded 10%, was most important for the initial abstraction, while time since tillage was most important for the hydrograph. Time since tillage is not taken into account either in typical lumped hydrological models (e.g. SCS curve number approach or in more mechanistic models using Horton, Green and Ampt, or Philip type approaches to address infiltration although tillage affects many physical and biological soil properties that subsequently and gradually change again. This finding should foster a discussion regarding our ability to predict surface runoff from arable land, which seemed to be dominated by agricultural operations that introduce man-made seasonality in soil hydraulic properties.

  5. Mathematical modelling of fracture hydrology

    International Nuclear Information System (INIS)

    Herbert, A.W.; Hodgkinson, D.P.; Lever, D.A.; Robinson, P.C.; Rae, J.


    This report summarises the work performed between January 1983 and December 1984 for the CEC/DOE contract 'Mathematical Modelling of Fracture Hydrology', under the following headings: 1) Statistical fracture network modelling, 2) Continuum models of flow and transport, 3) Simplified models, 4) Analysis of laboratory experiments and 5) Analysis of field experiments. (author)

  6. Hydrological system dynamics of glaciated Karnali River Basin Nepal Himalaya using J2000 Hydrological model (United States)

    Khatiwada, K. R.; Nepal, S.; Panthi, J., Sr.; Shrestha, M.


    Hydrological modelling plays an important role in understanding hydrological processes of a catchment. In the context of climate change, the understanding of hydrological characteristic of the catchment is very vital to understand how the climate change will affect the hydrological regime. This research facilitates in better understanding of the hydrological system dynamics of a himalayan mountainous catchment in western Nepal. The Karnali River, longest river flowing inside Nepal, is one of the three major basins of Nepal, having the area of 45269 sq. km. is unique. The basin has steep topography and high mountains to the northern side. The 40% of the basin is dominated by forest land while other land cover are: grass land, bare rocky land etc. About 2% of the areas in basin is covered by permanent glacier apart from that about 12% of basin has the snow and ice cover. There are 34 meteorological stations distributed across the basin. A process oriented distributed J2000 hydrologial model has been applied to understand the hydrological system dynamics. The model application provides distributed output of various hydrological components. The J2000 model applies Hydrological Response Unit (HRU) as a modelling entity. With 6861 HRU and 1010 reaches, the model was calibrated (1981-1999) and validated (2000-2004) at a daily scale using split-sample test. The model is able to capture the overall hydrological dynamics well. The rising limbs and recession limbs are simulated equally and with satisfactory ground water conditions. Based on the graphical and statistical evaluation of the model performance the model is able to simulate hydrological processes fairly well. Calibration shows that Nash Sutcliffe efficiency is 0.91, coefficient of determination is 0.92 Initial observation shows that during the pre-monsoon season(March to May) the glacial runoff is 25% of the total discharge while in the monsoon(June to September) season it is only 13%. The surface runoff

  7. Physical models for classroom teaching in hydrology

    Directory of Open Access Journals (Sweden)

    A. Rodhe


    Full Text Available Hydrology teaching benefits from the fact that many important processes can be illustrated and explained with simple physical models. A set of mobile physical models has been developed and used during many years of lecturing at basic university level teaching in hydrology. One model, with which many phenomena can be demonstrated, consists of a 1.0-m-long plexiglass container containing an about 0.25-m-deep open sand aquifer through which water is circulated. The model can be used for showing the groundwater table and its influence on the water content in the unsaturated zone and for quantitative determination of hydraulic properties such as the storage coefficient and the saturated hydraulic conductivity. It is also well suited for discussions on the runoff process and the significance of recharge and discharge areas for groundwater. The flow paths of water and contaminant dispersion can be illustrated in tracer experiments using fluorescent or colour dye. This and a few other physical models, with suggested demonstrations and experiments, are described in this article. The finding from using models in classroom teaching is that it creates curiosity among the students, promotes discussions and most likely deepens the understanding of the basic processes.

  8. A geomorphology-based ANFIS model for multi-station modeling of rainfall-runoff process (United States)

    Nourani, Vahid; Komasi, Mehdi


    This paper demonstrates the potential use of Artificial Intelligence (AI) techniques for predicting daily runoff at multiple gauging stations. Uncertainty and complexity of the rainfall-runoff process due to its variability in space and time in one hand and lack of historical data on the other hand, cause difficulties in the spatiotemporal modeling of the process. In this paper, an Integrated Geomorphological Adaptive Neuro-Fuzzy Inference System (IGANFIS) model conjugated with C-means clustering algorithm was used for rainfall-runoff modeling at multiple stations of the Eel River watershed, California. The proposed model could be used for predicting runoff in the stations with lack of data or any sub-basin within the watershed because of employing the spatial and temporal variables of the sub-basins as the model inputs. This ability of the integrated model for spatiotemporal modeling of the process was examined through the cross validation technique for a station. In this way, different ANFIS structures were trained using Sugeno algorithm in order to estimate daily discharge values at different stations. In order to improve the model efficiency, the input data were then classified into some clusters by the means of fuzzy C-means (FCMs) method. The goodness-of-fit measures support the gainful use of the IGANFIS and FCM methods in spatiotemporal modeling of hydrological processes.

  9. Validation of A Global Hydrological Model (United States)

    Doell, P.; Lehner, B.; Kaspar, F.; Vassolo, S.

    Freshwater availability has been recognized as a global issue, and its consistent quan- tification not only in individual river basins but also at the global scale is required to support the sustainable use of water. The Global Hydrology Model WGHM, which is a submodel of the global water use and availability model WaterGAP 2, computes sur- face runoff, groundwater recharge and river discharge at a spatial resolution of 0.5. WGHM is based on the best global data sets currently available, including a newly developed drainage direction map and a data set of wetlands, lakes and reservoirs. It calculates both natural and actual discharge by simulating the reduction of river discharge by human water consumption (as computed by the water use submodel of WaterGAP 2). WGHM is calibrated against observed discharge at 724 gauging sta- tions (representing about 50% of the global land area) by adjusting a parameter of the soil water balance. It not only computes the long-term average water resources but also water availability indicators that take into account the interannual and seasonal variability of runoff and discharge. The reliability of the model results is assessed by comparing observed and simulated discharges at the calibration stations and at se- lected other stations. We conclude that reliable results can be obtained for basins of more than 20,000 km2. In particular, the 90% reliable monthly discharge is simu- lated well. However, there is the tendency that semi-arid and arid basins are modeled less satisfactorily than humid ones, which is partially due to neglecting river channel losses and evaporation of runoff from small ephemeral ponds in the model. Also, the hydrology of highly developed basins with large artificial storages, basin transfers and irrigation schemes cannot be simulated well. The seasonality of discharge in snow- dominated basins is overestimated by WGHM, and if the snow-dominated basin is uncalibrated, discharge is likely to be underestimated

  10. The transferability of hydrological models under nonstationary climatic conditions

    Directory of Open Access Journals (Sweden)

    C. Z. Li


    Full Text Available This paper investigates issues involved in calibrating hydrological models against observed data when the aim of the modelling is to predict future runoff under different climatic conditions. To achieve this objective, we tested two hydrological models, DWBM and SIMHYD, using data from 30 unimpaired catchments in Australia which had at least 60 yr of daily precipitation, potential evapotranspiration (PET, and streamflow data. Nash-Sutcliffe efficiency (NSE, modified index of agreement (d1 and water balance error (WBE were used as performance criteria. We used a differential split-sample test to split up the data into 120 sub-periods and 4 different climatic sub-periods in order to assess how well the calibrated model could be transferred different periods. For each catchment, the models were calibrated for one sub-period and validated on the other three. Monte Carlo simulation was used to explore parameter stability compared to historic climatic variability. The chi-square test was used to measure the relationship between the distribution of the parameters and hydroclimatic variability. The results showed that the performance of the two hydrological models differed and depended on the model calibration. We found that if a hydrological model is set up to simulate runoff for a wet climate scenario then it should be calibrated on a wet segment of the historic record, and similarly a dry segment should be used for a dry climate scenario. The Monte Carlo simulation provides an effective and pragmatic approach to explore uncertainty and equifinality in hydrological model parameters. Some parameters of the hydrological models are shown to be significantly more sensitive to the choice of calibration periods. Our findings support the idea that when using conceptual hydrological models to assess future climate change impacts, a differential split-sample test and Monte Carlo simulation should be used to quantify uncertainties due to

  11. Determining soil hydrologic characteristics on a remote forest watershed by continuous monitoring of soil water pressures, rainfall and runoff. (United States)

    L.R. Ahuja; S. A. El-Swaify


    Continuous monitoring of soil-water pressures, rainfall and runoff under natural conditions was tested as a technique for determining soil hydrologic characteristics of a remote forest watershed plot. A completely battery-powered (and thus portable) pressure transducer–scanner–recorder system was assembled for monitoring of soil-water pressures in...

  12. Virtual hydrology observatory: an immersive visualization of hydrology modeling (United States)

    Su, Simon; Cruz-Neira, Carolina; Habib, Emad; Gerndt, Andreas


    The Virtual Hydrology Observatory will provide students with the ability to observe the integrated hydrology simulation with an instructional interface by using a desktop based or immersive virtual reality setup. It is the goal of the virtual hydrology observatory application to facilitate the introduction of field experience and observational skills into hydrology courses through innovative virtual techniques that mimic activities during actual field visits. The simulation part of the application is developed from the integrated atmospheric forecast model: Weather Research and Forecasting (WRF), and the hydrology model: Gridded Surface/Subsurface Hydrologic Analysis (GSSHA). Both the output from WRF and GSSHA models are then used to generate the final visualization components of the Virtual Hydrology Observatory. The various visualization data processing techniques provided by VTK are 2D Delaunay triangulation and data optimization. Once all the visualization components are generated, they are integrated into the simulation data using VRFlowVis and VR Juggler software toolkit. VR Juggler is used primarily to provide the Virtual Hydrology Observatory application with fully immersive and real time 3D interaction experience; while VRFlowVis provides the integration framework for the hydrologic simulation data, graphical objects and user interaction. A six-sided CAVETM like system is used to run the Virtual Hydrology Observatory to provide the students with a fully immersive experience.

  13. Optimal land use/land cover classification using remote sensing imagery for hydrological modeling in a Himalayan watersched

    NARCIS (Netherlands)

    Saran, S.; Sterk, G.; Kumar, S.


    Land use/land cover is an important watershed surface characteristic that affects surface runoff and erosion. Many of the available hydrological models divide the watershed into Hydrological Response Units (HRU), which are spatial units with expected similar hydrological behaviours. The division

  14. Optimal land use/cover classification using remote sensing imagery for hydrological modelling in a Himalayan watershed

    NARCIS (Netherlands)

    Sameer Saran,; Sterk, G.; Kumar, S.


    Land use/cover is an important watershed surface characteristic that affects surface runoff and erosion. Many of the available hydrological models divide the watershed into Hydrological Response Units (HRU), which are spatial units with expected similar hydrological behaviours. The division into

  15. Macroscale hydrologic modeling of ecologically relevant flow metrics (United States)

    Wenger, Seth J.; Luce, Charles H.; Hamlet, Alan F.; Isaak, Daniel J.; Neville, Helen M.


    Stream hydrology strongly affects the structure of aquatic communities. Changes to air temperature and precipitation driven by increased greenhouse gas concentrations are shifting timing and volume of streamflows potentially affecting these communities. The variable infiltration capacity (VIC) macroscale hydrologic model has been employed at regional scales to describe and forecast hydrologic changes but has been calibrated and applied mainly to large rivers. An important question is how well VIC runoff simulations serve to answer questions about hydrologic changes in smaller streams, which are important habitat for many fish species. To answer this question, we aggregated gridded VIC outputs within the drainage basins of 55 streamflow gages in the Pacific Northwest United States and compared modeled hydrographs and summary metrics to observations. For most streams, several ecologically relevant aspects of the hydrologic regime were accurately modeled, including center of flow timing, mean annual and summer flows and frequency of winter floods. Frequencies of high and low flows in the summer were not well predicted, however. Predictions were worse for sites with strong groundwater influence, and some sites showed errors that may result from limitations in the forcing climate data. Higher resolution (1/16th degree) modeling provided small improvements over lower resolution (1/8th degree). Despite some limitations, the VIC model appears capable of representing several ecologically relevant hydrologic characteristics in streams, making it a useful tool for understanding the effects of hydrology in delimiting species distributions and predicting the potential effects of climate shifts on aquatic organisms.

  16. Towards simplification of hydrologic modeling: identification of dominant processes

    Directory of Open Access Journals (Sweden)

    S. L. Markstrom


    Full Text Available parameter hydrologic model, has been applied to the conterminous US (CONUS. Parameter sensitivity analysis was used to identify: (1 the sensitive input parameters and (2 particular model output variables that could be associated with the dominant hydrologic process(es. Sensitivity values of 35 PRMS calibration parameters were computed using the Fourier amplitude sensitivity test procedure on 110 000 independent hydrologically based spatial modeling units covering the CONUS and then summarized to process (snowmelt, surface runoff, infiltration, soil moisture, evapotranspiration, interflow, baseflow, and runoff and model performance statistic (mean, coefficient of variation, and autoregressive lag 1. Identified parameters and processes provide insight into model performance at the location of each unit and allow the modeler to identify the most dominant process on the basis of which processes are associated with the most sensitive parameters. The results of this study indicate that: (1 the choice of performance statistic and output variables has a strong influence on parameter sensitivity, (2 the apparent model complexity to the modeler can be reduced by focusing on those processes that are associated with sensitive parameters and disregarding those that are not, (3 different processes require different numbers of parameters for simulation, and (4 some sensitive parameters influence only one hydrologic process, while others may influence many.

  17. Use of hydrological modelling and isotope techniques in Guvenc basin

    International Nuclear Information System (INIS)

    Altinbilek, D.


    The study covers the work performed under Project No. 335-RC-TUR-5145 entitled ''Use of Hydrologic Modelling and Isotope Techniques in Guvenc Basin'' and is an initial part of a program for estimating runoff from Central Anatolia Watersheds. The study presented herein consists of mainly three parts: 1) the acquisition of a library of rainfall excess, direct runoff and isotope data for Guvenc basin; 2) the modification of SCS model to be applied to Guvenc basin first and then to other basins of Central Anatolia for predicting the surface runoff from gaged and ungaged watersheds; and 3) the use of environmental isotope technique in order to define the basin components of streamflow of Guvenc basin. 31 refs, figs and tabs

  18. Model Calibration in Watershed Hydrology (United States)

    Yilmaz, Koray K.; Vrugt, Jasper A.; Gupta, Hoshin V.; Sorooshian, Soroosh


    Hydrologic models use relatively simple mathematical equations to conceptualize and aggregate the complex, spatially distributed, and highly interrelated water, energy, and vegetation processes in a watershed. A consequence of process aggregation is that the model parameters often do not represent directly measurable entities and must, therefore, be estimated using measurements of the system inputs and outputs. During this process, known as model calibration, the parameters are adjusted so that the behavior of the model approximates, as closely and consistently as possible, the observed response of the hydrologic system over some historical period of time. This Chapter reviews the current state-of-the-art of model calibration in watershed hydrology with special emphasis on our own contributions in the last few decades. We discuss the historical background that has led to current perspectives, and review different approaches for manual and automatic single- and multi-objective parameter estimation. In particular, we highlight the recent developments in the calibration of distributed hydrologic models using parameter dimensionality reduction sampling, parameter regularization and parallel computing.

  19. Application of a satellite based rainfall - runoff model : a case study of the Trans Boundary Cuvelai Basin in Southern Africa

    NARCIS (Netherlands)

    Mufeti, P.; Rientjes, T.H.M.; Mabande, P.; Maathuis, B.H.P.


    Applications of distributed hydrological models are often constrained by poor data availability. Models rely on distributed inputs for meteorological forcing and land surface parameterization. In this pilot the rainfall runoff model LISFLOOD for large scale streamflow simulation is tested for the

  20. Runoff modeling of the Amazon basin using 18 O as a conservative tracer

    International Nuclear Information System (INIS)

    Mortatti, Jefferson; Victoria, Reynaldo L.; Moraes, Jorge M.; Rodrigues Junior, Jose C.; Matsumoto, Otavio M.


    Using the δO 18 O content of natural waters as a conservative tracer, a runoff modelling of the Amazon river basin was carried out in order to study the hydrological characteristics of the precipitation-runoff relationship. Measurements of the δ 18 O in rainfall waters made in the high Solimoes region at Benjamin Constant, in the central part of basin at Manaus, and at the mouth near the Marajo Island, while the river waters were measured at Obidos only, as a proxy for the mouth, during the 1973-1974 hydrological years. The hydrography separation of the Amazon river was performed using the isotopic method to estimate the contributions of the surface runoff (event water) and baseflow (pre-event water) components to the total river flow. At peak discharge, the average contribution of the baseflow was 57% of the total river flow. The annual average contributions for surface runoff and baseflow were 30.3 and 69.7%, respectively. The residence time of the subsurface water in the basin was estimated as being 7 months, by fitting a sinusoidal function to the isotopic values of rainfall and river waters. The low values of the amplitude damping in the basin suggest high mixing waters during the runoff process. (author). 21 refs., 4 figs., 1 tab

  1. Mathematical modelling of fracture hydrology

    International Nuclear Information System (INIS)

    Rae, J.; Hodgkinson, D.P.; Robinson, P.C.; Herbert, A.W.


    This progress report contains notes on three aspects of hydrological modelling. Work on hydrodynamic dispersion in fractured media has been extended to transverse dispersion. Further work has been done on diffusion into the rock matrix and its effect on solute transport. The program NAMSOL has been used for the MIRAGE code comparison exercise being organised by Atkins R and D. (author)

  2. Using Modeling Tools to Better Understand Permafrost Hydrology

    Directory of Open Access Journals (Sweden)

    Clément Fabre


    Full Text Available Modification of the hydrological cycle and, subsequently, of other global cycles is expected in Arctic watersheds owing to global change. Future climate scenarios imply widespread permafrost degradation caused by an increase in air temperature, and the expected effect on permafrost hydrology is immense. This study aims at analyzing, and quantifying the daily water transfer in the largest Arctic river system, the Yenisei River in central Siberia, Russia, partially underlain by permafrost. The semi-distributed SWAT (Soil and Water Assessment Tool hydrological model has been calibrated and validated at a daily time step in historical discharge simulations for the 2003–2014 period. The model parameters have been adjusted to embrace the hydrological features of permafrost. SWAT is shown capable to estimate water fluxes at a daily time step, especially during unfrozen periods, once are considered specific climatic and soils conditions adapted to a permafrost watershed. The model simulates average annual contribution to runoff of 263 millimeters per year (mm yr−1 distributed as 152 mm yr−1 (58% of surface runoff, 103 mm yr−1 (39% of lateral flow and 8 mm yr−1 (3% of return flow from the aquifer. These results are integrated on a reduced basin area downstream from large dams and are closer to observations than previous modeling exercises.

  3. Runoff and soil loss from bench terraces. 1. An event-based model of rainfall infiltration and surface runoff.

    NARCIS (Netherlands)

    van Dijk, A.I.J.M.; Bruijnzeel, L.A.


    Overland flow resulting from an excess of rain over infiltration is an essential component of many models of runoff and erosion from fields or catchments. The spatially variable infiltration (SVI) model and a set of associated equations relating depth of runoff and maximum rate of 'effective' runoff

  4. Runoff Trends Analysis and Future Projections of Hydrological Patterns in Small Forested Catchments

    Czech Academy of Sciences Publication Activity Database

    Lamačová, Anna; Hruška, Jakub; Krám, Pavel; Stuchlik, E.; Farda, Aleš; Chuman, T.; Fottová, Daniela


    Roč. 9, č. 4 (2014), s. 169-181 ISSN 1801-5395 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073 Institutional support: RVO:67179843 Keywords : climate change * flow pattern * headwater catchments * hydrological modelling Subject RIV: EH - Ecology, Behaviour Impact factor: 0.659, year: 2014

  5. Diagnosing the impact of alternative calibration strategies on coupled hydrologic models (United States)

    Smith, T. J.; Perera, C.; Corrigan, C.


    Hydrologic models represent a significant tool for understanding, predicting, and responding to the impacts of water on society and society on water resources and, as such, are used extensively in water resources planning and management. Given this important role, the validity and fidelity of hydrologic models is imperative. While extensive focus has been paid to improving hydrologic models through better process representation, better parameter estimation, and better uncertainty quantification, significant challenges remain. In this study, we explore a number of competing model calibration scenarios for simple, coupled snowmelt-runoff models to better understand the sensitivity / variability of parameterizations and its impact on model performance, robustness, fidelity, and transferability. Our analysis highlights the sensitivity of coupled snowmelt-runoff model parameterizations to alterations in calibration approach, underscores the concept of information content in hydrologic modeling, and provides insight into potential strategies for improving model robustness / fidelity.

  6. Historical Trends in Mean and Extreme Runoff and Streamflow Based on Observations and Climate Models

    Directory of Open Access Journals (Sweden)

    Behzad Asadieh


    Full Text Available To understand changes in global mean and extreme streamflow volumes over recent decades, we statistically analyzed runoff and streamflow simulated by the WBM-plus hydrological model using either observational-based meteorological inputs from WATCH Forcing Data (WFD, or bias-corrected inputs from five global climate models (GCMs provided by the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP. Results show that the bias-corrected GCM inputs yield very good agreement with the observation-based inputs in average magnitude of runoff and streamflow. On global average, the observation-based simulated mean runoff and streamflow both decreased about 1.3% from 1971 to 2001. However, GCM-based simulations yield increasing trends over that period, with an inter-model global average of 1% for mean runoff and 0.9% for mean streamflow. In the GCM-based simulations, relative changes in extreme runoff and extreme streamflow (annual maximum daily values and annual-maximum seven-day streamflow are slightly greater than those of mean runoff and streamflow, in terms of global and continental averages. Observation-based simulations show increasing trend in mean runoff and streamflow for about one-half of the land areas and decreasing trend for the other half. However, mean and extreme runoff and streamflow based on the GCMs show increasing trend for approximately two-thirds of the global land area and decreasing trend for the other one-third. Further work is needed to understand why GCM simulations appear to indicate trends in streamflow that are more positive than those suggested by climate observations, even where, as in ISI-MIP, bias correction has been applied so that their streamflow climatology is realistic.

  7. Predicting Surface Runoff from Catchment to Large Region

    Directory of Open Access Journals (Sweden)

    Hongxia Li


    Full Text Available Predicting surface runoff from catchment to large region is a fundamental and challenging task in hydrology. This paper presents a comprehensive review for various studies conducted for improving runoff predictions from catchment to large region in the last several decades. This review summarizes the well-established methods and discusses some promising approaches from the following four research fields: (1 modeling catchment, regional and global runoff using lumped conceptual rainfall-runoff models, distributed hydrological models, and land surface models, (2 parameterizing hydrological models in ungauged catchments, (3 improving hydrological model structure, and (4 using new remote sensing precipitation data.

  8. Application of random number generators in genetic algorithms to improve rainfall-runoff modelling

    Czech Academy of Sciences Publication Activity Database

    Chlumecký, M.; Buchtele, Josef; Richta, K.


    Roč. 553, October (2017), s. 350-355 ISSN 0022-1694 Institutional support: RVO:67985874 Keywords : genetic algorithm * optimisation * rainfall-runoff modeling * random generator Subject RIV: DA - Hydrology ; Limnology OBOR OECD: Hydrology Impact factor: 3.483, year: 2016

  9. A semi-urban case study of small scale variability of rainfall and run-off, with C- and X-band radars and the fully distributed hydrological model Multi-Hydro (United States)

    Alves de Souza, Bianca; da Silva Rocha Paz, Igor; Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel


    The complexity of urban hydrology results both from that of urban systems and the extreme rainfall variability. The latter can display strongly localised rain cells that can be extremely damaging when hitting vulnerable parts of urban systems. This paper investigates this complexity on a semi-urban sub-catchment - located in Massy (South of Paris, France) - of the Bievre river, which is known for its frequent flashfloods. Advanced geo-processing techniques were used to find the ideal pixel size for this 6.326km2 basin. C-band and X-band radar data are multifractally downscaled at various resolutions and input to the fully distributed hydrological model Multi-Hydro. The latter has been developed at Ecole des Ponts ParisTech. It integrates validated modules dealing with surface flow, saturated and unsaturated surface flow, and sewer flow. The C-band radar is located in Trappes, approx. 21km East of the catchment, is operated by Méteo-France and has a resolution of 1km x 1km x 5min. The X-band radar operated by Ecole des Ponts Paris Tech on its campus has a resolution of 125m x 125m x 3.4min. The performed multifractal downscaling enables both the generation of large ensemble realizations and easy change of resolution (e.g. down to 10 m in the present study). This in turn allows a detailed analysis of the impacts of small scale variability and the required resolution to obtain accurate simulations, therefore predictions. This will be shown on two rainy episodes over the chosen sub-catchment of the Bievre river.

  10. Future Changes in Surface Runoff over Korea Projected by a Regional Climate Model under A1B Scenario

    Directory of Open Access Journals (Sweden)

    Ji-Woo Lee


    Full Text Available This study assesses future change of surface runoff due to climate change over Korea using a regional climate model (RCM, namely, the Global/Regional Integrated Model System (GRIMs, Regional Model Program (RMP. The RMP is forced by future climate scenario, namely, A1B of Intergovernmental Panel on Climate Change (IPCC Fourth Assessment Report (AR4. The RMP satisfactorily reproduces the observed seasonal mean and variation of surface runoff for the current climate simulation. The distribution of monsoonal precipitation-related runoff is adequately captured by the RMP. In the future (2040–2070 simulation, it is shown that the increasing trend of temperature has significant impacts on the intra-annual runoff variation. The variability of runoff is increased in summer; moreover, the strengthened possibility of extreme occurrence is detected in the future climate. This study indicates that future climate projection, including surface runoff and its variability over Korea, can be adequately addressed on the RMP testbed. Furthermore, this study reflects that global warming affects local hydrological cycle by changing major water budget components. This study adduces that the importance of runoff should not be overlooked in regional climate studies, and more elaborate presentation of fresh-water cycle is needed to close hydrological circulation in RCMs.

  11. Calibration and verification of numerical runoff and erosion model

    Directory of Open Access Journals (Sweden)

    Gabrić Ognjen


    Full Text Available Based on the field and laboratory measurements, and analogous with development of computational techniques, runoff and erosion models based on equations which describe the physics of the process are also developed. Based on the KINEROS2 model, this paper presents basic modelling principles of runoff and erosion processes based on the St. Venant's equations. Alternative equations for friction calculation, calculation of source and deposition elements and transport capacity are also shown. Numerical models based on original and alternative equations are calibrated and verified on laboratory scale model. According to the results, friction calculation based on the analytic solution of laminar flow must be included in all runoff and erosion models.

  12. Integrated climate and hydrology modelling

    DEFF Research Database (Denmark)

    Larsen, Morten Andreas Dahl

    To ensure optimal management and sustainable strategies for water resources, infrastructures, food production and ecosystems there is a need for an improved understanding of feedback and interaction mechanisms between the atmosphere and the land surface. This is especially true in light of expected...... global warming and increased frequency of extreme events. The skill in developing projections of both the present and future climate depends essentially on the ability to numerically simulate the processes of atmospheric circulation, hydrology, energy and ecology. Previous modelling efforts of climate...... and hydrology models to more directly include the interaction between the atmosphere and the land surface. The present PhD study is motivated by an ambition of developing and applying a modelling tool capable of including the interaction and feedback mechanisms between the atmosphere and the land surface...

  13. Calibration of hydrological model with programme PEST (United States)

    Brilly, Mitja; Vidmar, Andrej; Kryžanowski, Andrej; Bezak, Nejc; Šraj, Mojca


    PEST is tool based on minimization of an objective function related to the root mean square error between the model output and the measurement. We use "singular value decomposition", section of the PEST control file, and Tikhonov regularization method for successfully estimation of model parameters. The PEST sometimes failed if inverse problems were ill-posed, but (SVD) ensures that PEST maintains numerical stability. The choice of the initial guess for the initial parameter values is an important issue in the PEST and need expert knowledge. The flexible nature of the PEST software and its ability to be applied to whole catchments at once give results of calibration performed extremely well across high number of sub catchments. Use of parallel computing version of PEST called BeoPEST was successfully useful to speed up calibration process. BeoPEST employs smart slaves and point-to-point communications to transfer data between the master and slaves computers. The HBV-light model is a simple multi-tank-type model for simulating precipitation-runoff. It is conceptual balance model of catchment hydrology which simulates discharge using rainfall, temperature and estimates of potential evaporation. Version of HBV-light-CLI allows the user to run HBV-light from the command line. Input and results files are in XML form. This allows to easily connecting it with other applications such as pre and post-processing utilities and PEST itself. The procedure was applied on hydrological model of Savinja catchment (1852 km2) and consists of twenty one sub-catchments. Data are temporary processed on hourly basis.

  14. Does model performance improve with complexity? A case study with three hydrological models (United States)

    Orth, Rene; Staudinger, Maria; Seneviratne, Sonia I.; Seibert, Jan; Zappa, Massimiliano


    In recent decades considerable progress has been made in climate model development. Following the massive increase in computational power, models became more sophisticated. At the same time also simple conceptual models have advanced. In this study we validate and compare three hydrological models of different complexity to investigate whether their performance varies accordingly. For this purpose we use runoff and also soil moisture measurements, which allow a truly independent validation, from several sites across Switzerland. The models are calibrated in similar ways with the same runoff data. Our results show that the more complex models HBV and PREVAH outperform the simple water balance model (SWBM) in case of runoff but not for soil moisture. Furthermore the most sophisticated PREVAH model shows an added value compared to the HBV model only in case of soil moisture. Focusing on extreme events we find generally improved performance of the SWBM during drought conditions and degraded agreement with observations during wet extremes. For the more complex models we find the opposite behavior, probably because they were primarily developed for prediction of runoff extremes. As expected given their complexity, HBV and PREVAH have more problems with over-fitting. All models show a tendency towards better performance in lower altitudes as opposed to (pre-) alpine sites. The results vary considerably across the investigated sites. In contrast, the different metrics we consider to estimate the agreement between models and observations lead to similar conclusions, indicating that the performance of the considered models is similar at different time scales as well as for anomalies and long-term means. We conclude that added complexity does not necessarily lead to improved performance of hydrological models, and that performance can vary greatly depending on the considered hydrological variable (e.g. runoff vs. soil moisture) or hydrological conditions (floods vs. droughts).

  15. Enhancing a rainfall-runoff model to assess the impacts of BMPs and LID practices on storm runoff. (United States)

    Liu, Yaoze; Ahiablame, Laurent M; Bralts, Vincent F; Engel, Bernard A


    Best management practices (BMPs) and low impact development (LID) practices are increasingly being used as stormwater management techniques to reduce the impacts of urban development on hydrology and water quality. To assist planners and decision-makers at various stages of development projects (planning, implementation, and evaluation), user-friendly tools are needed to assess the effectiveness of BMPs and LID practices. This study describes a simple tool, the Long-Term Hydrologic Impact Assessment-LID (L-THIA-LID), which is enhanced with additional BMPs and LID practices, improved approaches to estimate hydrology and water quality, and representation of practices in series (meaning combined implementation). The tool was used to evaluate the performance of BMPs and LID practices individually and in series with 30 years of daily rainfall data in four types of idealized land use units and watersheds (low density residential, high density residential, industrial, and commercial). Simulation results were compared with the results of other published studies. The simulated results showed that reductions in runoff volume and pollutant loads after implementing BMPs and LID practices, both individually and in series, were comparable with the observed impacts of these practices. The L-THIA-LID 2.0 model is capable of assisting decision makers in evaluating environmental impacts of BMPs and LID practices, thereby improving the effectiveness of stormwater management decisions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Assessing The Performance of Hydrological Models (United States)

    van der Knijff, Johan

    The performance of hydrological models is often characterized using the coefficient of efficiency, E. The sensitivity of E to extreme streamflow values, and the difficulty of deciding what value of E should be used as a threshold to identify 'good' models or model parameterizations, have proven to be serious shortcomings of this index. This paper reviews some alternative performance indices that have appeared in the litera- ture. Legates and McCabe (1999) suggested a more generalized form of E, E'(j,B). Here, j is a parameter that controls how much emphasis is put on extreme streamflow values, and B defines a benchmark or 'null hypothesis' against which the results of the model are tested. E'(j,B) was used to evaluate a large number of parameterizations of a conceptual rainfall-runoff model, using 6 different combinations of j and B. First, the effect of j and B is explained. Second, it is demonstrated how the index can be used to explicitly test hypotheses about the model and the data. This approach appears to be particularly attractive if the index is used as a likelihood measure within a GLUE-type analysis.

  17. Modelling surface run-off and trends analysis over India

    Indian Academy of Sciences (India)

    exponential model was developed between the rainfall and the run-off that predicted the run-off with an R2 of ... precipitation and other climate parameters is well documented ...... Sen P K 1968 Estimates of the regression coefficient based.

  18. Machine Learning and Deep Learning Models to Predict Runoff Water Quantity and Quality (United States)

    Bradford, S. A.; Liang, J.; Li, W.; Murata, T.; Simunek, J.


    Contaminants can be rapidly transported at the soil surface by runoff to surface water bodies. Physically-based models, which are based on the mathematical description of main hydrological processes, are key tools for predicting surface water impairment. Along with physically-based models, data-driven models are becoming increasingly popular for describing the behavior of hydrological and water resources systems since these models can be used to complement or even replace physically based-models. In this presentation we propose a new data-driven model as an alternative to a physically-based overland flow and transport model. First, we have developed a physically-based numerical model to simulate overland flow and contaminant transport (the HYDRUS-1D overland flow module). A large number of numerical simulations were carried out to develop a database containing information about the impact of various input parameters (weather patterns, surface topography, vegetation, soil conditions, contaminants, and best management practices) on runoff water quantity and quality outputs. This database was used to train data-driven models. Three different methods (Neural Networks, Support Vector Machines, and Recurrence Neural Networks) were explored to prepare input- output functional relations. Results demonstrate the ability and limitations of machine learning and deep learning models to predict runoff water quantity and quality.

  19. Catchment Morphing (CM): A Novel Approach for Runoff Modeling in Ungauged Catchments (United States)

    Zhang, Jun; Han, Dawei


    Runoff prediction in ungauged catchments has been one of the major challenges in the past decades. However, due to the tremendous heterogeneity of the catchments, obstacles exist in deducing model parameters for ungauged catchments from gauged ones. We propose a novel approach to predict ungauged runoff with Catchment Morphing (CM) using a fully distributed model. CM is defined as by changing the catchment characteristics (area and slope here) from the baseline model built with a gauged catchment to model the ungauged ones. As a proof of concept, a case study on seven catchments in the UK has been used to demonstrate the proposed scheme. Comparing the predicted with measured runoff, the Nash-Sutcliffe efficiency (NSE) varies from 0.03 to 0.69 in six catchments. Moreover, NSEs are significantly improved (up to 0.81) when considering the discrepancy of percentage runoff between the target and baseline catchments. A distinct advantage has been experienced by comparing the CM with a traditional method for ungauged catchments. The advantages are: (a) less demand of the similarity between the baseline catchment and the ungauged catchment, (b) less demand of available data, and (c) potentially widely applicable in varied catchments. This study demonstrates the feasibility of the proposed scheme as a potentially powerful alternative to the conventional methods in runoff predictions of ungauged catchments. Clearly, more work beyond this pilot study is needed to explore and develop this new approach further to maturity by the hydrological community.

  20. Applying Multimodel Ensemble from Regional Climate Models for Improving Runoff Projections on Semiarid Regions of Spain (United States)

    Garcia Galiano, S. G.; Olmos, P.; Giraldo Osorio, J. D.


    In the Mediterranean area, significant changes on temperature and precipitation are expected throughout the century. These trends could exacerbate the existing conditions in regions already vulnerable to climatic variability, reducing the water availability. Improving knowledge about plausible impacts of climate change on water cycle processes at basin scale, is an important step for building adaptive capacity to the impacts in this region, where severe water shortages are expected for the next decades. RCMs ensemble in combination with distributed hydrological models with few parameters, constitutes a valid and robust methodology to increase the reliability of climate and hydrological projections. For reaching this objective, a novel methodology for building Regional Climate Models (RCMs) ensembles of meteorological variables (rainfall an temperatures), was applied. RCMs ensembles are justified for increasing the reliability of climate and hydrological projections. The evaluation of RCMs goodness-of-fit to build the ensemble is based on empirical probability density functions (PDF) extracted from both RCMs dataset and a highly resolution gridded observational dataset, for the time period 1961-1990. The applied method is considering the seasonal and annual variability of the rainfall and temperatures. The RCMs ensembles constitute the input to a distributed hydrological model at basin scale, for assessing the runoff projections. The selected hydrological model is presenting few parameters in order to reduce the uncertainties involved. The study basin corresponds to a head basin of Segura River Basin, located in the South East of Spain. The impacts on runoff and its trend from observational dataset and climate projections, were assessed. Considering the control period 1961-1990, plausible significant decreases in runoff for the time period 2021-2050, were identified.

  1. Land surface modelling in hydrology and meteorology – lessons learned from the Baltic Basin

    Directory of Open Access Journals (Sweden)

    L. P. Graham


    Full Text Available By both tradition and purpose, the land parameterization schemes of hydrological and meteorological models differ greatly. Meteorologists are concerned primarily with solving the energy balance, whereas hydrologists are most interested in the water balance. Meteorological climate models typically have multi-layered soil parameterisation that solves temperature fluxes numerically with diffusive equations. The same approach is carried over to a similar treatment of water transport. Hydrological models are not usually so interested in soil temperatures, but must provide a reasonable representation of soil moisture to get runoff right. To treat the heterogeneity of the soil, many hydrological models use only one layer with a statistical representation of soil variability. Such a hydrological model can be used on large scales while taking subgrid variability into account. Hydrological models also include lateral transport of water – an imperative if' river discharge is to be estimated. The concept of a complexity chain for coupled modelling systems is introduced, together with considerations for mixing model components. Under BALTEX (Baltic Sea Experiment and SWECLIM (Swedish Regional Climate Modelling Programme, a large-scale hydrological model of runoff in the Baltic Basin is used to review atmospheric climate model simulations. This incorporates both the runoff record and hydrological modelling experience into atmospheric model development. Results from two models are shown. A conclusion is that the key to improved models may be less complexity. Perhaps the meteorological models should keep their multi-layered approach for modelling soil temperature, but add a simpler, yet physically consistent, hydrological approach for modelling snow processes and water transport in the soil. Keywords: land surface modelling; hydrological modelling; atmospheric climate models; subgrid variability; Baltic Basin

  2. Challenges to Rainfall-Runoff and Transit Time Distribution Modeling Within the Southeastern Coastal Plain, USA (United States)

    Decker, P.; Cohen, M. J.; Jawitz, J. W.


    Previous hydrologic studies primarily focus on processes related to montane catchments with significant runoff ratios, low evapotranspiration rates, and reasonably short travel times. There is a significant lack of research for hydrologic processes occurring within the United States Southeastern Coastal Plain landscape where low-relief and high rates of evapotranspiration impact water fluxes. Hydrologic modeling efforts within this region may elucidate possible interactions and timescales of solute travel where much of the landscape is managed for agricultural crops, namely plantation forestry. A long-term paired watershed study carried out in northern Florida monitored two second-order blackwater streams for five years. Rainfall-runoff models for both catchments were created using daily discharge, precipitation, and modeled evapotranspiration as input parameters. Best fit occurred (NSE = 0.8) when the catchments were modeled as two-storage (shallow and deep) reservoirs in parallel and overland flow was allowed to contribute to streamflow in periods were shallow groundwater storage was at capacity. In addition, streamflow and rainfall chloride concentrations were used to model in-variable transit time distributions using spectral methods. In both catchments this transit time was unresolvable because output spectral power exceeded input spectral power, a result assumed to be driven by the evaporative demand of the region. A modeled chloride time series from random input concentration and modeled output through the rainfall-runoff model was used to alter the evaporation ratio. Once evaporation rates equaled known rates found in cool, high-relief catchments, spectral analysis illustrated higher input spectral power and therefore resolvable transit times. Findings from this study illustrate significant effects from evaporation within the catchment - often exceeding the signal from the background catchment process itself. Calculations illustrate a proposed mean transit

  3. airGRteaching: an R-package designed for teaching hydrology with lumped hydrological models (United States)

    Thirel, Guillaume; Delaigue, Olivier; Coron, Laurent; Andréassian, Vazken; Brigode, Pierre


    Lumped hydrological models are useful and convenient tools for research, engineering and educational purposes. They propose catchment-scale representations of the precipitation-discharge relationship. Thanks to their limited data requirements, they can be easily implemented and run. With such models, it is possible to simulate a number of hydrological key processes over the catchment with limited structural and parametric complexity, typically evapotranspiration, runoff, underground losses, etc. The Hydrology Group at Irstea (Antony) has been developing a suite of rainfall-runoff models over the past 30 years. This resulted in a suite of models running at different time steps (from hourly to annual) applicable for various issues including water balance estimation, forecasting, simulation of impacts and scenario testing. Recently, Irstea has developed an easy-to-use R-package (R Core Team, 2016), called airGR (Coron et al., 2016, 2017), to make these models widely available. Although its initial target public was hydrological modellers, the package is already used for educational purposes. Indeed, simple models allow for rapidly visualising the effects of parameterizations and model components on flows hydrographs. In order to avoid the difficulties that students may have when manipulating R and datasets, we developed (Delaigue and Coron, 2016): - Three simplified functions to prepare data, calibrate a model and run a simulation - Simplified and dynamic plot functions - A shiny (Chang et al., 2016) interface that connects this R-package to a browser-based visualisation tool. On this interface, the students can use different hydrological models (including the possibility to use a snow-accounting model), manually modify their parameters and automatically calibrate their parameters with diverse objective functions. One of the visualisation tabs of the interface includes observed precipitation and temperature, simulated snowpack (if any), observed and simulated

  4. Aspects of Hydrological Modelling In The Punjab Himalayan and Karakoram Ranges, Pakistan (United States)

    Loukas, A.; Khan, M. I.; Quick, M. C.

    Various aspects of hydrologic modelling of high mountainous basins in the Punjab Hi- malayan and Karakoram ranges of Northern Pakistan were studied. The runoff from three basins in this region was simulated using the U.B.C. watershed model, which re- quires limited meteorological data of minimum and maximum daily temperature and precipitation. The structure of the model is based on the concept that the hydrolog- ical behavior is a function of elevation and thus, a watershed is conceptualized as a number of elevational zones. A simplified energy budget approach, which is based on daily maximum and minimum temperature and can account for forested and open areas, and aspect and latitude, is used in the U.B.C. model for the estimation of the snowmelt and glacier melt. The studied basins have different hydrological responses and limited data. The runoff from the first basin, the Astore basin, is mainly gener- ated by snowmelt. In the second basin, the Kunhar basin, the runoff is generated by snowmelt but significant redistribution of snow, caused by snow avalanches, affect the runoff generation. The third basin, the Hunza basin, is a highly glacierized basin and its runoff is mainly generated by glacier melt. The application of the U.B.C. watershed model to these three basins showed that the model could estimate reasonably well the runoff generated by the different components.

  5. Upscaling Empirically Based Conceptualisations to Model Tropical Dominant Hydrological Processes for Historical Land Use Change (United States)

    Toohey, R.; Boll, J.; Brooks, E.; Jones, J.


    Surface runoff and percolation to ground water are two hydrological processes of concern to the Atlantic slope of Costa Rica because of their impacts on flooding and drinking water contamination. As per legislation, the Costa Rican Government funds land use management from the farm to the regional scale to improve or conserve hydrological ecosystem services. In this study, we examined how land use (e.g., forest, coffee, sugar cane, and pasture) affects hydrological response at the point, plot (1 m2), and the field scale (1-6ha) to empirically conceptualize the dominant hydrological processes in each land use. Using our field data, we upscaled these conceptual processes into a physically-based distributed hydrological model at the field, watershed (130 km2), and regional (1500 km2) scales. At the point and plot scales, the presence of macropores and large roots promoted greater vertical percolation and subsurface connectivity in the forest and coffee field sites. The lack of macropores and large roots, plus the addition of management artifacts (e.g., surface compaction and a plough layer), altered the dominant hydrological processes by increasing lateral flow and surface runoff in the pasture and sugar cane field sites. Macropores and topography were major influences on runoff generation at the field scale. Also at the field scale, antecedent moisture conditions suggest a threshold behavior as a temporal control on surface runoff generation. However, in this tropical climate with very intense rainstorms, annual surface runoff was less than 10% of annual precipitation at the field scale. Significant differences in soil and hydrological characteristics observed at the point and plot scales appear to have less significance when upscaled to the field scale. At the point and plot scales, percolation acted as the dominant hydrological process in this tropical environment. However, at the field scale for sugar cane and pasture sites, saturation-excess runoff increased as

  6. Integrating Geographical Information Systems (GIS) with Hydrological Modelling – Applicability and Limitations


    Rajesh VijayKumar Kherde; Dr. Priyadarshi. H. Sawant


    The evolution of Geographic information systems (GIS) facilitated the use digital terrain data for topography based hydrological modelling. The use of spatial data for hydrological modelling emerged from the great capability of GIS tools to store and handle the data associated hydro-morphology of the basin. These models utilize the spatially variable terrain data for converting rainfall into surface runoff.Manual map manipulation has always posed difficulty in analysing and designing large sc...

  7. Runoff erosion


    Evelpidou, Niki (Ed.); Cordier, Stephane (Ed.); Merino, Agustin (Ed.); Figueiredo, Tomás de (Ed.); Centeri, Csaba (Ed.)



  8. A novel approach for runoff modelling in ungauged catchments by Catchment Morphing (United States)

    Zhang, J.; Han, D.


    Runoff prediction in ungauged catchments has been one of the major challenges in the past decades. However, due to the tremendous heterogeneity of hydrological catchments, obstacles exist in deducing model parameters for ungauged catchments from gauged ones. We propose a novel approach to predict ungauged runoff with Catchment Morphing (CM) using a fully distributed model. CM is defined as by changing the catchment characteristics (area and slope here) from the baseline model built with a gauged catchment to model the ungauged ones. The advantages of CM are: (a) less demand of the similarity between the baseline catchment and the ungauged catchment, (b) less demand of available data, and (c) potentially applicable in varied catchments. A case study on seven catchments in the UK has been used to demonstrate the proposed scheme. To comprehensively examine the CM approach, distributed rainfall inputs are utilised in the model, and fractal landscapes are used to morph the land surface from the baseline model to the target model. The preliminary results demonstrate the feasibility of the approach, which is promising in runoff simulation for ungauged catchments. Clearly, more work beyond this pilot study is needed to explore and develop this new approach further to maturity by the hydrological community.

  9. A two-stage storage routing model for green roof runoff detention. (United States)

    Vesuviano, Gianni; Sonnenwald, Fred; Stovin, Virginia


    Green roofs have been adopted in urban drainage systems to control the total quantity and volumetric flow rate of runoff. Modern green roof designs are multi-layered, their main components being vegetation, substrate and, in almost all cases, a separate drainage layer. Most current hydrological models of green roofs combine the modelling of the separate layers into a single process; these models have limited predictive capability for roofs not sharing the same design. An adaptable, generic, two-stage model for a system consisting of a granular substrate over a hard plastic 'egg box'-style drainage layer and fibrous protection mat is presented. The substrate and drainage layer/protection mat are modelled separately by previously verified sub-models. Controlled storm events are applied to a green roof system in a rainfall simulator. The time-series modelled runoff is compared to the monitored runoff for each storm event. The modelled runoff profiles are accurate (mean Rt(2) = 0.971), but further characterization of the substrate component is required for the model to be generically applicable to other roof configurations with different substrate.

  10. A Flexible Framework Hydrological Informatic Modeling System - HIMS (United States)

    WANG, L.; Wang, Z.; Changming, L.; Li, J.; Bai, P.


    Simulating water cycling process temporally and spatially fitting for the characteristics of the study area was important for floods prediction and streamflow simulation with high accuracy, as soil properties, land scape, climate, and land managements were the critical factors influencing the non-linear relationship of rainfall-runoff at watershed scales. Most existing hydrological models cannot simulate water cycle process at different places with customized mechanisms with fixed single structure and mode. This study develops Hydro-Informatic Modeling System (HIMS) model with modular of each critical hydrological process with multiple choices for various scenarios to solve this problem. HIMS has the structure accounting for two runoff generation mechanisms of infiltration excess and saturation excess and estimated runoff with different methods including Time Variance Gain Model (TVGM), LCM which has good performance at ungauged areas, besides the widely used Soil Conservation Service-Curve Number (SCS-CN) method. Channel routing model contains the most widely used Muskingum, and kinematic wave equation with new solving method. HIMS model performance with its symbolic runoff generation model LCM was evaluated through comparison with the observed streamflow datasets of Lasha river watershed at hourly, daily, and monthly time steps. Comparisons between simulational and obervational streamflows were found with NSE higher than 0.87 and WE within ±20%. Water balance analysis about precipitation, streamflow, actual evapotranspiration (ET), and soil moisture change was conducted temporally at annual time step and it has been proved that HIMS model performance was reliable through comparison with literature results at the Lhasa River watershed.

  11. Effects of Land Use Changes on the Runoff in the Landscape Based on Hydrological Simulation in HEC-HMS and HEC-RAS Using Different Elevation Data

    Directory of Open Access Journals (Sweden)

    Josef Divín


    Full Text Available The aim of this paper is to determine the effects of land use changes on the runoff in the landscape by means of hydrological modelling. Our partial aim is also to determine the effect of different elevation data and define optimal data sources for this modelling. The research was conducted on the Starozuberský stream experimental watershed. For comparing elevation models, three scenarios were developed with different input data. Based on a comparison of these models an optimal data source for hydrological modelling was selected. To simulate the change in land use, we have created two scenarios based either upon the current land use and historical data from the fifties of the twentieth century. Comparison was carried out using the HEC-HMS software interface for rainfall-runoff simulation and HEC-RAS for the flooding simulation. Data for the simulation were prepared using the ESRI ArcGIS extensions, namely HEC- GeoHMS and HEC-GeoRAS.

  12. Modeling spray drift and runoff-related inputs of pesticides to receiving water. (United States)

    Zhang, Xuyang; Luo, Yuzhou; Goh, Kean S


    Pesticides move to surface water via various pathways including surface runoff, spray drift and subsurface flow. Little is known about the relative contributions of surface runoff and spray drift in agricultural watersheds. This study develops a modeling framework to address the contribution of spray drift to the total loadings of pesticides in receiving water bodies. The modeling framework consists of a GIS module for identifying drift potential, the AgDRIFT model for simulating spray drift, and the Soil and Water Assessment Tool (SWAT) for simulating various hydrological and landscape processes including surface runoff and transport of pesticides. The modeling framework was applied on the Orestimba Creek Watershed, California. Monitoring data collected from daily samples were used for model evaluation. Pesticide mass deposition on the Orestimba Creek ranged from 0.08 to 6.09% of applied mass. Monitoring data suggests that surface runoff was the major pathway for pesticide entering water bodies, accounting for 76% of the annual loading; the rest 24% from spray drift. The results from the modeling framework showed 81 and 19%, respectively, for runoff and spray drift. Spray drift contributed over half of the mass loading during summer months. The slightly lower spray drift contribution as predicted by the modeling framework was mainly due to SWAT's under-prediction of pesticide mass loading during summer and over-prediction of the loading during winter. Although model simulations were associated with various sources of uncertainties, the overall performance of the modeling framework was satisfactory as evaluated by multiple statistics: for simulation of daily flow, the Nash-Sutcliffe Efficiency Coefficient (NSE) ranged from 0.61 to 0.74 and the percent bias (PBIAS) runoff in receiving waters and the design of management practices for mitigating pesticide exposure within a watershed. Published by Elsevier Ltd.

  13. Upscaling from research watersheds: an essential stage of trustworthy general-purpose hydrologic model building (United States)

    McNamara, J. P.; Semenova, O.; Restrepo, P. J.


    Highly instrumented research watersheds provide excellent opportunities for investigating hydrologic processes. A danger, however, is that the processes observed at a particular research watershed are too specific to the watershed and not representative even of the larger scale watershed that contains that particular research watershed. Thus, models developed based on those partial observations may not be suitable for general hydrologic use. Therefore demonstrating the upscaling of hydrologic process from research watersheds to larger watersheds is essential to validate concepts and test model structure. The Hydrograph model has been developed as a general-purpose process-based hydrologic distributed system. In its applications and further development we evaluate the scaling of model concepts and parameters in a wide range of hydrologic landscapes. All models, either lumped or distributed, are based on a discretization concept. It is common practice that watersheds are discretized into so called hydrologic units or hydrologic landscapes possessing assumed homogeneous hydrologic functioning. If a model structure is fixed, the difference in hydrologic functioning (difference in hydrologic landscapes) should be reflected by a specific set of model parameters. Research watersheds provide the possibility for reasonable detailed combining of processes into some typical hydrologic concept such as hydrologic units, hydrologic forms, and runoff formation complexes in the Hydrograph model. And here by upscaling we imply not the upscaling of a single process but upscaling of such unified hydrologic functioning. The simulation of runoff processes for the Dry Creek research watershed, Idaho, USA (27 km2) was undertaken using the Hydrograph model. The information on the watershed was provided by Boise State University and included a GIS database of watershed characteristics and a detailed hydrometeorological observational dataset. The model provided good simulation results in

  14. Coupling Hydrologic and Hydrodynamic Models to Estimate PMF (United States)

    Felder, G.; Weingartner, R.


    Most sophisticated probable maximum flood (PMF) estimations derive the PMF from the probable maximum precipitation (PMP) by applying deterministic hydrologic models calibrated with observed data. This method is based on the assumption that the hydrological system is stationary, meaning that the system behaviour during the calibration period or the calibration event is presumed to be the same as it is during the PMF. However, as soon as a catchment-specific threshold is reached, the system is no longer stationary. At or beyond this threshold, retention areas, new flow paths, and changing runoff processes can strongly affect downstream peak discharge. These effects can be accounted for by coupling hydrologic and hydrodynamic models, a technique that is particularly promising when the expected peak discharge may considerably exceed the observed maximum discharge. In such cases, the coupling of hydrologic and hydraulic models has the potential to significantly increase the physical plausibility of PMF estimations. This procedure ensures both that the estimated extreme peak discharge does not exceed the physical limit based on riverbed capacity and that the dampening effect of inundation processes on peak discharge is considered. Our study discusses the prospect of considering retention effects on PMF estimations by coupling hydrologic and hydrodynamic models. This method is tested by forcing PREVAH, a semi-distributed deterministic hydrological model, with randomly generated, physically plausible extreme precipitation patterns. The resulting hydrographs are then used to externally force the hydraulic model BASEMENT-ETH (riverbed in 1D, potential inundation areas in 2D). Finally, the PMF estimation results obtained using the coupled modelling approach are compared to the results obtained using ordinary hydrologic modelling.

  15. Mathematical modelling of fracture hydrology

    International Nuclear Information System (INIS)

    Herbert, A.W.; Hodgkindon, D.P.; Lever, D.A.; Robinson, P.C.; Rae, J.


    This report reviews work carried out between January 1983 and December 1984 for the CEC/DOE contract 'Mathematical Modelling of Fracture Hydrology' which forms part of the CEC Mirage project (CEC 1984. Come 1985. Bourke et. al. 1983). It describes the development and use of a variety of mathematical models for the flow of water and transport of radionuclides in flowing groundwater. These models have an important role to play in assessing the long-term safety of radioactive waste burial, and in the planning and interpretation of associated experiments. The work is reported under five headings, namely 1) Statistical fracture network modelling, 2) Continuum models of flow and transport, 3) Simplified models, 4) Analysis of laboratory experiments, 5) Analysis of field experiments

  16. An application of artificial intelligence for rainfall–runoff modeling

    Indian Academy of Sciences (India)

    This study proposes an application of two techniques of artificial intelligence (AI) ... (2006) applied rainfall–runoff modeling using ANN ... in artificial intelligence, engineering and science .... usually be estimated from a sample of observations.

  17. Development of rainfall-runoff forecast model | Oyebode | Journal of ...

    African Journals Online (AJOL)

    ... and meterological variables involved in rainfall-runoff process to improve forecast accuracy of rainfallrunoff. ... The simulation was done using MATLAB® 7.0. The simulation results showed that neurofuzzy-based model has higher coefficient ...

  18. Review article: Hydrological modeling in glacierized catchments of central Asia – status and challenges


    Y. Chen; W. Li; G. Fang; Z. Li


    Meltwater from glacierized catchments is one of the most important water supplies in central Asia. Therefore, the effects of climate change on glaciers and snow cover will have increasingly significant consequences for runoff. Hydrological modeling has become an indispensable research approach to water resources management in large glacierized river basins, but there is a lack of focus in the modeling of glacial discharge. This paper reviews the status of hydrological modeli...

  19. Predicting hydrological response to forest changes by simple statistical models: the selection of the best indicator of forest changes with a hydrological perspective (United States)

    Ning, D.; Zhang, M.; Ren, S.; Hou, Y.; Yu, L.; Meng, Z.


    Forest plays an important role in hydrological cycle, and forest changes will inevitably affect runoff across multiple spatial scales. The selection of a suitable indicator for forest changes is essential for predicting forest-related hydrological response. This study used the Meijiang River, one of the headwaters of the Poyang Lake as an example to identify the best indicator of forest changes for predicting forest change-induced hydrological responses. Correlation analysis was conducted first to detect the relationships between monthly runoff and its predictive variables including antecedent monthly precipitation and indicators for forest changes (forest coverage, vegetation indices including EVI, NDVI, and NDWI), and by use of the identified predictive variables that were most correlated with monthly runoff, multiple linear regression models were then developed. The model with best performance identified in this study included two independent variables -antecedent monthly precipitation and NDWI. It indicates that NDWI is the best indicator of forest change in hydrological prediction while forest coverage, the most commonly used indicator of forest change is insignificantly related to monthly runoff. This highlights the use of vegetation index such as NDWI to indicate forest changes in hydrological studies. This study will provide us with an efficient way to quantify the hydrological impact of large-scale forest changes in the Meijiang River watershed, which is crucial for downstream water resource management and ecological protection in the Poyang Lake basin.

  20. Assessing basin heterogeneities for rainfall–runoff modelling of the Okavango River and its transboundary management

    Directory of Open Access Journals (Sweden)

    V. Baumberg


    Full Text Available The neighbouring river systems Cubango and Cuito drain the southeastern part of the Angolan Highlands and form the Okavango River after their confluence, thus providing 95% of the Okavango River discharge. Although they are characterised by similar environmental conditions, runoff records indicate remarkable differences regarding the hydrological dynamics. The Cubango River is known for rapid discharges with high peaks and low baseflow whereas the Cuito runoff appears more balanced. These differences are mainly caused by heterogeneous geological conditions or terrain features. The Cubango headwaters are dominated by crystalline bedrock and steeper, v-shaped valleys while the Cuito system is characterised by wide, swampy valleys and thick sand layers, thus attenuating runoff. This study presents model exercises which have been performed to assess and quantify these effects by applying the distributive model J2000g for each sub-basin. The models provide reasonable results representing the spatio-temporal runoff pattern, although some peaks are over- or underestimated, particularly in the Cuito catchment. This is explained by the scarce information on extent and structure of storages, such as aquifers or swamps, in the Cuito system. However, the model results aid understanding of the differences of both tributaries in runoff generation and underpin the importance of floodplains regarding the control of runoff peaks and low flows in the Cuito system. Model exercises reveal that basin heterogeneity needs to be taken into account and must be parameterised appropriately for reliable modelling and assessment of the entire Okavango River basin for managing the water resources of the transboundary Okavango River in a harmonious way.

  1. Assessing the benefit of snow data assimilation for runoff modeling in Alpine catchments (United States)

    Griessinger, Nena; Seibert, Jan; Magnusson, Jan; Jonas, Tobias


    In Alpine catchments, snowmelt is often a major contribution to runoff. Therefore, modeling snow processes is important when concerned with flood or drought forecasting, reservoir operation and inland waterway management. In this study, we address the question of how sensitive hydrological models are to the representation of snow cover dynamics and whether the performance of a hydrological model can be enhanced by integrating data from a dedicated external snow monitoring system. As a framework for our tests we have used the hydrological model HBV (Hydrologiska Byråns Vattenbalansavdelning) in the version HBV-light, which has been applied in many hydrological studies and is also in use for operational purposes. While HBV originally follows a temperature-index approach with time-invariant calibrated degree-day factors to represent snowmelt, in this study the HBV model was modified to use snowmelt time series from an external and spatially distributed snow model as model input. The external snow model integrates three-dimensional sequential assimilation of snow monitoring data with a snowmelt model, which is also based on the temperature-index approach but uses a time-variant degree-day factor. The following three variations of this external snow model were applied: (a) the full model with assimilation of observational snow data from a dense monitoring network, (b) the same snow model but with data assimilation switched off and (c) a downgraded version of the same snow model representing snowmelt with a time-invariant degree-day factor. Model runs were conducted for 20 catchments at different elevations within Switzerland for 15 years. Our results show that at low and mid-elevations the performance of the runoff simulations did not vary considerably with the snow model version chosen. At higher elevations, however, best performance in terms of simulated runoff was obtained when using the snowmelt time series from the snow model, which utilized data assimilation

  2. Event-based rainfall-runoff modelling of the Kelantan River Basin (United States)

    Basarudin, Z.; Adnan, N. A.; Latif, A. R. A.; Tahir, W.; Syafiqah, N.


    Flood is one of the most common natural disasters in Malaysia. According to hydrologists there are many causes that contribute to flood events. The two most dominant factors are the meteorology factor (i.e climate change) and change in land use. These two factors contributed to floods in recent decade especially in the monsoonal catchment such as Malaysia. This paper intends to quantify the influence of rainfall during extreme rainfall events on the hydrological model in the Kelantan River catchment. Therefore, two dynamic inputs were used in the study: rainfall and river discharge. The extreme flood events in 2008 and 2004 were compared based on rainfall data for both years. The events were modeled via a semi-distributed HEC-HMS hydrological model. Land use change was not incorporated in the study because the study only tries to quantify rainfall changes during these two events to simulate the discharge and runoff value. Therefore, the land use data representing the year 2004 were used as inputs in the 2008 runoff model. The study managed to demonstrate that rainfall change has a significant impact to determine the peak discharge and runoff depth for the study area.

  3. Event-based rainfall-runoff modelling of the Kelantan River Basin

    International Nuclear Information System (INIS)

    Basarudin, Z; Adnan, N A; Latif, A R A; Syafiqah, N; Tahir, W


    Flood is one of the most common natural disasters in Malaysia. According to hydrologists there are many causes that contribute to flood events. The two most dominant factors are the meteorology factor (i.e climate change) and change in land use. These two factors contributed to floods in recent decade especially in the monsoonal catchment such as Malaysia. This paper intends to quantify the influence of rainfall during extreme rainfall events on the hydrological model in the Kelantan River catchment. Therefore, two dynamic inputs were used in the study: rainfall and river discharge. The extreme flood events in 2008 and 2004 were compared based on rainfall data for both years. The events were modeled via a semi-distributed HEC-HMS hydrological model. Land use change was not incorporated in the study because the study only tries to quantify rainfall changes during these two events to simulate the discharge and runoff value. Therefore, the land use data representing the year 2004 were used as inputs in the 2008 runoff model. The study managed to demonstrate that rainfall change has a significant impact to determine the peak discharge and runoff depth for the study area

  4. Hydrologic and Water Quality Model Development Using Simulink

    Directory of Open Access Journals (Sweden)

    James D. Bowen


    Full Text Available A stormwater runoff model based on the Soil Conservation Service (SCS method and a finite-volume based water quality model have been developed to investigate the use of Simulink for use in teaching and research. Simulink, a MATLAB extension, is a graphically based model development environment for system modeling and simulation. Widely used for mechanical and electrical systems, Simulink has had less use for modeling of hydrologic systems. The watershed model is being considered for use in teaching graduate-level courses in hydrology and/or stormwater modeling. Simulink’s block (data process and arrow (data transfer object model, the copy and paste user interface, the large number of existing blocks, and the absence of computer code allows students to become model developers almost immediately. The visual depiction of systems, their component subsystems, and the flow of data through the systems are ideal attributes for hands-on teaching of hydrologic and mass balance processes to today’s computer-savvy visual learners. Model development with Simulink for research purposes is also investigated. A finite volume, multi-layer pond model using the water quality kinetics present in CE-QUAL-W2 has been developed using Simulink. The model is one of the first uses of Simulink for modeling eutrophication dynamics in stratified natural systems. The model structure and a test case are presented. One use of the model for teaching a graduate-level water quality modeling class is also described.

  5. Errors and parameter estimation in precipitation-runoff modeling: 1. Theory (United States)

    Troutman, Brent M.


    Errors in complex conceptual precipitation-runoff models may be analyzed by placing them into a statistical framework. This amounts to treating the errors as random variables and defining the probabilistic structure of the errors. By using such a framework, a large array of techniques, many of which have been presented in the statistical literature, becomes available to the modeler for quantifying and analyzing the various sources of error. A number of these techniques are reviewed in this paper, with special attention to the peculiarities of hydrologic models. Known methodologies for parameter estimation (calibration) are particularly applicable for obtaining physically meaningful estimates and for explaining how bias in runoff prediction caused by model error and input error may contribute to bias in parameter estimation.

  6. Modeling Subsurface Hydrology in Floodplains (United States)

    Evans, Cristina M.; Dritschel, David G.; Singer, Michael B.


    Soil-moisture patterns in floodplains are highly dynamic, owing to the complex relationships between soil properties, climatic conditions at the surface, and the position of the water table. Given this complexity, along with climate change scenarios in many regions, there is a need for a model to investigate the implications of different conditions on water availability to riparian vegetation. We present a model, HaughFlow, which is able to predict coupled water movement in the vadose and phreatic zones of hydraulically connected floodplains. Model output was calibrated and evaluated at six sites in Australia to identify key patterns in subsurface hydrology. This study identifies the importance of the capillary fringe in vadose zone hydrology due to its water storage capacity and creation of conductive pathways. Following peaks in water table elevation, water can be stored in the capillary fringe for up to months (depending on the soil properties). This water can provide a critical resource for vegetation that is unable to access the water table. When water table peaks coincide with heavy rainfall events, the capillary fringe can support saturation of the entire soil profile. HaughFlow is used to investigate the water availability to riparian vegetation, producing daily output of water content in the soil over decadal time periods within different depth ranges. These outputs can be summarized to support scientific investigations of plant-water relations, as well as in management applications.

  7. Modeling the Hydrological Regime of Turkana Lake (Kenya, Ethiopia) by Combining Spatially Distributed Hydrological Modeling and Remote Sensing Datasets (United States)

    Anghileri, D.; Kaelin, A.; Peleg, N.; Fatichi, S.; Molnar, P.; Roques, C.; Longuevergne, L.; Burlando, P.


    Hydrological modeling in poorly gauged basins can benefit from the use of remote sensing datasets although there are challenges associated with the mismatch in spatial and temporal scales between catchment scale hydrological models and remote sensing products. We model the hydrological processes and long-term water budget of the Lake Turkana catchment, a transboundary basin between Kenya and Ethiopia, by integrating several remote sensing products into a spatially distributed and physically explicit model, Topkapi-ETH. Lake Turkana is the world largest desert lake draining a catchment of 145'500 km2. It has three main contributing rivers: the Omo river, which contributes most of the annual lake inflow, the Turkwel river, and the Kerio rivers, which contribute the remaining part. The lake levels have shown great variations in the last decades due to long-term climate fluctuations and the regulation of three reservoirs, Gibe I, II, and III, which significantly alter the hydrological seasonality. Another large reservoir is planned and may be built in the next decade, generating concerns about the fate of Lake Turkana in the long run because of this additional anthropogenic pressure and increasing evaporation driven by climate change. We consider different remote sensing datasets, i.e., TRMM-V7 for precipitation, MERRA-2 for temperature, as inputs to the spatially distributed hydrological model. We validate the simulation results with other remote sensing datasets, i.e., GRACE for total water storage anomalies, GLDAS-NOAH for soil moisture, ERA-Interim/Land for surface runoff, and TOPEX/Poseidon for satellite altimetry data. Results highlight how different remote sensing products can be integrated into a hydrological modeling framework accounting for their relative uncertainties. We also carried out simulations with the artificial reservoirs planned in the north part of the catchment and without any reservoirs, to assess their impacts on the catchment hydrological

  8. Quantifying watershed surface depression storage: determination and application in a hydrologic model (United States)

    Joseph K. O. Amoah; Devendra M. Amatya; Soronnadi. Nnaji


    Hydrologic models often require correct estimates of surface macro-depressional storage to accurately simulate rainfall–runoff processes. Traditionally, depression storage is determined through model calibration or lumped with soil storage components or on an ad hoc basis. This paper investigates a holistic approach for estimating surface depressional storage capacity...

  9. Simulation of daily streamflows at gaged and ungaged locations within the Cedar River Basin, Iowa, using a Precipitation-Runoff Modeling System model (United States)

    Christiansen, Daniel E.


    The U.S. Geological Survey, in cooperation with the Iowa Department of Natural Resources, conducted a study to examine techniques for estimation of daily streamflows using hydrological models and statistical methods. This report focuses on the use of a hydrologic model, the U.S. Geological Survey's Precipitation-Runoff Modeling System, to estimate daily streamflows at gaged and ungaged locations. The Precipitation-Runoff Modeling System is a modular, physically based, distributed-parameter modeling system developed to evaluate the impacts of various combinations of precipitation, climate, and land use on surface-water runoff and general basin hydrology. The Cedar River Basin was selected to construct a Precipitation-Runoff Modeling System model that simulates the period from January 1, 2000, to December 31, 2010. The calibration period was from January 1, 2000, to December 31, 2004, and the validation periods were from January 1, 2005, to December 31, 2010 and January 1, 2000 to December 31, 2010. A Geographic Information System tool was used to delineate the Cedar River Basin and subbasins for the Precipitation-Runoff Modeling System model and to derive parameters based on the physical geographical features. Calibration of the Precipitation-Runoff Modeling System model was completed using a U.S. Geological Survey calibration software tool. The main objective of the calibration was to match the daily streamflow simulated by the Precipitation-Runoff Modeling System model with streamflow measured at U.S. Geological Survey streamflow gages. The Cedar River Basin daily streamflow model performed with a Nash-Sutcliffe efficiency ranged from 0.82 to 0.33 during the calibration period, and a Nash-Sutcliffe efficiency ranged from 0.77 to -0.04 during the validation period. The Cedar River Basin model is meeting the criteria of greater than 0.50 Nash-Sutcliffe and is a good fit for streamflow conditions for the calibration period at all but one location, Austin, Minnesota

  10. Creating Data and Modeling Enabled Hydrology Instruction Using Collaborative Approach (United States)

    Merwade, V.; Rajib, A.; Ruddell, B. L.; Fox, S.


    Hydrology instruction typically involves teaching of the hydrologic cycle and the processes associated with it such as precipitation, evapotranspiration, infiltration, runoff generation and hydrograph analysis. With the availability of observed and remotely sensed data related to many hydrologic fluxes, there is an opportunity to use these data for place based learning in hydrology classrooms. However, it is not always easy and possible for an instructor to complement an existing hydrology course with new material that requires both the time and technical expertise, which the instructor may not have. The work presented here describes an effort where students create the data and modeling driven instruction material as a part of their class assignment for a hydrology course at Purdue University. The data driven hydrology education project within Science Education Resources Center (SERC) is used as a platform to publish and share the instruction material so it can be used by future students in the same course or any other course anywhere in the world. Students in the class were divided into groups, and each group was assigned a topic such as precipitation, evapotranspiration, streamflow, flow duration curve and frequency analysis. Each student in the group was then asked to get data and do some analysis for an area with specific landuse characteristic such as urban, rural and agricultural. The student contribution were then organized into learning units such that someone can do a flow duration curve analysis or flood frequency analysis to see how it changes for rural area versus urban area. The hydrology education project within SERC cyberinfrastructure enables any other instructor to adopt this material as is or through modification to suit his/her place based instruction needs.

  11. Continuous hydrological modelling in the context of real time flood forecasting in alpine Danube tributary catchments

    International Nuclear Information System (INIS)

    Stanzel, Ph; Kahl, B; Haberl, U; Herrnegger, M; Nachtnebel, H P


    A hydrological modelling framework applied within operational flood forecasting systems in three alpine Danube tributary basins, Traisen, Salzach and Enns, is presented. A continuous, semi-distributed rainfall-runoff model, accounting for the main hydrological processes of snow accumulation and melt, interception, evapotranspiration, infiltration, runoff generation and routing is set up. Spatial discretization relies on the division of watersheds into subbasins and subsequently into hydrologic response units based on spatial information on soil types, land cover and elevation bands. The hydrological models are calibrated with meteorological ground measurements and with meteorological analyses incorporating radar information. Operationally, each forecasting sequence starts with the re-calculation of the last 24 to 48 hours. Errors between simulated and observed runoff are minimized by optimizing a correction factor for the input to provide improved system states. For the hydrological forecast quantitative 48 or 72 hour forecast grids of temperature and precipitation - deterministic and probabilistic - are used as input. The forecasted hydrograph is corrected with an autoregressive model. The forecasting sequences are repeated each 15 minutes. First evaluations of resulting hydrological forecasts are presented and reliability of forecasts with different lead times is discussed.

  12. Modeling urbanized watershed flood response changes with distributed hydrological model: key hydrological processes, parameterization and case studies (United States)

    Chen, Y.


    Urbanization is the world development trend for the past century, and the developing countries have been experiencing much rapider urbanization in the past decades. Urbanization brings many benefits to human beings, but also causes negative impacts, such as increasing flood risk. Impact of urbanization on flood response has long been observed, but quantitatively studying this effect still faces great challenges. For example, setting up an appropriate hydrological model representing the changed flood responses and determining accurate model parameters are very difficult in the urbanized or urbanizing watershed. In the Pearl River Delta area, rapidest urbanization has been observed in China for the past decades, and dozens of highly urbanized watersheds have been appeared. In this study, a physically based distributed watershed hydrological model, the Liuxihe model is employed and revised to simulate the hydrological processes of the highly urbanized watershed flood in the Pearl River Delta area. A virtual soil type is then defined in the terrain properties dataset, and its runoff production and routing algorithms are added to the Liuxihe model. Based on a parameter sensitive analysis, the key hydrological processes of a highly urbanized watershed is proposed, that provides insight into the hydrological processes and for parameter optimization. Based on the above analysis, the model is set up in the Songmushan watershed where there is hydrological data observation. A model parameter optimization and updating strategy is proposed based on the remotely sensed LUC types, which optimizes model parameters with PSO algorithm and updates them based on the changed LUC types. The model parameters in Songmushan watershed are regionalized at the Pearl River Delta area watersheds based on the LUC types of the other watersheds. A dozen watersheds in the highly urbanized area of Dongguan City in the Pearl River Delta area were studied for the flood response changes due to

  13. Computational Intelligence in Rainfall-Runoff Modeling

    NARCIS (Netherlands)

    De Vos, N.J.


    The transformation from precipitation over a river basin to river streamflow is the result of many interacting processes which manifest themselves at various scales of time and space. The resulting complexity of hydrological systems, and the difficulty to properly and quantitatively express the

  14. Integration of Local Hydrology into Regional Hydrologic Simulation Model (United States)

    Van Zee, R. J.; Lal, W. A.


    South Florida hydrology is dominated by the Central and South Florida (C&SF) Project that is managed to provide flood protection, water supply and environmental protection. A complex network of levees canals and structures provide these services to the individual drainage basins. The landscape varies widely across the C&SF system, with corresponding differences in the way water is managed within each basin. Agricultural areas are managed for optimal crop production. Urban areas maximize flood protection while maintaining minimum water levels to protect adjacent wetlands and local water supplies. "Natural" areas flood and dry out in response to the temporal distribution of rainfall. The evaluation of planning, regulation and operational issues require access to a simulation model that captures the effects of both regional and local hydrology. The Regional Simulation Model (RSM) uses a "pseudo-cell" approach to integrate local hydrology within the context of a regional hydrologic system. A 2-dimensional triangulated mesh is used to represent the regional surface and ground water systems and a 1-dimensional canal network is superimposed onto this mesh. The movement of water is simulated using a finite volume formulation with a diffusive wave approximation. Each cell in the triangulated mesh has a "pseudo-cell" counterpart, which represents the same area as the cell, but it is conceptualized such that it simulates the localized hydrologic conditions Protocols have been established to provide an interface between a cell and its pseudo-cell counterpart. . A number of pseudo-cell types have already been developed and tested in the simulation of Water Conservation Area 1 and several have been proposed to deal with specific local issues in the Southwest Florida Feasibility Study. This presentation will provide an overview of the overall RSM design, describe the relationship between cells and pseudo-cells, and illustrate how pseudo-cells are be used to simulate agriculture

  15. Coupling meteorological and hydrological models for flood forecasting

    Directory of Open Access Journals (Sweden)



    Full Text Available This paper deals with the problem of analysing the coupling of meteorological meso-scale quantitative precipitation forecasts with distributed rainfall-runoff models to extend the forecasting horizon. Traditionally, semi-distributed rainfall-runoff models have been used for real time flood forecasting. More recently, increased computer capabilities allow the utilisation of distributed hydrological models with mesh sizes from tenths of metres to a few kilometres. On the other hand, meteorological models, providing the quantitative precipitation forecast, tend to produce average values on meshes ranging from slightly less than 10 to 200 kilometres. Therefore, to improve the quality of flood forecasts, the effects of coupling the meteorological and the hydrological models at different scales were analysed. A distributed hydrological model (TOPKAPI was developed and calibrated using a 1x1 km mesh for the case of the river Po closed at Ponte Spessa (catchment area c. 37000 km2. The model was then coupled with several other European meteorological models ranging from the Limited Area Models (provided by DMI and DWD with resolutions from 0.0625° * 0.0625°, to the ECMWF ensemble predictions with a resolution of 1.85° * 1.85°. Interesting results, describing the coupled model behaviour, are available for a meteorological extreme event in Northern Italy (Nov. 1994. The results demonstrate the poor reliability of the quantitative precipitation forecasts produced by meteorological models presently available; this is not resolved using the Ensemble Forecasting technique, when compared with results obtainable with measured rainfall.

  16. Modeling of reservoir operation in UNH global hydrological model (United States)

    Shiklomanov, Alexander; Prusevich, Alexander; Frolking, Steve; Glidden, Stanley; Lammers, Richard; Wisser, Dominik


    Climate is changing and river flow is an integrated characteristic reflecting numerous environmental processes and their changes aggregated over large areas. Anthropogenic impacts on the river flow, however, can significantly exceed the changes associated with climate variability. Besides of irrigation, reservoirs and dams are one of major anthropogenic factor affecting streamflow. They distort hydrological regime of many rivers by trapping of freshwater runoff, modifying timing of river discharge and increasing the evaporation rate. Thus, reservoirs is an integral part of the global hydrological system and their impacts on rivers have to be taken into account for better quantification and understanding of hydrological changes. We developed a new technique, which was incorporated into WBM-TrANS model (Water Balance Model-Transport from Anthropogenic and Natural Systems) to simulate river routing through large reservoirs and natural lakes based on information available from freely accessible databases such as GRanD (the Global Reservoir and Dam database) or NID (National Inventory of Dams for US). Different formulations were applied for unregulated spillway dams and lakes, and for 4 types of regulated reservoirs, which were subdivided based on main purpose including generic (multipurpose), hydropower generation, irrigation and water supply, and flood control. We also incorporated rules for reservoir fill up and draining at the times of construction and decommission based on available data. The model were tested for many reservoirs of different size and types located in various climatic conditions using several gridded meteorological data sets as model input and observed daily and monthly discharge data from GRDC (Global Runoff Data Center), USGS Water Data (US Geological Survey), and UNH archives. The best results with Nash-Sutcliffe model efficiency coefficient in the range of 0.5-0.9 were obtained for temperate zone of Northern Hemisphere where most of large

  17. Linking coral river runoff proxies with climate variability, hydrology and land-use in Madagascar catchments. (United States)

    Maina, Joseph; de Moel, Hans; Vermaat, Jan E; Bruggemann, J Henrich; Guillaume, Mireille M M; Grove, Craig A; Madin, Joshua S; Mertz-Kraus, Regina; Zinke, Jens


    Understanding the linkages between coastal watersheds and adjacent coral reefs is expected to lead to better coral reef conservation strategies. Our study aims to examine the main predictors of environmental proxies recorded in near shore corals and therefore how linked near shore reefs are to the catchment physical processes. To achieve these, we developed models to simulate hydrology of two watersheds in Madagascar. We examined relationships between environmental proxies derived from massive Porites spp. coral cores (spectral luminescence and barium/calcium ratios), and corresponding time-series (1950-2006) data of hydrology, climate, land use and human population growth. Results suggest regional differences in the main environmental drivers of reef sedimentation: on annual time-scales, precipitation, river flow and sediment load explained the variability in coral proxies of river discharge for the northeast region, while El Niño-Southern Oscillation (ENSO) and temperature (air and sea surface) were the best predictors in the southwest region. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Evaluating the effects of model structure and meteorological input data on runoff modelling in an alpine headwater basin (United States)

    Schattan, Paul; Bellinger, Johannes; Förster, Kristian; Schöber, Johannes; Huttenlau, Matthias; Kirnbauer, Robert; Achleitner, Stefan


    Modelling water resources in snow-dominated mountainous catchments is challenging due to both, short concentration times and a highly variable contribution of snow melt in space and time from complex terrain. A number of model setups exist ranging from physically based models to conceptional models which do not attempt to represent the natural processes in a physically meaningful way. Within the flood forecasting system for the Tyrolean Inn River two serially linked hydrological models with differing process representation are used. Non- glacierized catchments are modelled by a semi-distributed, water balance model (HQsim) based on the HRU-approach. A fully-distributed energy and mass balance model (SES), purpose-built for snow- and icemelt, is used for highly glacierized headwater catchments. Previous work revealed uncertainties and limitations within the models' structures regarding (i) the representation of snow processes in HQsim, (ii) the runoff routing of SES, and (iii) the spatial resolution of the meteorological input data in both models. To overcome these limitations, a "strengths driven" model coupling is applied. Instead of linking the models serially, a vertical one-way coupling of models has been implemented. The fully-distributed snow modelling of SES is combined with the semi-distributed HQsim structure, allowing to benefit from soil and runoff routing schemes in HQsim. A monte-carlo based modelling experiment was set up to evaluate the resulting differences in the runoff prediction due to the improved model coupling and a refined spatial resolution of the meteorological forcing. The experiment design follows a gradient of spatial discretisation of hydrological processes and meteorological forcing data with a total of six different model setups for the alpine headwater basin of the Fagge River in the Tyrolean Alps. In general, all setups show a good performance for this particular basin. It is therefore planned to include other basins with differing

  19. Implications of the methodological choices for hydrologic portrayals of climate change over the contiguous United States: Statistically downscaled forcing data and hydrologic models (United States)

    Mizukami, Naoki; Clark, Martyn P.; Gutmann, Ethan D.; Mendoza, Pablo A.; Newman, Andrew J.; Nijssen, Bart; Livneh, Ben; Hay, Lauren E.; Arnold, Jeffrey R.; Brekke, Levi D.


    Continental-domain assessments of climate change impacts on water resources typically rely on statistically downscaled climate model outputs to force hydrologic models at a finer spatial resolution. This study examines the effects of four statistical downscaling methods [bias-corrected constructed analog (BCCA), bias-corrected spatial disaggregation applied at daily (BCSDd) and monthly scales (BCSDm), and asynchronous regression (AR)] on retrospective hydrologic simulations using three hydrologic models with their default parameters (the Community Land Model, version 4.0; the Variable Infiltration Capacity model, version 4.1.2; and the Precipitation–Runoff Modeling System, version 3.0.4) over the contiguous United States (CONUS). Biases of hydrologic simulations forced by statistically downscaled climate data relative to the simulation with observation-based gridded data are presented. Each statistical downscaling method produces different meteorological portrayals including precipitation amount, wet-day frequency, and the energy input (i.e., shortwave radiation), and their interplay affects estimations of precipitation partitioning between evapotranspiration and runoff, extreme runoff, and hydrologic states (i.e., snow and soil moisture). The analyses show that BCCA underestimates annual precipitation by as much as −250 mm, leading to unreasonable hydrologic portrayals over the CONUS for all models. Although the other three statistical downscaling methods produce a comparable precipitation bias ranging from −10 to 8 mm across the CONUS, BCSDd severely overestimates the wet-day fraction by up to 0.25, leading to different precipitation partitioning compared to the simulations with other downscaled data. Overall, the choice of downscaling method contributes to less spread in runoff estimates (by a factor of 1.5–3) than the choice of hydrologic model with use of the default parameters if BCCA is excluded.

  20. Application of random number generators in genetic algorithms to improve rainfall-runoff modelling (United States)

    Chlumecký, Martin; Buchtele, Josef; Richta, Karel


    The efficient calibration of rainfall-runoff models is a difficult issue, even for experienced hydrologists. Therefore, fast and high-quality model calibration is a valuable improvement. This paper describes a novel methodology and software for the optimisation of a rainfall-runoff modelling using a genetic algorithm (GA) with a newly prepared concept of a random number generator (HRNG), which is the core of the optimisation. The GA estimates model parameters using evolutionary principles, which requires a quality number generator. The new HRNG generates random numbers based on hydrological information and it provides better numbers compared to pure software generators. The GA enhances the model calibration very well and the goal is to optimise the calibration of the model with a minimum of user interaction. This article focuses on improving the internal structure of the GA, which is shielded from the user. The results that we obtained indicate that the HRNG provides a stable trend in the output quality of the model, despite various configurations of the GA. In contrast to previous research, the HRNG speeds up the calibration of the model and offers an improvement of rainfall-runoff modelling.

  1. SWAT Modeling for Depression-Dominated Areas: How Do Depressions Manipulate Hydrologic Modeling?

    Directory of Open Access Journals (Sweden)

    Mohsen Tahmasebi Nasab


    Full Text Available Modeling hydrologic processes for depression-dominated areas such as the North American Prairie Pothole Region is complex and reliant on a clear understanding of dynamic filling-spilling-merging-splitting processes of numerous depressions over the surface. Puddles are spatially distributed over a watershed and their sizes, storages, and interactions vary over time. However, most hydrologic models fail to account for these dynamic processes. Like other traditional methods, depressions are filled as a required preprocessing step in the Soil and Water Assessment Tool (SWAT. The objective of this study was to facilitate hydrologic modeling for depression-dominated areas by coupling SWAT with a Puddle Delineation (PD algorithm. In the coupled PD-SWAT model, the PD algorithm was utilized to quantify topographic details, including the characteristics, distribution, and hierarchical relationships of depressions, which were incorporated into SWAT at the hydrologic response unit (HRU scale. The new PD-SWAT model was tested for a large watershed in North Dakota under real precipitation events. In addition, hydrologic modeling of a small watershed was conducted under two extreme high and low synthetic precipitation conditions. In particular, the PD-SWAT was compared against the regular SWAT based on depressionless DEMs. The impact of depressions on the hydrologic modeling of the large and small watersheds was evaluated. The simulation results for the large watershed indicated that SWAT systematically overestimated the outlet discharge, which can be attributed to the failure to account for the hydrologic effects of depressions. It was found from the PD-SWAT modeling results that at the HRU scale surface runoff initiation was significantly delayed due to the threshold control of depressions. Under the high precipitation scenario, depressions increased the surface runoff peak. However, the low precipitation scenario could not fully fill depressions to reach

  2. Semantic 3d City Model to Raster Generalisation for Water Run-Off Modelling (United States)

    Verbree, E.; de Vries, M.; Gorte, B.; Oude Elberink, S.; Karimlou, G.


    Water run-off modelling applied within urban areas requires an appropriate detailed surface model represented by a raster height grid. Accurate simulations at this scale level have to take into account small but important water barriers and flow channels given by the large-scale map definitions of buildings, street infrastructure, and other terrain objects. Thus, these 3D features have to be rasterised such that each cell represents the height of the object class as good as possible given the cell size limitations. Small grid cells will result in realistic run-off modelling but with unacceptable computation times; larger grid cells with averaged height values will result in less realistic run-off modelling but fast computation times. This paper introduces a height grid generalisation approach in which the surface characteristics that most influence the water run-off flow are preserved. The first step is to create a detailed surface model (1:1.000), combining high-density laser data with a detailed topographic base map. The topographic map objects are triangulated to a set of TIN-objects by taking into account the semantics of the different map object classes. These TIN objects are then rasterised to two grids with a 0.5m cell-spacing: one grid for the object class labels and the other for the TIN-interpolated height values. The next step is to generalise both raster grids to a lower resolution using a procedure that considers the class label of each cell and that of its neighbours. The results of this approach are tested and validated by water run-off model runs for different cellspaced height grids at a pilot area in Amersfoort (the Netherlands). Two national datasets were used in this study: the large scale Topographic Base map (BGT, map scale 1:1.000), and the National height model of the Netherlands AHN2 (10 points per square meter on average). Comparison between the original AHN2 height grid and the semantically enriched and then generalised height grids shows

  3. Hydrological Modeling of Watersheds Using the Only Corresponding Competitor Method: The Case of M'Zab Basin, South East Algeria


    Oulad Naoui Noureddine; Cherif ELAmine; Djehiche Abdelkader


    Water resources management includes several disciplines; the modeling of rainfall-runoff relationship is the most important discipline to prevent natural risks. There are several models to study rainfall-runoff relationship in watersheds. However, the majority of these models are not applicable in all basins of the world. In this study, a new stochastic method called The Only Corresponding Competitor method (OCC) was used for the hydrological modeling of M’ZAB Watershed (South East of Alge...

  4. Hydrologic modelling of the effect of snowmelt and temperature on a ...

    Indian Academy of Sciences (India)

    In this study, a distributed hydrologic model is used to explore the orographic effects on the snowmelt-runoff using the snowfall-snowmelt routine in Soil and Water Assessment Tool (SWAT). Three parameters, namely maximum snowmelt factor, minimum snowmelt factor, and snowpack temperature lag were analysed during ...

  5. Improved hydrological modeling for remote regions using a combination of observed and simulated precipitation data

    DEFF Research Database (Denmark)

    van der Linden, Sandra; Christensen, Jens Hesselbjerg


    -resolution regional climate model (HIRHAM4) with a mean-field bias correction using observed precipitation. A hydrological model (USAFLOW) was applied to simulate runoff using observed precipitation and a combination of observed and simulated precipitation as input. The method was illustrated for the remote Usa basin......, situated in the European part of Arctic Russia, close to the Ural Mountains. It was shown that runoff simulations agree better with observations when the combined precipitation data set was used than when only observed precipitation was used. This appeared to be because the HIRHAM4 model data compensated...... for the absence of observed data from mountainous areas where precipitation is orographically enhanced. In both cases, the runoff simulated by USAFLOW was superior to the runoff simulated within the HIRHAM4 model itself. This was attributed to the rather simplistic description of the water balance in the HIRHAM4...

  6. Subdivision of Texas watersheds for hydrologic modeling. (United States)


    The purpose of this report is to present a set of findings and examples for subdivision of watersheds for hydrologic modeling. Three approaches were used to examine the impact of watershed subdivision on modeled hydrologic response: (1) An equal-area...

  7. Impact of precipitation spatial resolution on the hydrological response of an integrated distributed water resources model

    DEFF Research Database (Denmark)

    Fu, Suhua; Sonnenborg, Torben; Jensen, Karsten Høgh


    Precipitation is a key input variable to hydrological models, and the spatial variability of the input is expected to impact the hydrological response predicted by a distributed model. In this study, the effect of spatial resolution of precipitation on runoff , recharge and groundwater head...... of the total catchment and runoff discharge hydrograph at watershed outlet. On the other hand, groundwater recharge and groundwater head were both aff ected. The impact of the spatial resolution of precipitation input is reduced with increasing catchment size. The effect on stream discharge is relatively low...... was analyzed in the Alergaarde catchment in Denmark. Six different precipitation spatial resolutions were used as inputs to a physically based, distributed hydrological model, the MIKE SHE model. The results showed that the resolution of precipitation input had no apparent effect on annual water balance...

  8. Model complexity control for hydrologic prediction

    NARCIS (Netherlands)

    Schoups, G.; Van de Giesen, N.C.; Savenije, H.H.G.


    A common concern in hydrologic modeling is overparameterization of complex models given limited and noisy data. This leads to problems of parameter nonuniqueness and equifinality, which may negatively affect prediction uncertainties. A systematic way of controlling model complexity is therefore

  9. A Community Data Model for Hydrologic Observations (United States)

    Tarboton, D. G.; Horsburgh, J. S.; Zaslavsky, I.; Maidment, D. R.; Valentine, D.; Jennings, B.


    The CUAHSI Hydrologic Information System project is developing information technology infrastructure to support hydrologic science. Hydrologic information science involves the description of hydrologic environments in a consistent way, using data models for information integration. This includes a hydrologic observations data model for the storage and retrieval of hydrologic observations in a relational database designed to facilitate data retrieval for integrated analysis of information collected by multiple investigators. It is intended to provide a standard format to facilitate the effective sharing of information between investigators and to facilitate analysis of information within a single study area or hydrologic observatory, or across hydrologic observatories and regions. The observations data model is designed to store hydrologic observations and sufficient ancillary information (metadata) about the observations to allow them to be unambiguously interpreted and used and provide traceable heritage from raw measurements to usable information. The design is based on the premise that a relational database at the single observation level is most effective for providing querying capability and cross dimension data retrieval and analysis. This premise is being tested through the implementation of a prototype hydrologic observations database, and the development of web services for the retrieval of data from and ingestion of data into the database. These web services hosted by the San Diego Supercomputer center make data in the database accessible both through a Hydrologic Data Access System portal and directly from applications software such as Excel, Matlab and ArcGIS that have Standard Object Access Protocol (SOAP) capability. This paper will (1) describe the data model; (2) demonstrate the capability for representing diverse data in the same database; (3) demonstrate the use of the database from applications software for the performance of hydrologic analysis

  10. Technical note: Representing glacier geometry changes in a semi-distributed hydrological model

    Directory of Open Access Journals (Sweden)

    J. Seibert


    Full Text Available Glaciers play an important role in high-mountain hydrology. While changing glacier areas are considered of highest importance for the understanding of future changes in runoff, glaciers are often only poorly represented in hydrological models. Most importantly, the direct coupling between the simulated glacier mass balances and changing glacier areas needs feasible solutions. The use of a complex glacier model is often not possible due to data and computational limitations. The Δh parameterization is a simple approach to consider the spatial variation of glacier thickness and area changes. Here, we describe a conceptual implementation of the Δh parameterization in the semi-distributed hydrological model HBV-light, which also allows for the representation of glacier advance phases and for comparison between the different versions of the implementation. The coupled glacio-hydrological simulation approach, which could also be implemented in many other semi-distributed hydrological models, is illustrated based on an example application.

  11. Flash flood modeling with the MARINE hydrological distributed model (United States)

    Estupina-Borrell, V.; Dartus, D.; Ababou, R.


    Flash floods are characterized by their violence and the rapidity of their occurrence. Because these events are rare and unpredictable, but also fast and intense, their anticipation with sufficient lead time for warning and broadcasting is a primary subject of research. Because of the heterogeneities of the rain and of the behavior of the surface, spatially distributed hydrological models can lead to a better understanding of the processes and so on they can contribute to a better forecasting of flash flood. Our main goal here is to develop an operational and robust methodology for flash flood forecasting. This methodology should provide relevant data (information) about flood evolution on short time scales, and should be applicable even in locations where direct observations are sparse (e.g. absence of historical and modern rainfalls and streamflows in small mountainous watersheds). The flash flood forecast is obtained by the physically based, space-time distributed hydrological model "MARINE'' (Model of Anticipation of Runoff and INondations for Extreme events). This model is presented and tested in this paper for a real flash flood event. The model consists in two steps, or two components: the first component is a "basin'' flood module which generates flood runoff in the upstream part of the watershed, and the second component is the "stream network'' module, which propagates the flood in the main river and its subsidiaries. The basin flash flood generation model is a rainfall-runoff model that can integrate remotely sensed data. Surface hydraulics equations are solved with enough simplifying hypotheses to allow real time exploitation. The minimum data required by the model are: (i) the Digital Elevation Model, used to calculate slopes that generate runoff, it can be issued from satellite imagery (SPOT) or from French Geographical Institute (IGN); (ii) the rainfall data from meteorological radar, observed or anticipated by the French Meteorological Service (M

  12. Urban runoff (URO) process for MODFLOW 2005: simulation of sub-grid scale urban hydrologic processes in Broward County, FL (United States)

    Decker, Jeremy D.; Hughes, J.D.


    Climate change and sea-level rise could cause substantial changes in urban runoff and flooding in low-lying coast landscapes. A major challenge for local government officials and decision makers is to translate the potential global effects of climate change into actionable and cost-effective adaptation and mitigation strategies at county and municipal scales. A MODFLOW process is used to represent sub-grid scale hydrology in urban settings to help address these issues. Coupled interception, surface water, depression, and unsaturated zone storage are represented. A two-dimensional diffusive wave approximation is used to represent overland flow. Three different options for representing infiltration and recharge are presented. Additional features include structure, barrier, and culvert flow between adjacent cells, specified stage boundaries, critical flow boundaries, source/sink surface-water terms, and the bi-directional runoff to MODFLOW Surface-Water Routing process. Some abilities of the Urban RunOff (URO) process are demonstrated with a synthetic problem using four land uses and varying cell coverages. Precipitation from a hypothetical storm was applied and cell by cell surface-water depth, groundwater level, infiltration rate, and groundwater recharge rate are shown. Results indicate the URO process has the ability to produce time-varying, water-content dependent infiltration and leakage, and successfully interacts with MODFLOW.

  13. Streamflow characteristics from modelled runoff time series: Importance of calibration criteria selection (United States)

    Poole, Sandra; Vis, Marc; Knight, Rodney; Seibert, Jan


    Ecologically relevant streamflow characteristics (SFCs) of ungauged catchments are often estimated from simulated runoff of hydrologic models that were originally calibrated on gauged catchments. However, SFC estimates of the gauged donor catchments and subsequently the ungauged catchments can be substantially uncertain when models are calibrated using traditional approaches based on optimization of statistical performance metrics (e.g., Nash–Sutcliffe model efficiency). An improved calibration strategy for gauged catchments is therefore crucial to help reduce the uncertainties of estimated SFCs for ungauged catchments. The aim of this study was to improve SFC estimates from modeled runoff time series in gauged catchments by explicitly including one or several SFCs in the calibration process. Different types of objective functions were defined consisting of the Nash–Sutcliffe model efficiency, single SFCs, or combinations thereof. We calibrated a bucket-type runoff model (HBV – Hydrologiska Byråns Vattenavdelning – model) for 25 catchments in the Tennessee River basin and evaluated the proposed calibration approach on 13 ecologically relevant SFCs representing major flow regime components and different flow conditions. While the model generally tended to underestimate the tested SFCs related to mean and high-flow conditions, SFCs related to low flow were generally overestimated. The highest estimation accuracies were achieved by a SFC-specific model calibration. Estimates of SFCs not included in the calibration process were of similar quality when comparing a multi-SFC calibration approach to a traditional model efficiency calibration. For practical applications, this implies that SFCs should preferably be estimated from targeted runoff model calibration, and modeled estimates need to be carefully interpreted.

  14. Robust Initial Wetness Condition Framework of an Event-Based Rainfall–Runoff Model Using Remotely Sensed Soil Moisture

    Directory of Open Access Journals (Sweden)

    Wooyeon Sunwoo


    Full Text Available Runoff prediction in limited-data areas is vital for hydrological applications, such as the design of infrastructure and flood defenses, runoff forecasting, and water management. Rainfall–runoff models may be useful for simulation of runoff generation, particularly event-based models, which offer a practical modeling scheme because of their simplicity. However, there is a need to reduce the uncertainties related to the estimation of the initial wetness condition (IWC prior to a rainfall event. Soil moisture is one of the most important variables in rainfall–runoff modeling, and remotely sensed soil moisture is recognized as an effective way to improve the accuracy of runoff prediction. In this study, the IWC was evaluated based on remotely sensed soil moisture by using the Soil Conservation Service-Curve Number (SCS-CN method, which is one of the representative event-based models used for reducing the uncertainty of runoff prediction. Four proxy variables for the IWC were determined from the measurements of total rainfall depth (API5, ground-based soil moisture (SSMinsitu, remotely sensed surface soil moisture (SSM, and soil water index (SWI provided by the advanced scatterometer (ASCAT. To obtain a robust IWC framework, this study consists of two main parts: the validation of remotely sensed soil moisture, and the evaluation of runoff prediction using four proxy variables with a set of rainfall–runoff events in the East Asian monsoon region. The results showed an acceptable agreement between remotely sensed soil moisture (SSM and SWI and ground based soil moisture data (SSMinsitu. In the proxy variable analysis, the SWI indicated the optimal value among the proposed proxy variables. In the runoff prediction analysis considering various infiltration conditions, the SSM and SWI proxy variables significantly reduced the runoff prediction error as compared with API5 by 60% and 66%, respectively. Moreover, the proposed IWC framework with

  15. Mathematical modeling of rainwater runoff over catchment surface ...

    African Journals Online (AJOL)

    The subject of an article is the mathematical modeling of the rainwater runoff along the surface catchment taking account the transport of pollution which permeates into the water flow from a porous media of soil at the certain areas of this surface. The developed mathematical model consists of two types of equations: the ...

  16. [Hydrology and water quality of rainfall-runoff in combined sewerage system along Suzhou Creek in central Shanghai]. (United States)

    Cheng, Jiang; Yang, Kai; Huang, Xiao-Fang; Lü, Yong-Peng


    In order to obtain the processes of hydrology and water quality of urban combined sewerage system (CSS) in highly urbanized region, the precipitation, discharge and pollutant concentration of four different intensity rainfall (light rain, moderate rain, heavy rain and storm) were measured from Jul. to Sep. 2007 in the Chendulu CSS along Suzhou Creek in Shanghai. The results show that the shapes of runoff graph are similar to rainfall graph, with a weaker fluctuation range and a 15-25 min delay between rainfall and runoff graph. Runoff coefficients of the four different rainfall are 0.33, 0.62, 0.67 and 0.73, respectively. The 30/30 first flush phenomenon is found in Chendulu CSS. The peak of pollutant concentration graph lags rainfall peak about 30-40 min. The pH and event mean concentration (EMC) of Cu, Zn, Cr, Cd, Pb and Ni totally measure up to environmental quality standards V for surface water of China besides COD, BOD5, NH4(+) -N and TP, and the EMC of COD, BOD5, NH4(+) -N and TP are 225.0-544.1, 31.5-98.9, 8.9-44.2 and 1.98-3.52 mg x L(-1), respectively. The rainfall-runoff pollutant concentration in Chendulu CSS is close to those of other foreign cites. At the confidence level of p < 0.01, good relationships exist between SS and COD, BOD5, NH4(+) -N and TP, respectively, and the average proportion of particulate organic pollutant and nutrient is 70.21%.

  17. Modelling Snowmelt Runoff under Climate Change Scenarios in an Ungauged Mountainous Watershed, Northwest China

    Directory of Open Access Journals (Sweden)

    Yonggang Ma


    Full Text Available An integrated modeling system has been developed for analyzing the impact of climate change on snowmelt runoff in Kaidu Watershed, Northwest China. The system couples Hadley Centre Coupled Model version 3 (HadCM3 outputs with Snowmelt Runoff Model (SRM. The SRM was verified against observed discharge for outlet hydrological station of the watershed during the period from April to September in 2001 and generally performed well for Nash-Sutcliffe coefficient (EF and water balance coefficient (RE. The EF is approximately over 0.8, and the water balance error is lower than ± 10%, indicating reasonable prediction accuracy. The Statistical Downscaling Model (SDSM was used to downscale coarse outputs of HadCM3, and then the downscaled future climate data were used as inputs of the SRM. Four scenarios were considered for analyzing the climate change impact on snowmelt flow in the Kaidu Watershed. And the results indicated that watershed hydrology would alter under different climate change scenarios. The stream flow in spring is likely to increase with the increased mean temperature; the discharge and peck flow in summer decrease with the decreased precipitation under Scenarios 1 and 2. Moreover, the consideration of the change in cryosphere area would intensify the variability of stream flow under Scenarios 3 and 4. The modeling results provide useful decision support for water resources management.

  18. Distributed modelling of hydrologic regime at three subcatchments of Kopaninský tok catchment (United States)

    Žlábek, Pavel; Tachecí, Pavel; Kaplická, Markéta; Bystřický, Václav


    Kopaninský tok catchment is situated in crystalline area of Bohemo-Moravian highland hilly region, with cambisol cover and prevailing agricultural land use. It is a subject of long term (since 1980's) observation. Time series (discharge, precipitation, climatic parameters...) are nowadays available in 10 min. time step, water quality average daily composit samples plus samples during events are available. Soil survey resulting in reference soil hydraulic properties for horizons and vegetation cover survey incl. LAI measurement has been done. All parameters were analysed and used for establishing of distributed mathematical models of P6, P52 and P53 subcatchments, using MIKE SHE 2009 WM deterministic hydrologic modelling system. The aim is to simulate long-term hydrologic regime as well as rainfall-runoff events, serving the base for modelling of nitrate regime and agricultural management influence in the next step. Mentioned subcatchments differs in ratio of artificial drainage area, soil types, land use and slope angle. The models are set-up in a regular computational grid of 2 m size. Basic time step was set to 2 hrs, total simulated period covers 3 years. Runoff response and moisture regime is compared using spatially distributed simulation results. Sensitivity analysis revealed most important parameters influencing model response. Importance of spatial distribution of initial conditions was underlined. Further on, different runoff components in terms of their origin, flow paths and travel time were separated using a combination of two runoff separation techniques (a digital filter and a simple conceptual model GROUND) in 12 subcatchments of Kopaninský tok catchment. These two methods were chosen based on a number of methods testing. Ordinations diagrams performed with Canoco software were used to evaluate influence of different catchment parameters on different runoff components. A canonical ordination method analyses (RDA) was used to explain one data set

  19. Modelling runoff and glacier melt in the Hunza basin in northern Pakistan using satellite remote sensing techniques

    International Nuclear Information System (INIS)

    Shafiq, M.


    The glaciers in western Karakoram are important for freshwater supply in the rivers of Pakistan. Global warming influences the future water supply from glaciers. In order to study the hydrological conditions and possible impacts of climate change, runoff simulations are performed for the Hunza basin. The hydrological modelling system SRM (Snowmelt Runoff Model) is customized and applied to the Hunza basin. Various data obtained from satellite remote sensing imagery and meteorological stations in the study area are processed, prepared and used as input to SRM. For runoff simulations the basin is divided into five sub-basins. The (sub-) basins are defined by the hydrological response units (HRU) based on the elevation zones and land-cover types. The spatially distributed data are aggregated HRU-wise as input for the model simulations. The energy available for snow and glacier melt is parameterized in SRM by degree day factors which are defined separately for seasonal snow, ice and debris covered glaciers. The model is calibrated for the Hunza basin using the meteorological and remote sensing data from years 2002 and 2003. The daily runoff is simulated and compared with the measured discharge data obtained from the power company. The Nash-Sutcliffe correlation coefficient of simulated versus measured runoff data is 0.87 for year 2002 and 0.96 for year 2003 which indicates a good agreement. An estimation of mass balance of Baltoro glacier is made using the meteorological data from Shigar station applying the hydrological method to estimate accumulation and melt. Based on these data is found that Baltoro glacier has slightly negative mass balance. The ablation rates of debris covered parts of Baltoro glacier at 4150 m elevation are estimated to be between 3 and 4 cm per day. However, the uncertainty in mass balance modelling is high due to poor knowledge of accumulation inferred by spatial extrapolation from station data.Keeping the glacier area unchanged, for the 2002

  20. [Impact of changes in land use and climate on the runoff in Liuxihe Watershed based on SWAT model]. (United States)

    Yuan, Yu-zhi; Zhang, Zheng-dong; Meng, Jin-hua


    SWAT model, an extensively used distributed hydrological model, was used to quantitatively analyze the influences of changes in land use and climate on the runoff at watershed scale. Liuxihe Watershed' s SWAT model was established and three scenarios were set. The calibration and validation at three hydrological stations of Wenquan, Taipingchang and Nangang showed that the three factors of Wenquan station just only reached the standard in validated period, and the other two stations had relative error (RE) 0.8 and Nash-Sutcliffe efficiency valve (Ens) > 0.75, suggesting that SWAT model was appropriate for simulating runoff response to land use change and climate variability in Liuxihe watershed. According to the integrated scenario simulation, the annual runoff increased by 11.23 m3 x s(-1) from 2001 to 2010 compared with the baseline period from 1991 to 2000, among which, the land use change caused an annual runoff reduction of 0.62 m3 x s(-1), whereas climate variability caused an annual runoff increase of 11.85 m3 x s(-1). Apparently, the impact of climate variability was stronger than that of land use change. On the other hand, the scenario simulation of extreme land use showed that compared with the land use in 2000, the annual runoff of the farmland scenario and the grassland scenario increased by 2.7% and 0.5% respectively, while that of the forest land scenario were reduced by 0.7%, which suggested that forest land had an ability of diversion closure. Furthermore, the scenario simulation of climatic variability indicated that the change of river runoff correlated positively with precipitation change (increase of 11.6% in annual runoff with increase of 10% in annual precipitation) , but negatively with air temperature change (reduction of 0.8% in annual runoff with increase of 1 degrees C in annual mean air temperature), which showed that the impact of precipitation variability was stronger than that of air temperature change. Therefore, in face of climate

  1. Modeling post-wildfire hydrological processes with ParFlow (United States)

    Escobar, I. S.; Lopez, S. R.; Kinoshita, A. M.


    Wildfires alter the natural processes within a watershed, such as surface runoff, evapotranspiration rates, and subsurface water storage. Post-fire hydrologic models are typically one-dimensional, empirically-based models or two-dimensional, conceptually-based models with lumped parameter distributions. These models are useful for modeling and predictions at the watershed outlet; however, do not provide detailed, distributed hydrologic processes at the point scale within the watershed. This research uses ParFlow, a three-dimensional, distributed hydrologic model to simulate post-fire hydrologic processes by representing the spatial and temporal variability of soil burn severity (via hydrophobicity) and vegetation recovery. Using this approach, we are able to evaluate the change in post-fire water components (surface flow, lateral flow, baseflow, and evapotranspiration). This work builds upon previous field and remote sensing analysis conducted for the 2003 Old Fire Burn in Devil Canyon, located in southern California (USA). This model is initially developed for a hillslope defined by a 500 m by 1000 m lateral extent. The subsurface reaches 12.4 m and is assigned a variable cell thickness to explicitly consider soil burn severity throughout the stages of recovery and vegetation regrowth. We consider four slope and eight hydrophobic layer configurations. Evapotranspiration is used as a proxy for vegetation regrowth and is represented by the satellite-based Simplified Surface Energy Balance (SSEBOP) product. The pre- and post-fire surface runoff, subsurface storage, and surface storage interactions are evaluated at the point scale. Results will be used as a basis for developing and fine-tuning a watershed-scale model. Long-term simulations will advance our understanding of post-fire hydrological partitioning between water balance components and the spatial variability of watershed processes, providing improved guidance for post-fire watershed management. In reference

  2. Calibration by Hydrological Response Unit of a National Hydrologic Model to Improve Spatial Representation and Distribution of Parameters (United States)

    Norton, P. A., II


    The U. S. Geological Survey is developing a National Hydrologic Model (NHM) to support consistent hydrologic modeling across the conterminous United States (CONUS). The Precipitation-Runoff Modeling System (PRMS) simulates daily hydrologic and energy processes in watersheds, and is used for the NHM application. For PRMS each watershed is divided into hydrologic response units (HRUs); by default each HRU is assumed to have a uniform hydrologic response. The Geospatial Fabric (GF) is a database containing initial parameter values for input to PRMS and was created for the NHM. The parameter values in the GF were derived from datasets that characterize the physical features of the entire CONUS. The NHM application is composed of more than 100,000 HRUs from the GF. Selected parameter values commonly are adjusted by basin in PRMS using an automated calibration process based on calibration targets, such as streamflow. Providing each HRU with distinct values that captures variability within the CONUS may improve simulation performance of the NHM. During calibration of the NHM by HRU, selected parameter values are adjusted for PRMS based on calibration targets, such as streamflow, snow water equivalent (SWE) and actual evapotranspiration (AET). Simulated SWE, AET, and runoff were compared to value ranges derived from multiple sources (e.g. the Snow Data Assimilation System, the Moderate Resolution Imaging Spectroradiometer (i.e. MODIS) Global Evapotranspiration Project, the Simplified Surface Energy Balance model, and the Monthly Water Balance Model). This provides each HRU with a distinct set of parameter values that captures the variability within the CONUS, leading to improved model performance. We present simulation results from the NHM after preliminary calibration, including the results of basin-level calibration for the NHM using: 1) default initial GF parameter values, and 2) parameter values calibrated by HRU.

  3. Modelling monthly runoff generation processes following land use changes: groundwater–surface runoff interactions

    Directory of Open Access Journals (Sweden)

    M. Bari


    Full Text Available A conceptual water balance model is presented to represent changes in monthly water balance following land use changes. Monthly rainfall–runoff, groundwater and soil moisture data from four experimental catchments in Western Australia have been analysed. Two of these catchments, 'Ernies' (control, fully forested and 'Lemon' (54% cleared are in a zone of mean annual rainfall of 725 mm, while 'Salmon' (control, fully forested and 'Wights' (100% cleared are in a zone with mean annual rainfall of 1125 mm. At the Salmon forested control catchment, streamflow comprises surface runoff, base flow and interflow components. In the Wights catchment, cleared of native forest for pasture development, all three components increased, groundwater levels rose significantly and stream zone saturated area increased from 1% to 15% of the catchment area. It took seven years after clearing for the rainfall–runoff generation process to stabilise in 1984. At the Ernies forested control catchment, the permanent groundwater system is 20 m below the stream bed and so does not contribute to streamflow. Following partial clearing of forest in the Lemon catchment, groundwater rose steadily and reached the stream bed by 1987. The streamflow increased in two phases: (i immediately after clearing due to reduced evapotranspiration, and (ii through an increase in the groundwater-induced stream zone saturated area after 1987. After analysing all the data available, a conceptual monthly model was created, comprising four inter-connecting stores: (i an upper zone unsaturated store, (ii a transient stream zone store, (ii a lower zone unsaturated store and (iv a saturated groundwater store. Data such as rooting depth, Leaf Area Index, soil porosity, profile thickness, depth to groundwater, stream length and surface slope were incorporated into the model as a priori defined attributes. The catchment average values for different stores were determined through matching observed and

  4. Consequences of changes to the NRCS rainfall-runoff relations on hydrologic design (United States)

    A proposed quantification of the fundamental concepts in the Natural Resources Conservation Service (NRCS) rainfall-runoff relation is examined to determine changes relevant to peak discharge estimation and drainage design. Changes to the NRCS curve number, storage, and initial abstraction relations...

  5. Urban Hydrology and Water Quality Modeling - Resolution Modeling Comparison for Water Quantity and Quality (United States)

    Fry, T. J.; Maxwell, R. M.


    Urbanization presents challenging water resource problems for communities worldwide. The hydromodifications associated with urbanization results in increased runoff rates and volumes and increased peak flows. These hydrologic changes can lead to increased erosion and stream destabilization, decreased evapotranspiration, decreased ground water recharge, increases in pollutant loading, and localized anthropogenic climate change or Urban Heat Islands. Stormwater represents a complex and dynamic component of the urban water cycle that requires careful mitigation. With the implementation of Phase II rules under the CWA, stormwater management is shifting from a drainage-efficiency focus to a natural systems focus. The natural system focus, referred to as Low Impact Development (LID), or Green Infrastructure, uses best management practices (BMPs) to reduce the impacts caused by urbanization hydromodification. Large-scale patterns of stormwater runoff from urban environments are complex and it is unclear what the large-scale impacts of green infrastructure are on the water cycle. High resolution physically based hydrologic models can be used to more accurately simulate the urban hydrologic cycle. These types of models tend to be more dynamic and allow for greater flexibility in evaluating and accounting for various hydrologic processes in the urban environment that may be lost with lower resolution conceptual models. We propose to evaluate the effectiveness of high resolution models to accurately represent and determine the urban hydrologic cycle with the overall goal of being able to accurately assess the impacts of LID BMPs in urban environments. We propose to complete a rigorous model intercomparison between ParFlow and FLO-2D. Both of these models can be scaled to higher resolutions, allow for rainfall to be spatially and temporally input, and solve the shallow water equations. Each model is different in the way it accounts for infiltration, initial abstraction losses

  6. Hydrological Variables and Dissolved Phosphorus in the Runoff from No-tilled Soil after Application of Swine Liquid (United States)

    Barbosa, F. T.; Bertol, I.; de Amaral, A. J.; Grahl dos Santos, P.; Ramos, R. R.; Werner, R. S.; Miras Avalos, J. M.


    Swine manure is used as a soil fertilizer in South Brazil. Commonly, it is applied continuously and in great amounts over surfaces with an important relief and without facilities that avoid water erosion. Thus, this manure is a potential risk of environmental pollution, mainly for the eutrophication of water bodies due to a runoff rich in nutrients. The aim of this work was to assess some soil hydrological parameters and to quantify the dissolved phosphorus losses in the runoff from no-tilled soils after the application of swine liquid manure. The experiment was carried out in the Highlands of Santa Catarina State, Brazil, in June 2009, over a Nitisol. On field plots, a 90-minute simulated rainfall test was performed with a rotating boom rainfall simulator and rainfall intensity of 70 mm h-1. Prior to the rainfall simulation, sowing was performed using a disk planter either with or without tines. Spacing between lines was 0.5 m. Swine liquid manure was applied at rates of 0.0, 30 and 60 m3ha-1 to the plots planted using tines; whereas it was applied at 15, 45 e 75 m3ha-1 to the plots were no tines were used for planting. During rainfall simulation, readings of runoff rate were taken each five minutes; total water loss was calculated by integrating all the 5-minute readings. Runoff samples were collected at 10 minutes intervals, and they were filtered through a 0.45 μm filter to determine dissolved phosphorus. Hydrological variables were significantly affected by the use of tines, which favoured infiltration and reduced runoff as compared to the non-use of tines. Runoff started at 28 and 11 minutes, water losses were 252 and 467 m3 ha-1, maximum runoff rate were 29 and 42 mm h-1 and constant rates of infiltration were 41 and 28 mm h-1, for treatments with and without tines, respectively. Dissolved phosphorus increased with the rate of swine liquid manure applied, with a trend to decrease from the beginning to the end of rainfall. The highest concentration was 0

  7. Modelling monthly runoff generation processes following land use changes: groundwater-surface runoff interactions (United States)

    Bari, M.; Smettem, K. R. J.

    A conceptual water balance model is presented to represent changes in monthly water balance following land use changes. Monthly rainfall-runoff, groundwater and soil moisture data from four experimental catchments in Western Australia have been analysed. Two of these catchments, "Ernies" (control, fully forested) and "Lemon" (54% cleared) are in a zone of mean annual rainfall of 725 mm, while "Salmon" (control, fully forested) and "Wights" (100% cleared) are in a zone with mean annual rainfall of 1125 mm. At the Salmon forested control catchment, streamflow comprises surface runoff, base flow and interflow components. In the Wights catchment, cleared of native forest for pasture development, all three components increased, groundwater levels rose significantly and stream zone saturated area increased from 1% to 15% of the catchment area. It took seven years after clearing for the rainfall-runoff generation process to stabilise in 1984. At the Ernies forested control catchment, the permanent groundwater system is 20 m below the stream bed and so does not contribute to streamflow. Following partial clearing of forest in the Lemon catchment, groundwater rose steadily and reached the stream bed by 1987. The streamflow increased in two phases: (i) immediately after clearing due to reduced evapotranspiration, and (ii) through an increase in the groundwater-induced stream zone saturated area after 1987. After analysing all the data available, a conceptual monthly model was created, comprising four inter-connecting stores: (i) an upper zone unsaturated store, (ii) a transient stream zone store, (ii) a lower zone unsaturated store and (iv) a saturated groundwater store. Data such as rooting depth, Leaf Area Index, soil porosity, profile thickness, depth to groundwater, stream length and surface slope were incorporated into the model as a priori defined attributes. The catchment average values for different stores were determined through matching observed and predicted

  8. Genetic Programming for Automatic Hydrological Modelling (United States)

    Chadalawada, Jayashree; Babovic, Vladan


    One of the recent challenges for the hydrologic research community is the need for the development of coupled systems that involves the integration of hydrologic, atmospheric and socio-economic relationships. This poses a requirement for novel modelling frameworks that can accurately represent complex systems, given, the limited understanding of underlying processes, increasing volume of data and high levels of uncertainity. Each of the existing hydrological models vary in terms of conceptualization and process representation and is the best suited to capture the environmental dynamics of a particular hydrological system. Data driven approaches can be used in the integration of alternative process hypotheses in order to achieve a unified theory at catchment scale. The key steps in the implementation of integrated modelling framework that is influenced by prior understanding and data, include, choice of the technique for the induction of knowledge from data, identification of alternative structural hypotheses, definition of rules, constraints for meaningful, intelligent combination of model component hypotheses and definition of evaluation metrics. This study aims at defining a Genetic Programming based modelling framework that test different conceptual model constructs based on wide range of objective functions and evolves accurate and parsimonious models that capture dominant hydrological processes at catchment scale. In this paper, GP initializes the evolutionary process using the modelling decisions inspired from the Superflex framework [Fenicia et al., 2011] and automatically combines them into model structures that are scrutinized against observed data using statistical, hydrological and flow duration curve based performance metrics. The collaboration between data driven and physical, conceptual modelling paradigms improves the ability to model and manage hydrologic systems. Fenicia, F., D. Kavetski, and H. H. Savenije (2011), Elements of a flexible approach

  9. Using artificial neural network approach for modelling rainfall–runoff ...

    Indian Academy of Sciences (India)

    Department of Civil Engineering, National Pingtung University of Science and Technology, Neipu Hsiang,. Pingtung ... study, a model for estimating runoff by using rainfall data from a river basin is developed and a neural ... For example, 2009 typhoon Morakot in Pingtung ... Tokar and Markus (2000) applied ANN to predict.

  10. An application of artificial intelligence for rainfall–runoff modeling

    Indian Academy of Sciences (India)

    This study proposes an application of two techniques of artificial intelligence (AI) for rainfall–runoff modeling: the artificial neural networks (ANN) and the evolutionary computation (EC). Two diff- erent ANN techniques, the feed forward back propagation (FFBP) and generalized regression neural network (GRNN) methods ...

  11. How would peak rainfall intensity affect runoff predictions using conceptual water balance models?

    Directory of Open Access Journals (Sweden)

    B. Yu


    Full Text Available Most hydrological models use continuous daily precipitation and potential evapotranspiration for streamflow estimation. With the projected increase in mean surface temperature, hydrological processes are set to intensify irrespective of the underlying changes to the mean precipitation. The effect of an increase in rainfall intensity on the long-term water balance is, however, not adequately accounted for in the commonly used hydrological models. This study follows from a previous comparative analysis of a non-stationary daily series of stream flow of a forested watershed (River Rimbaud in the French Alps (area = 1.478 km2 (1966–2006. Non-stationarity in the recorded stream flow occurred as a result of a severe wild fire in 1990. Two daily models (AWBM and SimHyd were initially calibrated for each of three distinct phases in relation to the well documented land disturbance. At the daily and monthly time scales, both models performed satisfactorily with the Nash–Sutcliffe coefficient of efficiency (NSE varying from 0.77 to 0.92. When aggregated to the annual time scale, both models underestimated the flow by about 22% with a reduced NSE at about 0.71. Exploratory data analysis was undertaken to relate daily peak hourly rainfall intensity to the discrepancy between the observed and modelled daily runoff amount. Preliminary results show that the effect of peak hourly rainfall intensity on runoff prediction is insignificant, and model performance is unlikely to improve when peak daily precipitation is included. Trend analysis indicated that the large decrease of precipitation when daily precipitation amount exceeded 10–20 mm may have contributed greatly to the decrease in stream flow of this forested watershed.

  12. A surface hydrology model for regional vector borne disease models (United States)

    Tompkins, Adrian; Asare, Ernest; Bomblies, Arne; Amekudzi, Leonard


    Small, sun-lit temporary pools that form during the rainy season are important breeding sites for many key mosquito vectors responsible for the transmission of malaria and other diseases. The representation of this surface hydrology in mathematical disease models is challenging, due to their small-scale, dependence on the terrain and the difficulty of setting soil parameters. Here we introduce a model that represents the temporal evolution of the aggregate statistics of breeding sites in a single pond fractional coverage parameter. The model is based on a simple, geometrical assumption concerning the terrain, and accounts for the processes of surface runoff, pond overflow, infiltration and evaporation. Soil moisture, soil properties and large-scale terrain slope are accounted for using a calibration parameter that sets the equivalent catchment fraction. The model is calibrated and then evaluated using in situ pond measurements in Ghana and ultra-high (10m) resolution explicit simulations for a village in Niger. Despite the model's simplicity, it is shown to reproduce the variability and mean of the pond aggregate water coverage well for both locations and validation techniques. Example malaria simulations for Uganda will be shown using this new scheme with a generic calibration setting, evaluated using district malaria case data. Possible methods for implementing regional calibration will be briefly discussed.

  13. Ensemble catchment hydrological modelling for climate change impact analysis (United States)

    Vansteenkiste, Thomas; Ntegeka, Victor; Willems, Patrick


    , more than in high flow conditions. Hence, the mechanism of the slow flow component simulation requires further attention. It is concluded that a multi-model ensemble approach where different plausible model structures are applied, is extremely useful. It improves the reliability of climate change impact results and allows decision making to be based on uncertainty assessment that includes model structure related uncertainties. References: Ntegeka, V., Baguis, P., Roulin, E., Willems, P., 2014. Developing tailored climate change scenarios for hydrological impact assessments. Journal of Hydrology, 508C, 307-321 Vansteenkiste, Th., Tavakoli, M., Ntegeka, V., Willems, P., De Smedt, F., Batelaan, O., 2013. Climate change impact on river flows and catchment hydrology: a comparison of two spatially distributed models. Hydrological Processes, 27(25), 3649-3662. Vansteenkiste, Th., Tavakoli, M., Ntegeka, V., Van Steenbergen, N., De Smedt, F., Batelaan, O., Pereira, F., Willems, P., 2014. Intercomparison of five lumped and distributed models for catchment runoff and extreme flow simulation. Journal of Hydrology, in press. Vansteenkiste, Th., Tavakoli, M., Ntegeka, V., De Smedt, F., Batelaan, O., Pereira, F., Willems, P., 2014. Intercomparison of climate scenario impact predictions by a lumped and distributed model ensemble. Journal of Hydrology, in revision.

  14. On the deterministic and stochastic use of hydrologic models (United States)

    Farmer, William H.; Vogel, Richard M.


    Environmental simulation models, such as precipitation-runoff watershed models, are increasingly used in a deterministic manner for environmental and water resources design, planning, and management. In operational hydrology, simulated responses are now routinely used to plan, design, and manage a very wide class of water resource systems. However, all such models are calibrated to existing data sets and retain some residual error. This residual, typically unknown in practice, is often ignored, implicitly trusting simulated responses as if they are deterministic quantities. In general, ignoring the residuals will result in simulated responses with distributional properties that do not mimic those of the observed responses. This discrepancy has major implications for the operational use of environmental simulation models as is shown here. Both a simple linear model and a distributed-parameter precipitation-runoff model are used to document the expected bias in the distributional properties of simulated responses when the residuals are ignored. The systematic reintroduction of residuals into simulated responses in a manner that produces stochastic output is shown to improve the distributional properties of the simulated responses. Every effort should be made to understand the distributional behavior of simulation residuals and to use environmental simulation models in a stochastic manner.

  15. The sensitivity of catchment runoff models to rainfall data at different spatial scales

    Directory of Open Access Journals (Sweden)

    V. A. Bell


    Full Text Available The sensitivity of catchment runoff models to rainfall is investigated at a variety of spatial scales using data from a dense raingauge network and weather radar. These data form part of the HYREX (HYdrological Radar EXperiment dataset. They encompass records from 49 raingauges over the 135 km2 Brue catchment in south-west England together with 2 and 5 km grid-square radar data. Separate rainfall time-series for the radar and raingauge data are constructed on 2, 5 and 10 km grids, and as catchment average values, at a 15 minute time-step. The sensitivity of the catchment runoff models to these grid scales of input data is evaluated on selected convective and stratiform rainfall events. Each rainfall time-series is used to produce an ensemble of modelled hydrographs in order to investigate this sensitivity. The distributed model is shown to be sensitive to the locations of the raingauges within the catchment and hence to the spatial variability of rainfall over the catchment. Runoff sensitivity is strongest during convective rainfall when a broader spread of modelled hydrographs results, with twice the variability of that arising from stratiform rain. Sensitivity to rainfall data and model resolution is explored and, surprisingly, best performance is obtained using a lower resolution of rainfall data and model. Results from the distributed catchment model, the Simple Grid Model, are compared with those obtained from a lumped model, the PDM. Performance from the distributed model is found to be only marginally better during stratiform rain (R2 of 0.922 compared to 0.911 but significantly better during convective rain (R2 of 0.953 compared to 0.909. The improved performance from the distributed model can, in part, be accredited to the excellence of the dense raingauge network which would not be the norm for operational flood warning systems. In the final part of the paper, the effect of rainfall resolution on the performance of the 2 km distributed

  16. Modelling runoff on ceramic tile roofs using the kinematic wave equations (United States)

    Silveira, Alexandre; Abrantes, João; de Lima, João; Lira, Lincoln


    Rainwater harvesting is a water saving alternative strategy that presents many advantages and can provide solutions to address major water resources problems, such as fresh water scarcity, urban stream degradation and flooding. In recent years, these problems have become global challenges, due to climatic change, population growth and increasing urbanisation. Generally, roofs are the first to come into contact with rainwater; thus, they are the best candidates for rainwater harvesting. In this context, the correct evaluation of roof runoff quantity and quality is essential to effectively design rainwater harvesting systems. Despite this, many studies usually focus on the qualitative aspects in detriment of the quantitative aspects. Laboratory studies using rainfall simulators have been widely used to investigate rainfall-runoff processes. These studies enabled a detailed exploration and systematic replication of a large range of hydrologic conditions, such as rainfall spatial and temporal characteristics, providing for a fast way to obtain precise and consistent data that can be used to calibrate and validate numerical models. This study aims to evaluate the performance of a kinematic wave based numerical model in simulating runoff on sloping roofs, by comparing the numerical results with the ones obtained from laboratory rainfall simulations on a real-scale ceramic tile roof (Lusa tiles). For all studied slopes, simulated discharge hydrographs had a good adjust to observed ones. Coefficient of determination and Nash-Sutcliffe efficiency values were close to 1.0. Particularly, peak discharges, times to peak and peak durations were very well simulated.

  17. Hydrological heterogeneity in Mediterranean reclaimed slopes: runoff and sediment yield at the patch and slope scales along a gradient of overland flow

    Directory of Open Access Journals (Sweden)

    L. Merino-Martín


    Full Text Available Hydrological heterogeneity is recognized as a fundamental ecosystem attribute in drylands controlling the flux of water and energy through landscapes. Therefore, mosaics of runoff and sediment source patches and sinks are frequently identified in these dry environments. There is a remarkable scarcity of studies about hydrological spatial heterogeneity in restored slopes, where ecological succession and overland flow are interacting. We conducted field research to study the hydrological role of patches and slopes along an "overland flow gradient" (gradient of overland flow routing through the slopes caused by different amounts of run-on coming from upslope in three reclaimed mining slopes of Mediterranean-continental climate. We found that runoff generation and routing in non-rilled slopes showed a pattern of source and sink areas of runoff. Such hydrological microenvironments were associated with seven vegetation patches (characterized by plant community types and cover. Two types of sink patches were identified: shrub Genista scorpius patches could be considered as "deep sinks", while patches where the graminoids Brachypodium retusum and Lolium perenne dominate were classified as "surface sinks" or "runoff splays". A variety of source patches were also identified spanning from "extreme sources" (Medicago sativa patches; equivalent to bare soil to "poor sources" (areas scattered by dwarf-shrubs of Thymus vulgaris or herbaceous tussocks of Dactylis glomerata. Finally, we identified the volume of overland flow routing along the slope as a major controlling factor of "hydrological diversity" (heterogeneity of hydrological behaviours quantified as Shannon diversity index: when overland flow increases at the slope scale hydrological diversity diminishes.

  18. Development of hydrological models and surface process modelization Study case in High Mountain slopes

    International Nuclear Information System (INIS)

    Loaiza, Juan Carlos; Pauwels, Valentijn R


    Hydrological models are useful because allow to predict fluxes into the hydrological systems, which is useful to predict foods and violent phenomenon associated to water fluxes, especially in materials under a high meteorization level. The combination of these models with meteorological predictions, especially with rainfall models, allow to model water behavior into the soil. On most of cases, this type of models is really sensible to evapotranspiration. On climatic studies, the superficial processes have to be represented adequately. Calibration and validation of these models is necessary to obtain reliable results. This paper is a practical exercise of application of complete hydrological information at detailed scale in a high mountain catchment, considering the soil use and types more representatives. The information of soil moisture, infiltration, runoff and rainfall is used to calibrate and validate TOPLATS hydrological model to simulate the behavior of soil moisture. The finds show that is possible to implement an hydrological model by means of soil moisture information use and an equation of calibration by Extended Kalman Filter (EKF).

  19. Data assimilation in integrated hydrological modelling

    DEFF Research Database (Denmark)

    Rasmussen, Jørn

    Integrated hydrological models are useful tools for water resource management and research, and advances in computational power and the advent of new observation types has resulted in the models generally becoming more complex and distributed. However, the models are often characterized by a high...... degree of parameterization which results in significant model uncertainty which cannot be reduced much due to observations often being scarce and often taking the form of point measurements. Data assimilation shows great promise for use in integrated hydrological models , as it allows for observations...... to be efficiently combined with models to improve model predictions, reduce uncertainty and estimate model parameters. In this thesis, a framework for assimilating multiple observation types and updating multiple components and parameters of a catchment scale integrated hydrological model is developed and tested...

  20. Event-based model diagnosis of rainfall-runoff model structures

    International Nuclear Information System (INIS)

    Stanzel, P.


    The objective of this research is a comparative evaluation of different rainfall-runoff model structures. Comparative model diagnostics facilitate the assessment of strengths and weaknesses of each model. The application of multiple models allows an analysis of simulation uncertainties arising from the selection of model structure, as compared with effects of uncertain parameters and precipitation input. Four different model structures, including conceptual and physically based approaches, are compared. In addition to runoff simulations, results for soil moisture and the runoff components of overland flow, interflow and base flow are analysed. Catchment runoff is simulated satisfactorily by all four model structures and shows only minor differences. Systematic deviations from runoff observations provide insight into model structural deficiencies. While physically based model structures capture some single runoff events better, they do not generally outperform conceptual model structures. Contributions to uncertainty in runoff simulations stemming from the choice of model structure show similar dimensions to those arising from parameter selection and the representation of precipitation input. Variations in precipitation mainly affect the general level and peaks of runoff, while different model structures lead to different simulated runoff dynamics. Large differences between the four analysed models are detected for simulations of soil moisture and, even more pronounced, runoff components. Soil moisture changes are more dynamical in the physically based model structures, which is in better agreement with observations. Streamflow contributions of overland flow are considerably lower in these models than in the more conceptual approaches. Observations of runoff components are rarely made and are not available in this study, but are shown to have high potential for an effective selection of appropriate model structures (author) [de

  1. Modeling the Hydrologic Processes of a Permeable Pavement ... (United States)

    A permeable pavement system can capture stormwater to reduce runoff volume and flow rate, improve onsite groundwater recharge, and enhance pollutant controls within the site. A new unit process model for evaluating the hydrologic performance of a permeable pavement system has been developed in this study. The developed model can continuously simulate infiltration through the permeable pavement surface, exfiltration from the storage to the surrounding in situ soils, and clogging impacts on infiltration/exfiltration capacity at the pavement surface and the bottom of the subsurface storage unit. The exfiltration modeling component simulates vertical and horizontal exfiltration independently based on Darcy’s formula with the Green-Ampt approximation. The developed model can be arranged with physically-based modeling parameters, such as hydraulic conductivity, Manning’s friction flow parameters, saturated and field capacity volumetric water contents, porosity, density, etc. The developed model was calibrated using high-frequency observed data. The modeled water depths are well matched with the observed values (R2 = 0.90). The modeling results show that horizontal exfiltration through the side walls of the subsurface storage unit is a prevailing factor in determining the hydrologic performance of the system, especially where the storage unit is developed in a long, narrow shape; or with a high risk of bottom compaction and clogging. This paper presents unit

  2. Advancing the Implementation of Hydrologic Models as Web-based Applications (United States)

    Dahal, P.; Tarboton, D. G.; Castronova, A. M.


    Advanced computer simulations are required to understand hydrologic phenomenon such as rainfall-runoff response, groundwater hydrology, snow hydrology, etc. Building a hydrologic model instance to simulate a watershed requires investment in data (diverse geospatial datasets such as terrain, soil) and computer resources, typically demands a wide skill set from the analyst, and the workflow involved is often difficult to reproduce. This work introduces a web-based prototype infrastructure in the form of a web application that provides researchers with easy to use access to complete hydrological modeling functionality. This includes creating the necessary geospatial and forcing data, preparing input files for a model by applying complex data preprocessing, running the model for a user defined watershed, and saving the results to a web repository. The open source Tethys Platform was used to develop the web app front-end Graphical User Interface (GUI). We used HydroDS, a webservice that provides data preparation processing capability to support backend computations used by the app. Results are saved in HydroShare, a hydrologic information system that supports the sharing of hydrologic data, model and analysis tools. The TOPographic Kinematic APproximation and Integration (TOPKAPI) model served as the example for which we developed a complete hydrologic modeling service to demonstrate the approach. The final product is a complete modeling system accessible through the web to create input files, and run the TOPKAPI hydrologic model for a watershed of interest. We are investigating similar functionality for the preparation of input to Regional Hydro-Ecological Simulation System (RHESSys). Key Words: hydrologic modeling, web services, hydrologic information system, HydroShare, HydroDS, Tethys Platform

  3. Step wise, multiple objective calibration of a hydrologic model for a snowmelt dominated basin (United States)

    Hay, L.E.; Leavesley, G.H.; Clark, M.P.; Markstrom, S.L.; Viger, R.J.; Umemoto, M.


    The ability to apply a hydrologic model to large numbers of basins for forecasting purposes requires a quick and effective calibration strategy. This paper presents a step wise, multiple objective, automated procedure for hydrologic model calibration. This procedure includes the sequential calibration of a model's simulation of solar radiation (SR), potential evapotranspiration (PET), water balance, and daily runoff. The procedure uses the Shuffled Complex Evolution global search algorithm to calibrate the U.S. Geological Survey's Precipitation Runoff Modeling System in the Yampa River basin of Colorado. This process assures that intermediate states of the model (SR and PET on a monthly mean basis), as well as the water balance and components of the daily hydrograph are simulated, consistently with measured values.

  4. Modeling rainfall-runoff process using soft computing techniques (United States)

    Kisi, Ozgur; Shiri, Jalal; Tombul, Mustafa


    Rainfall-runoff process was modeled for a small catchment in Turkey, using 4 years (1987-1991) of measurements of independent variables of rainfall and runoff values. The models used in the study were Artificial Neural Networks (ANNs), Adaptive Neuro-Fuzzy Inference System (ANFIS) and Gene Expression Programming (GEP) which are Artificial Intelligence (AI) approaches. The applied models were trained and tested using various combinations of the independent variables. The goodness of fit for the model was evaluated in terms of the coefficient of determination (R2), root mean square error (RMSE), mean absolute error (MAE), coefficient of efficiency (CE) and scatter index (SI). A comparison was also made between these models and traditional Multi Linear Regression (MLR) model. The study provides evidence that GEP (with RMSE=17.82 l/s, MAE=6.61 l/s, CE=0.72 and R2=0.978) is capable of modeling rainfall-runoff process and is a viable alternative to other applied artificial intelligence and MLR time-series methods.

  5. An approach to measure parameter sensitivity in watershed hydrologic modeling (United States)

    U.S. Environmental Protection Agency — Abstract Hydrologic responses vary spatially and temporally according to watershed characteristics. In this study, the hydrologic models that we developed earlier...

  6. Large-scale hydrology in Europe : observed patterns and model performance

    Energy Technology Data Exchange (ETDEWEB)

    Gudmundsson, Lukas


    In a changing climate, terrestrial water storages are of great interest as water availability impacts key aspects of ecosystem functioning. Thus, a better understanding of the variations of wet and dry periods will contribute to fully grasp processes of the earth system such as nutrient cycling and vegetation dynamics. Currently, river runoff from small, nearly natural, catchments is one of the few variables of the terrestrial water balance that is regularly monitored with detailed spatial and temporal coverage on large scales. River runoff, therefore, provides a foundation to approach European hydrology with respect to observed patterns on large scales, with regard to the ability of models to capture these.The analysis of observed river flow from small catchments, focused on the identification and description of spatial patterns of simultaneous temporal variations of runoff. These are dominated by large-scale variations of climatic variables but also altered by catchment processes. It was shown that time series of annual low, mean and high flows follow the same atmospheric drivers. The observation that high flows are more closely coupled to large scale atmospheric drivers than low flows, indicates the increasing influence of catchment properties on runoff under dry conditions. Further, it was shown that the low-frequency variability of European runoff is dominated by two opposing centres of simultaneous variations, such that dry years in the north are accompanied by wet years in the south.Large-scale hydrological models are simplified representations of our current perception of the terrestrial water balance on large scales. Quantification of the models strengths and weaknesses is the prerequisite for a reliable interpretation of simulation results. Model evaluations may also enable to detect shortcomings with model assumptions and thus enable a refinement of the current perception of hydrological systems. The ability of a multi model ensemble of nine large

  7. Climatic Models Ensemble-based Mid-21st Century Runoff Projections: A Bayesian Framework (United States)

    Achieng, K. O.; Zhu, J.


    There are a number of North American Regional Climate Change Assessment Program (NARCCAP) climatic models that have been used to project surface runoff in the mid-21st century. Statistical model selection techniques are often used to select the model that best fits data. However, model selection techniques often lead to different conclusions. In this study, ten models are averaged in Bayesian paradigm to project runoff. Bayesian Model Averaging (BMA) is used to project and identify effect of model uncertainty on future runoff projections. Baseflow separation - a two-digital filter which is also called Eckhardt filter - is used to separate USGS streamflow (total runoff) into two components: baseflow and surface runoff. We use this surface runoff as the a priori runoff when conducting BMA of runoff simulated from the ten RCM models. The primary objective of this study is to evaluate how well RCM multi-model ensembles simulate surface runoff, in a Bayesian framework. Specifically, we investigate and discuss the following questions: How well do ten RCM models ensemble jointly simulate surface runoff by averaging over all the models using BMA, given a priori surface runoff? What are the effects of model uncertainty on surface runoff simulation?

  8. Modelling the impact of increasing soil sealing on runoff coefficients at regional scale: a hydropedological approach

    Directory of Open Access Journals (Sweden)

    Ungaro Fabrizio


    Full Text Available Soil sealing is the permanent covering of the land surface by buildings, infrastructures or any impermeable artificial material. Beside the loss of fertile soils with a direct impact on food security, soil sealing modifies the hydrological cycle. This can cause an increased flooding risk, due to urban development in potential risk areas and to the increased volumes of runoff. This work estimates the increase of runoff due to sealing following urbanization and land take in the plain of Emilia Romagna (Italy, using the Green and Ampt infiltration model for two rainfall return periods (20 and 200 years in two different years, 1976 and 2008. To this goal a hydropedological approach was adopted in order to characterize soil hydraulic properties via locally calibrated pedotransfer functions (PTF. PTF inputs were estimated via sequential Gaussian simulations coupled with a simple kriging with varying local means, taking into account soil type and dominant land use. Results show that in the study area an average increment of 8.4% in sealed areas due to urbanization and sprawl induces an average increment in surface runoff equal to 3.5 and 2.7% respectively for 20 and 200-years return periods, with a maximum > 20% for highly sealed coast areas.

  9. A Precipitation-Runoff Model for the Blackstone River Basin, Massachusetts and Rhode Island (United States)

    Barbaro, Jeffrey R.; Zarriello, Phillip J.


    A Hydrological Simulation Program-FORTRAN (HSPF) precipitation-runoff model of the Blackstone River Basin was developed and calibrated to study the effects of changing land- and water-use patterns on water resources. The 474.5 mi2 Blackstone River Basin in southeastern Massachusetts and northern Rhode Island is experiencing rapid population and commercial growth throughout much of its area. This growth and the corresponding changes in land-use patterns are increasing stress on water resources and raising concerns about the future availability of water to meet residential and commercial needs. Increased withdrawals and wastewater-return flows also could adversely affect aquatic habitat, water quality, and the recreational value of the streams in the basin. The Blackstone River Basin was represented by 19 hydrologic response units (HRUs): 17 types of pervious areas (PERLNDs) established from combinations of surficial geology, land-use categories, and the distribution of public water and public sewer systems, and two types of impervious areas (IMPLNDs). Wetlands were combined with open water and simulated as stream reaches that receive runoff from surrounding pervious and impervious areas. This approach was taken to achieve greater flexibility in calibrating evapotranspiration losses from wetlands during the growing season. The basin was segmented into 50 reaches (RCHRES) to represent junctions at tributaries, major lakes and reservoirs, and drainage areas to streamflow-gaging stations. Climatological, streamflow, water-withdrawal, and wastewater-return data were collected during the study to develop the HSPF model. Climatological data collected at Worcester Regional Airport in Worcester, Massachusetts and T.F. Green Airport in Warwick, Rhode Island, were used for model calibration. A total of 15 streamflow-gaging stations were used in the calibration. Streamflow was measured at eight continuous-record streamflow-gaging stations that are part of the U.S. Geological

  10. Putting hydrological modelling practice to the test

    NARCIS (Netherlands)

    Melsen, Lieke Anna


    Six steps can be distinguished in the process of hydrological modelling: the perceptual model (deciding on the processes), the conceptual model (deciding on the equations), the procedural model (get the code to run on a computer), calibration (identify the parameters), evaluation (confronting

  11. Urban Runoff: Model Ordinances for Aquatic Buffers (United States)

    Aquatic Buffers serve as natural boundaries between local waterways and existing development. The model and example ordinaces below provide suggested language or technical guidance designed to create the most effective stream buffer zones possible.

  12. Improved ground hydrology calculations for global climate models (GCMs) - Soil water movement and evapotranspiration (United States)

    Abramopoulos, F.; Rosenzweig, C.; Choudhury, B.


    A physically based ground hydrology model is presented that includes the processes of transpiration, evaporation from intercepted precipitation and dew, evaporation from bare soil, infiltration, soil water flow, and runoff. Data from the Goddard Institute for Space Studies GCM were used as inputs for off-line tests of the model in four 8 x 10 deg regions, including Brazil, Sahel, Sahara, and India. Soil and vegetation input parameters were caculated as area-weighted means over the 8 x 10 deg gridbox; the resulting hydrological quantities were compared to ground hydrology model calculations performed on the 1 x 1 deg cells which comprise the 8 x 10 deg gridbox. Results show that the compositing procedure worked well except in the Sahel, where low soil water levels and a heterogeneous land surface produce high variability in hydrological quantities; for that region, a resolution better than 8 x 10 deg is needed.

  13. Hydrologic modeling of the Columbia Plateau basalts

    International Nuclear Information System (INIS)

    Dove, F.H.; Cole, C.R.; Bond, F.W.; Zimmerman, D.A.


    The Office of Nuclear Waste Isolation (ONWI) directed the Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program to conduct a technology demonstration of current performance assessment techniques for the Department of Energy (DOE) as applied to a nuclear waste repository in the Columbia Plateau Basalts. Hypothetical repository coordinates were selected for an actual geographical setting on the Hanford Reservation in the state of Washington. Published hydrologic and geologic data used in the analyses were gathered in 1979 or earlier. The hydrologic simulation was divided into three major parts: (1) aquifer recharge calculations, (2) a regional hydrologic model, and (3) a local hydrologic model of the Pasco Basin. The presentation discusses the regional model. An estimate of the amount of water transmitted through the groundwater system was required to bound the transmissivity values and to estimate the transmissivity distributions for the deeper basalts. The multiple layer two-dimensional Variable Thickness Transient (VTT) code was selected as appropriate for the amount of data available and for the conditions existing in the regional systems. This model uses a finite difference formulation to represent the partial differential flow equation. The regional study area as defined for the VTT model was divided into 55 by 55 square pattern with each grid 5 kilometers on a side. The regional system was modeled as a held potential surface layer and two underlying basalt layers. The regional model established the boundary conditions for the hydrologic model the Pasco Basin

  14. Advancements in Hydrology and Erosion Process Understanding and Post-Fire Hydrologic and Erosion Model Development for Semi-Arid Landscapes (United States)

    Williams, C. Jason; Pierson, Frederick B.; Al-Hamdan, Osama Z.; Robichaud, Peter R.; Nearing, Mark A.; Hernandez, Mariano; Weltz, Mark A.; Spaeth, Kenneth E.; Goodrich, David C.


    Fire activity continues to increase in semi-arid regions around the globe. Private and governmental land management entities are challenged with predicting and mitigating post-fire hydrologic and erosion responses on these landscapes. For more than a decade, a team of scientists with the US Department of Agriculture has collaborated on extensive post-fire hydrologic field research and the application of field research to development of post-fire hydrology and erosion predictive technologies. Experiments funded through this research investigated the impacts of fire on vegetation and soils and the effects of these fire-induced changes on infiltration, runoff generation, erodibility, and soil erosion processes. The distribution of study sites spans diverse topography across grassland, shrubland, and woodland landscapes throughout the western United States. Knowledge gleaned from the extensive field experiments was applied to develop and enhance physically-based models for hillslope- to watershed-scale runoff and erosion prediction. Our field research and subsequent data syntheses have identified key knowledge gaps and challenges regarding post-fire hydrology and erosion modeling. Our presentation details some consistent trends across a diverse domain and varying landscape conditions based on our extensive field campaigns. We demonstrate how field data have advanced our understanding of post-fire hydrology and erosion for semi-arid landscapes and highlight remaining key knowledge gaps. Lastly, we briefly show how our well-replicated experimental methodologies have contributed to advancements in hydrologic and erosion model development for the post-fire environment.

  15. Parameter estimation in stochastic rainfall-runoff models

    DEFF Research Database (Denmark)

    Jonsdottir, Harpa; Madsen, Henrik; Palsson, Olafur Petur


    A parameter estimation method for stochastic rainfall-runoff models is presented. The model considered in the paper is a conceptual stochastic model, formulated in continuous-discrete state space form. The model is small and a fully automatic optimization is, therefore, possible for estimating all...... the parameter values are optimal for simulation or prediction. The data originates from Iceland and the model is designed for Icelandic conditions, including a snow routine for mountainous areas. The model demands only two input data series, precipitation and temperature and one output data series...

  16. Development and implementation of a Variable Infiltration Capacity model of surface hydrology into the General Circulation Model

    International Nuclear Information System (INIS)

    Lettenmaier, D.P.; Stamm, J.F.; Wood, E.F.


    A Variable Infiltration Capacity (VIC) model is described for the representation of land surface hydrology in General Circulation Models (GCMs). The VIC model computes runoff as a function of the distribution of soil moisture capacity within a GCM grid cell. The major distinguishing feature of the VIC model relative to the bucket model currently used to represent the land surface in many GCMs is that it parameterizes the nonlinearity of the fraction of precipitation that infiltrates over a large area (hence the production of direct runoff) as a function of spatial average soil moisture storage, and that it models subsurface runoff between storms via a simple recession mechanism. The VIC model was incorporated into the Geophysical Fluid Dynamics Laboratory (GFDL) GCM at R15 resolution (roughly 4.5 degrees latitude by 7.5 degrees longitude). Ten-year simulations of global climate were produced using the GFDL GCM with both VIC land surface hydrology, and, for comparison purposes, the standard bucket representation. Comparison of the ten year runs using the VIC model with those using bucket hydrology showed that for the VIC run, global average runoff increased, soil moisture decreased, evaporation decreased, land surface temperature increased, and precipitation decreased. As expected, changes in precipitation occurred primarily over the continents, especially in the northern hemisphere. Changes in the surface water balance for Africa, Australia, and South America were much less than for North American and Eurasia. Both VIC and bucket simulations of surface air temperature and precipitation were compared with gridded monthly average observation fields. These comparisons indicated that the VIC hydrology reproduced winter temperatures better, and summer temperatures worse, than the bucket model. The VIC hydrology better represented global precipitation, primarily as a result of partially reducing the upward bias in precipitation associated with the GFDL R15 bucket runs

  17. Model based monitoring of stormwater runoff quality

    DEFF Research Database (Denmark)

    Birch, Heidi; Vezzaro, Luca; Mikkelsen, Peter Steen


    the information obtained about MPs discharged from the monitored system. A dynamic stormwater quality model was calibrated using MP data collected by volume-proportional and passive sampling in a storm drainage system in the outskirts of Copenhagen (Denmark) and a 10-year rain series was used to find annual...... average and maximum event mean concentrations. Use of this model reduced the uncertainty of predicted annual average concentrations compared to a simple stochastic method based solely on data. The predicted annual average obtained by using passive sampler measurements (one month installation...

  18. Improving student comprehension of the interconnectivity of the hydrologic cycle with a novel 'hydrology toolbox', integrated watershed model, and companion textbook (United States)

    Huning, L. S.; Margulis, S. A.


    Concepts in introductory hydrology courses are often taught in the context of process-based modeling that ultimately is integrated into a watershed model. In an effort to reduce the learning curve associated with applying hydrologic concepts to real-world applications, we developed and incorporated a 'hydrology toolbox' that complements a new, companion textbook into introductory undergraduate hydrology courses. The hydrology toolbox contains the basic building blocks (functions coded in MATLAB) for an integrated spatially-distributed watershed model that makes hydrologic topics (e.g. precipitation, snow, radiation, evaporation, unsaturated flow, infiltration, groundwater, and runoff) more user-friendly and accessible for students. The toolbox functions can be used in a modular format so that students can study individual hydrologic processes and become familiar with the hydrology toolbox. This approach allows such courses to emphasize understanding and application of hydrologic concepts rather than computer coding or programming. While topics in introductory hydrology courses are often introduced and taught independently or semi-independently, they are inherently interconnected. These toolbox functions are therefore linked together at the end of the course to reinforce a holistic understanding of how these hydrologic processes are measured, interconnected, and modeled. They are integrated into a spatially-distributed watershed model or numerical laboratory where students can explore a range of topics such as rainfall-runoff modeling, urbanization, deforestation, watershed response to changes in parameters or forcings, etc. Model output can readily be visualized and analyzed by students to understand watershed response in a real river basin or a simple 'toy' basin. These tools complement the textbook, each of which has been well received by students in multiple hydrology courses with various disciplinary backgrounds. The same governing equations that students have

  19. Sensitivity of Hydrologic Response to Climate Model Debiasing Procedures (United States)

    Channell, K.; Gronewold, A.; Rood, R. B.; Xiao, C.; Lofgren, B. M.; Hunter, T.


    Climate change is already having a profound impact on the global hydrologic cycle. In the Laurentian Great Lakes, changes in long-term evaporation and precipitation can lead to rapid water level fluctuations in the lakes, as evidenced by unprecedented change in water levels seen in the last two decades. These fluctuations often have an adverse impact on the region's human, environmental, and economic well-being, making accurate long-term water level projections invaluable to regional water resources management planning. Here we use hydrological components from a downscaled climate model (GFDL-CM3/WRF), to obtain future water supplies for the Great Lakes. We then apply a suite of bias correction procedures before propagating these water supplies through a routing model to produce lake water levels. Results using conventional bias correction methods suggest that water levels will decline by several feet in the coming century. However, methods that reflect the seasonal water cycle and explicitly debias individual hydrological components (overlake precipitation, overlake evaporation, runoff) imply that future water levels may be closer to their historical average. This discrepancy between debiased results indicates that water level forecasts are highly influenced by the bias correction method, a source of sensitivity that is commonly overlooked. Debiasing, however, does not remedy misrepresentation of the underlying physical processes in the climate model that produce these biases and contribute uncertainty to the hydrological projections. This uncertainty coupled with the differences in water level forecasts from varying bias correction methods are important for water management and long term planning in the Great Lakes region.

  20. Hydrologic Modeling of Conservation Farming Practices on the Palouse (United States)

    van Wie, J.; Adam, J. C.; Ullman, J.


    The production of dryland crops such as wheat and barley in a semi-arid region requires a reliable and adequate water supply. This supply of water available for crop use is of heightened importance in areas such as the Palouse region of eastern Washington and northern Idaho where the majority of annual rainfall occurs during the winter months and must be retained in the soil through the dry summer growing season. Farmers can increase conservation of water at the field and watershed scales through the adoption of best management practices that incorporate tillage and crop residue management. This research analyzes conservation farming practices that may be implemented by representing them in a watershed-scale hydrologic model in order to determine whether these practices will effectively save water so that a stable crop yield may be insured. The Distributed Hydrology Soil Vegetation Model (DHSVM) is applied and calibrated to represent the physical changes to infiltration, evaporation, and runoff that result from altered soil and vegetation characteristics brought on by management practices. The model is calibrated with field observations at the basin scale as well as the point scale over individual plots that are under various implementations of conservation management scenarios. Conservation practices are accounted for in DHSVM by adjusting input parameters such as the porosity, roughness, and hydraulic conductivity of the soil to characterize varying levels of tillage. Vegetation parameters such as leaf area index and albedo are altered to represent different amounts of crop residue left on the field through the winter months. After calibration, the model is applied over the entire basin under scenarios representing traditional agricultural methods and a region-wide shift to conservation practices. The resulting water balance suggests that there is a potential to retain water in the seed-zone during the winter months by decreasing evaporation and runoff through

  1. The last developments of the airGR R-package, an open source software for rainfall-runoff modelling (United States)

    Thirel, Guillaume; Delaigue, Olivier; Coron, Laurent; Perrin, Charles; Andréassian, Vazken


    Lumped hydrological models are useful and convenient tools for research, engineering and educational purposes. They propose catchment-scale representations of the precipitation-discharge relationship. Thanks to their limited data requirements, they can be easily implemented and run. With such models, it is possible to simulate a number of hydrological key processes over the catchment with limited structural and parametric complexity, typically evapotranspiration, runoff, underground losses, etc. The Hydrology Group at Irstea (Antony) has been developing a suite of rainfall-runoff models over the past 30 years with the main objectives of designing models as efficient as possible in terms of streamflow simulation, applicable to a wide range of catchments and having low data requirements. This resulted in a suite of models running at different time steps (from hourly to annual) applicable for various issues including water balance estimation, forecasting, simulation of impacts and scenario testing. Recently, Irstea has developed an easy-to-use R-package (R Core Team, 2016), called airGR (Coron et al., 2016, 2017), to make these models widely available. It includes: - the water balance annual GR1A model, - the monthly GR2M model, - three versions of the daily model, namely GR4J, GR5J and GR6J, - the hourly GR4H model, - a degree-day snow model CemaNeige. The airGR package has been designed to facilitate the use by non-expert users and allow the addition of evaluation criteria, models or calibration algorithm selected by the end-user. Each model core is coded in FORTRAN to ensure low computational time. The other package functions (i.e. mainly the calibration algorithm and the efficiency criteria) are coded in R. The package is also used for educational purposes. It allows for convenient implementation of model inter-comparisons and large sample hydrology experiments. The airGR package undergoes continuous developments for improving the efficiency, computational time

  2. Soil moisture prediction: bridging event and continuous runoff modelling

    NARCIS (Netherlands)

    Sheikh, V.


    The general objective of this study was to investigate the possibility of providing spatially distributed soil moisture data for event-based hydrological models close before a rainfall event. The study area is known as "Catsop", a small catchmment in south Limburg. The models used are: LISEM and

  3. The effect of coupling hydrologic and hydrodynamic models on probable maximum flood estimation (United States)

    Felder, Guido; Zischg, Andreas; Weingartner, Rolf


    Deterministic rainfall-runoff modelling usually assumes stationary hydrological system, as model parameters are calibrated with and therefore dependant on observed data. However, runoff processes are probably not stationary in the case of a probable maximum flood (PMF) where discharge greatly exceeds observed flood peaks. Developing hydrodynamic models and using them to build coupled hydrologic-hydrodynamic models can potentially improve the plausibility of PMF estimations. This study aims to assess the potential benefits and constraints of coupled modelling compared to standard deterministic hydrologic modelling when it comes to PMF estimation. The two modelling approaches are applied using a set of 100 spatio-temporal probable maximum precipitation (PMP) distribution scenarios. The resulting hydrographs, the resulting peak discharges as well as the reliability and the plausibility of the estimates are evaluated. The discussion of the results shows that coupling hydrologic and hydrodynamic models substantially improves the physical plausibility of PMF modelling, although both modelling approaches lead to PMF estimations for the catchment outlet that fall within a similar range. Using a coupled model is particularly suggested in cases where considerable flood-prone areas are situated within a catchment.

  4. Development and evaluation of a watershed-scale hybrid hydrologic model


    Cho, Younghyun


    A watershed-scale hybrid hydrologic model (Distributed-Clark), which is a lumped conceptual and distributed feature model, was developed to predict spatially distributed short- and long-term rainfall runoff generation and routing using relatively simple methodologies and state-of-the-art spatial data in a GIS environment. In Distributed-Clark, spatially distributed excess rainfall estimated with the SCS curve number method and a GIS-based set of separated unit hydrographs (spatially distribut...

  5. Modelling of runoff generation and soil moisture dynamics for hillslopes and micro-catchments (United States)

    Bronstert, Axel; Plate, Erich J.


    The modelling of hillslope hydrology is of great importance not only for the reason that all non-plain, i.e. hilly or mountainous, landscapes can be considered as being composed of a mosaic of hillslopes. A hillslope model may also be used for both research purposes and for application-oriented, detailed, hillslope-scale hydrological studies in conjunction with related scientific disciplines such as geotechnics, geo-chemistry and environmental technology. Despite the current limited application of multi-process and multi-dimensional hydrological models (particularly at the hillslope scale), hardly any comprehensive model has been available for operational use. In this paper we introduce a model which considers most of the relevant hillslope hydrological processes. Some recent applications are described which demonstrate its ability to narrow the stated gap in hillslope hydrological modelling. The modelling system accounts for the hydrological processes of interception, evapotranspiration, infiltration, soil-moisture movement (where the flow processes can be modelled in three dimensions), surface runoff, subsurface stormflow and streamflow discharge. The relevant process interactions are also included. Special regard has been given to consideration of state-of-the-art knowledge concerning rapid soilwater flow processes during storm conditions (e.g. macropore infiltration, lateral subsurface stormflow, return flow) and to its transfer to and inclusion within an operational modelling scheme. The model is "physically based" in the sense that its parameters have a physical meaning and can be obtained or derived from field measurements. This somewhat weaker than usual definition of a physical basis implies that some of the sub-models (still) contain empirical components, that the effects of the high spatial and temporal variability found in nature cannot always be expressed within the various physical laws, i.e. that the laws are scale dependent, and that due to

  6. Subgrid Parameterization of the Soil Moisture Storage Capacity for a Distributed Rainfall-Runoff Model

    Directory of Open Access Journals (Sweden)

    Weijian Guo


    Full Text Available Spatial variability plays an important role in nonlinear hydrologic processes. Due to the limitation of computational efficiency and data resolution, subgrid variability is usually assumed to be uniform for most grid-based rainfall-runoff models, which leads to the scale-dependence of model performances. In this paper, the scale effect on the Grid-Xinanjiang model was examined. The bias of the estimation of precipitation, runoff, evapotranspiration and soil moisture at the different grid scales, along with the scale-dependence of the effective parameters, highlights the importance of well representing the subgrid variability. This paper presents a subgrid parameterization method to incorporate the subgrid variability of the soil storage capacity, which is a key variable that controls runoff generation and partitioning in the Grid-Xinanjiang model. In light of the similar spatial pattern and physical basis, the soil storage capacity is correlated with the topographic index, whose spatial distribution can more readily be measured. A beta distribution is introduced to represent the spatial distribution of the soil storage capacity within the grid. The results derived from the Yanduhe Basin show that the proposed subgrid parameterization method can effectively correct the watershed soil storage capacity curve. Compared to the original Grid-Xinanjiang model, the model performances are quite consistent at the different grid scales when the subgrid variability is incorporated. This subgrid parameterization method reduces the recalibration necessity when the Digital Elevation Model (DEM resolution is changed. Moreover, it improves the potential for the application of the distributed model in the ungauged basin.

  7. Review article: Hydrological modeling in glacierized catchments of central Asia - status and challenges (United States)

    Chen, Yaning; Li, Weihong; Fang, Gonghuan; Li, Zhi


    Meltwater from glacierized catchments is one of the most important water supplies in central Asia. Therefore, the effects of climate change on glaciers and snow cover will have increasingly significant consequences for runoff. Hydrological modeling has become an indispensable research approach to water resources management in large glacierized river basins, but there is a lack of focus in the modeling of glacial discharge. This paper reviews the status of hydrological modeling in glacierized catchments of central Asia, discussing the limitations of the available models and extrapolating these to future challenges and directions. After reviewing recent efforts, we conclude that the main sources of uncertainty in assessing the regional hydrological impacts of climate change are the unreliable and incomplete data sets and the lack of understanding of the hydrological regimes of glacierized catchments of central Asia. Runoff trends indicate a complex response to changes in climate. For future variation of water resources, it is essential to quantify the responses of hydrologic processes to both climate change and shrinking glaciers in glacierized catchments, and scientific focus should be on reducing uncertainties linked to these processes.

  8. Informing a hydrological model of the Ogooué with multi-mission remote sensing data

    DEFF Research Database (Denmark)

    Kittel, Cecile Marie Margaretha; Nielsen, Karina; Tøttrup, C.


    with publicly available and free remote sensing observations. We used a rainfall–runoff model based on the Budyko framework coupled with a Muskingum routing approach. We parametrized the model using the Shuttle Radar Topography Mission digital elevation model (SRTM DEM) and forced it using precipitation from......Remote sensing provides a unique opportunity to inform and constrain a hydrological model and to increase its value as a decision-support tool. In this study, we applied a multi-mission approach to force, calibrate and validate a hydrological model of the ungauged Ogooué river basin in Africa...... model also captures overall total water storage change patterns, although the amplitude of storage change is generally underestimated. By combining hydrological modeling with multi-mission remote sensing from 10 different satellite missions, we obtain new information on an otherwise unstudied basin...

  9. Predicting Phosphorus Dynamics Across Physiographic Regions Using a Mixed Hortonian Non-Hortonian Hydrology Model (United States)

    Collick, A.; Easton, Z. M.; Auerbach, D.; Buchanan, B.; Kleinman, P. J. A.; Fuka, D.


    Predicting phosphorus (P) loss from agricultural watersheds depends on accurate representation of the hydrological and chemical processes governing P mobility and transport. In complex landscapes, P predictions are complicated by a broad range of soils with and without restrictive layers, a wide variety of agricultural management, and variable hydrological drivers. The Soil and Water Assessment Tool (SWAT) is a watershed model commonly used to predict runoff and non-point source pollution transport, but is commonly only used with Hortonian (traditional SWAT) or non-Hortonian (SWAT-VSA) initializations. Many shallow soils underlain by a restricting layer commonly generate saturation excess runoff from variable source areas (VSA), which is well represented in a re-conceptualized version, SWAT-VSA. However, many watersheds exhibit traits of both infiltration excess and saturation excess hydrology internally, based on the hydrologic distance from the stream, distribution of soils across the landscape, and characteristics of restricting layers. The objective of this research is to provide an initial look at integrating distributed predictive capabilities that consider both Hortonian and Non-Hortonian solutions simultaneously within a single SWAT-VSA initialization. We compare results from all three conceptual watershed initializations against measured surface runoff and stream P loads and to highlight the model's ability to drive sub-field management of P. All three initializations predict discharge similarly well (daily Nash-Sutcliffe Efficiencies above 0.5), but the new conceptual SWAT-VSA initialization performed best in predicting P export from the watershed, while also identifying critical source areas - those areas generating large runoff and P losses at the sub field level. These results support the use of mixed Hortonian non-Hortonian SWAT-VSA initializations in predicting watershed-scale P losses and identifying critical source areas of P loss in landscapes

  10. Hydroclimatology of Lake Victoria region using hydrologic model and satellite remote sensing data

    Directory of Open Access Journals (Sweden)

    S. I. Khan


    Full Text Available Study of hydro-climatology at a range of temporal scales is important in understanding and ultimately mitigating the potential severe impacts of hydrological extreme events such as floods and droughts. Using daily in-situ data over the last two decades combined with the recently available multiple-years satellite remote sensing data, we analyzed and simulated, with a distributed hydrologic model, the hydro-climatology in Nzoia, one of the major contributing sub-basins of Lake Victoria in the East African highlands. The basin, with a semi arid climate, has no sustained base flow contribution to Lake Victoria. The short spell of high discharge showed that rain is the prime cause of floods in the basin. There is only a marginal increase in annual mean discharge over the last 21 years. The 2-, 5- and 10- year peak discharges, for the entire study period showed that more years since the mid 1990's have had high peak discharges despite having relatively less annual rain. The study also presents the hydrologic model calibration and validation results over the Nzoia basin. The spatiotemporal variability of the water cycle components were quantified using a hydrologic model, with in-situ and multi-satellite remote sensing datasets. The model is calibrated using daily observed discharge data for the period between 1985 and 1999, for which model performance is estimated with a Nash Sutcliffe Efficiency (NSCE of 0.87 and 0.23% bias. The model validation showed an error metrics with NSCE of 0.65 and 1.04% bias. Moreover, the hydrologic capability of satellite precipitation (TRMM-3B42 V6 is evaluated. In terms of reconstruction of the water cycle components the spatial distribution and time series of modeling results for precipitation and runoff showed considerable agreement with the monthly model runoff estimates and gauge observations. Runoff values responded to precipitation events that occurred across the catchment during the wet season from March to

  11. How much expert knowledge is it worth to put in conceptual hydrological models? (United States)

    Antonetti, Manuel; Zappa, Massimiliano


    Both modellers and experimentalists agree on using expert knowledge to improve our conceptual hydrological simulations on ungauged basins. However, they use expert knowledge differently for both hydrologically mapping the landscape and parameterising a given hydrological model. Modellers use generally very simplified (e.g. topography-based) mapping approaches and put most of the knowledge for constraining the model by defining parameter and process relational rules. In contrast, experimentalists tend to invest all their detailed and qualitative knowledge about processes to obtain a spatial distribution of areas with different dominant runoff generation processes (DRPs) as realistic as possible, and for defining plausible narrow value ranges for each model parameter. Since, most of the times, the modelling goal is exclusively to simulate runoff at a specific site, even strongly simplified hydrological classifications can lead to satisfying results due to equifinality of hydrological models, overfitting problems and the numerous uncertainty sources affecting runoff simulations. Therefore, to test to which extent expert knowledge can improve simulation results under uncertainty, we applied a typical modellers' modelling framework relying on parameter and process constraints defined based on expert knowledge to several catchments on the Swiss Plateau. To map the spatial distribution of the DRPs, mapping approaches with increasing involvement of expert knowledge were used. Simulation results highlighted the potential added value of using all the expert knowledge available on a catchment. Also, combinations of event types and landscapes, where even a simplified mapping approach can lead to satisfying results, were identified. Finally, the uncertainty originated by the different mapping approaches was compared with the one linked to meteorological input data and catchment initial conditions.

  12. Comparison of HSPF and SWAT models performance for runoff and sediment yield prediction. (United States)

    Im, Sangjun; Brannan, Kevin M; Mostaghimi, Saied; Kim, Sang Min


    A watershed model can be used to better understand the relationship between land use activities and hydrologic/water quality processes that occur within a watershed. The physically based, distributed parameter model (SWAT) and a conceptual, lumped parameter model (HSPF), were selected and their performance were compared in simulating runoff and sediment yields from the Polecat Creek watershed in Virginia, which is 12,048 ha in size. A monitoring project was conducted in Polecat Creek watershed during the period of October 1994 to June 2000. The observed data (stream flow and sediment yield) from the monitoring project was used in the calibration/validations of the models. The period of September 1996 to June 2000 was used for the calibration and October 1994 to December 1995 was used for the validation of the models. The outputs from the models were compared to the observed data at several sub-watershed outlets and at the watershed outlet of the Polecat Creek watershed. The results indicated that both models were generally able to simulate stream flow and sediment yields well during both the calibration/validation periods. For annual and monthly loads, HSPF simulated hydrologic and sediment yield more accurately than SWAT at all monitoring sites within the watershed. The results of this study indicate that both the SWAT and HSPF watershed models performed sufficiently well in the simulation of stream flow and sediment yield with HSPF performing moderately better than SWAT for simulation time-steps greater than a month.

  13. Parameterization of a Hydrological Model for a Large, Ungauged Urban Catchment

    Directory of Open Access Journals (Sweden)

    Gerald Krebs


    Full Text Available Urbanization leads to the replacement of natural areas by impervious surfaces and affects the catchment hydrological cycle with adverse environmental impacts. Low impact development tools (LID that mimic hydrological processes of natural areas have been developed and applied to mitigate these impacts. Hydrological simulations are one possibility to evaluate the LID performance but the associated small-scale processes require a highly spatially distributed and explicit modeling approach. However, detailed data for model development are often not available for large urban areas, hampering the model parameterization. In this paper we propose a methodology to parameterize a hydrological model to a large, ungauged urban area by maintaining at the same time a detailed surface discretization for direct parameter manipulation for LID simulation and a firm reliance on available data for model conceptualization. Catchment delineation was based on a high-resolution digital elevation model (DEM and model parameterization relied on a novel model regionalization approach. The impact of automated delineation and model regionalization on simulation results was evaluated for three monitored study catchments (5.87–12.59 ha. The simulated runoff peak was most sensitive to accurate catchment discretization and calibration, while both the runoff volume and the fit of the hydrograph were less affected.

  14. Rainfall-runoff modelling of the Okavango River catchment to assess impacts of land use change on runoff and downstream ecosystems (United States)

    Milzow, Christian; Bauer-Gottwein, Peter


    source of economic income for Botswana. A second hydrological model simulating flow through the wetlands is used to study the impact of catchment runoff changes on the hydrology and ecology of the wetlands. The final goal of the project is to demonstrate the relation between economic benefits of water abstractions in the upstream and downstream environmental impact. Furthermore the results will provide a basis for defining adequate compensations for upstream stakeholders who forego benefits of agricultural intensification to ensure the conservation of downstream ecosystem services.

  15. Simulation of daily streamflow for nine river basins in eastern Iowa using the Precipitation-Runoff Modeling System (United States)

    Haj, Adel E.; Christiansen, Daniel E.; Hutchinson, Kasey J.


    The U.S. Geological Survey, in cooperation with the Iowa Department of Natural Resources, constructed Precipitation-Runoff Modeling System models to estimate daily streamflow for nine river basins in eastern Iowa that drain into the Mississippi River. The models are part of a suite of methods for estimating daily streamflow at ungaged sites. The Precipitation-Runoff Modeling System is a deterministic, distributed- parameter, physical-process-based modeling system developed to evaluate the response of streamflow and general drainage basin hydrology to various combinations of climate and land use. Calibration and validation periods used in each basin mostly were October 1, 2002, through September 30, 2012, but differed depending on the period of record available for daily mean streamflow measurements at U.S. Geological Survey streamflow-gaging stations.

  16. Evaluation TRMM Rainfall Data In Hydrological Modeling For An Ungaged In Lhasa River Basin (United States)

    Ji, H. J.; Liu, J.


    Evaluation TRMM Rainfall Data In Hydrological Modeling For An Ungaged In Lhasa River BasinHaijuan Ji1* Jintao Liu1,2 Shanshan Xu1___________________ 1College of Hydrology and Water Resources, Hohai University, Nanjing 210098, People's Republic of China 2State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, People's Republic of China ___________________ * Corresponding author. Tel.: +86-025-83786973; Fax: +86-025-83786606. E-mail address: (H.J. Ji). Abstract: The Tibetan Plateau plays an important role in regulating the regional hydrological processes due to its high elevations and being the headwaters of many major Asian river basins. If familiar with the distribution of hydrological characteristics, will help us improve the level of development and utilization the water resources. However, there exist glaciers and snow with few sites. It is significance for us to understand the glacier and snow hydrological process in order to recognize the evolution of water resources in the Tibetan. This manuscript takes Lhasa River as the study area, taking use of ground, remote sensing and assimilation data, taking advantage of high precision TRMM precipitation data and MODIS snow cover data, first, according to the data from ground station evaluation of TRMM data in the application of the accuracy of the Lhasa River, and based on MODIS data fusion of multi source microwave snow making cloudless snow products, which are used for discriminant and analysis glacier and snow regulation mechanism on day scale, add snow and glacier unit into xinanjing model, this model can simulate the study region's runoff evolution, parameter sensitivity even spatial variation of hydrological characteristics the next ten years on region grid scale. The results of hydrological model in Lhasa River can simulate the glacier and snow runoff variation in high cold region better, to enhance the predictive ability of the spring

  17. Future climate scenarios and rainfall-runoff modelling in the Upper Gallego catchment (Spain)

    International Nuclear Information System (INIS)

    Buerger, C.M.; Kolditz, O.; Fowler, H.J.; Blenkinsop, S.


    Global climate change may have large impacts on water supplies, drought or flood frequencies and magnitudes in local and regional hydrologic systems. Water authorities therefore rely on computer models for quantitative impact prediction. In this study we present kernel-based learning machine river flow models for the Upper Gallego catchment of the Ebro basin. Different learning machines were calibrated using daily gauge data. The models posed two major challenges: (1) estimation of the rainfall-runoff transfer function from the available time series is complicated by anthropogenic regulation and mountainous terrain and (2) the river flow model is weak when only climate data are used, but additional antecedent flow data seemed to lead to delayed peak flow estimation. These types of models, together with the presented downscaled climate scenarios, can be used for climate change impact assessment in the Gallego, which is important for the future management of the system. - Future climate change and data-based rainfall-runoff predictions are presented for the Upper Gallego

  18. Statistical analysis and modelling of surface runoff from arable fields


    P. Fiener; K. Auerswald; F. Winter; M. Disse


    Surface runoff generation on arable fields is an important driver of (local) flooding, on-site and off-site damages by erosion, and of nutrient and agrochemical transport. In general, three different processes generate surface runoff (Hortonian runoff, saturation excess runoff, and return of subsurface flow). Despite the developments in our understanding of these processes it remains difficult to predict, which processes govern runoff generation during the course of an event or through...

  19. Hydrological excitation of polar motion by different variables from the GLDAS models (United States)

    Winska, Malgorzata; Nastula, Jolanta; Salstein, David


    Continental hydrological loading by land water, snow and ice is a process that is important for the full understanding of the excitation of polar motion. In this study, we compute different estimations of hydrological excitation functions of polar motion (as hydrological angular momentum, HAM) using various variables from the Global Land Data Assimilation System (GLDAS) models of the land-based hydrosphere. The main aim of this study is to show the influence of variables from different hydrological processes including evapotranspiration, runoff, snowmelt and soil moisture, on polar motion excitations at annual and short-term timescales. Hydrological excitation functions of polar motion are determined using selected variables of these GLDAS realizations. Furthermore, we use time-variable gravity field solutions from the Gravity Recovery and Climate Experiment (GRACE) to determine the hydrological mass effects on polar motion excitation. We first conduct an intercomparison of the maps of variations of regional hydrological excitation functions, timing and phase diagrams of different regional and global HAMs. Next, we estimate the hydrological signal in geodetically observed polar motion excitation as a residual by subtracting the contributions of atmospheric angular momentum and oceanic angular momentum. Finally, the hydrological excitations are compared with those hydrological signals determined from residuals of the observed polar motion excitation series. The results will help us understand the relative importance of polar motion excitation within the individual hydrological processes, based on hydrological modeling. This method will allow us to estimate how well the polar motion excitation budget in the seasonal and inter-annual spectral ranges can be closed.

  20. Modelling snow accumulation and snow melt in a continuous hydrological model for real-time flood forecasting

    International Nuclear Information System (INIS)

    Stanzel, Ph; Haberl, U; Nachtnebel, H P


    Hydrological models for flood forecasting in Alpine basins need accurate representation of snow accumulation and snow melt processes. A continuous, semi-distributed rainfall-runoff model with snow modelling procedures using only precipitation and temperature as input is presented. Simulation results from an application in an Alpine Danube tributary watershed are shown and evaluated with snow depth measurements and MODIS remote sensing snow cover information. Seasonal variations of runoff due to snow melt were simulated accurately. Evaluation of simulated snow depth and snow covered area showed strengths and limitations of the model and allowed an assessment of input data quality. MODIS snow cover images were found to be valuable sources of information for hydrological modelling in alpine areas, where ground observations are scarce.

  1. Modelling snow accumulation and snow melt in a continuous hydrological model for real-time flood forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Stanzel, Ph; Haberl, U; Nachtnebel, H P [Institute of Water Management, Hydrology and Hydraulic Engineering, University of Natural Resources and Applied Life Sciences, Muthgasse 18, 1190 Vienna (Austria)], E-mail:


    Hydrological models for flood forecasting in Alpine basins need accurate representation of snow accumulation and snow melt processes. A continuous, semi-distributed rainfall-runoff model with snow modelling procedures using only precipitation and temperature as input is presented. Simulation results from an application in an Alpine Danube tributary watershed are shown and evaluated with snow depth measurements and MODIS remote sensing snow cover information. Seasonal variations of runoff due to snow melt were simulated accurately. Evaluation of simulated snow depth and snow covered area showed strengths and limitations of the model and allowed an assessment of input data quality. MODIS snow cover images were found to be valuable sources of information for hydrological modelling in alpine areas, where ground observations are scarce.

  2. Geographic Information System and Remote Sensing Approach with Hydrologic Rational Model for Flood Event Analysis in Jakarta (United States)

    Aditya, M. R.; Hernina, R.; Rokhmatuloh


    Rapid development in Jakarta which generates more impervious surface has reduced the amount of rainfall infiltration into soil layer and increases run-off. In some events, continuous high rainfall intensity could create sudden flood in Jakarta City. This article used rainfall data of Jakarta during 10 February 2015 to compute rainfall intensity and then interpolate it with ordinary kriging technique. Spatial distribution of rainfall intensity then overlaid with run-off coefficient based on certain land use type of the study area. Peak run-off within each cell resulted from hydrologic rational model then summed for the whole study area to generate total peak run-off. For this study area, land use types consisted of 51.9 % industrial, 37.57% parks, and 10.54% residential with estimated total peak run-off 6.04 m3/sec, 0.39 m3/sec, and 0.31 m3/sec, respectively.

  3. Sharing hydrological knowledge: an international comparison of hydrological models in the Meuse River Basin (United States)

    Bouaziz, Laurène; Sperna Weiland, Frederiek; Drogue, Gilles; Brauer, Claudia; Weerts, Albrecht


    International collaboration between institutes and universities working and studying the same transboundary basin is needed for consensus building around possible effects of climate change and climate adaptation measures. Education, experience and expert knowledge of the hydrological community have resulted in the development of a great variety of model concepts, calibration and analysis techniques. Intercomparison could be a first step into consensus modeling or an ensemble based modeling strategy. Besides these practical objectives, such an intercomparison offers the opportunity to explore different ranges of models and learn from each other, hopefully increasing the insight into the hydrological processes that play a role in the transboundary basin. In this experiment, different international research groups applied their rainfall-runoff model in the Ourthe, a Belgium sub-catchment of the Meuse. Data preparation involved the interpolation of hourly precipitation station data collected and owned by the Service Public de Wallonie1 and the freely available E-OBS dataset for daily temperature (Haylock et al., 2008). Daily temperature was disaggregated to hourly values and potential evaporation was derived with the Hargreaves formula. The data was made available to the researchers through an FTP server. The protocol for the modeling involved a split-sample calibration and validation for pre-defined periods. Objective functions for calibration were fixed but the calibration algorithm was a free choice of the research groups. The selection of calibration algorithm was considered model dependent because lumped as well as computationally less efficient distributed models were used. For each model, an ensemble of best performing parameter sets was selected and several performance metrics enabled to assess the models' abilities to simulate discharge. The aim of this experiment is to identify those model components and structures that increase model performance and may best

  4. Evaluating spatial patterns in hydrological modelling

    DEFF Research Database (Denmark)

    Koch, Julian

    the contiguous United Sates (10^6 km2). To this end, the thesis at hand applies a set of spatial performance metrics on various hydrological variables, namely land-surface-temperature (LST), evapotranspiration (ET) and soil moisture. The inspiration for the applied metrics is found in related fields...... is not fully exploited by current modelling frameworks due to the lack of suitable spatial performance metrics. Furthermore, the traditional model evaluation using discharge is found unsuitable to lay confidence on the predicted catchment inherent spatial variability of hydrological processes in a fully...

  5. Hydrological model in STEALTH 2-D code

    International Nuclear Information System (INIS)

    Hart, R.; Hofmann, R.


    Porous media fluid flow logic has been added to the two-dimensional version of the STEALTH explicit finite-difference code. It is a first-order hydrological model based upon Darcy's Law. Anisotropic permeability can be prescribed through x and y directional permeabilities. The fluid flow equations are formulated for either two-dimensional translation symmetry or two-dimensional axial symmetry. The addition of the hydrological model to STEALTH is a first step toward analyzing a physical system's response to the coupling of thermal, mechanical, and fluid flow phenomena

  6. A framework for human-hydrologic system model development integrating hydrology and water management: application to the Cutzamala water system in Mexico (United States)

    Wi, S.; Freeman, S.; Brown, C.


    This study presents a general approach to developing computational models of human-hydrologic systems where human modification of hydrologic surface processes are significant or dominant. A river basin system is represented by a network of human-hydrologic response units (HHRUs) identified based on locations where river regulations happen (e.g., reservoir operation and diversions). Natural and human processes in HHRUs are simulated in a holistic framework that integrates component models representing rainfall-runoff, river routing, reservoir operation, flow diversion and water use processes. We illustrate the approach in a case study of the Cutzamala water system (CWS) in Mexico, a complex inter-basin water transfer system supplying the Mexico City Metropolitan Area (MCMA). The human-hydrologic system model for CWS (CUTZSIM) is evaluated in terms of streamflow and reservoir storages measured across the CWS and to water supplied for MCMA. The CUTZSIM improves the representation of hydrology and river-operation interaction and, in so doing, advances evaluation of system-wide water management consequences under altered climatic and demand regimes. The integrated modeling framework enables evaluation and simulation of model errors throughout the river basin, including errors in representation of the human component processes. Heretofore, model error evaluation, predictive error intervals and the resultant improved understanding have been limited to hydrologic processes. The general framework represents an initial step towards fuller understanding and prediction of the many and varied processes that determine the hydrologic fluxes and state variables in real river basins.

  7. Coupled hydrologic and hydraulic modeling of Upper Niger River Basin (United States)

    Fleischmann, Ayan; Siqueira, Vinícius; Paris, Adrien; Collischonn, Walter; Paiva, Rodrigo; Gossett, Marielle; Pontes, Paulo; Calmant, Stephane; Biancamaria, Sylvain; Crétaux, Jean-François; Tanimoune, Bachir


    The Upper Niger Basin is located in Western Africa, flowing from Guinea Highlands towards the Sahel region. In this area lies the seasonally inundated Niger Inland Delta, which supports important environmental services such as habitats for wildlife, climate and flood regulation, as well as large fishery and agricultural areas. In this study, we present the application of MGB-IPH large scale hydrologic and hydrodynamic model for the Upper Niger Basin, totaling c.a. 650,000 km2 and set up until the city of Niamey in Niger. The model couples hydrological vertical balance and runoff generation with hydrodynamic flood wave propagation, by allowing infiltration from floodplains into soil column as well as representing backwater effects and floodplain storage throughout flat areas such as the Inland Delta. The model is forced with TRMM 3B42 daily precipitation and Climate Research Unit (CRU) climatology for the period 2000-2010, and was calibrated against in-situ discharge gauges and validated with in-situ water level, remotely sensed estimations of flooded areas (classification of MODIS imagery) and satellite altimetry (JASON-2 mission). Model results show good predictions for calibrated daily discharge and validated water level and altimetry at stations both upstream and downstream of the delta (Nash-Sutcliffe Efficiency>0.7 for all stations), as well as for flooded areas within the delta region (ENS=0.5; r2=0.8), allowing a good representation of flooding dynamics basinwide and simulation of flooding behavior of both perennial (e.g., Niger main stem) and ephemeral rivers (e.g., Niger Red Flood tributaries in Sahel). Coupling between hydrology and hydrodynamic processes indicates an important feedback between floodplain and soil water storage that allows high evapotranspiration rates even after the flood passage around the inner delta area. Also, representation of water retention in floodplain channels and distributaries in the inner delta (e.g., Diaka river

  8. Approaches to modelling hydrology and ecosystem interactions (United States)

    Silberstein, Richard P.


    As the pressures of industry, agriculture and mining on groundwater resources increase there is a burgeoning un-met need to be able to capture these multiple, direct and indirect stresses in a formal framework that will enable better assessment of impact scenarios. While there are many catchment hydrological models and there are some models that represent ecological states and change (e.g. FLAMES, Liedloff and Cook, 2007), these have not been linked in any deterministic or substantive way. Without such coupled eco-hydrological models quantitative assessments of impacts from water use intensification on water dependent ecosystems under changing climate are difficult, if not impossible. The concept would include facility for direct and indirect water related stresses that may develop around mining and well operations, climate stresses, such as rainfall and temperature, biological stresses, such as diseases and invasive species, and competition such as encroachment from other competing land uses. Indirect water impacts could be, for example, a change in groundwater conditions has an impact on stream flow regime, and hence aquatic ecosystems. This paper reviews previous work examining models combining ecology and hydrology with a view to developing a conceptual framework linking a biophysically defensable model that combines ecosystem function with hydrology. The objective is to develop a model capable of representing the cumulative impact of multiple stresses on water resources and associated ecosystem function.

  9. On the Representation of Subgrid Microtopography Effects in Process-based Hydrologic Models (United States)

    Jan, A.; Painter, S. L.; Coon, E. T.


    Increased availability of high-resolution digital elevation are enabling process-based hydrologic modeling on finer and finer scales. However, spatial variability in surface elevation (microtopography) exists below the scale of a typical hyper-resolution grid cell and has the potential to play a significant role in water retention, runoff, and surface/subsurface interactions. Though the concept of microtopographic features (depressions, obstructions) and the associated implications on flow and discharge are well established, representing those effects in watershed-scale integrated surface/subsurface hydrology models remains a challenge. Using the complex and coupled hydrologic environment of the Arctic polygonal tundra as an example, we study the effects of submeter topography and present a subgrid model parameterized by small-scale spatial heterogeneities for use in hyper-resolution models with polygons at a scale of 15-20 meters forming the surface cells. The subgrid model alters the flow and storage terms in the diffusion wave equation for surface flow. We compare our results against sub-meter scale simulations (acts as a benchmark for our simulations) and hyper-resolution models without the subgrid representation. The initiation of runoff in the fine-scale simulations is delayed and the recession curve is slowed relative to simulated runoff using the hyper-resolution model with no subgrid representation. Our subgrid modeling approach improves the representation of runoff and water retention relative to models that ignore subgrid topography. We evaluate different strategies for parameterizing subgrid model and present a classification-based method to efficiently move forward to larger landscapes. This work was supported by the Interoperable Design of Extreme-scale Application Software (IDEAS) project and the Next-Generation Ecosystem Experiments-Arctic (NGEE Arctic) project. NGEE-Arctic is supported by the Office of Biological and Environmental Research in the

  10. Parameterization and Uncertainty Analysis of SWAT model in Hydrological Simulation of Chaohe River Basin (United States)

    Jie, M.; Zhang, J.; Guo, B. B.


    As a typical distributed hydrological model, the SWAT model also has a challenge in calibrating parameters and analysis their uncertainty. This paper chooses the Chaohe River Basin China as the study area, through the establishment of the SWAT model, loading the DEM data of the Chaohe river basin, the watershed is automatically divided into several sub-basins. Analyzing the land use, soil and slope which are on the basis of the sub-basins and calculating the hydrological response unit (HRU) of the study area, after running SWAT model, the runoff simulation values in the watershed are obtained. On this basis, using weather data, known daily runoff of three hydrological stations, combined with the SWAT-CUP automatic program and the manual adjustment method are used to analyze the multi-site calibration of the model parameters. Furthermore, the GLUE algorithm is used to analyze the parameters uncertainty of the SWAT model. Through the sensitivity analysis, calibration and uncertainty study of SWAT, the results indicate that the parameterization of the hydrological characteristics of the Chaohe river is successful and feasible which can be used to simulate the Chaohe river basin.

  11. Coupling machine learning with mechanistic models to study runoff production and river flow at the hillslope scale (United States)

    Marçais, J.; Gupta, H. V.; De Dreuzy, J. R.; Troch, P. A. A.


    Geomorphological structure and geological heterogeneity of hillslopes are major controls on runoff responses. The diversity of hillslopes (morphological shapes and geological structures) on one hand, and the highly non linear runoff mechanism response on the other hand, make it difficult to transpose what has been learnt at one specific hillslope to another. Therefore, making reliable predictions on runoff appearance or river flow for a given hillslope is a challenge. Applying a classic model calibration (based on inverse problems technique) requires doing it for each specific hillslope and having some data available for calibration. When applied to thousands of cases it cannot always be promoted. Here we propose a novel modeling framework based on coupling process based models with data based approach. First we develop a mechanistic model, based on hillslope storage Boussinesq equations (Troch et al. 2003), able to model non linear runoff responses to rainfall at the hillslope scale. Second we set up a model database, representing thousands of non calibrated simulations. These simulations investigate different hillslope shapes (real ones obtained by analyzing 5m digital elevation model of Brittany and synthetic ones), different hillslope geological structures (i.e. different parametrizations) and different hydrologic forcing terms (i.e. different infiltration chronicles). Then, we use this model library to train a machine learning model on this physically based database. Machine learning model performance is then assessed by a classic validating phase (testing it on new hillslopes and comparing machine learning with mechanistic outputs). Finally we use this machine learning model to learn what are the hillslope properties controlling runoffs. This methodology will be further tested combining synthetic datasets with real ones.

  12. Century-scale variability in global annual runoff examined using a water balance model (United States)

    McCabe, G.J.; Wolock, D.M.


    A monthly water balance model (WB model) is used with CRUTS2.1 monthly temperature and precipitation data to generate time series of monthly runoff for all land areas of the globe for the period 1905 through 2002. Even though annual precipitation accounts for most of the temporal and spatial variability in annual runoff, increases in temperature have had an increasingly negative effect on annual runoff after 1980. Although the effects of increasing temperature on runoff became more apparent after 1980, the relative magnitude of these effects are small compared to the effects of precipitation on global runoff. ?? 2010 Royal Meteorological Society.

  13. Evaluation and hydrological modelization in the natural hazard prevention

    International Nuclear Information System (INIS)

    Pla Sentis, Ildefonso


    Soil degradation affects negatively his functions as a base to produce food, to regulate the hydrological cycle and the environmental quality. All over the world soil degradation is increasing partly due to lacks or deficiencies in the evaluations of the processes and causes of this degradation on each specific situation. The processes of soil physical degradation are manifested through several problems as compaction, runoff, hydric and Eolic erosion, landslides with collateral effects in situ and in the distance, often with disastrous consequences as foods, landslides, sedimentations, droughts, etc. These processes are frequently associated to unfavorable changes into the hydrologic processes responsible of the water balance and soil hydric regimes, mainly derived to soil use changes and different management practices and climatic changes. The evaluation of these processes using simple simulation models; under several scenarios of climatic change, soil properties and land use and management; would allow to predict the occurrence of this disastrous processes and consequently to select and apply the appropriate practices of soil conservation to eliminate or reduce their effects. This simulation models require, as base, detailed climatic information and hydrologic soil properties data. Despite of the existence of methodologies and commercial equipment (each time more sophisticated and precise) to measure the different physical and hydrological soil properties related with degradation processes, most of them are only applicable under really specific or laboratory conditions. Often indirect methodologies are used, based on relations or empiric indexes without an adequate validation, that often lead to expensive mistakes on the evaluation of soil degradation processes and their effects on natural disasters. It could be preferred simple field methodologies, direct and adaptable to different soil types and climates and to the sample size and the spatial variability of the

  14. Land-surface modelling in hydrological perspective

    DEFF Research Database (Denmark)

    Overgaard, Jesper; Rosbjerg, Dan; Butts, M.B.


    The purpose of this paper is to provide a review of the different types of energy-based land-surface models (LSMs) and discuss some of the new possibilities that will arise when energy-based LSMs are combined with distributed hydrological modelling. We choose to focus on energy-based approaches......, and the difficulties inherent in various evaluation procedures are presented. Finally, the dynamic coupling of hydrological and atmospheric models is explored, and the perspectives of such efforts are discussed......., because in comparison to the traditional potential evapotranspiration models, these approaches allow for a stronger link to remote sensing and atmospheric modelling. New opportunities for evaluation of distributed land-surface models through application of remote sensing are discussed in detail...

  15. Modeling the hydrological cycle on Mars

    Directory of Open Access Journals (Sweden)

    Ghada Machtoub


    Full Text Available The study provides a detailed analysis of the hydrological cycle on Mars simulated with a newly developed microphysical model, incorporated in a spectral Mars General Circulation Model. The modeled hydrological cycle is compared well with simulations of other global climate models. The simulated seasonal migration ofwater vapor, circulation instability, and the high degree of temporal variability of localized water vapor outbursts are shown closely consistent with recent observations. The microphysical parameterization provides a significant improvement in the modeling of ice clouds evolved over the tropics and major ancient volcanoes on Mars. The most significant difference between the simulations presented here and other GCM results is the level at which the water ice clouds are found. The model findings also support interpretation of observed thermal anomalies in the Martian tropics during northern spring and summer seasons.

  16. Relating runoff generation mechanisms to concentration-discharge relationships in catchments with well-characterized Critical Zone structures and hydrologic dynamics (United States)

    Hahm, W. J.; Wang, J.; Druhan, J. L.; Rempe, D.; Dietrich, W. E.


    Stream solute concentration-discharge (C-Q) relationships integrate catchment-scale hydrologic and geochemical processes, potentially yielding valuable information about runoff generation and weathering mechanisms. However, recent compilations have established that chemostasis—the condition where solute concentrations are invariant across large ranges of runoff—is observed in watersheds of diverse lithology, climate, and topography, suggesting an equifinality of the C-Q relationship independent of hydrologic process. Here we explore C-Q signals in contrasting catchments of the Eel River Critical Zone (CZ) Observatory in the Northern California Coast Ranges, where, unlike most watersheds where chemostasis has been observed, hillslope hydrologic processes are well characterized via years of intensive hydrologic monitoring. Our two catchments in the Franciscan Complex have radically different runoff generation mechanisms arising from differences in CZ structure: at Elder Creek (Coastal Belt), rain passes vertically as unsaturated flow through soil, saprolite, and a thick weathered rock zone before perching as groundwater on fresh bedrock and flowing laterally through fractures to generate streamflow, resulting in nearly chemostatic major cation behavior (power law C-Q slopes (B) ≈ 0 to -0.1). At Dry Creek (Central Belt), the thin (2 to 3 m) hydrologically active CZ completely saturates in most storm events, generating saturation overland flow across the landscape. New data from Dry Creek reveal log-log C-Q relationships for major cations that exhibit negative curvature, indicating a trend towards increasing dilution at higher flow rates and a possible C-Q signature of overland flow. High geomorphic channel drainage density (16.9 km/km2) results in short flow paths and, presumably, short water hillslope residence times at high runoff when overland flow dominates (> 50 mm d-1). Surprisingly, even at these high runoff rates, pure dilution does not occur (high

  17. Modeling runoff and erosion risk in a~small steep cultivated watershed using different data sources: from on-site measurements to farmers' perceptions (United States)

    Auvet, B.; Lidon, B.; Kartiwa, B.; Le Bissonnais, Y.; Poussin, J.-C.


    slopes, and revealed the critical role of tillage direction. Calibrating and validating models using in situ measurements, observations and farmers' perceptions made it possible to represent runoff and erosion risk despite the initial scarcity of hydrological data. Even if the models mainly provided orders of magnitude and qualitative information, they significantly improved our understanding of the watershed dynamics. In addition, the information produced by such models is easy for farmers to use to manage runoff and erosion by using appropriate agricultural practices.

  18. Large-scale runoff generation – parsimonious parameterisation using high-resolution topography


    L. Gong; S. Halldin; C.-Y. Xu


    World water resources have primarily been analysed by global-scale hydrological models in the last decades. Runoff generation in many of these models are based on process formulations developed at catchments scales. The division between slow runoff (baseflow) and fast runoff is primarily governed by slope and spatial distribution of effective water storage capacity, both acting a very small scales. Many hydrological models, e.g. VIC, account for the spatial storage variability in terms...

  19. Runoff and sediment transport in the arid regions of Argentina and India - a case study in comparative hydrology

    NARCIS (Netherlands)

    Sharma, K.D.; Menenti, M.; Huygen, J.; Fernandez, P.C.; Vich, A.


    The arid zones of Argentina and India have been compared. In both regions run-off is often generated by the Hortonian infiltration surplus overland flow, and run-off response to precipitation input tends to be rapid. The sediment transport is governedby the transport capacity of run-off rather than

  20. Hydrological Modelling Using a Rainfall Simulator over an Experimental Hillslope Plot

    Directory of Open Access Journals (Sweden)

    Arpit Chouksey


    Full Text Available Hydrological processes are complex to compute in hilly areas when compared to plain areas. The governing processes behind runoff generation on hillslopes are subsurface storm flow, saturation excess flow, overland flow, return flow and pipe storage. The simulations of the above processes in the soil matrix require detailed hillslope hydrological modelling. In the present study, a hillslope experimental plot has been designed to study the runoff generation processes on the plot scale. The setup is designed keeping in view the natural hillslope conditions prevailing in the Northwestern Himalayas, India where high intensity rainfall events occur frequently. A rainfall simulator was installed over the experimental hillslope plot to generate rainfall with an intensity of 100 mm/h, which represents the dominating rainfall intensity range in the region. Soil moisture sensors were also installed at variable depths from 100 to 1000 mm at different locations of the plot to observe the soil moisture regime. From the experimental observations it was found that once the soil is saturated, it remains at field capacity for the next 24–36 h. Such antecedent moisture conditions are most favorable for the generation of rapid stormflow from hillslopes. A dye infiltration test was performed on the undisturbed soil column to observe the macropore fraction variability over the vegetated hillslopes. The estimated macropore fractions are used as essential input for the hillslope hydrological model. The main objective of the present study was to develop and test a method for estimating runoff responses from natural rainfall over hillslopes of the Northwestern Himalayas using a portable rainfall simulator. Using the experimental data and the developed conceptual model, the overland flow and the subsurface flow through a macropore-dominated area have been estimated/analyzed. The surface and subsurface runoff estimated using the developed hillslope hydrological model

  1. Modeling Pre- and Post- Wildfire Hydrologic Response to Vegetation Change in the Valles Caldera National Preserve, NM (United States)

    Gregory, A. E.; Benedict, K. K.; Zhang, S.; Savickas, J.


    Large scale, high severity wildfires in forests have become increasingly prevalent in the western United States due to fire exclusion. Although past work has focused on the immediate consequences of wildfire (ie. runoff magnitude and debris flow), little has been done to understand the post wildfire hydrologic consequences of vegetation regrowth. Furthermore, vegetation is often characterized by static parameterizations within hydrological models. In order to understand the temporal relationship between hydrologic processes and revegetation, we modularized and partially automated the hydrologic modeling process to increase connectivity between remotely sensed data, the Virtual Watershed Platform (a data management resource, called the VWP), input meteorological data, and the Precipitation-Runoff Modeling System (PRMS). This process was used to run simulations in the Valles Caldera of NM, an area impacted by the 2011 Las Conchas Fire, in PRMS before and after the Las Conchas to evaluate hydrologic process changes. The modeling environment addressed some of the existing challenges faced by hydrological modelers. At present, modelers are somewhat limited in their ability to push the boundaries of hydrologic understanding. Specific issues faced by modelers include limited computational resources to model processes at large spatial and temporal scales, data storage capacity and accessibility from the modeling platform, computational and time contraints for experimental modeling, and the skills to integrate modeling software in ways that have not been explored. By taking an interdisciplinary approach, we were able to address some of these challenges by leveraging the skills of hydrologic, data, and computer scientists; and the technical capabilities provided by a combination of on-demand/high-performance computing, distributed data, and cloud services. The hydrologic modeling process was modularized to include options for distributing meteorological data, parameter space

  2. airGR: an R-package suitable for large sample hydrology presenting a suite of lumped hydrological models (United States)

    Thirel, G.; Delaigue, O.; Coron, L.; Perrin, C.; Andreassian, V.


    Lumped hydrological models are useful and convenient tools for research, engineering and educational purposes. They propose catchment-scale representations of the precipitation-discharge relationship. Thanks to their limited data requirements, they can be easily implemented and run. With such models, it is possible to simulate a number of hydrological key processes over the catchment with limited structural and parametric complexity, typically evapotranspiration, runoff, underground losses, etc. The Hydrology Group at Irstea (Antony) has been developing a suite of rainfall-runoff models over the past 30 years with the main objectives of designing models as efficient as possible in terms of streamflow simulation, applicable to a wide range of catchments and having low data requirements. This resulted in a suite of models running at different time steps (from hourly to annual) applicable for various issues including water balance estimation, forecasting, simulation of impacts and scenario testing. Recently, Irstea has developed an easy-to-use R-package (R Core Team, 2015; Coron et al., 2016), called airGR, to make these models widely available. It includes: - the water balance annual GR1A (Mouehli et al., 2006), - the monthly GR2M (Mouehli, 2003) models, - three versions of the daily model, namely GR4J (Perrin et al., 2003), GR5J (Le Moine, 2008) and GR6J (Pushpalatha et al., 2011), - the hourly GR4H model (Mathevet, 2005), - a degree-day snow module CemaNeige (Valéry et al., 2014). The airGR package has been designed to facilitate the use by non-expert users and allow the addition of evaluation criteria, models or calibration algorithm selected by the end-user. Each model core is coded in FORTRAN to ensure low computational time. The other package functions (i.e. mainly the calibration algorithm and the efficiency criteria) are coded in R. The package is already used for educational purposes. It allows for convenient implementation of model inter-comparisons and

  3. Multi-model analysis in hydrological prediction (United States)

    Lanthier, M.; Arsenault, R.; Brissette, F.


    Hydrologic modelling, by nature, is a simplification of the real-world hydrologic system. Therefore ensemble hydrological predictions thus obtained do not present the full range of possible streamflow outcomes, thereby producing ensembles which demonstrate errors in variance such as under-dispersion. Past studies show that lumped models used in prediction mode can return satisfactory results, especially when there is not enough information available on the watershed to run a distributed model. But all lumped models greatly simplify the complex processes of the hydrologic cycle. To generate more spread in the hydrologic ensemble predictions, multi-model ensembles have been considered. In this study, the aim is to propose and analyse a method that gives an ensemble streamflow prediction that properly represents the forecast probabilities and reduced ensemble bias. To achieve this, three simple lumped models are used to generate an ensemble. These will also be combined using multi-model averaging techniques, which generally generate a more accurate hydrogram than the best of the individual models in simulation mode. This new predictive combined hydrogram is added to the ensemble, thus creating a large ensemble which may improve the variability while also improving the ensemble mean bias. The quality of the predictions is then assessed on different periods: 2 weeks, 1 month, 3 months and 6 months using a PIT Histogram of the percentiles of the real observation volumes with respect to the volumes of the ensemble members. Initially, the models were run using historical weather data to generate synthetic flows. This worked for individual models, but not for the multi-model and for the large ensemble. Consequently, by performing data assimilation at each prediction period and thus adjusting the initial states of the models, the PIT Histogram could be constructed using the observed flows while allowing the use of the multi-model predictions. The under-dispersion has been

  4. Comparison of ensemble post-processing approaches, based on empirical and dynamical error modelisation of rainfall-runoff model forecasts (United States)

    Chardon, J.; Mathevet, T.; Le Lay, M.; Gailhard, J.


    dynamic and processes, i. e. sample heterogeneity. For a same streamflow range corresponds different processes such as rising limbs or recession, where uncertainties are different. The dynamical approach improves reliability, skills and sharpness of forecasts and globally reduces confidence intervals width. When compared in details, the dynamical approach allows a noticeable reduction of confidence intervals during recessions where uncertainty is relatively lower and a slight increase of confidence intervals during rising limbs or snowmelt where uncertainty is greater. The dynamic approach, validated by forecaster's experience that considered the empirical approach not discriminative enough, improved forecaster's confidence and communication of uncertainties. Montanari, A. and Brath, A., (2004). A stochastic approach for assessing the uncertainty of rainfall-runoff simulations. Water Resources Research, 40, W01106, doi:10.1029/2003WR002540. Schaefli, B., Balin Talamba, D. and Musy, A., (2007). Quantifying hydrological modeling errors through a mixture of normal distributions. Journal of Hydrology, 332, 303-315.

  5. An interactive modelling tool for understanding hydrological processes in lowland catchments (United States)

    Brauer, Claudia; Torfs, Paul; Uijlenhoet, Remko


    Recently, we developed the Wageningen Lowland Runoff Simulator (WALRUS), a rainfall-runoff model for catchments with shallow groundwater (Brauer et al., 2014ab). WALRUS explicitly simulates processes which are important in lowland catchments, such as feedbacks between saturated and unsaturated zone and between groundwater and surface water. WALRUS has a simple model structure and few parameters with physical connotations. Some default functions (which can be changed easily for research purposes) are implemented to facilitate application by practitioners and students. The effect of water management on hydrological variables can be simulated explicitly. The model description and applications are published in open access journals (Brauer et al, 2014). The open source code (provided as R package) and manual can be downloaded freely ( We organised a short course for Dutch water managers and consultants to become acquainted with WALRUS. We are now adapting this course as a stand-alone tutorial suitable for a varied, international audience. In addition, simple models can aid teachers to explain hydrological principles effectively. We used WALRUS to generate examples for simple interactive tools, which we will present at the EGU General Assembly. C.C. Brauer, A.J. Teuling, P.J.J.F. Torfs, R. Uijlenhoet (2014a): The Wageningen Lowland Runoff Simulator (WALRUS): a lumped rainfall-runoff model for catchments with shallow groundwater, Geosci. Model Dev., 7, 2313-2332. C.C. Brauer, P.J.J.F. Torfs, A.J. Teuling, R. Uijlenhoet (2014b): The Wageningen Lowland Runoff Simulator (WALRUS): application to the Hupsel Brook catchment and Cabauw polder, Hydrol. Earth Syst. Sci., 18, 4007-4028.

  6. Toward the Development of a Cold Regions Regional-Scale Hydrologic Model, Final Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Hinzman, Larry D [Univ. of Alaska, Fairbanks, AK (United States); Bolton, William Robert [Univ. of Alaska, Fairbanks, AK (United States); Young-Robertson, Jessica (Cable) [Univ. of Alaska, Fairbanks, AK (United States)


    This project improves meso-scale hydrologic modeling in the boreal forest by: (1) demonstrating the importance of capturing the heterogeneity of the landscape using small scale datasets for parameterization for both small and large basins; (2) demonstrating that in drier parts of the landscape and as the boreal forest dries with climate change, modeling approaches must consider the sensitivity of simulations to soil hydraulic parameters - such as residual water content - that are usually held constant. Thus, variability / flexibility in residual water content must be considered for accurate simulation of hydrologic processes in the boreal forest; (3) demonstrating that assessing climate change impacts on boreal forest hydrology through multiple model integration must account for direct effects of climate change (temperature and precipitation), and indirect effects from climate impacts on landscape characteristics (permafrost and vegetation distribution). Simulations demonstrated that climate change will increase runoff, but will increase ET to a greater extent and result in a drying of the landscape; and (4) vegetation plays a significant role in boreal hydrologic processes in permafrost free areas that have deciduous trees. This landscape type results in a decoupling of ET and precipitation, a tight coupling of ET and temperature, low runoff, and overall soil drying.

  7. GIS-Based KW-GIUH hydrological model of semiarid catchments: The case of Faria Catchment, Palestine

    International Nuclear Information System (INIS)

    Shadeed, S.; Shaheen, H.; Jayyousi, A.


    Among the most basic challenges of hydrology are the quantitative understanding of the processes of runoff generation and prediction of flow hydrographs. Traditional techniques have been widely applied for the estimation of runoff hydrographs of gauged catchments using historical rainfall-runoff data and unit hydrographs. Such procedures are questioned as to their reliability and their application to ungauged, arid and semiarid catchments. To overcome such difficulties, the use of physically based rainfall-runoff process of Faria Catchment using the lately developed KW-GIUH. Faria catchment, located in the northeastern part of the West Bank, Palestine, is characterized as a semiarid region with annual rainfall depths ranging on average from 150 to 640 mm at both ends of the catchment. The Geographical Information System (GIS) techniques were used to shape the geomorphological features of the catchment. A GIS based KW-GIUH hydrological model was used to stimulate the rainfall-runoff process in the three sub-catchments of Faria, namely: Al-Badan, Al-Faria and Al-Malaqi. The simulated runoff hydrographs proved that the GIS-based KW-GIUH model is applicable to semiarid regions and can be used to estimate the unit hydrographs in the West Bank catchments. (author)

  8. Inferring the flood frequency distribution for an ungauged basin using a spatially distributed rainfall-runoff model

    Directory of Open Access Journals (Sweden)

    G. Moretti


    Full Text Available The estimation of the peak river flow for ungauged river sections is a topical issue in applied hydrology. Spatially distributed rainfall-runoff models can be a useful tool to this end, since they are potentially able to simulate the river flow at any location of the watershed drainage network. However, it is not fully clear to what extent these models can provide reliable simulations over a wide range of spatial scales. This issue is investigated here by applying a spatially distributed, continuous simulation rainfall-runoff model to infer the flood frequency distribution of the Riarbero River. This is an ungauged mountain creek located in northern Italy, whose drainage area is 17 km2. The hydrological model is first calibrated by using a 1-year record of hourly meteorological data and river flows observed at the outlet of the 1294 km2 wide Secchia River basin, of which the Riarbero is a tributary. The model is then validated by performing a 100-year long simulation of synthetic river flow data, which allowed us to compare the simulated and observed flood frequency distributions at the Secchia River outlet and the internal cross river section of Cavola Bridge, where the basin area is 337 km2. Finally, another simulation of hourly river flows was performed by referring to the outlet of the Riarbero River, therefore allowing us to estimate the related flood frequency distribution. The results were validated by using estimates of peak river flow obtained by applying hydrological similarity principles and a regional method. The results show that the flood flow estimated through the application of the distributed model is consistent with the estimate provided by the regional procedure as well as the behaviors of the river banks. Conversely, the method based on hydrological similarity delivers an estimate that seems to be not as reliable. The analysis highlights interesting perspectives for the application of

  9. Research on Multi Hydrological Models Applicability and Modelling Data Uncertainty Analysis for Flash Flood Simulation in Hilly Area (United States)

    Ye, L.; Wu, J.; Wang, L.; Song, T.; Ji, R.


    Flooding in small-scale watershed in hilly area is characterized by short time periods and rapid rise and recession due to the complex underlying surfaces, various climate type and strong effect of human activities. It is almost impossible for a single hydrological model to describe the variation of flooding in both time and space accurately for all the catchments in hilly area because the hydrological characteristics can vary significantly among different catchments. In this study, we compare the performance of 5 hydrological models with varying degrees of complexity for simulation of flash flood for 14 small-scale watershed in China in order to find the relationship between the applicability of the hydrological models and the catchments characteristics. Meanwhile, given the fact that the hydrological data is sparse in hilly area, the effect of precipitation data, DEM resolution and their interference on the uncertainty of flood simulation is also illustrated. In general, the results showed that the distributed hydrological model (HEC-HMS in this study) performed better than the lumped hydrological models. Xinajiang and API models had good simulation for the humid catchments when long-term and continuous rainfall data is provided. Dahuofang model can simulate the flood peak well while the runoff generation module is relatively poor. In addition, the effect of diverse modelling data on the simulations is not simply superposed, and there is a complex interaction effect among different modelling data. Overall, both the catchment hydrological characteristics and modelling data situation should be taken into consideration in order to choose the suitable hydrological model for flood simulation for small-scale catchment in hilly area.

  10. Modelling the effect of land use change on hydrological model ...

    African Journals Online (AJOL)

    Modelling the effect of land use change on hydrological model parameters via linearized calibration method in the upstream of Huaihe River Basin, China. ... is presented, based on the analysis of the problems of the objective function of the ...

  11. Findings and Challenges in Fine-Resolution Large-Scale Hydrological Modeling (United States)

    Her, Y. G.


    Fine-resolution large-scale (FL) modeling can provide the overall picture of the hydrological cycle and transport while taking into account unique local conditions in the simulation. It can also help develop water resources management plans consistent across spatial scales by describing the spatial consequences of decisions and hydrological events extensively. FL modeling is expected to be common in the near future as global-scale remotely sensed data are emerging, and computing resources have been advanced rapidly. There are several spatially distributed models available for hydrological analyses. Some of them rely on numerical methods such as finite difference/element methods (FDM/FEM), which require excessive computing resources (implicit scheme) to manipulate large matrices or small simulation time intervals (explicit scheme) to maintain the stability of the solution, to describe two-dimensional overland processes. Others make unrealistic assumptions such as constant overland flow velocity to reduce the computational loads of the simulation. Thus, simulation efficiency often comes at the expense of precision and reliability in FL modeling. Here, we introduce a new FL continuous hydrological model and its application to four watersheds in different landscapes and sizes from 3.5 km2 to 2,800 km2 at the spatial resolution of 30 m on an hourly basis. The model provided acceptable accuracy statistics in reproducing hydrological observations made in the watersheds. The modeling outputs including the maps of simulated travel time, runoff depth, soil water content, and groundwater recharge, were animated, visualizing the dynamics of hydrological processes occurring in the watersheds during and between storm events. Findings and challenges were discussed in the context of modeling efficiency, accuracy, and reproducibility, which we found can be improved by employing advanced computing techniques and hydrological understandings, by using remotely sensed hydrological

  12. Impact of vegetation dynamics on hydrological processes in a semi-arid basin by using a land surface-hydrology coupled model

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Yang; Lei, Huimin; Yang, Dawen; Huang, Maoyi; Liu, Dengfeng; Yuan, Xing


    Land surface models (LSMs) are widely used to understand the interactions between hydrological processes and vegetation dynamics, which is important for the attribution and prediction of regional hydrological variations. However, most LSMs have large uncertainties in their representations of ecohydrological processes due to deficiencies in hydrological parameterizations. In this study, the Community Land Model version 4 (CLM4) LSM was modified with an advanced runoff generation and flow routing scheme, resulting in a new land surface-hydrology coupled model, CLM-GBHM. Both models were implemented in the Wudinghe River Basin (WRB), which is a semi-arid basin located in the middle reaches of the Yellow River, China. Compared with CLM, CLM-GBHM increased the Nash Sutcliffe efficiency for daily river discharge simulation (1965–1969) from 0.03 to 0.23 and reduced the relative bias in water table depth simulations (2010–2012) from 32.4% to 13.4%. The CLM-GBHM simulations with static, remotely sensed and model-predicted vegetation conditions showed that the vegetation in the WRB began to recover in the 2000s due to the Grain for Green Program but had not reached the same level of vegetation cover as regions in natural eco-hydrological equilibrium. Compared with a simulation using remotely sensed vegetation cover, the simulation with a dynamic vegetation model that considers only climate-induced change showed a 10.3% increase in evapotranspiration, a 47.8% decrease in runoff, and a 62.7% and 71.3% deceleration in changing trend of the outlet river discharge before and after the year 2000, respectively. This result suggests that both natural and anthropogenic factors should be incorporated in dynamic vegetation models to better simulate the eco-hydrological cycle.

  13. Grid based calibration of SWAT hydrological models

    Directory of Open Access Journals (Sweden)

    D. Gorgan


    Full Text Available The calibration and execution of large hydrological models, such as SWAT (soil and water assessment tool, developed for large areas, high resolution, and huge input data, need not only quite a long execution time but also high computation resources. SWAT hydrological model supports studies and predictions of the impact of land management practices on water, sediment, and agricultural chemical yields in complex watersheds. The paper presents the gSWAT application as a web practical solution for environmental specialists to calibrate extensive hydrological models and to run scenarios, by hiding the complex control of processes and heterogeneous resources across the grid based high computation infrastructure. The paper highlights the basic functionalities of the gSWAT platform, and the features of the graphical user interface. The presentation is concerned with the development of working sessions, interactive control of calibration, direct and basic editing of parameters, process monitoring, and graphical and interactive visualization of the results. The experiments performed on different SWAT models and the obtained results argue the benefits brought by the grid parallel and distributed environment as a solution for the processing platform. All the instances of SWAT models used in the reported experiments have been developed through the enviroGRIDS project, targeting the Black Sea catchment area.

  14. Estimating runoff from ungauged catchments for reservoir water ...

    African Journals Online (AJOL)

    The Lower Middle Zambezi Basin is sandwiched between three hydropower ... This study applied a rainfall-runoff model (HEC-HMS) and GIS techniques to ... Missing data were generated using the mean value infilling method. ... A hydrological model, HEC- HMS, was used to simulate runoff from the ungauged catchments.

  15. Modelling of green roof hydrological performance for urban drainage applications

    DEFF Research Database (Denmark)

    Locatelli, Luca; Mark, Ole; Mikkelsen, Peter Steen


    from 3 different extensive sedum roofs in Denmark. These data consist of high-resolution measurements of runoff, precipitation and atmospheric variables in the period 2010–2012. The hydrological response of green roofs was quantified based on statistical analysis of the results of a 22-year (1989...... return period. Annual runoff volumes were estimated to be 43–68% of the total precipitation. The peak time delay was found to greatly vary from 0 to more than 40 min depending on the type of event, and a general decrease in the time delay was observed for increasing rainfall intensities. Furthermore...

  16. Erosivity, surface runoff, and soil erosion estimation using GIS-coupled runoff-erosion model in the Mamuaba catchment, Brazil. (United States)

    Marques da Silva, Richarde; Guimarães Santos, Celso Augusto; Carneiro de Lima Silva, Valeriano; Pereira e Silva, Leonardo


    This study evaluates erosivity, surface runoff generation, and soil erosion rates for Mamuaba catchment, sub-catchment of Gramame River basin (Brazil) by using the ArcView Soil and Water Assessment Tool (AvSWAT) model. Calibration and validation of the model was performed on monthly basis, and it could simulate surface runoff and soil erosion to a good level of accuracy. Daily rainfall data between 1969 and 1989 from six rain gauges were used, and the monthly rainfall erosivity of each station was computed for all the studied years. In order to evaluate the calibration and validation of the model, monthly runoff data between January 1978 and April 1982 from one runoff gauge were used as well. The estimated soil loss rates were also realistic when compared to what can be observed in the field and to results from previous studies around of catchment. The long-term average soil loss was estimated at 9.4 t ha(-1) year(-1); most of the area of the catchment (60%) was predicted to suffer from a low- to moderate-erosion risk (soil erosion was estimated to exceed > 12 t ha(-1) year(-1). Expectedly, estimated soil loss was significantly correlated with measured rainfall and simulated surface runoff. Based on the estimated soil loss rates, the catchment was divided into four priority categories (low, moderate, high and very high) for conservation intervention. The study demonstrates that the AvSWAT model provides a useful tool for soil erosion assessment from catchments and facilitates the planning for a sustainable land management in northeastern Brazil.

  17. Improved Ground Hydrology Calculations for Global Climate Models (GCMs): Soil Water Movement and Evapotranspiration. (United States)

    Abramopoulos, F.; Rosenzweig, C.; Choudhury, B.


    A physically based ground hydrology model is developed to improve the land-surface sensible and latent heat calculations in global climate models (GCMs). The processes of transpiration, evaporation from intercepted precipitation and dew, evaporation from bare soil, infiltration, soil water flow, and runoff are explicitly included in the model. The amount of detail in the hydrologic calculations is restricted to a level appropriate for use in a GCM, but each of the aforementioned processes is modeled on the basis of the underlying physical principles. Data from the Goddard Institute for Space Studies (GISS) GCM are used as inputs for off-line tests of the ground hydrology model in four 8° × 10° regions (Brazil, Sahel, Sahara, and India). Soil and vegetation input parameters are calculated as area-weighted means over the 8° × 10° gridhox. This compositing procedure is tested by comparing resulting hydrological quantities to ground hydrology model calculations performed on the 1° × 1° cells which comprise the 8° × 10° gridbox. Results show that the compositing procedure works well except in the Sahel where lower soil water levels and a heterogeneous land surface produce more variability in hydrological quantities, indicating that a resolution better than 8° × 10° is needed for that region. Modeled annual and diurnal hydrological cycles compare well with observations for Brazil, where real world data are available. The sensitivity of the ground hydrology model to several of its input parameters was tested; it was found to be most sensitive to the fraction of land covered by vegetation and least sensitive to the soil hydraulic conductivity and matric potential.

  18. Effect of Baseflow Separation on Uncertainty of Hydrological Modeling in the Xinanjiang Model

    Directory of Open Access Journals (Sweden)

    Kairong Lin


    Full Text Available Based on the idea of inputting more available useful information for evaluation to gain less uncertainty, this study focuses on how well the uncertainty can be reduced by considering the baseflow estimation information obtained from the smoothed minima method (SMM. The Xinanjiang model and the generalized likelihood uncertainty estimation (GLUE method with the shuffled complex evolution Metropolis (SCEM-UA sampling algorithm were used for hydrological modeling and uncertainty analysis, respectively. The Jiangkou basin, located in the upper of the Hanjiang River, was selected as case study. It was found that the number and standard deviation of behavioral parameter sets both decreased when the threshold value for the baseflow efficiency index increased, and the high Nash-Sutcliffe efficiency coefficients correspond well with the high baseflow efficiency coefficients. The results also showed that uncertainty interval width decreased significantly, while containing ratio did not decrease by much and the simulated runoff with the behavioral parameter sets can fit better to the observed runoff, when threshold for the baseflow efficiency index was taken into consideration. These implied that using the baseflow estimation information can reduce the uncertainty in hydrological modeling to some degree and gain more reasonable prediction bounds.

  19. Development of a Coupled Hydrological/Sediment Yield Model for a Watershed at Regional Level (United States)

    Rajbhandaril, Narayan; Crosson, William; Tsegaye, Teferi; Coleman, Tommy; Liu, Yaping; Soman, Vishwas


    Development of a hydrologic model for the study of environmental conservation requires a comprehensive understanding of individual-storm affecting hydrologic and sedimentologic processes. The hydrologic models that we are currently coupling are the Simulator for Hydrology and Energy Exchange at the Land Surface (SHEELS) and the Distributed Runoff Model (DRUM). SHEELS runs continuously to estimate surface energy fluxes and sub-surface soil water fluxes, while DRUM operates during and following precipitation events to predict surface runoff and peak flow through channel routing. The lateral re-distribution of surface water determined by DRUM is passed to SHEELS, which then adjusts soil water contents throughout the profile. The model SHEELS is well documented in Smith et al. (1993) and Laymen and Crosson (1995). The model DRUM is well documented in Vieux et al. (1990) and Vieux and Gauer (1994). The coupled hydrologic model, SHEELS/DRUM, does not simulate sedimentologic processes. The simulation of the sedimentologic process is important for environmental conservation planning and management. Therefore, we attempted to develop a conceptual frame work for coupling a sediment yield model with SHEELS/DRUM to estimate individual-storm sediment yield from a watershed at a regional level. The sediment yield model that will be used for this study is the Universal Soil Loss Equation (USLE) with some modifications to enable the model to predict individual-storm sediment yield. The predicted sediment yield does not include wind erosion and erosion caused by irrigation and snow melt. Units used for this study are those given by Foster et al. (1981) for SI units.

  20. Hydrologic conditions and water quality of rainfall and storm runoff for two agricultural areas of the Oso Creek watershed, Nueces County, Texas, 2005-08 (United States)

    Ockerman, Darwin J.; Fernandez, Carlos J.


    The U.S. Geological Survey, in cooperation with the Texas State Soil and Water Conservation Board, Coastal Bend Bays and Estuaries Program, and Texas AgriLife Research and Extension Center at Corpus Christi, studied hydrologic conditions and water quality of rainfall and storm runoff of two primarily agricultural subwatersheds of the Oso Creek watershed in Nueces County, Texas. One area, the upper West Oso Creek subwatershed, is about 5,145 acres. The other area, a subwatershed drained by an unnamed tributary to Oso Creek (hereinafter, Oso Creek tributary), is about 5,287 acres. Rainfall and runoff (streamflow) were continuously monitored at the outlets of the two subwatersheds during the study period October 2005-September 2008. Seventeen rainfall samples were collected and analyzed for nutrients and major inorganic ions. Twenty-four composite runoff water-quality samples (12 at West Oso Creek, 12 at Oso Creek tributary) were collected and analyzed for nutrients, major inorganic ions, and pesticides. Twenty-six discrete suspended-sediment samples (12 West Oso Creek, 14 Oso Creek tributary) and 17 bacteria samples (10 West Oso Creek, 7 Oso Creek tributary) were collected and analyzed. These data were used to estimate, for selected constituents, rainfall deposition to and runoff loads and yields from the two subwatersheds. Quantities of fertilizers and pesticides applied in the two subwatersheds were compared with quantities of nutrients and pesticides in rainfall and runoff. For the study period, total rainfall was greater than average. Most of the runoff from the two subwatersheds occurred in response to a few specific storm periods. The West Oso Creek subwatershed produced more runoff during the study period than the Oso Creek tributary subwatershed, 13.95 inches compared with 9.45 inches. Runoff response was quicker and peak flows were higher in the West Oso Creek subwatershed than in the Oso Creek tributary subwatershed. Total nitrogen runoff yield for the 3

  1. Hydrologic conditions and quality of rainfall and storm runoff for two agricultural areas of the Oso Creek Watershed, Nueces County, Texas, 2005-07 (United States)

    Ockerman, Darwin J.


    The U.S. Geological Survey, in cooperation with the Texas State Soil and Water Conservation Board, Coastal Bend Bays and Estuaries Program, and Texas AgriLife Research and Extension Center at Corpus Christi, studied hydrologic conditions and quality of rainfall and storm runoff of two (primarily) agricultural areas (subwatersheds) of the Oso Creek watershed in Nueces County, Texas. One area, the upper West Oso Creek subwatershed, is 5,145 acres. The other area, a subwatershed drained by an unnamed Oso Creek tributary (hereinafter, Oso Creek tributary), is 5,287 acres. Rainfall and runoff (streamflow) were continuously monitored at the outlets of the two subwatersheds during October 2005-September 2007. Fourteen rainfall samples were collected and analyzed for nutrients and major inorganic ions. Nineteen composite runoff samples (10 West Oso Creek, nine Oso Creek tributary) were collected and analyzed for nutrients, major inorganic ions, and pesticides. Twenty-two discrete suspended-sediment samples (10 West Oso Creek, 12 Oso Creek tributary) and 13 bacteria samples (eight West Oso Creek, five Oso Creek tributary) were collected and analyzed. These data were used to estimate, for selected constituents, rainfall deposition to and runoff loads and yields from the study subwatersheds. Quantities of fertilizers and pesticides applied in the subwatersheds were compared with quantities of nutrients and pesticides in rainfall and runoff. For the study period, total rainfall was greater than average. Most of the runoff at both subwatershed outlet sites occurred in response to a few specific storm periods. The West Oso Creek subwatershed produced more runoff during the study period than the Oso Creek tributary subwatershed, 10.83 inches compared with 7.28 inches. Runoff response was quicker and peak flows were higher in the West Oso Creek subwatershed than in the Oso Creek tributary subwatershed. Total nitrogen runoff yield for the 2-year study period averaged 2.61 pounds

  2. Intercomparison of hydrological model structures and calibration approaches in climate scenario impact projections (United States)

    Vansteenkiste, Thomas; Tavakoli, Mohsen; Ntegeka, Victor; De Smedt, Florimond; Batelaan, Okke; Pereira, Fernando; Willems, Patrick


    The objective of this paper is to investigate the effects of hydrological model structure and calibration on climate change impact results in hydrology. The uncertainty in the hydrological impact results is assessed by the relative change in runoff volumes and peak and low flow extremes from historical and future climate conditions. The effect of the hydrological model structure is examined through the use of five hydrological models with different spatial resolutions and process descriptions. These were applied to a medium sized catchment in Belgium. The models vary from the lumped conceptual NAM, PDM and VHM models over the intermediate detailed and distributed WetSpa model to the fully distributed MIKE SHE model. The latter model accounts for the 3D groundwater processes and interacts bi-directionally with a full hydrodynamic MIKE 11 river model. After careful and manual calibration of these models, accounting for the accuracy of the peak and low flow extremes and runoff subflows, and the changes in these extremes for changing rainfall conditions, the five models respond in a similar way to the climate scenarios over Belgium. Future projections on peak flows are highly uncertain with expected increases as well as decreases depending on the climate scenario. The projections on future low flows are more uniform; low flows decrease (up to 60%) for all models and for all climate scenarios. However, the uncertainties in the impact projections are high, mainly in the dry season. With respect to the model structural uncertainty, the PDM model simulates significantly higher runoff peak flows under future wet scenarios, which is explained by its specific model structure. For the low flow extremes, the MIKE SHE model projects significantly lower low flows in dry scenario conditions in comparison to the other models, probably due to its large difference in process descriptions for the groundwater component, the groundwater-river interactions. The effect of the model

  3. Runoff Modelling in Urban Storm Drainage by Neural Networks

    DEFF Research Database (Denmark)

    Rasmussen, Michael R.; Brorsen, Michael; Schaarup-Jensen, Kjeld


    A neural network is used to simulate folw and water levels in a sewer system. The calibration of th neural network is based on a few measured events and the network is validated against measureed events as well as flow simulated with the MOUSE model (Lindberg and Joergensen, 1986). The neural...... network is used to compute flow or water level at selected points in the sewer system, and to forecast the flow from a small residential area. The main advantages of the neural network are the build-in self calibration procedure and high speed performance, but the neural network cannot be used to extract...... knowledge of the runoff process. The neural network was found to simulate 150 times faster than e.g. the MOUSE model....

  4. ANN Model-Based Simulation of the Runoff Variation in Response to Climate Change on the Qinghai-Tibet Plateau, China

    Directory of Open Access Journals (Sweden)

    Chang Juan


    Full Text Available Precisely quantitative assessments of stream flow response to climatic change and permafrost thawing are highly challenging and urgent in cold regions. However, due to the notably harsh environmental conditions, there is little field monitoring data of runoff in permafrost regions, which has limited the development of physically based models in these regions. To identify the impacts of climate change in the runoff process in the Three-River Headwater Region (TRHR on the Qinghai-Tibet Plateau, two artificial neural network (ANN models, one with three input variables (previous runoff, air temperature, and precipitation and another with two input variables (air temperature and precipitation only, were developed to simulate and predict the runoff variation in the TRHR. The results show that the three-input variable ANN model has a superior real-time prediction capability and performs well in the simulation and forecasting of the runoff variation in the TRHR. Under the different scenarios conditions, the forecasting results of ANN model indicated that climate change has a great effect on the runoff processes in the TRHR. The results of this study are of practical significance for water resources management and the evaluation of the impacts of climatic change on the hydrological regime in long-term considerations.

  5. Surface and near-surface hydrological model of Olkiluoto island

    International Nuclear Information System (INIS)

    Karvonen, T.


    The aim of the study was to develop a 3D-model that calculates the overall water balance components of Olkiluoto Island in the present-day condition utilizing the existing extensive data sets available. The model links the unsaturated and saturated soil water in the overburden and groundwater in bedrock to a continuous pressure system. The parameterization of land use and vegetation was done in such a way that the model can later on be used for description of the past evolution of the overburden hydrology at the site and overburden's hydrological evolution in the future. Measured groundwater level in overburden tubes, pressure heads in shallow bedrock holes, snow depth, soil temperature, frost depth and discharge measurements were used in assessing the performance of the models in the calibration period (01.05.2001- 31.12.2005). Computed groundwater level variation can be characterized by variables ΔH MEAS and ΔH COMP , which are the difference between maximum and minimum measured and computed groundwater level value during the calibration period. Average ΔH MEAS for all tubes located in fine-textured till soil was 1.99 m and the corresponding computed value ΔH COMP was 1.83 m. Average ΔH MEAS for all tubes located in sandy till soil was 2.12 m and the corresponding computed value ΔH COMP was 1.93 m. The computed results indicate that in future studies it is necessary to divide the two most important soil types into several subclasses. In the present study the uncertainty and sensitivity analysis was carried out through a parameter uncertainty framework known as GLUE. According to the uncertainty analysis the average yearly runoff was around 175 mm a -1 and 50 % confidence limits were 155 and 195 mm a -1 . Measured average yearly runoff during the calibration period was 190 mm a -1 . Average yearly evapotranspiration estimate was 310 mm a -1 and the 50 % confidence limits were 290 and 330 mm a -1 . Average value for recharge through the bedrock system was 1

  6. Improved rainfall-runoff approach using lumped and conceptual modelling


    Durán Barroso, Pablo


    Rainfall-runoff quantification is one of the most important tasks in both engineering and watershed management as it allows to identify, forecast and explain watershed response. The division of the rainfall depth between infiltration and runoff has a high level of complexity due to the spatial heterogeneity in real catchments and the temporal precipitation variability, which provide scale effects on the overall runoff volumes. The Natural Resources Conservation Service Curve Number (NRCS CN) ...

  7. Proving the ecosystem value through hydrological modelling

    International Nuclear Information System (INIS)

    Dorner, W; Spachinger, K; Metzka, R; Porter, M


    Ecosystems provide valuable functions. Also natural floodplains and river structures offer different types of ecosystem functions such as habitat function, recreational area and natural detention. From an economic stand point the loss (or rehabilitation) of these natural systems and their provided natural services can be valued as a damage (or benefit). Consequently these natural goods and services must be economically valued in project assessments e.g. cost-benefit-analysis or cost comparison. Especially in smaller catchments and river systems exists significant evidence that natural flood detention reduces flood risk and contributes to flood protection. Several research projects evaluated the mitigating effect of land use, river training and the loss of natural flood plains on development, peak and volume of floods. The presented project analysis the hypothesis that ignoring natural detention and hydrological ecosystem services could result in economically inefficient solutions for flood protection and mitigation. In test areas, subcatchments of the Danube in Germany, a combination of hydrological and hydrodynamic models with economic evaluation techniques was applied. Different forms of land use, river structure and flood protection measures were assed and compared from a hydrological and economic point of view. A hydrodynamic model was used to simulate flows to assess the extent of flood affected areas and damages to buildings and infrastructure as well as to investigate the impacts of levees and river structure on a local scale. These model results provided the basis for an economic assessment. Different economic valuation techniques, such as flood damage functions, cost comparison method and substation-approach were used to compare the outcomes of different hydrological scenarios from an economic point of view and value the ecosystem service. The results give significant evidence that natural detention must be evaluated as part of flood mitigation projects

  8. The Value of Hydrograph Partitioning Curves for Calibrating Hydrological Models in Glacierized Basins (United States)

    He, Zhihua; Vorogushyn, Sergiy; Unger-Shayesteh, Katy; Gafurov, Abror; Kalashnikova, Olga; Omorova, Elvira; Merz, Bruno


    This study refines the method for calibrating a glacio-hydrological model based on Hydrograph Partitioning Curves (HPCs), and evaluates its value in comparison to multidata set optimization approaches which use glacier mass balance, satellite snow cover images, and discharge. The HPCs are extracted from the observed flow hydrograph using catchment precipitation and temperature gradients. They indicate the periods when the various runoff processes, such as glacier melt or snow melt, dominate the basin hydrograph. The annual cumulative curve of the difference between average daily temperature and melt threshold temperature over the basin, as well as the annual cumulative curve of average daily snowfall on the glacierized areas are used to identify the starting and end dates of snow and glacier ablation periods. Model parameters characterizing different runoff processes are calibrated on different HPCs in a stepwise and iterative way. Results show that the HPC-based method (1) delivers model-internal consistency comparably to the tri-data set calibration method; (2) improves the stability of calibrated parameter values across various calibration periods; and (3) estimates the contributions of runoff components similarly to the tri-data set calibration method. Our findings indicate the potential of the HPC-based approach as an alternative for hydrological model calibration in glacierized basins where other calibration data sets than discharge are often not available or very costly to obtain.

  9. Effects of Energy Development on Hydrologic Response: a Multi-Scale Modeling Approach (United States)

    Vithanage, J.; Miller, S. N.; Berendsen, M.; Caffrey, P. A.; Bellis, J.; Schuler, R.


    Potential impacts of energy development on surface hydrology in western Wyoming were assessed using spatially explicit hydrological models. Currently there are proposals to develop over 800 new oil and gas wells in the 218,000 acre-sized LaBarge development area that abuts the Wyoming Range and contributes runoff to the Upper Green River (approximately 1 well per 2 square miles). The intensity of development raises questions relating to impacts on the hydrological cycle, water quality, erosion and sedimentation. We developed landscape management scenarios relating to current disturbance and proposed actions put forth by the energy operators to provide inputs to spatially explicit hydrologic models. Differences between the scenarios were derived to quantify the changes and analyse the impacts to the project area. To perform this research, the Automated Watershed Assessment Tool (AGWA) was enhanced by adding different management practices suitable for the region, including the reclamation of disturbed lands over time. The AGWA interface was used to parameterize and execute two hydrologic models: the Soil and Water Assessment Tool (SWAT) and the KINEmatic Runoff and EROSion model (KINEROS2). We used freely available data including SSURGO soils, Multi-Resolution Landscape Consortium (MRLC) land cover, and 10m resolution terrain data to derive suitable initial parameters for the models. The SWAT model was manually calibrated using an innovative method at the monthly level; observed daily rainfall and temperature inputs were used as a function of elevation considering the local climate effects. Higher temporal calibration was not possible due to a lack of adequate climate and runoff data. The Nash Sutcliff efficiencies of two calibrated watersheds at the monthly scale exceeded 0.95. Results of the AGWA/SWAT simulations indicate a range of sensitivity to disturbance due to heterogeneous soil and terrain characteristics over a simulated time period of 10 years. The KINEROS

  10. Vegetation root zone storage and rooting depth, derived from local calibration of a global hydrological model (United States)

    van der Ent, R.; Van Beek, R.; Sutanudjaja, E.; Wang-Erlandsson, L.; Hessels, T.; Bastiaanssen, W.; Bierkens, M. F.


    The storage and dynamics of water in the root zone control many important hydrological processes such as saturation excess overland flow, interflow, recharge, capillary rise, soil evaporation and transpiration. These processes are parameterized in hydrological models or land-surface schemes and the effect on runoff prediction can be large. Root zone parameters in global hydrological models are very uncertain as they cannot be measured directly at the scale on which these models operate. In this paper we calibrate the global hydrological model PCR-GLOBWB using a state-of-the-art ensemble of evaporation fields derived by solving the energy balance for satellite observations. We focus our calibration on the root zone parameters of PCR-GLOBWB and derive spatial patterns of maximum root zone storage. We find these patterns to correspond well with previous research. The parameterization of our model allows for the conversion of maximum root zone storage to root zone depth and we find that these correspond quite well to the point observations where available. We conclude that climate and soil type should be taken into account when regionalizing measured root depth for a certain vegetation type. We equally find that using evaporation rather than discharge better allows for local adjustment of root zone parameters within a basin and thus provides orthogonal data to diagnose and optimize hydrological models and land surface schemes.

  11. Derived flood frequency analysis using different model calibration strategies based on various types of rainfall-runoff data - a comparison (United States)

    Haberlandt, U.; Radtke, I.


    Derived flood frequency analysis allows to estimate design floods with hydrological modelling for poorly observed basins considering change and taking into account flood protection measures. There are several possible choices about precipitation input, discharge output and consequently regarding the calibration of the model. The objective of this study is to compare different calibration strategies for a hydrological model considering various types of rainfall input and runoff output data sets. Event based and continuous observed hourly rainfall data as well as disaggregated daily rainfall and stochastically generated hourly rainfall data are used as input for the model. As output short hourly and longer daily continuous flow time series as well as probability distributions of annual maximum peak flow series are employed. The performance of the strategies is evaluated using the obtained different model parameter sets for continuous simulation of discharge in an independent validation period and by comparing the model derived flood frequency distributions with the observed one. The investigations are carried out for three mesoscale catchments in Northern Germany with the hydrological model HEC-HMS. The results show that: (i) the same type of precipitation input data should be used for calibration and application of the hydrological model, (ii) a model calibrated using a small sample of extreme values works quite well for the simulation of continuous time series with moderate length but not vice versa, (iii) the best performance with small uncertainty is obtained when stochastic precipitation data and the observed probability distribution of peak flows are used for model calibration. This outcome suggests to calibrate a hydrological model directly on probability distributions of observed peak flows using stochastic rainfall as input if its purpose is the application for derived flood frequency analysis.

  12. Rainfall-runoff modeling in the Turkey River using numerical and ...

    African Journals Online (AJOL)

    Modeling rainfall-runoff relationships in a watershed have an important role in water resources engineering. Researchers have used numerical models for modeling rainfall-runoff ... Also, by using SPSS software, the regression equations were developed and then the best equation was selected from regression analysis.

  13. Runoff Simulation in the Upper Reaches of Heihe River Basin Based on the RIEMS–SWAT Model

    Directory of Open Access Journals (Sweden)

    Songbing Zou


    Full Text Available In the distributed hydrological simulations for complex mountain areas, large amounts of meteorological input parameters with high spatial and temporal resolutions are necessary. However, the extreme scarcity and uneven distribution of the traditional meteorological observation stations in cold and arid regions of Northwest China makes it very difficult in meeting the requirements of hydrological simulations. Alternatively, regional climate models (RCMs, which can provide a variety of distributed meteorological data with high temporal and spatial resolution, have become an effective solution to improve hydrological simulation accuracy and to further study water resource responses to human activities and global climate change. In this study, abundant and evenly distributed virtual weather stations in the upper reaches of the Heihe River Basin (HRB of Northwest China were built for the optimization of the input data, and thus a regional integrated environmental model system (RIEMS based on RCM and a distributed hydrological model of soil and water assessment tool (SWAT were integrated as a coupled climate–hydrological RIEMS-SWAT model, which was applied to simulate monthly runoff from 1995 to 2010 in the region. Results show that the simulated and observed values are close; Nash–Sutcliffe efficiency is higher than 0.65; determination coefficient (R2 values are higher than 0.70; percent bias is controlled within ±20%; and root-mean-square-error-observation standard deviation ratio is less than 0.65. These results indicate that the coupled model can present basin hydrological processes properly, and provide scientific support for prediction and management of basin water resources.

  14. Assimilating satellite soil moisture into rainfall-runoff modelling: towards a systematic study (United States)

    Massari, Christian; Tarpanelli, Angelica; Brocca, Luca; Moramarco, Tommaso


    Soil moisture is the main factor for the repartition of the mass and energy fluxes between the land surface and the atmosphere thus playing a fundamental role in the hydrological cycle. Indeed, soil moisture represents the initial condition of rainfall-runoff modelling that determines the flood response of a catchment. Different initial soil moisture conditions can discriminate between catastrophic and minor effects of a given rainfall event. Therefore, improving the estimation of initial soil moisture conditions will reduce uncertainties in early warning flood forecasting models addressing the mitigation of flood hazard. In recent years, satellite soil moisture products have become available with fine spatial-temporal resolution and a good accuracy. Therefore, a number of studies have been published in which the impact of the assimilation of satellite soil moisture data into rainfall-runoff modelling is investigated. Unfortunately, data assimilation involves a series of assumptions and choices that significantly affect the final result. Given a satellite soil moisture observation, a rainfall-runoff model and a data assimilation technique, an improvement or a deterioration of discharge predictions can be obtained depending on the choices made in the data assimilation procedure. Consequently, large discrepancies have been obtained in the studies published so far likely due to the differences in the implementation of the data assimilation technique. On this basis, a comprehensive and robust procedure for the assimilation of satellite soil moisture data into rainfall-runoff modelling is developed here and applied to six subcatchment of the Upper Tiber River Basin for which high-quality hydrometeorological hourly observations are available in the period 1989-2013. The satellite soil moisture product used in this study is obtained from the Advanced SCATterometer (ASCAT) onboard Metop-A satellite and it is available since 2007. The MISDc ("Modello Idrologico Semi

  15. Modelling rainfall runoff relations using HEC-HMS in a semi-arid region: Case study in Ain Sefra watershed, Ksour Mountains (SW Algeria)


    Derdour Abdessamed; Bouanani Abderrazak; Babahamed Kamila


    Ain Sefra is one of the Algerian cities that had been experienced several devastating floods during the past 100 years. The purpose of this study is to simulate runoff in the semi-arid region of Ain Sefra watershed through the employing of the Hydrologic Engineering Center – Hydrologic Modelling System (HEC-HMS). In this paper, the frequency storm is used for the meteorological model, the Soil Conservation Service – curve number (SCS-CN) is selected to calculate the loss rate and Soil Conserv...

  16. The hierarchy of controls on snowmelt-runoff generation over seasonally-frozen hillslopes


    Coles, Anna E.; Appels, Willemijn M.; McConkey, Brian G.; McDonnell, Jeffrey J.


    Understanding and modeling snowmelt-runoff generation in seasonally-frozen regions is a major challenge in hydrology. Partly, this is because the controls on hillslope-scale snowmelt-runoff generation are potentially extensive and their hierarchy is poorly understood. Understanding the relative importance of controls (e.g. topography, vegetation, land use, soil characteristics, and precipitation dynamics) on runoff response is necessary for model development, spatial extrapolation, and runoff...

  17. Modelling water use in global hydrological models: review, challenges and directions (United States)

    Bierkens, M. F.; de Graaf, I.; Wada, Y.; Wanders, N.; Van Beek, L. P.


    During the late 1980s and early 1990s, awareness of the shortage of global water resources lead to the first detailed global water resources assessments using regional statistics of water use and observations of meteorological and hydrological variables. Shortly thereafter, the first macroscale hydrological models (MHM) appeared. In these models, blue water (i.e., surface water and renewable groundwater) availability was calculated by accumulating runoff over a stream network and comparing it with population densities or with estimated water demand for agriculture, industry and households. In this talk we review the evolution of human impact modelling in global land models with a focus on global water resources, touching upon developments of the last 15 years: i.e. calculating human water scarcity; estimating groundwater depletion; adding dams and reservoirs; fully integrating water use (demand, withdrawal, consumption, return flow) in the hydrology; simulating the effects of land use change. We show example studies for each of these steps. We identify We identify major challenges that hamper the further development of integrated water resources modelling. Examples of these are: 1) simulating reservoir operations; 2) including local infrastructure and redistribution; 3) using the correct allocations rules; 4) projecting future water demand and water use. For each of these challenges we signify promising directions for further research.

  18. Approximating uncertainty of annual runoff and reservoir yield using stochastic replicates of global climate model data (United States)

    Peel, M. C.; Srikanthan, R.; McMahon, T. A.; Karoly, D. J.


    Two key sources of uncertainty in projections of future runoff for climate change impact assessments are uncertainty between global climate models (GCMs) and within a GCM. Within-GCM uncertainty is the variability in GCM output that occurs when running a scenario multiple times but each run has slightly different, but equally plausible, initial conditions. The limited number of runs available for each GCM and scenario combination within the Coupled Model Intercomparison Project phase 3 (CMIP3) and phase 5 (CMIP5) data sets, limits the assessment of within-GCM uncertainty. In this second of two companion papers, the primary aim is to present a proof-of-concept approximation of within-GCM uncertainty for monthly precipitation and temperature projections and to assess the impact of within-GCM uncertainty on modelled runoff for climate change impact assessments. A secondary aim is to assess the impact of between-GCM uncertainty on modelled runoff. Here we approximate within-GCM uncertainty by developing non-stationary stochastic replicates of GCM monthly precipitation and temperature data. These replicates are input to an off-line hydrologic model to assess the impact of within-GCM uncertainty on projected annual runoff and reservoir yield. We adopt stochastic replicates of available GCM runs to approximate within-GCM uncertainty because large ensembles, hundreds of runs, for a given GCM and scenario are unavailable, other than the data set for the Hadley Centre GCM. To date within-GCM uncertainty has received little attention in the hydrologic climate change impact literature and this analysis provides an approximation of the uncertainty in projected runoff, and reservoir yield, due to within- and between-GCM uncertainty of precipitation and temperature projections. In the companion paper, McMahon et al. (2015) sought to reduce between-GCM uncertainty by removing poorly performing GCMs, resulting in a selection of five better performing GCMs from

  19. Robust estimation of hydrological model parameters

    Directory of Open Access Journals (Sweden)

    A. Bárdossy


    Full Text Available The estimation of hydrological model parameters is a challenging task. With increasing capacity of computational power several complex optimization algorithms have emerged, but none of the algorithms gives a unique and very best parameter vector. The parameters of fitted hydrological models depend upon the input data. The quality of input data cannot be assured as there may be measurement errors for both input and state variables. In this study a methodology has been developed to find a set of robust parameter vectors for a hydrological model. To see the effect of observational error on parameters, stochastically generated synthetic measurement errors were applied to observed discharge and temperature data. With this modified data, the model was calibrated and the effect of measurement errors on parameters was analysed. It was found that the measurement errors have a significant effect on the best performing parameter vector. The erroneous data led to very different optimal parameter vectors. To overcome this problem and to find a set of robust parameter vectors, a geometrical approach based on Tukey's half space depth was used. The depth of the set of N randomly generated parameters was calculated with respect to the set with the best model performance (Nash-Sutclife efficiency was used for this study for each parameter vector. Based on the depth of parameter vectors, one can find a set of robust parameter vectors. The results show that the parameters chosen according to the above criteria have low sensitivity and perform well when transfered to a different time period. The method is demonstrated on the upper Neckar catchment in Germany. The conceptual HBV model was used for this study.

  20. Improved Hydrology over Peatlands in a Global Land Modeling System (United States)

    Bechtold, M.; Delannoy, G.; Reichle, R.; Koster, R.; Mahanama, S.; Roose, Dirk


    Peatlands of the Northern Hemisphere represent an important carbon pool that mainly accumulated since the last ice age under permanently wet conditions in specific geological and climatic settings. The carbon balance of peatlands is closely coupled to water table dynamics. Consequently, the future carbon balance over peatlands is strongly dependent on how hydrology in peatlands will react to changing boundary conditions, e.g. due to climate change or regional water level drawdown of connected aquifers or streams. Global land surface modeling over organic-rich regions can provide valuable global-scale insights on where and how peatlands are in transition due to changing boundary conditions. However, the current global land surface models are not able to reproduce typical hydrological dynamics in peatlands well. We implemented specific structural and parametric changes to account for key hydrological characteristics of peatlands into NASA's GEOS-5 Catchment Land Surface Model (CLSM, Koster et al. 2000). The main modifications pertain to the modeling of partial inundation, and the definition of peatland-specific runoff and evapotranspiration schemes. We ran a set of simulations on a high performance cluster using different CLSM configurations and validated the results with a newly compiled global in-situ dataset of water table depths in peatlands. The results demonstrate that an update of soil hydraulic properties for peat soils alone does not improve the performance of CLSM over peatlands. However, structural model changes for peatlands are able to improve the skill metrics for water table depth. The validation results for the water table depth indicate a reduction of the bias from 2.5 to 0.2 m, and an improvement of the temporal correlation coefficient from 0.5 to 0.65, and from 0.4 to 0.55 for the anomalies. Our validation data set includes both bogs (rain-fed) and fens (ground and/or surface water influence) and reveals that the metrics improved less for fens. In

  1. Improving the Xin'anjiang hydrological model based on mass–energy balance

    Directory of Open Access Journals (Sweden)

    Y.-H. Fang


    Full Text Available Conceptual hydrological models are preferable for real-time flood forecasting, among which the Xin'anjiang (XAJ model has been widely applied in humid and semi-humid regions of China. Although the relatively simple mass balance scheme ensures a good performance of runoff simulation during flood events, the model still has some defects. Previous studies have confirmed the importance of evapotranspiration (ET and soil moisture content (SMC in runoff simulation. In order to add more constraints to the original XAJ model, an energy balance scheme suitable for the XAJ model was developed and coupled with the original mass balance scheme of the XAJ model. The detailed parameterizations of the improved model, XAJ-EB, are presented in the first part of this paper. XAJ-EB employs various meteorological forcing and remote sensing data as input, simulating ET and runoff yield using a more physically based mass–energy balance scheme. In particular, the energy balance is solved by determining the representative equilibrium temperature (RET, which is comparable to land surface temperature (LST. The XAJ-EB was evaluated in the Lushui catchment situated in the middle reach of the Yangtze River basin for the period between 2004 and 2007. Validation using ground-measured runoff data proves that the XAJ-EB is capable of reproducing runoff comparable to the original XAJ model. Additionally, RET simulated by XAJ-EB agreed well with moderate resolution imaging spectroradiometer (MODIS-retrieved LST, which further confirms that the model is able to simulate the mass–energy balance since LST reflects the interactions among various processes. The validation results prove that the XAJ-EB model has superior performance compared with the XAJ model and also extends its applicability.

  2. Impact of the calibration period on the conceptual rainfall-runoff model parameter estimates (United States)

    Todorovic, Andrijana; Plavsic, Jasna


    A conceptual rainfall-runoff model is defined by its structure and parameters, which are commonly inferred through model calibration. Parameter estimates depend on objective function(s), optimisation method, and calibration period. Model calibration over different periods may result in dissimilar parameter estimates, while model efficiency decreases outside calibration period. Problem of model (parameter) transferability, which conditions reliability of hydrologic simulations, has been investigated for decades. In this paper, dependence of the parameter estimates and model performance on calibration period is analysed. The main question that is addressed is: are there any changes in optimised parameters and model efficiency that can be linked to the changes in hydrologic or meteorological variables (flow, precipitation and temperature)? Conceptual, semi-distributed HBV-light model is calibrated over five-year periods shifted by a year (sliding time windows). Length of the calibration periods is selected to enable identification of all parameters. One water year of model warm-up precedes every simulation, which starts with the beginning of a water year. The model is calibrated using the built-in GAP optimisation algorithm. The objective function used for calibration is composed of Nash-Sutcliffe coefficient for flows and logarithms of flows, and volumetric error, all of which participate in the composite objective function with approximately equal weights. Same prior parameter ranges are used in all simulations. The model is calibrated against flows observed at the Slovac stream gauge on the Kolubara River in Serbia (records from 1954 to 2013). There are no trends in precipitation nor in flows, however, there is a statistically significant increasing trend in temperatures at this catchment. Parameter variability across the calibration periods is quantified in terms of standard deviations of normalised parameters, enabling detection of the most variable parameters

  3. An integrated crop and hydrologic modeling system to estimate hydrologic impacts of crop irrigation demands (United States)

    R.T. McNider; C. Handyside; K. Doty; W.L. Ellenburg; J.F. Cruise; J.R. Christy; D. Moss; V. Sharda; G. Hoogenboom; Peter Caldwell


    The present paper discusses a coupled gridded crop modeling and hydrologic modeling system that can examine the benefits of irrigation and costs of irrigation and the coincident impact of the irrigation water withdrawals on surface water hydrology. The system is applied to the Southeastern U.S. The system tools to be discussed include a gridded version (GriDSSAT) of...

  4. Process-based interpretation of conceptual hydrological model performance using a multinational catchment set (United States)

    Poncelet, Carine; Merz, Ralf; Merz, Bruno; Parajka, Juraj; Oudin, Ludovic; Andréassian, Vazken; Perrin, Charles


    Most of previous assessments of hydrologic model performance are fragmented, based on small number of catchments, different methods or time periods and do not link the results to landscape or climate characteristics. This study uses large-sample hydrology to identify major catchment controls on daily runoff simulations. It is based on a conceptual lumped hydrological model (GR6J), a collection of 29 catchment characteristics, a multinational set of 1103 catchments located in Austria, France, and Germany and four runoff model efficiency criteria. Two analyses are conducted to assess how features and criteria are linked: (i) a one-dimensional analysis based on the Kruskal-Wallis test and (ii) a multidimensional analysis based on regression trees and investigating the interplay between features. The catchment features most affecting model performance are the flashiness of precipitation and streamflow (computed as the ratio of absolute day-to-day fluctuations by the total amount in a year), the seasonality of evaporation, the catchment area, and the catchment aridity. Nonflashy, nonseasonal, large, and nonarid catchments show the best performance for all the tested criteria. We argue that this higher performance is due to fewer nonlinear responses (higher correlation between precipitation and streamflow) and lower input and output variability for such catchments. Finally, we show that, compared to national sets, multinational sets increase results transferability because they explore a wider range of hydroclimatic conditions.

  5. A Smallholder Socio-hydrological Modelling Framework (United States)

    Pande, S.; Savenije, H.; Rathore, P.


    Small holders are farmers who own less than 2 ha of farmland. They often have low productivity and thus remain at subsistence level. A fact that nearly 80% of Indian farmers are smallholders, who merely own a third of total farmlands and belong to the poorest quartile, but produce nearly 40% of countries foodgrains underlines the importance of understanding the socio-hydrology of a small holder. We present a framework to understand the socio-hydrological system dynamics of a small holder. It couples the dynamics of 6 main variables that are most relevant at the scale of a small holder: local storage (soil moisture and other water storage), capital, knowledge, livestock production, soil fertility and grass biomass production. The model incorporates rule-based adaptation mechanisms (for example: adjusting expenditures on food and fertilizers, selling livestocks etc.) of small holders when they face adverse socio-hydrological conditions, such as low annual rainfall, higher intra-annual variability in rainfall or variability in agricultural prices. It allows us to study sustainability of small holder farming systems under various settings. We apply the framework to understand the socio-hydrology of small holders in Aurangabad, Maharashtra, India. This district has witnessed suicides of many sugarcane farmers who could not extricate themselves out of the debt trap. These farmers lack irrigation and are susceptible to fluctuating sugar prices and intra-annual hydroclimatic variability. This presentation discusses two aspects in particular: whether government interventions to absolve the debt of farmers is enough and what is the value of investing in local storages that can buffer intra-annual variability in rainfall and strengthening the safety-nets either by creating opportunities for alternative sources of income or by crop diversification.

  6. Modelling the effect of fire frequency on runoff and erosion in north-central Portugal using the revised Morgan-Morgan-Finney (United States)

    Hosseini, Mohammadreza; Nunes, João Pedro; González Pelayo, Oscar; Keizer, Jan Jacob; Ritsema, Coen; Geissen, Violette


    Models can be valuable for foreseeing the hydrological effects of fires and to plan and execute post-fire management alternatives. In this study, the revised Morgan-Morgan-Finney (MMF) model was utilized to simulate runoff and soil erosion in recently burned maritime pine plantations with different fire regimes, in a wet Mediterranean area of north-central Portugal. The MMF model was adjusted for burned zones in order to accommodate seasonal patterns in runoff and soil erosion, attributed to changes in soil water repellency and vegetation recovery. The model was then assessed by applying it for a sum of 18 experimental micro-plots (0.25 m2) at 9 1x-burnt and 9 4x-burnt slopes, using both literature-based and calibrated parameters, with the collected data used to assess the robustness of each parameterization. The estimate of erosion was more exact than that of runoff, with a general Nash-Sutcliffe efficiency of 0.54. Slope angle and the soil's effective hydrological depth (which relies on upon vegetation and additionally crop cover) were found to be the primary parameters enhancing model results, and different hydrological depths were expected to separate between the two differentiating fire regimes. This relative analysis demonstrated that most existing benchmark parameters can be utilized to apply MMF in burnt pine regions with moderate severity to support post-fire management; however it also showed that further endeavours ought to concentrate on mapping soil depth and vegetation cover to enhance these simulations.

  7. Embedding complex hydrology in the climate system - towards fully coupled climate-hydrology models

    DEFF Research Database (Denmark)

    Butts, M.; Rasmussen, S.H.; Ridler, M.


    Motivated by the need to develop better tools to understand the impact of future management and climate change on water resources, we present a set of studies with the overall aim of developing a fully dynamic coupling between a comprehensive hydrological model, MIKE SHE, and a regional climate...... distributed parameters using satellite remote sensing. Secondly, field data are used to investigate the effects of model resolution and parameter scales for use in a coupled model. Finally, the development of the fully coupled climate-hydrology model is described and some of the challenges associated...... with coupling models for hydrological processes on sub-grid scales of the regional climate model are presented....

  8. Contribution of hydrological data to the understanding of the spatio-temporal dynamics of F-specific RNA bacteriophages in river water during rainfall-runoff events. (United States)

    Fauvel, Blandine; Cauchie, Henry-Michel; Gantzer, Christophe; Ogorzaly, Leslie


    Heavy rainfall events were previously reported to bring large amounts of microorganisms in surface water, including viruses. However, little information is available on the origin and transport of viral particles in water during such rain events. In this study, an integrative approach combining microbiological and hydrological measurements was investigated to appreciate the dynamics and origins of F-specific RNA bacteriophage fluxes during two distinct rainfall-runoff events. A high frequency sampling (automatic sampler) was set up to monitor the F-specific RNA bacteriophages fluxes at a fine temporal scale during the whole course of the rainfall-runoff events. A total of 276 rainfall-runoff samples were collected and analysed using both infectivity and RT-qPCR assays. The results highlight an increase of 2.5 log10 and 1.8 log10 of infectious F-specific RNA bacteriophage fluxes in parallel of an increase of the water flow levels for both events. Faecal pollution was characterised as being mainly from anthropic origin with a significant flux of phage particles belonging to the genogroup II. At the temporal scale, two successive distinct waves of phage pollution were established and identified through the hydrological measurements. The first arrival of phages in the water column was likely to be linked to the resuspension of riverbed sediments that was responsible for a high input of genogroup II. Surface runoff contributed further to the second input of phages, and more particularly of genogroup I. In addition, an important contribution of infectious phage particles has been highlighted. These findings imply the existence of a close relationship between the risk for human health and the viral contamination of flood water. Copyright © 2016 Luxembourg institute of Science and Technology. Published by Elsevier Ltd.. All rights reserved.

  9. Analyzing subsurface drain network performance in an agricultural monitoring site with a three-dimensional hydrological model (United States)

    Nousiainen, Riikka; Warsta, Lassi; Turunen, Mika; Huitu, Hanna; Koivusalo, Harri; Pesonen, Liisa


    Effectiveness of a subsurface drainage system decreases with time, leading to a need to restore the drainage efficiency by installing new drain pipes in problem areas. The drainage performance of the resulting system varies spatially and complicates runoff and nutrient load generation within the fields. We presented a method to estimate the drainage performance of a heterogeneous subsurface drainage system by simulating the area with the three-dimensional hydrological FLUSH model. A GIS analysis was used to delineate the surface runoff contributing area in the field. We applied the method to reproduce the water balance and to investigate the effectiveness of a subsurface drainage network of a clayey field located in southern Finland. The subsurface drainage system was originally installed in the area in 1971 and the drainage efficiency was improved in 1995 and 2005 by installing new drains. FLUSH was calibrated against total runoff and drain discharge data from 2010 to 2011 and validated against total runoff in 2012. The model supported quantification of runoff fractions via the three installed drainage networks. Model realisations were produced to investigate the extent of the runoff contributing areas and the effect of the drainage parameters on subsurface drain discharge. The analysis showed that better model performance was achieved when the efficiency of the oldest drainage network (installed in 1971) was decreased. Our analysis method can reveal the drainage system performance but not the reason for the deterioration of the drainage performance. Tillage layer runoff from the field was originally computed by subtracting drain discharge from the total runoff. The drains installed in 1995 bypass the measurement system, which renders the tillage layer runoff calculation procedure invalid after 1995. Therefore, this article suggests use of a local correction coefficient based on the simulations for further research utilizing data from the study area.

  10. Scale effect challenges in urban hydrology highlighted with a distributed hydrological model (United States)

    Ichiba, Abdellah; Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel; Bompard, Philippe; Ten Veldhuis, Marie-Claire


    Hydrological models are extensively used in urban water management, development and evaluation of future scenarios and research activities. There is a growing interest in the development of fully distributed and grid-based models. However, some complex questions related to scale effects are not yet fully understood and still remain open issues in urban hydrology. In this paper we propose a two-step investigation framework to illustrate the extent of scale effects in urban hydrology. First, fractal tools are used to highlight the scale dependence observed within distributed data input into urban hydrological models. Then an intensive multi-scale modelling work is carried out to understand scale effects on hydrological model performance. Investigations are conducted using a fully distributed and physically based model, Multi-Hydro, developed at Ecole des Ponts ParisTech. The model is implemented at 17 spatial resolutions ranging from 100 to 5 m. Results clearly exhibit scale effect challenges in urban hydrology modelling. The applicability of fractal concepts highlights the scale dependence observed within distributed data. Patterns of geophysical data change when the size of the observation pixel changes. The multi-scale modelling investigation confirms scale effects on hydrological model performance. Results are analysed over three ranges of scales identified in the fractal analysis and confirmed through modelling. This work also discusses some remaining issues in urban hydrology modelling related to the availability of high-quality data at high resolutions, and model numerical instabilities as well as the computation time requirements. The main findings of this paper enable a replacement of traditional methods of model calibration by innovative methods of model resolution alteration based on the spatial data variability and scaling of flows in urban hydrology.

  11. Modeling the Hydrologic Effects of Large-Scale Green Infrastructure Projects with GIS (United States)

    Bado, R. A.; Fekete, B. M.; Khanbilvardi, R.


    Impervious surfaces in urban areas generate excess runoff, which in turn causes flooding, combined sewer overflows, and degradation of adjacent surface waters. Municipal environmental protection agencies have shown a growing interest in mitigating these effects with 'green' infrastructure practices that partially restore the perviousness and water holding capacity of urban centers. Assessment of the performance of current and future green infrastructure projects is hindered by the lack of adequate hydrological modeling tools; conventional techniques fail to account for the complex flow pathways of urban environments, and detailed analyses are difficult to prepare for the very large domains in which green infrastructure projects are implemented. Currently, no standard toolset exists that can rapidly and conveniently predict runoff, consequent inundations, and sewer overflows at a city-wide scale. We demonstrate how streamlined modeling techniques can be used with open-source GIS software to efficiently model runoff in large urban catchments. Hydraulic parameters and flow paths through city blocks, roadways, and sewer drains are automatically generated from GIS layers, and ultimately urban flow simulations can be executed for a variety of rainfall conditions. With this methodology, users can understand the implications of large-scale land use changes and green/gray storm water retention systems on hydraulic loading, peak flow rates, and runoff volumes.

  12. Modelling of green roofs' hydrologic performance using EPA's SWMM. (United States)

    Burszta-Adamiak, E; Mrowiec, M


    Green roofs significantly affect the increase in water retention and thus the management of rain water in urban areas. In Poland, as in many other European countries, excess rainwater resulting from snowmelt and heavy rainfall contributes to the development of local flooding in urban areas. Opportunities to reduce surface runoff and reduce flood risks are among the reasons why green roofs are more likely to be used also in this country. However, there are relatively few data on their in situ performance. In this study the storm water performance was simulated for the green roofs experimental plots using the Storm Water Management Model (SWMM) with Low Impact Development (LID) Controls module (version 5.0.022). The model consists of many parameters for a particular layer of green roofs but simulation results were unsatisfactory considering the hydrologic response of the green roofs. For the majority of the tested rain events, the Nash coefficient had negative values. It indicates a weak fit between observed and measured flow-rates. Therefore complexity of the LID module does not affect the increase of its accuracy. Further research at a technical scale is needed to determine the role of the green roof slope, vegetation cover and drying process during the inter-event periods.

  13. One-Water Hydrologic Flow Model (MODFLOW-OWHM) (United States)

    Hanson, Randall T.; Boyce, Scott E.; Schmid, Wolfgang; Hughes, Joseph D.; Mehl, Steffen W.; Leake, Stanley A.; Maddock, Thomas; Niswonger, Richard G.


    The One-Water Hydrologic Flow Model (MF-OWHM) is a MODFLOW-based integrated hydrologic flow model (IHM) that is the most complete version, to date, of the MODFLOW family of hydrologic simulators needed for the analysis of a broad range of conjunctive-use issues. Conjunctive use is the combined use of groundwater and surface water. MF-OWHM allows the simulation, analysis, and management of nearly all components of human and natural water movement and use in a physically-based supply-and-demand framework. MF-OWHM is based on the Farm Process for MODFLOW-2005 (MF-FMP2) combined with Local Grid Refinement (LGR) for embedded models to allow use of the Farm Process (FMP) and Streamflow Routing (SFR) within embedded grids. MF-OWHM also includes new features such as the Surface-water Routing Process (SWR), Seawater Intrusion (SWI), and Riparian Evapotrasnpiration (RIP-ET), and new solvers such as Newton-Raphson (NWT) and nonlinear preconditioned conjugate gradient (PCGN). This IHM also includes new connectivities to expand the linkages for deformation-, flow-, and head-dependent flows. Deformation-dependent flows are simulated through the optional linkage to simulated land subsidence with a vertically deforming mesh. Flow-dependent flows now include linkages between the new SWR with SFR and FMP, as well as connectivity with embedded models for SFR and FMP through LGR. Head-dependent flows now include a modified Hydrologic Flow Barrier Package (HFB) that allows optional transient HFB capabilities, and the flow between any two layers that are adjacent along a depositional or erosional boundary or displaced along a fault. MF-OWHM represents a complete operational hydrologic model that fully links the movement and use of groundwater, surface water, and imported water for consumption by irrigated agriculture, but also of water used in urban areas and by natural vegetation. Supply and demand components of water use are analyzed under demand-driven and supply

  14. visCOS: An R-package to evaluate model performance of hydrological models (United States)

    Klotz, Daniel; Herrnegger, Mathew; Wesemann, Johannes; Schulz, Karsten


    pivotal tool in model evaluation. They allow inferences about different systematic model-shortcomings and are an efficient way for communicating these in practice (Schulz et al., 2015). The evaluation and construction of such water balances is implemented with the presented package. During the (manual) calibration of a model or in the scope of model development, many model runs and iterations are necessary. Thus, users are often interested in comparing different model results in a visual way in order to learn about the model and to analyse parameter-changes on the output. A method to illuminate these differences and the evolution of changes is also included. References: • Gupta, H.V.; Wagener, T.; Liu, Y. (2008): Reconciling theory with observations: elements of a diagnostic approach to model evaluation, Hydrol. Process. 22, doi: 10.1002/hyp.6989. • Klemeš, V. (1986): Operational testing of hydrological simulation models, Hydrolog. Sci. J., doi: 10.1080/02626668609491024. • Kling, H.; Stanzel, P.; Fuchs, M.; and Nachtnebel, H. P. (2014): Performance of the COSERO precipitation-runoff model under non-stationary conditions in basins with different climates, Hydrolog. Sci. J., doi: 10.1080/02626667.2014.959956. • Schulz, K., Herrnegger, M., Wesemann, J., Klotz, D. Senoner, T. (2015): Kalibrierung COSERO - Mur für Pro Vis, Verbund Trading GmbH (Abteilung STG), final report, Institute of Water Management, Hydrology and Hydraulic Engineering, University of Natural Resources and Applied Life Sciences, Vienna, Austria, 217pp. • Zambrano-Bigiarini, M; Bellin, A. (2010): Comparing Goodness-of-fit Measures for Calibration of Models Focused on Extreme Events. European Geosciences Union (EGU), Geophysical Research Abstracts 14, EGU2012-11549-1.

  15. Disinformative data in large-scale hydrological modelling

    Directory of Open Access Journals (Sweden)

    A. Kauffeldt


    Full Text Available Large-scale hydrological modelling has become an important tool for the study of global and regional water resources, climate impacts, and water-resources management. However, modelling efforts over large spatial domains are fraught with problems of data scarcity, uncertainties and inconsistencies between model forcing and evaluation data. Model-independent methods to screen and analyse data for such problems are needed. This study aimed at identifying data inconsistencies in global datasets using a pre-modelling analysis, inconsistencies that can be disinformative for subsequent modelling. The consistency between (i basin areas for different hydrographic datasets, and (ii between climate data (precipitation and potential evaporation and discharge data, was examined in terms of how well basin areas were represented in the flow networks and the possibility of water-balance closure. It was found that (i most basins could be well represented in both gridded basin delineations and polygon-based ones, but some basins exhibited large area discrepancies between flow-network datasets and archived basin areas, (ii basins exhibiting too-high runoff coefficients were abundant in areas where precipitation data were likely affected by snow undercatch, and (iii the occurrence of basins exhibiting losses exceeding the potential-evaporation limit was strongly dependent on the potential-evaporation data, both in terms of numbers and geographical distribution. Some inconsistencies may be resolved by considering sub-grid variability in climate data, surface-dependent potential-evaporation estimates, etc., but further studies are needed to determine the reasons for the inconsistencies found. Our results emphasise the need for pre-modelling data analysis to identify dataset inconsistencies as an important first step in any large-scale study. Applying data-screening methods before modelling should also increase our chances to draw robust conclusions from subsequent

  16. Modeling time-dependent toxicity to aquatic organisms from pulsed exposure of PAHs in urban road runoff

    International Nuclear Information System (INIS)

    Zhang Wei; Ye Youbin; Tong Yindong; Ou Langbo; Hu Dan; Wang Xuejun


    Understanding of the magnitude of urban runoff toxicity to aquatic organisms is important for effective management of runoff quality. In this paper, the aquatic toxicity of polycyclic aromatic hydrocarbons (PAHs) in urban road runoff was evaluated through a damage assessment model. Mortality probability of the organisms representative in aquatic environment was calculated using the monitored PAHs concentration in road runoff. The result showed that the toxicity of runoff in spring was higher than those in summer. Analysis of the time-dependent toxicity of series of runoff water samples illustrated that the toxicity of runoff water in the final phase of a runoff event may be as high as those in the initial phase. Therefore, the storm runoff treatment systems or strategies designed for capture and treatment of the initial portion of runoff may be inappropriate for control of runoff toxicity. - Research highlights: → Toxicity resulting from realistic exposure patterns of urban runoff is evaluated. → Toxicity of runoff water in the final phase is as high as the initial phase. → Treatment of the initial runoff portion is inappropriate to abate runoff toxicity. - Toxicity to aquatic organisms after sequential pulsed exposure to PAHs in urban road runoff is evaluated.

  17. A system-theory-based model for monthly river runoff forecasting: model calibration and optimization

    Directory of Open Access Journals (Sweden)

    Wu Jianhua


    Full Text Available River runoff is not only a crucial part of the global water cycle, but it is also an important source for hydropower and an essential element of water balance. This study presents a system-theory-based model for river runoff forecasting taking the Hailiutu River as a case study. The forecasting model, designed for the Hailiutu watershed, was calibrated and verified by long-term precipitation observation data and groundwater exploitation data from the study area. Additionally, frequency analysis, taken as an optimization technique, was applied to improve prediction accuracy. Following model optimization, the overall relative prediction errors are below 10%. The system-theory-based prediction model is applicable to river runoff forecasting, and following optimization by frequency analysis, the prediction error is acceptable.

  18. Hydrology under change: an evaluation protocol to investigate how hydrological models deal with changing catchments (United States)

    G. Thirel; V. Andreassian; C. Perrin; J.-N. Audouy; L. Berthet; Pamela Edwards; N. Folton; C. Furusho; A. Kuentz; J. Lerat; G. Lindstrom; E. Martin; T. Mathevet; R. Merz; J. Parajka; D. Ruelland; J. Vaze


    Testing hydrological models under changing conditions is essential to evaluate their ability to cope with changing catchments and their suitability for impact studies. With this perspective in mind, a workshop dedicated to this issue was held at the 2013 General Assembly of the International Association of Hydrological Sciences (IAHS) in Göteborg, Sweden, in July 2013...

  19. Effects of temporal and spatial resolution of calibration data on integrated hydrologic water quality model identification (United States)

    Jiang, Sanyuan; Jomaa, Seifeddine; Büttner, Olaf; Rode, Michael


    Hydrological water quality modeling is increasingly used for investigating runoff and nutrient transport processes as well as watershed management but it is mostly unclear how data availablity determins model identification. In this study, the HYPE (HYdrological Predictions for the Environment) model, which is a process-based, semi-distributed hydrological water quality model, was applied in two different mesoscale catchments (Selke (463 km2) and Weida (99 km2)) located in central Germany to simulate discharge and inorganic nitrogen (IN) transport. PEST and DREAM(ZS) were combined with the HYPE model to conduct parameter calibration and uncertainty analysis. Split-sample test was used for model calibration (1994-1999) and validation (1999-2004). IN concentration and daily IN load were found to be highly correlated with discharge, indicating that IN leaching is mainly controlled by runoff. Both dynamics and balances of water and IN load were well captured with NSE greater than 0.83 during validation period. Multi-objective calibration (calibrating hydrological and water quality parameters simultaneously) was found to outperform step-wise calibration in terms of model robustness. Multi-site calibration was able to improve model performance at internal sites, decrease parameter posterior uncertainty and prediction uncertainty. Nitrogen-process parameters calibrated using continuous daily averages of nitrate-N concentration observations produced better and more robust simulations of IN concentration and load, lower posterior parameter uncertainty and IN concentration prediction uncertainty compared to the calibration against uncontinuous biweekly nitrate-N concentration measurements. Both PEST and DREAM(ZS) are efficient in parameter calibration. However, DREAM(ZS) is more sound in terms of parameter identification and uncertainty analysis than PEST because of its capability to evolve parameter posterior distributions and estimate prediction uncertainty based on global

  20. Modelling rainfall runoff relations using HEC-HMS in a semi-arid region: Case study in Ain Sefra watershed, Ksour Mountains (SW Algeria

    Directory of Open Access Journals (Sweden)

    Derdour Abdessamed


    Full Text Available Ain Sefra is one of the Algerian cities that had been experienced several devastating floods during the past 100 years. The purpose of this study is to simulate runoff in the semi-arid region of Ain Sefra watershed through the employing of the Hydrologic Engineering Center – Hydrologic Modelling System (HEC-HMS. In this paper, the frequency storm is used for the meteorological model, the Soil Conservation Service – curve number (SCS-CN is selected to calculate the loss rate and Soil Conservation Service unit hydrograph method have been applied to simulate the runoff rate. After calibration and validation, the simulated peak discharges were very close with observed values. The Nash–Sutcliffe efficiency coefficient was 0.95, indicates that the hydrological modeling results are satisfactory and accepted for simulation of rainfall-runoff. The peak discharges obtained for the 10, 50, 100 and 1000 year storms are respectively 425.8, 750.5, 904.3 and 1328.3 m3∙s−1.

  1. Impact of model structure on flow simulation and hydrological realism: from a lumped to a semi-distributed approach (United States)

    Garavaglia, Federico; Le Lay, Matthieu; Gottardi, Fréderic; Garçon, Rémy; Gailhard, Joël; Paquet, Emmanuel; Mathevet, Thibault


    Model intercomparison experiments are widely used to investigate and improve hydrological model performance. However, a study based only on runoff simulation is not sufficient to discriminate between different model structures. Hence, there is a need to improve hydrological models for specific streamflow signatures (e.g., low and high flow) and multi-variable predictions (e.g., soil moisture, snow and groundwater). This study assesses the impact of model structure on flow simulation and hydrological realism using three versions of a hydrological model called MORDOR: the historical lumped structure and a revisited formulation available in both lumped and semi-distributed structures. In particular, the main goal of this paper is to investigate the relative impact of model equations and spatial discretization on flow simulation, snowpack representation and evapotranspiration estimation. Comparison of the models is based on an extensive dataset composed of 50 catchments located in French mountainous regions. The evaluation framework is founded on a multi-criterion split-sample strategy. All models were calibrated using an automatic optimization method based on an efficient genetic algorithm. The evaluation framework is enriched by the assessment of snow and evapotranspiration modeling against in situ and satellite data. The results showed that the new model formulations perform significantly better than the initial one in terms of the various streamflow signatures, snow and evapotranspiration predictions. The semi-distributed approach provides better calibration-validation performance for the snow cover area, snow water equivalent and runoff simulation, especially for nival catchments.

  2. Identifying influential data points in hydrological model calibration and their impact on streamflow predictions (United States)

    Wright, David; Thyer, Mark; Westra, Seth


    Highly influential data points are those that have a disproportionately large impact on model performance, parameters and predictions. However, in current hydrological modelling practice the relative influence of individual data points on hydrological model calibration is not commonly evaluated. This presentation illustrates and evaluates several influence diagnostics tools that hydrological modellers can use to assess the relative influence of data. The feasibility and importance of including influence detection diagnostics as a standard tool in hydrological model calibration is discussed. Two classes of influence diagnostics are evaluated: (1) computationally demanding numerical "case deletion" diagnostics; and (2) computationally efficient analytical diagnostics, based on Cook's distance. These diagnostics are compared against hydrologically orientated diagnostics that describe changes in the model parameters (measured through the Mahalanobis distance), performance (objective function displacement) and predictions (mean and maximum streamflow). These influence diagnostics are applied to two case studies: a stage/discharge rating curve model, and a conceptual rainfall-runoff model (GR4J). Removing a single data point from the calibration resulted in differences to mean flow predictions of up to 6% for the rating curve model, and differences to mean and maximum flow predictions of up to 10% and 17%, respectively, for the hydrological model. When using the Nash-Sutcliffe efficiency in calibration, the computationally cheaper Cook's distance metrics produce similar results to the case-deletion metrics at a fraction of the computational cost. However, Cooks distance is adapted from linear regression with inherit assumptions on the data and is therefore less flexible than case deletion. Influential point detection diagnostics show great potential to improve current hydrological modelling practices by identifying highly influential data points. The findings of this

  3. Wildcat5 for Windows, a rainfall-runoff hydrograph model: user manual and documentation (United States)

    R. H. Hawkins; A. Barreto-Munoz


    Wildcat5 for Windows (Wildcat5) is an interactive Windows Excel-based software package designed to assist watershed specialists in analyzing rainfall runoff events to predict peak flow and runoff volumes generated by single-event rainstorms for a variety of watershed soil and vegetation conditions. Model inputs are: (1) rainstorm characteristics, (2) parameters related...

  4. Evaluation of alternative surface runoff accounting procedures using the SWAT model (United States)

    For surface runoff estimation in the Soil and Water Assessment Tool (SWAT) model, the curve number (CN) procedure is commonly adopted to calculate surface runoff by utilizing antecedent soil moisture condition (SCSI) in field. In the recent version of SWAT (SWAT2005), an alternative approach is ava...

  5. Markov-switching model for nonstationary runoff conditioned on El Nino information

    DEFF Research Database (Denmark)

    Gelati, Emiliano; Madsen, H.; Rosbjerg, Dan


    We define a Markov-modulated autoregressive model with exogenous input (MARX) to generate runoff scenarios using climatic information. Runoff parameterization is assumed to be conditioned on a hidden climate state following a Markov chain, where state transition probabilities are functions...... of the climatic input. MARX allows stochastic modeling of nonstationary runoff, as runoff anomalies are described by a mixture of autoregressive models with exogenous input, each one corresponding to a climate state. We apply MARX to inflow time series of the Daule Peripa reservoir (Ecuador). El Nino Southern...... Oscillation (ENSO) information is used to condition runoff parameterization. Among the investigated ENSO indexes, the NINO 1+2 sea surface temperature anomalies and the trans-Nino index perform best as predictors. In the perspective of reservoir optimization at various time scales, MARX produces realistic...

  6. Green roof rainfall-runoff modelling: is the comparison between conceptual and physically based approaches relevant? (United States)

    Versini, Pierre-Antoine; Tchiguirinskaia, Ioulia; Schertzer, Daniel


    Green roofs are commonly considered as efficient tools to mitigate urban runoff as they can store precipitation, and consequently provide retention and detention performances. Designed as a compromise between water holding capacity, weight and hydraulic conductivity, their substrate is usually an artificial media differentiating significantly from a traditional soil. In order to assess green roofs hydrological performances, many models have been developed. Classified into two categories (conceptual and physically based), they are usually applied to reproduce the discharge of a particular monitored green roof considered as homogeneous. Although the resulted simulations could be satisfactory, the question of robustness and consistency of the calibrated parameters is often not addressed. Here, a modeling framework has been developed to assess the efficiency and the robustness of both modelling approaches (conceptual and physically based) in reproducing green roof hydrological behaviour. SWMM and VS2DT models have been used for this purpose. This work also benefits from an experimental setup where several green roofs differentiated by their substrate thickness and vegetation cover are monitored. Based on the data collected for several rainfall events, it has been studied how the calibrated parameters are effectively linked to their physical properties and how they can vary from one green roof configuration to another. Although both models reproduce correctly the observed discharges in most of the cases, their calibrated parameters exhibit a high inconsistency. For a same green roof configuration, these parameters can vary significantly from one rainfall event to another, even if they are supposed to be linked to the green roof characteristics (roughness, residual moisture content for instance). They can also be different from one green roof configuration to another although the implemented substrate is the same. Finally, it appears very difficult to find any

  7. CHARIS (Contribution to High Asia Runoff from Ice and Snow) Lessons Learned in Capacity-Building for Hydrological Sciences with Asian Partner Communities (United States)

    Brodzik, M. J.; Armstrong, R. L.; Armstrong, B. R.; Barrett, A. P.; Fetterer, F. M.; Hill, A. F.; Hughes, H.; Khalsa, S. J. S.; Racoviteanu, A.; Raup, B. H.; Rittger, K.; Williams, M. W.; Wilson, A. M.


    Funded by USAID and based at the University of Colorado, the Contribution to High Asia Runoff from Ice & Snow (CHARIS) project has among its objectives both scientific and capacity-building goals. We are systematically assessing the role of glaciers and seasonal snow in the freshwater resources of High Asia to better forecast future availability and vulnerability of water resources in the region. We are collaborating with Asian partner institutions in eight nations across High Asia (Bhutan, Nepal, India, Pakistan, Afghanistan, Kazakhstan, Kyrgyzstan and Tajikistan). Our capacity-building activities include data-sharing, training, supporting field work and education and infrastructure development, which includes creating the only water-chemistry laboratory of its kind in Bhutan. We have also derived reciprocal benefits from our partners, learning from their specialized local knowledge and obtaining access to otherwise unavailable in situ data. Our presentation will share lessons learned in our annual training workshops with our Asian collaborators, at which we have interspersed remote sensing and hydrological modelling lectures with GIS and python programming, and hands-on applications using remote sensing data. Our challenges have included technological issues such as: power incompatibilities, reliable shipping methods to remote locations, bandwidth limitations to transferring large remote sensing data sets, cost of proprietary software, choosing among free software alternatives, and negotiating the formats and jargon of remote sensing data to get to the science as quickly as possible. We will describe successes and failures in training methods we have used, what we look for in training venue facilities, and how our approach has changed in response to student evaluations and partner feedback.

  8. Application and Evaluation of a Snowmelt Runoff Model in the Tamor River Basin, Eastern Himalaya Using a Markov Chain Monte Carlo (MCMC) Data Assimilation Approach (United States)

    Panday, Prajjwal K.; Williams, Christopher A.; Frey, Karen E.; Brown, Molly E.


    Previous studies have drawn attention to substantial hydrological changes taking place in mountainous watersheds where hydrology is dominated by cryospheric processes. Modelling is an important tool for understanding these changes but is particularly challenging in mountainous terrain owing to scarcity of ground observations and uncertainty of model parameters across space and time. This study utilizes a Markov Chain Monte Carlo data assimilation approach to examine and evaluate the performance of a conceptual, degree-day snowmelt runoff model applied in the Tamor River basin in the eastern Nepalese Himalaya. The snowmelt runoff model is calibrated using daily streamflow from 2002 to 2006 with fairly high accuracy (average Nash-Sutcliffe metric approx. 0.84, annual volume bias runoff in the Tamor River basin for the 2002-2006 period is estimated to be 29.7+/-2.9% (which includes 4.2+/-0.9% from snowfall that promptly melts), whereas 70.3+/-2.6% is attributed to contributions from rainfall. On average, the elevation zone in the 4000-5500m range contributes the most to basin runoff, averaging 56.9+/-3.6% of all snowmelt input and 28.9+/-1.1% of all rainfall input to runoff. Model simulated streamflow using an interpolated precipitation data set decreases the fractional contribution from rainfall versus snowmelt compared with simulations using observed station precipitation. Model experiments indicate that the hydrograph itself does not constrain estimates of snowmelt versus rainfall contributions to total outflow but that this derives from the degree-day melting model. Lastly, we demonstrate that the data assimilation approach is useful for quantifying and reducing uncertainty related to model parameters and thus provides uncertainty bounds on snowmelt and rainfall contributions in such mountainous watersheds.

  9. Independent effects of temperature and precipitation on modeled runoff in the conterminous United States (United States)

    McCabe, G.J.; Wolock, D.M.


    A water-balance model is used to simulate time series of water-year runoff for 4 km ?? 4 km grid cells for the conterminous United States during the 1900-2008 period. Model outputs are used to examine the separate effects of precipitation and temperature on runoff variability. Overall, water-year runoff has increased in the conterminous United States and precipitation has accounted for almost all of the variability in water-year runoff during the past century. In contrast, temperature effects on runoff have been small for most locations in the United States even during periods when temperatures for most of the United States increased significantly. Copyright 2011 by the American Geophysical Union.

  10. Hydrological Modeling in Northern Tunisia with Regional Climate Model Outputs: Performance Evaluation and Bias-Correction in Present Climate Conditions

    Directory of Open Access Journals (Sweden)

    Asma Foughali


    Full Text Available This work aims to evaluate the performance of a hydrological balance model in a watershed located in northern Tunisia (wadi Sejnane, 378 km2 in present climate conditions using input variables provided by four regional climate models. A modified version (MBBH of the lumped and single layer surface model BBH (Bucket with Bottom Hole model, in which pedo-transfer parameters estimated using watershed physiographic characteristics are introduced is adopted to simulate the water balance components. Only two parameters representing respectively the water retention capacity of the soil and the vegetation resistance to evapotranspiration are calibrated using rainfall-runoff data. The evaluation criterions for the MBBH model calibration are: relative bias, mean square error and the ratio of mean actual evapotranspiration to mean potential evapotranspiration. Daily air temperature, rainfall and runoff observations are available from 1960 to 1984. The period 1960–1971 is selected for calibration while the period 1972–1984 is chosen for validation. Air temperature and precipitation series are provided by four regional climate models (DMI, ARP, SMH and ICT from the European program ENSEMBLES, forced by two global climate models (GCM: ECHAM and ARPEGE. The regional climate model outputs (precipitation and air temperature are compared to the observations in terms of statistical distribution. The analysis was performed at the seasonal scale for precipitation. We found out that RCM precipitation must be corrected before being introduced as MBBH inputs. Thus, a non-parametric quantile-quantile bias correction method together with a dry day correction is employed. Finally, simulated runoff generated using corrected precipitation from the regional climate model SMH is found the most acceptable by comparison with runoff simulated using observed precipitation data, to reproduce the temporal variability of mean monthly runoff. The SMH model is the most accurate to

  11. Modeling the effect of urban infrastructure on hydrologic processes within i-Tree Hydro, a statistically and spatially distributed model (United States)

    Taggart, T. P.; Endreny, T. A.; Nowak, D.


    Gray and green infrastructure in urban environments alters many natural hydrologic processes, creating an urban water balance unique to the developed environment. A common way to assess the consequences of impervious cover and grey infrastructure is by measuring runoff hydrographs. This focus on the watershed outlet masks the spatial variation of hydrologic process alterations across the urban environment in response to localized landscape characteristics. We attempt to represent this spatial variation in the urban environment using the statistically and spatially distributed i-Tree Hydro model, a scoping level urban forest effects water balance model. i-Tree Hydro has undergone expansion and modification to include the effect of green infrastructure processes, road network attributes, and urban pipe system leakages. These additions to the model are intended to increase the understanding of the altered urban hydrologic cycle by examining the effects of the location of these structures on the water balance. Specifically, the effect of these additional structures and functions on the spatially varying properties of interception, soil moisture and runoff generation. Differences in predicted properties and optimized parameter sets between the two models are examined and related to the recent landscape modifications. Datasets used in this study consist of watersheds and sewersheds within the Syracuse, NY metropolitan area, an urban area that has integrated green and gray infrastructure practices to alleviate stormwater problems.

  12. A new moving strategy for the sequential Monte Carlo approach in optimizing the hydrological model parameters (United States)

    Zhu, Gaofeng; Li, Xin; Ma, Jinzhu; Wang, Yunquan; Liu, Shaomin; Huang, Chunlin; Zhang, Kun; Hu, Xiaoli


    Sequential Monte Carlo (SMC) samplers have become increasing popular for estimating the posterior parameter distribution with the non-linear dependency structures and multiple modes often present in hydrological models. However, the explorative capabilities and efficiency of the sampler depends strongly on the efficiency in the move step of SMC sampler. In this paper we presented a new SMC sampler entitled the Particle Evolution Metropolis Sequential Monte Carlo (PEM-SMC) algorithm, which is well suited to handle unknown static parameters of hydrologic model. The PEM-SMC sampler is inspired by the works of Liang and Wong (2001) and operates by incorporating the strengths of the genetic algorithm, differential evolution algorithm and Metropolis-Hasting algorithm into the framework of SMC. We also prove that the sampler admits the target distribution to be a stationary distribution. Two case studies including a multi-dimensional bimodal normal distribution and a conceptual rainfall-runoff hydrologic model by only considering parameter uncertainty and simultaneously considering parameter and input uncertainty show that PEM-SMC sampler is generally superior to other popular SMC algorithms in handling the high dimensional problems. The study also indicated that it may be important to account for model structural uncertainty by using multiplier different hydrological models in the SMC framework in future study.

  13. A coupled stochastic rainfall-evapotranspiration model for hydrological impact analysis (United States)

    Pham, Minh Tu; Vernieuwe, Hilde; De Baets, Bernard; Verhoest, Niko E. C.


    A hydrological impact analysis concerns the study of the consequences of certain scenarios on one or more variables or fluxes in the hydrological cycle. In such an exercise, discharge is often considered, as floods originating from extremely high discharges often cause damage. Investigating the impact of extreme discharges generally requires long time series of precipitation and evapotranspiration to be used to force a rainfall-runoff model. However, such kinds of data may not be available and one should resort to stochastically generated time series, even though the impact of using such data on the overall discharge, and especially on the extreme discharge events, is not well studied. In this paper, stochastically generated rainfall and corresponding evapotranspiration time series, generated by means of vine copulas, are used to force a simple conceptual hydrological model. The results obtained are comparable to the modelled discharge using observed forcing data. Yet, uncertainties in the modelled discharge increase with an increasing number of stochastically generated time series used. Notwithstanding this finding, it can be concluded that using a coupled stochastic rainfall-evapotranspiration model has great potential for hydrological impact analysis.

  14. Combined effects of climate models, hydrological model structures and land use scenarios on hydrological impacts of climate change

    DEFF Research Database (Denmark)

    Karlsson, Ida B.; Sonnenborg, Torben O.; Refsgaard, Jens Christian


    Impact studies of the hydrological response of future climate change are important for the water authorities when risk assessment, management and adaptation to a changing climate are carried out. The objective of this study was to model the combined effect of land use and climate changes...... use scenarios. The results revealed that even though the hydrological models all showed similar performance during calibration, the mean discharge response to climate change varied up to 30%, and the variations were even higher for extreme events (1th and 99th percentile). Land use changes appeared...... to cause little change in mean hydrological responses and little variation between hydrological models. Differences in hydrological model responses to land use were, however, significant for extremes due to dissimilarities in hydrological model structure and process equations. The climate model choice...

  15. Modeling Hydrologic Processes after Vegetation Restoration in an Urban Watershed with HEC-HMS (United States)

    Stevenson, K.; Kinoshita, A. M.


    The San Diego River Watershed in California (USA) is highly urbanized, where stream channel geomorphology are directly affected by anthropogenic disturbances. Flooding and water quality concerns have led to an increased interest in improving the condition of urban waterways. Alvarado Creek, a 1200-meter section of a tributary to the San Diego River will be used as a case study to understand the degree to which restoration efforts reduce the impacts of climate change and anthropogenic activities on hydrologic processes and water quality in urban stream ecosystems. In 2016, non-native vegetation (i.e. Washingtonia spp. (fan palm), Phoenix canariensis (Canary Island palm)) and approximately 7257 kilograms of refuse were removed from the study reach. This research develops the United States Army Corp of Engineers Hydrologic Engineering Center's Hydraulic Modeling System (USACE HEC-HMS) using field-based data to model and predict the short- and long-term impacts of restoration on geomorphic and hydrologic processes. Observations include cross-sectional area, grain-size distributions, water quality, and continuous measurements of streamflow, temperature, and precipitation. Baseline and design storms are simulated before and after restoration. The model will be calibrated and validated using field observations. The design storms represent statistical likelihoods of storms occurrences, and the pre- and post-restoration hydrologic responses will be compared to evaluate the impact of vegetation and waste removal on runoff processes. Ultimately model parameters will be transferred to other urban creeks in San Diego that may potentially undergo restoration. Modeling will be used to learn about the response trajectory of rainfall-runoff processes following restoration efforts in urban streams and guide future management and restoration activities.

  16. Integrating Artificial Neural Networks into the VIC Model for Rainfall-Runoff Modeling

    Directory of Open Access Journals (Sweden)

    Changqing Meng


    Full Text Available A hybrid rainfall-runoff model was developed in this study by integrating the variable infiltration capacity (VIC model with artificial neural networks (ANNs. In the proposed model, the prediction interval of the ANN replaces separate, individual simulation (i.e., single simulation. The spatial heterogeneity of horizontal resolution, subgrid-scale features and their influence on the streamflow can be assessed according to the VIC model. In the routing module, instead of a simple linear superposition of the streamflow generated from each subbasin, ANNs facilitate nonlinear mappings of the streamflow produced from each subbasin into the total streamflow at the basin outlet. A total of three subbasins were delineated and calibrated independently via the VIC model; daily runoff errors were simulated for each subbasin, then corrected by an ANN bias-correction model. The initial streamflow and corrected runoff from the simulation for individual subbasins serve as inputs to the ANN routing model. The feasibility of this proposed method was confirmed according to the performance of its application to a case study on rainfall-runoff prediction in the Jinshajiang River Basin, the headwater area of the Yangtze River.

  17. Measurement and modeling of diclosulam runoff under the influence of simulated severe rainfall. (United States)

    van Wesenbeeck, I J; Peacock, A L; Havens, P L


    A runoff study was conducted near Tifton, GA to measure the losses of water, sediment, and diclosulam (N-(2,6-dichlorophenyl)-5-ethoxy-7-fluoro-[1,2,4]triazolo-[1,5c]-pyrimidine- 2-sulfonamide), a new broadleaf herbicide, under a 50-mm-in-3-h simulated rainfall event on three separate 0.05-ha plots. Results of a runoff study were used to validate the Pesticide Root Zone Model (PRZM, v. 3.12) using field-measured soil, chemical, and weather inputs. The model-predicted edge-of-field diclosulam loading was within 1% of the average observed diclosulam runoff from the field study; however, partitioning between phases was not as well predicted. The model was subsequently used with worst-case agricultural practice inputs and a 41-yr weather record from Dublin, GA to simulate edge-of-field runoff losses for the two most prevalent soils (Tifton and Bibb) in the southeastern U.S. peanut (Arachis hypogaea L.) market for 328 simulation years, and showed that the 90th percentile runoff amounts, expressed as percent of applied diclosulam, were 1.8, 0.6, and 5.2% for the runoff study plots and Tifton and Bibb soils, respectively. The runoff study and modeling indicated that more than 97% of the total diclosulam runoff was transported off the field by water, with < 3% associated with the sediment. Diclosulam losses due to runoff can be further reduced by lower application rates, tillage and crop residue management practices that reduce edge-of-field runoff, and conservation practices such as vegetated filter strips.

  18. Hyper-resolution hydrological modeling: Completeness of Formulation, Appropriateness of Descritization, and Physical LImits of Predictability (United States)

    Ogden, F. L.


    HIgh performance computing and the widespread availabilities of geospatial physiographic and forcing datasets have enabled consideration of flood impact predictions with longer lead times and more detailed spatial descriptions. We are now considering multi-hour flash flood forecast lead times at the subdivision level in so-called hydroblind regions away from the National Hydrography network. However, the computational demands of such models are high, necessitating a nested simulation approach. Research on hyper-resolution hydrologic modeling over the past three decades have illustrated some fundamental limits on predictability that are simultaneously related to runoff generation mechanism(s), antecedent conditions, rates and total amounts of precipitation, discretization of the model domain, and complexity or completeness of the model formulation. This latter point is an acknowledgement that in some ways hydrologic understanding in key areas related to land use, land cover, tillage practices, seasonality, and biological effects has some glaring deficiencies. This presentation represents a review of what is known related to the interacting effects of precipitation amount, model spatial discretization, antecedent conditions, physiographic characteristics and model formulation completeness for runoff predictions. These interactions define a region in multidimensional forcing, parameter and process space where there are in some cases clear limits on predictability, and in other cases diminished uncertainty.

  19. Improving the temporal transposability of lumped hydrological models on twenty diversified U.S. watersheds

    Directory of Open Access Journals (Sweden)

    G. Seiller


    Full Text Available Study region: Twenty diversified U.S. watersheds. Study focus: Identifying optimal parameter sets for hydrological modeling on a specific catchment remains an important challenge for numerous applied and research projects. This is particularly the case when working under contrasted climate conditions that question the temporal transposability of the parameters. Methodologies exist, mainly based on Differential Split Sample Tests, to examine this concern. This work assesses the improved temporal transposability of a multimodel implementation, based on twenty dissimilar lumped conceptual structures and on twenty U.S. watersheds, over the performance of the individual models. New hydrological insights for the region: Individual and collective temporal transposabilities are analyzed and compared on the twenty studied watersheds. Results show that individual models performances on contrasted climate conditions are very dissimilar depending on test period and watershed, without the possibility to identify a best solution in all circumstances. They also confirm that performance and robustness are clearly enhanced using an ensemble of rainfall-runoff models instead of individual ones. The use of (calibrated weight averaged multimodels further improves temporal transposability over simple averaged ensemble, in most instances, confirming added-value of this approach but also the need to evaluate how individual models compensate each other errors. Keywords: Rainfall-runoff modeling, Multimodel approach, Differential Split Sample Test, Deterministic combination, Outputs averaging

  20. Applying volumetric weather radar data for rainfall runoff modeling: The importance of error correction. (United States)

    Hazenberg, P.; Leijnse, H.; Uijlenhoet, R.; Delobbe, L.; Weerts, A.; Reggiani, P.


    In the current study half a year of volumetric radar data for the period October 1, 2002 until March 31, 2003 is being analyzed which was sampled at 5 minutes intervals by C-band Doppler radar situated at an elevation of 600 m in the southern Ardennes region, Belgium. During this winter half year most of the rainfall has a stratiform character. Though radar and raingauge will never sample the same amount of rainfall due to differences in sampling strategies, for these stratiform situations differences between both measuring devices become even larger due to the occurrence of a bright band (the point where ice particles start to melt intensifying the radar reflectivity measurement). For these circumstances the radar overestimates the amount of precipitation and because in the Ardennes bright bands occur within 1000 meter from the surface, it's detrimental effects on the performance of the radar can already be observed at relatively close range (e.g. within 50 km). Although the radar is situated at one of the highest points in the region, very close to the radar clutter is a serious problem. As a result both nearby and farther away, using uncorrected radar results in serious errors when estimating the amount of precipitation. This study shows the effect of carefully correcting for these radar errors using volumetric radar data, taking into account the vertical reflectivity profile of the atmosphere, the effects of attenuation and trying to limit the amount of clutter. After applying these correction algorithms, the overall differences between radar and raingauge are much smaller which emphasizes the importance of carefully correcting radar rainfall measurements. The next step is to assess the effect of using uncorrected and corrected radar measurements on rainfall-runoff modeling. The 1597 km2 Ourthe catchment lies within 60 km of the radar. Using a lumped hydrological model serious improvement in simulating observed discharges is found when using corrected radar

  1. Simulating the effects of ground-water withdrawals on streamflow in a precipitation-runoff model (United States)

    Zarriello, Philip J.; Barlow, P.M.; Duda, P.B.


    Precipitation-runoff models are used to assess the effects of water use and management alternatives on streamflow. Often, ground-water withdrawals are a major water-use component that affect streamflow, but the ability of surface-water models to simulate ground-water withdrawals is limited. As part of a Hydrologic Simulation Program-FORTRAN (HSPF) precipitation-runoff model developed to analyze the effect of ground-water and surface-water withdrawals on streamflow in the Ipswich River in northeastern Massachusetts, an analytical technique (STRMDEPL) was developed for calculating the effects of pumped wells on streamflow. STRMDEPL is a FORTRAN program based on two analytical solutions that solve equations for ground-water flow to a well completed in a semi-infinite, homogeneous, and isotropic aquifer in direct hydraulic connection to a fully penetrating stream. One analytical method calculates unimpeded flow at the stream-aquifer boundary and the other method calculates the resistance to flow caused by semipervious streambed and streambank material. The principle of superposition is used with these analytical equations to calculate time-varying streamflow depletions due to daily pumping. The HSPF model can readily incorporate streamflow depletions caused by a well or surface-water withdrawal, or by multiple wells or surface-water withdrawals, or both, as a combined time-varying outflow demand from affected channel reaches. These demands are stored as a time series in the Watershed Data Management (WDM) file. This time-series data is read into the model as an external source used to specify flow from the first outflow gate in the reach where these withdrawals are located. Although the STRMDEPL program can be run independently of the HSPF model, an extension was developed to run this program within GenScn, a scenario generator and graphical user interface developed for use with the HSPF model. This extension requires that actual pumping rates for each well be stored

  2. Analysing the temporal dynamics of model performance for hydrological models

    NARCIS (Netherlands)

    Reusser, D.E.; Blume, T.; Schaefli, B.; Zehe, E.


    The temporal dynamics of hydrological model performance gives insights into errors that cannot be obtained from global performance measures assigning a single number to the fit of a simulated time series to an observed reference series. These errors can include errors in data, model parameters, or

  3. The evolution of process-based hydrologic models

    NARCIS (Netherlands)

    Clark, Martyn P.; Bierkens, Marc F.P.; Samaniego, Luis; Woods, Ross A.; Uijlenhoet, Remko; Bennett, Katrina E.; Pauwels, Valentijn R.N.; Cai, Xitian; Wood, Andrew W.; Peters-Lidard, Christa D.


    The diversity in hydrologic models has historically led to great controversy on the "correct" approach to process-based hydrologic modeling, with debates centered on the adequacy of process parameterizations, data limitations and uncertainty, and computational constraints on model analysis. In this

  4. Possibilities of water run-off models by using geological information systems

    International Nuclear Information System (INIS)

    Oeverland, H.; Kleeberg, H.B.


    The movement of water in a given region is determined by a number of regional factors, e.g. land use and topography. However, the available precipitation-runoff models take little account of this regional information. Geological information systems, on the other hand, are instruments for efficient management, presentation and evaluation of local information, so the best approach would be a combination of the two types of models. The requirements to be met by such a system are listed; they result from the processes to be modelled (continuous runoff, high-water runoff, mass transfer) but also from the available data and their acquisition and processing. Ten of the best-known precipitation-runoff models are presented and evaluated on the basis of the requirements listed. The basic concept of an integrated model is outlined, and additional modulus required for modelling are defined. (orig./BBR) [de

  5. The use of distributed hydrological models for the Gard 2002 flash flood event: Analysis of associated hydrological processes (United States)

    Braud, Isabelle; Roux, Hélène; Anquetin, Sandrine; Maubourguet, Marie-Madeleine; Manus, Claire; Viallet, Pierre; Dartus, Denis


    SummaryThis paper presents a detailed analysis of the September 8-9, 2002 flash flood event in the Gard region (southern France) using two distributed hydrological models: CVN built within the LIQUID® hydrological platform and MARINE. The models differ in terms of spatial discretization, infiltration and water redistribution representation, and river flow transfer. MARINE can also account for subsurface lateral flow. Both models are set up using the same available information, namely a DEM and a pedology map. They are forced with high resolution radar rainfall data over a set of 18 sub-catchments ranging from 2.5 to 99 km2 and are run without calibration. To begin with, models simulations are assessed against post field estimates of the time of peak and the maximum peak discharge showing a fair agreement for both models. The results are then discussed in terms of flow dynamics, runoff coefficients and soil saturation dynamics. The contribution of the subsurface lateral flow is also quantified using the MARINE model. This analysis highlights that rainfall remains the first controlling factor of flash flood dynamics. High rainfall peak intensities are very influential of the maximum peak discharge for both models, but especially for the CVN model which has a simplified overland flow transfer. The river bed roughness also influences the peak intensity and time. Soil spatial representation is shown to have a significant role on runoff coefficients and on the spatial variability of saturation dynamics. Simulated soil saturation is found to be strongly related with soil depth and initial storage deficit maps, due to a full saturation of most of the area at the end of the event. When activated, the signature of subsurface lateral flow is also visible in the spatial patterns of soil saturation with higher values concentrating along the river network. However, the data currently available do not allow the assessment of both patterns. The paper concludes with a set of

  6. Sediment transport modelling in a distributed physically based hydrological catchment model

    Directory of Open Access Journals (Sweden)

    M. Konz


    Full Text Available Bedload sediment transport and erosion processes in channels are important components of water induced natural hazards in alpine environments. A raster based distributed hydrological model, TOPKAPI, has been further developed to support continuous simulations of river bed erosion and deposition processes. The hydrological model simulates all relevant components of the water cycle and non-linear reservoir methods are applied for water fluxes in the soil, on the ground surface and in the channel. The sediment transport simulations are performed on a sub-grid level, which allows for a better discretization of the channel geometry, whereas water fluxes are calculated on the grid level in order to be CPU efficient. Several transport equations as well as the effects of an armour layer on the transport threshold discharge are considered. Flow resistance due to macro roughness is also considered. The advantage of this approach is the integrated simulation of the entire basin runoff response combined with hillslope-channel coupled erosion and transport simulation. The comparison with the modelling tool SETRAC demonstrates the reliability of the modelling concept. The devised technique is very fast and of comparable accuracy to the more specialised sediment transport model SETRAC.

  7. Global Climate Model Simulated Hydrologic Droughts and Floods in the Nelson-Churchill Watershed (United States)

    Vieira, M. J. F.; Stadnyk, T. A.; Koenig, K. A.


    There is uncertainty surrounding the duration, magnitude and frequency of historical hydroclimatic extremes such as hydrologic droughts and floods prior to the observed record. In regions where paleoclimatic studies are less reliable, Global Climate Models (GCMs) can provide useful information about past hydroclimatic conditions. This study evaluates the use of Coupled Model Intercomparison Project 5 (CMIP5) GCMs to enhance the understanding of historical droughts and floods across the Canadian Prairie region in the Nelson-Churchill Watershed (NCW). The NCW is approximately 1.4 million km2 in size and drains into Hudson Bay in Northern Manitoba, Canada. One hundred years of observed hydrologic records show extended dry and wet periods in this region; however paleoclimatic studies suggest that longer, more severe droughts have occurred in the past. In Manitoba, where hydropower is the primary source of electricity, droughts are of particular interest as they are important for future resource planning. Twenty-three GCMs with daily runoff are evaluated using 16 metrics for skill in reproducing historic annual runoff patterns. A common 56-year historic period of 1950-2005 is used for this evaluation to capture wet and dry periods. GCM runoff is then routed at a grid resolution of 0.25° using the WATFLOOD hydrological model storage-routing algorithm to develop streamflow scenarios. Reservoir operation is naturalized and a consistent temperature scenario is used to determine ice-on and ice-off conditions. These streamflow simulations are compared with the historic record to remove bias using quantile mapping of empirical distribution functions. GCM runoff data from pre-industrial and future projection experiments are also bias corrected to obtain extended streamflow simulations. GCM streamflow simulations of more than 650 years include a stationary (pre-industrial) period and future periods forced by radiative forcing scenarios. Quantile mapping adjusts for magnitude

  8. Modeling urban storm rainfall runoff from diverse underlying surfaces and application for control design in Beijing. (United States)

    Ouyang, Wei; Guo, Bobo; Hao, Fanghua; Huang, Haobo; Li, Junqi; Gong, Yongwei


    Managing storm rainfall runoff is paramount in semi-arid regions with urban development. In Beijing, pollution prevention in urban storm runoff and storm water utilization has been identified as the primary strategy for urban water management. In this paper, we sampled runoff during storm rainfall events and analyzed the concentration of chemical oxygen demand (COD), total suspended solids (TSS) and total phosphorus (TP) in the runoff. Furthermore, the first flush effect of storm rainfall from diverse underlying surfaces was also analyzed. With the Storm Water Management Model (SWMM), the different impervious rates of underlying surfaces during the storm runoff process were expressed. The removal rates of three typical pollutants and their interactions with precipitation and underlying surfaces were identified. From these rates, the scenarios regarding the urban storm runoff pollution loading from different designs of underlying previous rates were assessed with the SWMM. First flush effect analysis showed that the first 20% of the storm runoff should be discarded, which can help in utilizing the storm water resource. The results of this study suggest that the SWMM can express in detail the storm water pollution patterns from diverse underlying surfaces in Beijing, which significantly affected water quality. The scenario analysis demonstrated that impervious rate adjustment has the potential to reduce runoff peak and decrease pollution loading. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. iTree-Hydro: Snow hydrology update for the urban forest hydrology model (United States)

    Yang Yang; Theodore A. Endreny; David J. Nowak


    This article presents snow hydrology updates made to iTree-Hydro, previously called the Urban Forest Effects—Hydrology model. iTree-Hydro Version 1 was a warm climate model developed by the USDA Forest Service to provide a process-based planning tool with robust water quantity and quality predictions given data limitations common to most urban areas. Cold climate...

  10. On the utilization of hydrological modelling for road drainage design under climate and land use change. (United States)

    Kalantari, Zahra; Briel, Annemarie; Lyon, Steve W; Olofsson, Bo; Folkeson, Lennart


    Road drainage structures are often designed using methods that do not consider process-based representations of a landscape's hydrological response. This may create inadequately sized structures as coupled land cover and climate changes can lead to an amplified hydrological response. This study aims to quantify potential increases of runoff in response to future extreme rain events in a 61 km(2) catchment (40% forested) in southwest Sweden using a physically-based hydrological modelling approach. We simulate peak discharge and water level (stage) at two types of pipe bridges and one culvert, both of which are commonly used at Swedish road/stream intersections, under combined forest clear-cutting and future climate scenarios for 2050 and 2100. The frequency of changes in peak flow and water level varies with time (seasonality) and storm size. These changes indicate that the magnitude of peak flow and the runoff response are highly correlated to season rather than storm size. In all scenarios considered, the dimensions of the current culvert are insufficient to handle the increase in water level estimated using a physically-based modelling approach. It also appears that the water level at the pipe bridges changes differently depending on the size and timing of the storm events. The findings of the present study and the approach put forward should be considered when planning investigations on and maintenance for areas at risk of high water flows. In addition, the research highlights the utility of physically-based hydrological models to identify the appropriateness of road drainage structure dimensioning. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Determining hydrological changes in a small Arctic treeline basin using cold regions hydrological modelling and a pseudo-global warming approach (United States)

    Krogh, S. A.; Pomeroy, J. W.


    Increasing temperatures are producing higher rainfall ratios, shorter snow-covered periods, permafrost thaw, more shrub coverage, more northerly treelines and greater interaction between groundwater and surface flow in Arctic basins. How these changes will impact the hydrology of the Arctic treeline environment represents a great challenge. To diagnose the future hydrology along the current Arctic treeline, a physically based cold regions model was used to simulate the hydrology of a small basin near Inuvik, Northwest Territories, Canada. The hydrological model includes hydrological processes such as snow redistribution and sublimation by wind, canopy interception of snow/rain and sublimation/evaporation, snowmelt energy balance, active layer freeze/thaw, infiltration into frozen and unfrozen soils, evapotranspiration, horizontal flow through organic terrain and snowpack, subsurface flow and streamflow routing. The model was driven with weather simulated by a high-resolution (4 km) numerical weather prediction model under two scenarios: (1) control run, using ERA-Interim boundary conditions (2001-2013) and (2) future, using a Pseudo-Global Warming (PGW) approach based on the RCP8.5 projections perturbing the control run. Transient changes in vegetation based on recent observations and ecological expectations were then used to re-parameterise the model. Historical hydrological simulations were validated against daily streamflow, snow water equivalent and active layer thickness records, showing the model's suitability in this environment. Strong annual warming ( 6 °C) and more precipitation ( 20%) were simulated by the PGW scenario, with winter precipitation and fall temperature showing the largest seasonal increase. The joint impact of climate and transient vegetation changes on snow accumulation and redistribution, evapotranspiration, active layer development, runoff generation and hydrograph characteristics are analyzed and discussed.

  12. Climate downscaling over South America for 1971-2000: application in SMAP rainfall-runoff model for Grande River Basin (United States)

    da Silva, Felipe das Neves Roque; Alves, José Luis Drummond; Cataldi, Marcio


    This paper aims to validate inflow simulations concerning the present-day climate at Água Vermelha Hydroelectric Plant (AVHP—located on the Grande River Basin) based on the Soil Moisture Accounting Procedure (SMAP) hydrological model. In order to provide rainfall data to the SMAP model, the RegCM regional climate model was also used working with boundary conditions from the MIROC model. Initially, present-day climate simulation performed by RegCM model was analyzed. It was found that, in terms of rainfall, the model was able to simulate the main patterns observed over South America. A bias correction technique was also used and it was essential to reduce mistakes related to rainfall simulation. Comparison between rainfall simulations from RegCM and MIROC showed improvements when the dynamical downscaling was performed. Then, SMAP, a rainfall-runoff hydrological model, was used to simulate inflows at Água Vermelha Hydroelectric Plant. After calibration with observed rainfall, SMAP simulations were evaluated in two different periods from the one used in calibration. During calibration, SMAP captures the inflow variability observed at AVHP. During validation periods, the hydrological model obtained better results and statistics with observed rainfall. However, in spite of some discrepancies, the use of simulated rainfall without bias correction captured the interannual flow variability. However, the use of bias removal in the simulated rainfall performed by RegCM brought significant improvements to the simulation of natural inflows performed by SMAP. Not only the curve of simulated inflow became more similar to the observed inflow, but also the statistics improved their values. Improvements were also noticed in the inflow simulation when the rainfall was provided by the regional climate model compared to the global model. In general, results obtained so far prove that there was an added value in rainfall when regional climate model was compared to global climate

  13. Modeling detailed hydro-meteorological surfaces and runoff response in large diverse watersheds

    International Nuclear Information System (INIS)

    Byrne, J.; Kienzle, S.W.; MacDonald, R.J.


    An understanding of local variability in climatic conditions over complex terrain is imperative to making accurate assessments of impacts from climate change on fresh water ecosystems (Daly, 2006). The derivation of representative spatial data in diverse environments poses a significant challenge to the modelling community. This presentation describes the current status of a long term ongoing hydro-climate model development program. We are developing a gridded hydroclimate dataset for diverse watersheds using SimGrid (Larson, 2008; Lapp et al., 2005; Sheppard, 1996), a model that applies the Mountain Climate Model (MTCLIM; Hungerford et al., 1989) to simulate hydro-climatic conditions over diverse terrain. The model uses GIS based terrain categories (TC) classified by slope, aspect, elevation, and soil water storage. SimGrid provides daily estimates of solar radiation, air temperature, relative humidity, precipitation, snowpack and soil water storage over space. Earlier versions of the model have been applied in the St. Mary (Larson, 2008) and upper Oldman basins (Lapp et al., 2005), giving realistic estimates of hydro-climatic variables. The current study demonstrates improvements to the estimation of temperature, precipitation, snowpack, soil water storage and runoff from the basin. Soil water storage data for the upper drainage were derived with GIS and included in SimGrid to estimate soil water flux over the time period. These changes help improve the estimation of spatial climatic variability over the basin while accounting for topographical influence. In further work we will apply spatial hydro-climatic surfaces from the SimGrid model to assess the hydrologic response to environmental change for watersheds in Canada and beyond. (author)

  14. Modeling the hydrologic impacts of forest harvesting on Florida flatwoods (United States)

    Ge Sun; Hans Rierkerk; Nicholas B. Comerford


    The great temporal and spatial variability of pine flatwoods hydrology suggests traditional short-term field methods may not be effective in evaluating the hydrologic effects of forest management. The flatwoods model was developed, calibrated and validated specifically for the cypress wetland-pine upland landscape. The model was applied to two typical flatwoods sites...

  15. R-HyMOD: an R-package for the hydrological model HyMOD (United States)

    Baratti, Emanuele; Montanari, Alberto


    A software code for the implementation of the HyMOD hydrological model [1] is presented. HyMOD is a conceptual lumped rainfall-runoff model that is based on the probability-distributed soil storage capacity principle introduced by R. J. Moore 1985 [2]. The general idea behind this model is to describe the spatial variability of some process parameters as, for instance, the soil structure or the water storage capacities, through probability distribution functions. In HyMOD, the rainfall-runoff process is represented through a nonlinear tank connected with three identical linear tanks in parallel representing the surface flow and a slow-flow tank representing groundwater flow. The model requires the optimization of five parameters: Cmax (the maximum storage capacity within the watershed), β (the degree of spatial variability of the soil moisture capacity within the watershed), α (a factor for partitioning the flow between two series of tanks) and the two residence time parameters of quick-flow and slow-flow tanks, kquick and kslow respectively. Given its relatively simplicity but robustness, the model is widely used in the literature. The input data consist of precipitation and potential evapotranspiration at the given time scale. The R-HyMOD package is composed by a 'canonical' R-function of HyMOD and a fast FORTRAN implementation. The first one can be easily modified and can be used, for instance, for educational purposes; the second part combines the R user friendly interface with a fast processing unit. [1] Boyle D.P. (2000), Multicriteria calibration of hydrological models, Ph.D. dissertation, Dep. of Hydrol. and Water Resour., Univ of Arizona, Tucson. [2] Moore, R.J., (1985), The probability-distributed principle and runoff production at point and basin scale, Hydrol. Sci. J., 30(2), 273-297.

  16. Hydrology (United States)

    Sharp, John M.


    Lists many recent research projects in hydrology, including flow in fractured media, improvements in remote-sensing techniques, effects of urbanization on water resources, and developments in drainage basins. (MLH)

  17. Hydrology

    International Nuclear Information System (INIS)

    Obando G, E.


    Isotopical techniques are used in hydrology area for exploration, evaluation and exploration of water investigation. These techniques have been used successfully and are often the best or only means for providing certain hydrogeological parameters

  18. Hydrology team (United States)

    Ragan, R.


    General problems faced by hydrologists when using historical records, real time data, statistical analysis, and system simulation in providing quantitative information on the temporal and spatial distribution of water are related to the limitations of these data. Major problem areas requiring multispectral imaging-based research to improve hydrology models involve: evapotranspiration rates and soil moisture dynamics for large areas; the three dimensional characteristics of bodies of water; flooding in wetlands; snow water equivalents; runoff and sediment yield from ungaged watersheds; storm rainfall; fluorescence and polarization of water and its contained substances; discriminating between sediment and chlorophyll in water; role of barrier island dynamics in coastal zone processes; the relationship between remotely measured surface roughness and hydraulic roughness of land surfaces and stream networks; and modeling the runoff process.

  19. Innovative use of soft data for the validation of a rainfall-runoff model forced by remote sensing data (United States)

    van Emmerik, Tim; Eilander, Dirk; Piet, Marijn; Mulder, Gert


    The Chamcar Bei catchment in southern Cambodia is a typical ungauged basin. Neither meteorological data or discharge measurements are available. In this catchment, local farmers are highly dependent on the irrigation system. However, due to the unreliability of the water supply, it was required to make a hydrological model, with which further improvements of the irrigation system could be planned. First, we used knowledge generated in the IAHS decade on Predictions in Ungauged Basins (PUB) to estimate the annual water balance of the Chamcar Bei catchment. Next, using remotely sensed precipitation, vegetation, elevation and transpiration data, a monthly rainfall-runoff model has been developed. The rainfall-runoff model was linked to the irrigation system reservoir, which allowed to validate the model based on soft data such as historical knowledge of the reservoir water level and groundwater levels visible in wells. This study shows that combining existing remote sensing data and soft ground data can lead to useful modeling results. The approach presented in this study can be applied in other ungauged basins, which can be extremely helpful in managing water resources in developing countries.

  20. Hydrological modelling of fine sediments in the Odzi River, Zimbabwe

    African Journals Online (AJOL)

    Hydrological modelling of fine sediments in the Odzi River, Zimbabwe. ... An analysis of the model structure and a comparison with the rating curve function ... model validation through split sample and proxy basin comparison was performed.

  1. Effect of calibration data series length on performance and optimal parameters of hydrological model

    Directory of Open Access Journals (Sweden)

    Chuan-zhe Li


    Full Text Available In order to assess the effects of calibration data series length on the performance and optimal parameter values of a hydrological model in ungauged or data-limited catchments (data are non-continuous and fragmental in some catchments, we used non-continuous calibration periods for more independent streamflow data for SIMHYD (simple hydrology model calibration. Nash-Sutcliffe efficiency and percentage water balance error were used as performance measures. The particle swarm optimization (PSO method was used to calibrate the rainfall-runoff models. Different lengths of data series ranging from one year to ten years, randomly sampled, were used to study the impact of calibration data series length. Fifty-five relatively unimpaired catchments located all over Australia with daily precipitation, potential evapotranspiration, and streamflow data were tested to obtain more general conclusions. The results show that longer calibration data series do not necessarily result in better model performance. In general, eight years of data are sufficient to obtain steady estimates of model performance and parameters for the SIMHYD model. It is also shown that most humid catchments require fewer calibration data to obtain a good performance and stable parameter values. The model performs better in humid and semi-humid catchments than in arid catchments. Our results may have useful and interesting implications for the efficiency of using limited observation data for hydrological model calibration in different climates.

  2. GIS based generation of dynamic hydrological and land patch simulation models for rural watershed areas

    Directory of Open Access Journals (Sweden)

    M. Varga


    Full Text Available This paper introduces a GIS based methodology to generate dynamic process model for the simulation based analysis of a sensitive rural watershed. The Direct Computer Mapping (DCM based solution starts from GIS layers and, via the graph interpretation and graphical edition of the process network, the expert interface is able to integrate the field experts’ knowledge in the computer aided generation of the simulation model. The methodology was applied and tested for the Southern catchment basin of Lake Balaton, Hungary. In the simplified hydrological model the GIS description of nine watercourses, 121 water sections, 57 small lakes and 20 Lake Balaton compartments were mapped through the expert interface to the dynamic databases of the DCM model. The hydrological model involved precipitation, evaporation, transpiration, runoff, infiltration. The COoRdination of INformation on the Environment (CORINE land cover based simplified “land patch” model considered the effect of meteorological and hydrological scenarios on freshwater resources in the land patches, rivers and lakes. The first results show that the applied model generation methodology helps to build complex models, which, after validation can support the analysis of various land use, with the consideration of environmental aspects.

  3. Modelling hydrological processes and dissolved organic carbon dynamics in a rehabilitated Sphagnum-dominated peatland (United States)

    Bernard-Jannin, Léonard; Binet, Stéphane; Gogo, Sébastien; Leroy, Fabien; Perdereau, Laurent; Laggoun-Défarge, Fatima


    Sphagnum-dominated peatlands represent a global major stock of carbon (C). Dissolved organic carbon (DOC) exports through runoff and leaching could reduce their potential C sink function and impact downstream water quality. DOC production in peatlands is strongly controlled by the hydrology, especially water table depth (WTD). Therefore, disturbances such as drainage can lead to increase DOC exports by lowering the WTD. Hydrological restoration (e.g. rewetting) can be undertaken to restore peatland functioning with an impact on DOC exports. The objective of this study is to assess the impact of drainage and rewetting on hydrological processes and their interactions with DOC dynamics in a Sphagnum dominated peatland. A hydrological model has been applied to a drained peatland (La Guette, France) which experienced a rewetting action on February 2014 and where WTD has been recorded in four piezometers at a 15 min time step since 2009. In addition, DOC concentrations in the peatland have been measured 6 times a year since 2014. The hydrological model is a WTD dependent reservoir model composed by two reservoirs representing the micro and macro porosity of the peatland (Binet et al., 2013). A DOC production module in both reservoirs was implemented based on temperature and WTD. The model was calibrated against WTD and DOC concentrations for each piezometer. The results show that the WTD in the study area is strongly affected by local meteorological conditions that could hide the effect of the rewetting action. The preliminary results evidenced that an additional source of water, identified as groundwater supply originating from the surrounding sandy layer aquifer, is necessary to maintain the water balance, especially during wet years (NS>0.8). Finally, the DOC module was able to describe DOC concentrations measured in the peatland and could be used to assess the impact of rewetting on DOC dynamics at different locations and to identify the factors of control of DOC

  4. Modeling relationship between runoff and soil properties in dry-farming lands, NW Iran


    Vaezi, A. R.; Bahrami, H. A.; Sadeghi, S. H. R.; Mahdian, M. H.


    The process of transformation of rainfall into runoff over a catchment is very complex and exhibits both temporal and spatial variability. However, in a semi-arid area this variability is mainly controlled by the physical and chemical properties of the soil surface. Developing an accurate and easily-used model that can appropriately determine the runoff generation value is of strong demand. In this study a simple, an empirically based model developed to explore effect of soil properties on ru...

  5. Earthworms and tree roots: A model study of the effect of preferential flow paths on runoff generation and groundwater recharge in steep, saprolitic, tropical lowland catchments (United States)

    Cheng, Yanyan; Ogden, Fred L.; Zhu, Jianting


    Preferential flow paths (PFPs) affect the hydrological response of humid tropical catchments but have not received sufficient attention. We consider PFPs created by tree roots and earthworms in a near-surface soil layer in steep, humid, tropical lowland catchments and hypothesize that observed hydrological behaviors can be better captured by reasonably considering PFPs in this layer. We test this hypothesis by evaluating the performance of four different physically based distributed model structures without and with PFPs in different configurations. Model structures are tested both quantitatively and qualitatively using hydrological, geophysical, and geochemical data both from the Smithsonian Tropical Research Institute Agua Salud Project experimental catchment(s) in Central Panama and other sources in the literature. The performance of different model structures is evaluated using runoff Volume Error and three Nash-Sutcliffe efficiency measures against observed total runoff, stormflows, and base flows along with visual comparison of simulated and observed hydrographs. Two of the four proposed model structures which include both lateral and vertical PFPs are plausible, but the one with explicit simulation of PFPs performs the best. A small number of vertical PFPs that fully extend below the root zone allow the model to reasonably simulate deep groundwater recharge, which plays a crucial role in base flow generation. Results also show that the shallow lateral PFPs are the main contributor to the observed high flow characteristics. Their number and size distribution are found to be more important than the depth distribution. Our model results are corroborated by geochemical and geophysical observations.

  6. Towards improved parameterization of a macroscale hydrologic model in a discontinuous permafrost boreal forest ecosystem

    Directory of Open Access Journals (Sweden)

    A. Endalamaw


    Full Text Available Modeling hydrological processes in the Alaskan sub-arctic is challenging because of the extreme spatial heterogeneity in soil properties and vegetation communities. Nevertheless, modeling and predicting hydrological processes is critical in this region due to its vulnerability to the effects of climate change. Coarse-spatial-resolution datasets used in land surface modeling pose a new challenge in simulating the spatially distributed and basin-integrated processes since these datasets do not adequately represent the small-scale hydrological, thermal, and ecological heterogeneity. The goal of this study is to improve the prediction capacity of mesoscale to large-scale hydrological models by introducing a small-scale parameterization scheme, which better represents the spatial heterogeneity of soil properties and vegetation cover in the Alaskan sub-arctic. The small-scale parameterization schemes are derived from observations and a sub-grid parameterization method in the two contrasting sub-basins of the Caribou Poker Creek Research Watershed (CPCRW in Interior Alaska: one nearly permafrost-free (LowP sub-basin and one permafrost-dominated (HighP sub-basin. The sub-grid parameterization method used in the small-scale parameterization scheme is derived from the watershed topography. We found that observed soil thermal and hydraulic properties – including the distribution of permafrost and vegetation cover heterogeneity – are better represented in the sub-grid parameterization method than the coarse-resolution datasets. Parameters derived from the coarse-resolution datasets and from the sub-grid parameterization method are implemented into the variable infiltration capacity (VIC mesoscale hydrological model to simulate runoff, evapotranspiration (ET, and soil moisture in the two sub-basins of the CPCRW. Simulated hydrographs based on the small-scale parameterization capture most of the peak and low flows, with similar accuracy in both sub

  7. Surface mass balance and runoff modeling using HIRHAM4 RCM at Kangerlussuaq (Søndre Strømfjord), West Greenland, 1950-2080

    DEFF Research Database (Denmark)

    Mernild, Sebastian H.; Liston, Glen E.; Hiemstra, Christopher A.


    A regional atmospheric model, the HIRHAM4 regional climate model (RCM) using boundary conditions from the ECHAM5 atmosphere-ocean general circulation model (AOGCM), was downscaled to a 500-m gridcell increment using SnowModel to simulate 131 yr (1950-2080) of hydrologic cycle evolution in west...... Greenland's Kangerlussuaq drainage. Projected changes in the Greenland Ice Sheet (GrIS) surface mass balance (SMB) and runoff are relevant for potential hydropower production and prediction of ecosystem changes in sensitive Kangerlussuaq Fjord systems. Mean annual surface air temperatures and precipitation...

  8. Detecting surface runoff location in a small catchment using distributed and simple observation method (United States)

    Dehotin, Judicaël; Breil, Pascal; Braud, Isabelle; de Lavenne, Alban; Lagouy, Mickaël; Sarrazin, Benoît


    Surface runoff is one of the hydrological processes involved in floods, pollution transfer, soil erosion and mudslide. Many models allow the simulation and the mapping of surface runoff and erosion hazards. Field observations of this hydrological process are not common although they are crucial to evaluate surface runoff models and to investigate or assess different kinds of hazards linked to this process. In this study, a simple field monitoring network is implemented to assess the relevance of a surface runoff susceptibility mapping method. The network is based on spatially distributed observations (nine different locations in the catchment) of soil water content and rainfall events. These data are analyzed to determine if surface runoff occurs. Two surface runoff mechanisms are considered: surface runoff by saturation of the soil surface horizon and surface runoff by infiltration excess (also called hortonian runoff). The monitoring strategy includes continuous records of soil surface water content and rainfall with a 5 min time step. Soil infiltration capacity time series are calculated using field soil water content and in situ measurements of soil hydraulic conductivity. Comparison of soil infiltration capacity and rainfall intensity time series allows detecting the occurrence of surface runoff by infiltration-excess. Comparison of surface soil water content with saturated water content values allows detecting the occurrence of surface runoff by saturation of the soil surface horizon. Automatic records were complemented with direct field observations of surface runoff in the experimental catchment after each significant rainfall event. The presented observation method allows the identification of fast and short-lived surface runoff processes at a small spatial and temporal resolution in natural conditions. The results also highlight the relationship between surface runoff and factors usually integrated in surface runoff mapping such as topography, rainfall

  9. Assimilating GRACE terrestrial water storage data into a conceptual hydrology model for the River Rhine (United States)

    Widiastuti, E.; Steele-Dunne, S. C.; Gunter, B.; Weerts, A.; van de Giesen, N.


    Terrestrial water storage (TWS) is a key component of the terrestrial and global hydrological cycles, and plays a major role in the Earth’s climate. The Gravity Recovery and Climate Experiment (GRACE) twin satellite mission provided the first space-based dataset of TWS variations, albeit with coarse resolution and limited accuracy. Here, we examine the value of assimilating GRACE observations into a well-calibrated conceptual hydrology model of the Rhine river basin. In this study, the ensemble Kalman filter (EnKF) and smoother (EnKS) were applied to assimilate the GRACE TWS variation data into the HBV-96 rainfall run-off model, from February 2003 to December 2006. Two GRACE datasets were used, the DMT-1 models produced at TU Delft, and the CSR-RL04 models produced by UT-Austin . Each center uses its own data processing and filtering methods, yielding two different estimates of TWS variations and therefore two sets of assimilated TWS estimates. To validate the results, the mo