WorldWideScience

Sample records for hydrogenation catalysts final

  1. Final Report: Cathode Catalysis in Hydrogen/Oxygen Fuel Cells: New Catalysts, Mechanism, and Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Gewirth, Andrew A. [Univ. of Illinois, Urbana, IL (United States). Dept. of Chemistry; Kenis, Paul J. [Univ. of Illinois, Urbana, IL (United States). Dept. of Chemical and Biomolecular Engineering; Nuzzo, Ralph G. [Univ. of Illinois, Urbana, IL (United States). Dept. of Chemistry; Rauchfuss, Thomas B. [Univ. of Illinois, Urbana, IL (United States). Dept. of Chemistry

    2016-01-18

    In this research, we prosecuted a comprehensive plan of research directed at developing new catalysts and new understandings relevant to the operation of low temperature hydrogen-oxygen fuel cells. The focal point of this work was one centered on the Oxygen Reduction Reaction (ORR), the electrochemical process that most fundamentally limits the technological utility of these environmentally benign energy conversion devices. Over the period of grant support, we developed new ORR catalysts, based on Cu dimers and multimers. In this area, we developed substantial new insight into design rules required to establish better ORR materials, inspired by the three-Cu active site in laccase which has the highest ORR onset potential of any material known. We also developed new methods of characterization for the ORR on conventional (metal-based) catalysts. Finally, we developed a new platform to study the rate of proton transfer relevant to proton coupled electron transfer (PCET) reactions, of which the ORR is an exemplar. Other aspects of work involved theory and prototype catalyst testing.

  2. Ligand iron catalysts for selective hydrogenation

    Science.gov (United States)

    Casey, Charles P.; Guan, Hairong

    2010-11-16

    Disclosed are iron ligand catalysts for selective hydrogenation of aldehydes, ketones and imines. A catalyst such as dicarbonyl iron hydride hydroxycyclopentadiene) complex uses the OH on the five member ring and hydrogen linked to the iron to facilitate hydrogenation reactions, particularly in the presence of hydrogen gas.

  3. Hydrocarbon reforming catalysts and new reactor designs for compact hydrogen generators

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, A.; Schwab, E.; Urtel, H. [BASF SE, Ludwigshafen (Germany); Farrauto, R. [BASF Catalysts LLC, Iselin, NJ (United States)

    2010-12-30

    A hydrogen based future energy scenario will use fuel cells for the conversion of chemically stored energy into electricity. Depending upon the type of fuel cell, different specifications will apply for the feedstock which is converted in the cell, ranging from very clean hydrogen for PEM-FC's to desulfurized methane for SOFC and MCFC technology. For the foreseeable future, hydrogen will be supplied by conventional reforming, however operated in compact and dynamic reformer designs. This requires that known catalyst formulations are offered in specific geometries, giving flexibility for novel reactor design options. These specific geometries can be special tablet shapes as well as monolith structures. Finally, also nonhydrocarbon feedstock might be used in special applications, e.g. bio-based methanol and ethanol. BASF offers catalysts for the full process chain starting from feedstock desulfurization via reforming, high temperature shift, low temperature shift to CO fine polishing either via selective oxidation or selective methanation. Depending upon the customer's design, most stages can be served either with precious metal based monolith solutions or base metal tablet solutions. For the former, we have taken the automobile catalyst monolith support and extended its application to the fuel cell hydrogen generation. Washcoats of precious metal supported catalysts can for example be deposited on ceramic monoliths and/or metal heat exchangers for efficient generation of hydrogen. Major advantages are high through puts due to more efficient heat transfer for catalysts on metal heat exchangers, lower pressure drop with greater catalyst mechanical and thermal stability compared to particulate catalysts. Base metal tablet catalysts on the other hand can have intrinsic cost advantages, larger fractions of the reactor can be filled with active mass, and if produced in unconventional shape, again novel reactor designs are made possible. Finally, if it comes to

  4. Study of Supported Nickel Catalysts Prepared by Aqueous Hydrazine Method. Hydrogenating Properties and Hydrogen Storage: Support Effect. Silver Additive Effect

    International Nuclear Information System (INIS)

    Wojcieszak, R.

    2006-06-01

    We have studied Ni or NiAg nano-particles obtained by the reduction of nickel salts (acetate or nitrate) by hydrazine and deposited by simple or EDTA-double impregnation on various supports (γ-Al 2 O 3 , amorphous or crystallized SiO 2 , Nb 2 O 5 , CeO 2 and carbon). Prepared catalysts were characterized by different methods (XRD, XPS, low temperature adsorption and desorption of N 2 , FTIR and FTIR-Pyridine, TEM, STEM, EDS, H 2 -TPR, H 2 -adsorption, H 2 -TPD, isopropanol decomposition) and tested in the gas phase hydrogenation of benzene or as carbon materials in the hydrogen storage at room temperature and high pressure. The catalysts prepared exhibited better dispersion and activity than classical catalysts. TOF's of NiAg/SiO 2 or Ni/carbon catalysts were similar to Pt catalysts in benzene hydrogenation. Differences in support acidity or preparation method and presence of Ag as metal additive play a crucial role in the chemical reduction of Ni by hydrazine and in the final properties of the materials. Ni/carbon catalysts could store significant amounts of hydrogen at room temperature and high pressure (0.53%/30 bars), probably through the hydrogen spillover effect. (author)

  5. Catalyst support effects on hydrogen spillover

    Science.gov (United States)

    Karim, Waiz; Spreafico, Clelia; Kleibert, Armin; Gobrecht, Jens; Vandevondele, Joost; Ekinci, Yasin; van Bokhoven, Jeroen A.

    2017-01-01

    Hydrogen spillover is the surface migration of activated hydrogen atoms from a metal catalyst particle, on which they are generated, onto the catalyst support. The phenomenon has been much studied and its occurrence on reducible supports such as titanium oxide is established, yet questions remain about whether hydrogen spillover can take place on nonreducible supports such as aluminium oxide. Here we use the enhanced precision of top-down nanofabrication to prepare controlled and precisely tunable model systems that allow us to quantify the efficiency and spatial extent of hydrogen spillover on both reducible and nonreducible supports. We place multiple pairs of iron oxide and platinum nanoparticles on titanium oxide and aluminium oxide supports, varying the distance between the pairs from zero to 45 nanometres with a precision of one nanometre. We then observe the extent of the reduction of the iron oxide particles by hydrogen atoms generated on the platinum using single-particle in situ X-ray absorption spectromicroscopy applied simultaneously to all particle pairs. The data, in conjunction with density functional theory calculations, reveal fast hydrogen spillover on titanium oxide that reduces remote iron oxide nanoparticles via coupled proton-electron transfer. In contrast, spillover on aluminium oxide is mediated by three-coordinated aluminium centres that also interact with water and that give rise to hydrogen mobility competing with hydrogen desorption; this results in hydrogen spillover about ten orders of magnitude slower than on titanium oxide and restricted to very short distances from the platinum particle. We anticipate that these observations will improve our understanding of hydrogen storage and catalytic reactions involving hydrogen, and that our approach to creating and probing model catalyst systems will provide opportunities for studying the origin of synergistic effects in supported catalysts that combine multiple functionalities.

  6. Hydrogen evolution reaction catalyst

    Science.gov (United States)

    Subbaraman, Ram; Stamenkovic, Vojislav; Markovic, Nenad; Tripkovic, Dusan

    2016-02-09

    Systems and methods for a hydrogen evolution reaction catalyst are provided. Electrode material includes a plurality of clusters. The electrode exhibits bifunctionality with respect to the hydrogen evolution reaction. The electrode with clusters exhibits improved performance with respect to the intrinsic material of the electrode absent the clusters.

  7. Highly Selective Hydrogenation of Levulinic Acid to γ-Valerolactone Over Ru/ZrO2 Catalysts

    NARCIS (Netherlands)

    Filiz, B.C.; Gnanakumar, E.S.; Martinez-Arias, A.; Gengler, R.; Rudolf, P.; Rothenberg, G.; Shiju, N.R.

    We studied the catalytic hydrogenation of levulinic acid over zirconia supported ruthenium catalysts. Four different Ru/ZrO2 catalysts were prepared by different pre-treatments and using different zirconium supports (ZrOx(OH)4−2x and ZrO2). Although the final compositions of the catalysts are the

  8. Highly Selective Hydrogenation of Levulinic Acid to gamma-Valerolactone Over Ru/ZrO2 Catalysts

    NARCIS (Netherlands)

    Filiz, Bilge Coskuner; Gnanakumar, Edwin S.; Martinez-Arias, Arturo; Gengler, Regis; Rudolf, Petra; Rothenberg, Gadi; Shiju, N. Raveendran

    We studied the catalytic hydrogenation of levulinic acid over zirconia supported ruthenium catalysts. Four different Ru/ZrO2 catalysts were prepared by different pre-treatments and using different zirconium supports (ZrOx(OH)(4-2x) and ZrO2). Although the final compositions of the catalysts are the

  9. Hydrogenation of citral into its derivatives using heterogeneous catalyst

    Science.gov (United States)

    Sudiyarmanto, Hidayati, Luthfiana Nurul; Kristiani, Anis; Aulia, Fauzan

    2017-11-01

    Citral as known as a monoterpene can be found in plants and citrus fruits. The hydrogenation of citral into its derivatives become interesting area for scientist. This compound and its derivatives can be used for many application in pharmaceuticals and food areas. The development of heterogeneous catalysts become an important aspect in catalytic hydrogenation citral process. Nickel supported catalysts are well known as hydrogenation catalyst. These heterogeneous catalysts were tested their catalytic activity in hydrogenation of citral. The effect of various operation conditions, in term of feed concentration, catalyst loading, temperature, and reaction time were also studied. The liquid products produced were analyzed by using Gas Chromatography-Mass Spectroscopy (GC-MS). The result of catalytic activity tests showed nickel skeletal catalyst exhibits best catalytic activity in hydrogenation of citral. The optimum of operation condition was achieved in citral concentration 0.1 M with nickel skeletal catalyst loading of 10% (w/w) at 80 °C and 20 bar for 2 hours produced the highest conversion as of 64.20% and the dominant product resulted was citronellal as of 56.48%.

  10. Catalytic Transfer Hydrogenation of Furfural to 2-Methylfuran and 2-Methyltetrahydrofuran over Bimetallic Copper-Palladium Catalysts.

    Science.gov (United States)

    Chang, Xin; Liu, An-Feng; Cai, Bo; Luo, Jin-Yue; Pan, Hui; Huang, Yao-Bing

    2016-12-08

    The catalytic transfer hydrogenation of furfural to the fuel additives 2-methylfuran (2-MF) and 2-methyltetrahydrofuran (2-MTHF) was investigated over various bimetallic catalysts in the presence of the hydrogen donor 2-propanol. Of all the as-prepared catalysts, bimetallic Cu-Pd catalysts showed the highest catalytic activities towards the formation of 2-MF and 2-MTHF with a total yield of up to 83.9 % yield at 220 °C in 4 h. By modifying the Pd ratios in the Cu-Pd catalyst, 2-MF or 2-MTHF could be obtained selectively as the prevailing product. The other reaction conditions also had a great influence on the product distribution. Mechanistic studies by reaction monitoring and intermediate conversion revealed that the reaction proceeded mainly through the hydrogenation of furfural to furfuryl alcohol, which was followed by deoxygenation to 2-MF in parallel to deoxygenation/ring hydrogenation to 2-MTHF. Finally, the catalyst showed a high reactivity and stability in five catalyst recycling runs, which represents a significant step forward toward the catalytic transfer hydrogenation of furfural. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Tritium removal by hydrogen isotopic exchange between hydrogen gas and water on hydrophobic catalyst

    International Nuclear Information System (INIS)

    Morishita, T.; Isomura, S.; Izawa, H.; Nakane, R.

    1980-01-01

    Many kinds of the hydrophobic catalysts for hydrogen isotopic exchange between hydrogen gas and water have been prepared. The carriers are the hydrophobic organic materials such as polytetrafluoroethylene(PTFE), monofluorocarbon-PTFE mixture(PTFE-FC), and styrene-divinylbenzene copolymer(SDB). 0.1 to 2 wt % Pt is deposited on the carriers. The Pt/SDB catalyst has much higher activity than the Pt/PTFE catalyst and the Pt/PTFE-FC catalyst shows the intermediate value of catalytic activity. The observation of electron microscope shows that the degrees of dispersion of Pt particles on the hydrophobic carriers result in the difference of catalytic activities. A gas-liquid separated type column containing ten stages is constructed. Each stage is composed of both the hydrophobic catalyst bed for the hydrogen gas/water vapor isotopic exchange and the packed column type bed for the water vapor/liquid water isotopic exchange. In the column hydrogen gas and water flow countercurrently and hydrogen isotopes are separated

  12. Hydrogen production by dry reforming of methane with carbon dioxide in one-dimensional nickel-based catalysts

    International Nuclear Information System (INIS)

    Lopez U, A. C.

    2016-01-01

    The main objective of this thesis is development of nickel catalysts supported over 1D matrix of cerium oxide, to be used in dry reforming methane reaction with carbon dioxide for hydrogen production. The catalysts were characterized by: Temperature Programmed Reduction (TPR), Scanning Electronic Microscopy (Sem), Surface Area (Bet method) an X Ray Diffraction (XRD). The TPR technique allowed to define reduction temperature of the active phase in the catalyst, Sem technique showed that the CeO_2 matrix had a nano rod morphology. XRD allowed to identify the crystalline phases of the catalysts. Finally, the catalysts were tested in the dry reforming methane reaction, high catalytic activity and hydrogen production were performed at 700 degrees Celsius and the catalyst with 30 wt.% of nickel. (Author)

  13. Finding Furfural Hydrogenation Catalysts via Predictive Modelling.

    Science.gov (United States)

    Strassberger, Zea; Mooijman, Maurice; Ruijter, Eelco; Alberts, Albert H; Maldonado, Ana G; Orru, Romano V A; Rothenberg, Gadi

    2010-09-10

    We combine multicomponent reactions, catalytic performance studies and predictive modelling to find transfer hydrogenation catalysts. An initial set of 18 ruthenium-carbene complexes were synthesized and screened in the transfer hydrogenation of furfural to furfurol with isopropyl alcohol complexes gave varied yields, from 62% up to >99.9%, with no obvious structure/activity correlations. Control experiments proved that the carbene ligand remains coordinated to the ruthenium centre throughout the reaction. Deuterium-labelling studies showed a secondary isotope effect (k(H):k(D)=1.5). Further mechanistic studies showed that this transfer hydrogenation follows the so-called monohydride pathway. Using these data, we built a predictive model for 13 of the catalysts, based on 2D and 3D molecular descriptors. We tested and validated the model using the remaining five catalysts (cross-validation, R(2)=0.913). Then, with this model, the conversion and selectivity were predicted for four completely new ruthenium-carbene complexes. These four catalysts were then synthesized and tested. The results were within 3% of the model's predictions, demonstrating the validity and value of predictive modelling in catalyst optimization.

  14. Novel catalysts for isotopic exchange between hydrogen and liquid water

    International Nuclear Information System (INIS)

    Butler, J.P.; Rolston, J.H.; Stevens, W.H.

    1978-01-01

    Catalytic isotopic exchange between hydrogen and liquid water offers many inherent potential advantages for the separation of hydrogen isotopes which is of great importance in the Canadian nuclear program. Active catalysts for isotopic exchange between hydrogen and water vapor have long been available, but these catalysts are essentially inactive in the presence of liquid water. New, water-repellent platinum catalysts have been prepared by: (1) treating supported catalysts with silicone, (2) depositing platinum on inherently hydrophobic polymeric supports, and (3) treating platinized carbon with Teflon and bonding to a carrier. The activity of these catalysts for isotopic exchange between countercurrent streams of liquid water and hydrogen saturated with water vapor has been measured in a packed trickle bed integral reactor. The performance of these hydrophobic catalysts is compared with nonwetproofed catalysts. The mechanism of the overall exchange reaction is briefly discussed. 6 figures

  15. Finding Furfural Hydrogenation Catalysts via Predictive Modelling

    Science.gov (United States)

    Strassberger, Zea; Mooijman, Maurice; Ruijter, Eelco; Alberts, Albert H; Maldonado, Ana G; Orru, Romano V A; Rothenberg, Gadi

    2010-01-01

    Abstract We combine multicomponent reactions, catalytic performance studies and predictive modelling to find transfer hydrogenation catalysts. An initial set of 18 ruthenium-carbene complexes were synthesized and screened in the transfer hydrogenation of furfural to furfurol with isopropyl alcohol complexes gave varied yields, from 62% up to >99.9%, with no obvious structure/activity correlations. Control experiments proved that the carbene ligand remains coordinated to the ruthenium centre throughout the reaction. Deuterium-labelling studies showed a secondary isotope effect (kH:kD=1.5). Further mechanistic studies showed that this transfer hydrogenation follows the so-called monohydride pathway. Using these data, we built a predictive model for 13 of the catalysts, based on 2D and 3D molecular descriptors. We tested and validated the model using the remaining five catalysts (cross-validation, R2=0.913). Then, with this model, the conversion and selectivity were predicted for four completely new ruthenium-carbene complexes. These four catalysts were then synthesized and tested. The results were within 3% of the model’s predictions, demonstrating the validity and value of predictive modelling in catalyst optimization. PMID:23193388

  16. Effects of basic nitrogen poisoning on adsorption of hydrogen on a hydrotreatment catalyst

    International Nuclear Information System (INIS)

    Entz, R.W.; Seapan, M.

    1985-01-01

    Activity of a hydrotreatment catalyst depends on the hydrogen adsorption characteristics of the catalyst. In this work, the adsorption of hydrogen on a Ni-Mo/Al/sub 2/O/sub 3/ catalyst (shell 324) has been studied using a TGA at 1 atm pressure and 200-400 0 C temperature. Hydrogen adsorption on a calcined catalyst was shown to be of activated type with a sudden increase in hydrogen adsorption around 350 0 C. When the catalyst is extracted with Tetrahydrofuran (THF), the hydrogen adsorption increases gradually as the temperature is increased, approaching a monolayer coverage of the catalyst surface. It is shown that solvent extraction of catalyst changes its hydrogen adsorption characteristics significantly. Indeed, at 400 0 C, an extracted catalyst adsorbs about four times more hydrogen than an unextracted catalyst. Adsorption of basic nitrogen compounds on the catalyst interferes with the hydrogen adsorption. The adsorption of pyridine, piperidine, n-pentylamine, and ammonia were studied at 400 0 C. It is shown that the strength of adsorption of piperidine and n-pentylamine are relatively similar, however their adsorption strength is higher than pyridine. Ammonia is the weakest adsorbing compound studied. These observations are in agreement with other studies

  17. Single-site catalyst promoters accelerate metal-catalyzed nitroarene hydrogenation

    KAUST Repository

    Wang, Liang

    2018-04-04

    Atomically dispersed supported metal catalysts are drawing wide attention because of the opportunities they offer for new catalytic properties combined with efficient use of the metals. We extend this class of materials to catalysts that incorporate atomically dispersed metal atoms as promoters. The catalysts are used for the challenging nitroarene hydrogenation and found to have both high activity and selectivity. The promoters are single-site Sn on TiO2 supports that incorporate metal nanoparticle catalysts. Represented as M/Sn-TiO2 (M = Au, Ru, Pt, Ni), these catalysts decidedly outperform the unpromoted supported metals, even for hydrogenation of nitroarenes substituted with various reducible groups. The high activity and selectivity of these catalysts result from the creation of oxygen vacancies on the TiO2 surface by single-site Sn, which leads to efficient, selective activation of the nitro group coupled with a reaction involving hydrogen atoms activated on metal nanoparticles.

  18. Single-site catalyst promoters accelerate metal-catalyzed nitroarene hydrogenation

    KAUST Repository

    Wang, Liang; Guan, Erjia; Zhang, Jian; Yang, Junhao; Zhu, Yihan; Han, Yu; Yang, Ming; Cen, Cheng; Fu, Gang; Gates, Bruce C.; Xiao, Feng-Shou

    2018-01-01

    Atomically dispersed supported metal catalysts are drawing wide attention because of the opportunities they offer for new catalytic properties combined with efficient use of the metals. We extend this class of materials to catalysts that incorporate atomically dispersed metal atoms as promoters. The catalysts are used for the challenging nitroarene hydrogenation and found to have both high activity and selectivity. The promoters are single-site Sn on TiO2 supports that incorporate metal nanoparticle catalysts. Represented as M/Sn-TiO2 (M = Au, Ru, Pt, Ni), these catalysts decidedly outperform the unpromoted supported metals, even for hydrogenation of nitroarenes substituted with various reducible groups. The high activity and selectivity of these catalysts result from the creation of oxygen vacancies on the TiO2 surface by single-site Sn, which leads to efficient, selective activation of the nitro group coupled with a reaction involving hydrogen atoms activated on metal nanoparticles.

  19. Hydrogenation of carbon monoxide over supported palladium catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, K.; Hashimoto, H.; Kunugi, T.

    1978-03-01

    An alumina-supported 2% palladium catalyst had higher activity for carbon monoxide hydrogenation than a silica-supported 2% palladium catalyst, at 250/sup 0/-400/sup 0/C and 1 atm. The addition of lanthanum oxide or thorium oxide, but not of potassium oxide, to the silica-supported catalyst increased the conversion at 350/sup 0/C from 1.1% to 81.0% with a selectivity of 56.1% for methane, 1.4% for C/sub 2/ compounds, 0.1% for C/sub 3/ compounds, and 42.5% for carbon dioxide. Temperature-programed desorption of carbon monoxide in a hydrogen stream showed that of two desorption peaks observed for carbon monoxide, the one at higher temperature corresponded to the carbon monoxide species which hydrogenates to methane and that the area of this peak increased with increasing thorium content of the catalyst. Graphs, tables, and 12 references.

  20. Mechanical alloying of a hydrogenation catalyst used for the remediation of contaminated compounds

    Science.gov (United States)

    Quinn, Jacqueline W. (Inventor); Clausen, Christian A. (Inventor); Geiger, Cherie L. (Inventor); Aitken, Brian S. (Inventor)

    2012-01-01

    A hydrogenation catalyst including a base material coated with a catalytic metal is made using mechanical milling techniques. The hydrogenation catalysts are used as an excellent catalyst for the dehalogenation of contaminated compounds and the remediation of other industrial compounds. Preferably, the hydrogenation catalyst is a bimetallic particle including zero-valent metal particles coated with a catalytic material. The mechanical milling technique is simpler and cheaper than previously used methods for producing hydrogenation catalysts.

  1. Hydrogen isotope separation in hydrophobic catalysts between hydrogen and liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Linsen, E-mail: yls2005@mail.ustc.edu.cn [China Academy of Engineering Physics, Mianyang 621900 (China); Luo, Deli [Science and Technology on Surface Physics and Chemistry Laboratory, Jiangyou 621907 (China); Tang, Tao; Yang, Wan; Yang, Yong [China Academy of Engineering Physics, Mianyang 621900 (China)

    2015-11-15

    Hydrogen isotope catalytic exchange between hydrogen and liquid water is a very effective process for deuterium-depleted potable water production and heavy water detritiation. To improve the characteristics of hydrophobic catalysts for this type of reaction, foamed and cellular structures of hydrophobic carbon-supported platinum catalysts were successfully prepared. Separation of deuterium or tritium from liquid water was carried out by liquid-phase catalytic exchange. At a gas–liquid ratio of 1.53 and exchange temperature of 70 °C, the theoretical plate height of the hydrophobic catalyst (HETP = 34.2 cm) was slightly lower than previously reported values. Changing the concentration of the exchange column outlet water yielded nonlinear changes in the height of the packing layer. Configurations of deuterium-depleted potable water and detritiation of heavy water provide references for practical applications.

  2. Finding furfural hydrogenation catalysts via predictive modelling

    NARCIS (Netherlands)

    Strassberger, Z.; Mooijman, M.; Ruijter, E.; Alberts, A.H.; Maldonado, A.G.; Orru, R.V.A.; Rothenberg, G.

    2010-01-01

    We combine multicomponent reactions, catalytic performance studies and predictive modelling to find transfer hydrogenation catalysts. An initial set of 18 ruthenium-carbene complexes were synthesized and screened in the transfer hydrogenation of furfural to furfurol with isopropyl alcohol complexes

  3. Multi-level computational chemistry study on hydrogen recombination catalyst of off-gas treatment system

    International Nuclear Information System (INIS)

    Hatakeyama, Nozomu; Ise, Mariko; Inaba, Kenji

    2011-01-01

    In order to reveal the deactivation mechanism of the hydrogen recombination catalyst of off-gas treatment system, we investigate by using multi-level computational chemistry simulation methods. The recombiner apparatus is modeled by the numerical mesh system in the axial coordinates, and unsteady, advection and reaction rate equations are solved by using a finite difference method. The chemical reactions are formulated to represent adsorption-desorption of hydrogen and oxygen on Pt catalyst, and time developments of the coverage factors of Pt are solved numerically. The computational simulations successfully reproduce the very similar behaviors observed by experiments, such as increasing of the inversion rates of H 2 to H 2 O, the temperatures distributions along the flow direction, dependencies of experimental condition, and so on. Thus Pt poisoning is considered to cause the deactivation of the hydrogen recombination catalyst. To clarify the poisoning mechanism, the molecular level simulation is applied to the system of Pt on boehmite attacked by a cyclic siloxane which has been detected by experiments and considered as one of poisoning spices. The simulation shows ring-opening reaction of the cyclic siloxane on Pt, then attachment of two ends of the chain-like siloxane to Pt and boehmite, respectively, and that finally the recombination reaction is prevented. This may be the first study to find out the detailed dynamical mechanism of hydrogen recombination catalyst poisoning with cyclic siloxane. (author)

  4. Catalyst for hydrogen-amine D exchange

    International Nuclear Information System (INIS)

    Holtslander, W.J.; Johnson, R.E.

    1976-01-01

    A process is claimed for deuterium isotopic enrichment (suitable for use in heavy water production) by amine-hydrogen exchange in which the exchange catalyst comprises a mixture of alkyl amides of two metals selected from the group consisting of the alkali metals. Catalyst mixtures comprising at least one of the alkali amides of lithium and potassium are preferred. At least one of the following benefits are obtained: decreased hydride formation, decreased thermal decomposition of alkyl amide, increased catalyst solubility in the amine phase, and increased exchange efficiency. 11 claims

  5. A catalyst for hydrogenating medium-distilled petroleum fractions

    Energy Technology Data Exchange (ETDEWEB)

    Mordanov, M A; Gasanova, Zh I; Isaev, A Ia; Khavkin, V A; Kurganov, V M; Musaeva, S K

    1982-01-01

    The catalyst for hydrogenating medium-distilled petroleum fractions, which contain Cr/sub 2/O/sub 3/ and Ni-concentrate components in the gamma-A1/sub 2/O/sub 3/ transfer agent, also contains, as a Ni-concentrate component, NiO and Re in the following component ratios (by percentage): Cr/sub 2/O/sub 3/ 25-44, NiO 4-25, Re 1-2 and the transfer agent the remainder, in order to improve catalytic resistance to catalyst toxins--nitrous and sulfurous compounds. The resistance of the proposed catalyst to toxins makes it possible to hydrogenate in less stringent conditions (280 degrees, 30 atmospheres) without first hydropurifying the raw material. Here, the catalyst's selectivity reaches 100 percent (aromatic hydrocarbons are absent); the yield of the target fraction is 99 percent.

  6. Silver-palladium catalysts for the direct synthesis of hydrogen peroxide

    Science.gov (United States)

    Khan, Zainab; Dummer, Nicholas F.; Edwards, Jennifer K.

    2017-11-01

    A series of bimetallic silver-palladium catalysts supported on titania were prepared by wet impregnation and assessed for the direct synthesis of hydrogen peroxide, and its subsequent side reactions. The addition of silver to a palladium catalyst was found to significantly decrease hydrogen peroxide productivity and hydrogenation, but crucially increase the rate of decomposition. The decomposition product, which is predominantly hydroxyl radicals, can be used to decrease bacterial colonies. The interaction between silver and palladium was characterized using scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and temperature programmed reduction (TPR). The results of the TPR and XPS indicated the formation of a silver-palladium alloy. The optimal 1% Ag-4% Pd/TiO2 bimetallic catalyst was able to produce approximately 200 ppm of H2O2 in 30 min. The findings demonstrate that AgPd/TiO2 catalysts are active for the synthesis of hydrogen peroxide and its subsequent decomposition to reactive oxygen species. The catalysts are promising for use in wastewater treatment as they combine the disinfectant properties of silver, hydrogen peroxide production and subsequent decomposition. This article is part of a discussion meeting issue 'Providing sustainable catalytic solutions for a rapidly changing world'.

  7. Novel catalysts for hydrogen fuel cell applications:Final report (FY03-FY05).

    Energy Technology Data Exchange (ETDEWEB)

    Thornberg, Steven Michael; Coker, Eric Nicholas; Jarek, Russell L.; Steen, William Arthur

    2005-12-01

    The goal of this project was to develop novel hydrogen-oxidation electrocatalyst materials that contain reduced platinum content compared to traditional catalysts by developing flexible synthesis techniques to fabricate supported catalyst structures, and by verifying electrochemical performance in half cells and ultimately laboratory fuel cells. Synthesis methods were developed for making small, well-defined platinum clusters using zeolite hosts, ion exchange, and controlled calcination/reduction processes. Several factors influence cluster size, and clusters below 1 nm with narrow size distribution have been prepared. To enable electrochemical application, the zeolite pores were filled with electrically-conductive carbon via infiltration with carbon precursors, polymerization/cross-linking, and pyrolysis under inert conditions. The zeolite host was then removed by acid washing, to leave a Pt/C electrocatalyst possessing quasi-zeolitic porosity and Pt clusters of well-controlled size. Plotting electrochemical activity versus pyrolysis temperature typically produces a Gaussian curve, with a peak at ca. 800 C. The poorer relative performances at low and high temperature are due to low electrical conductivity of the carbon matrix, and loss of zeolitic structure combined with Pt sintering, respectively. Cluster sizes measured via adsorption-based methods were consistently larger than those observed by TEM and EXAFS, suggesting , that a fraction of the clusters were inaccessible to the fluid phase. Detailed EXAFS analysis has been performed on selected catalysts and catalyst precursors to monitor trends in cluster size evolution, as well as oxidation states of Pt. Experiments were conducted to probe the electroactive surface area of the Pt clusters. These Pt/C materials had as much as 110 m{sup 2}/g{sub pt} electroactive surface area, an almost 30% improvement over what is commercially (mfg. by ETEK) available (86 m{sup 2}/g{sub pt}). These Pt/C materials also perform

  8. Nanocolloidal Ru/MgF2 Catalyst for Hydrogenation of Chloronitrobenzene and Toluene

    Directory of Open Access Journals (Sweden)

    Pietrowski Mariusz

    2014-06-01

    Full Text Available The use of magnesium fluoride support for ruthenium active phase allowed obtaining new catalysts of high activities in the hydrogenation of toluene and ortho-chloronitrobenzene. Ruthenium colloid catalysts (1 wt.% of Ru were prepared by impregnation of the support with the earlier produced polyvinylpyrrolidone (PVP-stabilized ruthenium colloids. The performances of the colloidal catalysts and those obtained by traditional impregnation were tested in the reactions of toluene hydrogenation to methylcyclohexane and selective hydrogenation of ortho-chloronitrobenzene (o-CNB to ortho-chloroaniline (o-CAN. It was shown that the use of chemical reduction method allows obtaining highly monodisperse ruthenium nanoparticles of 1.6–2.6 nm in size. After reduction in hydrogen at 400oC, the colloidal ruthenium nanoparticles were found to strongly interact with MgF2 surface (SMSI, which decreased the catalyst ability to hydrogen chemisorption, but despite this, the colloid catalysts showed higher activity in o-CNB hydrogenation and higher selectivity to o-CAN than the traditional ones. It is supposed that their higher activity can be a result of high dispersion of Ru in colloid catalysts and the higher selectivity can be a consequence of the lower availability of hydrogen on the surface.

  9. Continuous flow hydrogenation using polysilane-supported palladium/alumina hybrid catalysts

    Directory of Open Access Journals (Sweden)

    Shū Kobayashi

    2011-05-01

    Full Text Available Continuous flow systems for hydrogenation using polysilane-supported palladium/alumina (Pd/(PSi–Al2O3 hybrid catalysts were developed. Our original Pd/(PSi–Al2O3 catalysts were used successfully in these systems and the hydrogenation of unsaturated C–C bonds and a nitro group, deprotection of a carbobenzyloxy (Cbz group, and a dehalogenation reaction proceeded smoothly. The catalyst retained high activity for at least 8 h under neat conditions.

  10. Hydrogen Temperature-Programmed Desorption (H2 TPD) of Supported Platinum Catalysts.

    NARCIS (Netherlands)

    Koningsberger, D.C.; Miller, J.T.; Meyers, B.L.; Modica, F.S.; Lane, G.S.; Vaarkamp, M.

    1993-01-01

    Hydrogen temperature-programmed desorption (TPD) of supported platinum catalysts, Pt/KLTL, Pt/H-LTL, Pt/K-MAZ, Pt/H-MAZ, Pt/-Al2O3, and Pt/SiO2, was performed after hydrogen reduction at 300, 450, or 650°C. For all catalysts, reversible desorption of chemisorbed hydrogen occurred at approximately

  11. Sulfur tolerant zeolite supported platinum catalysts for aromatics hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Bergem, Haakon

    1997-12-31

    The increased demand for transportation fuels at the expence of heavier fuel oil has forced the refinery industry to expand their conversion capacity with hydrotreating as one of the key processes. A shift towards more diesel powered vehicles along with tightening fuel regulations demanding cleaner fuels has lead to increasing interest in catalytic processes for the manufacturing of such environmentally acceptable fuels. This provides the motivation for this thesis. Its main objective was to study possible catalysts active for desulfurization, hydrogenation, and ring-opening of aromatics all in the presence of sulfur. A close examination of the physical properties and kinetical behaviour of the chosen catalysts has been performed. A high pressure reactor setup was designed and built for activity measurements. Zeolite supported platinum catalysts were prepared and both the metal and acid functions were characterized utilizing various experimental techniques. Hydrogenation of toluene was used as a model reaction and the effect of sulfur adsorption on the activity and kinetic behaviour of the catalysts was investigated. The catalyst samples showed hydrogenation activities comparable to a commercial Pt/Al2O3 catalyst. There were no clear differences in the effect of the various sulfur compounds studied. Platinum supported on zeolite Y gave considerably more sulfur tolerant catalysts compared to Al2O3 as support. 155 refs., 58 figs., 36 tabs.

  12. Bio-oil Stabilization by Hydrogenation over Reduced Metal Catalysts at Low Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huamin; Lee, Suh-Jane; Olarte, Mariefel V.; Zacher, Alan H.

    2016-08-30

    Biomass fast pyrolysis integrated with bio-oil upgrading represents a very attractive approach for converting biomass to hydrocarbon transportation fuels. However, the thermal and chemical instability of bio-oils presents significant problems when they are being upgraded, and development of effective approaches for stabilizing bio-oils is critical to the success of the technology. Catalytic hydrogenation to remove reactive species in bio-oil has been considered as one of the most efficient ways to stabilize bio-oil. This paper provides a fundamental understanding of hydrogenation of actual bio-oils over a Ru/TiO2 catalyst under conditions relevant to practical bio-oil hydrotreating processes. Bio-oil feed stocks, bio-oils hydrogenated to different extents, and catalysts have been characterized to provide insights into the chemical and physical properties of these samples and to understand the correlation of the properties with the composition of the bio-oil and catalysts. The results indicated hydrogenation of various components of the bio-oil, including sugars, aldehydes, ketones, alkenes, aromatics, and carboxylic acids, over the Ru/TiO2 catalyst and 120 to 160oC. Hydrogenation of these species significantly changed the chemical and physical properties of the bio-oil and overall improved its thermal stability, especially by reducing the carbonyl content, which represented the content of the most reactive species (i.e., sugar, aldehydes, and ketones). The change of content of each component in response to increasing hydrogen additions suggests the following bio-oil hydrogenation reaction sequence: sugar conversion to sugar alcohols, followed by ketone and aldehyde conversion to alcohols, followed by alkene and aromatic hydrogenation, and then followed by carboxylic acid hydrogenation to alcohols. Hydrogenation of bio-oil samples with different sulfur contents or inorganic material contents suggested that sulfur poisoning of the reduced Ru metal catalysts was

  13. Effect of hydrogen and propylene on the hydrogen peroxide decomposition over Pt, PtO and Au catalysts

    NARCIS (Netherlands)

    Kertalli, E.; Schouten, J.C.; Nijhuis, T.A.

    2017-01-01

    The decomposition of hydrogen peroxide (H2O2) on Pt, PtO and Au catalysts has been investigated in the presence of nitrogen, propylene and hydrogen. H2O2 formation on the catalyst is known to be a key intermediate step for the direct synthesis of propylene oxide (PO) from hydrogen, propylene and

  14. Influence of hydrogen treatment on SCR catalysts

    DEFF Research Database (Denmark)

    Due-Hansen, Johannes

    stream, i.e. by in situ treatment of the Pt-catalyst by reductive H2-gas. However, the introduction of H2 gas in the gas stream could also affect other units in the tail pipe gas cleaning system. Of special interest in this study is the effect of hydrogen gas on the performance of the selective catalytic...... reduction (SCR) process, i.e. the catalytic removal of NOx from the flue gas. A series of experiments was conducted to reveal the impact on the NO SCR activity of a industrial DeNOX catalyst (3%V2O5-7%WO3/TiO2) by treatment of H2. Standard conditions were treatment of the SCR catalyst for 60 min with three...... different concentrations of H2 (0-2%) in a 8% O2/N2 mixture, where the SCR activity was measured before and after the hydrogen treatment. The results show that the activity of the SCR catalyst is only negligible affected during exposure to the H2/O2 gas and in all cases it returned reversibly to the initial...

  15. Study of Catalyst Variation Effect in Glycerol Conversion Process to Hydrogen Gas by Steam Reforming

    Science.gov (United States)

    Widayat; Hartono, R.; Elizabeth, E.; Annisa, A. N.

    2018-04-01

    Along with the economic development, needs of energy being increase too. Hydrogen as alternative energy has many usages. Besides that, hydrogen is one source of energy that is a clean fuel, but process production of hydrogen from natural gas as a raw material has been used for a long time. Therefore, there is need new invention to produce hydrogen from the others raw material. Glycerol, a byproduct of biodiesel production, is a compound which can be used as a raw material for hydrogen production. By using glycerol as a raw material of hydrogen production, we can get added value of glycerol as well as an energy source solution. The process production of hydrogen by steam reforming is a thermochemical process with efficiency 70%. This process needs contribution of catalyst to improve its efficiency and selectivity of the process. In this study will be examined the effect variation of catalyst for glycerol conversion process to hydrogen by steam reforming. The method for catalyst preparation was variation of catalyst impregnation composition, catalyst calcined with difference concentration of hydrochloric acid and calcined with difference hydrochloric acid ratio. After that, all of catalyst which have been prepared, used for steam reforming process for hydrogen production from glycerol as a raw material. From the study, the highest yield of hydrogen gas showed in the process production by natural zeolite catalyst with 1:15 Hydrochloric acid ratio was 42.28%. Hydrogen yield for 2M calcined natural zeolite catalyst was 38.37%, for ZSM-5 catalyst was 15.83%, for 0.5M calcined natural zeolite was 13.09% and for ultrasonic natural zeolite was 11.43%. The lowest yield of hydrogen gas showed in catalyst 2Zn/ZSM-5 with 11.22%. This result showed that hydrogen yield product was affected by catalyst variation because of the catalyst has difference characteristic and difference catalytic activity after the catalyst preparation process.

  16. Intermetallic nickel silicide nanocatalyst-A non-noble metal-based general hydrogenation catalyst.

    Science.gov (United States)

    Ryabchuk, Pavel; Agostini, Giovanni; Pohl, Marga-Martina; Lund, Henrik; Agapova, Anastasiya; Junge, Henrik; Junge, Kathrin; Beller, Matthias

    2018-06-01

    Hydrogenation reactions are essential processes in the chemical industry, giving access to a variety of valuable compounds including fine chemicals, agrochemicals, and pharmachemicals. On an industrial scale, hydrogenations are typically performed with precious metal catalysts or with base metal catalysts, such as Raney nickel, which requires special handling due to its pyrophoric nature. We report a stable and highly active intermetallic nickel silicide catalyst that can be used for hydrogenations of a wide range of unsaturated compounds. The catalyst is prepared via a straightforward procedure using SiO 2 as the silicon atom source. The process involves thermal reduction of Si-O bonds in the presence of Ni nanoparticles at temperatures below 1000°C. The presence of silicon as a secondary component in the nickel metal lattice plays the key role in its properties and is of crucial importance for improved catalytic activity. This novel catalyst allows for efficient reduction of nitroarenes, carbonyls, nitriles, N-containing heterocycles, and unsaturated carbon-carbon bonds. Moreover, the reported catalyst can be used for oxidation reactions in the presence of molecular oxygen and is capable of promoting acceptorless dehydrogenation of unsaturated N-containing heterocycles, opening avenues for H 2 storage in organic compounds. The generality of the nickel silicide catalyst is demonstrated in the hydrogenation of over a hundred of structurally diverse unsaturated compounds. The wide application scope and high catalytic activity of this novel catalyst make it a nice alternative to known general hydrogenation catalysts, such as Raney nickel and noble metal-based catalysts.

  17. Core-shell rhodium sulfide catalyst for hydrogen evolution reaction / hydrogen oxidation reaction in hydrogen-bromine reversible fuel cell

    Science.gov (United States)

    Li, Yuanchao; Nguyen, Trung Van

    2018-04-01

    Synthesis and characterization of high electrochemical active surface area (ECSA) core-shell RhxSy catalysts for hydrogen evolution oxidation (HER)/hydrogen oxidation reaction (HOR) in H2-Br2 fuel cell are discussed. Catalysts with RhxSy as shell and different percentages (5%, 10%, and 20%) of platinum on carbon as core materials are synthesized. Cyclic voltammetry is used to evaluate the Pt-equivalent mass specific ECSA and durability of these catalysts. Transmission electron microscopy (TEM), X-ray Photoelectron spectroscopy (XPS) and Energy-dispersive X-ray spectroscopy (EDX) techniques are utilized to characterize the bulk and surface compositions and to confirm the core-shell structure of the catalysts, respectively. Cycling test and polarization curve measurements in the H2-Br2 fuel cell are used to assess the catalyst stability and performance in a fuel cell. The results show that the catalysts with core-shell structure have higher mass specific ECSA (50 m2 gm-Rh-1) compared to a commercial catalyst (RhxSy/C catalyst from BASF, 6.9 m2 gm-Rh-1). It also shows better HOR/HER performance in the fuel cell. Compared to the platinum catalyst, the core-shell catalysts show more stable performance in the fuel cell cycling test.

  18. Potential application of palladium nanoparticles as selective recyclable hydrogenation catalysts

    International Nuclear Information System (INIS)

    Mukherjee, DebKumar

    2008-01-01

    The search for more efficient catalytic systems that might combine the advantages of both homogeneous (catalyst modulation) and heterogeneous (catalyst recycling) catalysis is one of the most exciting challenges of modern chemistry. More recently with the advances of nanochemistry, it has been possible to prepare soluble analogues of heterogeneous catalysts. These nanoparticles are generally stabilized against aggregation into larger particles by electrostatic or steric protection. Herein we demonstrate the use of room temperature ionic liquid for the stabilization of palladium nanoparticles that are recyclable catalysts for the hydrogenation of carbon-carbon double bonds and application of these catalysts to the selective hydrogenation of internal or terminal C=C bonds in unsaturated primary alcohols. The particles suspended in room temperature ionic liquid show no metal aggregation or loss of catalytic activity even on prolonged use

  19. Performance characterization of hydrogen isotope exchange and recombination catalysts for tritium processing

    International Nuclear Information System (INIS)

    Suppiah, S.; Ryland, D.; Marcinkowska, K.; Boniface, H.; Everatt, A.

    2010-01-01

    AECL's hydrogen isotope exchange catalyst and recombination catalysts have been successfully applied to a wide range of industrial tritium-removal applications. The catalysts are used for Liquid Phase Catalytic Exchange (LPCE) and for gas-phase and trickle-bed recombination of hydrogen isotopes and have led to process simplification, improved safety and operational advantages. Catalyst performance design equations derived from laboratory testing of these catalysts have been validated against performance under industrial conditions. In a Combined Electrolysis and Catalytic Exchange (CECE) demonstration plant analyses of LPCE and recombiner efficiency were carried out as a function of catalyst activity over a wide range of operation. A steady-state process simulation used to model and design the hydrogen-water isotopic exchange processes, such as the CECE detritiation plant, was validated using the results of this demonstration. Catalyst development for isotope-exchange and recombination applications has continued over the last decade. As a result, significant improvements in catalyst performance have been achieved for these applications. This paper outlines the uniqueness of AECL's specialized catalysts and process designs for these applications with examples from laboratory and industrial case studies.

  20. In-Situ Liquid Hydrogenation of m-Chloronitrobenzene over Fe-Modified Pt/Carbon Nanotubes Catalysts

    Directory of Open Access Journals (Sweden)

    Feng Li

    2018-02-01

    Full Text Available In-situ liquid-phase hydrogenation of m-chloronitrobenzene (m-CNB based on aqueous-phase reforming (APR of ethanol and catalytic hydrogenation was carried out over Fe-modified Pt/carbon nanotubes (CNTs catalysts. The effects of Pt loading over CNTs and Fe modification on the catalytic performance of Pt/CNTs catalysts were studied. In-tube loading of Pt particles, compared with out-tube loading, considerably improved the catalytic activity. With in-tube loading, Fe-modified Pt/CNTs catalysts further improved the m-CNB in-situ hydrogenation performance. After Fe modification, Pt–Fe/CNTs catalysts formed, inside CNTs, a Pt–Fe alloy and iron oxides, which both improved catalytic hydrogenation performance and significantly enhanced ethanol APR hydrogen producing performance, thereby increasing the m-CNB in-situ hydrogenation reactivity.

  1. Carbon and Mo transformations during the synthesis of mesoporous Mo2C/carbon catalysts by carbothermal hydrogen reduction

    Science.gov (United States)

    Wang, Haiyan; Liu, Shida; Liu, Bing; Montes, Vicente; Hill, Josephine M.; Smith, Kevin J.

    2018-02-01

    The synthesis of mesoporous Mo2C/carbon catalysts by carbothermal hydrogen reduction is reported. Petroleum coke (petcoke) was activated with KOH at 800 °C to obtain high surface area microporous activated petcoke (APC; 2000 m2/g). The APC was wet impregnated with ammonium heptamolybdate (AHM: 10 wt% Mo), dried and reduced in H2 at temperatures from 400 to 800 °C, to yield Mo2C/APC catalysts. Increased reduction temperature increased the Mo2C yield and the mesoporous volume of the Mo2C/APC. At a reduction temperature of 750 °C the mesopore volume of the catalyst doubled compared to the APC support and accounted for 37% of the total pore volume. Maintaining the final CHR temperature for 90 min further increased the Mo2C yield and mesoporosity of the catalyst. The role of Mo2C in the catalytic hydrogenation of the APC and mesopore generation is demonstrated. The activity of the Mo2C/carbon catalysts in the hydrodeoxygenation of 4-methyl phenol increased with increased CHR temperature and catalyst mesoporosity.

  2. Hydrogenation active sites of unsupported molybdenum sulfide catalysts for hydroprocessing heavy oils

    Energy Technology Data Exchange (ETDEWEB)

    Iwata, Y.; Araki, Y.; Honna, K. [Tsukuba-branch, Advanced Catalyst Research Laboratory, Petroleum Energy Center, 1-1 Higashi, Tsukuba, 305-8565 Ibaraki (Japan); Miki, Y.; Sato, K.; Shimada, H. [National Institute of Materials and Chemical Research, 1-1 Higashi, Tsukuba, 305-8565 Ibaraki (Japan)

    2001-02-20

    The purpose of the present study was to elucidate the nature of the hydrogenation active sites on unsupported molybdenum sulfide catalysts, aimed at the improvement of the catalysts for the slurry processes. The number of hydrogenation active sites was found to relate to the 'inflection' on the basal plane of the catalyst particles. The comparison of the catalytic activity to that of an oil-soluble catalyst in the hydroprocessing of heavy oils suggests that the performance of the oil-soluble catalyst was near the maximum, unless another component such as Ni or Co was incorporated.

  3. Selective hydrogenation of 4-isobutylacetophenone over a sodium-promoted Pd/C catalyst

    International Nuclear Information System (INIS)

    Cho, Hong-Baek; Lee, Bae Uk; Nakayama, Tadachika; Park, Yeung-Ho; Ryu, Chung-Han

    2013-01-01

    The effect of sodium promotion on the selective hydrogenation of 4-isobutylacetophenone, 4-IBAP, was investigated over a Pd/C catalyst. A precipitation and deposition method was used to prepare the catalyst, and sodium was promoted on the Pd/C catalyst via post-impregnation while varying the sodium content. The sodium-promoted Pd/C catalyst resulted in a significantly improved yield greater than 96% of the desired product, 1-(4-isobutylphenyl) ethanol (4-IBPE), compared with the non-patented literature results under a mild hydrogenation condition. A detailed hydrogenation network over the Pd/C catalyst was suggested. The reaction mechanism for the yield and selectivity enhancement of 4-IBPE induced-by the promoted Pd/C was elucidated in relation to the geometric and electronic effects of reactant molecules in the microporous support depending on the reaction steps

  4. Preparation of Pt-PTFE hydrophobic catalyst for hydrogen-water isotope exchange

    International Nuclear Information System (INIS)

    Li Junhua; Kang Yi; Han Yande; Ruan Hao; Dou Qincheng; Hu Shilin

    2001-01-01

    The hydrophobic catalyst used in the hydrogen-water isotope exchange is prepared with Pt as the active metal, PTFE as the hydrophobic material, active carbon or silicon dioxide as the support. The isotope catalytic exchange reaction between hydrogen and water is carried out in the trickle bed and the effects of different carriers, mass fraction of Pt and PTFE on the catalytic activity are discussed. The experimental results show that the activity of Pt-C-PTFE hydrophobic catalyst with the ratio between PTFE and Pt-C from 1 to 2 is higher than other kinds of catalysts and the overall volume transfer coefficient is increased with the increasing of the hydrogen flow rate and reaction temperature

  5. Photocatalytic hydrogen generation from water under visible light using core/shell nano-catalysts.

    Science.gov (United States)

    Wang, X; Shih, K; Li, X Y

    2010-01-01

    A microemulsion technique was employed to synthesize nano-sized photocatalysts with a core (CdS)/shell (ZnS) structure. The primary particles of the photocatalysts were around 10 nm, and the mean size of the catalyst clusters in water was about 100 nm. The band gaps of the catalysts ranged from 2.25 to 2.46 eV. The experiments of photocatalytic H(2) generation showed that the catalysts (CdS)(x)/(ZnS)(1-x) with x ranging from 0.1 to 1 were able to produce hydrogen from water photolysis under visible light. The catalyst with x=0.9 had the highest rate of hydrogen production. The catalyst loading density also influenced the photo-hydrogen production rate, and the best catalyst concentration in water was 1 g L(-1). The stability of the nano-catalysts in terms of size, morphology and activity was satisfactory during an extended test period for a specific hydrogen production rate of 2.38 mmol g(-1) L(-1) h(-1) and a quantum yield of 16.1% under visible light (165 W Xe lamp, lambda>420 nm). The results demonstrate that the (CdS)/(ZnS) core/shell nano-particles are a novel photo-catalyst for renewable hydrogen generation from water under visible light. This is attributable to the large band-gap ZnS shell that separates the electron/hole pairs generated by the CdS core and hence reduces their recombinations.

  6. Co-Production of Electricity and Hydrogen Using a Novel Iron-based Catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Hilaly, Ahmad; Georgas, Adam; Leboreiro, Jose; Arora, Salil; Head, Megann; Trembly, Jason; Turk, Brian; Gupta, Raghubir

    2011-09-30

    The primary objective of this project was to develop a hydrogen production technology for gasification applications based on a circulating fluid-bed reactor and an attrition resistant iron catalyst. The work towards achieving this objective consisted of three key activities: Development of an iron-based catalyst suitable for a circulating fluid-bed reactor; Design, construction, and operation of a bench-scale circulating fluid-bed reactor system for hydrogen production; Techno-economic analysis of the steam-iron and the pressure swing adsorption hydrogen production processes. This report describes the work completed in each of these activities during this project. The catalyst development and testing program prepared and iron-based catalysts using different support and promoters to identify catalysts that had sufficient activity for cyclic reduction with syngas and steam oxidation and attrition resistance to enable use in a circulating fluid-bed reactor system. The best performing catalyst from this catalyst development program was produced by a commercial catalyst toll manufacturer to support the bench-scale testing activities. The reactor testing systems used during material development evaluated catalysts in a single fluid-bed reactor by cycling between reduction with syngas and oxidation with steam. The prototype SIP reactor system (PSRS) consisted of two circulating fluid-bed reactors with the iron catalyst being transferred between the two reactors. This design enabled demonstration of the technical feasibility of the combination of the circulating fluid-bed reactor system and the iron-based catalyst for commercial hydrogen production. The specific activities associated with this bench-scale circulating fluid-bed reactor systems that were completed in this project included design, construction, commissioning, and operation. The experimental portion of this project focused on technical demonstration of the performance of an iron-based catalyst and a

  7. Confinement dependence of electro-catalysts for hydrogen evolution from water splitting

    Directory of Open Access Journals (Sweden)

    Mikaela Lindgren

    2014-02-01

    Full Text Available Density functional theory is utilized to articulate a particular generic deconstruction of the electrode/electro-catalyst assembly for the cathode process during water splitting. A computational model was designed to determine how alloying elements control the fraction of H2 released during zirconium oxidation by water relative to the amount of hydrogen picked up by the corroding alloy. This model is utilized to determine the efficiencies of transition metals decorated with hydroxide interfaces in facilitating the electro-catalytic hydrogen evolution reaction. A computational strategy is developed to select an electro-catalyst for hydrogen evolution (HE, where the choice of a transition metal catalyst is guided by the confining environment. The latter may be recast into a nominal pressure experienced by the evolving H2 molecule. We arrived at a novel perspective on the uniqueness of oxide supported atomic Pt as a HE catalyst under ambient conditions.

  8. Development of industrial hydrogenating catalyst on rhenium base

    International Nuclear Information System (INIS)

    Chistyakova, G.A.; Bat', I.I.; Rebrova, V.V.

    1975-01-01

    Processes for forming rhenium catalysts on carbon carrier and their catalytic properties in nitrobenzene (NB) reduction were studied. Application of an ammonia preparation to the carbon surface produced impregnated carbon saturated at room temperature with a water solution of the ammonia preparation, taken in a volume equal to the volumetric capacity of the carbon. With one impregnation, 2% rhenium was taken up. Catalysts containing more than 5% rhenium were obtained by impregnating the carbon with heating and use of more concentrated solutions. Catalysts made in this way and dried at 100 0 C had the composition Re 2 OH/carbon/. The most active catalysts were those reduced at 200-250 0 C; higher temperatures, up to 300-500 0 C, decreased the activity. Study of the catalytic properties of the rhenium catalysts in a liquid phase reduction of NB showed that the specific activity of rhenium depends only slightly on the content of the active component in the catalyst and is close to the specific activity of palladium and considerably exceeds that of nickel. Study of the effect of the NB concentration and hydrogen pressure on the activity and stability of the 5% rhenium catalyst indicated that with NB concentrations from 50 to 10% the process takes place at an essentially constant rate; the order of the reaction was close to zero with an apparent activation energy of about 7000 cal/mole. At pressures of 15-200 atm the yield with the 5% catalyst was proportional to the hydrogen pressure. A big advantage of the rhenium catalysts in the reduction of NB is their high selectivity. With a higher activity than palladium and nickel catalysts, 5% rhenium catalyst produces a high operating capacity in a wide range of contact charges, which has considerable significance for industrial use in contact apparatus of the column type. Comparison of the costs of rhenium catalysts and granular carbon carrier with those of nickel, platinum, and palladium showed that 5% rhenium catalyst can

  9. Electroless Nickel-Based Catalyst for Diffusion Limited Hydrogen Generation through Hydrolysis of Borohydride

    Directory of Open Access Journals (Sweden)

    Shannon P. Anderson

    2013-07-01

    Full Text Available Catalysts based on electroless nickel and bi-metallic nickel-molybdenum nanoparticles were synthesized for the hydrolysis of sodium borohydride for hydrogen generation. The catalysts were synthesized by polymer-stabilized Pd nanoparticle-catalyzation and activation of Al2O3 substrate and electroless Ni or Ni-Mo plating of the substrate for selected time lengths. Catalytic activity of the synthesized catalysts was tested for the hydrolyzation of alkaline-stabilized NaBH4 solution for hydrogen generation. The effects of electroless plating time lengths, temperature and NaBH4 concentration on hydrogen generation rates were analyzed and discussed. Compositional analysis and surface morphology were carried out for nano-metallized Al2O3 using Scanning Electron Micrographs (SEM and Energy Dispersive X-Ray Microanalysis (EDAX. The as-plated polymer-stabilized electroless nickel catalyst plated for 10 min and unstirred in the hydrolysis reaction exhibited appreciable catalytic activity for hydrolysis of NaBH4. For a zero-order reaction assumption, activation energy of hydrogen generation using the catalyst was estimated at 104.6 kJ/mol. Suggestions are provided for further work needed prior to using the catalyst for portable hydrogen generation from aqueous alkaline-stabilized NaBH4 solution for fuel cells.

  10. Carbon-supported cobalt catalyst for hydrogen generation from alkaline sodium borohydride solution

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Dongyan; Liu, Xinmin; Cao, Changqing; Guo, Qingjie [College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Dai, Ping [College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061 (China)

    2008-08-01

    Low cost transition metal catalysts with high performance are attractive for the development of on-board hydrogen generation systems by catalytic hydrolysis of sodium borohydride (NaBH{sub 4}) in fuel cell fields. In this study, hydrogen production from alkaline NaBH{sub 4} via hydrolysis process over carbon-supported cobalt catalysts was studied. The catalytic activity of the supported cobalt catalyst was found to be highly dependent on the calcination temperatures. The hydrogen generation rate increases with calcination temperatures in the range of 200-400 C, but a high calcination temperature above 500 C led to markedly decreased activity. X-ray diffraction patterns reveal that the catalysts experience phase transition from amorphous Co-B to crystalline cobalt hydroxide with increase in calcination temperatures. The reaction performance is also dependent on the concentration of NaBH{sub 4}, and the hydrogen generation rate increases for lower NaBH{sub 4} concentrations and decreases after reaching a maximum at 10 wt.% of NaBH{sub 4}. (author)

  11. Evaluation of AECL catalysts for hydrogen fuel-cell applications. Paper no. IGEC-1-073

    International Nuclear Information System (INIS)

    Li, J.; Suppiah, S.; Li, H.; Kutchcoskie, K.J.; Strikwerda, S.

    2005-01-01

    AECL has been engaged in the promotion of the nuclear-hydrogen economy, which envisions that hydrogen fuel cells will generate power using hydrogen as fuel produced by nuclear energy. Since AECL's catalysts developed for the production, upgrading and detritiation of heavy water are very similar to commercial fuel-cell catalysts, a program was initiated to evaluate AECL catalysts for fuel-cell applications. As a first step in this effort, a half-cell test facility was set up to characterize the performance of catalysts for hydrogen fuel cells. This paper outlines the results obtained from cathodic reduction of oxygen in a 0.5 M sulphuric acid solution on a rotating disc electrode at 65 o C. The performance of the catalysts was characterized using standard electrochemical methods including cyclic voltammetry, Voltammogram/Tafel plots and short-term stability plots. Several monometallic Pt and Pt-based bimetallic catalysts were tested and compared with a commercially available catalyst for fuel-cell applications. AECL's monometallic Pt catalysts showed comparable or better activities than commercial catalysts with similar Pt loading. An AECL Pt-based bimetallic catalyst has shown superior performance to a monometallic Pt catalyst with similar Pt loading. Evaluation of various catalyst formulations is ongoing on the half-cell facility at AECL. Further investigation of promising catalysts identified from half-cell test is also being carried out in single fuel cell on test stations under normal fuel-cell operating conditions. (author)

  12. Finding Furfural Hydrogenation Catalysts via Predictive Modelling

    OpenAIRE

    Strassberger, Zea; Mooijman, Maurice; Ruijter, Eelco; Alberts, Albert H; Maldonado, Ana G; Orru, Romano V A; Rothenberg, Gadi

    2010-01-01

    Abstract We combine multicomponent reactions, catalytic performance studies and predictive modelling to find transfer hydrogenation catalysts. An initial set of 18 ruthenium-carbene complexes were synthesized and screened in the transfer hydrogenation of furfural to furfurol with isopropyl alcohol complexes gave varied yields, from 62% up to >99.9%, with no obvious structure/activity correlations. Control experiments proved that the carbene ligand remains coordinated to the ruthenium centre t...

  13. Hydrogenation of toluene on Ni-Co-Mo supported zeolite catalysts ...

    African Journals Online (AJOL)

    -a, HY-b and Mordenite were prepared and characterized using many techniques for use as hydrotreating catalysts. In a preliminary investigation, toluene was employed as model compound to test the catalysts in hydrogenation, as a major ...

  14. Production of Catalyst-Free Hyperpolarised Ethanol Aqueous Solution via Heterogeneous Hydrogenation with Parahydrogen

    Science.gov (United States)

    Salnikov, Oleg G.; Kovtunov, Kirill V.; Koptyug, Igor V.

    2015-09-01

    An experimental approach for the production of catalyst-free hyperpolarised ethanol solution in water via heterogeneous hydrogenation of vinyl acetate with parahydrogen and the subsequent hydrolysis of ethyl acetate was demonstrated. For an efficient hydrogenation, liquid vinyl acetate was transferred to the gas phase by parahydrogen bubbling and almost completely converted to ethyl acetate with Rh/TiO2 catalyst. Subsequent dissolution of ethyl acetate gas in water containing OH- ions led to the formation of catalyst- and organic solvent-free hyperpolarised ethanol and sodium acetate. These results represent the first demonstration of catalyst- and organic solvent-free hyperpolarised ethanol production achieved by heterogeneous hydrogenation of vinyl acetate vapour with parahydrogen and the subsequent ethyl acetate hydrolysis.

  15. Process for hydrogen isotope exchange and concentration between liquid water and hydrogen gas and catalyst assembly therefor

    International Nuclear Information System (INIS)

    Stevens, W.H.

    1975-01-01

    A bithermal, catalytic, hydrogen isotope exchange process between liquid water and hydrogen gas to effect concentration of the deuterium isotope of hydrogen is described. Liquid water and hydrogen gas are contacted with one another and with at least one catalytically active metal selected from Group VIII of the Periodic Table; the catalyst body has a water repellent, gas and water vapor permeable, organic polymer or resin coating, preferably a fluorinated olefin polymer or silicone resin coating, so that the isotope exchange takes place by two simultaneously occurring, and closely coupled in space, steps and concentration is effected by operating two interconnected sections containing catalyst at different temperatures. (U.S.)

  16. Hydrogen-water deuterium exchange over metal oxide promoted nickel catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Sagert, N H; Shaw-Wood, P E; Pouteau, R M.L. [Atomic Energy of Canada Ltd., Pinawa, Manitoba. Whiteshell Nuclear Research Establishment

    1975-11-01

    Specific rates have been measured for hydrogen-water deuterium isotope exchange over unsupported nickel promoted with about 20% of various metal oxides. The oxides used were Cr/sub 2/O/sub 3/, MoO/sub 2/, MnO, WO/sub 2/-WO/sub 3/, and UO/sub 2/. Nickel surface areas, which are required to measure the specific rates, were determined by hydrogen chemisorption. Specific rates were measured as a function of temperature in the range 353 to 573 K and as a function of the partial pressure of hydrogen and water over a 10-fold range of partial pressure. The molybdenum and tungsten oxides gave the highest specific rates, and manganese and uranium oxides the lowest. Chromium oxide was intermediate, although it gave the highest rate per gram of catalyst. The orders with respect to hydrogen and water over molybdenum oxide and tungsten oxide promoted nickel were consistent with a mechanism in which nickel oxide is formed from the reaction of water with the catalyst, and then is reduced by hydrogen. Over manganese and uranium oxide promoted catalysts, these orders are consistent with a mechanism in which adsorbed water exchanges with chemisorbed hydrogen atoms on the nickel surface. Chromium oxide is intermediate. It was noted that those oxides which favored the nickel oxide route had electronic work functions closest to those of metallic nickel and nickel oxide.

  17. Platinum Group Metal-free Catalysts for Hydrogen Evolution Reaction in Microbial Electrolysis Cells.

    Science.gov (United States)

    Yuan, Heyang; He, Zhen

    2017-07-01

    Hydrogen gas is a green energy carrier with great environmental benefits. Microbial electrolysis cells (MECs) can convert low-grade organic matter to hydrogen gas with low energy consumption and have gained a growing interest in the past decade. Cathode catalysts for the hydrogen evolution reaction (HER) present a major challenge for the development and future applications of MECs. An ideal cathode catalyst should be catalytically active, simple to synthesize, durable in a complex environment, and cost-effective. A variety of noble-metal free catalysts have been developed and investigated for HER in MECs, including Nickel and its alloys, MoS 2 , carbon-based catalysts and biocatalysts. MECs in turn can serve as a research platform to study the durability of the HER catalysts. This personal account has reviewed, analyzed, and discussed those catalysts with an emphasis on synthesis and modification, system performance and potential for practical applications. It is expected to provide insights into the development of HER catalysts towards MEC applications. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Hydrogenation of o-cresol on platinum catalyst: Catalytic experiments and first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yaping [Department of Physics and Engineering Physics, The University of Tulsa, Tulsa, OK 74104 (United States); Liu, Zhimin [School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, OK 73019 (United States); Xue, Wenhua [Department of Physics and Engineering Physics, The University of Tulsa, Tulsa, OK 74104 (United States); Crossley, Steven P.; Jentoft, Friederike C. [School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, OK 73019 (United States); Wang, Sanwu, E-mail: sanwu-wang@utulsa.edu [Department of Physics and Engineering Physics, The University of Tulsa, Tulsa, OK 74104 (United States)

    2017-01-30

    Highlights: • Hydrogenation of o-cresol over Pt results in formation of two products. • Dissociation of hydrogen from the −OH group involves a low activation energy. • Following hydrogenation of the aromatic ring forms 2-methyl-cyclohexanone. • Further hydrogenation produces the final product, 2-methyl-cyclohexanol. - Abstract: Catalytic experiments were performed for the hydrogenation of o-cresol in n-dodecane over a platinum catalyst. Batch reactions analyzed with an in-situ ATR IR probe suggest that the hydrogenation results in the formation of the final product, 2-methyl-cyclohexanol, with 2-methyl-cyclohexanone as the intermediate product. Ab initio density-functional theory was employed to investigate the atomic-scale mechanism of o-cresol hydrogenation on the Pt(111) surface. The formation of 2-methyl-cyclohexanone was found to involve two steps. The first step is a hydrogen abstraction, that is, the H atom in the hydroxyl group migrates to the Pt surface. The second step is hydrogenation, that is, the pre-existing H atoms on Pt react with the carbon atoms in the aromatic ring. On the other hand, 2-methyl-cyclohexanonol may be produced through two paths, with activation energies slightly greater than that for the formation of 2-methyl-cyclohexanone. One path involves direct hydrogenation of the aromatic ring. Another path involves three steps, with the partial hydrogenation of the ring as the first step, hydrogen abstraction of the −OH group as the second, and hydrogenation of remaining C atoms and the O atom the last.

  19. Process for the exchange of hydrogen isotopes using a catalyst packed bed assembly

    International Nuclear Information System (INIS)

    Butler, J.P.; den Hartog, J.; Molson, F.W.R.

    1978-01-01

    A process for the exchange of hydrogen isotopes between streams of gaseous hydrogen and liquid water is described, wherein the streams of liquid water and gaseous hydrogen are simultaneously brought into contact with one another and a catalyst packed bed assembly while at a temperature in the range 273 0 to 573 0 K. The catalyst packed bed assembly may be composed of discrete carrier bodies of e.g. ceramics, metals, fibrous materials or synthetic plastics with catalytically active metal crystallites selected from Group VIII of the Periodic Table, partially enclosed in and bonded to the carrier bodies by a water repellent, water vapor and hydrogen gas permeable, porous, polymeric material, and discrete packing bodies having an exterior surface which is substantially hydrophilic and relatively noncatalytically active with regard to hydrogen isotope exchange between hydrogen gas and water vapor to that of the catalyst bodies

  20. Enlarged test catalysts during the hydrogenation of 1,4-butynediol to 1,4-butanediol

    Directory of Open Access Journals (Sweden)

    Zhaksyntay Kairbekov

    2013-09-01

    Full Text Available The highly effective catalyzer for butynediol-1;4 hydrogenation was designed and synthesized. Enlarged tests showed that the selectivity on butanediol-1.4 at the hydrogenation of butynediol-1.4 on the alloyed catalyst SKN-39H during 320 h was 84.6 %; that on 18 % higher than for  industrial MNH. The yield of product on the catalyst SKN-39 increases slowly from 3.1 to 7.3 % when on a catalyst MNH – 7.1 to 11.7 % from the initial content of butynediol-1;4. At the hydrogenation of  butynediol on catalyst SKN-39H process efficiency increases in 1.5-2 times and product purity on 2-3 % is higher in comparing with the industrial catalyst MNH. 

  1. A Novel Synthesis of Gold Nanoparticles Supported on Hybrid Polymer/Metal Oxide as Catalysts for p-Chloronitrobenzene Hydrogenation

    Directory of Open Access Journals (Sweden)

    Cristian H. Campos

    2017-01-01

    Full Text Available This contribution reports a novel preparation of gold nanoparticles on polymer/metal oxide hybrid materials (Au/P[VBTACl]-M metal: Al, Ti or Zr and their use as heterogeneous catalysts in liquid phase hydrogenation of p-chloronitrobenzene. The support was prepared by in situ radical polymerization/sol gel process of (4-vinyl-benzyltrimethylammonium chloride and 3-(trimethoxysilylpropyl methacrylate in conjunction with metal-alkoxides as metal oxide precursors. The supported catalyst was prepared by an ion exchange process using chloroauric acid (HAuCl4 as gold precursor. The support provided the appropriate environment to induce the spontaneous reduction and deposition of gold nanoparticles. The hybrid material was characterized. TEM and DRUV-vis results indicated that the gold forms spherical metallic nanoparticles and that their mean diameter increases in the sequence, Au/P[VBTACl]-Zr > Au/P[VBTACl]-Al > Au/P[VBTACl]-Ti. The reactivity of the Au catalysts toward the p-CNB hydrogenation reaction is attributed to the different particle size distributions of gold nanoparticles in the hybrid supports. The kinetic pseudo-first-order constant values for the catalysts in the hydrogenation reaction increases in the order, Au/P[VBTACl]-Al > Au/P[VBTACl]-Zr > Au/P[VBTACl]-Ti. The selectivity for all the catalytic systems was greater than 99% toward the chloroaniline target product. Finally the catalyst supported on the hybrid with Al as metal oxide could be reused at least four times without loss in activity or selectivity for the hydrogenation of p-CNB in ethanol as solvent.

  2. Magnetically Recoverable Supported Ruthenium Catalyst for Hydrogenation of Alkynes and Transfer Hydrogenation of Carbonyl Compounds

    Science.gov (United States)

    A ruthenium (Ru) catalyst supported on magnetic nanoparticles (NiFe2O4) has been successfully synthesized and used for hydrogenation of alkynes at room temperature as well as transfer hydrogenation of a number of carbonyl compounds under microwave irradiation conditions. The cata...

  3. Single Pot Selective Hydrogenation of Furfural to 2-Methylfuran Over Carbon Supported Iridium Catalysts

    KAUST Repository

    Date, Nandan S; Hengne, Amol Mahalingappa; Huang, Kuo-Wei; Chikate, Rajeev C.; Rode, C. V.

    2018-01-01

    Various iridium supported carbon catalysts were prepared and screened for direct hydrogenation of furfural (FFR) to 2-methyl furan (2-MF). Amongest these, 5% Ir/C showed excellent results with complete FFR conversion and highest selectivity of 95% to 2-MF at very low H2 pressure of 100 psig. Metallic (Iro) and oxide ( IrO2) phases of Ir catalyzed first step hydrogenation involving FFR to FAL and subsequent hydrogenation to 2-MF,respecively. This was confirmed by XPS analysis and some controlled experiments. At low temperature of 140 oC, almost equal selectivities of FAL (42%) and 2-MF (43%) were observed, while higher temperature (220oC) favored selective hydrodeoxygenation. At optimized temperature, 2-MF formed selectively while higher pressure and higher catalyst loading favored ring hydrogenation of furfural rather than side chain hydrogenation. With combination of several control experimental results and detailed catalyst characterization, a plausible reaction pathway has been proposed for selective formation of 2-MF. The selectivity to various other products in FFR hydrogenation can be manipulated by tailoring the reaction conditions over the same catalyst.

  4. Single Pot Selective Hydrogenation of Furfural to 2-Methylfuran Over Carbon Supported Iridium Catalysts

    KAUST Repository

    Date, Nandan S

    2018-03-20

    Various iridium supported carbon catalysts were prepared and screened for direct hydrogenation of furfural (FFR) to 2-methyl furan (2-MF). Amongest these, 5% Ir/C showed excellent results with complete FFR conversion and highest selectivity of 95% to 2-MF at very low H2 pressure of 100 psig. Metallic (Iro) and oxide ( IrO2) phases of Ir catalyzed first step hydrogenation involving FFR to FAL and subsequent hydrogenation to 2-MF,respecively. This was confirmed by XPS analysis and some controlled experiments. At low temperature of 140 oC, almost equal selectivities of FAL (42%) and 2-MF (43%) were observed, while higher temperature (220oC) favored selective hydrodeoxygenation. At optimized temperature, 2-MF formed selectively while higher pressure and higher catalyst loading favored ring hydrogenation of furfural rather than side chain hydrogenation. With combination of several control experimental results and detailed catalyst characterization, a plausible reaction pathway has been proposed for selective formation of 2-MF. The selectivity to various other products in FFR hydrogenation can be manipulated by tailoring the reaction conditions over the same catalyst.

  5. Model studies of secondary hydrogenation in Fischer-Tropsch synthesis studied by cobalt catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Aaserud, Christian

    2003-07-01

    Mass transfer effects are very important in Fischer-Tropsch (FT) synthesis. In order to study the FT synthesis without the influence of any transport limitations, cobalt foils have been used as model catalysts. The effect of pretreatment (number of calcinations and different reduction times) for cobalt foil catalysts at 220 {sup o}C, 1 bar and H{sub 2}/CO = 3 has been studied in a microreactor. The foils were examined by Scanning electron microscopy (SEM). It was found that the catalytic activity of the cobalt foil increases with the number of pretreatments possibly due to an increase in the surface area of the cobalt foil. The SEM results support the assumption that the surface area of the cobalt foil increases with the number of pretreatments. The reduction time was also found to influence the catalytic activity of the cobalt foil. Highest activity was obtained using a reduction time of only five min (compared to one and thirty min). The decrease in activity after reduction for thirty min compared to five min was suggested to be due to restructuring of the surface of the cobalt foil and a reduction time of only 1 min was not enough to reduce the cobalt foil sufficiently. Time of reduction did also influence the product distribution. Increased reduction time resulted in a lower selectivity to light products and increased selectivity to heavier components. The paraffin/olefin ratio increased with increasing CO-conversion also for cobalt foils. The paraffin/olefin ratio also increased when the reduction period of the cobalt foil was increased at a given CO-conversion. Hydrogenation of propene to propane has been studied as a model reaction for secondary hydrogenation of olefins in the FT synthesis. The study has involved promoted and unpromoted cobalt FT catalysts supported on different types of supports and also unsupported cobalt. Hydrogenation of propene was carried out at 120 {sup o}C, 1.8 bar and H{sub 2}/C{sub 3}H{sub 6} 6 in a fixed bed microreactor. The rate

  6. Hydrogen Temperature-Programmed Desorption in Platinum Catalysts: Decomposition and Isotopic Exchange by Spillover Hydrogen of Chemisorbed Ammonia.

    NARCIS (Netherlands)

    Koningsberger, D.C.; Miller, J.T.; Meyers, B.L.; Barr, M.K.; Modica, F.S.

    1996-01-01

    H{2}-TPD of Pt/alumina catalysts display multiple hydrogendesorptions. In addition to chemisorbed hydrogen (Peak I) atapproximately 175}o{C, there is a small hydrogen desorption (PeakII) at about 250}o{C and a large, irreversible hydrogen desorption(Peak III) at 450}o{C. The quantity of hydrogen

  7. First-row transition metal hydrogenation and hydrosilylation catalysts

    Science.gov (United States)

    Trovitch, Ryan J.; Mukhopadhyay, Tufan K.; Pal, Raja; Levin, Hagit Ben-Daat; Porter, Tyler M.; Ghosh, Chandrani

    2017-07-18

    Transition metal compounds, and specifically transition metal compounds having a tetradentate and/or pentadentate supporting ligand are described, together with methods for the preparation thereof and the use of such compounds as hydrogenation and/or hydrosilylation catalysts.

  8. Hydrogen generation from hydrolysis of sodium borohydride using Ru(0) nanoclusters as catalyst

    International Nuclear Information System (INIS)

    Ozkar, S.; Zahmakiran, M.

    2005-01-01

    Sodium borohydride is stable in aqueous alkaline solution, however, it hydrolyses in water to hydrogen gas in the presence of suitable catalyst. By this way hydrogen can be generated safely for the fuel cells. Generating H 2 catalytically from NaBH 4 solutions has many advantages: NaBH 4 solutions are nonflammable, reaction products are environmentally benign, rate of H 2 generation is easily controlled, the reaction product NaBO 2 can be recycled, H 2 can be generated even at low temperatures. All of the catalysts that has been used in hydrolysis of sodium borohydride are bulk metals and they act as heterogeneous catalysts. The limited surface area of the heterogeneous catalysts causes lower catalytic activity as the activity of catalyst is directly related to its surface area. Thus, the use of metal nanoparticles with large surface area provides potential route to increase the catalytic activity. Here, we report, for the first time, the use of ruthenium(0) nanoclusters as catalyst in the hydrolysis of sodium borohydride liberating hydrogen gas. The ruthenium nanoparticles are generated from the reduction of ruthenium(III) chloride by sodium borohydride in water and stabilized by specific ligand. The ruthenium(0) nanoclusters are found to be highly active catalyst for the hydrolysis of sodium borohydride

  9. Study of Supported Nickel Catalysts Prepared by Aqueous Hydrazine Method. Hydrogenating Properties and Hydrogen Storage: Support Effect. Silver Additive Effect; Catalyseurs de nickel supportes prepares par la methode de l'hydrazine aqueuse. Proprietes hydrogenantes et stockage d'hydrogene. Effet du support. Effet de l'ajout d'argent

    Energy Technology Data Exchange (ETDEWEB)

    Wojcieszak, R

    2006-06-15

    We have studied Ni or NiAg nano-particles obtained by the reduction of nickel salts (acetate or nitrate) by hydrazine and deposited by simple or EDTA-double impregnation on various supports ({gamma}-Al{sub 2}O{sub 3}, amorphous or crystallized SiO{sub 2}, Nb{sub 2}O{sub 5}, CeO{sub 2} and carbon). Prepared catalysts were characterized by different methods (XRD, XPS, low temperature adsorption and desorption of N{sub 2}, FTIR and FTIR-Pyridine, TEM, STEM, EDS, H{sub 2}-TPR, H{sub 2}-adsorption, H{sub 2}-TPD, isopropanol decomposition) and tested in the gas phase hydrogenation of benzene or as carbon materials in the hydrogen storage at room temperature and high pressure. The catalysts prepared exhibited better dispersion and activity than classical catalysts. TOF's of NiAg/SiO{sub 2} or Ni/carbon catalysts were similar to Pt catalysts in benzene hydrogenation. Differences in support acidity or preparation method and presence of Ag as metal additive play a crucial role in the chemical reduction of Ni by hydrazine and in the final properties of the materials. Ni/carbon catalysts could store significant amounts of hydrogen at room temperature and high pressure (0.53%/30 bars), probably through the hydrogen spillover effect. (author)

  10. Kinetic modelling of slurry polymerization of ethylene with a polymer supported Ziegler-Natta catalyst (hydrogen)

    Energy Technology Data Exchange (ETDEWEB)

    Shariati, A.

    1996-12-31

    The kinetics of polymerization of ethylene catalyzed by a polymer supported Ziegler-Natta catalyst were investigated in a semi-batch reactor system. The influences of six polymerization variables were investigated using a central composite design. The variables were monomer partial pressure, catalyst loading, co-catalyst loading, catalyst particle size and hydrogen to monomer ratio. The influence of temperature on rate and polymer properties were investigated. Empirical models were fitted to the experimental data to quantify the effects of the polymerization variables on the rate characteristics and polymer properties. The rate of polymerization exhibited a first order dependency with respect to monomer partial pressure, but a nonlinear relationship with respect to catalyst loading. In the absence of hydrogen, the polymerization rate showed a non-decaying profile at the centre point conditions for the other variables. Catalyst loading and catalyst particle size had a negligible effect on weight-and-number-average molecular weights, while increasing co-catalysts loading lowered the molecular weights, as did increased temperature and hydrogen concentration. refs., figs.

  11. Effect of chemically reduced palladium supported catalyst on sunflower oil hydrogenation conversion and selectivity

    Directory of Open Access Journals (Sweden)

    Abdulmajid Alshaibani

    2017-02-01

    Full Text Available Catalytic hydrogenation of sunflower oil was studied in order to improve the conversion and to reduce the trans-isomerization selectivity. The hydrogenation was performed using Pd–B/γ-Al2O3 prepared catalyst and Pd/Al2O3 commercial catalyst under similar conditions. The Pd–B/γ-Al2O3 catalyst was prepared by wet impregnation and chemical reduction processes. It was characterized by Brunauer–Emmett–Teller surface area analysis (BET, X-ray powder diffraction (XRD, scanning electron microscopy (SEM, and transmission electron microscopy (TEM. The result of sunflower oil hydrogenation on Pd–B/γ-Al2O3 catalyst showed a 17% higher conversion and a 23% lower trans-isomerization selectivity compared to the commercial Pd/Al2O3 catalyst. The chemical reduction of palladium supported catalyst using potassium borohydride (KBH4 has affected the Pd–B/γ-Al2O3 catalyst’s structure and particle size. These most likely influenced its catalytic performance toward higher conversion and lower trans-isomerization selectivity.

  12. Development of a Practical Hydrogen Storage System Based on Liquid Organic Hydrogen Carriers and a Homogeneous Catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Craig [Hawaii Hydrogen Carriers, LLC, Honolulu, HI (United States); Brayton, Daniel [Hawaii Hydrogen Carriers, LLC, Honolulu, HI (United States); Jorgensen, Scott W. [General Motors, LLC, Warren, MI (United States). Research and Development Center. Chemical and Material Systems Lab.; Hou, Peter [General Motors, LLC, Warren, MI (United States). Research and Development Center. Chemical and Material Systems Lab.

    2017-03-24

    The objectives of this project were: 1) optimize a hydrogen storage media based on LOC/homogeneous pincer catalyst (carried out at Hawaii Hydrogen Carriers, LLC) and 2) develop space, mass and energy efficient tank and reactor system to house and release hydrogen from the media (carried out at General Motor Research Center).

  13. Ultrahigh figure-of-merit for hydrogen generation from sodium borohydride using ternary metal catalysts

    Science.gov (United States)

    Hu, Lunghao; Ceccato, R.; Raj, R.

    We report further increase in the figure-of-merit (FOM) for hydrogen generation from NaBH 4 than reported in an earlier paper [1], where a sub-nanometer layer of metal catalysts are deposited on carbon nanotube paper (CNT paper) that has been functionalized with polymer-derived silicon carbonitride (SiCN) ceramic film. Ternary, Ru-Pd-Pt, instead of the binary Pd-Pt catalyst used earlier, together with a thinner CNT paper is shown to increase the figure-of-merit by up to a factor of six, putting is above any other known catalyst for hydrogen generation from NaBH 4. The catalysts are prepared by first impregnating the functionalized CNT-paper with solutions of the metal salts, followed by reduction in a sodium borohydride solution. The reaction mechanism and the catalyst efficiency are described in terms of an electric charge transfer, whereby the negative charge on the BH 4 - ion is exchanged with hydrogen via the electronically conducting SiCN/CNT substrate [1].

  14. High Electrocatalytic Hydrogen Evolution Activity of an Anomalous Ruthenium Catalyst

    KAUST Repository

    Zheng, Yao; Jiao, Yan; Zhu, Yihan; Li, Lu Hua; Han, Yu; Chen, Ying; Jaroniec, Mietek; Qiao, Shi Zhang

    2016-01-01

    Hydrogen evolution reaction (HER) is a critical process due to its fundamental role in electrocatalysis. Practically, the development of high-performance electrocatalysts for HER in alkaline media is of great importance for the conversion of renewable energy to hydrogen fuel via photoelectrochemical water splitting. However, both mechanistic exploration and materials development for HER under alkaline conditions are very limited. Precious Pt metal, which still serves as the state-of-the-art catalyst for HER, is unable to guarantee a sustainable hydrogen supply. Here we report an anomalously structured Ru catalyst that shows 2.5 times higher hydrogen generation rate than Pt and is among the most active HER electrocatalysts yet reported in alkaline solutions. The identification of new face-centered cubic crystallographic structure of Ru nanoparticles was investigated by high-resolution transmission electron microscopy imaging, and its formation mechanism was revealed by spectroscopic characterization and theoretical analysis. For the first time, it is found that the Ru nanocatalyst showed a pronounced effect of the crystal structure on the electrocatalytic activity tested under different conditions. The combination of electrochemical reaction rate measurements and density functional theory computation shows that the high activity of anomalous Ru catalyst in alkaline solution originates from its suitable adsorption energies to some key reaction intermediates and reaction kinetics in the HER process.

  15. High Electrocatalytic Hydrogen Evolution Activity of an Anomalous Ruthenium Catalyst.

    Science.gov (United States)

    Zheng, Yao; Jiao, Yan; Zhu, Yihan; Li, Lu Hua; Han, Yu; Chen, Ying; Jaroniec, Mietek; Qiao, Shi-Zhang

    2016-12-14

    Hydrogen evolution reaction (HER) is a critical process due to its fundamental role in electrocatalysis. Practically, the development of high-performance electrocatalysts for HER in alkaline media is of great importance for the conversion of renewable energy to hydrogen fuel via photoelectrochemical water splitting. However, both mechanistic exploration and materials development for HER under alkaline conditions are very limited. Precious Pt metal, which still serves as the state-of-the-art catalyst for HER, is unable to guarantee a sustainable hydrogen supply. Here we report an anomalously structured Ru catalyst that shows 2.5 times higher hydrogen generation rate than Pt and is among the most active HER electrocatalysts yet reported in alkaline solutions. The identification of new face-centered cubic crystallographic structure of Ru nanoparticles was investigated by high-resolution transmission electron microscopy imaging, and its formation mechanism was revealed by spectroscopic characterization and theoretical analysis. For the first time, it is found that the Ru nanocatalyst showed a pronounced effect of the crystal structure on the electrocatalytic activity tested under different conditions. The combination of electrochemical reaction rate measurements and density functional theory computation shows that the high activity of anomalous Ru catalyst in alkaline solution originates from its suitable adsorption energies to some key reaction intermediates and reaction kinetics in the HER process.

  16. High Electrocatalytic Hydrogen Evolution Activity of an Anomalous Ruthenium Catalyst

    KAUST Repository

    Zheng, Yao

    2016-11-28

    Hydrogen evolution reaction (HER) is a critical process due to its fundamental role in electrocatalysis. Practically, the development of high-performance electrocatalysts for HER in alkaline media is of great importance for the conversion of renewable energy to hydrogen fuel via photoelectrochemical water splitting. However, both mechanistic exploration and materials development for HER under alkaline conditions are very limited. Precious Pt metal, which still serves as the state-of-the-art catalyst for HER, is unable to guarantee a sustainable hydrogen supply. Here we report an anomalously structured Ru catalyst that shows 2.5 times higher hydrogen generation rate than Pt and is among the most active HER electrocatalysts yet reported in alkaline solutions. The identification of new face-centered cubic crystallographic structure of Ru nanoparticles was investigated by high-resolution transmission electron microscopy imaging, and its formation mechanism was revealed by spectroscopic characterization and theoretical analysis. For the first time, it is found that the Ru nanocatalyst showed a pronounced effect of the crystal structure on the electrocatalytic activity tested under different conditions. The combination of electrochemical reaction rate measurements and density functional theory computation shows that the high activity of anomalous Ru catalyst in alkaline solution originates from its suitable adsorption energies to some key reaction intermediates and reaction kinetics in the HER process.

  17. Microstructure and hydrogen sorption kinetics of Mg nanopowders with catalyst

    International Nuclear Information System (INIS)

    Revesz, A.; Fatay, D.; Spassov, T.

    2007-01-01

    MgH 2 powders were ball-milled with and without catalysts (Nb 2 O 5 ) under hydrogen in a high-energy mill for 10 h. Morphological, structural and microstructural characterization of the nanocomposites, including particle and crystallite size distribution were carried out before and after hydrogen absorption. In order to study the above-mentioned microstructural parameters imaging and X-ray scattering techniques (high-resolution X-ray diffractometry) have been employed. The effect of the particle and grain size on the hydriding/dehydriding kinetics of ball-milled MgH 2 + catalyst powders was analyzed. The grain and particle size reduction enhances substantially the hydriding/dehydriding

  18. Dealloyed Ruthenium Film Catalysts for Hydrogen Generation from Chemical Hydrides

    Directory of Open Access Journals (Sweden)

    Ramis B. Serin

    2017-07-01

    Full Text Available Thin-film ruthenium (Ru and copper (Cu binary alloys have been prepared on a Teflon™ backing layer by cosputtering of the precious and nonprecious metals, respectively. Alloys were then selectively dealloyed by sulfuric acid as an etchant, and their hydrogen generation catalysts performances were evaluated. Sputtering time and power of Cu atoms have been varied in order to tailor the hydrogen generation performances. Similarly, dealloying time and the sulfuric acid concentration have also been altered to tune the morphologies of the resulted films. A maximum hydrogen generation rate of 35 mL min−1 was achieved when Cu sputtering power and time were 200 W and 60 min and while acid concentration and dealloying time were 18 M and 90 min, respectively. It has also been demonstrated that the Ru content in the alloy after dealloying gradually increased with the increasing the sputtering power of Cu. After 90 min dealloying, the Ru to Cu ratio increased to about 190 times that of bare alloy. This is the key issue for observing higher catalytic activity. Interestingly, we have also presented template-free nanoforest-like structure formation within the context of one-step alloying and dealloying used in this study. Last but not least, the long-time hydrogen generation performances of the catalysts system have also been evaluated along 3600 min. During the first 600 min, the catalytic activity was quite stable, while about 24% of the catalytic activity decayed after 3000 min, which still makes these systems available for the development of robust catalyst systems in the area of hydrogen generation.

  19. Hydrogen adsorption on activated carbon nanotubes with an atomic-sized vanadium catalyst investigated by electrical resistance measurements

    International Nuclear Information System (INIS)

    Im, Ji Sun; Yun, Jumi; Kang, Seok Chang; Lee, Sung Kyu; Lee, Young-Seak

    2012-01-01

    Activated multi-walled carbon nanotubes were prepared with appended vanadium as a hydrogen storage medium. The pore structure was significantly improved by an activation process that was studied using Raman spectroscopy, field emission transmission electron microscopy and pore analysis techniques. X-ray photoelectron spectroscopy and X-ray diffraction results reveal that the vanadium catalyst was introduced into the carbon nanotubes in controlled proportions, forming V 8 C 7 . The improved pore structure functioned as a path through the carbon nanotubes that encouraged hydrogen molecule adsorption, and the introduced vanadium catalyst led to high levels of hydrogen storage through the dissociation of hydrogen molecules via the spill-over phenomenon. The hydrogen storage behavior was investigated by electrical resistance measurements for the hydrogen adsorbed on a prepared sample. The proposed mechanism of hydrogen storage suggests that the vanadium catalyst increases not only the amount of hydrogen that is stored but also the speed at which it is stored. A hydrogen storage capacity of 2.26 wt.% was achieved with the activation effects and the vanadium catalyst at 30 °C and 10 MPa.

  20. Characterization of catalysts Rh and Ni/CexZr1-xO2 for hydrogen production by ethanol steam reforming

    International Nuclear Information System (INIS)

    Birot, A.

    2005-01-01

    This work concerned a study on catalytic behaviour of metallic catalysts (Rh or Ni) supported on earth rare oxides Ce x Zr 1-x O 2 in ethanol steam reforming in order to produce hydrogen. Catalyst 1%Rh/Ce0,50Zr0,50O 2 showed a good activity with a good hydrogen yield. We turned a study onto understanding inter-conversion reaction between H 2 , CO and CO 2 which lead to CH 4 formation. We also studied intrinsic properties of catalysts. We confirmed basic character of catalysts and a good hydrogenation activity. A good activity in CO hydrogenation allowed to evidence a necessity to use a catalyst which is less active in hydrogenation reaction and with a basic character in order to improve hydrogen yield. (author)

  1. Development of Hydrogen Separation Module with Structured Catalyst for Use in Membrane Reformer

    International Nuclear Information System (INIS)

    Isamu Yasuda; Tatsuya Tsuneki; Yoshinori Shirasaki; Toru Shimamori; Hidekazu Shigaki; Hiroyuki Tanaka

    2006-01-01

    A new type of hydrogen separation module for use in a membrane reformer was proposed and developed. The new module, what we call MOC (Membrane On Catalyst), was designed to have a membrane of palladium-based alloy prepared on the surface of the tubular structured catalyst that has catalytic activity for steam reforming reaction, thermal expansion matching with the membrane material, proper porosity, mechanical strength and thermal conductivity. The best composition of the structured catalyst was identified in the composites of metallic Ni and YSZ (Yttria-Stabilized Zirconia). A hydrogen separation module was manufactured by electroless plating of Pd with thickness of 7 to 15 microns on the surface of porous sintered tube of Ni-YSZ with an approximate size of 9 mm in diameter and 100 mm in length. The hydrogen permeability measurements have shown hydrogen flux of 25 to 35 cc/min at 550 to 600 C, which is higher than the permeability of the conventional modules using rolled Pd film. (authors)

  2. Supercritical water gasification of landfill leachate for hydrogen production in the presence and absence of alkali catalyst.

    Science.gov (United States)

    Weijin, Gong; Binbin, Li; Qingyu, Wang; Zuohua, Huang; Liang, Zhao

    2018-03-01

    Gasification of landfill leachate in supercritical water using batch-type reactor is investigated. Alkali such as NaOH, KOH, K 2 CO 3 , Na 2 CO 3 is used as catalyst. The effect of temperature (380-500 °C), retention time (5-25 min), landfill leachate concentration (1595 mg L -1 -15,225 mg L -1 ), catalyst adding amount (1-10 wt%) on hydrogen mole fraction, hydrogen yield, carbon gasification rate, COD, TOC, TN removal efficiency are investigated. The results showed that gaseous products mainly contained hydrogen, methane, carbon dioxide and carbon monoxide without addition of catalyst. However, the main gaseous products are hydrogen and methane with addition of NaOH, KOH, K 2 CO 3 , Na 2 CO 3 . In the absence of alkali catalyst, the effect of temperature on landfill leachate gasification is positive. Hydrogen mole fraction, hydrogen yield, carbon gasification ratio increase with temperature, which maximum value being 55.6%, 107.15 mol kg -1 , 71.96% is obtained at 500 °C, respectively. Higher raw landfill leachate concentration leads to lower hydrogen production and carbon gasification rate. The suitable retention time is suggested to be 15 min for higher hydrogen production and carbon gasification rate. COD, TOC and TN removal efficiency also increase with increase of temperature, decrease of landfill leachate concentration. In the presence of catalyst, the hydrogen production is obviously promoted by addition of alkali catalyst. the effect of catalysts on hydrogen production is in the following order: NaOH > KOH > Na 2 CO 3  > K 2 CO 3 . The maximum hydrogen mole fraction and hydrogen yield being 74.40%, 70.05 mol kg -1 is obtained with adding amount of 5 wt% NaOH at 450 °C, 28 MPa, 15 min. Copyright © 2017. Published by Elsevier Ltd.

  3. Liquefaction of kraft lignin by hydrocracking with simultaneous use of a novel dual acid-base catalyst and a hydrogenation catalyst.

    Science.gov (United States)

    Wang, Jindong; Li, Wenzhi; Wang, Huizhen; Ma, Qiaozhi; Li, Song; Chang, Hou-Min; Jameel, Hasan

    2017-11-01

    In this study, a novel catalyst, S 2 O 8 2- -KNO 3 /TiO 2 , which has active acidic and basic sites, was prepared and used in lignin hydrocracking with a co-catalyst, Ru/C. Ru/C is an efficient hydrogenation catalyst and S 2 O 8 2- -KNO 3 /TiO 2 is a dual catalyst, which could efficiently degrade lignin. This catalytic hydrogenation system can reduce solid products to less than 1%, while giving a high liquid product yield of 93%. Catalytic hydrocracking of kraft lignin at 320°C for 6h gave 93% liquid product with 0.5% solid product. Most of this liquid product was soluble in petroleum ether (60% of 93%), which is a clear liquid and comprises mainly of monomeric and dimeric degradation products. These results demonstrated that the combination of the two catalysts is an efficient catalyst for liquefaction of lignin, with little char formation (∼1%). This concept has the potential to produce valuable chemicals and fuels from lignin under moderate conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The synthesis of higher alcohols from CO2 hydrogenation with Co, Cu, Fe-based catalysts

    International Nuclear Information System (INIS)

    Ji, Qinqin

    2017-01-01

    CO 2 is a clean carbon source for the chemical reactions, many researchers have studied the utilization of CO 2 . Higher alcohols are clean fuel additives. The synthesis of higher alcohols from CO hydrogenation has also been studied by many researchers, but there are few literatures about the synthesis of higher alcohols from CO 2 hydrogenation, which is a complex and difficult reaction. The catalysts that used for higher alcohols synthesis need at least two active phases and good cooperation. In our study, we tested the Co. Cu. Fe spinel-based catalysts and the effect of supports (CNTs and TUD-1) and promoters (K, Na, Cs) to the HAS reaction. We found that catalyst CuFe-precursor-800 is beneficial for the synthesis of C2+ hydrocarbons and higher alcohols. In the CO 2 hydrogenation, Co acts as a methanation catalyst rather than acting as a FT catalyst, because of the different reaction mechanism between CO hydrogenation and CO 2 hydrogenation. In order to inhibit the formation of huge amount of hydrocarbons, it is better to choose catalysts without Co in the CO 2 hydrogenation reaction. Compared the functions of CNTs and TUD-1, we found that CNTs is a perfect support for the synthesis of long-chain products (higher alcohols and C2+ hydrocarbons). The TUD-1 support are more suitable for synthesis of single-carbon products (methane and methanol).The addition of alkalis as promoters does not only lead to increase the conversion of CO 2 and H 2 , but also sharply increased the selectivity to the desired products, higher alcohols. The catalyst 0.5K30CuFeCNTs owns the highest productivities (370.7 g.kg -1 .h -1 ) of higher alcohols at 350 C and 50 bar. (author) [fr

  5. Liquid-Phase Catalytic Transfer Hydrogenation of Furfural over Homogeneous Lewis Acid-Ru/C Catalysts.

    Science.gov (United States)

    Panagiotopoulou, Paraskevi; Martin, Nickolas; Vlachos, Dionisios G

    2015-06-22

    The catalytic performance of homogeneous Lewis acid catalysts and their interaction with Ru/C catalyst are studied in the catalytic transfer hydrogenation of furfural by using 2-propanol as a solvent and hydrogen donor. We find that Lewis acid catalysts hydrogenate the furfural to furfuryl alcohol, which is then etherified with 2-propanol. The catalytic activity is correlated with an empirical scale of Lewis acid strength and exhibits a volcano behavior. Lanthanides are the most active, with DyCl3 giving complete furfural conversion and a 97 % yield of furfuryl alcohol at 180 °C after 3 h. The combination of Lewis acid and Ru/C catalysts results in synergy for the stronger Lewis acid catalysts, with a significant increase in the furfural conversion and methyl furan yield. Optimum results are obtained by using Ru/C combined with VCl3 , AlCl3 , SnCl4 , YbCl3 , and RuCl3 . Our results indicate that the combination of Lewis acid/metal catalysts is a general strategy for performing tandem reactions in the upgrade of furans. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Controlling hydrogenation activity and selectivity of bimetallic surfaces and catalysts

    Science.gov (United States)

    Murillo, Luis E.

    Studies of bimetallic systems are of great interest in catalysis due to the novel properties that they often show in comparison with the parent metals. The goals of this dissertation are: (1) to expand the studies of self-hydrogenation and hydrogenation reactions on bimetallic surfaces under ultra high vacuum conditions (UHV) using different hydrocarbon as probe molecules; (2) to attempt to correlate the surface science findings with supported catalyst studies under more realistic conditions; and (3) to investigate the competitive hydrogenation of C=C versus C=O bonds on Pt(111) modified by different 3d transition metals. Hydrogenation studies using temperature programmed desorption (TPD) on Ni/Pt(111) bimetallic surfaces have demonstrated an enhancement in the low temperature hydrogenation activity relative to that of clean Pt(111). This novel hydrogenation pathway can be achieved under UHV conditions by controlling the structures of the bimetallic surfaces. A low temperature hydrogenation activity of 1-hexene and 1-butene has been observed on a Pt-Ni-Pt(111) subsurface structure, where Ni atoms are mainly present on the second layer of the Pt(111) single crystal. These results are in agreement with previous studies of self-hydrogenation and hydrogenation of cyclohexene. However, a much higher dehydrogenation activity is observed in the reaction of cyclohexene to produce benzene, demonstrating that the hydrocarbon structure has an effect on the reaction pathways. On the other hand, self-hydrogenation of 1-butene is not observed on the Pt-Ni-Pt(111) surface, indicating that the chain length (or molecular weight) has a significant effect on the selfhydrogenation activity. The gas phase reaction of cyclohexene on Ni/Pt supported on alumina catalysts has also shown a higher self-hydrogenation activity in comparison with the same reaction performed on supported monometallic catalysts. The effects of metal loading and impregnation sequence of the metal precursors are

  7. Gaseous exchange reaction of deuterium between hydrogen and water on hydrophobic catalyst supporting platinum

    International Nuclear Information System (INIS)

    Izawa, Hirozumi; Isomura, Shohei; Nakane, Ryohei.

    1979-01-01

    The deuterium exchange reaction between hydrogen and water in the gas phase where the fed hydrogen gas is saturated with water vapor is studied experimentally by use of the proper hydrophobic catalysts supporting platinum. It is found that the activities of those catalysts for this reaction system are very high compared with the other known ones for the systems in which gas and liquid should coexist on catalyst surfaces, and that the apparent catalytic activity becomes larger as the amount of platinum supported on a catalyst particle increases. By analyses of the data the following informations are obtained. The exchange reaction can be expressed by a first order reversible reaction kinetics. The pore diffusion in the catalyst particles has significant effect on the overall reaction mechanisms. (author)

  8. Iron ore catalysts for methane decomposition to make CO x free hydrogen and carbon nano material

    KAUST Repository

    Zhou, Lu

    2018-03-27

    In this work, for the first time, iron ores with 91.7%–96.2% FeO, 1.3%–2.3% AlO, 1.2%–4.5% SiO, 1.3%–3.9% NaO, were studied directly as bulk catalysts for methane decomposition. By hydrogen pre-reduction at 850 °C, FeO species on iron ores were gradually reduced into FeO, FeO and then finally into Fe species. After reduction of 1.6 g of iron ore catalysts of 50 µm particle size with 100 mL/min pure H for 3.5 h at 850 °C, CMD life testing was conducted at 850 °C and GHSV of 3.75 L/g h and the catalyst showed a stable methane conversion for 5 h. When methane decomposition proceeded on Fe sites, FeC species would be formed to deposit graphite around themselves to finally form carbon nano onions. This carbon nano onions material showed excellent application for wastewater purification. All samples were fully characterized with XRF, XRD, H-TPR, TEM and Raman.

  9. Carbon catalysts for electrochemical hydrogen peroxide production in acidic media

    DEFF Research Database (Denmark)

    Čolić, Viktor; Yang, Sungeun; Révay, Zsolt

    2018-01-01

    Hydrogen peroxide is a commodity chemical, as it is an environmentally friendly oxidant. The electrochemical production of H2O2 from oxygen and water by the reduction of oxygen is of great interest, as it would allow the decentralized, on-site, production of pure H2O2. The ability to run...... the reaction in an acidic electrolyte with high performance is particularly important, as it would allow the use of polymer solid electrolytes and the production of pH-neutral hydrogen peroxide. Carbon catalysts, which are cheap, abundant, durable and can be highly selective show promise as potential catalysts...... for such systems. In this work, we examine the electrocatalytic performance and properties of seven commercially available carbon materials for H2O2 production by oxygen electroreduction. We show that the faradaic efficiencies for the reaction lie in a wide range of 18-82% for different carbon catalysts. In order...

  10. Effects of various catalysts on hydrogen release and uptake characteristics of LiAlH{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Resan, Mirna; Hampton, Michael D.; Lomness, Janice K. [Department of Chemistry, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816-2366 (United States); Slattery, Darlene K. [Florida Solar Energy Center, 1679 Clearlake Rd., Cocoa, FL 32922 (United States)

    2005-11-01

    The effects of various catalysts on the hydrogen release characteristics of LiAlH{sub 4} were studied. The catalysts were incorporated into the alanate by ball milling. The catalysts studied included elemental titanium, TiH{sub 2}, TiCl{sub 4}, TiCl{sub 3}, AlCl{sub 3}, FeCl{sub 3}, elemental iron, elemental nickel, elemental vanadium, and carbon black. Dehydriding/rehydriding properties were characterized by using differential scanning calorimetry coupled with pressure measurement and X-ray diffraction. The addition of TiCl{sub 3} and TiCl{sub 4} to LiAlH{sub 4} eliminated the first step of hydrogen evolution and significantly lowered decomposition temperature of the second step. Doping with elemental iron caused only a slight decrease in the amount of hydrogen released and did not eliminate the first step of hydrogen evolution. Ball milling in the absence of the catalyst was found to decrease the release temperature of hydrogen, while doping with elemental iron did not have any additional effect on the temperature of hydrogen release of LiAlH{sub 4}. (author)

  11. Sodium borohydride hydrogen generator using Co–P/Ni foam catalysts for 200 W proton exchange membrane fuel cell system

    International Nuclear Information System (INIS)

    Oh, Taek Hyun; Gang, Byeong Gyu; Kim, Hyuntak; Kwon, Sejin

    2015-01-01

    The response characteristics of electroless-deposited Co–P/Ni foam catalysts for sodium borohydride hydrolysis were investigated. The effect of nickel foam geometry on the properties of the catalysts was evaluated. As the PPI (pores per inch) of the nickel foam increased, the hydrogen generation rate per gram of the deposited catalyst increased due to an increase in surface area. The response characteristics of various catalysts were compared under real operating conditions. When a thin nickel foam with high PPI was used, the response characteristics of the catalyst improved due to an increase in the amount of the deposited catalyst and surface area. Finally, a 200 W PEMFC (proton exchange membrane fuel cell) system using electroless-deposited Co–P/Ni foam (110 PPI) catalyst was investigated. The response time to reach a hydrogen generation rate sufficient for a 200 W PEMFC was 71 s, and the energy density of a 200 W fuel cell system for producing 600 Wh was 252.1 Wh/kg. A fuel cell system using Co–P/Ni foam catalysts can be widely used as a power source for mobile applications due to fast response characteristics and high energy density. - Highlights: • Response characteristics of Co–P/Ni foam catalysts are investigated. • Catalytic activity is improved with increase in PPI (pores per inch) of Ni foam. • Co–P/Ni foam (110 PPI) catalyst has improved response characteristics. • The energy density of a 200 W PEMFC system for producing 600 Wh is 252.1 Wh/kg. • Co–P/Ni foam (110 PPI) catalyst is suitable for fuel cell system.

  12. Bio-inspired co-catalysts bonded to a silicon photocathode for solar hydrogen evolution

    DEFF Research Database (Denmark)

    Hou, Yidong; Abrams, Billie; Vesborg, Peter Christian Kjærgaard

    2011-01-01

    The production of fuels directly or indirectly from sunlight represents one of the major challenges to the development of a sustainable energy system. Hydrogen is the simplest fuel to produce and while platinum and other noble metals are efficient catalysts for photoelectrochemical hydrogen...... at the reversible potential match the requirement of a photoelectrochemical hydrogen production system with a solar-to-hydrogen efficiency in excess of 10%. The experimental observations are supported by DFT calculations of the Mo3S4 cluster adsorbed on the hydrogen-terminated silicon surface providing insights...... deposited on various supports. It will be demonstrated how this overpotential can be eliminated by depositing the same type of hydrogen evolution catalyst on p-type Si which can harvest the red part of the solar spectrum. Such a system could constitute the cathode part of a tandem dream device where the red...

  13. Hydrophobic catalyst mixture for the isotopic exchange reaction between hydrogen and water

    Energy Technology Data Exchange (ETDEWEB)

    Paek, S.; Ahn, D. H.; Choi, H. J.; Kim, K. R.; Lee, M.; Yim, S. P.; Chung, H. [KAERI, Taejon (Korea, Republic of)

    2005-11-15

    Pt/SDBC catalyst, which is used for the hydrogen-water isotopic exchange reaction, was prepared. The various properties of the catalyst, such as the thermal stability, pore structure and the platinum dispersion, were investigated. A hydrophobic Pt/SDBC catalyst which has been developed for the LPCE column of the WTRF (Wolsong Tritium Removal Facility) was tested in a trickle bed reactor. An experimental apparatus was built for the test of the catalyst at various temperatures and gas velocities.

  14. Hydrophobic catalyst mixture for the isotopic exchange reaction between hydrogen and water

    International Nuclear Information System (INIS)

    Paek, S.; Ahn, D. H.; Choi, H. J.; Kim, K. R.; Lee, M.; Yim, S. P.; Chung, H.

    2005-01-01

    Pt/SDBC catalyst, which is used for the hydrogen-water isotopic exchange reaction, was prepared. The various properties of the catalyst, such as the thermal stability, pore structure and the platinum dispersion, were investigated. A hydrophobic Pt/SDBC catalyst which has been developed for the LPCE column of the WTRF (Wolsong Tritium Removal Facility) was tested in a trickle bed reactor. An experimental apparatus was built for the test of the catalyst at various temperatures and gas velocities

  15. Hydrogen adsorption on skeletal rhodium-tantalum electrodes-catalysts

    International Nuclear Information System (INIS)

    Tsinstevich, V.M.; Krejnina, N.M.

    1975-01-01

    Skeleton rhodium-tantalic catalyst electrodes with a tantalum mass percentage of 0 to 100 have been obtained by the methodology of Crupp and others. The hydrogen adsorption is studied through the method of removing the galvano-static and potentiodynamic curves of charging in sulfuric acid and potassium hydroxide. It has been discovered that the maximum adsorption ability relatively to the hydrogen can be observed in an alloy with a 5% tantalum contents. The energetic characteristics of the alloys are higher in alkali than in acid

  16. Short Review: Cu Catalyst for Autothermal Reforming Methanol for Hydrogen Production

    Directory of Open Access Journals (Sweden)

    Ho-Shing Wu

    2012-06-01

    Full Text Available Hydrogen is a promising alternative energy sources, hydrogen can be used in fuel cell applications to pro-ducing electrical energy and water as byproduct. Therefore, fuel cell is a simple application and environ-mentally friendly oriented technology. Recent years various methods have been conducted to produce hy-drogen. Those methods are derived from various sources such as methanol, ethanol, gasoline, hydrocarbons. This article presents a brief review a parameter process of that affects in autothermal reforming methanol use Cu-based catalysts for production of hydrogen. Copyright © 2012 BCREC UNDIP. All rights reserved.Received: 3rd January 2012; Revised: 23rd February 2012; Accepted: 28th February 2012[How to Cite: H.S. Wu, and D. Lesmana. (2012. Short Review: Cu Catalyst for Autothermal Reforming Methanol for Hydrogen Production. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (1: 27-42. doi:10.9767/bcrec.7.1.1284.27-42][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.1.1284.27-42 ] | View in 

  17. Graphene Derivative in Magnetically Recoverable Catalyst Determines Catalytic Properties in Transfer Hydrogenation of Nitroarenes to Anilines with 2-Propanol.

    Science.gov (United States)

    Das, Vijay Kumar; Mazhar, Sumaira; Gregor, Lennon; Stein, Barry D; Morgan, David Gene; Maciulis, Nicholas A; Pink, Maren; Losovyj, Yaroslav; Bronstein, Lyudmila M

    2018-06-14

    Here, we report transfer hydrogenation of nitroarenes to aminoarenes using 2-propanol as a hydrogen source and Ag-containing magnetically recoverable catalysts based on partially reduced graphene oxide (pRGO) sheets. X-ray diffraction and X-ray photoelectron spectroscopy data demonstrated that, during the one-pot catalyst synthesis, formation of magnetite nanoparticles (NPs) is accompanied by the reduction of graphene oxide (GO) to pRGO. The formation of Ag 0 NPs on top of magnetite nanoparticles does not change the pRGO structure. At the same time, the catalyst structure is further modified during the transfer hydrogenation, leading to a noticeable increase of sp 2 carbons. These carbons are responsible for the adsorption of substrate and intermediates, facilitating a hydrogen transfer from Ag NPs and creating synergy between the components of the catalyst. The nitroarenes with electron withdrawing and electron donating substituents allow for excellent yields of aniline derivatives with high regio and chemoselectivity, indicating that the reaction is not disfavored by these functionalities. The versatility of the catalyst synthetic protocol was demonstrated by a synthesis of an Ru-containing graphene derivative based catalyst, also allowing for efficient transfer hydrogenation. Easy magnetic separation and stable catalyst performance in the transfer hydrogenation make this catalyst promising for future applications.

  18. Hydrogen Production by Steam Reforming of Natural Gas Over Vanadium-Nickel-Alumina Catalysts.

    Science.gov (United States)

    Yoo, Jaekyeong; Park, Seungwon; Song, Ji Hwan; Song, In Kyu

    2018-09-01

    A series of vanadium-nickel-alumina (xVNA) catalysts were prepared by a single-step sol-gel method with a variation of vanadium content (x, wt%) for use in the hydrogen production by steam reforming of natural gas. The effect of vanadium content on the physicochemical properties and catalytic activities of xVNA catalysts in the steam reforming of natural gas was investigated. It was found that natural gas conversion and hydrogen yield showed volcano-shaped trends with respect to vanadium content. It was also revealed that natural gas conversion and hydrogen yield increased with decreasing nickel crystallite size.

  19. Partial hydrogenation of alkynes on highly selective nano-structured mesoporous silica MCM-41 composite catalyst

    International Nuclear Information System (INIS)

    Kojoori, R.K.

    2016-01-01

    In this research, we have developed a silica MCM-41/Metformin/Pd (II) nano composite catalyst for the selective hydrogenation of alkynes to the corresponding (Z)-alkenes under a mild condition of atmospheric pressure and room temperature. Firstly, functionalized Si-MCM-41 metformin catalyst with the optimum performance was prepared. Then, the synthesized catalyst was elucidated by X-ray powder diffraction, BET surface area, FT-IR spectrophotometer, Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM) and applied in partial hydrogenation of different alkynes, with high selectivity and high yield. The products were characterized by 1H-NMR, 13C-NMR, FT-IR, and Mass Spectrometry (MS) that strongly approved the (Z)-double bond configuration of produced alkenes. This prepared catalyst is competitive with the best palladium catalysts known for the selective liquid phase hydrogenation of alkynes and can be easily recovered and regenerated with keeping high activity and selectivity over at least three cycles with a simple regeneration procedure. (author)

  20. Dibenzothiophene hydrodesulfurization over Ru promoted alumina based catalysts using in situ generated hydrogen

    International Nuclear Information System (INIS)

    Muhammad, Yaseen; Lu Yingzhou; Shen Chong; Li Chunxi

    2011-01-01

    Catalytic hydrodesulfurization (HDS) of dibenzothiophene (DBT) was carried out in a temperature range of 320-400 o C using in situ generated hydrogen coupled with the effect of selected organic additives for the first time. Four kinds of alumina based catalysts i.e. Co-Mo/Al 2 O 3 , Ni-Mo/Al 2 O 3 , Ru-Co-Mo/Al 2 O 3 and Ru-Ni-Mo/Al 2 O 3 were used for the desulfurization process, which were prepared following incipient impregnation method with fixed metal loadings (wt.%) of Co, Ni, Mo and Ru. The surface area, average pore diameter and pore volume distribution of the fresh and used catalysts were measured by N 2 adsorption using BET method. Catalytic activity was investigated in a batch autoclave reactor in the complete absence of external hydrogen gas. Addition and mutual reaction of specific quantities of water and ethanol provided the necessary in situ hydrogen for the desulfurization reaction. Organic additives like diethylene glycol (DEG), phenol, naphthalene, anthracene, o-xylene, tetralin, decalin and pyridine did impinge the HDS activity of the catalysts in different ways. Liquid samples from reaction products were quantitatively analyzed by HPLC technique while qualitative analyses were made using GC-MS. Both of these techniques showed that Ni-based catalysts were more active than Co-based ones at all conditions. Moreover, incorporation of Ru to both Co and Ni-based catalysts greatly promoted desulfurization activity of these catalysts. DBT conversion of up to 84% was achieved with Ru-Ni-Mo/Al 2 O 3 catalyst at 380 o C temperature for 11 h. Catalyst systems followed the HDS activity order as: Ru-Ni-Mo/Al 2 O 3 > Ni-Mo/Al 2 O 3 > Ru-Co-Mo/Al 2 O 3 > Co-Mo/Al 2 O 3 at all conditions. Cost effectiveness, mild operating conditions and reasonably high catalytic activity using in situ generated hydrogen mechanism proved our process to be useful for HDS of DBT.

  1. Activity of bimetallic catalysts (Pt + Me)/A12030 in butane hydrogenolysis and benzene hydrogenation

    International Nuclear Information System (INIS)

    Zharkov, B.B.; Rubinov, A.Z.

    1986-01-01

    The authors evaluate the decomposing and hydrogenating activity of some Me/Al 2 0 3 0 and (Pt + Me)/Al 203 catalysis for the reactions of butane hydrogenolysis and conversion of benzene to cyclohexane. The temperature was 180-300 C for butane transformation and 150 C for benzene hydrogenation. During both reactions some initial decrease of catalytic activity which stabilized over 2-3 h was observed. The results show that roasting Re-containing reforming catalysts at fairly high temperatures (500-550 C) balances maximum hydrogenating and average splitting activities, thus guaranteeing high resistance to coke deposition while preserving the necessary selectivity. The decreased hydrogenating capacity of Ir/A1 2 0 3 0 and (Pt + Ir)/A1 23 0 catalysts after roasting at 500 C indicates insufficient thermal stability, which can be why renewing the initial activity of iridium containing forming catalysts by oxidating regeneration is difficult

  2. MODELING STYRENE HYDROGENATION KINETICS USING PALLADIUM CATALYSTS

    Directory of Open Access Journals (Sweden)

    G. T. Justino

    Full Text Available Abstract The high octane number of pyrolysis gasoline (PYGAS explains its insertion in the gasoline pool. However, its use is troublesome due to the presence of gum-forming chemicals which, in turn, can be removed via hydrogenation. The use of Langmuir-Hinshelwood kinetic models was evaluated for hydrogenation of styrene, a typical gum monomer, using Pd/9%Nb2O5-Al2O3 as catalyst. Kinetic models accounting for hydrogen dissociative and non-dissociative adsorption were considered. The availability of one or two kinds of catalytic sites was analyzed. Experiments were carried out in a semi-batch reactor at constant temperature and pressure in the absence of transport limitations. The conditions used in each experiment varied between 16 - 56 bar and 60 - 100 ºC for pressure and temperature, respectively. The kinetic models were evaluated using MATLAB and EMSO software. Models using adsorption of hydrogen and organic molecules on the same type of site fitted the data best.

  3. Catalytic hydrolysis of ammonia borane for hydrogen generation using cobalt nanocluster catalyst supported on polydopamine functionalized multiwalled carbon nanotube

    International Nuclear Information System (INIS)

    Arthur, Ernest Evans; Li, Fang; Momade, Francis W.Y.; Kim, Hern

    2014-01-01

    Hydrogen was generated from ammonia borane complex by hydrolysis using cobalt nanocluster catalyst supported on polydopamine functionalized MWCNTs (multi-walled carbon nanotubes). The impregnation-chemical reduction method was used for the preparation of the supported catalyst. The nanocluster catalyst support was formed by in-situ oxidative polymerization of dopamine on the MWCNTs in alkaline solution at room temperature. The structural and physical–chemical properties of the nanocluster catalyst were characterized by FT-IR (Fourier transform infrared spectroscopy), EDX (energy-dispersive X-ray spectroscopy), SEM (scanning electron microscope), XRD (X-ray diffraction) and TEM (transmission electron microscopy). The nanocluster catalyst showed good catalytic activity for the hydrogen generation from aqueous ammonia borane complex. A reusability test to determine the practical usage of the catalyst was also investigated. The result revealed that the catalyst maintained an appreciable catalytic performance and stability in terms of its reusability after three cycle of reuse for the hydrolysis reaction. Also, the activation energy for the hydrolysis of ammonia borane complex was estimated to be 50.41 kJmol −1 , which is lower than the values of some of the reported catalyst. The catalyst can be considered as a promising candidate in developing highly efficient portable hydrogen generation systems such as PEMFC (proton exchange membrane fuel cells). - Highlights: • Co/Pdop-o-MWCNT (Pdop functionalized MWCNT supported cobalt nanocluster) catalyst was synthesized for hydrogen generation. • It is an active catalyst for hydrogen generation via hydrolysis of ammonia borane. • It showed good stability in terms of reusability for the hydrogen generation

  4. Methanol as a High Purity Hydrogen Source for Fuel Cells: A Brief Review of Catalysts and Rate Expressions

    Directory of Open Access Journals (Sweden)

    Madej-Lachowska Maria

    2017-03-01

    Full Text Available Hydrogen is the fuel of the future, therefore many hydrogen production methods are developed. At present, fuel cells are of great interest due to their energy efficiency and environmental benefits. A brief review of effective formation methods of hydrogen was conducted. It seems that hydrogen from steam reforming of methanol process is the best fuel source to be applied in fuel cells. In this process Cu-based complex catalysts proved to be the best. In presented work kinetic equations from available literature and catalysts are reported. However, hydrogen produced even in the presence of the most selective catalysts in this process is not pure enough for fuel cells and should be purified from CO. Currently, catalysts for hydrogen production are not sufficiently active in oxidation of carbon monoxide. A simple and effective method to lower CO level and obtain clean H2 is the preferential oxidation of monoxide carbon (CO-PROX. Over new CO-PROX catalysts the level of carbon monoxide can be lowered to a sufficient level of 10 ppm.

  5. Hydrogen generation from deliquescence of ammonia borane using Ni-Co/r-GO catalyst

    Science.gov (United States)

    Chou, Chang-Chen; Chen, Bing-Hung

    2015-10-01

    Hydrogen generation from the catalyzed deliquescence/hydrolysis of ammonia borane (AB) using the Ni-Co catalyst supported on the graphene oxide (Ni-Co/r-GO catalyst) under the conditions of limited water supply was studied with the molar feed ratio of water to ammonia borane (denoted as H2O/AB) at 2.02, 3.97 and 5.93, respectively. The conversion efficiency of ammonia borane to hydrogen was estimated both from the cumulative volume of the hydrogen gas generated and the conversion of boron chemistry in the hydrolysates analyzed by the solid-state 11B NMR. The conversion efficiency of ammonia borane could reach nearly 100% under excess water dosage, that is, H2O/AB = 3.97 and 5.93. Notably, the hydrogen storage capacity could reach as high as 6.5 wt.% in the case with H2O/AB = 2.02. The hydrolysates of ammonia borane in the presence of Ni-Co/r-GO catalyst were mainly the mixture of boric acid and metaborate according to XRD, FT-IR and solid-state 11B NMR analyses.

  6. Influence of ni addition to a low-loaded palladium catalyst on the selective hydrogenation of 1-heptyne

    Directory of Open Access Journals (Sweden)

    Cecilia R. Lederhos

    2010-01-01

    Full Text Available Semi-hydrogenation of alkynes has industrial and academic relevance on a large scale. To increase the activity, selectivity and lifetime of monometallic catalysts, the development of bimetallic catalysts has been investigated. 1-Heptyne hydrogenation over low-loaded Pd and Ni monometallic and PdNi bimetallic catalysts was studied in liquid phase at mild conditions. XPS results suggest that nickel addition to Pd modifies the electronic state of palladium as nickel loading is increased. Low-loaded Pd catalysts showed the highest selectivities (> 95%. The most active prepared catalyst, PdNi(1%, was more selective than the Lindlar catalyst.

  7. Commercial application of titania-supported hydrodesulfurization catalysts in the production of hydrogen using full-range FCC off-gas

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shaohu [SINOPEC Wuhan Branch, Qingshan, Wuhan 430082 (China); Shen, Binglong; Qu, Lianglong [Beijing Haishunde Titanium Catalyst Co. Ltd., A-1 North East-Ring Road, Beijing Economic-Technological Development Area, Beijing 100176 (China)

    2004-11-24

    This paper provides an alternative for low-cost feed used for on-purpose hydrogen production. Full-range FCC off-gas was applied to steam-reforming process as feed after treating with hydrogenation and hydrodesulfurization catalysts. Commercial run results were reported with novel TiO{sub 2}-supported Mo-based catalysts, T205A-1 and T205. The processes of catalysts loading, sulfidation, start-up and long-term run were described in details. Long-term run showed that TiO{sub 2}-supported Mo catalysts have good low-temperature hydrogenation activity, excellent HDS activity, and outstanding stability. Use of FCC off-gas as feed for hydrogen production is quite promising and will increase margins for refiners today.

  8. Solar-Driven Hydrogen Peroxide Production Using Polymer-Supported Carbon Dots as Heterogeneous Catalyst

    Science.gov (United States)

    Gogoi, Satyabrat; Karak, Niranjan

    2017-10-01

    Safe, sustainable, and green production of hydrogen peroxide is an exciting proposition due to the role of hydrogen peroxide as a green oxidant and energy carrier for fuel cells. The current work reports the development of carbon dot-impregnated waterborne hyperbranched polyurethane as a heterogeneous photo-catalyst for solar-driven production of hydrogen peroxide. The results reveal that the carbon dots possess a suitable band-gap of 2.98 eV, which facilitates effective splitting of both water and ethanol under solar irradiation. Inclusion of the carbon dots within the eco-friendly polymeric material ensures their catalytic activity and also provides a facile route for easy catalyst separation, especially from a solubilizing medium. The overall process was performed in accordance with the principles of green chemistry using bio-based precursors and aqueous medium. This work highlights the potential of carbon dots as an effective photo-catalyst.

  9. Hydroprocessing using regenerated spent heavy hydrocarbon catalyst

    International Nuclear Information System (INIS)

    Clark, F.T.; Hensley, A.L. Jr.

    1992-01-01

    This patent describes a process for hydroprocessing a hydrocarbon feedstock. It comprises: contacting the feedstock with hydrogen under hydroprocessing conditions with a hydroprocessing catalyst wherein the hydroprocessing catalyst contains a total contaminant metals build-up of greater than about 4 wt. % nickel plus vanadium, a hydrogenation component selected from the group consisting of Group VIB metals and Group VIII metals and is regenerated spent hydroprocessing catalyst regenerated by a process comprising the steps: partially decoking the spent catalyst in an initial coke-burning step; impregnating the partially decoked catalyst with a Group IIA metal-containing impregnation solution; and decoking the impregnated catalyst in a final coke-burning step wherein the impregnated catalyst is contacted with an oxygen-containing gas at a temperature of about 600 degrees F to about 1400 degrees F

  10. Mitigation of hydrogen by oxidation using nitrous oxide and noble metal catalysts

    International Nuclear Information System (INIS)

    Britton, M.D.

    1995-01-01

    This test studied the ability of a blend of nuclear-grade, noble-metal catalysts to catalyze a hydrogen/nitrous oxide reaction in an effort to mitigate a potential hydrogen (H 2 ) gas buildup in the Hanford Site Grout Disposal Facility. For gases having H 2 and a stoichiometric excess of either nitrous oxide or oxygen, the catalyst blend can effectively catalyze the H 2 oxidation reaction at a rate exceeding 380 μmoles of H 2 per hour per gram of catalyst (μmol/h/g) and leave the gas with less than a 0.15 residual H 2 Concentration. This holds true in gases with up to 2.25% water vapor and 0.1% methane. This should also hold true for gases with up to 0.1% carbon monoxide (CO) but only until the catalyst is exposed to enough CO to block the catalytic sites and stop the reaction. Gases with ammonia up to 1% may be slightly inhibited but can have reaction rates greater than 250 μmol/h/g with less than a 0.20% residual H 2 concentration. The mechanism for CO poisoning of the catalyst is the chemisorption of CO to the active catalyst sites. The CO sorption capacity (SC) of the catalyst is the total amount of CO that the catalyst will chemisorb. The average SC for virgin catalyst was determined to be 19.3 ± 2.0 μmoles of CO chemisorbed to each gram of catalyst (μmol/g). The average SC for catalyst regenerated with air was 17.3 ± 1.9 μmol/g

  11. Hydrogenation of levulinic acid to γ-valerolactone over anatase-supported Ru catalysts : Effect of catalyst synthesis protocols on activity

    NARCIS (Netherlands)

    Piskun, A.s.; Ftouni, J.; Tang, Z.; Weckhuysen, B.m.; Bruijnincx, P.c.a.; Heeres, Hero J.

    2018-01-01

    γ-Valerolactone (GVL) is a value-added renewable chemical with great potential and can be obtained from biomass by the hydrogenation of levulinic acid (LA) using metal-based catalysts, such as Ru/TiO2. We here report an in depth study of the effect of catalyst synthesis parameters on the performance

  12. Acidity, oxophilicity and hydrogen sticking probability of supported metal catalysts for hydrodeoxygenation process

    Science.gov (United States)

    Lup, A. Ng K.; Abnisa, F.; Daud, W. M. A. W.; Aroua, M. K.

    2018-03-01

    Hydrodeoxygenation is an oxygen removal process that occurs in the presence of hydrogen and catalysts. This study has shown the importance of acidity, oxophilicity and hydrogen sticking probability of supported metal catalysts in having high hydrodeoxygenation activity and selectivity. These properties are required to ensure the catalyst has high affinity for C-O or C=O bonds and the capability for the adsorption and activation of H2 and O-containing compounds. A theoretical framework of temperature programmed desorption technique was also discussed for the quantitative understanding of these properties. By using NH3-TPD, the nature and abundance of acid sites of catalyst can be determined. By using H2-TPD, the nature and abundance of metallic sites can also be determined. The desorption activation energy could also be determined based on the Redhead analysis of TPD spectra with different heating rates.

  13. Heterogeneous hydrogenation of unsaturated compounds with catalyst P-2-Ni with turnover numbers up to 90,000

    Energy Technology Data Exchange (ETDEWEB)

    Strohmeier, W; Pfoehler, M; Steigerwald, H [Wuerzburg Univ. (Germany, F.R.). Inst. fuer Physikalische Chemie

    1977-12-01

    Unsaturated compounds are very rapidly hydrogenated with nickel-boride catalyst P-2-Ni without solvent under mild conditions (70-85/sup 0/C and 10 bar). Turnover numbers UZ up to 90,000 and space-time-yields of 7.440 mmol product per l and 1 mgA Nickel in one hour with a mean catalyst activity a = 124 were observed. This hydrogenation catalyst has a power, which is in the same magnitude of very active noble metal catalysts.

  14. Effect of hierarchical meso–macroporous alumina-supported copper catalyst for methanol synthesis from CO2 hydrogenation

    International Nuclear Information System (INIS)

    Witoon, Thongthai; Bumrungsalee, Sittisut; Chareonpanich, Metta; Limtrakul, Jumras

    2015-01-01

    Highlights: • CO 2 hydrogenation over Cu-loaded unimodal and hierarchical alumina catalysts. • Cu-loaded hierarchical catalyst exhibited higher methanol selectivity and stability. • The presence of macropores reduced the probability of side reaction. - Abstract: Effects of pore structures of alumina on the catalytic performance of copper catalysts for CO 2 hydrogenation were investigated. Copper-loaded hierarchical meso–macroporous alumina (Cu/HAl) catalyst exhibited no significant difference in terms of CO 2 conversion with copper-loaded unimodal mesoporous alumina (Cu/UAl) catalyst. However, the selectivity to methanol and dimethyl ether of the Cu/HAl catalyst was much higher than that of the Cu/UAl catalyst. This was attributed to the presence of macropores which diminished the occurrence of side reaction by the shortening the mesopores diffusion path length. The Cu/HAl catalyst also exhibited much higher stability than the Cu/UAl catalyst due to the fast diffusion of water out from the catalyst pellets, alleviating the oxidation of metallic copper to CuO

  15. Magnetic Carbon Supported Palladium Nanoparticles: An Efficient and Sustainable Catalyst for Hydrogenation Reactions

    Science.gov (United States)

    Magnetic carbon supported Pd catalyst has been synthesized via in situ generation of nanoferrites and incorporation of carbon from renewable cellulose via calcination; the catalyst can be used for the hydrogenation of alkenes and reduction of aryl nitro compounds.

  16. Tin and tin-titanium as catalyst components for reversible hydrogen storage of sodium aluminium hydride

    Energy Technology Data Exchange (ETDEWEB)

    Qi Jia Fu; Shik Chi Tsang [University of Reading, Reading (United Kingdom). Surface and Catalysis Research Centre, School of Chemistry

    2006-10-15

    This paper is concerned with the effects of adding tin and/or titanium dopant to sodium aluminium hydride for both dehydrogenation and re-hydrogenation reactions during their reversible storage of molecular hydrogen. Temperature programmed decomposition (TPD) measurements show that the dehydrogenation kinetics of NaAlH{sub 4} are significantly enhanced upon doping the material with 2 mol% of tributyltin hydride, Sn(Bu)3H but the tin catalyst dopant is shown to be inferior than titanium. On the other hand, in this preliminary work, a significant synergetic catalytic effect is clearly revealed in material co-doped with both titanium and tin catalysts which shows the highest reversible rates of dehydrogenation and re-hydrogenation (after their hydrogen depletion). The re-hydrogenation rates of depleted Sn/Ti/NaAlH{sub 4} evaluated at both 9.5 and 140 bars hydrogen are also found to be favourable compared to the Ti/NaAlH{sub 4}, which clearly suggest the importance of the catalyst choice. Basing on these results some mechanistic insights for the catalytic reversible dehydrogenation and re-hydrogenation processes of Sn/Ti/NaAlH{sub 4} are therefore made. 31 refs., 8 figs., 2 tabs.

  17. Catalytic activity of mono and bimetallic Zn/Cu/MWCNTs catalysts for the thermocatalyzed conversion of methane to hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Erdelyi, B. [Department of Physical Chemistry, Faculty of Science, P.J. Šafárik University, Moyzesova 11, 041 54 Košice (Slovakia); Institute of Physics, Faculty of Science, P.J. Šafárik University, Park Angelium 9, 040 01 Košice (Slovakia); Oriňak, A., E-mail: andrej.orinak@upjs.sk [Department of Physical Chemistry, Faculty of Science, P.J. Šafárik University, Moyzesova 11, 041 54 Košice (Slovakia); Oriňaková, R. [Department of Physical Chemistry, Faculty of Science, P.J. Šafárik University, Moyzesova 11, 041 54 Košice (Slovakia); Lorinčík, J. [Research Center Rez, Hlavní 130, 250 68 Husinec-Řež (Czech Republic); Jerigová, M. [Department of Physical Chemistry, Comenius University, Mlynská dolina 842 15 Bratislava 4 (Slovakia); Velič, D. [Department of Physical Chemistry, Comenius University, Mlynská dolina 842 15 Bratislava 4 (Slovakia); International Laser Centre, Ilkovičová 3, 841 01 Bratislava (Slovakia); Mičušík, M. [Polymer institute, Slovak Academy of Sciences, Dubravská cesta 9, 84541 Bratislava (Slovakia); and others

    2017-02-28

    Highlights: • Zn/Cu/MWCNTs catalyst with good activity. • Methane conversion to hydrogen with high effectivity. • ZnO/Cu responsible for catalytic activity. - Abstract: Mono and bimetallic multiwalled carbon nanotubes (MWCNTs) fortified with Cu and Zn metal particles were studied to improve the efficiency of the thermocatalytic conversion of methane to hydrogen. The surface of the catalyst and the dispersion of the metal particles were studied by scanning electron microscopy (SEM), secondary ion mass spectrometry (SIMS) and with energy-dispersive X-ray spectroscopy (EDS). It was confirmed that the metal particles were successfully dispersed on the MWCNT surface and XPS analysis showed that the Zn was oxidised to ZnO at high temperatures. The conversion of methane to hydrogen during the catalytic pyrolysis was studied by pyrolysis gas chromatography using different amounts of catalyst. The best yields of hydrogen were obtained using pyrolysis conditions of 900 °C and 1.2 mg of Zn/Cu/MWCNT catalyst for 1.5 mL of methane.The initial conversion of methane to hydrogen obtained with Zn/Cu/MWCNTs was 49%, which represent a good conversion rate of methane to hydrogen for a non-noble metal catalyst.

  18. Renewable hydrogen: carbon formation on Ni and Ru catalysts during ethanol steam-reforming

    DEFF Research Database (Denmark)

    Rass-Hansen, Jeppe; Christensen, Christina Hviid; Sehested, J.

    2007-01-01

    for the production of hydrogen is investigated, along with quantitative and qualitative determinations of carbon formation on the catalysts by TPO and TEM experiments. A Ru/ MgAl2O4 catalyst, a Ni/MgAl2O4 catalyst as well as Ag-and K-promoted Ni/ MgAl2O4 catalysts were studied. The operating temperature was between...... addition was a rapid deactivation of the catalyst due to an enhanced gum carbon formation on the Ni crystals. Contrary to this, the effect of K addition was a prolonged resistance against carbon formation and therefore against deactivation. The Ru catalyst operates better than all the Ni catalysts...

  19. Dibenzothiophene hydrodesulfurization over Ru promoted alumina based catalysts using in situ generated hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Muhammad, Yaseen; Shen, Chong; Li, Chunxi [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Lu, Yingzhou [College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029 (China)

    2011-02-15

    Catalytic hydrodesulfurization (HDS) of dibenzothiophene (DBT) was carried out in a temperature range of 320-400 C using in situ generated hydrogen coupled with the effect of selected organic additives for the first time. Four kinds of alumina based catalysts i.e. Co-Mo/Al{sub 2}O{sub 3}, Ni-Mo/Al{sub 2}O{sub 3}, Ru-Co-Mo/Al{sub 2}O{sub 3} and Ru-Ni-Mo/Al{sub 2}O{sub 3} were used for the desulfurization process, which were prepared following incipient impregnation method with fixed metal loadings (wt.%) of Co, Ni, Mo and Ru. The surface area, average pore diameter and pore volume distribution of the fresh and used catalysts were measured by N{sub 2} adsorption using BET method. Catalytic activity was investigated in a batch autoclave reactor in the complete absence of external hydrogen gas. Addition and mutual reaction of specific quantities of water and ethanol provided the necessary in situ hydrogen for the desulfurization reaction. Organic additives like diethylene glycol (DEG), phenol, naphthalene, anthracene, o-xylene, tetralin, decalin and pyridine did impinge the HDS activity of the catalysts in different ways. Liquid samples from reaction products were quantitatively analyzed by HPLC technique while qualitative analyses were made using GC-MS. Both of these techniques showed that Ni-based catalysts were more active than Co-based ones at all conditions. Moreover, incorporation of Ru to both Co and Ni-based catalysts greatly promoted desulfurization activity of these catalysts. DBT conversion of up to 84% was achieved with Ru-Ni-Mo/Al{sub 2}O{sub 3} catalyst at 380 C temperature for 11 h. Catalyst systems followed the HDS activity order as: Ru-Ni-Mo/Al{sub 2}O{sub 3}> Ni-Mo/Al{sub 2}O{sub 3}> Ru-Co-Mo/Al{sub 2}O{sub 3}> Co-Mo/Al{sub 2}O{sub 3} at all conditions. Cost effectiveness, mild operating conditions and reasonably high catalytic activity using in situ generated hydrogen mechanism proved our process to be useful for HDS of DBT. (author)

  20. Selective hydrogenation of halogenated arenes using porous manganese oxide (OMS-2) and platinum supported OMS-2 catalysts.

    Science.gov (United States)

    McManus, Iain J; Daly, Helen; Manyar, Haresh G; Taylor, S F Rebecca; Thompson, Jillian M; Hardacre, Christopher

    2016-07-04

    Porous manganese oxide (OMS-2) and platinum supported on OMS-2 catalysts have been shown to facilitate the hydrogenation of the nitro group in chloronitrobenzene to give chloroaniline with no dehalogenation. Complete conversion was obtained within 2 h at 25 °C and, although the rate of reaction increased with increasing temperature up to 100 °C, the selectivity to chloroaniline remained at 99.0%. Use of Pd/OMS-2 or Pt/Al2O3 resulted in significant dechlorination even at 25 °C and 2 bar hydrogen pressure giving a selectivity to chloroaniline of 34.5% and 77.8%, respectively, at complete conversion. This demonstrates the potential of using platinum group metal free catalysts for the selective hydrogenation of halogenated aromatics. Two pathways were observed for the analogous nitrobenzene hydrogenation depending on the catalyst used. The hydrogenation of nitrobenzene was found to follow a direct pathway to aniline and nitrosobenzene over Pd/OMS-2 in contrast to the OMS and Pt/OMS-2 catalysts which resulted in formation of nitrosobenzene, azoxybenzene and azobenzene/hydrazobenzene intermediates before complete conversion to aniline. These results indicate that for Pt/OMS-2 the hydrogenation proceeds predominantly over the support with the metal acting to dissociate hydrogen. In the case of Pd/OMS-2 both the hydrogenation and hydrogen adsorption occur on the metal sites.

  1. New uranium compounds preparation and use as catalyst for hydrogenation of non-saturated organic compounds

    International Nuclear Information System (INIS)

    Arnaudet, L.; Folcher, G.

    1985-01-01

    Preparation of new organic uranium compounds and their use as catalysts for hydrogenation of non-saturated organic compounds are described. These compounds include Uranium III, a cyclopentadienic group, an alkyl group and an acetylenic derivative C 6 H 5 C triple bonds CR fixed by a π bond. Catalysts can be prepared with depleted uanium for hydrogenation of olefins for example [fr

  2. Final Technical Report for GO15052 Intematix: Combinatorial Synthesis and High Throughput Screening of Effective Catalysts for Chemical Hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Melman, Jonathan [Intematix Corporation, Fremont, CA (United States)

    2017-02-22

    The objectives of this project are: to discover cost-effective catalysts for release of hydrogen from chemical hydrogen storage systems; and to discover cost-effective catalysts for the regeneration of spent chemical hydrogen storage materials.

  3. Hydrogenation of Levulinic Acid over Nickel Catalysts Supported on Aluminum Oxide to Prepare γ-Valerolactone

    Directory of Open Access Journals (Sweden)

    Jie Fu

    2015-12-01

    Full Text Available Four types of nickel catalysts supported on aluminum oxide (Ni/Al2O3 with different nickel loadings were synthesized using the co-precipitation method and were used for the hydrogenation of levulinic acid (LA to prepare γ-valerolactone (GVL. The synthesized Ni/Al2O3 catalysts exhibited excellent catalytic activity in dioxane, and the activity of the catalysts was excellent even after being used four times in dioxane. The catalytic activity in dioxane as a solvent was found to be superior to the activity in water. Nitrogen physisorption, X-ray diffraction, and transmission electron microscopy were employed to characterize the fresh and used catalysts. The effects of the nickel loading, temperature, hydrogen pressure, and substrate/catalyst ratio on the catalytic activity were investigated.

  4. Hydrogenation of Lactic Acid to 1,2-propanediol over Ru-based catalysts

    NARCIS (Netherlands)

    Liu, K.; Huang, X.; Pidko, E.A.; Hensen, E.J.M.

    2018-01-01

    The catalytic hydrogenation of lactic acid to 1,2-propanediol with supported Ru catalysts in water was investigated. The influence of catalyst support (activated carbon, γ-Al2O3, SiO2, TiO2, and CeO2) and promoters (Pd, Au, Mo, Re, Sn) on the catalytic performance was evaluated. Catalytic tests

  5. Palm H-FAME Production through Partially Hydrogenation using Nickel/Carbon Catalyst to Increase Oxidation Stability

    Directory of Open Access Journals (Sweden)

    Ramayeni Elsa

    2018-01-01

    Full Text Available One of the methods to improve the oxidation stability of palm biodiesel is through partially hydrogenation. The production using Nickel/Carbon catalyst to speed up the reaction rate. Product is called Palm H-FAME (Hydrogenated FAME. Partial hydrogenation breaks the unsaturated bond on FAME (Fatty Acid Methyl Ester, which is a key component of the determination of oxidative properties. Changes in FAME composition by partial hydrogenation are predicted to change the oxidation stability so it does not cause deposits that can damage the injection system of diesel engine, pump system, and storage tank. Partial hydrogenation is carried out under operating conditions of 120 °C and 6 bar with 100:1, 100:3, 100:5, 100:10 % wt catalyst in the stirred batch autoclave reactor. H-FAME synthesis with 100:5 % wt Ni/C catalyst can decrease the iodine number which is the empirical measure of the number of unsaturated bonds from 91.78 to 82.38 (g-I2/100 g with an increase of oxidation stability from 585 to 602 minutes.

  6. Method for hydrogen production and metal winning, and a catalyst/cocatalyst composition useful therefor

    Science.gov (United States)

    Dhooge, Patrick M.

    1987-10-13

    A catalyst/cocatalyst/organics composition of matter is useful in electrolytically producing hydrogen or electrowinning metals. Use of the catalyst/cocatalyst/organics composition causes the anode potential and the energy required for the reaction to decrease. An electrolyte, including the catalyst/cocatalyst composition, and a reaction medium composition further including organic material are also described.

  7. De-oxygenation of CO2 by using Hydrogen, Carbon and Methane over Alumina-Supported Catalysts

    Directory of Open Access Journals (Sweden)

    R.Y. Raskar

    2012-06-01

    Full Text Available The de-oxygenation of CO2 was explored by using hydrogen, methane, carbon etc., over alumina supported catalysts. The alumina-supported ruthenium, rhodium, platinum, molybdenum, vanadium and magnesium catalysts were first reduced in hydrogen atmosphere and then used for the de-oxygenation of CO2. Furthermore, experimental variables for the de-oxygenation of CO2 were temperature (range 50 to 650 oC, H2/CO2 mole ratios (1.0 to 5, and catalyst loading (0.5 to 10 wt %. During the de-oxygenation of CO2 with H2 or CH4 or carbon, conversion of CO2, selectivity to CO and CH4 were estimated. Moreover, 25.4 % conversion of CO2 by hydrogen was observed over 1 wt% Pt/Al2O3 catalyst at 650 oC with 33.8 % selectivity to CH4. However, 8.1 to 13.9 % conversion of CO2 was observed over 1 wt% Pt/Al2O3 catalyst at 550 oC in the presence of both H2 and CH4. Moreover, 42.8 to 79.4 % CH4 was converted with 9 to 23.1 % selectivity to CO. It was observed that the de-oxygenation of CO2 by hydrogen, carbon and methane produced carbon, CO and CH4. © 2012 BCREC UNDIP. All rights reservedReceived: 6th February 2012; Revised: 23rd April 2012; Accepted: 24th April 2012[How to Cite: R. Y. Raskar, K. B. Kale, A. G. Gaikwad. (2011. De-oxygenation of CO2 by using Hydrogen, Carbon and Methane over Alumina-Supported Catalysts. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (1: 59-69.  doi:10.9767/bcrec.7.1.1631.59-69][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.1.1631.59-69 ] | View in 

  8. Hydrogen generation from decomposition of hydrous hydrazine over Ni-Ir/CeO2 catalyst

    Directory of Open Access Journals (Sweden)

    Hongbin Dai

    2017-02-01

    Full Text Available The synthesis of highly active and selective catalysts is the central issue in the development of hydrous hydrazine (N2H4·H2O as a viable hydrogen carrier. Herein, we report the synthesis of bimetallic Ni-Ir nanocatalyts supported on CeO2 using a one-pot coprecipitation method. A combination of XRD, HRTEM and XPS analyses indicate that the Ni-Ir/CeO2 catalyst is composed of tiny Ni-Ir alloy nanoparticles with an average size of around 4 nm and crystalline CeO2 matrix. The Ni-Ir/CeO2 catalyst exhibits high catalytic activity and excellent selectivity towards hydrogen generation from N2H4·H2O at mild temperatures. Furthermore, in contrast to previously reported Ni-Pt catalysts, the Ni-Ir/CeO2 catalyst shows an alleviated requirement on alkali promoter to achieve its optimal catalytic performance.

  9. Pt Nanostructures/N-Doped Carbon hybrid, an Efficient Catalyst for Hydrogen Evolution/Oxidation Reactions: Enhancing its Base Media Activity through Bifunctionality of the Catalyst.

    Science.gov (United States)

    Barman, Sudip; Kundu, Manas; Bhowmik, Tanmay; Mishra, Ranjit

    2018-06-04

    Design and synthesis of active catalyst for HER/HOR are important for the development of hydrogen based renewable technologies. We report synthesis of Pt nanostructures-N-doped carbon hybrid (Pt-(PtO2)-NSs/C) for HER/HOR applications. The HER activity of this Pt-(PtOx)-NSs/C catalyst is 4 and 6.5 times better than commercial Pt/C in acid and base. The catalyst exhibits a current density of 10 mA/cm2 at overpotentials of 5 and 51 mV with tafel slopes of 29 and 64mV/dec in in 0.5 M H2SO4 and 0.5 M KOH. This catalyst also showed superior HOR activity at all pH values. The HER/HOR activity of Pt-(PtOx)-NSs/C and PtOx-free Pt-Nanostructures/C (PtNSs/C) catalysts are comparable in acid. The presence of PtOx in Pt-(PtOx)-NSs/C makes this Pt-catalyst more HER/HOR active in base media. The activity of Pt-(PtOx)NSs/C catalyst is 5 fold higher than that of PtNSs/C catalyst in basic medium although their activity is comparable in acid. Hydrogen binding energy and oxophilicity are the two equivalent descriptors for HER/HOR in basic media. We propose a bi-functional mechanism for the enhanced alkaline HER/HOR activity of Pt(PtOx)-NSs/C catalyst. In bi-functional Pt-(PtOx)-NSs/C catalyst, PtOx provide an active site for OH- adsorption to form OHads which reacts with hydrogen intermediate (Hads), present at neighbouring Pt sites to form H2O leading to enhancement of HOR activity in basic medium This work may provide opportunity to develop catalysts for various renewable energy technologies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Efficient hydrogenation of biomass-derived furfural and levulinic acid on the facilely synthesized noble-metal-free Cu–Cr catalyst

    International Nuclear Information System (INIS)

    Yan, Kai; Chen, Aicheng

    2013-01-01

    Biomass-derived platform intermediate furfural and levulinic acid were efficiently hydrogenated to the value-added furfuryl alcohol and promising biofuel γ-valerolactone, respectively, using a noble-metal-free Cu–Cr catalyst, which was facilely and successfully synthesized by a modified co-precipitation method using the cheap metal nitrates. In the first hydrogenation of furfural, 95% yield of furfuryl alcohol was highly selectively produced at 99% conversion of furfural under the mild conditions. For the hydrogenation of levulinic acid, 90% yield of γ-valerolactone was highly selectively produced at 97.8% conversion. Besides, the physical properties of the resulting Cu–Cr catalysts were studied by XRD (X-ray diffraction), EDX (Energy-dispersive X-ray), TEM (Transmission electron microscopy) and XPS (X-ray photoelectron spectroscopy) to reveal their influence on the catalytic performance. Subsequently, different reaction parameters were studied and it was found that Cu 2+ /Cr 3+ ratios (0.5, 1 and 2), reaction temperature (120–220 °C) and hydrogen pressure (35–70 bar) presented important influence on the catalytic activities. In the end, the stability of the Cu–Cr catalysts was also studied. - Highlights: • A noble-metal-free Cu–Cr catalyst was successfully synthesized using metal nitrates. • Cu–Cr catalysts were highly selective hydrogenation of biomass-derived furfural to FA. • Cu–Cr catalysts were efficient for hydrogenation of biomass-derived LA to biofuel GVL. • The physical properties of the resulting Cu–Cr catalysts were systematically studied. • Reaction parameters and stability in the hydrogenation of furfural were studied in details

  11. Recovery of molybdenum and cobalt powders from spent hydrogenation catalyst

    International Nuclear Information System (INIS)

    Rabah, M.A.; Hewaidy, I.F.; Farghaly, F.E.

    1996-01-01

    Free powders as well as compact shapes of molybdenum and cobalt have been successfully recovered from spent hydrogenation and desulphurization catalysts. A process flow sheet was followed involving crushing, milling, particle sizing, hydrometallurgical acid leaching roasting of the obtained salts in an atmospheric oxygen to obtain the respective oxides. These were reduced by hydrogen gas at 110 degree C and 900 degree C respectively. Parameters affecting the properties of the products and the recovery efficiency value such as acid concentration, particle diameter of the solid catalyst, temperature time under a constant mass flow rate the hydrogen gas, have been investigated. A mixture of concentration.sulphuric and nitric acids (3:1 by volume) achieved adequate recovery of both metals. The latter increased with the increase in acid concentration, time up 10 3 hours and temperature: 100 degree C and with the decrease in particle diameter of the spent catalyst. The PH of the obtained filtrate was adjusted to 2 with ammonia to precipitate insoluble ammonium molybdate and a solution of cobalt sulphate. Cobalt hydroxide can be precipitate from the latter solution at a PH = 7.6 using excess ammonium hydroxide solution. The obtained results showed that the metallic products are technically pure meeting the standard specifications. Compact shapes of molybdenum acquire density values increasing with the increase of the pressing load whereby a maximum density value of 2280 kg/m 3 is attained at 0.75 MPa. Maximum recovery efficiency amounts to 96%. 10 figs., 3 tabs

  12. Modification of the properties of Pt-Al/sub 2/O/sub 3/ catalysts by hydrogen at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Menon, P.G.; Froment, G.F.

    1979-08-01

    Pulse reactor studies were performed on the hydrogenolysis of n-pentane and n-hexane at 400/sup 0/C on two commercial reforming catalysts that contained 0.6 and 0.75% platinum on alumina, respectively, and which were calcined in air at 500/sup 0/C, followed by hydrogen-reduction at 400/sup 0/-600/sup 0/C. On catalysts reduced at 400/sup 0/C, hydrogenolysis was the main reaction; with increasing reducing temperature, hydrogenolysis was suppressed and isomerization selectivity increased; at 550/sup 0/C pretreatment temperature, hydrogenolysis was near zero. This selective catalyst deactivation was reversed by oxidizing the catalyst in air at 500/sup 0/C in a similar manner as previously found for sulfided and chlorided catalysts. Temperature-programed desorption of hydrogen adsorbed at 20/sup 0/-600/sup 0/C revealed that the higher the adsorption temperature, the higher the temperature of the hydrogen desorption peaks: the hydrogen adsorbed below 400/sup 0/C desorbed mainly at 50/sup 0/-300/sup 0/C, but the hydrogen adsorbed at higher temperatures desorbed at 300/sup 0/-500/sup 0/C. Apparently, two types of hydrogen adsorb in the two temperature regions, of which the more strongly adsorbed type inhibits hydrogenolysis but not isomerization.

  13. Deactivation of hydrophobic catalysts for a hydrogen isotope exchange: Application of the time-on-stream theory

    International Nuclear Information System (INIS)

    Choi, Heui-Joo; Lee, Han Soo; Ahn, Do-Hee; Kim, Jeong-Guk; Kim, Wi-soo; Sohn, SoonHwan

    2005-01-01

    A recycle reactor was built for the purpose of characterizing newly developed hydrophobic catalysts for a hydrogen isotope exchange. The catalytic rate constants of two types of hydrophobic catalysts were measured at a 100% relative humidity. The catalytic rate constants were measured at 60 deg C for 28 days and both the catalysts showed very high initial catalytic rate constants. The measured deactivation profile showed that the catalytic rate constants of both the catalysts were almost identical for 28 days. The deactivation of the catalysts was modelled based upon the time-on-stream theory. The deactivation profiles of the catalysts were estimated by using the model for a period of three years. The results showed that both the catalysts had a good exchange capacity for hydrogen isotopes and they could be applicable to a tritium removal facility that will be built at the Wolsong nuclear power plants in the near future

  14. TOTAL HYDROGENATION OF BIOMASS-DERIVED FURFURAL OVER RANEY NICKEL-CLAY NANOCOMPOSITE CATALYSTS

    Directory of Open Access Journals (Sweden)

    Rodiansono Rodiansono

    2013-08-01

    Full Text Available Inexpensive Raney Ni-clay composite (R-Ni/clay catalysts exhibited excellent activity and reusability in the total hydrogenation of biomass-derived furfural into tetrahydrofurfuryl alcohol under mild conditions. For the Raney Ni-bentonite (R-Ni/BNT catalysts, the complete reaction was achieved at 393 K, 180 min giving almost 99% yield of tetrahydrofurfuryl alcohol. The R-Ni/BNT catalyst was found to be reusable without any significant loss of activity and selectivity for at least six consecutive runs.

  15. Microwave-activated Ni/carbon catalysts for highly selective hydrogenation of nitrobenzene to cyclohexylamine.

    Science.gov (United States)

    Lu, Xinhuan; He, Jie; Jing, Run; Tao, Peipei; Nie, Renfeng; Zhou, Dan; Xia, Qinghua

    2017-06-01

    Biocarbon supported Ni catalysts have been prepared by facile impregnation of Ni species by microwave-heating and used for selective hydrogenation of nitrobenzene to cyclohexylamine. These catalysts were characterized by X-ray diffraction, Raman spectra, N2 sorption measurement, X-ray photoelectron spectroscopy, temperature programmed reduction of H2 and H2 temperature-programmed desorption. The morphology and particle size of catalysts were imaged by scanning electron microscope and transmission electron microscope. For the hydrogenation of nitrobenzene to cyclohexylamine, 10%Ni/CSC-II(b) exhibits the best catalytic activity to achieve 100 mol% conversion of nitrobenzene and 96.7% selectivity of cyclohexylamine under reaction conditions of 2.0 MPa H2 and 200 °C, ascribed to high dispersion of Ni species and formation of nanosized Ni particles on the support aided by microwave-heating. Thus-prepared Ni/CSC catalyst is greatly activated, in which the addition of precious metal like Rh is totally avoided.

  16. Selective hydrogenation of furfural on Ir/TiO2 catalysts

    Directory of Open Access Journals (Sweden)

    Patricio Reyes

    2010-01-01

    Full Text Available Titania-supported Ir catalysts were used in the hydrogenation of furfural. Reactions were carried out in a stirred batch type reactor at 0.62MPa and 363K using a 0.10M solution of furfural in a 1:1 mixture n-heptane -ethanol as solvent. Catalysts containing 2 wt% of Ir were reduced in H2 flow at different temperatures in the range 473-773K. The catalysts were characterized by H2 chemisorption, TEM, TPR, TPD of NH3 and XPS. Conversion of furfural is higher at lower reduction temperatures, but leads to byproducts whereas reduction at higher temperatures shows selectivity to furfuryl alcohol close to 100%.

  17. Evaluation of nickel and copper catalysts in biogas reforming for hydrogen production in SOFC

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Leonardo Alves; Martins, Andre Rosa; Rangel, Maria do Carmo, E-mail: mcarmov@ufba.br [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Grupo de Estudos em Cinetica e Catalise; Ballarini, Adriana; Maina, Silvia [Instituto de Investigaciones en Catalisis Y Petroquimica Ing. Jose Miguel Parera (INCAPE), Santa Fe (Argentina)

    2017-01-15

    The solid oxide fuel cells (SOFC) enable the efficient generation of clean energy, fitting the current requirements of the growing demand for electricity and for the environment preservation. When powered with biogas (from digesters of municipal wastes), the SOFCs also contribute to reduce the environmental impact of these wastes. The most suitable route to produce hydrogen inside SOFC from biogas is through dry reforming but the catalyst is easily deactivated by coke, because of the high amounts of carbon in the stream. A promising way to overcome this drawback is by adding a second metal to nickel-based catalysts. Aiming to obtain active, selective and stable catalysts for biogas dry reforming, solids based on nickel (15%) and copper (5%) supported on aluminum and magnesium oxide were studied in this work. Samples were prepared by impregnating the support with nickel and copper nitrate, followed by calcination at 500, 600 and 800 deg C. It was noted that all solids were made of nickel oxide, nickel aluminate and magnesium aluminate but no copper compound was found. The specific surface areas did not changed with calcination temperature but the nickel oxide average particles size increased. The solids reducibility decreased with increasing temperature. All catalysts were active in methane dry reforming, leading to similar conversions but different selectivities to hydrogen and different activities in water gas shift reaction (WGSR). This behavior was assigned to different interactions between nickel and copper, at different calcination temperatures. All catalysts were active in WGSR, decreasing the hydrogen to carbon monoxide molar ratio and producing water. The catalyst calcined at 500 deg C was the most promising one, leading to the highest hydrogen yield, besides the advantage of being produced at the lowest calcination temperature, requiring less energy in its preparation. (author)

  18. Evaluation of nickel and copper catalysts in biogas reforming for hydrogen production in SOFC

    International Nuclear Information System (INIS)

    Silva, Leonardo Alves; Martins, Andre Rosa; Rangel, Maria do Carmo

    2017-01-01

    The solid oxide fuel cells (SOFC) enable the efficient generation of clean energy, fitting the current requirements of the growing demand for electricity and for the environment preservation. When powered with biogas (from digesters of municipal wastes), the SOFCs also contribute to reduce the environmental impact of these wastes. The most suitable route to produce hydrogen inside SOFC from biogas is through dry reforming but the catalyst is easily deactivated by coke, because of the high amounts of carbon in the stream. A promising way to overcome this drawback is by adding a second metal to nickel-based catalysts. Aiming to obtain active, selective and stable catalysts for biogas dry reforming, solids based on nickel (15%) and copper (5%) supported on aluminum and magnesium oxide were studied in this work. Samples were prepared by impregnating the support with nickel and copper nitrate, followed by calcination at 500, 600 and 800 deg C. It was noted that all solids were made of nickel oxide, nickel aluminate and magnesium aluminate but no copper compound was found. The specific surface areas did not changed with calcination temperature but the nickel oxide average particles size increased. The solids reducibility decreased with increasing temperature. All catalysts were active in methane dry reforming, leading to similar conversions but different selectivities to hydrogen and different activities in water gas shift reaction (WGSR). This behavior was assigned to different interactions between nickel and copper, at different calcination temperatures. All catalysts were active in WGSR, decreasing the hydrogen to carbon monoxide molar ratio and producing water. The catalyst calcined at 500 deg C was the most promising one, leading to the highest hydrogen yield, besides the advantage of being produced at the lowest calcination temperature, requiring less energy in its preparation. (author)

  19. Properties and application of noble metal catalysts for heterogeneous catalytic hydrogenations

    Energy Technology Data Exchange (ETDEWEB)

    Horn, G; Frohning, C D; Cornils, B [Ruhrchemie A.G., Oberhausen (Germany, F.R.)

    1976-07-01

    The special properties of the six platinum group elements - ruthenium, rhodium, palladium, osmium, iridium, platinum - make them useful as active metals for catalytic reactions. Especially valuable is their property of favouring a single reaction even when the possibility of a number of parallel reactions exists under certain reaction conditions. This selectivity of the noble metal catalyst may be directed or enhanced through appropriate choise of the metal, the reaction conditions, the duration of the reaction, the amount of hydrogen etc. Even the physical state of the catalyst - supported or unsupported - is of influence when using noble metal catalysts as described in this report.

  20. Development of Al2O3 carrier-Ru composite catalyst for hydrogen generation from alkaline NaBH4 hydrolysis

    International Nuclear Information System (INIS)

    Huang, Yao-Hui; Su, Chia-Chi; Wang, Shu-Ling; Lu, Ming-Chun

    2012-01-01

    A recyclable and reusable Ru/Al 2 O 3 catalyst is prepared for hydrogen generation from the hydrolysis process of alkaline sodium borohydride (NaBH 4 ) solution. The hydrogen generation rate by the hydrolysis and methanolysis of alkaline NaBH 4 was explored as a function of NaOH concentration. Meantime, the byproducts derived from the spent alkaline NaBH 4 solution were characterized by X-ray diffraction (XRD), scanning electro microscope/energy dispersive spectrometer (SEM/EDS) and NMR (Nuclear Magnetic Resonance). The effect of NaOH concentration on the hydrogen generation from the hydrolysis of NaBH 4 significantly depends on the type of catalysts. With increasing NaOH concentration, the hydrogen generation rates decrease when using ruthenium (Ru) composite as a catalyst. The hydrogen generation rate of the methanolysis of NaBH 4 is significantly inhibited in the presence of NaOH as compared with the hydrolysis of NaBH 4 . The durability test of the Ru/Al 2 O 3 catalyst shows that the hydrogen generation rate decreases with recycling and reuse. The XRD and NMR analysis results show that the borate hydrate (NaBO 2 H 2 O) was derived from the hydrolysis of 20 wt% and 30 wt% NaBH 4 . -- Highlights: ► A recyclable Ru/Al 2 O 3 catalyst was synthesized for hydrogen generation. ► Ru/Al 2 O 3 significantly promotes the hydrogen generation rate from alkaline NaBH 4 solution. ► The prepared Ru/Al 2 O 3 catalyst can easily collect from the spent alkaline NaBH 4 solution.

  1. UV Light-Assisted Synthesis of Highly Efficient Pd-Based Catalyst over NiO for Hydrogenation of o-Chloronitrobenzene.

    Science.gov (United States)

    Jiang, Weidong; Xu, Bin; Fan, Guangyin; Zhang, Kaiming; Xiang, Zhen; Liu, Xiaoqiang

    2018-04-14

    Supported Pd-based catalyst over active nickel oxide (NiO) was repared using the impregnation method companying with UV-light irradiation. Moreover, the catalytic performance of the obtained Pd-based catalysts was evaluated towards the hydrogenation of o -chloronitrobenzene ( o -CNB). Observations indicate that the as-prepared UV-irradiated Pd/NiO catalyst with a mole fraction 0.2% (0.2%Pd/NiO) has higher activity and selectivity in the o -CNB hydrogenation. Especially, UV-light irradiation played a positive role in the improvement of catalytic activity of 0.2%Pd/NiO catalyst, exhibiting an excess 11-fold activity superiority in contrast with non-UV-irradiated 0.2%Pd/NiO catalyst. In addition, it was investigated that effects of varied factors (i.e., reaction time, temperature, o -CNB/Pd ratio, Pd loading, hydrogen pressure) on the selective hydrogenation of ο -CNB catalyzed by UV-irradiated 0.2%Pd/NiO catalyst. Under the reaction conditions of 60 °C, 0.5 h, 1 MPa H₂ pressure, 100% conversion of o -CNB, and 81.1% o -CAN selectivity were obtained, even at high molar ratio (8000:1) of o -CNB to Pd.

  2. Hydro-isomerization of n-hexane on bi-functional catalyst: Effect of total and hydrogen partial pressures

    Science.gov (United States)

    Thoa, Dao Thi Kim; Loc, Luu Cam

    2017-09-01

    The effect of both total pressure and hydrogen partial pressure during n-hexane hydro-isomerization over platinum impregnated on HZSM-5 was studied. n-Hexane hydro-isomerization was conducted at atmospheric pressure and 0.7 MPa to observe the influence of total pressure. In order to see the effect of hydrogen partial pressure, the reaction was taken place at different partial pressure of hydrogen varied from 307 hPa to 718 hPa by dilution with nitrogen to keep the total pressure at 0.1 MPa. Physico-chemical characteristics of catalyst were determined by the methods of nitrogen physi-sorption BET, SEM, XRD, TEM, NH3-TPD, TPR, and Hydrogen Pulse Chemi-sorption. Activity of catalyst in the hydro-isomerization of n-hexane was studied in a micro-flow reactor in the temperature range of 225-325 °C; the molar ratio H2/ hydrocarbon: 5.92, concentration of n-hexane: 9.2 mol.%, GHSV 2698 h-1. The obtained catalyst expressed high acid density, good reducing property, high metal dispersion, and good balance between metallic and acidic sites. It is excellent contact for n-hexane hydro-isomerization. At 250 °C, n-hexane conversion and selectivity were as high as 59-76 % and 85-99 %, respectively. It was found that catalytic activity was promoted either by total pressure or hydrogen partial pressure. At total pressure of 0.7 MPa while hydrogen partial pressure of 718 hPa, catalyst produced 63 RON liquid product containing friendly environmental iso-paraffins which is superior blending stock for green gasoline. Hydrogen did not only preserve catalyst actives by depressing hydrocracking and removing coke precursors but also facilitated hydride transfer step in the bi-functional bi-molecular mechanism.

  3. Ruthenium-platinum bimetallic catalysts supported on silica: characterization and study of benzene hydrogenation and CO methanation

    Energy Technology Data Exchange (ETDEWEB)

    Chakrabarty, D.K.; Rao, K.M.; Sundararaman, N.; Chandavar, K.

    1986-12-15

    Ru-Pt/SiO/sub 2/ bimetallic catalysts with varying Ru:Pt ratio have been prepared and studied with the aim to establish if they contain coclusters or isolated ruthenium and platinum particles. X-ray diffraction studies show that individual crystallites of ruthenium and platinum are present and no coclusters are formed. Metal dispersion has been determined by hydrogen chemisorption and surface composition of the catalysts has been obtained from XPS. It was found that preoxidation of the catalysts prior to reduction is essential for good platinum dispersion. The experimental turnover number (TN) for benzene hydrogenation on the bimetallic catalysts agrees very well with that of the weighted average on the individual metal catalysts and this may be taken as a kinetic evidence for the absence of coclusters. Carbon monoxide methanation activity of the bimetallic catalysts is quite similar to that of the supported platinum catalyst. 6 refs., 6 figs., 2 tabs.

  4. Tungsten effect over co-hydrotalcite catalysts to produce hydrogen from bio-ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Contreras, J.L.; Ortiz, M.A.; Luna, R.; Nuno, L. [Univ. Autonoma Metropolitana-Azcapozalco, Mexico City (Mexico). Dept. de Energia; Fuentes, G.A. [Univ. Autonoma Metropolitana-Iztapalapa, Mexico City (Mexico). Dept. de IPH; Salmones, J.; Zeifert, B. [Inst. Politecnico Nacional, Mexico City (Mexico); Vazquez, A. [Inst. Mexicano del Petroleo, Mexico City (Mexico)

    2010-07-15

    The use of bioethanol has been considered for generating hydrogen via catalytic reforming. The reaction of ethanol with stream is strongly endothermic and produces hydrogen (H{sub 2}) and carbon dioxide (CO{sub 2}). However, undesirable products such as carbon monoxide (CO) and methane (CH{sub 4}) may also form during the reaction. This paper reported on the newly found stabilization effect of tungsten over the Co-hydrotalcite catalysts to produce H{sub 2} from ethanol in steam reforming. The catalysts were characterized by nitrogen (N{sub 2}) physisorption (BET area), X-ray diffraction, Infrared, Raman and UV-vis spectroscopies. Catalytic evaluations were determined using a fixed bed reactor with a water/ethanol mol ratio of 4 at 450 degrees C. The tungsten concentration studied was from 0.5 to 3 wt percent. The intensity of crystalline reflections of the Co-hydrotalcite catalysts decreased as tungsten concentration increased. Infrared spectroscopy was used to determine the superficial chemical groups, notably -OH, H{sub 2}O, Al-OH, Mg-OH, W-O-W and CO{sub 3}{sup 2.} The highest H{sub 2} production and the best catalytic stability was found in catalysts with low tungsten. The smallest pore volume of this catalyst could be related with long residence times of ethanol in the pores. Tungsten promoted the conversion for the Co-hydrotalcite catalysts. The reaction products were H{sub 2}, CO{sub 2}, CH{sub 3}CHO, CH{sub 4} and C{sub 2}H{sub 4} and the catalysts did not produce CO. 33 refs., 2 tabs., 10 figs.

  5. A submerged ceramic membrane reactor for the p-nitrophenol hydrogenation over nano-sized nickel catalysts.

    Science.gov (United States)

    Chen, R Z; Sun, H L; Xing, W H; Jin, W Q; Xu, N P

    2009-02-01

    The catalytic hydrogenation of p-nitrophenol to p-aminophenol over nano-sized nickel catalysts was carried out in a submerged ceramic membrane reactor. It has been demonstrated that the submerged ceramic membrane reactor is more suitable for the p-nitrophenol hydrogenation over nano-sized nickel catalysts compared with the side-stream ceramic membrane reactor, and the membrane module configuration has a great influence on the reaction rate of p-nitrophenol hydrogenation and the membrane treating capacity. The deactivation of nano-sized nickel is mainly caused by the adsorption of impurity on the surface of nickel and the increase of oxidation degree of nickel.

  6. Hydrogen Production from Gasification of Palm Kernel Shell in the Presence of Fe/ CeO_2 Catalysts

    International Nuclear Information System (INIS)

    Anita Ramli; Mas Fatiha Mohamad; Suzana Yusup; Taufiq, Y.Y.H.

    2016-01-01

    Bio hydrogen is a renewable source of clean fuel and energy which can be derived from biomass. One of the suitable candidate as a source of biomass is palm kernel shell (PKS). Our initial work shows that bio hydrogen may be produced from PKS in the presence of zeolite supported catalysts. The potential of using cerium oxide (CeO_2) supported catalysts for the production of bio hydrogen from PKS is explored in this work using 2.5 - 10 % Fe loading. The catalysts were prepared by incipient wetness impregnation method and calcined at 500 degree Celsius for 16 h. The physicochemical properties of these catalysts were characterized using BET and XRD. The catalysts were tested in dry and steam gasification of PKS at 700 degree Celsius using PKS feeding rate of 2 g h"-"1 under N_2 atmosphere with biomass to catalyst ratio of 3:1 (wt/ wt). Steam to biomass ratio of 3.5:1 (wt/ wt) was used in steam gasification reaction. The gaseous products were analyzed using an on-line gas chromatography equipped with thermal conductivity detectors (TCD) and fitted with Molsieve 5A and Hayesep Q columns. Result shows that 2.5 % Fe/ CeO_2 gave the highest hydrogen production in both the dry and steam gasification of PKS. (author)

  7. Promising SiC support for Pd catalyst in selective hydrogenation of acetylene to ethylene

    Science.gov (United States)

    Guo, Zhanglong; Liu, Yuefeng; Liu, Yan; Chu, Wei

    2018-06-01

    In this study, SiC supported Pd nanoparticles were found to be an efficient catalyst in acetylene selective hydrogenation reaction. The ethylene selectivity can be about 20% higher than that on Pd/TiO2 catalyst at the same acetylene conversion at 90%. Moreover, Pd/SiC catalyst showed a stable catalytic life at 65 °C with 80% ethylene selectivity. With the detailed characterization using temperature-programmed reduction (H2-TPR), powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), N2 adsorption/desorption analysis, CO-chemisorption and thermo-gravimetric analysis (TGA), it was found that SiC owns a lower surface area (22.9 m2/g) and a broad distribution of meso-/macro-porosity (from 5 to 65 nm), which enhanced the mass transfer during the chemical process at high reaction rate and decreased the residence time of ethylene on catalyst surface. Importantly, SiC support has the high thermal conductivity, which favored the rapid temperature homogenization through the catalyst bed and inhabited the over-hydrogenation of acetylene. The surface electronic density of Pd on Pd/SiC catalyst was higher than that on Pd/TiO2, which could promote desorption of ethylene from surface of the catalyst. TGA results confirmed a much less coke deposition on Pd/SiC catalyst.

  8. CATALYTICALLY ENHANCED SYSTEMS FOR HYDROGEN STORAGE. Final report

    International Nuclear Information System (INIS)

    Craig M. Jensen

    2007-01-01

    Previous U.S. DOE sponsored research at the University of Hawaii resulted in the development of methods of doping of sodium aluminum hydride, NaAlH4 with titanium, zirconium and other catalysts such that: dehydriding occurs at temperatures as low as 100 C; rehydriding requires less than 1 h; and >4 weight percent hydrogen can be repeatedly cycled through dehydriding/rehydriding. These materials appeared to be on the threshold of practical viability as hydrogen carriers for onboard fuel cells. However, it was apparent that further kinetic enhancement was required to achieve commercial viability. Thus, one of the primary goals of this project was to develop the requisite improved catalysts. Over the course of this project, a variety of titanium and zirconium dopant precursors were investigated. Moreover, the approach was to conduct guided search for improved catalysts by obtaining a fundamental understanding of the chemical nature of the titanium dopants and their mechanism of action. Therefore, the projected also aimed to determined the chemical nature of the titanium species that are formed upon mechanical milling of NaAlH4 with the dopant precursors through synchrotron X-ray and neutron diffraction as well as transmission electron microscopy, scanning electron microscopy, and electron paramagnetic resonance (EPR) spectroscopy. In addition to kinetic studies, insight into the mechanism of action of the dopants was gained through studies of the destabilization of hydrogen in NaAlH4 by the dopants through infrared, NMR, and anelastic spectroscopy

  9. Experimental determination of reaction rates of water. Hydrogen exchange of tritium with hydrophobic catalysts

    International Nuclear Information System (INIS)

    Bixel, J.C.; Hartzell, B.W.; Park, W.K.

    1976-01-01

    This study was undertaken to obtain data needed for further development of a process for the enrichment and removal of tritium from the water associated with light-water reactors, fuel-reprocessing plants, and tritium-handling laboratories. The approach is based on the use of antiwetting, hydrophobic catalysts which permit the chemical exchange reactions between liquid water and gaseous hydrogen in direct contact, thus eliminating problems of catalyst deactivation and the complexity of reactor design normally associated with current catalytic-detritiation techniques involving gas-phase catalysis. An apparatus and procedure were developed for measuring reaction rates of water-hydrogen chemical exchange with hydrophobic catalysts. Preliminary economic evaluations of the process were made as it might apply to the AGNS fuel reprocessing plant

  10. Application of hydrophobic Pt catalysts in hydrogen isotopes separation from nuclear effluents

    Energy Technology Data Exchange (ETDEWEB)

    Ionita, G.; Popescu, I.; Stefanescu, I.; Retegan, T. [National Institute of Cryogenics and Isotopic Separation (Romania)

    2003-09-01

    According to reviewed references and to tests effected by authors the platinum/carbon/teflon is the most active and the most stable catalyst for removal of tritium from nuclear effluents by isotopic exchange between hydrogen and liquid water. To improve the performances of process it is recommended to use the catalyst as ordered or random mixed catalytic packing in a trickle bed reactor. (O.M.)

  11. Stereoselective hydrogenation of H-alkynes on boron-nickel catalysts

    International Nuclear Information System (INIS)

    Petrova, S.S.; Sijmer, Eh.Kh.; Amitan, I.I.

    1992-01-01

    It is ascertained that in the course of stereoselective hydrogenation of H-alkynes on boron-nickel catalysts the contact modified by 2-phenyl-1,5 dimethylpyrasol-2-anom in the ratio Ni(2+):BH 4 -=1:5 is the most active and selective one. Moreover, cis-alkane was prepared with the yield of 94.5% and selective of 79%

  12. Hydrogen production by dry reforming of methane with carbon dioxide in one-dimensional nickel-based catalysts; Produccion de hidrogeno mediante el reformado seco de metano con dioxido de carbono en catalizadores unidimensionales a base de niquel

    Energy Technology Data Exchange (ETDEWEB)

    Lopez U, A. C.

    2016-07-01

    The main objective of this thesis is development of nickel catalysts supported over 1D matrix of cerium oxide, to be used in dry reforming methane reaction with carbon dioxide for hydrogen production. The catalysts were characterized by: Temperature Programmed Reduction (TPR), Scanning Electronic Microscopy (Sem), Surface Area (Bet method) an X Ray Diffraction (XRD). The TPR technique allowed to define reduction temperature of the active phase in the catalyst, Sem technique showed that the CeO{sub 2} matrix had a nano rod morphology. XRD allowed to identify the crystalline phases of the catalysts. Finally, the catalysts were tested in the dry reforming methane reaction, high catalytic activity and hydrogen production were performed at 700 degrees Celsius and the catalyst with 30 wt.% of nickel. (Author)

  13. Cuboid Ni2 P as a Bifunctional Catalyst for Efficient Hydrogen Generation from Hydrolysis of Ammonia Borane and Electrocatalytic Hydrogen Evolution.

    Science.gov (United States)

    Du, Yeshuang; Liu, Chao; Cheng, Gongzhen; Luo, Wei

    2017-11-16

    The design of high-performance catalysts for hydrogen generation is highly desirable for the upcoming hydrogen economy. Herein, we report the colloidal synthesis of nanocuboid Ni 2 P by the thermal decomposition of nickel chloride hexahydrate (NiCl 2 ⋅6 H 2 O) and trioctylphosphine. The obtained nanocuboid Ni 2 P was characterized by using powder X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and inductively coupled plasma atomic emission spectroscopy. For the first time, the as-synthesized nanocuboid Ni 2 P is used as a bifunctional catalyst for hydrogen generation from the hydrolysis of ammonia borane and electrocatalytic hydrogen evolution. Owing to the strong synergistic electronic effect between Ni and P, the as-synthesized Ni 2 P exhibits catalytic performance that is superior to its counterpart without P doping. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Selective production of oxygenates from CO2 hydrogenation over mesoporous silica supported Cu-Ga nanocomposite catalyst

    KAUST Repository

    Huang, Kuo-Wei; Hengne, Amol Mahalingappa; Bhatte, Kushal Deepak; Ould-Chikh, Samy; Saih, Youssef; Basset, Jean-Marie

    2017-01-01

    Carbon dioxide hydrogenation to oxygenates (methanol and dimethyl ether (DME)) was investigated over bifunctional supported copper catalysts promoted with gallium (Ga). Supported Cu-Ga nanocomposite catalysts were characterized by X-ray diffraction

  15. Enhanced hydrogen reaction kinetics of nanostructured Mg-based composites with nanoparticle metal catalysts dispersed on supports

    International Nuclear Information System (INIS)

    Yoo, Yeong; Tuck, Mark; Kondakindi, Rajender; Seo, Chan-Yeol; Dehouche, Zahir; Belkacemi, Khaled

    2007-01-01

    Hydrogen reaction kinetics of nanocrystalline MgH 2 co-catalyzed with Ba 3 (Ca 1+x Nb 2-x )O 9-δ (BCN) proton conductive ceramics and nanoparticle bimetallic catalyst of Ni/Pd dispersed on single wall carbon nanotubes (SWNTs) support has been investigated. The nanoparticle bimetallic catalysts of Ni/Pd supported by SWNTs were synthesized based on a novel polyol method using NiCl 2 .6H 2 O, PdCl 2 , NaOH and ethylene glycol (EG). The nanostructured Mg composites co-catalyzed with BCN and bimetallic supported catalysts exhibited stable hydrogen desorption capacity of 6.3-6.7 wt.% H 2 and the significant enhancement of hydrogen desorption kinetics at 230-300 deg. C in comparison to either non-catalyzed MgH 2 or the nanocomposite of MgH 2 catalyzed with BCN

  16. Alloy catalyst material

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a novel alloy catalyst material for use in the synthesis of hydrogen peroxide from oxygen and hydrogen, or from oxygen and water. The present invention also relates to a cathode and an electrochemical cell comprising the novel catalyst material, and the process use...... of the novel catalyst material for synthesising hydrogen peroxide from oxygen and hydrogen, or from oxygen and water....

  17. Hydrogen recombiner catalyst test supporting data

    International Nuclear Information System (INIS)

    Britton, M.D.

    1995-01-01

    This is a data package supporting the Hydrogen Recombiner Catalyst Performance and Carbon Monoxide Sorption Capacity Test Report, WHC-SD-WM-TRP-211, Rev 0. This report contains 10 appendices which consist of the following: Mass spectrometer analysis reports: HRC samples 93-001 through 93-157; Gas spectrometry analysis reports: HRC samples 93-141 through 93-658; Mass spectrometer procedure PNL-MA-299 ALO-284; Alternate analytical method for ammonia and water vapor; Sample log sheets; Job Safety analysis; Certificate of mixture analysis for feed gases; Flow controller calibration check; Westinghouse Standards Laboratory report on Bois flow calibrator; and Sorption capacity test data, tables, and graphs

  18. SELECTIVE HYDROGENATION OF CINNAMALDEHYDE WITH Pt AND Pt-Fe CATALYSTS: EFFECTS OF THE SUPPORT

    Directory of Open Access Journals (Sweden)

    A.B. da Silva

    1998-06-01

    Full Text Available Low-temperature reduced TiO2-supported Pt and Pt-Fe catalysts are much more active and selective for the liquid–phase hydrogenation of cinnamaldehyde to unsaturated cinnamyl alcohol than the corresponding carbon-supported catalysts. High-temperature reduced catalysts, where the SMSI effect should be present, are almost inactive for this reaction. There is at present no definitive explanation for this effect but an electronic metal-support interaction is most probably involved.

  19. Highly Selective TiN-Supported Highly Dispersed Pt Catalyst: Ultra Active toward Hydrogen Oxidation and Inactive toward Oxygen Reduction.

    Science.gov (United States)

    Luo, Junming; Tang, Haibo; Tian, Xinlong; Hou, Sanying; Li, Xiuhua; Du, Li; Liao, Shijun

    2018-01-31

    The severe dissolution of the cathode catalyst, caused by an undesired oxygen reduction reaction at the anode during startup and shutdown, is a fatal challenge to practical applications of polymer electrolyte membrane fuel cells. To address this important issue, according to the distinct structure-sensitivity between the σ-type bond in H 2 and the π-type bond in O 2 , we design a HD-Pt/TiN material by highly dispersing Pt on the TiN surface to inhibit the unwanted oxygen reduction reaction. The highly dispersed Pt/TiN catalyst exhibits excellent selectivity toward hydrogen oxidation and oxygen reduction reactions. With a Pt loading of 0.88 wt %, our catalyst shows excellent hydrogen oxidation reaction activity, close to that of commercial 20 wt % Pt/C catalyst, and much lower oxygen reduction reaction activity than the commercial 20 wt % Pt/C catalyst. The lack of well-ordered Pt facets is responsible for the excellent selectivity of the HD-Pt/TiN materials toward hydrogen oxidation and oxygen reduction reactions. Our work provides a new and cost-effective solution to design selective catalysts toward hydrogen oxidation and oxygen reduction reactions, making the strategy of using oxygen-tolerant anode catalyst to improve the stability of polymer electrolyte membrane fuel cells during startup and shutdown more affordable and practical.

  20. Zinc oxide and chromia as catalysts for the isomerization of butene, the hydrogenation of ethylene, and the isotopic exchange and allotropic conversion of hydrogen

    International Nuclear Information System (INIS)

    Conner, W.C. Jr.

    1973-01-01

    Hydrogenation of olefins has been studied over metals and metal oxides. Over metals the following observations generalize the characteristics of hydrogenation and isomerization. Metal hydrogenation catalysts are effective for H 2 -D 2 exchange (and para hydrogen conversion) under the same conditions as they effect olefin hydrogenation. This suggests that hydrogen ''activation'' involves formation of hydrogen atoms as a surface intermediate. Addition of deuterium to light ethylene leads to ethane products of the form C 2 H/sub 6-x/D/sub x/ (where 0 less than or equal to x less than or equal to 6). This is a result of the reversal of the alkyl (C 2 H 5 *) formation on the surface. Moreover, efficient isomerization of olefins require hydrogen as a co-catalyst. Both these observations suggest that alkyl formation and its reversal play a major role in hydrogenation and related reactions over metals. In this work it is found that zinc oxide catalyzes the deuteration of ethylene to dideuterioethane selectivity. Furthermore, the hydrogenation of ethylene using mixtures of hydrogen and deuterium indicate that hydrogenation occurs in such a manner as to reflect the molecular identity of the gas phase in the product ethane

  1. Volcano Plot for Bimetallic Catalysts in Hydrogen Generation by Hydrolysis of Sodium Borohydride

    Science.gov (United States)

    Koska, Anais; Toshikj, Nikola; Hoett, Sandra; Bernaud, Laurent; Demirci, Umit B.

    2017-01-01

    In the field of "hydrogen energy", sodium borohydride (NaBH[subscript 4]) is a potential hydrogen carrier able to release H[subscript 2] by hydrolysis in the presence of a metal catalyst. Our laboratory experiment focuses on this. It is intended for thirdyear undergraduate students in order to have hands-on laboratory experience through…

  2. Magnetic Fe@g??C3N4: A Photoactive Catalyst for the Hydrogenation of Alkenes and Alkynes

    Science.gov (United States)

    A photoactive catalyst, Fe@g-C3N4, has been developed for the hydrogenation of alkenes and alkynes using hydrazine hydrate as a source of hydrogen. The magnetically separable Fe@g-C3N4 eliminates the use of high pressure hydrogenation, and the reaction can be accomplished using visible light without the need for external sources of energy.This dataset is associated with the following publication:Baig, N., S. Verma, R. Varma , and M. Nadagouda. Magnetic Fe@g-C3N4: A Photoactive Catalyst for the Hydrogenation of Alkenes and Alkynes. ACS Sustainable Chemistry & Engineering. American Chemical Society, Washington, DC, USA, 4(3): 1661-1664, (2016).

  3. Room temperature hydrogen generation from hydrolysis of ammonia-borane over an efficient NiAgPd/C catalyst

    KAUST Repository

    Hu, Lei

    2014-12-01

    NiAgPd nanoparticles are successfully synthesized by in-situ reduction of Ni, Ag and Pd salts on the surface of carbon. Their catalytic activity was examined in ammonia borane (NH3BH3) hydrolysis to generate hydrogen gas. This nanomaterial exhibits a higher catalytic activity than those of monometallic and bimetallic counterparts and a stoichiometric amount of hydrogen was produced at a high generation rate. Hydrogen production rates were investigated in different concentrations of NH3BH3 solutions, including in the borates saturated solution, showing little influence of the concentrations on the reaction rates. The hydrogen production rate can reach 3.6-3.8 mol H2 molcat -1 min-1 at room temperature (21 °C). The activation energy and TOF value are 38.36 kJ/mol and 93.8 mol H2 molcat -1 min-1, respectively, comparable to those of Pt based catalysts. This nanomaterial catalyst also exhibits excellent chemical stability, and no significant morphology change was observed from TEM after the reaction. Using this catalyst for continuously hydrogen generation, the hydrogen production rate can be kept after generating 6.2 L hydrogen with over 10,000 turnovers and a TOF value of 90.3 mol H2 molcat -1 min-1.

  4. Selective hydrogenation of furfural to cyclopentanone over Cu-Ni-Al hydrotalcite-based catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Hongyan; Zhou, Minghao; Zeng, Zuo; Xiao, Guomin; Xiao, Rui [Southeast University, Nanjing (China)

    2014-04-15

    A series of Cu-Ni-Al hydrotalcites derived oxides with a (Cu+Ni)/Al mole ratio of 3 with varied Cu/Ni mole ratio (from 0.017 to 0.5, with a Cu ratio of 0.0125 to 0.25) were prepared by co-precipitation method, then applied to the hydrogenation of furfural in aqueous. Their catalytic performance for liquid phase hydrogenation of furfural to prepare cyclopentanone was described in detail, considering reaction temperature, catalyst composition, reaction time and so on. The yield of cyclopentanone was influenced by the mole ratio of Cu-Ni-Al based heterogeneous catalyst and depended on the reaction conditions. The yield of cyclopentanone was up to 95.8% when the reaction was carried out under 413 K with H{sub 2} pressure of 40 bar for 8 h. The catalysts were characterized by X-ray powder diffraction (XRD), scanning electron microscope (SEM) and H{sub 2} temperature-programmed reduction (H{sub 2}-TPR)

  5. Study on supported binary sulfide catalysts for secondary hydrogenation of coal-derived liquids; Sekitan ekikayu niji suisoka shokubai no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, H.; Matsubayashi, N.; Sato, T.; Imamura, M.; Yoshimura, Y.; Nishijima, A. [National Institute of Materials and Chemical Research, Tsukuba (Japan)

    1995-07-28

    To utilize the high performance of supported catalysts in coal liquefaction processes, one of the promising ways is to apply hydroprocessing sulfide catalysts to the secondary hydrogenation of coal-derived liquids which have undergone the solid separation unit. However, when the product yield from the first-stage liquefaction is maximized, the feed stocks in the secondary hydrogenation contain large amounts of residual fractions with preasphaltenes and metallic components. In this case, the development of a long-life catalyst is essential to establish the two-stage process as a practical one. From this viewpoint, the authors have investigated the deactivation causes of supported Ni-Mo sulfide catalysts through the analysis of the used catalysts in the secondary hydrogenation of coal-derived liquids for long periods. The major cause of the catalyst deactivation has been found to be metallic and carbonaceous deposition on the catalyst, which results thin layer which covers the catalyst particles. The catalysts located at the reactor inlet are more rapidly deactivated than those at the rector exit because of larger amounts of metallic foul ants and the above described shell-like layer. Hydrocracking active sites are much heavily deactivated compared with hydrogenation active sites. It is inferred that the basic or polar compounds contained in coal liquids are permanency adsorbed on the hydrocracking active sites. Spectroscopic analysis of the used catalysts clarified the destruction of the active phase of the binary sulfides, through the segregation and crystal growth. The structural changes of the catalysts are very likely caused by heteroatom compounds in the preasphaltenes. Thus, the primary cause of the catalyst deactivation is the preasphaltenes in the coal liquids. Hydroaromatic compounds in the coal liquids suppress the change of the deposited carbonaceous materials into inert coke which permanently deactivate the catalyst.

  6. Cationic mononuclear ruthenium carboxylates as catalyst prototypes for self-induced hydrogenation of carboxylic acids.

    Science.gov (United States)

    Naruto, Masayuki; Saito, Susumu

    2015-08-28

    Carboxylic acids are ubiquitous in bio-renewable and petrochemical sources of carbon. Hydrogenation of carboxylic acids to yield alcohols produces water as the only byproduct, and thus represents a possible next generation, sustainable method for the production of these alternative energy carriers/platform chemicals on a large scale. Reported herein are molecular insights into cationic mononuclear ruthenium carboxylates ([Ru(OCOR)](+)) as prototypical catalysts for the hydrogenation of carboxylic acids. The substrate-derived coordinated carboxylate was found to function initially as a proton acceptor for the heterolytic cleavage of dihydrogen, and subsequently also as an acceptor for the hydride from [Ru-H](+), which was generated in the first step (self-induced catalysis). The hydrogenation proceeded selectively and at high levels of functional group tolerance, a feature that is challenging to achieve with existing heterogeneous/homogeneous catalyst systems. These fundamental insights are expected to significantly benefit the future development of metal carboxylate-catalysed hydrogenation processes of bio-renewable resources.

  7. Kinetics of isotopic exchange of [1-3H]saccharides with hydrogen using palladium catalysts

    International Nuclear Information System (INIS)

    Akulov, G.P.; Kayumov, V.G.; Snetkova, E.V.; Kaminskij, Yu.L.

    1988-01-01

    The kinetics was studied of the isotopic exchange of [1- 3 H]saccharides with hydrogen on palladium catalysts. The effect was studied of different factors on the rate of isotopic exchange, e.g., of the composition and structure of saccharides, their concentration in the solution (C), the type of catalyst and of the buffer solution. It was found that by reduced rate of isotopic exchange with hydrogen, all studied saccharides may be arranged into a series independent of the type of catalyst in accordance with the sequence of declining coefficient of relative mobility of l-H atoms during the reaction. Linear dependence was found to exist between the rate constant of the isotopic exchange reaction (r) and the coefficient of relative lability. It was also found that in the range of low concentrations the observed rate constants of isotopic exchange were not dependent on concentration and in the range of higher concentrations, r decreased with increasing C. This character of dependence is justified by the side effect of the processes of sorption on the catalyst. (author). 3 figs., 1 tab., 4 refs

  8. Catalyst dispersion and activity under conditions of temperature-staged liquefaction. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Davis, A.; Schobert, H.H.; Mitchell, G.D.; Artok, L.

    1993-02-01

    This research program involves the investigation of the use of highly dispersed catalyst precursors for the pretreatment of coals by mild hydrogenation. During the course of this effort solvent preswelling of the coal was evaluated as a means of deeply impregnating catalysts into coal, active phases of catalysts under reaction conditions were studied and the impact of these techniques were evaluated during pretreatment and temperature-staged liquefaction. Two coals, a Texas subbituminous and a Utah high volatile A bituminous, were used to examine the effects of solvent swelling pretreatment and catalyst impregnation on conversion behavior at 275{degrees}C, representative of the first, low-temperature stage in a temperature-staged liquefaction reaction. Ferrous sulfate, iron pentacarbonyl, ammonium tetrathiomolybdate, and molybdenum hexacarbonyl were used as catalyst precursors. Without swelling pretreatment, impregnation of both coals increased conversion, mainly through increased yields of preasphaltenes.

  9. Deuterium exchange reaction between hydrogen and water in a trickle-bed column packed with novel catalysts

    International Nuclear Information System (INIS)

    Ahn, D. H.; Baek, S. W.; Lee, H. S.; Kim, K. R.; Kang, H. S.; Lee, S. H.; Jeong, H. S.

    1998-01-01

    The activity of a novel catalyst (Pt/SDBC) for deuterium exchange reaction between water and hydrogen streams in a trickle bed was measured. The performance of the catalyst was compared with a commercial catalyst with same metal content. The catalytic activity for the bed of wet-proofed catalyst diluted with hydrophillic packing material also measured. The Pt/SDBC catalyst shows higher activity in the liquid phase reaction than the commercial catalyst as measured in the vapor phase reaction. The performance for 50% dilution of the Pt/SDBC catalyst bed with hydrophillic packing material is better than that of the 100% bed due to more liquid holdup and better water distribution

  10. Hydrogen storage of catalyst-containing activated carbon fibers and effect of surface modification

    International Nuclear Information System (INIS)

    Ikpyo Hong; Seong Young Lee; Kyung Hee Lee; Sei Min Park

    2005-01-01

    Introduction: The hydrogen storage capacities of many kind of carbon nano materials have been reported with possibility and improbability. It is reported that specific surface area of carbon nano material has not a close relation to hydrogen storage capacity. This result shows that there is difference between specific surface area measured by isothermal nitrogen adsorption and direct measurement of adsorption with hydrogen and suggests that the carbon material with relatively low specific surface area can have high hydrogen storage capacity when they have effective nano pore. In this study, petroleum based isotropic pitch was hybridized with several kinds of transitional metal base organometallic compound solved with organic solvent and spun by electro-spinning method. The catalyst-dispersed ACFs were prepared and characterized and hydrogen storage capacity was measured. The effect of surface modification of ACFs by physical and chemical treatment was also investigated. Experimental: The isotropic precursor pitch prepared by nitrogen blowing from naphtha cracking bottom oil was hybridized with transitional metal based acetyl acetonates and spun by solvent electro-spinning. Tetrahydrofuran and quinoline were used as solvent with various mixing ratio. High voltage DC power generator which could adjust in the range of 0-60000 V and 2 mA maximum current was used to supply electrostatic force. At the solvent electro-spinning, solvent mixing ratio and pitch concentration, voltage and spinning distance were varied and their influences were investigated. The catalyst-dispersed electro-spun pitch fibers were thermal stabilized, carbonized and activated by conventional heat treatment for activated carbon fiber. Prepared fibers were observed by high resolution SEM and pore properties were characterized by Micromeritics ASAP2020 model physi-sorption analyzer. Hydrogen storage capacities were measured by equipment modified from Thermo Cahn TherMax 500 model high pressure

  11. Electro-catalysts for hydrogen production from ethanol for use in SOFC anodes

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Marcos Aurelio da; Paz Fiuza, Raigenis da; Guedes, Bruna C.; Pontes, Luiz A.; Boaventura, Jaime Soares [UFBA, Salvador, Bahia (Brazil). Energy and Materials Science Group

    2010-07-01

    Nickel and cobalt catalysts, supported on YSZ, were prepared by wet impregnation, with and without citric acid; the metal load was 10 and 35% by weight. The catalyst composition was studied by XRF, XPS and SEM-EDS. At low metal concentration, the results of these techniques presented comparables figures; at high concentration, SEM-EDS suggested a non-uniform distribution. The analysis showed that the solids were mixed oxides and formed an alloy after reduction. The surface passivation was possible under controlled conditions. The catalytic test with the steam reforming of ethanol indicated that the metal load had almost no effect on the catalytic activity, but decreased its selectivity. Afterwards, a unitary SOFC was prepared with deposition of the cathode layer. AFM and EIS were used for the characterization of SOFC components. They showed that the electro-catalyst surface was almost all covered with the metal phase, including the large pore walls of the anode. The YSZ phase dominates the material conductance of the complete SOFC assembly (anode/electrolyte/cathode). The unitary SOFC was tested with hydrogen, gaseous ethanol or natural gas; the SOFC operating with ethanol and hydrogen fuel presented virtually no over-potential. (orig.)

  12. Improved Hydrogen Gas Getters for TRU Waste -- Final Report

    International Nuclear Information System (INIS)

    Mark Stone; Michael Benson; Christopher Orme; Thomas Luther; Eric Peterson

    2005-01-01

    Alpha radiolysis of hydrogenous waste and packaging materials generates hydrogen gas in radioactive storage containers. For that reason, the Nuclear Regulatory Commission limits the flammable gas (hydrogen) concentration in the Transuranic Package Transporter-II (TRUPACT-II) containers to 5 vol% of hydrogen in air, which is the lower explosion limit. Consequently, a method is needed to prevent the build up of hydrogen to 5 vol% during the storage and transport of the TRUPACT-II containers (up to 60 days). One promising option is the use of hydrogen getters. These materials scavenge hydrogen from the gas phase and irreversibly bind it in the solid phase. One proven getter is a material called 1,4-bis (phenylethynyl) benzene, or DEB, characterized by the presence of carbon-carbon triple bonds. Carbon may, in the presence of suitable precious metal catalysts such as palladium, irreversibly react with and bind hydrogen. In the presence of oxygen, the precious metal may also eliminate hydrogen by catalyzing the formation of water. This reaction is called catalytic recombination. DEB has the needed binding rate and capacity for hydrogen that potentially could be generated in the TRUPACT II. Phases 1 and 2 of this project showed that uncoated DEB performed satisfactorily in lab scale tests. Based upon these results, Phase 3, the final project phase, included larger scale testing. Test vessels were scaled to replicate the ratio between void space in the inner containment vessel of a TRUPACT-II container and a payload of seven 55-gallon drums. The tests were run with an atmosphere of air for 63.9 days at ambient temperature (15-27 C) and a scaled hydrogen generation rate of 2.60E-07 moles per second (0.35 cc/min). A second type of getter known as VEI, a proprietary polymer hydrogen getter characterized by carbon-carbon double bonds, was also tested in Phase 3. Hydrogen was successfully ''gettered'' by both getter systems. Hydrogen concentrations remained below 5 vol% (in

  13. Improved Hydrogen Gas Getters for TRU Waste -- Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mark Stone; Michael Benson; Christopher Orme; Thomas Luther; Eric Peterson

    2005-09-01

    Alpha radiolysis of hydrogenous waste and packaging materials generates hydrogen gas in radioactive storage containers. For that reason, the Nuclear Regulatory Commission limits the flammable gas (hydrogen) concentration in the Transuranic Package Transporter-II (TRUPACT-II) containers to 5 vol% of hydrogen in air, which is the lower explosion limit. Consequently, a method is needed to prevent the build up of hydrogen to 5 vol% during the storage and transport of the TRUPACT-II containers (up to 60 days). One promising option is the use of hydrogen getters. These materials scavenge hydrogen from the gas phase and irreversibly bind it in the solid phase. One proven getter is a material called 1,4-bis (phenylethynyl) benzene, or DEB, characterized by the presence of carbon-carbon triple bonds. Carbon may, in the presence of suitable precious metal catalysts such as palladium, irreversibly react with and bind hydrogen. In the presence of oxygen, the precious metal may also eliminate hydrogen by catalyzing the formation of water. This reaction is called catalytic recombination. DEB has the needed binding rate and capacity for hydrogen that potentially could be generated in the TRUPACT II. Phases 1 and 2 of this project showed that uncoated DEB performed satisfactorily in lab scale tests. Based upon these results, Phase 3, the final project phase, included larger scale testing. Test vessels were scaled to replicate the ratio between void space in the inner containment vessel of a TRUPACT-II container and a payload of seven 55-gallon drums. The tests were run with an atmosphere of air for 63.9 days at ambient temperature (15-27°C) and a scaled hydrogen generation rate of 2.60E-07 moles per second (0.35 cc/min). A second type of getter known as VEI, a proprietary polymer hydrogen getter characterized by carbon-carbon double bonds, was also tested in Phase 3. Hydrogen was successfully “gettered” by both getter systems. Hydrogen concentrations remained below 5 vol% (in

  14. Graphene sheets/cobalt nanocomposites as low-cost/high-performance catalysts for hydrogen generation

    International Nuclear Information System (INIS)

    Zhang, Fei; Hou, Chengyi; Zhang, Qinghong; Wang, Hongzhi; Li, Yaogang

    2012-01-01

    The production of clean and renewable hydrogen through the hydrolysis of sodium borohydride has received much attention owing to increasing global energy demands. Graphene sheets/cobalt (GRs/Co) nanocomposites, which are highly efficient catalysts, have been prepared using a one-step solvothermal method in ethylene glycol. Co 2+ salts were converted to Co nanoparticles, which were simultaneously inserted into the graphene layers with the reduction of graphite oxide sheets to GRs. The as-synthesized samples were characterized by X-ray diffraction, Fourier transform infrared spectra, Raman spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy and vibrating sample magnetometer. The maximum saturation magnetization value reached 80.8 emu g −1 , meaning they are more suitable for magnet-controlled generation of H 2 than noble metal catalysts. The catalytic activity of the composite was investigated by the hydrolysis of sodium borohydride in aqueous solution both with and without a GRs support. It was found that the high electronic conductive GRs support increased the hydrogen generation rate (about two times) compared with pure cobalt. The improved hydrogen generation rate, low cost and uncomplicated recycling makes the GRs/Co nanocomposites promising candidates as catalysts for hydrogen generation. Highlights: ► Graphene sheets/cobalt nanocomposites were prepared by a one-step solvothermal method. ► The maximum saturation magnetization value of the composites reached 80.8 emu g −1 . ► The graphene support greatly increased the catalytic activity of cobalt. ► An easily removed, recycled and controlled functional filter was obtained.

  15. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction

    Science.gov (United States)

    Mahmood, Javeed; Li, Feng; Jung, Sun-Min; Okyay, Mahmut Sait; Ahmad, Ishfaq; Kim, Seok-Jin; Park, Noejung; Jeong, Hu Young; Baek, Jong-Beom

    2017-05-01

    The hydrogen evolution reaction (HER) is a crucial step in electrochemical water splitting and demands an efficient, durable and cheap catalyst if it is to succeed in real applications. For an energy-efficient HER, a catalyst must be able to trigger proton reduction with minimal overpotential and have fast kinetics. The most efficient catalysts in acidic media are platinum-based, as the strength of the Pt-H bond is associated with the fastest reaction rate for the HER. The use of platinum, however, raises issues linked to cost and stability in non-acidic media. Recently, non-precious-metal-based catalysts have been reported, but these are susceptible to acid corrosion and are typically much inferior to Pt-based catalysts, exhibiting higher overpotentials and lower stability. As a cheaper alternative to platinum, ruthenium possesses a similar bond strength with hydrogen (˜65 kcal mol-1), but has never been studied as a viable alternative for a HER catalyst. Here, we report a Ru-based catalyst for the HER that can operate both in acidic and alkaline media. Our catalyst is made of Ru nanoparticles dispersed within a nitrogenated holey two-dimensional carbon structure (Ru@C2N). The Ru@C2N electrocatalyst exhibits high turnover frequencies at 25 mV (0.67 H2 s-1 in 0.5 M H2SO4 solution; 0.75 H2 s-1 in 1.0 M KOH solution) and small overpotentials at 10 mA cm-2 (13.5 mV in 0.5 M H2SO4 solution; 17.0 mV in 1.0 M KOH solution) as well as superior stability in both acidic and alkaline media. These performances are comparable to, or even better than, the Pt/C catalyst for the HER.

  16. Production of liquid alkanes by controlling reactivity of sorbitol hydrogenation with a Ni/HZSM-5 catalyst in water

    International Nuclear Information System (INIS)

    Zhang, Qing; Wang, Tiejun; Xu, Ying; Zhang, Qi; Ma, Longlong

    2014-01-01

    Graphical abstract: MCM-41-modified Ni/HZSM-5 catalyst was developed by impregnation method with high catalytic performance for sorbitol hydrogenation in water. Appropriate amount of MCM-41 addition can distinctly promote the improvement in the surface structure and modulation of acidic sites of the catalyst. The scission of C–O bond in the sorbitol molecule into liquid alkanes was easily carried out on the catalyst containing more Lewis acidic sites. - Highlights: • Ni/HZSM-5 promoted with MCM-41 is active for sorbitol hydrogenation to liquid alkanes. • Lewis acidic sites of Ni/HZSM-5 can be modulated by pure silica MCM-41. • MCM-41 added can distinctly decrease carbon deposition on the catalyst surface. - Abstract: Liquid fuels derived from renewable biomass are of great importance on the potential substitution for diminishing fossil fuels. The conversion of sorbitol (a product of biomass-derived glucose hydrogenation) into liquid alkanes such as pentane and hexane over the Ni/HZSM-5 catalysts with or without MCM-41 addition was investigated in the presence of hydrogen in water medium. The production distribution of sorbitol hydrogenation can be controlled by adjusting the acidity of the catalyst. The scission of C–C bond in the sorbitol molecule into light C 1 –C 4 alkanes was mainly carried out over Ni/HZSM-5 containing strong Brønsted acid sites, while C–O bond scission into heavier alkanes was dominated over the catalysts added by MCM-41 containing weak Lewis acid sites. The sorbitol conversion and total liquid alkanes selectivity were found to be 67.1% and 98.7% over 2%Ni/HZSM-5 modified by 40 wt% of MCM-41, whereas the corresponding value was 40% and 35.6% over 2%Ni/HZSM-5 in the absence of MCM-41. The effect of MCM-41 on the structure, acidity, and reducibility of Ni/HZSM-5 was investigated by using XRD, Py-IR, IR, and H 2 -TPR. Meanwhile, the resistance of carbon deposition over the catalyst modified by MCM-41 was studied by using TG

  17. Hydrogen production by steam reforming of liquefied natural gas over a nickel catalyst supported on mesoporous alumina xerogel

    Science.gov (United States)

    Seo, Jeong Gil; Youn, Min Hye; Cho, Kyung Min; Park, Sunyoung; Song, In Kyu

    Mesoporous alumina xerogel (A-SG) is prepared by a sol-gel method for use as a support for a nickel catalyst. The Ni/A-SG catalyst is then prepared by an impregnation method, and is applied to hydrogen production by steam reforming of liquefied natural gas (LNG). The effect of the mesoporous alumina xerogel support on the catalytic performance of Ni/A-SG catalyst is investigated. For the purpose of comparison, a nickel catalyst supported on commercial alumina (A-C) is also prepared by an impregnation method (Ni/A-C). Both the hydroxyl-rich surface and the electron-deficient sites of the A-SG support enhance the dispersion of the nickel species on the support during the calcination step. The formation of the surface nickel aluminate phase in the Ni/A-SG catalyst remarkably increases the reducibility and stability of the catalyst. Furthermore, the high-surface area and the well-developed mesoporosity of the Ni/A-SG catalyst enhance the gasification of surface hydrocarbons that are adsorbed in the reaction. In the steam reforming of LNG, the Ni/A-SG catalyst exhibits a better catalytic performance than the Ni/A-C catalyst in terms of LNG conversion and hydrogen production. Moreover, the Ni/A-SG catalyst shows strong resistance toward catalyst deactivation.

  18. Mesoporous silica nanoparticle supported PdIr bimetal catalyst for selective hydrogenation, and the significant promotional effect of Ir

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hui; Huang, Chao; Yang, Fan [The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China); Yang, Xu [Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou (China); Du, Li [The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China); Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou (China); Liao, Shijun, E-mail: chsjliao@scut.edu.cn [The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China); Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou (China)

    2015-12-01

    Graphical abstract: A mesoporous silica nanoparticle (MSN) supported bimetal catalyst, PdIr/MSN, was prepared by a facile impregnation and hydrogen reduction method. The strong promotional effect of Ir was observed and thoroughly investigated. At the optimal molar ratio of Ir to Pd (N{sub Ir}/N{sub Pd} = 0.1), the activity of PdIr{sub 0.1}/MSN was up to eight times and 28 times higher than that of monometallic Pd/MSN and Ir/MSN, respectively. The catalysts were characterized comprehensively by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and hydrogen temperature programmed reduction, which revealed that the promotional effect of Ir may be due to the enhanced dispersion of active components on the MSN, and to the intensified Pd–Ir electronic interaction caused by the addition of Ir. - Highlights: • Mesoporous nanoparticles were synthesized and used as support for metal catalyst. • PdIr bimetallic catalyst exhibited significantly improved hydrogenation activity. • The strong promotion of Ir was recognized firstly and investigated intensively. • PdIr exhibits 18 times higher activity than Pd to the hydrogenation of nitrobenzene. - Abstract: A mesoporous silica nanoparticle (MSN) supported bimetal catalyst, PdIr/MSN, was prepared by a facile impregnation and hydrogen reduction method. The strong promotional effect of Ir was observed and thoroughly investigated. At the optimal molar ratio of Ir to Pd (N{sub Ir}/N{sub Pd} = 0.1), the activity of PdIr{sub 0.1}/MSN was up to eight times and 28 times higher than that of monometallic Pd/MSN and Ir/MSN, respectively. The catalysts were characterized comprehensively by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and hydrogen temperature programmed reduction, which revealed that the promotional effect of Ir may be due to the enhanced dispersion of active components on the MSN, and to the intensified Pd–Ir electronic interaction

  19. Stable hydrogen production from ethanol through steam reforming reaction over nickel-containing smectite-derived catalyst.

    Science.gov (United States)

    Yoshida, Hiroshi; Yamaoka, Ryohei; Arai, Masahiko

    2014-12-25

    Hydrogen production through steam reforming of ethanol was investigated with conventional supported nickel catalysts and a Ni-containing smectite-derived catalyst. The former is initially active, but significant catalyst deactivation occurs during the reaction due to carbon deposition. Side reactions of the decomposition of CO and CH4 are the main reason for the catalyst deactivation, and these reactions can relatively be suppressed by the use of the Ni-containing smectite. The Ni-containing smectite-derived catalyst contains, after H2 reduction, stable and active Ni nanocrystallites, and as a result, it shows a stable and high catalytic performance for the steam reforming of ethanol, producing H2.

  20. Polyacrylonitrile Fibers Anchored Cobalt/Graphene Sheet Nanocomposite: A Low-Cost, High-Performance and Reusable Catalyst for Hydrogen Generation.

    Science.gov (United States)

    Zhang, Fei; Huang, Guoji; Hou, Chengyi; Wang, Hongzhi; Zhang, Qinghong; Li, Yaogang

    2016-06-01

    Cobalt and its composites are known to be active and inexpensive catalysts in sodium borohydride (NaBH4) hydrolysis to generate clean and renewable hydrogen energy. A novel fiber catalyst, cobalt/graphene sheet nanocomposite anchored on polyacrylonitrile fibers (Co/GRs-PANFs), which can be easily recycled and used in any reactor with different shapes, were synthesized by anchoring cobalt/graphene (Co/GRs) on polyacrylonitrile fibers coated with graphene (GRs-PANFs) at low temperature. The unique structure design effectively prevents the inter-sheet restacking of Co/GRs and fully exploits the large surface area of novel hybrid material for generate hydrogen. And the extra electron transfer path supplied by GRs on the surface of GRs-PANFs can also enhance their catalysis performances. The catalytic activity of the catalyst was investigated by the hydrolysis of NaBH4 in aqueous solution with GRs-PANFs. GRs powders and Co powders were used as control groups. It was found that both GRs and fiber contributed to the hydrogen generation rate of Co/GRs-PANFs (3222 mL x min(-1) x g(-1)), which is much higher than that of cobalt powders (915 mL x min(-1) x g(-1)) and Co/GRs (995 mL x min(-1) x g(-1)). The improved hydrogen generation rate, low cost and uncomplicated recycling make the Co/GRs-PANFs promising candidate as catalysts for hydrogen generation.

  1. Solid Catalyst with Ionic Liquid Layer (SCILL). A concept to improve the selectivity of selective hydrogenations

    Energy Technology Data Exchange (ETDEWEB)

    Jess, A.; Korth, W. [Bayreuth Univ. (Germany). Chair of Chemical Engineering

    2011-07-01

    Catalytic hydrogenations are important for refinery processes, petrochemical applications as well as for numerous processes of the fine chemicals industry. In some cases, hydrogenations consist of a sequence of consecutive reactions, and the desired product is the intermediate. An important goal is then a high yield and selectivity to the intermediate, if possible at a high conversion degree. The selectivity to an intermediate primarily depends on the chemical nature of the catalyst, but may also be influenced by diffusion processes. Ionic liquids (ILs) are low melting salts (< 100 C) and represent a promising solvent class. This paper focuses on the concept of a Solid Catalyst with Ionic Liquid Layer (SCILL), where the solid catalyst is coated with a thin IL layer to improve the selectivity. (orig.)

  2. In-situ hydrodeoxygenation of phenol by supported Ni catalyst-explanation for catalyst performance

    DEFF Research Database (Denmark)

    Wang, Ze; Zeng, Ying; Lin, Weigang

    2017-01-01

    In-situ hydrodeoxygenation of phenol with aqueous hydrogen donor over supported Ni catalyst was investigated. The supported Ni catalysts exerted very poor performance, if formic acid was used as the hydrogen donor. Catalyst modification by loading K, Na, Mg or La salt could not make the catalyst...... performance improved. If gaseous hydrogen was used as the hydrogen source the activity of Ni/Al2O3 was pretty high. CO2 was found poisonous to the catalysis, due to the competitive adoption of phenol with CO2. If formic acid was replaced by methanol, the catalyst performance improved remarkably, with major...... products of cyclohexanone and cyclohexanol. The better effect of methanol enlightened the application of the supported Ni catalyst in in-situ hydrodeoxygenation of phenol....

  3. Hydrogen Production by Steam Reforming of Liquefied Natural Gas (LNG) Over Nickel-Phosphorus-Alumina Xerogel Catalyst Prepared by a Carbon-Templating Epoxide-Driven Sol-Gel Method.

    Science.gov (United States)

    Bang, Yongju; Park, Seungwon; Han, Seung Ju; Yoo, Jaekyeong; Choi, Jung Ho; Kang, Tae Hun; Lee, Jinwon; Song, In Kyu

    2016-05-01

    A nickel-phosphorus-alumina xerogel catalyst was prepared by a carbon-templating epoxide-driven sol-gel method (denoted as CNPA catalyst), and it was applied to the hydrogen production by steam reforming of liquefied natural gas (LNG). For comparison, a nickel-phosphorus-alumina xerogel catalyst was also prepared by a similar method in the absence of carbon template (denoted as NPA catalyst). The effect of carbon template addition on the physicochemical properties and catalytic activities of the catalysts in the steam reforming of LNG was investigated. Both CNPA and NPA catalysts showed excellent textural properties with well-developed mesoporous structure. However, CNPA catalyst retained a more reducible nickel aluminate phase than NPA catalyst. XRD analysis of the reduced CNPA and NPA catalysts revealed that nickel sintering on the CNPA catalyst was suppressed compared to that on the NPA catalyst. From H2-TPD and CH4-TPD measurements of the reduced CNPA and NPA catalysts, it was also revealed that CNPA catalyst with large amount of hydrogen uptake and strong hydrogen-binding sites showed larger amount of methane adsorption than NPA catalyst. In the hydrogen production by steam reforming of LNG, CNPA catalyst with large methane adsorption capacity showed a better catalytic activity than NPA catalyst.

  4. Hydrothermal Synthesis of Co-Ru Alloy Particle Catalysts for Hydrogen Generation from Sodium Borohydride

    Directory of Open Access Journals (Sweden)

    Marija Kurtinaitienė

    2013-01-01

    Full Text Available We report the synthesis of μm and sub-μm-sized Co, Ru, and Co-Ru alloy species by hydrothermal approach in the aqueous alkaline solutions (pH ≥ 13 containing CoCl2 and/or RuCl3, sodium citrate, and hydrazine hydrate and a study of their catalytic properties for hydrogen generation by hydrolysis of sodium borohydride solution. This way provides a simple platform for fabrication of the ball-shaped Co-Ru alloy catalysts containing up to 12 wt% Ru. Note that bimetallic Co-Ru alloy bowls containing even 7 at.% Ru have demonstrated catalytic properties that are comparable with the ones of pure Ru particles fabricated by the same method. This result is of great importance in view of the preparation of cost-efficient catalysts for hydrogen generation from borohydrides. The morphology and composition of fabricated catalyst particles have been characterized using scanning electron microscopy, energy dispersive X-ray diffraction, and inductively coupled plasma optical emission spectrometry.

  5. Ruthenacycles and Iridacycles as Catalysts for Asymmetric Transfer Hydrogenation and Racemisation

    NARCIS (Netherlands)

    Jerphagnon, Thomas; Haak, Robert; Berthiol, Florian; Gayet, Arnaud J.A.; Ritleng, Vincent; Holuigue, Alexandre; Pannetier, Nicolas; Pfeffer, Michel; Voelklin, Adeline; Lefort, Laurent; Verzijl, Gerard; Tarabiono, Chiara; Janssen, Dick B.; Minnaard, Adriaan J.; Feringa, Ben L.; Vries, Johannes G. de

    2010-01-01

    Ruthenacycles, which are easily prepared in a single step by reaction between enantiopure aromatic amines and [Ru(arene)Cl2]2 in the presence of NaOH and KPF6, are very good asymmetric transfer hydrogenation catalysts. A range of aromatic ketones were reduced using isopropanol in good yields with

  6. Single-catalyst high-weight% hydrogen storage in an N-heterocycle synthesized from lignin hydrogenolysis products and ammonia.

    Science.gov (United States)

    Forberg, Daniel; Schwob, Tobias; Zaheer, Muhammad; Friedrich, Martin; Miyajima, Nobuyoshi; Kempe, Rhett

    2016-10-20

    Large-scale energy storage and the utilization of biomass as a sustainable carbon source are global challenges of this century. The reversible storage of hydrogen covalently bound in chemical compounds is a particularly promising energy storage technology. For this, compounds that can be sustainably synthesized and that permit high-weight% hydrogen storage would be highly desirable. Herein, we report that catalytically modified lignin, an indigestible, abundantly available and hitherto barely used biomass, can be harnessed to reversibly store hydrogen. A novel reusable bimetallic catalyst has been developed, which is able to hydrogenate and dehydrogenate N-heterocycles most efficiently. Furthermore, a particular N-heterocycle has been identified that can be synthesized catalytically in one step from the main lignin hydrogenolysis product and ammonia, and in which the new bimetallic catalyst allows multiple cycles of high-weight% hydrogen storage.

  7. Epoxidation of natural limonene extracted from orange peels with hydrogen peroxide over Ti-MCM-41 catalyst

    Directory of Open Access Journals (Sweden)

    Wróblewska Agnieszka

    2018-03-01

    Full Text Available The paper presents the oxidation of natural limonene (extracted from waste orange peels by 60 wt% hydrogen peroxide, in the presence of Ti-MCM-41 catalyst and in methanol as the solvent. The aim of the research was to develop the most favorable technological parameters for the process of limonene oxidation (temperature, molar ratio of limonene to hydrogen peroxide, methanol concentration, Ti-MCM-41 catalyst content and reaction time by analyzing changes in the main functions describing this process: the conversion of limonene, selectivities of appropriate products, the conversion of hydrogen peroxide and the effective conversion of hydrogen peroxide. The process is environmentally friendly process and it uses renewable raw material - limonene and a safe oxidant -hydrogen peroxide. During the study, very valuable oxygenated derivatives of limonene were obtained: 1,2-epoxylimonene, its diol, carvone, carveol, and perillyl alcohol. These compounds are used in medicine, cosmetics, perfumery, food and polymers industries.

  8. Epoxidation of Alkenes with Aqueous Hydrogen Peroxide and Quaternary Ammonium Bicarbonate Catalysts

    DEFF Research Database (Denmark)

    Mielby, Jerrik Jørgen; Kegnæs, Søren

    2013-01-01

    A range of solid and liquid catalysts containing bicarbonate anions were synthesised and tested for the epoxidation of alkenes with aqueous hydrogen peroxide. The combination of bicarbonate anions and quaternary ammonium cations opens up for new catalytic systems that can help to overcome...

  9. Hydrogen or synthesis gas production via the partial oxidation of methane over supported nickel-cobalt catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Alaric C.W. [Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543 (Singapore); Institute of Chemical and Engineering Sciences, 1 Pesek Road, Jurong Island, Singapore 627833 (Singapore); Chen, Luwei; Lin, Jianyi [Institute of Chemical and Engineering Sciences, 1 Pesek Road, Jurong Island, Singapore 627833 (Singapore); Kee Leong, Weng [Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543 (Singapore); Johnson, Brian F.G.; Khimyak, Tetyana [University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge, UK CB2 1EW (United Kingdom)

    2007-05-15

    Activity, selectivity, and coking-resistance of a series of Ni{sub x}Co{sub y} (where x,y are the respective metal loadings of 0, 1, 2 or 3 wt.%; x+y=3) bimetallic catalysts supported on CaAl{sub 2}O{sub 4}/Al{sub 2}O{sub 3} have been studied for hydrogen/synthesis gas production via the catalytic partial oxidation (CPO) of methane. Catalysts were characterized by temperature programmed reduction (TPR), transmission electron microscopy (TEM) and X-ray fluorescence multi-element analysis (XRF). Their activity for the partial oxidation of methane to hydrogen and carbon monoxide (at 1 bar, gas hourly space velocity (GHSV) of 144,000cm{sup 3}g{sup -1}h{sup -1} and CH{sub 4}/O{sub 2} molar ratio of 2) was investigated, and coke deposited on the spent catalysts was studied by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and thermogravimetric analysis (TGA). The activity was found to decrease in the order of Ni{sub 2}Co>Ni{sub 3}>NiCo{sub 2}>>Co{sub 3}, while CO and H{sub 2} selectivities were found to be in the order ofNi{sub 2}Co>Ni{sub 3}{approx}NiCo{sub 2}>Co{sub 3}. Ni{sub 2}Co is also shown to be more resistant to coking as compared to Ni{sub 3}, which is a current catalyst of choice. Results show that not only does Ni{sub 2}Co have the highest activity and selectivity among all the catalysts tested, it is also relatively resistant to coking. This finding would be helpful for catalyst design to achieve high coking resistivity catalysts for hydrogen production from CPO of methane. (author)

  10. Characterization of the various catalyst for solvent hydrogenation at 1t/d PSU; 1t/d PSU ni okeru kakushu yozai suisoka shokubai no seino hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Kakebayashi, H.; Nogami, Y.; Inokuchi, K. [Mitsui SRC Development Co. Ltd., Tokyo (Japan); Aihara, Y.; Imada, K. [Nippon Steel Corp., Tokyo (Japan)

    1996-10-28

    Performance of various catalysts for hydrogenation of recycle solvent was evaluated for the operation of NEDOL process 1 t/d process supporting unit (PSU). Distillate between 220 and 538{degree}C derived from the liquefaction of Tanito Harum coal was used as recycle solvent. Deactivation behaviors of catalysts were compared using a prediction equation of catalyst life, by which aromatic carbon index (fa) after hydrogenation can be determined from the fa of recycle oil before hydrogenation, reaction temperature, and total hydrogenation time. Total hydrogenation time satisfying the {Delta}fa, 0.05 before and after hydrogenation were 8,000, 4,000, and 2,000 hours for NiMo-based catalysts C, A, and B, respectively. Catalyst C showed the longest life. Used catalysts were also characterized. The catalyst C showed larger mean pore size than those of the others, which resulted in the longer life due to the delay of pore blockage. From measurements by XPS and EPMA, relative atomic concentration of carbon increased remarkably after the use for all of catalysts, which was considered to be due to the adhesion of hydrocarbons. Increase of metal atoms, such as Fe and Cr, was also observed due to the contamination of entrainment residues. Deactivation of catalysts was caused by the adhesion of hydrocarbons, and metallic compounds, such as Fe and Cr. 3 refs., 1 fig., 5 tabs.

  11. Fibrous Catalyst-Enhanced Acanthamoeba Disinfection by Hydrogen Peroxide.

    Science.gov (United States)

    Kilvington, Simon; Winterton, Lynn

    2017-11-01

    Hydrogen peroxide (H2O2) disinfection systems are contact-lens-patient problem solvers. The current one-step, criterion-standard version has been widely used since the mid-1980s, without any significant improvement. This work identifies a potential next-generation, one-step H2O2, not based on the solution formulation but rather on a case-based peroxide catalyst. One-step H2O2 systems are widely used for contact lens disinfection. However, antimicrobial efficacy can be limited because of the rapid neutralization of the peroxide from the catalytic component of the systems. We studied whether the addition of an iron-containing catalyst bound to a nonfunctional propylene:polyacryonitrile fabric matrix could enhance the antimicrobial efficacy of these one-step H2O2 systems. Bausch + Lomb PeroxiClear and AOSept Plus (both based on 3% H2O2 with a platinum-neutralizing disc) were the test systems. These were tested with and without the presence of the catalyst fabric using Acanthamoeba cysts as the challenge organism. After 6 hours' disinfection, the number of viable cysts was determined. In other studies, the experiments were also conducted with biofilm formed by Stenotrophomonas maltophilia and Elizabethkingia meningoseptica bacteria. Both control systems gave approximately 1-log10 kill of Acanthamoeba cysts compared with 3.0-log10 kill in the presence of the catalyst (P catalyst compared with ≥3.0-log10 kill when it was omitted. In 30 rounds' recurrent usage, the experiments, in which the AOSept Plus system was subjected to 30 rounds of H2O2 neutralization with or without the presence of catalytic fabric, showed no loss in enhanced biocidal efficacy of the material. The catalytic fabric was also shown to not retard or increase the rate of H2O2 neutralization. We have demonstrated the catalyst significantly increases the efficacy of one-step H2O2 disinfection systems using highly resistant Acanthamoeba cysts and bacterial biofilm. Incorporating the catalyst into the

  12. New catalysts and new synthetic applications for hydroformylation

    Energy Technology Data Exchange (ETDEWEB)

    Breit, B. [Albert-Ludwigs-Univ. Freiburg (Germany). Inst. fuer Organische Chemie und Biochemie

    2006-07-01

    In the course of this lecture most recent advances in rhodium catalyzed hydroformylation and its use in organic synthesis are presented. Particular emphasis is given to regioselective hydroformylation of terminal alkenes and its application to fine chemical synthesis as well as latest results and applications of asymmetric hydroformylation. Furthermore, a new concept for simultaneous control of regio- and stereochemistry employing catalyst-directing groups will be discussed in detail. Finally, a new concept for catalyst library generation based on ligand-self-assembly through complementary hydrogen bonding and its application to regioselective hydroformylation as well as asymmetric hydrogenation is presented. (orig.)

  13. Hydrogen charging/discharging system with liquid organic compounds: a lacunar oxide catalyst to hydrogenate the unsaturated organic compound

    International Nuclear Information System (INIS)

    Jalowiecki-Duhamel, L.; Carpentier, J.; Payen, E.; Heurtaux, F.

    2006-01-01

    Lacunar mixed oxides based on cerium nickel and aluminium or zirconium CeM 0.5 Ni x O y s (M = Zr or Al), able to store high quantities of hydrogen, have been analysed in the hydrogenation of toluene into methyl-cyclohexane (MCH). When these solids present very good toluene hydrogenation activity and selectivity towards MCH in presence of H 2 , in absence of gaseous hydrogen, the reactive hydrogen species stored in the solid can hydrogenate toluene into MCH. The hydrogenation activity under helium + toluene flow decreases as a function of time and becomes nil. The integration of the curve obtained allows to determine the extractable hydrogen content of the solid used, and a value of 1.2 wt % is obtained at 80 C on a CeAl 0.5 Ni 3 O y compound pre-treated in H 2 at 300 C. To optimise the system, different parameters have been analysed, such as the catalyst formulation, the metal content, the pre-reducing conditions as well as the reaction conditions under helium + toluene. (authors)

  14. Production of Renewable Hydrogen from Glycerol Steam Reforming over Bimetallic Ni-(Cu,Co,Cr Catalysts Supported on SBA-15 Silica

    Directory of Open Access Journals (Sweden)

    Alicia Carrero

    2017-02-01

    Full Text Available Glycerol steam reforming (GSR is a promising alternative to obtain renewable hydrogen and help the economics of the biodiesel industry. Nickel-based catalysts are typically used in reforming reactions. However, the choice of the catalyst greatly influences the process, so the development of bimetallic catalysts is a research topic of relevant interest. In this work, the effect of adding Cu, Co, and Cr to the formulation of Ni/SBA-15 catalysts for hydrogen production by GSR has been studied, looking for an enhancement of its catalytic performance. Bimetallic Ni-M/SBA-15 (M: Co, Cu, Cr samples were prepared by incipient wetness co-impregnation to reach 15 wt % of Ni and 4 wt % of the second metal. Catalysts were characterized by inductively coupled plasma atomic emission spectroscopy (ICP-AES, N2-physisorption, X-ray powder diffraction (XRD, hydrogen temperature programmed reduction (H2-TPR, transmission electron microscopy (TEM, scanning electron microscopy (SEM, and thermogravimetric analyses (TGA, and tested in GSR at 600 °C and atmospheric pressure. The addition of Cu, Co, and Cr to the Ni/SBA-15 catalyst helped to form smaller crystallites of the Ni phase, this effect being more pronounced in the case of the Ni-Cr/SBA-15 sample. This catalyst also showed a reduction profile shifted towards higher temperatures, indicating stronger metal-support interaction. As a consequence, the Ni-Cr/SBA-15 catalyst exhibited the best performance in GSR in terms of glycerol conversion and hydrogen production. Additionally, Ni-Cr/SBA-15 achieved a drastic reduction in coke formation compared to the Ni/SBA-15 material.

  15. Hydrogenation of naphthalene on NiMo- Ni- and Ru/Al{sub 2}O{sub 3} catalysts. Langmuir-Hinshelwood kinetic modelling

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro-Gezork, Ana Cristina Alves; Winterbottom, John Mike [Department of Chemical Engineering, School of Engineering, The University of Birmingham, Birmingham B15 2TT (United Kingdom); Natividad, Reyna [Department of Chemical Engineering, Faculty of Chemistry, Universidad Autonoma del Estado de Mexico, Paseo Colon Esq. Tollocan, Toluca, Edo. de Mexico, Mexico CP 50120 (Mexico)

    2008-01-30

    The importance of the hydrodearomatisation (HDA) is increasing together with tightening legislation of fuel quality and exhaust emissions. The present study focuses on hydrogenation (HYD) kinetics of the model aromatic compound naphthalene, found in typical diesel fraction, in n-hexadecane over a NiMo (nickel molybdenum), Ni (nickel) and Ru (ruthenium) supported on trilobe alumina (Al{sub 2}O{sub 3}) catalysts. Kinetic reaction expressions based on the mechanistic Langmuir-Hinshelwood (L-H) model were derived and tested by regressing the experimental data that translated the effect of both naphthalene and hydrogen concentration at a constant temperature (523.15 and 573.15 K over the NiMo catalyst and at 373.15 K over the Ni and Ru/Al{sub 2}O{sub 3} catalysts) on the initial reaction rate. The L-H equation, giving an adequate fit to the experimental data with physically meaningful parameters, suggested a competitive adsorption between hydrogen and naphthalene over the presulphided NiMo catalyst and a non-competitive adsorption between these two reactants over the prereduced Ni and Ru/Al{sub 2}O{sub 3} catalysts. In addition, the adsorption constant values indicated that the prereduced Ru catalyst was a much more active catalyst towards naphthalene HYD than the prereduced Ni/Al{sub 2}O{sub 3} or the presulphided NiMo/Al{sub 2}O{sub 3} catalyst. (author)

  16. Hydrogenation of carbon monoxide on WO/sub 3/-Supported ruthenium catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Yoshinari, Tomohiro; Suganuma, Fujio; Sera, Chikara

    1988-01-01

    In this study, a WO/sub 3/-supported catalyst was prepared to conduct hydrogenation of CO for examining the product distribution and composition of hydrocarbons, using a gamma-alumina-supported catalyst for comparison. These catalysts were used under pressure to conduct a distributive reaction and the desorbing behavior of CO or H/sub 2/ at elevated temperature was measured to examine the influence of the type of carrier or the method of preparation on the activity and the distribution of products formed. The WO/sub 3/-supported catalyst gave a carbon chain length distribution that did not comply with the rule of Schulz-Flory, giving a composition richer in the isomers. Carbon number distribution is affected by Ru-dispersion, and the selectivity of isomers depends on the acidity of the carrier. Formed products distribution of the WO/sub 3/-supported reaction is attributable to the secondary reaction, which relates to the acidic point of the carrier, of the primary product formed on the metal. (7 figs, 4 tabs, 18 refs)

  17. Magnetic Fe@g‑C3N4: A Photoactive Catalyst for the Hydrogenation of Alkenes and Alkynes

    Data.gov (United States)

    U.S. Environmental Protection Agency — A photoactive catalyst, Fe@g-C3N4, has been developed for the hydrogenation of alkenes and alkynes using hydrazine hydrate as a source of hydrogen. The magnetically...

  18. Catalyst Deactivation and Regeneration Processes in Biogas Tri-Reforming Process. The Effect of Hydrogen Sulfide Addition

    Directory of Open Access Journals (Sweden)

    Urko Izquierdo

    2018-01-01

    Full Text Available This work studies Ni-based catalyst deactivation and regeneration processes in the presence of H2S under a biogas tri-reforming process for hydrogen production, which is an energy vector of great interest. 25 ppm of hydrogen sulfide were continuously added to the system in order to provoke an observable catalyst deactivation, and once fully deactivated two different regeneration processes were studied: a self-regeneration and a regeneration by low temperature oxidation. For that purpose, several Ni-based catalysts and a bimetallic Rh-Ni catalyst supported on alumina modified with CeO2 and ZrO2 were used as well as a commercial Katalco 57-5 for comparison purposes. Ni/Ce-Al2O3 and Ni/Ce-Zr-Al2O3 catalysts almost recovered their initial activity. For these catalysts, after the regeneration under oxidative conditions at low temperature, the CO2 conversions achieved—79.5% and 86.9%, respectively—were significantly higher than the ones obtained before sulfur poisoning—66.7% and 45.2%, respectively. This effect could be attributed to the support modification with CeO2 and the higher selectivity achieved for the Reverse Water-Gas-Shift (rWGS reaction after catalysts deactivation. As expected, the bimetallic Rh-Ni/Ce-Al2O3 catalyst showed higher resistance to deactivation and its sulfur poisoning seems to be reversible. In the case of the commercial and Ni/Zr-Al2O3 catalysts, they did not recover their activity.

  19. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chunshan Song; Schobert, H.H.; Parfitt, D.P. [and others

    1997-11-01

    Development of new catalysts is a promising approach to more efficient coal liquefaction. It has been recognized that dispersed catalysts are superior to supported catalysts for primary liquefaction of coals, because the control of initial coal dissolution or depolymerization requires intimate contact between the catalyst and coal. This research is a fundamental and exploratory study on catalytic coal liquefaction, with the emphasis on exploring novel bimetallic dispersed catalysts for coal liquefaction and the effectiveness of temperature-programmed liquefaction using dispersed catalysts. The primary objective of this research was to explore novel bimetallic dispersed catalysts from organometallic molecular precursors, that could be used in low concentrations but exhibit relatively high activity for efficient hydroliquefaction of coals under temperature-programmed conditions. We have synthesized and tested various catalyst precursors in liquefaction of subbituminous and bituminous coals and in model compound studies to examine how do the composition and structure of the catalytic precursors affect their effectiveness for coal liquefaction under different reaction conditions, and how do these factors affect their catalytic functions for hydrogenation of polyaromatic hydrocarbons, for cleavage of C-C bonds in polycyclic systems such as 4-(1-naphthylmethyl)bibenzyl, for hydrogenolysis of C-O bond such as that in dinaphthylether, for hydrodeoxygenation of phenolic compounds and other oxygen-containing compounds such as xanthene, and for hydrodesulfurization of polycyclic sulfur compounds such as dibenzothiophene. The novel bimetallic and monometallic precursors synthesized and tested in this project include various Mo- and Fe-based compounds.

  20. Magnetic Fe@g-C3N4: A Photoactive Catalyst for the Hydrogenation of Alkenes and Alkynes

    Science.gov (United States)

    A photoactive catalyst, Fe@g-C3N4, has been developed for the hydrogenation of alkenes and alkynes using hydrazine hydrate as a source of hydrogen. The magnetically separable Fe@g-C3N4 eliminates the use of high pressure hydrogenation and the reaction can be accomplished using vi...

  1. Hydrotreating NiMo/sepiolite catalysts: influence of catalyst preparation on activity for HDS, hydrogenation and chain isomerization reactions

    International Nuclear Information System (INIS)

    Melo, F.V.; Sanz, E.; Corma, A.; Mifsud, A.

    1987-01-01

    A series of NiMo catalysts supported on a sepiolite: a) in its natural state, b) modified by acid leaching, and c) modified by cation exchange, have been prepared. The preparation variables studied were: Method of metal deposition, amount of active phase, sepiolite pretreatment, and temperature and time of sulfurization. The catalytic activity for HDS, hydrogenation, and cracking-isomerization has been studied by feeding a thiophene-cyclohexene-cyclohexane mixture and carrying out the reaction in the following conditions: 300 0 and 400 0 C reaction temperature, 20 Kg.cm -2 total pressure, and 3 to 1 molar ratio of H 2 to hydrocarbons. An optimium for HDS and hydrogenation activity was found for a 12% wt MoO 3 , and 5% wt NiO, prepared by simultaneous impregnation by the pore volume method at Ph = 5.0. The optimum conditions with these catalysts are 400 0 C and 3 hours of sulfurization. An increase in the acidity of the support produces a decrease of HDS and hydrogenation and an increase of the cracking-isomerization activities. A good correlation between HDS and the concentration of an XNiO.MoO 3 phase is found. The XNiO.MoO 3 phase is completely sulfurized to a modified MoS 2 , while NiMoO 4 and MoO 3 are only slightly sulfurized. 31 refs.; 7 figs.; 1 table

  2. Fischer-Tropsch Performance of an SiO2-Supported Co-Based Catalyst Prepared by Hydrogen Dielectric-Barrier Discharge Plasma

    International Nuclear Information System (INIS)

    Fu Tingjun; Huang Chengdu; Lv Jing; Li Zhenhua

    2014-01-01

    A silica-supported cobalt catalyst was prepared by hydrogen dielectric-barrier discharge (H 2 -DBD) plasma. Compared to thermal hydrogen reduction, H 2 -DBD plasma treatment can not only fully decompose the cobalt precursor but also partially reduce the cobalt oxides at lower temperature and with less time. The effect of the discharge atmosphere on the property of the plasma-prepared catalyst and the Fischer-Tropsch synthesis activity was studied. The results indicate that H 2 -DBD plasma treatment is a promising alternative for preparing Co/SiO 2 catalysts from the viewpoint of energy savings and efficiency

  3. Magnetic nickel ferrite nanoparticles as highly durable catalysts for catalytic transfer hydrogenation of bio-based aldehydes

    DEFF Research Database (Denmark)

    He, Jian; Yang, Song; Riisager, Anders

    2018-01-01

    Magnetic nickel ferrite (NiFe2O4) nanoparticles were exploited as stable and easily separable heterogeneous catalysts for catalytic transfer hydrogenation (CTH) of furfural to furfuryl alcohol with 2-propanol as both the hydrogen source and the solvent providing 94% product yield at 180 degrees C...

  4. Synthesis and characterization of novel intermetallic catalysts for hydrogenation of carbon dioxide to methanol

    DEFF Research Database (Denmark)

    Fiordaliso, Elisabetta Maria; Sharafutdinov, Irek; Chorkendorff, Ib

    Novel Ni5Ga3 and Pd2Ga catalysts for CO2 hydrogenation to methanol are prepared by impregnation of aqueous Ni-Ga or Pd-Ga solutions of metal nitrates into high surface area SiO2, followed by drying, calcinations and reduction of the precursor in a H2 flow. Steady state experiments are performed...... in a reactor at atmospheric pressure and stoichiometric CO2/H2 mixture, while reaction products are analyzed by gas chromatography. The results are compared to the highly optimized Cu/ZnO/Al2O3. The activity and selectivity of the novel catalysts is close to that of Cu/ZnO/Al2O3 and the equilibrium conversion...... to CH3OH is found to be higher. XRD and XRF are used to investigate the phase and composition of the supported catalysts at the 5 stages of testing, i.e. after drying, calcination, reduction, CO2 hydrogenation, rapid ageing. SEM and TEM images of the exact same locations are acquired after each of the 5...

  5. Session 4: High-throughput screening of supported catalysts for CO{sub x}-free hydrogen production from ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Hongchao, Liu; Hua, Wang; Zhongmin, Liu; Jianghan, Shen [Natural Gas Utilization and Applied Catalysis Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. (China)

    2004-07-01

    In this paper, we used a multi-stream mass spectrometer screening (MSMSS) technique and a multi-stream reactor to select promising candidates from supported transition metal catalyst library, and then combinatorially nitrided and tested silica and SAB-15 supported Mo catalysts for hydrogen production from ammonia. (authors)

  6. Selective Hydrogenation of m-Dinitrobenzene to m-Nitroaniline over Ru-SnOx/Al2O3 Catalyst

    Directory of Open Access Journals (Sweden)

    Haiyang Cheng

    2014-07-01

    Full Text Available Series catalysts of Ru-SnOx/Al2O3 with varying SnOx loading of 0–3 wt% were prepared, and their catalytic activity and selectivity have been discussed and compared for the selective hydrogenation of m-dinitrobenzene (m-DNB to m-nitroaniline (m-NAN. The Ru-SnOx/Al2O3 catalysts were characterized by X-ray powder diffraction (XRD, X-ray photoelectron spectroscopy (XPS, transmission electron microscopy (TEM and hydrogen temperature-programmed reduction (H2-TPR and desorption (H2-TPD. Under the modification of SnOx, the reaction activity increased obviously, and the best selectivity to m-NAN reached above 97% at the complete conversion of m-DNB. With the increasing of the SnOx loading, the amount of active hydrogen adsorption on the surface of the catalyst increased according to the H2-TPD analysis, and the electron transferred from Ru to SnOx species, as determined by XPS, inducing an electron-deficient Ru, which is a benefit for the absorption of the nitro group. Therefore, the reaction rate and product selectivity were greatly enhanced. Moreover, the Ru-SnOx/Al2O3 catalyst presented high stability: it could be recycled four times without any loss in activity and selectivity.

  7. Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution

    DEFF Research Database (Denmark)

    Hou, Yidong; Abrams, Billie L.; Vesborg, Peter Christian Kjærgaard

    2011-01-01

    The production of fuels from sunlight represents one of the main challenges in the development of a sustainable energy system. Hydrogen is the simplest fuel to produce and although platinum and other noble metals are efficient catalysts for photoelectrochemical hydrogen evolution, earth...... that harvests red photons in the solar spectrum. The current densities at the reversible potential match the requirement of a photoelectrochemical hydrogen production system with a solar-to-hydrogen efficiency in excess of 10% (ref. 16). The experimental observations are supported by density functional theory......-abundant alternatives are needed for large-scale use. We show that bioinspired molecular clusters based on molybdenum and sulphur evolve hydrogen at rates comparable to that of platinum. The incomplete cubane-like clusters (Mo3S 4) efficiently catalyse the evolution of hydrogen when coupled to a p-type Si semiconductor...

  8. Design of heterogeneous catalysts

    DEFF Research Database (Denmark)

    Frey, Anne Mette

    was inspired by a computational screening, suggesting that alloys such as Ni-Fe, Co-Ni, and Co-Fe should show superior activity to the industrially used nickel catalyst. Especially the Ni-Fe system was considered to be interesting, since such alloy catalysts should be both more active and cheaper than the Ni...... catalyst. The results from the screening were experimentally verified for CO hydrogenation, CO2 hydrogenation, and simultaneous CO and CO2 hydrogenation by bimetallic Ni-Fe catalysts. These catalysts were found to be highly active and selective. The Co-Ni and Co-Fe systems were investigated for CO...... well, and the best catalyst prepared had a C5+ yield almost a factor of two higher than a standard air calcined Co catalyst. In the NH3-SCR reaction it is desirable to develop an active and stable catalyst for NOx removal in automotive applications, since the traditionally used vanadium-based catalyst...

  9. New catalysts for selective hydrogenation of diene and acetylene hydrocarbons into olefins

    Energy Technology Data Exchange (ETDEWEB)

    Frolov, V.M.; Parenago, O.P.; Shuikina, L.P.

    1978-12-01

    New catalysts for selective hydrogenation of diene and acetylene hydrocarbons into olefins were obtained by reacting aqueous palladium, rhodium, or nickel chloride (0.005-0.05 mole/l.) at 50/sup 0/C, in an argon atmosphere with chelating nitrogen compounds, i.e., o-phenanthroline, ..cap alpha..,..cap alpha..'-dipyridyl, sodium ethylenediaminetetracetate, morpholine, branched polyethylene imines, or amino acids such as glycine, ..cap alpha..-alanine, ..beta..-phenyl-..cap alpha..-alanine, tyrosine, or histidine, and treating the complexes so obtained with sodium borohydride at 1:1-1:5 NaBH/sub 4/-metal ratios, in an aqueous medium. Palladium-based complexes showed the highest activities (20-98Vertical Bar3< conversion) and selectivities (98-100Vertical Bar3<) in heterogeneous hydrogenation of cyclopentadiene, butadiene, 1-hexyne, 1,3-cyclohexadiene, or 1,3-cyclooctadiene at 20/sup 0/-60/sup 0/C and 0.5-15 atm hydrogen, carried out in a kinetic circulation reactor or a metallic autoclave. Thus, a catalytic system based on PdCl/sub 2/ and ..beta..-phenyl-..cap alpha..-alanine converted 98Vertical Bar3< of cyclopentadiene to cyclopentene with 99Vertical Bar3< selectivity. The palladium-based catalyst did not deactivate on the contact with air.

  10. A Green Process for High-Concentration Ethylene and Hydrogen Production from Methane in a Plasma-Followed-by-Catalyst Reactor

    International Nuclear Information System (INIS)

    Wang Kangjun; Li Xiaosong; Zhu Aimin

    2011-01-01

    A green process for the oxygen-free conversion of methane to high-concentration ethylene and hydrogen in a plasma-followed-by-catalyst (PFC) reactor is presented. Without any catalysts and with pure methane used as the feed gas, a stable kilohertz spark discharge leads to an acetylene yield of 64.1%, ethylene yield of 2.5% and hydrogen yield of 59.0% with 80.0% of methane conversion at a methane flow rate of 50 cm 3 /min and a specific input energy of 38.4 kJ/L. In the effluent gas from a stable kilohertz spark discharge reactor, the concentrations of acetylene, ethylene and hydrogen were 18.1%, 0.7% and 66.9%, respectively. When catalysts Pd-Ag/SiO 2 were employed in the second stage with discharge conditions same as in the case of plasma alone, the PFC reactor provides an ethylene yield of 52.1% and hydrogen yield of 43.4%. The concentrations of ethylene and hydrogen in the effluent gas from the PFC reactor were found to be as high as 17.1% and 62.6%, respectively. Moreover, no acetylene was detected in the effluent gas. This means that a high concentration of ethylene and oxygen-free hydrogen can be co-produced directly from methane in the PFC reactor.

  11. Development of styrene divinyl benzene catalyst in isotopic exchange reaction of water and hydrogen

    International Nuclear Information System (INIS)

    Morishita, Teizo; Noda, Shigeyuki; Tan, Tsutomu; Noguchi, Hiroshi

    1982-01-01

    Styrene divinyl benzene copolymer (SDBC) is hydrophobic, and porous with large specific surface area. Utilizing these properties, the SDBC was used for the carrier of catalyst in water-hydrogen exchange reaction process, and the hydrophobic platinum catalyst with very high performance was able to be developed. However, the SDBC is usually fine particles smaller than 1 mm, and is not suitable as the filling catalyst for exchange reaction towers. Therefore, in this study, using only platinum as a catalyst metal, the improvement of the property of carriers was emphatically examined, and platinum bearing was proved with an optical or electron microscope. As the result, it was found that the SDBC catalyst showed high activity practically usable as the hydrophobic catalyst for heavy water or tritium exchange reaction. The characteristics of SDBC are explained. The manufacturing processes of the catalyst by making SDBC carriers with fine particles and letting them bear platinum are described. The results of the trial manufacture of spherical, extrusion-formed and honeycomb carrier catalysts are reported. Platinum must be dispersed over the large specific surface area of SDBC carriers. (Kako, I.)

  12. Selective production of oxygenates from CO2 hydrogenation over mesoporous silica supported Cu-Ga nanocomposite catalyst

    KAUST Repository

    Huang, Kuo-Wei

    2017-11-23

    Carbon dioxide hydrogenation to oxygenates (methanol and dimethyl ether (DME)) was investigated over bifunctional supported copper catalysts promoted with gallium (Ga). Supported Cu-Ga nanocomposite catalysts were characterized by X-ray diffraction, transmission electron microscopy with energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy and H2 temperature programmed reduction. In comparison with Cu-SBA-15 based catalysts, Ga promoted catalysts prepared by the urea deposition method (CuGa/SBA-15-UDP) was found active and selective for CO2 hydrogenation to oxygenates. The use of Ga as the promoter showed increased acidic sites as confirmed by the NH3-TPD, Pyridine-IR and 2,6-lutidine-IR studies. The favorable effect of Ga on CO2 conversion and selectivity to oxygenate may come from the strong interaction of Ga with silica, which is responsible for the enhanced metal surface area, formation of nanocomposite and metal dispersion. Notably, incorporation of Ga to Cu/SiO2 showed a several-fold higher rate for methanol formation (13.12 mol/gCu·sec) with a reasonable rate for the DME formation (2.15 mol/gCu·sec) as compared to those of Cu/SiO2 catalysts.

  13. The deuterium-exchange reaction between water and hydrogen with the thin-film hydrophobic catalyst

    International Nuclear Information System (INIS)

    Yamashita, Hisao; Mizumoto, Mamoru; Matsuda, Shimpei

    1985-01-01

    The deuterium-exchange reaction between water and hydrogen with a hydrophobic catalyst was studied. The hydrophobic catalyst was composed of platinum as an active component and porous poly(tetrafluoroethylene) (PTFE) as a support. The PTFE support was in two forms, i.e., (a) a pellet and (b) a thin-film with the thickness of 50 μm. The primary purpose of the thin film hydrophobic catalyst was to reduce the platinum usage in the reactor. The activity of the catalyst was measured in a trickle bed reactor at atmospheric pressure and temperature of 20 ∼ 70 deg C. It has been found that the employment of the thin-film catalyst reduced the platinum usage to 1/5 of the reactor in the case of using a conventional catalyst. Platinum particles on the thin-film catalyst work efficiently because the reactants were easily diffused to the active sites. It has also been found that the isotopic exchange rate with the thin-film catalyst increased with the increase in the ratio of liquid/gas and increased with the rise of the reaction temperature. It was found from an endurance test that the activity of the thin-film catalyst decreased gradually due to the condensation of water vapor in the catalyst, but was regenarated by heating the catalyst to remove the condensed water. (author)

  14. Photo-electrocatalytic hydrogen generation at dye-sensitised electrodes functionalised with a heterogeneous metal catalyst

    International Nuclear Information System (INIS)

    Hoogeveen, Dijon A.; Fournier, Maxime; Bonke, Shannon A.; Fang, Xi-Ya; Mozer, Attila J.; Mishra, Amaresh; Bäuerle, Peter; Simonov, Alexandr N.; Spiccia, Leone

    2016-01-01

    Dye-sensitised photocathodes promoting hydrogen evolution are usually coupled to a catalyst to improve the reaction rate. Herein, we report on the first successful integration of a heterogeneous metal particulate catalyst, viz., Pt aggregates electrodeposited from acidic solutions on the surface of a NiO-based photocathode sensitised with a p-type perylenemonoimid-sexithiophene-triphenylamine dye (PMI-6T-TPA). The platinised dye-NiO electrodes generate photocurrent density of ca −0.03 mA cm −2 (geom.) with 100% faradaic efficiency for the H 2 evolution at 0.059 V vs. reversible hydrogen electrode under 1 sun visible light irradiation (AM1.5G, 100 mW cm −2 , λ > 400 nm) for more than 10 hours in 0.1 M H 2 SO 4 (aq.). The Pt-free dye-NiO and dye-free Pt-modified NiO cathodes show no photo-electrocatalytic hydrogen evolution under these conditions. The performance of these Pt-modified PMI-6T-TPA-based photoelectrodes compares well to that of previously reported dye-sensitised photocathodes for H 2 evolution.

  15. Effect of Ce and Zr Addition to Ni/SiO2 Catalysts for Hydrogen Production through Ethanol Steam Reforming

    Directory of Open Access Journals (Sweden)

    Jose Antonio Calles

    2015-01-01

    Full Text Available A series of Ni/Ce\\(_{x}\\Zr\\(_{1-x}\\O\\(_{2}\\/SiO\\(_{2}\\ catalysts with different Zr/Ce mass ratios were prepared by incipient wetness impregnation. Ni/SiO\\(_{2}\\, Ni/CeO\\(_{2}\\ and Ni/ZrO\\(_{2}\\ were also prepared as reference materials to compare. Catalysts' performances were tested in ethanol steam reforming for hydrogen production and characterized by XRD, H\\(_{2}\\-temperature programmed reduction (TPR, NH\\(_{3}\\-temperature programmed desorption (TPD, TEM, ICP-AES and N\\(_{2}\\-sorption measurements. The Ni/SiO\\(_{2}\\ catalyst led to a higher hydrogen selectivity than Ni/CeO\\(_{2}\\ and Ni/ZrO\\(_{2}\\, but it could not maintain complete ethanol conversion due to deactivation. The incorporation of Ce or Zr prior to Ni on the silica support resulted in catalysts with better performance for steam reforming, keeping complete ethanol conversion over time. When both Zr and Ce were incorporated into the catalyst, Ce\\(_{x}\\Zr\\(_{1-x}\\O\\(_{2}\\ solid solution was formed, as confirmed by XRD analyses. TPR results revealed stronger Ni-support interaction in the Ce\\(_{x}\\Zr\\(_{1-x}\\O\\(_{2}\\-modified catalysts than in Ni/SiO\\(_{2}\\ one, which can be attributed to an increase of the dispersion of Ni species. All of the Ni/Ce\\(_{x}\\Zr\\(_{1-x}\\O\\(_{2}\\/SiO\\(_{2}\\ catalysts exhibited good catalytic activity and stability after 8 h of time on stream at 600°. The best catalytic performance in terms of hydrogen selectivity was achieved when the Zr/Ce mass ratio was three.

  16. Catalytic biomass conversion methods, catalysts, and methods of making the same

    Science.gov (United States)

    Delgass, William Nicholas; Agrawal, Rakesh; Ribeiro, Fabio Henrique; Saha, Basudeb; Yohe, Sara Lynn; Abu-Omar, Mahdi M; Parsell, Trenton; Dietrich, Paul James; Klein, Ian Michael

    2017-10-10

    Described herein are processes for one-step delignification and hydrodeoxygenation of lignin fraction a biomass feedstock. The lignin feedstock is derived from by-products of paper production and biorefineries. Additionally described is a process for converting biomass-derived oxygenates to lower oxygen-content compounds and/or hydrocarbons in the liquid or vapor phase in a reactor system containing hydrogen and a catalyst comprised of a hydrogenation function and/or an oxophilic function and/or an acid function. Finally, also described herein is a process for converting biomass-derived oxygenates to lower oxygen-content compounds and/or hydrocarbons in the liquid or vapor phase in a reactor system containing hydrogen and a catalyst comprised of a hydrogenation function and/or an oxophilic function and/or an acid function.

  17. Development of Catalysts for the Hydrogenation of the Aromatic Ring in Gasolines

    Directory of Open Access Journals (Sweden)

    L. R. Sassykova

    2018-01-01

    Full Text Available Liquid-phase hydrogenation of benzene ring in gasoline fractions of Atyrau Oil Refinery LLP (Kazakhstan was studied. Mono- and bimetallic catalysts on the basis of platinum metals on various carriers were synthesized. It was succeeded to reduce aromatic compounds content (totally for “hydrogenate” fraction to 0.6–4.64 % (in initial gasoline – 11.2 %, and also to completely exclude the content of benzene from final sample or to reduce its quantity to 0.06 % (in the initial sample – 2.54 %. For the fraction “stable catalysate” benzene content was reduced to 0.15 wt. % (in the initial sample –5.17 % wt., benzene conversion – 97 %. For the fraction “hydrogenate” aromatic compounds content was decreased from 13.70 to 2.26 wt.%. For the “stable catalysate” an amount of aromatic compounds was reduced from 51.5 to 22.96 wt.%. At catalytic hydrodearomatization of the gasoline fractions octane number was not reduced.

  18. Development of wet-proofed catalyst and catalytic exchange process for tritium extraction

    Energy Technology Data Exchange (ETDEWEB)

    Song, Myung Jae; Son, Soon Hwan; Chung, Yang Gun; Lee, Gab Bock [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center

    1996-12-31

    To apply a liquid phase catalytic exchange(LPCE) process for the tritium extraction from tritiated heavy water, the wet proofed catalyst to allow the hydrogen isotopic exchange reaction between liquid water and hydrogen gas was developed. A styrene divinyl benzene copolymer was selected as am effective catalyst support and prepared by suspension copolymerization. After post-treatment, final catalyst supports were dipped in chloroplatinic acid solution. The catalyst support had a good physical properties at a particular preparation condition. The catalytic performance was successfully verified through hydrogen isotopic exchange reaction in the exchange column. A mathematical model for the tritium removal process consisted of LPCE front-ended process and cryogenic distillation process was established using the NTU-HTU method for LPCE column and the FUG method for cryogenic distillation column, respectively. A computer program was developed using the model and then used to investigate optimum design variables which affect the size of columns and tritium inventory (author). 84 refs., 113 figs.

  19. The TiCl{sub 3} catalyst in NaAlH{sub 4} for hydrogen storage induces grain refinement and impacts on hydrogen vacancy formation

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S.; Eijt, S.W.H. [Fundamental Aspects of Materials and Energy, Department of Radiation, Radionuclides and Reactors, Faculty of Applied Sciences, Delft University of Technology, Delft (Netherlands); Huot, J. [Universite du Quebec a Trois Rivieres, Quebec (Canada); Kockelmann, W.A. [ISIS, Rutherford Appleton Laboratory, Chilton, Oxfordshire (United Kingdom); Wagemaker, M. [Fundamental Aspects of Materials and Energy, Department of Radiation, Radionuclides and Reactors, Faculty of Applied Sciences, Delft University of Technology, Delft (Netherlands); Mulder, F.M. [Fundamental Aspects of Materials and Energy, Department of Radiation, Radionuclides and Reactors, Faculty of Applied Sciences, Delft University of Technology, Delft (Netherlands)], E-mail: f.m.mulder@tudelft.nl

    2007-09-15

    TiCl{sub 3} acts as an efficient catalyst for NaAlH{sub 4} (sodium alanate), altering its hydrogen sorption kinetics and reversibility considerably. In order to clarify its role, we performed in situ neutron diffraction experiments on protonated catalysed and uncatalysed NaAlH{sub 4}. The phase transformations were monitored in the first two reaction steps during hydrogen release and in the second step during reloading. Our study for the first time provides clear indications that both Ti{sub x}Al{sub 1-x} and NaCl formed act as grain refiner for Al and NaH, respectively, preventing particle growth. Particle sizes generally stay small upon desorption and reloading of TiCl{sub 3} catalysed NaAlH{sub 4}, while significant particle growth is observed for uncatalysed NaAlH{sub 4}. The small crystallite sizes and observed hydrogen vacancy formation greatly facilitate the mass transfer during loading and unloading. This study underlines the importance of grain refining for achieving reversibility and faster kinetics of the hydrogen sorption processes, with a crucial double role played by the catalyst.

  20. Adsorption and desorption of hydrogen and carbon monoxide were studied on alumina-supported iridium catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Etherton, B.P.

    1980-01-01

    The adsorption and desorption of hydrogen and carbon monoxide were studied on alumina-supported iridium catalysts which were examined by a scanning transmission electron microscope (STEM). The metal particle size and number of particles per area of catalyst increased with increasing metal loading. The particles were approx. 10 A. in diameter, cubo-octahedral shaped, and approx. 80-90% disperse. The STEM electron beam caused negligible damage to the samples. Hydrogen adsorption measurements showed that the hydrogen-iridium atom ratio was 1.2:1-1.3:1 and increased with decreasing metal loading. Temperature-programed desorption showed four types of adsorbed hydrogen desorbing at -90/sup 0/C (I), 15/sup 0/C (IV), 115/sup 0/C (II), and 245/sup 0/C (III). Types II and IV desorb from single atom sites and Types I and III from multiple atom sites. Type I is in rapid equilibrium with the gas phase. All desorption processes appear to be first order. Carbon monoxide adsorbed nondissociatively at 25/sup 0/C with approx. 0.7:1 CO/Ir atom ratio. It adsorbed primarily in linear forms at low coverage, but a bridged form appeared at high coverage.

  1. Hydrogenation of Anthracene in Supercritical Carbon Dioxide Solvent Using Ni Supported on Hβ-Zeolite Catalyst

    Directory of Open Access Journals (Sweden)

    Ashraf Aly Hassan

    2012-01-01

    Full Text Available Catalytic hydrogenation of anthracene was studied over Ni supported on Hβ-zeolite catalyst under supercritical carbon dioxide (sc-CO2 solvent. Hydrogenation of anthracene in sc-CO2 yielded 100% conversion at 100 °C, which is attributed to the reduced mass transfer limitations, and increased solubility of H2 and substrate in the reaction medium. The total pressure of 7 MPa was found to be optimum for high selectivity of octahydroanthracene (OHA. The conversion and selectivity for OHA increased with an increase in H2 partial pressure, which is attributed to higher concentration of hydrogen atoms at higher H2 pressures. The selectivity reduced the pressure below 7 MPa because of enhanced desorption of the tetrahydro-molecules and intermediates from Ni active sites, due to higher solubility of the surface species in sc-CO2. The selectivity of OHA increased with the increase in catalyst weight and reaction time. The rate of hydrogenation of anthracene was compared with that found for napthalene and phenanthrene. The use of acetonitrile as co-solvent or expanded liquid with CO2 decreased the catalytic activity.

  2. Novel thin/tunable gas diffusion electrodes with ultra-low catalyst loading for hydrogen evolution reactions in proton exchange membrane electrolyzer cells

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Zhenye; Yang, Gaoqiang; Mo, Jingke; Li, Yifan; Yu, Shule; Cullen, David A.; Retterer, Scott T.; Toops, Todd J.; Bender, Guido; Pivovar, Bryan S.; Green, Johney B.; Zhang, Feng-Yuan

    2018-05-01

    Proton exchange membrane electrolyzer cells (PEMECs) have received great attention for hydrogen/oxygen production due to their high efficiencies even at low-temperature operation. Because of the high cost of noble platinum-group metal (PGM) catalysts (Ir, Ru, Pt, etc.) that are widely used in water splitting, a PEMEC with low catalyst loadings and high catalyst utilizations is strongly desired for its wide commercialization. In this study, the ultrafast and multiscale hydrogen evolution reaction (HER) phenomena in an operating PEMEC is in-situ observed for the first time. The visualization results reveal that the HER and hydrogen bubble nucleation mainly occur on catalyst layers at the rim of the pores of the thin/tunable liquid/gas diffusion layers (TT-LGDLs). This indicates that the catalyst material of the conventional catalyst-coated membrane (CCM) that is located in the middle area of the LGDL pore is underutilized/inactive. Based on this discovery, a novel thin and tunable gas diffusion electrode (GDE) with a Pt catalyst thickness of 15 nm and a total thickness of about 25 um has been proposed and developed by taking advantage of advanced micro/nano manufacturing. The novel thin GDEs are comprehensively characterized both ex-situ and in-situ, and exhibit excellent PEMEC performance. More importantly, they achieve catalyst mass activity of up to 58 times higher than conventional CCM at 1.6 V under the operating conditions of 80 degrees C and 1 atm. This study demonstrates a promising concept for PEMEC electrode development, and provides a direction of future catalyst designs and fabrications for electrochemical devices.

  3. Selective Hydrogenation of Furfural to Furfuryl Alcohol in the Presence of a Recyclable Cobalt/SBA-15 Catalyst.

    Science.gov (United States)

    Audemar, Maïté; Ciotonea, Carmen; De Oliveira Vigier, Karine; Royer, Sébastien; Ungureanu, Adrian; Dragoi, Brindusa; Dumitriu, Emil; Jérôme, François

    2015-06-08

    The hydrogenation of furfural to furfuryl alcohol was performed in the presence of a Co/SBA-15 catalyst. High selectivity (96 %) at a conversion higher than 95 % is reported over this catalytic system. As the conversion of furfural to furfuryl alcohol occurs over metallic Co sites, the effect of reduction temperature, H2 pressure, and reaction temperature were studied. Optimum reaction conditions were: 150 °C, 1.5 h, 2.0 MPa of H2 . The catalyst was recyclable, and furfuryl alcohol was recovered with a purity higher than 90 %. The effect of the solvent concentration was also studied. With a minimum of 50 wt % of solvent, the selectivity to furfuryl alcohol and the conversion of furfural remained high (both over 80 %). Likewise, the activity of the catalyst is maintained even in pure furfural, which confirms the real potential of the proposed catalytic system. This catalyst was also used in the hydrogenation of levulinic acid to produce γ-valerolactone selectively. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. One-Step Condensation and Hydrogenation of Furfural-Acetone Using Mixed and Single Catalyst Based on Ni/M-Oxide [M=Al; Mg

    Science.gov (United States)

    Ulfa, S. M.; Pramesti, I. N.; Mustafidah, H.

    2018-01-01

    Modification of furfural by condensation and hydrogenation reaction is a promising approach to produce higher alkane derivatives (C8-C13) as diesel fraction. This research investigated the catalytic activity of Ni/MgO as bifunctional catalyst compared with MgO-Ni/Al2O3 mixed catalyst for condensation-hydrogenation reaction. The Ni/MgO and Ni/Al2O3 with 20% Ni loading were prepared by wet impregnation methods using Ni(NO3)2.6H2O salt, calcined and reduced at 500°C. The catalyst performance was tested for one-step condensation-hydrogenation reaction using autoclave oil batch reactor. The reaction was conducted by reacting furfural and acetone in 1:1 ratio using water as solvent. Condensation reaction was performed at 100°C for 8 hours, followed by hydrogenation at 120°C during 7 hours. Analysis by gas chromatography showed that C=C double bond of furfurylidene acetone were successfully hydrogenated. Using Ni/MgO catalyst at 120°C, the products were identified as 1,5-bis-(2-furanyl)-1,4-penta-1-ene-3-one (2.68%) and 1,5-bis-(2-furanyl)-1,4-pentan-3-one (trace amount). On the other hand, reaction using mixed catalyst, MgO-Ni/Al2O3 showed better activity over bifunctional Ni/MgO at the same reaction temperature. The products were identified as 4-(2-furanyl)-3-butan-2-one (27.30%); 1,5-bis-(2-furanyl)-1,4-penta-1-ene-3-one (3.82%) and 1,5-bis-(2-furanyl)-1,4-pentan-3-one (1.11%). The impregnation of Ni on MgO decrease the physical properties of catalyst, confirmed by surface area analysis (SAA).

  5. Integrative CO2 Capture and Hydrogenation to Methanol with Reusable Catalyst and Amine: Toward a Carbon Neutral Methanol Economy.

    Science.gov (United States)

    Kar, Sayan; Sen, Raktim; Goeppert, Alain; Prakash, G K Surya

    2018-02-07

    Herein we report an efficient and recyclable system for tandem CO 2 capture and hydrogenation to methanol. After capture in an aqueous amine solution, CO 2 is hydrogenated in high yield to CH 3 OH (>90%) in a biphasic 2-MTHF/water system, which also allows for easy separation and recycling of the amine and catalyst for multiple reaction cycles. Between cycles, the produced methanol can be conveniently removed in vacuo. Employing this strategy, catalyst Ru-MACHO-BH and polyamine PEHA were recycled three times with 87% of the methanol producibility of the first cycle retained, along with 95% of catalyst activity after four cycles. CO 2 from dilute sources such as air can also be converted to CH 3 OH using this route. We postulate that the CO 2 capture and hydrogenation to methanol system presented here could be an important step toward the implementation of the carbon neutral methanol economy concept.

  6. Addition of titanium as a potential catalyst for a high-capacity hydrogen storage medium (abstract only)

    International Nuclear Information System (INIS)

    Zuliani, F; Baerends, E J

    2008-01-01

    In recent years there has been increased interest in the characterization of titanium as a catalyst for high-capacity hydrogen storage materials. A first-principles study (Yildirim and Ciraci 2005 Phys. Rev. Lett. 94 175501) demonstrated that a single Ti atom coated on a single-walled nanotube (SWNT) binds up to four hydrogen molecules. The bonding was claimed to be an 'unusual combination of chemisorption and physisorption'. We report an ab initio study by means of the ADF program, which provides a complete insight into the donation/back-donation mechanism characterizing the bond between the Ti atom and the four H 2 molecules, and a full understanding of the catalytic role played by the Ti atom. In addition, we found that the same amount of adsorbed hydrogen can be stored using benzene support for Ti in place of the SWNT, due to the dominant local contribution of the hexagonal carbon ring surrounding the Ti atom. The benzene-Ti-H 2 bonding is discussed on the basis of molecular orbital interaction schemes as provided by ADF. This result advances our insight into the role of titanium as a catalyst and suggests new routes to better storage through different combinations of supports and catalysts

  7. Steam dealkylation catalyst and a method for its activation

    International Nuclear Information System (INIS)

    Dorawala, T.; Reinhard, R.

    1980-01-01

    The method of activating a supported catalyst containing oxides of a group viii metal and of a group 1 a metal which comprises heating said catalyst at a rate of 10 0 to 500 0 F/hr to a temperature of 650 0 to 1400 0 F in a hydrogen atmosphere; maintaining said heated catalyst in a hydrogen atmosphere at 650 0 to 1400 0 F for 2 to 30 hours thereby forming a hydrogen-treated catalyst; and maintaining the hydrogen-treated catalyst in a steam-hydrogen atmosphere at 650 0 to 1400 0 F for 2 to 20 hours thereby forming a steamed hydrogen-treated catalyst

  8. Enhanced catalytic activity of the nanostructured Co-W-B film catalysts for hydrogen evolution from the hydrolysis of ammonia borane.

    Science.gov (United States)

    Li, Chao; Wang, Dan; Wang, Yan; Li, Guode; Hu, Guijuan; Wu, Shiwei; Cao, Zhongqiu; Zhang, Ke

    2018-08-15

    In this work, nanostructured Co-W-B films are successfully synthesized on the foam sponge by electroless plating method and employed as the catalysts with enhanced catalytic activity towards hydrogen evolution from the hydrolysis of ammonia borane (NH 3 BH 3 , AB) at room temperature. The particle size of the as-prepared Co-W-B film catalysts is varied by adjusting the depositional pH value to identify the most suitable particle size for hydrogen evolution of AB hydrolysis. The Co-W-B film catalyst with the particle size of about 67.3 nm shows the highest catalytic activity and can reach a hydrogen generation rate of 3327.7 mL min -1 g cat -1 at 298 K. The activation energy of the hydrolysis reaction of AB is determined to be 32.2 kJ mol -1 . Remarkably, the as-obtained Co-W-B film is also a reusable catalyst preserving 78.4% of their initial catalytic activity even after 5 cycles in hydrolysis of AB at room temperature. Thus, the enhanced catalytic activity illustrates that the Co-W-B film is a promising catalyst for AB hydrolytic dehydrogenation in fuel cells and the related fields. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Gas-phase Hydrogenation of Crotonaldehyde Over Nickel-on-Kieselguhr Catalyst Pellets

    International Nuclear Information System (INIS)

    Uraz, C.; Atalay, F.; Atalay, S.

    2001-01-01

    Gas phase catalytic hydrogenation of crotonaldehyde to η-butanol was investigated. A nickel based commercial catalyst produced by Harshaw was used at constant temperatures ranging from 160 to 210deg; at pressures of 1.5, 2 , and 2.5 atm and at different crotonaldehyde to hydrogen feed ratios changing from 0.134 to 0.226. The conversion of crotonaldehyde at different operating conditions were determined and the reaction rates were calculated . The experimental results were fitted to ten langmuir-Hinshelwood/ Eley Rideal type models in addition to a homogeneous kinetics modal and the best modal was identified. The effects of external and internal mass transfer resistances were found to be negligible .(authors) refs 28., 2 figs , 4 tabs

  10. The role of support morphology on the performance of Cu/ZnO-catalyst for hydrogenation of CO{sub 2} to methanol

    Energy Technology Data Exchange (ETDEWEB)

    Tasfy, Sara Faiz Hanna, E-mail: miss25208@gmail.com; Zabidi, Noor Asmawati Mohd, E-mail: noorasmawati-mzabidi@petronas.com.my; Shaharun, Maizatul Shima, E-mail: maizats@petronas.com.my; Subbarao, Duvvuri, E-mail: duvvuri-subbarao@petronas.com.my [Department of Chemical Engineering Chemical Engineering Department of Fundamental and Applied Sciences Universiti Teknologi PETRONAS Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2015-07-22

    The effects of SBA-15 support morphology on the activity of Cu/ZnO catalyst in the hydrogenation of CO{sub 2} to methanol was investigated. In the hydrogenation of CO{sub 2} to methanol at 210°C, 2.25 MPa, H{sub 2}/CO{sub 2} ratio of three remarkable difference was obtained using Cu/ZnO catalyst supported on SBA-15 with different morphology. The catalysts were characterized using N{sub 2}-adsorption, field emission scanning microscopy (FESEM/EDX), transmission electron microscopy (HRTEM), and temperature-programmed reduction (TPR). Characterization of the catalyst showed that support morphology, surface area, metals dispersion, and reducibility influenced the catalytic performance. On the fiber-shaped SBA-15, copper dispersion was 29 % whereas on the spherical-shaped SBA-15, the dispersion was 20 %. The experimental results showed that the catalyst supported over fiber-shaped SBA-15 exhibit higher CO{sub 2} conversion (13.96 %) and methanol selectivity (91.32 %) compare to catalyst supported over spherical-shaped SBA-15.

  11. KINETIC BEHAVIOR IN THE HYDROGENATION OF FURFURAL OVER IR CATALYSTS SUPPORTED ON TIO2

    OpenAIRE

    ROJAS, HUGO; MARTÍNEZ, JOSÉ J.; REYES, PATRICIO

    2010-01-01

    The kinetics of the liquid-phase hydrogenation of furfuraldehyde to furfuryl alcohol over Ir catalysts supported over TiO2 was studied in the temperature range of 323 to 373 K. The effect of furfural concentration, hydrogen pressure and the solvent effect were also studied. A high selectivity towards furfuryl alcohol was demonstrated. Initial rates describes the order global of the reaction. The experimental data could also be explained using the Langmuir-Hinshelwood model with of a single-si...

  12. Iron Phthalocyanine as New Efficient Catalyst for Catalytic Transfer Hydrogenation of Simple Aldehydes and Ketones

    Czech Academy of Sciences Publication Activity Database

    Bata, P.; Notheisz, F.; Klusoň, Petr; Zsigmond, A.

    2015-01-01

    Roč. 29, JAN 2015 (2015), s. 45-49 ISSN 0268-2605 Institutional support: RVO:67985858 Keywords : heterogenized complexes * catalytic transfer hydrogenation * reusable catalyst Subject RIV: CC - Organic Chemistry Impact factor: 2.452, year: 2015

  13. Reversible hydrogen storage using CO2 and a proton-switchable iridium catalyst in aqueous media under mild temperatures and pressures.

    Science.gov (United States)

    Hull, Jonathan F; Himeda, Yuichiro; Wang, Wan-Hui; Hashiguchi, Brian; Periana, Roy; Szalda, David J; Muckerman, James T; Fujita, Etsuko

    2012-03-18

    Green plants convert CO(2) to sugar for energy storage via photosynthesis. We report a novel catalyst that uses CO(2) and hydrogen to store energy in formic acid. Using a homogeneous iridium catalyst with a proton-responsive ligand, we show the first reversible and recyclable hydrogen storage system that operates under mild conditions using CO(2), formate and formic acid. This system is energy-efficient and green because it operates near ambient conditions, uses water as a solvent, produces high-pressure CO-free hydrogen, and uses pH to control hydrogen production or consumption. The extraordinary and switchable catalytic activity is attributed to the multifunctional ligand, which acts as a proton-relay and strong π-donor, and is rationalized by theoretical and experimental studies.

  14. New method for the hydrogen isotope exchange reaction in a hydrophobic catalyst bed

    International Nuclear Information System (INIS)

    Asakura, Y.; Kikuchi, M.; Yusa, H.

    1982-01-01

    To improve the isotope exchange reaction efficiency between water and hydrogen, a new reactor in which water mists and hydrogen gas react cocurrently was studied. To apply this to the enrichment of tritium in heavy water, a dual temperature isotope exchange reactor which is composed of cocurrent low temperature reactors and the usual countercurrent high temperature reactor was proposed and analyzed using a McCabe-Thiele diagram. By utilizing cocurrent reactors, in combination, the necessary catalyst volume can be reduced to one-tenth as compared with the usual countercurrent low temperature reactor. 17 refs

  15. Elucidating the Origin of Hydrogen Evolution Reaction Activity in Mono- and Bimetallic Metal- and Nitrogen-Doped Carbon Catalysts (Me-N-C).

    Science.gov (United States)

    Shahraei, Ali; Moradabadi, Ashkan; Martinaiou, Ioanna; Lauterbach, Stefan; Klemenz, Sebastian; Dolique, Stephanie; Kleebe, Hans-Joachim; Kaghazchi, Payam; Kramm, Ulrike I

    2017-08-02

    In this work, we present a comprehensive study on the role of metal species in MOF-based Me-N-C (mono- and bimetallic) catalysts for the hydrogen evolution reaction (HER). The catalysts are investigated with respect to HER activity and stability in alkaline electrolyte. On the basis of the structural analysis by X-ray diffraction, X-ray-induced photoelectron spectroscopy, and transmission electron microscopy, it is concluded that MeN 4 sites seem to dominate the HER activity of these catalysts. There is a strong relation between the amount of MeN 4 sites that are formed and the energy of formation related to these sites integrated at the edge of a graphene layer, as obtained from density functional theory (DFT) calculations. Our results show, for the first time, that the combination of two metals (Co and Mo) in a bimetallic (Co,Mo)-N-C catalyst allows hydrogen production with a significantly improved overpotential in comparison to its monometallic counterparts and other Me-N-C catalysts. By the combination of experimental results with DFT calculations, we show that the origin of the enhanced performance of our (Co,Mo)-N-C catalyst seems to be provided by an improved hydrogen binding energy on one MeN 4 site because of the presence of a second MeN 4 site in its close vicinity, as investigated in detail for our most active (Co,Mo)-N-C catalyst. The outstanding stability and good activity make especially the bimetallic Me-N-C catalysts interesting candidates for solar fuel applications.

  16. Catalytic Hydrogenation of Levulinic Acid in Water into g-Valerolactone over Bulk Structure of Inexpensive Intermetallic Ni-Sn Alloy Catalysts

    Directory of Open Access Journals (Sweden)

    Rodiansono Rodiansono

    2015-07-01

    Full Text Available A bulk structure of inexpensive intermetallic nickel-tin (Ni-Sn alloys catalysts demonstrated highly selective in the hydrogenation of levulinic acid in water into g-valerolactone. The intermetallic Ni-Sn catalysts were synthesized via a very simple thermochemical method from non-organometallic precursor at low temperature followed by hydrogen treatment at 673 K for 90 min. The molar ratio of nickel salt and tin salt was varied to obtain the corresponding Ni/Sn ratio of 4.0, 3.0, 2.0, 1.5, and 0.75. The formation of Ni-Sn alloy species was mainly depended on the composition and temperature of H2 treatment. Intermetallics Ni-Sn that contain Ni3Sn, Ni3Sn2, and Ni3Sn4 alloy phases are known to be effective heterogeneous catalysts for levulinic acid hydrogenation giving very excellence g-valerolactone yield of >99% at 433 K, initial H2 pressure of 4.0 MPa within 6 h. The effective hydrogenation was obtained in H2O without the formation of by-product. Intermetallic Ni-Sn(1.5 that contains Ni3Sn2 alloy species demonstrated very stable and reusable catalyst without any significant loss of its selectivity. © 2015 BCREC UNDIP. All rights reserved. Received: 26th February 2015; Revised: 16th April 2015; Accepted: 22nd April 2015  How to Cite: Rodiansono, R., Astuti, M.D., Ghofur, A., Sembiring, K.C. (2015. Catalytic Hydrogenation of Levulinic Acid in Water into g-Valerolactone over Bulk Structure of Inexpensive Intermetallic Ni-Sn Alloy Catalysts. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (2: 192-200. (doi:10.9767/bcrec.10.2.8284.192-200Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.2.8284.192-200  

  17. Novel catalysts for upgrading coal-derived liquids. Final technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, L.T.; Savage, P.E.; Briggs, D.E.

    1995-03-31

    Research described in this report was aimed at synthesizing and evaluating supported Mo oxynitrides and oxycarbides for the selective removal of nitrogen, sulfur and oxygen from model and authentic coal-derived liquids. The Al{sub 2}O{sub 3}-supported oxynitrides and oxycarbides were synthesized via the temperature programmed reaction of supported molybdenum oxides or hydrogen bronzes with NH{sub 3} or an equimolar mixture of CH{sub 4} and H{sub 2}. Phase constituents and composition were determined by X-ray diffraction, CHN analysis, and neutron activation analysis. Oxygen chemisorption was used to probe the surface structure of the catalysts. The reaction rate data was collected using specially designed micro-batch reactors. The Al{sub 2}O{sub 3}-supported Mo oxynitrides and oxycarbides were competitively active for quinoline hydrodenitrogenation (HDN), benzothiophene hydrodesulfurization (HDS) and benzofuran hydrodeoxygenation (HDO). In fact, the HDN and HDO specific reaction rates for several of the oxynitrides and oxycarbides were higher than those of a commercial Ni-Mo/Al{sub 2}O{sub 3} hydrotreatment catalyst. Furthermore, the product distributions indicated that the oxynitrides and oxycarbides were more hydrogen efficient than the sulfide catalysts. For HDN and HDS the catalytic activity was a strong inverse function of the Mo loading. In contrast, the benzofuran hydrodeoxygenation (HDO) activities did not appear to be affected by the Mo loading but were affected by the heating rate employed during nitridation or carburization. This observation suggested that HDN and HDS occurred on the same active sites while HDO was catalyzed by a different type of site.

  18. Hydrogen production with nickel powder cathode catalysts in microbial electrolysis cells

    KAUST Repository

    Selembo, Priscilla A.

    2010-01-01

    Although platinum is commonly used as catalyst on the cathode in microbial electrolysis cells (MEC), non-precious metal alternatives are needed to reduce costs. Cathodes were constructed using a nickel powder (0.5-1 μm) and their performance was compared to conventional electrodes containing Pt (0.002 μm) in MECs and electrochemical tests. The MEC performance in terms of coulombic efficiency, cathodic, hydrogen and energy recoveries were similar using Ni or Pt cathodes, although the maximum hydrogen production rate (Q) was slightly lower for Ni (Q = 1.2-1.3 m3 H2/m3/d; 0.6 V applied) than Pt (1.6 m3 H2/m3/d). Nickel dissolution was minimized by replacing medium in the reactor under anoxic conditions. The stability of the Ni particles was confirmed by examining the cathodes after 12 MEC cycles using scanning electron microscopy and linear sweep voltammetry. Analysis of the anodic communities in these reactors revealed dominant populations of Geobacter sulfurreduces and Pelobacter propionicus. These results demonstrate that nickel powder can be used as a viable alternative to Pt in MECs, allowing large scale production of cathodes with similar performance to systems that use precious metal catalysts. © 2009 Professor T. Nejat Veziroglu.

  19. Nitrogen-doped fullerene as a potential catalyst for hydrogen fuel cells.

    Science.gov (United States)

    Gao, Feng; Zhao, Guang-Lin; Yang, Shizhong; Spivey, James J

    2013-03-06

    We examine the possibility of nitrogen-doped C60 fullerene (N-C60) as a cathode catalyst for hydrogen fuel cells. We use first-principles spin-polarized density functional theory calculations to simulate the electrocatalytic reactions on N-C60. The first-principles results show that an O2 molecule can be adsorbed and partially reduced on the N-C complex sites (Pauling sites) of N-C60 without any activation barrier. Through a direct pathway, the partially reduced O2 can further react with H(+) and additional electrons and complete the water formation reaction (WFR) with no activation energy barrier. In the indirect pathway, reduced O2 reacts with H(+) and additional electrons to form H2O molecules through a transition state (TS) with a small activation barrier (0.22-0.37 eV). From an intermediate state to a TS, H(+) can obtain a kinetic energy of ∼0.95-3.68 eV, due to the Coulomb electric interaction, and easily overcome the activation energy barrier during the WFR. The full catalytic reaction cycles can be completed energetically, and N-C60 fullerene recovers to its original structure for the next catalytic reaction cycle. N-C60 fullerene is a potential cathode catalyst for hydrogen fuel cells.

  20. A comparative parametric study of a catalytic plate methane reformer coated with segmented and continuous layers of combustion catalyst for hydrogen production

    Science.gov (United States)

    Mundhwa, Mayur; Parmar, Rajesh D.; Thurgood, Christopher P.

    2017-03-01

    A parametric comparison study is carried out between segmented and conventional continuous layer configurations of the coated combustion-catalyst to investigate their influence on the performance of methane steam reforming (MSR) for hydrogen production in a catalytic plate reactor (CPR). MSR is simulated on one side of a thin plate over a continuous layer of nickel-alumina catalyst by implementing an experimentally validated surface microkinetic model. Required thermal energy for the MSR reaction is supplied by simulating catalytic methane combustion (CMC) on the opposite side of the plate over segmented and continuous layer of a platinum-alumina catalyst by implementing power law rate model. The simulation results of both coating configurations of the combustion-catalyst are compared using the following parameters: (1) co-flow and counter-flow modes between CMC and MSR, (2) gas hourly space velocity and (3) reforming-catalyst thickness. The study explains why CPR designed with the segmented combustion-catalyst and co-flow mode shows superior performance not only in terms of high hydrogen production but also in terms of minimizing the maximum reactor plate temperature and thermal hot-spots. The study shows that the segmented coating requires 7% to 8% less combustion-side feed flow and 70% less combustion-catalyst to produce the required flow of hydrogen (29.80 mol/h) on the reforming-side to feed a 1 kW fuel-cell compared to the conventional continuous coating of the combustion-catalyst.

  1. The Integration of a Structural Water Gas Shift Catalyst with a Vanadium Alloy Hydrogen Transport Device

    Energy Technology Data Exchange (ETDEWEB)

    Barton, Thomas; Argyle, Morris; Popa, Tiberiu

    2009-06-30

    This project is in response to a requirement for a system that combines water gas shift technology with separation technology for coal derived synthesis gas. The justification of such a system would be improved efficiency for the overall hydrogen production. By removing hydrogen from the synthesis gas stream, the water gas shift equilibrium would force more carbon monoxide to carbon dioxide and maximize the total hydrogen produced. Additional benefit would derive from the reduction in capital cost of plant by the removal of one step in the process by integrating water gas shift with the membrane separation device. The answer turns out to be that the integration of hydrogen separation and water gas shift catalysis is possible and desirable. There are no significant roadblocks to that combination of technologies. The problem becomes one of design and selection of materials to optimize, or at least maximize performance of the two integrated steps. A goal of the project was to investigate the effects of alloying elements on the performance of vanadium membranes with respect to hydrogen flux and fabricability. Vanadium was chosen as a compromise between performance and cost. It is clear that the vanadium alloys for this application can be produced, but the approach is not simple and the results inconsistent. For any future contracts, large single batches of alloy would be obtained and rolled with larger facilities to produce the most consistent thin foils possible. Brazing was identified as a very likely choice for sealing the membranes to structural components. As alloying was beneficial to hydrogen transport, it became important to identify where those alloying elements might be detrimental to brazing. Cataloging positive and negative alloying effects was a significant portion of the initial project work on vanadium alloying. A water gas shift catalyst with ceramic like structural characteristics was the second large goal of the project. Alumina was added as a

  2. Hydrodeoxygenation of phenol over Pd catalysts by in-situ generated hydrogen from aqueous reforming of formic acid

    DEFF Research Database (Denmark)

    Zeng, Ying; Wang, Ze; Lin, Weigang

    2016-01-01

    Hydrodeoxygenation of phenol, as model compound of bio-oil, was investigated over Pd catalysts, using formic acid as a hydrogen donor. The order of activity for deoxygenation of phenol with Pd catalysts was found to be: Pd/SiO2 > Pd/MCM-41 > Pd/CA > Pd/Al2O3 > Pd/HY approximate to Pd/ZrO2 ≈ Pd...

  3. Session 4: Combinatorial research of methane catalytic decomposition on supported nitride catalysts for CO-free hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Jianghan, Shen; Hua, Wang; Zhongmin, Liu; Hongchao, Liu [Natural Gas Utilization and Applied Catalysis Lab., Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian P. R. (China)

    2004-07-01

    CO-free Hydrogen production is needed for proton exchange membrane fuel cells (PEMs) because CO strongly poisons the anode-electrocatalysts. Methane directly catalytic decomposition is an attractive way to produce CO-free hydrogen for the large abundance of methane and its high H/C ratio. It is more effective to employ high-throughput screening (HTS) technology in heterogeneous catalysis. In this paper, a combinatorial multi-stream reaction system with online multi-stream mass spectrometer screening (MSMSS) detection technique was applied to study the decomposition of methane over supported MoN{sub x}O{sub y} catalysts (supports = Al{sub 2}O{sub 3}, SiO{sub 2}, SBA-15, ZSM-5,13X, and NaY), which is a catalyst system seldom reported recently. (authors)

  4. Palladium nanoparticles supported on fibrous-structured silica nanospheres (KCC-1): An efficient and selective catalyst for the transfer hydrogenation of alkenes

    KAUST Repository

    Qureshi, Ziyauddin; Sarawade, Pradip; Albert, Matthias; D'Elia, Valerio; Hedhili, Mohamed Nejib; Kö hler, Klaus; Basset, Jean-Marie

    2015-01-01

    An efficient palladium catalyst supported on fibrous silica nanospheres (KCC-1) has been developed for the hydrogenation of alkenes and α,β-unsaturated carbonyl compounds, providing excellent yields of the corresponding products with remarkable chemoselectivity. Comparison (high-resolution TEM, chemisorption) with analogous mesoporous (MCM-41, SBA-15) silica-supported Pd nanocatalysts prepared under identical conditions, demonstrates the advantage of employing the fibrous KCC-1 morphology versus traditional supports because it ensures superior accessibility of the catalytically active cores along with excellent Pd dispersion at high metal loading. This morphology ultimately leads to higher catalytic activity for the KCC-1-supported nanoparticles. The protocol developed for hydrogenation is advantageous and environmentally benign owing to the use of HCOOH as a source of hydrogen, water as a solvent, and because of efficient catalyst recyclability and durability. The recycled catalyst has been analyzed by XPS spectroscopy and TEM showing only minor changes in the oxidation state of Pd and in the morphology after the reaction, thus confirming the robustness of the catalyst.

  5. Palladium nanoparticles supported on fibrous-structured silica nanospheres (KCC-1): An efficient and selective catalyst for the transfer hydrogenation of alkenes

    KAUST Repository

    Qureshi, Ziyauddin

    2015-01-09

    An efficient palladium catalyst supported on fibrous silica nanospheres (KCC-1) has been developed for the hydrogenation of alkenes and α,β-unsaturated carbonyl compounds, providing excellent yields of the corresponding products with remarkable chemoselectivity. Comparison (high-resolution TEM, chemisorption) with analogous mesoporous (MCM-41, SBA-15) silica-supported Pd nanocatalysts prepared under identical conditions, demonstrates the advantage of employing the fibrous KCC-1 morphology versus traditional supports because it ensures superior accessibility of the catalytically active cores along with excellent Pd dispersion at high metal loading. This morphology ultimately leads to higher catalytic activity for the KCC-1-supported nanoparticles. The protocol developed for hydrogenation is advantageous and environmentally benign owing to the use of HCOOH as a source of hydrogen, water as a solvent, and because of efficient catalyst recyclability and durability. The recycled catalyst has been analyzed by XPS spectroscopy and TEM showing only minor changes in the oxidation state of Pd and in the morphology after the reaction, thus confirming the robustness of the catalyst.

  6. Studies on synthesis and hydrogenation behaviour of graphitic nanofibres prepared through palladium catalyst assisted thermal cracking of acetylene

    International Nuclear Information System (INIS)

    Gupta, Bipin Kumar; Tiwari, R.S.; Srivastava, O.N.

    2004-01-01

    The nano-variants of carbon including graphitic nanofibres (GNF) have recently been considered to be exotic (light weight, high storage capacity) hydrogen storage materials. In the present paper, we report growth of aligned bundles of GNF. The length and width of cross-section of the bundles is ∼50 and ∼25 μm, respectively. The length of individual GNF is ∼50 μm and diameter ∼0.25 μm. The GNFs have been synthesized through thermal decomposition of acetylene using palladium (Pd) sheets as catalyst. This represents a new form of catalyst. The GNFs bundles grown by the present method are easier to hydrogenate. They adsorb hydrogen at a lower pressure of ∼80 atm as against ∼120 atm for the GNF grown in the earlier studies. The storage capacity obtained in the present investigation is ∼17 wt.%. Electron microscopic investigations reveal that as against the as grown GNF, the hydrogenated version embodies microstructures exhibiting fragmentation of graphitic layer bundles. The reasons for the growth of GNF in the form of aligned bundles, the ease of hydrogenation and relevance of GNF fragmentation after hydrogenation have been outlined

  7. Studies on synthesis and hydrogenation behaviour of graphitic nanofibres prepared through palladium catalyst assisted thermal cracking of acetylene

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Bipin Kumar; Tiwari, R.S.; Srivastava, O.N

    2004-11-03

    The nano-variants of carbon including graphitic nanofibres (GNF) have recently been considered to be exotic (light weight, high storage capacity) hydrogen storage materials. In the present paper, we report growth of aligned bundles of GNF. The length and width of cross-section of the bundles is {approx}50 and {approx}25 {mu}m, respectively. The length of individual GNF is {approx}50 {mu}m and diameter {approx}0.25 {mu}m. The GNFs have been synthesized through thermal decomposition of acetylene using palladium (Pd) sheets as catalyst. This represents a new form of catalyst. The GNFs bundles grown by the present method are easier to hydrogenate. They adsorb hydrogen at a lower pressure of {approx}80 atm as against {approx}120 atm for the GNF grown in the earlier studies. The storage capacity obtained in the present investigation is {approx}17 wt.%. Electron microscopic investigations reveal that as against the as grown GNF, the hydrogenated version embodies microstructures exhibiting fragmentation of graphitic layer bundles. The reasons for the growth of GNF in the form of aligned bundles, the ease of hydrogenation and relevance of GNF fragmentation after hydrogenation have been outlined.

  8. Kinetics of methane decomposition to CO{sub x}-free hydrogen and carbon nanofiber over Ni-Cu/MgO catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Borghei, Maryam; Karimzadeh, Ramin [Chemical Engineering Department, Tarbiat Modares University, Tehran (Iran); Rashidi, Alimorad; Izadi, Nosrat [Research Center of Nanotechnology, Research Institute of Petroleum Industry, Tehran (Iran)

    2010-09-15

    Kinetic modeling of methane decomposition to CO{sub x}-free hydrogen and carbon nanofiber has been carried out in the temperature range 550-650 C over Ni-Cu/MgO catalyst from CH{sub 4}-H{sub 2} mixtures at atmospheric pressure. Assuming the different mechanisms of the reaction, several kinetic models were derived based on Langmuir-Hinshelwood type. The optimum value of kinetic parameters has been obtained by Genetic Algorithm and statistical analysis has been used for the model discrimination. The suggested kinetic model relates to the mechanism when the dissociative adsorption of methane molecule is the rate-determining stage and the estimated activation energy is 50.4 kJ/mol in agreement with the literature. The catalyst deactivation was found to be dependent on the time, reaction temperature, and partial pressures of methane and hydrogen. Inspection of the behavior of the catalyst activity in relation to time, led to a model of second order for catalyst deactivation. (author)

  9. Method of preparing Ru-immobilized polymer-supported catalyst for hydrogen generation from NaBH{sub 4} solution

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ching-Wen; Chen, Chuh-Yung; Huang, Yao-Hui [Department of Chemical Engineering, National Cheng Kung University, No.1, University Road, Tainan City 70101 (China)

    2009-03-15

    A method of preparing a polymer-supported catalyst for hydrogen generation is introduced in this article. This polymer-supported catalyst is the structure of ruthenium (Ru) nanoparticle immobilized on a monodisperse polystyrene (PSt) microsphere. The diameter of the Ru nanoparticle is around 16 nm, and the diameter of the PSt microsphere is 2.65 um. This preparation method is accomplished by two unique techniques: one is sodium lauryl sulfate/sodium formaldehyde sulfoxylate (SLS/SFS) interface-initiated system, the other is 2-methacrylic acid 3-(bis-carboxymethylamino)-2-hydroxy-propyl ester (GMA-IDA) chelating monomer. By taking advantage of these two techniques, Ru{sup 3+} ion will be chelated and then reduced to Ru{sup (0)} nanoparticle over PSt surface predominantly. The hydrolysis of alkaline sodium borohydride (NaBH{sub 4}) solution catalyzed by this Ru-immobilized polymer-supported catalyst is also examined in this article. It reveals that the hydrogen generation rate is 215.9 ml/min g-cat. in a diluted solution containing 1 wt.% NaBH{sub 4} and 1 wt.% NaOH, and this Ru-immobilized polymer-supported catalyst could be recycled during the reaction. (author)

  10. Hydrogen generation from bioethanol reforming: bench-scale unit performance with Cu/Nb2O5 catalyst

    International Nuclear Information System (INIS)

    Fernandes Machado, N.R.C.; Schmal, M.; Cantao, M.P.

    2003-01-01

    As an alternative route for hydrogen production, ethanol reforming was studied in a bench-scale unit using a 5%Cu/Nb 2 O 5 catalyst previously selected in a micro reactor. X-Ray Diffraction analysis has shown that this catalyst contains copper oxide in an amorphous form, or in particles smaller than 20 nm, while the Nb 2 O 5 is highly crystalline. Analysis of the calcinated catalyst by X-Ray Photoelectron Spectroscopy revealed that 35% of total copper was on the surface as Cu I (55%) or Cu II (45%). The catalyst presented a low surface area (35 m 2 /g), mainly from meso and macropores, as textural analysis revealed. Temperature Programmed Reduction showed a two-step reduction of Cu II to Cu, at 245 o C and 306 o C. It was also observed the reduction of 6% of Nb 2 O 5 . The reaction unit consisted of an integral reactor with 16 g of catalyst pellets, approximately 3 mm x 5 mm in size. Reaction temperature and feed rate were varied to optimize hydrogen production, with CO 2 as the main byproduct. Reagents (water and ethanol) in stoichiometric proportion were fed into an electric pre-heater and vaporized. An increase on reaction temperature from 300 o C to 400 o C has led to an increase in mean conversion from 17% to 35%. Ethene and ethyl ether were also detected as minor byproducts. (author)

  11. Kinetics, isotope effects, and mechanism for the hydrogenation of carbon monoxide on supported nickel catalysts

    International Nuclear Information System (INIS)

    Mori, T.; Masuda, H.; Imai, H.; Miyamoto, A.; Baba, S.; Murakami, Y.

    1982-01-01

    Kinetics and hydrogen-deuterium isotope effects in the methanation of adsorbed CO molecules on a Ni/SiO 2 catalyst were precisely measured by using pulse surface reaction rate analysis (PSRA). When a CO pulse was injected into flowing hydrogen, it was immediately adsorbed on the catalyst and gradually hydrogenated to CH 4 and H 2 O. The amounts of CH 4 and H 2 O produced by the hydrogenation of the adsorbed CO were determined up to various times, and it was found that CH 4 and H 2 O were produced at the same rate. When O 2 instead of CO was injected, H 2 O was immediately produced. From these results, the rate-determining step of the reaction was found to be C-O bond dissociation of an adsorbed CO molecule or a partially hydrogenated CO species. By PSRA, the rate constant for the C-O bond dissocition process per adsorbed CO molecule (k/sub H/) was determined at various temperatures, and the Arrhenius parameters of the rate constant were obtained. The rate constant in flowing deuterium (k/sub D/) was also determined. it was found that k/sub D/ is considerably larger than k/sub H/, indicating an inverse isotope effect. The average value of k/sub H//k/sub D/ was 0.75. From these results, it was concluded that adsorbed CO is not directly dissociated to surface carbon and oxygen atoms but it is partially hydrogenated before C-O bond dissociation under the conditions of the PSRA experiment. 8 figures

  12. Modifications for the improvement of catalyst materials for hydrogen evolution

    Directory of Open Access Journals (Sweden)

    DRAGAN SLAVKOV

    2006-02-01

    Full Text Available The structural and electrocatalytic characteristics of composite materials based on non-precious metals were studied. Precursors of metallic phase (Ni, Co or CoNi and oxide phase (TiO2 were grafted on a carbon substrate (Vulcan XC-72 by the sol-gel procedure and thermally treated at 250 ºC. Ni and CoNi crystals of 10–20 nm were produced, in contrast the Co and TiO2 were amorphous. The dissimilar electronic character of the components gives rise to a significant electrocatalytic activity for the hydrogen evolution reaction (HER, even in the basic series of prepared materials. Further improvement of the catalysts was achieved by modification of all three components. Hence, Mo was added into the metallic phase, TiO2 was converted into the crystalline form and multiwall carbon nanotubes (MWCNTs were used instead of carbon particles. The improvement, expressed in terms of the lowering the hydrogen evolution overpotential at 60 mA cm–2, was the most pronounced in the Ni-based systems grafted on MWCNTs (120 mV lower HER overpotential compared to 60 mV in case of Ni-based systems grafted on crystalline TiO2 (TiO2 prepared at 450 ºC and of Ni-based systems containing 25 at.% Mo. Nevertheless, even with the realized enhancement, of all the fested materials, the Co-based systems remained superior HER catalysts.

  13. Molecular metal-Oxo catalysts for generating hydrogen from water

    Science.gov (United States)

    Long, Jeffrey R; Chang, Christopher J; Karunadasa, Hemamala I

    2015-02-24

    A composition of matter suitable for the generation of hydrogen from water is described, the positively charged cation of the composition having the general formula [(PY5W.sub.2)MO].sup.2+, wherein PY5W.sub.2 is (NC.sub.5XYZ)(NC.sub.5H.sub.4).sub.4C.sub.2W.sub.2, M is a transition metal, and W, X, Y, and Z can be H, R, a halide, CF.sub.3, or SiR.sub.3, where R can be an alkyl or aryl group. The two accompanying counter anions, in one embodiment, can be selected from the following Cl.sup.-, I.sup.-, PF.sub.6.sup.-, and CF.sub.3SO.sub.3.sup.-. In embodiments of the invention, water, such as tap water containing electrolyte or straight sea water can be subject to an electric potential of between 1.0 V and 1.4 V relative to the standard hydrogen electrode, which at pH 7 corresponds to an overpotential of 0.6 to 1.0 V, with the result being, among other things, the generation of hydrogen with an optimal turnover frequency of ca. 1.5 million mol H.sub.2/mol catalyst per h.

  14. Preparation and characterization of nickel catalysts supported on cerium for obtaining hydrogen from steam reforming of ethanol

    International Nuclear Information System (INIS)

    Urbaninho, A.B.; Bergamaschi, V.S.; Ferreira, J.C.

    2016-01-01

    The Ni/Ce catalysts for were prepared by co- precipitation method with a view to their use in steam reforming of ethanol to produce a hydrogen-rich gas mixture. The catalysts were characterized by scanning electron microscopy; x-ray dispersive Spectroscopy and surface area BET method. This paper proposes to prepare, characterize and test nickel catalyst supported on cerium in order to obtain a material with higher activity and selectivity of the catalyst using the steam reforming reaction of ethanol, by varying the reaction temperature, molar ratio water/ethanol and uptime. The catalytic tests were monitored by chemical analysis of syngas from steam reforming of ethanol using an analysis online by gas Chromatograph in the reactor. (author)

  15. Fe(III)-functionalized carbon dots—Highly efficient photoluminescence redox catalyst for hydrogenations of olefins and decomposition of hydrogen peroxide

    KAUST Repository

    Bourlinos, Athanasios B.

    2017-03-21

    We present the first bottom-up approach to synthesize Fe(III)-functionalized carbon dots (CDs) from molecular precursors without the need of conventional thermal or microwave treatment and additional reagents. Specifically, sonication of xylene in the presence of anhydrous FeCl3 results in oxidative coupling of the aromatic substrate towards Fe(III)-functionalized CDs. The as-prepared CDs are spherical in shape with a size of 3–8 nm, highly dispersible in organic solvents and display wavelength-dependent photoluminescence (PL). The iron ions attached to the surface endow the CDs with superior catalytic activity for olefin hydrogenation with excellent conversion and selectivity (up to 100%). The Fe(III)-CDs are more effective in the hydrogenation of a series of electron donating or withdrawing olefin substrates compared to conventional homogeneous or heterogeneous Fe(III)-based catalysts. The as-prepared heterogeneous nanocatalyst can be used repeatedly without any loss of catalytic activity. Importantly, the stability of the new catalysts can be easily monitored by PL intensity or quantum yield measurements, which certainly opens the doors for real time monitoring in a range of applications. Additionally, to the best of our knowledge, for the first time, the oxidative property of Fe-CDs was also explored in decomposition of hydrogen peroxide in water with the first order rate constant of 0.7 × 10−2 min−1, proving the versatile catalytic properties of such hybrid systems.

  16. Fe(III)-functionalized carbon dots—Highly efficient photoluminescence redox catalyst for hydrogenations of olefins and decomposition of hydrogen peroxide

    KAUST Repository

    Bourlinos, Athanasios B.; Rathi, Anuj K.; Gawande, Manoj B.; Hola, Katerina; Goswami, Anandarup; Kalytchuk, Sergii; Karakassides, Michael A.; Kouloumpis, Antonios; Gournis, Dimitrios; Deligiannakis, Yannis; Giannelis, Emmanuel P.; Zboril, Radek

    2017-01-01

    We present the first bottom-up approach to synthesize Fe(III)-functionalized carbon dots (CDs) from molecular precursors without the need of conventional thermal or microwave treatment and additional reagents. Specifically, sonication of xylene in the presence of anhydrous FeCl3 results in oxidative coupling of the aromatic substrate towards Fe(III)-functionalized CDs. The as-prepared CDs are spherical in shape with a size of 3–8 nm, highly dispersible in organic solvents and display wavelength-dependent photoluminescence (PL). The iron ions attached to the surface endow the CDs with superior catalytic activity for olefin hydrogenation with excellent conversion and selectivity (up to 100%). The Fe(III)-CDs are more effective in the hydrogenation of a series of electron donating or withdrawing olefin substrates compared to conventional homogeneous or heterogeneous Fe(III)-based catalysts. The as-prepared heterogeneous nanocatalyst can be used repeatedly without any loss of catalytic activity. Importantly, the stability of the new catalysts can be easily monitored by PL intensity or quantum yield measurements, which certainly opens the doors for real time monitoring in a range of applications. Additionally, to the best of our knowledge, for the first time, the oxidative property of Fe-CDs was also explored in decomposition of hydrogen peroxide in water with the first order rate constant of 0.7 × 10−2 min−1, proving the versatile catalytic properties of such hybrid systems.

  17. Activity of iridium-ruthenium and iridium-rhodium adsorption catalysts in decomposition of hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Zubovich, I A; Mikhaylov, V A; Migulina, N N [Yaroslavskij Politekhnicheskij Inst. (USSR)

    1976-06-01

    Experimental data for the activities of iridium-ruthenium and iridium-rhodium adsorption catalysts in the decomposition of hydrogen peroxide are considered and the results of magnetic susceptibility measurements are presented. It is concluded that surface structures (complexes) may be formed and that micro-electronic feaures play a role in heterogeneous catalysis.

  18. A molecular molybdenum–schiff base electro-catalyst for generating hydrogen from acetic acid or water

    International Nuclear Information System (INIS)

    Cao, Jie-Ping; Fang, Ting; Zhou, Ling-Ling; Fu, Ling-Zhi; Zhan, Shuzhong

    2014-01-01

    Highlights: • The reaction of ligand, H 2 L and MoCl 5 gives a Mo(VI) complex [MoL(O) 2 ] 1. • Complex 1 is capable of catalyzing hydrogen evolution from acetic acid and water. • TOF reaches a maximum of 68 (DMF) and 356 (buffer, pH 6) moles/h, respectively. • Sustained proton reduction catalysis occurs over a 69 h period and no decomposition of 1. - ABSTRACT: The reaction of 2-pyridylamino-N,N-bis(2-methylene-4-ethyl-6-tert-butylphenol) (H 2 L) and MoCl 5 gives a molybdenum(VI) complex [MoL(O) 2 ] 1, a new molecular electrocatalyst, which has been determined by X-ray crystallography. Electrochemical studies show that complex 1 can catalyze hydrogen evolution from acetic acid or aqueous buffer. Turnover frequency (TOF) reaches a maximum of 68 (in N,N-Dimethylformamide (DMF)) and 356 (in buffer, pH 6.0) moles of hydrogen per mole of catalyst per hour, respectively. Sustained proton reduction catalysis occurs at glassy carbon (GC) electrode to give H 2 over a 69 h electrolysis period and no observable decomposition of the catalyst

  19. Formation of Multiple-Phase Catalysts for the Hydrogen Storage of Mg Nanoparticles by Adding Flowerlike NiS.

    Science.gov (United States)

    Xie, Xiubo; Ma, Xiujuan; Liu, Peng; Shang, Jiaxiang; Li, Xingguo; Liu, Tong

    2017-02-22

    In order to enhance the hydrogen storage properties of Mg, flowerlike NiS particles have been successfully prepared by solvothermal reaction method, and are subsequently ball milled with Mg nanoparticles (NPs) to fabricate Mg-5 wt % NiS nanocomposite. The nanocomposite displays Mg/NiS core/shell structure. The NiS shell decomposes into Ni, MgS and Mg 2 Ni multiple-phases, decorating on the surface of the Mg NPs after the first hydrogen absorption and desorption cycle at 673 K. The Mg-MgS-Mg 2 Ni-Ni nanocomposite shows enhanced hydrogenation and dehydrogenation rates: it can quickly uptake 3.5 wt % H 2 within 10 min at 423 K and release 3.1 wt % H 2 within 10 min at 573 K. The apparent hydrogen absorption and desorption activation energies are decreased to 45.45 and 64.71 kJ mol -1 . The enhanced sorption kinetics of the nanocomposite is attributed to the synergistic catalytic effects of the in situ formed MgS, Ni and Mg 2 Ni multiple-phase catalysts during the hydrogenation/dehydrogenation process, the porthole effects for the volume expansion and microstrain of the phase transformation of Mg 2 Ni and Mg 2 NiH 4 and the reduced hydrogen diffusion distance caused by nanosized Mg. This novel method of in situ producing multiple-phase catalysts gives a new horizon for designing high performance hydrogen storage material.

  20. Selective hydrogenation of phenol to cyclohexanone over Pd@CN (N-doped porous carbon): Role of catalyst reduction method

    Science.gov (United States)

    Hu, Shuo; Yang, Guangxin; Jiang, Hong; Liu, Yefei; Chen, Rizhi

    2018-03-01

    Selective phenol hydrogenation is a green and sustainable technology to produce cyclohexanone. The work focused on investigating the role of catalyst reduction method in the liquid-phase phenol hydrogenation to cyclohexanone over Pd@CN (N-doped porous carbon). A series of reduction methods including flowing hydrogen reduction, in-situ reaction reduction and liquid-phase reduction were designed and performed. The results highlighted that the reduction method significantly affected the catalytic performance of Pd@CN in the liquid-phase hydrogenation of phenol to cyclohexanone, and the liquid-phase reduction with the addition of appropriate amount of phenol was highly efficient to improve the catalytic activity of Pd@CN. The influence mechanism was explored by a series of characterizations. The results of TEM, XPS and CO chemisorption confirmed that the reduction method mainly affected the size, surface composition and dispersion of Pd in the CN material. The addition of phenol during the liquid-phase reduction could inhibit the aggregation of Pd NPs and promote the reduction of Pd (2+), and then improved the catalytic activity of Pd@CN. The work would aid the development of high-performance Pd@CN catalysts for selective phenol hydrogenation.

  1. MORE ACTIVE AND SULFUR RESISTANT BIMETALLIC Pd-Ni CATALYSTS

    OpenAIRE

    Betti, Carolina; Carrara, Nicolás; Badano, Juan; Lederhos, Cecilia; Vera, Carlos; Quiroga, Mónica

    2018-01-01

    The influence of the kind of metal precursor and the sequence of impregnation on the properties of Pd-Ni catalysts was evaluated during the test reaction of selective hydrogenation of styrene to ethylbenzene by means of physicochemical characterization. The focus was put on the final hydrogenating activity and the resistance to deactivation by sulfided compounds (thiophene). The used techniques of characterization were ICP, XPS, XDR, TPR, CO chemisorption and TEM. XPS results indicated the pr...

  2. Hydrogen Production from Water by Photolysis, Sonolysis and Sonophotolysis with Solid Solutions of Rare Earth, Gallium and Indium Oxides as Heterogeneous Catalysts

    Directory of Open Access Journals (Sweden)

    Marta Penconi

    2015-07-01

    Full Text Available In this work, we present the hydrogen production by photolysis, sonolysis and sonophotolysis of water in the presence of newly synthesized solid solutions of rare earth, gallium and indium oxides playing as catalysts. From the experiments of photolysis, we found that the best photocatalyst is the solid solution Y0.8Ga0.2InO3 doped by sulphur atoms. In experiments of sonolysis, we optimized the rate of hydrogen production by changing the amount of water, adding ethanol and tuning the power of our piezoelectric transducer. Finally, we performed sonolysis and sonophotolysis experiments in the presence of S:Y0.8Ga0.2InO3 finding a promising synergistic effect of UV-visible electromagnetic waves and 38 kHz ultrasound waves in producing H2.

  3. Ni/Ce-MCM-41 mesostructured catalysts for simultaneous production of hydrogen and nanocarbon via methane decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Guevara, J.C.; Wang, J.A.; Chen, L.F.; Valenzuela, M.A. [ESIQIE, Instituto Politecnico Nacional, Col. Zacatenco, Av. Politecnico s/n, 07738 Mexico D. F. (Mexico); Salas, P. [Centro de Fisica Aplicada y Tecnologia Avanzada, Universidad Nacional Autonoma de Mexico, Apartado Postal 1-1010, Queretaro 76000 (Mexico); Garcia-Ruiz, A. [UPIICSA, Instituto Politecnico Nacional, Te 950 Col. Granjas-Mexico, 08400 Mexico D.F. (Mexico); Toledo, J.A.; Cortes-Jacome, M.A.; Angeles-Chavez, C. [Programa de Molecular Ingenieria, Instituto Mexicano del Petroleo, Eje Lazaro Cardenas 152, 07730 Mexico D. F. (Mexico); Novaro, O. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, A. P. 20-364, 01000 Mexico D.F. (Mexico)

    2010-04-15

    For the first time, simultaneous production of hydrogen and nanocarbon via catalytic decomposition of methane over Ni-loaded mesoporous Ce-MCM-41 catalysts was investigated. The catalytic performance of the Ni/Ce-MCM-41 catalysts is very stable and the reaction activity remained almost unchanged during 1400 min steam on time at temperatures 540, 560 and 580 C, respectively. The methane conversion level over these catalysts reached 60-75% with a 100% selectivity towards hydrogen. TEM observations revealed that most of the Ni particles located on the tip of the carbon nanofibers/nanotubes in the used catalysts, keeping their exposed surface clean during the test and thus remaining active for continuous reaction without obvious deactivation. Two kinds of carbon materials, graphitic carbon (C{sub g}) as major and amorphous carbon (C{sub A}) as minor were produced in the reaction, as confirmed by XRD analysis and TEM observations. Carbon nanofibers/nanotubes had an average diameter of approximately 30-50 nm and tens micrometers in length, depending on the reaction temperature, reaction time and Ni particle diameter. Four types of carbon nanofibers/nanotubes were detected and their formations greatly depend on the reaction temperature, time on steam and degree of the interaction between the metallic Ni and support. The respective mechanisms of the formation of nanocarbons were postulated and discussed. (author)

  4. On the Role of Surface Modifications of Palladium Catalysts in the Selective Hydrogenation of Acetylene

    DEFF Research Database (Denmark)

    Studt, Felix; Abild-Pedersen, Frank; Bligaard, Thomas

    2008-01-01

    Summing Me up: DFT calculations have shown that alloying, subsurface carbon, and hydride formation, all increase the selectivity of Pd catalysts for acetylene hydrogenation by weakening the surface–adsorbate bond. A simple descriptor—the adsorption energy of a methyl group—has been used to quanti...

  5. Hydrogen-rich gas production from waste plastics by pyrolysis and low-temperature steam reforming over a ruthenium catalyst

    International Nuclear Information System (INIS)

    Namioka, Tomoaki; Saito, Atsushi; Inoue, Yukiharu; Park, Yeongsu; Min, Tai-jin; Roh, Seon-ah; Yoshikawa, Kunio

    2011-01-01

    Operating conditions for low-temperature pyrolysis and steam reforming of plastics over a ruthenium catalyst were investigated. In the range studied, the highest gas and lowest coke fractions for polystyrene (PS) with a 60 g h -1 scale, continuous-feed, two-stage gasifier were obtained with a pyrolyzer temperature of 673 K, steam reforming temperature of 903 K, and weight hourly space velocity (WHSV) of 0.10 g-sample g-catalyst -1 h -1 . These operating conditions are consistent with optimum conditions reported previously for polypropylene. Our results indicate that at around 903 K, the activity of the ruthenium catalyst was high enough to minimize the difference between the rates of the steam reforming reactions of the pyrolysates from polystyrene and polypropylene. The proposed system thus has the flexibility to compensate for differences in chemical structures of municipal waste plastics. In addition, the steam reforming temperature was about 200 K lower than the temperature used in a conventional Ni-catalyzed process for the production of hydrogen. Low-temperature steam reforming allows for lower thermal input to the steam reformer, which results in an increase in thermal efficiency in the proposed process employing a Ru catalyst. Because low-temperature steam reforming can be also expected to reduce thermal degradation rates of the catalyst, the pyrolysis-steam reforming process with a Ru catalyst has the potential for use in small-scale production of hydrogen-rich gas from waste plastics that can be used for power generation.

  6. Investigation of the Performance of Aucore-Pdshell/C as the Anode Catalyst of Direct Borohydride-Hydrogen Peroxide Fuel Cell

    Directory of Open Access Journals (Sweden)

    Hong Wang

    2011-01-01

    Full Text Available The carbon-supported bimetallic Au-Pd catalyst with core-shell structure is prepared by successive reduction method. The core-shell structure, surface morphology, and electrochemical performances of the catalysts are characterized by X-ray diffraction (XRD, transmission electron microscopy (TEM, ultraviolet-visible absorption spectrometry, linear sweep voltammetry, and chronopotentiometry. The results show that the Au-Pd/C catalyst with core-shell structure exhibits much higher catalytic activity for the direct oxidation of NaBH4 than pure Au/C catalyst. A direct borohydride-hydrogen peroxide fuel cell, in which the Au-Pd/C with core-shell structure is used as the anode catalyst and the Au/C as the cathode catalyst, shows as high as 68.215 mW cm−2 power density.

  7. Palladium-pyridyl catalytic films: a highly active and recyclable catalyst for hydrogenation of styrene under mild conditions.

    Science.gov (United States)

    Gao, Shuiying; Li, Weijin; Cao, Rong

    2015-03-01

    Palladium-pyridyl catalytic films, (PdCl2/bpy)n, were created by alternating immersions of a substrate in PdCl2 and bpy (bpy=4, 4'-bipyridyl) solutions. The as-prepared (PdCl2/bpy)10 catalyst demonstrated a remarkable catalytic activity toward hydrogenation of styrene under mild conditions and the turnover frequency (TOF) is as high as 6944h(-1). Pd(II) ions of (PdCl2/bpy)n films are in situ reduced to Pd nanoparticles (NPs) during the hydrogenation of styrene process, which results in the catalytic activity of the films. The results of X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) further demonstrate that Pd(II) ions of (PdCl2/bpy)n films were gradually converted to Pd(0) states. The catalytic activity is related to bilayer numbers and the activity increases with the number of bilayers below 10 bilayers. The solid substrates coated with (PdCl2/bpy)n multilayer catalysts were easily removed from the reaction mixture without separation filtration. Moreover, (PdCl2/bpy)n catalysts were reused for 10 consecutive reactions without loss of activity. The present (PdCl2/bpy)n heterogeneous catalysts have the advantages of easy separation and good recyclability. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Catalytic reduction of nitrate and nitrite ions by hydrogen : investigation of the reaction mechanism over Pd and Pd-Cu catalysts

    NARCIS (Netherlands)

    Ilinitch, OM; Nosova, LV; Gorodetskii, VV; Ivanov, VP; Trukhan, SN; Gribov, EN; Bogdanov, SV; Cuperus, FP

    2000-01-01

    The catalytic behavior of mono- and bimetallic catalysts with Pd and/or Cu supported over gamma-Al2O3 in the reduction of aqueous nitrate and nitrite ions by hydrogen was investigated. The composition of the supported metal catalysts was analysed using secondary ion mass spectroscopy (SIMS) and

  9. Metal-polypyridyl catalysts for electro- and photochemical reduction of water to hydrogen.

    Science.gov (United States)

    Zee, David Z; Chantarojsiri, Teera; Long, Jeffrey R; Chang, Christopher J

    2015-07-21

    Climate change, rising global energy demand, and energy security concerns motivate research into alternative, sustainable energy sources. In principle, solar energy can meet the world's energy needs, but the intermittent nature of solar illumination means that it is temporally and spatially separated from its consumption. Developing systems that promote solar-to-fuel conversion, such as via reduction of protons to hydrogen, could bridge this production-consumption gap, but this effort requires invention of catalysts that are cheap, robust, and efficient and that use earth-abundant elements. In this context, catalysts that utilize water as both an earth-abundant, environmentally benign substrate and a solvent for proton reduction are highly desirable. This Account summarizes our studies of molecular metal-polypyridyl catalysts for electrochemical and photochemical reduction of protons to hydrogen. Inspired by concept transfer from biological and materials catalysts, these scaffolds are remarkably resistant to decomposition in water, with fast and selective electrocatalytic and photocatalytic conversions that are sustainable for several days. Their modular nature offers a broad range of opportunities for tuning reactivity by molecular design, including altering ancillary ligand electronics, denticity, and/or incorporating redox-active elements. Our first-generation complex, [(PY4)Co(CH3CN)2](2+), catalyzes the reduction of protons from a strong organic acid to hydrogen in 50% water. Subsequent investigations with the pentapyridyl ligand PY5Me2 furnished molybdenum and cobalt complexes capable of catalyzing the reduction of water in fully aqueous electrolyte with 100% Faradaic efficiency. Of particular note, the complex [(PY5Me2)MoO](2+) possesses extremely high activity and durability in neutral water, with turnover frequencies at least 8500 mol of H2 per mole of catalyst per hour and turnover numbers over 600 000 mol of H2 per mole of catalyst over 3 days at an

  10. Promoting effect of oxygen for hydrogenation of butadiene over Ni/sub 2/P catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Nozaki, F.; Kitoh, T.; Sodesawa, T.

    1980-04-01

    When 0-10 mm Hg of oxygen were added to the reaction of 75 mm Hg butadiene and 225 mm Hg hydrogen over dinickel phosphide in a closed circulation system at 40/sup 0/C, increasing amounts of oxygen caused increasing lengths of induction periods followed by hydrogenation at reaction rates which had a maximum at 3 mm Hg oxygen. This maximum rate was about six times higher than the rate without oxygen addition. Adsorption, temperature-programed desorption, IR spectroscopy, and the product distribution of butadiene deuteration showed that two types of oxygen adsorbed on the dinickel phosphide catalyst; molecular oxygen on nickel, which desorbed on evacuation below 50/sup 0/C and which could be displaced by butadiene, was responsible for the induction period; molecular oxygen on phosphorus atoms, which promoted hydrogen adsorption, was responsible for the increased hydrogenation rate.

  11. Stable and Inert Cobalt Catalysts for Highly Selective and Practical Hydrogenation of C≡N and C═O Bonds.

    Science.gov (United States)

    Chen, Feng; Topf, Christoph; Radnik, Jörg; Kreyenschulte, Carsten; Lund, Henrik; Schneider, Matthias; Surkus, Annette-Enrica; He, Lin; Junge, Kathrin; Beller, Matthias

    2016-07-20

    Novel heterogeneous cobalt-based catalysts have been prepared by pyrolysis of cobalt complexes with nitrogen ligands on different inorganic supports. The activity and selectivity of the resulting materials in the hydrogenation of nitriles and carbonyl compounds is strongly influenced by the modification of the support and the nitrogen-containing ligand. The optimal catalyst system ([Co(OAc)2/Phen@α-Al2O3]-800 = Cat. E) allows for efficient reduction of both aromatic and aliphatic nitriles including industrially relevant dinitriles to primary amines under mild conditions. The generality and practicability of this system is further demonstrated in the hydrogenation of diverse aliphatic, aromatic, and heterocyclic ketones as well as aldehydes, which are readily reduced to the corresponding alcohols.

  12. A trifunctional mesoporous silica-based, highly active catalyst for one-pot, three-step cascade reactions.

    Science.gov (United States)

    Biradar, Ankush V; Patil, Vijayshinha S; Chandra, Prakash; Doke, Dhananjay S; Asefa, Tewodros

    2015-05-18

    We report the synthesis of a trifunctional catalyst containing amine, sulphonic acid and Pd nanoparticle catalytic groups anchored on the pore walls of SBA-15. The catalyst efficiently catalyzes one-pot three-step cascade reactions comprising deacetylation, Henry reaction and hydrogenation, giving up to ∼100% conversion and 92% selectivity to the final product.

  13. Continuous synthesis of methanol: heterogeneous hydrogenation of ethylene carbonate over Cu/HMS catalysts in a fixed bed reactor system.

    Science.gov (United States)

    Chen, Xi; Cui, Yuanyuan; Wen, Chao; Wang, Bin; Dai, Wei-Lin

    2015-09-18

    Continuous fixed-bed catalytic hydrogenation of ethylene carbonate (EC) to methanol and ethylene glycol (EG), an emerging synthetic process of methanol via indirect conversion of CO2, was successfully performed over Cu/HMS catalysts prepared by the ammonia evaporation (AE) method. The catalysts possessed superb performance with a conversion of 100% and a selectivity to methanol of 74%.

  14. Hydrogen Production via Steam Reforming of Ethyl Alcohol over Palladium/Indium Oxide Catalyst

    Directory of Open Access Journals (Sweden)

    Tetsuo Umegaki

    2009-01-01

    Full Text Available We report the synergetic effect between palladium and indium oxide on hydrogen production in the steam reforming reaction of ethyl alcohol. The palladium/indium oxide catalyst shows higher hydrogen production rate than indium oxide and palladium. Palladium/indium oxide affords ketonization of ethyl alcohol with negligible by-product carbon monoxide, while indium oxide mainly affords dehydration of ethyl alcohol, and palladium affords decomposition of ethyl alcohol with large amount of by-product carbon monoxide. The catalytic feature of palladium/indium oxide can be ascribed to the formation of palladium-indium intermetallic component during the reaction as confirmed by X-ray diffraction and X-ray photoelectron spectroscopic measurements.

  15. Pt Single Atoms Embedded in the Surface of Ni Nanocrystals as Highly Active Catalysts for Selective Hydrogenation of Nitro Compounds.

    Science.gov (United States)

    Peng, Yuhan; Geng, Zhigang; Zhao, Songtao; Wang, Liangbing; Li, Hongliang; Wang, Xu; Zheng, Xusheng; Zhu, Junfa; Li, Zhenyu; Si, Rui; Zeng, Jie

    2018-06-13

    Single-atom catalysts exhibit high selectivity in hydrogenation due to their isolated active sites, which ensure uniform adsorption configurations of substrate molecules. Compared with the achievement in catalytic selectivity, there is still a long way to go in exploiting the catalytic activity of single-atom catalysts. Herein, we developed highly active and selective catalysts in selective hydrogenation by embedding Pt single atoms in the surface of Ni nanocrystals (denoted as Pt 1 /Ni nanocrystals). During the hydrogenation of 3-nitrostyrene, the TOF numbers based on surface Pt atoms of Pt 1 /Ni nanocrystals reached ∼1800 h -1 under 3 atm of H 2 at 40 °C, much higher than that of Pt single atoms supported on active carbon, TiO 2 , SiO 2 , and ZSM-5. Mechanistic studies reveal that the remarkable activity of Pt 1 /Ni nanocrystals derived from sufficient hydrogen supply because of spontaneous dissociation of H 2 on both Pt and Ni atoms as well as facile diffusion of H atoms on Pt 1 /Ni nanocrystals. Moreover, the ensemble composed of the Pt single atom and nearby Ni atoms in Pt 1 /Ni nanocrystals leads to the adsorption configuration of 3-nitrostyrene favorable for the activation of nitro groups, accounting for the high selectivity for 3-vinylaniline.

  16. Use of Hydrogen Chemisorption and Ethylene Hydrogenation as Predictors for Aqueous Phase Reforming of Lactose over Ni@Pt and Co@Pt Bimetallic Overlayer Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Qinghua; Skoglund, Michael D.; Zhang, Chen; Morris, Allen R.; Holles, Joseph H.

    2016-10-20

    Overlayer Pt on Ni (Ni@Pt) or Co (Co@Pt) were synthesized and tested for H2 generation from APR of lactose. H2 chemisorption descriptor showed that Ni@Pt and Co@Pt overlayer catalysts had reduced H2 adsorption strength compared to a Pt only catalyst, which agree with computational predictions. The overlayer catalysts also demonstrated lower activity for ethylene hydrogenation than the Pt only catalyst, which likely resulted from decreased H2 binding strength decreasing the surface coverage of H2. XAS results showed that overlayer catalysts exhibited higher white line intensity than the Pt catalyst, which indicates a negative d-band shift for the Pt overlayer, further providing evidence for overlayer formation. Lactose APR studies showed that lactose can be used as feedstock to produce H2 and CO under desirable reaction conditions. The Pt active sites of Ni@Pt and Co@Pt overlayer catalysts showed significantly enhanced H2 production selectivity and activity when compared with that of a Pt only catalyst. The single deposition overlayer with the largest d-band shift showed the highest H2 activity. The results suggest that overlayer formation using directed deposition technique could modify the behavior of the surface metal and ultimately modify the APR activity.

  17. Characterization of catalysts Rh and Ni/Ce{sub x}Zr{sub 1-x}O{sub 2} for hydrogen production by ethanol steam reforming; Caracterisation de catalyseurs Rhodium et Nickel/ Ce{sub x}Zr{sub 1-x}O{sub 2} pour la production d'hydrogene par vaporeformage de l'ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Birot, A

    2005-07-01

    This work concerned a study on catalytic behaviour of metallic catalysts (Rh or Ni) supported on earth rare oxides Ce{sub x}Zr{sub 1-x}O{sub 2} in ethanol steam reforming in order to produce hydrogen. Catalyst 1%Rh/Ce0,50Zr0,50O{sub 2} showed a good activity with a good hydrogen yield. We turned a study onto understanding inter-conversion reaction between H{sub 2}, CO and CO{sub 2} which lead to CH{sub 4} formation. We also studied intrinsic properties of catalysts. We confirmed basic character of catalysts and a good hydrogenation activity. A good activity in CO hydrogenation allowed to evidence a necessity to use a catalyst which is less active in hydrogenation reaction and with a basic character in order to improve hydrogen yield. (author)

  18. WxC-β-SiC Nanocomposite Catalysts Used in Aqueous Phase Hydrogenation of Furfural.

    Science.gov (United States)

    Rogowski, Jacek; Andrzejczuk, Mariusz; Berlowska, Joanna; Binczarski, Michal; Kregiel, Dorota; Kubiak, Andrzej; Modelska, Magdalena; Szubiakiewicz, Elzbieta; Stanishevsky, Andrei; Tomaszewska, Jolanta; Witonska, Izabela Alina

    2017-11-22

    This study investigates the effects of the addition of tungsten on the structure, phase composition, textural properties and activities of β-SiC-based catalysts in the aqueous phase hydrogenation of furfural. Carbothermal reduction of SiO₂ in the presence of WO₃ at 1550 °C in argon resulted in the formation of W x C-β-SiC nanocomposite powders with significant variations in particle morphology and content of W x C-tipped β-SiC nano-whiskers, as revealed by TEM and SEM-EDS. The specific surface area (SSA) of the nanocomposite strongly depended on the amount of tungsten and had a notable impact on its catalytic properties for the production of furfuryl alcohol (FA) and tetrahydrofurfuryl alcohol (THFA). Nanocomposite W x C-β-SiC catalysts with 10 wt % W in the starting mixture had the highest SSA and the smallest W x C crystallites. Some 10 wt % W nanocomposite catalysts demonstrated up to 90% yield of THFA, in particular in the reduction of furfural derived from biomass, although the reproducible performance of such catalysts has yet to be achieved.

  19. Kinetic modeling of hydrogenation and hydro-denitrogenation mechanisms on sulfurated catalysts; Etude par modelisation cinetique des mecanismes d'hydrogenation et d'hydrodesazotation sur catalyseurs sulfures

    Energy Technology Data Exchange (ETDEWEB)

    Penet, H.

    1998-10-23

    Toluene hydrogenation on a NiMo/{gamma}-Al{sub 2}O{sub 3} catalyst was studied at 350 deg. C as a function of the partial pressures of H{sub 2}, H{sub 2}S and NH{sub 3}. This experimental study shows the following facts: the effect of the H{sub 2}S partial pressure on the hydrogenation rate is complex. The order with respect to H{sub 2}S varies between -0.05 and -0.5 as the pressure varies between 0.125 and 3 bar; in the presence of NH{sub 3}, the H{sub 2}S inhibiting effect is enhanced. Kinetic modeling was performed with the Chemkin II/Surface Chemkin II software package. On the basis of the effect of contact time and H{sub 2}S on toluene hydrogenation, the adsorption by heterolytic dissociation of H{sub 2} and H{sub 2}S was selected. H{sub 2} provides hydride species (H{sup -}) attacking the aromatic ring in a first step. Proton addition during the hydrogenation of the first double bond is the limiting step. In the presence of ammonia. the kinetic modeling shows that the catalyst surface is modified and that the displacement of the H{sub 2}S adsorption equilibrium is expected. The NH{sub 3} adsorption mode could not be clearly discriminated between a simple adsorption through coordination and an adsorption through protonation. This model was applied to the hydro-denitrogenation of 2,6-diethyl-aniline at 350 deg. C on NiMo/{gamma}-Al{sub 2}O{sub 3} catalyst and showed that the limitation step is the hydrogenation of the aromatic ring. (author)

  20. Catalytic Transfer Hydrogenation of Furfural to Furfuryl Alcohol over Nitrogen-Doped Carbon-Supported Iron Catalysts.

    Science.gov (United States)

    Li, Jiang; Liu, Jun-Ling; Zhou, Hong-Jun; Fu, Yao

    2016-06-08

    Iron-based heterogeneous catalysts, which were generally prepared by pyrolysis of iron complexes on supports at elevated temperature, were found to be capable of catalyzing the transfer hydrogenation of furfural (FF) to furfuryl alcohol (FFA). The effects of metal precursor, nitrogen precursor, pyrolysis temperature, and support on catalytic performance were examined thoroughly, and a comprehensive study of the reaction parameters was also performed. The highest selectivity of FFA reached 83.0 % with a FF conversion of 91.6 % under the optimal reaction condition. Catalyst characterization suggested that iron cations coordinated by pyridinic nitrogen functionalities were responsible for the enhanced catalytic activity. The iron catalyst could be recycled without significant loss of catalytic activity for five runs, and the destruction of the nitrogen-iron species, the presence of crystallized Fe2 O3 phase, and the pore structure change were the main reasons for catalyst deactivation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Catalyzed borohydrides for hydrogen storage

    Science.gov (United States)

    Au, Ming [Augusta, GA

    2012-02-28

    A hydrogen storage material and process is provided in which alkali borohydride materials are created which contain effective amounts of catalyst(s) which include transition metal oxides, halides, and chlorides of titanium, zirconium, tin, and combinations of the various catalysts. When the catalysts are added to an alkali borodydride such as a lithium borohydride, the initial hydrogen release point of the resulting mixture is substantially lowered. Additionally, the hydrogen storage material may be rehydrided with weight percent values of hydrogen at least about 9 percent.

  2. The use of ultrasmall iron(0) nanoparticles as catalysts for the selective hydrogenation of unsaturated C-C bonds.

    Science.gov (United States)

    Kelsen, Vinciane; Wendt, Bianca; Werkmeister, Svenja; Junge, Kathrin; Beller, Matthias; Chaudret, Bruno

    2013-04-28

    The performance of well-defined ultrasmall iron(0) nanoparticles (NPs) as catalysts for the selective hydrogenation of unsaturated C-C and C=X bonds is reported. Monodisperse iron nanoparticles of about 2 nm size are synthesized by the decomposition of {Fe(N[Si(CH3)3]2)2}2 under dihydrogen. They are found to be active for the hydrogenation of various alkenes and alkynes under mild conditions and weakly active for C=O bond hydrogenation.

  3. Palladium on Nitrogen-Doped Mesoporous Carbon: A Bifunctional Catalyst for Formate-Based, Carbon-Neutral Hydrogen Storage.

    Science.gov (United States)

    Wang, Fanan; Xu, Jinming; Shao, Xianzhao; Su, Xiong; Huang, Yanqiang; Zhang, Tao

    2016-02-08

    The lack of safe, efficient, and economical hydrogen storage technologies is a hindrance to the realization of the hydrogen economy. Reported herein is a reversible formate-based carbon-neutral hydrogen storage system that is established over a novel catalyst comprising palladium nanoparticles supported on nitrogen-doped mesoporous carbon. The support was fabricated by a hard template method and nitridated under a flow of ammonia. Detailed analyses demonstrate that this bicarbonate/formate redox equilibrium is promoted by the cooperative role of the doped nitrogen functionalities and the well-dispersed, electron-enriched palladium nanoparticles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Tuning of catalytic CO2 hydrogenation by changing composition of CuO–ZnO–ZrO2 catalysts

    International Nuclear Information System (INIS)

    Witoon, Thongthai; Kachaban, Nantana; Donphai, Waleeporn; Kidkhunthod, Pinit; Faungnawakij, Kajornsak; Chareonpanich, Metta

    2016-01-01

    Graphical abstract: The catalyst with an optimum composition of Cu:Zn:Zr (38.2:28.6:33.2) exhibited a homogeneous dispersion of metal components, and achieved the highest methanol yield. - Highlights: • A series of CuO–ZnO–ZrO 2 catalysts with different metal compositions were prepared. • Binary CuO–ZrO 2 catalyst exhibited higher methanol selectivity. • Increasing Zn/Cu ratios provided a better inter-dispersion of metal components. • The optimum catalyst composition of Cu–Zn–Zr (CZZ-4) was 38.2:28.6:33.2. • The CZZ-4 achieved the highest methanol yield (219.7 g CH3OH kg cat −1 h −1 ) at 240 °C. - Abstract: CO 2 hydrogenation was carried out over a series of CuO–ZnO–ZrO 2 catalysts prepared via a reverse co-precipitation method. The influence of catalyst compositions on the physicochemical properties of the catalysts as well as their catalytic performance was investigated. The catalysts were characterized by means of N 2 -sorption, X-ray diffraction (XRD), inductively coupled plasma optical emission spectrometry (ICP-OES), scanning electron microscopy (SEM), H 2 -temperature programmed reduction (H 2 -TPR), H 2 and CO 2 temperature-programmed desorption (H 2 - and CO 2 -TPD). The binary CuO–ZrO 2 (67:33) catalyst exhibits the highest methanol selectivity at all reaction temperature and its maximum yield of methanol (144.5 g methanol kg cat −1 h −1 ) is achieved at 280 °C, owing to the strong basic sites and the largest CuO crystallite size. The addition of Zn to the binary CuO–ZrO 2 catalyst causes a higher Cu dispersion and an increased number of active sites for CO 2 and H 2 adsorption. However, the basic strength of the ternary CuO–ZnO–ZrO 2 catalysts is lower than the binary CuO–ZrO 2 catalyst which provides the maximum yield of methanol at lower reaction tempertures (240 and 250 °C), depending on the catalyst compositions. The optimum catalyst composition of Cu–Zn–Zr (38.2:28.6:33.2) gives a superior methanol

  5. Hydrogenation of fructose to 2,5-dimethyltetrahydrofuran using a sulfur poisoned Pt/C catalyst

    Science.gov (United States)

    In order to expand the number of biobased chemicals available, fructose has been hydrogenated to 2,5-dimethyltetrahydrofuran using a sulfided Pt/C catalyst. The reaction was carried out in a stirred reactor at 10.3 MPa H2 and 175°C which allowed a 10% fructose solution to be converted in about 2 h. ...

  6. Efficient Pd@MIL-101(Cr) hetero-catalysts for 2-butyne-1,4-diol hydrogenation exhibiting high selectivity

    KAUST Repository

    Yin, Dongdong

    2017-01-05

    Pd@MIL-101(Cr) hetero-catalysts have been successfully prepared using the metal-organic chemical vapour deposition (MOCVD) approach, by choosing [Pd(η-CH)(η-CH)] as a volatile precursor, and the hydrothermally stable metal-organic framework, MIL-101(Cr) as a support. The prepared Pd@MIL-101(Cr) hetero-catalysts characterized with various analytical techniques, exhibited highly monodispersed immobilized Pd nanoparticles in the MIL-101(Cr) cavities, while retaining the pristine crystallinity and porosity. The intact hybrid Pd@MIL-101(Cr) has been demonstrated to be an efficient catalyst for 2-butyne-1,4-diol hydrogenation with excellent activity, stability and selectivity (2-butene-1,4-diol (>94%)).

  7. Water oxidation catalysts and methods of use thereof

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Craig L.; Gueletii, Yurii V.; Musaev, Djamaladdin G.; Yin, Qiushi; Botar, Bogdan

    2017-12-05

    Homogeneous water oxidation catalysts (WOCs) for the oxidation of water to produce hydrogen ions and oxygen, and methods of making and using thereof are described herein. In a preferred embodiment, the WOC is a polyoxometalate WOC which is hydrolytically stable, oxidatively stable, and thermally stable. The WOC oxidized waters in the presence of an oxidant. The oxidant can be generated photochemically, using light, such as sunlight, or electrochemically using a positively biased electrode. The hydrogen ions are subsequently reduced to form hydrogen gas, for example, using a hydrogen evolution catalyst (HEC). The hydrogen gas can be used as a fuel in combustion reactions and/or in hydrogen fuel cells. The catalysts described herein exhibit higher turn over numbers, faster turn over frequencies, and/or higher oxygen yields than prior art catalysts.

  8. PVP-Stabilized Palladium Nanoparticles in Silica as Effective Catalysts for Hydrogenation Reactions

    Directory of Open Access Journals (Sweden)

    Caroline Pires Ruas

    2013-01-01

    Full Text Available Palladium nanoparticles stabilized by poly (N-vinyl-2-pyrrolidone (PVP can be synthesized by corresponding Pd(acac2 (acac = acetylacetonate as precursor in methanol at 80°C for 2 h followed by reduction with NaBH4 and immobilized onto SiO2 prepared by sol-gel process under acidic conditions (HF or HCl. The PVP/Pd molar ratio is set to 6. The effect of the sol-gel catalyst on the silica morphology and texture and on Pd(0 content was investigated. The catalysts prepared (ca. 2% Pd(0/SiO2/HF and ca. 0,3% Pd(0/SiO2/HCl were characterized by TEM, FAAS, and SEM-EDS. Palladium nanoparticles supported in silica with a size 6.6 ± 1.4 nm were obtained. The catalytic activity was tested in hydrogenation of alkenes.

  9. Hydrogen production via reforming of biogas over nanostructured Ni/Y catalyst: Effect of ultrasound irradiation and Ni-content on catalyst properties and performance

    Energy Technology Data Exchange (ETDEWEB)

    Sharifi, Mahdi [Chemical Engineering Faculty, Sahand University of Technology, P.O. Box 51335-1996, Sahand New Town, Tabriz (Iran, Islamic Republic of); Reactor and Catalysis Research Center (RCRC), Sahand University of Technology, P.O. Box 51335-1996, Sahand New Town, Tabriz (Iran, Islamic Republic of); Haghighi, Mohammad, E-mail: haghighi@sut.ac.ir [Chemical Engineering Faculty, Sahand University of Technology, P.O. Box 51335-1996, Sahand New Town, Tabriz (Iran, Islamic Republic of); Reactor and Catalysis Research Center (RCRC), Sahand University of Technology, P.O. Box 51335-1996, Sahand New Town, Tabriz (Iran, Islamic Republic of); Abdollahifar, Mozaffar [Chemical Engineering Faculty, Sahand University of Technology, P.O. Box 51335-1996, Sahand New Town, Tabriz (Iran, Islamic Republic of); Reactor and Catalysis Research Center (RCRC), Sahand University of Technology, P.O. Box 51335-1996, Sahand New Town, Tabriz (Iran, Islamic Republic of)

    2014-12-15

    Highlights: • Synthesis of nanostructured Ni/Y catalyst by sonochemical and impregnation methods. • Enhancement of size distribution and active phase dispersion by employing sonochemical method. • Evaluation of biogas reforming over Ni/Y catalyst with different Ni-loadings. • Preparation of highly active and stable catalyst with low Ni content for biogas reforming. • Getting H{sub 2}/CO very close to equilibrium ratio by employing sonochemical method. - Abstract: The effect of ultrasound irradiation and various Ni-loadings on dispersion of active phase over zeolite Y were evaluated in biogas reforming for hydrogen production. X-ray diffraction, field emission scanning electron microscopy, energy dispersive X-ray, Brunauer–Emmett–Teller, Fourier transform infrared analysis and TEM analysis were employed to observe the characteristics of nanostructured catalysts. The characterizations implied that utilization of ultrasound irradiation enhanced catalyst physicochemical properties including high dispersion of Ni on support, smallest particles size and high catalyst surface area. The reforming reactions were carried out at GHSV = 24 l/g.h, P = 1 atm, CH{sub 4}/CO{sub 2} = 1 and temperature range of 550–850 °C. Activity test displayed that ultrasound irradiated Ni(5 wt.%)/Y had the best performance and the activity remained stable during 600 min. Furthermore, the proposed reaction mechanism showed that there are three major reaction channels in biogas reforming.

  10. Hydrophilic cobalt sulfide nanosheets as a bifunctional catalyst for oxygen and hydrogen evolution in electrolysis of alkaline aqueous solution.

    Science.gov (United States)

    Zhu, Mingchao; Zhang, Zhongyi; Zhang, Hu; Zhang, Hui; Zhang, Xiaodong; Zhang, Lixue; Wang, Shicai

    2018-01-01

    Hydrophilic medium and precursors were used to synthesize a hydrophilic electro-catalyst for overall water splitting. The cobalt sulfide (Co 3 S 4 ) catalyst exhibits a layered nanosheet structure with a hydrophilic surface, which can facilitate the diffusion of aqueous substrates into the electrode pores and towards the active sites. The Co 3 S 4 catalyst shows excellent bifunctional catalytic activity for both the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in alkaline solution. The assembled water electrolyzer based on Co 3 S 4 exhibits better performance and stability than that of Pt/C-RuO 2 catalyst. Thereforce the hydrophilic Co 3 S 4 is a highly promising bifunctional catalyst for the overall water splitting reaction. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Synthesis of DME by CO2 hydrogenation over La2O3-modified CuO-ZnO-ZrO2/HZSM-5 catalysts

    Directory of Open Access Journals (Sweden)

    Zhang Yajing

    2017-01-01

    Full Text Available A series of La2O3-modified CuO-ZnO-ZrO2/HZSM-5 catalysts were prepared by an oxalate co-precipitation method. The catalysts were fully characterized by X-ray diffraction (XRD, N2 adsorption-desorption, hydrogen temperature pro-grammed reduction (H2-TPR, ammonia temperature programmed desorption (NH3-TPD, and X-ray photoelectron spectroscopy (XPS techniques. The effect of the La2O3 content on the structure and performance of the catalysts was thoroughly investigated. The catalysts were evaluated for the direct synthesis of dimethyl ether (DME from CO2 hydrogenation. The results displayed that La2O3 addition enhanced catalytic performance, and the maximal CO2 conversion (34.3% and DME selectivity (57.3% were obtained over the catalyst with 1% La2O3, which due to the smaller size of Cu species and a larger ratio of Cu+/Cu.

  12. Molybdenum acetate like precursor of molybdenum carburized supported on alumina: a catalyst for hydrogenation reactions

    International Nuclear Information System (INIS)

    Petkovic, Lucia M; Parra, Ruben D; Marquez Manuel; Larsen, Gustavo

    1994-01-01

    The stability of the Al203 supported dimers under relatively high temperatures and hydrocarbon/H2 (carburizing) atmospheres is reported also, it has been developed a new method for Mo2 loading of the support based on the wet impregnation of the latter. Since carbided Mo is active for hydrogenations, the isobutene/H2 has been chosen as the probe reaction. Al203 supported Mo2(Ac)4 results in a catalyst active for isobutene hydrogenation after treatment with a H2/C2H6 2:1 mixture at 753 k

  13. More active and sulfur resistant bimetallic Pd-Ni catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Betti, Carolina; Carrara, Nicolás; Badano, Juan; Lederhos, Cecilia; Vera, Carlos; Quiroga, Mónica, E-mail: mquiroga@fiq.unl.edu.ar [Instituto de Investigaciones en Catálisis y Petroquímica, INCAPE (FIQ-UNL, CONICET), Santa Fe (Argentina)

    2018-02-15

    The influence of the kind of metal precursor and the sequence of impregnation on the properties of Pd-Ni catalysts was evaluated during the test reaction of selective hydrogenation of styrene to ethylbenzene by means of physicochemical characterization. The focus was put on the final hydrogenating activity and the resistance to deactivation by sulfide compounds (thiophene). The used techniques of characterization were ICP, XPS, XDR, TPR, CO chemisorption and TEM. XPS results indicated the presence of different Pd species: Pd{sup δ-}, Pd{sup 0} and Pd{sup δ+}. In the case of the Ni containing catalysts, Ni{sup 0} and NiO species were also detected. These palladium and nickel species would be responsible of the variation of activity and sulfur resistance of the catalysts. NiClPd catalysts had a higher resistance to deactivation by sulfur poisoning. This was associated to a higher concentration of Pd{sup η+}Cl{sub x}O{sub y} species that would prevent the adsorption of thiophene by both steric and electronic effects. It could also be due to the lower concentration of Pd{sup 0} and Ni{sup 0} on these catalysts, as compared to those shown by the PdNiCl catalysts. Both the Pd{sup 0} and Ni{sup 0} species are more prone to poisoning because of their higher electronic availability. (author)

  14. A study on the deactivation and stability of hydrophobic catalyst for hydrogen isotope exchange

    International Nuclear Information System (INIS)

    Sohn, Soon Hwan

    2006-02-01

    The hydrophobic catalyst has been prepared by deposition of platinum on porous styrene divinylbenzene copolymers(Pt/SDBC) and at the same time a separated type catalytic reactor has been developed for the Wolsong tritium removal facility(WTRF). Several tests carried out to obtain the experimental performance data of the Pt/SDBC with a recycle reactor system. The long-term stability was also measured with the Pt/SDBC catalyst immersed in water for a long time. The long-term deactivations of the Pt/SDBC catalyst were evaluated quantitatively by mathematical models. The simple mathematical models were presented to evaluate the uniform poisoning and shell progressive poisoning to be occurred simultaneously during the hydrogen isotope exchange between hydrogen gas and liquid water in the Liquid Phase Catalytic Exchange(LPCE) column. The uniform poisoning was well characterized by a time on stream theory and then the deactivation parameters were determined from the experimental performance data. The impurity poisoning was derived by a shell progressive model with two-layer mass transfer. The water vapor condensation was a main cause of the reversible uniform poisoning for the Pt/SDBC catalyst. The values of the decay rate constant (K d ) and order of the decay reaction(m) were of 2 and 4, respectively, based on the experimental data. It indicated that the decay might be attributable to pore mouth poisoning. From the long-term stability of the catalyst immersed in water, there was no intrinsic decay of catalyst activity due to water logging to the catalyst. The activity decreased by only 7% over 18 months, which was equivalent to a catalyst half-life longer than 15 years. On the basis of the above deactivation parameters, the values for k c /k co with Thiele modulus=20 after 3 years and 10 years of operation were expected about 19% and 15% of the initial activity, respectively, while the values for k c /k co with Thiele modulus=100 were of about 22% and 18%, respectively

  15. Hydrogenation/Deoxygenation (H/D Reaction of Furfural-Acetone Condensation Product using Ni/Al2O3-ZrO2 Catalyst

    Directory of Open Access Journals (Sweden)

    Adam Mahfud

    2016-08-01

    Full Text Available The catalytic hydrogenation/deoxygenation (H/D reaction was carried out using Ni/Al2O3-ZrO2 catalyst. The 10% (wt/wt of Ni were impregnated on Al2O3-ZrO2 (10NiAZ by wet impregnation method followed by calcination and reduction. X-Ray diffraction analysis showed that Nideposited on the surface, with specific surface areas (SBET was 48.616 m2/g. Catalyst performance were evaluated for H/D reaction over furfural-acetone condensation products, mixture of 2-(4-furyl-3-buten-2-on and 1,5-bis-(furan-2-yl-pentan-3-one. The reaction was carried out in a batch, performed at 150°C for 8 hours. The H/D reaction gave alkane derivatives C8 and C10 by hydrogenation process followed by ring opening of furan in 15.2% yield. While, oxygenated product C10-C13 were also detected in 17.2% yield. The increasing of pore volume of 10NiAZ might enhance catalyst activity over H/D reaction. The alkene C=C bond was easy to hydrogenated under this condition by the lower bond energy gap.

  16. Hydrogen production from raw bioethanol steam reforming: optimization of catalyst composition with improved stability against various impurities

    International Nuclear Information System (INIS)

    Le Valant, A.; Can, F.; Bion, N.; Epron, F.; Duprez, D.

    2009-01-01

    Usually, ethanol steam reforming is performed using pure ethanol, whereas the use of raw bioethanol is of major importance for a cost effective industrial application. Raw bioethanol contains higher alcohols as the main impurities and also aldehydes, amines, acids and esters. The effect of these impurities on the catalytic performances for ethanol steam reforming (ESR) has been studied, using a reference catalyst, Rh/MgAl 2 O 4 . It was shown that the aldehyde, the amine and methanol has no negative effect on the catalytic performances, contrary to the ester, acid and higher alcohols. The deactivation is mainly explained by coke formation favored by the presence of these impurities in the feed. In order to improve the stability of the catalyst and its performances in the presence of these deactivating impurities, the catalyst formulation, i.e. the composition of the support and of the metallic phase, was modified. The addition of rare earth elements instead of magnesium to the alumina support leads to a decrease of the strong and medium acid sites and to an increase of the basicity. On these modified supports, the dehydration reaction, leading to olefins, which are coke precursors, is disfavored, the ethanol conversion and the hydrogen yield are increased. The best catalytic performances were obtained with Rh/Y-Al 2 O 3 . Then, the metallic phase was also modified by adding a second metal (Ni, Pt or Pd). The Rh-Ni/Y-Al 2 O 3 catalyst leads to the highest hydrogen yield. This catalyst, tested in the presence of raw bioethanol during 24h was very stable compared to the reference catalyst Rh/MgAl 2 O 4 , which was strongly deactivated after 2h of time-on-stream. (author)

  17. Behaviour of Co-Mo-Al/sub 2/O/sub 3/ catalysts in the hydrogenation of phenols

    Energy Technology Data Exchange (ETDEWEB)

    Weigold, H.

    1982-10-01

    The activity of a number of ring alkyl-substituted phenols in the direct hydrodeoxygenation reaction (i.e. C-O bond scission without prior ring hydrogenation) in the presence of a commercial Co-Mo-Al/sub 2/O/sub 3/ catalyst has been investigated. The results indicate that the catalytically active site is stereochemically demanding. It is proposed that the phenol ring hydrogenation and the direct hydrodeoxygenation reaction proceed on the same catalytic site. The ease of the direct hydrodeoxygenation reaction is retarded mainly when transfer of the substrate hydroxyl group onto a co-ordinatively unsaturated metal site on the catalyst is inhibited. This occurs when the catalyst hydroxyl group receptor site is occupied by a co-ordinating ligand (poison) or when substituents on the substrate direct the phenolic hydroxyl group away from this metal site. The catalytic behaviour of Co-Mo-Al/sub 2/O/sub 3/ can be 'transformed' to resemble more closely that of Ni-Mo-Al/sub 2/O/sub 3/ (high reductive capacity) when the reaction medium contains both excess H/sub 2/S and a co-ordinating ligand. It is proposed that this 'transformed' species is of importance in hydrodenitrogenation reactions in an H/sub 2/S-rich environment.

  18. Co3O4 nanowires as efficient catalyst precursor for hydrogen generation from sodium borohydride hydrolysis

    Science.gov (United States)

    Wei, Lei; Cao, Xurong; Ma, Maixia; Lu, Yanhong; Wang, Dongsheng; Zhang, Suling; Wang, Qian

    Hydrogen generation from the catalytic hydrolysis of sodium borohydride has many advantages, and therefore, significant research has been undertaken on the development of highly efficient catalysts for this purpose. In our present work, Co3O4 nanowires were successfully synthesized as catalyst precursor by employing SBA-15 as a hard template. For material characterization, high-resolution transmission electron microscopy (HRTEM), powder X-ray diffraction (XRD), fourier-transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and N2 adsorption isotherms were employed, respectively. To measure the catalyst activity, typical water-displacement method was carried out. Using a reaction solution comprising 10wt.% NaBH4 and 2wt.% NaOH, the hydrogen generation rate (HGR) was observed to be as high as 7.74L min-1 g-1 at 25∘C in the presence of Co3O4 nanowires, which is significantly higher than that of CoB nanoparticles and commercial Co3O4 powder. Apparent activation energy was calculated to be 50.9kJ mol-1. After recycling the Co3O4 nanowires six times, HGR was decreased to be 72.6% of the initial level.

  19. Support Screening Studies on the Hydrogenation of Levulinic Acid to γ-Valerolactone in Water Using Ru Catalysts

    Directory of Open Access Journals (Sweden)

    Anna Piskun

    2016-08-01

    Full Text Available γ-Valerolactone (GVL has been identified as a sustainable platform chemical for the production of carbon-based chemicals. Here we report a screening study on the hydrogenation of levulinic acid (LA to GVL in water using a wide range of ruthenium supported catalysts in a batch set-up (1 wt. % Ru, 90 °C, 45 bar of H2, 2 wt. % catalyst on LA. Eight monometallic catalysts were tested on carbon based(C, carbon nanotubes (CNT and inorganic supports (Al2O3, SiO2, TiO2, ZrO2, Nb2O5 and Beta-12.5. The best result was found for Ru/Beta-12.5 with almost quantitative LA conversion (94% and 66% of GVL yield after 2 h reaction. The remaining product was 4-hydroxypentanoic acid (4-HPA. Catalytic activity for a bimetallic RuPd/TiO2 catalyst was by far lower than for the monometallic Ru catalyst (9% conversion after 2 h. The effects of relevant catalyst properties (average Ru nanoparticle size, Brunauer-Emmett-Teller (BET surface area, micropore area and total acidity on catalyst activity were assessed.

  20. Hydrogenation and hydrodeoxygenation of difurfurylidene acetone to liquid alkanes over Raney Ni and the supported Pt catalysts

    International Nuclear Information System (INIS)

    Li, Yuping; Huang, Xiaoming; Zhang, Qian; Chen, Lungang; Zhang, Xinghua; Wang, Tiejun; Ma, Longlong

    2015-01-01

    Highlights: • The C_8−C_1_4 alkane yield of 82.9% was obtained in the two-step hydrogenation/HDO process. • Protonation effect from methanol solvent increased F_2A conversion in the two-step process. • The rate-determining step was acyl C=O bond hydrogenation in the first step of F_2A hydrogenation. • The acidic centers from SiO_2−ZrO_2 activated the acyl and oxygen atoms of intermediates. • Acidity of SiO_2−ZrO_2 and Pt active centers of 1 wt%Pt/SiO_2−ZrO_2 resulted stable HDO performance. - Abstract: Direct HDO process for difurfurylidene acetone dimer (F_2A) conversion to liquid alkanes (C_8−C_1_4) at 260 °C in a batch reactor was investigated over different material supported 1 wt%Pt catalysts, including SAPO-11, HZSM-5, SiO_2−Al_2O_3, MCM-22, and home-made SiO_2−ZrO_2. C_8−C_1_4 alkanes of 55.8% was obtained over the optimized 1 wt%Pt/SiO_2−ZrO_2 due to its proper pore size of 9.0 nm and moderate acidic centers, together with more than 10% carbon yield of the oxygenated hydrocarbons, including C_1_1−C_1_3 chain alcohols & ketones and the hydrogenated F_2A dimers with furan ring (H-F_2A dimers). To improve the liquid alkane yield, a two-step process for F_2A conversion was also investigated, which included low-temperature hydrogenation at 50 °C over Raney Ni catalyst in a batch reactor and the subsequent high-temperature hydrodeoxygenation (HDO) at 280 °C over 1 wt%Pt/SiO_2−ZrO_2 in a fixed-bed reactor. The selectivity of 1,5-di(tetrahydro-2-furanyl)-3-pentanol (II-c) was the highest of 83.0% among the hydrogenated intermediates of H-F_2A dimers due to the protonation effect of methanol as the solvent and the hydrogenation of C=C bonds by Ni active centers. In the same time, the high content of this saturated alcohol H-dimer of II-C increased the solubility and stability of the intermediates in methanol solvent. High carbon yield of C_8−C_1_4 alkanes of 82.9%(mol) was obtained after oxygen atom removal from H-F_2A dimers via

  1. Long-term storage and long-distance transportation of hydrogen by use of catalyst-addisted decalin dehydrogenation/naphthalene hydrogenation pair; Dekarin dassuiso/nafutarensuisoka shokubai hannotai wo mochiiru suiso no chokikan chozo/chokyori yuso

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.; Sakaguchi, M.; Saito, Y. [Scince Univ.of Tokyo, Tokyo (Japan)

    1997-06-01

    To enable taking in and out hydrogen with little energy consumption, it is sufficient if decalin is dehydrogenated to naphthalene under moderate heating condition. It is found that carbon supporting metal catalyst in liquid film state shows extremely high dehydrogeno-aromatization activity of decalin. The result of comparison with liquid hydrogen or metal hydride as media for hydrogen storage and transportation media is reported. The platinum-tungsten composite metal catalyst is prepared from an aqueous solution of K2PtC16 and Li2WO4 in the ratio of 1 to 1 so as to achieve 5wt-metal% carbon supporting. When hydrogen and naphthalene are discharged from the liquid phase reaction medium to the vapor phase and solid phase, respectively, under boiling and refluxing conditions, hydrogen is produced steadily by heating at 200 to 210degC. If economical efficiency is ignored, development of an inter-season energy storage system is desired to be developed which can be used in the season between summertime when sufficient hydrogen is obtained by photovoltaic power generation and electrolysis of water and wintertime when heat source is obtained by catalytic combustion of hydrogen. 11 refs., 4 figs., 4 tabs.

  2. WxC-β-SiC Nanocomposite Catalysts Used in Aqueous Phase Hydrogenation of Furfural

    Directory of Open Access Journals (Sweden)

    Jacek Rogowski

    2017-11-01

    Full Text Available This study investigates the effects of the addition of tungsten on the structure, phase composition, textural properties and activities of β-SiC-based catalysts in the aqueous phase hydrogenation of furfural. Carbothermal reduction of SiO2 in the presence of WO3 at 1550 °C in argon resulted in the formation of WxC-β-SiC nanocomposite powders with significant variations in particle morphology and content of WxC-tipped β-SiC nano-whiskers, as revealed by TEM and SEM-EDS. The specific surface area (SSA of the nanocomposite strongly depended on the amount of tungsten and had a notable impact on its catalytic properties for the production of furfuryl alcohol (FA and tetrahydrofurfuryl alcohol (THFA. Nanocomposite WxC-β-SiC catalysts with 10 wt % W in the starting mixture had the highest SSA and the smallest WxC crystallites. Some 10 wt % W nanocomposite catalysts demonstrated up to 90% yield of THFA, in particular in the reduction of furfural derived from biomass, although the reproducible performance of such catalysts has yet to be achieved.

  3. New Catalyst for HER and CO2 Hydrogenation for Solar Fuel Production

    DEFF Research Database (Denmark)

    Chorkendorff, Ib

    2013-01-01

    sulfides mimics nature’s enzymes for hydrogen evolution when deposited on various supports [1, 2]. When these catalysts are deposited on p-type Si they can harvest the red part of the solar spectrum and potentially be coupled to CO2 hydrogenation [3-5]. Such a system could constitute the cathode part...... of a tandem dream device where the red part of the spectrum is utilized for solar fuel evolution, while the blue part is reserved for the more difficult oxygen evolution. Recently we have found that this system can be improved considerably using a np-Si systems [6] as recently described by the Nate Lewis...

  4. Tritium transfer process using the CRNL wetproof catalyst

    International Nuclear Information System (INIS)

    Chuang, K.T.; Holtslander, W.J.

    1980-01-01

    The recovery of tritium from heavy water in CANDU reactor systems requires the transfer of the tritium atoms from water to hydrogen molecules prior to tritium concentration by cryogenic distillation. Isotopic exchange between liquid water and hydrogen using the CRNL-developed wetproof catalyst provides an effective method for the tritium transfer process. The development of this process has required the translation of the technology from a laboratory demonstration of catalyst activity for the exchange reaction to proving and demonstration that the process will meet the practical restraints in a full-scale tritium recovery plant. This has led to a program to demonstrate acceptable performance of the catalyst at operating conditions that will provide data for design of large plants. Laboratory and pilot plant work has shown adequate catalyst lifetimes, demonstrated catalyst regeneration techniques and defined and required feedwater purification systems to ensure optimum catalyst performance. The ability of the catalyst to promote the exchange of hydrogen isotopes between water and hydrogen has been shown to be technically feasible for the tritium transfer process

  5. Towards a rational design of ruthenium CO2 hydrogenation catalysts by Ab initio metadynamics.

    Science.gov (United States)

    Urakawa, Atsushi; Iannuzzi, Marcella; Hutter, Jürg; Baiker, Alfons

    2007-01-01

    Complete reaction pathways relevant to CO2 hydrogenation by using a homogeneous ruthenium dihydride catalyst ([Ru(dmpe)2H2], dmpe=Me2PCH2CH2PMe2) have been investigated by ab initio metadynamics. This approach has allowed reaction intermediates to be identified and free-energy profiles to be calculated, which provide new insights into the experimentally observed reaction pathway. Our simulations indicate that CO2 insertion, which leads to the formation of formate complexes, proceeds by a concerted insertion mechanism. It is a rapid and direct process with a relatively low activation barrier, which is in agreement with experimental observations. Subsequent H2 insertion into the formate--Ru complex, which leads to the formation of formic acid, instead occurs via an intermediate [Ru(eta2-H2)] complex in which the molecular hydrogen coordinates to the ruthenium center and interacts weakly with the formate group. This step has been identified as the rate-limiting step. The reaction completes by hydrogen transfer from the [Ru(eta2-H2)] complex to the formate oxygen atom, which forms a dihydrogen-bonded Ru--HHO(CHO) complex. The activation energy for the H2 insertion step is lower for the trans isomer than for the cis isomer. A simple measure of the catalytic activity was proposed based on the structure of the transition state of the identified rate-limiting step. From this measure, the relationship between catalysts with different ligands and their experimental catalytic activities can be explained.

  6. Designing Efficient Solar-Driven Hydrogen Evolution Photocathodes Using Semitransparent MoQxCly(Q = S, Se) Catalysts on Si Micropyramids

    KAUST Repository

    Ding, Qi

    2015-09-21

    © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Silicon micropyramids with n+pp+ junctions are demonstrated to be efficient absorbers for integrated solar-driven hydrogen production systems enabling significant improvements in both photocurrent and onset potential. When conformally coated with MoSxCly, a catalyst that has excellent catalytic activity and high optical transparency, the highest photocurrent density for Si-based photocathodes with earth-abundant catalysts is achieved.

  7. Hydrogen Production by Steam Reforming of Ethanol over Nickel Catalysts Supported on Sol Gel Made Alumina: Influence of Calcination Temperature on Supports.

    Science.gov (United States)

    Yaakob, Zahira; Bshish, Ahmed; Ebshish, Ali; Tasirin, Siti Masrinda; Alhasan, Fatah H

    2013-05-30

    Selecting a proper support in the catalyst system plays an important role in hydrogen production via ethanol steam reforming. In this study, sol gel made alumina supports prepared for nickel (Ni) catalysts were calcined at different temperatures. A series of (Ni/Al S.G. ) catalysts were synthesized by an impregnation procedure. The influence of varying the calcination temperature of the sol gel made supports on catalyst activity was tested in ethanol reforming reaction. The characteristics of the sol gel alumina supports and Ni catalysts were affected by the calcination temperature of the supports. The structure of the sol gel made alumina supports was transformed in the order of γ → (γ + θ) → θ-alumina as the calcination temperature of the supports increased from 600 °C to 1000 °C. Both hydrogen yield and ethanol conversion presented a volcano-shaped behavior with maximum values of 4.3 mol/mol ethanol fed and 99.5%, respectively. The optimum values were exhibited over Ni/Al S.G800 (Ni catalyst supported on sol gel made alumina calcined at 800 °C). The high performance of the Ni/Al S.G800 catalyst may be attributed to the strong interaction of Ni species and sol gel made alumina which lead to high nickel dispersion and small particle size.

  8. Influences of species of metals and supports on the hydrogenation activity of carbon-supported metal sulfides catalysts; Tanso biryushi tanji shokubai no suisoka kassei ni taisuru kassei kinzoku oyobi tantaishu no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Sakanishi, K.; Hasuo, H.; Taniguchi, H.; Nagamatsu, T.; Mochida, I. [Kyushu University, Fukuoka (Japan). Institute of Advanced Material Study

    1996-10-28

    In order to design catalysts suitable for primary liquefaction stage and secondary upgrading stage respectively in the multi-stage liquefaction process, various carbon-supported catalysts were prepared. Catalytic activities of them were investigated for the hydrogenation of 1-methylnaphthalene, to discuss the influences of metals and carbon species on the catalytic activity. Various water soluble and oil soluble Mo and Ni salts were used for NiMo supported catalysts. Among various carbon supports, Ketjen Black (KB) was effective for preparing the catalyst showing the most excellent hydrogenation activity. The KB and Black Pearl 2000 (BP2000) showing high hydrogenation activity were fine particles having high specific surface area more than 1000 m{sup 2}/g and primary particle diameter around 30 nm. This was inferred to contribute to the high dispersion support of active metals. Since such fine particles of carbon exhibited hydrophobic surface, they were suitable for preparing catalysts from the methanol-soluble metals. Although Ni and Mo added iron-based catalysts provided lower aromatic hydrogenation activity, they exhibited liquefaction activity competing with the NiMo/KB catalyst. 3 refs., 1 fig., 3 tabs.

  9. Factors responsible for activity of catalysts of different chemical types in the reaction of hydrogen oxidation

    International Nuclear Information System (INIS)

    Il'chenko, N.I.; Dolgikh, L.Yu.

    1985-01-01

    Reasons of differences in the kinetics and mechanism of the H 2 oxidation on optimum metallic (Pt), carbide (WC) and oxide (Co 3 O 4 ) catalysts are discussed. These differences lead to unequal specific activity. It is shown that the catalytic activity of the catalysts in question increases with respect to reactions of isotopic exchange and hydrogen oxidation with an increasing electron-donating ability of anat of the transition metal M on which H 2 is adsorbed. The possibility is considered of increasing the transition metal activity by introduction of additions to increase the electron-donating ability of M

  10. Highly selective hydrogenation of furfural to furfuryl alcohol over Pt nanoparticles supported on g-C3N4 nanosheets catalysts in water

    Science.gov (United States)

    Chen, Xiufang; Zhang, Ligang; Zhang, Bo; Guo, Xingcui; Mu, Xindong

    2016-06-01

    Graphitic carbon nitride nanosheets were investigated for developing effective Pt catalyst supports for selective hydrogenation of furfural to furfuryl alcohol in water. The nanosheets with an average thickness of about 3 nm were synthesized by a simple and green method through thermal oxidation etching of bulk g-C3N4 in air. Combined with the unique feature of nitrogen richness and locally conjugated structure, the g-C3N4 nanosheets with a high surface area of 142 m2 g-1 were demonstrated to be an excellent supports for loading small-size Pt nanoparticles. Superior furfural hydrogenation activity in water with complete conversion of furfural and high selectivity of furfuryl alcohol (>99%) was observed for g-C3N4 nanosheets supported Pt catalysts. The large specific surface area, uniform dispersion of Pt nanoparticles and the stronger furfural adsorption ability of nanosheets contributed to the considerable catalytic performance. The reusability tests showed that the novel Pt catalyst could maintain high activity and stability in the furfural hydrogenation reaction.

  11. Highly selective hydrogenation of furfural to furfuryl alcohol over Pt nanoparticles supported on g-C3N4 nanosheets catalysts in water.

    Science.gov (United States)

    Chen, Xiufang; Zhang, Ligang; Zhang, Bo; Guo, Xingcui; Mu, Xindong

    2016-06-22

    Graphitic carbon nitride nanosheets were investigated for developing effective Pt catalyst supports for selective hydrogenation of furfural to furfuryl alcohol in water. The nanosheets with an average thickness of about 3 nm were synthesized by a simple and green method through thermal oxidation etching of bulk g-C3N4 in air. Combined with the unique feature of nitrogen richness and locally conjugated structure, the g-C3N4 nanosheets with a high surface area of 142 m(2) g(-1) were demonstrated to be an excellent supports for loading small-size Pt nanoparticles. Superior furfural hydrogenation activity in water with complete conversion of furfural and high selectivity of furfuryl alcohol (>99%) was observed for g-C3N4 nanosheets supported Pt catalysts. The large specific surface area, uniform dispersion of Pt nanoparticles and the stronger furfural adsorption ability of nanosheets contributed to the considerable catalytic performance. The reusability tests showed that the novel Pt catalyst could maintain high activity and stability in the furfural hydrogenation reaction.

  12. Hydrogen production in membrane reactors using Rh catalysts on binary supports

    Energy Technology Data Exchange (ETDEWEB)

    Carrara, Carlos; Roa, Alejandro; Cornaglia, Laura; Lombardo, Eduardo A. [Instituto de Investigaciones en Catalisis y Petroquimica (FIQ, UNL-CONICET), Sgo del Estero 2829-3000 Santa Fe (Argentina); Mateos-Pedrero, Cecilia; Ruiz, Patricio [Unite de Catalyse et Chimie des Materiaux Divises, Universite Catholique de Louvain, Place Croix du Sud 2/17, 1348 Louvain-la Neuve (Belgium)

    2008-04-15

    The binary supports employed in this work were prepared by different methods. The Ti(7%)-MgO and the Ti(13%)-SiO{sub 2} were obtained using the grafting technique. The La(27%)-SiO{sub 2} was obtained through the incipient wetness impregnation with La(NO{sub 3}){sub 3} of Aerosil 300, previously calcined at 1173 K. The Rh was incorporated to these supports by wet impregnation. The catalysts were first evaluated for the CH{sub 4} + CO{sub 2} reaction in a fixed-bed reactor. They were found to be active and stable as to justify their use in the membrane reactor, which was operated at 823 K achieving methane conversions up to twice as much as the equilibrium values. In all cases, the activity of the Rh solids remained constant after 120 h on stream with very little formation of carbonaceous residues only detected through LRS. The catalysts were characterized through either hydrogen or carbon monoxide chemisorption, TPR, XRD, LRS and XPS. The Rh(0.6)/La-SiO{sub 2} catalyst showed a high metal dispersion that remained constant after use and the highest capacity to restore the CH{sub 4} + CO{sub 2} equilibrium when H{sub 2} was permeated out of the reaction section. The Rh(0.8)/Ti-MgO showed the highest Rh/oxide interaction associated with the lowest capacity to restore the reaction equilibrium. The Rh(0.8)/Ti-SiO{sub 2} exhibited an intermediate activity due in part to the partial segregation of the TiO{sub 2} upon calcinations and the subsequent appearance of small Rh crystallites in the used catalysts. (author)

  13. Rare behaviour of a catalyst pellet catalyst dynamics

    NARCIS (Netherlands)

    Westerterp, K.R.; Loonen, R.A.; Martens, A.

    1986-01-01

    Temperature overshoots and undershoots were found for a Pd on alumina catalyst pellet in its course towards a new steady state after a change in concentration of one of the reactants ethylene or hydrogen. When cooling the pellet, after heat-up by reaction, with pure hydrogen a sudden temperature

  14. Enhancing the stability of copper chromite catalysts for the selective hydrogenation of furfural using ALD overcoating

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongbo; Lei, Yu; Kropf, A. Jeremy; Zhang, Guanghui; Elam, Jeffrey W.; Miller, Jeffrey T.; Sollberger, Fred; Ribeiro, Fabio; Akatay, M. Cem; Stach, Eric A.; Dumesic, James A.; Marshall, Christopher L.

    2014-08-01

    The stability of a gas-phase furfural hydrogenation catalyst (CuCr2O4 center dot CuO) was enhanced by depositing a thin Al2O3 layer using atomic layer deposition (ALD). Based on temperature-programed reduction (TPR) measurements, the reduction temperature of Cu was raised significantly, and the activation energy for furfural reduction was decreased following the ALD treatment. Thinner ALD layers yielded higher furfural hydrogenation activities. X-ray absorption fine structure (XAFS) spectroscopy studies indicated that Cu1+/Cu-0 are the active species for furfural reduction.

  15. Hydrogen-Etched TiO2−x as Efficient Support of Gold Catalysts for Water–Gas Shift Reaction

    Directory of Open Access Journals (Sweden)

    Li Song

    2018-01-01

    Full Text Available Hydrogen-etching technology was used to prepare TiO2−x nanoribbons with abundant stable surface oxygen vacancies. Compared with traditional Au-TiO2, gold supported on hydrogen-etched TiO2−x nanoribbons had been proven to be efficient and stable water–gas shift (WGS catalysts. The disorder layer and abundant stable surface oxygen vacancies of hydrogen-etched TiO2−x nanoribbons lead to higher microstrain and more metallic Au0 species, respectively, which all facilitate the improvement of WGS catalytic activities. Furthermore, we successfully correlated the WGS thermocatalytic activities with their optoelectronic properties, and then tried to understand WGS pathways from the view of electron flow process. Hereinto, the narrowed forbidden band gap leads to the decreased Ohmic barrier, which enhances the transmission efficiency of “hot-electron flow”. Meanwhile, the abundant surface oxygen vacancies are considered as electron traps, thus promoting the flow of “hot-electron” and reduction reaction of H2O. As a result, the WGS catalytic activity was enhanced. The concept involved hydrogen-etching technology leading to abundant surface oxygen vacancies can be attempted on other supported catalysts for WGS reaction or other thermocatalytic reactions.

  16. Characterization of catalysts by Moessbauer spectroscopy: An application to the study of Fischer-Tropsch, hydrotreating and super Claus catalysts

    International Nuclear Information System (INIS)

    Kraan, A.M. van der; Boellaard, E.; Craje, M.W.J.

    1993-01-01

    Moessbauer spectroscopy is an excellent in-situ technique for the identification of phases present in catalysts. Applied to metallic iron catalysts used in the Fischer-Tropsch reaction it reveals a detailed picture of the carburization process and provides insight into the relation between the properties of the catalytic material and its activity. The influence of a support and the effect of alloying iron with an (in)active metal on the catalytic performance is discussed for Fe, Cu-Fe and Ni-Fe systems. In addition, Moessbauer spectroscopy is used for the identification of 'Co-sulfide' species present in sulfided Co and CoMo catalysts applied in one of the largest chemical processes in the world, the hydrotreatment of crude oil. A structural model is proposed. Finally, the contribution of Moessbauer spectroscopic studies to the development of a new catalyst for cleaning of Claus tail gas via selective oxidation of hydrogen sulfide to elemental sulfur is discussed. (orig.)

  17. Hydrogen production by ethanol partial oxidation over nano-iron oxide catalysts produced by chemical vapour synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Wael Ahmed Abou Taleb Sayed

    2011-01-13

    stability was reported for a reaction time of 10 hours. The results showed that the reaction route, the product distribution and hydrogen selectivity strongly depend on the iron oxide phase. The {alpha}-Fe{sub 2}O{sub 3} phase showed high hydrogen selectivity with the highest stability. Over {alpha}-Fe{sub 2}O{sub 3}/SiC supported catalysts acetaldehyde, water and CO{sub 2} were the main products. The product distributions strongly depended on the catalyst iron content. With increasing sample iron content, more CO{sub 2} and water was produced. The catalyst with an iron content of 1.9% showed the highest acetaldehyde yield. This is attributed to the low iron oxide content at active sites which lead to a dehydrogenation of ethanol to acetaldehyde. In contrast, at higher iron content more active sites were provided hence the acetaldehyde re-adsorbed and further oxidised to CO{sub 2}. All supported catalysts showed a good stability for 10 hours. In this time, the ethanol conversion was decreased by 9% with constant acetaldehyde yield. These results provide evidence that the reaction occurs over the iron oxide surface and iron oxide-support interface but not over the SiC particles. These results were supported by carrying out the ethanol oxidation over pure {alpha}-Fe{sub 2}O{sub 3} nanoparticles with different surface areas. Those surface areas were chosen depending on the surface areas measured for the pure {alpha}-Fe{sub 2}O{sub 3} and surface area calculated for iron oxide in the supported samples. The investigation showed that with a large catalyst surface areas hydrogen with a high selectivity may be produced, whereas with a small surface area only acetaldehyde, water and CO{sub 2} can be produced. The characterisation of the used catalyst showed a small variation of the iron oxide particle size and large surface area. This proved that the SiC support avoids a hot spot formation and prevents iron oxide particles from being sintered. (orig.)

  18. HYDROGEN MOLECULE INTERACTION WITH CpCr(CO3 CATALYST

    Directory of Open Access Journals (Sweden)

    T. Spataru

    2013-12-01

    Full Text Available The hydrogen molecule interaction with CpCr (CO3 catalyst has been studied using the B3LYP, B86 functionals and the 6-311++G** , LACV3P basis sets. The best results in the testing calculations of the analyzed reaction have been obtained by using the B86/6-311++G** DFT version giving quite good agreement between experimental and theoretical calculated enthalpies. The dispersion corrected DFT Grimme’s and Head-Gordon and coworkers’functionals have been attempted without any improvement of the results. The free energies of the initial reactants, transition states, intermediate compounds and fi nal products of the typical six-ring bond modifi cation mechanism have been calculated. The energy barriersof the reaction pathways are too high in the DFT approximation.

  19. Hydrogen Production via Glycerol Dry Reforming over La-Ni/Al2O3 Catalyst

    Directory of Open Access Journals (Sweden)

    Kah Weng Siew

    2013-12-01

    Full Text Available Glycerol (a bio-waste generated from biodiesel production has been touted as a promising bio-syngas precursor via reforming route. Previous studies have indicated that carbon deposition is the major performance-limiting factor for nickel (Ni catalyst during glycerol steam reforming. In the current paper, dry (CO2-reforming of glycerol, a new reforming route was carried out over alumina (Al2O3-supported non-promoted and lanthanum-promoted Ni catalysts. Both sets of catalysts were synthesized via wet co-impregnation procedure. The physicochemical characterization of the catalyst showed that the promoted catalyst possessed smaller metal crystallite size, hence higher metal dispersion compared to the virgin Ni/Al2O3 catalyst. This was also corroborated by the surface images captured by the FESEM analysis. In addition, BET surface area measurement gave 92.05m²/g for non-promoted Ni catalyst whilst promoted catalysts showed an average of 1 to 6% improvement depending on the La loading. Reaction studies at 873 K showed that glycerol dry reforming successfully produced H2 with glycerol conversion and H2 yield that peaked at 9.7% and 25% respectively over 2wt% La content. The optimum catalytic performance by 2%La-Ni/Al2O3 can be attributed to the larger BET surface area and smaller crystallite size that ensured accessibility of active catalytic sites.  © 2013 BCREC UNDIP. All rights reservedReceived: 12nd May 2013; Revised: 7th October 2013; Accepted: 16th October 2013[How to Cite: Siew, K.W., Lee, H.C., Gimbun, J., Cheng, C.K. (2013. Hydrogen Production via Glycerol Dry Reforming over La-Ni/Al2O3 Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 8 (2: 160-166. (doi:10.9767/bcrec.8.2.4874.160-166][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.8.2.4874.160-166

  20. Improved hydrogen generation from alkaline NaBH{sub 4} solution using cobalt catalysts supported on modified activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Dongyan; Guo, Qingjie; Yue, Xuehai [College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Dai, Ping [College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061 (China)

    2008-12-15

    Hydrogen production from alkaline sodium borohydride (NaBH{sub 4}) solution via hydrolysis process over activated carbon supported cobalt catalysts is studied. Activated carbons are used in their original form and after liquid phase oxidation with HNO{sub 3}. The changes in surface functional groups of the activated carbon are detected by FTIR spectroscopy. The effects of HNO{sub 3} oxidation on the properties of the activated carbon and the resulting catalyst performance are investigated. FTIR analysis reveals that the oxidative treatment leads to the formation of various functional groups on the surface of the activated carbon. Cobalt catalysts supported on the modified activated carbon are found to exhibit higher activity and stability. (author)

  1. Process for hydrogenating coal and coal solvents

    Science.gov (United States)

    Tarrer, Arthur R.; Shridharani, Ketan G.

    1983-01-01

    A novel process is described for the hydrogenation of coal by the hydrogenation of a solvent for the coal in which the hydrogenation of the coal solvent is conducted in the presence of a solvent hydrogenation catalyst of increased activity, wherein the hydrogenation catalyst is produced by reacting ferric oxide with hydrogen sulfide at a temperature range of 260.degree. C. to 315.degree. C. in an inert atmosphere to produce an iron sulfide hydrogenation catalyst for the solvent. Optimally, the reaction temperature is 275.degree. C. Alternately, the reaction can be conducted in a hydrogen atmosphere at 350.degree. C.

  2. Adsorption and temperature-programmed desorption of hydrogen with dispersed platinum and platinum-gold catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, J.R.; Foger, K.; Breakspere, R.J.

    1979-05-01

    Adsorption and temperature-programmed desorption of hydrogen with dispersed platinum and platinum-gold catalysts was studied with 0.9-3Vertical Bar3< platinum on silica gel, aerosil, sodium and lanthanum Y zeolites, and ..gamma..-alumina, and on aerosil-supported gold-platinum alloys containing 2, 10, 24, 33, and 85Vertical Bar3< gold. Surface enrichment with gold in the alloy systems, as derived from hydrogen adsorption data and predicted from surface enrichment theory and electron microscopic measurements of particle size, were in good agreement, which indicated that equilibrium was achieved by the thermal treatment (oxygen at 573/sup 0/K, hydrogen at 620/sup 0/K, repeated cycles) used. Hydrogen spillover to gold was observed at the higher hydrogen pressures tested on the alloys with high gold content, and to the zeolite supports. The temperature-programed desorption profiles were independent of gold content, which indicated that gold acts only as diluent, and that isolated surface platinum atoms become populated with hydrogen atoms either by hydrogen atom spillover from platinum ensembles to gold and from the gold to the isolated platinum, and/or by adsorption of a molecule directly on the isolated platinum and chemisorption of one H atom at an adjacent gold atom. The distribution of surface platinum ensembles was evaluated by a computer simulation method.

  3. Continuous hydrogenation of ethyl levulinate to γ-valerolactone and 2-methyl tetrahydrofuran over alumina doped Cu/SiO2 catalyst: the potential of commercialization

    Science.gov (United States)

    Zheng, Junlin; Zhu, Junhua; Xu, Xuan; Wang, Wanmin; Li, Jiwen; Zhao, Yan; Tang, Kangjian; Song, Qi; Qi, Xiaolan; Kong, Dejin; Tang, Yi

    2016-01-01

    Hydrogenation of levulinic acid (LA) and its esters to produce γ-valerolactone (GVL) and 2-methyl tetrahydrofuran (2-MTHF) is a key step for the utilization of cellulose derived LA. Aiming to develop a commercially feasible base metal catalyst for the production of GVL from LA, with satisfactory activity, selectivity, and stability, Al2O3 doped Cu/SiO2 and Cu/SiO2 catalysts were fabricated by co-precipitation routes in parallel. The diverse physio-chemical properties of these two catalysts were characterized by XRD, TEM, dissociative N2O chemisorptions, and Py-IR methods. The catalytic properties of these two catalysts were systematically assessed in the continuous hydrogenation of ethyl levulinate (EL) in a fixed-bed reactor. The effect of acidic property of the SiO2 substrate on the catalytic properties was investigated. To justify the potential of its commercialization, significant attention was paid on the initial activity, proper operation window, by-products control, selectivity, and stability of the catalyst. The effect of reaction conditions, such as temperature and pressure, on the performance of the catalyst was also thoroughly studied. The development of alumina doped Cu/SiO2 catalyst strengthened the value-chain from cellulose to industrially important chemicals via LA and GVL. PMID:27377401

  4. Fixed-bed hydrogen pyrolysis of rapeseed: product yields and compositions

    International Nuclear Information System (INIS)

    Onay, O.; Kockar, O.M.; Gaines, A.F.; Snape, C.E.

    2006-01-01

    The fixed-bed hydro pyrolysis tests have been conducted on a sample of rapeseed to investigate the effect of hydro pyrolysis on the yields and chemical structures of bio-oils, with a view to improving overall product quality. A ammonium dioxydithiomolybdenate catalyst has been used in some tests to further increase conversion. The maximum bio-oil yield of 84% was obtained in hydrogen atmosphere (with catalyst) at hydrogen pressure of 15 MPa, hydrogen flow rate of 10 dm 3 min -1 , hydro pyrolysis temperature of 520 degree C, and heating rate of 5 o Cmin -1 . Then this bio-oil was characterized by elemental analysis and some spectroscopic and chromatographic techniques. And finally, this bio-oil yield and chemical composition compared with oil obtained from fast pyrolysis condition

  5. Synthesis and Catalytic Hydrogen Transfer Reaction of Ruthenium(II) Complex

    Energy Technology Data Exchange (ETDEWEB)

    Son, Jung Ik; Kim, Aram; Noh, Hui Bog; Lee, Hyun Ju; Shim, Yoon Bo; Park, Kang Hyun [Pusan National University, Busan (Korea, Republic of)

    2012-01-15

    The ruthenium(II) complex [Ru(bpy){sub 2}-(PhenTPy)] was synthesized, and used for the transfer hydrogenation of ketones and the desired products were obtained in good yield. Based on the presented results, transition-metal complexes can be used as catalysts for a wide range of organic transformations. The relationship between the electro-reduction current density and temperature are being examined in this laboratory. Attempts to improve the catalytic activity and determine the transfer hydrogenation mechanism are currently in progress. The catalytic hydrogenation of a ketone is a basic and critical process for making many types of alcohols used as the final products and precursors in the pharmaceutical, agrochemical, flavor, fragrance, materials, and fine chemicals industries. The catalytic hydrogenation process developed by Noyori is a very attractive process. Formic acid and 2-propanol have been used extensively as hydrogenation sources. The advantage of using 2-propanol as a hydrogen source is that the only side product will be acetone, which can be removed easily during the workup process. Hydrogen transfer (HT) catalysis, which generates alcohols through the reduction of ketones, is an attractive protocol that is used widely. Ruthenium(II) complexes are the most useful catalysts for the hydrogen transfer (HT) of ketones. In this method, a highly active catalytic system employs a transition metal as a catalyst to synthesize alcohols, and is a replacement for the hydrogen-using hydrogenation process. The most active system is based on Ru, Rh and Ir, which includes a nitrogen ligand that facilitates the formation of a catalytically active hydride and phosphorus.

  6. Synthesis and Catalytic Hydrogen Transfer Reaction of Ruthenium(II) Complex

    International Nuclear Information System (INIS)

    Son, Jung Ik; Kim, Aram; Noh, Hui Bog; Lee, Hyun Ju; Shim, Yoon Bo; Park, Kang Hyun

    2012-01-01

    The ruthenium(II) complex [Ru(bpy) 2 -(PhenTPy)] was synthesized, and used for the transfer hydrogenation of ketones and the desired products were obtained in good yield. Based on the presented results, transition-metal complexes can be used as catalysts for a wide range of organic transformations. The relationship between the electro-reduction current density and temperature are being examined in this laboratory. Attempts to improve the catalytic activity and determine the transfer hydrogenation mechanism are currently in progress. The catalytic hydrogenation of a ketone is a basic and critical process for making many types of alcohols used as the final products and precursors in the pharmaceutical, agrochemical, flavor, fragrance, materials, and fine chemicals industries. The catalytic hydrogenation process developed by Noyori is a very attractive process. Formic acid and 2-propanol have been used extensively as hydrogenation sources. The advantage of using 2-propanol as a hydrogen source is that the only side product will be acetone, which can be removed easily during the workup process. Hydrogen transfer (HT) catalysis, which generates alcohols through the reduction of ketones, is an attractive protocol that is used widely. Ruthenium(II) complexes are the most useful catalysts for the hydrogen transfer (HT) of ketones. In this method, a highly active catalytic system employs a transition metal as a catalyst to synthesize alcohols, and is a replacement for the hydrogen-using hydrogenation process. The most active system is based on Ru, Rh and Ir, which includes a nitrogen ligand that facilitates the formation of a catalytically active hydride and phosphorus

  7. Carbon-Nanotube-Supported Bio-Inspired Nickel Catalyst and Its Integration in Hybrid Hydrogen/Air Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Gentil, Solène [Univ. Grenoble Alpes, CNRS, DCM UMR 5250, 38000 Grenoble France; Laboratoire de Chimie et Biologie des Métaux, Univ. Grenoble Alpes, CNRS UMR5249, CEA, 38000 Grenoble France; Lalaoui, Noémie [Univ. Grenoble Alpes, CNRS, DCM UMR 5250, 38000 Grenoble France; Dutta, Arnab [Pacific Northwest National Laboratory, Richland WA 99532 USA; Current address: Chemistry Department, IIT Gandhinagar, Gujarat 382355 India; Nedellec, Yannig [Univ. Grenoble Alpes, CNRS, DCM UMR 5250, 38000 Grenoble France; Cosnier, Serge [Univ. Grenoble Alpes, CNRS, DCM UMR 5250, 38000 Grenoble France; Shaw, Wendy J. [Pacific Northwest National Laboratory, Richland WA 99532 USA; Artero, Vincent [Laboratoire de Chimie et Biologie des Métaux, Univ. Grenoble Alpes, CNRS UMR5249, CEA, 38000 Grenoble France; Le Goff, Alan [Univ. Grenoble Alpes, CNRS, DCM UMR 5250, 38000 Grenoble France

    2017-01-12

    A biomimetic nickel bis-diphosphine complex incorporating the amino-acid arginine in the outer coordination sphere, was immobilized on modified single-wall carbon nanotubes (SWCNTs) through electrostatic interactions. The sur-face-confined catalyst is characterized by a reversible 2-electron/2-proton redox process at potentials close to the equibrium potential of the H+/H2 couple. Consequently, the functionalized redox nanomaterial exhibits reversible electrocatalytic activity for the H2/2H+ interconversion over a broad range of pH. This system exhibits catalytic bias, analogous to hydrogenases, resulting in high turnover frequencies at low overpotentials for electrocatalytic H2 oxida-tion between pH 0 and 7. This allowed integrating such bio-inspired nanomaterial together with a multicopper oxi-dase at the cathode side in a hybrid bioinspired/enzymatic hydrogen fuel cell. This device delivers ~2 mW cm–2 with an open-circuit voltage of 1.0 V at room temperature and pH 5, which sets a new efficiency record for a bio-related hydrogen fuel cell with base metal catalysts.

  8. Highly sensitive hydrogen detection of catalyst-free ZnO nanorod networks suspended by lithography-assisted growth

    International Nuclear Information System (INIS)

    Huh, Junghwan; Kim, Gyu Tae; Park, Jonghyurk; Park, Jeong Young

    2011-01-01

    We have successfully demonstrated a ZnO nanorod-based 3D nanostructure to show a high sensitivity and very fast response/recovery to hydrogen gas. ZnO nanorods have been synthesized selectively over the pre-defined area at relatively low temperature using a simple self-catalytic solution process assisted by a lithographic method. The conductance of the ZnO nanorod device varies significantly as the concentration of the hydrogen is changed without any additive metal catalyst, revealing a high sensitivity to hydrogen gas. Its superior performance can be explained by the porous structure of its three-dimensional network and the enhanced surface reaction of the hydrogen molecules with the oxygen defects resulting from a high surface-to-volume ratio. It was found that the change of conductance follows a power law depending on the hydrogen concentration. A Langmuir isotherm following an ideal power law and a cross-over behavior of the activation energy with respect to hydrogen concentration were observed. This is a very novel and intriguing phenomenon on nanostructured materials, which suggests competitive surface reactions in ZnO nanorod gas sensors.

  9. Highly sensitive hydrogen detection of catalyst-free ZnO nanorod networks suspended by lithography-assisted growth.

    Science.gov (United States)

    Huh, Junghwan; Park, Jonghyurk; Kim, Gyu Tae; Park, Jeong Young

    2011-02-25

    We have successfully demonstrated a ZnO nanorod-based 3D nanostructure to show a high sensitivity and very fast response/recovery to hydrogen gas. ZnO nanorods have been synthesized selectively over the pre-defined area at relatively low temperature using a simple self-catalytic solution process assisted by a lithographic method. The conductance of the ZnO nanorod device varies significantly as the concentration of the hydrogen is changed without any additive metal catalyst, revealing a high sensitivity to hydrogen gas. Its superior performance can be explained by the porous structure of its three-dimensional network and the enhanced surface reaction of the hydrogen molecules with the oxygen defects resulting from a high surface-to-volume ratio. It was found that the change of conductance follows a power law depending on the hydrogen concentration. A Langmuir isotherm following an ideal power law and a cross-over behavior of the activation energy with respect to hydrogen concentration were observed. This is a very novel and intriguing phenomenon on nanostructured materials, which suggests competitive surface reactions in ZnO nanorod gas sensors.

  10. Preparation of Pd/γ- Al2O3 catalyst utilized in chemisorption of hydrogen isotopes

    International Nuclear Information System (INIS)

    David, Elena; Stefanescu, Doina; Stanciu, V.

    1997-01-01

    Separation and hydrogen isotope determination require packings with special properties, utilizable in separation columns. Consequently, such packings as catalysts using γ-aluminia and metallic palladium active component as holder were obtained. The γ-aluminia used as holder has been prepared starting from λ salts, easy soluble in water, such as Al 2 (NO 3 ) 3 ·9H 2 O, at a preset (6.2-6.4) controlled pH. At a first stage the Al(OH) 3 results which by calcination at controlled temperature transforms in γ-Al 2O3 . On this holder, in which the specific surface and porosity has been determined, metallic palladium has been deposed, using for impregnation a 2% PdCl 2 solution. The content of deposed palladium was determined as the difference between the content in the initial solution and solution remaining after holder impregnation. This content has been determined by atomic absorption and is within 0.5 - 1.2% Pd. After impregnation the catalyst has been dried, then granulated at the 0.16 mm size and activated by hydrogen at a flow rate of 300 vol H 2 /volume

  11. Evaluation of a commercial packed bed flow hydrogenator for reaction screening, optimization, and synthesis

    Directory of Open Access Journals (Sweden)

    Marian C. Bryan

    2011-08-01

    Full Text Available The performance of the ThalesNano H-Cube®, a commercial packed bed flow hydrogenator, was evaluated in the context of small scale reaction screening and optimization. A model reaction, the reduction of styrene to ethylbenzene through a 10% Pd/C catalyst bed, was used to examine performance at various pressure settings, over sequential runs, and with commercial catalyst cartridges. In addition, the consistency of the hydrogen flow was indirectly measured by in-line UV spectroscopy. Finally, system contamination due to catalyst leaching, and the resolution of this issue, is described. The impact of these factors on the run-to-run reproducibility of the H-Cube® reactor for screening and reaction optimization is discussed.

  12. Ni–Sn-Supported ZrO2 Catalysts Modified by Indium for Selective CO2 Hydrogenation to Methanol

    KAUST Repository

    Hengne, Amol Mahalingappa; Samal, Akshaya Kumar; Enakonda, Linga Reddy; Harb, Moussab; Gevers, Lieven; Anjum, Dalaver H.; Hedhili, Mohamed N.; Saih, Youssef; Huang, Kuo-Wei; Basset, Jean-Marie

    2018-01-01

    Ni and NiSn supported on zirconia (ZrO2) and on indium (In)-incorporated zirconia (InZrO2) catalysts were prepared by a wet chemical reduction route and tested for hydrogenation of CO2 to methanol in a fixed-bed isothermal flow reactor at 250 °C

  13. Iron-57 and iridium-193 Moessbauer spectroscopic studies of supported iron-iridium catalysts

    International Nuclear Information System (INIS)

    Berry, F.J.; Jobson, S.

    1988-01-01

    57 Fe and 193 Ir Moessbauer spectroscopy shows that silica- and alumina-supported iron-iridium catalysts formed by calcination in air contain mixtures of small particle iron(III) oxide and iridium(IV) oxide. The iridium dioxide in both supported catalysts is reduced in hydrogen to metallic iridium. The α-Fe 2 O 3 in the silica supported materials is predominantly reduced in hydrogen to an iron-iridium alloy whilst in the alumina-supported catalyst the iron is stabilised by treatment in hydrogen as iron(II). Treatment of a hydrogen-reduced silica-supported iron catalyst in hydrogen and carbon monoxide is accompanied by the formation of iron carbides. Carbide formation is not observed when the iron-iridium catalysts are treated in similar atmospheres. The results from the bimetallic catalysts are discussed in terms of the hydrogenation of associatively adsorbed carbon monoxide and the selectivity of supported iron-iridium catalysts to methanol formation. (orig.)

  14. Process for hydrogenating coal and coal solvents

    Energy Technology Data Exchange (ETDEWEB)

    Shridharani, K.G.; Tarrer, A.R.

    1983-02-15

    A novel process is described for the hydrogenation of coal by the hydrogenation of a solvent for the coal in which the hydrogenation of the coal solvent is conducted in the presence of a solvent hydrogenation catalyst of increased activity, wherein the hydrogenation catalyst is produced by reacting ferric oxide with hydrogen sulfide at a temperature range of 260/sup 0/ C to 315/sup 0/ C in an inert atmosphere to produce an iron sulfide hydrogenation catalyst for the solvent. Optimally, the reaction temperature is 275/sup 0/ C. Alternately, the reaction can be conducted in a hydrogen atmosphere at 350/sup 0/ C.

  15. Theoretical Studies in Heterogenous Catalysis: Towards a Rational Design of Novel Catalysts for Hydrodesulfurization and Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez,J.A.; Liu, P.

    2008-10-01

    potential to become the next generation of industrial HDS catalysts. Then, systematic studies concerned with the hydrogen-evolution reaction (HER) on extended surfaces, organometallic complexes and enzymes are presented. Finally, the reasons for the high catalytic activity of Au-CeO{sub 2} and Cu-CeO{sub 2} in the production of hydrogen through the water-gas shift reaction (CO + H{sub 2}O {yields} H{sub 2} + CO{sub 2}) are analyzed. It is shown that theoretical methods are very valuable tools for helping in the rational design of heterogeneous catalysts.

  16. A Robust Fiber Bragg Grating Hydrogen Gas Sensor Using Platinum-Supported Silica Catalyst Film

    OpenAIRE

    Marina Kurohiji; Seiji Ichiriyama; Naoki Yamasaku; Shinji Okazaki; Naoya Kasai; Yusuke Maru; Tadahito Mizutani

    2018-01-01

    A robust fiber Bragg grating (FBG) hydrogen gas sensor for reliable multipoint-leakage monitoring has been developed. The sensing mechanism is based on shifts of center wavelength of the reflection spectra due to temperature change caused by catalytic combustion heat. The sensitive film which consists of platinum-supported silica (Pt/SiO2) catalyst film was obtained using sol-gel method. The precursor solution was composed of hexachloroplatinic acid and commercially available silica precursor...

  17. Selective hydrogenation of citral over supported Pt catalysts: insight into support effects

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaofeng [Missouri University of Science and Technology, Department of Chemical and Biochemical Engineering (United States); Hu, Weiming; Deng, Baolin [University of Missouri, Department of Civil and Environmental Engineering (United States); Liang, Xinhua, E-mail: liangxin@mst.edu [Missouri University of Science and Technology, Department of Chemical and Biochemical Engineering (United States)

    2017-04-15

    Highly dispersed platinum (Pt) nanoparticles (NPs) were deposited on various substrates by atomic layer deposition (ALD) in a fluidized bed reactor at 300 °C. The substrates included multi-walled carbon nanotubes (MWCNTs), silica gel (SiO{sub 2}), commercial γ-Al{sub 2}O{sub 3}, and ALD-prepared porous Al{sub 2}O{sub 3} particles (ALD-Al{sub 2}O{sub 3}). The results of TEM analysis showed that ~1.3 nm Pt NPs were highly dispersed on all different supports. All catalysts were used for the reaction of selective hydrogenation of citral to unsaturated alcohols (UA), geraniol, and nerol. Both the structure and acidity of supports affected the activity and selectivity of Pt catalysts. Pt/SiO{sub 2} showed the highest activity due to the strong acidity of SiO{sub 2} and the conversion of citral reached 82% after 12 h with a selectivity of 58% of UA. Pt/MWCNTs showed the highest selectivity of UA, which reached 65% with a conversion of 38% due to its unique structure and electronic effect. The cycling experiments indicated that Pt/MWCNTs and Pt/ALD-Al{sub 2}O{sub 3} catalysts were more stable than Pt/SiO{sub 2}, as a result of the different interactions between the Pt NPs and the supports.

  18. Effect of hydrogen coverage on hydrogenation of o-cresol on Pt(111)

    Science.gov (United States)

    Li, Yaping; Liu, Zhimin; Crossley, Steven P.; Jentoft, Friederike C.; Wang, Sanwu

    2018-06-01

    The conversion of phenolics over metal catalysts is an important process for upgrading biofuels. With density functional calculations, hydrogenation of o-cresol on the hydrogen-covered Pt(111) surface was investigated. The results show that the coverage of hydrogen plays a significant role in the reaction rate while it does not affect the reaction selectivity. The reaction barriers of the hydrogenation process leading to the formation of both 2-methyl-cyclohexanone (the intermediate product) and 2-methyl-cyclohexanol (the final product) at high H coverages (∼1 ML) are found to be smaller by 0.14-0.69 eV than those at lower H coverages (∼1/25 ML). After both hydrogen and cresol are adsorbed on Pt(111) from their initial gas phase state, the reaction energy of each hydrogenation step on the surface is also dependent on the hydrogen coverage. On the H-covered Pt(111) surface, most steps of hydrogenation involve exothermic reactions when the hydrogen coverage is high while they are endothermic reactions at low hydrogen coverages. The differences in reaction rate and reaction energy between high and low H coverages can be understood with the coverage-dependent bonding strength and configurations.

  19. Catalysis and Downsizing in Mg-Based Hydrogen Storage Materials

    Directory of Open Access Journals (Sweden)

    Jianding Li

    2018-02-01

    Full Text Available Magnesium (Mg-based materials are promising candidates for hydrogen storage due to the low cost, high hydrogen storage capacity and abundant resources of magnesium for the realization of a hydrogen society. However, the sluggish kinetics and strong stability of the metal-hydrogen bonding of Mg-based materials hinder their application, especially for onboard storage. Many researchers are devoted to overcoming these challenges by numerous methods. Here, this review summarizes some advances in the development of Mg-based hydrogen storage materials related to downsizing and catalysis. In particular, the focus is on how downsizing and catalysts affect the hydrogen storage capacity, kinetics and thermodynamics of Mg-based hydrogen storage materials. Finally, the future development and applications of Mg-based hydrogen storage materials is discussed.

  20. Surface modification of g-C3N4 by hydrazine: Simple way for noble-metal free hydrogen evolution catalysts

    KAUST Repository

    Chen, Yin

    2015-11-02

    The graphitic carbon nitride (g-C3N4) usually is thought to be an inert material and it’s difficult to have the surface terminated NH2 groups functionalized. By modifying the g-C3N4 surface with hydrazine, the diazanyl group was successfully introduced onto the g-C3N4 surface, which allows the introduction with many other function groups. Here we illustrated that by reaction of surface hydrazine group modified g-C3N4 with CS2 under basic condition, a water electrolysis active group C(=S)SNi can be implanted on the g-C3N4 surface, and leads to a noble metal free hydrogen evolution catalyst. This catalyst has 40% hydrogen evolution efficiency compare to the 3 wt% Pt photo precipitated g-C3N4, with only less than 0.2 wt% nickel.

  1. Surface modification of g-C3N4 by hydrazine: Simple way for noble-metal free hydrogen evolution catalysts

    KAUST Repository

    Chen, Yin; Lin, Bin; Wang, Hong; Yang, Yong; Zhu, Haibo; Yu, Weili; Basset, Jean-Marie

    2015-01-01

    The graphitic carbon nitride (g-C3N4) usually is thought to be an inert material and it’s difficult to have the surface terminated NH2 groups functionalized. By modifying the g-C3N4 surface with hydrazine, the diazanyl group was successfully introduced onto the g-C3N4 surface, which allows the introduction with many other function groups. Here we illustrated that by reaction of surface hydrazine group modified g-C3N4 with CS2 under basic condition, a water electrolysis active group C(=S)SNi can be implanted on the g-C3N4 surface, and leads to a noble metal free hydrogen evolution catalyst. This catalyst has 40% hydrogen evolution efficiency compare to the 3 wt% Pt photo precipitated g-C3N4, with only less than 0.2 wt% nickel.

  2. Kinetics on NiZn Bimetallic Catalysts for Hydrogen Evolution via Selective Dehydrogenation of Methylcyclohexane to Toluene

    KAUST Repository

    Shaikh Ali, Anaam

    2017-01-18

    Liquid organic chemical hydrides are effective hydrogen storage media for easy and safe transport. The chemical couple of methylcyclohexane (MCH) and toluene (TOL) has been considered one of the feasible cycles for a hydrogen carrier, but the selective dehydrogenation of MCH to TOL has been reported using only Pt-based noble metal catalysts. This study reports MCH dehydrogenation to TOL using supported NiZn as a selective, non-noble-metal catalyst. A combined experimental and computational study was conducted to provide insight into the site requirements and reaction mechanism for MCH dehydrogenation to TOL, which were compared with those for cyclohexane (CH) dehydrogenation to benzene (BZ). The kinetic measurements carried out at 300-360°C showed an almost zero order with respect to MCH pressure in the high-pressure region (≥10 kPa) and nearly a positive half order with respective to H pressure (≤40 kPa). These kinetic data for the dehydrogenation reaction paradoxically indicate that hydrogenation of a strongly chemisorbed intermediate originating from TOL is the rate-determining step. Density functional theory (DFT) calculation confirms that the dehydrogenated TOL species at the aliphatic (methyl) position group (CHCH) were strongly adsorbed on the surface, which must be hydrogenated to desorb as TOL. This hydrogen-assisted desorption mechanism explains the essential role of excess H present in the feed in maintaining the activity of the metallic surface for hydrogenation. The rate of the CH to BZ reaction was less sensitive to H pressure than that of MCH to TOL, which can be explained by the absence of a methyl group in the structure, which in turn reduces the binding energy of the adsorbed species. DFT suggests that the improved TOL selectivity by adding Zn to Ni was due to Zn atoms preferentially occupying low-coordination sites on the surface (the corner and edge sites), which are likely the unselective sites responsible for the C-C dissociation of the

  3. Kinetics on NiZn Bimetallic Catalysts for Hydrogen Evolution via Selective Dehydrogenation of Methylcyclohexane to Toluene

    KAUST Repository

    Shaikh Ali, Anaam; Jedidi, Abdesslem; Anjum, Dalaver H.; Cavallo, Luigi; Takanabe, Kazuhiro

    2017-01-01

    Liquid organic chemical hydrides are effective hydrogen storage media for easy and safe transport. The chemical couple of methylcyclohexane (MCH) and toluene (TOL) has been considered one of the feasible cycles for a hydrogen carrier, but the selective dehydrogenation of MCH to TOL has been reported using only Pt-based noble metal catalysts. This study reports MCH dehydrogenation to TOL using supported NiZn as a selective, non-noble-metal catalyst. A combined experimental and computational study was conducted to provide insight into the site requirements and reaction mechanism for MCH dehydrogenation to TOL, which were compared with those for cyclohexane (CH) dehydrogenation to benzene (BZ). The kinetic measurements carried out at 300-360°C showed an almost zero order with respect to MCH pressure in the high-pressure region (≥10 kPa) and nearly a positive half order with respective to H pressure (≤40 kPa). These kinetic data for the dehydrogenation reaction paradoxically indicate that hydrogenation of a strongly chemisorbed intermediate originating from TOL is the rate-determining step. Density functional theory (DFT) calculation confirms that the dehydrogenated TOL species at the aliphatic (methyl) position group (CHCH) were strongly adsorbed on the surface, which must be hydrogenated to desorb as TOL. This hydrogen-assisted desorption mechanism explains the essential role of excess H present in the feed in maintaining the activity of the metallic surface for hydrogenation. The rate of the CH to BZ reaction was less sensitive to H pressure than that of MCH to TOL, which can be explained by the absence of a methyl group in the structure, which in turn reduces the binding energy of the adsorbed species. DFT suggests that the improved TOL selectivity by adding Zn to Ni was due to Zn atoms preferentially occupying low-coordination sites on the surface (the corner and edge sites), which are likely the unselective sites responsible for the C-C dissociation of the

  4. Production of CO-rich Hydrogen Gas from Methane Dry Reforming over Co/CeO2 Catalyst

    Directory of Open Access Journals (Sweden)

    Bamidele V. Ayodele

    2016-08-01

    Full Text Available Production of CO-rich hydrogen gas from methane dry reforming was investigated over CeO2-supported Co catalyst. The catalyst was synthesized by wet impregnation and subsequently characterized by field emission scanning electron microscope (FESEM, energy dispersion X-ray spectroscopy (EDX, liquid N2 adsorption-desorption, X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR and thermogravimetric analysis (TGA for the structure, surface and thermal properties. The catalytic activity test of the Co/CeO2 was investigated between 923-1023 K under reaction conditions in a stainless steel fixed bed reactor. The composition of the products (CO2 and H2 from the methane dry reforming reaction was measured by gas chromatography (GC coupled with thermal conductivity detector (TCD. The effects of feed ratios and reaction temperatures were investigated on the catalytic activity toward product selectivity, yield, and syngas ratio. Significantly, the selectivity and yield of both H2 and CO increases with feed ratio and temperature. However, the catalyst shows higher activity towards CO selectivity. The highest H2 and CO selectivity of 19.56% and 20.95% respectively were obtained at 1023 K while the highest yield of 41.98% and 38.05% were recorded for H2 and CO under the same condition. Copyright © 2016 BCREC GROUP. All rights reserved Received: 21st January 2016; Revised: 23rd February 2016; Accepted: 23rd February 2016 How to Cite: Ayodele, B.V., Khan, M.R., Cheng, C. K. (2016. Production of CO-rich Hydrogen Gas from Methane Dry Reforming over Co/CeO2 Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (2: 210-219 (doi:10.9767/bcrec.11.2.552.210-219 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.11.2.552.210-219

  5. Pulsed laser deposition of nanostructured Co-B-O thin films as efficient catalyst for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Jadhav, H., E-mail: jadhav.hs2013@gmail.com [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Singh, A.K. [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Patel, N.; Fernandes, R.; Gupta, S.; Kothari, D.C. [Department of Physics and National Centre for Nanosciences & Nanotechnology, University of Mumbai, Vidyanagari, Santacruz (E), Mumbai 400098 (India); Miotello, A. [Dipartimento di Fisica, Università degli Studi di Trento, I-38123 Povo, Trento (Italy); Sinha, S. [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2016-11-30

    Highlights: • Pulsed laser deposition was used to deposit Co-B-O film nanocatalyst. • Co-B-O NPs are well separated, stable and immobilized on film surface. • Catalytic H{sub 2} production was studied by hydrolysis of Sodium Borohydride. • Four times higher H{sub 2} production rate was recorded for Co-B-O film than Co-B-O powder. • High particle density, polycrystalline nature and good stability against agglomeration of Co NPs. - Abstract: Nanoparticles assembled Co-B-O thin film catalysts were synthesized by pulsed laser deposition (PLD) technique for hydrolysis of Sodium Borohydride (SBH). Surface morphology of the deposited films was investigated using SEM and TEM, while compositional analysis was studied using XPS. Structural properties of Co-B-O films were examined using XRD and HRTEM. Laser process is able to produce well separated and immobilized Co-B-O NPs on the film surface which act as active centers leading to superior catalytic activity producing hydrogen at a significantly higher rate as compared to bulk powder. Co-B-O thin film catalyst produces hydrogen at a maximum rate of ∼4400 ml min{sup −1} g{sup −1} of catalyst, which is four times higher than powder catalyst. PLD parameters such as laser fluence and substrate-target distance were varied during deposition in order to understand the role of size and density of the immobilized Co-B-O NPs in the catalytic process. Films deposited at 3–5 cm substrate-target distance showed better performance than that deposited at 6 cm, mainly on account of the higher density of active Co-B-O NPs on the films surface. Features such as high particle density, polycrystalline nature of Co NPs and good stability against agglomeration mainly contribute towards the superior catalytic activity of Co-B-O films deposited by PLD.

  6. Low-Temperature Catalytic Performance of Ni-Cu/Al2O3 Catalysts for Gasoline Reforming to Produce Hydrogen Applied in Spark Ignition Engines

    Directory of Open Access Journals (Sweden)

    Le Anh Tuan

    2016-03-01

    Full Text Available The performance of Ni-Cu/Al2O3 catalysts for steam reforming (SR of gasoline to produce a hydrogen-rich gas mixture applied in a spark ignition (SI engine was investigated at relatively low temperature. The structural and morphological features and catalysis activity were observed by X-ray diffractometry (XRD, scanning electron microscopy (SEM, and temperature programmed reduction (TPR. The results showed that the addition of copper improved the dispersion of nickel and therefore facilitated the reduction of Ni at low temperature. The highest hydrogen selectivity of 70.6% is observed over the Ni-Cu/Al2O3 catalysts at a steam/carbon ratio of 0.9. With Cu promotion, a gasoline conversion of 42.6% can be achieved at 550 °C, while with both Mo and Ce promotion, the gasoline conversions were 31.7% and 28.3%, respectively, higher than with the conventional Ni catalyst. On the other hand, initial durability testing showed that the conversion of gasoline over Ni-Cu/Al2O3 catalysts slightly decreased after 30 h reaction time.

  7. Development of CuxFe/Al2O3 catalysts for the hydrogenation of carbon monoxide guided by magnetic methods, Moessbauer and infrared spectroscopy

    International Nuclear Information System (INIS)

    Boellaard, E.; Geus, J.W.; Bruggen, J.M. van; Kraan, A.M. van der

    1993-01-01

    A copper-iron catalyst for the hydrogenation of carbon monoxide has been prepared using a supported stoichiometric cyanide complex. Conversion of the cyanide precursor to a metallic catalyst appeared to be a precious process. Copper and iron in the bimetallic particles easily separate by thermal treatment and upon exposure to carbon monoxide, as revealed from Moessbauer and infrared spectroscopy. During Fischer-Tropsch reaction the catalyst exhibits a rapid decline of activity. Magnetisation measurements on spent catalysts indicate that the deactivation is caused by a fast conversion of metallic iron to initially unstable carbides which transform ultimately to more stable carbides. (orig.)

  8. Method for absorbing hydrogen using an oxidation resisant organic hydrogen getter

    Science.gov (United States)

    Shepodd, Timothy J [Livermore, CA; Buffleben, George M [Tracy, CA

    2009-02-03

    A composition for removing hydrogen from an atmosphere, comprising a mixture of a polyphenyl ether and a hydrogenation catalyst, preferably a precious metal catalyst, and most preferably platinum, is disclosed. This composition is stable in the presence of oxygen, will not polymerize or degrade upon exposure to temperatures in excess of 200.degree. C., or prolonged exposure to temperatures in the range of 100-300.degree. C. Moreover, these novel hydrogen getter materials can be used to efficiently remove hydrogen from mixtures of hydrogen/inert gas (e.g., He, Ar, N.sub.2), hydrogen/ammonia atmospheres, such as may be encountered in heat exchangers, and hydrogen/carbon dioxide atmospheres. Water vapor and common atmospheric gases have no adverse effect on the ability of these getter materials to absorb hydrogen.

  9. Iron ore catalysts for methane decomposition to make CO x free hydrogen and carbon nano material

    KAUST Repository

    Zhou, Lu; Enakonda, Linga Reddy; Li, Sheng; Gary, Daniel; Del-Gallo, Pascal; Mennemann, Christina; Basset, Jean-Marie

    2018-01-01

    In this work, for the first time, iron ores with 91.7%–96.2% FeO, 1.3%–2.3% AlO, 1.2%–4.5% SiO, 1.3%–3.9% NaO, were studied directly as bulk catalysts for methane decomposition. By hydrogen pre-reduction at 850 °C, FeO species on iron ores were

  10. Regeneration of LOHC dehydrogenation catalysts: In-situ IR spectroscopy on single crystals, model catalysts, and real catalysts from UHV to near ambient pressure

    International Nuclear Information System (INIS)

    Amende, Max; Kaftan, Andre; Bachmann, Philipp; Brehmer, Richard; Preuster, Patrick; Koch, Marcus

    2016-01-01

    Graphical abstract: - Highlights: • We examine the regeneration of Pt-based catalysts poisoned by LOHC degradation. • A microscopic mechanism of the removal of degradation products from Pt is proposed. • Results of our UHV studies on model catalysts are transferred to real catalysis. • Oxidative regeneration of Pt/alumina is possible under mild conditions (600 K). • The degree and temperature regime of regeneration depends on the catalyst morphology. - Abstract: The Liquid Organic Hydrogen Carrier (LOHC) concept offers an efficient route to store hydrogen using organic compounds that are reversibly hydrogenated and dehydrogenated. One important challenge towards application of the LOHC technology at a larger scale is to minimize degradation of Pt-based dehydrogenation catalysts during long-term operation. Herein, we investigate the regeneration of Pt/alumina catalysts poisoned by LOHC degradation. We combine ultrahigh vacuum (UHV) studies on Pt(111), investigations on well-defined Pt/Al_2O_3 model catalysts, and near-ambient pressure (NAP) measurements on real core–shell Pt/Al_2O_3 catalyst pellets. The catalysts were purposely poisoned by reaction with the LOHC perhydro-dibenzyltoluene (H18-MSH) and with dicyclohexylmethane (DCHM) as a simpler model compound. We focus on oxidative regeneration under conditions that may be applied in real dehydrogenation reactors. The degree of poisoning and regeneration under oxidative reaction conditions was quantified using CO as a probe molecule and measured by infrared reflection-absorption spectroscopy (IRAS) and diffuse reflectance Fourier transform IR spectroscopy (DRIFTS) for planar model systems and real catalysts, respectively. We find that regeneration strongly depends on the composition of the catalyst surface. While the clean surface of a poisoned Pt(111) single crystal is fully restored upon thermal treatment in oxygen up to 700 K, contaminated Pt/Al_2O_3 model catalyst and core–shell pellet were only

  11. Regeneration of LOHC dehydrogenation catalysts: In-situ IR spectroscopy on single crystals, model catalysts, and real catalysts from UHV to near ambient pressure

    Energy Technology Data Exchange (ETDEWEB)

    Amende, Max, E-mail: max.amende@fau.de [Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen (Germany); Kaftan, Andre, E-mail: andre.kaftan@fau.de [Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen (Germany); Bachmann, Philipp, E-mail: philipp.bachmann@fau.de [Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen (Germany); Brehmer, Richard, E-mail: richard.brehmer@fau.de [Lehrstuhl für Chemische Reaktionstechnik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen (Germany); Preuster, Patrick, E-mail: patrick.preuster@fau.de [Lehrstuhl für Chemische Reaktionstechnik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen (Germany); Koch, Marcus, E-mail: marcus.koch@crt.cbi.uni-erlangen.de [Lehrstuhl für Chemische Reaktionstechnik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen (Germany); and others

    2016-01-01

    Graphical abstract: - Highlights: • We examine the regeneration of Pt-based catalysts poisoned by LOHC degradation. • A microscopic mechanism of the removal of degradation products from Pt is proposed. • Results of our UHV studies on model catalysts are transferred to real catalysis. • Oxidative regeneration of Pt/alumina is possible under mild conditions (600 K). • The degree and temperature regime of regeneration depends on the catalyst morphology. - Abstract: The Liquid Organic Hydrogen Carrier (LOHC) concept offers an efficient route to store hydrogen using organic compounds that are reversibly hydrogenated and dehydrogenated. One important challenge towards application of the LOHC technology at a larger scale is to minimize degradation of Pt-based dehydrogenation catalysts during long-term operation. Herein, we investigate the regeneration of Pt/alumina catalysts poisoned by LOHC degradation. We combine ultrahigh vacuum (UHV) studies on Pt(111), investigations on well-defined Pt/Al{sub 2}O{sub 3} model catalysts, and near-ambient pressure (NAP) measurements on real core–shell Pt/Al{sub 2}O{sub 3} catalyst pellets. The catalysts were purposely poisoned by reaction with the LOHC perhydro-dibenzyltoluene (H18-MSH) and with dicyclohexylmethane (DCHM) as a simpler model compound. We focus on oxidative regeneration under conditions that may be applied in real dehydrogenation reactors. The degree of poisoning and regeneration under oxidative reaction conditions was quantified using CO as a probe molecule and measured by infrared reflection-absorption spectroscopy (IRAS) and diffuse reflectance Fourier transform IR spectroscopy (DRIFTS) for planar model systems and real catalysts, respectively. We find that regeneration strongly depends on the composition of the catalyst surface. While the clean surface of a poisoned Pt(111) single crystal is fully restored upon thermal treatment in oxygen up to 700 K, contaminated Pt/Al{sub 2}O{sub 3} model catalyst and

  12. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal

    Directory of Open Access Journals (Sweden)

    Eero eSalminen

    2014-02-01

    Full Text Available The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat benzalkonium [ADBA] (alkyldimethylbenzylammonium was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs. Typically, a SILCA contains metal nanoparticles, enzymes or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC. The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70 % molar yield towards citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide.

  13. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal

    Science.gov (United States)

    Salminen, Eero; Virtanen, Pasi; Mikkola, Jyri-Pekka

    2014-01-01

    The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat) benzalkonium [ADBA] (alkyldimethylbenzylammonium) was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs). Typically, a SILCA contains metal nanoparticles, enzymes, or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC). The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70% molar yield toward citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide. PMID:24790972

  14. On the potential of nickel catalysts for steam reforming in membrane reactors

    Energy Technology Data Exchange (ETDEWEB)

    Pieterse, J.A.Z.; Boon, J.; Van Delft, Y.C.; Dijkstra, J.W.; Van den Brink, R.W. [Energy research Center of the Netherlands, P.O. Box 1, 1755 ZG Petten (Netherlands)

    2010-10-15

    Hydrogen membrane reactors have been identified as a promising option for hydrogen production for power generation from natural gas with pre-combustion decarbonisation. While Pd or Pd-alloy membranes already provide good hydrogen permeances the most suitable catalyst design for steam reforming in membrane reactors (SRMR) is yet to be identified. This contribution aims to provide insight in the suitability of nickel based catalysts in SRMR. The use of nickel (Ni) catalysts would benefit the cost-effectiveness of membrane reactors and therefore its feasibility. For this, the activity of nickel catalysts in SRMR was assessed with kinetics reported in literature. A 1D model was composed in order to compare the hydrogen production rates derived from the kinetics with the rate of hydrogen withdrawal by permeation. Catalyst stability was studied by exposing the catalysts to reformate gas with two different H/C ratios to mimic the hydrogen lean reformate gas in the membrane reactor. For both the activity (modeling) and stability study the Ni-based catalysts were compared to relevant catalyst compositions based on rhodium (Rh). Using the high pressure kinetics reported for Al2O3 supported Rh and MgAl2O4 and Al2O3 supported Ni catalyst it showed that Ni and Rh catalysts may very well provide similar hydrogen production rates. Interestingly, the stability of Ni-based catalysts proved to be superior to precious metal based catalysts under exposure to simulated reformate feed gas with low H/C molar ratio. A commercial (pre-)reforming Ni-based catalyst was selected for further testing in an experimental membrane reactor for steam reforming at high pressure. During the test period 98% conversion at 873 K could be achieved. The conversion was adjusted to approximately 90% and stable conversion was obtained during the test period of another 3 weeks. Nonetheless, carbon quantification tests of the Ni catalyst indicated that a small amount of carbon had deposited onto the catalyst

  15. Preparation of wet-proofed catalyst for tritium removal

    Energy Technology Data Exchange (ETDEWEB)

    Son, S-H; Lee, G-B; Song, M-J [Korea Electric Power Corp., Taejon (Korea, Republic of). Research Centre

    1996-12-31

    Wetproofed catalysts have been developed for the hydrogen isotopic exchange reaction between hydrogen gas and liquid water. A styrene divinylbenzene copolymer (SDBC) was selected as effective support of the hydrophobic Pt catalyst. Preparation conditions and physical properties of the SDBC were investigated experimentally. The SDBC having the larger pore size, higher surface area and larger particle size were prepared by the particular solvent and stirring speed. The H{sub 2} adsorption isotherm on a supported Pt catalyst was measured and the hydrogen isotopic exchange reaction was verified in the exchange column. (author). 7 refs., 4 tabs., 7 figs.

  16. Preparation of wet-proofed catalyst for tritium removal

    International Nuclear Information System (INIS)

    Son, S-H.; Lee, G-B.; Song, M-J.

    1995-01-01

    Wetproofed catalysts have been developed for the hydrogen isotopic exchange reaction between hydrogen gas and liquid water. A styrene divinylbenzene copolymer (SDBC) was selected as effective support of the hydrophobic Pt catalyst. Preparation conditions and physical properties of the SDBC were investigated experimentally. The SDBC having the larger pore size, higher surface area and larger particle size were prepared by the particular solvent and stirring speed. The H 2 adsorption isotherm on a supported Pt catalyst was measured and the hydrogen isotopic exchange reaction was verified in the exchange column. (author). 7 refs., 4 tabs., 7 figs

  17. A density functional study of inhibition of the HDS hydrogenation pathway by pyridine, benzene, and H2S on MoS2-based catalysts

    DEFF Research Database (Denmark)

    Logadottir, A.; Moses, Poul Georg; Hinnemann, Berit

    2006-01-01

    hydrogen from neighboring SH group can he transferred to the pyridine molecule resulting in the creation of more strongly held pyridinium ions. At the so-called S edge, hydrogen is tightly bound and this transfer is not favored. The present results, therefore, also stress the importance of the hydrogen...... binding properties of HDS catalysts. (c) 2005 Elsevier B.V. All rights reserved....

  18. High hydrogen desorption properties of Mg-based nanocomposite at moderate temperatures: The effects of multiple catalysts in situ formed by adding nickel sulfides/graphene

    Science.gov (United States)

    Xie, Xiubo; Chen, Ming; Liu, Peng; Shang, Jiaxiang; Liu, Tong

    2017-12-01

    Nickel sulfides decorated reduced graphene oxide (rGO) has been produced by co-reducing Ni2+ and graphene oxide (GO), and is subsequently ball milled with Mg nanoparticles (NPs) produced by hydrogen plasma metal reaction (HPMR). The nickel sulfides of about 800 nm completely in situ change to MgS, Mg2Ni and Ni multiple catalysts after first hydrogenation/dehydrogenation process at 673 K. The Mg-5wt%NiS/rGO nanocomposite shows the highest hydrogen desorption kinetics and capacity properties, and the catalytic effect order of the additives is NiS/rGO, NiS and rGO. At 573 K, the Mg-NiS/rGO nanocomposite can quickly desorb 3.7 wt% H2 in 10 min and 4.5 wt% H2 in 60 min. The apparent hydrogen absorption and desorption activation energies of the Mg-5wt%NiS/rGO nanocomposite are decreased to 44.47 and 63.02 kJ mol-1, smaller than those of the Mg-5wt%rGO and Mg-5wt%NiS samples. The best hydrogen desorption properties of the Mg-5wt%NiS/rGO nanocomposite can be explained by the synergistic catalytic effects of the highly dispersed MgS, Mg2Ni and Ni catalysts on the rGO sheets, and the more nucleation sites between the catalysts, rGO sheets and Mg matrix.

  19. Ni–Sn-Supported ZrO2 Catalysts Modified by Indium for Selective CO2 Hydrogenation to Methanol

    KAUST Repository

    Hengne, Amol Mahalingappa

    2018-04-02

    Ni and NiSn supported on zirconia (ZrO2) and on indium (In)-incorporated zirconia (InZrO2) catalysts were prepared by a wet chemical reduction route and tested for hydrogenation of CO2 to methanol in a fixed-bed isothermal flow reactor at 250 °C. The mono-metallic Ni (5%Ni/ZrO2) catalysts showed a very high selectivity for methane (99%) during CO2 hydrogenation. Introduction of Sn to this material with the following formulation 5Ni5Sn/ZrO2 (5% Ni-5% Sn/ZrO2) showed the rate of methanol formation to be 0.0417 μmol/(gcat·s) with 54% selectivity. Furthermore, the combination NiSn supported on InZrO2 (5Ni5Sn/10InZrO2) exhibited a rate of methanol formation 10 times higher than that on 5Ni/ZrO2 (0.1043 μmol/(gcat·s)) with 99% selectivity for methanol. All of these catalysts were characterized by X-ray diffraction, high-resolution transmission electron microscopy (HRTEM), scanning transmission electron microscopy (STEM), X-ray photoelectron spectroscopy, CO2-temperature-programmed desorption, and density functional theory (DFT) studies. Addition of Sn to Ni catalysts resulted in the formation of a NiSn alloy. The NiSn alloy particle size was kept in the range of 10–15 nm, which was evidenced by HRTEM study. DFT analysis was carried out to identify the surface composition as well as the structural location of each element on the surface in three compositions investigated, namely, Ni28Sn27, Ni18Sn37, and Ni37Sn18 bimetallic nanoclusters, and results were in agreement with the STEM and electron energy-loss spectroscopy results. Also, the introduction of “Sn” and “In” helped improve the reducibility of Ni oxide and the basic strength of catalysts. Considerable details of the catalytic and structural properties of the Ni, NiSn, and NiSnIn catalyst systems were elucidated. These observations were decisive for achieving a highly efficient formation rate of methanol via CO2 by the H2 reduction process with high methanol selectivity.

  20. PVP-stabilized Ru–Rh nanoparticles as highly efficient catalysts for hydrogen generation from hydrolysis of ammonia borane

    International Nuclear Information System (INIS)

    Rakap, Murat

    2015-01-01

    Herein, the utilization of poly(N-vinyl-2-pyrrolidone)-protected ruthenium–rhodium nanoparticles (3.4 ± 1.4 nm) as highly efficient catalysts in the hydrolysis of ammonia borane for hydrogen generation is reported. They are prepared by co-reduction of ruthenium and rhodium metal ions in ethanol/water mixture by an alcohol reduction method and characterized by transmission electron microscopy-energy dispersive X-ray spectroscopy, ultraviolet–visible spectroscopy, and X-ray photoelectron spectroscopy. They are durable and highly efficient catalysts for hydrogen generation from the hydrolysis of ammonia borane even at very low concentrations and temperature, providing average turnover frequency of 386 mol H 2 (mol cat) −1 min −1 and maximum hydrogen generation rate of 10,680 L H 2 min −1 (mol cat) −1 . Poly(N-vinyl-2-pyrrolidone)-protected ruthenium–rhodium nanoparticles also provide activation energy of 47.4 ± 2.1 kJ/mol for the hydrolysis of ammonia borane. - Highlights: • Ru-Rh@PVP NPs provide a TOF of 386 mol H 2 (mol cat) −1 min −1 for hydrolysis of AB. • Maximum HG rate is 9680 L H 2 min −1 (mol cat) −1 for the hydrolysis of AB. • Activation energy is 47.4 ± 2.1 kJ mol −1 for the hydrolysis of AB

  1. Preparation of Carbon-Platinum-Ceria and Carbon-Platinum-Cerium catalysts and its application in Polymer Electrolyte Fuel Cell: Hydrogen, Methanol, and Ethanol

    Science.gov (United States)

    Guzman Blas, Rolando Pedro

    This thesis is focused on fuel cells using hydrogen, methanol and ethanol as fuel. Also, in the method of preparation of catalytic material for the anode: Supercritical Fluid Deposition (SFD) and impregnation method using ethylenediaminetetraacetic acid (EDTA) as a chelating agent. The first part of the thesis describes the general knowledge about Hydrogen Polymer Exchange Membrane Fuel Cell (HPEMFC),Direct Methanol Fuel Cell (DMFC) and Direct Ethanol Fuel Cell (DEFC), as well as the properties of Cerium and CeO2 (Ceria). The second part of the thesis describes the preparation of catalytic material by Supercritical Fluid Deposition (SFD). SFD was utilized to deposit Pt and ceria simultaneously onto gas diffusion layers. The Pt-ceria catalyst deposited by SFD exhibited higher methanol oxidation activity compared to the platinum catalyst alone. The linear sweep traces of the cathode made for the methanol cross over study indicate that Pt-Ceria/C as the anode catalyst, due to its better activity for methanol, improves the fuel utilization, minimizing the methanol permeation from anode to cathode compartment. The third and fourth parts of the thesis describe the preparation of material catalytic material Carbon-Platinum-Cerium by a simple and cheap impregnation method using EDTA as a chelating agent to form a complex with cerium (III). This preparation method allows the mass production of the material catalysts without additional significant cost. Fuel cell polarization and power curves experiments showed that the Carbon-Platinum-Cerium anode materials exhibited better catalytic activity than the only Vulcan-Pt catalysts for DMFC, DEFC and HPEMFC. In the case of Vulcan-20%Pt-5%w Cerium, this material exhibits better catalytic activity than the Vulcan-20%Pt in DMFC. In the case of Vulcan-40% Pt-doped Cerium, this material exhibits better catalytic activity than the Vulcan-40% Pt in DMFC, DEFC and HPEMFC. Finally, I propose a theory that explains the reason why the

  2. Support screening studies on the hydrogenation of levulinic acid to γ‐valerolactone in water using RU catalysts

    NARCIS (Netherlands)

    Piskun, Anna; Winkelman, Jozef G M; Tang, Zhenchen; Heeres, Hero Jan

    2016-01-01

    γ-Valerolactone (GVL) has been identified as a sustainable platform chemical for the production of carbon-based chemicals. Here we report a screening study on the hydrogenation of levulinic acid (LA) to GVL in water using a wide range of ruthenium supported catalysts in a batch set-up (1 wt. % Ru,

  3. Fullerene hydride - A potential hydrogen storage material

    International Nuclear Information System (INIS)

    Nai Xing Wang; Jun Ping Zhang; An Guang Yu; Yun Xu Yang; Wu Wei Wang; Rui long Sheng; Jia Zhao

    2005-01-01

    Hydrogen, as a clean, convenient, versatile fuel source, is considered to be an ideal energy carrier in the foreseeable future. Hydrogen storage must be solved in using of hydrogen energy. To date, much effort has been put into storage of hydrogen including physical storage via compression or liquefaction, chemical storage in hydrogen carriers, metal hydrides and gas-on-solid adsorption. But no one satisfies all of the efficiency, size, weight, cost and safety requirements for transportation or utility use. C 60 H 36 , firstly synthesized by the method of the Birch reduction, was loaded with 4.8 wt% hydrogen indicating [60]fullerene might be as a potential hydrogen storage material. If a 100% conversion of C 60 H 36 is achieved, 18 moles of H 2 gas would be liberated from each mole of fullerene hydride. Pure C 60 H 36 is very stable below 500 C under nitrogen atmosphere and it releases hydrogen accompanying by other hydrocarbons under high temperature. But C 60 H 36 can be decomposed to generate H 2 under effective catalyst. We have reported that hydrogen can be produced catalytically from C 60 H 36 by Vasks's compound (IrCl(CO)(PPh 3 ) 2 ) under mild conditions. (RhCl(CO)(PPh 3 ) 2 ) having similar structure to (IrCl(CO)(PPh 3 ) 2 ), was also examined for thermal dehydrogenation of C 60 H 36 ; but it showed low catalytic activity. To search better catalyst, palladium carbon (Pd/C) and platinum carbon (Pt/C) catalysts, which were known for catalytic hydrogenation of aromatic compounds, were tried and good results were obtained. A very big peak of hydrogen appeared at δ=5.2 ppm in 1 H NMR spectrum based on Evans'work (fig 1) at 100 C over a Pd/C catalyst for 16 hours. It is shown that hydrogen can be produced from C 60 H 36 using a catalytic amount of Pd/C. Comparing with Pd/C, Pt/C catalyst showed lower activity. The high cost and limited availability of Vaska's compounds, Pd and Pt make it advantageous to develop less expensive catalysts for our process based on

  4. Catalytic Hydrogenation and Hydrodeoxygenation of Furfural over Pt(111): A Model System for the Rational Design and Operation of Practical Biomass Conversion Catalysts.

    Science.gov (United States)

    Taylor, Martin J; Jiang, Li; Reichert, Joachim; Papageorgiou, Anthoula C; Beaumont, Simon K; Wilson, Karen; Lee, Adam F; Barth, Johannes V; Kyriakou, Georgios

    2017-04-20

    Furfural is a key bioderived platform chemical whose reactivity under hydrogen atmospheres affords diverse chemical intermediates. Here, temperature-programmed reaction spectrometry and complementary scanning tunneling microscopy (STM) are employed to investigate furfural adsorption and reactivity over a Pt(111) model catalyst. Furfural decarbonylation to furan is highly sensitive to reaction conditions, in particular, surface crowding and associated changes in the adsorption geometry: furfural adopts a planar geometry on clean Pt(111) at low coverage, tilting at higher coverage to form a densely packed furfural adlayer. This switch in adsorption geometry strongly influences product selectivity. STM reveals the formation of hydrogen-bonded networks for planar furfural, which favor decarbonylation on clean Pt(111) and hydrogenolysis in the presence of coadsorbed hydrogen. Preadsorbed hydrogen promotes furfural hydrogenation to furfuryl alcohol and its subsequent hydrogenolysis to methyl furan, while suppressing residual surface carbon. Furfural chemistry over Pt is markedly different from that over Pd, with weaker adsorption over the former affording a simpler product distribution than the latter; Pd catalyzes a wider range of chemistry, including ring-opening to form propene. Insight into the role of molecular orientation in controlling product selectivity will guide the design and operation of more selective and stable Pt catalysts for furfural hydrogenation.

  5. Efficient Hydrogen Storage and Production Using a Catalyst with an Imidazoline-Based, Proton-Responsive Ligand.

    Science.gov (United States)

    Wang, Lin; Onishi, Naoya; Murata, Kazuhisa; Hirose, Takuji; Muckerman, James T; Fujita, Etsuko; Himeda, Yuichiro

    2017-03-22

    A series of new imidazoline-based iridium complexes has been developed for hydrogenation of CO 2 and dehydrogenation of formic acid. One of the proton-responsive complexes bearing two -OH groups at ortho and para positions on a coordinating pyridine ring (3 b) can catalyze efficiently the chemical fixation of CO 2 and release H 2 under mild conditions in aqueous media without using organic additives/solvents. Notably, hydrogenation of CO 2 can be efficiently carried out under CO 2 and H 2 at atmospheric pressure in basic water by 3 b, achieving a turnover frequency of 106 h -1 and a turnover number of 7280 at 25 °C, which are higher than ever reported. Moreover, highly efficient CO-free hydrogen production from formic acid in aqueous solution employing the same catalyst under mild conditions has been achieved, thus providing a promising potential H 2 -storage system in water. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Noble metal catalysts in the production of biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, A.

    2013-11-01

    The energy demand is increasing in the world together with the need to ensure energy security and the desire to decrease greenhouse gas emissions. While several renewable alternatives are available for the production of electricity, e.g. solar energy, wind power, and hydrogen, biomass is the only renewable source that can meet the demand for carbon-based liquid fuels and chemicals. The technology applied in the conversion of biomass depends on the type and complexity of the biomass, and the desired fuel. Hydrogen and hydrogen-rich mixtures (synthesis gas) are promising energy sources as they are more efficient and cleaner than existing fuels, especially when they are used in fuel cells. Hydrotreatment is a catalytic process that can be used in the conversion of biomass or biomass-derived liquids into fuels. In autothermal reforming (ATR), catalysts are used in the production of hydrogen-rich mixtures from conventional fuels or bio-fuels. The different nature of biomass and biomass-derived liquids and mineral oil makes the use of catalysts developed for the petroleum industry challenging. This requires the improvement of available catalysts and the development of new ones. To overcome the limitations of conventional hydrotreatment and ATR catalysts, zirconia-supported mono- and bimetallic rhodium, palladium, and platinum catalysts were developed and tested in the upgrading of model compounds for wood-based pyrolysis oil and in the production of hydrogen, using model compounds for gasoline and diesel. Catalysts were also tested in the ATR of ethanol. For comparative purposes commercial catalysts were tested and the results obtained with model compounds were compared with those obtained with real feedstocks (hydrotreatmet tests with wood-based pyrolysis oil and ATR tests with NExBTL renewable diesel). Noble metal catalysts were active and selective in the hydrotreatment of guaiacol used as the model compound for the lignin fraction of wood-based pyrolysis oil and wood

  7. Process for exchanging hydrogen isotopes between gaseous hydrogen and water

    International Nuclear Information System (INIS)

    Hindin, S. G.; Roberts, G. W.

    1980-01-01

    A process for exchanging isotopes of hydrogen, particularly tritium, between gaseous hydrogen and water is provided whereby gaseous hydrogen depeleted in tritium and liquid or gaseous water containing tritium are reacted in the presence of a metallic catalyst

  8. Asymmetric transfer hydrogenation by synthetic catalysts in cancer cells

    Science.gov (United States)

    Coverdale, James P. C.; Romero-Canelón, Isolda; Sanchez-Cano, Carlos; Clarkson, Guy J.; Habtemariam, Abraha; Wills, Martin; Sadler, Peter J.

    2018-03-01

    Catalytic anticancer metallodrugs active at low doses could minimize side-effects, introduce novel mechanisms of action that combat resistance and widen the spectrum of anticancer-drug activity. Here we use highly stable chiral half-sandwich organometallic Os(II) arene sulfonyl diamine complexes, [Os(arene)(TsDPEN)] (TsDPEN, N-(p-toluenesulfonyl)-1,2-diphenylethylenediamine), to achieve a highly enantioselective reduction of pyruvate, a key intermediate in metabolic pathways. Reduction is shown both in aqueous model systems and in human cancer cells, with non-toxic concentrations of sodium formate used as a hydride source. The catalytic mechanism generates selectivity towards ovarian cancer cells versus non-cancerous fibroblasts (both ovarian and lung), which are commonly used as models of healthy proliferating cells. The formate precursor N-formylmethionine was explored as an alternative to formate in PC3 prostate cancer cells, which are known to overexpress a deformylase enzyme. Transfer-hydrogenation catalysts that generate reductive stress in cancer cells offer a new approach to cancer therapy.

  9. Hydrogenation of fast pyrolyis oil and model compounds in a two-phase aqueous organic system using homogeneous ruthenium catalysts

    NARCIS (Netherlands)

    Mahfud, F. H.; Ghijsen, F.; Heeres, H. J.

    2007-01-01

    The use of homogeneous ruthenium catalysts to hydrogenate the water-soluble fraction of pyrolysis oil is reported. Pyrolysis oil, which is obtained by fast pyrolysis of lignocellulosic biomass at 450-600 degrees C, contains significant amounts of aldehydes and ketones (e.g. 1-hydroxy-2-propanone (1)

  10. Selective hydrogenation of 1,3-butadiene from crude C{sub 4} cracker stream with a solid catalyst with ionic liquid layer (SCILL). DSC and solubility study

    Energy Technology Data Exchange (ETDEWEB)

    Mangartz, T.; Korth, W.; Kern, C.; Jess, A. [Bayreuth Univ. (Germany). Dept. of Chemical Engineering

    2013-11-01

    In petroleum as well as in fine chemical industry, selective catalytic hydrogenation is an important reaction. The selective hydrogenation of 1,3-butadiene (BD) to butene (trans-,1- and cis-butene) from the crude C4 steam cracker fraction represents one example, but under today's technical conditions undesired butane forms inevitably in relevant amounts. To increase the butene yield, the concept of Solid Catalyst with Ionic Liquid Layer (SCILL) was employed. The SCILL catalyst, in contrast to the uncoated catalyst, yielded a remarkably high selectivity to butenes (S{sub butenes} > 99 %) even at high residence times or at high hydrogen partial pressure. Nearly no butane (S{sub butane} {approx} 0 %) was analytically detected. We expected that due to different solubility, the poorer soluble compounds discharged from the ionic liquid and, thus, caused the shift in selectivity to a great extent. Temperature dependent solubility measurements in the used ionic liquid ([DMIM][DMP]) revealed that the order of increasing solubility is 1,3-butadiene > butenes > butane which matches the assumption. However, since differences in solubility cannot explain this SCILL effect satisfyingly, ionic liquids are expected to affect the surface of the catalyst (side-specific ligand-type effect). Investigations using spectroscopic methods (e.g. FTIR) confirmed this suggestion. (orig.)

  11. Iridium-catalyst-based autonomous bubble-propelled graphene micromotors with ultralow catalyst loading.

    Science.gov (United States)

    Wang, Hong; Sofer, Zdeněk; Eng, Alex Yong Sheng; Pumera, Martin

    2014-11-10

    A novel concept of an iridium-based bubble-propelled Janus-particle-type graphene micromotor with very high surface area and with very low catalyst loading is described. The low loading of Ir catalyst (0.54 at %) allows for fast motion of graphene microparticles with high surface area of 316.2 m(2)  g(-1). The micromotor was prepared with a simple and scalable method by thermal exfoliation of iridium-doped graphite oxide precursor composite in hydrogen atmosphere. Oxygen bubbles generated from the decomposition of hydrogen peroxide at the iridium catalytic sites provide robust propulsion thrust for the graphene micromotor. The high surface area and low iridium catalyst loading of the bubble-propelled graphene motors offer great possibilities for dramatically enhanced cargo delivery. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Homogeneous deuterium exchange using rhenium and platinum chloride catalysts

    International Nuclear Information System (INIS)

    Fawdry, R.M.

    1979-01-01

    Previous studies of homogeneous hydrogen isotope exchange are mostly confined to one catalyst, the tetrachloroplatinite salt. Recent reports have indicated that chloride salts of iridium and rhodium may also be homogeneous exchange catalysts similar to the tetrachloroplatinite, but with much lower activities. Exchange by these homogeneous catalysts is frequently accompanied by metal precipitation with the termination of homogeneous exchange, particularly in the case of alkane exchange. The studies presented in this thesis describe two different approaches to overcome this limitation of homogeneous hydrogen isotope exchange catalysts. The first approach was to improve the stability of an existing homogeneous catalyst and the second was to develop a new homogeneous exchange catalyst which is free of the instability limitation

  13. Amineborane Based Chemical Hydrogen Storage - Final Report

    International Nuclear Information System (INIS)

    Sneddon, Larry G.

    2011-01-01

    The development of efficient and safe methods for hydrogen storage is a major hurdle that must be overcome to enable the use of hydrogen as an alternative energy carrier. The objectives of this project in the DOE Center of Excellence in Chemical Hydride Storage were both to develop new methods for on-demand, low temperature hydrogen release from chemical hydrides and to design high-conversion off-board methods for chemical hydride regeneration. Because of their reactive protic (N-H) and hydridic (B-H) hydrogens and high hydrogen contents, amineboranes such as ammonia borane, NH 3 BH 3 (AB), 19.6-wt% H 2 , and ammonia triborane NH 3 B 3 H 7 (AT), 17.7-wt% H 2 , were initially identified by the Center as promising, high-capacity chemical hydrogen storage materials with the potential to store and deliver molecular hydrogen through dehydrogenation and hydrolysis reactions. In collaboration with other Center partners, the Penn project focused both on new methods to induce amineborane H 2 -release and on new strategies for the regeneration the amineborane spent-fuel materials. The Penn approach to improving amineborane H 2 -release focused on the use of ionic liquids, base additives and metal catalysts to activate AB dehydrogenation and these studies successfully demonstrated that in ionic liquids the AB induction period that had been observed in the solid-state was eliminated and both the rate and extent of AB H2-release were significantly increased. These results have clearly shown that, while improvements are still necessary, many of these systems have the potential to achieve DOE hydrogen-storage goals. The high extent of their H 2 -release, the tunability of both their H 2 materials weight-percents and release rates, and their product control that is attained by either trapping or suppressing unwanted volatile side products, such as borazine, continue to make AB/ionic-liquid based systems attractive candidates for chemical hydrogen storage applications. These

  14. Amineborane Based Chemical Hydrogen Storage - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sneddon, Larry G.

    2011-04-21

    The development of efficient and safe methods for hydrogen storage is a major hurdle that must be overcome to enable the use of hydrogen as an alternative energy carrier. The objectives of this project in the DOE Center of Excellence in Chemical Hydride Storage were both to develop new methods for on-demand, low temperature hydrogen release from chemical hydrides and to design high-conversion off-board methods for chemical hydride regeneration. Because of their reactive protic (N-H) and hydridic (B-H) hydrogens and high hydrogen contents, amineboranes such as ammonia borane, NH3BH3 (AB), 19.6-wt% H2, and ammonia triborane NH3B3H7 (AT), 17.7-wt% H2, were initially identified by the Center as promising, high-capacity chemical hydrogen storage materials with the potential to store and deliver molecular hydrogen through dehydrogenation and hydrolysis reactions. In collaboration with other Center partners, the Penn project focused both on new methods to induce amineborane H2-release and on new strategies for the regeneration the amineborane spent-fuel materials. The Penn approach to improving amineborane H2-release focused on the use of ionic liquids, base additives and metal catalysts to activate AB dehydrogenation and these studies successfully demonstrated that in ionic liquids the AB induction period that had been observed in the solid-state was eliminated and both the rate and extent of AB H2-release were significantly increased. These results have clearly shown that, while improvements are still necessary, many of these systems have the potential to achieve DOE hydrogen-storage goals. The high extent of their H2­-release, the tunability of both their H2 materials weight-percents and release rates, and their product control that is attained by either trapping or suppressing unwanted volatile side products, such as borazine, continue to make AB/ionic­-liquid based systems attractive candidates for chemical hydrogen storage applications. These studies also

  15. Hydrogen-water isotopic exchange process

    International Nuclear Information System (INIS)

    Cheung, H.

    1984-01-01

    The objects of this invention are achieved by a dual temperature isotopic exchange process employing hydrogen-water exchange with water passing in a closed recirculation loop between a catalyst-containing cold tower and the upper portion of a catalyst-containing hot tower, with feed water being introduced to the lower portion of the hot tower and being maintained out of contact with the water recirculating in the closed loop. Undue retarding of catalyst activity during deuterium concentration can thus be avoided. The cold tower and the upper portion of the hot tower can be operated with relatively expensive catalyst material of higher catalyst activity, while the lower portion of the hot tower can be operated with a relatively less expensive, more rugged catalyst material of lesser catalyst activity. The feed water stream, being restricted solely to the lower portion of the hot tower, requires minimal pretreatment for the removal of potential catalyst contaminants. The catalyst materials are desirably coated with a hydrophobic treating material so as to be substantially inaccessible to liquid water, thereby retarding catalyst fouling while being accessible to the gas for enhancing isotopic exchange between hydrogen gas and water vapor. A portion of the water of the closed loop can be passed to a humidification zone to heat and humidify the circulating hydrogen gas and then returned to the closed loop

  16. Hydrogen plasma enhanced alignment on CNT-STM tips grown by liquid catalyst-assisted microwave plasma-enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Tung, Fa-Kuei; Yoshimura, Masamichi; Ueda, Kazuyuki; Ohira, Yutaka; Tanji, Takayoshi

    2008-01-01

    Carbon nanotubes are grown directly on a scanning tunneling microscopy tip by liquid catalyst-assisted microwave-enhanced chemical vapor deposition, and effects of hydrogen plasma treatment on the tip have been investigated in detail by field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and Raman spectroscopy. The unaligned CNTs on the as-grown tip apex have been realigned and reshaped by subsequent hydrogen plasma treatment. The diameter of CNTs is enlarged mainly due to amorphous layers being re-sputtered over their outer shells

  17. Influence of ionizing radiation on the catalytic properties of oxide catalysts tested by hydrogen peroxide decomposition

    International Nuclear Information System (INIS)

    Mucka, V.

    1987-01-01

    Results of a study of some physical and catalytic properties of different oxide catalysts as affected by ionizing radiation (γ, n, e - ) and tested by the decomposition of hydrogen peroxide in aqueous solution are presented in this paper. The oxidation state of the active component present on the catalyst surface was found to be one of the most sensitive properties to the ionizing radiation. Changes of this state induced by γ-irradiation were found to be positive in most cases; electron pre-irradiation of the oxides leads, as a rule, to negative effects and the effects of neutron irradiation may be positive or negative. On the other hand, changes in the catalytic activity of the oxides after γ-or electron-irradiation seem to be mostly negative and positive, respectively; the effects of fast neutrons seem to vary here. Neither quantitative or qualitative correlation was found between the radiation-induced changes in these two quantities. The results give evidence that ionizing radiation principally affects the surface concentration of the catalytic sites. Both the character and magnitude of the changes in surface oxidation abilities and in catalytic activities of the oxide catalysts seem to be dependent upon the actual state of the catalyst surface. (author)

  18. Nickel-based electrodeposits as potential cathode catalysts for hydrogen production by microbial electrolysis

    Science.gov (United States)

    Mitov, M.; Chorbadzhiyska, E.; Nalbandian, L.; Hubenova, Y.

    2017-07-01

    The development of cost-effective cathodes, operating at neutral pH and ambient temperatures, is a crucial challenge for the practical application of microbial electrolysis cell (MEC) technology. In this study, NiW and NiMo co-deposits produced by electroplating on Ni-foam are explored as cathodes in MEC. The fabricated electrodes exhibit higher corrosion stability and enhanced electrocatalytic activity towards hydrogen evolution reaction in neutral electrolyte compared to the bare Ni-foam. NiW/Ni-foam electrodes possess six times higher intrinsic catalytic activity, estimated from data obtained by linear voltammetry and chronoamperometry. The newly developed electrodes are applied as cathodes in single-chamber membrane-free MEC reactors, inoculated with wastewater and activated sludge from a municipal wastewater treatment plant. Cathodic hydrogen recovery of 79% and 89% by using NiW and NiMo cathodes, respectively, is achieved at applied voltage of 0.6 V. The obtained results reveal potential for practical application of used catalysts in MEC.

  19. Chemistry - Toward efficient hydrogen production at surfaces

    DEFF Research Database (Denmark)

    Nørskov, Jens Kehlet; Christensen, Claus H.

    2006-01-01

    Calculations are providing a molecular picture of hydrogen production on catalytic surfaces and within enzymes, knowledge that may guide the design of new, more efficient catalysts for the hydrogen economy.......Calculations are providing a molecular picture of hydrogen production on catalytic surfaces and within enzymes, knowledge that may guide the design of new, more efficient catalysts for the hydrogen economy....

  20. Modeling and simulation of graphene/palladium catalyst reformer for hydrogen generation from waste of IC engine

    Science.gov (United States)

    Rahman, A.; Aung, K. M.

    2018-01-01

    A small amount of hydrogen made by on-board reformer is added to the normal intake air and gasoline mixture in the vehicle’s engine could improves overall combustion quality by allowing nearly twice as much air for a given amount of fuel introduced into the combustion chamber. This can be justified based on the calorific value of Hydrogen (H2) 141.9 MJ/kg while the gasoline (C6.4H11.8) is 47MJ/kg. Different weight % of Pd and GO uses for the reformer model and has conducted simulation by COMSOL software. The best result found for the composition of catalyst (palladium 30% and graphene 70%). The study shows that reformer yield hydrogen 23% for the exhaust temperature of 600-900°C and 20% for 80-90°C. Pumping hydrogen may boost the fuel atomization and vaporization at engine idle condition, which could enhances the fuel combustion efficiency. Thus, this innovative technology would be able to save fuel about 12% and reduce the emission about 35%.

  1. The influence of reaction time on hydrogen sulphide removal from air by means of Fe(III)-EDTA/Fiban catalysts

    Science.gov (United States)

    Wasag, H.; Cel, W.; Chomczynska, M.; Kujawska, J.

    2018-05-01

    The paper deals with a new method of hydrogen sulphide removal from air by its filtration and selective catalytic oxidation with the use of fibrous carriers of Fe(III)-EDTA complex. The basis of these filtering materials includes fibrous ion exchangers with the complex immobilized on their functional groups. It has been established that the degree of catalytic hydrogen sulphide decomposition depends on the reaction time. Thus, the required degree of hydrogen sulphide removal from air could be easily controlled by applying appropriate thickness of the filtering layer under a given filtering velocity. It allows applying very thin filtering layers of the Fe(III)-EDTA/Fiban AK-22 or Fiban A-6 catalysts. The obtained results of the research confirm the applicability of these materials for deep air purification from hydrogen sulphide.

  2. Theoretical study of methanol synthesis from CO2 and CO hydrogenation on the surface of ZrO2 supported In2O3 catalyst

    Science.gov (United States)

    Dou, Maobin; Zhang, Minhua; Chen, Yifei; Yu, Yingzhe

    2018-06-01

    The interactions between ZrO2 support and In2O3 catalyst play pivotal role in the catalytic conversion of CO2 to methanol. Herein, a density functional theory study has been conducted to research the mechanism of methanol synthesis from CO2 and CO hydrogenation on the defective ZrO2 supported In2O3(110) surface (D surface). The calculations reveal that methanol is produced mainly via the HCOO reaction pathway from CO2 hydrogenation on D surface, and the hydrogenation of HCOO to form H2COO species with an activation barrier of 1.21 eV plays the rate determining step for the HCOO reaction pathway. The direct dissociation of CO2 to CO on D surface is kinetically and energetically prohibited. Methanol synthesis from CO hydrogenation on D surface is much facile comparing with the elementary steps involved in CO2 hydrogenation. The rate determining step of CO hydrogenation to methanol is the formation of H3CO species on the vacancy site with a barrier of 0.51 eV. ZrO2 support has significant effect on the suppressing of the dissociation of CO2 and stabilization of H2COO species on the surface of In2O3 catalyst.

  3. PVP-stabilized Ru–Rh nanoparticles as highly efficient catalysts for hydrogen generation from hydrolysis of ammonia borane

    Energy Technology Data Exchange (ETDEWEB)

    Rakap, Murat, E-mail: mrtrakap@gmail.com

    2015-11-15

    Herein, the utilization of poly(N-vinyl-2-pyrrolidone)-protected ruthenium–rhodium nanoparticles (3.4 ± 1.4 nm) as highly efficient catalysts in the hydrolysis of ammonia borane for hydrogen generation is reported. They are prepared by co-reduction of ruthenium and rhodium metal ions in ethanol/water mixture by an alcohol reduction method and characterized by transmission electron microscopy-energy dispersive X-ray spectroscopy, ultraviolet–visible spectroscopy, and X-ray photoelectron spectroscopy. They are durable and highly efficient catalysts for hydrogen generation from the hydrolysis of ammonia borane even at very low concentrations and temperature, providing average turnover frequency of 386 mol H{sub 2} (mol cat){sup −1} min{sup −1} and maximum hydrogen generation rate of 10,680 L H{sub 2} min{sup −1} (mol cat){sup −1}. Poly(N-vinyl-2-pyrrolidone)-protected ruthenium–rhodium nanoparticles also provide activation energy of 47.4 ± 2.1 kJ/mol for the hydrolysis of ammonia borane. - Highlights: • Ru-Rh@PVP NPs provide a TOF of 386 mol H{sub 2} (mol cat){sup −1} min{sup −1} for hydrolysis of AB. • Maximum HG rate is 9680 L H{sub 2} min{sup −1} (mol cat){sup −1} for the hydrolysis of AB. • Activation energy is 47.4 ± 2.1 kJ mol{sup −1} for the hydrolysis of AB.

  4. Session 6: Liquid-phase chloro-benzene hydrogenolysis over alkali-doped zirconia supported palladium catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Aramendia, M.A.; Borau, V.; Jimenez, C.; Marinas, A.; Marinas, J.M.; Moreno, J.M.; Ruiz, J.R.; Urbano, F.J. [University of Cordoba. Marie Curie Building, Dept. of Organic Chemistry (Spain)

    2004-07-01

    Chlorinated hydrocarbons constitute one of the most important kind of organic pollutants due to their environmental impact and noxious effects. Catalytic hydro-dehalogenation is now emerging as a promising non-destructive alternative technology whereby the chlorinated waste is converted to products with a commercial value. It is simple, safe, effective, and it ensures, in many instances, the regeneration of the initial raw material. One of the main problems of catalytic hydro-dehalogenation arise from the deactivating effect of the hydrogen halide released as by product. This can be surpassed by, for example, adding a base, such as NaOH, or modification of the catalyst in order to neutralize the hydrogen halide released. In conclusion, the alkali modification of the zirconia supported catalysts did not enhance the catalytic activity in comparison to the undoped Pd/ZrO{sub 2}. Moreover, the lithium doped catalyst exhibits very poor results in initial rate and final chloro-benzene conversion. This could be related to the reduction in BET surface area caused by the doping together with a lower enhancement of the surface basicity of the doped catalysts. (authors)

  5. Adsorption of cadmium ions on nickel surface skeleton catalysts and its effect on reaction of cathodic hydrogen evolution

    International Nuclear Information System (INIS)

    Korovin, N.V.; Udris, E.Ya.; Savel'eva, O.N.

    1986-01-01

    Cadmium adsorption from different concentration CdSO 4 solutions on nickel surface skeleton catalysts (Ni ssc ) is studied by recording of polarization and potentiodynamic curves using electron microscopy and X-ray spectrometry. Main regularities of cadmium adsorption on Ni ssc are shown to be similar to those on smooth and skeleton nickel. A conclusion is drawn that increase of catalytic activity in reaction of cathodic hydrogen evolution from alkali solutions of Ni ssc base electrodes after their treatment in solutions containing Cd 2+ ions is due to irreversible desorption of strongly and averagely bound hydrogen from electrode surface at cadmium adsorption on them

  6. Oxidation resistant organic hydrogen getters

    Science.gov (United States)

    Shepodd, Timothy J [Livermore, CA; Buffleben, George M [Tracy, CA

    2008-09-09

    A composition for removing hydrogen from an atmosphere, comprising a mixture of a polyphenyl ether and a hydrogenation catalyst, preferably a precious metal catalyst, and most preferably Pt. This composition is stable in the presence of oxygen, will not polymerize or degrade upon exposure to temperatures in excess of 200.degree. C., or prolonged exposure to temperatures in the range of 100-300.degree. C. Moreover, these novel hydrogen getter materials can be used to efficiently removing hydrogen from mixtures of hydrogen/inert gas (e.g., He, Ar, N.sub.2), hydrogen/ammonia atmospheres, such as may be encountered in heat exchangers, and hydrogen/carbon dioxide atmospheres. Water vapor and common atmospheric gases have no adverse effect on the ability of these getter materials to absorb hydrogen.

  7. Wire gauze and cordierite supported noble metal catalysts for passive autocatalytic recombiner

    International Nuclear Information System (INIS)

    Sanap, Kiran K.; Varma, S.; Waghmode, S.B.; Bharadwaj, S.R.

    2015-01-01

    Highlights: • Synthesis by electroless deposition method and chemical reduction route. • Particle size of 0.1–0.5 μm & 3.5–5 nm for Pt–Pd/Wg & Pt–Pd/Cord catalysts. • Active for H_2 and O_2 reaction with initial H_2 concentration of 1.5 to 7% in air. • Active in presence of different contaminants like CO_2, CH_4, CO & relative humidity. • Enhanced resistance of Pt–Pd/Cord catalyst towards the poisoning of CO. - Abstract: Hydrogen released in nuclear reactor containment under severe accident scenario poses a threat to containment and hence needs to be regulated by catalytic recombination. Mixed noble metal catalysts with platinum–palladium supported on stainless steel wire gauze and cordierite support have been developed for this purpose. The developed catalysts have been found to be highly efficient for removal of hydrogen concentration in the range of 1.5 to 7.0% v/v in air. Though both the catalysts exhibit similar kinetics for lower hydrogen concentration, cordierite supported catalysts exhibits better kinetic rate at higher hydrogen concentration. The performances of these catalysts in presence of various probable catalytic poison like carbon monoxide and catalytic inhibitors like moisture, carbon dioxide, and hydrocarbons provide data for use of these catalysts under the actual scenario. Compared to stainless steel wire gauze supported catalyst, the cordierite based catalyst are found to exhibit enhanced resistance towards carbon monoxide and limited temperature rise for safer application at higher hydrogen concentrations.

  8. Homogeneous activation of molecular hydrogen: on the development of effective catalysts for isotopic exchange in protolytic media

    International Nuclear Information System (INIS)

    Sakharovskij, Yu.A.

    1987-01-01

    Comparison of different catalytic systems for hydrogen isotopic exchange with protolytic solvent based on activation enthalpy and entropy values is carried out. Particular attention is paid to the effect of ligand environment of complex forming metallic central ion and solvent composition on free activation energy and stability of catalytic system. A conclusion is drawn on impossibility of absolutely stable and high-temperature catalyst in an isolated system

  9. High-pressure vapor-phase hydrodeoxygenation of lignin-derived oxygenates to hydrocarbons by a PtMo bimetallic catalyst: Product selectivity, reaction pathway, and structural characterization

    Energy Technology Data Exchange (ETDEWEB)

    Yohe, Sara L.; Choudhari, Harshavardhan J.; Mehta, Dhairya D.; Dietrich, Paul J.; Detwiler, Michael D.; Akatay, Cem M.; Stach, Eric A.; Miller, Jeffrey T.; Delgass, W. Nicholas; Agrawal, Rakesh; Ribeiro, Fabio H.

    2016-12-01

    High-pressure, vapor-phase, hydrodeoxygenation (HDO) reactions of dihydroeugenol (2-methoxy-4-propylphenol), as well as other phenolic, lignin-derived compounds, were investigated over a bimetallic platinum and molybdenum catalyst supported on multi-walled carbon nanotubes (5%Pt2.5%Mo/MWCNT). Hydrocarbons were obtained in 100% yield from dihydroeugenol, including 98% yield of the hydrocarbon propylcyclohexane. The final hydrocarbon distribution was shown to be a strong function of hydrogen partial pressure. Kinetic analysis showed three main dihydroeugenol reaction pathways: HDO, hydrogenation, and alkylation. The major pathway occurred via Pt catalyzed hydrogenation of the aromatic ring and methoxy group cleavage to form 4-propylcyclohexanol, then Mo catalyzed removal of the hydroxyl group by dehydration to form propylcyclohexene, followed by hydrogenation of propylcyclohexene on either the Pt or Mo to form the propylcyclohexane. Transalkylation by the methoxy group occurred as a minor side reaction. Catalyst characterization techniques including chemisorption, scanning transmission electron microscopy, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy were employed to characterize the catalyst structure. Catalyst components identified were Pt particles, bimetallic PtMo particles, a Mo carbide-like phase, and Mo oxide phases.

  10. Why Does Alkylation of the N–H Functionality within M/NH Bifunctional Noyori-Type Catalysts Lead to Turnover?

    International Nuclear Information System (INIS)

    Dub, Pavel; Gordon, John Cameron; Scott, Brian Lindley

    2017-01-01

    Molecular metal/NH bifunctional Noyori-type catalysts are remarkable in that they are among the most efficient artificial catalysts developed to date for the hydrogenation of carbonyl functionalities (loadings up to ~10 –5 mol %). In addition, these catalysts typically exhibit high C=O/C=C chemo- and enantioselectivities. This unique set of properties is traditionally associated with the operation of an unconventional mechanism for homogeneous catalysts in which the chelating ligand plays a key role in facilitating the catalytic reaction and enabling the aforementioned selectivities by delivering/accepting a proton (H + ) via its N–H bond cleavage/formation. A recently revised mechanism of the Noyori hydrogenation reaction (Dub, P. A. et al. J. Am. Chem. Soc. 2014, 136, 3505) suggests that the N–H bond is not cleaved but serves to stabilize the turnover-determining transition states (TDTSs) via strong N–H···O hydrogen-bonding interactions (HBIs). Here, the present paper shows that this is consistent with the largely ignored experimental fact that alkylation of the N–H functionality within M/NH bifunctional Noyori-type catalysts leads to detrimental catalytic activity. Finally, the purpose of this work is to demonstrate that decreasing the strength of this HBI, ultimately to the limit of its complete absence, are conditions under which the same alkylation may lead to beneficial catalytic activity.

  11. Selective Hydrogenation of Acrolein Over Pd Model Catalysts: Temperature and Particle-Size Effects.

    Science.gov (United States)

    O'Brien, Casey P; Dostert, Karl-Heinz; Schauermann, Swetlana; Freund, Hans-Joachim

    2016-10-24

    The selectivity in the hydrogenation of acrolein over Fe 3 O 4 -supported Pd nanoparticles has been investigated as a function of nanoparticle size in the 220-270 K temperature range. While Pd(111) shows nearly 100 % selectivity towards the desired hydrogenation of the C=O bond to produce propenol, Pd nanoparticles were found to be much less selective towards this product. In situ detection of surface species by using IR-reflection absorption spectroscopy shows that the selectivity towards propenol critically depends on the formation of an oxopropyl spectator species. While an overlayer of oxopropyl species is effectively formed on Pd(111) turning the surface highly selective for propenol formation, this process is strongly hindered on Pd nanoparticles by acrolein decomposition resulting in CO formation. We show that the extent of acrolein decomposition can be tuned by varying the particle size and the reaction temperature. As a result, significant production of propenol is observed over 12 nm Pd nanoparticles at 250 K, while smaller (4 and 7 nm) nanoparticles did not produce propenol at any of the temperatures investigated. The possible origin of particle-size dependence of propenol formation is discussed. This work demonstrates that the selectivity in the hydrogenation of acrolein is controlled by the relative rates of acrolein partial hydrogenation to oxopropyl surface species and of acrolein decomposition, which has significant implications for rational catalyst design. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Hydrogen yield from low temperature steam reforming of ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Das, N.K.; Dalai, A.K. [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Chemical Engineering, Catalysis and Chemical Reaction Engineering Laboratories; Ranganathan, R. [Saskatchewan Research Council, Saskatoon, SK (Canada)

    2007-02-15

    Interest in the use of ethanol for fuel cell hydrogen production was discussed with particular reference to a study in which the production of hydrogen was maximized through low temperature steam reforming of ethanol in the temperature range of 200 to 360 degrees C. The primary objective of this study was to determine the effect of Mn concentration on a Cu/Al{sub 2}O{sub 3} catalyst for steam reforming of ethanol to produce hydrogen. The purpose was to maximize ethanol conversion and hydrogen selectivity in the lowest possible reaction temperature for the ideal catalyst activity. The optimum reaction conditions in the presence of a suitable catalyst can produce the desired products of hydrogen and carbon dioxide. Cu/Al{sub 2}O{sub 3} catalysts with six different concentrations ranging from 0 to 10 weight per cent Mn, were prepared, characterized and studied for the ethanol-steam reforming reaction. The effects of different process variables were studied, including water-to-ethanol feed ratio, space time and catalyst reduction temperatures on ethanol conversion and hydrogen yield. Maximum ethanol conversion of 60.7 per cent and hydrogen yield of 3.74 (mol of hydrogen per mol of ethanol converted) were observed at 360 degrees C for a catalyst with 2.5 weight per cent Mn loading. 29 refs., 3 tabs., 12 figs.

  13. Hydrogenation of Levulinic Acid to gamma-Valerolactone in Water Using Millimeter Sized Supported Ru Catalysts in a Packed Bed Reactor

    NARCIS (Netherlands)

    Piskun, A. S.; de Haan, J. E.; Wilbers, E.; de Bovenkamp, H. H. van; Tang, Z.; Heeres, Hero

    gamma-Valerolactone (GVL) has been identified as a sustainable platform chemical for the production of carbon-based chemicals. We here report an experimental study on the catalytic hydrogenation of levulinic acid (LA) in water to GVL in a packed bed reactor using supported Ru catalysts (carbon,

  14. Strategies for improving the performance and stability of Ni-based catalysts for reforming reactions.

    Science.gov (United States)

    Li, Shuirong; Gong, Jinlong

    2014-11-07

    Owing to the considerable publicity that has been given to petroleum related economic, environmental, and political problems, renewed attention has been focused on the development of highly efficient and stable catalytic materials for the production of chemical/fuel from renewable resources. Supported nickel nanoclusters are widely used for catalytic reforming reactions, which are key processes for generating synthetic gas and/or hydrogen. New challenges were brought out by the extension of feedstock from hydrocarbons to oxygenates derivable from biomass, which could minimize the environmental impact of carbonaceous fuels and allow a smooth transition from fossil fuels to a sustainable energy economy. This tutorial review describes the recent efforts made toward the development of nickel-based catalysts for the production of hydrogen from oxygenated hydrocarbons via steam reforming reactions. In general, three challenges facing the design of Ni catalysts should be addressed. Nickel nanoclusters are apt to sinter under catalytic reforming conditions of high temperatures and in the presence of steam. Severe carbon deposition could also be observed on the catalyst if the surface carbon species adsorbed on metal surface are not removed in time. Additionally, the production of hydrogen rich gas with a low concentration of CO is a challenge using nickel catalysts, which are not so active in the water gas shift reaction. Accordingly, three strategies were presented to address these challenges. First, the methodologies for the preparation of highly dispersed nickel catalysts with strong metal-support interaction were discussed. A second approach-the promotion in the mobility of the surface oxygen-is favored for the yield of desired products while promoting the removal of surface carbon deposition. Finally, the process intensification via the in situ absorption of CO2 could produce a hydrogen rich gas with low CO concentration. These approaches could also guide the design

  15. Thermally Stable TiO2 - and SiO2 -Shell-Isolated Au Nanoparticles for In Situ Plasmon-Enhanced Raman Spectroscopy of Hydrogenation Catalysts.

    Science.gov (United States)

    Hartman, Thomas; Weckhuysen, Bert M

    2018-03-12

    Raman spectroscopy is known as a powerful technique for solid catalyst characterization as it provides vibrational fingerprints of (metal) oxides, reactants, and products. It can even become a strong surface-sensitive technique by implementing shell-isolated surface-enhanced Raman spectroscopy (SHINERS). Au@TiO 2 and Au@SiO 2 shell-isolated nanoparticles (SHINs) of various sizes were therefore prepared for the purpose of studying heterogeneous catalysis and the effect of metal oxide coating. Both SiO 2 - and TiO 2 -SHINs are effective SHINERS substrates and thermally stable up to 400 °C. Nano-sized Ru and Rh hydrogenation catalysts were assembled over the SHINs by wet impregnation of aqueous RuCl 3 and RhCl 3 . The substrates were implemented to study CO adsorption and hydrogenation under in situ conditions at various temperatures to illustrate the differences between catalysts and shell materials with SHINERS. This work demonstrates the potential of SHINS for in situ characterization studies in a wide range of catalytic reactions. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  16. Hydrogen evolution by a metal-free electrocatalyst

    KAUST Repository

    Zheng, Yao

    2014-04-28

    Electrocatalytic reduction of water to molecular hydrogen via the hydrogen evolution reaction may provide a sustainable energy supply for the future, but its commercial application is hampered by the use of precious platinum catalysts. All alternatives to platinum thus far are based on nonprecious metals, and, to our knowledge, there is no report about a catalyst for electrocatalytic hydrogen evolution beyond metals. Here we couple graphitic-carbon nitride with nitrogen-doped graphene to produce a metal-free hybrid catalyst, which shows an unexpected hydrogen evolution reaction activity with comparable overpotential and Tafel slope to some of well-developed metallic catalysts. Experimental observations in combination with density functional theory calculations reveal that its unusual electrocatalytic properties originate from an intrinsic chemical and electronic coupling that synergistically promotes the proton adsorption and reduction kinetics. © 2014 Macmillan Publishers Limited. All rights reserved.

  17. Process for hydroprocessing heavy oils utilizing sepiolite-based catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Auden, C.A.; Yan, T.-Y.

    1986-04-15

    A process is described for demetallizing and desulfurizing a hydrocarbon oil comprising contacting the hydrocarbon oil in the presence of hydrogen and a sepiolite-based catalyst composition under conditions of pressure and temperature sufficient to effect demetallization and desulfurization. The sepiolite-based catalyst composition has been prepared by first contacting the sepiolite with an aqueous solution of a first metal salt, then contacting the resultant metal ion-exchanged sepiolite with an aqueous solution of a compound of a second metal selected from the group consisting of molybdenum, tungsten and vanadium, and finally contacting the resultant metal-exchanged sepiolite product with an aqueous solution of a magnesium compound, thereby effecting a magnesium ion-exchange with the metal-exchanged sepiolite product and neutralizing acid sites on the sepiolite product.

  18. Hydrogen recombiner development at AECL

    International Nuclear Information System (INIS)

    Dewit, W.A.; Koroll, G.W.; Loesel Sitar, J.; Graham, W.R.C.

    1997-01-01

    Catalytic recombiners have been developed at AECL for the purpose of hydrogen removal in post-accident nuclear containment buildings. The recombiners are based on a particular catalyst designed by AECL which has extraordinary resistance to fouling from water and water vapour and a large thermodynamic range of operation. The catalysts were developed, originally, for the purpose of heavy water manufacturing by way of a catalytic exchange process. Application of these catalyst materials in recombiners for containment applications began in the late 1980's. The first application was a passive recombiner, qualified for use in control of radiolytic hydrogen in the headspace of a pool-type experimental reactor of AECL design in 1988. The passive, or natural convection recombiner concept has continued development to commercial stage for application in power reactor containments. This paper reviews the AECL recombiner development, describes the current model and shows results from tests of full-scale recombiners in the Large Scale Vented Combustion Test Facility at AECL-WL. The AECL recombiner is designed for compactness and ease of engineering into containment. The design is a simple, open-ended rectangular enclosure with catalyst elements arranged inside to promote optimum convective flow driven by heat of recombination at the catalyst surface. Self start, as evidenced by catalyst heating and initiation of flow, is achieved in less than 1% hydrogen, with available oxygen, at room temperature and 100% relative humidity. This low temperature start-up in condensing atmospheres is viewed as the most challenging condition for wet-proofing effectiveness. Cold start-up is a vital performance requirement in containments, such as CANDU, where engineered air-cooling systems are operating and where long-term hydrogen control is required, after containment atmospheres have cooled. Once started, the removal capacity scales linearly with the inlet cross-section area and the partial

  19. Synthesis of Hydrocarbons from H2-Deficient Syngas in Fischer-Tropsch Synthesis over Co-Based Catalyst Coupled with Fe-Based Catalyst as Water-Gas Shift Reaction

    Directory of Open Access Journals (Sweden)

    Ting Ma

    2015-01-01

    Full Text Available The effects of metal species in an Fe-based catalyst on structural properties were investigated through the synthesis of Fe-based catalysts containing various metal species such, as Mn, Zr, and Ce. The addition of the metal species to the Fe-based catalyst resulted in high dispersions of the Fe species and high surface areas due to the formation of mesoporous voids about 2–4 nm surrounded by the catalyst particles. The metal-added Fe-based catalysts were employed together with Co-loaded beta zeolite for the synthesis of hydrocarbons from syngas with a lower H2/CO ratio of 1 than the stoichiometric H2/CO ratio of 2 for the Fischer-Tropsch synthesis (FTS. Among the catalysts, the Mn-added Fe-based catalyst exhibited a high activity for the water-gas shift (WGS reaction with a comparative durability, leading to the enhancement of the CO hydrogenation in the FTS in comparison with Co-loaded beta zeolite alone. Furthermore, the loading of Pd on the Mn-added Fe-based catalyst enhanced the catalytic durability due to the hydrogenation of carbonaceous species by the hydrogen activated over Pd.

  20. Handheld hydrogen - a new concept for hydrogen storage

    DEFF Research Database (Denmark)

    Johannessen, Tue; Sørensen, Rasmus Zink

    2005-01-01

    A method of hydrogen storage using metal ammine complexes in combination with an ammonia decomposition catalyst is presented. This dense hydrogen storage material has high degree of safety compared to all the other available alternatives. This technology reduces the safety hazards of using liquid...

  1. Catalyst in Basic Oleochemicals

    Directory of Open Access Journals (Sweden)

    Eva Suyenty

    2007-10-01

    Full Text Available Currently Indonesia is the world largest palm oil producer with production volume reaching 16 million tones per annum. The high crude oil and ethylene prices in the last 3 – 4 years contribute to the healthy demand growth for basic oleochemicals: fatty acids and fatty alcohols. Oleochemicals are starting to replace crude oil derived products in various applications. As widely practiced in petrochemical industry, catalyst plays a very important role in the production of basic oleochemicals. Catalytic reactions are abound in the production of oleochemicals: Nickel based catalysts are used in the hydrogenation of unsaturated fatty acids; sodium methylate catalyst in the transesterification of triglycerides; sulfonic based polystyrene resin catalyst in esterification of fatty acids; and copper chromite/copper zinc catalyst in the high pressure hydrogenation of methyl esters or fatty acids to produce fatty alcohols. To maintain long catalyst life, it is crucial to ensure the absence of catalyst poisons and inhibitors in the feed. The preparation methods of nickel and copper chromite catalysts are as follows: precipitation, filtration, drying, and calcinations. Sodium methylate is derived from direct reaction of sodium metal and methanol under inert gas. The sulfonic based polystyrene resin is derived from sulfonation of polystyrene crosslinked with di-vinyl-benzene. © 2007 BCREC UNDIP. All rights reserved.[Presented at Symposium and Congress of MKICS 2007, 18-19 April 2007, Semarang, Indonesia][How to Cite: E. Suyenty, H. Sentosa, M. Agustine, S. Anwar, A. Lie, E. Sutanto. (2007. Catalyst in Basic Oleochemicals. Bulletin of Chemical Reaction Engineering and Catalysis, 2 (2-3: 22-31.  doi:10.9767/bcrec.2.2-3.6.22-31][How to Link/DOI: http://dx.doi.org/10.9767/bcrec.2.2-3.6.22-31 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/6

  2. Final Report for the DOE-BES Program Mechanistic Studies of Activated Hydrogen Release from Amine-Boranes

    Energy Technology Data Exchange (ETDEWEB)

    Larry G. Sneddon; R. Thomas Baker

    2013-01-13

    Effective storage of hydrogen presents one of the most significant technical gaps to successful implementation of the hydrogen economy, particularly for transportation applications. Amine boranes, such as ammonia borane H3NBH3 and ammonia triborane H3NB3H7, have been identified as promising, high-capacity chemical hydrogen storage media containing potentially readily released protic (N-H) and hydridic (B-H) hydrogens. At the outset of our studies, dehydrogenation of ammonia borane had been studied primarily in the solid state, but our DOE sponsored work clearly demonstrated that ionic liquids, base-initiators and/or metal-catalysts can each significantly increase both the rate and extent of hydrogen release from amine boranes under moderate conditions. Our studies also showed that depending upon the activation method, hydrogen release from amine boranes can occur by very different mechanistic steps and yield different types of spent-fuel materials. The fundamental understanding that was developed during this grant of the pathways and controlling factors for each of these hydrogen-release mechanisms is now enabling continuing discovery and optimization of new chemical-hydride based hydrogen storage systems.

  3. Technical Report: Final

    Energy Technology Data Exchange (ETDEWEB)

    Lueking, Angela D.; Wang, Cheng-Yu

    2014-09-30

    The objective of this work was to develop catalyzed nanoporous materials that have superior hydrogen uptake between 300K and 400K and moderate pressures. Platinum nanoparticles were introduced to both activated carbons (ACs) and microporous metal organic frameworks (MMOFs) in order to dissociate molecular hydrogen into an active hydrogen species that diffuses from the catalyst to weakly chemisorbs to the AC/MMOF support; this combined sequence is referred to as the hydrogen spillover mechanism. For all materials studied, maximum excess hydrogen uptake was 1-1.4 wt% (excess) at 300K, falling short of DOE storage goals (5.5 wt% by 2015). Select Pt/AC materials (after in situ catalyst activation) had high uptake (up to 1.4 wt%) at low pressure which significantly exceeded that expected for physisorption. The uptake was not correlated to size of Pt catalyst, but appeared to be associated with high surface activity of the AC support and the methodology of catalyst doping. Multiple techniques were explored to introduce Pt nanoparticles into MMOFs, but most led to significant structural degradation. Ultimately, a ‘pre-bridge’ (PB) technique was used to introduce Pt/AC catalysts into MMOFs, as the PB technique led to virtually non-detectable changes in structure. At high pressure, hydrogen spillover of ~1 wt% (excess) to a PB-MMOF was very slow (i.e. >80 hours at 70-80 bar), which can be attributed to high diffusion barriers in a complex three-surface domain material (Pt, AC, MMOF) as well as unexpected evidence for mechanical instability of the undoped MMOF precursor. In a low-pressure comparison study of three PB-MMOFs, we found evidence that the doping technique may introduce defects which may contribute to enhanced adsorption at 300K. However, we could not rule out the effect of active Pt sites, as common predictors of adsorption generally favored the materials without Pt. Furthermore, spectroscopic evidence provided definitive evidence of weak hydrogen

  4. Heterogenization of Homogeneous Catalysts: the Effect of the Support

    Energy Technology Data Exchange (ETDEWEB)

    Earl, W.L.; Ott, K.C.; Hall, K.A.; de Rege, F.M.; Morita, D.K.; Tumas, W.; Brown, G.H.; Broene, R.D.

    1999-06-29

    We have studied the influence of placing a soluble, homogeneous catalyst onto a solid support. We determined that such a 'heterogenized' homogeneous catalyst can have improved activity and selectivity for the asymmetric hydrogenation of enamides to amino acid derivatives. The route of heterogenization of RhDuPhos(COD){sup +} cations occurs via electrostatic interactions with anions that are capable of strong hydrogen bonding to silica surfaces. This is a novel approach to supported catalysis. Supported RhDuPhos(COD){sup +} is a recyclable, non-leaching catalyst in non-polar media. This is one of the few heterogenized catalysts that exhibits improved catalytic performance as compared to its homogeneous analog.

  5. Synthesis of a highly active carbon-supported Ir-V/C catalyst for the hydrogen oxidation reaction in PEMFC

    International Nuclear Information System (INIS)

    Li Bing; Qiao Jinli; Yang Daijun; Zheng Junsheng; Ma Jianxin; Zhang Jiujun; Wang Haijiang

    2009-01-01

    The active, carbon-supported Ir and Ir-V nanoclusters with well-controlled particle size, dispersity, and composition uniformity, have been synthesized via an ethylene glycol method using IrCl 3 and NH 4 VO 3 as the Ir and V precursors. The nanostructured catalysts were characterized by X-ray diffraction and high-resolution transmission electron microscopy. The catalytic activities of these carbon-supported nanoclusters were screened by applying on-line cyclic voltammetry and electrochemical impedance spectroscopy techniques, which were used to characterize the electrochemical properties of fuel cells using several anode Ir/C and Ir-V/C catalysts. It was found that Ir/C and Ir-V/C catalysts affect the performance of electrocatalysts significantly based on the discharge characteristics of the fuel cell. The catalyst Ir-V/C at 40 wt.% displayed the highest catalytic activity to hydrogen oxidation reaction and, therefore, high cell performance is achieved which results in a maximum power density of 563 mW cm -2 at 0.512 V and 70 deg. C in a real H 2 /air fuel cell. This performance is 20% higher as compared to the commercial available Pt/C catalyst. Fuel cell life test at a constant current density of 1000 mA cm -2 in a H 2 /O 2 condition shows good stability of anode Ir-V/C after 100 h of continuous operation.

  6. Effect study of the support in nickel and cobalt catalysts for obtaining hydrogen from ethanol steam reforming

    International Nuclear Information System (INIS)

    Silva, Sirlane Gomes da

    2013-01-01

    A range of oxide-supported metal catalysts have been investigated for the steam reforming of ethanol for the production of hydrogen and subsequent application in fuel cells. The catalysts were synthesized by the co-precipitation and internal gelification methods using cobalt and nickel as active metals supported on aluminum, zirconium, lanthanum and cerium oxides. After prepared and calcined at 550 Cº the solids were fully characterized by different techniques such as X-rays diffraction(DRX), energy-dispersive X-ray spectroscopy (EDS), scanning electron microscopy, nitrogen adsorption (B.E.T), temperature-programmed reduction in H2 (TPR-H2) and thermogravimetric analysis. The catalytic tests were performed in a monolithic quartz reactor and submitted to different thermodynamic conditions of steam reforming of ethanol at temperatures varying from 500º C to 800 ºC. The product gas streams from the reactor were analyzed by an on-line gas chromatograph. The cobalt/nickel catalyst supported on a ceria-lanthania mixture (Co 10% / Ni 5% - CeO 2 La 2 O 3 ) showed good catalytic performance in hydrogen selectivity reaching a concentration greater than 65%, when compared to other catalytic systems such as: Co 10% / Ni5% - CeO 2 ; Co 10% / Ni 5% - CeO 2 ZrO 2 ; Co 10% / Ni 5% - ZrO 2 ; Co 10% / Ni 5% - La 2 O 3 ; Co 10% / Ni 5% - CeO 2 La 2 O 3 /K 2% ; Co 10 % / Ni 5% - CeO 2 La 2 O 3 / Na 2% ; Ni 10% / Co 5% - CeO 2 La 2 O 3 ; Co-Al 2 O 3 e Co-Al 2 O 3 CeO 2 . (author)

  7. Production of hydrogen by thermocatalytic cracking of natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Muradov, N. [Florida Solar Energy Center, Cocoa, FL (United States)

    1996-10-01

    The conventional methods of hydrogen production from natural gas (for example, steam reforming and partial oxidation) are complex, multi-step processes that produce large quantities of CO{sub 2}. The main goal of this project is to develop a technologically simple process for hydrogen production from natural gas (NG) and other hydrocarbon fuels via single-step decomposition of hydrocarbons. This approach eliminates or significantly reduces CO{sub 2} emission. Carbon is a valuable by-product of this process, whereas conventional methods of hydrogen production from NG produce no useful by-products. This approach is based on the use of special catalysts that reduce the maximum temperature of the process from 1400-1500{degrees}C (thermal non-catalytic decomposition of methane) to 500-900{degrees}C. Transition metal based catalysts and various forms of carbon are among the candidate catalysts for the process. This approach can advantageously be used for the development of compact NG reformers for on-site production of hydrogen-methane blends at refueling stations and, also, for the production of hydrogen-rich gas for fuel cell applications. The author extended the search for active methane decomposition catalysts to various modifications of Ni-, Fe-, Mo- and Co-based catalysts. Variation in the operational parameters makes it possible to produce H{sub 2}-CH{sub 4} blends with a wide range of hydrogen concentrations that vary from 15 to 98% by volume. The author found that Ni-based catalysts are more effective at temperatures below 750{degrees}C, whereas Fe-based catalysts are effective at temperatures above 800{degrees}C for the production of hydrogen with purity of 95% v. or higher. The catalytic pyrolysis of liquid hydrocarbons (pentane, gasoline) over Fe-based catalyst was conducted. The author observed the production of a hydrogen-rich gas (hydrogen concentration up to 97% by volume) at a rate of approximately 1L/min.mL of hydrocarbon fuel.

  8. Catalysts for synthetic liquid fuels

    Energy Technology Data Exchange (ETDEWEB)

    Bruce, L.A.; Turney, T.W.

    1987-12-01

    Fischer-Tropsch catalysts have been designed, characterized and tested for the selective production of hydrocarbons suitable as synthetic liquid transport fuels from synthesis gas (i.e., by the reduction of carbon monoxide with hydrogen). It was found that hydrocarbons in the middle distillate range, or suitable for conversion to that range, could be produced over several of the new catalyst systems. The various catalysts examined included: (1) synthetic cobalt clays, mainly cobalt chlorites; (2) cobalt hydrotalcites; (3) ruthenium metal supported on rare earth oxides of high surface area; and (4) a novel promoted cobalt catalyst. Active and selective catalysts have been obtained, in each category. With the exception of the clays, reproducibility of catalyst performance has been good. Catalysts in groups 2 and 4 have exhibited very high activity, with long lifetimes and easy regeneration.

  9. Hydrogen production by steam reforming of liquefied natural gas (LNG) over nickel catalysts supported on cationic surfactant-templated mesoporous aluminas

    Science.gov (United States)

    Seo, Jeong Gil; Youn, Min Hye; Park, Sunyoung; Jung, Ji Chul; Kim, Pil; Chung, Jin Suk; Song, In Kyu

    Two types of mesoporous γ-aluminas (denoted as A-A and A-S) are prepared by a hydrothermal method under different basic conditions using cationic surfactant (cetyltrimethylammonium bromide, CTAB) as a templating agent. A-A and A-S are synthesized in a medium of ammonia solution and sodium hydroxide solution, respectively. Ni/γ-Al 2O 3 catalysts (Ni/A-A and Ni/A-S) are then prepared by an impregnation method, and are applied to hydrogen production by steam reforming of liquefied natural gas (LNG). The effect of a mesoporous γ-Al 2O 3 support on the catalytic performance of Ni/γ-Al 2O 3 is investigated. The identity of basic solution strongly affects the physical properties of the A-A and A-S supports. The high surface-area of the mesoporous γ-aluminas and the strong metal-support interaction of supported catalysts greatly enhance the dispersion of nickel species on the catalyst surface. The well-developed mesopores of the Ni/A-A and Ni/A-S catalysts prohibit the polymerization of carbon species on the catalyst surface during the reaction. In the steam reforming of LNG, both Ni/A-A and Ni/A-S catalysts give better catalytic performance than the nickel catalyst supported on commercial γ-Al 2O 3 (Ni/A-C). In addition, the Ni/A-A catalyst is superior to the Ni/A-S catalyst. The relatively strong metal-support interaction of Ni/A-A catalyst effectively suppresses the sintering of metallic nickel and the carbon deposition in the steam reforming of LNG. The large pores of the Ni/A-A catalyst also play an important role in enhancing internal mass transfer during the reaction.

  10. Hydrogen production from bio-fuels using precious metal catalysts

    Science.gov (United States)

    Pasel, Joachim; Wohlrab, Sebastian; Rotov, Mikhail; Löhken, Katrin; Peters, Ralf; Stolten, Detlef

    2017-11-01

    Fuel cell systems with integrated autothermal reforming unit require active and robust catalysts for H2 production. Thus, an experimental screening of catalysts for autothermal reforming of commercial biodiesel fuel was performed. Catalysts consisted of a monolithic cordierite substrate, an oxide support (γ-Al2O3) and Pt, Ru, Ni, PtRh and PtRu as active phase. Experiments were run by widely varying the O2/C and H2O/C molar ratios at different gas hourly space velocities. Fresh and aged catalysts were characterized by temperature programmed methods and thermogravimetry to find correlations with catalytic activity and stability.

  11. Novel Concept For Hydrogen And CO2 Separation

    International Nuclear Information System (INIS)

    Adam Campen; Kanchan Mondal; Tomasz Wiltowski; Tomasz Wiltowski

    2006-01-01

    The process was developed for the separation of hydrogen from coal gasification based syngas components for end uses such as clean energy production. The process is flexible such that it can be used within the gasifier to separate hydrogen or as a separate unit process, depending on the requirements of the process design. The basic idea of the research was to design and apply solids to be used in a fixed bed reactor that will increase the hydrogen yield as well as capture greenhouse gases in its matrix through reaction. The end product envisioned in this process is pure hydrogen. The spent solids were then regenerated thermo neutrally while releasing sequestration-ready carbon dioxide. The research involved the validation of the process along with the evaluation of the process parameters to maximize the hydrogen content in the product stream. The effect of sulfur (present as H 2 S) in the product stream on the process efficiency was also evaluated. Most importantly, the solids were designed such that they have the maximum selectivity to the beneficial reactions while maintaining their structure and activity through the reaction-regeneration cycles. Iron (created by reduction of hematite with syngas) was selected as the Boudouard catalyst and CaO was selected as the carbon dioxide removal material. Thermogravimetric (TG) and Temperature Programmed Reduction (TPR) Analysis were utilized to evaluate the reaction rate parameters, and capacity for CO 2 . Specially synthesized CaO (wherein the surface properties were modified) was found to provide better capacity and reaction rates as compared to commercially available CaO. In addition, these specially synthesized CaO-based sorbent showed lower deactivation over multiple cycles. Experiments were also performed with different compositions of syngas to identify the optimal conditions for pure H 2 production. Finally, simultaneous coal gasification and hydrogen enrichment experiments were conducted. It was found that for a

  12. Dispersed catalysts for co-processing and coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Bockrath, B.; Parfitt, D.; Miller, R. [Pittsburgh Energy Technology Center, PA (United States)

    1995-12-31

    The basic goal is to improve dispersed catalysts employed in the production of clean fuels from low value hydrocarbons. The immediate objective is to determine how the properties of the catalysts may be altered to match the demands placed on them by the properties of the feedstock, the qualities of the desired end products, and the economic constraints put upon the process. Several interrelated areas of the application of dispersed catalysts to co-processing and coal conversion are under investigation. The first involves control of the selectivity of MoS{sub 2} catalysts for HDN, HDS, and hydrogenation of aromatics. A second area of research is the development and use of methods to evaluate dispersed catalysts by means of activity and selectivity tests. A micro-flow reactor has been developed for determining intrinsic reactivities using model compounds, and will be used to compare catalysts prepared in different ways. Micro-autoclaves will also be used to develop data in batch experiments at higher partial pressures of hydrogen. The third area under investigation concerns hydrogen spillover reactions between MoS{sub 2} catalysts and carbonaceous supports. Preliminary results obtained by monitoring H{sub 2}/D{sub 2} exchange reactions with a pulse-flow microreactor indicate the presence of spillover between MoS{sub 2} and a graphitic carbon. A more complete study will be made at a later stage of the project. Accomplishments and conclusions are discussed.

  13. Photoinduced electron transfer pathways in hydrogen-evolving reduced graphene oxide-boosted hybrid nano-bio catalyst.

    Science.gov (United States)

    Wang, Peng; Dimitrijevic, Nada M; Chang, Angela Y; Schaller, Richard D; Liu, Yuzi; Rajh, Tijana; Rozhkova, Elena A

    2014-08-26

    Photocatalytic production of clean hydrogen fuels using water and sunlight has attracted remarkable attention due to the increasing global energy demand. Natural and synthetic dyes can be utilized to sensitize semiconductors for solar energy transformation using visible light. In this study, reduced graphene oxide (rGO) and a membrane protein bacteriorhodopsin (bR) were employed as building modules to harness visible light by a Pt/TiO2 nanocatalyst. Introduction of the rGO boosts the nano-bio catalyst performance that results in hydrogen production rates of approximately 11.24 mmol of H2 (μmol protein)(-1) h(-1). Photoelectrochemical measurements show a 9-fold increase in photocurrent density when TiO2 electrodes were modified with rGO and bR. Electron paramagnetic resonance and transient absorption spectroscopy demonstrate an interfacial charge transfer from the photoexcited rGO to the semiconductor under visible light.

  14. Hydrogen-water isotopic exchange process

    International Nuclear Information System (INIS)

    Cheung, H.

    1983-01-01

    Deuterium is concentrated in a hydrogen-water isotopic exchange process enhanced by the use of catalyst materials in cold and hot tower contacting zones. Water is employed in a closed liquid recirculation loop that includes the cold tower, in which deuterium is concentrated in the water, and the upper portion of the hot tower in which said deuterium is concentrated in the hydrogen stream. Feed water is fed to the lower portion of said hot tower for contact with the circulating hydrogen stream. The feed water does not contact the water in the closed loop. Catalyst employed in the cold tower and the upper portion of the hot tower, preferably higher quality material, is isolated from impurities in the feed water that contacts only the catalyst, preferably of lower quality, in the lower portion of the hot zone. The closed loop water passes from the cold zone to the dehumidification zone, and a portion of said water leaving the upper portion of the hot tower can be passed to the humidification zone and thereafter recycled to said closed loop. Deuterium concentration is enhanced in said catalytic hydrogen-water system while undue retarding of catalyst activity is avoided

  15. CuCo2O4 nanoplate film as a low-cost, highly active and durable catalyst towards the hydrolytic dehydrogenation of ammonia borane for hydrogen production

    Science.gov (United States)

    Liu, Quanbing; Zhang, Shengjie; Liao, Jinyun; Feng, Kejun; Zheng, Yuying; Pollet, Bruno G.; Li, Hao

    2017-07-01

    Catalytic dehydrogenation of ammonia borane is one of the most promising routes for the production of clean hydrogen as it is seen as a highly efficient and safe method. However, its large-scale industrial application is either limited by the high cost of the catalyst (usually a noble metal based catalyst) or by the low activity and poor reusability (usually a non-noble metal catalyst). In this study, we have successfully prepared three low-cost CuCo2O4 nanocatalysts, namely: (i) Ti supported CuCo2O4 film made of CuCo2O4 nanoplates, (ii) Ti supported CuCo2O4 film made of CuCo2O4 nanosheets, and (iii) unsupported CuCo2O4 nanoparticles. Among the three catalysts used for the hydrolytic dehydrogeneration of ammonia borane, the CuCo2O4 nanoplate film exhibits the highest catalytic activity with a turnover frequency (TOF) of ∼44.0 molhydrogen min-1 molcat-1. This is one of the largest TOF value for noble-metal-free catalysts ever reported in the literature. Moreover, the CuCo2O4 nanoplate film almost keeps its original catalytic activity after eight cycles, indicative of its high stability and good reusability. Owing to its advantages, the CuCo2O4 nanoplate film can be a promising catalyst for the hydrolytic dehydrogenation of ammonia borane, which may find important applications in the field of hydrogen energy.

  16. Endurance testing of a WDS catalyst

    International Nuclear Information System (INIS)

    Vladu, Mihaela; Brad, Sebastian; Vijulie, Mihai; Vasut, Felicia; Constantin, Marin

    2007-01-01

    Full text: The Water Detritiation System (WDS) of ITER is a safety related component since it is the final barrier against tritium discharge into the environment. Therefore, its subcomponents have to be qualified and predictions on the time evolution of performances have to be made. During the activities devoted to JET WDS, test at lower concentrations of tritium and at small scale have been performed. The goal of this work is to extend the endurance testings and to check early results by tests under relevant conditions. The degradation of the WDS catalyst can strongly affect its separation performances and consequently it will entail a raise of the tritium releases into the environment. If a catalyst based on Teflon material is used for the LPCE column of WDS, the fluoride that may be formed and released due to the tritium presence causes the corrosion of the LPCE column with unpredictable effects. Therefore the quantification of catalyst degradation and the amount of fluoride released is needed for planning the maintenance activities and to predict the operation life time of the WDS components. The manufacturing of hydrophobic catalysts with activity that is not lowered by liquid water determined the rise of interest for the isotopes separation techniques in the hydrogen - water system. The active component of these catalysts is Pt (the only material to be further discussed) that enhances the exchange between the hydrogen and water vapors. The hydrophobic support does not allow the wetting and blocking by water of the active surface. Hydrophobic catalysts were manufactured by two methods: - direct deposition of Pt into the pores of a hydrophobic support (Teflon, carbon monofluoride, poly styrene, styrene di-vinyl benzene, etc.); - deposition on a hydrophilic support, most common charcoal, followed by hydrophobization by silicon oil or by homogenizing with hydrophobic polymer (Teflon, silicon resins). This type of catalysts is one of the most studied groups due to

  17. Heavy-water extraction from non-electrolytic hydrogen streams

    International Nuclear Information System (INIS)

    LeRoy, R.L.; Hammerli, M.; Butler, J.P.

    1981-01-01

    Heavy water may be produced from non-electrolytic hydrogen streams using a combined electrolysis and catalytic exchange process. The method comprises contacting feed water in a catalyst column with hydrogen gas originating partly from a non-electrolytic hydrogen stream and partly from an electrolytic hydrogen stream, so as to enrich the feed water with the deuterium extracted from both the non-electrolytic and electrolytic hydrogen gas, and passing the deuterium water to an electrolyser wherein the electrolytic hydrogen gas is generated and then fed through the catalyst column. (L.L.)

  18. Process for the regeneration of metallic catalysts

    Science.gov (United States)

    Katzer, James R.; Windawi, Hassan

    1981-01-01

    A method for the regeneration of metallic hydrogenation catalysts from the class consisting of Ni, Rh, Pd, Ir, Pt and Ru poisoned with sulfur, with or without accompanying carbon deposition, comprising subjecting the catalyst to exposure to oxygen gas in a concentration of about 1-10 ppm. intermixed with an inert gas of the group consisting of He, A, Xe, Kr, N.sub.2 and air substantially free of oxygen to an extent such that the total oxygen molecule throughout is in the range of about 10 to 20 times that of the hydrogen sulfide molecular exposure producing the catalyst poisoning while maintaining the temperature in the range of about 300.degree. to 500.degree. C.

  19. Hydrogen production from bio-fuels using precious metal catalysts

    Directory of Open Access Journals (Sweden)

    Pasel Joachim

    2017-01-01

    Full Text Available Fuel cell systems with integrated autothermal reforming unit require active and robust catalysts for H2 production. Thus, an experimental screening of catalysts for autothermal reforming of commercial biodiesel fuel was performed. Catalysts consisted of a monolithic cordierite substrate, an oxide support (γ-Al2O3 and Pt, Ru, Ni, PtRh and PtRu as active phase. Experiments were run by widely varying the O2/C and H2O/C molar ratios at different gas hourly space velocities. Fresh and aged catalysts were characterized by temperature programmed methods and thermogravimetry to find correlations with catalytic activity and stability.

  20. IRIS Toxicological Review of Hydrogen Cyanide and Cyanide Salts (Final Report)

    Science.gov (United States)

    EPA has finalized the Toxicological Review of Hydrogen Cyanide and Cyanide Salts: in support of the Integrated Risk Information System (IRIS). Now final, this assessment may be used by EPA’s program and regional offices to inform decisions to protect human health.

  1. Lanthanides-based graphene catalysts for high performance hydrogen evolution and oxygen reduction

    International Nuclear Information System (INIS)

    Shinde, S.S.; Sami, Abdul; Lee, Jung-Ho

    2016-01-01

    Highlights: • Facile, scalable in-situ synthesis of lanthanide (La, Eu, Yb) doped graphene frameworks. • Efficient electrocatalytic performance towards HER and ORR. • Eu-Gr hybrid shows HER performance; onset & overpotential (81 & 160 mV), & Tafel slope (52 mV dec −1 ). • Eu-Gr exhibits superior activity of ORR; onset potential (0.92 V), electron transfer number (4.03). • Excellent long-term stability in HER and ORR, comparable to those of commercial Pt/C catalysts. - Abstract: The design of efficient electrocatalysts for hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR) has received enormous consideration due to their effectiveness in modern renewable energy technologies such as fuel cells, electrolyzers, and metal–air batteries. Herein, we present a facile method to fabricate lanthanides (L = La, Eu, Yb)-doped graphene materials as catalyst for the HER and ORR that show desirable electrocatalytic activities as well as long-term stability. The Eu-graphene hybrid has showed unbeatable HER performance such as small values of onset potential (81 mV), overpotential (160 mV), and Tafel slope (52 mV dec −1 ), along with a high exchange current density (7.55 × 10 −6 A cm −2 ). The L-graphenes also exhibit superior electrocatalytic activity for ORR, including small Tafel slopes (96, 66, and 105 mV dec −1 for La-Gr, Eu-Gr, and Yb-Gr, respectively), positive onset potential (∼0.83–0.92 V), high electron transfer numbers (∼3.84–4.03), and excellent enduring strength, analogous to those of viable Pt/C catalysts. The excellent electrocatalytic performance is attributed to the synergistic effect of abundant edges and doping sites, high electrical conductivity, large active surface areas and fast charge transfer; which renders lanthanide-based graphene hybrids as potentially great candidate for energy conversion systems.

  2. Greater bottoms upgrading with Albemarle's e-bed catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Toshima, H.; Sedlacek, Z.; Backhouse, D.; Mayo, S.; Plantenga, F. [Albemarle Catalysts, Houston, TX (United States)

    2006-07-01

    The E-bed process is a heavy oil upgrading technology that produces near isothermal reactor conditions at a constant catalytic activity. However, E-bed conversion optimization is limited by reactor and downstream fouling problems caused by asphaltene precipitation. While asphaltene precipitation can controlled by reducing hydrogenation, high hydrogenation activity is needed for the removal of sulfur and heavy metals. This presentation described an asphaltene molecule management concept to reduce the fouling of E-bed units. Sediment reduction and high hydrogenation catalysts were used in a modified E-bed process with a variety of feeds and operating conditions. It was observed that the KF1312 catalyst achieved much higher sediment-reduction capability along with satisfactory hydrogenation activity with the different kinds of crude oil sources tested. The catalyst hydrocracked the asphaltenes into smaller molecules, which created greater asphaltene solubility. The sediment reduction capacity of the catalyst-staging technology is now being optimized. It was concluded that the technology will help to reduce fouling in E-bed processes and lead to improved conversion rates for refineries. refs., tabs., figs.

  3. Hydrogenation of carbon monoxide on Co/MgAl2O4 and Ce-Co/MgAl2O4 catalysts

    International Nuclear Information System (INIS)

    Kondoh, S.; Muraki, H.; Fujitani

    1986-01-01

    It is well known that various hydrocarbons are obtained by hydrogenation of CO on Fischer-Tropsch catalysts, the products depending on the catalyst components such as Co, Ni, Fe and Ru: and the reaction conditions, particularly, temperature, pressure, space velocity and H 2 /CO ratio. Further, both reactivity and selectivity of catalysts may be improved by suitable selection of support and an additive. The main program of the present work is to develop a catalyst for producing C 5 + liquid hydrocarbons, as an automobile fuel, by the Fischer-Tropsch synthesis. The authors have studied unique CO catalyst systems consisting of various supports - such as Al 2 O 3 (γ, β, α), MgAl 2 O 4 (alumina magnesia spinel), MgO and additives selected from the lanthanoid elements (LE). The composition of spinel-based supports was altered in a range from 28 mol % excess Al 2 O 3 to 28 mol % excess MgO. Particularly, they found that a MgAl 2 O 4 support with 15-18 mol % excess Al 2 O 3 is the most preferable for our purpose and CeO 2 as the additive for Co/spinel catalyst remarkably improves C 5 + yield. Further, it was confirmed that the catalytic activity of Co-base catalysts agree with the oxidation state of Co-oxides on Co and Co-Ce/spinel catalysts. The performance of Co-based catalysts for the production of higher hydrocarbons from syn-gas were described elsewhere. The items described in this report include (a) selection of supports, (b) selection of optimum reaction conditions for Co-Ce/spinel catalyst, (c) redox characteristics of Co-oxides on a spinel surface, and (d) experimental observation of TPD profiles, adsorption capacities and IR spectra relating to adsorbed CO

  4. Hydrogen Production from Methanol Steam Reforming over TiO2 and CeO2 Pillared Clay Supported Au Catalysts

    Directory of Open Access Journals (Sweden)

    Rongbin Zhang

    2018-01-01

    Full Text Available Abstract: Methanol steam reforming is a promising process for the generation of hydrogen. In this study, Au catalysts supported on modified montmorillonite were prepared and their catalytic activity for methanol steam reforming was investigated at 250–500 °C. The physical and chemical properties of the as-prepared catalysts were characterized by Brunauer–Emmet–Teller method (BET, X-ray diffraction (XRD, transmission electron microscopic (TEM, scanning electron microscopy (SEM, X-ray photoelectron spectroscopy (XPS, Inductively Coupled Plasma (ICP, and thermogravimetrc analysis (TGA. For the catalysts examined, Au-Ti-Ce/Na-ABen exhibits the best catalytic performance with methanol conversion of 72% and H2 selectivity of 99% at 350 °C. This could be attributed to Au, Ce, and Ti species which form a solid solution and move into the interlayer space of the bentonite leading to a high surface area, large average pore volume, large average pore diameter, and small Au particle size. We considered that the synergistic effect of the crosslinking agent, the Ce species, and the Au active sites were responsible for the high activity of Au-Ti-Ce/Na-ABen catalyst for methanol steam reforming.

  5. Full Scale Alternative Catalyst Testing for Bosch Reactor Optimization

    Science.gov (United States)

    Barton, Katherine; Abney, Morgan B.

    2011-01-01

    Current air revitalization technology onboard the International Space Station (ISS) cannot provide complete closure of the oxygen and hydrogen loops. This makes re-supply necessary, which is possible for missions in low Earth orbit (LEO) like the ISS, but unviable for long term space missions outside LEO. In comparison, Bosch technology reduces carbon dioxide with hydrogen, traditionally over a steel wool catalyst, to create water and solid carbon. The Bosch product water can then be fed to the oxygen generation assembly to produce oxygen for crew members and hydrogen necessary to reduce more carbon dioxide. Bosch technology can achieve complete oxygen loop closure, but has many undesirable factors that result in a high energy, mass, and volume system. Finding a different catalyst with an equal reaction rate at lower temperatures with less catalyst mass and longer lifespan would make a Bosch flight system more feasible. Developmental testing of alternative catalysts for the Bosch has been performed using the Horizontal Bosch Test Stand. Nickel foam, nickel shavings, and cobalt shavings were tested at 500 C and compared to the original catalyst, steel wool. This paper presents data and analysis on the performance of each catalyst tested at comparable temperatures and recycle flow rates.

  6. Decomposition of hydrogen peroxide on nickel oxide - vanadium pentoxide catalysts and the effect of ionizing radiation on them

    International Nuclear Information System (INIS)

    Mucka, V.

    1984-01-01

    Some physico-chemical and catalytic properties of nickel oxide-vanadium pentoxide two-component catalysts were studied over the entire concentration range of the components, using the decomposition of hydrogen peroxide in an aqueous solution as the test reaction. The two oxides were found to affect each other; this was shown by the dependences of the specific surface area, the V 4+ ion concentration, and the catalyst activity on the system composition. At low vanadium pentoxide concentrations (up to 15 mol%) the reaction took place on nickel oxide modified with vanadium pentoxide, whereas in the region of higher vanadium pentoxide concentrations the decomposition of the peroxide was catalyzed primarily in the homogeneous phase by vanadium(V) peroxide ions; in a sample with 30 mol% V 2 O 5 , trivalent vanadium also played a part. With catalysts obtained by mere mechanical mixing of the two oxides, a modified activity was observed in the region of high excess of nickel oxide. The activity of catalyst, particularly pure nickel oxide, was increased by its partial reduction and decreased by its exposure to gamma radiation if the dose was higher than 10 5 Gy. The effects observed are interpreted in terms of the concept of bivalent catalytic centres. (author)

  7. Marché des catalyseurs d'hydrogénation des corps gras Market of Hydrogenation Catalysts for Fats and Derivatives

    Directory of Open Access Journals (Sweden)

    Barraque M.

    2006-11-01

    (production d'alcools gras. Les chiffres d'affaires pour ces 3 catalyseurs sont respectivement égaux à 50,1, 0,5 et 11 millions de dollars/an. Since Institut Français du Pétrole (IFP has a great deal of experience in the field of catalysts, particularly for hydrogenation, the Evaluation Department has made studies at various times to evaluate the potential markets. The analysis making up this article was made to determine the possible outlets for catalysts used for the hydrogenation of fats and oils. It covers the food industry, the hydrogenation of fatty acids of animal or vegetable origin, and the production of fatty alcohols and fatty amines. This market is over $60 million per year and corresponds to nearly 11,000 t/year of catalysts used. These figures include captive consumptions of catalysts produced by companies using them. This business turnover is about the same as the one for hydrogenation catalysts used for the synthesis of the major building-block petrochemicals. More than 64% of the applications have to do with the food industry, i. e. production of margarine and shortening, hydrogenation of salad oils and deep-frying oils in the United States. Whereas the consumption of catalysts used in lipochemistry is highly concentrated in the main industrialized regions (United States, Western Europe, Japan, that of the food industry is much more scattered. The three regions mentioned above account for less than 64% of world consumption. Estimated outlets represent annual business turnovers of $41 million for the food industry, $8. 3 million for the production of fatty acids, $11 million for the production of fatty alcohols, and $1. 3 million for the production of fatty amines. These hydrogenations are performed in the presence of supported nickel (food industry, production of fatty acids and secondary and tertiary amines or in the presence of Raney nickel (production of primary amines or, copper chromite (production of, fatty alcohols. The business turnovers for these

  8. Colloidal nanoparticles as catalysts and catalyst precursors for nitrite hydrogenation

    NARCIS (Netherlands)

    Zhao, Yingnan

    2015-01-01

    The most distinguished advantage to use colloidal methods for catalyst preparation is that the size and the shape of nanoparticles can be manipulated easily under good control, which is normally difficult to achieve by using traditional methods, such as impregnation and precipitation. This

  9. Chemoselective hydrogenation of arenes by PVP supported Rh nanoparticles

    DEFF Research Database (Denmark)

    Ibrahim, Mahmoud; Poreddy, Raju; Philippot, Karine

    2016-01-01

    Polyvinylpyrrolidone-stabilized Rh nanoparticles (RhNPs/PVP) of ca. 2.2 nm in size were prepared by the hydrogenation of the organometallic complex [Rh(η3-C3H5)3] in the presence of PVP and evaluated as a catalyst in the hydrogenation of a series of arene substrates as well as levulinic acid...... for the hydrogenation of levulinic acid and methyl levulinate in water leading to quantitative formation of the fuel additive γ-valerolactone under moderate reaction conditions compared to previously reported catalytic systems....... and methyl levulinate. The catalyst showed excellent activity and selectivity towards aromatic ring hydrogenation compared to other reported transition metal-based catalysts under mild reaction conditions (room temperature and 1 bar H2). Furthermore, it was shown to be a highly promising catalyst...

  10. Purdue Hydrogen Systems Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Jay P Gore; Robert Kramer; Timothee L Pourpoint; P. V. Ramachandran; Arvind Varma; Yuan Zheng

    2011-12-28

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up

  11. Purdue Hydrogen Systems Laboratory

    International Nuclear Information System (INIS)

    Gore, Jay P.; Kramer, Robert; Pourpoint, Timothee L.; Ramachandran, P.V.; Varma, Arvind; Zheng, Yuan

    2011-01-01

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up. Efforts

  12. Preparation of the Pt/CNTs Catalyst and Its Application to the Fabrication of Hydrogenated Soybean Oil Containing a Low Content of Trans Fatty Acids Using the Solid Polymer Electrolyte Reactor.

    Science.gov (United States)

    Zheng, Huanyu; Ding, Yangyue; Xu, Hui; Zhang, Lin; Cui, Yueting; Han, Jianchun; Zhu, Xiuqing; Yu, Dianyu; Jiang, Lianzhou; Liu, Lilai

    2018-08-01

    Pt/CNTs were synthesized with an ethylene glycol reduction method, and the effects of carboxyl functionalization, ultrasonic power and the concentration of chloroplatinic acid on the catalytic activity of Pt/CNTs were investigated. The optimal performance of the Pt/CNTs catalyst was obtained when the ultrasonic power was 300 W and the concentration of chloroplatinic acid was 40 mg/mL. The durability and stability of the Pt/CNTs catalyst were considerably better compared to Pt/C, as shown by cyclic voltammetry measurement results. The trans fatty acids content of the obtained hydrogenated soybean oil (IV: 108.4 gl2/100 g oil) using Pt/CNTs as the cathode catalyst in a solid polymer electrolyte reactor was only 1.49%. The IV of hydrogenated soybean oil obtained using CNTs as carrier with Pt loading 0.1 mg/cm2 (IV: 108.4 gl2/100 g oil) was lower than carbon with a Pt loading of 0.8 mg/cm2 (IV: 109.9 gl2/100 g oil). Thus, to achive the same IV, the usage of Pt was much less when carbon nanotubes were selected as catalyst carrier compared to traditional carbon carrier. The changes of fatty acid components and the hydrogenated selectivity of octadecenoic acid were also discussed.

  13. Hydrogen producing method and device therefor

    International Nuclear Information System (INIS)

    Iwamura, Yasuhiro; Ito, Takehiko; Goto, Nobuo; Toyota, Ichiro; Tonegawa, Hiroshi.

    1997-01-01

    The present invention concerns a process for producing hydrogen from water by utilizing a γ · X ray radiation source such as spent nuclear fuels. Hydrogen is formed from water by combining a scintillator which uses a γ · X ray radiation source as an energy source to emit UV light and an optical catalyst or an optical catalyst electrode which undergoes UV light to decompose water into hydrogen and oxygen. The present invention provides a method of effectively using spent fuel assemblies which have not been used at present and capable of converting them into hydrogen as storable chemical energy. (N.H.)

  14. Solar powered hydrogen generating facility and hydrogen powered vehicle fleet. Final technical report, August 11, 1994--January 6, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Provenzano, J.J.

    1997-04-01

    This final report describes activities carried out in support of a demonstration of a hydrogen powered vehicle fleet and construction of a solar powered hydrogen generation system. The hydrogen generation system was permitted for construction, constructed, and permitted for operation. It is not connected to the utility grid, either for electrolytic generation of hydrogen or for compression of the gas. Operation results from ideal and cloudy days are presented. The report also describes the achievement of licensing permits for their hydrogen powered trucks in California, safety assessments of the trucks, performance data, and information on emissions measurements which demonstrate performance better than the Ultra-Low Emission Vehicle levels.

  15. On problems of hydrogen load of sponge palladium and determination of hydrogen content in it

    International Nuclear Information System (INIS)

    Mittag, E.; Pleis, U.; Roemer, J.

    1977-01-01

    In the process of catalytic dehalogenation applied as a method for preparation of organic compounds labelled with tritium a special importance pertains to the determination of hydrogen (or tritium) bound on the catalyst. Hydrogen contained in palladium black may be determined quantitatively by oxidation with Pd ++ ions and successive potentiometric titration of the released H + ions. The method permits to obtain data on the quality of the catalyst and on the gas losses on the catalyst. Moreover, in connection with the radioactivity measurement, this method may be used for specific activity determination of the tritium gas

  16. Challenges in the Greener Production of Formates/Formic Acid, Methanol, and DME by Heterogeneously Catalyzed CO2 Hydrogenation Processes

    KAUST Repository

    Álvarez, Andrea

    2017-06-28

    The recent advances in the development of heterogeneous catalysts and processes for the direct hydrogenation of CO2 to formate/formic acid, methanol, and dimethyl ether are thoroughly reviewed, with special emphasis on thermodynamics and catalyst design considerations. After introducing the main motivation for the development of such processes, we first summarize the most important aspects of CO2 capture and green routes to produce H2. Once the scene in terms of feedstocks is introduced, we carefully summarize the state of the art in the development of heterogeneous catalysts for these important hydrogenation reactions. Finally, in an attempt to give an order of magnitude regarding CO2 valorization, we critically assess economical aspects of the production of methanol and DME and outline future research and development directions.

  17. Catalytic Oxidation of Phenol over Zeolite Based Cu/Y-5 Catalyst: Part 1: Catalyst Preparation and Characterization

    Directory of Open Access Journals (Sweden)

    K. Maduna Valkaj

    2015-01-01

    Full Text Available The necessity to remove organic pollutants from the industrial wastewater streams has forced the development of new technologies that can produce better results in terms of pollutant removal and process efficiency in combination with low investment and operating costs. One of the new emerging processes with a potential to fulfil these demands is catalytic wet peroxide oxidation, commonly known as the CWPO process. The oxidative effect of the hydrogen peroxide is intensified by the addition of a heterogeneous catalyst that can reduce the operating conditions to atmospheric pressure and temperatures below 383 K. Zeolites, among others, are especially appealing as catalysts for selective oxidation processes due to their unique characteristics such as shape selectivity, thermal and chemical stability, and benign effect on nature and the living world. In this work, catalytic activity, selectivity and stability of Cu/Y-5 zeolite in phenol oxidation with hydrogen peroxide was examined. Catalyst samples were prepared by ion exchange method of the protonic form of commercial zeolite. The catalysts were characterized with powder X-ray diffraction (XRD, scanning electron microscopy (SEM, and AAS elemental analysis, while the adsorption techniques were used for the measurement of the specific surface area. The catalytic tests were carried out in a stainless steel Parr reactor in batch operation mode at the atmospheric pressure and in the temperature range from 323 to 353 K. The catalyst was prepared in powdered form and the mass fraction of the active metal component on the zeolite was 3.46 %. The initial concentration of phenol solution was equal to 0.01 mol dm−3 and the concentration of hydrogen peroxide ranged from 0.01 to 0.10 mol dm−3. The obtained experimental data was tested to a proposed kinetic model for phenol oxidation r = k1 cF cVP and hydrogen peroxide decomposition rHP = k2 cHP. The kinetic parameters were estimated using the Nelder

  18. Moving protons with pendant amines: proton mobility in a nickel catalyst for oxidation of hydrogen.

    Science.gov (United States)

    O'Hagan, Molly; Shaw, Wendy J; Raugei, Simone; Chen, Shentan; Yang, Jenny Y; Kilgore, Uriah J; DuBois, Daniel L; Bullock, R Morris

    2011-09-14

    Proton transport is ubiquitous in chemical and biological processes, including the reduction of dioxygen to water, the reduction of CO(2) to formate, and the production/oxidation of hydrogen. In this work we describe intramolecular proton transfer between Ni and positioned pendant amines for the hydrogen oxidation electrocatalyst [Ni(P(Cy)(2)N(Bn)(2)H)(2)](2+) (P(Cy)(2)N(Bn)(2) = 1,5-dibenzyl-3,7-dicyclohexyl-1,5-diaza-3,7-diphosphacyclooctane). Rate constants are determined by variable-temperature one-dimensional NMR techniques and two-dimensional EXSY experiments. Computational studies provide insight into the details of the proton movement and energetics of these complexes. Intramolecular proton exchange processes are observed for two of the three experimentally observable isomers of the doubly protonated Ni(0) complex, [Ni(P(Cy)(2)N(Bn)(2)H)(2)](2+), which have N-H bonds but no Ni-H bonds. For these two isomers, with pendant amines positioned endo to the Ni, the rate constants for proton exchange range from 10(4) to 10(5) s(-1) at 25 °C, depending on isomer and solvent. No exchange is observed for protons on pendant amines positioned exo to the Ni. Analysis of the exchange as a function of temperature provides a barrier for proton exchange of ΔG(‡) = 11-12 kcal/mol for both isomers, with little dependence on solvent. Density functional theory calculations and molecular dynamics simulations support the experimental observations, suggesting metal-mediated intramolecular proton transfers between nitrogen atoms, with chair-to-boat isomerizations as the rate-limiting steps. Because of the fast rate of proton movement, this catalyst may be considered a metal center surrounded by a cloud of exchanging protons. The high intramolecular proton mobility provides information directly pertinent to the ability of pendant amines to accelerate proton transfers during catalysis of hydrogen oxidation. These results may also have broader implications for proton movement in

  19. A Nanomesoporous Catalyst from Modified Red Mud and Its Application for Methane Decomposition to Hydrogen Production

    Directory of Open Access Journals (Sweden)

    Xiaoke Fang

    2016-01-01

    Full Text Available A type of nanomesoporous modified red mud (MRM catalyst was prepared and utilized for catalytic methane decomposition (CMD to produce hydrogen. The modification process significantly simplified the mineral composition of the red mud (RM; in the meantime, the physical and chemical structure of RM was changed. TEM images suggested that MRM was a kind of nanomesoporous material assembled by a number of uniformly nanoscale particles, BET results showed that the pore size distributions of MRM were ranged from 3 to 12 nm, and the specific surface area and total pore volumes of red mud improved from 8.00 m2/g and 0.08 cm3/g to 190.61 m2/g and 0.39 cm3/g, respectively. The catalytic performance of the catalysts has been tested at 800°C; the results showed that MRM exhibited much higher activity and stability than RM for CMD.

  20. Challenges in the Greener Production of Formates/Formic Acid, Methanol, and DME by Heterogeneously Catalyzed CO2 Hydrogenation Processes

    KAUST Repository

    Á lvarez, Andrea; Bansode, Atul; Urakawa, Atsushi; Bavykina, Anastasiya V.; Wezendonk, Tim A.; Makkee, Michiel; Gascon, Jorge; Kapteijn, Freek

    2017-01-01

    carefully summarize the state of the art in the development of heterogeneous catalysts for these important hydrogenation reactions. Finally, in an attempt to give an order of magnitude regarding CO2 valorization, we critically assess economical aspects

  1. Characterisation of hydrocarbonaceous overlayers important in metal-catalysed selective hydrogenation reactions

    Energy Technology Data Exchange (ETDEWEB)

    Lennon, David; Warringham, Robbie [School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Guidi, Tatiana [ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Parker, Stewart F., E-mail: stewart.parker@stfc.ac.uk [ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom)

    2013-12-12

    Highlights: • Inelastic neutron scattering spectroscopy of a commercial dehydrogenation catalyst. • The overlayer present on the catalyst is predominantly aliphatic. • A population of strongly hydrogen bonded hydroxyls is also present. - Abstract: The hydrogenation of alkynes to alkenes over supported metal catalysts is an important industrial process and it has been shown that hydrocarbonaceous overlayers are important in controlling selectivity profiles of metal-catalysed hydrogenation reactions. As a model system, we have selected propyne hydrogenation over a commercial Pd(5%)/Al{sub 2}O{sub 3} catalyst. Inelastic neutron scattering studies show that the C–H stretching mode ranges from 2850 to 3063 cm{sup −1}, indicating the mostly aliphatic nature of the overlayer and this is supported by the quantification of the carbon and hydrogen on the surface. There is also a population of strongly hydrogen-bonded hydroxyls, their presence would indicate that the overlayer probably contains some oxygen functionality. There is little evidence for any olefinic or aromatic species. This is distinctly different from the hydrogen-poor overlayers that are deposited on Ni/Al{sub 2}O{sub 3} catalysts during methane reforming.

  2. Designing Pd-based supported bimetallic catalysts for environmental applications

    OpenAIRE

    Nowicka, Ewa; Meenakshisundaram, Sankar

    2018-01-01

    Supported bimetallic nanoparticulate catalysts are an important class of heterogeneous catalysts for many reactions including selective oxidation, hydrogenation/hydrogenolysis, reforming, biomass conversion reactions, and many more. The activity, selectivity, and stability of these catalysts depend on their structural features including particle size, composition, and morphology. In this review, we present important structural features relevant to supported bimetallic catalysts focusing on Pd...

  3. Pd/C Synthesized with Citric Acid: An Efficient Catalyst for Hydrogen Generation from Formic Acid/Sodium Formate

    Science.gov (United States)

    Wang, Zhi-Li; Yan, Jun-Min; Wang, Hong-Li; Ping, Yun; Jiang, Qing

    2012-01-01

    A highly efficient hydrogen generation from formic acid/sodium formate aqueous solution catalyzed by in situ synthesized Pd/C with citric acid has been successfully achieved at room temperature. Interestingly, the presence of citric acid during the formation and growth of the Pd nanoparticles on carbon can drastically enhance the catalytic property of the resulted Pd/C, on which the conversion and turnover frequency for decomposition of formic acid/sodium formate system can reach the highest values ever reported of 85% within 160 min and 64 mol H2 mol−1 catalyst h−1, respectively, at room temperature. The present simple, low cost, but highly efficient CO-free hydrogen generation system at room temperature is believed to greatly promote the practical application of formic acid system on fuel cells. PMID:22953041

  4. Carbon Dioxide Dry Reforming of Glycerol for Hydrogen Production using Ni/ZrO2 and Ni/CaO as Catalysts

    Directory of Open Access Journals (Sweden)

    Nur Nabillah Mohd Arif

    2016-08-01

    Full Text Available Glycerol, byproduct from the biodiesel production can be effectively utilized as the promising source of synthesis gas (syngas through a dry reforming reaction. Combination of these waste materials with greenhouse gases which is carbon dioxide (CO2 will help to reduce environmental problem such as global warming. This dry reforming reaction has been carried out in a fixed bed batch reactor at 700 °C under the atmospheric pressure for 3 hours. In this experiment, reforming reaction was carried out using Nickel (Ni as based catalyst and supported with zirconium (ZrO2 and calcium (CaO oxides. The catalysts were prepared by wet impregnation method and characterized using Bruanaer-Emmett-Teller (BET surface area, Scanning Electron Microscopy (SEM, X-ray Diffraction (XRD, Thermo Gravimetric (TGA, and Temperature Programmed Reduction (TPR analysis. Reaction studies show that 15% Ni/CaO give the highest hydrogen yield and glycerol conversion that peaked at 24.59% and 30.32%, respectively. This result is verified by XRD analysis where this catalyst shows low crystallinity and fine dispersion of Ni species resulted in high specific surface area which gives 44.93 m2/g that is validated by BET.  Copyright © 2016 BCREC GROUP. All rights reserved Received: 21st January 2016; Revised: 24th February 2016; Accepted: 29th February 2016 How to Cite: Arif, N.M.M., Vo, D.V.N., Azizan,M.T., Abidin S.Z. (2016. Carbon Dioxide Dry Reforming of Glycerol for Hydrogen Production using Ni/ZrO2 and Ni/CaO as Catalysts. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (2: 200-209 (doi:10.9767/bcrec.11.2.551.200-209 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.11.2.551.200-209

  5. Effect of Copper Nanoparticles Dispersion on Catalytic Performance of Cu/SiO2 Catalyst for Hydrogenation of Dimethyl Oxalate to Ethylene Glycol

    Directory of Open Access Journals (Sweden)

    Yajing Zhang

    2013-01-01

    Full Text Available Cu/SiO2 catalysts, for the synthesis of ethylene glycol (EG from hydrogenation of dimethyl oxalate (DMO, were prepared by ammonia-evaporation and sol-gel methods, respectively. The structure, size of copper nanoparticles, copper dispersion, and the surface chemical states were investigated by X-ray diffraction (XRD, transmission electron microscopy (TEM, temperature-programmed reduction (TPR, and X-ray photoelectron spectroscopy (XPS and N2 adsorption. It is found the structures and catalytic performances of the catalysts were highly affected by the preparation method. The catalyst prepared by sol-gel method had smaller average size of copper nanoparticles (about 3-4 nm, better copper dispersion, higher Cu+/C0 ratio and larger BET surface area, and higher DMO conversion and EG selectivity under the optimized reaction conditions.

  6. Hydrous titanium oxide-supported catalysts

    International Nuclear Information System (INIS)

    Dosch, R.G.; Stohl, F.V.; Richardson, J.T.

    1990-01-01

    Catalysts were prepared on hydrous titanium oxide (HTO) supports by ion exchange of an active metal for Na + ions incorporated in the HTO support during preparation by reaction with the parent Ti alkoxide. Strong active metal-HTO interactions as a result of the ion exchange reaction can require significantly different conditions for activation as compared to catalysts prepared by more widely used incipient wetness methods. The latter catalysts typically involve conversion or while the HTO catalysts require the alteration of electrostatic bonds between the metal and support with subsequent alteration of the support itself. In this paper, the authors discuss the activation, via sulfidation or reduction, of catalysts consisting of Co, Mo, or Ni-Mo dispersed on HTO supports by ion exchange. Correlations between the activation process and the hydrogenation, hydrodeoxygenation, and hydrodesulfurization activities of the catalysts are presented

  7. Synthesis and characterization of NiFe2O4–Pd magnetically recyclable catalyst for hydrogenation reaction

    International Nuclear Information System (INIS)

    Karaoğlu, E.; Özel, U.; Caner, C.; Baykal, A.; Summak, M.M.; Sözeri, H.

    2012-01-01

    Graphical abstract: Display Omitted Highlights: ► Novel superparamagnetic NiFe 2 O 4 –Pd magnetically recyclable catalyst was fabricated through co-precipitation. ► It could be reused several times without significant loss in catalytic activity for hydrogenation reaction. ► No further modification of the NiFe 2 O 4 –Pd magnetically recyclable catalyst is necessary for utilization as catalyst. -- Abstract: Herein we report the fabrication and characterization magnetically recyclable catalysts of NiFe 2 O 4 –Pd nanocomposite as highly effective catalysts for reduction reactions in liquid phase. The reduction Pd 2+ was accomplished with polyethylene glycol 400 (PEG-400) instead of sodium borohydride (NaBH 4 ) and NiFe 2 O 4 nanoparticles was prepared by sonochemically using FeCI 3 ·6H 2 O and NiCl 2 . The chemical characterization of the product was done with X-ray diffractometry, Infrared spectroscopy, transmission electron microscopy, UV–Vis spectroscopy, thermal gravimetry and inductively coupled plasma. Thus formed NiFe 2 O 4 –Pd MRCs showed a very high activity in reduction reactions of 4-nitro aniline and 1,3-dinitrobenzene in liquid phase. It was found out that the catalytic activity of NiFe 2 O 4 –Pd MRCs on the reduction of 4-nitro aniline and 1,3-dinitrobenzene in liquid phase are between 99–93% and 98–93%, respectively. Magnetic character of this system allowed recovery and multiple use without significant loss of its catalytic activity. It is found that NiFe 2 O 4 –Pd MRCs showed very efficient catalytic activity and multiple usability.

  8. Economic analysis of hydrogen production through a bio-ethanol steam reforming process: Sensitivity analyses and cost estimations

    International Nuclear Information System (INIS)

    Song, Hua; Ozkan, Umit S.

    2010-01-01

    In this study, the hydrogen selling price from ethanol steam reforming has been estimated for two different production scenarios in the United States, i.e. central production (150,000 kg H 2 /day) and distributed (forecourt) production (1500 kg H 2 /day), based on a process flowchart generated by Aspen Plus registered including downstream purification steps and economic analysis model template published by the U.S Department of Energy (DOE). The effect of several processing parameters as well as catalyst properties on the hydrogen selling price has been evaluated. 2.69/kg is estimated as the selling price for a central production process of 150,000 kg H 2 /day and 4.27/kg for a distributed hydrogen production process at a scale of 1500 kg H 2 /day. Among the parameters investigated through sensitivity analyses, ethanol feedstock cost, catalyst cost, and catalytic performance are found to play a significant role on determining the final hydrogen selling price. (author)

  9. Use of hydrophobic Pt-catalysts in tritium removal from effluents

    International Nuclear Information System (INIS)

    Gheorghe, Ionita; Popescu, Irina; Stefanescu, Ioan; Steflea, Dumitru; Varlam, Carmen

    2002-01-01

    Based on the long experience of the authors, in the preparation, testing and evaluation of the performances of hydrophobic catalysts, and based on the reviewed references, this paper presents up-to-date R and D activities on the application of the hydrophobic catalysts in tritium removal from nuclear effluents. Tritium removal from the heavy water reactor and nuclear reprocessing plant, the cleanup of atmosphere and gaseous effluents by hydrogen-oxygen recombination, removal of oxygen dissolved in water are presented and discussed. Unlike the conventional hydrophilic catalysts, the hydrophobic catalysts keep a high catalytic activity and stability, even under the direct contact to liquid water or in presence of saturated humidity. A large diversity of catalyst types (over 100 catalysts) was prepared and tested in order to make them feasible for such processes. The objectives of the review are: - to provide a database for selection of the most appropriate catalyst and catalytic packing for above mentioned processes; - the designing and operation of reactor packed with hydrophobic catalysts; - to evaluate the potentiality of hydrophobic Pt-catalysts in the present and future applications. The most important results are the following: - the hydrophobic Pt-catalysts packed in the trickle bed or separated bed reactors, showed a high catalytic activity and long stability; - the utilization of the hydrophobic Pt-catalysts for the hydrogen isotopes (tritium and deuterium) separation and for hydrogen-oxygen recombination in nuclear field was entirely confirmed on industrial scale; - the improvement of the inner geometry of the reactors and of the composition of mixed catalytic packing as well as the evaluation of performances of separation processes constitute a major contribution of the authors; - the extension of the utilization of the hydrophobic Pt-catalysts in the oxidation of volatile organic compounds from wastewater; - the removal of dissolved oxygen, and deuterium

  10. A Robust Fiber Bragg Grating Hydrogen Gas Sensor Using Platinum-Supported Silica Catalyst Film

    Directory of Open Access Journals (Sweden)

    Marina Kurohiji

    2018-01-01

    Full Text Available A robust fiber Bragg grating (FBG hydrogen gas sensor for reliable multipoint-leakage monitoring has been developed. The sensing mechanism is based on shifts of center wavelength of the reflection spectra due to temperature change caused by catalytic combustion heat. The sensitive film which consists of platinum-supported silica (Pt/SiO2 catalyst film was obtained using sol-gel method. The precursor solution was composed of hexachloroplatinic acid and commercially available silica precursor solution. The atom ratio of Si : Pt was fixed at 13 : 1. A small amount of this solution was dropped on the substrate and dried at room temperature. After that, the film was calcined at 500°C in air. These procedures were repeated and therefore thick hydrogen-sensitive films were obtained. The catalytic film obtained by 20-time coating on quartz glass substrate showed a temperature change 75 K upon exposure to 3 vol.% H2. For realizing robust sensor device, this catalytic film was deposited and FBG portion was directly fixed on titanium substrate. The sensor device showed good performances enough to detect hydrogen gas in the concentration range below lower explosion limit at room temperature. The enhancement of the sensitivity was attributed to not only catalytic combustion heat but also related thermal strain.

  11. Shape-selective catalysts for Fischer-Tropsch chemistry. Final report: January 1, 2001 - December 31, 2008

    International Nuclear Information System (INIS)

    Cronauer, D.C.

    2011-01-01

    Argonne National Laboratory carried out a research program to create, prepare, and evaluate catalysts to promote Fischer-Tropsch (FT) chemistry-specifically, the reaction of hydrogen with carbon monoxide to form long-chain hydrocarbons. In addition to needing high activity, it was desirable that the catalysts have high selectivity and stability with respect to both mechanical strength and aging properties. It was desired that selectivity be directed toward producing diesel fraction components and avoiding excess yields of both light hydrocarbons and heavy waxes. The original goal was to produce shape-selective catalysts that had the potential to limit the formation of long-chain products and yet retain the active metal sites in a protected 'cage.' This cage would also restrict their loss by attrition during use in slurry-bed reactors. The first stage of this program was to prepare and evaluate iron-containing particulate catalysts. Such catalysts were prepared with silica-containing fractal cages. The activity and strength was essentially the same as that of catalysts without the cages. Since there was no improvement, the program plan was modified as discussed below. A second experimental stage was undertaken to prepare and evaluate active FT catalysts formed by atomic-layer deposition [ALD] of active components on supported membranes and particulate supports. The concept was that of depositing active metals (i.e. ruthenium, iron or cobalt) upon membranes with well defined flow channels of small diameter and length such that the catalytic activity and product molecular weight distribution could be controlled. In order to rapidly evaluate the catalytic membranes, the ALD coating processes were performed in an 'exploratory mode' in which ALD procedures from the literature appropriate for coating flat surfaces were applied to the high surface area membranes. Consequently, the Fe and Ru loadings in the membranes were likely to be smaller than those expected for

  12. Screening of Catalysts for Hydrodeoxygenation of Phenol as Model Compound for Bio-oil

    DEFF Research Database (Denmark)

    Mortensen, Peter Mølgaard; Grunwaldt, Jan-Dierk; Jensen, Peter Arendt

    2013-01-01

    Four groups of catalysts have been tested for hydrodeoxygenation (HDO) of phenol as a model compound of bio-oil, including: oxide catalysts, methanol synthesis catalysts, reduced noble metal catalysts, and reduced non-noble metal catalysts. In total 23 different catalysts were tested at 100 bar H2...... and 275 °C in a batch reactor. The experiments showed that none of the tested oxides and methanol synthesis catalysts had any significant activity for phenol HDO at the given conditions, which were linked to their inability to hydrogenate the phenol. HDO of phenol over reduced metal catalysts could...... on a carbon support, but more active than the carbon supported noble metal catalysts when supported on ZrO2. This observation indicates that the nickel based catalysts require a metal oxide as carrier on which the activation of the phenol for the hydrogenation can take place through heterolytic dissociation...

  13. Liquefaction of solid carbonaceous material with catalyst recycle

    Science.gov (United States)

    Gupta, Avinash; Greene, Marvin I.

    1992-01-01

    In the two stage liquefaction of a carbonaceous solid such as coal wherein coal is liquefied in a first stage in the presence of a liquefaction solvent and the first stage effluent is hydrogenated in the presence of a supported hydrogenation catalyst in a second stage, catalyst which has been previously employed in the second stage and comminuted to a particle size distribution equivalent to 100% passing through U.S. 100 Mesh, is passed to the first stage to improve the overall operation.

  14. Hydrogen--deuterium exchange in saturated hydrocarbons on α-chromia catalyst

    International Nuclear Information System (INIS)

    Kalman, J.; Guczi, L.

    1977-01-01

    The kinetics of hydrogen--deuterium exchange in methane, ethane, and propane have been studied with unsupported α-chromia as catalyst in the temperature range of 598 to 688 0 K. The apparent activation energies for methane, ethane, and propane are 88, 130, and 84 kJ mol -1 , respectively, similar to those found on chromia gel. The order of reaction with respect to hydrocarbons and deuterium has been determined as also having the kinetic isotope effect. The main initial products are CH 3 D and CD 4 with methane, C 2 H 4 D 2 and C 2 D 6 with ethane, and C 3 H 7 D and C 3 D 8 with propane. A change in product distribution as a function of temperature, conversion, aging, and oxygen--deuterium treatment has been observed. In agreement with the kinetic data and the effect of oxygen, Cr 3+ has been assumed as the active species of the chromia catalyst, whereas Cr 2+ is an inactive site on the surface. There is no direct proof that chromium ion in a valence state higher than 3+ plays an important role in the exchange reaction. It was established that dual Cr 3+ -- Cr 3+ sites are responsible for the formation of ethane-d 2 . After a long deuterium treatment the number of dual sites is decreased, the effect being revealed in the decreased rate of exchange and the small amount of ethane-d 2 . On the contrary, the formation of methane-d 4 is interpreted by the formation of Cr = C bonds by analogy with homogeneous complexes. In the case of propane, the exchange reaction can be adequately interpreted by a π-allyl mechanism

  15. Plated nickel wire mesh makes superior catalyst bed

    Science.gov (United States)

    Sill, M.

    1965-01-01

    Porous nickel mesh screen catalyst bed produces gas evolution in hydrogen peroxide thrust chambers used for attitude control of space vehicles. The nickel wire mesh disks in the catalyst bed are plated in rugose form with a silver-gold coating.

  16. A smart strategy to fabricate Ru nanoparticle inserted porous carbon nanofibers as highly efficient levulinic acid hydrogenation catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ying; Sun, Cheng-Jun; Brown, Dennis E.; Zhang, Liqiang; Yang, Feng; Zhao, Hairui; Wang, Yue; Ma, Xiaohui; Zhang, Xin; Ren, Yang

    2016-01-01

    Herein, we first put forward a smart strategy to in situ fabricate Ru nanoparticle (NP) inserted porous carbon nanofibers by one-pot conversion of Ru-functionalized metal organic framework fibers. Such fiber precursors are skillfully constructed by cooperative assembly of different proportional RuCl3 and Zn(Ac)2·2H2O along with trimesic acid (H3BTC) in the presence of N,N-dimethylformamide. The following high-temperature pyrolysis affords uniform and evenly dispersed Ru NPs (ca. 12-16 nm), which are firmly inserted into the hierarchically porous carbon nanofibers formed simultaneously. The resulting Ru-carbon nanofiber (Ru-CNF) catalysts prove to be active towards the liquid-phase hydrogenation of levulinic acid (LA) to γ-valerolactone (GVL), a biomass-derived platform molecule with wide applications in the preparation of renewable chemicals and liquid transportation fuels. The optimal GVL yield of 96.0% is obtained, corresponding to a high activity of 9.23 molLAh–1gRu–1, 17 times of that using the commercial Ru/C catalyst. Moreover, the Ru-CNF catalyst is extremely stable, and can be cycled up to 7 times without significant loss of reactivity. Our strategy demonstrated here reveals new possibilities to make proficient metal catalysts, and provides a general way to fabricate metal-carbon nanofiber composites available for other applications.

  17. Highly Dispersed Pseudo-Homogeneous and Heterogeneous Catalysts Synthesized via Inverse Micelle Solutions for the Liquefaction of Coal

    Energy Technology Data Exchange (ETDEWEB)

    Hampden-Smith, M.; Kawola, J.S.; Martino, A.; Sault, A.G.; Yamanaka, S.A.

    1999-01-05

    The mission of this project was to use inverse micelle solutions to synthesize nanometer sized metal particles and test the particles as catalysts in the liquefaction of coal and other related reactions. The initial focus of the project was the synthesis of iron based materials in pseudo-homogeneous form. The frost three chapters discuss the synthesis, characterization, and catalyst testing in coal liquefaction and model coal liquefaction reactions of iron based pseudo-homogeneous materials. Later, we became interested in highly dispersed catalysts for coprocessing of coal and plastic waste. Bifunctional catalysts . to hydrogenate the coal and depolymerize the plastic waste are ideal. We began studying, based on our previously devised synthesis strategies, the synthesis of heterogeneous catalysts with a bifunctional nature. In chapter 4, we discuss the fundamental principles in heterogeneous catalysis synthesis with inverse micelle solutions. In chapter 5, we extend the synthesis of chapter 4 to practical systems and use the materials in catalyst testing. Finally in chapter 6, we return to iron and coal liquefaction now studied with the heterogeneous catalysts.

  18. Comparison of sodium borohydride hydrolysis kinetics on Co-based nanocomposite catalysts

    International Nuclear Information System (INIS)

    Hristov, Georgi; Chorbadzhiyska, Elitsa; Mitov, Mario; Rashkov, Rashko; Hubenova, Yolina

    2011-01-01

    In this study, we compared the results, obtained with several Co-based nanocomposites (CoMnB, CoNiMnB and CoNiMoW) produced by electrodeposition on Ni-foam, as catalysts for the sodium borohydride hydrolysis reaction. Based on the comparative analyses, we propose CoNiMnB electrodeposits as most suitable catalysts for development of Hydrogen-on-Demand (HOD) system, while CoNiMoW ones as potential anodes for Direct Borohydride Fuel Cells (DBFCs). Keywords: Hydrogen-on-Demand (HOD), Nanocomposites, Hydrolysis, Catalyst, Kinetic

  19. Oxygen-hydrogen recombination system

    International Nuclear Information System (INIS)

    Sato, Shuichiro; Takejima, Masaki.

    1981-01-01

    Purpose: To avoid reduction in the performance of catalyst used for an oxygen-hydrogen recombiner in the off gas processing system of a nuclear reactor. Constitution: A thermometer is provided for the detection of temperature in an oxygen-hydrogen recombiner. A cooling pipe is provided in the recombiner and cooling medium is introduced externally. The cooling medium may be water or air. In accordance with the detection value from the thermometer, ON-OFF control is carried out for a valve to control the flow rate of the cooling medium thereby rendering the temperature in the recombiner to a predetermined value. This can prevent the catalyst from being exposed to high temperature and avoid the reduction in the performance of the catalyst. (Ikeda, J.)

  20. Effects of preparation method and active metal content on of Ni/kieselguhr catalyst activity

    International Nuclear Information System (INIS)

    Galuh Widiyarti; Wuryaningsih Sri Rahayu

    2010-01-01

    The preparation and the active metal content influence the activity of catalyst. Study has been conducted to see the activity of Ni/kieselguhr based on preparation method and Nickel (Ni) contents in the catalyst in the laboratory scale. The Ni/kieselguhr catalyst were prepared by impregnation and precipitation methods, with Ni active contents of 10, 20, and 30 % by weight. The catalysts characterization was analyzed using X-Ray Diffraction (XRD). Catalysts activities were analyzed based on decreasing of iodine number from hydrogenation of crude palm oil for 2 hours. The activity tests results show that precipitation catalysts are more active than impregnation catalysts. The decreasing in iodine number of fatty acid after 2 hours of hydrogenation process using precipitation catalysts and impregnation catalysts are 51.53 and 21.85 %, respectively. In addition, the catalysts are more active with increasing Ni contents. (author)

  1. Atmosphere Processing Module Automation and Catalyst Durability Analysis for Mars ISRU Pathfinder

    Science.gov (United States)

    Petersen, Elspeth M.

    2016-01-01

    The Mars In-Situ Resource Utilization Pathfinder was designed to create fuel using components found in the planet’s atmosphere and regolith for an ascension vehicle to return a potential sample return or crew return vehicle from Mars. The Atmosphere Processing Module (APM), a subunit of the pathfinder, uses cryocoolers to isolate and collect carbon dioxide from Mars simulant gas. The carbon dioxide is fed with hydrogen into a Sabatier reactor where methane is produced. The APM is currently undergoing the final stages of testing at Kennedy Space Center prior to process integration testing with the other subunits of the pathfinder. The automation software for the APM cryocoolers was tested and found to perform nominally. The catalyst used for the Sabatier reactor was investigated to determine the factors contributing to catalyst failure. The results from the catalyst testing require further analysis, but it appears that the rapid change in temperature during reactor start up or the elevated operating temperature is responsible for the changes observed in the catalyst.

  2. Oxygen-assisted conversion of propane over metal and metal oxide catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Laate, Leiv

    2002-07-01

    An experimental set-up has been build and applied in activity/selectivity studies of the oxygen-assisted conversion of propane over metals and metal oxide catalysts. The apparatus has been used in order to achieve an improved understanding of the reactions between alkanes/alkenes and oxygen. Processes that have been studied arc the oxidative dehydrogenation of propane over a VMgO catalyst and the selective combustion of hydrogen in the presence of hydrocarbons over Pt-based catalysts and metal oxide catalysts. From the experiments, the following conclusions are drawn: A study of the oxidative dehydrogenation of propane over a vanadium-magnesium-oxide catalyst confirmed that the main problem with this system is the lack of selectivity due to complete combustion. Selectivity to propene up to about 60% was obtained at 10% conversion at 500{sup o}C, but the selectivity decreased with increasing conversion. No oxygenates were detected, the only by- products were CO and CO{sub 2}. The selectivity to propene is a strong function of the conversion of propane. The reaction rate of propane was found to be 1.0 {+-} 0.1 order in propane and 0.07 {+-} 0.02 order in oxygen. The kinetic results are in agreement with a Mars van Krevelen mechanism with the activation of the hydrocarbons as the slow step. The rate of propene oxidation to CO{sub 2} was studied and found to be significantly higher than that of propane. Another possible process involves the simultaneous equilibrium dehydrogenation of alkanes to alkenes and combustion of the hydrogen formed to shift the equilibrium dehydrogenation reaction further to the product alkenes. A study of the selective combustion of hydrogen in the presence of propane/propene was found to be possible under certain reaction conditions over some metal oxide catalysts. In{sub 2}O{sub 3}/SiO{sub 2}, unsupported Bi{sub 2}O{sub 3} and ZSM-5 show the ability to combust hydrogen in a gas mixture with propane and oxygen with good selectivity. Bi{sub 2

  3. Process of activation of a palladium catalyst system

    Science.gov (United States)

    Sobolevskiy, Anatoly [Orlando, FL; Rossin, Joseph A [Columbus, OH; Knapke, Michael J [Columbus, OH

    2011-08-02

    Improved processes for activating a catalyst system used for the reduction of nitrogen oxides are provided. In one embodiment, the catalyst system is activated by passing an activation gas stream having an amount of each of oxygen, water vapor, nitrogen oxides, and hydrogen over the catalyst system and increasing a temperature of the catalyst system to a temperature of at least 180.degree. C. at a heating rate of from 1-20.degree./min. Use of activation processes described herein leads to a catalyst system with superior NOx reduction capabilities.

  4. Characterization of alumina supported molybdenum catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Pastura, N M; Carmo, L M.P.M.; Sachett, C M.M.; Lam, Y L [Instituto Militar de Engenharia, Rio de Janeiro (Brazil). Secao de Quimica

    1983-10-01

    In order to optimize a bifunctional catalyst (acid and hydrogenating) of Mo/Al/sub 2/O/sub 3/, oxygen adsorption at 195 K and ethanol dehydration at 480-520 K were carried out using a series of these catalysts. The increase of Mo content increased the quantity of adsorbed oxygen, thus indicating that the number of hydrogenating sites also increased. The specific activity of ethanol dehydration varied slightly, indicating that the number of acid sites remains almost constant. On the other hand, the selectivity in ethylene (versus ether) increased markedly. This may be attributed to the increase in acid force of the acid sites.

  5. Characterization of alumina supported molybdenum catalysts

    International Nuclear Information System (INIS)

    Pastura, N.M.; Carmo, L.M.P.M.; Sachett, C.M.M.; Lam, Y.L.

    1983-01-01

    In order to optimize a bifunctional catalyst (acid and hydrogenating) of Mo/Al 2 O 3 , oxygen adsorption at 195 K and ethanol dehydration at 480-520 K were carried out using a series of these catalysts. The increase of Mo content increased the quantity of adsorbed oxygen, thus indicating that the number of hydrogenating sites also increased. The specific activity of ethanol dehydration varied slightly, indicating that the number of acid sites remains almost constant. On the other hand, the selectivity in ethylene (versus ether) increased markedly. This may be attributed to the increase in acid force of the acid sites. (C.L.B.) [pt

  6. Development of polymer catalyst manufacturing technology

    International Nuclear Information System (INIS)

    Chung, Heung Seok; Kim, Yong Ik; Lee, Han Soo; Kang, Hui Seok; Seong, Ki Ung; Na, Jeong Won; An, Do Hui; Kim, Kwang Rak; Cho, Young Hyeon; Baek, Seung Uh; Jeong, Yong Won

    1993-01-01

    Heavy water is used as moderator and coolant in Pressurized Heavy Water Power Plants. According to the governmental long-term plan for power supply, Korea is scheduled to construct new six pressurized heavy water power plants till the year 2006. Total heavy water demand for these plants would be 3892 Mg during the period 1992-2006. Reformed hydrogen processes are considered best suited to Korea. Hydrophobic catalysts for this process were manufactured and the performance of hydrogen isotope exchance was investigated. The overall mass transfer coefficients varied between 0.004 and 2.295 m 3 HD/m 3 Bed.sec. and heavy water separation processes using the catalysts were optimized. (Author)

  7. Efficient photocatalytic hydrogen production from water over Pt-Eosin Y catalyst: A systemic study of reaction parameters

    Science.gov (United States)

    Wang, Li; Zhao, Hui; Chen, Yong; Sun, Ruimin; Han, Bing

    2016-07-01

    A high efficient homogeneous system for hydrogen production from water consisting of Eosin Y as a photosensitizer, methyl viologen (MV2+) as an electron transfer mediator, triethanolamine (TEOA) as a sacrificial electron donor and colloid Pt as a catalyst, has been systemicly studied. The initial system pH and the concentration of Eosin Y have remarkable effects on the rate of hydrogen evolution. The optimal pH and concentration of Eosin Y are 9 and 7.2×10-5 M. Triethanolamine (TEOA) as an electron donor, can reductively quench the oxidized Eosin Y and the quenching is well modeled by the Stern-Volmer equation. The optimal concentration of TEOA and the concentration of MV2+ are 0.3 M and 3.1×10-4 M, respectively. In addition, the role of colloid Pt has been investigated.

  8. PREPARATION, CHARACTERIZATION, ACTIVITY, DEACTIVATION, AND REGENERATION TESTS OF CoO-MoO/ZnO AND CoO-MoO/ZnO-ACTIVATED ZEOLITE CATALYSTS FOR THE HYDROGEN PRODUCTION FROM FUSEL OIL

    Directory of Open Access Journals (Sweden)

    Wega Trisunaryanti

    2010-06-01

    Full Text Available Preparation, characterization, activation, deactivation, and regeneration tests of CoO-MoO/ZnO and CoO-MoO/ZnO-Activated Zeolite (AZ catalysts for the hydrogen production using steam reforming of alcohols in fusel oil have been conducted. Both catalysts were prepared by impregnation of Co and Mo onto ZnO or ZnO-AZ powder then followed by calcination at 400 °C for 5 h under N2 stream. The BET method and pyridine adsorption were used for catalysts characterization. The study of activation, deactivation, and regeneration of catalysts were conducted by using steam reforming method in the semi flow reactor. The reaction condition were: weight ratio of catalysts/feed = 0.1, temperature: 450 °C, duration: 45 min. The gas product was trapped in a 250 mL vacuum pyrex bottle filled with 50 mL of 4 M NaOH solution and analyzed by GC with TCD system to determine H2 existance and HCl titration to determine CO2 produced during the process that was dissolved in NaOH solution. The results showed that CoO-MoO/ZnO-AZ catalyst produced higher gas conversion than CoO-MoO/ZnO catalyst. However, it had short catalyst lifetime due to its high amount of coke deposited during the process. The regeneration test could enhance the catalyst activity. The gas product consisted of H2 (14.70% and CO2 (24.41%.   Keywords: fusel oil, steam reforming, deactivation, regeneration, hydrogen production.

  9. Process for exchanging hydrogen isotopes between gaseous hydrogen and water

    International Nuclear Information System (INIS)

    Hindin, S.G.; Roberts, G.W.

    1977-01-01

    A process is described for exchanging isotopes (particularly tritium) between water and gaseous hydrogen. Isotope depleted gaseous hydrogen and water containing a hydrogen isotope are introduced into the vapour phase in a first reaction area. The steam and gaseous hydrogen are brought into contact with a supported metal catalyst in this area in a parallel flow at a temperature range of around 225 and 300 0 C. An effluent flow comprising a mixture of isotope enriched gaseous hydrogen and depleted steam is evacuated from this area and the steam condensed into liquid water [fr

  10. Enhanced gasification of wood in the presence of mixed catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Weber, S. L.; Mudge, L. K.; Sealock, Jr., L. J.; Robertus, R. J.; Mitchell, D. E.

    Experimental results obtained in laboratory investigations of steam gasification of wood in the presence of mixed catalysts are presented. These studies are designed to test the technical feasibility of producing specific gaseous products from wood by enhancing its reactivity and product specificity through the use of combined catalysts. The desired products include substitute natural gas, hydrocarbon synthesis gas and ammonia synthesis gas. The gasification reactions are controlled through the use of specific catalyst combinations and operating parameters. A primary alkali carbonate gasification catalyst impregnated into the wood combined with specific commercially available secondary catalysts produced the desired products. A yield of 50 vol % methane was obtained with a randomly mixed combination of a commercial nickel methanation catalyst and silica-alumina cracking catalyst at a weight ratio of 3:1 respectively. Steam gasification of wood in the presence of a commercial Si-Al cracking catalyst produced the desired hydrocarbon synthesis gas. Hydrogen-to-carbon monoxide ratios needed for Fischer-Tropsch synthesis of hydrocarbons were obtained with this catalyst system. A hydrogen-to-nitrogen ratio of 3:1 for ammonia synthesis gas was achieved with steam-air gasification of wood in the presence of catalysts. The most effective secondary catalyst system employed to produce the ammonia synthesis gas included two commercially prepared catalysts formulated to promote the water-gas shift reaction.

  11. Florida Hydrogen Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Block, David L

    2013-06-30

    The Florida Hydrogen Initiative (FHI) was a research, development and demonstration hydrogen and fuel cell program. The FHI program objectives were to develop Florida?s hydrogen and fuel cell infrastructure and to assist DOE in its hydrogen and fuel cell activities The FHI program funded 12 RD&D projects as follows: Hydrogen Refueling Infrastructure and Rental Car Strategies -- L. Lines, Rollins College This project analyzes strategies for Florida's early stage adaptation of hydrogen-powered public transportation. In particular, the report investigates urban and statewide network of refueling stations and the feasibility of establishing a hydrogen rental-car fleet based in Orlando. Methanol Fuel Cell Vehicle Charging Station at Florida Atlantic University ? M. Fuchs, EnerFuel, Inc. The project objectives were to design, and demonstrate a 10 kWnet proton exchange membrane fuel cell stationary power plant operating on methanol, to achieve an electrical energy efficiency of 32% and to demonstrate transient response time of less than 3 milliseconds. Assessment of Public Understanding of the Hydrogen Economy Through Science Center Exhibits, J. Newman, Orlando Science Center The project objective was to design and build an interactive Science Center exhibit called: ?H2Now: the Great Hydrogen Xchange?. On-site Reformation of Diesel Fuel for Hydrogen Fueling Station Applications ? A. Raissi, Florida Solar Energy Center This project developed an on-demand forecourt hydrogen production technology by catalytically converting high-sulfur hydrocarbon fuels to an essentially sulfur-free gas. The removal of sulfur from reformate is critical since most catalysts used for the steam reformation have limited sulfur tolerance. Chemochromic Hydrogen Leak Detectors for Safety Monitoring ? N. Mohajeri and N. Muradov, Florida Solar Energy Center This project developed and demonstrated a cost-effective and highly selective chemochromic (visual) hydrogen leak detector for safety

  12. Hydrogen production and purification for fuel cell applications

    Science.gov (United States)

    Chin, Soo Yin

    The increased utilization of proton-exchange membrane (PEM) fuel cells as an alternative to internal combustion engines is expected to increase the demand for hydrogen, which is used as the energy source in these systems. Currently, production of hydrogen for fuel cells is primarily achieved via steam reforming, partial oxidation or autothermal reforming of natural gas, or steam reforming of methanol. However, in all of these processes CO is a by-product that must be subsequently removed due to its adverse effects on the Pt-based electrocatalysts of the PEM fuel cell. Our efforts have focused on production of CO-free hydrogen via catalytic decomposition of hydrocarbons and purification of H2 via the preferential oxidation of CO. The catalytic decomposition of hydrocarbons is an attractive alternative for the production of H2. Previous studies utilizing methane have shown that this approach can indeed produce CO-free hydrogen, with filamentous carbon formed as the by-product and deposited on the catalyst. We have further extended this approach to the decomposition of ethane. In addition to hydrogen and filamentous carbon however, methane is also formed in this case as a by-product. Studies conducted at different temperatures and space velocities suggest that hydrogen is the primary product while methane is formed in a secondary step. Ni/SiO2 catalysts are active for ethane decomposition at temperatures above 500°C. Although the yield of hydrogen increases with temperature, the catalyst deactivation rate also accelerates at higher temperatures. The preferential oxidation of CO is currently used for the purification of CO-contaminated hydrogen streams due to its efficiency and simplicity. Conventional Pt catalysts used for this reaction have been shown to effectively remove CO, but have limited selectivity (i.e., substantial amounts of H 2 also react with O2). Our work focused on alternative catalytic materials, such as Ru and bimetallic Ru-based catalysts (Pt-Ru, Ru

  13. Contribution to the study of catalytic hydrogen-deuterium exchange between hydrogen and hydrocarbons

    International Nuclear Information System (INIS)

    Ravoire, J.

    1958-01-01

    The hydrogen-deuterium exchange between molecular hydrogen and hydrocarbons over a platinum and charcoal catalyst was studied in a static system. The change in isotopic composition of molecular hydrogen was followed by a thermal conductivity method. Cyclo-pentane and cyclohexane were chosen because of their stability. A reversible inactivation of the catalyst was observed with both hydrocarbons. The reasons for this inactivation are unknown but it was shown that reactivation led to satisfactory reproducibility. A kinetic study was done with cyclohexane in the range 30 to 160 deg. C, and 40 to 360 mm for the pressure of hydrogen, and 10 to 70 mm for the pressure of cyclohexane. The order of the reaction with respect to cyclohexane pressure is always close to zero; the order with respect to that of hydrogen is 0.5 above 100 deg. C. It decreases with increasing temperature and becomes negative (-0.5 at 30 deg. C), characterizing an inhibition by hydrogen. At the same time, the apparent activation energy goes from 6 to 13 kcal/mole. (author) [fr

  14. Shape-selective catalysts for Fischer-Tropsch chemistry. Final report : January 1, 2001 - December 31, 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Cronauer, D. C. (Chemical Sciences and Engineering Division)

    2011-04-11

    Argonne National Laboratory carried out a research program to create, prepare, and evaluate catalysts to promote Fischer-Tropsch (FT) chemistry-specifically, the reaction of hydrogen with carbon monoxide to form long-chain hydrocarbons. In addition to needing high activity, it was desirable that the catalysts have high selectivity and stability with respect to both mechanical strength and aging properties. It was desired that selectivity be directed toward producing diesel fraction components and avoiding excess yields of both light hydrocarbons and heavy waxes. The original goal was to produce shape-selective catalysts that had the potential to limit the formation of long-chain products and yet retain the active metal sites in a protected 'cage.' This cage would also restrict their loss by attrition during use in slurry-bed reactors. The first stage of this program was to prepare and evaluate iron-containing particulate catalysts. Such catalysts were prepared with silica-containing fractal cages. The activity and strength was essentially the same as that of catalysts without the cages. Since there was no improvement, the program plan was modified as discussed below. A second experimental stage was undertaken to prepare and evaluate active FT catalysts formed by atomic-layer deposition [ALD] of active components on supported membranes and particulate supports. The concept was that of depositing active metals (i.e. ruthenium, iron or cobalt) upon membranes with well defined flow channels of small diameter and length such that the catalytic activity and product molecular weight distribution could be controlled. In order to rapidly evaluate the catalytic membranes, the ALD coating processes were performed in an 'exploratory mode' in which ALD procedures from the literature appropriate for coating flat surfaces were applied to the high surface area membranes. Consequently, the Fe and Ru loadings in the membranes were likely to be smaller than those

  15. Metal-Organic-Framework mediated supported-cobalt catalysts in multiphase hydrogenation reactions

    OpenAIRE

    Sun, X.

    2017-01-01

    The production of most industrially important chemicals involves catalysis. Depending on the difference in phases between the catalysts and reactants, one distinguishes homogenous catalysis and heterogeneous catalysis, with the latter being more attractive in real applications, due to the easy separation of products from catalysts and reusing the latter. In spite of the research and development of heterogeneous catalysts for decades, the exploration for catalysts system with outstanding activ...

  16. Comparison of cathode catalyst binders for the hydrogen evolution reaction in microbial electrolysis cells

    KAUST Repository

    Ivanov, Ivan

    2017-06-02

    Nafion is commonly used as a catalyst binder in many types of electrochemical cells, but less expensive binders are needed for the cathodes in microbial electrolysis cells (MECs) which are operated in neutral pH buffers, and reverse electrodialysis stacks (RED),which use thermolytic solutions such as ammonium bicarbonate. Six different binders were examined based on differences in ion exchange properties (anionic: Nafion, BPSH20, BPSH40, S-Radel; cationic: Q-Radel; and neutral: Radel, BAEH) and hydrophobicity based on water uptake (0%, Radel; 17–56% for the other binders). BPSH40 had similar performance to Nafion based on steady-state polarization single electrode experiments in a neutral pH phosphate buffer, and slightly better performance in ammonium bicarbonate. Three different Mo-based catalysts were examined as alternatives to Pt, with MoB showing the best performance under steady-state polarization. In MECs, MoB/BPSH40 performed similarly to Pt with Nafion or Radel binders. The main distinguishing feature of the BPSH40 was that it is very hydrophilic, and thus it had a greater water content (56%) than the other binders (0–44%). These results suggest the binders for hydrogen evolution in MECs should be designed to have a high water content without sacrificing ionic or electronic conductivity in the electrode.

  17. Comparison of cathode catalyst binders for the hydrogen evolution reaction in microbial electrolysis cells

    KAUST Repository

    Ivanov, Ivan; Ahn, YongTae; Poirson, Thibault; Hickner, Michael A.; Logan, Bruce

    2017-01-01

    Nafion is commonly used as a catalyst binder in many types of electrochemical cells, but less expensive binders are needed for the cathodes in microbial electrolysis cells (MECs) which are operated in neutral pH buffers, and reverse electrodialysis stacks (RED),which use thermolytic solutions such as ammonium bicarbonate. Six different binders were examined based on differences in ion exchange properties (anionic: Nafion, BPSH20, BPSH40, S-Radel; cationic: Q-Radel; and neutral: Radel, BAEH) and hydrophobicity based on water uptake (0%, Radel; 17–56% for the other binders). BPSH40 had similar performance to Nafion based on steady-state polarization single electrode experiments in a neutral pH phosphate buffer, and slightly better performance in ammonium bicarbonate. Three different Mo-based catalysts were examined as alternatives to Pt, with MoB showing the best performance under steady-state polarization. In MECs, MoB/BPSH40 performed similarly to Pt with Nafion or Radel binders. The main distinguishing feature of the BPSH40 was that it is very hydrophilic, and thus it had a greater water content (56%) than the other binders (0–44%). These results suggest the binders for hydrogen evolution in MECs should be designed to have a high water content without sacrificing ionic or electronic conductivity in the electrode.

  18. Production of hydrogen, liquid fuels, and chemicals from catalytic processing of bio-oils

    Science.gov (United States)

    Huber, George W; Vispute, Tushar P; Routray, Kamalakanta

    2014-06-03

    Disclosed herein is a method of generating hydrogen from a bio-oil, comprising hydrogenating a water-soluble fraction of the bio-oil with hydrogen in the presence of a hydrogenation catalyst, and reforming the water-soluble fraction by aqueous-phase reforming in the presence of a reforming catalyst, wherein hydrogen is generated by the reforming, and the amount of hydrogen generated is greater than that consumed by the hydrogenating. The method can further comprise hydrocracking or hydrotreating a lignin fraction of the bio-oil with hydrogen in the presence of a hydrocracking catalyst wherein the lignin fraction of bio-oil is obtained as a water-insoluble fraction from aqueous extraction of bio-oil. The hydrogen used in the hydrogenating and in the hydrocracking or hydrotreating can be generated by reforming the water-soluble fraction of bio-oil.

  19. Final Report: Hydrogen Storage System Cost Analysis

    Energy Technology Data Exchange (ETDEWEB)

    James, Brian David [Strategic Analysis Inc., Arlington, VA (United States); Houchins, Cassidy [Strategic Analysis Inc., Arlington, VA (United States); Huya-Kouadio, Jennie Moton [Strategic Analysis Inc., Arlington, VA (United States); DeSantis, Daniel A. [Strategic Analysis Inc., Arlington, VA (United States)

    2016-09-30

    The Fuel Cell Technologies Office (FCTO) has identified hydrogen storage as a key enabling technology for advancing hydrogen and fuel cell power technologies in transportation, stationary, and portable applications. Consequently, FCTO has established targets to chart the progress of developing and demonstrating viable hydrogen storage technologies for transportation and stationary applications. This cost assessment project supports the overall FCTO goals by identifying the current technology system components, performance levels, and manufacturing/assembly techniques most likely to lead to the lowest system storage cost. Furthermore, the project forecasts the cost of these systems at a variety of annual manufacturing rates to allow comparison to the overall 2017 and “Ultimate” DOE cost targets. The cost breakdown of the system components and manufacturing steps can then be used to guide future research and development (R&D) decisions. The project was led by Strategic Analysis Inc. (SA) and aided by Rajesh Ahluwalia and Thanh Hua from Argonne National Laboratory (ANL) and Lin Simpson at the National Renewable Energy Laboratory (NREL). Since SA coordinated the project activities of all three organizations, this report includes a technical description of all project activity. This report represents a summary of contract activities and findings under SA’s five year contract to the US Department of Energy (Award No. DE-EE0005253) and constitutes the “Final Scientific Report” deliverable. Project publications and presentations are listed in the Appendix.

  20. Development of Non-Noble Metal Ni-Based Catalysts for Dehydrogenation of Methylcyclohexane

    KAUST Repository

    Al-ShaikhAli, Anaam H.

    2016-11-30

    Liquid organic chemical hydride is a promising candidate for hydrogen storage and transport. Methylcyclohexane (MCH) to toluene (TOL) cycle has been considered as one of the feasible hydrogen carrier systems, but selective dehydrogenation of MCH to TOL has only been achieved using the noble Pt-based catalysts. The aim of this study is to develop non-noble, cost-effective metal catalysts that can show excellent catalytic performance, mainly maintaining high TOL selectivity achievable by Pt based catalysts. Mono-metallic Ni based catalyst is a well-known dehydrogenation catalyst, but the major drawback with Ni is its hydrogenolysis activity to cleave C-C bonds, which leads to inferior selectivity towards dehydrogenation of MCH to TOL. This study elucidate addition of the second metal to Ni based catalyst to improve the TOL selectivity. Herein, ubiquitous bi-metallic nanoparticles catalysts were investigated including (Ni–M, M: Ag, Zn, Sn or In) based catalysts. Among the catalysts investigated, the high TOL selectivity (> 99%) at low conversions was achieved effectively using the supported NiZn catalyst under flow of excess H2. In this work, a combined study of experimental and computational approaches was conducted to determine the main role of Zn over Ni based catalyst in promoting the TOL selectivity. A kinetic study using mono- and bimetallic Ni based catalysts was conducted to elucidate reaction mechanism and site requirement for MCH dehydrogenation reaction. The impact of different reaction conditions (feed compositions, temperature, space velocity and stability) and catalyst properties were evaluated. This study elucidates a distinctive mechanism of MCH dehydrogenation to TOL reaction over the Ni-based catalysts. Distinctive from Pt catalyst, a nearly positive half order with respect to H2 pressure was obtained for mono- and bi-metallic Ni based catalysts. This kinetic data was consistent with rate determining step as (somewhat paradoxically) hydrogenation

  1. Enhancing Light-Driven Production of Hydrogen Peroxide by Anchoring Au onto C3N4 Catalysts

    Directory of Open Access Journals (Sweden)

    Xiaoyu Chang

    2018-04-01

    Full Text Available Light-driven production of hydrogen peroxide (H2O2 is a green and sustainable way to achieve solar-to-chemical energy conversion. During such a conversion, both the high activity and the stability of catalysts were critical. We prepared an Au-supported C3N4 catalyst—i.e., Au/C3N4-500(N2—by strongly anchoring Au nanoparticles (~5 nm onto a C3N4 matrix—which simultaneously enhanced the activity towards the photosynthesis of H2O2 and the stability when it was reused. The yield of H2O2 reached 1320 μmol L−1 on Au/C3N4-500(N2 after 4 h of light irradiation in an acidic solution (pH 3, which was higher than that (1067 μmol L−1 of the control sample Au/C3N4-500(Air and 2.3 times higher than that of the pristine C3N4. Particularly, the catalyst Au/C3N4-500(N2 retained a much higher stability. The yield of H2O2 had a marginal decrease on the spent catalyst—i.e., 98% yield was kept. In comparison, only 70% yield was obtained from the spent control catalyst. The robust anchoring of Au onto C3N4 improved their interaction, which remarkably decreased the Au leaching when it was used and avoided the aggregation and aging of Au particles. Minimal Au leaching was detected on the spent catalyst. The kinetic analyses indicated that the highest formation rate of H2O2 was achieved on the Au/C3N4-500(N2 catalyst. The decomposition tests and kinetic behaviors of H2O2 were also carried out. These findings suggested that the formation rate of H2O2 could be a determining factor for efficient production of H2O2.

  2. Three-Dimensional Macroporous Polypyrrole-Derived Graphene Electrode Prepared by the Hydrogen Bubble Dynamic Template for Supercapacitors and Metal-Free Catalysts.

    Science.gov (United States)

    Yang, Xiaoqing; Liu, Anran; Zhao, Yuewu; Lu, Huijia; Zhang, Yuanjian; Wei, Wei; Li, Ying; Liu, Songqin

    2015-10-28

    We report a general method for the fabrication of three-dimensional (3D) macroporous graphene/conducting polymer modified electrode and nitrogen-doped graphene modified electrode. This method involves three consecutive steps. First, the 3D macroporous graphene (3D MG) electrode was fabricated electrochemically by reducing graphene oxide dispersion on different conducting substrates and used hydrogen bubbles as the dynamic template. The morphology and pore size of 3D MG could be governed by the use of surfactants and the dynamics of bubble generation and departure. Second, 3D macroporous graphene/polypyrrole (MGPPy) composites were constructed via directly electropolymerizing pyrrole monomer onto the networks of 3D MG. Due to the benefit of the good conductivity of 3D MG and pseudocapacitance of PPy, the composites manifest outstanding area specific capacitance of 196 mF cm(-2) at a current density of 1 mA cm(-2). The symmetric supercapacitor device assembled by the composite materials had a good capacity property. Finally, the nitrogen-doped MGPPy (N-MGPPy or MGPPy-X) with 3D macroporous nanostructure and well-regulated nitrogen doping was prepared via thermal treatment of the composites. The resultant N-MGPPy electrode was explored as a good electrocatalyst for the oxygen reduction reaction (ORR) with the current density value of 5.56 mA cm(-2) (-0.132 V vs Ag/AgCl). Moreover, the fuel tolerance and durability under the electrochemical environment of the N-MGPPy catalyst were found to be superior to the Pt/C catalyst.

  3. Selective Production of 2-Methylfuran by Gas-Phase Hydrogenation of Furfural on Copper Incorporated by Complexation in Mesoporous Silica Catalysts.

    Science.gov (United States)

    Jiménez-Gómez, Carmen Pilar; Cecilia, Juan A; Moreno-Tost, Ramón; Maireles-Torres, Pedro

    2017-04-10

    Copper species have been incorporated in mesoporous silica (MS) through complexation with the amine groups of dodecylamine, which was used as a structure-directing agent in the synthesis. A series of Cu/SiO 2 catalysts (xCu-MS) with copper loadings (x) from 2.5 to 20 wt % was synthesized and evaluated in the gas-phase hydrogenation of furfural (FUR). The most suitable catalytic performance in terms of 2-methylfuran yield was obtained with an intermediate copper content (10 wt %). This 10Cu-MS catalyst exhibits a 2-methylfuran yield higher than 95 mol % after 5 h time-on-stream (TOS) at a reaction temperature of 210 °C with a H 2 /FUR molar ratio of 11.5 and a weight hourly space velocity (WHSV) of 1.5 h -1 . After 14 h TOS, this catalyst still showed a yield of 80 mol %. In all cases, carbonaceous deposits on the external surface were the cause of the catalyst deactivation, although sintering of the copper particles was observed for higher copper loadings. This intermediate copper loading (10 wt %) offered a suitable balance between resistance to sintering and tendency to form carbonaceous deposits. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Immersion Calorimetry for the Characterization of PD Catalysts Supported on Activated Carbon

    Directory of Open Access Journals (Sweden)

    Liliana Giraldo

    2009-01-01

    Full Text Available Activated carbons obtained from coconut peel were oxidized using hydrogen peroxide. Superficial characteristics of these carbons were determined through N2 and CO2 isotherms and functional groups were characterized by TPD. Finally, the microcalorimetry technique was used in order to obtain the immersion enthalpies in diverse liquids and established the relation between them and the results obtained by the other characterization techniques. The results suggested that the immersion calorimetry allow establishing the difference between the supports and the catalysts.

  5. Production of Bio-Hydrogenated Diesel by Hydrotreatment of High-Acid-Value Waste Cooking Oil over Ruthenium Catalyst Supported on Al-Polyoxocation-Pillared Montmorillonite

    Directory of Open Access Journals (Sweden)

    Kinya Sakanishi

    2012-02-01

    Full Text Available Waste cooking oil with a high-acid-value (28.7 mg-KOH/g-oil was converted to bio-hydrogenated diesel by a hydrotreatment process over supported Ru catalysts. The standard reaction temperature, H2 pressure, liquid hourly space velocity (LHSV, and H2/oil ratio were 350 °C, 2 MPa, 15.2 h–1, and 400 mL/mL, respectively. Both the free fatty acids and the triglycerides in the waste cooking oil were deoxygenated at the same time to form hydrocarbons in the hydrotreatment process. The predominant liquid hydrocarbon products (98.9 wt% were n-C18H38, n-C17H36, n-C16H34, and n-C15H32 when a Ru/SiO2 catalyst was used. These long chain normal hydrocarbons had high melting points and gave the liquid hydrocarbon product over Ru/SiO2 a high pour point of 20 °C. Ru/H-Y was not suitable for producing diesel from waste cooking oil because it formed a large amount of C5–C10 gasoline-ranged paraffins on the strong acid sites of HY. When Al-polyoxocation-pillared montmorillonite (Al13-Mont was used as a support for the Ru catalyst, the pour point of the liquid hydrocarbon product decreased to −15 °C with the conversion of a significant amount of C15–C18 n-paraffins to iso-paraffins and light paraffins on the weak acid sites of Al13-Mont. The liquid product over Ru/Al13-Mont can be expected to give a green diesel for current diesel engines because its chemical composition and physical properties are similar to those of commercial petro-diesel. A relatively large amount of H2 was consumed in the hydrogenation of unsaturated C=C bonds and the deoxygenation of C=O bonds in the hydrotreatment process. A sulfided Ni-Mo/Al13-Mont catalyst also produced bio-hydrogenated diesel by the hydrotreatment process but it showed slow deactivation during the reaction due to loss of sulfur. In contrast, Ru/Al13-Mont did not show catalyst deactivation in the hydrotreatment of waste cooking oil after 72 h on-stream because the waste cooking oil was not found to contain sulfur

  6. Negative Effect of Calcination to Catalytic Performance of Coal Char-loaded TiO2 Catalyst in Styrene Oxidation with Hydrogen Peroxide as Oxidant

    Directory of Open Access Journals (Sweden)

    Mukhamad Nurhadi

    2018-01-01

    How to Cite: Nurhadi, M., Kusumawardani, R., Nur, H. (2018. Negative Effect of Calcination to Catalytic Performance of Coal Char-loaded TiO2 Catalyst in Styrene Oxidation with Hydrogen Peroxide as Oxidant. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (1: 113-118 (doi:10.9767/bcrec.13.1.1171.113-118

  7. Ammonia treated Mo/AC catalysts for CO hydrogenation with ...

    Indian Academy of Sciences (India)

    A series of ammonia treated Mo/Activated Carbon (AC) catalysts were synthesized by wet impregnation method by nominal incorporation of 5, 10 and 15 wt% of molybdenum. The calcined catalysts (500◦C, 4 h, N₂ flow) were subjected to a stepwise ammonia treatment at temperatures from 25 up to 700◦C. This work ...

  8. Deuterium exchange reaction in a trickle bed packed with a mixture of hydrophobic catalyst and hydrophilic packings

    International Nuclear Information System (INIS)

    Seungwoo Paek; Heui-Joo Choi; DO-Hee Ahn; Kwang-Rag Kim; Minsoo Lee; Sung-Paal Yim; Hongsuk Chung

    2006-01-01

    Full text of publication follows: The isotopic exchange reaction between hydrogen and water on the platinum supported catalysts provides a useful step for separating hydrogen isotopes such as deuterium and tritium. The CECE (Combined Electrolysis Catalytic Exchange) with a hydrophobic catalyst is a very effective method to remove small quantities of tritium from light or heavy waste water streams because of its high separation factor and mild operating conditions. The CECE column is composed of an electrolysis cell and a liquid phase catalytic exchange column. This paper deals with the experiments for the hydrogen isotopic exchange reaction in a trickle bed reactor packed with a hydrophobic catalyst in order to develop the catalytic column of the CECE. Hydrophobic Pt/SDBC catalyst which has been developed for the LPCE column of WTRF (Wolsong Tritium Removal Facility) was tested in a trickle bed reactor. The catalyst column was packed with a mixture of hydrophobic catalyst and hydrophilic packing (Dixon gauze ring) to improve liquid distribution and vapor/liquid transfer area. An experimental apparatus was built for the test of the catalyst at various temperatures and gas velocities. The catalyst was packed wet into the column and water was injected at the top through a liquid distributor and trickled through a catalyst mixture. Hydrogen gas passed up the column and deuterium was transferred to water stream flowing counter currently. The temperature of the column was controlled to maintain at 60 deg. C using water jackets around the reactor and equilibrator, a feed waster heater, and a circulation water heater. A metal bellows pump was used to circulate the hydrogen gas at the typical flow rate of 60 LPM.The reactor pressure was controlled to maintain at 135 kPa (abs) by a water column. Gas samples were drawn off from the top and bottom of the column. The difference in deuterium concentration between the inlet and outlet gas samples was analyzed using Gas

  9. Catalysts for conversion of syngas to liquid motor fuels

    Science.gov (United States)

    Rabo, Jule A.; Coughlin, Peter K.

    1987-01-01

    Synthesis gas comprising carbon monoxide and hydrogen is converted to C.sub.5.sup.+ hydrocarbons suitable for use as liquid motor fuels by contact with a dual catalyst composition capable of ensuring the production of only relatively minor amounts of heavy products boiling beyond the diesel oil range. The catalyst composition, having desirable stability during continuous production operation, employs a Fischer-Tropsch catalyst, together with a co-catalyst/support component. The latter component is a steam-stabilized zeolite Y catalyst of hydrophobic character, desirably in acid-extracted form.

  10. Catalytically Enhanced Hydrogen Sorption in Mg-MgH2 by Coupling Vanadium-Based Catalyst and Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Atikah Kadri

    2015-06-01

    Full Text Available Mg (MgH2-based composites, using carbon nanotubes (CNTs and pre-synthesized vanadium-based complex (VCat as the catalysts, were prepared by high-energy ball milling technique. The synergistic effect of coupling CNTs and VCat in MgH2 was observed for an ultra-fast absorption rate of 6.50 wt. % of hydrogen per minute and 6.50 wt. % of hydrogen release in 10 min at 200 °C and 300 °C, respectively. The temperature programmed desorption (TPD results reveal that coupling VCat and CNTs reduces both peak and onset temperatures by more than 60 °C and 114 °C, respectively. In addition, the presence of both VCat and CNTs reduces the enthalpy and entropy of desorption of about 7 kJ/mol H2 and 11 J/mol H2·K, respectively, as compared to those of the commercial MgH2, which ascribe to the decrease of desorption temperature. From the study of the effect of CNTs milling time, it is shown that partially destroyed CNTs (shorter milling time are better to enhance the hydrogen sorption performance.

  11. Hydrogen evolution catalyzed by cobalt diimine-dioxime complexes.

    Science.gov (United States)

    Kaeffer, Nicolas; Chavarot-Kerlidou, Murielle; Artero, Vincent

    2015-05-19

    Mimicking photosynthesis and producing solar fuels is an appealing way to store the huge amount of renewable energy from the sun in a durable and sustainable way. Hydrogen production through water splitting has been set as a first-ranking target for artificial photosynthesis. Pursuing that goal requires the development of efficient and stable catalytic systems, only based on earth abundant elements, for the reduction of protons from water to molecular hydrogen. Cobalt complexes based on glyoxime ligands, called cobaloximes, emerged 10 years ago as a first generation of such catalysts. They are now widely utilized for the construction of photocatalytic systems for hydrogen evolution. In this Account, we describe our contribution to the development of a second generation of catalysts, cobalt diimine-dioxime complexes. While displaying similar catalytic activities as cobaloximes, these catalysts prove more stable against hydrolysis under strongly acidic conditions thanks to the tetradentate nature of the diimine-dioxime ligand. Importantly, H2 evolution proceeds via proton-coupled electron transfer steps involving the oxime bridge as a protonation site, reproducing the mechanism at play in the active sites of hydrogenase enzymes. This feature allows H2 to be evolved at modest overpotentials, that is, close to the thermodynamic equilibrium over a wide range of acid-base conditions in nonaqueous solutions. Derivatization of the diimine-dioxime ligand at the hydrocarbon chain linking the two imine functions enables the covalent grafting of the complex onto electrode surfaces in a more convenient manner than for the parent bis-bidentate cobaloximes. Accordingly, we attached diimine-dioxime cobalt catalysts onto carbon nanotubes and demonstrated the catalytic activity of the resulting molecular-based electrode for hydrogen evolution from aqueous acetate buffer. The stability of immobilized catalysts was found to be orders of magnitude higher than that of catalysts in the

  12. Particle size dependence of CO tolerance of anode PtRu catalysts for polymer electrolyte fuel cells

    Science.gov (United States)

    Yamanaka, Toshiro; Takeguchi, Tatsuya; Wang, Guoxiong; Muhamad, Ernee Noryana; Ueda, Wataru

    An anode catalyst for a polymer electrolyte fuel cell must be CO-tolerant, that is, it must have the function of hydrogen oxidation in the presence of CO, because hydrogen fuel gas generated by the steam reforming process of natural gas contains a small amount of CO. In the present study, PtRu/C catalysts were prepared with control of the degree of Pt-Ru alloying and the size of PtRu particles. This control has become possible by a new method of heat treatment at the final step in the preparation of catalysts. The CO tolerances of PtRu/C catalysts with the same degree of Pt-Ru alloying and with different average sizes of PtRu particles were thus compared. Polarization curves were obtained with pure H 2 and CO/H 2 (CO concentrations of 500-2040 ppm). It was found that the CO tolerance of highly dispersed PtRu/C (high dispersion (HD)) with small PtRu particles was much higher than that of poorly dispersed PtRu/C (low dispersion (LD)) with large metal particles. The CO tolerance of PtRu/C (HD) was higher than that of any commercial PtRu/C. The high CO tolerance of PtRu/C (HD) is thought to be due to efficient concerted functions of Pt, Ru, and their alloy.

  13. Produção de hidrogênio a partir da reforma a vapor de etanol utilizando catalisadores Cu/Ni/gama-Al2o3 Hydrogen production by ethanol steam reforming using Cu/Ni/gamma-Al2o3 catalysts

    Directory of Open Access Journals (Sweden)

    Thaísa A. Maia

    2007-04-01

    Full Text Available Cu/Ni/gamma-Al2O3 catalysts were prepared by an impregnation method with 2.5 or 5% wt of copper and 5 or 15% wt of nickel and applied in ethanol steam reforming. The catalysts were characterized by atomic absorption spectrophotometry, X-ray diffraction, temperature programmed reduction with hydrogen and nitrogen adsorption. The samples showed low crystallinity, with the presence of CuO and NiO, both as crystallites and in dispersed phase, as well as of NiO-Al2O3. The catalytic tests carried out at 400 ºC, with a 3:1 water/ethanol molar ratio, indicated the 5Cu/5Ni/Al2O3 catalyst as the most active for hydrogen production, with a hydrogen yield of 77% and ethanol conversion of 98%.

  14. Hydrogen generation from formic acid catalyzed by a metal complex under amine-free and aqueous conditions

    KAUST Repository

    Huang, Kuo-Wei

    2018-01-04

    The present invention provides a class of catalyst compounds that can safely and effectively release hydrogen gas from a chemical substrate without producing either noxious byproducts or byproducts that will deactivate the catalyst. The present invention provides catalysts used to produce hydrogen that has a satisfactory and sufficient lifespan (measured by turnover number (TON)), that has stability in the presence of moisture, air, acid, or impurities, promote a rapid reaction rate, and remain stable under the reaction conditions required for an effective hydrogen production system. Described herein are compounds for use as catalysts, as well as methods for producing hydrogen from formic acid and/or a formate using the disclosed catalysts. The methods include contacting formic acid and/or a formate with a catalyst as described herein, as well as methods of producing formic acid and/or a formate using the disclosed catalyst and methods for generating electricity using the catalysts described herein.

  15. Support effects on hydrotreating activity of NiMo catalysts

    International Nuclear Information System (INIS)

    Dominguez-Crespo, M.A.; Arce-Estrada, E.M.; Torres-Huerta, A.M.; Diaz-Garcia, L.; Cortez de la Paz, M.T.

    2007-01-01

    The effect of the gamma alumina particle size on the catalytic activity of NiMoS x catalysts prepared by precipitation method of aluminum acetate at pH = 10 was studied. The structural characterization of the supports was measured by using XRD, pyridine FTIR-TPD and nitrogen physisorption. NiMo catalysts were characterized during the preparation steps (annealing and sulfidation) using transmission electron microscopy (TEM). Hydrogen TPR studies of the NiMo catalysts were also carried out in order to correlate their hydrogenating properties and their catalytic functionality. Catalytic tests were carried out in a pilot plant at 613, 633 and 653 K temperatures. The results showed that the rate constants of hydrodesulfurization (HDS), hydrodenitrogenation (HDN) and hydrodearomatizing (HDA) at 613-653 K decreased in the following order: A > B > C corresponding to the increase of NiMoS particle size associated to these catalysts

  16. Method and system for hydrogen evolution and storage

    Science.gov (United States)

    Thorn, David L.; Tumas, William; Hay, P. Jeffrey; Schwarz, Daniel E.; Cameron, Thomas M.

    2012-12-11

    A method and system for storing and evolving hydrogen (H.sub.2) employ chemical compounds that can be hydrogenated to store hydrogen and dehydrogenated to evolve hydrogen. A catalyst lowers the energy required for storing and evolving hydrogen. The method and system can provide hydrogen for devices that consume hydrogen as fuel.

  17. STUDY OF SOLVENT AND CATALYST INTERACTIONS IN DIRECT COAL LIQUEFACTION; SEMIANNUAL

    International Nuclear Information System (INIS)

    Michael T. Klein

    2000-01-01

    There are several aspects of the Direct Coal Liquefaction process which are not fully understood and which if better understood might lead to improved yields and conversions. Among these questions are the roles of the catalyst and the solvent. While the solvent is known to act by transfer of hydrogen atoms to the free radicals formed by thermal breakdown of the coal in an uncatalyzed system, in the presence of a solid catalyst as is now currently practiced, the yields and conversions are higher than in an uncatalyzed system. The role of the catalyst in this case is not completely understood. DOE has funded many projects to produce ultrafine and more active catalysts in the expectation that better contact between catalyst and coal might result. This approach has met with limited success probably because mass transfer between two solids in a fluid medium i.e. the catalyst and the coal, is very poor. It is to develop an understanding of the role of the catalyst and solvent in Direct Liquefaction that this project was initiated. Specifically it was of interest to know whether direct contact between the coal and the catalyst was important. By separating the solid catalyst in a stainless steel basket permeable to the solvent but not the coal in the liquefaction reactor, it was shown that the catalyst still maintains a catalytic effect on the liquefaction process. There is apparently transfer of hydrogen atoms from the catalyst through the basket wall to the coal via the solvent. Strong hydrogen donor solvents appear to be more effective in this respect than weak hydrogen donors. It therefore appears that intimate contact between catalyst and coal is not a requirement, and that the role of the catalyst may be to restore the hydrogen donor strength to the solvent as the reaction proceeds. A range of solvents of varying hydrogen donor strength was investigated. Because of the extensive use of thermogravimetric analysis in this laboratory in was noted that the peak

  18. Hydrogen storage by organic chemical hydrides and hydrogen supply to fuel cells with superheated liquid-film-type catalysis

    International Nuclear Information System (INIS)

    Hodoshima, S.; Shono, A.; Sato, K.; Saito, Y.

    2004-01-01

    Organic chemical hydrides, consisting of decalin / naphthalene and tetralin / naphthalene pairs, have been proposed as the storage medium of hydrogen for operating fuel cells in mobile and static modes. The target values in the DOE Hydrogen Plan, U.S., on storage ( 6.5 wt%, 62.0 kg-H 2 / m 3 ) are met with decalin ( 7.3 wt%, 64.8 kg-H 2 / m 3 ). In addition, existing gas stations and tank lorries are available for storage and supply of hydrogen by utilizing the decalin / naphthalene pair, suggesting that decalin is suitable for operating fuel-cell vehicles. Tetralin dehydrogenation proceeds quite rapidly, assuring a predominant power density, though its storage densities ( 3.0 wt%, 28.2 kg-H 2 / m 3 ) are relatively low. Efficient hydrogen supply from decalin or tetralin by heating at 210-280 o C was attained only with the carbon-supported nano-size metal catalysts in the 'superheated liquid-film states' under reactive distillation conditions, where coke formation over the catalyst surface was prevented. The catalyst layer superheated in the liquid-film states gave high reaction rates and conversions, minimizing the evaporation loss under boiling conditions and exergy loss in hydrogen energy systems. (author)

  19. Ethanol synthesis and water gas shift over bifunctional sulfide catalysts. Final technical progress report, September 12, 1991--December 11, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Klier, K.; Herman, R.G.; Deemer, M.; Richards-Babb, M.; Carr, T.

    1995-07-01

    The objective of this research was to investigate sulfur-resistant catalysts for the conversion of synthesis gas having H{sub 2}/CO {le} 1 into C{sub 1}--C{sub 4} alcohols, especially ethanol, by a highly selective and efficient pathway, while also promoting the water gas shift reaction (WGSR). The catalysts chosen are bifunctional, base-hydrogenation, sulfur-tolerant transition metal sulfides with heavy alkali, e.g. Cs{sup +}, promoter dispersed on their surfaces. The modes of activation of H{sub 2} and CO on MoS{sub 2} and alkali-doped MoS{sub 2} were considered, and computational analyses of the thermodynamic stability of transition metal sulfides and of the electronic structure of these sulfide catalysts were carried out. In the preparation of the cesium-promoted MoS{sub 2} catalysts, a variety of preparation methods using CsOOCH were examined. In all cases, doping with CsOOCH led to a lost of surface area. The undoped molybdenum disulfide catalyst only produced hydrocarbons. Cs-doped MoS{sub 2} catalysts all produced linear alcohols, along with smaller amounts of hydrocarbons. With a 20 wt% CsOOCH/MoS{sub 2} catalyst, temperature, pressure, and flow rate dependences of the synthesis reactions were investigated in the presence and absence of H{sub 2}S in the H{sub 2}/CO = 1/1 synthesis gas during short term testing experiments. It was shown that with a carefully prepared 10 wt% CsOOCH/MoS{sub 2} catalyst, reproducible and high alcohol synthesis activity could be obtained. For example, at 295 C with H{sub 2}/CO = 1 synthesis gas at 8.3 MPa and with GHSV = 7,760 l/kg cat/hr, the total alcohol space time yield was ca 300 g/kg cat/hr (accompanied with a hydrocarbon space time yield of ca 60 g/kg cat/hr). Over a testing period of ca 130 hr, no net deactivation of the catalyst was observed. 90 refs., 82 figs., 14 tabs.

  20. Supported Pd nanoclusters for the hydrogen mitigation application in severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Zhengfeng; Zhu, Hongzhi; Zhang, Zhi; Zheng, Zhenghua [China Academy of Engineering Physics, P. O. Box 919-71, Mianyang 621700 (China); Ma, Guohua [University of Science and Technology of Southwest, Mianyang 621010 (China); Lai, Xinchun; Li, Rong; Tang, Tao; Fu, Jun [China Academy of Engineering Physics, P. O. Box 919-71, Mianyang 621700 (China); Gao, Bo, E-mail: gaobo@caep.cn [China Academy of Engineering Physics, P. O. Box 919-71, Mianyang 621700 (China)

    2017-05-15

    Highlights: • Pd catalysts were prepared by electroless deposition path with no extra reduction agents. • The Pd catalysts not only have good hydrogen-oxygen recombination efficiency, but also have good stability. • The catalysts were proved to have good resistance to poisoning. • Pd catalysts could be supposed to be used for PARs in severe accidents. - Abstract: Accidents at TMI, USA and Fukushima, Japan have emphasized the need for hydrogen mitigation during nuclear plant accidental conditions, especially during severe accidents which will be no power, massive hydrogen, high temperature, long-term operation, and poisoning environment. Passive autocatalytic recombiners with catalyst sheets are the promising way to deal with the situation in severe accidents. Here we report a new kind of catalyst sheets based on stainless steel supported Pd nanoclusters prepared by electroless deposition route. The catalyst sheets were characterised for morphology and composition of surface by SEM and EDS. The catalytic activity of the catalyst sheets has been evaluated under the conditions of higher temperature, long-term operation and poisoning environments. The catalyst sheets showed high activity and good stability either operating above 500 °C for 24 h or continuous operating for 25 days. For the obtained catalyst sheets after exposed to methanal, iodine vapor and BaSO{sub 4} aerosol respectively with corresponding concentrations higher than SA conditions, the start-up time for H{sub 2}-O{sub 2} recombination reaction was less than 1 min and the catalytic efficiency was more than 90%. These results indicate the potential application of this type of catalyst sheets for hydrogen mitigation in severe accidents.