WorldWideScience

Sample records for hydrogen program overview

  1. Hydrogen program overview

    Energy Technology Data Exchange (ETDEWEB)

    Gronich, S. [Dept. of Energy, Washington, DC (United States). Office of Utility Technologies

    1997-12-31

    This paper consists of viewgraphs which summarize the following: Hydrogen program structure; Goals for hydrogen production research; Goals for hydrogen storage and utilization research; Technology validation; DOE technology validation activities supporting hydrogen pathways; Near-term opportunities for hydrogen; Market for hydrogen; and List of solicitation awards. It is concluded that a full transition toward a hydrogen economy can begin in the next decade.

  2. Hydrogen Codes and Standards: An Overview of U.S. DOE Activities

    International Nuclear Information System (INIS)

    James M Ohi

    2006-01-01

    The Hydrogen, Fuel Cells, and Infrastructure Technologies (HFCIT) Program of the U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL), with the help of leading standards and model code development organizations, other national laboratories, and key stakeholders, are developing a coordinated and collaborative government-industry effort to prepare, review, and promulgate hydrogen codes and standards needed to expedite hydrogen infrastructure development. The focus of this effort is to put in place a coordinated and comprehensive hydrogen codes and standards program at the national and international levels. This paper updates an overview of the U.S. program to facilitate and coordinate the development of hydrogen codes and standards that was presented by the author at WHEC 15. (authors)

  3. NRCan's hydrogen storage R and D program

    International Nuclear Information System (INIS)

    Scepanovic, V.

    2004-01-01

    'Full text:' Natural Resources Canada (NRCan) has been working in partnership with industry, other government departments and academia to expedite the development of hydrogen technologies. NRCan's Hydrogen and Fuel Cell R and D Program covers all aspects of hydrogen technologies: production, storage, utilization and codes and standards. Hydrogen storage is a key enabling technology for the advancement of fuel cell power systems in transportation, stationary, and portable applications. NRCan's storage program has been focused on developing storage materials and technologies for a range of applications with the emphasis on transportation. An overview of most recent hydrogen storage projects including pressurized hydrogen, liquid hydrogen and storage in hydrides and carbon-based materials will be given. (author)

  4. Hydrogen Energy Coordinating Committee annual report: Summary of DOE hydrogen programs for FY 1988

    International Nuclear Information System (INIS)

    1989-01-01

    The FY 1988 Summary is the eleventh consecutive yearly report providing an overview of the hydrogen-related programs of the DOE offices represented on the HECC. A historical summary of the hydrogen budgets of these offices is given. The distribution by mission-related program element for FY 1988, and the non-mission-related activities are given. Total DOE funding in FY 1988 for mission-related hydrogen research was $5.2 million; DOE non-mission-related hydrogen research funding totaled $30.0 million. The individual program elements are described in the body of this report, and more specific program information is given in the Technology Summary Forms in Appendix A. 2 tabs

  5. Hydrogen Storage for Aircraft Applications Overview

    Science.gov (United States)

    Colozza, Anthony J.; Kohout, Lisa (Technical Monitor)

    2002-01-01

    Advances in fuel cell technology have brought about their consideration as sources of power for aircraft. This power can be utilized to run aircraft systems or even provide propulsion power. One of the key obstacles to utilizing fuel cells on aircraft is the storage of hydrogen. An overview of the potential methods of hydrogen storage was compiled. This overview identifies various methods of hydrogen storage and points out their advantages and disadvantages relative to aircraft applications. Minimizing weight and volume are the key aspects to storing hydrogen within an aircraft. An analysis was performed to show how changes in certain parameters of a given storage system affect its mass and volume.

  6. Overview of U.S. programs for hydrogen from renewables

    International Nuclear Information System (INIS)

    Lewis, M.

    2007-01-01

    This paper discusses US program for hydrogen from renewable energy sources. Renewable energy sources include biomass, wind, solar, hydropower, geothermal and ocean waves. Although nuclear power is not considered renewable, a case can be made that it is, but requires recycling of spent fuel. The paper also discusses hydrogen production, storage and delivery. It discusses fuel cells, safety codes and standards and system analysis

  7. Overview of the U.S. DOE Hydrogen Safety, Codes and Standards Program. Part 4: Hydrogen Sensors; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Buttner, William J.; Rivkin, Carl; Burgess, Robert; Brosha, Eric; Mukundan, Rangachary; James, C. Will; Keller, Jay

    2016-12-01

    Hydrogen sensors are recognized as a critical element in the safety design for any hydrogen system. In this role, sensors can perform several important functions including indication of unintended hydrogen releases, activation of mitigation strategies to preclude the development of dangerous situations, activation of alarm systems and communication to first responders, and to initiate system shutdown. The functionality of hydrogen sensors in this capacity is decoupled from the system being monitored, thereby providing an independent safety component that is not affected by the system itself. The importance of hydrogen sensors has been recognized by DOE and by the Fuel Cell Technologies Office's Safety and Codes Standards (SCS) program in particular, which has for several years supported hydrogen safety sensor research and development. The SCS hydrogen sensor programs are currently led by the National Renewable Energy Laboratory, Los Alamos National Laboratory, and Lawrence Livermore National Laboratory. The current SCS sensor program encompasses the full range of issues related to safety sensors, including development of advance sensor platforms with exemplary performance, development of sensor-related code and standards, outreach to stakeholders on the role sensors play in facilitating deployment, technology evaluation, and support on the proper selection and use of sensors.

  8. HYSOLAR an overview on the German-Saudi Arabian program on solar hydrogen

    International Nuclear Information System (INIS)

    Steeb, H.; Seeger, W.

    1993-01-01

    The first phase of HYSOLAR, which ended in 1991, was focusing mainly on investigation, test and improvement of hydrogen production technologies. This paper shortly reviews the most important results: a 2 kW test and research facility in Jeddah; fundamental research in the fields of photo-electrochemistry, advanced alkaline electrolysis and alkaline fuel cells; system studies and decentralized hydrogen utilization; program for education. An outlook into the second phase program, where more emphasis is laid on hydrogen utilization technologies, is also included. 1 tab., 93 refs

  9. Hydrogen production using the sulfur-iodine cycle coupled to a VHTR: An overview

    International Nuclear Information System (INIS)

    Vitart, X.; Le Duigou, A.; Carles, P.

    2006-01-01

    The sulfur-iodine thermo-chemical cycle is considered to be one of the most promising routes for massive hydrogen production, using high temperature heat from a Generation IV VHTR. We propose here a brief overview of the main questions raised by this cycle, along with the general lines of French CEA's program

  10. Hydrogen Energy Coordinating Committee annual report: Summary of DOE hydrogen programs for FY 1991

    International Nuclear Information System (INIS)

    1991-07-01

    The HECC was established over 13 years ago to ensure that the many varied aspects of hydrogen technology within the Department are coordinated. Each year the committee brings together technical representative within the Department to coordinate activities, share research results and discuss future priorities and directions. This FY 1990 summary is the thirteenth consecutive yearly report. It provides an overview of the hydrogen-related programs of the DOE offices represented in the HECC for the fiscal year. For the purposes of this report, the research projects within each division have been organized into two categories: Fuels-related Research and Non-fuels-related Research. An historical summary of the hydrogen budgets of the several divisions is given. Total DOE funding in FY 1990 was $6.8 million for fuels-related research and $32.9 million for non-fuels-related research. The individual program elements are described in the body of this report, and more specific program information can be found in the Technology Summary Forms in Appendix A

  11. Overview of North American Hydrogen Sensor Standards

    Energy Technology Data Exchange (ETDEWEB)

    O' Malley, Kathleen [SRA International, Inc., Colorado Springs, CO (United States); Lopez, Hugo [UL LLC, Chicago, IL (United States); Cairns, Julie [CSA Group, Cleveland, OH (United States); Wichert, Richard [Professional Engineering, Inc.. Citrus Heights, CA (United States); Rivkin, Carl [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Burgess, Robert [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Buttner, William [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-08-11

    An overview of the main North American codes and standards associated with hydrogen safety sensors is provided. The distinction between a code and a standard is defined, and the relationship between standards and codes is clarified, especially for those circumstances where a standard or a certification requirement is explicitly referenced within a code. The report identifies three main types of standards commonly applied to hydrogen sensors (interface and controls standards, shock and hazard standards, and performance-based standards). The certification process and a list and description of the main standards and model codes associated with the use of hydrogen safety sensors in hydrogen infrastructure are presented.

  12. Canadian hydrogen safety program

    International Nuclear Information System (INIS)

    MacIntyre, I.; Tchouvelev, A.V.; Hay, D.R.; Wong, J.; Grant, J.; Benard, P.

    2007-01-01

    The Canadian hydrogen safety program (CHSP) is a project initiative of the Codes and Standards Working Group of the Canadian transportation fuel cell alliance (CTFCA) that represents industry, academia, government, and regulators. The Program rationale, structure and contents contribute to acceptance of the products, services and systems of the Canadian Hydrogen Industry into the Canadian hydrogen stakeholder community. It facilitates trade through fair insurance policies and rates, effective and efficient regulatory approval procedures and accommodation of the interests of the general public. The Program integrates a consistent quantitative risk assessment methodology with experimental (destructive and non-destructive) failure rates and consequence-of-release data for key hydrogen components and systems into risk assessment of commercial application scenarios. Its current and past six projects include Intelligent Virtual Hydrogen Filling Station (IVHFS), Hydrogen clearance distances, comparative quantitative risk comparison of hydrogen and compressed natural gas (CNG) refuelling options; computational fluid dynamics (CFD) modeling validation, calibration and enhancement; enhancement of frequency and probability analysis, and Consequence analysis of key component failures of hydrogen systems; and fuel cell oxidant outlet hydrogen sensor project. The Program projects are tightly linked with the content of the International Energy Agency (IEA) Task 19 Hydrogen Safety. (author)

  13. Fuel Cell and Hydrogen Technologies Program | Hydrogen and Fuel Cells |

    Science.gov (United States)

    NREL Fuel Cell and Hydrogen Technologies Program Fuel Cell and Hydrogen Technologies Program Through its Fuel Cell and Hydrogen Technologies Program, NREL researches, develops, analyzes, and validates fuel cell and hydrogen production, delivery, and storage technologies for transportation

  14. Research Program Overview

    Science.gov (United States)

    PEER logo Pacific Earthquake Engineering Research Center home about peer news events research products laboratories publications nisee b.i.p. members education FAQs links research Research Program Overview Tall Buildings Initiative Transportation Research Program Lifelines Program Concrete Grand

  15. Overview of the Modified SI Cycle to Produce Nuclear Hydrogen Coupled to VHTR

    International Nuclear Information System (INIS)

    Shin, Youngjoon; Lee, Taehoon; Lee, Kiyoung; Kim, Minhwan

    2016-01-01

    The steam reforming of methane is one of hydrogen production processes that rely on cheap fossil feedstocks. An overview of the VHTR-based nuclear hydrogen production process with the modified SI cycle has been carried out to establish whether it can be adopted as a feasible technology to produce nuclear hydrogen

  16. Program overview

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The program overview describes the following resources and facilities; laser facilities, main laser room, target room, energy storage, laboratory area, building support systems, general plant project, and the new trailer complex

  17. Vehicle Technologies Program Overview

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2006-09-05

    Overview of the Vehicle Technologies Program including external assessment and market view; internal assessment, program history and progress; program justification and federal role; program vision, mission, approach, strategic goals, outputs, and outcomes; and performance goals.

  18. Human Reliability Program Overview

    Energy Technology Data Exchange (ETDEWEB)

    Bodin, Michael

    2012-09-25

    This presentation covers the high points of the Human Reliability Program, including certification/decertification, critical positions, due process, organizational structure, program components, personnel security, an overview of the US DOE reliability program, retirees and academia, and security program integration.

  19. WE-NET: Japanese hydrogen program

    International Nuclear Information System (INIS)

    Mitsugi, Chiba; Harumi, Arai; Kenzo, Fukuda

    1998-01-01

    The Agency of Industrial Science and Technology (AIST), in the Ministry of International Trade and Industry (MITI), started the New Sunshine Program in 1993 by unifying the Sunshine Program (R and D on new energy technology), the Moonlight Program (R and D on energy conservation technology), and the Research and Development Program for Environmental Technology. The objective of the new program is to develop innovative technologies to allow sustainable growth while solving energy and environmental issues. One of the new projects in this program is the ''International Clean Energy System Technology Utilizing Hydrogen (World Energy Network)'': WE-NET. The goal of WE-NET is to construct a worldwide energy network for effective supply, transportation and utilization of renewable energy using hydrogen. The WE-NET program extends over 28 years from 1993 to 2020. In Phase 1, we started core research in areas such as development of high efficiency technologies including hydrogen production using polymer electrolyte membrane water electrolysis, hydrogen combustion turbines, etc. (author)

  20. HNEI wind-hydrogen program

    International Nuclear Information System (INIS)

    Neill, D.; Holst, B.; Yu, C.; Huang, N.; Wei, J.

    1990-01-01

    This paper reports on wind powered hydrogen production which is promising for Hawaii because Hawaii's wind energy potential exceeds the state's current electrical energy requirements by more than twenty-fold. Wind energy costs are now approaching $0.06 to $0.08/kWh, and the U.S. Department of Energy has set a goal of $0.04/kWh. These conditions make wind power a good source for electrolytic production of hydrogen. HNEI's wind-hydrogen program, at the HNEI-Kahua Wind Energy Storage Test facility on the island of Hawaii, is developing energy storage and power electronic systems for intermittent wind and solar devices to provide firm power to the utility or to a stand-alone hybrid system. In mid 1990, the first wind-hydrogen production/storage/ generation system is scheduled for installation. HNEI's wind- hydrogen program will provide research, development, demonstration, and education on the great potential and benefits of hydrogen

  1. Overview of energy/hydrogen storage: state-of-the-art of the technologies and prospects for nanomaterials

    International Nuclear Information System (INIS)

    Conte, M.; Prosini, P.P.; Passerini, S.

    2004-01-01

    A sustainable energy economy will be demanding primary energy sources, preferably renewable and mainly domestically available, using energy carriers, such as hydrogen and electricity, able to solve environmental problems and to assure adequate energy security. Instrumental to such goals will be the research and development of storage systems with performance characteristics compatible with major application requirements. Lithium or nickel are replacing lead in batteries, in order to better meet the extremely varying technical and economical requirements in fast growing conventional and new applications. Moreover, few technologies now permit to store hydrogen by modifying its physical state in gaseous or liquid form. The variety of hydrogen needs in the energy systems and in the vehicular sector is justifying the effort on solid state (metal hydrides and carbon nanostructures) or chemical systems (chemical hydrides). In this overview, emphasis is given to the major achievements in the field of electrical energy and hydrogen storage, in relation to the technological goals, which have been proposed in the major public research and collaborative programs throughout the world

  2. 2010 Annual Progress Report DOE Hydrogen Program

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2011-02-01

    This report summarizes the hydrogen and fuel cell R&D activities and accomplishments in FY2009 for the DOE Hydrogen Program, including the Hydrogen, Fuel Cells, and Infrastructure Technologies Program and hydrogen-related work in the Offices of Science; Fossil Energy; and Nuclear Energy, Science, and Technology. It includes reports on all of the research projects funded by the DOE Hydrogen Program between October 2009 and September 2010.

  3. DOE Hydrogen & Fuel Cell Overview

    Science.gov (United States)

    2011-01-13

    AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) U.S. Department of Energy...Overview of Combined Heat+Power PowerElectricity Natural Gas Heat + Cooling Natural Gas or Biogas ...Fuel Cell Technologies Program eere.energy.gov Source: US DOE 10/2010 Biogas Benefits: Preliminary Analysis Stationary fuel

  4. Hydrogen, Fuel Cells & Infrastructure Technologies Program

    Energy Technology Data Exchange (ETDEWEB)

    2005-03-01

    This plan details the goals, objectives, technical targets, tasks and schedule for EERE's contribution to the DOE Hydrogen Program. Similar detailed plans exist for the other DOE offices that make up the Hydrogen Program.

  5. The hydrogen production; La production d'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    Aujollet, P.; Goldstein, St. [CEA Cadarach, Dir. de l' Energie Nucleaire, 13 - Saint Paul lez Durance (France); Lucchese, P. [CEA Fontenay aux Roses, Dir. des Nouvelles Technologies de l' Energie, 92 (France)

    2002-07-01

    This paper gives an overview on the implementing of the hydrogen as substitution fuel in the transportation sector. It presents also the problems of this fuel storage and exploitation and describes the production modes and their safety. It also presents the main lines of the japan HTGR program. (A.L.B.)

  6. An overview of negative hydrogen ion sources for accelerators

    Science.gov (United States)

    Faircloth, Dan; Lawrie, Scott

    2018-02-01

    An overview of high current (>1 mA) negative hydrogen ion (H-) sources that are currently used on particle accelerators. The current understanding of how H- ions are produced is summarised. Issues relating to caesium usage are explored. The different ways of expressing emittance and beam currents are clarified. Source technology naming conventions are defined and generalised descriptions of each source technology are provided. Examples of currently operating sources are outlined, with their current status and future outlook given. A comparative table is provided.

  7. European hydrogen and fuel cell technology platform. Strategic overview

    Energy Technology Data Exchange (ETDEWEB)

    Alleau, Th

    2005-07-01

    In January 2004, following the recommendation of the High Level Group, the European Commission set up the European Hydrogen and Fuel Cell Technology Platform (HFP) a partnership of over 300 stakeholders. Its brief? To prepare and direct an effective strategy for bringing hydrogen and fuel cells to market in order to exploit their outstanding environmental and economic potential. An Advisory Council of 35 representatives from a broad range of industry, EC, public authority, academic and NGO stakeholders was set up to guide the activity, together with a number of subsidiary bodies. Two steering panels were then charged with defining a Strategic Research Agenda (SRA) and Deployment Strategy (DS) respectively in order to drive the transition forward. This report gives a work in progress strategic overview, with further details provided in the Executive Summaries of the Strategic Research Agenda and Deployment Strategy foundation documents. (authors)

  8. European hydrogen and fuel cell technology platform. Strategic overview

    International Nuclear Information System (INIS)

    Alleau, Th.

    2005-01-01

    In January 2004, following the recommendation of the High Level Group, the European Commission set up the European Hydrogen and Fuel Cell Technology Platform (HFP) a partnership of over 300 stakeholders. Its brief? To prepare and direct an effective strategy for bringing hydrogen and fuel cells to market in order to exploit their outstanding environmental and economic potential. An Advisory Council of 35 representatives from a broad range of industry, EC, public authority, academic and NGO stakeholders was set up to guide the activity, together with a number of subsidiary bodies. Two steering panels were then charged with defining a Strategic Research Agenda (SRA) and Deployment Strategy (DS) respectively in order to drive the transition forward. This report gives a work in progress strategic overview, with further details provided in the Executive Summaries of the Strategic Research Agenda and Deployment Strategy foundation documents. (authors)

  9. NREL biofuels program overview

    Energy Technology Data Exchange (ETDEWEB)

    Mielenz, J.R. [National Renewable Energy Laboratory, Golden, CO (United States)

    1996-09-01

    The NREL Biofuels Program has been developing technology for conversion of biomass to transportation fuels with support from DOE Office of Transportation Technologies Biofuels System Program. This support has gone to both the National Renewable Energy Laboratory, and over 100 subcontractors in universities and industry. This overview will outline the value of the Biofuels development program to the Nation, the current status of the technology development, and what research areas still need further support and progress for the development of a biofuels industry in the US.

  10. Progress of Nuclear Hydrogen Program in Korea

    International Nuclear Information System (INIS)

    Lee, Won Jae

    2009-01-01

    To cope with dwindling fossil fuels and climate change, it is clear that a clean alternative energy that can replace fossil fuels is required. Hydrogen is considered a promising future energy solution because it is clean, abundant and storable and has a high energy density. As other advanced countries, the Korean government had established a long-term vision for transition to the hydrogen economy in 2005. One of the major challenges in establishing a hydrogen economy is how to produce massive quantities of hydrogen in a clean, safe and economical way. Among various hydrogen production methods, the massive, safe and economic production of hydrogen by water splitting using a very high temperature gas-cooled reactor (VHTR) can provide a success path to the hydrogen economy. Particularly in Korea, where usable land is limited, the nuclear production of hydrogen is deemed a practical solution due to its high energy density. To meet the expected demand for hydrogen, the Korea Atomic Energy Institute (KAERI) launched a nuclear hydrogen program in 2004 together with Korea Institute of Energy Research (KIER) and Korea Institute of Science and Technology (KIST). Then, the nuclear hydrogen key technologies development program was launched in 2006, which aims at the development and validation of key and challenging technologies required for the realization of the nuclear hydrogen production demonstration system. In 2008, Korean Atomic Energy Commission officially approved a long-term development plan of the nuclear hydrogen system technologies as in the figure below and now the nuclear hydrogen program became the national agenda. This presentation introduces the current status of nuclear hydrogen projects in Korea and the progress of the nuclear hydrogen key technologies development. Perspectives of nuclear process heat applications are also addressed

  11. IEA agreement on the production and utilization of hydrogen: 2000 annual report

    International Nuclear Information System (INIS)

    Elam, Carolyn C.

    2001-01-01

    The 2000 annual report of the IEA Hydrogen Agreement contains an overview of the agreement, including its guiding principles, latest strategic plan, and a report from the Chairman, Mr. Neil P. Rossmeissl, U.S. Department of Energy. Overviews of the National Hydrogen Programs of nine member countries are given: Canada, Japan, Lithuania, the Netherlands, Norway, Spain, Sweden, Switzerland, and the United States. Task updates are provided on the following annexes: Annex 12 - Metal Hydrides and Carbon for Hydrogen Storage, Annex 13 - Design and Optimization of Integrated Systems, Annex 14 - Photoelectrolytic Production of Hydrogen, and, Annex 15 - Photobiological Production of Hydrogen

  12. IEA agreement on the production and utilization of hydrogen: 2000 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Elam, Carolyn C. [National Renewable Energy Lab., Golden, CO (US)] (ed.)

    2001-12-01

    The 2000 annual report of the IEA Hydrogen Agreement contains an overview of the agreement, including its guiding principles, latest strategic plan, and a report from the Chairman, Mr. Neil P. Rossmeissl, U.S. Department of Energy. Overviews of the National Hydrogen Programs of nine member countries are given: Canada, Japan, Lithuania, the Netherlands, Norway, Spain, Sweden, Switzerland, and the United States. Task updates are provided on the following annexes: Annex 12 - Metal Hydrides and Carbon for Hydrogen Storage, Annex 13 - Design and Optimization of Integrated Systems, Annex 14 - Photoelectrolytic Production of Hydrogen, and, Annex 15 - Photobiological Production of Hydrogen.

  13. DOE Hydrogen and Fuel Cells Program Plan (September 2011)

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-09-01

    The Department of Energy Hydrogen and Fuel Cells Program Plan outlines the strategy, activities, and plans of the DOE Hydrogen and Fuel Cells Program, which includes hydrogen and fuel cell activities within the EERE Fuel Cell Technologies Program and the DOE offices of Nuclear Energy, Fossil Energy, and Science.

  14. Development program of hydrogen production by thermo-chemical water splitting is process

    International Nuclear Information System (INIS)

    Ryutaro Hino

    2005-01-01

    The Japan Atomic Energy Research Institute (JAERI) has been conducting R and D on the HTGR and also on thermo-chemical water splitting hydrogen production by using a iodine-sulfur cycle (IS process) in the HTTR project. The continuous hydrogen production for one week was demonstrated with a bench-scale test apparatus made of glass, and the hydrogen production rare was about 31 NL/h. Based on the test results and know-how obtained through the bench-scale test, a pilot test plant, which has a hydrogen production performance of 30 Nm 3 /h and will be operated under the high pressure up to 2 MPa, is being designed conceptually as the next step of the IS process development aiming to realize a future nuclear hydrogen production coupled with the HTGR. In this paper, we will introduce one-week continuous hydrogen production conducted with the bench-scale test apparatus and the pilot test program including R and D and an analytical system necessary for designing the pilot test plant. MW. Figure 1 shows an overview of the HTTR-IS plant. In this paper, we will introduce latest test results obtained with the bench-scale test apparatus and concepts of key components of the IS process, a sulfuric acid (H 2 SO 4 ) and a sulfur trioxide (SO 3 ) decomposers working under high-temperature corrosive circumstance, are also introduced as well as relating R and D and an analytical system for the pilot plant design. (authors)

  15. 2010 Annual Progress Report: DOE Hydrogen Program

    Energy Technology Data Exchange (ETDEWEB)

    2011-02-01

    In the past year, the DOE Hydrogen Program (the Program) made substantial progress toward its goals and objectives. The Program has conducted comprehensive and focused efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. With emphasis on applications that will effectively strengthen our nation's energy security and improve our stewardship of the environment, the Program engages in research, development, and demonstration of critical improvements in the technologies. Highlights of the Program's accomplishments can be found in the sub-program chapters of this report.

  16. Federal Energy Management Program Overview

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-08-05

    Brochure offers an overview of the Federal Energy Management Program (FEMP), which provides agencies and organizations with the information, tools, and assistance they need to achieve their energy-related requirements and goals through specialized initiatives.

  17. Alternative transportation fuels in the USA: government hydrogen vehicle programs

    International Nuclear Information System (INIS)

    Cannon, J.S.

    1993-01-01

    The linkage between natural gas-based transportation and hydrogen-based transportation strategies, two clean burning gaseous fuels, provides a strong policy rationale for increased government sponsorship of hydrogen vehicle research and demonstration programs. Existing federal and state government hydrogen vehicle projects are discussed in this paper: research at the NREL, alternate-fueled buses, Renewable Hydrogen for the State of Hawaii program, New York state alternative transportation fuels program, Colorado program. 9 refs

  18. Proceedings of the 1999 U.S. DOE Hydrogen Program Review

    Energy Technology Data Exchange (ETDEWEB)

    NREL

    2000-08-28

    The Proceedings of the 1999 US Department of Energy (DOE) Hydrogen Program Review serve as an important technology reference for the DOE Hydrogen Program. This document contains technical progress reports on 60 research and technology validation projects funded by the DOE Hydrogen Program in Fiscal Year 1999, in support of its mission to make hydrogen a cost-effective energy carrier for utility, building, and transportation applications. Each year, the Program conducts a rigorous review of its portfolio of projects, utilizing teams of experts to provide vital feedback on the progress of research.

  19. 2015 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-12-23

    The 2015 Annual Progress Report summarizes fiscal year 2015 activities and accomplishments by projects funded by the DOE Hydrogen and Fuel Cells Program. It covers the program areas of hydrogen production; hydrogen delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes and standards; systems analysis; and market transformation.

  20. 2016 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-03-09

    The 2016 Annual Progress Report summarizes fiscal year 2016 activities and accomplishments by projects funded by the DOE Hydrogen and Fuel Cells Program. It covers the program areas of hydrogen production; hydrogen delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes and standards; systems analysis; market transformation; and Small Business Innovation Research projects.

  1. Proceedings of the DOE chemical/hydrogen energy systems contractor review

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-05-01

    This volume contains 45 papers as well as overviews of the two main project areas: the NASA Hydrogen Energy Storage Technology Project and Brookhaven National Laboratory's program on Electrolysis-Based Hydrogen Storage Systems. Forty-six project summaries are included. Individual papers were processed for inclusion in the Energy Data Base.

  2. Critical overview on water - hydrogen isotopic exchange; a case study

    International Nuclear Information System (INIS)

    Peculea, Marius

    2002-01-01

    Water - hydrogen isotopic exchange process is attractive due to its high separation factor; it is neither corrosive or pollutant and, when used as a technological process of heavy water production, it requires water as raw material. Its efficiency depends strongly on the catalyst performance and geometry of the isotopic water - hydrogen exchange zone in which the isotopic transfer proceeds in two steps: liquid vapor distillation in the presence of an inert gas and a catalytic reaction in vapor - gas gaseous phase. An overview of the water hydrogen isotopic exchange is presented and technological details of the Trail - Canada facility as well as characteristics of the two pilots operated in Romania with Ni, Cr and hydrophobic catalysts are described. The mathematical approach of the successive water-water vapor-hydrogen isotopic exchange process given is based on a mathematical model worked out earlier by Palibroda. Discrepancies between computation and experimental results, lower than 11% for extreme cases and around 6% for the average range are explained as due to the ratio of the exchange potentials. Assumption is made in the theoretical approach that this ratio is positive and constant all long the column while the measurements showed that it varies within 0.7 and 1.1 at the upper end and within - 2.5 and - 4.4 at the lower end, what indicates a strong end effect. In conclusion it is stressed that a competing technological solution is emerging based on a monothermal electrolytic process or a bithermal - bibaric process both for heavy water and tritium separation process

  3. 2009 Annual Progress Report: DOE Hydrogen Program, November 2009 (Book)

    Energy Technology Data Exchange (ETDEWEB)

    2009-11-01

    This report summarizes the hydrogen and fuel cell R&D activities and accomplishments of the DOE Hydrogen Program for FY2009. It covers the program areas of hydrogen production and delivery; fuel cells; manufacturing; technology validation; safety, codes and standards; education; and systems analysis.

  4. Proceedings of the 2000 U.S. DOE Hydrogen Program Review

    Energy Technology Data Exchange (ETDEWEB)

    NREL

    2000-11-01

    The 2000 US Department of Energy (DOE) Hydrogen Program Review was sponsored by the Office of Power Delivery Systems, Office of Power Technologies, US Department of Energy. The proceedings from this meeting serve as an important technology reference for the DOE Hydrogen Program. This document contains technical progress reports on research and technology validation projects funded by the DOE Hydrogen Program in Fiscal Year 2000. The growth of fuel cell technology will provide a basis for the establishment of the hydrogen option into both transportation and electricity supply markets.

  5. 2013 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-12-01

    The 2013 Annual Progress Report summarizes fiscal year 2013 activities and accomplishments by projects funded by the DOE Hydrogen Program. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing; technology validation; safety, codes and standards; market transformation; and systems analysis.

  6. 2014 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-11-01

    The 2014 Annual Progress Report summarizes fiscal year 2014 activities and accomplishments by projects funded by the DOE Hydrogen Program. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing; technology validation; safety, codes and standards; market transformation; and systems analysis.

  7. 2011 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Energy Technology Data Exchange (ETDEWEB)

    Satyapal, Sunita [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2011-11-01

    The 2011 Annual Progress Report summarizes fiscal year 2011 activities and accomplishments by projects funded by the DOE Hydrogen Program. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing; technology validation; safety, codes and standards; education; market transformation; and systems analysis.

  8. USNRC HTGR safety research program overview

    International Nuclear Information System (INIS)

    Foulds, R.B.

    1982-01-01

    An overview is given of current activities and planned research efforts of the US Nuclear Regulatory Commission (NRC) HTGR Safety Program. On-going research at Brookhaven National Laboratory, Oak Ridge National Laboratory, Los Alamos National Laboratory, and Pacific Northwest Laboratory are outlined. Tables include: HTGR Safety Issues, Program Tasks, HTGR Computer Code Library, and Milestones for Long Range Research Plan

  9. Overview of interstate hydrogen pipeline systems

    International Nuclear Information System (INIS)

    Gillette, J.L.; Kolpa, R.L.

    2008-01-01

    The use of hydrogen in the energy sector of the United States is projected to increase significantly in the future. Current uses are predominantly in the petroleum refining sector, with hydrogen also being used in the manufacture of chemicals and other specialized products. Growth in hydrogen consumption is likely to appear in the refining sector, where greater quantities of hydrogen will be required as the quality of the raw crude decreases, and in the mining and processing of tar sands and other energy resources that are not currently used at a significant level. Furthermore, the use of hydrogen as a transportation fuel has been proposed both by automobile manufacturers and the federal government. Assuming that the use of hydrogen will significantly increase in the future, there would be a corresponding need to transport this material. A variety of production technologies are available for making hydrogen, and there are equally varied raw materials. Potential raw materials include natural gas, coal, nuclear fuel, and renewables such as solar, wind, or wave energy. As these raw materials are not uniformly distributed throughout the United States, it would be necessary to transport either the raw materials or the hydrogen long distances to the appropriate markets. While hydrogen may be transported in a number of possible forms, pipelines currently appear to be the most economical means of moving it in large quantities over great distances. One means of controlling hydrogen pipeline costs is to use common rights-of-way (ROWs) whenever feasible. For that reason, information on hydrogen pipelines is the focus of this document. Many of the features of hydrogen pipelines are similar to those of natural gas pipelines. Furthermore, as hydrogen pipeline networks expand, many of the same construction and operating features of natural gas networks would be replicated. As a result, the description of hydrogen pipelines will be very similar to that of natural gas pipelines

  10. Overview of interstate hydrogen pipeline systems.

    Energy Technology Data Exchange (ETDEWEB)

    Gillette, J .L.; Kolpa, R. L

    2008-02-01

    The use of hydrogen in the energy sector of the United States is projected to increase significantly in the future. Current uses are predominantly in the petroleum refining sector, with hydrogen also being used in the manufacture of chemicals and other specialized products. Growth in hydrogen consumption is likely to appear in the refining sector, where greater quantities of hydrogen will be required as the quality of the raw crude decreases, and in the mining and processing of tar sands and other energy resources that are not currently used at a significant level. Furthermore, the use of hydrogen as a transportation fuel has been proposed both by automobile manufacturers and the federal government. Assuming that the use of hydrogen will significantly increase in the future, there would be a corresponding need to transport this material. A variety of production technologies are available for making hydrogen, and there are equally varied raw materials. Potential raw materials include natural gas, coal, nuclear fuel, and renewables such as solar, wind, or wave energy. As these raw materials are not uniformly distributed throughout the United States, it would be necessary to transport either the raw materials or the hydrogen long distances to the appropriate markets. While hydrogen may be transported in a number of possible forms, pipelines currently appear to be the most economical means of moving it in large quantities over great distances. One means of controlling hydrogen pipeline costs is to use common rights-of-way (ROWs) whenever feasible. For that reason, information on hydrogen pipelines is the focus of this document. Many of the features of hydrogen pipelines are similar to those of natural gas pipelines. Furthermore, as hydrogen pipeline networks expand, many of the same construction and operating features of natural gas networks would be replicated. As a result, the description of hydrogen pipelines will be very similar to that of natural gas pipelines

  11. Seismic safety margins research program overview

    International Nuclear Information System (INIS)

    Tokarz, F.J.; Smith, P.D.

    1978-01-01

    A multiyear seismic research program has been initiated at the Lawrence Livermore Laboratory. This program, the Seismic Safety Margins Research Program (SSMRP) is funded by the U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research. The program is designed to develop a probabilistic systems methodology for determining the seismic safety margins of nuclear power plants. Phase I, extending some 22 months, began in July 1978 at a funding level of approximately $4.3 million. Here we present an overview of the SSMRP. Included are discussions on the program objective, the approach to meet the program goal and objectives, end products, the probabilistic systems methodology, and planned activities for Phase I

  12. NASA/FAA Tailplane Icing Program Overview

    Science.gov (United States)

    Ratvasky, Thomas P.; VanZante, Judith Foss; Riley, James T.

    1999-01-01

    The effects of tailplane icing were investigated in a four-year NASA/FAA Tailplane Icing, Program (TIP). This research program was developed to improve the understanding, of iced tailplane aeroperformance and aircraft aerodynamics, and to develop design and training aides to help reduce the number of incidents and accidents caused by tailplane icing. To do this, the TIP was constructed with elements that included icing, wind tunnel testing, dry-air aerodynamic wind tunnel testing, flight tests, and analytical code development. This paper provides an overview of the entire program demonstrating the interconnectivity of the program elements and reports on current accomplishments.

  13. Research opportunities in photochemical sciences for the DOE Hydrogen Program

    Energy Technology Data Exchange (ETDEWEB)

    Padro, C.E.G. [National Renewable Energy Laboratory, Golden, CO (United States)

    1996-09-01

    For several decades, interest in hydrogen has ebbed and flowed. With the OPEC oil embargo of the 1970`s and the promise of inexpensive nuclear power, hydrogen research focused on fuel applications. The economics and the realities of nuclear power shifted the emphasis to hydrogen as an energy carrier. Environmental benefits took center stage as scientists and politicians agreed on the potential threat of carbon dioxide emissions to global climate change. The U.S. Department of Energy (DOE) Office of Utility Technologies manages the National Hydrogen Program. In this role, the DOE provides national leadership and acts as a catalyst through partnerships with industry. These partnerships are needed to assist in the transition of sustainable hydrogen systems from a government-supported research and development phase to commercial successes in the marketplace. The outcome of the Program is expected to be the orderly phase-out of fossil fuels as a result of market-driven technology advances, with a least-cost, environmentally benign energy delivery system. The program seeks to maintain its balance of high-risk, long-term research in renewable based technologies that address the environmental benefits, with nearer-term, fossil based technologies that address infrastructure and market issues. National laboratories, universities, and industry are encouraged to participate, cooperate, and collaborate in the program. The U.S. Hydrogen Program is poised to overcome the technical and economic challenges that currently limit the impact of hydrogen on our energy picture, through cooperative research, development, and demonstrations.

  14. Overview of the Hydrogen Financial Analysis Scenario Tool (H2FAST); NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, Marc; Bush, Brian; Penev, Michael

    2015-05-12

    This presentation provides an introduction to the Hydrogen Financial Analysis Scenario Tool (H2FAST) and includes an overview of each of the three versions of H2FAST: the Web tool, the Excel spreadsheet version, and the beta version of the H2FAST Business Case Scenario tool.

  15. Hydrogen research and development in Hawaii: Hawaii natural energy institute's hydrogen from renewable resources research program

    International Nuclear Information System (INIS)

    McKinley, K.R.; Rocheleau, R.E.; Takahashi, P.K.; Jensen, C.M.

    1993-01-01

    Hawaii, an energy-vulnerable state, has launched a Renewable Resources Research Program, focusing on hydrogen production and storage; the main tasks of this effort are: photoelectrochemical production of hydrogen through the use of coated silicon electrodes; solar conversion and the production of hydrogen with cyanobacteria; improved hydrogen storage through the use of nonclassical poly-hydride metal complexes. 10 refs

  16. State of the art of biological hydrogen production processes

    International Nuclear Information System (INIS)

    Loubette, N.; Junker, M.

    2006-01-01

    Our report gives an overview of hydrogen production processes with bacteria or algae. 4 main processes are described: water biophotolysis, photo- fermentation biological CO conversion and dark fermentation. Chemical phenomena which lead to hydrogen generation are exp/aired. Performances, limits and outlook are given for each process. Main projects, programs and key players involved in this field of research have been listed. This paper resumes few results of this report. (authors)

  17. State of the art of biological hydrogen production processes

    International Nuclear Information System (INIS)

    Nicolas Loubette; Michel Junker

    2006-01-01

    Our report gives an overview of hydrogen production processes with bacteria or algae. 4 main processes are described: water bio-photolysis, photo-fermentation biological CO conversion and dark fermentation. Chemical phenomena which lead to hydrogen generation are explained. Performances, limits and outlook are given for each process. Main projects, programs and key players involved in this field of research have been listed. This paper resumes few results of this report. (authors)

  18. 2008 DOE Hydrogen Program Annual Merit Review and Peer Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2008-06-13

    This report summarizes comments from the Peer Review Panel at the 2008 DOE Hydrogen Program Annual Merit Review, held on June 9-13, 2008, in Arlington, Virginia. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; technology validation; safety, codes, and standards; education; systems analysis; and manufacturing.

  19. 2010 DOE Hydrogen Program Annual Merit Review and Peer Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2010-12-01

    This report summarizes comments from the Peer Review Panel at the 2010 DOE Hydrogen Program Annual Merit Review, held on June 7-11, 2010, in Washington, DC. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes, and standards; education; and systems analysis.

  20. 2009 DOE Hydrogen Program Annual Merit Review and Peer Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    Satyapal, S. [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2009-10-01

    This report summarizes comments from the Peer Review Panel at the 2009 DOE Hydrogen Program Annual Merit Review, held on May 18-22, 2009, in Arlington, Virginia. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; education; safety, codes, and standards; technology validation; systems analysis; and manufacturing R&D.

  1. The hydrogen village in the Greater Toronto Area (GTA)

    International Nuclear Information System (INIS)

    Kimmel, T.B.; Smith, R.

    2004-01-01

    'Full text:' A Hydrogen Village (H2V) is a public/private partnership with an objective to accelerate the commercialization of hydrogen and fuel cell technology in Canada and firmly position Canada as the international leader in this sector. The first Hydrogen Village is planned for the Greater Toronto Area (GTA) and will make use of existing hydrogen and fuel cell deployments to assist in its creation. This five year GTA Hydrogen Village program is planned to begin operations in 2004. The Hydrogen Village will demonstrate and deploy various hydrogen production and delivery techniques as well as fuel cells for stationary, transportation (mobile) and portable applications. This paper will provide an overview of the Hydrogen Village and identify the missions, objectives, members and progress within the H2V. (author)

  2. 2016 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Energy Technology Data Exchange (ETDEWEB)

    Satyapal, Sunita [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-02-01

    In the past year, the DOE Hydrogen Program (the Program) made substantial progress toward its goals and objectives. The Program has conducted comprehensive and focused efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. With emphasis on applications that will effectively strengthen our nation's energy security and improve our stewardship of the environment, the Program engages in research, development, and demonstration of critical improvements in the technologies. Highlights of the Program's accomplishments can be found in the sub-program chapters of this report.

  3. 2015 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Energy Technology Data Exchange (ETDEWEB)

    Popovich, Neil

    2015-12-01

    In the past year, the DOE Hydrogen Program (the Program) made substantial progress toward its goals and objectives. The Program has conducted comprehensive and focused efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. With emphasis on applications that will effectively strengthen our nation's energy security and improve our stewardship of the environment, the Program engages in research, development, and demonstration of critical improvements in the technologies. Highlights of the Program's accomplishments can be found in the sub-program chapters of this report.

  4. 2012 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Energy Technology Data Exchange (ETDEWEB)

    2012-12-01

    In the past year, the DOE Hydrogen Program (the Program) made substantial progress toward its goals and objectives. The Program has conducted comprehensive and focused efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. With emphasis on applications that will effectively strengthen our nation's energy security and improve our stewardship of the environment, the Program engages in research, development, and demonstration of critical improvements in the technologies. Highlights of the Program's accomplishments can be found in the sub-program chapters of this report.

  5. Hydrogen - A new green energy

    International Nuclear Information System (INIS)

    Barnu, Franck

    2013-01-01

    A set of articles proposes an overview of the role hydrogen might have as energy in the energy transition policy, a review of different areas of research related to the hydrogen sector, and presentations of some remarkable innovations in different specific fields. Hydrogen might be an asset in energy transition because production modes (like electrolysis) result in an almost carbon-free or at least low-carbon hydrogen production. Challenges and perspectives are evoked: energy storage for intermittent energies (the MYRTE platform), the use of a hydrogen-natural mix (GRHYD program), the development of fuel cells for transport applications, and co-generation (Japan is the leader). Different French research organisations are working on different aspects and areas: the H2E program by Air Liquide, fuel cell technologies by GDF Suez, power electrolyzers and cells by Areva. Some aspects and research areas are more specifically detailed: high temperature electrolysis (higher efficiencies, synthesis of methane from hydrogen), fuel cells (using less platinum, and using ceramics for high temperatures), the perspective of solid storage solutions (hydrogen bottles in composite materials, development of 'hydrogen sponges', search for new hydrides). Innovations concern a project car, storage and production (Greenergy Box), the McPhy Energy storage system, an electric bicycle with fuel cell, easy to transport storage means by Air Liquide and Composites Aquitaine, development of energy autonomy, fuel cells for cars, electrolyzers using the Proton Exchange Membrane or PEM technology

  6. Nevada Nuclear Waste Storage Investigations Quality-Assurance Program Plan: management and overview

    International Nuclear Information System (INIS)

    1981-10-01

    This Quality Assurance Program Plan (QAPP) defines the quality assurance program in effect for those activities of the Nevada Nuclear Waste Storage (NNWSI) that are directly controlled by: DOE/NV, the Technical Overview Contractor, and the Quality Assurance Overview Contractor. It is intended as a supplement to the NNWSI-QAP

  7. Commercial Crew Development Program Overview

    Science.gov (United States)

    Russell, Richard W.

    2011-01-01

    NASA's Commercial Crew Development Program is designed to stimulate efforts within the private sector that will aid in the development and demonstration of safe, reliable, and cost-effective space transportation capabilities. With the goal of delivery cargo and eventually crew to Low Earth Orbit (LEO) and the International Space Station (ISS) the program is designed to foster the development of new spacecraft and launch vehicles in the commercial sector. Through Space Act Agreements (SAAs) in 2011 NASA provided $50M of funding to four partners; Blue Origin, The Boeing Company, Sierra Nevada Corporation, and SpaceX. Additional, NASA has signed two unfunded SAAs with ATK and United Space Alliance. This paper will give a brief summary of these SAAs. Additionally, a brief overview will be provided of the released version of the Commercial Crew Development Program plans and requirements documents.

  8. The Australian Hydrogen and Fuel Cells Education Program

    International Nuclear Information System (INIS)

    Luigi Bonadio

    2006-01-01

    The next generation of engineers and scientists will face great technical, economic and political challenges to satisfy increasing demands for a secure, reliable and affordable global energy system that maintains and enhances current standards of living. The Australian Hydrogen and Fuel Cells Education Program aims to bolster the quality and relevance of primary and secondary school teaching in emerging areas of science, technology and environmental/sustainability studies using hydrogen, in its capacity as a versatile energy carrier, as the educational basis for teacher and student learning. Critical advances in specific areas of hydrogen production, distribution, storage and end-use technologies arise when students are engaged to develop and apply a broad range of disciplinary and interdisciplinary knowledge and practical skills. A comprehensive hydrogen and fuel cell technology teaching module will be developed to complement existing fuels and energy curricula across Australian schools. The pilot program will be delivered via the collaboration of nine trial schools, a broad range of technical and pedagogy experts and representatives of professional bodies and industry. The program features essential and extensive teacher consultation, a professional learning and development course, industry site visits and a dedicated research and evaluation study. This initiative aims to bolster teacher literacy and student participation in the design, construction and operation of various hydrogen and fuel cell devices and extended activities. Students will reflect on and formally present their learning experiences via several dedicated fora including an awards ceremony where outstanding performance of leading schools, teachers and student groups within the cluster will be acknowledged. (authors)

  9. The Australian Hydrogen and Fuel Cells Education Program

    Energy Technology Data Exchange (ETDEWEB)

    Luigi Bonadio [Senior Consultant Luigi Bonadio and Associates (Australia)

    2006-07-01

    The next generation of engineers and scientists will face great technical, economic and political challenges to satisfy increasing demands for a secure, reliable and affordable global energy system that maintains and enhances current standards of living. The Australian Hydrogen and Fuel Cells Education Program aims to bolster the quality and relevance of primary and secondary school teaching in emerging areas of science, technology and environmental/sustainability studies using hydrogen, in its capacity as a versatile energy carrier, as the educational basis for teacher and student learning. Critical advances in specific areas of hydrogen production, distribution, storage and end-use technologies arise when students are engaged to develop and apply a broad range of disciplinary and interdisciplinary knowledge and practical skills. A comprehensive hydrogen and fuel cell technology teaching module will be developed to complement existing fuels and energy curricula across Australian schools. The pilot program will be delivered via the collaboration of nine trial schools, a broad range of technical and pedagogy experts and representatives of professional bodies and industry. The program features essential and extensive teacher consultation, a professional learning and development course, industry site visits and a dedicated research and evaluation study. This initiative aims to bolster teacher literacy and student participation in the design, construction and operation of various hydrogen and fuel cell devices and extended activities. Students will reflect on and formally present their learning experiences via several dedicated fora including an awards ceremony where outstanding performance of leading schools, teachers and student groups within the cluster will be acknowledged. (authors)

  10. DOE Hydrogen Program 2004 Annual Merit Review and Peer Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    2004-10-01

    This document summarizes the project evaluations and comments from the DOE Hydrogen Program 2004 Annual Program Review. Hydrogen production, delivery and storage; fuel cells; technology validation; safety, codes and standards; and education R&D projects funded by DOE in FY2004 are reviewed.

  11. DOE Solar Energy Technologies Program: Overview and Highlights

    Energy Technology Data Exchange (ETDEWEB)

    2006-05-01

    A non-technical overview of the U.S. Department of Energy's Solar Energy Technologies Program, including sections on photovoltaics (PV), concentrating solar power, and solar heating and lighting R&D.

  12. Fuel cell program - Overview reports 2007; Programm Brennstoffzellen inkl. Wasserstoff - Ueberblicksberichte der BFE-Programmleiter 2007

    Energy Technology Data Exchange (ETDEWEB)

    Luzzi, A.; Spirig, M.

    2008-07-01

    This report for the Swiss Federal Office of Energy (SFOE) presents the overview reports made by SFOE Heads of Program on work done in 2007. Projects reported on in the natural gas-fired fuel cell area include the EU-project REAL-SFOC, the long-term testing of anode-supported SOFC stacks, intermediate-temperature fuel cells based on proton conducting electrolytes, the interdisciplinary ONEBAT project and lifetime-enhancement of SOFC stacks for CHP applications. In the polymer-electrolyte fuel cell (PEFC) area, projects concerning proton-conducting polymer membranes, factors limiting the lifetime of fuel cell membranes, a new highly active oxygen reduction electrode for PEM fuel cell and zinc/air battery applications, the enhancement of PEFC durability and reliability, model-based investigation of PEFC performance, and local gas analysis of PE fuel cells are briefly reported on. Long-term research activities in the hydrogen technology area reported on include those concerning the photo-chemical conversion and storage of solar energy and the storage of hydrogen in metallic and complex hydrides. Further projects reported on include those concerning the physical aspects of hydrides for system integration and safety and new, complex metal hydrides. Swiss national and international co-ordination is reviewed in the areas of fuel cell technology and hydrogen technology. Work done in several projects run within the framework of the IEA's Advanced Fuel Cells Program is reviewed. Several pilot and demonstration (P and D) projects are also reported on in the natural-gas SOFC and PEFC areas. Comments on the 2007 results and a review of work to be done in 2008, along with a list of R, D, P and D projects, complete the report.

  13. Proceedings of the 1994 DOE/NREL Hydrogen Program Review, April 18--21, 1994, Livermore, California

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    The US Department of Energy has conducted programs of research and development in hydrogen and related technologies since 1975. The current program, conducted in accordance with the DOE Hydrogen Program Plan FY 1993--FY 1997 published in June 1992, establishes program priorities and guidance for allocating funding. The core program, currently under the Office of Energy Management, supports projects in the areas of hydrogen production, storage, and systems research. At an annual program review, each research project is evaluated by a panel of technical experts for technical quality, progress, and programmatic benefit. This Proceedings of the April 1994 Hydrogen Program Review compiles all research projects supported by the Hydrogen Program during FY 1994. For those people interested in the status of hydrogen technologies, we hope that the Proceedings will serve as a useful technical reference. Individual reports are processed separately.

  14. Human genome program report. Part 1, overview and progress

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    This report contains Part 1 of a two-part report to reflect research and progress in the U.S. Department of Energy Human Genome Program from 1994 through 1996, with specified updates made just before publication. Part 1 consists of the program overview and report on progress.

  15. DOE Hydrogen Program: 2010 Annual Merit Review and Peer Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    2010-12-01

    This document summarizes the comments provided by peer reviewers on hydrogen and fuel cell projects presented at the FY 2010 U.S. Department of Energy (DOE) Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting (AMR), held June 7-11, 2010 in Washington, D.C.

  16. Overview of Department of Energy programs

    International Nuclear Information System (INIS)

    Hill, J.R.

    1985-01-01

    An overview is presented of policies and standards of the US DOE in the protection of the public, government employees, and government property from damage caused by natural phenomena. Included are Department of Energy orders covering policy and standards for natural phenomena hazards mitigation and Office of Nuclear Safety projects related to natural phenomena hazards mitigation. National Federal programs, committees, and reports are listed. 18 references

  17. Federal Energy Efficiency through Utility Partnerships: Federal Energy Management Program (FEMP) Program Overview Fact Sheet

    International Nuclear Information System (INIS)

    Beattie, D.; Wolfson, M.

    2001-01-01

    This Utility Program Overview describes how the Federal Energy Management Program (FEMP) utility program assists Federal energy managers. The document identifies both a utility financing mechanism and FEMP technical assistance available to support agencies' implementation of energy and water efficiency methods and renewable energy projects

  18. Hydrogen [Brief history of the discovery and use of hydrogen since the 16. century

    International Nuclear Information System (INIS)

    Alleau, Thierry

    2015-10-01

    After a brief history of the discovery and use of hydrogen since the 16. century, the author notices that this gas is now mainly used for its chemical properties and energetic performance. He indicates and comments the main chemical, physical and energetic characteristics, and then presents the different production processes: from water (with different electrolytes: alkaline liquid electrolyte, per-fluorinated acid solid electrolyte, ceramic acid solid electrolyte) or from carbonated, fossil or biological fuels. He proposes an overview of issues like transport, storage and distribution, evokes the present cost (great variations between countries), and indicates how it is used in the chemical, petrochemical and energy industries. He briefly discusses other issues: risks, standards and regulation. He proposes a brief overview of international policies and programs, and indicates some research programs: Ene-Farm in Japan for co-generation (heat and electricity from fuel cell) and light vehicles in different countries

  19. 2011 Annual Progress Report: DOE Hydrogen and Fuel Cells Program (Book)

    Energy Technology Data Exchange (ETDEWEB)

    2011-11-01

    In the past year, the DOE Hydrogen and Fuel Cells Program (the Program) made substantial progress toward its goals and objectives. The Program has conducted comprehensive and focused efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. With emphasis on applications that will effectively strengthen our nation's energy security and improve our stewardship of the environment, the Program engages in research, development, and demonstration of critical improvements in the technologies. Highlights of the Program's accomplishments can be found in the sub-program chapters of this report.

  20. Overview of the U.S. Department of Energy's Isotope Programs

    International Nuclear Information System (INIS)

    Carty, J.

    2004-01-01

    This presentation provides an overview of the U.S. Department of Energy's Isotopes Program. The charter of the Isotope Programs covers the production and sale of radioactive and stable isotopes, associated byproducts, surplus materials, and related isotope services

  1. Hydrogen Fuel Cell Analysis: Lessons Learned from Stationary Power Generation Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Scott E. Grasman; John W. Sheffield; Fatih Dogan; Sunggyu Lee; Umit O. Koylu; Angie Rolufs

    2010-04-30

    This study considered opportunities for hydrogen in stationary applications in order to make recommendations related to RD&D strategies that incorporate lessons learned and best practices from relevant national and international stationary power efforts, as well as cost and environmental modeling of pathways. The study analyzed the different strategies utilized in power generation systems and identified the different challenges and opportunities for producing and using hydrogen as an energy carrier. Specific objectives included both a synopsis/critical analysis of lessons learned from previous stationary power programs and recommendations for a strategy for hydrogen infrastructure deployment. This strategy incorporates all hydrogen pathways and a combination of distributed power generating stations, and provides an overview of stationary power markets, benefits of hydrogen-based stationary power systems, and competitive and technological challenges. The motivation for this project was to identify the lessons learned from prior stationary power programs, including the most significant obstacles, how these obstacles have been approached, outcomes of the programs, and how this information can be used by the Hydrogen, Fuel Cells & Infrastructure Technologies Program to meet program objectives primarily related to hydrogen pathway technologies (production, storage, and delivery) and implementation of fuel cell technologies for distributed stationary power. In addition, the lessons learned address environmental and safety concerns, including codes and standards, and education of key stakeholders.

  2. FY 2005 Annual Progress Report for the DOE Hydrogen Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-10-01

    In cooperation with industry, academia, national laboratories, and other government agencies, the Department of Energy's Hydrogen Program is advancing the state of hydrogen and fuel cell technologies in support of the President's Hydrogen Fuel Initiative. The initiative seeks to develop hydrogen, fuel cell, and infrastructure technologies needed to make it practical and cost-effective for Americans to choose to use fuel cell vehicles by 2020. Significant progress was made in fiscal year 2005 toward that goal.

  3. The prospects for hydrogen as an energy carrier: an overview of hydrogen energy and hydrogen energy systems

    International Nuclear Information System (INIS)

    Rosen, Marc A.; Koohi-Fayegh, Seama

    2016-01-01

    Hydrogen is expected to play a key role as an energy carrier in future energy systems of the world. As fossil-fuel supplies become scarcer and environmental concerns increase, hydrogen is likely to become an increasingly important chemical energy carrier and eventually may become the principal chemical energy carrier. When most of the world's energy sources become non-fossil based, hydrogen and electricity are expected to be the two dominant energy carriers for the provision of end-use services. In such a ''hydrogen economy,'' the two complementary energy carriers, hydrogen and electricity, are used to satisfy most of the requirements of energy consumers. A transition era will bridge the gap between today's fossil-fuel economy and a hydrogen economy, in which non-fossil-derived hydrogen will be used to extend the lifetime of the world's fossil fuels - by upgrading heavy oils, for instance - and the infrastructure needed to support a hydrogen economy is gradually developed. In this paper, the role of hydrogen as an energy carrier and hydrogen energy systems' technologies and their economics are described. Also, the social and political implications of hydrogen energy are examined, and the questions of when and where hydrogen is likely to become important are addressed. Examples are provided to illustrate key points. (orig.)

  4. The prospects for hydrogen as an energy carrier: an overview of hydrogen energy and hydrogen energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, Marc A.; Koohi-Fayegh, Seama [Ontario Univ., Oshawa, ON (Canada). Inst. of Technology

    2016-02-15

    Hydrogen is expected to play a key role as an energy carrier in future energy systems of the world. As fossil-fuel supplies become scarcer and environmental concerns increase, hydrogen is likely to become an increasingly important chemical energy carrier and eventually may become the principal chemical energy carrier. When most of the world's energy sources become non-fossil based, hydrogen and electricity are expected to be the two dominant energy carriers for the provision of end-use services. In such a ''hydrogen economy,'' the two complementary energy carriers, hydrogen and electricity, are used to satisfy most of the requirements of energy consumers. A transition era will bridge the gap between today's fossil-fuel economy and a hydrogen economy, in which non-fossil-derived hydrogen will be used to extend the lifetime of the world's fossil fuels - by upgrading heavy oils, for instance - and the infrastructure needed to support a hydrogen economy is gradually developed. In this paper, the role of hydrogen as an energy carrier and hydrogen energy systems' technologies and their economics are described. Also, the social and political implications of hydrogen energy are examined, and the questions of when and where hydrogen is likely to become important are addressed. Examples are provided to illustrate key points. (orig.)

  5. Hydrogen Temperature-Programmed Desorption (H2 TPD) of Supported Platinum Catalysts.

    NARCIS (Netherlands)

    Koningsberger, D.C.; Miller, J.T.; Meyers, B.L.; Modica, F.S.; Lane, G.S.; Vaarkamp, M.

    1993-01-01

    Hydrogen temperature-programmed desorption (TPD) of supported platinum catalysts, Pt/KLTL, Pt/H-LTL, Pt/K-MAZ, Pt/H-MAZ, Pt/-Al2O3, and Pt/SiO2, was performed after hydrogen reduction at 300, 450, or 650°C. For all catalysts, reversible desorption of chemisorbed hydrogen occurred at approximately

  6. Hydrogen energy applications

    International Nuclear Information System (INIS)

    Okken, P.A.

    1992-10-01

    For the Energy and Material consumption Scenarios (EMS), by which emission reduction of CO 2 and other greenhouse gases can be calculated, calculations are executed by means of the MARKAL model (MARket ALlocation, a process-oriented dynamic linear programming model to minimize the costs of the energy system) for the Netherlands energy economy in the period 2000-2040, using a variable CO 2 emission limit. The results of these calculations are published in a separate report (ECN-C--92-066). The use of hydrogen can play an important part in the above-mentioned period. An overview of several options to produce or use hydrogen is given and added to the MARKAL model. In this report techno-economical data and estimates were compiled for several H 2 -application options, which subsequently also are added to the MARKAL model. After a brief chapter on hydrogen and the impact on the reduction of CO 2 emission attention is paid to stationary and mobile applications. The stationary options concern the mixing of natural gas with 10% hydrogen, a 100% substitution of natural gas by hydrogen, the use of a direct steam generator (combustion of hydrogen by means of pure oxygen, followed by steam injection to produce steam), and the use of fuel cells. The mobile options concern the use of hydrogen in the transportation sector. In brief, attention is paid to a hydrogen passenger car with an Otto engine, and a hydrogen passenger car with a fuel cell, a hybrid (metal)-hydride car, a hydrogen truck, a truck with a methanol fuel cell, a hydrogen bus, an inland canal boat with a hydrogen fuel cell, and finally a hydrogen airplane. 2 figs., 15 tabs., 1 app., 26 refs

  7. Overview of international fusion technology programs

    International Nuclear Information System (INIS)

    Coffman, F.E.; Baublitz, J.E.; Beard, D.S.; Cohen, M.M.; Dalder, E.N.C.; Finfgeld, C.R.; Haas, G.M.; Head, C.R.; Murphy, M.R.; Nardella, G.R.

    1979-01-01

    World fusion technology programs, as well as current progress and future plans for the U.S., are discussed. Regarding conceptual design, the international INTOR tokamak study, the Garching Ignition Test Reactor Study, the U.S. Engineering Test Facility conceptual design, the Argonne National Laboratory Commercial Tokamak Study, mirror conceptual designs, and alternate concepts and applications studies are summarized. With regard to magnetics, progress to date in the large coil program and pulsed coil program is summarized. In the area of plasma heating and fueling and exhaust, work on a new positive ion source research and development program at Lawrence Berkeley Laboratory and Oak Ridge National Laboratory is described, as is negative ion work. Tradeoff considerations for radio-frequency heating alternatives are made, and a new 60-100 GHz electron cyclotron heating research and development program is discussed. Progress and plans for solid hydrogen pellet injector development are analyzed, as are plans for a divertor technology initiative. A brief review of the U.S. alternate applications and environment and safety program is included

  8. Handbook of hydrogen energy

    CERN Document Server

    Sherif, SA; Stefanakos, EK; Steinfeld, Aldo

    2014-01-01

    ""This book provides an excellent overview of the hydrogen economy and a thorough and comprehensive presentation of hydrogen production and storage methods.""-Scott E. Grasman, Rochester Institute of Technology, New York, USA

  9. TA-55 and Sigma Overview

    Energy Technology Data Exchange (ETDEWEB)

    Spearing, Dane Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Safeguards Science and Technology Group (NEN-1)

    2016-11-29

    These are slides from a facility overview presentation for visiting agencies to Los Alamos National Laboratory (LANL). The TA-55 Plutonium Facility (PF-4) is discussed in detail. PF-4 is a unique resource for US plutonium programs. The basic design is flexible and has adapted to changing national needs. It is a robust facility with strong safety and security implementation. It supports a variety of national programs. It will continue for many years into the future. Sigma is then discussed in detail, which handles everything from hydrogen to uranium. It has been in long term service to the Nation (nearly 60 years). It has a flexible authorization basis to handle almost the entire periodic table. It has a wide breadth of prototyping and characterization capabilities. It has integrated program and line management.

  10. Development of a National Center for Hydrogen Technology. A Summary Report of Activities Completed at the National Center for Hydrogen Technology - Year 6

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, Michael [Univ. of North Dakota, Grand Forks, ND (United States)

    2012-08-01

    The Energy & Environmental Research Center (EERC) located in Grand Forks, North Dakota, has operated the National Center for Hydrogen Technology (NCHT) since 2005 under a Cooperative Agreement with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL). The EERC has a long history of hydrogen generation and utilization from fossil fuels, and under the NCHT Program, the EERC has accelerated its research on hydrogen generation and utilization topics. Since the NCHT's inception, the EERC has received more than $65 million in funding for hydrogen-related projects ($24 million for projects in the NCHT, which includes federal and corporate partner development funds) involving more than 85 partners (27 with the NCHT). The NCHT Program's nine activities span a broad range of technologies that align well with the Advanced Fuels Program goals and, specifically, those described in the Hydrogen from Coal Program research, development, and demonstration (RD&D) plan that refers to realistic testing of technologies at adequate scale, process intensification, and contaminant control. A number of projects have been completed that range from technical feasibility of several hydrogen generation and utilization technologies to public and technical education and outreach tools. Projects under the NCHT have produced hydrogen from natural gas, coal, liquid hydrocarbons, and biomass. The hydrogen or syngas generated by these processes has also been purified in many of these instances or burned directly for power generation. Also, several activities are still undergoing research, development, demonstration, and commercialization at the NCHT. This report provides a summary overview of the projects completed in Year 6 of the NCHT. Individual activity reports are referenced as a source of detailed information on each activity.

  11. Proceedings of the 1998 U.S. DOE Hydrogen Program Review: Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    This document contains technical progress reports on 42 research projects funded by the DOE Hydrogen Program in Fiscal Year 1998, in support of its mission to make hydrogen a cost-effective energy carrier for utility, building, and transportation applications. Each year, the Program conducts a rigorous review of its portfolio of projects, utilizing teams of experts to provide vital feedback on the progress of research. These proceedings serve as an important technology reference for the DOE Hydrogen Program. The papers in Volume 2 are arranged under the following topical sections: Storage and separation systems; Thermal systems; and Transportation systems. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  12. 2015 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2015-10-01

    This report summarizes comments from the Peer Review Panel at the 2015 DOE Hydrogen and Fuel Cells Program Annual Merit Review, held on June 8-12, 2015, in Arlington, Virginia. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes, and standards; market transformation; and systems analysis.

  13. 2011 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-09-01

    This report summarizes comments from the Peer Review Panel at the 2011 DOE Hydrogen and Fuel Cells Program Annual Merit Review, held on May 9-13, 2011, in Arlington, Virginia. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes, and standards; education; market transformation; and systems analysis.

  14. 2013 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-10-01

    This report summarizes comments from the Peer Review Panel at the 2013 DOE Hydrogen and Fuel Cells Program Annual Merit Review, held on May 13-17, 2013, in Arlington, Virginia. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes, and standards; market transformation; and systems analysis.

  15. 2014 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-10-01

    This report summarizes comments from the Peer Review Panel at the 2014 DOE Hydrogen and Fuel Cells Program Annual Merit Review, held on June 16-20, 2014, in Washington, DC. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes, and standards; market transformation; and systems analysis.

  16. 2012 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2012-09-01

    This report summarizes comments from the Peer Review Panel at the 2012 DOE Hydrogen and Fuel Cells Program Annual Merit Review, held on May 14-18, 2012, in Arlington, Virginia. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes, and standards; education; market transformation; and systems analysis.

  17. DOE Hydrogen Program: 2005 Annual Merit Review and Peer Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    Chalk, S. G.

    2005-09-01

    This report summarizes comments from the Peer Review Panel at the FY 2005 DOE Hydrogen Program Annual Merit Review, held on May 23-26, 2005, in Arlington, Virginia. The projects evaluated support the Department of Energy and President Bush's Hydrogen Initiative. The results of this merit review and peer evaluation are major inputs used by DOE to make funding decisions. Project areas include hydrogen production and delivery; hydrogen storage; fuel cells; technology validation; safety, codes and standards; education; and systems analysis.

  18. DOE Hydrogen Program: 2006 Annual Merit Review and Peer Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    Milliken, J.

    2006-09-01

    This report summarizes comments from the Peer Review Panel at the FY 2006 DOE Hydrogen Program Annual Merit Review, held on May 16-19, 2006, in Arlington, Virginia. The projects evaluated support the Department of Energy and President Bush's Hydrogen Initiative. The results of this merit review and peer evaluation are major inputs used by DOE to make funding decisions. Project areas include hydrogen production and delivery; hydrogen storage; fuel cells; technology validation; safety, codes and standards; education; and systems analysis.

  19. An overview of solution methods for multi-objective mixed integer linear programming programs

    DEFF Research Database (Denmark)

    Andersen, Kim Allan; Stidsen, Thomas Riis

    Multiple objective mixed integer linear programming (MOMIP) problems are notoriously hard to solve to optimality, i.e. finding the complete set of non-dominated solutions. We will give an overview of existing methods. Among those are interactive methods, the two phases method and enumeration...... methods. In particular we will discuss the existing branch and bound approaches for solving multiple objective integer programming problems. Despite the fact that branch and bound methods has been applied successfully to integer programming problems with one criterion only a few attempts has been made...

  20. An Overview of Residential Ventilation Activities in the Building America Program (Phase I)

    Energy Technology Data Exchange (ETDEWEB)

    Barley, D.

    2001-05-21

    This report provides an overview of issues involved in residential ventilation; provides an overview of the various ventilation strategies being evaluated by the five teams, or consortia, currently involved in the Building America Program; and identifies unresolved technical issues.

  1. DOE Hydrogen Program: 2007 Annual Merit Review and Peer Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    Milliken, J.

    2007-09-01

    This report summarizes comments from the Peer Review Panel at the FY 2007 DOE Hydrogen Program Annual Merit Review, held on May 14-18, 2007, in Washington, D.C. The projects evaluated support the Department of Energy and President Bush's Hydrogen Initiative. The results of this merit review and peer evaluation are major inputs used by DOE to make funding decisions. Project areas include hydrogen production and delivery; hydrogen storage; fuel cells; technology validation; safety, codes and standards; education; and systems analysis.

  2. Overview of Faculty Development Programs for Interprofessional Education.

    Science.gov (United States)

    Ratka, Anna; Zorek, Joseph A; Meyer, Susan M

    2017-06-01

    Objectives. To describe characteristics of faculty development programs designed to facilitate interprofessional education, and to compile recommendations for development, delivery, and assessment of such faculty development programs. Methods. MEDLINE, CINAHL, ERIC, and Web of Science databases were searched using three keywords: faculty development, interprofessional education, and health professions. Articles meeting inclusion criteria were analyzed for emergent themes, including program design, delivery, participants, resources, and assessment. Results. Seventeen articles were identified for inclusion, yielding five characteristics of a successful program: institutional support; objectives and outcomes based on interprofessional competencies; focus on consensus-building and group facilitation skills; flexibility based on institution- and participant-specific characteristics; and incorporation of an assessment strategy. Conclusion. The themes and characteristics identified in this literature overview may support development of faculty development programs for interprofessional education. An advanced evidence base for interprofessional education faculty development programs is needed.

  3. Nuclear electrolytic hydrogen

    International Nuclear Information System (INIS)

    Barnstaple, A.G.; Petrella, A.J.

    1982-05-01

    An extensive study of hydrogen supply has recently been carried out by Ontario Hydro which indicates that electrolytic hydrogen produced from nuclear electricity could offer the lowest cost option for any future large scale hydrogen supply in the Province of Ontario, Canada. This paper provides a synopsis of the Ontario Hydro study, a brief overview of the economic factors supporting the study conclusion and discussion of a number of issues concerning the supply of electrolytic hydrogen by electric power utilities

  4. Proceedings of the 1995 U.S. DOE hydrogen program review. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The 1995 US DOE Hydrogen Program Review was held April 18-21, 1995 in Coral Gables, FL. Volume II of the Proceedings contains 8 papers presented under the subject of hydrogen storage and 17 papers presented on hydrogen production. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  5. Employee assistance programs: an overview and suggested roles for psychiatrists.

    Science.gov (United States)

    Brill, P; Herzberg, J; Speller, J L

    1985-07-01

    Although employee assistance programs are rapidly becoming the predominant vehicle for the delivery of mental health services in occupational settings, few programs employ a psychiatrist on either a part-time or a full-time basis. After providing an overview of the need for, cost-effectiveness of, and current status of employee assistance programs, the authors draw on their own experiences with employee assistance programs to present four broad categories of roles the psychiatrist can assume in such programs: clinician, supervisor and educator, administrator, and organizational consultant. Problems encountered in these roles are also discussed.

  6. HTTR demonstration program for nuclear cogeneration of hydrogen and electricity

    International Nuclear Information System (INIS)

    Sato, Hiroyuki; Sumita, Junya; Terada, Atsuhiko; Ohashi, Hirofumi; Yan, Xing L.; Nishihara, Tetsuo; Tachibana, Yukio; Inagaki, Yoshiyuki

    2015-01-01

    Japan Atomic Energy Agency initiated a High Temperature Engineering Test Reactor (HTTR) demonstration program in accordance with recommendations of a task force established by Ministry of Education, Culture, Sports, Science and Technology according to the Strategic Energy Plan as of April 2014. The demonstration program is designed to complete helium gas turbine and hydrogen production system technologies aiming at commercial plant deployment in 2030s. The program begins with coupling a helium gas turbine in the secondary loop of the HTTR and expands by adding the H 2 plant to a tertiary loop to enable hydrogen cogeneration. Safety standards for coupling the helium gas turbine and H 2 plant to the nuclear reactor will be established through safety review in licensing. A system design and its control method are planned to be validated with a series of test operations using the HTTR-GT/H 2 plant. This paper explains the outline of HTTR demonstration program with a plant concept of the heat application system directed at establishing an HTGR cogeneration system with 950°C reactor outlet temperature for production of power and hydrogen as recommended by the task force. Commercial deployment strategy including a development plan for the helium gas turbine is also presented. (author)

  7. An Overview of Quality Programs that Support Transition-Aged Youth

    Directory of Open Access Journals (Sweden)

    Christopher M. Kalinyak

    2016-12-01

    Full Text Available This article provides a concise overview of several programs that deliver services to transition-aged youth, ages 14–29. Included are family support, the Assisting Unaccompanied Children and Youth program, the Substance Abuse and Mental Health Services Administration services, the wraparound approach, intensive home-based treatment, multisystemic therapy, foster care, independent living, mentoring, the Steps to Success program, the Jump on Board for Success program, the Options program, the Positive Action program, the Transition to Success model, and the Transition to Independence Program. Primary focus is placed upon the usefulness of each of the programs in facilitating successful outcomes for transition-aged youth.

  8. Overview of the Defense Programs Research and Technology Development Program for Fiscal Year 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-30

    This documents presents a programmatic overview and program element plan summaries for conceptual design and assessment; physics; computation and modeling; system engineering science and technology; electronics, photonics, sensors, and mechanical components; chemistry and materials; special nuclear materials, tritium, and explosives.

  9. 1996 ICF program overview

    International Nuclear Information System (INIS)

    Correll, D

    1996-01-01

    The continuing objective of the Inertial Confinement Fusion (ICF) Program is the demonstration of thermonuclear fusion ignition and energy gain in the laboratory. The underlying theme of all ICF activities as a science research and development program is the Department of Energy's (DOE's) Defense Programs (DP) science-based Stockpile Stewardship and Management (SSM) Program. The extension of current program research capabilities in the National Ignition Facility (NIF) is necessary for the ICF Program to satisfy its stewardship responsibilities. ICF resources (people and facilities) are increasingly being redirected in support of the performance, schedule, and cost goals of the NIF. One of the more important aspects of ICF research is the national nature of the program. Lawrence Livermore National Laboratory's (LLNL's) ICF Program falls within DOE's national ICF Program, which includes the Nova and Beamlet laser facilities at LLNL and the OMEGA, Nike, and Trident laser facilities at the University of Rochester (Laboratory for Laser Energetics, UR/LLE), the Naval Research Laboratory (NRL), and Los Alamos National Laboratory (LANL), respectively. The Particle Beam Fusion Accelerator (PBFA) and Saturn pulsed-power facilities are at Sandia National Laboratories (SNL). General Atomics, Inc. (GA) develops and provides many of the targets for the above experimental facilities. LLNL's ICF Program supports activities in two major interrelated areas: (1) target physics and technology (experimental, theoretical, and computational research); and (2) laser science and optics technology development. Experiments on LLNL's Nova laser primarily support ignition and weapons physics research. Experiments on LLNL's Beamlet laser support laser science and optics technology development. In addition, ICF sciences and technologies, developed as part of the DP mission goals, continue to support additional DOE objectives. These objectives are (1) to achieve diversity in energy sources

  10. Trends in Hydrogen Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Hoevenaars, A.J.; Weeda, M. [ECN Hydrogen and Clean Fossil Fuels, Petten (Netherlands)

    2009-09-15

    This report intends to provide an update of the latest developments that have recently occurred within car industry within the field of Hydrogen powered fuel cell vehicles (FCVs) to date, October 2009. In attempts to provide a clear and logical overview, the report starts with an overview of the OEMs (Original Equipment Manufacturers) that are actually active within the Hydrogen vehicle business, and provides an overview of the intensity of FCV activity per OEM. This overview shows that there is a pool of distinctively most active OEMs, and that others have tried to create exposure for themselves, but have not seriously been involved in in-house technology development in support of FCV manufacturing. Furthermore, some manufacturers chose a different path when it comes to using hydrogen for vehicle propulsion and use Hydrogen gas as a fuel for a conventional Internal Combustion Engine (ICE). In the field of FCVs, Most FCV activities are displayed by Honda, Daimler, Opel/GM, Hyundai/Kia, Toyota, Nissan and Ford. Volkswagen has given less priority to FCV development and has not been profiling itself as a very Hydrogen-prone OEM. Mazda and BMW chose to put their efforts in the development of Hydrogen fuelled ICE vehicles. Also Ford has put efforts in Hydrogen fuelled ICE vehicles. After the active OEMs are mapped, an overview is given on how active they have been in terms of cars produced. It appeared difficult to come up with reliable estimations on the basis of numbers available for public. The sum of vehicles produced by all OEMs together was estimated on about 515 vehicles. This estimation however was much lower than the figures published by Fuel Cell Today (FCT). FCT projects accumulated vehicles shipped in 2009 around 1100 units, the double of the numbers found for this study. Communication with FCT learned us that FCT has access to confidential information from the OEMs. Especially the Asian OEMs do not provide transparency when it comes to FCVs shipped, however

  11. Trends in Hydrogen Vehicles

    International Nuclear Information System (INIS)

    Hoevenaars, A.J.; Weeda, M.

    2009-09-01

    This report intends to provide an update of the latest developments that have recently occurred within car industry within the field of Hydrogen powered fuel cell vehicles (FCVs) to date, October 2009. In attempts to provide a clear and logical overview, the report starts with an overview of the OEMs (Original Equipment Manufacturers) that are actually active within the Hydrogen vehicle business, and provides an overview of the intensity of FCV activity per OEM. This overview shows that there is a pool of distinctively most active OEMs, and that others have tried to create exposure for themselves, but have not seriously been involved in in-house technology development in support of FCV manufacturing. Furthermore, some manufacturers chose a different path when it comes to using hydrogen for vehicle propulsion and use Hydrogen gas as a fuel for a conventional Internal Combustion Engine (ICE). In the field of FCVs, Most FCV activities are displayed by Honda, Daimler, Opel/GM, Hyundai/Kia, Toyota, Nissan and Ford. Volkswagen has given less priority to FCV development and has not been profiling itself as a very Hydrogen-prone OEM. Mazda and BMW chose to put their efforts in the development of Hydrogen fuelled ICE vehicles. Also Ford has put efforts in Hydrogen fuelled ICE vehicles. After the active OEMs are mapped, an overview is given on how active they have been in terms of cars produced. It appeared difficult to come up with reliable estimations on the basis of numbers available for public. The sum of vehicles produced by all OEMs together was estimated on about 515 vehicles. This estimation however was much lower than the figures published by Fuel Cell Today (FCT). FCT projects accumulated vehicles shipped in 2009 around 1100 units, the double of the numbers found for this study. Communication with FCT learned us that FCT has access to confidential information from the OEMs. Especially the Asian OEMs do not provide transparency when it comes to FCVs shipped, however

  12. Human Research Program Science Management: Overview of Research and Development Activities

    Science.gov (United States)

    Charles, John B.

    2007-01-01

    An overview of research and development activities of NASA's Human Research Science Management Program is presented. The topics include: 1) Human Research Program Goals; 2) Elements and Projects within HRP; 3) Development and Maintenance of Priorities; 4) Acquisition and Evaluation of Research and Technology Proposals; and 5) Annual Reviews

  13. French hydrogen markets in 2008-Overview and future prospects

    International Nuclear Information System (INIS)

    Le Duigou, A.; Amalric, Y.; Miguet, M.

    2011-01-01

    This study analyses the current industrial hydrogen markets in France on both a European and international scale, while endeavouring to assess future prospects by 2030. Hydrogen is produced either on purpose or unintentionally as a co-product. Intentional production of hydrogen, generally from natural gas, is classified as captive or merchant hydrogen. France produces about 920,000 metric tons of hydrogen annually. The producer and consumer industries are, in decreasing order of importance are: oil for refinery and petrochemicals, ammonia, iron and steel (co-production), chemicals, and chlorine (co-production). The intentional production of hydrogen from natural gas amounts to less than that co-produced: 40% compared with 60%. The amount of burned hydrogen is about 25% of the total. Production-related carbon dioxide emissions range between 1% and 2% of the total emissions in France. There is an increasing trend in the industrial hydrogen production, essentially due to the oil industry whereas a decline in production is expected in the ammonia industry. The annual production around 2030 should therefore be greater than 1 million metric tons (MMT) per year. If the iron and steel industry were to use hydrogen in every possible situation, it would double the total quantity of hydrogen produced and consumed in France. (authors)

  14. Reducing the Risk: Unemployed Migrant Youth and Labour Market Programs. Overview.

    Science.gov (United States)

    Australian Inst. of Multicultural Affairs, Melbourne (Australia).

    This booklet is an overview and summary of the publication "Reducing the Risk: Unemployed Migrant Youth and Labour Market Programs" which reviews programs and services for migrant and refugee youth in Australia. The unemployment rate for this group is higher than for their Australian-born peers, and their participation in governmental…

  15. Overview of the Novel Intelligent JAXA Active Rotor Program

    Science.gov (United States)

    Saito, Shigeru; Kobiki, Noboru; Tanabe, Yasutada; Johnson, Wayne; Yamauchi, Gloria K.; Young, Larry A.

    2010-01-01

    The Novel Intelligent JAXA Active Rotor (NINJA Rotor) program is a cooperative effort between JAXA and NASA, involving a test of a JAXA pressure-instrumented, active-flap rotor in the 40- by 80-Foot Wind Tunnel at Ames Research Center. The objectives of the program are to obtain an experimental database of a rotor with active flaps and blade pressure instrumentation, and to use that data to develop analyses to predict the aerodynamic and aeroacoustic performance of rotors with active flaps. An overview of the program is presented, including a description of the rotor and preliminary pretest calculations.

  16. Overview of the U.S. Department of Energy's Isotope Programs

    Energy Technology Data Exchange (ETDEWEB)

    Carty, J.

    2004-10-05

    This presentation provides an overview of the U.S. Department of Energy's Isotopes Program. The charter of the Isotope Programs covers the production and sale of radioactive and stable isotopes, associated byproducts, surplus materials, and related isotope services.

  17. Overview of the US spent nuclear fuel program

    International Nuclear Information System (INIS)

    Hurt, W.L.

    1999-01-01

    This report, Overview of the United States Spent Nuclear Fuel Program, December, 1997, summarizes the U.S. strategy for interim management and ultimate disposition of spent nuclear fuel from research and test reactors. The key elements of this strategy include consolidation of this spent nuclear fuel at three sites, preparation of the fuel for geologic disposal in road-ready packages, and low-cost dry interim storage until the planned geologic repository is opened. The U.S. has a number of research programs in place that are intended to Provide data and technologies to support both characterization and disposition of the fuel. (author)

  18. South African hydrogen infrastructure (HySA infrastructure) for fuel cells and energy storage: Overview of a projects portfolio

    CSIR Research Space (South Africa)

    Bessarabov, D

    2017-05-01

    Full Text Available The paper provides brief introduction to the National South African Program, branded HySA (Hydrogen South Africa) as well as discusses potential business cases for deployment of hydrogen and fuel cell technology in South Africa. This paper also...

  19. Development of a national center for hydrogen technology. A summary report of activities completed at the national center hydrogen technology from 2005 to 2010

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, Michael J. [Univ. of North Dakota, Grand Forks, ND (United States)

    2011-06-01

    The Energy & Environmental Research Center (EERC) located in Grand Forks, North Dakota, has operated the National Center for Hydrogen Technology® (NCHT®) since 2005 under a Cooperative Agreement with the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL). The EERC has a long history of hydrogen generation and utilization from fossil fuels, and under the NCHT Program, the EERC has accelerated its research of hydrogen generation and utilization topics. Since the NCHT's inception, the EERC has received more than $65 million in funding of hydrogen-related projects ($20 million for the NCHT project which includes federal and corporate development partner funds) involving more than 85 partners (27 with the NCHT). The NCHT project's 19 activities span a broad range of technologies that align well with the Advanced Fuels Program goals and, specifically, those described in the Hydrogen from Coal Program research, development, and demonstration (RD&D) plan. A number of projects have been completed which range from technical feasibility of several hydrogen generation and utilization technologies to public and technical education and outreach tools. Projects under the NCHT have produced hydrogen from natural gas, coal, liquid hydrocarbons, and biomass. The hydrogen or syngas generated by these processes has also been purified to transportation-grade quality in many of these instances or burned directly for power generation. Also, several activities are still undergoing research, development, demonstration, and commercialization at the NCHT. This report provides a summary overview of the projects completed in the first 5 years of the NCHT. Individual activity reports are referenced as a source of detailed information on each activity.

  20. Overview about the fuel cell bus demonstration programs CUTE, ECTOS and STEP

    International Nuclear Information System (INIS)

    Faltenbacher, M.; Fischer, M.; Eyerer, P.; Binder, M.; Schuckert, M.

    2004-01-01

    'Full text:' The paper will give an overview about the CUTE, ECTOS and STEP projects. The aim of the projects is to develop and demonstrate a emission-free and low-noise transport system, including the accompanying energy infrastructure, which has great potential for reducing the global greenhouse effect according to the Kyoto protocol, improving the quality of the atmosphere and life in densely populated areas and conserving fossil resources. For this purpose the application of the innovative hydrogen-based fuel cell technology is established by using fuel cell powered buses in an urban environment together with novel hydrogen production and support systems as part of a European Union wide demonstration scheme. The project demonstrates also to European Society the availability of the FC technology as a safe and reliable transportation technology. The major objectives are as follows: Demonstration of more than 20 fuel cell powered regular service buses over a period of two years in several European inner city areas to illustrate the different operating conditions to be found in Europe; Design, construction and operation of the necessary infrastructure for hydrogen production, including the required refuelling stations; Collection of findings concerning the construction and operating behaviour of hydrogen production for mobile use, and exchange of experiences including bus operation under differing conditions among the numerous participating companies; and, the research work of IKP and PE comprises the ecological analysis of the entire life cycle and comparison with conventional alternatives (diesel driven buses, CNG-buses). It also includes the economical analysis of the hydrogen infrastructure. First experiences from CUTE and ECTOS were presented. (author)

  1. Hydrogen Programs of Asian Countries

    International Nuclear Information System (INIS)

    Ken-ichiro OTA

    2006-01-01

    The global sustainability is a key word of the future energy system for human beings. It should be friendly to the earth and also to human beings. Considering the limit of resources, the materials recycling would be very important. Considering the second law of thermodynamics, the entropy production through any processes would be the final problems for the sustainable growth. We have to think how to dispose the increasing entropy outside earth in the clean energy system. At present, the global carbon cycle is changing by the emission of CO 2 with the large consumption of fossil fuels. The global environment including human society should stand on harmonizing with the earth, where the global recycles of materials are important. Thinking about the global recycles of carbon and water quantitatively, the existence of water is 27,000 times larger than that of carbon. The transportation of water is 3,160 times faster than that of carbon. These figures show that the hydrogen from water is a superior energy carrier, compared to the carbon. The environmental impact factor was defined as the ratio of annual quantity of materials produced by energy consumption of mankind to a natural movement on earth. The influence of human activities on the global environment can be evaluated quantitatively by this environmental impact factor. The environmental impact factor of water on the earth, 0.0001, is more than two orders of magnitude less than that of carbon, 0.036. This means the hydrogen/water cycle is superior to the carbon cycle as material circulation for energy system of mankind. The energy consumption will increase tremendously in Asian countries due to their population increase and economic growth. We need a clean energy system for the sustainable growth. The hydrogen energy system is the most suitable energy system. In this paper the recent hydrogen energy programs of Japan, China and Korea will be introduced. (authors)

  2. Hydrogen Programs of Asian Countries

    International Nuclear Information System (INIS)

    Ken-ichiro Ota

    2006-01-01

    The global sustainability is a key word of the future energy system for human beings. It should be friendly to the earth and also to human beings. Considering the limit of resources, the materials recycling would be very important. Considering the second law of thermodynamics, the entropy production through any processes would be the final problems for the sustainable growth. We have to think how to dispose the increasing entropy outside earth in the clean energy system. At present, the global carbon cycle is changing by the emission of CO 2 with the large consumption of fossil fuels. The global environment including human society should stand on harmonizing with the earth, where the global recycles of materials are important. Thinking about the global recycles of carbon and water quantitatively, the existence of water is 27,000 times larger than that of carbon. The transportation of water is 3,160 times faster than that of carbon. These figures show that the hydrogen from water is a superior energy carrier, compared to the carbon. The environmental impact factor was defined as the ratio of annual quantity of materials produced by energy consumption of mankind to a natural movement on earth. The influence of human activities on the global environment can be evaluated quantitatively by this environmental impact factor. The environmental impact factor of water on the earth, 0.0001, is more than two orders of magnitude less than that of carbon, 0.036. This means the hydrogen/water cycle is superior to the carbon cycle as material circulation for energy system of mankind. The energy consumption will increase tremendously in Asian countries due to their population increase and economic growth. We need a clean energy system for the sustainable growth. The hydrogen energy system is the most suitable energy system. In this paper the recent hydrogen energy programs of Japan, China and Korea will be introduced. (author)

  3. Fractional Consumption of Liquid Hydrogen and Liquid Oxygen During the Space Shuttle Program

    Science.gov (United States)

    Partridge, Jonathan K.

    2011-01-01

    The Space Shuttle uses the propellants, liquid hydrogen and liquid oxygen, to meet part of the propulsion requirements from ground to orbit. The Kennedy Space Center procured over 25 million kilograms of liquid hydrogen and over 250 million kilograms of liquid oxygen during the 3D-year Space Shuttle Program. Because of the cryogenic nature of the propellants, approximately 55% of the total purchased liquid hydrogen and 30% of the total purchased liquid oxygen were used in the Space Shuttle Main Engines. The balance of the propellants were vaporized during operations for various purposes. This paper dissects the total consumption of liqUid hydrogen and liqUid oxygen and determines the fraction attributable to each of the various processing and launch operations that occurred during the entire Space Shuttle Program at the Kennedy Space Center.

  4. Technical files. Hydrogen memento; Fiches techniques. Memento de l'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This document is a compilation of 30 technical files about hydrogen and its related technologies. These files cover the following aspects: general considerations (world energy consumption growth, contribution of developing countries, atmospheric pollution and greenhouse effect, health impacts, actions implemented at the world scale, role of hydrogen); glossary and acronyms; units used and conversions; world energy situation (primary production, sectoral consumption, demand trends, environmental impact, situation of fossil fuel reserves); French energy situation (primary sources, energy independence ratio, electric power status, evolutions and trends of the French energy demand); fuel cells; basic data on hydrogen (thermodynamic properties and data); hydrogen production by water electrolysis, application to small capacity systems; thermochemical water dissociation; water photo-electrolysis; hydrogen pipeline networks in the world; mechanical energy production; hydrogen thermal engines; aeronautic applications; research laboratories; industrial actors of the hydrogen sector (companies, activities, geographical situation, financial structure, strategy, R and D, cooperations, projects etc..); hydrogen flammability and explosiveness; transport and storage safety; standards and regulations about hydrogen safety in France, in Europe and in the rest of the world; hydrogen programs in the world; the programs financed by the European Union; the German programs; the programs in Island, France and UK; the programs in North America; the Japanese programs; table of the main recent R and D projects per type of program; light vehicles with fuel cells; the Daimler-Chrysler program. (J.S.)

  5. An overview of environment Canada's National Incinerator Testing and Evaluation Program (NITEP)

    International Nuclear Information System (INIS)

    Finkelstein, A.

    1991-01-01

    In response to the many concerns associated with incineration, Environment Canada established the National Incineration Testing and evaluation Program (NITEP) in 1984. It's mission was to assess the incineration process as a means for disposal of MSW in Canada. The program primarily focused on the environment and health impacts of MSW incinerators by determining how design and operating conditions can be modified to reduce emissions of concern. In addition to developing better measuring and monitoring methods, supporting ash residue management research programs, NITEP established four major field projects to develop the data base necessary for national guidelines. This paper presents a brief overview of the most significant field program findings over the past six years and the rationale for the Canadian Council of Ministers of the Environment (CCME) Operating and Emissions Guidelines for MSW Incinerators published in June of 1989. In addition an overview of the ash work completed to date, and work still underway, will be presented

  6. Overview on recent developments in energy storage: Mechanical, electrochemical and hydrogen technologies

    International Nuclear Information System (INIS)

    Amirante, Riccardo; Cassone, Egidio; Distaso, Elia; Tamburrano, Paolo

    2017-01-01

    Highlights: • World energy demand is analyzed. • Promising energy storage systems are shown to explore their potentials. • Different storage are considered and compared. • The efficiency and costs of each are shown. • Easy guidelines for selection of energy storage are provided. - Abstract: Energy production is changing in the world because of the need to reduce greenhouse gas emissions, to reduce the dependence on carbon/fossil sources and to introduce renewable energy sources. Despite the great amount of scientific efforts, great care to energy storage systems is necessary to overcome the discontinuity in the renewable production. A wide variety of options and complex characteristic matrices make it difficult and so in this paper the authors show a clear picture of the available state-of-the-art technologies. The paper provides an overview of mechanical, electrochemical and hydrogen technologies, explaining operation principles, performing technical and economic features. Finally a schematic comparison among the potential utilizations of energy storage systems is presented.

  7. Hydrogen system (hydrogen fuels feasibility)

    International Nuclear Information System (INIS)

    Guarna, S.

    1991-07-01

    This feasibility study on the production and use of hydrogen fuels for industry and domestic purposes includes the following aspects: physical and chemical properties of hydrogen; production methods steam reforming of natural gas, hydrolysis of water; liquid and gaseous hydrogen transportation and storage (hydrogen-hydride technology); environmental impacts, safety and economics of hydrogen fuel cells for power generation and hydrogen automotive fuels; relevant international research programs

  8. Geothermal energy, an environmental and safety mini-overview survey

    Energy Technology Data Exchange (ETDEWEB)

    1976-07-01

    A survey is presented in order to determine the technology status, gaps, and needs for research and development programs in the environment and safety areas of this resource. The information gathered from a survey of geothermal energy development undertaken to provide background for an environment and safety overview program is summarized. A technology assessment for resource development is presented. The three specific environmental problems identified as most potentially limiting to geothermal development; hydrogen sulfide control, brine disposal, and subsidence, are discussed. Current laws, regulations, and standards applying to geothermal systems are summarized. The elements of the environment, health, and safety program considered to be intrinsically related to the development of geothermal energy systems are discussed. Interagency interfaces are touched on briefly. (MHR)

  9. Distance criterion for hydrogen bond

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Distance criterion for hydrogen bond. In a D-H ...A contact, the D...A distance must be less than the sum of van der Waals Radii of the D and A atoms, for it to be a hydrogen bond.

  10. Breaking through the hydrogen cost barrier by using electrolysis loads to access ancillary services and demand response programs

    International Nuclear Information System (INIS)

    Wilson, D.; McGillivray, R.

    2009-01-01

    This presentation described the use of hydrogen electrolysis as a load resource for handling grid instability resulting from the increased penetration of intermittent renewable power. In particular, it focused on Hydrogenics, the leading global supplier of industrial scale electrolysis equipment and fuel cells. The presentation included an overview of the current incentive and market value of ancillary services provided by the company and demand responses in a number of grids around the world. There is a link between the amount of ancillary services required by the grid and the penetration level of renewable energy power such as wind and solar. The ability of hydrogen generation from electrolysis to satisfy all the requirements of ancillary services markets was also demonstrated. The economic analysis of hydrogen generation was discussed with particular reference to the cost of hydrogen fully loading all capital, energy and operating costs. The resulting reduction in the cost of hydrogen was compared to the existing markets for hydrogen, including use of hydrogen as a fuel for municipal bus fleets relative to the existing cost of fossil fuel fleets. Current industrial hydrogen merchant and bulk market prices were also compared

  11. Technical files. Hydrogen memento; Fiches techniques. Memento de l'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This document is a compilation of 30 technical files about hydrogen and its related technologies. These files cover the following aspects: general considerations (world energy consumption growth, contribution of developing countries, atmospheric pollution and greenhouse effect, health impacts, actions implemented at the world scale, role of hydrogen); glossary and acronyms; units used and conversions; world energy situation (primary production, sectoral consumption, demand trends, environmental impact, situation of fossil fuel reserves); French energy situation (primary sources, energy independence ratio, electric power status, evolutions and trends of the French energy demand); fuel cells; basic data on hydrogen (thermodynamic properties and data); hydrogen production by water electrolysis, application to small capacity systems; thermochemical water dissociation; water photo-electrolysis; hydrogen pipeline networks in the world; mechanical energy production; hydrogen thermal engines; aeronautic applications; research laboratories; industrial actors of the hydrogen sector (companies, activities, geographical situation, financial structure, strategy, R and D, cooperations, projects etc..); hydrogen flammability and explosiveness; transport and storage safety; standards and regulations about hydrogen safety in France, in Europe and in the rest of the world; hydrogen programs in the world; the programs financed by the European Union; the German programs; the programs in Island, France and UK; the programs in North America; the Japanese programs; table of the main recent R and D projects per type of program; light vehicles with fuel cells; the Daimler-Chrysler program. (J.S.)

  12. Development of HyPEP, A Hydrogen Production Plant Efficiency Calculation Program

    International Nuclear Information System (INIS)

    Lee, Young Jin; Park, Ji Won; Lee, Won Jae; Shin, Young Joon; Kim, Jong Ho; Hong, Sung Deok; Lee, Seung Wook; Hwang, Moon Kyu

    2007-12-01

    Development of HyPEP program for assessing the steady-state hydrogen production efficiency of the nuclear hydrogen production facilities was carried out. The main developmental aims of the HyPEP program are the extensive application of the GUI for enhanced user friendliness and the fast numerical solution scheme. These features are suitable for such calculations as the optimisation calculations. HyPEP was developed with the object-oriented programming techniques. The components of the facility was modelled as objects in a hierarchical structure where the inheritance property of the object oriented program were extensively applied. The Delphi program language which is based on the Object Pascal was used for the HyPEP development. The conservation equations for the thermal hydraulic flow network were setup and the numerical solution scheme was developed and implemented into HyPEP beta version. HyPEP beta version has been developed with working GUI and the numerical solution scheme implementation. Due to the premature end of this project the fully working version of HyPEP was not produced

  13. Los Alamos safeguards program overview and NDA in safeguards

    International Nuclear Information System (INIS)

    Keepin, G.R.

    1988-01-01

    Over the years the Los Alamos safeguards program has developed, tested, and implemented a broad range of passive and active nondestructive analysis (NDA) instruments (based on gamma and x-ray detection and neutron counting) that are now widely employed in safeguarding nuclear materials of all forms. Here very briefly, the major categories of gamma ray and neutron based NDA techniques, give some representative examples of NDA instruments currently in use, and cite a few notable instances of state-of-the-art NDA technique development. Historical aspects and a broad overview of the safeguards program are also presented

  14. An Overview of the EPRI PWR Primary Chemistry Program

    International Nuclear Information System (INIS)

    Perkins, David; Fruzzetti, Keith; Haas, Carey; Wells, Dan

    2012-09-01

    Primary chemistry controls continue to evolve, impacting long term equipment reliability goals, optimized core designs, and radiation dose management practices. Chemistry initiatives include increased primary system pH (T) , zinc injection, and optimization of primary system hydrogen concentration. Nevertheless, utilities are faced with ever changing challenges as fuel vendors continue to optimize core power densities coupled with longer operating cycles and material replacement efforts. These challenges must be collaboratively addressed by the plant chemists, engineers, and operators. Operational chemistry has changed dramatically over the years with increased primary pH (T) programs requiring some utilities to operate with up to 6 ppm lithium or slightly higher. Coupled with primary pH (T) program optimization, are ongoing EPRI research efforts attempting to develop an optimized hydrogen control program balancing material issues associated with primary water stress corrosion cracking (PWSCC) crack growth rate against fuel concerns associated with increased hydrogen concentrations. One of the most significant primary chemistry changes that effectively balances the demands of materials, fuels, chemistry and dose management strategies is zinc injection into the primary coolant. Since 1994 when Farley initiated zinc injection, zinc injection has been successfully injected at over 70 pressurized water reactors world-wide. Combining operational chemistry with shutdown chemistry controls provides the plant chemist with a technically based and balanced approach to fuel and material integrity as well as dose management strategies. Shutdown chemistry has continually evolved since the 1970's when the chemist was primarily concerned with fission products. Now the chemist must manage corrosion product release, and support Outage Management and Radiation Protection through the performance of a controlled shutdown. In part, this change was driven as plant materials evolved

  15. O hydrogen bonds in alkaloids

    Indian Academy of Sciences (India)

    An overview of general classification scheme, medicinal importance and crystal structure analysis with emphasis on the role of hydrogen bonding in some alkaloids is presented in this paper. The article is based on a general kind of survey while crystallographic analysis and role of hydrogen bonding are limited to only ...

  16. ''Green'' path from fossil-based to hydrogen economy: An overview of carbon-neutral technologies

    Energy Technology Data Exchange (ETDEWEB)

    Muradov, Nazim Z. [Florida Solar Energy Center, University of Central Florida, Cocoa, FL 32922 (United States); Veziroglu, T. Nejat [Clean Energy Research Institute, University of Miami, Coral Gables, FL 33124 (United States)

    2008-12-15

    While the dominant role of hydrogen in a sustainable energy future is widely accepted, the strategies for the transition from fossil-based to hydrogen economy are still actively debated. This paper emphasizes the role of carbon-neutral technologies and fuels during the transition period. To satisfy the world's growing appetite for energy and keep our planet healthy, at least 10 TW (or terawatt) of carbon-free power has to be produced by mid-century. Three prominent options discussed in the literature include: decarbonization of fossil energy, nuclear energy and renewable energy sources. These options are analyzed in this paper with a special emphasis on the role of hydrogen as a carbon-free energy carrier. In particular, the authors compare various fossil decarbonization strategies and evaluate the potential of nuclear and renewable energy resources to meet the 10 TW target. An overview of state-of-the-art technologies for production of carbon-free energy carriers and transportation fuels, and the assessment of their commercial potential is provided. It is shown that neither of these three options alone could provide 10 TW of carbon-neutral power without major changes in the existing infrastructure, and/or technological breakthroughs in many areas, and/or a considerable environmental risk. The authors propose a scenario for the transition from current fossil-based to hydrogen economy that includes two key elements: (i) changing the fossil decarbonization strategy from one based on CO{sub 2} sequestration to one that involves sequestration and/or utilization of solid carbon, and (ii) producing carbon-neutral synthetic fuels from bio-carbon and hydrogen generated from water using carbon-free sources (nuclear, solar, wind, geothermal). This strategy would allow taking advantage of the existing fuel infrastructure without an adverse environmental impact, and it would secure a smooth carbon-neutral transition from fossil-based to future hydrogen economy. (author)

  17. Biogas and Hydrogen Systems Market Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Milbrandt, Anelia [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bush, Brian [National Renewable Energy Lab. (NREL), Golden, CO (United States); Melaina, Marc [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-03-31

    This analysis provides an overview of the market for biogas-derived hydrogen and its use in transportation applications. It examines the current hydrogen production technologies from biogas, capacity and production, infrastructure, potential and demand, as well as key market areas. It also estimates the production cost of hydrogen from biogas and provides supply curves at a national level and at point source.

  18. Hydrogen hybrid vehicle engine development: Experimental program

    Energy Technology Data Exchange (ETDEWEB)

    Van Blarigan, P. [Sandia National Lab., Livermore, CA (United States)

    1995-09-01

    A hydrogen fueled engine is being developed specifically for the auxiliary power unit (APU) in a series type hybrid vehicle. Hydrogen is different from other internal combustion (IC) engine fuels, and hybrid vehicle IC engine requirements are different from those of other IC vehicle engines. Together these differences will allow a new engine design based on first principles that will maximize thermal efficiency while minimizing principal emissions. The experimental program is proceeding in four steps: (1) Demonstration of the emissions and the indicated thermal efficiency capability of a standard CLR research engine modified for higher compression ratios and hydrogen fueled operation. (2) Design and test a new combustion chamber geometry for an existing single cylinder research engine, in an attempt to improve on the baseline indicated thermal efficiency of the CLR engine. (3) Design and build, in conjunction with an industrial collaborator, a new full scale research engine designed to maximize brake thermal efficiency. Include a full complement of combustion diagnostics. (4) Incorporate all of the knowledge thus obtained in the design and fabrication, by an industrial collaborator, of the hydrogen fueled engine for the hybrid vehicle power train illustrator. Results of the CLR baseline engine testing are presented, as well as preliminary data from the new combustion chamber engine. The CLR data confirm the low NOx produced by lean operation. The preliminary indicated thermal efficiency data from the new combustion chamber design engine show an improvement relative to the CLR engine. Comparison with previous high compression engine results shows reasonable agreement.

  19. Introduction and overview of research program

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    The research goals have remained the same over the last several years: (1) to provide data which rigorously test proton + nucleus (pA) reaction models appropriate for medium energies (nonrelativistic and relativistic); (2) to provide data and appropriate analyses of it to obtain new, unambiguous information about the details of nuclear structure and reaction mechanisms (this information, in turn, can be used to test fundamental models of nuclear structure and effective interactions); (3) to provide proton + nucleon data which help constrain the nucleon-nucleon phase shift solutions, and (4) to develop and improve the pA models themselves. For this reason, since its conception in 1976, our program has held to the pragmatic philosophy that precise, reliable experimental data and state-of-the-art theoretical analyses are of equal importance. Thus, experiment and theory have merged to play complementary and closely linked roles in our studies to date; this philosophy is not expected to change in the future. A schematic overview indicating the framework in which the research program operates is shown and discussed

  20. Introduction to Metagenomics at DOE JGI: Program Overview and Program Informatics (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    Energy Technology Data Exchange (ETDEWEB)

    Tringe, Susannah

    2011-10-12

    Susannah Tringe of the DOE Joint Genome Institute talks about the Program Overview and Program Informatics at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  1. An overview of the Cooperative IASCC Research (CIR) program

    International Nuclear Information System (INIS)

    Pathania, R.; Gott, K.; Scott, P.

    2007-01-01

    Irradiation-Assisted Stress Corrosion Cracking (IASCC) has affected reactor core internal structures fabricated from austenitic stainless steels in both Pressurized Water Reactors (PWR) and Boiling Water Reactors (BWR). The Cooperative IASCC Research (CIR) Program is an international research effort designed to address irradiation-assisted stress corrosion cracking (IASCC) in light water reactor (LWR) components. The objectives of the CIR program are to develop a mechanistic understanding of IASCC initiation and crack growth, to derive a predictive model of IASCC, if possible based on a mechanistic understanding, and thus to identify possible countermeasures to IASCC. It complements other more applied programs by concentrating on the underlying physical causes of IASCC. This paper provides an overview of the current status and achievements of the CIR program, which has been running since 1995. Two phases of the program have been completed and a final extension program is in progress which is scheduled to finish in 2008. The extent to which the CIR program has met its objectives, or will meet them with its current plans extending into 2008, is assessed. (author)

  2. Safety considerations for compressed hydrogen storage systems

    International Nuclear Information System (INIS)

    Gleason, D.

    2006-01-01

    An overview of the safety considerations for various hydrogen storage options, including stationary, vehicle storage, and mobile refueling technologies. Indications of some of the challenges facing the industry as the demand for hydrogen fuel storage systems increases. (author)

  3. Overview of ORNL/NRC programs addressing durability of concrete structures

    International Nuclear Information System (INIS)

    Naus, D.J.; Oland, C.B.

    1994-01-01

    The role of reinforced concrete relative to its applications as either safety-related structures in nuclear power or engineered barriers of low-level radioactive waste disposal facilities is described. Factors that can affect the long-term durability of reinforced concrete are identified. Overviews are presented of the Structural Aging Program, which is addressing the aging management of safety-related concrete structures in nuclear power plants, and the Permeability Test Methods and Data Program, which is identifying pertinent data and information for use in performance assessments of engineered barriers for low-level radioactive waste disposal

  4. Nye County, Nevada 1992 nuclear waste repository program: Program overview. Final report

    International Nuclear Information System (INIS)

    1998-01-01

    The purpose of this document is to provide an overview of the Nye County FY92 Nuclear Waste Repository Program (Program). Funds to pay for Program costs will come from the Federal Nuclear Waste Fund, which was established under the Nuclear Waste Policy Act of 1982 (NWPA). In early 1983, the Yucca Mountain was identified as a potentially suitable site for the nation's first geologic repository for spent reactor fuel and high-level radioactive waste. Later that year, the Nye County Board of County Commissioners (Board) established the capability to monitor the Federal effort to implement the NWPA and evaluate the potential impacts of repository-related activities on Nye County. Over the last eight years, the County's program has grown in complexity and cost in order to address DOE's evolving site characterization studies, and prepare for the potential for facility construction and operation. Changes were necessary as well, in response to Congress's redirection of the repository program specified in the amendments, to the NWPA approved in 1987. In early FY 1991, the County formally established a project office to plan and implement its program of work. The Repository Project Office's (RPO) mission and functions are provided in Section 2.0. The RPO organization structure is described in Section 3.0

  5. The NASA Aviation Safety Program: Overview

    Science.gov (United States)

    Shin, Jaiwon

    2000-01-01

    In 1997, the United States set a national goal to reduce the fatal accident rate for aviation by 80% within ten years based on the recommendations by the Presidential Commission on Aviation Safety and Security. Achieving this goal will require the combined efforts of government, industry, and academia in the areas of technology research and development, implementation, and operations. To respond to the national goal, the National Aeronautics and Space Administration (NASA) has developed a program that will focus resources over a five year period on performing research and developing technologies that will enable improvements in many areas of aviation safety. The NASA Aviation Safety Program (AvSP) is organized into six research areas: Aviation System Modeling and Monitoring, System Wide Accident Prevention, Single Aircraft Accident Prevention, Weather Accident Prevention, Accident Mitigation, and Synthetic Vision. Specific project areas include Turbulence Detection and Mitigation, Aviation Weather Information, Weather Information Communications, Propulsion Systems Health Management, Control Upset Management, Human Error Modeling, Maintenance Human Factors, Fire Prevention, and Synthetic Vision Systems for Commercial, Business, and General Aviation aircraft. Research will be performed at all four NASA aeronautics centers and will be closely coordinated with Federal Aviation Administration (FAA) and other government agencies, industry, academia, as well as the aviation user community. This paper provides an overview of the NASA Aviation Safety Program goals, structure, and integration with the rest of the aviation community.

  6. Department of Energy Hazardous Waste Remedial Actions Program: An overview

    International Nuclear Information System (INIS)

    Eyman, L.D.; Swiger, R.F.

    1988-01-01

    This paper describes the national Department of Energy (DOE) program for managing hazardous waste. An overview of the DOE Hazardous Waste Remedial Actions Program (HAZWRAP), including its mission, organizational structure, and major program elements, is given. The paper focuses on the contractor support role assigned to Martin Marietta Energy Systems, Inc., through the establishment of the HAZWRAP Support Contractor Office (SCO). The major SCO programs are described, and the organization for managing the programs is discussed. The HAZWRAP SCO approaches to waste management planning and to technology research, development, and demonstration are presented. The role of the SCO in the DOE Environmental Restoration Program and the development of the DOE Waste Information network are reviewed. Also discussed is the DOE Work for Others Program, where waste management decentralized support, via interagency agreements between DOE and the Department of Defense and DOE and the Environmental Protection Agency, is provided for those sponsors planning remedial response actions. 2 refs

  7. Hydrogen energy and sustainability: overview and the role for nuclear energy

    International Nuclear Information System (INIS)

    Rosen, M.A.

    2008-01-01

    This paper discusses the role of nuclear power in hydrogen energy and sustainability. Hydrogen economy is based on hydrogen production, packaging (compression, liquefaction, hydrides), distribution (pipelines, road, rail, ship), storage (pressure and cryogenic containers), transfer and finally hydrogen use

  8. NASA's Radioisotope Power Systems Program Overview - A Focus on RPS Users

    Science.gov (United States)

    Hamley, John A.; McCallum, Peter W.; Sandifer, Carl E., II; Sutliff, Thomas J.; Zakrajsek, June F.

    2016-01-01

    The goal of NASA's Radioisotope Power Systems (RPS) Program is to make RPS ready and available to support the exploration of the solar system in environments where the use of conventional solar or chemical power generation is impractical or impossible to meet potential future mission needs. To meet this goal, the RPS Program manages investments in RPS technologies and RPS system development, working closely with the Department of Energy. This paper provides an overview of the RPS Program content and status, its collaborations with potential RPS users, and the approach employed to maintain the readiness of RPS to support future NASA mission concepts.

  9. Aviation Safety Program: Weather Accident Prevention (WxAP) Project Overview and Status

    Science.gov (United States)

    Nadell, Shari-Beth

    2003-01-01

    This paper presents a project overview and status for the Weather Accident Prevention (WxAP) aviation safety program. The topics include: 1) Weather Accident Prevention Project Background/History; 2) Project Modifications; 3) Project Accomplishments; and 4) Project's Next Steps.

  10. Hydrogen Village : creating hydrogen and fuel cell communities

    International Nuclear Information System (INIS)

    Smith, G.R.

    2009-01-01

    The Hydrogen Village (H2V) is a collaborative public-private partnership administered through Hydrogen and Fuel Cells Canada and funded by the Governments of Canada and Ontario. This end user-driven, market development program accelerates the commercialization of hydrogen and fuel cell (FC) technologies throughout the Greater Toronto Area (GTA). The program targets 3 specific aspects of market development, notably deployment of near market technologies in community based stationary and mobile applications; development of a coordinated hydrogen delivery and equipment service infrastructure; and societal factors involving corporate policy and public education. This presentation focused on lessons learned through outreach programs and the deployment of solid oxide fuel cell (SOFC) heat and power generation; indoor and outdoor fuel cell back up power systems; fuel cell-powered forklifts, delivery vehicles, and utility vehicles; hydrogen internal combustion engine powered shuttle buses, sedans, parade float; hydrogen production/refueling stations in the downtown core; and temporary fuel cell power systems

  11. Adsorption and temperature-programmed desorption of hydrogen with dispersed platinum and platinum-gold catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, J.R.; Foger, K.; Breakspere, R.J.

    1979-05-01

    Adsorption and temperature-programmed desorption of hydrogen with dispersed platinum and platinum-gold catalysts was studied with 0.9-3Vertical Bar3< platinum on silica gel, aerosil, sodium and lanthanum Y zeolites, and ..gamma..-alumina, and on aerosil-supported gold-platinum alloys containing 2, 10, 24, 33, and 85Vertical Bar3< gold. Surface enrichment with gold in the alloy systems, as derived from hydrogen adsorption data and predicted from surface enrichment theory and electron microscopic measurements of particle size, were in good agreement, which indicated that equilibrium was achieved by the thermal treatment (oxygen at 573/sup 0/K, hydrogen at 620/sup 0/K, repeated cycles) used. Hydrogen spillover to gold was observed at the higher hydrogen pressures tested on the alloys with high gold content, and to the zeolite supports. The temperature-programed desorption profiles were independent of gold content, which indicated that gold acts only as diluent, and that isolated surface platinum atoms become populated with hydrogen atoms either by hydrogen atom spillover from platinum ensembles to gold and from the gold to the isolated platinum, and/or by adsorption of a molecule directly on the isolated platinum and chemisorption of one H atom at an adjacent gold atom. The distribution of surface platinum ensembles was evaluated by a computer simulation method.

  12. Overview of AEOD's program for trending reactor operational events

    International Nuclear Information System (INIS)

    Baranowsky, P.W.; O'Reilly, P.D.; Rasmuson, D.M.; Houghton, J.R.

    1994-01-01

    This paper presents an overview of the trending program being performed by AEOD. The major elements of the program include: (1) system and component reliability trending and analysis, (2) special data collection and analysis (e.g., IPE and PRA component failure data, common cause failure event data), (3) risk assessment of safety issues based on actual operating experience, (4) Accident Sequence Precursor (ASP) Program, and (5) trending US industry risk. AEOD plans to maintain up-to-date safety data trends for selected high risk or high regulatory profile components, systems, accident initiators, accident sequences, and regulatory issues. AEOD will also make greater use of PRA insights and perform limited probabilistic safety assessments to evaluate the safety significance of qualitative results. Examples of a system study and an issue evaluation are presented, as well as a summary of the common cause failure event database

  13. Cost Evaluation with G4-ECONS Program for SI based Nuclear Hydrogen Production Plant

    International Nuclear Information System (INIS)

    Kim, Jong-ho; Lee, Ki-young; Kim, Yong-wan

    2014-01-01

    Contemporary hydrogen is production is primarily based on fossil fuels, which is not considered as environments friendly and economically efficient. To achieve the hydrogen economy, it is very important to produce a massive amount of hydrogen in a clean, safe and efficient way. Nuclear production of hydrogen would allow massive production of hydrogen at economic prices while avoiding environments pollution reducing the release of carbon dioxide. Nuclear production of hydrogen could thus become the enabling technology for the hydrogen economy. The economic assessment was performed for nuclear hydrogen production plant consisting of VHTR coupled with SI cycle. For the study, G4-ECONS developed by EMWG of GIF was appropriately modified to calculate the LUHC, assuming 36 months of plant construction time, 5 % of annual interest rate and 12.6 % of fixed charge rate. In G4-ECONS program, LUHC is calculated by the following formula; LUHC = (Annualized TCIC + Annualized O-M Cost + Annualized Fuel Cycle Cost + Annualized D-D Cost) / Annual Hydrogen Production Rate

  14. Overview: Defense high-level waste technology program

    International Nuclear Information System (INIS)

    Shupe, M.W.; Turner, D.A.

    1987-01-01

    Defense high-level waste generated by atomic energy defense activities is stored on an interim basis at three U.S. Department of Energy (DOE) operating locations; the Savannah River Plant in South Carolina, the Hanford Site in Washington, and the Idaho National Engineering Laboratory in Idaho. Responsibility for the permanent disposal of this waste resides with DOE's Office of Defense Waste and Transportation Management. The objective of the Defense High-Level Wast Technology Program is to develop the technology for ending interim storage and achieving permanent disposal of all U.S. defense high-level waste. New and readily retrievable high-level waste are immobilized for disposal in a geologic repository. Other high-level waste will be stabilized in-place if, after completion of the National Environmental Policy Act (NEPA) process, it is determined, on a site-specific basis, that this option is safe, cost effective and environmentally sound. The immediate program focus is on implementing the waste disposal strategy selected in compliance with the NEPA process at Savannah River, while continuing progress toward development of final waste disposal strategies at Hanford and Idaho. This paper presents an overview of the technology development program which supports these waste management activities and an assessment of the impact that recent and anticipated legal and institutional developments are expected to have on the program

  15. SHARED TECHNOLOGY TRANSFER PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    GRIFFIN, JOHN M. HAUT, RICHARD C.

    2008-03-07

    The program established a collaborative process with domestic industries for the purpose of sharing Navy-developed technology. Private sector businesses were educated so as to increase their awareness of the vast amount of technologies that are available, with an initial focus on technology applications that are related to the Hydrogen, Fuel Cells and Infrastructure Technologies (Hydrogen) Program of the U.S. Department of Energy. Specifically, the project worked to increase industry awareness of the vast technology resources available to them that have been developed with taxpayer funding. NAVSEA-Carderock and the Houston Advanced Research Center teamed with Nicholls State University to catalog NAVSEA-Carderock unclassified technologies, rated the level of readiness of the technologies and established a web based catalog of the technologies. In particular, the catalog contains technology descriptions, including testing summaries and overviews of related presentations.

  16. Whole-House Approach Benefits Builders, Buyers, and the Environment Building America Program Overview

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-05-01

    This document provides an overview of the U.S. Department of Energy's Building America program. Building America works with the residential building industry to develop and implement innovative building processes and technologies.

  17. HUG - the Hydrogen Utility Group

    International Nuclear Information System (INIS)

    Tinkler, M.

    2006-01-01

    The Hydrogen Utility Group (HUG) was formally established in October 2005 by a group of leading electric utilities with a common interest in sharing hydrogen experiences and lessons learned. HUG's Mission Statement is: 'To accelerate utility integration of promising hydrogen energy related business applications through the coordinated efforts and actions of its members in collaboration with key stakeholders, including government agencies and utility support organizations.' In February 2006, HUG members presented a briefing to the US Senate Hydrogen and Fuel Cell Caucus in Washington, DC, outlining the significant role that the power industry should play in an emerging hydrogen economy. This presentation provides an overview of that briefing, summarizing the HUG's ongoing interests and activities

  18. Standardized Testing Program for Solid-State Hydrogen Storage Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Michael A. [Southwest Research Institute; Page, Richard A. [Southwest Research Institute

    2012-07-30

    In the US and abroad, major research and development initiatives toward establishing a hydrogen-based transportation infrastructure have been undertaken, encompassing key technological challenges in hydrogen production and delivery, fuel cells, and hydrogen storage. However, the principal obstacle to the implementation of a safe, low-pressure hydrogen fueling system for fuel-cell powered vehicles remains storage under conditions of near-ambient temperature and moderate pressure. The choices for viable hydrogen storage systems at the present time are limited to compressed gas storage tanks, cryogenic liquid hydrogen storage tanks, chemical hydrogen storage, and hydrogen absorbed or adsorbed in a solid-state material (a.k.a. solid-state storage). Solid-state hydrogen storage may offer overriding benefits in terms of storage capacity, kinetics and, most importantly, safety.The fervor among the research community to develop novel storage materials had, in many instances, the unfortunate consequence of making erroneous, if not wild, claims on the reported storage capacities achievable in such materials, to the extent that the potential viability of emerging materials was difficult to assess. This problem led to a widespread need to establish a capability to accurately and independently assess the storage behavior of a wide array of different classes of solid-state storage materials, employing qualified methods, thus allowing development efforts to focus on those materials that showed the most promise. However, standard guidelines, dedicated facilities, or certification programs specifically aimed at testing and assessing the performance, safety, and life cycle of these emergent materials had not been established. To address the stated need, the Testing Laboratory for Solid-State Hydrogen Storage Technologies was commissioned as a national-level focal point for evaluating new materials emerging from the designated Materials Centers of Excellence (MCoE) according to

  19. Fuel cell collaboration in the United States. A report to the Danish Partnership for Hydrogen and Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    2011-08-15

    The purpose of this report is to provide members of the Danish Partnership for Hydrogen and Fuel Cells with information regarding collaborative opportunities in the United States. The report is designed to provide an overview of key issues and activities and to provide guidance on strategies for finding U.S. research and commercial partners and gaining access to the U.S. market. Section 1 of this report provides an overview of the key drivers of policy at the federal and state government levels regarding hydrogen and fuel cell technologies and provides a perspective of the U.S. industry and key players. It also suggests three general pathways for accessing U.S. opportunities: enhancing visibility; developing vendor relationships; and establishing a formal presence in the U.S. The next sections summarize focus areas for commercial and research activity that currently are of the greatest interest in the U.S. Section 2 describes major programs within the federal government and national laboratories, and discusses various methods for identifying R and D funding opportunities, with an overview of federal acquisition regulations. Section 3 reviews the efforts of several state governments engaging the fuel cell industry as an economic driver and presents an overview of acquisition at the state level. Section 4 discusses university research and development (R and D) and university-industry partnerships. There are 12 appendices attached to the report. These appendices provide more detailed information regarding the key federal government agencies involved in fuel cells and hydrogen, state-specific policies and activities, national laboratories and universities, and other information regarding the fuel cell and hydrogen industry in the U.S. (Author)

  20. Encendiendo una Llama. Bilingual Gifted and Talented Program: Overview, Identification of Students, and Instructional Approaches.

    Science.gov (United States)

    Hartford Public Schools, CT.

    Three pamphlets describe facets of "Encendiendo Una Llama," a Hartford (Connecticut) demonstration program for bilingual gifted and talented students. An overview pamphlet summarizes key aspects of the model program: identification procedures, instructional services, teacher training, parent involvement, evidence of effectiveness, implementation…

  1. Overview of nuclear education and outreach program among Malaysian school students

    Science.gov (United States)

    Sahar, Haizum Ruzanna; Masngut, Nasaai; Yusof, Mohd Hafizal; Ngadiron, Norzehan; Adnan, Habibah

    2017-01-01

    This paper gives an overview of nuclear education and outreach program conducted by Agensi Nuklear Malaysia (Nuklear Malaysia) throughout its operation and establishment. Since its foundation in 1972, Nuklear Malaysia has been the pioneer and is competent in the application of nuclear science and technology. Today, Nuklear Malaysia has ventured and eventually contributed into the development of various socio-economic sectors which include but not limited to medical, industry, manufacturing, agriculture, health, radiation safety and environment. This paper accentuates on the history of education and outreach program by Nuklear Malaysia, which include its timeline and evolution; as well as a brief on education and outreach program management, involvement of knowledge management as part of its approach and later the future of Nuklear Malaysia education and outreach program.

  2. Study of the chemisorption and hydrogenation of propylene on platinum by temperature-programed desorption

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, S.; Nakamura, M.; Yoshioka, N.

    1978-01-01

    Temperature-programed desorption (TPD) chromotograms of propylene adsorbed on platinum black in the absence or presence of hydrogen preadsorbed, admitted simultaneously, or admitted later, all showed four peaks at about 260/sup 0/ (A), 380/sup 0/ (B), 570/sup 0/ (C), and higher than 720/sup 0/K (D). Peaks A and B were identified as mixtures of propylene and propane, and peaks C and D were methane formed by thermal decomposition of the chemisorbed propylene during desorption. When nitrogen rather than helium was used as the carrier gas for the TPD, only delta-hydrogen was observed; this suggested that propylene was more strongly adsorbed on the platinum than hydrogen. Studies of the reactivities with propylene of the various types of chemisorbed hydrogen previously detected by TPD showed that propylene reacted with ..gamma..-hydrogen present on the surface in the form of hydrogen atoms chemisorbed on top of platinum atoms and with ..beta..-hydrogen, molecular hydrogen chemisorbed in a bridged form, but did not react with delta-hydrogen. Tables and graph.

  3. Carbon strategy and management in the hydrogen economy

    International Nuclear Information System (INIS)

    Snyder, C.

    2006-01-01

    Greenhouse gas (carbon) emission reduction related to the beneficial use of hydrogen is an important aspect in the development and public acceptance of a greater role for hydrogen in the economy. This presentation is an overview of potential effects of the evolving regulatory framework for carbon emissions management in Canada on hydrogen infrastructure development and compare it with activities in other jurisdictions

  4. U.S. DOE indirect coal liquefaction program: An overview

    Energy Technology Data Exchange (ETDEWEB)

    Shen, J.; Schmetz, E.; Winslow, J.; Tischer, R. [Dept. of Energy, Germantown, MD (United States); Srivastava, R.

    1997-12-31

    Coal is the most abundant domestic energy resource in the United States. The Fossil Energy Organization within the US Department of Energy (DOE) has been supporting a coal liquefaction program to develop improved technologies to convert coal to clean and cost-effective liquid fuels to complement the dwindling supply of domestic petroleum crude. The goal of this program is to produce coal liquids that are competitive with crude at $20 to $25 per barrel. Indirect and direct liquefaction routes are the two technologies being pursued under the DOE coal liquefaction program. This paper will give an overview of the DOE indirect liquefaction program. More detailed discussions will be given to the F-T diesel and DME fuels which have shown great promises as clean burning alternative diesel fuels. The authors also will briefly discuss the economics of indirect liquefaction and the hurdles and opportunities for the early commercial deployment of these technologies. Discussions will be preceded by two brief reviews on the liquid versus gas phase reactors and the natural gas versus coal based indirect liquefaction.

  5. Graphic overview system for DOE's effluent and environmental monitoring programs

    International Nuclear Information System (INIS)

    Burson, Z.G.; Elle, D.R.

    1980-03-01

    The Graphic Overview System is a compilation of photos, maps, overlays, and summary information of environmental programs and related data for each DOE site. The information consists of liquid and airborne effluent release points, on-site storage locations, monitoring locations, aerial survey results, population distributions, wind roses, and other related information. The relationships of different environmental programs are visualized through the use of colored overlays. Trends in monitoring data, effluent releases, and on-site storage data are also provided as a corollary to the graphic display of monitoring and release points. The results provide a working tool with which DOE management (headquarters and field offices) can place in proper perspective key aspects of all environmental programs and related data, and the resulting public impact of each DOE site

  6. CRYOCOL a computer program to calculate the cryogenic distillation of hydrogen isotopes

    International Nuclear Information System (INIS)

    Douglas, S.R.

    1993-02-01

    This report describes the computer model and mathematical method coded into the AECL Research computer program CRYOCOL. The purpose of CRYOCOL is to calculate the separation of hydrogen isotopes by cryogenic distillation. (Author)

  7. Overview of the CTR blanket engineering research program at the University of Tokyo

    International Nuclear Information System (INIS)

    Nakazawa, Masaharu; Madarame, Haruki; Takahashi, Yoichi; Takagi, Toshiyuki

    1989-01-01

    A small overview has been given on the fusion reactor blanket engineering research program at the University of Tokyo as an introduction to the following articles, especially in its history, organization, experimental facilities and ten years research activity. (orig.)

  8. U.S. Department of Energy Hydrogen and Fuel Cells Program 2011 Annual Merit Review and Peer Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    Satypal, S.

    2011-09-01

    This document summarizes the comments provided by peer reviewers on hydrogen and fuel cell projects presented at the FY 2011 U.S. Department of Energy (DOE) Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting (AMR), held May 9-13, 2011 in Arlington, Virginia

  9. Physics of the Cosmos (PCOS) Technology Development Program Overview

    Science.gov (United States)

    Pham, B. Thai; Clampin, M.; Werneth, R. L.

    2014-01-01

    The Physics of the Cosmos (PCOS) Program Office was established in FY11 and resides at the NASA Goddard Space Flight Center (GSFC). The office serves as the implementation arm for the Astrophysics Division at NASA Headquarters for PCOS Program related matters. We present an overview of the Program’s technology management activities and the Program’s technology development portfolio. We discuss the process for addressing community-provided technology needs and the Technology Management Board (TMB)-vetted prioritization and investment recommendations. This process improves the transparency and relevance of technology investments, provides the community a voice in the process, and leverages the technology investments of external organizations by defining a need and a customer. Goals for the PCOS Program envisioned by the National Research Council’s (NRC) “New Worlds, New Horizons in Astronomy and Astrophysics” (NWNH) Decadal Survey report include science missions and technology development for dark energy, gravitational waves, X-ray, and inflation probe science.

  10. Hydrogen production and storage: R & D priorities and gaps

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-05-04

    This review of priorities and gaps in hydrogen production and storage R & D has been prepared by the IEA Hydrogen Implementing Agreement in the context of the activities of the IEA Hydrogen Co-ordination Group. It includes two papers. The first is by Trygve Riis, Elisabet F. Hagen, Preben J.S. Vie and Oeystein Ulleberg. This offers an overview of the technologies for hydrogen production. The technologies discussed are reforming of natural gas; gasification of coal and biomass; and the splitting of water by water-electrolysis, photo-electrolysis, photo-biological production and high-temperature decomposition. The second paper is by Trygve Riis, Gary Sandrock, Oeystein Ulleberg and Preben J.S. Vie. The objective of this paper is to provide a brief overview of the possible hydrogen storage options available today and in the foreseeable future. Hydrogen storage can be considered for onboard vehicular, portable, stationary, bulk, and transport applications, but the main focus of this paper is on vehicular storage, namely fuel cell or ICE/electric hybrid vehicles. 7 refs., 24 figs., 14 tabs.

  11. The energy carrier hydrogen

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The potential of hydrogen to be used as a clean fuel for the production of heat and power, as well as for the propulsion of aeroplanes and vehicles, is described, in particular for Germany. First, attention is paid to the application of hydrogen as a basic material for the (petro)chemical industry, as an indirect energy source for (petro)chemical processes, and as a direct energy source for several purposes. Than the importance of hydrogen as an energy carrier in a large-scale application of renewable energy sources is discussed. Next an overview is given of new and old hydrogen production techniques from fossil fuels, biomass, or the electrolysis of water. Energetic applications of hydrogen in the transportation sector and the production of electric power and heat are mentioned. Brief descriptions are given of techniques to store hydrogen safely. Finally attention is paid to hydrogen research in Germany. Two hydrogen projects, in which Germany participates, are briefly dealt with: the Euro-Quebec project (production of hydrogen by means of hydropower), and the HYSOLAR project (hydrogen production by means of solar energy). 18 figs., 1 tab., 7 refs

  12. The NASA Electronic Parts and Packaging (NEPP) Program: Overview and Update FY15 and Beyond

    Science.gov (United States)

    LaBel, Kenneth A.; Sampson, Michael J.

    2016-01-01

    The NASA Electronic Parts and Packaging (NEPP) program, and its subset the NASA Electronic Parts Assurance Group (NEPAG), are NASA's point-of-contacts for reliability and radiation tolerance of electrical, electronic, and electromechanical (EEE) parts and their packages. This presentation includes a Fiscal Year 2015 program overview.

  13. What is a hydrogen bond?

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. What is a hydrogen bond? Precise definition of a hydrogen bond is still elusive!1. Several criteria are listed usually for X-H•••Y, X and Y initially thought to be F, O and N only1. Structural: The X-Y bond length is less than the sum of their van der Waals radii. X-H•••Y is ...

  14. Selective hydrogenation processes in steam cracking

    Energy Technology Data Exchange (ETDEWEB)

    Bender, M.; Schroeter, M.K.; Hinrichs, M.; Makarczyk, P. [BASF SE, Ludwigshafen (Germany)

    2010-12-30

    Hydrogen is the key elixir used to trim the quality of olefinic and aromatic product slates from steam crackers. Being co-produced in excess amounts in the thermal cracking process a small part of the hydrogen is consumed in the ''cold part'' of a steam cracker to selectively hydrogenate unwanted, unsaturated hydrocarbons. The compositions of the various steam cracker product streams are adjusted by these processes to the outlet specifications. This presentation gives an overview over state-of-art selective hydrogenation technologies available from BASF for these processes. (Published in summary form only) (orig.)

  15. Concept Overview & Preliminary Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, Mark

    2017-07-12

    'H2@Scale' is an opportunity for wide-scale use of hydrogen as an intermediate that carries energy from various production options to multiple uses. It is based on identifying and developing opportunities for low-cost hydrogen production and investigating opportunities for using that hydrogen across the electricity, industrial, and transportation sectors. One of the key production opportunities is use of low-cost electricity that may be generated under high penetrations of variable renewable generators such as wind and solar photovoltaics. The technical potential demand for hydrogen across the sectors is 60 million metric tons per year. The U.S. has sufficient domestic renewable resources so that each could meet that demand and could readily meet the demand using a portfolio of generation options. This presentation provides an overview of the concept and the technical potential demand and resources. It also motivates analysis and research on H2@Scale.

  16. Wind energy program overview

    International Nuclear Information System (INIS)

    1992-02-01

    This overview emphasizes the amount of electric power that could be provided by wind power rather than traditional fossil fuels. New wind power markets, advances in technology, technology transfer, and wind resources are some topics covered in this publication

  17. Applied hydrogen storage research and development: A perspective from the U.S. Department of Energy

    International Nuclear Information System (INIS)

    O’Malley, Kathleen; Ordaz, Grace; Adams, Jesse; Randolph, Katie; Ahn, Channing C.; Stetson, Ned T.

    2015-01-01

    Highlights: • Overview of U.S. DOE-supported hydrogen storage technology development efforts. • Physical and materials-based strategy for developing hydrogen storage systems. • Materials requirements for automotive storage systems. • Key R&D developments. - Abstract: To enable the wide-spread commercialization of hydrogen fuel cell technologies, the U.S. Department of Energy, through the Office of Energy Efficiency and Renewable Energy’s Fuel Cell Technology Office, maintains a comprehensive portfolio of R&D activities to develop advanced hydrogen storage technologies. The primary focus of the Hydrogen Storage Program is development of technologies to meet the challenging onboard storage requirements for hydrogen fuel cell electric vehicles (FCEVs) to meet vehicle performance that consumers have come to expect. Performance targets have also been established for materials handling equipment (e.g., forklifts) and low-power, portable fuel cell applications. With the imminent release of commercial FCEVs by automobile manufacturers in regional markets, a dual strategy is being pursued to (a) lower the cost and improve performance of high-pressure compressed hydrogen storage systems while (b) continuing efforts on advanced storage technologies that have potential to surpass the performance of ambient compressed hydrogen storage

  18. Applied hydrogen storage research and development: A perspective from the U.S. Department of Energy

    Energy Technology Data Exchange (ETDEWEB)

    O’Malley, Kathleen [SRA International, Inc., Fairfax, VA 22033 (United States); Ordaz, Grace; Adams, Jesse; Randolph, Katie [U.S. Department of Energy, 1000 Independence Ave., SW, EE-3F, Washington, DC 20585 (United States); Ahn, Channing C. [U.S. Department of Energy, 1000 Independence Ave., SW, EE-3F, Washington, DC 20585 (United States); California Institute of Technology, Pasadena, CA 91125 (United States); Stetson, Ned T., E-mail: Ned.Stetson@ee.doe.gov [U.S. Department of Energy, 1000 Independence Ave., SW, EE-3F, Washington, DC 20585 (United States)

    2015-10-05

    Highlights: • Overview of U.S. DOE-supported hydrogen storage technology development efforts. • Physical and materials-based strategy for developing hydrogen storage systems. • Materials requirements for automotive storage systems. • Key R&D developments. - Abstract: To enable the wide-spread commercialization of hydrogen fuel cell technologies, the U.S. Department of Energy, through the Office of Energy Efficiency and Renewable Energy’s Fuel Cell Technology Office, maintains a comprehensive portfolio of R&D activities to develop advanced hydrogen storage technologies. The primary focus of the Hydrogen Storage Program is development of technologies to meet the challenging onboard storage requirements for hydrogen fuel cell electric vehicles (FCEVs) to meet vehicle performance that consumers have come to expect. Performance targets have also been established for materials handling equipment (e.g., forklifts) and low-power, portable fuel cell applications. With the imminent release of commercial FCEVs by automobile manufacturers in regional markets, a dual strategy is being pursued to (a) lower the cost and improve performance of high-pressure compressed hydrogen storage systems while (b) continuing efforts on advanced storage technologies that have potential to surpass the performance of ambient compressed hydrogen storage.

  19. The hydrogen and the fuel cells in the world. Programs and evolutions

    International Nuclear Information System (INIS)

    Lucchese, P.

    2008-01-01

    HyPac is a french platform on the hydrogen and fuel cells, created in 2008. The author presents the opportunity of such a platform facing the world research programs and other existing platforms. (A.L.B.)

  20. An overview of the waste characterization program at Chalk River Nuclear Laboratories

    International Nuclear Information System (INIS)

    Csullog, G.W.; Hardy, D.G.

    1990-05-01

    A comprehensive Waste Characterization Program (WCP) is in place at Chalk River Laboratories to support disposal projects. The WCP is responsible for: 1) specifying the manifests for waste shipments; 2) developing and maintaining central databases for waste inventories and analytical data; and 3) developing the technologies and procedures to characterize the radiological and the physical/chemical properties of wastes. WCP work is being performed under the umbrella of a newly developed waste management Quality Assurance (QA) program. This paper gives an overview of the WCP with an emphasis on the requirements for determining radionuclide inventories in wastes, for implementing record-keeping systems, and for maintaining a QA program for disposal operations

  1. 75 FR 37771 - Office of Postsecondary Education; Overview Information; Transition Programs for Students with...

    Science.gov (United States)

    2010-06-30

    ... education (or consortia of institutions of higher education), to create or expand high quality, inclusive... DEPARTMENT OF EDUCATION Office of Postsecondary Education; Overview Information; Transition Programs for Students with Intellectual Disabilities Into Higher Education (TPSID)--Model Comprehensive...

  2. Status and Planning of South Africa's Nuclear Hydrogen Production Program

    Energy Technology Data Exchange (ETDEWEB)

    Ravenswaay, J. P.; Niekerk, F.; Kriek, R. J.; Blom, E.; Krieg, H. M.; Niekerk, W. M. K.; Merwe, F.; Vosloo, H. C. M. [North-West University, Potchefstroom (South Africa)

    2009-05-15

    In May 2007 the South African Cabinet approved a National Hydrogen and Fuel Cell Technologies R and D and Innovation Strategy. The Strategy will focus on research, development and innovation for (amongst others) by building on the existing knowledge in High Temperature Gas Cooled Reactors (HTGR) and coal gasification Fischer-Tropsch technology, to develop local cost-competitive hydrogen production methods. As part of the roll-out strategy, the South African Department of Science and Technology (DST) created three Competence Centers (CC), including a Hydrogen Infrastructure Competence Centre hosted by the North-West University (NWU) and the Council for Scientific and Industrial Research (CSIR). The Hydrogen Infrastructure CC is tasked with developing Hydrogen Production, Storage, Distribution as well as Codes and Standards programs within the framework of the DST strategic objectives. A 700kW Heliostat field is to be constructed at the CSIR. It is planned that the following processes will be investigated there: Steam Methane Reforming, High Temperature Steam Electrolysis, Metal-oxide redox process. At the NWU the main focus will be on the large scale, CO{sub 2} free, hydrogen production through thermo-chemical water splitting using nuclear heat from a suitable heat source such as a HTGR. The following will be investigated: Plasma-arc reforming of methane, Investigating the integration of a HTGR with a coal-to-liquid process, steel manufacture and ammonia production, The Hybrid-Sulphur process for the production of hydrogen.

  3. The hydrogen village: building hydrogen and fuel cell opportunities

    International Nuclear Information System (INIS)

    Smith, R.

    2006-01-01

    The presentation addressed the progress the Hydrogen Village Program has made in its first 24 months of existence and will provide an understanding of the development of new markets for emerging Hydrogen and Fuel Cell technologies based on first hand, real world experience. The Hydrogen Village (H2V) is an End User driven, Market Development Program designed to accelerate the sustainable commercialization of hydrogen and fuel cell technologies through awareness, education and early deployments throughout the greater Toronto area (GTA). The program is a collaborative public-private partnership of some 35 companies from a broad cross section of industry administered through Hydrogen and Fuel Cells Canada and funded by the Governments of Canada and Ontario. The intent of the H2V is to develop markets for Hydrogen and Fuel Cell technologies that benefit the local and global community. The following aspects of market development are specifically targeted: 1) Deployments: of near market technologies in all aspects of community life (stationary and mobile). All applications must be placed within the community and contact peoples in their day-to-day activity. End user involvement is critical to ensure that the applications chosen have a commercial justification and contribute to the complementary growth of the market. 2) Development: of a coordinated hydrogen delivery and equipment service infrastructure. The infrastructure will develop following the principles of conservation and sustainability. 3) Human and societal factors: - Public and Corporate policy, public education, Codes/ Standards/ Regulations - Opportunity for real world implementation and feedback on developing codes and standards - Build awareness among regulatory groups, public, and the media. The GTA Hydrogen Village is already well under way with strategically located projects covering a wide range of hydrogen and fuel cell applications including: Residential heat and power generation using solid oxide

  4. Hanford Waste Vitrification Plant quality assurance program description: Overview and applications

    International Nuclear Information System (INIS)

    Caplinger, W.H.

    1990-12-01

    This document describes the Hanford Waste Vitrification Plant Project Quality Assurance Program. This program is being implemented to ensure the acceptability of high-level radioactive canistered waste forms produced by the Hanford Waste Vitrification Plant for disposal in a licensed federal repository. The Hanford Waste Vitrification Plant Quality Assurance Program is comprised of this Quality Assurance Program Description as well as the associated contractors' quality assurance programs. The objective of this Quality Assurance Program Description is to provide the Hanford Waste Vitrification Plant Project participants with guidance and direction for program implementation while satisfying the US Department of Energy Office of Civilian Radioactive Waste Management needs in repository licensing activities with regard to canistered waste forms. To accomplish this objective, this description will be prepared in three parts: Part 1 - Overview and applications document; Part 2 - Development and qualification of the canistered waste form; Part 3 - Production of canistered waste forms. Part 1 describes the background, strategy, application, and content of the Hanford Waste Vitrification Plant Quality Assurance Program. This Quality Assurance Program Description, when complete, is designed to provide a level of confidence in the integrity of the canistered waste forms. 8 refs

  5. Philosophy and overview of the INEL waste management program

    International Nuclear Information System (INIS)

    Gertz, C.P.; Whitsett, J.B.; Hamric, J.P.

    1986-01-01

    The INEL philosophy of ''get the job done; do it right--the first time'' is described as it applies to all phases of waste management activities. In addition, an overview of INEL's waste management programs and projects--low-level waste management operations and technology development; transuranic waste management operations and technology development; high-level waste management operations and technology development; spent fuel storage operations and equipment/technology development; transportation operations, technology development, and prototype cask procurements--are discussed. Emphasis is placed on the application of the INEL philosophy to the successful initiation and continuation of INEL waste management activities

  6. Hydrogen water chemistry for BWRs: A status report on the EPRI development program

    International Nuclear Information System (INIS)

    Jones, R.L.; Nelson, J.L.

    1990-01-01

    Many BWRs have experienced extensive intergranular stress corrosion cracking (IGSCC) in their austenitic stainless steel coolant system piping, resulting in serious adverse impacts on plant capacity factors, O and M costs, and personnel radiation exposures. A major research program to provide remedies for BWR pipe cracking was co-funded by EPRI, GE, and the BWR Owners Group for IGSCC Research between 1979 and 1988. Results from this program show that the likelihood of IGSCC depends on reactor water chemistry (particularly on the concentrations of ionic impurities and oxidizing radiolysis products) as well as on material condition and the level of tensile stress. Tests have demonstrated that the concentration of oxidizing radiolysis products in the recirculating water of a BWR can be reduced substantially by injecting hydrogen into the feedwater. Recent plant data show that the use of hydrogen injection can reduce the rate of IGSCC to insignificant levels if the concentration of ionic impurities in the reactor water is kept sufficiently low. This approach to the control of BWR pipe cracking is called hydrogen water chemistry (HWC). This paper presents a review of the results of EPRI's HWC development program from 1980 to the present. In addition, plans for additional work to investigate the feasibility of adapting HWC to protect the BWR vessel and major internal components from potential stress corrosion cracking problems are summarized. (orig.)

  7. Systems analysis on the condition of market penetration for hydrogen technologies using linear programming model

    International Nuclear Information System (INIS)

    Kato, K.; Ihara, S.

    1993-01-01

    Hydrogen is expected to be an important energy carrier, especially in the frame of global warming problem solution. The purpose of this study is to examine the condition of market penetration of hydrogen technologies in reducing CO 2 emissions. A multi-time-period linear programming model (MARKAL, Market Allocation)) is used to explore technology options and cost for meeting the energy demands while reducing CO 2 emissions from energy systems. The results show that hydrogen technologies become economical when CO 2 emissions are stringently constrained. 9 figs., 2 refs

  8. Regulatory and standard issues on hydrogen in 2009. Investigation report

    International Nuclear Information System (INIS)

    Tigreat, Delphine

    2009-01-01

    This report proposes an overview of the French and European regulations and standards regarding the use of hydrogen as an energy vector. The European and French regulations concern hydrogen production, storage and use on site and in transports of hazardous goods, the homologation of hydrogen powered vehicles, or the transport of hydrogen in ducts. Some standards are presented. A comparison is proposed between France and Germany, other European countries and the USA

  9. NASA Technology Demonstrations Missions Program Overview

    Science.gov (United States)

    Turner, Susan

    2011-01-01

    , more than 70% of the TDM funds will be competitively awarded as a result of yearly calls for proposed flight demonstrators and selected based on possible payoff to NASA, technology maturity, customer interest, cost, and technical risk reduction. This paper will give an overview of the TDM Program s mission and organization, as well as its current status in delivering advanced space technologies that will enable more flexible and robust future missions. It also will provide several examples of missions that fit within these parameters and expected outcomes.

  10. New hydrogen technologies

    International Nuclear Information System (INIS)

    1992-01-01

    This report presents an overview of the overall hydrogen system. There are separate sections for production, distribution, transport, storage; and applications of hydrogen. The most important methods for hydrogen production are steam reformation of natural gas and electrolysis of water. Of the renewable energy options, production of hydrogen by electrolysis using electricity from wind turbines or by gasification of biomass were found to be the most economic for Finland. Direct use of this electricity or the production of liquid fuels from biomass will be competing alternatives. When hydrogen is produced in the solar belt or where there is cheap hydropower it must be transported over long distances. The overall energy consumed for the transport is from 25 to 40 % of the initial available energy. Hydrogen storage can be divided into stationary and mobile types. The most economic, stationary, large scale hydrogen storage for both long and short periods is underground storage. When suitable sites are not available, then pressure vessels are the best for short period and liquid H 2 for long period. Vehicle storage of hydrogen is by either metal hydrides or liquid H 2 . Hydrogen is a very versatile energy carrier. It can be used to produce heat directly in catalytic burners without flame, to produce electricity in fuel cells with high efficiency for use in vehicles or for peak power shaving, as a fuel component with conventional fuels to reduce emissions, as a way to store energy and as a chemical reagent in reactions

  11. DOE Hydrogen and Fuel Cells Program 2017 Annual Merit Review and Peer Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-10-16

    The fiscal year 2017 U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting (AMR), in conjunction with DOE's Vehicle Technologies Office AMR, was held from June June 5-9, 2017, in Washington, D.C. This report is a summary of comments by AMR peer reviewers about the hydrogen and fuel cell projects funded by DOE's Office of Energy Efficiency and Renewable Energy.

  12. DOE Hydrogen and Fuel Cells Program 2016 Annual Merit Review and Peer Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-11-01

    The fiscal year 2016 U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting (AMR), in conjunction with DOE's Vehicle Technologies Office AMR, was held from June 6-10, 2016, in Washington, D.C. This report is a summary of comments by AMR peer reviewers about the hydrogen and fuel cell projects funded by DOE's Office of Energy Efficiency and Renewable Energy.

  13. Combustion of hydrogen-air jets in local chemical equilibrium: A guide to the CHARNAL computer program

    Science.gov (United States)

    Spalding, D. B.; Launder, B. E.; Morse, A. P.; Maples, G.

    1974-01-01

    A guide to a computer program, written in FORTRAN 4, for predicting the flow properties of turbulent mixing with combustion of a circular jet of hydrogen into a co-flowing stream of air is presented. The program, which is based upon the Imperial College group's PASSA series, solves differential equations for diffusion and dissipation of turbulent kinetic energy and also of the R.M.S. fluctuation of hydrogen concentration. The effective turbulent viscosity for use in the shear stress equation is computed. Chemical equilibrium is assumed throughout the flow.

  14. Hydrogen in energy transition

    International Nuclear Information System (INIS)

    2016-02-01

    This publication proposes a rather brief overview of challenges related to the use of hydrogen as an energy vector in the fields of transports and of energy storage to valorise renewable energies. Processes (steam reforming of natural gas or bio-gas, alkaline or membrane electrolysis, biological production), installation types (centralised or decentralised), raw materials and/or energy (natural gas, water, bio-gas, electricity, light), and their respective industrial maturity are indicated. The role of hydrogen to de-carbonate different types of transports is described (complementary energy for internal combustion as well as electrical vehicles) as well as its role in the valorisation and integration of renewable energies. The main challenges faced by the hydrogen sector are identified and discussed, and actions undertaken by the ADEME are indicated

  15. CO2-based hydrogen storage - Hydrogen generation from formaldehyde/water

    Science.gov (United States)

    Trincado, Monica; Grützmacher, Hansjörg; Prechtl, Martin H. G.

    2018-04-01

    Formaldehyde (CH2O) is the simplest and most significant industrially produced aldehyde. The global demand is about 30 megatons annually. Industrially it is produced by oxidation of methanol under energy intensive conditions. More recently, new fields of application for the use of formaldehyde and its derivatives as, i.e. cross-linker for resins or disinfectant, have been suggested. Dialkoxymethane has been envisioned as a combustion fuel for conventional engines or aqueous formaldehyde and paraformaldehyde may act as a liquid organic hydrogen carrier molecule (LOHC) for hydrogen generation to be used for hydrogen fuel cells. For the realization of these processes, it requires less energy-intensive technologies for the synthesis of formaldehyde. This overview summarizes the recent developments in low-temperature reductive synthesis of formaldehyde and its derivatives and low-temperature formaldehyde reforming. These aspects are important for the future demands on modern societies' energy management, in the form of a methanol and hydrogen economy, and the required formaldehyde feedstock for the manufacture of many formaldehyde-based daily products.

  16. An overview of the NASA rotary engine research program

    Science.gov (United States)

    Meng, P. R.; Hady, W. F.

    1984-01-01

    A brief overview and technical highlights of the research efforts and studies on rotary engines over the last several years at the NASA Lewis Research Center are presented. The test results obtained from turbocharged rotary engines and preliminary results from a high performance single rotor engine were discussed. Combustion modeling studies of the rotary engine and the use of a Laser Doppler Velocimeter to confirm the studies were examined. An in-house program in which a turbocharged rotary engine was installed in a Cessna Skymaster for ground test studies was reviewed. Details are presented on single rotor stratified charge rotary engine research efforts, both in-house and on contract.

  17. The NASA Electronic Parts and Packaging (NEPP) Program: NEPP Overview - Automotive Electronics

    Science.gov (United States)

    LaBel, Kenneth A.; Sampson, Michael J.

    2016-01-01

    The results of NASAs studies into the appropriateness of using U.S. Automotive electronic parts in NASA spaceflight systems will be presented. The first part of the presentation provides an overview of the United States Automotive Electronics Council's AECQ standardization program, the second part provides a summary of the results of NASA's procurement and testing experiences and other lessons learned along with preliminary test results.

  18. 75 FR 13740 - Office of Innovation and Improvement; Overview Information; Charter Schools Program (CSP) Grants...

    Science.gov (United States)

    2010-03-23

    ... DEPARTMENT OF EDUCATION Office of Innovation and Improvement; Overview Information; Charter Schools Program (CSP) Grants for National Leadership Activities; Notice Inviting Applications for New... of public schools have been identified for improvement, corrective action, or restructuring under...

  19. Environmental program overview for a high-level radioactive waste repository at Yucca Mountain

    International Nuclear Information System (INIS)

    1988-12-01

    The United States plans to begin operating the first repository for the permanent disposal of high-level nuclear waste early in the next century. In February 1983, the US Department of Energy (DOE) identified Yucca Mountain, in Nevada, as one of nine potentially acceptable sites for a repository. To determine its suitability, the DOE evaluated the Yucca Mountain site, along with eight other potentially acceptable sites, in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. The purpose of the Environmental Program Overview (EPO) for the Yucca Mountain site is to provide an overview of the overall, comprehensive approach being used to satisfy the environmental requirements applicable to sitting a repository at Yucca Mountain. The EPO states how the DOE will address the following environmental areas: aesthetics, air quality, cultural resources (archaeological and Native American components), noise, radiological studies, soils, terrestrial ecosystems, and water resources. This EPO describes the environmental program being developed for the sitting of a repository at Yucca Mountain. 1 fig., 3 tabs

  20. Storage of hydrogen in nanostructured carbon materials

    OpenAIRE

    Yürüm, Yuda; Yurum, Yuda; Taralp, Alpay; Veziroğlu, T. Nejat; Veziroglu, T. Nejat

    2009-01-01

    Recent developments focusing on novel hydrogen storage media have helped to benchmark nanostructured carbon materials as one of the ongoing strategic research areas in science and technology. In particular, certain microporous carbon powders, carbon nanomaterials, and specifically carbon nanotubes stand to deliver unparalleled performance as the next generation of base materials for storing hydrogen. Accordingly, the main goal of this report is to overview the challenges, distinguishing trait...

  1. Is there room for hydrogen in energy transition?

    International Nuclear Information System (INIS)

    Beeker, Etienne

    2014-08-01

    As Germany decided to use hydrogen to store huge quantities of renewable energies, this report aims at assessing the opportunities associated with hydrogen in the context of energy transition. The author addresses the various techniques and technologies of hydrogen production, and proposes a prospective economic analysis of these processes: steam reforming, alkaline electrolysis, polymer electrolyte membrane (PEM) electrolysis, and other processes still at R and D level. He gives an overview of existing and potential uses of hydrogen in industry, in energy storage (power-to-gas, power-to-power, methanation) and in mobility (hydrogen-mobility could be a response to hydrocarbon shortage, but the cost is still very high, and issues like hydrogen distribution must be addressed), and also evokes their emergence potential

  2. Renewable solar hydrogen production and utilization

    International Nuclear Information System (INIS)

    Bakos, J.

    2006-01-01

    There is a tremendous opportunity to generate large quantities of hydrogen from low grade and economical sources of methane including landfill gas, biogas, flare gas, and coal bed methane. The environmental benefits of generating hydrogen using renewable energy include significant greenhouse gas and air contaminant reductions. Solar Hydrogen Energy Corporation (SHEC LABS) recently constructed and demonstrated a Dry Fuel Reforming (DFR) hydrogen generation system that is powered primarily by sunlight focusing-mirrors in Tempe, Arizona. The system comprises a solar mirror array, a temperature controlling shutter system, and two thermo-catalytic reactors to convert methane, carbon dioxide, and water into hydrogen. This process has shown that solar hydrogen generation is feasible and cost-competitive with traditional hydrogen production. The presentation will provide the following: An overview of the results of the testing conducted in Tempe, Arizona; A look at the design and installation of the scaled-up technology site at a landfill site in Canada; An examination of the economic and environmental benefits of renewable hydrogen production using solar energy

  3. Development of Bi-phase sodium-oxygen-hydrogen chemical equilibrium calculation program (BISHOP) using Gibbs free energy minimization method

    International Nuclear Information System (INIS)

    Okano, Yasushi

    1999-08-01

    In order to analyze the reaction heat and compounds due to sodium combustion, the multiphase chemical equilibrium calculation program for chemical reaction among sodium, oxygen and hydrogen is developed in this study. The developed numerical program is named BISHOP; which denotes Bi-Phase, Sodium - Oxygen - Hydrogen, Chemical Equilibrium Calculation Program'. Gibbs free energy minimization method is used because of the special merits that easily add and change chemical species, and generally deal many thermochemical reaction systems in addition to constant temperature and pressure one. Three new methods are developed for solving multi-phase sodium reaction system in this study. One is to construct equation system by simplifying phase, and the other is to expand the Gibbs free energy minimization method into multi-phase system, and the last is to establish the effective searching method for the minimum value. Chemical compounds by the combustion of sodium in the air are calculated using BISHOP. The Calculated temperature and moisture conditions where sodium-oxide and hydroxide are formed qualitatively agree with the experiments. Deformation of sodium hydride is calculated by the program. The estimated result of the relationship between the deformation temperature and pressure closely agree with the well known experimental equation of Roy and Rodgers. It is concluded that BISHOP can be used for evaluated the combustion and deformation behaviors of sodium and its compounds. Hydrogen formation condition of the dump-tank room at the sodium leak event of FBR is quantitatively evaluated by BISHOP. It can be concluded that to keep the temperature of dump-tank room lower is effective method to suppress the formation of hydrogen. In case of choosing the lower inflammability limit of 4.1 mol% as the hydrogen concentration criterion, formation reaction of sodium hydride from sodium and hydrogen is facilitated below the room temperature of 800 K, and concentration of hydrogen

  4. Overview of the DOE-EM Packaging Certification Program

    International Nuclear Information System (INIS)

    Feldman, M.R.; Bennett, M.E.; Shuler, J.M.

    2009-01-01

    The U.S. Department of Transportation, in 49 CFR 173.7(d) grants the U.S. Department of Energy (DOE) the power to use 'packagings made by or under the direction of the U.S. Department of Energy... for the transportation of Class 7 materials when evaluated, approved and certified by the Department of Energy against packaging standards equivalent to those specified in 10 CFR part 71'. Via DOE Order 460.1B, DOE has established the DOE Packaging Certification Program (PCP) within the Department of Environmental Management for purposes including the certification of radioactive materials packages for DOE use. This paper will provide an overview of the programs and activities currently undertaken by the PCP in support of the safe transport of radioactive materials, including technical review of Safety Analysis Reports for Packaging, development of guidance documents and training courses, a quality assurance audit and field assessment program, database and docket management, and testing and test methodology development. The paper will also highlight the various organizations currently utilized by the PCP to meet the requirements of DOE O 460.1B, as well as some creative and effective methods that are being used to meet program objectives. The DOE Package Certification Program's primary function is to perform technical reviews of SARPs in support of the packaging certification process to ensure that the maximum protection is afforded to the public, all federal regulations are met, and the process is as time-effective and cost-effective as possible. Five additional specific functions are also supported by the PCP: development of guidance documents, training courses, a QA audit and field assessment program, database and docket management, and testing methods development. Each of these functions individually contributes to the overall mission of the PCP as defined in DOE O 460.1B. Taken as a whole, these functions represent a robust program to ensure the safety of workers

  5. Proceedings of the 1995 U.S. DOE hydrogen program review, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This document containes reports from the proceedings of the 1995 U.S. DOE hydrogen program review. Reports are organized under the topics of systems analysis, utilization, storage, and production. This volume, Volume I, contains the reports concerned with systems analysis and utilization. Individual reports were processed separately for the DOE data bases.

  6. IEA Agreement on the production and utilization of hydrogen: 1996 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Elam, Carolyn C. (National Renewable Energy Lab, Golden, CO (US)) (ed.)

    1997-01-31

    The annual report includes an overview of the IEA Hydrogen Agreement, including a brief summary of hydrogen in general. The Chairman's report provides highlights for the year. Sections are included on hydrogen energy activities in the IEA Hydrogen Agreement member countries, including Canada, European Commission, Germany, Japan, Netherlands, Norway, Spain, Sweden, Switzerland, and the US. Lastly, Annex reports are given for the following tasks: Task 10, Photoproduction of Hydrogen, Task 11, Integrated Systems, and Task 12, Metal Hydrides and Carbon for Hydrogen Storage.

  7. Motor-operated Valve Program at NPP Krsko (NEK) - Status and Overview

    International Nuclear Information System (INIS)

    Nikolic, M; Jagodar, N.; Cerjak, J.; Butkovic, V.

    2002-01-01

    On the basics of US NRC Generic Letter 89-10 Safety-related Motor-operated Valve Testing and Surveillance and subsequent generic letters, Motor-operated Valve (MOV) Program at NEK has been developing. Namely, the holders of nuclear power plant operating licenses has to verify the design basis capability of safety-related e.g. important-to-safety MOVs, as well as to ensure the same for the life of the plant. In light of that, each plant should establish a program to address stressed issues for each program MOV (124 at NEK). Such comprehensive task requires significant effort in many aspects, and basically multidisciplinary skills. NEK MOV Program represents a blend of engineering and in-plant testing, comprised of three phases: Phase I Engineering, Phase II Field Implementation and Phase III Trending. Currently, the program is about the end of Phase I and II, as well as in development of engineering basis for launching Phase III. Overview of the major programmatic issues will be given in this paper along with ongoing activities: testing process, gear-ratio modification, pressure locking/thermal binding susceptibility screening and preventive maintenance. (author)

  8. Prospect of HTGRs for hydrogen production in Indonesia

    International Nuclear Information System (INIS)

    Rusli, A.; Dasuki, A.S.; Rahman, M.; Nuriman; Sudarto

    1997-01-01

    Hydrogen energy system is interesting to many people of the world that because of hydrogen promised to save our planet earth from destroying of burning of fossil fuels. The selected development of hydrogen production from water such as electrolysis and thermochemical cycles are evaluated. These processes are allowed to split the water at lower temperature, still in the range of HTGRs' working temperature. An overview of related studies in recent years enables the development of research to be followed, studied and evaluated are mentioned. The prospect of hydrogen market in Indonesia and economic consideration based on previous studied are also analyzed and evaluated. (author). 11 refs, 5 figs, 13 tabs

  9. The Ontario hydro low pressure turbine disc inspection program automated ultrasonic inspection systems - an overview

    International Nuclear Information System (INIS)

    Huggins, J.W.; Chopcian, M.; Grabish, M.

    1990-01-01

    An overview of the Ontario Hydro Low Pressure Turbine Disc Inspection Program is presented. The ultrasonic inspection systems developed in-house to inspect low pressure turbine discs at Pickering and Bruce Nuclear Generating stations are described. Three aspects of the program are covered: PART I - Background to inspection program, disc cracking experience, and development of an in-house inspection capability: PART II - System development requirements; ultrasonic equipment, electromechanical subsystems and instrumentation console: PART III - Customized software for flaw detection, sizing, data acquisition/storage, advanced signal processing, reports, documentation and software based diagnostics

  10. Hydrogen: a clean energy for tomorrow?

    International Nuclear Information System (INIS)

    Artero, V.; Guillet, N.; Fruchart, D.; Fontecave, M.

    2011-01-01

    Hydrogen has a strong energetic potential. In order to exploit this potential and transform this energy into electricity, two chemical reactions could be used which do not release any greenhouse effect gas: hydrogen can be produced by water electrolysis, and then hydrogen and oxygen can be combined to produce water and release heat and electricity. Hydrogen can therefore be used to store energy. In Norway, the exceeding electricity produced by wind turbines in thus stored in fuel cells, and the energy of which is used when the wind weakens. About ten dwellings are thus supplied with only renewable energy. Similar projects are being tested in Corsica and in the Reunion Island. The main challenges for this technology are its cost, its compactness and its durability. The article gives an overview of the various concepts, apparatus and systems involved in hydrogen and energy production. Some researches are inspired by bacteria which produce hydrogen with enzymes. The objective is to elaborate better catalysts. Another explored perspective is the storage of solid hydrogen

  11. New concepts in hydrogen production in Iceland

    International Nuclear Information System (INIS)

    Arnason, B.; Sigfusson, T.I.; Jonsson, V.K.

    1993-01-01

    The paper presents some new concepts of hydrogen production in Iceland for domestic use and export. A brief overview of the Icelandic energy consumption and available resources is given. The cost of producing hydrogen by electrolysis is calculated for various alternatives such as plant size, load factors and electricity cost. Comparison is made between the total cost of liquid hydrogen delivered to Europe from Iceland and from Northern America, showing that liquid hydrogen delivered to Europe from Iceland would be 9% less expensive. This assumes conventional technology. New technologies are suggested in the paper and different scenarios for geothermally assisted hydrogen production and liquefaction are discussed. It is estimated that the use of geothermal steam would lead to 19% lower hydrogen gas production costs. By analysing the Icelandic fishing fleet, a very large consumer of imported fuel, it is argued that a transition of fuel technology from oil to hydrogen may be a feasible future option for Iceland and a testing ground for changing fuel technology. (Author)

  12. Solar chemistry / hydrogen - Summary report on the research programme 2002; Forschungsprogramm Solarchemie / Wasserstoff

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This summary report for the Swiss Federal Office of Energy (SFOE) on the solar chemistry / hydrogen research programme presents an overview of work done in these fields in Switzerland in 2002. It includes an overview of work done on 12 research and development projects and 9 pilot and demonstration projects. The volume is completed with a selection of 13 annual reports on particular topics, including transformation and storage of energy by photo-chemical, photo-electrochemical and photovoltaic means, generation of hydrogen using water splitting, solar production of zinc and calcium, catalytic synthesis, redox processes for the production of hydrogen and compressed air as a means of storing energy. Also covered are the topics of how solar chemistry can help reduce CO{sub 2} emissions and the management of the International Energy Agency's hydrogen annex 14. Further reports look at the destabilisation of metal hydride compounds, materials for sustainable energy technologies and diffusion barriers for high-pressure hydrogen tanks.

  13. Hydrogen storage in carbon nanotubes.

    Science.gov (United States)

    Hirscher, M; Becher, M

    2003-01-01

    The article gives a comprehensive overview of hydrogen storage in carbon nanostructures, including experimental results and theoretical calculations. Soon after the discovery of carbon nanotubes in 1991, different research groups succeeded in filling carbon nanotubes with some elements, and, therefore, the question arose of filling carbon nanotubes with hydrogen by possibly using new effects such as nano-capillarity. Subsequently, very promising experiments claiming high hydrogen storage capacities in different carbon nanostructures initiated enormous research activity. Hydrogen storage capacities have been reported that exceed the benchmark for automotive application of 6.5 wt% set by the U.S. Department of Energy. However, the experimental data obtained with different methods for various carbon nanostructures show an extreme scatter. Classical calculations based on physisorption of hydrogen molecules could not explain the high storage capacities measured at ambient temperature, and, assuming chemisorption of hydrogen atoms, hydrogen release requires temperatures too high for technical applications. Up to now, only a few calculations and experiments indicate the possibility of an intermediate binding energy. Recently, serious doubt has arisen in relation to several key experiments, causing considerable controversy. Furthermore, high hydrogen storage capacities measured for carbon nanofibers did not survive cross-checking in different laboratories. Therefore, in light of today's knowledge, it is becoming less likely that at moderate pressures around room temperature carbon nanostructures can store the amount of hydrogen required for automotive applications.

  14. Nuclear hydrogen production and its safe handling

    International Nuclear Information System (INIS)

    Chung, Hongsuk; Paek, Seungwoo; Kim, Kwang-Rag; Ahn, Do-Hee; Lee, Minsoo; Chang, Jong Hwa

    2003-01-01

    An overview of the hydrogen related research presently undertaken at the Korea Atomic Energy Research Institute are presented. These encompass nuclear hydrogen production, hydrogen storage, and the safe handling of hydrogen, High temperature gas-cooled reactors can play a significant role, with respect to large-scale hydrogen production, if used as the provider of high temperature heat in fossil fuel conversion or thermochemical cycles. A variety of potential hydrogen production methods for high temperature gas-cooled reactors were analyzed. They are steam reforming of natural gas, thermochemical cycles, etc. The produced hydrogen should be stored safely. Titanium metal was tested primarily because its hydride has very low dissociation pressures at normal storage temperatures and a high capacity for hydrogen, it is easy to prepare and is non-reactive with air in the expected storage conditions. There could be a number of potential sources of hydrogen evolution risk in a nuclear hydrogen production facility. In order to reduce the deflagration detonation it is necessary to develop hydrogen control methods that are capable of dealing with the hydrogen release rate. A series of experiments were conducted to assess the catalytic recombination characteristics of hydrogen in an air stream using palladium catalysts. (author)

  15. Analysis of hydrogen operation in the Danish Traffic System

    DEFF Research Database (Denmark)

    Jørgensen, Kaj

    1996-01-01

    The main report of a study of the utilisation of hydrogen in the Danish energy and traffic system.The report contains an overview and assessment of the potential hydrogen technologies as well as analyses of the energy and environmental effects of different applications in the Danish transport sec...... sector (passenger car, bus, van, truck). The report concludes that hydrogen along with electric and hybrid propulsion can be a very interesting element in a strategy for sustainable transport, but only if based mainly on renewable energy....

  16. Florida Hydrogen Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Block, David L

    2013-06-30

    The Florida Hydrogen Initiative (FHI) was a research, development and demonstration hydrogen and fuel cell program. The FHI program objectives were to develop Florida?s hydrogen and fuel cell infrastructure and to assist DOE in its hydrogen and fuel cell activities The FHI program funded 12 RD&D projects as follows: Hydrogen Refueling Infrastructure and Rental Car Strategies -- L. Lines, Rollins College This project analyzes strategies for Florida's early stage adaptation of hydrogen-powered public transportation. In particular, the report investigates urban and statewide network of refueling stations and the feasibility of establishing a hydrogen rental-car fleet based in Orlando. Methanol Fuel Cell Vehicle Charging Station at Florida Atlantic University ? M. Fuchs, EnerFuel, Inc. The project objectives were to design, and demonstrate a 10 kWnet proton exchange membrane fuel cell stationary power plant operating on methanol, to achieve an electrical energy efficiency of 32% and to demonstrate transient response time of less than 3 milliseconds. Assessment of Public Understanding of the Hydrogen Economy Through Science Center Exhibits, J. Newman, Orlando Science Center The project objective was to design and build an interactive Science Center exhibit called: ?H2Now: the Great Hydrogen Xchange?. On-site Reformation of Diesel Fuel for Hydrogen Fueling Station Applications ? A. Raissi, Florida Solar Energy Center This project developed an on-demand forecourt hydrogen production technology by catalytically converting high-sulfur hydrocarbon fuels to an essentially sulfur-free gas. The removal of sulfur from reformate is critical since most catalysts used for the steam reformation have limited sulfur tolerance. Chemochromic Hydrogen Leak Detectors for Safety Monitoring ? N. Mohajeri and N. Muradov, Florida Solar Energy Center This project developed and demonstrated a cost-effective and highly selective chemochromic (visual) hydrogen leak detector for safety

  17. Hydrogen is ready for take-off

    International Nuclear Information System (INIS)

    Mary, Olivier

    2015-01-01

    As hydrogen is expected to be the energy vector for the future, this article proposes an overview of developments in this sector. It outlines that the transport sector seems to be taking off, notably with the influence of car manufacturers like Hyundai and Toyota which are already proposing hydrogen-fuelled vehicles whereas German manufacturers are only announcing such products, and France prefers electric vehicles. It also discusses the fact that the existence of a distribution network is an important challenge. Besides this application in transport, hydrogen has also a high potential for renewable energy storage. As it is a rather new one, this sector is in continuous change. In parallel, two perspectives are briefly discussed: the possible use of water electrolysis as a concurrent to steam reforming, and the possible use of natural hydrogen as energy source

  18. Hydrogen safety

    International Nuclear Information System (INIS)

    Frazier, W.R.

    1991-01-01

    The NASA experience with hydrogen began in the 1950s when the National Advisory Committee on Aeronautics (NACA) research on rocket fuels was inherited by the newly formed National Aeronautics and Space Administration (NASA). Initial emphasis on the use of hydrogen as a fuel for high-altitude probes, satellites, and aircraft limited the available data on hydrogen hazards to small quantities of hydrogen. NASA began to use hydrogen as the principal liquid propellant for launch vehicles and quickly determined the need for hydrogen safety documentation to support design and operational requirements. The resulting NASA approach to hydrogen safety requires a joint effort by design and safety engineering to address hydrogen hazards and develop procedures for safe operation of equipment and facilities. NASA also determined the need for rigorous training and certification programs for personnel involved with hydrogen use. NASA's current use of hydrogen is mainly for large heavy-lift vehicle propulsion, which necessitates storage of large quantities for fueling space shots and for testing. Future use will involve new applications such as thermal imaging

  19. Overview of a radiation safety program in a district style medical environment

    International Nuclear Information System (INIS)

    Wilson, G.

    2006-01-01

    This paper provides an overview of the eight components of a radiation safety program in a large health care facility spread out over several campuses in a large geographic area in Nova Scotia. The main focus is based on those areas that are regulated by the Canadian Nuclear Safety Commission and generally encompass nuclear medicine and radiation therapy operations. X-ray operations are regulated provincially, but the general operational principles of an effective radiation safety program can be applied in all these areas. The main components covered include the set up of an organizational structure that operates separately from individual departments, general items expected from reports to corporate management or regulators, and some examples of the front-line expectations for those in individual departments. The review is not all encompassing, but should give organizations some insight of the magnitude of a radiation safety program in a district style environment. (author)

  20. Disability Overview

    Science.gov (United States)

    ... About CDC.gov . Disability & Health Home Disability Overview Disability Inclusion Barriers to Inclusion Inclusion Strategies Inclusion in Programs & Activities Resources Healthy Living Disability & Physical Activity Disability & Obesity Disability & Smoking Disability & Breast ...

  1. THE HIGH-TEMPERATURE ELECTROLYSIS PROGRAM AT THE IDAHO NATIONAL LABORATORY: OBSERVATIONS ON PERFORMANCE DEGRADATION

    Energy Technology Data Exchange (ETDEWEB)

    J. E. O' Brien; C. M. Stoots; J. S. Herring; K. G. Condie; G. K. Housley

    2009-06-01

    This paper presents an overview of the high-temperature electrolysis research and development program at the Idaho National Laboratory, with selected observations of electrolysis cell degradation at the single-cell, small stack and large facility scales. The objective of the INL program is to address the technical and scale-up issues associated with the implementation of solid-oxide electrolysis cell technology for hydrogen production from steam. In the envisioned application, high-temperature electrolysis would be coupled to an advanced nuclear reactor for efficient large-scale non-fossil non-greenhouse-gas hydrogen production. The program supports a broad range of activities including small bench-scale experiments, larger scale technology demonstrations, detailed computational fluid dynamic modeling, and system modeling. A summary of the current status of these activities and future plans will be provided, with a focus on the problem of cell and stack degradation.

  2. Overview of Cea studies on hydrogen production and related prospects for nuclear power

    International Nuclear Information System (INIS)

    Agator, J.M.; Guigon, A.

    2001-01-01

    The anticipated growth of the world energy demand and the increasing concern about the emission of greenhouse gases, with the objectives of limitation fixed by the Kyoto protocol, provide the impetus for the development of hydrogenous fuels, and especially that of hydrogen as energy carrier. The trend will be reinforced in the longer term with the progressive shortage of natural hydrocarbon fuels. Fuel cells used in stationary, transport and portable applications will probably be the most efficient hydrogen converter and the most promising decentralized energy technology of the coming decades. In order to contribute to the reduction of greenhouse gas emissions, the massive use of hydrogen for transport and stationary applications calls for the development of production processes compatible with low CO 2 emissions, thus limiting the use of fossil fuels (natural gas, oil, coal, etc.) as reagent or energy sources. Furthermore, the progressive exhaustion of economic fossil fuel reserves will ultimately make it necessary to extract hydrogen from water through CO 2 -free processes. With this prospect in view, base-load nuclear energy, besides renewable energies, can play an important role to produce hydrogen through electrolysis in the medium term, as can high temperature thermo-chemical water dissociation processes in the longer term. Starting from current research in the field of fuel cells and hydrogen storage systems, the CEA intends to implement a large R and D programme on hydrogen, continuing previous research and covering the aspects of production, transport and related safety requirements. This endeavour is intended to reinforce the contribution of the CEA to the national and European research effort on non-fossil energy sources, and to create new opportunities of international collaboration and networking. (authors)

  3. Overview of CEA studies on hydrogen production and related prospects for nuclear power

    International Nuclear Information System (INIS)

    Agator, J.M.; Guigon, A.; Serre-Combe, P.

    2001-01-01

    The anticipated growth of the world energy demand and the increasing concern about the emission of greenhouse gases, with the objectives of limitation fixed by the Kyoto protocol, prepare the ground for the development of hydrogenous fuels, and especially that of hydrogen as energy carrier. The trend will be reinforced in the longer term with the progressive shortage of natural hydrocarbon fuels. Fuel cells used in stationary, transport and portable applications will probably be the most efficient hydrogen converter and the most promising decentralized energy technology of the next decades. In order to contribute to the reduction of greenhouse gas emissions, a massive use of hydrogen for transport and stationary applications calls for the development of production processes compatible with low CO 2 emissions, thus limiting the use of fossil fuels (natural gas, oil, coal...) as reagent or energy sources. Furthermore, the progressive exhaustion of economic fossil fuel reserves will ultimately make it necessary to extract hydrogen from water through CO 2 free processes. With this prospect in view, base-load nuclear energy, besides renewable energies, can play an important role to produce hydrogen through electrolysis in the medium term, and also through high temperature thermochemical water dissociation processes in the longer term. Starting from current research in the field of fuel cans and hydrogen storage systems, the CEA intends to implement a large R and D programme on hydrogen also covering the aspects of production, transport and related safety requirements. This endeavour is intended to reinforce the contribution of the CEA to the national and European research effort on non-fossil energy sources, and to open new opportunities of international collaborations and networking. (authors)

  4. Proceedings of the 1992 DOE/NREL hydrogen program review

    Energy Technology Data Exchange (ETDEWEB)

    Rocheleau, R.E.; Gao, Q.H.; Miller, E. [Univ. of Hawaii, Honolulu, HI (United States). Hawaii Natural Energy Inst.

    1992-07-01

    These proceedings contain 18 papers presented at the meeting. While the majority of the papers (11) had to do with specific hydrogen production methods, other papers were related to hydrogen storage systems, evaluations of and systems analysis for a hydrogen economy, and environmental transport of hydrogen from a pipeline leak.

  5. The hydrogen highway

    International Nuclear Information System (INIS)

    Grigg, A.

    2004-01-01

    'Full text:' The Hydrogen Highway in British Columbia, Canada, is a coordinated, large-scale demonstration and deployment program aimed at accelerating the commercialization of hydrogen and fuel cell technologies and products. It will be a showcase for fuel cell vehicles, refuelling stations and stationary power systems leading up to the 2010 Olympic and Paralympic Winter Games in Whistler, BC. The Hydrogen Highway is designed to help address many of the challenges to commercialization identified in the Canadian Fuel Cell Commercialization Roadmap. The project will create an early adopter network of hydrogen and fuel cell microenvironments where technology developers and users can learn about the technical, economic, environmental and social impacts of products. The Hydrogen Highway will give the public and potential purchasers an opportunity to feel, touch and see the new technology, as well as provide the industry with a venue in which to develop industry standards and supply chains of materials and components. While demonstration and deployment programs are a recognized and necessary component in the process to commercialize hydrogen and fuel cell technologies, there is no handbook describing how it should be done. This paper will describe the history, objectives, project details and some of the challenges associated with establishing Canada's Hydrogen Highway. (author)

  6. The hydrogen highway

    Energy Technology Data Exchange (ETDEWEB)

    Grigg, A. [Fuel Cells Canada, Vancouver, British Columbia (Canada)

    2004-07-01

    'Full text:' The Hydrogen Highway in British Columbia, Canada, is a coordinated, large-scale demonstration and deployment program aimed at accelerating the commercialization of hydrogen and fuel cell technologies and products. It will be a showcase for fuel cell vehicles, refuelling stations and stationary power systems leading up to the 2010 Olympic and Paralympic Winter Games in Whistler, BC. The Hydrogen Highway is designed to help address many of the challenges to commercialization identified in the Canadian Fuel Cell Commercialization Roadmap. The project will create an early adopter network of hydrogen and fuel cell microenvironments where technology developers and users can learn about the technical, economic, environmental and social impacts of products. The Hydrogen Highway will give the public and potential purchasers an opportunity to feel, touch and see the new technology, as well as provide the industry with a venue in which to develop industry standards and supply chains of materials and components. While demonstration and deployment programs are a recognized and necessary component in the process to commercialize hydrogen and fuel cell technologies, there is no handbook describing how it should be done. This paper will describe the history, objectives, project details and some of the challenges associated with establishing Canada's Hydrogen Highway. (author)

  7. Hydrogen fuelled buses: Italian ENEA research program

    International Nuclear Information System (INIS)

    Ambrosini, G.; Ciancia, A.; Pede, G.

    1993-01-01

    Current hydrogen automotive fuels research studies being conducted by ENEA (Italian Agency for New Technology, Energy and the Environment) are being targeted towards the development of hydrogen fueled vans and buses for use in highly polluted urban environments where the innovative vehicles' air pollution abatement characteristics would justify their high operating costs as compared with those of conventional automotive alternatives. The demonstration vehicle being used in the experimental studies and performance tests is a two liter minibus with a spark ignition engine power rated at 55 kW with gasoline operation and 45 kW with hydrogen. Detailed design notes are given regarding the retrofitting of the minibus chassis to house the aluminium gas storage tanks and the adaptation of the engine to operate with compressed hydrogen. Attention is given to efforts being made to resolve combustion control and fueling problems. Focus is on the progress being made in the development of an efficient and safe electronically controlled fuel injection system

  8. IEA Hydrogen Implementing Agreement's Second Generation R and D and the Hydrogen Economy

    Energy Technology Data Exchange (ETDEWEB)

    Beck, N.; Garcia-Conde, A. G.; Riis, T. U.; Luzzi, A.; Valladares, M. R. de

    2005-07-01

    Since its creation by the International Energy Agency in the late 1970's, the IEA Hydrogen Implementing Agreement (HIA) has been at the forefront of collaborative international hydrogen research and development (R and D) (http://www.ieahia.org. ) The collective body of HIA hydrogen R and D will contribute to definition of the hydrogen economy. The five-year [2004-2009) mission of the IEA HIA is to advance the adoption of a Hydrogen Economy through strategic implementation of collaborative R and D and outreach programs that address key issues and barriers. The three goals for the Second Generation HIA are: Advancement of science and technology via pre-commercial collaborative RD and D programs; Assessment of market environment, including the non-energy sector; and Implementation of outreach program, aimed at community acceptance and support. The HIA launched its Second Generation of hydrogen R and D in the latter part of 2004. The HIA's anniversary report: In Pursuit of the Future: 25 Years of IEA Research towards the realization of Hydrogen Energy Systems (http://ieahia.org/pdfs/IEA_AnniversaryReport_HIA.pdf) chronicles its contributions to hydrogen R and D. As the hydrogen economy takes shape, the HIA is pleased to share highlights of its R and D history together with progress on planned activities and its six current annexes, listed below: Task 15 Photobiological Production of Hydrogen Task 16 Hydrogen from Carbon-Containing Materials Task 17 Solid and Liquid Storage Task 18 Integrated Systems Evaluation Task 19 Safety Task 20 Hydrogen from Waterphotolysis Planned successor annexes in storage and photobiological hydrogen production will also be discussed, along with a task on high temperature hydrogen production that is now in the definition phase. Over 250 experts from the sixteen member HIA countries and the European Union contribute to this portfolio of cutting edge hydrogen R and D and analysis activities. Several other countries are expected to

  9. Theoretical and algorithmic advances in multi-parametric programming and control

    KAUST Repository

    Pistikopoulos, Efstratios N.; Dominguez, Luis; Panos, Christos; Kouramas, Konstantinos; Chinchuluun, Altannar

    2012-01-01

    This paper presents an overview of recent theoretical and algorithmic advances, and applications in the areas of multi-parametric programming and explicit/multi-parametric model predictive control (mp-MPC). In multi-parametric programming, advances include areas such as nonlinear multi-parametric programming (mp-NLP), bi-level programming, dynamic programming and global optimization for multi-parametric mixed-integer linear programming problems (mp-MILPs). In multi-parametric/explicit MPC (mp-MPC), advances include areas such as robust multi-parametric control, multi-parametric nonlinear MPC (mp-NMPC) and model reduction in mp-MPC. A comprehensive framework for multi-parametric programming and control is also presented. Recent applications include a hydrogen storage device, a fuel cell power generation system, an unmanned autonomous vehicle (UAV) and a hybrid pressure swing adsorption (PSA) system. © 2012 Springer-Verlag.

  10. Theoretical and algorithmic advances in multi-parametric programming and control

    KAUST Repository

    Pistikopoulos, Efstratios N.

    2012-04-21

    This paper presents an overview of recent theoretical and algorithmic advances, and applications in the areas of multi-parametric programming and explicit/multi-parametric model predictive control (mp-MPC). In multi-parametric programming, advances include areas such as nonlinear multi-parametric programming (mp-NLP), bi-level programming, dynamic programming and global optimization for multi-parametric mixed-integer linear programming problems (mp-MILPs). In multi-parametric/explicit MPC (mp-MPC), advances include areas such as robust multi-parametric control, multi-parametric nonlinear MPC (mp-NMPC) and model reduction in mp-MPC. A comprehensive framework for multi-parametric programming and control is also presented. Recent applications include a hydrogen storage device, a fuel cell power generation system, an unmanned autonomous vehicle (UAV) and a hybrid pressure swing adsorption (PSA) system. © 2012 Springer-Verlag.

  11. Hydrogen: energy transition under way

    International Nuclear Information System (INIS)

    Franc, Pierre-Etienne; Mateo, Pascal

    2015-01-01

    Written by a representative of Air Liquide with the help of a free lance journalist, this book proposes an overview of the technological developments for the use of hydrogen as a clean energy with its ability to store primary energy (notably that produced by renewable sources), and its capacity of energy restitution in combination with a fuel cell with many different applications (notably mobility-related applications). The authors outline that these developments are very important in a context of energy transition. They also outline what is left to be done, notably economically and financially, for hydrogen to play its role in the energy revolution which is now under way

  12. Pathways to Commercial Success: Technologies and Products Supported by the Hydrogen, Fuel Cells and Infrastructure Technologies Program

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-08-01

    This report documents the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Hydrogen, Fuel Cells and Infrastructure Technologies Program and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  13. Overview of the DIII-D program computer systems

    International Nuclear Information System (INIS)

    McHarg, B.B. Jr.

    1997-11-01

    Computer systems pervade every aspect of the DIII-D National Fusion Research program. This includes real-time systems acquiring experimental data from data acquisition hardware; cpu server systems performing short term and long term data analysis; desktop activities such as word processing, spreadsheets, and scientific paper publication; and systems providing mechanisms for remote collaboration. The DIII-D network ties all of these systems together and connects to the ESNET wide area network. This paper will give an overview of these systems, including their purposes and functionality and how they connect to other systems. Computer systems include seven different types of UNIX systems (HP-UX, REALIX, SunOS, Solaris, Digital UNIX, Ultrix, and IRIX), OpenVMS systems (both BAX and Alpha), MACintosh, Windows 95, and more recently Windows NT systems. Most of the network internally is ethernet with some use of FDDI. A T3 link connects to ESNET and thus to the Internet. Recent upgrades to the network have notably improved its efficiency, but the demand for bandwidth is ever increasing. By means of software and mechanisms still in development, computer systems at remote sites are playing an increasing role both in accessing and analyzing data and even participating in certain controlling aspects for the experiment. The advent of audio/video over the interest is now presenting a new means for remote sites to participate in the DIII-D program

  14. Proceedings of the 1997 U.S. DOE Hydrogen Program Review, May 21-23, 1997, Herndon, Virginia

    Energy Technology Data Exchange (ETDEWEB)

    1997-10-01

    The research and development supported by the DOE Hydrogen Program focuses on near-term transitional strategies involving fossil fuels, and on the exploration of long-term, high-risk, renewable and sustainable concepts.

  15. 12-Step Interventions and Mutual Support Programs for Substance Use Disorders: An Overview

    Science.gov (United States)

    Donovan, Dennis M.; Ingalsbe, Michelle H.; Benbow, James; Daley, Dennis C.

    2013-01-01

    Social workers and other behavioral health professionals are likely to encounter individuals with substance use disorders in a variety of practice settings outside of specialty treatment. 12-Step mutual support programs represent readily available, no cost community-based resources for such individuals; however, practitioners are often unfamiliar with such programs. The present article provides a brief overview of 12-Step programs, the positive substance use and psychosocial outcomes associated with active 12-Step involvement, and approaches ranging from ones that can be utilized by social workers in any practice setting to those developed for specialty treatment programs to facilitate engagement in 12-Step meetings and recovery activities. The goal is to familiarize social workers with 12-Step approaches so that they are better able to make informed referrals that match clients to mutual support groups that best meet the individual’s needs and maximize the likelihood of engagement and positive outcomes. PMID:23731422

  16. The US Department of Energy hydrogen baseline survey: assessing knowledge and opinions about hydrogen technology

    International Nuclear Information System (INIS)

    Christy Cooper; Tykey Truett; R L Schmoyer

    2006-01-01

    To design and maintain its education program, the United States Department of Energy (DOE) Hydrogen Program conducted a statistically-valid national survey to measure knowledge and opinions of hydrogen among key target audiences. The Hydrogen Baseline Knowledge Survey provides a reference for designing the DOE hydrogen education strategy and will be used in comparisons with future surveys to measure changes in knowledge and opinions over time. The survey sampled four U.S. populations: (1) public; (2) students; (3) state and local government officials; and (4) potential large-scale hydrogen end-users in three business categories. Questions measured technical understanding of hydrogen and opinions about hydrogen safety. Other questions assessed visions of the likelihood of future hydrogen applications and sources of energy information. Several important findings were discovered, including a striking lack of technical understanding across all survey groups, as well as a strong correlation between technical knowledge and opinions about safety: those who demonstrated an understanding of hydrogen technologies expressed the least fear of its safe use. (authors)

  17. IEA Agreement on the production and utilization of hydrogen: 1999 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Elam, Carolyn C. (National Renewable Energy Lab, Golden, CO (US)) (ed.)

    2000-01-31

    The annual report begins with an overview of the IEA Hydrogen Agreement, including guiding principles and their strategic plan followed by the Chairman's report providing the year's highlights. Annex reports included are: the final report for Task 11, Integrated Systems; task updates for Task 12, Metal Hydrides and Carbon for Hydrogen Storage, Task 13, Design and Optimization of Integrated Systems, Task 14, Photoelectrolytic Production of Hydrogen, and Task 15, Photobiological Production of Hydrogen; and a feature article by Karsten Wurr titled 'Large-Scale Industrial Uses of Hydrogen: Final Development Report'.

  18. ORNL: PWR-BDHT analysis procedure, a preliminary overview

    International Nuclear Information System (INIS)

    Cliff, S.B.

    1978-01-01

    The computer programs currently used in the analysis of the ORNL-PWR Blowdown Heat Transfer Separate-Effects Program are overviewed. The current linkages and relationships among the programs are given along with general comments about the future directions of some of these programs. The overview is strictly from the computer science point of view with only minimal information concerning the engineering aspects of the analysis procedure

  19. An overview of the Radioisotope Thermoelectric Generator Transportation System Program

    International Nuclear Information System (INIS)

    McCoy, J.C.; Becker, D.L.

    1996-01-01

    Radioisotope Thermoelectric Generators (RTG) convert the heat generated by radioactive decay to electricity using thermocouples. RTGs have a long operating life, are reasonably lightweight, and require little or no maintenance once assembled and tested. These factors make RTGs particularly attractive for use in spacecraft. However, because RTGs contain significant quantities of radioactive materials, normally plutonium-238 and its decay products, they must be transported in packages built in accordance with Title 10, Code of Federal Regulations, Part 71. The U.S. Department of Energy assigned the Radioisotope Thermoelectric Generator Transportation System (RTGTS) Program to Westinghouse Hanford Company in 1988 to develop a system meeting the regulatory requirements. The program objective was to develop a transportation system that would fully comply with 10 CFR 71 while protecting RTGs from adverse environmental conditions during normal conditions of transport (e.g., shock and heat). The RTGTS is scheduled for completion in December 1996 and will be available to support the National Aeronautics and Space Administration close-quote s Cassini mission to Saturn in October 1997. This paper provides an overview of the RTGTS and discusses the hardware being produced. Additionally, various program management innovations mandated by recent major changes in the U.S. Department of Energy structure and resources will be outlined. copyright 1996 American Institute of Physics

  20. An overview of the Radioisotope Thermoelectric Generator Transporation System Program

    International Nuclear Information System (INIS)

    McCoy, J.C.

    1995-10-01

    Radioisotope Thermoelectric Generators (RTG) convert the heat generated by radioactive decay to electricity using thermocouples. RTGs have a long operating life, are reasonably lightweight, and require little or no maintenance once assembled and tested. These factors make RTGs particularly attractive for use in spacecraft However, because RTGs contain significant quantities of radioactive materials, normally plutonium-238 and its decay products, they must be transported in packages built in accordance with Title 10, Code of Federal Regulations, Part 71. The US Department of Energy assigned the Radioisotope Thermoelectric Generator Transportation System (RTGTS) Program to Westinghouse Hanford Company in 1988 to develop a system meeting the regulatory requirements. The program objective was to develop a transportation system that would fully comply with 10 CFR 71 while protecting RTGs from adverse environmental conditions during normal conditions of transport (e.g., shock and heat). The RTGTS is scheduled for completion in December 1996 and will be available to support the National Aeronautics and Space Administrations Cassini mission to Saturn in October 1997. This paper provides an overview of the RTGTS and discusses the hardware being produced. Additionally, various program management innovations mandated by recent ma or changes in the US Department of Energy structure and resources will be outlined

  1. Photoelectrochemical hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Rocheleau, R.E.; Miller, E.; Misra, A. [Univ. of Hawaii, Honolulu, HI (United States)

    1996-10-01

    The large-scale production of hydrogen utilizing energy provided by a renewable source to split water is one of the most ambitious long-term goals of the U.S. Department of Energy`s Hydrogen Program. One promising option to meet this goal is direct photoelectrolysis in which light absorbed by semiconductor-based photoelectrodes produces electrical power internally to split water into hydrogen and oxygen. Under this program, direct solar-to-chemical conversion efficiencies as high as 7.8 % have been demonstrated using low-cost, amorphous-silicon-based photoelectrodes. Detailed loss analysis models indicate that solar-to-chemical conversion greater than 10% can be achieved with amorphous-silicon-based structures optimized for hydrogen production. In this report, the authors describe the continuing progress in the development of thin-film catalytic/protective coatings, results of outdoor testing, and efforts to develop high efficiency, stable prototype systems.

  2. Overview of GNSS-R Research Program for Ocean Observations at Japan

    Science.gov (United States)

    Ichikawa, Kaoru; Ebinuma, Takuji; Akiyama, Hiroaki; Kitazawa, Yukihito

    2015-04-01

    GNSS-R is a new remote-sensing method which uses reflected GNSS signals. Since no transmitters are required, it is suitable for small satellites. Constellations of GNSS-R small satellites have abilities on revolutionary progress on 'all-time observable' remote-sensing methods . We have started a research program for GNSS-R applications on oceanographic observations under a contract with MEXT (Ministry of Education Culture, Sports, Science and Technology, JAPAN) as a'Space science research base formation program'. The duration of research program is 3 years (2015-2017). The one of important focuses of this program is creation of a new community to merge space engineering and marine science through establishment on application plans of GNSS-R. Actual GNSS-R data acquisition experiments using multi-copters, ships, and/or towers are planned, together with in-situ sea truth data such as wave spectrum, wind speed profiles and sea surface height. These data are compared to determine the accuracy and resolution of the estimates based on GNSS-R observations. Meanwhile, preparation of a ground station for receiving GNSS-R satellite data will be also established. Whole those data obtained in this project will be distributed for public. This paper introduces the overview of research plan..

  3. The hydrogen and the fuel cells in the world. Programs and evolutions; L'hydrogene et les piles a combustibles dans le monde. Programmes et evolutions

    Energy Technology Data Exchange (ETDEWEB)

    Lucchese, P. [CEA Saclay, Dir. des Nouvelles Technologies de l' Energie CEA, 91 - Gif-sur-Yvette (France)

    2008-07-01

    HyPac is a french platform on the hydrogen and fuel cells, created in 2008. The author presents the opportunity of such a platform facing the world research programs and other existing platforms. (A.L.B.)

  4. Economically viable large-scale hydrogen liquefaction

    Science.gov (United States)

    Cardella, U.; Decker, L.; Klein, H.

    2017-02-01

    The liquid hydrogen demand, particularly driven by clean energy applications, will rise in the near future. As industrial large scale liquefiers will play a major role within the hydrogen supply chain, production capacity will have to increase by a multiple of today’s typical sizes. The main goal is to reduce the total cost of ownership for these plants by increasing energy efficiency with innovative and simple process designs, optimized in capital expenditure. New concepts must ensure a manageable plant complexity and flexible operability. In the phase of process development and selection, a dimensioning of key equipment for large scale liquefiers, such as turbines and compressors as well as heat exchangers, must be performed iteratively to ensure technological feasibility and maturity. Further critical aspects related to hydrogen liquefaction, e.g. fluid properties, ortho-para hydrogen conversion, and coldbox configuration, must be analysed in detail. This paper provides an overview on the approach, challenges and preliminary results in the development of efficient as well as economically viable concepts for large-scale hydrogen liquefaction.

  5. IEA Agreement on the Production and utilization of hydrogen: 1998 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Elam, Carolyn C. (National Renewable Energy Lab, Golden, CO (US)) (ed.)

    1999-01-31

    The annual report includes an overview of the IEA Hydrogen Agreement, including its guiding principles. The Chairman's report section includes highlights of the agreement for 1998. Annex reports are given on various tasks: Task 10, Photoproduction of Hydrogen, Task 11, Integrated Systems, and Task 12, Metal Hydrides and Carbon for Hydrogen Storage. Lastly, a feature article by Karsten Wurr, E3M Material Consulting, GmbH, Hamburg Germany, is included titled 'Hydrogen in Material Science and Technology: State of the Art and New Tendencies'.

  6. The NASA Electronic Parts and Packaging (NEPP) Program: An Overview

    Science.gov (United States)

    LaBel, Kenneth A.; Sampson, Michael J.

    2016-01-01

    This presentation provides an overview of the NEPP Program. The NEPP Mission is to provide guidance to NASA for the selection and application of microelectronics technologies; Improve understanding of the risks related to the use of these technologies in the space environment; Ensure that appropriate research is performed to meet NASA mission assurance needs. NEPP's Goals are to provide customers with appropriate and cost-effective risk knowledge to aid in: Selection and application of microelectronics technologies; Improved understanding of risks related to the use of these technologies in the space environment; Appropriate evaluations to meet NASA mission assurance needs; Guidelines for test and application of parts technologies in space; Assurance infrastructure and support for technologies in use by NASA space systems.

  7. U.S. Department of Energy Hydrogen and Fuel Cells Program 2012 Annual Merit Review and Peer Evaluation Report: May 14-18, 2012, Arlington, VA

    Energy Technology Data Exchange (ETDEWEB)

    2012-09-01

    This document summarizes the comments provided by peer reviewers on hydrogen and fuel cell projects presented at the fiscal year (FY) 2012 U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting (AMR), held May 14-18, 2012, in Arlington, VA.

  8. Liquid hydrogen: back to basics

    Energy Technology Data Exchange (ETDEWEB)

    Sherif, S.A. [Dept. of Mechanical and Aerospace Engineering, Univ. of Florida, Florida (United States)

    2009-07-01

    'Full text': Liquid hydrogen is primarily used as a rocket fuel and is predestined for supersonic and hypersonic space vehicles to a large extent because it has the lowest boiling point density and the highest specific thrust of any known fuel. Its favorable characteristics include its high heating value per unit mass, its wide ignition range in hydrogen/oxygen or air mixtures, as well as its large flame speed and cooling capacity due to its high specific heat which permits very effective engine cooling and cooling the critical parts of the outer skin. Liquid hydrogen has some other important uses such as in high-energy nuclear physics and bubble chambers. The transport of hydrogen is vastly more economical when it is in liquid form even though cryogenic refrigeration and special Dewar vessels are required. Although liquid hydrogen can provide a lot of advantages, its uses are restricted in part because liquefying hydrogen by existing conventional methods consumes a large amount of energy (around 30% of its heating value). Liquefying 1 kg of hydrogen in a medium-size plant requires 10 to 13 kWh of electric energy. In addition, boil-off losses associated with the storage, transportation, and handling of liquid hydrogen can consume up to 40% of its available combustion energy. It is therefore important to search for ways that can improve the efficiency of the liquefiers and diminish the boil-off losses. This lecture gives an overview of the main issues associated with the production, storage, and handling of liquid hydrogen. Some discussion of promising ways of hydrogen liquefaction will also be presented. (author)

  9. Hydrogen storage and fuel cells

    Science.gov (United States)

    Liu, Di-Jia

    2018-01-01

    Global warming and future energy supply are two major challenges facing American public today. To overcome such challenges, it is imperative to maximize the existing fuel utilization with new conversion technologies while exploring alternative energy sources with minimal environmental impact. Hydrogen fuel cell represents a next-generation energy-efficient technology in transportation and stationary power productions. In this presentation, a brief overview of the current technology status of on-board hydrogen storage and polymer electrolyte membrane fuel cell in transportation will be provided. The directions of the future researches in these technological fields, including a recent "big idea" of "H2@Scale" currently developed at the U. S. Department of Energy, will also be discussed.

  10. Integrated waste hydrogen utilization project

    International Nuclear Information System (INIS)

    Armstrong, C.

    2004-01-01

    'Full text:' The BC Hydrogen Highway's, Integrated Waste Hydrogen Utilization Project (IWHUP) is a multi-faceted, synergistic collaboration that will capture waste hydrogen and promote its use through the demonstration of 'Hydrogen Economy' enabling technologies developed by Canadian companies. IWHUP involves capturing and purifying a small portion of the 600 kg/hr of by-product hydrogen vented to the atmosphere at the ERCO's electrochemical sodium chlorate plant in North Vancouver, BC. The captured hydrogen will then be compressed so it is suitable for transportation on roadways and can be used as a fuel in transportation and stationary fuel cell demonstrations. In summary, IWHUP invests in the following; Facilities to produce up to 20kg/hr of 99.999% pure 6250psig hydrogen using QuestAir's leading edge Pressure Swing Absorption technology; Ultra high-pressure transportable hydrogen storage systems developed by Dynetek Industries, Powertech Labs and Sacre-Davey Engineering; A Mobile Hydrogen Fuelling Station to create Instant Hydrogen Infrastructure for light-duty vehicles; Natural gas and hydrogen (H-CNG) blending and compression facilities by Clean Energy for fueling heavy-duty vehicles; Ten hydrogen, internal combustion engine (H-ICE), powered light duty pick-up vehicles and a specialized vehicle training, maintenance, and emissions monitoring program with BC Hydro, GVRD and the District of North Vancouver; The demonstration of Westport's H-CNG technology for heavy-duty vehicles in conjunction with local transit properties and a specialized vehicle training, maintenance, and emissions monitoring program; The demonstration of stationary fuel cell systems that will provide clean power for reducing peak-load power demands (peak shaving), grid independence and water heating; A comprehensive communications and outreach program designed to educate stakeholders, the public, regulatory bodies and emergency response teams in the local community, Supported by industry

  11. An overview of hydrogen storage materials: Making a case for metal organic frameworks

    CSIR Research Space (South Africa)

    Langmi, Henrietta W

    2013-04-01

    Full Text Available hydrogen needs to be stored in a safe and compact manner by combining the gas with other materials either chemically or physically. Hydrogen storage is therefore an extremely active area of research worldwide with many different materials being examined...

  12. Development status on hydrogen production technology using high-temperature gas-cooled reactor at JAEA, Japan

    International Nuclear Information System (INIS)

    Shiozawa, Shusaku; Ogawa, Masuro; Hino, Ryutaro

    2006-01-01

    The high-temperature gas-cooled reactor (HTGR), which is graphite-moderated and helium-cooled, is attractive due to its unique capability of producing high temperature helium gas and its fully inherent reactor safety. In particular, hydrogen production using the nuclear heat from HTGR (up to 900 deg. C) offers one of the most promising technological solutions to curb the rising level of CO 2 emission and resulting risk of climate change. The interests in HTGR as an advanced nuclear power source for the next generation reactor, therefore, continue to rise. This is represented by the Japanese HTTR (High-Temperature Engineering Test Reactor) Project and the Chinese HTR-10 Project, followed by the international Generation IV development program, US nuclear hydrogen initiative program, EU innovative HTR technology development program, etc. To enhance nuclear energy application to heat process industries, the Japan Atomic Energy Agency (JAEA) has continued extensive efforts for development of hydrogen production system using the nuclear heat from HTGR in the framework of the HTTR Project. The HTTR Project has the objectives of establishing both HTGR technology and heat utilization technology. Using the HTTR constructed at the Oarai Research and Development Center of JAEA, reactor performance and safety demonstration tests have been conducted as planned. The reactor outlet temperature of 950 deg. C was successfully achieved in April 2004. For hydrogen production as heat utilization technology, R and D on thermo-chemical water splitting by the 'Iodine-Sulfur process' (IS process) has been conducted step by step. Proof of the basic IS process was made in 1997 on a lab-scale of hydrogen production of 1 L/h. In 2004, one-week continuous operation of the IS process was successfully demonstrated using a bench-scale apparatus with hydrogen production rate of 31 L/h. Further test using a pilot scale facility with greater hydrogen production rate of 10 - 30 m 3 /h is planned as

  13. Hydrogen Temperature-Programmed Desorption in Platinum Catalysts: Decomposition and Isotopic Exchange by Spillover Hydrogen of Chemisorbed Ammonia.

    NARCIS (Netherlands)

    Koningsberger, D.C.; Miller, J.T.; Meyers, B.L.; Barr, M.K.; Modica, F.S.

    1996-01-01

    H{2}-TPD of Pt/alumina catalysts display multiple hydrogendesorptions. In addition to chemisorbed hydrogen (Peak I) atapproximately 175}o{C, there is a small hydrogen desorption (PeakII) at about 250}o{C and a large, irreversible hydrogen desorption(Peak III) at 450}o{C. The quantity of hydrogen

  14. The hydrogen 700 project - 700 Bar Co

    International Nuclear Information System (INIS)

    Gambone, L.; Webster, C.

    2004-01-01

    'Full text:' Major automotive companies, including DaimlerChrysler, Ford, Hyundai, Nissan, PSA Peugeot-Citroen, and Toyota, are co-operating in the Hydrogen 700 project at Powertech to establish a global basis for high pressure hydrogen fuel systems for vehicles. The fuel systems will store compressed hydrogen on-board at pressures up to 700 bar (10,000psi). It is anticipated that the 700 bar storage pressure will provide hydrogen powered vehicles with a range comparable to the range of petroleum-fueled vehicles. The Hydrogen 700 project has contracted world leaders in high pressure technologies to provide 700 bar fuel system components for evaluation. The data from these tests will be used as the basis for the development of relevant standards and regulations. In a development that complements the Hydrogen 700 project, Powertech Labs has established the world's first 700 bar hydrogen station for fast filling operations. This prototype station will be used to evaluate the performance of the 700 bar vehicle fuel system components. The presentation will provide an overview of the Hydrogen 700 project. Safety issues surrounding the use of compressed hydrogen gas as a vehicle fuel, as well as the use of higher storage pressures, will be reviewed. Test data involving the fire testing of vehicles containing hydrogen fuel systems will be presented. The project is intended to result in the introduction of 700 bar fuel systems in the next generation of hydrogen powered vehicles. (author)

  15. Laser spectroscopy of muonic hydrogen and the puzzling proton

    International Nuclear Information System (INIS)

    Pohl, Randolf

    2016-01-01

    Laser spectroscopy of muonic hydrogen atoms, μp, has revealed a proton root-mean-square (rms) charge radius r_E that is an order of magnitude more accurate than the CODATA world average from elastic electron–proton scattering and precision spectroscopy of regular (electronic) hydrogen. Interestingly, though, the value of r_E from μp is 4%, or 7 combined standard deviations smaller than the CODATA value of r_E. This discrepancy has been coined “proton radius puzzle”. We summarize the experiment and give a brief overview of the theory in muonic hydrogen. Finally we discuss some possible scenarios for the resolution of the “proton radius puzzle”. (author)

  16. SSCL quality program overview

    International Nuclear Information System (INIS)

    Hedderick, R.V.; Threatt, D.C.

    1992-01-01

    The Quality Program for the Superconducing Super Collider Laboratory (SSCL) was developed for a number of reasons. The need for a quality program not only is a contractual requirement, but it also makes good economic sense to implement such a program. The quality program is the device used to coordinate the activities of different Laboratory organizations, such as Engineering and Procurement, and to improve operational reliability and safety. To be successful, the QA Program not only must satisfy Department of Energy (DOE) requirements and provide for flowdown of requirements to performing organizations, but must also be flexible enough so that the program is tailored to meet the needs of each internal organization. The keys to success are management support, acceptance by personnel, and cost effectiveness. These three items are assured by involving appropriate management at each step of program development, by personnel training and by feedback, and by programs to reduce defects and improve quality. Equally valuable is involvement of key organizations in program development. We will describe the basic SSCL Quality Program requirements, how the requirements are tailored to the needs of Laboratory organizations, and how the effectiveness of the program is validated

  17. A brief overview of NASA Langley's research program in formal methods

    Science.gov (United States)

    1992-01-01

    An overview of NASA Langley's research program in formal methods is presented. The major goal of this work is to bring formal methods technology to a sufficiently mature level for use by the United States aerospace industry. Towards this goal, work is underway to design and formally verify a fault-tolerant computing platform suitable for advanced flight control applications. Also, several direct technology transfer efforts have been initiated that apply formal methods to critical subsystems of real aerospace computer systems. The research team consists of six NASA civil servants and contractors from Boeing Military Aircraft Company, Computational Logic Inc., Odyssey Research Associates, SRI International, University of California at Davis, and Vigyan Inc.

  18. U.S. Department of Energy Hydrogen and Fuel Cells Program: 2017 Annual Merit Review and Peer Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    Popovich, Neil A [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-18

    The fiscal year 2017 U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting (AMR), in conjunction with DOE's Vehicle Technologies Office AMR, was held from June June 5-9, 2017, in Washington, D.C. This report is a summary of comments by AMR peer reviewers about the hydrogen and fuel cell projects funded by DOE's Office of Energy Efficiency and Renewable Energy.

  19. 24 CFR 982.501 - Overview.

    Science.gov (United States)

    2010-04-01

    ... TENANT BASED ASSISTANCE: HOUSING CHOICE VOUCHER PROGRAM Rent and Housing Assistance Payment § 982.501 Overview. (a) This subpart describes program requirements concerning the housing assistance payment and rent to owner. These requirements apply to the Section 8 tenant-based program. (b) There are two types...

  20. Overview of the US Department of Energy Light Water Reactor Sustainability Program

    International Nuclear Information System (INIS)

    McCarthy, K.A.; Williams, D.L.; Reister, R.

    2012-01-01

    The US Department of Energy Light Water Reactor Sustainability (LWRS) Program is focused on enabling the long-term operation of US commercial power plants. Decisions on life extension will be made by commercial power plant owners - the information provided by the research and development activities in the LWRS Program will reduce the uncertainty (and therefore the risk) associated with making those decisions. The LWRS Program encompasses two facets of long-term operation: (1) manage the aging of plant systems, structures, and components so that nuclear power plant lifetimes can be extended and the plants can continue to operate safely, efficiently, and economically; and (2) provide science-based solutions to the nuclear industry that support implementation of performance improvement technologies. An important aspect of the Light Water Reactor Sustainability Program is partnering with industry and the Nuclear Regulatory Commission to support and conduct the long-term research needed to inform major component refurbishment and replacement strategies, performance enhancements, plant license extensions, and age-related regulatory oversight decisions. The Department of Energy research, development, and demonstration role focuses on aging phenomena and issues that require long-term research and/or unique Department of Energy laboratory expertise and facilities and are applicable to all operating reactors. This paper provides an overview of the Department of Energy Light Water Reactor Sustainability Program, including vision, goals, and major deliverables. (author)

  1. Overview on hydrogen risk research and development activities: Methodology and open issues

    Energy Technology Data Exchange (ETDEWEB)

    Bentaib, Ahmed; Meynet, Nicolas; Bleyer, Alexande [Institut de Radioprotection et de Surete Nucleaire (IRSN), Severe Accident Department, Fontenay-aux-Roses (France)

    2015-02-15

    During the course of a severe accident in a light water nuclear reactor, large amounts of hydrogen can be generated and released into the containment during reactor core degradation. Additional burnable gases [hydrogen (H2) and carbon monoxide (CO)] may be released into the containment in the corium/concrete interaction. This could subsequently raise a combustion hazard. As the Fukushima accidents revealed, hydrogen combustion can cause high pressure spikes that could challenge the reactor buildings and lead to failure of the surrounding buildings. To prevent the gas explosion hazard, most mitigation strategies adopted by European countries are based on the implementation of passive autocatalytic recombiners (PARs). Studies of representative accident sequences indicate that, despite the installation of PARs, it is difficult to prevent at all times and locations, the formation of a combustible mixture that potentially leads to local flame acceleration. Complementary research and development (R and D) projects were recently launched to understand better the phenomena associated with the combustion hazard and to address the issues highlighted after the Fukushima Daiichi events such as explosion hazard in the venting system and the potential flammable mixture migration into spaces beyond the primary containment. The expected results will be used to improve the modeling tools and methodology for hydrogen risk assessment and severe accident management guidelines. The present paper aims to present the methodology adopted by Institut de Radioprotection et de Su.

  2. 24 CFR 572.1 - Overview of HOPE 3.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 3 2010-04-01 2010-04-01 false Overview of HOPE 3. 572.1 Section... DEVELOPMENT COMMUNITY FACILITIES HOPE FOR HOMEOWNERSHIP OF SINGLE FAMILY HOMES PROGRAM (HOPE 3) General § 572.1 Overview of HOPE 3. The purpose of the HOPE for Homeownership of Single Family Homes program (HOPE...

  3. Program overview: Subsurface science program

    International Nuclear Information System (INIS)

    1994-03-01

    The OHER Subsurface Science Program is DOE's core basic research program concerned with subsoils and groundwater. These practices have resulted in contamination by mixtures of organic chemicals, inorganic chemicals, and radionuclides. A primary long-term goal is to provide a foundation of knowledge that will lead to the reduction of environmental risks and to cost-effective cleanup strategies. Since the Program was initiated in 1985, a substantial amount of research in hydrogeology, subsurface microbiology, and the geochemistry of organically complexed radionuclides has been completed, leading to a better understanding of contaminant transport in groundwater and to new insights into microbial distribution and function in the subsurface environments. The Subsurface Science Program focuses on achieving long-term scientific advances that will assist DOE in the following key areas: providing the scientific basis for innovative in situ remediation technologies that are based on a concept of decontamination through benign manipulation of natural systems; understanding the complex mechanisms and process interactions that occur in the subsurface; determining the influence of chemical and geochemical-microbial processes on co-contaminant mobility to reduce environmental risks; improving predictions of contaminant transport that draw on fundamental knowledge of contaminant behavior in the presence of physical and chemical heterogeneities to improve cleanup effectiveness and to predict environmental risks

  4. Overview of Light Hydrogen-Based Low Energy Nuclear Reactions

    Science.gov (United States)

    Miley, George H.; Shrestha, Prajakti J.

    This paper reviews light water and hydrogen-based low-energy nuclear reactions (LENRs) including the different methodologies used to study these reactions and the results obtained. Reports of excess heat production, transmutation reactions, and nuclear radiation emission are cited. An aim of this review is to present a summary of the present status of light water LENR research and provide some insight into where this research is heading.

  5. Hydrogen. A small molecule with large impact

    Energy Technology Data Exchange (ETDEWEB)

    Gehrke, H.; Ruthardt, K.; Mathiak, J.; Roosen, C. [Uhde GmbH, Dortmund (Germany)

    2010-12-30

    The first section of the presentation will provide general information about hydrogen including physical data, natural abundance, production and consumption figures. This will be followed by detailed information about current industrial production routes for hydrogen. Main on-purpose production for hydrogen is by classical steam reforming (SR) of natural gas. A brief overview of most important steps in stream reforming is given including reforming section, CO conversion and gas purification. Also the use of heavier than methane feedstocks and refinery off-gases is discussed. Alternative routes for hydrogen production or production of synthesis gas are autothermal reforming (ATR) or partial oxidation (POX). Pros and Cons for each specific technology are given and discussed. Gasification, especially gasification of renewable feedstocks, is a further possibility to produce hydrogen or synthesis gas. New developments and current commercial processes are presented. Hydrogen from electrolysis plants has only a small share on the hydrogen production slate, but in some cases this hydrogen is a suitable feedstock for niche applications with future potential. Finally, production of hydrogen by solar power as a new route is discussed. The final section focuses on the use of hydrogen. Classical applications are hydrogenation reactions in refineries, like HDS, HDN, hydrocracking and hydrofinishing. But, with an increased demand for liquid fuels for transportation or power supply, hydrogen becomes a key player in future as an energy source. Use of hydrogen in synthesis gas for the production of liquid fuels via Fischer-Tropsch synthesis or coal liquefaction is discussed as well as use of pure hydrogen in fuel cells. Additional, new application for biomass-derived feedstocks are discussed. (orig.)

  6. On the use of hydrogen in confined spaces: Results from the internal project InsHyde

    NARCIS (Netherlands)

    Venetsanos, A.G.; Adams, P.; Azkarate, I.; Bengaouer, A.; Brett, L.; Carcassi, M.N.; Engebø, A.; Gallego, E.; Gavrikov, A.I.; Hansen, O.R.; Hawksworth, S.; Jordan, T.; Kessler, A.; Kumar, S.; Molkov, V.; Nilsen, S.; Reinecke, E.; Stöcklin, M.; Schmidtchen, U.; Teodorczyk, A.; Tigreat, D.; Versloot, N.H.A.

    2011-01-01

    The paper presents an overview of the main achievements of the internal project InsHyde of the HySafe NoE. The scope of InsHyde was to investigate realistic small-medium indoor hydrogen leaks and provide recommendations for the safe use/storage of indoor hydrogen systems. Additionally, InsHyde

  7. An overview of the waste characterization program at Chalk River Nuclear Laboratories

    International Nuclear Information System (INIS)

    Csullog, G.W.; Hardy, D.G.

    1988-01-01

    In the last five years, Chalk River Nuclear Laboratories (CRNL) placed 17,000 m 3 of wastes into storage (excluding contaminated soil and fill). Almost half of the waste was generated off-site. CRNL is now developing IRUS, an Intrusion Resistant Underground Structure, and the IST, an Improved Sand Trench, to replace storage with safe, permanent disposal. IRUS will be used to dispose of wastes with radiologically hazardous lifetimes between 150 and 500 years duration and the IST will be used for wastes with radiologically hazardous lifetimes of less than 150 years. A comprehensive Waste Characterization Program (WCP) is in place to support disposal projects. The WCP is responsible for (1) specifying the manifests for waste shipments; (2) developing and maintaining central databases for waste inventories and analytical data; and (3) developing the technologies and procedures to characterize the radiological and the physical/chemical properties of wastes. WCP work is being performed under the umbrella of a newly developed waste management quality assurance (QA) program. This paper gives an overview of the WCP with an emphasis on the requirements for determining radionuclide inventories in wastes, for implementing record-keeping systems and for maintaining a QA program for disposal operations

  8. Swiss Energy research 2007 - Overview from the Heads of the Programs; Energie-Forschung 2007. Ueberblicksberichte der Programmleiter

    Energy Technology Data Exchange (ETDEWEB)

    Calisesi, Y

    2008-04-15

    This comprehensive document issued by the Swiss Federal Office of Energy (SFOE) presents the overview reports elaborated by the heads of the various Swiss energy research programmes. Topics covered include the efficient use of energy, with reports covering energy in buildings, traffic and accumulators, electrical technologies, applications and grids, ambient heat, combined heat and power, cooling, combustion, the 'power station 2000', fuel cells and hydrogen and process engineering. Renewable energy topics reported on include solar heat, photovoltaics, industrial solar energy, biomass and wood energy, hydropower, geothermal heat and wind energy. Nuclear energy topics include safety, regulatory safety research and nuclear fusion. Finally, energy economics basics are reviewed. The report is completed with annexes on the Swiss Energy Research Commission, energy research organisations and a list of important addresses.

  9. Swiss Energy research 2007 - Overview from the Heads of the Programs; Energie-Forschung 2007. Ueberblicksberichte der Programmleiter

    Energy Technology Data Exchange (ETDEWEB)

    Calisesi, Y.

    2008-04-15

    This comprehensive document issued by the Swiss Federal Office of Energy (SFOE) presents the overview reports elaborated by the heads of the various Swiss energy research programmes. Topics covered include the efficient use of energy, with reports covering energy in buildings, traffic and accumulators, electrical technologies, applications and grids, ambient heat, combined heat and power, cooling, combustion, the 'power station 2000', fuel cells and hydrogen and process engineering. Renewable energy topics reported on include solar heat, photovoltaics, industrial solar energy, biomass and wood energy, hydropower, geothermal heat and wind energy. Nuclear energy topics include safety, regulatory safety research and nuclear fusion. Finally, energy economics basics are reviewed. The report is completed with annexes on the Swiss Energy Research Commission, energy research organisations and a list of important addresses.

  10. Review of Solid State Hydrogen Storage Methods Adopting Different Kinds of Novel Materials

    Directory of Open Access Journals (Sweden)

    Renju Zacharia

    2015-01-01

    Full Text Available Overview of advances in the technology of solid state hydrogen storage methods applying different kinds of novel materials is provided. Metallic and intermetallic hydrides, complex chemical hydride, nanostructured carbon materials, metal-doped carbon nanotubes, metal-organic frameworks (MOFs, metal-doped metal organic frameworks, covalent organic frameworks (COFs, and clathrates solid state hydrogen storage techniques are discussed. The studies on their hydrogen storage properties are in progress towards positive direction. Nevertheless, it is believed that these novel materials will offer far-reaching solutions to the onboard hydrogen storage problems in near future. The review begins with the deficiencies of current energy economy and discusses the various aspects of implementation of hydrogen energy based economy.

  11. Ten questions on hydrogen Jean Dhers

    International Nuclear Information System (INIS)

    2005-01-01

    The author proposes explanations and comments on the use of hydrogen in energy production. He discusses whether hydrogen can be a new energy technology within the context of a sustainable development, whether hydrogen is actually an energy vector, what would be the benefits of using hydrogen in energy applications, why it took so much time to be interested in hydrogen, when the hydrogen vector will be needed, whether we can economically produce hydrogen to meet energy needs (particularly in transports), whether hydrogen is the best suited energy vector for ground transports in the future, how to retail hydrogen for ground transports, what are the difficulties to store hydrogen for ground transport applications, and how research programs on hydrogen are linked together

  12. Final Scientifc Report - Hydrogen Education State Partnership Project

    Energy Technology Data Exchange (ETDEWEB)

    Leon, Warren

    2012-02-03

    Under the leadership of the Department of Energy Hydrogen and Fuel Cells program, Clean Energy States Alliance (CESA) educated and worked with state leaders to encourage wider deployment of fuel cell and hydrogen technologies. Through outreach to state policymakers, legislative leaders, clean energy funds, energy agencies, and public utility commissions, CESA worked to accomplish the following objectives of this project: 1. Provide information and technical assistance to state policy leaders and state renewable energy programs in the development of effective hydrogen fuel cell programs. 2. Identify and foster hydrogen program best practices. 3. Identify and promote strategic opportunities for states and the Department of Energy (DOE) to advance hydrogen technology deployment through partnerships, collaboration, and targeted activities. Over the three years of this project, CESA, with our partner National Conference of State Legislatures (NCSL), was able to provide credible information on fuel cell policies, finance, and technical assistance to hundreds of state officials and other stakeholders. CESA worked with its membership network to effectively educate state clean energy policymakers, program managers, and decision makers about fuel cell and hydrogen technologies and the efforts by states to advance those technologies. With the assistance of NCSL, CESA gained access to an effective forum for outreach and communication with state legislators from all 50 states on hydrogen issues and policies. This project worked to educate policymakers and stakeholders with the potential to develop and deploy stationary and portable fuel cell technologies.

  13. Status Report on Hydrogen Management and Related Computer Codes

    International Nuclear Information System (INIS)

    Liang, Z.; Chan, C.K.; Sonnenkalb, M.; Bentaib, A.; Malet, J.; Sangiorgi, M.; Gryffroy, D.; Gyepi-Garbrah, S.; Duspiva, J.; Sevon, T.; Kelm, S.; Reinecke, E.A.; Xu, Z.J.; Cervone, A.; Utsuno, H.; Hotta, A.; Hong, S.W.; Kim, J.T.; Visser, D.C.; Stempniewicz, M.M.; Kuriene, L.; Prusinski, P.; Martin-Valdepenas, J.M.; Frid, W.; Isaksson, P.; Dreier, J.; Paladino, D.; Algama, D.; Notafrancesco, A.; Amri, A.; Kissane, M.; )

    2014-01-01

    In follow-up to the Fukushima Daiichi NPP accident, the Committee on the Safety of Nuclear Installations (CSNI) decided to launch several high priority activities. At the 14. plenary meeting of the Working Group on Analysis and Management of Accidents (WGAMA), a proposal for a status paper on hydrogen generation, transport and mitigation under severe accident conditions was approved. The proposed activity is in line with the WGAMA mandate and it was considered to be needed to revisit the hydrogen issue. The report is broken down into five Chapters and two appendixes. Chapter 1 provides background information for this activity and expected topics defined by the WGAMA members. A general understanding of hydrogen behavior and control in severe accidents is discussed. A brief literature review is included in this chapter to summarize the progress obtained from the early US NRC sponsored research on hydrogen and recent international OECD or EC sponsored projects on hydrogen related topics (generation, distribution, combustion and mitigation). Chapter 2 provides a general overview of the various reactor designs of Western PWRs, BWRs, Eastern European VVERs and PHWRs (CANDUs). The purpose is to understand the containment design features in relation to hydrogen management measures. Chapter 3 provides a detailed description of national requirements on hydrogen management and hydrogen mitigation measures inside the containment and other places (e.g., annulus space, secondary buildings, spent fuel pool, etc.). Discussions are followed on hydrogen analysis approaches, application of safety systems (e.g., spray, containment ventilation, local air cooler, suppression pool, and latch systems), hydrogen measurement strategies as well as lessons learnt from the Fukushima Daiichi nuclear power accident. Chapter 4 provides an overview of various codes that are being used for hydrogen risk assessment, and the codes capabilities and validation status in terms of hydrogen related

  14. Air Force electrochemical power research and technology program for space applications

    Science.gov (United States)

    Allen, Douglas

    1987-01-01

    An overview is presented of the existing Air Force electrochemical power, battery, and fuel cell programs for space application. Present thrusts are described along with anticipated technology availability dates. Critical problems to be solved before system applications occur are highlighted. Areas of needed performance improvement of batteries and fuel cells presently used are outlined including target dates for key demonstrations of advanced technology. Anticipated performance and current schedules for present technology programs are reviewed. Programs that support conventional military satellite power systems and special high power applications are reviewed. Battery types include bipolar lead-acid, nickel-cadmium, silver-zinc, nickel-hydrogen, sodium-sulfur, and some candidate advanced couples. Fuel cells for pulsed and transportation power applications are discussed as are some candidate advanced regenerative concepts.

  15. Thermodynamic analysis of hydrogen production from biomass gasification

    International Nuclear Information System (INIS)

    Cohce, M.K.; Dincer, I.; Rosen, M.A.

    2009-01-01

    'Full Text': Biomass resources have the advantage of being renewable and can therefore contribute to renewable hydrogen production. In this study, an overview is presented of hydrogen production methods in general, and biomass-based hydrogen production in particular. For two methods in the latter category (direct gasification and pyrolysis), assessments are carried out, with the aim of investigating the feasibility of producing hydrogen from biomass and better understanding the potential of biomass as a renewable energy source. A simplified model is presented here for biomass gasification based on chemical equilibrium considerations, and the effects of temperature, pressure and the Gibbs free energy on the equilibrium hydrogen yield are studied. Palm oil (designated C 6 H 10 O 5 ), one of the most common biomass resources in the world, is considered in the analyses. The gasifier is observed to be one of the most critical components of a biomass gasification system, and is modeled using stoichiometric reactions. Various thermodynamic efficiencies are evaluated, and both methods are observed to have reasonably high efficiencies. (author)

  16. Thermodynamically Tuned Nanophase Materials for reversible Hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Ping Liu; John J. Vajo

    2010-02-28

    This program was devoted to significantly extending the limits of hydrogen storage technology for practical transportation applications. To meet the hydrogen capacity goals set forth by the DOE, solid-state materials consisting of light elements were developed. Many light element compounds are known that have high capacities. However, most of these materials are thermodynamically too stable, and they release and store hydrogen much too slowly for practical use. In this project we developed new light element chemical systems that have high hydrogen capacities while also having suitable thermodynamic properties. In addition, we developed methods for increasing the rates of hydrogen exchange in these new materials. The program has significantly advanced (1) the application of combined hydride systems for tuning thermodynamic properties and (2) the use of nanoengineering for improving hydrogen exchange. For example, we found that our strategy for thermodynamic tuning allows both entropy and enthalpy to be favorably adjusted. In addition, we demonstrated that using porous supports as scaffolds to confine hydride materials to nanoscale dimensions could improve rates of hydrogen exchange by > 50x. Although a hydrogen storage material meeting the requirements for commercial development was not achieved, this program has provided foundation and direction for future efforts. More broadly, nanoconfinment using scaffolds has application in other energy storage technologies including batteries and supercapacitors. The overall goal of this program was to develop a safe and cost-effective nanostructured light-element hydride material that overcomes the thermodynamic and kinetic barriers to hydrogen reaction and diffusion in current materials and thereby achieve > 6 weight percent hydrogen capacity at temperatures and equilibrium pressures consistent with DOE target values.

  17. A hydrogen economy: an answer to future energy problems. [Overview of 1974 THEME Conference

    Energy Technology Data Exchange (ETDEWEB)

    Seifritz, W [Eidgenoessisches Inst. fuer Reaktorforschung, Wuerenlingen (Switzerland)

    1975-06-01

    ''The Theme was THEME''. This was the headline of The Hydrogen Economy Miami Energy Conference which was the first international conference of this type and which took place in Miami, March 18-20, 1974. For the first time, about 700 participants from all over the western world discussed all the ramifications and aspects of a hydrogen based economy. Non-fossil hydrogen, produced from water by either electrolysis or by direct use of process heat from a nuclear source is a clean, all-synthetic, automatically recyclable, and inexhaustible fuel. It may support the World's future energy requirements beyond the present self limited fossil-fuel era. A large number of papers and news were presented on this conference reflecting this effort. The following article is intended to report on the highlights of the conference and to give a survey on the present state of the art in the hydrogen field. Furthermore, the author includes his own ideas and conclusions predominantly by taking into account the trends in the development of future nuclear reactor systems and symbiotic high-temperature-reactor/breeder strategies being the primary energy input of a hydrogen economy and providing a most promising avenue for solving both the World's energy and environmental (entropy) problems.

  18. Hydrogen in water-cooled nuclear power reactors

    International Nuclear Information System (INIS)

    1992-01-01

    The Commission of the European Community (CEC) and the International Atomic Energy Agency (IAEA) decided in 1989 to update the state of the art concerning hydrogen in water cooled nuclear power reactors by commissioning a report which would review, all the available information to-date and make recommendations for the future. This joint report was prepared by committees formed by the IAEA and by the CEC. The aim of this report is to review the current understanding on the areas in which the research on hydrogen in LWR is conventionally presented, taking into account the results of the latest reported research developments. The main reactions through which hydrogen is produced are assessed together with their timings. An estimation of the amount of hydrogen produced by each reaction is given, in order to reckon their relative contribution to the hazard. An overview is then given of the state of knowledge of the most important phenomena taking place during its transport from the place of production and the phenomena which control the hydrogen combustion and the consequences of combustion under various conditions. Specific research work is recommended in each sector of the presented phenomena. The last topics reviewed in this report are the hydrogen detection and the prevent/mitigation of pressure and temperature loads on containment structures and structures and safety related equipment caused by hydrogen combustion

  19. Fusion program overview

    International Nuclear Information System (INIS)

    Clarke, J.F.

    1983-01-01

    There has been and continues to be a perceived need for the fusion energy option in our energy future. The National Energy Plan states that ''the Federal Government recognizes a direct responsibility to demonstrate the scientific and engineering feasibility of fusion''. The goal of the program, in exercising this responsibility, is to develop the knowledge base upon which decisions on the commercial feasibility of fusion will be made after the conclusion of the present scientific feasibility phase of the program. The strategy is to preceed sequentially through a product definition phase, to the product development phase. Product definition is the identification of an attractive fusion reactor concept supported by a sound base of scientific and technological information. Product development is the further refinement of scientific, technological and engineering information base of the selected concept to provide a firm basis for commercial application. Each of these phases will be discussed with special emphasis on the relationship between the annual appropriation process and the influence of external forces on the pace of the program. This discussion will include the use of international cooperation to maintain and extend program scope. Further discussion will cover the important scientific and technological advances of the last few years and the way in which they have influenced the development of our management strategy to maximize our resources

  20. Geothermal Technologies Program Overview - Peer Review Program

    Energy Technology Data Exchange (ETDEWEB)

    Milliken, JoAnn [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2011-06-06

    This Geothermal Technologies Program presentation was delivered on June 6, 2011 at a Program Peer Review meeting. It contains annual budget, Recovery Act, funding opportunities, upcoming program activities, and more.

  1. Brazilian Air Force aircraft structural integrity program: An overview

    Directory of Open Access Journals (Sweden)

    Alberto W. S. Mello Junior

    2009-01-01

    Full Text Available This paper presents an overview of the activities developed by the Structural Integrity Group at the Institute of Aeronautics and Space - IAE, Brazil, as well as the status of ongoing work related to the life extension program for aircraft operated by the Brazilian Air Force BAF. The first BAF-operated airplane to undergo a DTA-based life extension was the F-5 fighter, in the mid 1990s. From 1998 to 2001, BAF worked on a life extension project for the BAF AT- 26 Xavante trainer. All analysis and tests were performed at IAE. The fatigue critical locations (FCLs were presumed based upon structural design and maintenance data and also from exchange of technical information with other users of the airplane around the world. Following that work, BAF started in 2002 the extension of the operational life of the BAF T-25 “Universal”. The T-25 is the basic training airplane used by AFA - The Brazilian Air Force Academy. This airplane was also designed under the “safe-life” concept. As the T-25 fleet approached its service life limit, the Brazilian Air Force was questioning whether it could be kept in flight safely. The answer came through an extensive Damage Tolerance Analysis (DTA program, briefly described in this paper. The current work on aircraft structural integrity is being performed for the BAF F-5 E/F that underwent an avionics and weapons system upgrade. Along with the increase in weight, new configurations and mission profiles were established. Again, a DTA program was proposed to be carried out in order to establish the reliability of the upgraded F-5 fleet. As a result of all the work described, the BAF has not reported any accident due to structural failure on aircraft submitted to Damage Tolerance Analysis.

  2. Hydrogen, the phenomenon is reaching the Europe; Hydrogene, la deferlante atteint l'Europe

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    More and more contracts and research programs are decided in Europe to promote the hydrogen energy. The market is today still moderate but the forecasting are great in many domains. This paper provides some data and trends on the hydrogen market. (A.L.B.)

  3. Transient hydrogen diffusion analyses coupled with crack-tip plasticity under cyclic loading

    International Nuclear Information System (INIS)

    Kotake, Hirokazu; Matsumoto, Ryosuke; Taketomi, Shinya; Miyazaki, Noriyuki

    2008-01-01

    The effect of hydrogen on the material strengths of metals is known as the hydrogen embrittlement, which affects the structural integrity of a hydrogen energy system. In the present paper, we developed a computer program for a transient hydrogen diffusion-elastoplastic coupling analysis by combining an in-house finite element program with a general purpose finite element computer program to analyze hydrogen diffusion. In this program, we use a hypothesis that the hydrogen absorbed in the metal affects the yield stress of the metal. In the present paper, we discuss the effects of the cyclic loading on the hydrogen concentration near the crack tip. An important finding we obtained here is the fact that the hydrogen concentration near the crack tip greatly depends on the loading frequency. This result indicates that the fatigue lives of the components in a hydrogen system depend not only on the number of loading cycles but also on the loading frequency

  4. Hydrogen Learning for Local Leaders – H2L3

    Energy Technology Data Exchange (ETDEWEB)

    Serfass, Patrick [Technology Transition Corporation, Washington, DC (United States)

    2017-03-30

    The Hydrogen Learning for Local Leaders program, H2L3, elevates the knowledge about hydrogen by local government officials across the United States. The program reaches local leaders directly through “Hydrogen 101” workshops and webinar sessions; the creation and dissemination of a unique report on the hydrogen and fuel cell market in the US, covering 57 different sectors; and support of the Hydrogen Student Design Contest, a competition for interdisciplinary teams of university students to design hydrogen and fuel cell systems based on technology that’s currently commercially available.

  5. Solutions to commercializing metal hydride hydrogen storage products

    International Nuclear Information System (INIS)

    Tomlinson, J.J.; Belanger, R.

    2004-01-01

    'Full text:' Whilst the concept of a Hydrogen economy in the broad sense may for some analysts and Fuel Cell technology developers be an ever moving target the use of hydrogen exists and is growing in other markets today. The use of hydrogen is increasing. Who are the users? What are their unique needs? How can they better be served? As the use of hydrogen increases there are things we can do to improve the perception and handling of hydrogen as an industrial gas that will impact the future issues of hydrogen as a fuel thereby assisting the mainstream availability of hydrogen fuel a reality. Factors that will induce change in the way hydrogen is used, handled, transported and stored are the factors to concentrate development efforts on. Other factors include: cost; availability; safety; codes and standards; and regulatory authorities acceptance of new codes and standards. New methods of storage and new devices in which the hydrogen is stored will influence and bring about change and increased use. New innovative products based on Metal Hydride hydrogen storage will address some of the barriers to widely distributed hydrogen as a fuel or energy carrier to which successful fuel cell product commercialization is subject. Palcan has developed innovative products based on it's Rare Earth Metal Hydride alloy. Some of these innovations will aid the distribution of hydrogen as a fuel and offer alternatives to the existing hydrogen user and to the Fuel Cell product developer. An overview of the products and how these products will affect the distribution and use of hydrogen as an industrial gas and fuel is presented. (author)

  6. Hydrogen and water reactor safety: proceedings

    International Nuclear Information System (INIS)

    1982-01-01

    Separate abstracts were prepared for papers presented in the following areas of interest: 1) hydrogen research programs; 2) hydrogen behavior during light water reactor accidents; 3) combustible gas generation; 4) hydrogen transport and mixing; 5) combustion modeling and experiments; 6) accelerated flames and detonations; 7) combustion mitigation and control; and 8) equipment survivability

  7. Hydrogen and water reactor safety: proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    Separate abstracts were prepared for papers presented in the following areas of interest: 1) hydrogen research programs; 2) hydrogen behavior during light water reactor accidents; 3) combustible gas generation; 4) hydrogen transport and mixing; 5) combustion modeling and experiments; 6) accelerated flames and detonations; 7) combustion mitigation and control; and 8) equipment survivability.

  8. NASA Hydrogen Research at Florida Universities

    International Nuclear Information System (INIS)

    David L Block; Ali T-Raissi

    2006-01-01

    This paper presents a summary of the activities and results from 36 hydrogen research projects being conducted over a four-year period by Florida universities for the U. S. National Aeronautics and Space Administration (NASA). The program entitled 'NASA Hydrogen Research at Florida Universities' is managed by the Florida Solar Energy Center (FSEC). FSEC has 22 years of experience in conducting research in areas related to hydrogen technologies and fuel cells. The R and D activities under this program cover technology areas related to production, cryogenics, sensors, storage, separation processes, fuel cells, resource assessments and education. (authors)

  9. Achievement report for fiscal 1982 on Sunshine Program-entrusted research and development. Survey on patent and information (Hydrogen energy); 1982 nendo tokkyo joho chosa kenkyu seika hokokokusho. Suiso energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-03-01

    Patents related to the research under the Sunshine Program are surveyed so as to ensure that the program be promoted smoothly and efficiently. Since the scope of the hydrogen energy technology is extensive, branches supposed to be relatively important only are surveyed, which include the production of hydrogen (thermochemical process, photochemical process, and electrolysis), storage and transportation of hydrogen, safety of hydrogen, hydrogen fuel cells, hydrogen-fueled engines, and hydrogen combustion devices. The basic policy to follow in the extraction of necessary patents is that all related to the hydrogen energy technology be collected from as many fields as possible. However, it is impossible to read all the laid-open patents. Under such circumstances, out of the items in IPC (International Patent Classification) used by the Patent Agency, those deemed to be closely related to the hydrogen energy technology are designated and, when the classification item attached to the official gazette matches one of the IPC classification items, it is extracted as a desired item after deliberation of its relationship with the hydrogen energy technology. (NEDO)

  10. Modeling of combustion products composition of hydrogen-containing fuels

    International Nuclear Information System (INIS)

    Assad, M.S.

    2010-01-01

    Due to the usage of entropy maximum principal the algorithm and the program of chemical equilibrium calculation concerning hydrogen--containing fuels are devised. The program enables to estimate the composition of combustion products generated in the conditions similar to combustion conditions in heat engines. The program also enables to reveal the way hydrogen fraction in the conditional composition of the hydrocarbon-hydrogen-air mixture influences the harmful components content. It is proven that molecular hydrogen in the mixture is conductive to the decrease of CO, CO 2 and CH x concentration. NO outlet increases due to higher combustion temperature and N, O, OH concentrations in burnt gases. (authors)

  11. Support of a pathway to a hydrogen future

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, A.R. [Dept. of Energy, Washington, DC (United States). Office of Utility Technologies

    1997-12-31

    This paper consists of viewgraphs which outline the content of the presentation. Subjects addressed include: hydrogen research program vision; electricity industry restructuring -- opportunities and challenges for hydrogen; transportation sector -- opportunities for hydrogen; near-term and mid-term opportunities for hydrogen; and hydrogen production technologies from water. It is concluded that the global climate change challenge is the potential driver for the development of hydrogen systems.

  12. Action plan for coordinated deployment of hydrogen fuel cell vehicles and hydrogen infrastructure

    International Nuclear Information System (INIS)

    Elrick, W.

    2009-01-01

    This paper discussed a program designed to provide hydrogen vehicles and accessible hydrogen stations for a pre-commercial hydrogen economy in California. The rollout will coordinate the placement of stations in areas that meet the needs of drivers in order to ensure the transition to a competitive marketplace. An action plan has been developed that focuses on the following 3 specific steps: (1) the validation of early passenger vehicle markets, (2) expanded transit bus use, and (2) the establishment of regulations and standards. Specific tasks related to the steps were discussed, as well as potential barriers to the development of a hydrogen infrastructure in California. Methods of ensuring coordinated actions with the fuel cell and hydrogen industries were also reviewed

  13. An overview of the Nuclear Electric Propulsion Space Test Program (NEPSTP) satellite

    International Nuclear Information System (INIS)

    Voss, S.S.; Reynolds, E.L.

    1994-01-01

    Early in 1992 the idea of purchasing a Russian designed and fabricated space reactor power system and integrating it with a US designed satellite went from fiction to reality with the purchase of the first two Topaz II reactors by the Strategic Defense Initiative Organization (now the Ballistic Missile Defense Organization (BMDO)). The New Mexico Alliance was formed to establish a ground test facility in which to perform nonnuclear systems testing of the Topaz II, and to evaluate the Topaz II system for flight testing with respect to safety, performance, and operability. In conjunction, SDIO requested that the Applied Physics Laboratory in Laurel, MD propose a mission and design a satellite in which the Topaz II could be used as the power source. The outcome of these two activities was the design of the Nuclear Electric Propulsion Space Test Program (NEPSTP) satellite which combines a modified Russian Topaz II power system with a US designed satellite to achieve a specified mission. Due to funding reduction within the SDIO, the Topaz II flight program was postponed indefinitely at the end of Fiscal year 1993. The purpose of this paper is to present an overview of the NEPSTP mission and the satellite design at the time the flight program ended

  14. Experimental studies of processes with vibrationally excited hydrogen molecules that are important for tokamak edge plasma

    International Nuclear Information System (INIS)

    Cadez, I.; Markelj, S.; Rupnik, Z.; Pelicon, P.

    2006-01-01

    We are currently conducting a series of different laboratory experimental studies of processes involving vibrationally excited hydrogen molecules that are relevant to fusion edge plasma. A general overview of our activities is presented together with results of studies of hydrogen recombination on surfaces. This includes vibrational spectroscopy of molecules formed by recombination on metal surfaces exposed to the partially dissociated hydrogen gas and recombination after hydrogen permeation through metal membrane. The goal of these studies is to provide numerical parameters needed for edge plasma modelling and better understanding of plasma wall interaction processes. (author)

  15. A fuzzy analytic hierarchy/data envelopment analysis approach for measuring the relative efficiency of hydrogen R and D programs in the sector of developing hydrogen energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seongkon; Kim, Jongwook [Korea Institute of Energy Research (Korea, Republic of). Energy Policy Research Center; Mogi, Gento [Tokyo Univ. (Japan). Graduate School of Engineering; Hui, K.S. [Hong Kong City Univ. (China). Manufacturing Engineering and Engineering Management

    2010-07-01

    Korea takes 10th place of largest energy consuming nations in the world since it spends 222 million ton of oil equivalent per year and depends on the most amount of consumed energy resources, which account for 96% import in 2008 with the 5.6% selfsufficiency ratio of energy resources. The interest of energy technology development has increased due to its poor energy environments. Specifically, the fluctuation of oil prices has been easily affecting Korean energy environments and economy. Considering its energy environments, energy technology development can be one of the optimal solution and breakthrough to solve Korea's energy circumstances, energy security, and the low carbon green growth with Korea's sustainable development. Moreover, energy and environment issues are the key factors for leading the future sustainable competitive advantage and green growth of one nation over the others nations. Lots of advanced nations have been trying to develop the energy technologies with the establishment of the strategic energy technology R and D programs for creating and maintain a competitive advantage and leading the global energy market. In 2005, we established strategic hydrogen energy technology roadmap in the sector of developing hydrogen energy technologies for coping with next 10 years from 2006 to 2015 as an aspect of hydrogen energy technology development. Hydrogen energy technologies are environmentally sound and friendly comparing with conventional energy technologies. Hydrogen energy technologies can play a key role and is the one of the best alternatives getting much attentions coping with UNFCCC and the hydrogen economy. Hydrogen energy technology roadmap shows meaningful guidelines for implementing the low carbon green growth society. We analyzed the world energy outlook to make hydrogen ETRM and provide energy policy directions in 2005. It focuses on developing hydrogen energy technology considering Korea's energy circumstance. We make a

  16. Examining hydrogen transitions.

    Energy Technology Data Exchange (ETDEWEB)

    Plotkin, S. E.; Energy Systems

    2007-03-01

    This report describes the results of an effort to identify key analytic issues associated with modeling a transition to hydrogen as a fuel for light duty vehicles, and using insights gained from this effort to suggest ways to improve ongoing modeling efforts. The study reported on here examined multiple hydrogen scenarios reported in the literature, identified modeling issues associated with those scenario analyses, and examined three DOE-sponsored hydrogen transition models in the context of those modeling issues. The three hydrogen transition models are HyTrans (contractor: Oak Ridge National Laboratory), MARKAL/DOE* (Brookhaven National Laboratory), and NEMS-H2 (OnLocation, Inc). The goals of these models are (1) to help DOE improve its R&D effort by identifying key technology and other roadblocks to a transition and testing its technical program goals to determine whether they are likely to lead to the market success of hydrogen technologies, (2) to evaluate alternative policies to promote a transition, and (3) to estimate the costs and benefits of alternative pathways to hydrogen development.

  17. Carbon and hydrogen matabolism of green algae in light and dark: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gibbs, M. [Brandeis Univ., Waltham, MA (United States), Department of Biology

    1996-12-31

    This report provides an overview of the progress made during this study. Progress is reported in chloroplast respiration, photoregulation of chloroplast respiration, reductive carboxylic acid cycle, and in oxy-hydrogen reaction all in Chlamydomonas.

  18. Sulphate respiration from hydrogen in Desulfovibrio bacteria: a structural biology overview.

    Science.gov (United States)

    Matias, Pedro M; Pereira, Inês A C; Soares, Cláudio M; Carrondo, Maria Arménia

    2005-11-01

    Sulphate-reducing organisms are widespread in anaerobic enviroments, including the gastrointestinal tract of man and other animals. The study of these bacteria has attracted much attention over the years, due also to the fact that they can have important implications in industry (in biocorrosion and souring of oil and gas deposits), health (in inflamatory bowel diseases) and the environment (bioremediation). The characterization of the various components of the electron transport chain associated with the hydrogen metabolism in Desulfovibrio has generated a large and comprehensive list of studies. This review summarizes the more relevant aspects of the current information available on the structural data of various molecules associated with hydrogen metabolism, namely hydrogenases and cytochromes. The transmembrane redox complexes known to date are also described and discussed. Redox-Bohr and cooperativity effects, observed in a few cytochromes, and believed to be important for their functional role, are discussed. Kinetic studies performed with these redox proteins, showing clues to their functional inter-relationship, are also addressed. These provide the groundwork for the application of a variety of molecular modelling approaches to understanding electron transfer and protein interactions among redox partners, leading to the characterization of several transient periplasmic complexes. In contrast to the detailed understanding of the periplasmic hydrogen oxidation process, very little is known about the cytoplasmic side of the respiratory electron transfer chain, in terms of molecular components (with exception of the terminal reductases), their structure and the protein-protein interactions involved in sulphate reduction. Therefore, a thorough understanding of the sulphate respiratory chain in Desulfovibrio remains a challenging task.

  19. Hydrogen Contractors Meeting

    Energy Technology Data Exchange (ETDEWEB)

    Fitzsimmons, Tim [Dept. of Energy (DOE), Washington DC (United States). Office of Basic Energy Sciences. Division of Materials Sciences and Engineering

    2006-05-16

    This volume highlights the scientific content of the 2006 Hydrogen Contractors Meeting sponsored by the Division of Materials Sciences and Engineering (DMS&E) on behalf of the Office of Basic Energy Sciences (BES) of the U. S. Department of Energy (DOE). Hydrogen Contractors Meeting held from May 16-19, 2006 at the Crystal Gateway Marriott Hotel Arlington, Virginia. This meeting is the second in a series of research theme-based Contractors Meetings sponsored by DMS&E held in conjunction with our counterparts in the Office of Energy Efficiency and Renewable Energy (EERE) and the first with the Hydrogen, Fuel Cells and Infrastructure Technologies Program. The focus of this year’s meeting is BES funded fundamental research underpinning advancement of hydrogen storage. The major goals of these research efforts are the development of a fundamental scientific base in terms of new concepts, theories and computational tools; new characterization capabilities; and new materials that could be used or mimicked in advancing capabilities for hydrogen storage.

  20. The READY program: Building a global potential energy surface and reactive dynamic simulations for the hydrogen combustion.

    Science.gov (United States)

    Mogo, César; Brandão, João

    2014-06-30

    READY (REActive DYnamics) is a program for studying reactive dynamic systems using a global potential energy surface (PES) built from previously existing PESs corresponding to each of the most important elementary reactions present in the system. We present an application to the combustion dynamics of a mixture of hydrogen and oxygen using accurate PESs for all the systems involving up to four oxygen and hydrogen atoms. Results at the temperature of 4000 K and pressure of 2 atm are presented and compared with model based on rate constants. Drawbacks and advantages of this approach are discussed and future directions of research are pointed out. Copyright © 2014 Wiley Periodicals, Inc.

  1. U.S. Department of Energy Hydrogen and Fuel Cells Program, 2013 Annual Merit Review and Peer Evaluation Report (Book)

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2013-10-01

    The fiscal year (FY) 2013 U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting (AMR), in conjunction with DOE's Vehicle Technologies Office AMR, was held from May 13-16, 2013, at the Crystal City Marriott and Crystal Gateway Marriott in Arlington, Virginia. This report is a summary of comments by AMR peer reviewers about the hydrogen and fuel cell projects funded by DOE's Office of Energy Efficiency and Renewable Energy (EERE).

  2. Data compilation for radiation effects on hydrogen recycle in fusion reactor materials

    International Nuclear Information System (INIS)

    Ozawa, Kunio; Fukushima, Kimichika; Ebisawa, Katsuyuki.

    1984-05-01

    Irradiation tests of materials by hydrogen isotopes are under way, to investigate the hydrogen recycling process where exchange of fuel particles takes place between plasma and the wall of the nuclear fusion reactor. In the report, data on hydrogen irradiation are collected and reviewed from the view point of irradiation effects. Data are classified into, (1) Re-emmission, (2) Retention, (Retained hydrogen isotopes, Depth profile in the materials and Thermal desorption spectroscopy), (3) Permeation and (4) Ion impact desorption. Research activities in each area are arranged according to the date of publication, research institutes, materials investigated, so that overview of present status can be made. Then, institute, author and reference are shown for each classification with tables. The list of literature is also attached. (author)

  3. Fuel Cell Development for NASA's Human Exploration Program: Benchmarking with "The Hydrogen Economy"

    Science.gov (United States)

    Scott, John H.

    2007-01-01

    The theoretically high efficiency and low temperature operation of hydrogen-oxygen fuel cells has motivated them to be the subject of much study since their invention in the 19th Century, but their relatively high life cycle costs kept them as a "solution in search of a problem" for many years. The first problem for which fuel cells presented a truly cost effective solution was that of providing a power source for NASA's human spaceflight vehicles in the 1960 s. NASA thus invested, and continues to invest, in the development of fuel cell power plants for this application. This development program continues to place its highest priorities on requirements for minimum system mass and maximum durability and reliability. These priorities drive fuel cell power plant design decisions at all levels, even that of catalyst support. However, since the mid-1990's, prospective environmental regulations have driven increased governmental and industrial interest in "green power" and the "Hydrogen Economy." This has in turn stimulated greatly increased investment in fuel cell development for a variety of commercial applications. This investment is bringing about notable advances in fuel cell technology, but, as these development efforts place their highest priority on requirements for minimum life cycle cost and field safety, these advances are yielding design solutions quite different at almost every level from those needed for spacecraft applications. This environment thus presents both opportunities and challenges for NASA's Human Exploration Program

  4. Hydrogen, a bridge between mobility and distributed generation. Some consideration towards the hydrogen economy

    International Nuclear Information System (INIS)

    Valentino Romeri

    2006-01-01

    In this paper were analysed the most recent energy initiatives started by some national and international institution, with particular focus on hydrogen and fuel cell. It were also overviewed the national road-maps towards the hydrogen economy. In 2004, based on the most authoritative available data regarding future FCVs penetration it was observed that, if vehicle power-generation system fuel cell based becomes more sophisticated, the role of the vehicles within the power grid might change. Fuel Cell Vehicle (FVC) could become a new power-generation source, supplying electricity to home and to the grid. Also, it was defined the dimension of this new kind of power generation source in different areas and it was compared with the related power grid installed generation capacity and it was found that this new source could be a multiple of the foreseeable installed capacity in year 2030. In the present work it was revised the analysis with the most recent scenarios and it was found that the results do not change significantly. Unfortunately this kind of analysis is still not considered in the energy debate or in the road-maps towards the hydrogen economy. (author)

  5. Overview of light water/hydrogen-based low energy nuclear reactions

    International Nuclear Information System (INIS)

    Miley, George H.; Shrestha, Prajakti J.

    2006-01-01

    This paper reviews light water and hydrogen-based low-energy nuclear reactions (LENRs) including the different methodologies used to study these reactions and the results obtained. Reports of excess heat production, transmutation reactions, and nuclear radiation emission are cited. An aim of this review is to present a summary of the present status of light water LENR research and provide some insight into where this research is heading. (author)

  6. Hydrogen Technology Education Workshop Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-12-01

    This document outlines activities for educating key target audiences, as suggested by workshop participants. Held December 4-5, 2002, the Hydrogen Technology Education Workshop kicked off a new education effort coordinated by the Hydrogen, Fuel Cells, & Infrastructure Technologies Program of the Office of Energy Efficiency and Renewable Energy.

  7. Results of the 2004 Knowledge and Opinions Surveys for the Baseline Knowledge Assessment of the U.S. Department of Energy Hydrogen Program

    Energy Technology Data Exchange (ETDEWEB)

    Schmoyer, Richard L [ORNL; Truett, Lorena Faith [ORNL; Cooper, Christy [U.S. Department of Energy

    2006-04-01

    The U.S. Department of Energy (DOE) Hydrogen Program focuses on overcoming critical barriers to the widespread use of hydrogen fuel cell technology. The transition to a new, hydrogen-based energy economy requires an educated human infrastructure. With this in mind, the DOE Hydrogen Program conducted statistical surveys to measure and establish baselines for understanding and awareness about hydrogen, fuel cells, and a hydrogen economy. The baseline data will serve as a reference in designing an education program, and it will be used in comparisons with future survey results (2008 and 2011) to measure changes in understanding and awareness. Scientific sampling was used to survey four populations: (1) the general public, ages 18 and over; (2) students, ages 12-17; (3) state and local government officials; and (4) potential large-scale hydrogen users. It was decided that the survey design should include about 1,000 individuals in each of the general public and student categories, about 250 state and local officials, and almost 100 large-scale end users. The survey questions were designed to accomplish specific objectives. Technical questions measured technical understanding and awareness of hydrogen technology. Opinion questions measured attitudes about safety, cost, the environment, and convenience, as well as the likelihood of future applications of hydrogen technology. For most of the questions, "I don't know" or "I have no opinion" were acceptable answers. Questions about information sources assessed how energy technology information is received. The General Public and Student Survey samples were selected by random digit dialing. Potential large-scale end users were selected by random sampling. The State and Local Government Survey was of the entire targeted population of government officials (not a random sample). All four surveys were administered by computer-assisted telephone interviewing (CATI). For each population, the length of the survey was less than

  8. Proceedings of the 1996 U.S. DOE hydrogen program review. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    The 29 papers contained in Volume 1 are related to systems analysis and hydrogen production. Papers in the systems analysis section discuss utility markets, comparison of hydrogen with other alternative fuels, hydrogen vehicles, renewable hydrogen production, storage, and detection, and hydrogen storage systems development. Hydrogen production methods include the use of algae, photosynthesis, glucose dehydrogenase, syngas, photoelectrochemical reactions, photovoltaics, water electrolysis, solar photochemical reactions, pyrolysis, catalytic steam reforming, municipal solid wastes, thermocatalytic cracking of natural gas, and plasma reformers. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  9. Experiments with cold hydrogen atoms

    International Nuclear Information System (INIS)

    Leonas, V.B.

    1981-01-01

    Numerous investigations of atomic processes in Waseous phase on the surface with participation of ''cold'' hydrogen atoms, made during the last years, are considered. The term ''cold atom'' means the range of relative collision energies E<10 MeV (respectively 'ultracold ' atoms at E< or approximately 1 MeV) which corresponds to the range of temperatures in tens (units) of K degrees. Three main ranges of investigations where extensive experimental programs are realized are considered: study of collisional processes with hydrogen atom participation, hydrogen atoms being of astrophysical interest; study of elastic atom-molecular scattering at superlow energies and studies on the problem of condensed hydrogen. Hydrogen atoms production is realized at dissociation in non-electrode high-frequency or superhigh-frequency discharge. A method of hydrogen quantum generator and of its modifications appeared to be rather an effective means to study collisional changes of spin state of hydrogen atoms. First important results on storage and stabilization of the gas of polarized hydrogen atoms are received

  10. The National Center For Hydrogen And Fuel Cells. Jump-starting the hydrogen economy through research

    International Nuclear Information System (INIS)

    Stefanescu, Ioan; Varlam, Mihai; Carcadea, Elena

    2010-01-01

    Full text: The research, design and implementation of hydrogen-based economy must consider each of the segments of the hydrogen energy system - production, supply, storage, conversion. The National Center for Hydrogen and Fuel Cells has the experience, expertise, facilities and instrumentation necessary to have a key role in developing any aspect of hydrogen-based economy, aiming to integrate technologies for producing and using hydrogen as an 'energy vector'. This paper presents a simulation of the applied 'learning curve' concept, NCHFC being the key element of R and D in the field in comparing the costs involved. It also presents the short and medium term research program of NCHFC, the main research and development directions being specified. (authors)

  11. Hydrogen and the materials of a sustainable energy future

    Energy Technology Data Exchange (ETDEWEB)

    Zalbowitz, M. [ed.

    1997-02-01

    The National Educator`s Workshop (NEW): Update 96 was held October 27--30, 1996, and was hosted by Los Alamos National Laboratory. This was the 11th annual conference aimed at improving the teaching of material science, engineering and technology by updating educators and providing laboratory experiments on emerging technology for teaching fundamental and newly evolving materials concepts. The Hydrogen Education Outreach Activity at Los Alamos National Laboratory organized a special conference theme: Hydrogen and the Materials of a Sustainable Energy Future. The hydrogen component of the NEW:Update 96 offered the opportunity for educators to have direct communication with scientists in laboratory settings, develop mentor relationship with laboratory staff, and bring leading edge materials/technologies into the classroom to upgrade educational curricula. Lack of public education and understanding about hydrogen is a major barrier for initial implementation of hydrogen energy technologies and is an important prerequisite for acceptance of hydrogen outside the scientific/technical research communities. The following materials contain the papers and view graphs from the conference presentations. In addition, supplemental reference articles are also included: a general overview of hydrogen and an article on handling hydrogen safely. A resource list containing a curriculum outline, bibliography, Internet resources, and a list of periodicals often publishing relevant research articles can be found in the last section.

  12. NOAA Office of Exploration and Research > Education > Overview

    Science.gov (United States)

    Organization Guiding Documents Organizational Structure Map of Staff and Affiliate Locations Strategic Plan Evaluation Education Overview Home About OER Overview Organization Guiding Documents Organizational Structure The mission of the OER Education Program is to support OER's vision and mission by reaching out in new

  13. The hydrogen: a clean and durable energy; L'hydrogene: une energie propre et durable

    Energy Technology Data Exchange (ETDEWEB)

    Alleau, Th. [Association Francaise de l' Hydrogene (France); Nejat Veziroglu, T. [Clean Energy Research Institute, University of Miami (United States); Lequeux, G. [Commission europeenne, DG de la Recherche, Bruxelles (Belgium)

    2000-07-01

    All the scientific experts agree, the hydrogen will be the energy vector of the future. During this conference day on the hydrogen, the authors recalled the actual economic context of the energy policy with the importance of the environmental policy and the decrease of the fossil fuels. The research programs and the attitudes of the France and the other countries facing the hydrogen are also discussed, showing the great interest for this clean and durable energy. They underline the importance of an appropriate government policy, necessary to develop the technology of the hydrogen production, storage and use. (A.L.B.)

  14. Hydrogen demonstration projects options in the Netherlands. Final report

    International Nuclear Information System (INIS)

    Bergsma, G.C.; Van der Werff, T.T.; Rooijers, F.J.

    1996-01-01

    Based on a survey of hydrogen demonstration projects, contacts with different actors and discussions in a sounding board for the study on the title subject, it is concluded that a conference can be organized where the possibilities of setting up hydrogen demonstration projects in the Netherlands can be discussed. The following projects offer good chances to be realized in the next few years: large-scale CO 2 storage in the underground, applying enhanced gas recovery. It appears to be a relatively cheap CO 2 emission reduction measure with a large potential. It can be combined with a hydrogen mixing project with the sale of hydrogen as a so-called eco-gas to consumers. There is little interest in the other options for CO 2 storage at coal gasification and the prompt supply of 100% H 2 to small-scale consumers. Hydrogen for cogeneration, fuel cells in the industry, hydrogen in road transport and hydrogen as a storage medium are projects in which some actors are interested. Hydrogen for air transport has a large potential to which only few parties in the Netherlands can anticipate. Hydrogen demonstration projects will show important surplus value when it is supported by a hydrogen research program. Such a program can be carried out in cooperation with several other programmes of the International Energy Agency, in Japan, Germany and a number of research programs of the Netherlands Agency for Energy and the Environment (Novem). 10 figs., 4 tabs., 33 refs

  15. Controlled Hydrogen Fleet and Infrastructure Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Scott Staley

    2010-03-31

    This program was undertaken in response to the US Department of Energy Solicitation DE-PS30-03GO93010, resulting in this Cooperative Agreement with the Ford Motor Company and BP to demonstrate and evaluate hydrogen fuel cell vehicles and required fueling infrastructure. Ford initially placed 18 hydrogen fuel cell vehicles (FCV) in three geographic regions of the US (Sacramento, CA; Orlando, FL; and southeast Michigan). Subsequently, 8 advanced technology vehicles were developed and evaluated by the Ford engineering team in Michigan. BP is Ford's principal partner and co-applicant on this project and provided the hydrogen infrastructure to support the fuel cell vehicles. BP ultimately provided three new fueling stations. The Ford-BP program consists of two overlapping phases. The deliverables of this project, combined with those of other industry consortia, are to be used to provide critical input to hydrogen economy commercialization decisions by 2015. The program's goal is to support industry efforts of the US President's Hydrogen Fuel Initiative in developing a path to a hydrogen economy. This program was designed to seek complete systems solutions to address hydrogen infrastructure and vehicle development, and possible synergies between hydrogen fuel electricity generation and transportation applications. This project, in support of that national goal, was designed to gain real world experience with Hydrogen powered Fuel Cell Vehicles (H2FCV) 'on the road' used in everyday activities, and further, to begin the development of the required supporting H2 infrastructure. Implementation of a new hydrogen vehicle technology is, as expected, complex because of the need for parallel introduction of a viable, available fuel delivery system and sufficient numbers of vehicles to buy fuel to justify expansion of the fueling infrastructure. Viability of the fuel structure means widespread, affordable hydrogen which can return a reasonable profit to

  16. Hydrogen energy systems studies

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.M.; Kreutz, T.G.; Steinbugler, M. [Princeton Univ., NJ (United States)] [and others

    1996-10-01

    In this report the authors describe results from technical and economic assessments carried out during the past year with support from the USDOE Hydrogen R&D Program. (1) Assessment of technologies for small scale production of hydrogen from natural gas. Because of the cost and logistics of transporting and storing hydrogen, it may be preferable to produce hydrogen at the point of use from more readily available energy carriers such as natural gas or electricity. In this task the authors assess near term technologies for producing hydrogen from natural gas at small scale including steam reforming, partial oxidation and autothermal reforming. (2) Case study of developing a hydrogen vehicle refueling infrastructure in Southern California. Many analysts suggest that the first widespread use of hydrogen energy is likely to be in zero emission vehicles in Southern California. Several hundred thousand zero emission automobiles are projected for the Los Angeles Basin alone by 2010, if mandated levels are implemented. Assuming that hydrogen vehicles capture a significant fraction of this market, a large demand for hydrogen fuel could evolve over the next few decades. Refueling a large number of hydrogen vehicles poses significant challenges. In this task the authors assess near term options for producing and delivering gaseous hydrogen transportation fuel to users in Southern California including: (1) hydrogen produced from natural gas in a large, centralized steam reforming plant, and delivered to refueling stations via liquid hydrogen truck or small scale hydrogen gas pipeline, (2) hydrogen produced at the refueling station via small scale steam reforming of natural gas, (3) hydrogen produced via small scale electrolysis at the refueling station, and (4) hydrogen from low cost chemical industry sources (e.g. excess capacity in refineries which have recently upgraded their hydrogen production capacity, etc.).

  17. Food and nutrition programs for Aboriginal and Torres Strait Islander Australians: an overview of systematic reviews.

    Science.gov (United States)

    Browne, Jennifer; Adams, Karen; Atkinson, Petah; Gleeson, Deborah; Hayes, Rick

    2017-09-19

    Objective To provide an overview of previous reviews of programs that aimed to improve nutritional status or diet-related health outcomes for Aboriginal and Torres Strait Islander peoples, in order to determine what programs are effective and why. Methods A systematic search of databases and relevant websites was undertaken to identify reviews of nutrition interventions for Aboriginal and Torres Strait Islander Australians. Pairs of reviewers undertook study selection and data extraction and performed quality assessment using a validated tool. Results Twelve papers reporting 11 reviews were identified. Two reviews were rated high quality, three were rated medium and six were rated low quality. The reviews demonstrated that a positive effect on nutrition and chronic disease indicators can be a result of: 1) incorporating nutrition and breastfeeding advice into maternal and child health care services; and 2) multifaceted community nutrition programs. The evidence suggests that the most important factor determining the success of Aboriginal and Torres Strait Islander food and nutrition programs is community involvement in (and, ideally, control of) program development and implementation. Conclusions Community-directed food and nutrition programs, especially those with multiple components that address the underlying causes of nutrition issues, can be effective in improving nutrition-related outcomes. What is known about the topic? More effective action is urgently required in order to reduce the unacceptable health inequalities between Aboriginal and Torres Strait Islander peoples and non-Indigenous Australians. Food insecurity and nutrition-related chronic conditions are responsible for a large proportion of the ill health experienced by Australia's First Peoples. What does this paper add? This narrative overview of 11 reviews published between 2005 and 2015 provides a synthesis of the current evidence for improving Aboriginal and Torres Strait Islander nutrition

  18. SP-100 Program overview

    International Nuclear Information System (INIS)

    Truscello, V.C.

    1984-01-01

    The SP-100 Program is expected to go through three phases: technology assessment and advancement, ground testing, and flight qualification. Currently the program is in the two- to three-year technology assessment and advancement stage. Goals are to identify the space nuclear power system concept that best meets anticipated requirements of future space missions, assess the technical feasibility of that concept, and establish a cost and schedule for developing the concept. The SP-100 Project Office has begun the implementation activities needed to meet these goals. With regard to refractory alloys, a better data base will be required before we move ahead in the program from technology assessment to ground demonstration

  19. Solar hydrogen for urban trucks

    Energy Technology Data Exchange (ETDEWEB)

    Provenzano, J.: Scott, P.B.; Zweig, R. [Clean Air Now, Northridge, CA (United States)

    1997-12-31

    The Clean Air Now (CAN) Solar Hydrogen Project, located at Xerox Corp., El Segundo, California, includes solar photovoltaic powered hydrogen generation, compression, storage and end use. Three modified Ford Ranger trucks use the hydrogen fuel. The stand-alone electrolyzer and hydrogen dispensing system are solely powered by a photovoltaic array. A variable frequency DC-AC converter steps up the voltage to drive the 15 horsepower compressor motor. On site storage is available for up to 14,000 standard cubic feet (SCF) of solar hydrogen, and up to 80,000 SCF of commercial hydrogen. The project is 3 miles from Los Angeles International airport. The engine conversions are bored to 2.9 liter displacement and are supercharged. Performance is similar to that of the Ranger gasoline powered truck. Fuel is stored in carbon composite tanks (just behind the driver`s cab) at pressures up to 3600 psi. Truck range is 144 miles, given 3600 psi of hydrogen. The engine operates in lean burn mode, with nil CO and HC emissions. NO{sub x} emissions vary with load and rpm in the range from 10 to 100 ppm, yielding total emissions at a small fraction of the ULEV standard. Two trucks have been converted for the Xerox fleet, and one for the City of West Hollywood. A public outreach program, done in conjunction with the local public schools and the Department of Energy, introduces the local public to the advantages of hydrogen fuel technologies. The Clean Air Now program demonstrates that hydrogen powered fleet development is an appropriate, safe, and effective strategy for improvement of urban air quality, energy security and avoidance of global warming impact. Continued technology development and cost reduction promises to make such implementation market competitive.

  20. Fatigue and fracture: Overview

    Science.gov (United States)

    Halford, G. R.

    1984-01-01

    A brief overview of the status of the fatigue and fracture programs is given. The programs involve the development of appropriate analytic material behavior models for cyclic stress-strain-temperature-time/cyclic crack initiation, and cyclic crack propagation. The underlying thrust of these programs is the development and verification of workable engineering methods for the calculation, in advance of service, of the local cyclic stress-strain response at the critical life governing location in hot section compounds, and the resultant crack initiation and crack growth lifetimes.

  1. Solar hydrogen production with semiconductor metal oxides: new directions in experiment and theory

    DEFF Research Database (Denmark)

    Valdes, Alvaro; Brillet, Jeremie; Graetzel, Michael

    2012-01-01

    An overview of a collaborative experimental and theoretical effort toward efficient hydrogen production via photoelectrochemical splitting of water into di-hydrogen and di-oxygen is presented here. We present state-of-the-art experimental studies using hematite and TiO2 functionalized with gold n...... nanoparticles as photoanode materials, and theoretical studies on electro and photo-catalysis of water on a range of metal oxide semiconductor materials, including recently developed implementation of self-interaction corrected energy functionals....

  2. Experimental and Theoretical Studies in Hydrogen-Bonding Organocatalysis

    Directory of Open Access Journals (Sweden)

    Matej Žabka

    2015-08-01

    Full Text Available Chiral thioureas and squaramides are among the most prominent hydrogen-bond bifunctional organocatalysts now extensively used for various transformations, including aldol, Michael, Mannich and Diels-Alder reactions. More importantly, the experimental and computational study of the mode of activation has begun to attract considerable attention. Various experimental, spectroscopic and calculation methods are now frequently used, often as an integrated approach, to establish the reaction mechanism, the mode of activation or explain the stereochemical outcome of the reaction. This article comprises several case studies, sorted according to the method used in their study. The aim of this review is to give the investigators an overview of the methods currently utilized for mechanistic investigations in hydrogen-bonding organocatalysis.

  3. Study of hydrogen vehicle storage in enclosed parking facilities

    Energy Technology Data Exchange (ETDEWEB)

    Belzile, M A [Transport Canada, Ottawa, ON (Canada). ecoTECHNOLOGY for Vehicles; Cook, S [Canadian Hydrogen and Fuel Cell Association, Vancouver, BC (Canada)

    2009-07-01

    This paper reported on a coordinated research program between Transport Canada and Hydrogen and Fuel Cells Canada that examines issues of hydrogen vehicle storage. The ecoTECHNOLOGY for Vehicles (eTV) program focuses on the safety issues of operating and storing hydrogen fuelled vehicles in enclosed parking facilities. The aim of the program is to review existing research, current building standards applied in Canada, standards applied to natural gas vehicles, and standards and recommended practices for the design of fuel cell vehicles. Any potential gaps in safety will be considered in the design of CFD modeling scenarios. Considerations that extend beyond previously performed studies include the effect of Canadian climate on vehicle safety and leak detection equipment, fail-safe mechanism performance, as well as analyses of the frequency of hydrogen leak occurrences and the probability of ignition. The results of the study will facilitate policy makers and authorities in making decisions regarding the storage of hydrogen fuelled vehicles as they become more popular.

  4. Hydrogen Peroxide: A Key Chemical for Today's Sustainable Development.

    Science.gov (United States)

    Ciriminna, Rosaria; Albanese, Lorenzo; Meneguzzo, Francesco; Pagliaro, Mario

    2016-12-20

    The global utilization of hydrogen peroxide, a green oxidant that decomposes in water and oxygen, has gone from 0.5 million tonnes per year three decades ago to 4.5 million tonnes per year in 2014, and is still climbing. With the aim of expanding the utilization of this eminent green chemical across different industrial and civil sectors, the production and use of hydrogen peroxide as a green industrial oxidant is reviewed herein to provide an overview of the explosive growth of its industrial use over the last three decades and of the state of the art in its industrial manufacture, with important details of what determines the viability of the direct production from oxygen and hydrogen compared with the traditional auto-oxidation process. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. PAA, WSH, and CIS Overview Self-Study #47656

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Rachel Anne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-14

    This course presents an overview of the Department of Energy’s (DOE’s) regulatory requirements relevant to the Price-Anderson Amendments Act (PAAA, also referred to as nuclear safety), worker safety and health (WSH), and classified information security (CIS) that are enforceable under the DOE enforcement program; describes the DOE enforcement process; and provides an overview of Los Alamos National Laboratory’s (LANL’s) internal compliance program relative to these DOE regulatory requirements. The LANL PAAA Program is responsible for maintaining LANL’s internal compliance program, which ensures the prompt identification, screening, and reporting of noncompliances to DOE regulatory requirements pertaining to nuclear safety, WSH, and CIS to build the strongest mitigation position for the Laboratory with respect to civil or other penalties.

  6. Hydrogen-Assisted IC Engine Combustion as a Route to Hydrogen Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Andre Boehman; Daniel Haworth

    2008-09-30

    The 'Freedom Car' Initiative announced by the Bush Administration has placed a significant emphasis on development of a hydrogen economy in the United States. While the hydrogen-fueled fuel-cell vehicle that is the focus of the 'Freedom Car' program would rely on electrochemical energy conversion, and despite the large amount of resources being devoted to its objectives, near-term implementation of hydrogen in the transportation sector is not likely to arise from fuel cell cars. Instead, fuel blending and ''hydrogen-assisted'' combustion are more realizable pathways for wide-scale hydrogen utilization within the next ten years. Thus, a large potential avenue for utilization of hydrogen in transportation applications is through blending with natural gas, since there is an existing market for natural-gas vehicles of various classes, and since hydrogen can provide a means of achieving even stricter emissions standards. Another potential avenue is through use of hydrogen to 'assist' diesel combustion to permit alternate combustion strategies that can achieve lower emissions and higher efficiency. This project focused on developing the underlying fundamental information to support technologies that will facilitate the introduction of coal-derived hydrogen into the market. Two paths were envisioned for hydrogen utilization in transportation applications. One is for hydrogen to be mixed with other fuels, specifically natural gas, to enhance performance in existing natural gas-fueled vehicles (e.g., transit buses) and provide a practical and marketable avenue to begin using hydrogen in the field. A second is to use hydrogen to enable alternative combustion modes in existing diesel engines, such as homogeneous charge compression ignition, to permit enhanced efficiency and reduced emissions. Thus, this project on hydrogen-assisted combustion encompassed two major objectives: (1) Optimization of hydrogen-natural gas mixture

  7. User's manual of BISHOP. A Bi-Phase, Sodium-Hydrogen-Oxygen system, chemical equilibrium calculation program

    International Nuclear Information System (INIS)

    Okano, Yasushi; Yamaguchi, Akira

    2001-07-01

    In an event of sodium leakage in liquid metal fast breeder reactors, liquid sodium flows out of piping, and droplet combustion might occur under a certain environmental condition. The combustion heat and reaction products should be evaluated in the sodium fire analysis codes for investigating the influence of the sodium leak age and fire incident. In order to analyze the reaction heat and products, the multi-phase chemical equilibrium calculation program for a sodium, oxygen and hydrogen system has been developed. The developed numerical program is named BISHOP, which denotes 'Bi-Phase, Sodium-Hydrogen-Oxygen, Chemical Equilibrium Calculation Program'. The Gibbs free energy minimization method is used because of the following advantages. Chemical species are easily added and changed. A variety of thermodynamic states, such as isothermal and isentropic changes, can be dealt with in addition to constant temperature and pressure processes. In applying the free energy minimization method to solve the multi-phase sodium reaction system, three new numerical calculation techniques are developed. One is theoretical simplification of phase description in equation system, the other is to extend the Gibbs free energy minimization method to a multi-phase system, and the last is to establish the efficient search for the minimum value. The reaction heat and products at the equilibrium state can be evaluated from the initial conditions, such as temperature, pressure and reactants, using BISHOP. This report describes the thermochemical basis of chemical equilibrium calculations, the system of equations, simplification models, and the procedure to prepare input data and usage of BISHOP. (author)

  8. Hydrogen production processes; Procedes de production d'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The goals of this first Gedepeon workshop on hydrogen production processes are: to stimulate the information exchange about research programs and research advances in the domain of hydrogen production processes, to indicate the domains of interest of these processes and the potentialities linked with the coupling of a nuclear reactor, to establish the actions of common interest for the CEA, the CNRS, and eventually EDF, that can be funded in the framework of the Gedepeon research group. This document gathers the slides of the 17 presentations given at this workshop and dealing with: the H{sub 2} question and the international research programs (Lucchese P.); the CEA's research program (Lucchese P., Anzieu P.); processes based on the iodine/sulfur cycle: efficiency of a facility - flow-sheets, efficiencies, hard points (Borgard J.M.), R and D about the I/S cycle: Bunsen reaction (Colette S.), R and D about the I/S cycle: the HI/I{sub 2}/H{sub 2}O system (Doizi D.), demonstration loop/chemical engineering (Duhamet J.), materials and corrosion (Terlain A.); other processes under study: the Westinghouse cycle (Eysseric C.), other processes under study at the CEA (UT3, plasma,...) (Lemort F.), database about thermochemical cycles (Abanades S.), Zn/ZnO cycle (Broust F.), H{sub 2} production by cracking, high temperature reforming with carbon trapping (Flamant G.), membrane technology (De Lamare J.); high-temperature electrolysis: SOFC used as electrolyzers (Grastien R.); generic aspects linked with hydrogen production: technical-economical evaluation of processes (Werkoff F.), thermodynamic tools (Neveu P.), the reactor-process coupling (Aujollet P.). (J.S.)

  9. Overview of recent focussing horns for the BNL neutrino program

    International Nuclear Information System (INIS)

    Carroll, A.; Leonhardt, W.; Monaghan, R.

    1987-01-01

    In this paper we present an overview of the two magnetic focussing horn systems recently constructed, installed, and operated in the fast extracted beam for the neutrino physics program at the AGS. These horn systems consist of a number of interrelated subsystems which operate together to produce a very intense, parallel beam of pions. The strong magnetic focussing is generated by pulsing the coaxial structures of the horns with currents of up to 300kA during the 2.5 μsec proton beam spill. Because of their high levels of induced radioactivity, these horns had to be designed for reliability and ease in installation. Both horn systems built had the same overall features, but the broad band system focussed pions over as large a momentum band as possible to maximize the neutrino flux. The narrow band systems restricted the momentum to +-15% of 3 GeV/c to provide kinematic constraints for the experiment. A synopsis of the design concepts and critical engineering requirements is given. Detailed discussion of the subsystems follows in the subsequent papers

  10. An overview of renewable hydrogen production from thermochemical process of oil palm solid waste in Malaysia

    International Nuclear Information System (INIS)

    Hosseini, Seyed Ehsan; Wahid, Mazlan Abdul; Ganjehkaviri, A.

    2015-01-01

    Highlights: • 40% of energy demand of Malaysia could be supplied by thermochemical process of PSR. • SCWG of PSR is preferable thermochemical process due to char and tar elimination. • Potential of H 2 production from SCWG of PSR is 1.05 × 10 10 kgH 2 per year in Malaysia. • Highly moisturized PSR could be used in hydrogen production by SCWG process. - Abstract: Hydrogen is one of the most promising energy carriers for the future of the world due to its tremendous capability of pollution reduction. Hydrogen utilization is free of toxic gases formation as well as carbon dioxide (CO 2 ) emission. Hydrogen production can be implemented using a wide variety of resources including fossil fuels, nuclear energy and renewable and sustainable energy (RSE). Amongst various RSE resources, biomass has great capacity to be employed for renewable hydrogen production. Hydrogen production from palm solid residue (PSR) via thermochemical process is a perfect candidate for waste-to-well strategy in palm oil mills in Malaysia. In this paper, various characteristics of hydrogen production from thermochemical process of PSR includes pyrolysis and gasification are reviewed. The annual oil palm fruits production in Malaysia is approximately 100 million tonnes which the solid waste of the fruits is capable to generate around 1.05 × 10 10 kgH 2 (1.26 EJ) via supercritical water gasification (SCWG) process. The ratio of energy output to energy input of SCWG process of PSR is about 6.56 which demonstrates the priority of SCWG to transform the energy of PSR into a high energy end product. The high moisture of PSR which is the most important barrier for its direct combustion, emerges as an advantage in thermochemical reactions and highly moisturized PSR (even more than 50%) is utilized directly in SCWG without application of any high cost drying process. Implementation of appropriate strategies could lead Malaysia to supply about 40% of its annual energy demand by hydrogen yield from

  11. 2007 Biomass Program Overview

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-10-27

    The Biomass Program is actively working with public and private partners to meet production and technology needs. With the corn ethanol market growing steadily, researchers are unlocking the potential of non-food biomass sources, such as switchgrass and forest and agricultural residues. In this way, the Program is helping to ensure that cost-effective technologies will be ready to support production goals for advanced biofuels.

  12. Overview of the joint US/Russia surety program in the Sandia National Laboratories Cooperative Measures Program

    International Nuclear Information System (INIS)

    Smith, R.E.; Vorontsova, O.S.; Blinov, I.M.

    1998-02-01

    Sandia National Laboratories has initiated many joint research and development projects with the two premier Russian nuclear laboratories, VNIIEF and VNIITF, (historically known as Arzamas-16 and Chelyabinsk-70) in a wide spectrum of areas. One of the areas in which critical dialogue and technical exchange is continuing to take place is in the realm of system surety. Activities primarily include either safety or security methodology development, processes, accident environment analyses and testing, accident data-bases, assessments, and product design. Furthermore, a continuing dialog has been established between the organizations with regard to developing a better understanding of how risk is perceived and analyzed in Russia versus that in the US. The result of such efforts could reduce the risk of systems to incur accidents or incidents resulting in high consequences to the public. The purpose of this paper is to provide a current overview of the Sandia surety program and its various initiatives with the Russian institutes, with an emphasis on the program scope and rationale. The historical scope of projects will be indicated. A few specific projects will be discussed, along with results to date. The extension of the joint surety initiatives to other government and industry organizations will be described. This will include the current status of a joint Sandia/VNIIEF initiative to establish an International Surety Center for Energy Intensive and High Consequence Systems and Infrastructures

  13. An Overview of Natural Gas Conversion Technologies for Co-Production of Hydrogen and Value-Added Solid Carbon Products

    Energy Technology Data Exchange (ETDEWEB)

    Dagle, Robert A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dagle, Vanessa [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bearden, Mark D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Holladay, Jamelyn D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Krause, Theodore R. [Argonne National Lab. (ANL), Argonne, IL (United States); Ahmed, Shabbir [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-11-16

    This report was prepared in response to the U.S. Department of Energy Fuel Cell Technologies Office Congressional Appropriation language to support research on carbon-free production of hydrogen using new chemical processes that utilize natural gas to produce solid carbon and hydrogen. The U.S. produces 9-10 million tons of hydrogen annually with more than 95% of the hydrogen produced by steam-methane reforming (SMR) of natural gas. SMR is attractive because of its high hydrogen yield; but it also converts the carbon to carbon dioxide. Non-oxidative thermal decomposition of methane to carbon and hydrogen is an alternative to SMR and produces CO2-free hydrogen. The produced carbon can be sold as a co-product, thus providing economic credit that reduces the delivered net cost of hydrogen. The combination of producing hydrogen with potentially valuable carbon byproducts has market value in that this allows greater flexibility to match the market prices of hydrogen and carbon. That is, the higher value product can subsidize the other in pricing decisions. In this report we highlight the relevant technologies reported in the literature—primarily thermochemical and plasma conversion processes—and recent research progress and commercial activities. Longstanding technical challenges include the high energetic requirements (e.g., high temperatures and/or electricity requirements) necessary for methane activation and, for some catalytic processes, the separation of solid carbon product from the spent catalyst. We assess current and new carbon product markets that could be served given technological advances, and we discuss technical barriers and potential areas of research to address these needs. We provide preliminary economic analysis for these processes and compare to other emerging (e.g., electrolysis) and conventional (e.g., SMR) processes for hydrogen production. The overarching conclusion of this study is that the cost of hydrogen can be potentially

  14. The ASACUSA antihydrogen and hydrogen program: results and prospects

    Science.gov (United States)

    Malbrunot, C.; Amsler, C.; Arguedas Cuendis, S.; Breuker, H.; Dupre, P.; Fleck, M.; Higaki, H.; Kanai, Y.; Kolbinger, B.; Kuroda, N.; Leali, M.; Mäckel, V.; Mascagna, V.; Massiczek, O.; Matsuda, Y.; Nagata, Y.; Simon, M. C.; Spitzer, H.; Tajima, M.; Ulmer, S.; Venturelli, L.; Widmann, E.; Wiesinger, M.; Yamazaki, Y.; Zmeskal, J.

    2018-03-01

    The goal of the ASACUSA-CUSP collaboration at the Antiproton Decelerator of CERN is to measure the ground-state hyperfine splitting of antihydrogen using an atomic spectroscopy beamline. A milestone was achieved in 2012 through the detection of 80 antihydrogen atoms 2.7 m away from their production region. This was the first observation of `cold' antihydrogen in a magnetic field free region. In parallel to the progress on the antihydrogen production, the spectroscopy beamline was tested with a source of hydrogen. This led to a measurement at a relative precision of 2.7×10-9 which constitutes the most precise measurement of the hydrogen hyperfine splitting in a beam. Further measurements with an upgraded hydrogen apparatus are motivated by CPT and Lorentz violation tests in the framework of the Standard Model Extension. Unlike for hydrogen, the antihydrogen experiment is complicated by the difficulty of synthesizing enough cold antiatoms in the ground state. The first antihydrogen quantum states scan at the entrance of the spectroscopy apparatus was realized in 2016 and is presented here. The prospects for a ppm measurement are also discussed. This article is part of the Theo Murphy meeting issue `Antiproton physics in the ELENA era'.

  15. HySTAR: the hydrogen safety training and risk workplace

    International Nuclear Information System (INIS)

    Hay, R.

    2006-01-01

    This paper shows the output of the software package HySTAR, the Hydrogen Safety, Training and Risk Workplace. This is the software output of the CTFA, Canadian Hydrogen Safety Program projects. It shows the Hydrogen Virtual Interactive Expert Workplace, a guide for permitting and code enforcement for officials and other parties involved in approving hydrogen energy facilities. It also shows the Hydrogen Codes and Standards Report (Site Level) as well as Hydrogen Distances and Clearances Report

  16. Micro hydrogen for portable power : generating opportunities for hydrogen and fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    A new fuel cell technology for portable applications was reviewed. Success for the fuel cell industry will be achieved primarily by supplanting lithium-ion batteries, and fuel cells for portable applications have clear advantages to batteries in addition to their known environmental benefits. Micro hydrogen {sup TM} is the integrated combination of hydrogen fuel cell, hydrogen storage and delivery, fluidic interconnects and power conditioning electronics required for creating high energy density portable power sources. The small size, low heat production, environmental sustainability and refueling flexibility of the systems provides enormous economic opportunities for the use of micro hydrogen in cell phone technology, personal digital assistants and other electronic gadgets. Details of a trial to test and evaluate micro hydrogen fuel cell powered bike lights were presented. Further programs are planned for external demonstrations of high-beam search and rescue lighting, flashlights for security personnel and portable hydrogen power sources that will be used by multiple organizations throughout British Columbia. It was concluded that fuel cell technology must match the lithium-ion battery's performance by providing fast recharge, high energy density, and adaptability. Issues concerning refueling and portable and disposable cartridges for micro hydrogen systems were also discussed. 8 figs.

  17. Introduction to hydrogen in alloys

    International Nuclear Information System (INIS)

    Westlake, D.G.

    1980-01-01

    Substitutional alloys, both those that form hydrides and those that do not, are discussed, but with more emphasis on the former than the latter. This overview includes the following closely related subjects: (1) the significant effects of substitutional solutes on the pressure-composition-temperature (PCT) equilibria of metal-hydrogen systems, (2) the changes in thermodynamic properties resulting from differences in atom size and from modifications of electronic structure, (3) attractive and repulsive interactions between H and solute atoms and the effects of such interactions on the pressure dependent solubility for H, (4) H trapping in alloys of Group V metals and its effect on the terminal solubility for H (TSH), (5) some other mechanisms invoked to explain the enhancement (due to alloying) of the (TSH) in Group V metals, and (6) H-impurity complexes in alloys of the metals Ni, Co, and Fe. Some results showing that an enhanced TSH may ameliorate the resistance of a metal to hydrogen embrittlement are presented

  18. The Hydrogen Economy: Opportunities, Costs, Barriers, and R&D Needs

    Energy Technology Data Exchange (ETDEWEB)

    Committee on Alternatives and Strategies for Future Hydrogen Production and Use

    2004-08-31

    The announcement of a hydrogen fuel initiative in the President’s 2003 State of the Union speech substantially increased interest in the potential for hydrogen to play a major role in the nation’s long-term energy future. Prior to that event, DOE asked the National Research Council to examine key technical issues about the hydrogen economy to assist in the development of its hydrogen R&D program. Included in the assessment were the current state of technology; future cost estimates; CO2 emissions; distribution, storage, and end use considerations; and the DOE RD&D program. The report provides an assessment of hydrogen as a fuel in the nation’s future energy economy and describes a number of important challenges that must be overcome if it is to make a major energy contribution. Topics covered include the hydrogen end-use technologies, transportation, hydrogen production technologies, and transition issues for hydrogen in vehicles.

  19. The development of the Hydrogen Economic Evaluation Program (HEEP)

    International Nuclear Information System (INIS)

    Khamis, I.

    2010-01-01

    The International Atomic Energy Agency (IAEA) is developing software to perform economic analysis related to hydrogen production. The software is expected to analyse the economics of the four most promising processes for hydrogen production. These processes are: high and low temperature electrolysis, thermochemical processes including the S-I process, conventional electrolysis and steam reforming. The IAEA HEEP software is expected to be used for comparative studies between nuclear and fossil energy sources. Therefore, typical conventional methods are also to be included in HEEP to enable comparison with nuclear hydrogen production. The HEEP models will be based on some economic and technical data, and on cost modelling. Modelling will include various aspects of hydrogen economy including storage, transport and distribution with options to eliminate or include specific details as required by the users. Development of HEEP is based on the IAEA's successful programme during the development of DEEP. This IAEA DEEP software has been distributed free of charge to more than 500 scientists/engineers and researchers from 50 countries interested in cost estimation of desalination plants using nuclear/fossil energy sources. DEEP is not a design code. A number of member states engaged in nuclear desalination activities in their countries have used DEEP for conducting feasibility studies for establishing large nuclear desalination projects based on different nuclear reactors types and desalination processes. HEEP is expected to be similar to the IAEA software DEEP which is being used to perform economic analysis and feasibility studies related to nuclear desalination in the IAEA and other member states. It is expected that HEEP will have similar architecture to DEEP but with the possibility of easy update and future expansion. Various major processes and technologies are to be incorporated in the HEEP programme as the basis for modelling the performance and cost

  20. Texas Hydrogen Education Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Hitchcock, David; Bullock, Dan

    2011-06-30

    The Texas Hydrogen Education project builds on past interest in hydrogen and fuel cells to help create better informed leaders and stakeholders and thereby improve decision making and planning for inclusion of hydrogen and fuel cell technologies as energy alternatives in Texas. In past years in Texas, there was considerable interest and activities about hydrogen and fuel cells (2000-­2004). During that time, the Houston Advanced Research Center (HARC) created a fuel cell consortium and a fuel cell testing lab. Prior to 2008, interest and activities had declined substantially. In 2008, in cooperation with the Texas H2 Coalition and the State Energy Conservation Office, HARC conducted a planning process to create the Texas Hydrogen Roadmap. It was apparent from analysis conducted during the course of this process that while Texas has hydrogen and fuel cell advantages, there was little program and project activity as compared with other key states. Outreach and education through the provision of informational materials and organizing meetings was seen as an effective way of reaching decision makers in Texas. Previous hydrogen projects in Texas had identified the five major urban regions for program and project development. This geographic targeting approach was adopted for this project. The project successfully conducted the five proposed workshops in four of the target metropolitan areas: San Antonio, Houston, Austin, and the Dallas-­Ft. Worth area. In addition, eight outreach events were included to further inform state and local government leaders on the basics of hydrogen and fuel cell technologies. The project achieved its primary objectives of developing communication with target audiences and assembling credible and consistent outreach and education materials. The major lessons learned include: (1) DOE’s Clean Cities programs are a key conduit to target transportation audiences, (2) real-­world fuel cell applications (fuel cell buses, fuel cell fork lifts

  1. Hydrogen energy systems studies

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.M.; Steinbugler, M.; Dennis, E. [Princeton Univ., NJ (United States)] [and others

    1995-09-01

    For several years, researchers at Princeton University`s Center for Energy and Environmental Studies have carried out technical and economic assessments of hydrogen energy systems. Initially, we focussed on the long term potential of renewable hydrogen. More recently we have explored how a transition to renewable hydrogen might begin. The goal of our current work is to identify promising strategies leading from near term hydrogen markets and technologies toward eventual large scale use of renewable hydrogen as an energy carrier. Our approach has been to assess the entire hydrogen energy system from production through end-use considering technical performance, economics, infrastructure and environmental issues. This work is part of the systems analysis activity of the DOE Hydrogen Program. In this paper we first summarize the results of three tasks which were completed during the past year under NREL Contract No. XR-11265-2: in Task 1, we carried out assessments of near term options for supplying hydrogen transportation fuel from natural gas; in Task 2, we assessed the feasibility of using the existing natural gas system with hydrogen and hydrogen blends; and in Task 3, we carried out a study of PEM fuel cells for residential cogeneration applications, a market which might have less stringent cost requirements than transportation. We then give preliminary results for two other tasks which are ongoing under DOE Contract No. DE-FG04-94AL85803: In Task 1 we are assessing the technical options for low cost small scale production of hydrogen from natural gas, considering (a) steam reforming, (b) partial oxidation and (c) autothermal reforming, and in Task 2 we are assessing potential markets for hydrogen in Southern California.

  2. Energy research 2003 - Overview

    International Nuclear Information System (INIS)

    2004-01-01

    This publication issued by the Swiss Federal Office of Energy (SFOE) presents an overview of advances made in energy research in Switzerland in 2003. In the report, the heads of various programmes present projects and summarise the results of research in four main areas: Efficient use of energy, renewable energies, nuclear energy and energy policy fundamentals. Energy-efficiency is illustrated by examples from the areas of building, traffic, electricity, ambient heat and combined heat and power, combustion, fuel cells and in the process engineering areas. In the renewable energy area, projects concerning energy storage, photovoltaics, solar chemistry and hydrogen, biomass, small-scale hydro, geothermal energy and wind energy are presented. Work being done on nuclear safety and disposal regulations as well as controlled thermonuclear fusion are discussed

  3. Design of a hydrogen test facility

    International Nuclear Information System (INIS)

    Morgan, M.J.; Beam, J.E.; Sehmbey, M.S.; Pais, M.R.; Chow, L.C.; Hahn, O.J.

    1992-01-01

    The Air Force has sponsored a program at the University of Kentucky which will lead to a better understanding of the thermal and fluid instabilities during blowdown of supercritical fluids at cryogenic temperatures. An integral part of that program is the design and construction of that hydrogen test facility. This facility will be capable of providing supercritical hydrogen at 30 bars and 35 K at a maximum flow rate of 0.1 kg/s for 90 seconds. Also presented here is an extension of this facility to accommodate the use of supercritical helium

  4. Advances in nickel hydrogen technology at Yardney Battery Division

    Science.gov (United States)

    Bentley, J. G.; Hall, A. M.

    1987-01-01

    The current major activites in nickel hydrogen technology being addressed at Yardney Battery Division are outlined. Five basic topics are covered: an update on life cycle testing of ManTech 50 AH NiH2 cells in the LEO regime; an overview of the Air Force/industry briefing; nickel electrode process upgrading; 4.5 inch cell development; and bipolar NiH2 battery development.

  5. Mechanisms of dispersion during liquid hydrogen leakage

    International Nuclear Information System (INIS)

    Proust, C.; Gaston, D.

    2000-01-01

    INERIS conducts research programs with a mission of assessing and preventing accidental and chronic risks to people and the environment due to industrial plants, chemical substances and underground operation. This paper is a study of the dispersion mechanism of cryogenic hydrogen and the mechanisms of flame propagation in clouds of hydrogen. The objective is to contribute to the industrial control implementation of significant storage of hydrogen liquid that has pressure close to the atmospheric pressure. Within the framework of this program, the only interest is with the risk presented by escape of significant flow. This corresponds to accidental ruptures in tanks. The following four phases are looked at: the escape incident and the determination of the leak flow; the formation of the liquid layer and the vaporization of the hydrogen; the formation of the Hydrogen cloud in air; and the explosive ignition in the atmosphere, propagation of the explosive flame and evaluation of the pressure wave. This situation has been limited to dispersion in free air and does not consider the impact of containment

  6. Social Perception of Hydrogen Technologies: The View of Spanish Stake holders

    International Nuclear Information System (INIS)

    Ferri Anglada, S.

    2013-01-01

    This technical report presents an overview of the social perception and vision of a sample of Spanish stake holders on hydrogen technologies. The study is based on the implementation of a survey, combining both quantitative and qualitative data. An ad hoc electronic survey was design to collect views and perceptions on several key factors regarding this innovative energy alternative. The group of experts participating (N=130) in the study, comes mainly from research centers, universities and private companies. The survey addresses three major themes: expert views, social acceptability, and contextual factors of hydrogen technologies. The aim is to capture both the current and the future scene as viewed by the experts on hydrogen technologies, identifying key factors in terms of changes, uncertainties, obstacles and opportunities. The objective is to identify potential key features for the introduction, development, promotion, implementation, and large-scale deployment of a highly successful energy proposal in countries such as Iceland, one of the pioneers in base its economy on hydrogen technologies. To conclude, this report illustrates the positive engagement of a sample of Spanish stake holders towards hydrogen technologies that may prove vital in the transition towards the Hydrogen Economy in Spain. (Author)

  7. A review of nickel hydrogen battery technology

    Energy Technology Data Exchange (ETDEWEB)

    Smithrick, J.J.; O`Donnell, P.M. [NASA Lewis Research Center, Cleveland, OH (United States)

    1995-12-31

    This paper on nickel hydrogen batteries is an overview of the various nickel hydrogen battery design options, technical accomplishments, validation test results and trends. There is more than one nickel hydrogen battery design, each having its advantage for specific applications. The major battery designs are individual pressure vessel (IPV), common pressure vessel (CPV), bipolar and low pressure metal hydride. State-of-the-art (SOA) nickel hydrogen batteries are replacing nickel cadmium batteries in almost all geosynchronous orbit (GEO) applications requiring power above 1 kW. However, for the more severe low earth orbit (LEO) applications (>30,000 cycles), the current cycle life of 4,000 to 10,000 cycles at 60 percent DOD should be improved. A NASA Lewis Research Center innovative advanced design IPV nickel hydrogen cell led to a breakthrough in cycle life enabling LEO applications at deep depths of discharge (DOD). A trend for some future satellites is to increase the power level to greater than 6 kW. Another trend is to decrease the power to less than 1 kW for small low cost satellites. Hence, the challenge is to reduce battery mass, volume and cost. A key is to develop a light weight nickel electrode and alternate battery designs. A common pressure vessel (CPV) nickel hydrogen battery is emerging as a viable alternative to the IPV design. It has the advantage of reduced mass, volume and manufacturing costs. A 10 Ah CPV battery has successfully provided power on the relatively short lived Clementine Spacecraft.

  8. ORNL-PWR BDHT analysis procedure: an overview

    International Nuclear Information System (INIS)

    Cliff, S.B.

    1978-01-01

    The key computer programs currently used by the analysis procedure of the ORNL-PWR Blowdown Heat Transfer Separate Effects Program are overviewed with particular emphasis placed on their interrelationships. The major modeling and calculational programs, COBRA, ORINC, ORTCAL, PINSIM, and various versions of RELAP4, are summarized and placed into the perspective of the procedure. The supportive programs, REDPLT, ORCPLT, BDHTPLOT, OXREPT, and OTOCI, and their uses are described

  9. Hydrogen, the phenomenon is reaching the Europe

    International Nuclear Information System (INIS)

    2001-01-01

    More and more contracts and research programs are decided in Europe to promote the hydrogen energy. The market is today still moderate but the forecasting are great in many domains. This paper provides some data and trends on the hydrogen market. (A.L.B.)

  10. Hydrogen behavior in light-water reactors

    International Nuclear Information System (INIS)

    Berman, M.; Cummings, J.C.

    1984-01-01

    The Three Mile Island accident resulted in the generation of an estimated 150 to 600 kg of hydrogen, some of which burned inside the containment building, causing a transient pressure rise of roughly 200 kPa (2 atm). With this accident as the immediate impetus and the improved safety of reactors as the long-term goal, the nuclear industry and the Nuclear Regulatory Commission initiated research programs to study hydrogen behavior and control during accidents at nuclear plants. Several fundamental questions and issues arise when the hydrogen problem for light-water-reactor plants is examined. These relate to four aspects of the problem: hydrogen production; hydrogen transport, release, and mixing; hydrogen combustion; and prevention or mitigation of hydrogen combustion. Although much has been accomplished, some unknowns and uncertainties still remain, for example, the rate of hydrogen production during a degraded-core or molten-core accident, the rate of hydrogen mixing, the effect of geometrical structures and scale on combustion, flame speeds, combustion completeness, and mitigation-scheme effectiveness. This article discusses the nature and extent of the hydrogen problem, the progress that has been made, and the important unresolved questions

  11. Overview of graduate training program of John Adams Institute for Accelerator Science

    Science.gov (United States)

    Seryi, Andrei

    The John Adams Institute for Accelerator Science is a center of excellence in the UK for advanced and novel accelerator technology, providing expertise, research, development and training in accelerator techniques, and promoting advanced accelerator applications in science and society. We work in JAI on design of novel light sources upgrades of 3-rd generation and novel FELs, on plasma acceleration and its application to industrial and medical fields, on novel energy recovery compact linacs and advanced beam diagnostics, and many other projects. The JAI is based on three universities - University of Oxford, Imperial College London and Royal Holloway University of London. Every year 6 to 10 accelerators science experts, trained via research on cutting edge projects, defend their PhD thesis in JAI partner universities. In this presentation we will overview the research and in particular the highly successful graduate training program in JAI.

  12. Ostomy Home Skills Program

    Medline Plus

    Full Text Available ... Associate Fellows Residents Medical Students Affiliate Members ACS Insurance Programs ACS Discount Programs FACS Resources Career Connection ... and Awards Overview Scholarships, Fellowships, and Awards Overview Health Policy Scholarships Scholarships for International Surgeons Research Scholarships ...

  13. Canadian fuel cell commercialization roadmap update : progress of Canada's hydrogen and fuel cell industry

    International Nuclear Information System (INIS)

    Filbee, S.; Karlsson, T.

    2009-01-01

    Hydrogen and fuel cells are considered an essential part of future low-carbon energy systems for transportation and stationary power. In recognition of this, Industry Canada has worked in partnership with public and private stakeholders to provide an update to the 2003 Canadian Fuel Cell Commercialization Roadmap to determine infrastructure requirements for near-term markets. The update includes technology and market developments in terms of cost and performance. This presentation included an overview of global hydrogen and fuel cell markets as background and context for the activities of the Canadian industry. Approaches toward commercial viability and mass market success were also discussed along with possible scenarios and processes by which these mass markets could develop. Hydrogen and fuel cell industry priorities were outlined along with recommendations for building a hydrogen infrastructure

  14. The U.S. department of energy program on hydrogen production

    International Nuclear Information System (INIS)

    Henderson, David; Paster, Mark

    2003-01-01

    Clean forms of energy are needed to support sustainable global economics growth while mitigating greenhouse gas emissions and impacts on air quality. To address these challenges, the U.S. President's National Energy Policy and the U.S. Department of Energy's (DOE's) Strategic Plan call for expanding the development of diverse domestic energy supplies. Working with industry, the Department developed a national vision roadmap for moving toward a hydrogen economy-a solution that holds the potential to provide sustainable clean, safe, secure, affordable, and reliable energy. DOE has examined and organized its hydrogen activities in pursuit of this national vision. This includes the development of fossil and renewable sources, as well as nuclear technologies capable of economically producing large quantities of hydrogen. (author)

  15. Hydrogen production processes

    International Nuclear Information System (INIS)

    2003-01-01

    The goals of this first Gedepeon workshop on hydrogen production processes are: to stimulate the information exchange about research programs and research advances in the domain of hydrogen production processes, to indicate the domains of interest of these processes and the potentialities linked with the coupling of a nuclear reactor, to establish the actions of common interest for the CEA, the CNRS, and eventually EDF, that can be funded in the framework of the Gedepeon research group. This document gathers the slides of the 17 presentations given at this workshop and dealing with: the H 2 question and the international research programs (Lucchese P.); the CEA's research program (Lucchese P., Anzieu P.); processes based on the iodine/sulfur cycle: efficiency of a facility - flow-sheets, efficiencies, hard points (Borgard J.M.), R and D about the I/S cycle: Bunsen reaction (Colette S.), R and D about the I/S cycle: the HI/I 2 /H 2 O system (Doizi D.), demonstration loop/chemical engineering (Duhamet J.), materials and corrosion (Terlain A.); other processes under study: the Westinghouse cycle (Eysseric C.), other processes under study at the CEA (UT3, plasma,...) (Lemort F.), database about thermochemical cycles (Abanades S.), Zn/ZnO cycle (Broust F.), H 2 production by cracking, high temperature reforming with carbon trapping (Flamant G.), membrane technology (De Lamare J.); high-temperature electrolysis: SOFC used as electrolyzers (Grastien R.); generic aspects linked with hydrogen production: technical-economical evaluation of processes (Werkoff F.), thermodynamic tools (Neveu P.), the reactor-process coupling (Aujollet P.). (J.S.)

  16. Laser fusion program overview

    International Nuclear Information System (INIS)

    Emmett, J.L.

    1977-01-01

    This program is structured to proceed through a series of well defined fusion milestones to proof of the scientific feasibility, of laser fusion with the Shiva Nova system. Concurrently, those key technical areas, such as advanced lasers, which are required to progress beyond proof of feasibility, are being studied. We have identified and quantified the opportunities and key technical issues in military applications, such as weapons effects simulations, and in civilian applications, such as central-station electric power production. We summarize the current status and future plans for the laser fusion program at LLL, emphasizing the civilian applications of laser fusion

  17. Hydrogen: it's now. Hydrogen, essential today, indispensable tomorrow. Power-to-Gas or how to meet the challenge of electricity storage. To develop hydrogen mobility. Hydrogen production modes and scope of application of the IED directive - Interview. Regulatory evolutions needed for an easier deployment of hydrogen energy technologies for a clean mobility. Support of the Community's policy to hydrogen and to fuel cells

    International Nuclear Information System (INIS)

    Mauberger, Pascal; Boucly, Philippe; Quint, Aliette; Pierre, Helene; Lucchese, Paul; Bouillon-Delporte, Valerie; Chauvet, Bertrand; Ferrari, Fabio; Boivin, Jean-Pierre

    2015-01-01

    Published by the French Association for Hydrogen and Fuel Cells (AFHYPAC), this document first outlines how hydrogen can reduce our dependence on fossil energies, how it supports the development of electric mobility to reduce CO 2 emissions by transports, how it enables a massive storage of energy as a support to renewable energies deployment and integration, and how hydrogen can be a competitiveness driver. Then two contributions address technical solutions, the first one being Power-to-Gas as a solution to energy storage (integration of renewable energies, a mean for massive storage of electricity, economic conditions making the first deployments feasible, huge social and economical benefits, necessity of creation of an adapted legal and economic framework), and the second one being the development of hydrogen-powered mobility (a major societal concern for air quality, strategies of car manufacturers in the world, necessity of a favourable framework, the situation of recharging infrastructures). Two contributions address the legal framework regarding hydrogen production modes and the scope of application of the European IED directive on industrial emissions, and the needed regulatory evolutions for an easier deployment of Hydrogen-energy technologies for a clean mobility. A last article comments the evolution of the support of European policies to hydrogen and fuel cells through R and d programs, presents the main support program (FCH JU) and its results, other European financing and support policy, and discusses perspectives, notably for possible financing mechanisms

  18. Develop Improved Materials to Support the Hydrogen Economy

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Michael C. Martin

    2012-07-18

    The Edison Materials Technology Center (EMTEC) solicited and funded hydrogen infrastructure related projects that have a near term potential for commercialization. The subject technology of each project is related to the US Department of Energy hydrogen economy goals as outlined in the multi-year plan titled, 'Hydrogen, Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan.' Preference was given to cross cutting materials development projects that might lead to the establishment of manufacturing capability and job creation. The Edison Materials Technology Center (EMTEC) used the US Department of Energy hydrogen economy goals to find and fund projects with near term commercialization potential. An RFP process aligned with this plan required performance based objectives with go/no-go technology based milestones. Protocols established for this program consisted of a RFP solicitation process, white papers and proposals with peer technology and commercialization review (including DoE), EMTEC project negotiation and definition and DoE cost share approval. Our RFP approach specified proposals/projects for hydrogen production, hydrogen storage or hydrogen infrastructure processing which may include sensor, separator, compression, maintenance, or delivery technologies. EMTEC was especially alert for projects in the appropriate subject area that have cross cutting materials technology with near term manufacturing and commercialization opportunities.

  19. A review of nickel hydrogen battery technology

    Energy Technology Data Exchange (ETDEWEB)

    Smithrick, J.J.; Odonnell, P.M.

    1995-05-01

    This paper on nickel hydrogen batteries is an overview of the various nickel hydrogen battery design options, technical accomplishments, validation test results and trends. There is more than one nickel hydrogen battery design, each having its advantage for specific applications. The major battery designs are individual pressure vessel (IPV), common pressure vessel (CPV), bipolar and low pressure metal hydride. State-of-the-art (SOA) nickel hydrogen batteries are replacing nickel cadmium batteries in almost all geosynchronous orbit (GEO) applications requiring power above 1 kW. However, for the more severe low earth orbit (LEO) applications (greater than 30,000 cycles), the current cycle life of 4000 to 10,000 cycles at 60 percent DOD should be improved. A NASA Lewis Research Center innovative advanced design IPV nickel hydrogen cell led to a breakthrough in cycle life enabling LEO applications at deep depths of discharge (DOD). A trend for some future satellites is to increase the power level to greater than 6 kW. Another trend is to decrease the power to less than 1 kW for small low cost satellites. Hence, the challenge is to reduce battery mass, volume and cost. A key is to develop a light weight nickel electrode and alternate battery designs. A common pressure vessel (CPV) nickel hydrogen battery is emerging as a viable alternative to the IPV design. It has the advantage of reduced mass, volume and manufacturing costs. A 10 Ah CPV battery has successfully provided power on the relatively short lived Clementine Spacecraft. A bipolar nickel hydrogen battery design has been demonstrated (15,000 LEO cycles, 40 percent DOD). The advantage is also a significant reduction in volume, a modest reduction in mass, and like most bipolar designs, features a high pulse power capability. A low pressure aerospace nickel metal hydride battery cell has been developed and is on the market.

  20. Technical Analysis of Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Ali T-Raissi

    2005-01-14

    The aim of this work was to assess issues of cost, and performance associated with the production and storage of hydrogen via following three feedstocks: sub-quality natural gas (SQNG), ammonia (NH{sub 3}), and water. Three technology areas were considered: (1) Hydrogen production utilizing SQNG resources, (2) Hydrogen storage in ammonia and amine-borane complexes for fuel cell applications, and (3) Hydrogen from solar thermochemical cycles for splitting water. This report summarizes our findings with the following objectives: Technoeconomic analysis of the feasibility of the technology areas 1-3; Evaluation of the hydrogen production cost by technology areas 1; and Feasibility of ammonia and/or amine-borane complexes (technology areas 2) as a means of hydrogen storage on-board fuel cell powered vehicles. For each technology area, we reviewed the open literature with respect to the following criteria: process efficiency, cost, safety, and ease of implementation and impact of the latest materials innovations, if any. We employed various process analysis platforms including FactSage chemical equilibrium software and Aspen Technologies AspenPlus and HYSYS chemical process simulation programs for determining the performance of the prospective hydrogen production processes.

  1. Fuel cell and hydrogen R and D targets and funding : a comparative analysis

    International Nuclear Information System (INIS)

    Adamson, K.A.; Jollie, D.; Baker, A.

    2005-01-01

    Substantial research and development is needed if fuel cells and hydrogen are to become a mass market reality. Setting research and development targets are central to the long term development of the market. An overview of fuel cell research in the United States, the European Union, and parts of Asia was presented. Research and development targets were analyzed, as well as funding levels for fuel cells and hydrogen. The time frames of targets were considered, as well as the levels of ambition and overall program goals of various countries. Funding barriers and challenges were also considered. It was noted that some governments, such as Japan and Korea, have set a number of very ambitious, highly focused long term targets with substantial funding. The European Union has taken a more integrated approach, wrapping fundamental research and development into large integrated projects which run in combination with a number of other market aspects, such as public acceptance and roadmapping. The United States has a number of long term programmes and targets, but levels of funding are set annually with the passing of each year's Fiscal Budget. The overall goal of the paper was to provide a clearer picture of regional fuel cell research in order to discover areas for potential international collaboration

  2. Fundamental Aeronautics Program: Overview of Project Work in Supersonic Cruise Efficiency

    Science.gov (United States)

    Castner, Raymond

    2011-01-01

    The Supersonics Project, part of NASA?s Fundamental Aeronautics Program, contains a number of technical challenge areas which include sonic boom community response, airport noise, high altitude emissions, cruise efficiency, light weight durable engines/airframes, and integrated multi-discipline system design. This presentation provides an overview of the current (2011) activities in the supersonic cruise efficiency technical challenge, and is focused specifically on propulsion technologies. The intent is to develop and validate high-performance supersonic inlet and nozzle technologies. Additional work is planned for design and analysis tools for highly-integrated low-noise, low-boom applications. If successful, the payoffs include improved technologies and tools for optimized propulsion systems, propulsion technologies for a minimized sonic boom signature, and a balanced approach to meeting efficiency and community noise goals. In this propulsion area, the work is divided into advanced supersonic inlet concepts, advanced supersonic nozzle concepts, low fidelity computational tool development, high fidelity computational tools, and improved sensors and measurement capability. The current work in each area is summarized.

  3. Liquid Hydrogen Consumption During Space Shuttle Program

    Science.gov (United States)

    Partridge, Jonathan K.

    2011-01-01

    This slide presentation reviews the issue of liquid hydrogen consumption and the points of its loss in prior to the shuttle launch. It traces the movement of the fuel from the purchase to the on-board quantity and the loss that results in 54.6 of the purchased quantity being on board the Shuttle.

  4. Hydrogen

    Directory of Open Access Journals (Sweden)

    John O’M. Bockris

    2011-11-01

    Full Text Available The idea of a “Hydrogen Economy” is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO2 in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H2 from the electrolyzer. Methanol made with CO2 from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan. Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  5. Hydrogen.

    Science.gov (United States)

    Bockris, John O'M

    2011-11-30

    The idea of a "Hydrogen Economy" is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO₂ in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H₂ from the electrolyzer. Methanol made with CO₂ from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan). Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs) by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  6. IAEA Activities on Application of Nuclear Techniques in Development and Characterization of Materials for Hydrogen Economy

    International Nuclear Information System (INIS)

    Salame, P.; Zeman, A.; Mulhauser, F.

    2011-01-01

    Hydrogen and fuel cells can greatly contribute to a more sustainable less carbon-dependent global energy system. An effective and safe method for storage of hydrogen in solid materials is one of the greatest technologically challenging barriers of widespread introduction of hydrogen in global energy systems. However, aspects related to the development of effective materials for hydrogen storage and fuel cells are facing considerable technological challenges. To reach these goals, research efforts using a combination of advanced modeling, synthesis methods and characterization tools are required. Nuclear methods can play an effective role in the development and characterization of materials for hydrogen storage. Therefore, the IAEA initiated a coordinated research project to promote the application of nuclear techniques for investigation and characterization of new/improved materials relevant to hydrogen and fuel cell technologies. This paper gives an overview of the IAEA activities in this subject. (author)

  7. An overview of dehydration, aldol-condensation and hydrogenation processes for production of liquid alkanes from biomass-derived carbohydrates

    Energy Technology Data Exchange (ETDEWEB)

    Chheda, Juben N.; Dumesic, James A. [University of Wisconsin-Madison, Department of Chemical and Biological Engineering, Madison, WI 53706 (United States)

    2007-05-30

    We present results for the conversion of carbohydrate feedstocks to liquid alkanes by the combination of dehydration, aldol-condensation/hydrogenation, and dehydration/hydrogenation processing. With respect to the first dehydration step, we demonstrate that HMF can be produced in good selectivity from abundantly available polysaccharides (such as inulin, sucrose) containing fructose monomer units using a biphasic batch reactor system. The reaction system can be optimized to achieve good yields to 5-hydroxymethylfurfural (HMF) from fructose by varying the contents of aqueous-phase modifiers such as dimethylsulfoxide (DMSO) and 1-methyl-2-pyrrolidinone (NMP). Regarding the aldol-condensation/hydrogenation step, we present the development of stable, solid base catalysts in aqueous environments. We address the effects of various reaction parameters such as the molar ratio of reactants and temperature on overall product yield for sequential aldol-condensation and hydrogenation steps. Overall, our results show that it is technically possible to convert carbohydrate feedstocks to produce liquid alkanes by the combination of dehydration, aldol-condensation/hydrogenation, and dehydration/hydrogenation processing; however, further optimization of these processes is required to decrease the overall number of separate steps (and reactors) required in this conversion. (author)

  8. Designing Microporus Carbons for Hydrogen Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Alan C. Cooper

    2012-05-02

    An efficient, cost-effective hydrogen storage system is a key enabling technology for the widespread introduction of hydrogen fuel cells to the domestic marketplace. Air Products, an industry leader in hydrogen energy products and systems, recognized this need and responded to the DOE 'Grand Challenge' solicitation (DOE Solicitation DE-PS36-03GO93013) under Category 1 as an industry partner and steering committee member with the National Renewable Energy Laboratory (NREL) in their proposal for a center-of-excellence on Carbon-Based Hydrogen Storage Materials. This center was later renamed the Hydrogen Sorption Center of Excellence (HSCoE). Our proposal, entitled 'Designing Microporous Carbons for Hydrogen Storage Systems,' envisioned a highly synergistic 5-year program with NREL and other national laboratory and university partners.

  9. Hydrogen production by gasification of municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, R. III

    1994-05-20

    As fossil fuel reserves run lower and lower, and as their continued widespread use leads toward numerous environmental problems, the need for clean and sustainable energy alternatives becomes ever clearer. Hydrogen fuel holds promise as such as energy source, as it burns cleanly and can be extracted from a number of renewable materials such as municipal solid waste (MSW), which can be considered largely renewable because of its high content of paper and biomass-derived products. A computer model is being developed using ASPEN Plus flow sheeting software to simulate a process which produces hydrogen gas from MSW; the model will later be used in studying the economics of this process and is based on an actual Texaco coal gasification plant design. This paper gives an overview of the complete MSW gasification process, and describes in detail the way in which MSW is modeled by the computer as a process material. In addition, details of the gasifier unit model are described; in this unit modified MSW reacts under pressure with oxygen and steam to form a mixture of gases which include hydrogen.

  10. An experimental investigation of the rate of hydrogen absorption in zirconium-2.5 wt percent niobium from steam/hydrogen mixtures at elevated temperatures

    International Nuclear Information System (INIS)

    Langman, V.J.

    1984-08-01

    The test specifications for an experimental program to study the rate of hydrogen absorption in zirconium-2.5 weight percent niobium pressure tube material from steam/hydrogen mixtures at elevated temperatures are discussed

  11. NRC review of passive reactor design certification testing programs: Overview and regulatory perspective

    International Nuclear Information System (INIS)

    Levin, A.E.

    1993-01-01

    Reactor vendors are developing new designs for future deployment, including open-quotes passiveclose quotes light water reactors (LWRs), such as General Electric's (G.E.'s) simplified boiling water reactor (SBWR) and Westinghouse's AP600, which depend primarily on inherent processes, such as national convection and gravity feed, for safety injection and emergency core cooling. The U.S. Nuclear Regulatory Commission (NRC) has implemented a new process, certification of standardized reactor designs, for licensing these Plants. Part 52 of Title 10 of the Code of Federal Regulations (10CFR52) contains the requirements that vendors must meet for design certification. One important section, 10CFR52.47, reads open-quotes Certification of a standard design which . . . utilizes simplified, inherent, passive, or other innovative means to accomplish its safety functions will be granted only if: (1) The performance of each safety feature of the design has been demonstrated through either analysis, appropriate test programs, experience, or a combination thereof; (2) Interdependent effects among the safety features have been found acceptable by analysis, appropriate test programs, experience, or a combination thereof; and (3) Sufficient data exist on the safety features of the design to assess the analytical tools used for safety analyses. . . . The vendors have initiated programs to test innovative features of their designs and to develop data bases needed to validate their analytical codes, as required by the design certification rule. Accordingly, the NRC is reviewing and evaluating the vendors programs to ensure that they address adequately key issues concerning safety system performance. This paper provides an overview of the NRC's review process and regulatory perspective

  12. Theory of Lamb Shift in Muonic Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Karshenboim, Savely G., E-mail: savely.karshenboim@mpq.mpg.de [Max-Planck-Institut für Quantenoptik, Garching 85748, Germany and Pulkovo Observatory, St. Petersburg 196140 (Russian Federation); Korzinin, Evgeny Yu.; Shelyuto, Valery A. [D. I. Mendeleev Institute for Metrology, St. Petersburg 190005 (Russian Federation); Ivanov, Vladimir G. [Pulkovo Observatory, St. Petersburg 196140 (Russian Federation)

    2015-09-15

    There has been for a while a large discrepancy between the values of the proton charge radius measured by the Lamb shift in muonic hydrogen and by other methods. It has already been clear that theory of muonic hydrogen is reliable at the level of this discrepancy and an error there cannot be a reason for the contradiction. Still the status of theory at the level of the uncertainty of the muonic-hydrogen experiment (which is two orders of magnitude below the discrepancy level) requires an additional clarification. Here, we revisit theory of the 2p − 2s Lamb shift in muonic hydrogen. We summarize all the theoretical contributions in order α{sup 5}m, including pure quantum electrodynamics (QED) ones as well as those which involve the proton-structure effects. Certain enhanced higher-order effects are also discussed. We basically confirm former QED calculations of other authors, present a review of recent calculations of the proton-structure effects, and treat self-consistently higher-order proton-finite-size corrections. We also overview theory of the 2p states. Eventually, we derive a value of the root-mean-square proton charge radius. It is found to be 0.840 29(55) fm, which is slightly different from that previously published in the literature (0.840 87(39) fm [Antognini et al., Science 339, 417 (2013)])

  13. U.S. Department of Energy Hydrogen and Fuel Cells Program 2016 Annual Merit Review and Peer Evaluation Report: June 6-10, 2016, Washington, DC

    Energy Technology Data Exchange (ETDEWEB)

    Popovich, Neil

    2016-10-01

    The fiscal year 2016 U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting (AMR), in conjunction with DOE's Vehicle Technologies Office AMR, was held from June 6-10, 2015, in Washington, D.C.. This report is a summary of comments by AMR peer reviewers about the hydrogen and fuel cell projects funded by DOE's Office of Energy Efficiency and Renewable Energy.

  14. U.S. Department of Energy Hydrogen and Fuel Cells Program 2015 Annual Merit Review and Peer Evaluation Report: June 8-12, 2015, Arlington, Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Popovich, Neil

    2015-10-01

    The fiscal year 2015 U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting (AMR), in conjunction with DOE's Vehicle Technologies Office AMR, was held from June 8-12, 2015, in Arlington, Virginia. This report is a summary of comments by AMR peer reviewers about the hydrogen and fuel cell projects funded by DOE's Office of Energy Efficiency and Renewable Energy.

  15. Hydrogen storage - are we making progress?

    International Nuclear Information System (INIS)

    Blair, L.; Milliken, J.; Satyapal, S.

    2004-01-01

    'Full text:' The efficient storage of hydrogen in compact, lightweight systems that allow greater than 300-mile range has been identified as one of the major technical challenges facing the practical commercialization of fuel cell power systems for light-duty vehicles. Following the hydrogen vision announced by President Bush in his 2003 State of the Union address, the U.S. Department of Energy issued a Grand Challenge, soliciting ideas from universities, national laboratories, and industry. DOE's National Hydrogen Storage Project, an aggressive and innovative research program focused on materials R and D, will be launched in Fiscal Year 2005. An intensive effort is also underway in the private sector, both in the U.S. and abroad, to meet the challenging on-board hydrogen storage requirements. A historical perspective of hydrogen storage research and development will be provided and the current DOE technical targets for hydrogen storage systems will be discussed. The state-of-the-art in hydrogen storage will be summarized and recent progress assessed. Finally future research directions and areas of technical emphasis will be described. (author)

  16. NASA Aerospace Flight Battery Program: Wet Life of Nickel-Hydrogen (Ni-H2) Batteries. Volume 1, Part 3

    Science.gov (United States)

    Jung, David S.; Lee, Leonine S.; Manzo, Michelle A.

    2010-01-01

    This NASA Aerospace Flight Battery Systems Working Group was chartered within the NASA Engineering and Safety Center (NESC). The Battery Working Group was tasked to complete tasks and to propose proactive work to address battery related, agency-wide issues on an annual basis. In its first year of operation, this proactive program addressed various aspects of the validation and verification of aerospace battery systems for NASA missions. Studies were performed, issues were discussed and in many cases, test programs were executed to generate recommendations and guidelines to reduce risk associated with various aspects of implementing battery technology in the aerospace industry. This document contains Part 3 - Volume I: Wet Life of Nickel-Hydrogen (Ni-H2) Batteries of the program's operations.

  17. Low-level waste management program: technical program overview

    International Nuclear Information System (INIS)

    Lowrie, R.S.

    1981-01-01

    The mission of the technical program is to develop the technology component of the Department of Energy's Low-Level Waste Management Program and to manage research and development, demonstration, and documentation of the technical aspects of the program. Some of the major technology objectives are: develop and demonstrate techniques for waste generation reduction; develop and demonstrate waste treatment, handling and packaging techniques; develop and demonstrate the technology for greater confinement; and develop the technology for remedial action at existing sites. In addition there is the technology transfer objective which is to compile and issue a handbook documenting the technology for each of the above technology objectives

  18. Natural Programming: Project Overview and Proposal

    National Research Council Canada - National Science Library

    Myers, Brad

    1998-01-01

    .... The Natural Programming Project is developing general principles, methods, and programming language designs that will significantly reduce the amount of learning and effort needed to write programs...

  19. Hydrogen Education Curriculum Path at Michigan Technological University

    Energy Technology Data Exchange (ETDEWEB)

    Keith, Jason; Crowl, Daniel; Caspary, David; Naber, Jeff; Allen, Jeff; Mukerjee, Abhijit; Meng, Desheng; Lukowski, John; Solomon, Barry; Meldrum, Jay

    2012-01-03

    The objective of this project was four-fold. First, we developed new courses in alternative energy and hydrogen laboratory and update existing courses in fuel cells. Secondly, we developed hydrogen technology degree programs. Thirdly, we developed hydrogen technology related course material for core courses in chemical engineering, mechanical engineering, and electrical engineering. Finally, we developed fuel cell subject material to supplement the Felder & Rousseau and the Geankoplis chemical engineering undergraduate textbooks.

  20. LARGE-SCALE HYDROGEN PRODUCTION FROM NUCLEAR ENERGY USING HIGH TEMPERATURE ELECTROLYSIS

    International Nuclear Information System (INIS)

    O'Brien, James E.

    2010-01-01

    Hydrogen can be produced from water splitting with relatively high efficiency using high-temperature electrolysis. This technology makes use of solid-oxide cells, running in the electrolysis mode to produce hydrogen from steam, while consuming electricity and high-temperature process heat. When coupled to an advanced high temperature nuclear reactor, the overall thermal-to-hydrogen efficiency for high-temperature electrolysis can be as high as 50%, which is about double the overall efficiency of conventional low-temperature electrolysis. Current large-scale hydrogen production is based almost exclusively on steam reforming of methane, a method that consumes a precious fossil fuel while emitting carbon dioxide to the atmosphere. Demand for hydrogen is increasing rapidly for refining of increasingly low-grade petroleum resources, such as the Athabasca oil sands and for ammonia-based fertilizer production. Large quantities of hydrogen are also required for carbon-efficient conversion of biomass to liquid fuels. With supplemental nuclear hydrogen, almost all of the carbon in the biomass can be converted to liquid fuels in a nearly carbon-neutral fashion. Ultimately, hydrogen may be employed as a direct transportation fuel in a 'hydrogen economy.' The large quantity of hydrogen that would be required for this concept should be produced without consuming fossil fuels or emitting greenhouse gases. An overview of the high-temperature electrolysis technology will be presented, including basic theory, modeling, and experimental activities. Modeling activities include both computational fluid dynamics and large-scale systems analysis. We have also demonstrated high-temperature electrolysis in our laboratory at the 15 kW scale, achieving a hydrogen production rate in excess of 5500 L/hr.

  1. Magnetic liquefier for hydrogen

    International Nuclear Information System (INIS)

    1992-01-01

    This document summarizes work done at the Astronautics Technology Center of the Astronautics Corporation of America (ACA) in Phase 1 of a four phase program leading to the development of a magnetic liquefier for hydrogen. The project involves the design, fabrication, installation, and operation of a hydrogen liquefier providing significantly reduced capital and operating costs, compared to present liquefiers. To achieve this goal, magnetic refrigeration, a recently developed, highly efficient refrigeration technology, will be used for the liquefaction process. Phase 1 project tasks included liquefier conceptual design and analysis, preliminary design of promising configurations, design selection, and detailed design of the selected design. Fabrication drawings and vendor specifications for the selected design were completed during detailed design. The design of a subscale, demonstration magnetic hydrogen liquefier represents a significant advance in liquefaction technology. The cost reductions that can be realized in hydrogen liquefaction in both the subscale and, more importantly, in the full-scale device are expected to have considerable impact on the use of liquid hydrogen in transportation, chemical, and electronic industries. The benefits to the nation from this technological advance will continue to have importance well into the 21st century

  2. Development of Hydrogen Education Programs for Government Officials

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, Shannon [South Carolina Hydrogen and Fuel Cell Alliance, Columbia, SC (United States); Keller, Russ [Advanced Technology International, Cedarburg, WI (United States)

    2016-03-08

    1. Subcontractor/Technical Subject Matter Expert (Tasks 1-3) 2. Technical lead for LFG cleanup and hydrogen production systems Support for Feasibility Study 3. Technical Lead for Feasibility Study Coordination of site preparation activities for all project equipment 4. Host site

  3. Down Select Report of Chemical Hydrogen Storage Materials, Catalysts, and Spent Fuel Regeneration Processes

    Energy Technology Data Exchange (ETDEWEB)

    Ott, Kevin; Linehan, Sue; Lipiecki, Frank; Aardahl, Christopher L.

    2008-08-24

    The DOE Hydrogen Storage Program is focused on identifying and developing viable hydrogen storage systems for onboard vehicular applications. The program funds exploratory research directed at identifying new materials and concepts for storage of hydrogen having high gravimetric and volumetric capacities that have the potential to meet long term technical targets for onboard storage. Approaches currently being examined are reversible metal hydride storage materials, reversible hydrogen sorption systems, and chemical hydrogen storage systems. The latter approach concerns materials that release hydrogen in endothermic or exothermic chemical bond-breaking processes. To regenerate the spent fuels arising from hydrogen release from such materials, chemical processes must be employed. These chemical regeneration processes are envisioned to occur offboard the vehicle.

  4. Overview of Advanced Turbine Systems Program

    Science.gov (United States)

    Webb, H. A.; Bajura, R. A.

    The US Department of Energy initiated a program to develop advanced gas turbine systems to serve both central power and industrial power generation markets. The Advanced Turbine Systems (ATS) Program will lead to commercial offerings by the private sector by 2002. ATS will be developed to fire natural gas but will be adaptable to coal and biomass firing. The systems will be: highly efficient (15 percent improvement over today's best systems); environmentally superior (10 percent reduction in nitrogen oxides over today's best systems); and cost competitive (10 percent reduction in cost of electricity). The ATS Program has five elements. Innovative cycle development will lead to the demonstration of systems with advanced gas turbine cycles using current gas turbine technology. High temperature development will lead to the increased firing temperatures needed to achieve ATS Program efficiency goals. Ceramic component development/demonstration will expand the current DOE/CE program to demonstrate industrial-scale turbines with ceramic components. Technology base will support the overall program by conducting research and development (R&D) on generic technology issues. Coal application studies will adapt technology developed in the ATS program to coal-fired systems being developed in other DOE programs.

  5. Overview of the Education and Public Outreach (EPO) program of the Caltech Tectonics Observatory

    Science.gov (United States)

    Kovalenko, L.; Jain, K.; Maloney, J.

    2009-12-01

    The Caltech Tectonics Observatory (TO) is an interdisciplinary center, focused on geological processes occurring at the boundaries of Earth's tectonic plates (http://www.tectonics.caltech.edu). Over the past year, the TO has made a major effort to develop an Education and Public Outreach (EPO) program. Our goals are to (1) stimulate the interest of students and the general public in Earth Sciences, particularly in the study of tectonic processes, (2) inform and educate the general public about science in the context of TO discoveries and advancements, and (3) provide opportunities for graduate students, postdocs, and faculty to do outreach in the local K-12 schools. We have hosted local high school students and teachers to provide them with research experience (as part of Caltech’s “Summer Research Connection”); participated in teacher training workshops (organized by the local school district); hosted tours for local elementary school students; and brought hands-on activities into local elementary and middle school classrooms, science clubs, and science nights. We have also led local school students and teachers on geology field trips through nearby parks. In addition, we have developed education modules for undergraduate classes (as part of MARGINS program), and have written educational web articles on TO research (http://www.tectonics.caltech.edu/outreach). The presentation will give an overview of these activities and their impact on our educational program.

  6. Radiation Detection Overview for Nuclear Emergency Response

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Steven Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-16

    This presentation discusses the fundamentals of gamma and neutron detection; presents an overview of the DOE Triage and JTOT Programs, gamma, and neutron signatures in select measurements; and offers a detector demonstration.

  7. Photobiological production of hydrogen: a solar energy conversion option

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, P.; Lien, S.; Seibert, M.

    1979-01-01

    This literature survey of photobiological hydrogen production covers the period from its discovery in relatively pure cultures during the early 1930s to the present. The focus is hydrogen production by phototrophic organisms (and their components) which occurs at the expense of light energy and electron-donating substrates. The survey covers the major contributions in the area; however, in many cases, space has limited the degree of detail provided. Among the topics included is a brief historical overview of hydrogen metabolism in photosynthetic bacteria, eucaryotic algae, and cyanobacteria (blue--green algae). The primary enzyme systems, including hydrogenase and nitrogenase, are discussed along with the manner in which they are coupled to electron transport and the primary photochemistry of photosynthesis. A number of in vivo and in vitro photobiological hydrogen evolving schemes including photosynthetic bacterial, green algal, cyanobacterial, two-stage, and cell-free systems are examined in some detail. The remainder of the review discusses specific technical problem areas that currently limit the yield and duration of many of the systems and research that might lead to progress in these specific areas. The final section outlines, in broadest terms, future research directions necessary to develop practical photobiological hydrogen-producing systems. Both whole cell (near- to mid-term) and cell-free (long-term) systems should be emphasized. Photosynthetic bacteria currently show the most promise for near-term applied systems.

  8. AVLIS documentation overview and tables of contents

    International Nuclear Information System (INIS)

    1984-01-01

    Three documents constitute the executive summary series in Data Package III: this document (Documentation Overview and Tables of Contents (E001)) plus the AVLIS Production Plant Executive Summary (E010) and the AVLIS Production Plant Overall Design Report (E020). They provide progressively greater detail on the key information and conclusions contained within the data package. The Executive Summary and Overall Design Report present summaries of each Data Package III document. They are intended to provide a global overview of AVLIS Production Plant deployment including program planning, project management, schedules, engineering design, production, operations, capital cost, and operating cost. The purpose of Overview and Tables of Contents is threefold: to briefly review AVLIS goals for Data Package III documentation, to present an overview of the contents of the data package, and to provide a useful guide to information contained in the numerous documents comprising the package

  9. Cascade annealing: an overview

    International Nuclear Information System (INIS)

    Doran, D.G.; Schiffgens, J.O.

    1976-04-01

    Concepts and an overview of radiation displacement damage modeling and annealing kinetics are presented. Short-term annealing methodology is described and results of annealing simulations performed on damage cascades generated using the Marlowe and Cascade programs are included. Observations concerning the inconsistencies and inadequacies of current methods are presented along with simulation of high energy cascades and simulation of longer-term annealing

  10. National FCEV and Hydrogen Fueling Station Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Bush, Brian; Melaina, Marc

    2016-06-09

    This presentation provides a summary of the FY16 activities and accomplishments for NREL's national fuel cell electric vehicle (FCEV) and hydrogen fueling station scenarios project. It was presented at the U.S. Department of Energy Hydrogen and Fuel Cells Program 2016 Annual Merit Review and Peer Evaluation Meeting on June 9, 2016, in Washington, D.C.

  11. High-performance computing — an overview

    Science.gov (United States)

    Marksteiner, Peter

    1996-08-01

    An overview of high-performance computing (HPC) is given. Different types of computer architectures used in HPC are discussed: vector supercomputers, high-performance RISC processors, various parallel computers like symmetric multiprocessors, workstation clusters, massively parallel processors. Software tools and programming techniques used in HPC are reviewed: vectorizing compilers, optimization and vector tuning, optimization for RISC processors; parallel programming techniques like shared-memory parallelism, message passing and data parallelism; and numerical libraries.

  12. Weapons engineering tritium facility overview

    Energy Technology Data Exchange (ETDEWEB)

    Najera, Larry [Los Alamos National Laboratory

    2011-01-20

    Materials provide an overview of the Weapons Engineering Tritium Facility (WETF) as introductory material for January 2011 visit to SRS. Purpose of the visit is to discuss Safety Basis, Conduct of Engineering, and Conduct of Operations. WETF general description and general GTS program capabilities are presented in an unclassified format.

  13. Role of Nuclear Based Techniques in Development and Characterization of Materials for Hydrogen Storage and Fuel Cells

    International Nuclear Information System (INIS)

    2012-02-01

    Today various materials for fuel cell applications are urgently needed, including potential electrodes for the molten carbonate fuel cells. Identification of appropriate storage concepts are also urgently needed in order to initiate necessary steps for implementation of such technologies in daily life. Recent progress in nuclear analyses and observation/imaging techniques can significantly contribute to a successful achievement of ongoing research challenges. Primary importance is given to areas of characterization and in-situ testing of materials and/or components of hydrogen storage and fuel cell systems. Dedicated attention is addressed to issues related to hydrogen storage concepts, such as metal hydrides and other systems (e.g. fullerene structures) as well as their stability and the changes induced by hydrogen sorption process. In total 14 papers report on various scientific and research issues related to hydrogen storage and conversion technologies. Based on presented results, it can be concluded that nuclear- based techniques, specifically those involving neutrons, X rays and particle beams, play very important roles in ongoing research activities among many IAEA Member States. A short overview of individual reports is summarized below. The presented papers give an overview of typical applications of such techniques and their experimental setups based either on X ray or neutron sources, which can be used effectively to study specific properties of materials for hydrogen storage as well as microstructural features and hydrogen interaction with solid matter. The papers presented by Canadian, Dutch, Italian and Norwegian groups, report on research results related to application of thermal neutron scattering and neutron diffraction in studies of hydrogen containing materials, particularly in situ characterization as a means to study metal hydrides' structure and their modification upon hydrogen sorption. The investigation on solid state hydrogen storage

  14. Geothermal Energy Program overview

    International Nuclear Information System (INIS)

    1991-12-01

    The mission of the Geothermal Energy Program is to develop the science and technology necessary for tapping our nation's tremendous heat energy sources contained with the Earth. Geothermal energy is a domestic energy source that can produce clean, reliable, cost- effective heat and electricity for our nation's energy needs. Geothermal energy -- the heat of the Earth -- is one of our nation's most abundant energy resources. In fact, geothermal energy represents nearly 40% of the total US energy resource base and already provides an important contribution to our nation's energy needs. Geothermal energy systems can provide clean, reliable, cost-effective energy for our nation's industries, businesses, and homes in the form of heat and electricity. The US Department of Energy's (DOE) Geothermal Energy Program sponsors research aimed at developing the science and technology necessary for utilizing this resource more fully. Geothermal energy originates from the Earth's interior. The hottest fluids and rocks at accessible depths are associated with recent volcanic activity in the western states. In some places, heat comes to the surface as natural hot water or steam, which have been used since prehistoric times for cooking and bathing. Today, wells convey the heat from deep in the Earth to electric generators, factories, farms, and homes. The competitiveness of power generation with lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma ( the four types of geothermal energy) still depends on the technical advancements sought by DOE's Geothermal Energy Program

  15. A comprehensive review of microbial electrolysis cells (MEC reactor designs and configurations for sustainable hydrogen gas production

    Directory of Open Access Journals (Sweden)

    Abudukeremu Kadier

    2016-03-01

    Full Text Available Hydrogen gas has tremendous potential as an environmentally acceptable energy carrier for vehicles. A cutting edge technology called a microbial electrolysis cell (MEC can achieve sustainable and clean hydrogen production from a wide range of renewable biomass and wastewaters. Enhancing the hydrogen production rate and lowering the energy input are the main challenges of MEC technology. MEC reactor design is one of the crucial factors which directly influence on hydrogen and current production rate in MECs. The rector design is also a key factor to up-scaling. Traditional MEC designs incorporated membranes, but it was recently shown that membrane-free designs can lead to both high hydrogen recoveries and production rates. Since then multiple studies have developed reactors that operate without membranes. This review provides a brief overview of recent advances in research on scalable MEC reactor design and configurations.

  16. Overview of the US Strategic National Stockpile

    International Nuclear Information System (INIS)

    Adams, S.

    2009-01-01

    The CBMTS community last received an overview of the United States Strategic National Stockpile in Dubrovnik during the Spring of 2001. The events that occurred later that year and the ensuing response have resulted in a dramatic expansion of both the scope and complexity of the Strategic National Stockpile. These changes are seen not only in the scope of the Materiel holdings which have grown by several orders of magnitude, but in the increasingly complex operational designs which can rapidly bring the materiel to bear in a clinically relevant time frame. Mr. Adams, Deputy Director of the program from the time of its 1999 inception, will provide a detailed overview of the current program highlighting many of the changes and evolutions which have occurred during the past 8 years.(author)

  17. Results of the 2008/2009 Knowledge and Opinions Surveys Conducted for the U.S. Department of Energy Hydrogen Program

    Energy Technology Data Exchange (ETDEWEB)

    Schmoyer, Richard L [ORNL; Truett, Lorena Faith [ORNL; Cooper, Christy [U.S. Department of Energy; Chew, Andrea [U.S. Department of Energy

    2010-04-01

    The U.S. Department of Energy (DOE) Fuel Cell Technologies Program (FCT) conducts comprehensive efforts to enable the widespread commercialization of fuel cells in diverse sectors of the economy - with emphasis on applications that will most effectively strengthen our nation's energy security and improve our stewardship of the environment. Expanding the use of fuel cells requires a sustained education effort to lay the foundation for future commercial market introduction. The FCT education subprogram seeks to facilitate fuel cell demonstrations and support future commercialization by providing technically accurate and objective information to key target audiences both directly and indirectly involved in the use of fuel cells today. These key target audiences include a public that is familiar and comfortable with using a new fuel, state and local government officials who understand the near-term realities and long-term potential of the technology, an educated business and industry component, and trained safety and codes officials. With this in mind, the DOE FCT program established an education key activity to address the training and informational needs of target audiences that have a role in the near-term transition and the long-term development of a hydrogen economy. Whether or not changes can be attributed to the program, designing and maintaining an effective education program entails measuring baseline awareness and periodically measuring what has been learned. The purpose of this report is to document the data and results of statistical surveys undertaken in 2008 and 2009 to measure and establish changes in understanding and awareness about hydrogen and fuel cell technologies since a baseline survey was conducted in 2004. This report is essentially a data book, a digest of the survey data and an exposition of changes in knowledge of and opinions about hydrogen and fuel cell technology since 2004. Many conclusions can be made from the survey data. However

  18. 77 FR 65542 - Hydrogen and Fuel Cell Technical Advisory Committee (HTAC)

    Science.gov (United States)

    2012-10-29

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Hydrogen and Fuel Cell... Energy. ACTION: Notice of Open Meeting. SUMMARY: The Hydrogen and Fuel Cell Technical Advisory Committee... Agenda: (updates will be posted on the web at: http://hydrogen.energy.gov ). Public Comment DOE Program...

  19. Achievement report for fiscal 1983 on Sunshine Program-entrusted research and development. Survey and research on patent information (Hydrogen energy); 1983 nendo tokkyo joho chosa kenkyu seika hokokusho. Suiso energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1984-03-01

    For the purpose of propelling forward the Sunshine Program smoothly and efficiently, a survey is conducted on inventions related to the contents of researches being conducted under the Sunshine Program. The survey covers hydrogen energy-related patents laid open in 1983. As the result of the survey, it is learned that, among the patents related to thermochemical or photochemical processes, those that relate to hydrogen production technologies using the photochemical process is found to be on the increase. There is a remarkable increase also in the number of patents related to metallic hydrides, as in the preceding year. As for their contents, many involve containers for hydrogenation heat utilization, but now novel hydrogen storage alloys are also evoking interest. As for the hydrogen fuel cell, there is an increase in the number of applications for the phosphoric acid fuel cell and molten carbonate fuel cell which are expected to be introduced into the power system. As for the hydrogen engine, the number of applications concerning alcohol-reformed gas engines is approximately three times larger than that of the preceding year. In relation with the hydrogen combustion system, many patents relate to catalytic combustion. This is probably because the technique has come to be recognized as a controlled burning method which has in itself a measure to inhibit NOx emissions. (NEDO)

  20. Hydrogen storage: current knowledge and used techniques. An overview on this research topic at the LMARC of Besancon

    International Nuclear Information System (INIS)

    Chapelle, D.; Perreux, D.; Thiebaud, F.; Robinet, P.

    2007-01-01

    In a first part are presented, with examples, the different means of hydrogen storage in order to establish a comparison in performances, maturity and safety. The second part presents the studies carried out in the Laboratoire de Mecanique Appliquee Raymond Chaleat de Besancon, and more particularly of the team 'Mechanical Properties of Materials', for hydrogen storage. This Laboratory aims to develop, design and optimize, in a thermomechanical point of view, the containment intended to store hydrogen under pressure but the solid compounds systems too. (O.M.)

  1. Modeling Hydrogen Refueling Infrastructure to Support Passenger Vehicles †

    Directory of Open Access Journals (Sweden)

    Matteo Muratori

    2018-05-01

    Full Text Available The year 2014 marked hydrogen fuel cell electric vehicles (FCEVs first becoming commercially available in California, where significant investments are being made to promote the adoption of alternative transportation fuels. A refueling infrastructure network that guarantees adequate coverage and expands in line with vehicle sales is required for FCEVs to be successfully adopted by private customers. In this paper, we provide an overview of modelling methodologies used to project hydrogen refueling infrastructure requirements to support FCEV adoption, and we describe, in detail, the National Renewable Energy Laboratory’s scenario evaluation and regionalization analysis (SERA model. As an example, we use SERA to explore two alternative scenarios of FCEV adoption: one in which FCEV deployment is limited to California and several major cities in the United States; and one in which FCEVs reach widespread adoption, becoming a major option as passenger vehicles across the entire country. Such scenarios can provide guidance and insights for efforts required to deploy the infrastructure supporting transition toward different levels of hydrogen use as a transportation fuel for passenger vehicles in the United States.

  2. Hydrogen and fuel cells in the United States Congress

    International Nuclear Information System (INIS)

    Yacobucci, B.D.

    2003-01-01

    Over the past few years, the United States Congress has shown increasing interest in the development of hydrogen fuel and fuel cells for transportation, stationary, and mobile applications The high efficiency of fuel cell systems could address some of the concern over increasing dependence on imported petroleum. Further, lower emissions could help promote air quality goals However, many questions remain, including the affordability, safety, overall fuel-cycle efficiency and emissions. These questions, especially those related to cost, have led Members of Congress to enact legislation to speed the development and commercialization of the technologies. This paper discusses congressional action on hydrogen and fuel cells. It provides an overview of the U.S. Congress, and outlines the role of the appropriations process. It then provides a history of federal hydrogen fuel research and development (R and D), both in terms of legislative and executive initiatives, and it describes pending legislation current as of this writing, including bills on energy policy, transportation policy, tax policy, and appropriations. Finally, the paper presents some of the issues that the pending legislation may raise for industry. (author)

  3. Reducibility of ceria-lanthana mixed oxides under temperature programmed hydrogen and inert gas flow conditions

    International Nuclear Information System (INIS)

    Bernal, S.; Blanco, G.; Cifredo, G.; Perez-Omil, J.A.; Pintado, J.M.; Rodriguez-Izquierdo, J.M.

    1997-01-01

    The present paper deals with the preparation and characterization of La/Ce mixed oxides, with La molar contents of 20, 36 and 57%. We carry out the study of the structural, textural and redox properties of the mixed oxides, comparing our results with those for pure ceria. For this aim we use temperature programmed reduction (TPR), temperature programmed desorption (TPD), nitrogen physisorption at 77 K, X-ray diffraction and high resolution electron microscopy. The mixed oxides are more easy to reduce in a flow of hydrogen than ceria. Moreover, in an inert gas flow they release oxygen in higher amounts and at lower temperatures than pure CeO 2 . The textural stability of the mixed oxides is also improved by incorporation of lanthana. All these properties make the ceria-lanthana mixed oxides interesting alternative candidates to substitute ceria in three-way catalyst formulations. (orig.)

  4. Continuous high-temperature surveillance instrumentation for Dresden-2 hydrogen water chemistry program

    International Nuclear Information System (INIS)

    Fleming, M.F.; Mitchell, R.A.; Nelson, J.L.

    1987-01-01

    The objective of this program (under EPRI Contract RP1930-11) is to install and operate a high-temperature surveillance instrumentation system capable of monitoring the length of cracks in boiling water reactor (BWR) piping during plant operation. The ability to measure crack growth in BWR power plant piping welds is important to rapidly identify the effectiveness of repairs (such as the Hydrogen Water Chemistry Program). The feasibility of a system capable of continuous ultrasonic instrumentation at 600 0 F (288 0 C) was successfully demonstrated at the Dresden-2 suction line known as N1B. This intergranular stress corrosion cracking (IGSCC) surveillance instrumentation is sound in principal, because it survived on N1B for a time period of more than nine months from April 1985 to January 1986 (the last time data were recorded). The redesigned low-profile transducer system used for this system operated successfully for the same nine-month time period. This low profile transducer fits in the two-inch space normally occupied by insulation. As a result of poor routing of the coaxial cables running from the low-profile transducer to the electrical feed-throughs between the drywell and containment, these cables melted. Other instrument cables nearby were not damaged

  5. An overview of experimental results obtained under the prestressed concrete nuclear pressure vessel development program at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Naus, D.J.

    1979-01-01

    Under the Prestressed Concrete Nuclear Pressure Development Program at the Oak Ridge National Laboratory, various aspects of Prestressed Concrete Pressure Vessels (PCPVs) are investigated with respect to reliability, structural performance, constructability, and economy. These investigations are conducted under the High-Temperature Gas-Cooled Reactor (HTGR) Program and the Gas-Cooled Fast Reactor (GCFR) Program. The objectives are to: (1) provide technical support to ongoing PCPV design activities, (2) contribute to the overall technological data base, and (3) provide independent review and evaluations. Specific areas of interest at present include finite-element analysis development, materials and structural behaviour tests, instrumentation evaluations and development, and structural model tests. The following provides an overview of both the HTGR and GCFR PCPV activities and a summary of recent experimental results

  6. A review of nickel hydrogen battery technology

    Science.gov (United States)

    Smithrick, John J.; Odonnell, Patricia M.

    1995-01-01

    This paper on nickel hydrogen batteries is an overview of the various nickel hydrogen battery design options, technical accomplishments, validation test results and trends. There is more than one nickel hydrogen battery design, each having its advantage for specific applications. The major battery designs are individual pressure vessel (IPV), common pressure vessel (CPV), bipolar and low pressure metal hydride. State-of-the-art (SOA) nickel hydrogen batteries are replacing nickel cadmium batteries in almost all geosynchronous orbit (GEO) applications requiring power above 1 kW. However, for the more severe low earth orbit (LEO) applications (greater than 30,000 cycles), the current cycle life of 4000 to 10,000 cycles at 60 percent DOD should be improved. A NASA Lewis Research Center innovative advanced design IPV nickel hydrogen cell led to a breakthrough in cycle life enabling LEO applications at deep depths of discharge (DOD). A trend for some future satellites is to increase the power level to greater than 6 kW. Another trend is to decrease the power to less than 1 kW for small low cost satellites. Hence, the challenge is to reduce battery mass, volume and cost. A key is to develop a light weight nickel electrode and alternate battery designs. A common pressure vessel (CPV) nickel hydrogen battery is emerging as a viable alternative to the IPV design. It has the advantage of reduced mass, volume and manufacturing costs. A 10 Ah CPV battery has successfully provided power on the relatively short lived Clementine Spacecraft. A bipolar nickel hydrogen battery design has been demonstrated (15,000 LEO cycles, 40 percent DOD). The advantage is also a significant reduction in volume, a modest reduction in mass, and like most bipolar designs, features a high pulse power capability. A low pressure aerospace nickel metal hydride battery cell has been developed and is on the market. It is a prismatic design which has the advantage of a significant reduction in volume and a

  7. Petroleum is getting out of breath, quickly the hydrogen

    International Nuclear Information System (INIS)

    2002-01-01

    Facing the petroleum reserves problems, many research programs are developed to use the hydrogen as energy substitution. This paper presents briefly an economic analysis of the energy policies in Usa and Europe and the advantages of the hydrogen as the future energy. (A.L.B.)

  8. EU program fuel cells in 2012 - FCH JU Fuel Cell and Hydrogen Joint Undertaking; EU-program braensleceller 2012 - FCH JU Fuel Cell and Hydrogen Joint Undertaking

    Energy Technology Data Exchange (ETDEWEB)

    Ridell, Bengt

    2013-03-15

    An EU activity in fuel cell and hydrogen field are gathered since 2008 in a so called JU, Joint Undertaking, or as it is also referred to as JTI Joint Technology Initiative. The program will run 2008 - 2013 and covers in total 940 MEUR of which the EU Commission is funding 470 MEUR. The activities of the FCH JU are governed by a Governing Board which has 12 members, five from the Commission, one of the research group and 5 from the Industrial Group. The current agreement for the FCH JU / JTI is coming to an end, and the sixth and final call was released in January 2013 with the deadline of 22 May 2013. Funding from the Commission is made through the Seventh Framework Programme FP7, which ends in 2013. Next the Eighth Framework Programme called Horizon 2020 shall continue for the years 2014 - 2020. Five of the six calls are completed. From the four first calls there are 61 projects started which 6 have been completed. From the fifth announcement is further 27 projects selected for negotiation with the Commission and they will start soon. It is now working intensively to plan Horizon 2020. There are plans to continue the new FCH JU but nothing is decided either for this or for the budget for Horizon 2020. If the FCH Joint Undertaking shall continue in its present form as a Joint Undertaking it will require clear long-term commitments from the private sector and also from the Member States. Another issue is that the long-term research should also get space it has not been the case in the present FCH JU. There are several Swedish participants in the projects and in the working groups of the program. There are Swedish participants in 11 of the 68 projects launched so far. It is in the areas of Stationary systems, Transportation and Early Markets. Project manager for the project FCGEN is Volvo Technology AB. FCH JU has its own website, www.fch-ju.eu, which opened in 2010 when the organization of the program was taken over from the Commission to permanent organisation

  9. A manual of recommended practices for hydrogen energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Hoagland, W.; Leach, S. [W. Hoagland and Associates, Boulder, CO (United States)

    1997-12-31

    Technologies for the production, distribution, and use of hydrogen are rapidly maturing and the number and size of demonstration programs designed to showcase emerging hydrogen energy systems is expanding. The success of these programs is key to hydrogen commercialization. Currently there is no comprehensive set of widely-accepted codes or standards covering the installation and operation of hydrogen energy systems. This lack of codes or standards is a major obstacle to future hydrogen demonstrations in obtaining the requisite licenses, permits, insurance, and public acceptance. In a project begun in late 1996 to address this problem, W. Hoagland and Associates has been developing a Manual of Recommended Practices for Hydrogen Systems intended to serve as an interim document for the design and operation of hydrogen demonstration projects. It will also serve as a starting point for some of the needed standard-setting processes. The Manual will include design guidelines for hydrogen procedures, case studies of experience at existing hydrogen demonstration projects, a bibliography of information sources, and a compilation of suppliers of hydrogen equipment and hardware. Following extensive professional review, final publication will occur later in 1997. The primary goal is to develop a draft document in the shortest possible time frame. To accomplish this, the input and guidance of technology developers, industrial organizations, government R and D and regulatory organizations and others will be sought to define the organization and content of the draft Manual, gather and evaluate available information, develop a draft document, coordinate reviews and revisions, and develop recommendations for publication, distribution, and update of the final document. The workshop, Development of a Manual of Recommended Practices for Hydrogen Energy Systems, conducted on March 11, 1997 in Alexandria, Virginia, was a first step.

  10. The US department of energy's research and development plans for the use of nuclear energy for hydrogen production

    International Nuclear Information System (INIS)

    Henderson, A.D.; Pickard, P.S.; Park, C.V.; Kotek, J.F.

    2004-01-01

    The potential of hydrogen as a transportation fuel and for stationary power applications has generated significant interest in the United States. President George W. Bush has set the transition to a 'hydrogen economy' as one of the Administration's highest priorities. A key element of an environmentally-conscious transition to hydrogen is the development of hydrogen production technologies that do not emit greenhouse gases or other air pollutants. The Administration is investing in the development of several technologies, including hydrogen production through the use of renewable fuels, fossil fuels with carbon sequestration, and nuclear energy. The US Department of Energy's Office of Nuclear Energy, Science and Technology initiated the Nuclear Hydrogen Initiative to develop hydrogen production cycles that use nuclear energy. The Nuclear Hydrogen Initiative has completed a Nuclear Hydrogen R and D Plan to identify candidate technologies, assess their viability, and define the R and D required to enable the demonstration of nuclear hydrogen production by 2016. This paper gives a brief overview of the Nuclear Hydrogen Initiative, describes the purposes of the Nuclear Hydrogen R and D Plan, explains the methodology followed to prepared the plan, presents the results, and discusses the path forward for the US programme to develop technologies which use nuclear energy to produce hydrogen. (author)

  11. Overview of NASA's Universe of Learning: An Integrated Astrophysics STEM Learning and Literacy Program

    Science.gov (United States)

    Smith, Denise; Lestition, Kathleen; Squires, Gordon; Biferno, Anya A.; Cominsky, Lynn; Manning, Colleen; NASA's Universe of Learning Team

    2018-01-01

    NASA's Universe of Learning creates and delivers science-driven, audience-driven resources and experiences designed to engage and immerse learners of all ages and backgrounds in exploring the universe for themselves. The project is the result of a unique partnership between the Space Telescope Science Institute, Caltech/IPAC, Jet Propulsion Laboratory, Smithsonian Astrophysical Observatory, and Sonoma State University, and is one of 27 competitively-selected cooperative agreements within the NASA Science Mission Directorate STEM Activation program. The NASA's Universe of Learning team draws upon cutting-edge science and works closely with Subject Matter Experts (scientists and engineers) from across the NASA Astrophysics Physics of the Cosmos, Cosmic Origins, and Exoplanet Exploration themes. Together we develop and disseminate data tools and participatory experiences, multimedia and immersive experiences, exhibits and community programs, and professional learning experiences that meet the needs of our audiences, with attention to underserved and underrepresented populations. In doing so, scientists and educators from the partner institutions work together as a collaborative, integrated Astrophysics team to support NASA objectives to enable STEM education, increase scientific literacy, advance national education goals, and leverage efforts through partnerships. Robust program evaluation is central to our efforts, and utilizes portfolio analysis, process studies, and studies of reach and impact. This presentation will provide an overview of NASA's Universe of Learning, our direct connection to NASA Astrophysics, and our collaborative work with the NASA Astrophysics science community.

  12. Site characterization plan overview: Yucca Mountain site, Nevada Research and Development Area, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-12-01

    To help the public better understand both the SCP and the site characterization program, the DOE has prepared this overview and the SCP Public Handbook. The overview presents summaries of selected topics covered in the SCP; it is not a substitute for the SCP. The organization of the overview is similar to that of the SCP itself, with brief descriptions of the Yucca Mountain site, the repository, and the containers in which the waste would be packaged, followed by a discussion of the characterization program to be carried out at the Yucca Mountain site. This overview is intended primarily for those persons who want to understand the general scope and basis of the site-characterization program, the activities to be conducted, and the facilities to be constructed without spending the time necessary to become familiar with all of the technical details presented in the SCP. For the readers of the SCP, the overview will be useful as a general guide to the plan. The SCP Public Handbook is a short document that contains brief descriptions of the SCP process and the contents of the SCP. It also explains how the public can submit comments on the SCP and lists the libraries and reading rooms at which the SCP is available. 9 refs., 18 tabs.

  13. Site characterization plan overview: Yucca Mountain site, Nevada Reserch and Development Area, Nevada

    International Nuclear Information System (INIS)

    1988-12-01

    To help the public better understand both the SCP and the site characterization program, the DOE has prepared this overview and the SCP Public Handbook. The overview presents summaries of selected topics covered in the SCP; it is not a substitute for the SCP. The organization of the overview is similar to that of the SCP itself, with brief descriptions of the Yucca Mountain site, the repository, and the containers in which the waste would be packaged, followed by a discussion of the characterization program to be carried out at the Yucca Mountain site. This overview is intended primarily for those persons who want to understand the general scope and basis of the site-characterization program, the activities to be conducted, and the facilities to be constructed without spending the time necessary to become familiar with all of the technical details presented in the SCP. For the readers of the SCP, the overview will be useful as a general guide to the plan. The SCP Public Handbook is a short document that contains brief descriptions of the SCP process and the contents of the SCP. It also explains how the public can submit comments on the SCP and lists the libraries and reading rooms at which the SCP is available. 9 refs., 18 tabs

  14. Commercial Building Energy Asset Score Program Overview and Technical Protocol (Version 1.1)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Na; Goel, Supriya; Makhmalbaf, Atefe

    2013-08-09

    The U.S. Department of Energy (DOE) is developing a voluntary national scoring system for commercial buildings to help building owners and managers assess a building’s energy-related systems independent of operations. The goal of the score is to facilitate cost-effective investment in energy efficiency improvements of commercial buildings. The system, known as the Commercial Building Energy Asset Score, will allow building owners and managers to compare their building infrastructure against peers and track building upgrades over time. The system will also help other building stakeholders (e.g., building investors, tenants, financiers, and appraisers) understand the relative efficiency of different buildings in a way that is independent from operations and occupancy. This report outlines the technical protocol used to generate the energy asset score, explains the scoring methodology, and provides additional details regarding the energy asset scoring tool. The alternative methods that were considered prior to developing the current approach are described in the Program Overview and Technical Protocol Version 1.0.

  15. Ensuring safety of fuel cell applications and hydrogen refuelling. Legislation and standards; Polttokennosovellusten ja vetytankkauksen turvallisuuden varmistaminen. Saeaedoeksiae ja standardeja

    Energy Technology Data Exchange (ETDEWEB)

    Nissila, M.; Sarsama, J.

    2013-09-15

    Fuel cell technology is considered a promising alternative in terms of viable energy systems. The advantages of fuel cell systems include a good efficiency rate and the lack of harmful environmental emissions. Factors which may slow down the commercialisation of fuel cell technology, e.g. fuel cell vehicles, include the high price of hydrogen and the insufficiency of the infrastructure required for the distribution of hydrogen. A large proportion of major car manufacturers are committed to introducing fuel cell cars to the market by 2014-2016. In order to ensure a successful market introduction of fuel cell vehicles, this has to be aligned with the development of the necessary hydrogen infrastructure. In the early commercialisation stages of a new technology, it is important to give the public correct, justified and understandable information on the safety of the fuel cell applications, and also on the measures taken to ensure the safety of applications. A lack of necessary information, inaccurate perceptions and prejudices can have an adverse effect on the public acceptance of fuel cell applications. Hazards and potential accidents related to fuel cell systems are mainly associated with the flammable substances (e.g. hydrogen, methane) used as fuel, the high pressure of hydrogen, electrical hazards, and dangers concerning technical systems in general. The fuel cell applications reviewed in this publication are transport applications and stationary applications and the refuelling system of gaseous hydrogen. The publication concentrates on fuel cells using hydrogen as fuel. The publication gives an overview of how EU-legislation (mainly various directives) and Finnish legislation applies to fuel cell systems and applications, and what kind of safety requirements the legislation sets. In addition, a brief overview of safety standards concerning fuel cell systems and hydrogen refuelling is presented. (orig.)

  16. On the development of an International Curriculum on Hydrogen Safety Engineering and its Implementation into Educational Programmes

    International Nuclear Information System (INIS)

    Dahoe, A.E.; Molkov, V.V.

    2006-01-01

    The present paper provides an overview of the development of an International Curriculum on Hydrogen Safety Engineering and its implementation into new educational programmes. The curriculum has a modular structure, and consists of five basic, six fundamental and four applied modules. The reasons for this particular structure are explained. To accelerate the development of teaching materials and their implementation in training/educational programmes, an annual European Summer School on Hydrogen Safety will be held (the first Summer School is from 15-24 Aug 2006, Belfast, UK), where leading experts deliver keynote lectures to an audience of researchers on topics covering the state-of-the-art in Hydrogen Safety Science and Engineering. The establishment of a Postgraduate Certificate course in Hydrogen Safety Engineering at the University of Ulster (starting in September 2006) as a first step in the development of a worldwide system of Hydrogen Safety education and training is described. (authors)

  17. DOD's advanced thermionics program an overview

    International Nuclear Information System (INIS)

    Drake, T.R.

    1998-01-01

    The Defense Special Weapons Agency (DSWA) manages a congressionally mandated program in advanced thermionics research. Guided by congressional language to advance the state-of-the-art in the US and support the Integrated Solar Upper Stage (ISUS) program, DSWA efforts concentrate on four areas: an electrically testable design of a high-performance, in-core thermionic fuel element (TFE), the ISUS program, a microminiature thermionic converter and several modeling efforts. The DSWA domestic program is augmented by several small contracts with Russian institutes, awarded under the former TOPAZ International Program that the Ballistic Missile Defense Organization transferred to DSWA. The design effort at General Atomics will result in an electrically testable, multi-cell TFE for in-core conversion, involving system design and advanced collector and emitter technologies. For the ISUS program, DSWA funded a portion of the engine ground demonstration, including development of the power management system and the planar diodes. Current efforts supporting ISUS include continued diode testing and developing an advanced planar diode. The MTC program seeks to design a mass producable, close-spaced thermionic converter using integrated circuit technologies. Modeling and analysis at DSWA involves development of the Reactor System Mass with Thermionics estimation model (RSMASS-T), developing a new thermionic theory, and reviewing applications for the MTC technology. The Russian deliverables include several reports and associated hardware that describe many of its state-of-the-art thermionic technologies and processes

  18. The Brazilian strategy for the hydrogen economy; A estrategia brasileira para economia do hidrogenio

    Energy Technology Data Exchange (ETDEWEB)

    Matos, Maiana Brito de [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica; Neves Junior, Newton Pimenta

    2008-07-01

    This paper examines the Brazilian strategy in the development of technology related to hydrogen and the fuel cell systems. The Brazilian program and road map in the area are analyzed: the Program on Science, Technology and Innovation for the Hydrogen Economy - Pro H2, former Brazilian Program of the Fuel Cell Systems-ProCaC which was created in 2002 by the Ministry of Science, Technology - MCT, and the Road map for Structuring of the Hydrogen Economy in Brazil, which was created in 2004 by the Ministry of Mines and Energy - MME. (author)

  19. Laser program overview

    International Nuclear Information System (INIS)

    Storm, E.; Coleman, L.W.

    1985-01-01

    The objectives of the Lawrence Livermore National Laboratory Laser Fusion program are to understand and develop the science and technology of inertial confinement fusion (ICF), and to utilize ICF in short- and long-term military applications, and, in the long-term, as a candidate for central-station civilian power generation. In 1984, using the Novette laser system, the authors completed experiments showing the very favorable scaling of laser-plama interactions with short-wavelength laser light. Their Novette experiments have unequivocally shown that short laser wavelength, i.e., less than 1 μm, is required to provide the drive necessary for efficient compression, ignition, and burn of DT fusion fuel. In other experiments with Novette, the authors made the first unambiguous observation of amplified spontaneous emission in the soft x-ray regime. The authors also conducted military applications and weapons physics experiments, which they discuss in detail in the classified volume of our Laser Program Annual Report. In the second thrust, advanced laser studies, they develop and test the concepts, components, and materials for present and future laser systems. Over the years, this has meant providing the technology base and scientific advances necessary to construct and operate a succession of six evermore-powerful laser systems. The latest of these, Nova, a 100-TW/100-kJ-class laser system, was completed in 1984. The Nd:glass laser continues to be the most effective and versatile tool for ICF and weapons physics because of its scalability in energy, the ability to efficiently convert its 1=μm output to shorter wavelengths, its ability to provide flexible, controlled pulse shaping, and its capability to adapt to a variety of irradiation and focusing geometries. For these reasons, many of our advanced laser studies are in areas appropriate to solid state laser technologies

  20. Hydrogen Production by Water Electrolysis Via Photovoltaic Panel

    Directory of Open Access Journals (Sweden)

    Hydrogen Production by Water Electrolysis Via Photovoltaic Panel

    2016-07-01

    Full Text Available Hydrogen fuel is a good alternative to fossil fuels. It can be produced using a clean energy without contaminated emissions. This work is concerned with experimental study on hydrogen production via solar energy. Photovoltaic module is used to convert solar radiation to electrical energy. The electrical energy is used for electrolysis of water into hydrogen and oxygen by using alkaline water electrolyzer with stainless steel electrodes. A MATLAB computer program is developed to solve a four-parameter-model and predict the characteristics of PV module under Baghdad climate conditions. The hydrogen production system is tested at different NaOH mass concentration of (50,100, 200, 300 gram. The maximum hydrogen production rate is 153.3 ml/min, the efficiency of the system is 20.88% and the total amount of hydrogen produced in one day is 220.752 liter.

  1. An assessment of the government liquid hydrogen requirements for the 1995-2005 time frame including addendum, liquid hydrogen production and commercial demand in the United States

    Science.gov (United States)

    Bain, Addison

    1990-01-01

    Liquid hydrogen will continue to be an integral element in virtually every major space program, and it has also become a significant merchant product for certain commercial markets. Liquid hydrogen is not a universally available commodity, and the number of supply sources historically have been limited to regions having concentrated consumption patterns. With the increased space program activity it becomes necessary to assess all future programs on a collective and unified basis. An initial attempt to identify projected requirements on a long range basis is presented.

  2. An Overview. High Risk Series.

    Science.gov (United States)

    General Accounting Office, Washington, DC.

    This report provides an overview of efforts undertaken by the U.S. General Accounting Office (GAO) in 1990 to review and report on federal program areas its work identified as high risk because of vulnerabilities to waste, fraud, abuse, and mismanagement. It reviews the current status of efforts to address these concerns. The six categories of…

  3. Comparative Analysis of Hydrogen Production Methods with Nuclear Reactors

    International Nuclear Information System (INIS)

    Morozov, Andrey

    2008-01-01

    Hydrogen is highly effective and ecologically clean fuel. It can be produced by a variety of methods. Presently the most common are through electrolysis of water and through the steam reforming of natural gas. It is evident that the leading method for the future production of hydrogen is nuclear energy. Several types of reactors are being considered for hydrogen production, and several methods exist to produce hydrogen, including thermochemical cycles and high-temperature electrolysis. In the article the comparative analysis of various hydrogen production methods is submitted. It is considered the possibility of hydrogen production with the nuclear reactors and is proposed implementation of research program in this field at the IPPE sodium-potassium eutectic cooling high temperature experimental facility (VTS rig). (authors)

  4. Purdue Hydrogen Systems Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Jay P Gore; Robert Kramer; Timothee L Pourpoint; P. V. Ramachandran; Arvind Varma; Yuan Zheng

    2011-12-28

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up

  5. Purdue Hydrogen Systems Laboratory

    International Nuclear Information System (INIS)

    Gore, Jay P.; Kramer, Robert; Pourpoint, Timothee L.; Ramachandran, P.V.; Varma, Arvind; Zheng, Yuan

    2011-01-01

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up. Efforts

  6. Natural Programming: Project Overview and Proposal

    National Research Council Canada - National Science Library

    Myers, Brad

    1998-01-01

    End-users must write programs to control many different kinds of applications. Examples include multimedia authoring, controlling robots, defining manufacturing processes, setting up simulations, programming agents, scripting, etc...

  7. U.S. Department of Energy Hydrogen and Fuel Cells Program 2014 Annual Merit Review and Peer Evaluation Report: June 16-20, 2014, Washington, D.C.

    Energy Technology Data Exchange (ETDEWEB)

    2014-10-01

    The fiscal year (FY) 2014 U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting (AMR), in conjunction with DOE's Vehicle Technologies Office AMR, was held from June 16-20, 2014, at the Washington Marriott Wardman Park in Washington, D.C. This report is a summary of comments by AMR peer reviewers about the hydrogen and fuel cell projects funded by DOE's Office of Energy Efficiency and Renewable Energy (EERE).

  8. An Overview of the Chinese UCG Program

    Directory of Open Access Journals (Sweden)

    Yulan Li

    2007-08-01

    Full Text Available Coal is the dominant source of energy in China, but about 50% of the coal resource is left underground unmined. Because of this, the "long-tunnel, large section, two-stage" Underground Coal Gasification (UCG technology has been put forward, and the UCG model platform has been built. Simulation tests are underway and some gasification parameters have been obtained. Five field trials have been completed, which have produced gas with a heating value of about 4.18MJ/m3. Gas containing more than 40% hydrogen and a heating value above 8.36MJ/m3 is produced at two-stage gasification.

  9. Better Plants Program Overview

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-09-30

    The U.S. Department of Energy’s (DOE’s) Better Buildings, Better Plants Program is a voluntary partnership initiative to drive significant energy efficiency improvement across energy intensive companies and organizations. 157 leading manufacturers and public water and wastewater treatment utilities are partnering with DOE through Better Plants to improve energy efficiency, slash carbon emissions, and cut energy costs.

  10. Laser program. Annual report, 1978

    International Nuclear Information System (INIS)

    Monsler, M.J.; Jarman, B.D.

    1979-03-01

    An overview of the entire program is given. The overview previews the report, highlights progress in 1978, and summarizes the facilities and resources of the laser program. The Argus, Shiva, and Nova facilities are described. The theory of fusion target design is discussed along with specialized techniques of target fabrication

  11. Proceedings of the 5th International workshop on hydrogen and fuel cells WICaC 2010

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The 5th International Workshop on Hydrogen and Fuel Cells - WICaC 2010 aims to bring the most recent advances on fuel cell and hydrogen technologies. The conference will address the trends on hydrogen production, distribution, delivery, storage and infrastructure as well as fuel cell research, development, demonstration and commercialization. Some of the issues addressed at WICaC 2010 are: the official Brazilian hydrogen and fuel cell programs and its participation in the international programs and partnerships such as the IPHE (The International Partnership for Hydrogen and Fuel Cells in the Economy); the integration of renewable energy sources with hydrogen and fuel cell systems; the challenges to deploy the commercialization and use of fuel cells and hydrogen; distributed generation of energy; fuel cell uses in portable devices and in vehicles; life-cycle assessment of fuel cells and hydrogen technologies; environmental aspects; energy efficiency.

  12. Towards an Ultrasonic Guided Wave Procedure for Health Monitoring of Composite Vessels: Application to Hydrogen-Powered Aircraft.

    Science.gov (United States)

    Yaacoubi, Slah; McKeon, Peter; Ke, Weina; Declercq, Nico F; Dahmene, Fethi

    2017-09-19

    This paper presents an overview and description of the approach to be used to investigate the behavior and the defect sensitivity of various ultrasonic guided wave (UGW) modes propagating specifically in composite cylindrical vessels in the framework of the safety of hydrogen energy transportation such as hydrogen-powered aircrafts. These structures which consist of thick and multi-layer composites are envisioned for housing hydrogen gas at high pressures. Due to safety concerns associated with a weakened structure, structural health monitoring techniques are needed. A procedure for optimizing damage detection in these structural types is presented. It is shown that a finite element method can help identify useful experimental parameters including frequency range, excitation type, and receiver placement.

  13. Emission spectroscopy of hydrogen molecules in technical and divertor plasmas

    International Nuclear Information System (INIS)

    Fantz, U.

    2002-01-01

    The paper gives an overview of the diagnostics of hydrogen molecules in technical plasmas (MW and RF discharges) and in divertor plasmas of fusion experiments (ASDEX Upgrade / Tokamak at the Max-Planck-Institut fuer Plasmaphysik in Garching near Munich, Germany). The Fulcher transition in the visible spectral range was chosen for analysis since this is the most prominent band in the spectrum of molecular hydrogen. Examples for diagnostics of molecular densities will be given, and the problems arising in the interpretation of spectra will be discussed. In divertor plasmas the diagnostics of molecular.uxes will be introduced and the contribution of molecules to the plasma recombination will be discussed. Results for vibrational populations in the ground state and the correlation to the upper Fulcher state will be given, providing an electron temperature diagnostic. Finally, the in.uence of surfaces (high-grade steel and graphite) on vibrational populations and on re.ection coe.cients of atoms will be shown. Special attention is given on a comparison of the isotopes hydrogen and deuterium. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  14. Ostomy Home Skills Program

    Medline Plus

    Full Text Available ... Membership Directory 2017 Annual Meeting 2016 Annual Meeting Women's Committee Mentorship Program Outside Activities ACS Archives Contact Us Quality Programs Quality Programs Overview About Quality Programs ACS ...

  15. The hydrogen; L'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The hydrogen as an energy system represents nowadays a main challenge (in a scientific, economical and environmental point of view). The physical and chemical characteristics of hydrogen are at first given. Then, the challenges of an hydrogen economy are explained. The different possibilities of hydrogen production are described as well as the distribution systems and the different possibilities of hydrogen storage. Several fuel cells are at last presented: PEMFC, DMFC and SOFC. (O.M.)

  16. Conversion of research and test reactors to low enriched uranium fuel: technical overview and program status

    International Nuclear Information System (INIS)

    Roglans-Ribas, J.

    2008-01-01

    Many of the nuclear research and test reactors worldwide operate with high enriched uranium fuel. In response to worries over the potential use of HEU from research reactors in nuclear weapons, the U.S Department of Energy (DOE) initiated a program - the Reduced Enrichment for Research and Test Reactors (RERTR) - in 1978 to develop the technology necessary to reduce the use of HEU fuel by converting research reactors to low enriched uranium (LEU) fuel. The Reactor Conversion program is currently under the DOE's National Nuclear Security Administration's Global Threat Reduction Initiative (GTRI). 55 of the 129 reactors included in the scope have been already converted to LEU fuel or have shutdown prior to conversion. The major technical activities of the Conversion Program include: (1) the development of advanced LEU fuels; (2) conversion analysis and conversion support; and (3) technology development for the production of Molybdenum-99 (Mo 99 ) with LEU targets. The paper provides an overview of the status of the program, the technical challenges and accomplishments, and the role of international collaborations in the accomplishment of the Conversion Program objectives. Nuclear research and test reactors worldwide have been in operation for over 60 years. Many of these facilities operate with high enriched uranium fuel. In response to increased worries over the potential use of HEU from research reactors in the manufacturing of nuclear weapons, the U.S Department of Energy (DOE) initiated a program - the Reduced Enrichment for Research and Test Reactors (RERTR) - in 1978 to develop the technology necessary to reduce the use of HEU fuel in research reactors by converting them to low enriched uranium (LEU) fuel. The reactor conversion program was initially focused on U.S.-supplied reactors, but in the early 1990s it expanded and began to collaborate with Russian institutes with the objective of converting Russian supplied reactors to the use of LEU fuel.

  17. The US department of energy programme on hydrogen production

    International Nuclear Information System (INIS)

    Paster, M.D.

    2004-01-01

    production will be more cost effective, but distributed production will still play a role. Utilization of nuclear and renewable technologies inherently addresses greenhouse gas emission directly. The use of fossil fuels requires the development of carbon dioxide sequestration technology to enable a hydrogen economy that also addresses climate change concerns. Ultimately, a spectrum of feedstocks and technologies for hydrogen production will be necessary to address energy security and climate change concerns. The DOE Hydrogen Program will address multiple feedstock and technology options to provide effective and efficient hydrogen production for the short term and the long term. The U. S. DOE Hydrogen Program is contained within the Offices of Nuclear Energy, Fossil Energy, and Energy Efficiency and Renewable Energy that are now working synergistically together to accomplish the overall program goals. The potential benefits of a hydrogen economy are immense. They include increased energy security through the use of domestic and renewable energy feedstocks and a dramatic reduction in green house gas and other criteria air pollutants. (author)

  18. Nickel hydrogen/nickel cadmium battery trade studies

    Science.gov (United States)

    Stadnick, S. J.

    1983-01-01

    Nickel Hydrogen cell and battery technology has matured to the point where a real choice exists between Nickel Hydrogen and Nickel Cadmium batteries for each new spacecraft application. During the past few years, a number of spacecraft programs have been evaluated at Hughes with respect to this choice, with the results being split about fifty-fifty. The following paragraphs contain criteria which were used in making the battery selection.

  19. Nuclear-fuel-cycle education: Module 1. Nuclear fuel cycle overview

    International Nuclear Information System (INIS)

    Eckhoff, N.D.

    1981-07-01

    This educational module is an overview of the nuclear-fule-cycle. The overview covers nuclear energy resources, the present and future US nuclear industry, the industry view of nuclear power, the International Nuclear Fuel Cycle Evaluation program, the Union of Concerned Scientists view of the nuclear-fuel-cycle, an analysis of this viewpoint, resource requirements for a model light water reactor, and world nuclear power considerations

  20. ERDA's Chemical Energy Storage Program

    Science.gov (United States)

    Swisher, J. H.; Kelley, J. H.

    1977-01-01

    The Chemical Energy Storage Program is described with emphasis on hydrogen storage. Storage techniques considered include pressurized hydrogen gas storage, cryogenic liquid hydrogen storage, storage in hydride compounds, and aromatic-alicyclic hydrogen storage. Some uses of energy storage are suggested. Information on hydrogen production and hydrogen use is also presented. Applications of hydrogen energy systems include storage of hydrogen for utilities load leveling, industrial marketing of hydrogen both as a chemical and as a fuel, natural gas supplementation, vehicular applications, and direct substitution for natural gas.

  1. Global Security Contingency Fund: Summary and Issue Overview

    Science.gov (United States)

    2014-04-04

    Diplomacy and Development Review (QDDR), Washington, D.C., December 2010, p. 203; Gordon Adams and Rebecca Williams, A New Way Forward: Rebalancing ...Williams, A New Way Forward: Rebalancing Security Assistance Programs and (continued...) Global Security Contingency Fund: Summary and Issue Overview...a large security assistance portfolio . But others may point to the State Department’s creation of new programs under the Security Assistance

  2. Hydrogen Fueling Station in Honolulu, Hawaii Feasibility Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Porter Hill; Michael Penev

    2014-08-01

    The Department of Energy Hydrogen & Fuel Cells Program Plan (September 2011) identifies the use of hydrogen for government and fleet electric vehicles as a key step for achieving “reduced greenhouse gas emissions; reduced oil consumption; expanded use of renewable power …; highly efficient energy conversion; fuel flexibility …; reduced air pollution; and highly reliable grid-support.” This report synthesizes several pieces of existing information that can inform a decision regarding the viability of deploying a hydrogen (H2) fueling station at the Fort Armstrong site in Honolulu, Hawaii.

  3. Combining computation and experiment to accelerate the discovery of new hydrogen storage materials

    Science.gov (United States)

    Siegel, Donald

    2009-03-01

    The potential of emerging technologies such as fuel cells (FCs) and photovoltaics for environmentally-benign power generation has sparked renewed interest in the development of novel materials for high density energy storage. For applications in the transportation sector, the demands placed upon energy storage media are especially stringent, as a potential replacement for fossil-fuel-powered internal combustion engines -- namely, the proton exchange membrane FC -- utilizes hydrogen as a fuel. Although hydrogen has about three times the energy density of gasoline by weight, its volumetric energy density (even at 700 bar) is roughly a factor of six smaller. Consequently, the safe and efficient storage of hydrogen has been identified as one of the key materials-based challenges to realizing a transition to FC vehicles. This talk will present an overview of recent efforts at Ford aimed at developing new materials for reversible, solid state hydrogen storage. A tight coupling between first-principles modeling and experiments has greatly accelerated our efforts, and several examples illustrating the benefits of this approach will be presented.

  4. Research and development program of hydrogen production system with high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Miyamoto, Y.; Shiozawa, S.; Ogawa, M.; Inagaki, Y.; Nishihara, T.; Shimizu, S.

    2000-01-01

    Japan Atomic Energy Research Institute (JAERI) has been developing a hydrogen production system with a high temperature gas-cooled reactor (HTGR). While the HTGR hydrogen production system has the following advantages compared with a fossil-fired hydrogen production system; low operation cost (economical fuel cost), low CO 2 emission and saving of fossil fuel by use of nuclear heat, it requires some items to be solved as follows; cost reduction of facility such as a reactor, coolant circulation system and so on, development of control and safety technologies. As for the control and safety technologies, JAERI plans demonstration test with hydrogen production system by steam reforming of methane coupling to 30 Wt HTGR, named high temperature engineering test reactor (HTTR). Prior to the demonstration test, a 1/30-scale out-of-pile test facility is in construction for safety review and detailed design of the HTTR hydrogen production system. Also, design study will start for reduction of facility cost. Moreover, basic study on hydrogen production process without CO 2 emission is in progress by thermochemical water splitting. (orig.)

  5. Hydrogen role in a carbon-free energy mix

    International Nuclear Information System (INIS)

    2014-02-01

    Among the energy storage technologies under development today, there is today an increasing interest towards the hydrogen-based ones. Hydrogen generation allows to store electricity, while its combustion can supply electrical, mechanical or heat energy. The French Atomic Energy Commission (CEA) started to work on hydrogen technologies at the end of the 1990's in order to reinforce its economical interest. The development of these technologies is one of the 34 French industrial programs presented in September 2013 by the French Minister of productive recovery. This paper aims at identifying the hydrogen stakes in a carbon-free energy mix and at highlighting the remaining technological challenges to be met before reaching an industrial development level

  6. The cost analysis of hydrogen life cycle in China

    International Nuclear Information System (INIS)

    Yao, Fei; Jia, Yuan; Mao, Zongqiang

    2010-01-01

    Currently, the increasing price of oil and the possibility of global energy crisis demand for substitutive energy to replace fossil energy. Many kinds of renewable energy have been considered, such as hydrogen, solar energy, and wind energy. Many countries including China have their own plan to support the research of hydrogen, because of its premier features. But, at present, the cost of hydrogen energy production, storage and transportation process is higher than that of fossil energy and its commercialization progress is slow. Life cycle cost analysis (LCCA) was used in this paper to evaluate the cost of hydrogen energy throughout the life cycle focused on the stratagem selection, to demonstrate the costs of every step and to discuss their relationship. Finally, the minimum cost program is as follows: natural gas steam reforming - high-pressure hydrogen bottles transported by car to hydrogen filling stations - hydrogen internal-combustion engines. (author)

  7. Technical Assessment of Cryo-Compressed Hydrogen Storage Tank Systems for Automotive Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ahluwalia, Rajesh [Argonne National Lab. (ANL), Argonne, IL (United States); Hua, T. Q. [Argonne National Lab. (ANL), Argonne, IL (United States); Peng, J. -K. [Argonne National Lab. (ANL), Argonne, IL (United States); Lasher, S. [TIAX LLC, Lexington, MA (United States); McKenney, Kurtis [TIAX LLC, Lexington, MA (United States); Sinha, J. [TIAX LLC, Lexington, MA (United States)

    2009-12-01

    Technical report describing DOE's second assessment report on a third generation (Gen3) system capable of storing hydrogen at cryogenic temperatures within a pressure vessel on-board a vehicle. The report includes an overview of technical progress to date, including the potential to meet DOE onboard storage targets, as well as independent reviews of system cost and energy analyses of the technology paired with delivery costs.

  8. Calculation of LUEC using HEEP Software for Nuclear Hydrogen Production Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongho; Lee, Kiyoung; Kim, Minhwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    To achieve the hydrogen economy, it is very important to produce a massive amount of hydrogen in a clean, safe and efficient way. Nuclear production of hydrogen would allow massive production of hydrogen at economic prices while avoiding environments pollution by reducing the release of carbon dioxide. A Very High Temperature Reactor (VHTR) is considered as an efficient reactor to couple with the thermo-chemical Sulfur Iodine (SI) cycle to achieve the hydrogen economy. HEEP(Hydrogen Economy Evaluation Program) is one of the software tools developed by IAEA to evaluate the economy of the nuclear hydrogen production system by estimating unit hydrogen production cost. In this paper, the LUHC (Levelized Unit Hydrogen Cost) is calculated by using HEEP for nuclear hydrogen production plant, which consists of 4 modules of 600 MWth VHTR coupled with SI process. The levelized unit hydrogen production cost(LUHC) was calculated by the HEEP software.

  9. Ford's E-450 H2ICE program

    International Nuclear Information System (INIS)

    Williams, R.

    2006-01-01

    In 4th quarter of 2006, Ford delivered the first Hydrogen powered Internal Combustion Engine (ICE) vehicles to customers. Ford is a leader in alternative fuels and engine strategies for future applications, and these vehicles serve as a bridge to Fuel Cell Vehicle acceptance and continued development of the hydrogen economy. This program also supports continued growth in hydrogen fueling infrastructure and vehicle hydrogen storage development. This presentation provided a program summary and discuss some of the lessons learned in dealing with placements of hydrogen powered vehicles. (author)

  10. An Overview of the CNES Propulsion Program for Spacecraft

    Science.gov (United States)

    Cadiou, A.; Darnon, F.; Gibek, I.; Jolivet, L.; Pillet, N.

    2004-10-01

    This paper presents an overview of the CNES spacecraft propulsion activities. The main existing and future projects corresponding to low earth orbit and geostationary platforms are described. These projects cover various types of propulsion subsystems: monopropellant, bipropellant and electric. Monopropellant is mainly used for low earth orbit applications such as earth observation (SPOT/Helios, PLEIADES) or scientific applications (minisatellite PROTEUS line and micro satellites MYRIADE line). Bipropellant is used for geostationary telecommunications satellites (@BUS). The field of application of electric propulsion is the station keeping of geostationary telecommunication satellites (@BUS), main propulsion for specific probes (SMART 1) and fine attitude control for dedicated micro satellites (MICROSCOPE). The preparation of the future and the associated Research and Technology program are also described in the paper. The future developments are mainly dedicated to the performance improvements of electric propulsion which leads to the development of thrusters with higher thrust and higher specific impulse than those existing today, the evaluation of the different low thrust technologies for formation flying applications, the development of new systems to pressurize the propellants (volatile liquid, micro pump), the research on green propellants and different actions concerning components such as over wrapped pressure vessels, valves, micro propulsion. A constant effort is also put on plume effect in chemical and electrical propulsion area (improvement of tools and test activities) in the continuity of the previous work. These different R &T activities are described in detail after a presentation of the different projects and of their propulsion subsystems. The scientific activity supporting the development of Hall thrusters is going on in the frame of the GDR (Groupement de Recherche) CNRS / Universities / CNES / SNECMA on Plasma Propulsion.

  11. Hydrogen Financial Analysis Scenario Tool (H2FAST); NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, Marc

    2015-04-21

    This presentation describes the Hydrogen Financial Analysis Scenario Tool, H2FAST, and provides an overview of each of the three H2FAST formats: the H2FAST web tool, the H2FAST Excel spreadsheet, and the H2FAST Business Case Scenario (BCS) tool. Examples are presented to illustrate the types of questions that H2FAST can help answer.

  12. Hydrogen interactions with ZrCo nanoclusters: a first-principles study

    International Nuclear Information System (INIS)

    Chattaraj, D.; Parida, S.C.; Dash, Smruti; Bhattacharya, Saswata; Majumder, C.

    2014-01-01

    Tritium is one of the fuels going to be used in fusion reactor program. But, this radioactive isotope should be stored safely. ZrCo intermetallic has been chosen as a tritium storage material in ITER program. It is important to study how hydrogen interacts with ZrCo in its different dimensions. In this study we have investigated the hydrogen interaction with the Zr m Co n (m+n = 2, 4 and 6) nanoclusters using the state-of-the-art first principles method

  13. An Overview of the NASA Aviation Safety Program Propulsion Health Monitoring Element

    Science.gov (United States)

    Simon, Donald L.

    2000-01-01

    The NASA Aviation Safety Program (AvSP) has been initiated with aggressive goals to reduce the civil aviation accident rate, To meet these goals, several technology investment areas have been identified including a sub-element in propulsion health monitoring (PHM). Specific AvSP PHM objectives are to develop and validate propulsion system health monitoring technologies designed to prevent engine malfunctions from occurring in flight, and to mitigate detrimental effects in the event an in-flight malfunction does occur. A review of available propulsion system safety information was conducted to help prioritize PHM areas to focus on under the AvSP. It is noted that when a propulsion malfunction is involved in an aviation accident or incident, it is often a contributing factor rather than the sole cause for the event. Challenging aspects of the development and implementation of PHM technology such as cost, weight, robustness, and reliability are discussed. Specific technology plans are overviewed including vibration diagnostics, model-based controls and diagnostics, advanced instrumentation, and general aviation propulsion system health monitoring technology. Propulsion system health monitoring, in addition to engine design, inspection, maintenance, and pilot training and awareness, is intrinsic to enhancing aviation propulsion system safety.

  14. Hydrogen and fuel cell activity report - France 2009

    International Nuclear Information System (INIS)

    2009-01-01

    The report gathers the main outstanding facts which occurred in France in the field of hydrogen and fuel cells in 2009. After having noticed some initiatives (French commitment in renewable energy production, new role for the CEA, cooperation between different research and industrial bodies, development of electric vehicles, research programs), the report presents several projects and programs regarding hydrogen: ANR programs, creation of a national structure, basic research by the CEA and CNRS, demonstration projects (H2E), transport applications (a hybrid 307 by Peugeot, the Althytude project by GDF and Suez, the Hychain European project by Air Liquide, a dirigible airship, an ultra-light aviation project, a submarine), some stationary applications (the Myrte project, a wind energy project), activity in small and medium-sized enterprises, regional initiatives, colloquiums and meetings.

  15. Biogeochemistry of uranium mill wastes program overview and conclusions

    International Nuclear Information System (INIS)

    Dreesen, D.R.

    1981-05-01

    The major findings and conclusions are summarized for research on uranium mill tailings for the US Department of Energy and the US Nuclear Regulatory Commission. An overview of results and interpretations is presented for investigations of 222 Rn emissions, revegetation of tailings and mine spoils, and trace element enrichment, mobility, and bioavailability. A brief discussion addresses the implications of these findings in relation to tailings disposal technology and proposed uranium recovery processes

  16. Individuals with Disabilities Education Act: Reauthorization Overview. CRS Report for Congress.

    Science.gov (United States)

    Aleman, Steven R.

    This report provides a review of programs authorized under the Individuals with Disabilities Education Act (IDEA) and an overview of potential reauthorization issues, as the second session of the 103rd Congress considers revisions to these programs. The Infants and Toddlers Program (Part H of IDEA) provides formula grants to participating States…

  17. 1974 review of the research program

    International Nuclear Information System (INIS)

    1975-01-01

    The role of the Research Program in Controlled Thermonuclear Research, the activities that are contained within the Research Program, and summaries of the reports prepared by the study groups that analyzed the six activity areas that make up the Research Program are described. The recommendations by an ''Overview Panel'' are given. The recommendations are based on an analysis of the individual study group reports, consultations with CTR staff and field scientists, and on independent review of CTR program plans and needs. In some cases the recommendations of the Overview Panel are identical with study group recommendations and in other cases they are not. Some recommendations by the Overview Panel take into account factors and information that go beyond that available to the study groups. The five-year budget needed to accomplish the recommended Research Program is discussed. The Overview Panel chose to normalize its budget recommendations to the actual FY 1975 Research Program budget, reflecting the fact that this is already determined. The budgets for subsequent years are then based on this starting point. The complete reports prepared by the six study groups are given. Each report is based on an analysis of the needs as dictated by the Magnetic Confinement Systems and Development and Technology Program Plans. (U.S.)

  18. Subseabed-disposal program: systems-analysis program plan

    International Nuclear Information System (INIS)

    Klett, R.D.

    1981-03-01

    This report contains an overview of the Subseabed Nuclear Waste Disposal Program systems analysis program plan, and includes sensitivity, safety, optimization, and cost/benefit analyses. Details of the primary barrier sensitivity analysis and the data acquisition and modeling cost/benefit studies are given, as well as the schedule through the technical, environmental, and engineering feasibility phases of the program

  19. Fast automated placement of polar hydrogen atoms in protein-ligand complexes

    Directory of Open Access Journals (Sweden)

    Lippert Tobias

    2009-08-01

    Full Text Available Abstract Background Hydrogen bonds play a major role in the stabilization of protein-ligand complexes. The ability of a functional group to form them depends on the position of its hydrogen atoms. An accurate knowledge of the positions of hydrogen atoms in proteins is therefore important to correctly identify hydrogen bonds and their properties. The high mobility of hydrogen atoms introduces several degrees of freedom: Tautomeric states, where a hydrogen atom alters its binding partner, torsional changes where the position of the hydrogen atom is rotated around the last heavy-atom bond in a residue, and protonation states, where the number of hydrogen atoms at a functional group may change. Also, side-chain flips in glutamine and asparagine and histidine residues, which are common crystallographic ambiguities must be identified before structure-based calculations can be conducted. Results We have implemented a method to determine the most probable hydrogen atom positions in a given protein-ligand complex. Optimality of hydrogen bond geometries is determined by an empirical scoring function which is used in molecular docking. This allows to evaluate protein-ligand interactions with an established model. Also, our method allows to resolve common crystallographic ambiguities such as as flipped amide groups and histidine residues. To ensure high speed, we make use of a dynamic programming approach. Conclusion Our results were checked against selected high-resolution structures from an external dataset, for which the positions of the hydrogen atoms have been validated manually. The quality of our results is comparable to that of other programs, with the advantage of being fast enough to be applied on-the-fly for interactive usage or during score evaluation.

  20. Towards an Ultrasonic Guided Wave Procedure for Health Monitoring of Composite Vessels: Application to Hydrogen-Powered Aircraft

    Directory of Open Access Journals (Sweden)

    Slah Yaacoubi

    2017-09-01

    Full Text Available This paper presents an overview and description of the approach to be used to investigate the behavior and the defect sensitivity of various ultrasonic guided wave (UGW modes propagating specifically in composite cylindrical vessels in the framework of the safety of hydrogen energy transportation such as hydrogen-powered aircrafts. These structures which consist of thick and multi-layer composites are envisioned for housing hydrogen gas at high pressures. Due to safety concerns associated with a weakened structure, structural health monitoring techniques are needed. A procedure for optimizing damage detection in these structural types is presented. It is shown that a finite element method can help identify useful experimental parameters including frequency range, excitation type, and receiver placement.

  1. Teaching - methodical and research center of hydrogen power engineering and platinum group metals in the former Soviet Union countries

    International Nuclear Information System (INIS)

    Evdokimov, A.A; Sigov, A.S; Shinkarenko, V.V.

    2005-01-01

    Full text: Teaching - Methodical and Research Center (TMRC) 'Sokolinaja Gora' is founded in order to provide methodical-information and scientific support of institutes of higher education in the field of hydrogen power engineering and platinum group metals in Russia and in the countries of the Former Soviet union. It is independent association of creative communities of scientist of higher educational specialists. The main directions of the Center activity are: 1. Teaching-methodological support and development of teaching in the field of hydrogen power engineering and platinum group metals in Russia in the countries of the Former Soviet Union. Themes of teaching includes the basic of safe using of hydrogen technologies and devices, ecological, economic and law aspects of new hydrogen power engineering, transition to which in 21 century is one of the central problems of mankind survival; 2. Organizing of joint researches by independent creative communities of scientists in the field of hydrogen power engineering and platinum group metal; 3. Independent scientific examination, which is made by Advisory Committee of High Technologies consisting of representatives of the countries of Former Soviet Union, which are standing participants of an Annual International Symposia 'Hydrogen Power Engineering and Platinum Group Metals in the Former Soviet Union Countries'. Structure of the Center: 1. Center of strategic development in the field of high technologies; 2. Scientific Research Institute of Hydrogen Power Engineering and Platinum Group Metals; 3. Teaching-Methodical Association in specialization 'Hydrogen Power Engineering and economics' and hydrogen wide spread training; 4. Media Center 'Hydrogen Power Engineering and Platinum Group Metals', 5. Organizational Center; 6. Administrative Center. The Center will be established step-by-step in 2005-2010 on the basis of the following programs: Teaching-methodological program. On the basis of this program it is planned to

  2. Compressed hydrogen fuelled vehicle at ENEA: Status and development

    International Nuclear Information System (INIS)

    Pede, G.; Ciancia, A.

    1993-01-01

    The world's 500 million road vehicles using internal combustion engines account for roughly half of global oil consumption and, in Italy, for about 50% of all nitrogen oxide and 90% of carbon monoxide emissions. In efforts to conserve petroleum reserves and reduce air pollution, research programs are being conducted to develop hydrogen fueled automotive engines. Hydrogen combustion products are carbon dioxide free, and when burned with a large excess of air, this fuel produces water vapour and only small amounts of nitrogen oxides. Hydrogen fueled vehicles can be made to operate in a dual fuel mode so as to allow the use of petrol or diesel fuel in travel over long distances. Currently, because technical and economic difficulties relevant to hydrogen fuel storage limit driving range and payload (there are bulk and weight problems in compressed gas and metal hydride storage systems, and cost problems in cryogenic storage), only limited research programs are being performed, mainly in Germany (by Mercedes Benz) and Japan. Some recent advances, however, relevant to research in gas storage and gaseous mixtures have been made by ENEA (the Italian Agency for New Technology, Energy and the Environment). This paper outlines the progress being made in ENEA's research efforts which include the development of an electronically controlled hydrogen fuel injection system prototype

  3. Ostomy Home Skills Program

    Medline Plus

    Full Text Available ... Chapter Competition Editorial Board Contact Resources in Surgical Education Newsletters Newsletters Overview Newsletters Overview ACS-AEI Consortium Quarterly ACS Chapter News Cancer Programs Brief Committee on Trauma News The Cutting Edge Philanthropy at Work ...

  4. The use of application-specific performance targets and engineering considerations to guide hydrogen storage materials development

    Energy Technology Data Exchange (ETDEWEB)

    Stetson, Ned T., E-mail: ned.stetson@ee.doe.gov [U.S. Department of Energy, 1000 Independence Ave., SW, EE-2H, Washington, DC 20585 (United States); Ordaz, Grace; Adams, Jesse; Randolph, Katie [U.S. Department of Energy, 1000 Independence Ave., SW, EE-2H, Washington, DC 20585 (United States); McWhorter, Scott [Savannah River National Laboratory, Aiken, SC 29808 (United States)

    2013-12-15

    Highlights: •Portable power and material handling equipment as early market technology pathways. •Engineering based system-level storage-materials requirements. •Application based targets. -- Abstract: The Hydrogen and Fuel Cells Technologies Office, carried out through the DOE Office of Energy Efficiency and Renewable Energy, maintains a broad portfolio of activities to enable the commercialization of fuel cells across a range of near, mid and long-term applications. Improved, advanced hydrogen storage technologies are seen as a critical need for successful implementation of hydrogen fuel cells in many of these applications. To guide and focus materials development efforts, the DOE develops system performance targets for the specific applications of interest, and carries out system engineering analyses to determine the system-level performance delivered when the materials are incorporated into a complete system. To meet the needs of applications, it is important to consider the system-level performance, not just the material-level properties. An overview of the DOE’s hydrogen storage efforts in developing application-specific performance targets and systems engineering to guide hydrogen storage materials identification and development is herein provided.

  5. The use of application-specific performance targets and engineering considerations to guide hydrogen storage materials development

    International Nuclear Information System (INIS)

    Stetson, Ned T.; Ordaz, Grace; Adams, Jesse; Randolph, Katie; McWhorter, Scott

    2013-01-01

    Highlights: •Portable power and material handling equipment as early market technology pathways. •Engineering based system-level storage-materials requirements. •Application based targets. -- Abstract: The Hydrogen and Fuel Cells Technologies Office, carried out through the DOE Office of Energy Efficiency and Renewable Energy, maintains a broad portfolio of activities to enable the commercialization of fuel cells across a range of near, mid and long-term applications. Improved, advanced hydrogen storage technologies are seen as a critical need for successful implementation of hydrogen fuel cells in many of these applications. To guide and focus materials development efforts, the DOE develops system performance targets for the specific applications of interest, and carries out system engineering analyses to determine the system-level performance delivered when the materials are incorporated into a complete system. To meet the needs of applications, it is important to consider the system-level performance, not just the material-level properties. An overview of the DOE’s hydrogen storage efforts in developing application-specific performance targets and systems engineering to guide hydrogen storage materials identification and development is herein provided

  6. Early Childhood Caries and the Impact of Current U.S. Medicaid Program: An Overview

    Directory of Open Access Journals (Sweden)

    Bussma Ahmed Bugis

    2012-01-01

    Full Text Available Pediatric dental caries is the most common chronic disease among children. Above 40% of the U.S. children aged 2–11 years have dental caries; more than 50% of them come from low-income families. Under dental services of the Medicaid program, children enrolled in Medicaid must receive preventive dental services. However, only 1/5 of them utilize preventive dental services. The purpose of this overview is to measure the impact of Medicaid dental benefits on reducing oral health disparities among Medicaid-eligible children. This paper explains the importance of preventive dental care, children at high risk of dental caries, Medicaid dental benefits, utilization of dental preventive services by Medicaid-eligible children, dental utilization influencing factors, and outcome evaluation of Medicaid in preventing dental caries among children. In conclusion, despite the recent increase of children enrolled in Medicaid, utilizing preventive dental care is still a real challenge that faces Medicaid.

  7. Fundamental Aeronautics Program: Overview of Propulsion Work in the Supersonic Cruise Efficiency Technical Challenge

    Science.gov (United States)

    Castner, Ray

    2012-01-01

    The Supersonics Project, part of NASA's Fundamental Aeronautics Program, contains a number of technical challenge areas which include sonic boom community response, airport noise, high altitude emissions, cruise efficiency, light weight durable engines/airframes, and integrated multi-discipline system design. This presentation provides an overview of the current (2012) activities in the supersonic cruise efficiency technical challenge, and is focused specifically on propulsion technologies. The intent is to develop and validate high-performance supersonic inlet and nozzle technologies. Additional work is planned for design and analysis tools for highly-integrated low-noise, low-boom applications. If successful, the payoffs include improved technologies and tools for optimized propulsion systems, propulsion technologies for a minimized sonic boom signature, and a balanced approach to meeting efficiency and community noise goals. In this propulsion area, the work is divided into advanced supersonic inlet concepts, advanced supersonic nozzle concepts, low fidelity computational tool development, high fidelity computational tools, and improved sensors and measurement capability. The current work in each area is summarized.

  8. Overview of the NRC performance monitoring program

    International Nuclear Information System (INIS)

    Jordan, E.L.

    1987-01-01

    In response to the accident at Three Mile Island, the NRC developed the Systematic Assessment of Licensee Performance (SALP) Program to aid in the identification of those licensees that were more likely than others to have safety problems and to provide a rational basis for allocation of inspection resources. The NRC also has an ongoing program of screening and evaluating operating reactor event reports on a daily basis for promptly identifying safety problems. Although the SALP and event report evaluation programs have been successful in identifying potential performance problems, a concern developed recently about the adequacy and timeliness of NRC programs to detect poor or declining performance. The performance indicator program as approved by the commission is in the implementation phase. The program is expected to undergo refinements as new indicators are developed and experience is gained in the use of indicators

  9. Hydrogen-Enhanced Natural Gas Vehicle Program

    Energy Technology Data Exchange (ETDEWEB)

    Hyde, Dan; Collier, Kirk

    2009-01-22

    The project objective is to demonstrate the viability of HCNG fuel (30 to 50% hydrogen by volume and the remainder natural gas) to reduce emissions from light-duty on-road vehicles with no loss in performance or efficiency. The City of Las Vegas has an interest in alternative fuels and already has an existing hydrogen refueling station. Collier Technologies Inc (CT) supplied the latest design retrofit kits capable of converting nine compressed natural gas (CNG) fueled, light-duty vehicles powered by the Ford 5.4L Triton engine. CT installed the kits on the first two vehicles in Las Vegas, trained personnel at the City of Las Vegas (the City) to perform the additional seven retrofits, and developed materials for allowing other entities to perform these retrofits as well. These vehicles were used in normal service by the City while driver impressions, reliability, fuel efficiency and emissions were documented for a minimum of one year after conversion. This project has shown the efficacy of operating vehicles originally designed to operate on compressed natural gas with HCNG fuel incorporating large quantities of exhaust gas recirculation (EGR). There were no safety issues experienced with these vehicles. The only maintenance issue in the project was some rough idling due to problems with the EGR valve and piping parts. Once the rough idling was corrected no further maintenance issues with these vehicles were experienced. Fuel economy data showed no significant changes after conversion even with the added power provided by the superchargers that were part of the conversions. Driver feedback for the conversions was very favorable. The additional power provided by the HCNG vehicles was greatly appreciated, especially in traffic. The drivability of the HCNG vehicles was considered to be superior by the drivers. Most of the converted vehicles showed zero oxides of nitrogen throughout the life of the project using the State of Nevada emissions station.

  10. Potential Applications of Friction Stir Welding to the Hydrogen Economy. Hydrogen Regional Infrastructure Program In Pennsylvania, Materials Task

    Energy Technology Data Exchange (ETDEWEB)

    Brendlinger, Jennifer [Concurrent Technologies Corporation, Johnstown, PA (United States)

    2009-07-17

    Friction Stir Welding (FSW) is a solid-state welding technique developed by The Welding Institute (TWI) of Cambridge, UK in the early 1990’s. The process uses a non-consumable rotating tool to develop frictional heat and plastically deform workpieces to be joined, resulting in a solid-state weld on the trailing side of the advancing tool. Since the materials to be joined are not melted, FSW results in a finer grain structure and therefore enhanced properties, relative to fusion welds. And unlike fusion welding, a relatively small number of key process parameters exist for FSW: tool rotational speed, linear weld velocity and force perpendicular to the joining surface. FSW is more energy efficient than fusion welding and can be accomplished in one or two passes, versus many more passes required of fusion welding thicker workpieces. Reduced post-weld workpiece distortion is another factor that helps to reduce the cost of FSW relative to fusion welding. Two primary areas have been identified for potential impact on the hydrogen economy: FSW of metallic pipes for hydrogen transmission and FSW of aluminum pressure vessels for hydrogen storage. Both areas have been under active development and are explored in this paper.

  11. Hydrogen permeation resistant layers for liquid metal reactors

    International Nuclear Information System (INIS)

    McGuire, J.C.

    1980-03-01

    Reviewing the literature in the tritium diffusion field one can readily see a wide divergence in results for both the response of permeation rate to pressure, and the effect of oxide layers on total permeation rates. The basic mechanism of protective oxide layers is discussed. Two coatings which are less hydrogen permeable than the best naturally occurring oxide are described. The work described is part of an HEDL-ANL cooperative research program on Tritium Permeation in Liquid Metal Cooled Reactors. This includes permeation work on hydrogen, deuterium, and tritium with the hydrogen-deuterium research leading to the developments presented

  12. Color Changing Hydrogen Sensors

    Science.gov (United States)

    Roberson, Luke B.; Williams, Martha; Captain, Janine E.; Mohajeri, Nahid; Raissi, Ali

    2015-01-01

    During the Space Shuttle Program, one of the most hazardous operation that occurred was the loading of liquid hydrogen (LH2) during fueling operations of the spacecraft. Due to hydrogen's low explosive limit, any amount leaked could lead to catastrophic event. Hydrogen's chemical properties make it ideal as a rocket fuel; however, the fuel is deemed unsafe for most commercial use because of the inability to easily detect the gas leaking. The increased use of hydrogen over traditional fossil fuels would reduce greenhouse gases and America's dependency on foreign oil. Therefore a technology that would improve safety at NASA and in the commercial sector while creating a new economic sector would have a huge impact to NASA's mission. The Chemochromic Detector for sensing hydrogen gas leakage is a color-changing detector that is useful in any application where it is important to know not only the presence but also the location of the hydrogen gas leak. This technology utilizes a chemochromicpigment and polymer matrix that can be molded or spun into rigid or pliable shapes useable in variable temperature environments including atmospheres of inert gas, hydrogen gas, or mixtures of gases. A change in color of the detector material indicates where gaseous hydrogen leaks are occurring. The irreversible sensor has a dramatic color change from beige to dark grey and remains dark grey after exposure. A reversible pigment changes from white to blue in the presence of hydrogen and reverts back to white in the presence of oxygen. Both versions of the sensor's pigments were comprised of a mixture of a metal oxide substrate and a hydro-chromic compound (i.e., the compound that changed color in the presence of hydrogen) and immediately notified the operator of the presence of low levels of hydrogen. The detector can be used in a variety of formats including paint, tape, caulking, injection molded parts, textiles and fabrics, composites, and films. This technology brings numerous

  13. Management of Leaks in Hydrogen Production, Delivery, and Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rawls, G

    2006-04-27

    A systematic approach to manage hydrogen leakage from components is presented. Methods to evaluate the quantity of hydrogen leakage and permeation from a system are provided by calculation and testing sensitivities. The following technology components of a leak management program are described: (1) Methods to evaluate hydrogen gas loss through leaks; (2) Methods to calculate opening areas of crack like defects; (3) Permeation of hydrogen through metallic piping; (4) Code requirements for acceptable flammability limits; (5) Methods to detect flammable gas; (6) Requirements for adequate ventilation in the vicinity of the hydrogen system; (7) Methods to calculate dilution air requirements for flammable gas mixtures; and (8) Concepts for reduced leakage component selection and permeation barriers.

  14. The Design of a Renewable Hydrogen Fuel Infrastructure for London

    International Nuclear Information System (INIS)

    Parissis, O.; Bauen, A.

    2006-01-01

    The development of a least cost hydrogen infrastructure is key to the introduction of hydrogen fuel in road transport. This paper presents a generic framework for modelling the development of a renewable hydrogen infrastructure that can be applied to different cases and geographical regions. The model was designed by means of mixed integer linear programming and developed in MATLAB. It was applied to the case of London aiming to examine the possibilities of developing a renewable hydrogen infrastructure within a 50 years time horizon. The results presented here are preliminary results from a study looking at the least cost solutions to supplying hydrogen produced exclusively from renewable energy resources to large urban centres. (authors)

  15. Turbine Based Combined/Combination Cycle/RTA Project Overview

    Science.gov (United States)

    Bartolotta, Paul A.; Quigley, Brian F.

    2000-01-01

    This viewgraph presentation gives an overview of the Revolutionary Turbine Accelerator (RTA) program. Details are given on the Single Stage To Orbit (SSTO) and Two Stage To Orbit (TSTO) aircraft, and the technological challenges associated with the RTA, SSTO, and TSTO.

  16. Hydrogen energy

    International Nuclear Information System (INIS)

    2005-03-01

    This book consists of seven chapters, which deals with hydrogen energy with discover and using of hydrogen, Korean plan for hydrogen economy and background, manufacturing technique on hydrogen like classification and hydrogen manufacture by water splitting, hydrogen storage technique with need and method, hydrogen using technique like fuel cell, hydrogen engine, international trend on involving hydrogen economy, technical current for infrastructure such as hydrogen station and price, regulation, standard, prospect and education for hydrogen safety and system. It has an appendix on related organization with hydrogen and fuel cell.

  17. The application of CFD to hydrogen risk analysis in nuclear power plants

    International Nuclear Information System (INIS)

    Wang Hui; Han Xu; Chang Meng; Wang Xiaofeng; Wang Shuguo; Lu Xinhua; Wu Lin

    2013-01-01

    Status of the hydrogen risk analysis method is systemically summarized in this paper and the advantages and limits of CFD (Computational Fluid Dynamic) in hydrogen risk analysis is discussed. The international experimental programs on the CFD hydrogen risk analysis are introduced in this paper. The application of CFD to nuclear power plant (NPP) hydrogen risk analysis is introduced in detail by taking EPR and Ling'ao NPP for example. In these bases, the CFD development prospect of hydrogen risk analysis is also summarized in this paper. (authors)

  18. HTTR workshop (workshop on hydrogen production technology)

    International Nuclear Information System (INIS)

    Shiina, Yasuaki; Takizuka, Takakazu

    2004-12-01

    Various research and development efforts have been performed to solve the global energy and environmental problems caused by large consumption of fossil fuels. Research activities on advanced hydrogen production technology by the use of nuclear heat from high temperature gas cooled reactors, for example, have been flourished in universities, research institutes and companies in many countries. The Department of HTTR Project and the Department of Advanced Nuclear Heat Technology of JAERI held the HTTR Workshop (Workshop on Hydrogen Production Technology) on July 5 and 6, 2004 to grasp the present status of R and D about the technology of HTGR and the nuclear hydrogen production in the world and to discuss about necessity of the nuclear hydrogen production and technical problems for the future development of the technology. More than 110 participants attended the Workshop including foreign participants from USA, France, Korea, Germany, Canada and United Kingdom. In the Workshop, the presentations were made on such topics as R and D programs for nuclear energy and hydrogen production technologies by thermo-chemical or other processes. Also, the possibility of the nuclear hydrogen production in the future society was discussed. The workshop showed that the R and D for the hydrogen production by the thermo-chemical process has been performed in many countries. The workshop affirmed that nuclear hydrogen production could be one of the competitive supplier of hydrogen in the future. The second HTTR Workshop will be held in the autumn next year. (author)

  19. Orbital interactions and charge redistribution in weak hydrogen bonds: The Watson-Crick AT mimic adenine-2,4-difluorotoluene

    NARCIS (Netherlands)

    Fonseca Guerra, C.; Bickelhaupt, F.M.

    2003-01-01

    An overview is given of results that reestablish hydrogen bonding as an essential factor in DNA replication involving natural bases as well as less polar mimics and they also confirm the importance of steric factors, in line with Kool's experimental work. In addition they show that knowledge of the

  20. Thermochemistry in BWR. An overview of applications of program codes and databases

    International Nuclear Information System (INIS)

    Hermansson, H-P.; Becker, R.

    2010-01-01

    The Swedish work on thermodynamics of metal-water systems relevant to BWR conditions has been ongoing since the 70ies, and at present time a compilation and adaptation of codes and thermodynamic databases are in progress. In the previous work, basic thermodynamic data were compiled for parts of the system Fe-Cr-Ni-Co-Zn-S-H 2 O at 25-300 °C. Since some thermodynamic information necessary for temperature extrapolations of data up to 300 °C was not published in the earlier works, these data have now been partially recalculated. This applies especially to the parameters of the HKF-model, which are used to extrapolate the thermodynamic data for ionic and neutral aqua species from 25 °C to BWR temperatures. Using the completed data, e.g. the change in standard Gibbs energy (ΔG 0 ) and the equilibrium constant (log K) can be calculated for further applications at BWR/LWR conditions. In addition a computer program is currently being developed at Studsvik for the calculation of equilibrium conductivity in high temperature water. The program is intended for PWR applications, but can also be applied to BWR environment. Data as described above will be added to the database of this program. It will be relatively easy to further develop the program e.g. to calculate Pourbaix diagrams, and these graphs could then be calculated at any temperature. This means that there will be no limitation to the temperatures and total concentrations (usually 10 -6 to 10 -8 mol/kg) as reported in earlier work. It is also easy to add a function generating ΔG 0 and log K values at selected temperatures. One of the fundamentals for this work was also to overview and collect publicly available thermodynamic program codes and databases of relevance for BWR conditions found in open sources. The focus has been on finding already done compilations and reviews, and some 40 codes and 15 databases were found. Codes and data-bases are often integrated and such a package is often developed for

  1. Maximizing Light Utilization Efficiency and Hydrogen Production in Microalgal Cultures

    Energy Technology Data Exchange (ETDEWEB)

    Melis, Anastasios [Univ. of California, Berkeley, CA (United States)

    2014-12-31

    The project addressed the following technical barrier from the Biological Hydrogen Production section of the Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan: Low Sunlight Utilization Efficiency in Photobiological Hydrogen Production is due to a Large Photosystem Chlorophyll Antenna Size in Photosynthetic Microorganisms (Barrier AN: Light Utilization Efficiency).

  2. Dye-Sensitized Photocatalytic Water Splitting and Sacrificial Hydrogen Generation: Current Status and Future Prospects

    Directory of Open Access Journals (Sweden)

    Pankaj Chowdhury

    2017-05-01

    Full Text Available Today, global warming and green energy are important topics of discussion for every intellectual gathering all over the world. The only sustainable solution to these problems is the use of solar energy and storing it as hydrogen fuel. Photocatalytic and photo-electrochemical water splitting and sacrificial hydrogen generation show a promise for future energy generation from renewable water and sunlight. This article mainly reviews the current research progress on photocatalytic and photo-electrochemical systems focusing on dye-sensitized overall water splitting and sacrificial hydrogen generation. An overview of significant parameters including dyes, sacrificial agents, modified photocatalysts and co-catalysts are provided. Also, the significance of statistical analysis as an effective tool for a systematic investigation of the effects of different factors and their interactions are explained. Finally, different photocatalytic reactor configurations that are currently in use for water splitting application in laboratory and large scale are discussed.

  3. An Overview of Head Start Program Studies

    Science.gov (United States)

    Hines, Jeanne Morris

    2017-01-01

    Johnson's "War on Poverty" administrative team campaigned for committee members to join the War on Poverty efforts to create and develop programs for children born into poverty (Zigler, 2003). Poverty based programs, such as the Head Start program, continue to put into place proactive measures to increase preschooler's cognitive…

  4. An overview of the Structural Aging Program

    International Nuclear Information System (INIS)

    Naus, D.J.; Arndt, E.G.

    1992-01-01

    The structural Aging Program is conducted at the Oak Ridge National Laboratory (ORNL) for the Nuclear Regulatory Commission (NRC). The program has the overall objective of preparing an expandable handbook or report which will provide NRC with potential structural safety issues and acceptance criteria for use in nuclear power plant evaluations for continued service. Initial focus of the program is on concrete and concrete-related materials which comprise safety-related (Category I) structures in light-water reactor facilities. The program is organized into four tasks: Task S.1 -- Program Management, Task S.2 -- Materials Property Data Base, Task S.3 -- Structural Component Assessment/Repair Technology, and Task S.4 -- Quantitative Methodology for Continued Service Determinations. Objectives, background information, and accomplishments under each of these tasks are presented

  5. Achievement report for fiscal 1976 on Sunshine Program. Research on safety technology in hydrogen energy system; 1976 nendo suiso energy system ni okeru hoan gijutsu ni kansuru kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-01

    Material is collected relative to the safety of hydrogen inside Japan and outside and, on the basis of the collected data, generalization is made of a draft of general standards for the safety of hydrogen and a draft of technological standards for the safety of gaseous hydrogen and liquid hydrogen. In the draft of general standards for the safety of hydrogen, the physical properties of hydrogen and basic matters about the handling of hydrogen are put together, and the possible ignition sources are classified and measures against ignition are shown, and general matters about fire prevention and fighting are explained. Hydrogen attack and embrittlement are taken into consideration, and the caution to exercise when selecting, treating, and processing materials for use with hydrogen is described. Attention is paid to the handling of hydrogen, referring to the dangers of aerohypoxia, frostbite and cold death, and burns. Furthermore, a proposition is newly suggested this fiscal year, which emphasizes the need of disaster preventing facilities such as explosion-proofed electrical equipment and explosion-proofed wiring and explains where to install them and how to maintain them. Also taken up in the research are the need of measures, such as the delivery of safety education and training to workers, to cope with dangers peculiar to hydrogen, and the methods of implementing such programs. (NEDO)

  6. Ostomy Home Skills Program

    Medline Plus

    Full Text Available ... Membership Directory 2017 Annual Meeting 2016 Annual Meeting Women's Committee Mentorship Program Outside Activities ACS Archives Contact Us Quality Programs Quality Programs Overview About Quality Programs ACS Leadership in Quality ACS Leadership in Quality Setting the ...

  7. State of the art on hydrogen passive auto-catalytic recombiner (european union Parsoar project)

    International Nuclear Information System (INIS)

    Arnould, F.; Bachellerie, E.; Auglaire, M.; Boeck, B. de; Braillard, O.; Eckardt, B.; Ferroni, F.; Moffett, R.; Van Goethem, G.

    2001-01-01

    This paper presents an overview of the European Union PARSOAR project, which consists in carrying out a state of the art on hydrogen passive auto-catalytic recombiner (PAR) and a handbook guide for implementing these devices in nuclear power plants. This work is performed in the area ''Operational Safety of Existing Installations'' of the key action ''Nuclear Fission'' of the fifth Euratom Framework Programme (1998-2002). (author)

  8. Programming Models in HPC

    Energy Technology Data Exchange (ETDEWEB)

    Shipman, Galen M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-13

    These are the slides for a presentation on programming models in HPC, at the Los Alamos National Laboratory's Parallel Computing Summer School. The following topics are covered: Flynn's Taxonomy of computer architectures; single instruction single data; single instruction multiple data; multiple instruction multiple data; address space organization; definition of Trinity (Intel Xeon-Phi is a MIMD architecture); single program multiple data; multiple program multiple data; ExMatEx workflow overview; definition of a programming model, programming languages, runtime systems; programming model and environments; MPI (Message Passing Interface); OpenMP; Kokkos (Performance Portable Thread-Parallel Programming Model); Kokkos abstractions, patterns, policies, and spaces; RAJA, a systematic approach to node-level portability and tuning; overview of the Legion Programming Model; mapping tasks and data to hardware resources; interoperability: supporting task-level models; Legion S3D execution and performance details; workflow, integration of external resources into the programming model.

  9. Ostomy Home Skills Program

    Medline Plus

    Full Text Available ... Military Health System Strategic Partnership Military Health System Strategic Partnership About Excelsior Surgical Society ... Programs Quality Programs Overview About Quality Programs ACS Leadership in Quality ACS Leadership in Quality Setting the ...

  10. Bipolar nickel-hydrogen battery development - A program review

    Science.gov (United States)

    Manzo, Michelle; Lenhart, Stephen; Hall, Arnold

    1989-01-01

    An overview of spacecraft power system design trends, focusing on higher power bus voltages and improved energy storage systems, is followed by a discussion of bipolar Ni/H2 battery development efforts. Several 10-cell batteries and one 50-cell battery are described, and performance results are presented. A comparison of individual-pressure-vessel and bipolar Ni/H2 technologies is used to suggest a new direction for bipolar Ni/H2 battery development efforts, toward a large number of passively cooled cells in parallel.

  11. 76 FR 4338 - Research and Development Strategies for Compressed & Cryo-Compressed Hydrogen Storage Workshops

    Science.gov (United States)

    2011-01-25

    ... Hydrogen Storage Workshops AGENCY: Fuel Cell Technologies Program, Office of Energy Efficiency and... the National Renewable Energy Laboratory, in conjunction with the Hydrogen Storage team of the EERE... hydrogen storage in the Washington, DC metro area. DATES: The workshops will be held on Monday, February 14...

  12. 75 FR 67751 - Medicare Program: Community-Based Care Transitions Program (CCTP) Meeting

    Science.gov (United States)

    2010-11-03

    ...] Medicare Program: Community-Based Care Transitions Program (CCTP) Meeting AGENCY: Centers for Medicare... guidance and ask questions about the upcoming Community-based Care Transitions Program. The meeting is open... conference will also provide an overview of the Community-based Care Transitions Program (CCTP) and provide...

  13. Program summary for the Civilian Reactor Development Program

    International Nuclear Information System (INIS)

    1982-07-01

    This Civilian Reactor Development Program document has the prime purpose of summarizing the technical programs supported by the FY 1983 budget request. This section provides a statement of the overall program objectives and a general program overview. Section II presents the technical programs in a format intended to show logical technical interrelationships, and does not necessarily follow the structure of the formal budget presentation. Section III presents the technical organization and management structure of the program

  14. Hydrogen desorption from hydrogen fluoride and remote hydrogen plasma cleaned silicon carbide (0001) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    King, Sean W., E-mail: sean.king@intel.com; Tanaka, Satoru; Davis, Robert F. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Nemanich, Robert J. [Department of Physics, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2015-09-15

    Due to the extreme chemical inertness of silicon carbide (SiC), in-situ thermal desorption is commonly utilized as a means to remove surface contamination prior to initiating critical semiconductor processing steps such as epitaxy, gate dielectric formation, and contact metallization. In-situ thermal desorption and silicon sublimation has also recently become a popular method for epitaxial growth of mono and few layer graphene. Accordingly, numerous thermal desorption experiments of various processed silicon carbide surfaces have been performed, but have ignored the presence of hydrogen, which is ubiquitous throughout semiconductor processing. In this regard, the authors have performed a combined temperature programmed desorption (TPD) and x-ray photoelectron spectroscopy (XPS) investigation of the desorption of molecular hydrogen (H{sub 2}) and various other oxygen, carbon, and fluorine related species from ex-situ aqueous hydrogen fluoride (HF) and in-situ remote hydrogen plasma cleaned 6H-SiC (0001) surfaces. Using XPS, the authors observed that temperatures on the order of 700–1000 °C are needed to fully desorb C-H, C-O and Si-O species from these surfaces. However, using TPD, the authors observed H{sub 2} desorption at both lower temperatures (200–550 °C) as well as higher temperatures (>700 °C). The low temperature H{sub 2} desorption was deconvoluted into multiple desorption states that, based on similarities to H{sub 2} desorption from Si (111), were attributed to silicon mono, di, and trihydride surface species as well as hydrogen trapped by subsurface defects, steps, or dopants. The higher temperature H{sub 2} desorption was similarly attributed to H{sub 2} evolved from surface O-H groups at ∼750 °C as well as the liberation of H{sub 2} during Si-O desorption at temperatures >800 °C. These results indicate that while ex-situ aqueous HF processed 6H-SiC (0001) surfaces annealed at <700 °C remain terminated by some surface C–O and

  15. An overview of a 5-year research program on acid deposition in China

    Science.gov (United States)

    Wang, T.; He, K.; Xu, X.; Zhang, P.; Bai, Y.; Wang, Z.; Zhang, X.; Duan, L.; Li, W.; Chai, F.

    2011-12-01

    Despite concerted research and regulative control of sulfur dioxide in China, acid rain remained a serious environmental issue, due to a sharp increase in the combustion of fossil fuel in the 2000s. In 2005, the Ministry of Science and Technology of China funded a five-year comprehensive research program on acid deposition. This talk will give an overview of the activities and the key findings from this study, covering emission, atmospheric processes, and deposition, effects on soil and stream waters, and impact on typical trees/plants in China. The main results include (1) China still experiences acidic rainfalls in southern and eastern regions, although the situation has stabilized after 2006 due to stringent control of SO2 by the Chinese Government; (2) Sulfate is the dominant acidic compound, but the contribution of nitrate has increased; (3) cloud-water composition in eastern China is strongly influenced by anthropogenic emissions; (4) the persistent fall of acid rain in the 30 years has lead to acidification of some streams/rivers and soils in southern China; (5) the studied plants have shown varying response to acid rain; (6) some new insights have been obtained on atmospheric chemistry, atmospheric transport, soil chemistry, and ecological impacts, some of which will be discussed in this talk. Compared to the situation in North America and Europe, China's acid deposition is still serious, and continued control of sulfur and nitrogen emission is required. There is an urgent need to establish a long-term observation network/program to monitor the impact of acid deposition on soil, streams/rivers/lakes, and forests.

  16. Final Report for the DOE-BES Program Mechanistic Studies of Activated Hydrogen Release from Amine-Boranes

    Energy Technology Data Exchange (ETDEWEB)

    Larry G. Sneddon; R. Thomas Baker

    2013-01-13

    Effective storage of hydrogen presents one of the most significant technical gaps to successful implementation of the hydrogen economy, particularly for transportation applications. Amine boranes, such as ammonia borane H3NBH3 and ammonia triborane H3NB3H7, have been identified as promising, high-capacity chemical hydrogen storage media containing potentially readily released protic (N-H) and hydridic (B-H) hydrogens. At the outset of our studies, dehydrogenation of ammonia borane had been studied primarily in the solid state, but our DOE sponsored work clearly demonstrated that ionic liquids, base-initiators and/or metal-catalysts can each significantly increase both the rate and extent of hydrogen release from amine boranes under moderate conditions. Our studies also showed that depending upon the activation method, hydrogen release from amine boranes can occur by very different mechanistic steps and yield different types of spent-fuel materials. The fundamental understanding that was developed during this grant of the pathways and controlling factors for each of these hydrogen-release mechanisms is now enabling continuing discovery and optimization of new chemical-hydride based hydrogen storage systems.

  17. An Overview of High-k Oxides on Hydrogenated-Diamond for Metal-Oxide-Semiconductor Capacitors and Field-Effect Transistors

    Directory of Open Access Journals (Sweden)

    Jiangwei Liu

    2018-06-01

    Full Text Available Thanks to its excellent intrinsic properties, diamond is promising for applications of high-power electronic devices, ultraviolet detectors, biosensors, high-temperature tolerant gas sensors, etc. Here, an overview of high-k oxides on hydrogenated-diamond (H-diamond for metal-oxide-semiconductor (MOS capacitors and MOS field-effect transistors (MOSFETs is demonstrated. Fabrication routines for the H-diamond MOS capacitors and MOSFETs, band configurations of oxide/H-diamond heterointerfaces, and electrical properties of the MOS and MOSFETs are summarized and discussed. High-k oxide insulators are deposited using atomic layer deposition (ALD and sputtering deposition (SD techniques. Electrical properties of the H-diamond MOS capacitors with high-k oxides of ALD-Al2O3, ALD-HfO2, ALD-HfO2/ALD-Al2O3 multilayer, SD-HfO2/ALD-HfO2 bilayer, SD-TiO2/ALD-Al2O3 bilayer, and ALD-TiO2/ALD-Al2O3 bilayer are discussed. Analyses for capacitance-voltage characteristics of them show that there are low fixed and trapped charge densities for the ALD-Al2O3/H-diamond and SD-HfO2/ALD-HfO2/H-diamond MOS capacitors. The k value of 27.2 for the ALD-TiO2/ALD-Al2O3 bilayer is larger than those of the other oxide insulators. Drain-source current versus voltage curves show distinct pitch-off and p-type channel characteristics for the ALD-Al2O3/H-diamond, SD-HfO2/ALD-HfO2/H-diamond, and ALD-TiO2/ALD-Al2O3/H-diamond MOSFETs. Understanding of fabrication routines and electrical properties for the high-k oxide/H-diamond MOS electronic devices is meaningful for the fabrication of high-performance H-diamond MOS capacitor and MOSFET gas sensors.

  18. Measurement of dissolved hydrogen and hydrogen gas transfer in a hydrogen-producing reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shizas, I.; Bagley, D.M. [Toronto Univ., ON (Canada). Dept. of Civil Engineering

    2004-07-01

    This paper presents a simple method to measure dissolved hydrogen concentrations in the laboratory using standard equipment and a series of hydrogen gas transfer tests. The method was validated by measuring hydrogen gas transfer parameters for an anaerobic reactor system that was purged with 10 per cent carbon dioxide and 90 per cent nitrogen using a coarse bubble diffuser stone. Liquid samples from the reactor were injected into vials and hydrogen was allowed to partition between the liquid and gaseous phases. The concentration of dissolved hydrogen was determined by comparing the headspace injections onto a gas chromatograph and a standard curve. The detection limit was 1.0 x 10{sup -5} mol/L of dissolved hydrogen. The gas transfer rate for hydrogen in basal medium and anaerobic digester sludge was used to validate the method. Results were compared with gas transfer models. In addition to monitoring dissolved hydrogen in reactor systems, this method can help improve hydrogen production potential. 1 ref., 4 figs.

  19. Hydrogen engine performance analysis project. Second annual report

    Energy Technology Data Exchange (ETDEWEB)

    Adt, Jr., R. R.; Swain, M. R.; Pappas, J. M.

    1980-01-01

    Progress in a 3 year research program to evaluate the performance and emission characteristics of hydrogen-fueled internal combustion engines is reported. Fifteen hydrogen engine configurations will be subjected to performance and emissions characterization tests. During the first two years, baseline data for throttled and unthrottled, carburetted and timed hydrogen induction, Pre IVC hydrogen-fueled engine configurations, with and without exhaust gas recirculation (EGR) and water injection, were obtained. These data, along with descriptions of the test engine and its components, the test apparatus, experimental techniques, experiments performed and the results obtained, are given. Analyses of other hydrogen-engine project data are also presented and compared with the results of the present effort. The unthrottled engine vis-a-vis the throttled engine is found, in general, to exhibit higher brake thermal efficiency. The unthrottled engine also yields lower NO/sub x/ emissions, which were found to be a strong function of fuel-air equivalence ratio. (LCL)

  20. 18{sup th} world hydrogen energy conference 2010 (WHEC 2010). Proceedings. Speeches and plenary talks

    Energy Technology Data Exchange (ETDEWEB)

    Stolten, Detlef; Emonts, Bernd [eds.

    2012-07-03

    A comprehensive and renowned conference offers the opportunity to extend the scope beyond mere technical issues. It allows for having strategic presentations and discussing aspects of market introduction, industrial and Governmental target setting as well as approaches to and actions for implementation. The 18th World Hydrogen Conference 2010, WHEC2010, succeeded in exploiting this opportunity and satisfied the expectations. Strong political support in Germany and in the State of North Rhine Westphalia in particular made it possible to have high profile decision makers at the conference presenting their strategies first hand. Hence, a full day was dedicated to plenary speeches and overview talks. The WHEC2010 came handy at a time when fuel cells are developed to suit the requirements for vehicles, except for cost and durability. At a time when the competition with batteries and whether or how a hydrogen infrastructure can be established and afforded were hot topics in the public debate, which needed answers on a well informed basis. Considering fuel cells and hydrogen at a time at one conference and supplementing it with the current knowledge on batteries and hybridization clarity on the future role of these technologies was gained. Very likely fuel cells and batteries will coexist in a future of electrified vehicular transport. Their different technical characteristics will open the doors to different market segments. Implementing hydrogen infrastructure, being a requirement for fuel cells in transport, is considered doable and affordable. This book presents the speeches and overview papers from the plenary session of the WHEC2010 on May 17, 2010. Six further books of this issue contain the papers of the oral and poster presentations, except for the introductory talks of the sessions. The latter are published separately by Wiley in a book named Hydrogen and Fuel Cells. In total the 18th WHEC is documented on over 3800 pages in a structured way in order to reach