WorldWideScience

Sample records for hydrogen production options

  1. Nuclear hydrogen production: re-examining the fusion option

    International Nuclear Information System (INIS)

    Baindur, S.

    2007-01-01

    This paper describes a scheme for nuclear hydrogen production by fusion. The basic idea is to use nuclear energy of the fuel (hydrogen plasma) to produce molecular hydrogen fro carbon-free hydrogen compounds. The hydrogen is then stored and utilized electrochemically in fuel cells or chemically as molecular hydrogen in internal combustion engines

  2. Photobiological production of hydrogen: a solar energy conversion option

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, P.; Lien, S.; Seibert, M.

    1979-01-01

    This literature survey of photobiological hydrogen production covers the period from its discovery in relatively pure cultures during the early 1930s to the present. The focus is hydrogen production by phototrophic organisms (and their components) which occurs at the expense of light energy and electron-donating substrates. The survey covers the major contributions in the area; however, in many cases, space has limited the degree of detail provided. Among the topics included is a brief historical overview of hydrogen metabolism in photosynthetic bacteria, eucaryotic algae, and cyanobacteria (blue--green algae). The primary enzyme systems, including hydrogenase and nitrogenase, are discussed along with the manner in which they are coupled to electron transport and the primary photochemistry of photosynthesis. A number of in vivo and in vitro photobiological hydrogen evolving schemes including photosynthetic bacterial, green algal, cyanobacterial, two-stage, and cell-free systems are examined in some detail. The remainder of the review discusses specific technical problem areas that currently limit the yield and duration of many of the systems and research that might lead to progress in these specific areas. The final section outlines, in broadest terms, future research directions necessary to develop practical photobiological hydrogen-producing systems. Both whole cell (near- to mid-term) and cell-free (long-term) systems should be emphasized. Photosynthetic bacteria currently show the most promise for near-term applied systems.

  3. The value of product flexibility in nuclear hydrogen technologies: A real options analysis

    International Nuclear Information System (INIS)

    Botterud, Audun; Yildiz, Bilge; Conzelmann, Guenter; Petri, Mark C.

    2009-01-01

    Previous economic studies of nuclear hydrogen technologies focused on levelized costs without accounting for risks and uncertainties faced by potential investors. To address some of these risks and uncertainties, we used real options theory to assess the profitability of three nuclear hydrogen production technologies in evolving electricity and hydrogen markets. Monte-Carlo simulations are used to represent the uncertainty in hydrogen and electricity prices. The model computes both the expected value and the distribution of discounted profits from the production plant. It also quantifies the value of the option to switch between hydrogen and electricity production. Under these assumptions, we conclude that investors will find significant value in the capability to switch plant output between electricity and hydrogen. (author)

  4. Steam and partial oxidation reforming options for hydrogen production from fossil fuels for PEM fuel cells

    Directory of Open Access Journals (Sweden)

    Yousri M.A. Welaya

    2012-06-01

    Full Text Available Proton exchange membrane fuel cell (PEM generates electrical power from air and from hydrogen or hydrogen rich gas mixtures. Therefore, there is an increasing interest in converting current hydrocarbon based marine fuels such as natural gas, gasoline, and diesel into hydrogen rich gases acceptable to the PEM fuel cells on board ships. Using chemical flow sheeting software, the total system efficiency has been calculated. Natural gas appears to be the best fuel for hydrogen rich gas production due to its favorable composition of lower molecular weight compounds. This paper presents a study for a 250 kW net electrical power PEM fuel cell system utilizing a partial oxidation in one case study and steam reformers in the second. This study has shown that steam-reforming process is the most competitive fuel processing option in terms of fuel processing efficiency. Partial oxidation process has proved to posses the lowest fuel processing efficiency. Among the options studied, the highest fuel processing efficiency is achieved with natural gas steam reforming system.

  5. Renewable energy from biomass: a sustainable option? - Hydrogen production from alcohols

    Science.gov (United States)

    Balla, Zoltán; Kith, Károly; Tamás, András; Nagy, Orsolya

    2015-04-01

    Sustainable development requires us to find new energy sources instead of fossil fuels. One possibility is the hydrogen fuel cell, which uses significantly more efficient than the current combustion engines. The task of the hydrogen is clean, carbon-free renewable energy sources to choose in the future by growing degree. Hungary can play a role in the renewable energy sources of biomass as a renewable biomass annually mass of about 350 to 360 million tons. The biomass is only a very small proportion of fossil turn carbonaceous materials substitution, while we may utilize alternative energy sources as well. To the hydrogen production from biomass, the first step of the chemical transformations of chemical bonds are broken, which is always activation energy investment needs. The methanol and ethanol by fermentation from different agricultural products is relatively easy to produce, so these can be regarded as renewable energy carriers of. The ethanol can be used directly, and used in several places in the world are mixed with the petrol additive. This method is the disadvantage that the anhydrous alcohol is to be used in the combustion process in the engine more undesired by-products may be formed, and the fuel efficiency of the engine is significantly lower than the efficiency of the fuel cells. More useful to produce hydrogen from the alcohol and is used in a fuel cell electric power generation. Particularly attractive option for the so-called on-board reforming of alcohols, that happens immediately when the vehicle hydrogen production. It does not need a large tank of hydrogen, because the hydrogen produced would be directly to the fuel cell. The H2 tank limit use of its high cost, the significant loss evaporation, the rare-station network, production capacity and service background and lack of opportunity to refuel problems. These can be overcome, if the hydrogen in the vehicle is prepared. As volume even 700 bar only about half the H2 pressure gas can be stored

  6. Global Assessment of Hydrogen Technologies – Tasks 3 & 4 Report Economic, Energy, and Environmental Analysis of Hydrogen Production and Delivery Options in Select Alabama Markets: Preliminary Case Studies

    Energy Technology Data Exchange (ETDEWEB)

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Gillette, Jerry; Elgowainy, Amgad; Mintz, Marianne

    2007-12-01

    This report documents a set of case studies developed to estimate the cost of producing, storing, delivering, and dispensing hydrogen for light-duty vehicles for several scenarios involving metropolitan areas in Alabama. While the majority of the scenarios focused on centralized hydrogen production and pipeline delivery, alternative delivery modes were also examined. Although Alabama was used as the case study for this analysis, the results provide insights into the unique requirements for deploying hydrogen infrastructure in smaller urban and rural environments that lie outside the DOE’s high priority hydrogen deployment regions. Hydrogen production costs were estimated for three technologies – steam-methane reforming (SMR), coal gasification, and thermochemical water-splitting using advanced nuclear reactors. In all cases examined, SMR has the lowest production cost for the demands associated with metropolitan areas in Alabama. Although other production options may be less costly for larger hydrogen markets, these were not examined within the context of the case studies.

  7. Integrated analysis of transportation demand pathway options for hydrogen production, storage, and distribution

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, C.E.S. [Directed Technologies Inc., Arlington, VA (United States)

    1996-10-01

    Directed Technologies, Inc. has begun the development of a computer model with the goal of providing guidance to the Hydrogen Program Office regarding the most cost effective use of limited resources to meet national energy security and environmental goals through the use of hydrogen as a major energy carrier. The underlying assumption of this programmatic pathway model is that government and industry must work together to bring clean hydrogen energy devices into the marketplace. Industry cannot provide the long term resources necessary to overcome technological, regulatory, institutional, and perceptual barriers to the use of hydrogen as an energy carrier, and government cannot provide the substantial investments required to develop hydrogen energy products and increased hydrogen production capacity. The computer model recognizes this necessary government/industry partnership by determining the early investments required by government to bring hydrogen energy end uses within the time horizon and profitability criteria of industry, and by estimating the subsequent investments required by industry. The model then predicts the cost/benefit ratio for government, based on contributions of each hydrogen project to meeting societal goals, and it predicts the return on investment for industry. Sensitivity analyses with respect to various government investments such as hydrogen research and development and demonstration projects will then provide guidance as to the most cost effective mix of government actions. The initial model considers the hydrogen transportation market, but this programmatic pathway methodology will be extended to other market segments in the future.

  8. Options for helium circulation in a hydrogen production plant VHTR-Si: thermal-economic comparative

    International Nuclear Information System (INIS)

    Mendoza A, A.; Francois L, J. L.; Anaya D, A.

    2011-11-01

    The technologies that take advantage of the heat of nuclear reactors of IV generation are of great interest, due to their high energy efficiencies and to their strong economic potential. An example of these technologies is the sulfur-iodine process coupled to a nuclear reactor of high temperature cooled by helium. In this process heat is transferred from the nuclear reactor to the chemical plant by means of two cycles of helium interconnected by an intermediate heat exchanger. The first, denominated primary cycle of cooling, removes the heat of the nuclear reactor, transferring to the secondary cycle to be distributed to equipment s in the chemical plant. The pass of the helium gas through the equipment s that compose each one of the cycles, implies pressure losses that should be compensated necessarily by re-compression to maintain a stable state in the system, causing the energy consumption, usually rejected in the energy analyses. When to this energy is added the energy required in the hydrogen plant: energy required by the pumping systems, will decrease the efficiency of the nucleus-chemical complex, increasing the even cost of the hydrogen. In this work, three options to supply the compression energy and pumping (CEP) to the system are proposed, and these are analyzed thermodynamic and economically. The results indicate that to consider the CEP in the economic analysis increases between 1.5 and 3% the even cost of the hydrogen, and that the option with more energy efficiency is not necessarily the best for the nucleus-chemical complex. (Author)

  9. Reforming options for hydrogen production from fossil fuels for PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ersoz, Atilla; Olgun, Hayati [TUBITAK Marmara Research Center, Institute of Energy, Gebze, 41470 Kocaeli (Turkey); Ozdogan, Sibel [Marmara University Faculty of Engineering, Goztepe, 81040 Istanbul (Turkey)

    2006-03-09

    PEM fuel cell systems are considered as a sustainable option for the future transport sector in the future. There is great interest in converting current hydrocarbon based transportation fuels into hydrogen rich gases acceptable by PEM fuel cells on-board of vehicles. In this paper, we compare the results of our simulation studies for 100kW PEM fuel cell systems utilizing three different major reforming technologies, namely steam reforming (SREF), partial oxidation (POX) and autothermal reforming (ATR). Natural gas, gasoline and diesel are the selected hydrocarbon fuels. It is desired to investigate the effect of the selected fuel reforming options on the overall fuel cell system efficiency, which depends on the fuel processing, PEM fuel cell and auxiliary system efficiencies. The Aspen-HYSYS 3.1 code has been used for simulation purposes. Process parameters of fuel preparation steps have been determined considering the limitations set by the catalysts and hydrocarbons involved. Results indicate that fuel properties, fuel processing system and its operation parameters, and PEM fuel cell characteristics all affect the overall system efficiencies. Steam reforming appears as the most efficient fuel preparation option for all investigated fuels. Natural gas with steam reforming shows the highest fuel cell system efficiency. Good heat integration within the fuel cell system is absolutely necessary to achieve acceptable overall system efficiencies. (author)

  10. Reforming options for hydrogen production from fossil fuels for PEM fuel cells

    Science.gov (United States)

    Ersoz, Atilla; Olgun, Hayati; Ozdogan, Sibel

    PEM fuel cell systems are considered as a sustainable option for the future transport sector in the future. There is great interest in converting current hydrocarbon based transportation fuels into hydrogen rich gases acceptable by PEM fuel cells on-board of vehicles. In this paper, we compare the results of our simulation studies for 100 kW PEM fuel cell systems utilizing three different major reforming technologies, namely steam reforming (SREF), partial oxidation (POX) and autothermal reforming (ATR). Natural gas, gasoline and diesel are the selected hydrocarbon fuels. It is desired to investigate the effect of the selected fuel reforming options on the overall fuel cell system efficiency, which depends on the fuel processing, PEM fuel cell and auxiliary system efficiencies. The Aspen-HYSYS 3.1 code has been used for simulation purposes. Process parameters of fuel preparation steps have been determined considering the limitations set by the catalysts and hydrocarbons involved. Results indicate that fuel properties, fuel processing system and its operation parameters, and PEM fuel cell characteristics all affect the overall system efficiencies. Steam reforming appears as the most efficient fuel preparation option for all investigated fuels. Natural gas with steam reforming shows the highest fuel cell system efficiency. Good heat integration within the fuel cell system is absolutely necessary to achieve acceptable overall system efficiencies.

  11. A comprehensive overview on light independent fermentative hydrogen production from wastewater feedstock and possible integrative options

    International Nuclear Information System (INIS)

    Kumar, Gopalakrishnan; Sivagurunathan, Periyasamy; Pugazhendhi, Arivalagan; Thi, Ngoc Bao Dung; Zhen, Guangyin; Chandrasekhar, Kuppam; Kadier, Abudukeremu

    2017-01-01

    Highlights: • Hydrogen production from various wastewaters has been reviewed. • Physico-chemical composition of the wastewater influences the H_2 yield. • Sugar rich wastewaters could be a feasible source for dark fermentative H_2 production. - Abstract: This review focuses on the current developments and new insights in the field of dark fermentation technologies using wastewater as carbon and nutrient source. It has begun with the type of wastewaters (sugar rich, toxic and industrial) employed in the H_2 production and their production performances with pure (or) mixed microbiota as seeding source in the batch reactors. Secondly, well-documented continuous system performances and their failure reasons were examined along with the enhancement possibilities in ways of strategies. A SWOT analysis has been performed to validate the strength and weakness of the continuous systems towards its industrialization and possible scheme of the integration methods have been illustrated. Additionally, an outlook has been provided with enlightening the remedies for its success. Moreover, the practical perspectives of the continuous systems are highlighted and challenges towards scale up are mentioned. Finally, the possible integrative approaches along with continuous systems towards the bioH_2 technologies implementation are enlightened.

  12. Steam and partial oxidation reforming options for hydrogen production from fossil fuels for PEM fuel cells

    OpenAIRE

    Yousri M.A. Welaya; Mohamed M. El Gohary; Nader R. Ammar

    2012-01-01

    Proton exchange membrane fuel cell (PEM) generates electrical power from air and from hydrogen or hydrogen rich gas mixtures. Therefore, there is an increasing interest in converting current hydrocarbon based marine fuels such as natural gas, gasoline, and diesel into hydrogen rich gases acceptable to the PEM fuel cells on board ships. Using chemical flow sheeting software, the total system efficiency has been calculated. Natural gas appears to be the best fuel for hydrogen rich gas productio...

  13. Photoelectrochemical hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Rocheleau, R.E.; Miller, E.; Misra, A. [Univ. of Hawaii, Honolulu, HI (United States)

    1996-10-01

    The large-scale production of hydrogen utilizing energy provided by a renewable source to split water is one of the most ambitious long-term goals of the U.S. Department of Energy`s Hydrogen Program. One promising option to meet this goal is direct photoelectrolysis in which light absorbed by semiconductor-based photoelectrodes produces electrical power internally to split water into hydrogen and oxygen. Under this program, direct solar-to-chemical conversion efficiencies as high as 7.8 % have been demonstrated using low-cost, amorphous-silicon-based photoelectrodes. Detailed loss analysis models indicate that solar-to-chemical conversion greater than 10% can be achieved with amorphous-silicon-based structures optimized for hydrogen production. In this report, the authors describe the continuing progress in the development of thin-film catalytic/protective coatings, results of outdoor testing, and efforts to develop high efficiency, stable prototype systems.

  14. Hydrogen production by Cyanobacteria

    Directory of Open Access Journals (Sweden)

    Chaudhuri Surabhi

    2005-12-01

    Full Text Available Abstract The limited fossil fuel prompts the prospecting of various unconventional energy sources to take over the traditional fossil fuel energy source. In this respect the use of hydrogen gas is an attractive alternate source. Attributed by its numerous advantages including those of environmentally clean, efficiency and renew ability, hydrogen gas is considered to be one of the most desired alternate. Cyanobacteria are highly promising microorganism for hydrogen production. In comparison to the traditional ways of hydrogen production (chemical, photoelectrical, Cyanobacterial hydrogen production is commercially viable. This review highlights the basic biology of cynobacterial hydrogen production, strains involved, large-scale hydrogen production and its future prospects. While integrating the existing knowledge and technology, much future improvement and progress is to be done before hydrogen is accepted as a commercial primary energy source.

  15. New efficient hydrogen process production from organosilane hydrogen carriers derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Brunel, Jean Michel [Unite URMITE, UMR 6236 CNRS, Faculte de Medecine et de Pharmacie, Universite de la Mediterranee, 27 boulevard Jean Moulin, 13385 Marseille 05 (France)

    2010-04-15

    While the source of hydrogen constitutes a significant scientific challenge, addressing issues of hydrogen storage, transport, and delivery is equally important. None of the current hydrogen storage options, liquefied or high pressure H{sub 2} gas, metal hydrides, etc.. satisfy criteria of size, costs, kinetics, and safety for use in transportation. In this context, we have discovered a methodology for the production of hydrogen on demand, in high yield, under kinetic control, from organosilane hydrogen carriers derivatives and methanol as co-reagent under mild conditions catalyzed by a cheap ammonium fluoride salt. Finally, the silicon by-products can be efficiently recycle leading to an environmentally friendly source of energy. (author)

  16. Microalgal hydrogen production - A review.

    Science.gov (United States)

    Khetkorn, Wanthanee; Rastogi, Rajesh P; Incharoensakdi, Aran; Lindblad, Peter; Madamwar, Datta; Pandey, Ashok; Larroche, Christian

    2017-11-01

    Bio-hydrogen from microalgae including cyanobacteria has attracted commercial awareness due to its potential as an alternative, reliable and renewable energy source. Photosynthetic hydrogen production from microalgae can be interesting and promising options for clean energy. Advances in hydrogen-fuel-cell technology may attest an eco-friendly way of biofuel production, since, the use of H 2 to generate electricity releases only water as a by-product. Progress in genetic/metabolic engineering may significantly enhance the photobiological hydrogen production from microalgae. Manipulation of competing metabolic pathways by modulating the certain key enzymes such as hydrogenase and nitrogenase may enhance the evolution of H 2 from photoautotrophic cells. Moreover, biological H 2 production at low operating costs is requisite for economic viability. Several photobioreactors have been developed for large-scale biomass and hydrogen production. This review highlights the recent technological progress, enzymes involved and genetic as well as metabolic engineering approaches towards sustainable hydrogen production from microalgae. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Sustainable hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Block, D.L.; Linkous, C.; Muradov, N.

    1996-01-01

    This report describes the Sustainable Hydrogen Production research conducted at the Florida Solar Energy Center (FSEC) for the past year. The report presents the work done on the following four tasks: Task 1--production of hydrogen by photovoltaic-powered electrolysis; Task 2--solar photocatalytic hydrogen production from water using a dual-bed photosystem; Task 3--development of solid electrolytes for water electrolysis at intermediate temperatures; and Task 4--production of hydrogen by thermocatalytic cracking of natural gas. For each task, this report presents a summary, introduction/description of project, and results.

  18. Photochemical hydrogen production system

    International Nuclear Information System (INIS)

    Copeland, R.J.

    1990-01-01

    Both technical and economic factors affect the cost of producing hydrogen by photochemical processes. Technical factors include the efficiency and the capital and operating costs of the renewable hydrogen conversion system; economic factors include discount rates, economic life, credit for co-product oxygen, and the value of the energy produced. This paper presents technical and economic data for a system that generates on-peak electric power form photochemically produced hydrogen

  19. Hydrogen production methods

    International Nuclear Information System (INIS)

    Hammerli, M.

    1982-07-01

    Old, present and new proceses for producing hydrogen are assessed critically. The emphasis throughout is placed on those processes which could be commercially viable before the turn of the century for large-scale hydrogen manufacture. Electrolysis of water is the only industrial process not dependent on fossil resources for large-scale hydrogen production and is likely to remain so for the next two or three decades. While many new processes, including those utilizing sunlight directly or indirectly, are presently not considered to be commercially viable for large-scale hydrogen production, research and development effort is needed to enhance our understanding of the nature of these processes. Water vapour electrolysis is compared with thermochemical processes: the former has the potential for displacing all other processes for producing hydrogen and oxygen from water

  20. Biological hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Benemann, J.R. [Univ. of California, Berkeley, CA (United States)

    1995-11-01

    Biological hydrogen production can be accomplished by either thermochemical (gasification) conversion of woody biomass and agricultural residues or by microbiological processes that yield hydrogen gas from organic wastes or water. Biomass gasification is a well established technology; however, the synthesis gas produced, a mixture of CO and H{sub 2}, requires a shift reaction to convert the CO to H{sub 2}. Microbiological processes can carry out this reaction more efficiently than conventional catalysts, and may be more appropriate for the relatively small-scale of biomass gasification processes. Development of a microbial shift reaction may be a near-term practical application of microbial hydrogen production.

  1. An options approach to investment in a hydrogen infrastructure

    International Nuclear Information System (INIS)

    Benthem, A.A. van; Kramer, G.J.; Ramer, R.

    2006-01-01

    This paper discusses the investments needed for the introduction of hydrogen as a transport fuel. Using option theory, we develop a model to calculate the value and optimal timing of a first commercial rollout of hydrogen vehicles in a larger area, taking Japan as a specific example. We find that the project is best viewed as an out-of-the-money call option with a small but positive option value. We estimate this value at approximately 1.5 billion euros, without tax advantages. An important finding is that the moment of investment is first and foremost determined by the maturing of the technology. By contrast, the investment timing is not as much affected by deployment strategy as is frequently thought: in particular, whether or not the hydrogen retail infrastructure is introduced smoothly does not sensitively influence the investment timing. Fairly independent of parameter assumptions, the project value at the moment of deployment is negative for the retailer and positive for the car manufacturer. This implies the need for a negotiated partnership. Finally, we assess various forms of government support, e.g. subsidies or tax cuts. Looking at the effectiveness of this support spending in relation to the advancement of hydrogen deployment, we find, again because investment timing is primarily determined by technology maturation, that tax incentives are relatively ineffective. We are lead to believe that government subsidy for technology development is a more effective means to achieve earlier investment, as faster production cost reductions for hydrogen and fuel cell vehicles lead to accelerated investment

  2. Biomimetic hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Krassen, Henning

    2009-05-15

    Hydrogenases catalyze the reduction of protons to molecular hydrogen with outstanding efficiency. An electrode surface which is covered with active hydrogenase molecules becomes a promising alternative to platinum for electrochemical hydrogen production. To immobilize the hydrogenase on the electrode, the gold surface was modified by heterobifunctional molecules. A thiol headgroup on one side allowed the binding to the gold surface and the formation of a self-assembled monolayer. The other side of the molecules provided a surface with a high affinity for the hydrogenase CrHydA1 from Chlamydomonas reinhardtii. With methylviologen as a soluble energy carrier, electrons were transferred from carboxy-terminated electrodes to CrHydA1 and conducted to the active site (H-cluster), where they reduce protons to molecular hydrogen. A combined approach of surface-enhanced infrared absorption spectroscopy, gas chromatography, and surface plasmon resonance allowed quantifying the hydrogen production on a molecular level. Hydrogen was produced with a rate of 85 mol H{sub 2} min{sup -1} mol{sup -1}. On a 1'- benzyl-4,4'-bipyridinum (BBP)-terminated surface, the electrons were mediated by the monolayer and no soluble electron carrier was necessary to achieve a comparable hydrogen production rate (approximately 50% of the former system). The hydrogen evolution potential was determined to be -335 mV for the BBP-bound hydrogenase and -290 mV for the hydrogenase which was immobilized on a carboxy-terminated mercaptopropionic acid SAM. Therefore, both systems significantly reduce the hydrogen production overpotential and allow electrochemical hydrogen production at an energy level which is close to the commercially applied platinum electrodes (hydrogen evolution potential of -270 mV). In order to couple hydrogen production and photosynthesis, photosystem I (PS1) from Synechocystis PCC 6803 and membrane-bound hydrogenase (MBH) from Ralstonia eutropha were bound to each other

  3. Photobiological hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Seibert, M; Lien, S; Weaver, P F

    1979-01-01

    Hydrogen production by phototrophic organisms, which has been known since the 1930's, occurs at the expense of light energy and electron-donating substrates. Three classes of organisms, namely, photosynthetic bacteria, cyanobacteria, and algae carry out this function. The primary hydrogen-producing enzyme systems, hydrogenase and nitrogenase, will be discussed along with the manner in which they couple to light-driven electron transport. In addition, the feasibility of using in vivo and in vitro photobiological hydrogen producing systems in future solar energy conversion applications will be examined.

  4. Photobiological hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Seibert, M.; Lien, S.; Weaver, P.F.

    1979-01-01

    Hydrogen production by phototrophic organisms, which has been known since the 1930's, occurs at the expense of light energy and electron-donating substrates. Three classes of organisms, namely, photosynthetic bacteria, cyanobacteria, and algae carry out this function. The primary hydrogen-producing enzyme systems, hydrogenase and nitrogenase, will be discussed along with the manner in which they couple to light-driven electron transport. In addition, the feasibility of using in vivo and in vitro photobiological hydrogen producing systems in future solar energy conversion applications will be examined.

  5. A comparison of electricity and hydrogen production systems with CO2 capture and storage. Part B: Chain analysis of promising CCS options

    NARCIS (Netherlands)

    Damen, K.J.; van Troost, M.M.; Faaij, A.P.C.|info:eu-repo/dai/nl/10685903X; Turkenburg, W.C.|info:eu-repo/dai/nl/073416355

    2007-01-01

    Promising electricity and hydrogen production chains with CO2 capture, transport and storage (CCS) and energy carrier transmission, distribution and end-use are analysed to assess (avoided) CO2 emissions, energy production costs and CO2 mitigation costs. For electricity chains, the performance is

  6. Photovoltaic hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Hiser, H.W.; Memory, S.B.; Veziroglu, T.N.; Padin, J. [Univ. of Miami, Coral Gables, FL (United States)

    1996-10-01

    This is a new project, which started in June 1995, and involves photovoltaic hydrogen production as a fuel production method for the future. In order to increase the hydrogen yield, it was decided to use hybrid solar collectors to generate D.C. electricity, as well as high temperature steam for input to the electrolyzer. In this way, some of the energy needed to dissociate the water is supplied in the form of heat (or low grade energy), to generate steam, which results in a reduction of electrical energy (or high grade energy) needed. As a result, solar to hydrogen conversion efficiency is increased. In the above stated system, the collector location, the collector tracking sub-system (i.e., orientation/rotation), and the steam temperature have been taken as variables. Five locations selected - in order to consider a variety of latitudes, altitudes, cloud coverage and atmospheric conditions - are Atlanta, Denver, Miami, Phoenix and Salt Lake City. Plain PV and hybrid solar collectors for a stationary south facing system and five different collector rotation systems have been analyzed. Steam temperatures have been varied between 200{degrees}C and 1200{degrees}C. During the first year, solar to hydrogen conversion efficiencies have been considered. The results show that higher steam temperatures, 2 dimensional tracking system, higher elevations and dryer climates causes higher conversion efficiencies. Cost effectiveness of the sub-systems and of the overall system will be analyzed during the second year. Also, initial studies will be made of an advanced high efficiency hybrid solar hydrogen production system.

  7. Nuclear energy for hydrogen production

    International Nuclear Information System (INIS)

    Verfondern, K.

    2007-01-01

    In the long term, H 2 production technologies will be strongly focusing on CO 2 -neutral or CO 2 -free methods. Nuclear with its virtually no air-borne pollutants emissions appears to be an ideal option for large-scale centralized H 2 production. It will be driven by major factors such as production rates of fossil fuels, political decisions on greenhouse gas emissions, energy security and independence of foreign oil uncertainties, or the economics of large-scale hydrogen production and transmission. A nuclear reactor operated in the heat and power cogeneration mode must be located in close vicinity to the consumer's site, i.e., it must have a convincing safety concept of the combined nuclear/ chemical production plant. A near-term option of nuclear hydrogen production which is readily available is conventional low temperature electrolysis using cheap off-peak electricity from present nuclear power plants. This, however, is available only if the share of nuclear in power production is large. But as fossil fuel prices will increase, the use of nuclear outside base-load becomes more attractive. Nuclear steam reforming is another important near-term option for both the industrial and the transportation sector, since principal technologies were developed, with a saving potential of some 35 % of methane feedstock. Competitiveness will benefit from increasing cost level of natural gas. The HTGR heated steam reforming process which was simulated in pilot plants both in Germany and Japan, appears to be feasible for industrial application around 2015. A CO 2 emission free option is high temperature electrolysis which reduces the electricity needs up to about 30 % and could make use of high temperature heat and steam from an HTGR. With respect to thermochemical water splitting cycles, the processes which are receiving presently most attention are the sulfur-iodine, the Westinghouse hybrid, and the calcium-bromine (UT-3) cycles. Efficiencies of the S-I process are in the

  8. Hydrogen production processes

    International Nuclear Information System (INIS)

    2003-01-01

    The goals of this first Gedepeon workshop on hydrogen production processes are: to stimulate the information exchange about research programs and research advances in the domain of hydrogen production processes, to indicate the domains of interest of these processes and the potentialities linked with the coupling of a nuclear reactor, to establish the actions of common interest for the CEA, the CNRS, and eventually EDF, that can be funded in the framework of the Gedepeon research group. This document gathers the slides of the 17 presentations given at this workshop and dealing with: the H 2 question and the international research programs (Lucchese P.); the CEA's research program (Lucchese P., Anzieu P.); processes based on the iodine/sulfur cycle: efficiency of a facility - flow-sheets, efficiencies, hard points (Borgard J.M.), R and D about the I/S cycle: Bunsen reaction (Colette S.), R and D about the I/S cycle: the HI/I 2 /H 2 O system (Doizi D.), demonstration loop/chemical engineering (Duhamet J.), materials and corrosion (Terlain A.); other processes under study: the Westinghouse cycle (Eysseric C.), other processes under study at the CEA (UT3, plasma,...) (Lemort F.), database about thermochemical cycles (Abanades S.), Zn/ZnO cycle (Broust F.), H 2 production by cracking, high temperature reforming with carbon trapping (Flamant G.), membrane technology (De Lamare J.); high-temperature electrolysis: SOFC used as electrolyzers (Grastien R.); generic aspects linked with hydrogen production: technical-economical evaluation of processes (Werkoff F.), thermodynamic tools (Neveu P.), the reactor-process coupling (Aujollet P.). (J.S.)

  9. Hydrogen production by several cyanobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Dhruv; Kumar, H.D. (Banaras Hindu Univ., Varanasi (India). Dept. of Botany)

    1992-11-01

    Twenty species belonging to eleven genera of nitrogen-fixing and non-nitrogen-fixing cyanobacteria were screened for production of hydrogen. Only one species each of Nostoc and Anabaena showed light-and nitrogenase-dependent aerobic hydrogen production. The highest rate of aerobic hydrogen production was recorded in Anabaena sp. strain CA. When incubated anaerobically under 99% Ar + 1% CO[sub 2], all the tested strains produced hydrogen. Nickel supplementation completely abolished hydrogen production both under aerobic and anaerobic conditions, except in Anabaena sp. strain CA, where only the rate of production was decreased. Species of Plectonema, Oscillatoria and Spirulina showed methyl viologen-dependent (hydrogenase-dependent) hydrogen production. Other physiological activities were also studied with a view to selecting a suitable organism for large-scale production of hydrogen. (author)

  10. Hydrogen demonstration projects options in the Netherlands. Final report

    International Nuclear Information System (INIS)

    Bergsma, G.C.; Van der Werff, T.T.; Rooijers, F.J.

    1996-01-01

    Based on a survey of hydrogen demonstration projects, contacts with different actors and discussions in a sounding board for the study on the title subject, it is concluded that a conference can be organized where the possibilities of setting up hydrogen demonstration projects in the Netherlands can be discussed. The following projects offer good chances to be realized in the next few years: large-scale CO 2 storage in the underground, applying enhanced gas recovery. It appears to be a relatively cheap CO 2 emission reduction measure with a large potential. It can be combined with a hydrogen mixing project with the sale of hydrogen as a so-called eco-gas to consumers. There is little interest in the other options for CO 2 storage at coal gasification and the prompt supply of 100% H 2 to small-scale consumers. Hydrogen for cogeneration, fuel cells in the industry, hydrogen in road transport and hydrogen as a storage medium are projects in which some actors are interested. Hydrogen for air transport has a large potential to which only few parties in the Netherlands can anticipate. Hydrogen demonstration projects will show important surplus value when it is supported by a hydrogen research program. Such a program can be carried out in cooperation with several other programmes of the International Energy Agency, in Japan, Germany and a number of research programs of the Netherlands Agency for Energy and the Environment (Novem). 10 figs., 4 tabs., 33 refs

  11. Hydrogen production by radiation

    International Nuclear Information System (INIS)

    Jung, Jin Ho; Lee, M. J.; Jin, J. H.; Park, K. B.; Cho, Y. H.; Jeong, H. S.; Chung, H. H.; Jeong, Y. S.; Ahn, S. S.

    2001-04-01

    In this work, various kinds of catalysts including a nanosize TiO2 (nTiO 2 ) were examined in respect to the efficiency of H2 production by gamma rays.The different activity of catalysts was characterized by X-ray powder diffraction (XRD) and electron paramagnetic resonance (EPR). A combination of EPR and spin-trapping method was also used to detect unstable radicals such as hydroxyl radicals and hydrogen atoms to investigate the effect of catalysts and additives on the efficiency of H2 production. A nanosize TiO 2 (nTiO 2 ) catalyst that showed an excellent activity in the production of H2 from water by gamma rays were examined in respect to the efficiency of H2 production with concomitant treatment of metal-EDTA complexes that are main wastes of chemical cleaning wastewater. As a result, among the catalysts examined in this work, a nanosize TiO2 (nTiO 2 ) showed the most efficient H2 production and the efficiency increased upon reapplication. This catalyst was also successfully used to produce H2 with concomitant treatment of metal-EDTA complexes

  12. Analysis of Options Contract, Option Pricing in Agricultural Products

    Directory of Open Access Journals (Sweden)

    H. Tamidy

    2016-03-01

    Full Text Available Introduction: Risk is an essential component in the production and sale of agricultural products. Due to the nature of agricultural products, the people who act in this area including farmers and businesspersons encounter unpredictable fluctuations of prices. On the other hand, the firms that process agricultural products also face fluctuation of price of agricultural inputs. Given that the Canola is considered as one of the inputs of product processing factories, control of unpredictable fluctuations of the price of this product would increase the possibility of correct decision making for farmers and managers of food processing industries. The best available tool for control and management of the price risk is the use of future markets and options. It is evident that the pricing is the main pillar in every trade. Therefore, offering a fair price for the options will be very important. In fact, options trading in the options market create cost insurance stopped. In this way, which can reduce the risks of deflation created in the future, if the person entitled to the benefits of the price increase occurs in the future. Unlike the futures, market where the seller had to deliver the product on time, in the options market, there is no such compulsion. In addition, this is one of the strengths of this option contract, because if there is not enough product for delivery to the futures market as result of chilling, in due course, the farmers suffer, but in the options market there will be a loss. In this study, the setup options of rape, as a product, as well as inputs has been paid for industry. Materials and Methods: In this section. The selection criteria of the disposal of asset base for valuation of European put options and call option is been introduced. That for obtain this purpose, some characteristics of the goods must considered: 1-Unpredictable fluctuations price of underlying asset 2 -large underlying asset cash market 3- The possibility

  13. New concepts in hydrogen production in Iceland

    International Nuclear Information System (INIS)

    Arnason, B.; Sigfusson, T.I.; Jonsson, V.K.

    1993-01-01

    The paper presents some new concepts of hydrogen production in Iceland for domestic use and export. A brief overview of the Icelandic energy consumption and available resources is given. The cost of producing hydrogen by electrolysis is calculated for various alternatives such as plant size, load factors and electricity cost. Comparison is made between the total cost of liquid hydrogen delivered to Europe from Iceland and from Northern America, showing that liquid hydrogen delivered to Europe from Iceland would be 9% less expensive. This assumes conventional technology. New technologies are suggested in the paper and different scenarios for geothermally assisted hydrogen production and liquefaction are discussed. It is estimated that the use of geothermal steam would lead to 19% lower hydrogen gas production costs. By analysing the Icelandic fishing fleet, a very large consumer of imported fuel, it is argued that a transition of fuel technology from oil to hydrogen may be a feasible future option for Iceland and a testing ground for changing fuel technology. (Author)

  14. Study of Agricultural Product Options Pricing

    Science.gov (United States)

    HONG, Qiu

    2017-09-01

    China is a large agricultural country, and the healthy development of agriculture is related to the stability of the whole society. The agricultural production and management of agricultural products are confronted with many risks, especially the market risks. Option contract is the object of option market transaction, so it is very important to study the option contract of agricultural products. Option trading separates the risk and profit, so that the trader can avoid the risk while retaining the opportunity to obtain income. The option has the characteristics of low transaction cost, simple and efficient, so it is suitable for small and medium investors.

  15. Development of hydrogen production technology using FBR

    International Nuclear Information System (INIS)

    Ono, Kiyoshi; Otaki, Akira; Chikazawa, Yoshitaka; Nakagiri, Toshio; Sato, Hiroyuki; Sekine, Takashi; Ooka, Makoto

    2004-06-01

    This report describes the features of technology, the schedule and the organization for the research and development regarding the hydrogen production technology using FBR thermal energy. Now, the hydrogen production system is proposed as one of new business models for FBR deployment. This system is the production of hydrogen either thermal energy at approximately from 500degC to 550degC or electricity produced by a sodium cooled FBR. Hydrogen is expected to be one of the future clean secondary energies without carbon-dioxide emission. Meanwhile the global energy demand will increase, especially in Asian countries, and the energy supply by fossil fuels is not the best choice considering the green house effect and the stability of energy supply. The development of the hydrogen technology using FBR that satisfies 'sustainable energy development' and 'utilization of energies free from environmental pollution' will be one of the promising options. Based on the above mentioned recognition, we propose the direction of the development, the issues to be solved, the time schedule, the budget, and the organization for R and D of three hydrogen production technologies, the thermochemical hybrid process, the low temperature steam reforming process, and the high temperature steam electrolysis process in JNC. (author)

  16. Solar hydrogen production: renewable hydrogen production by dry fuel reforming

    Science.gov (United States)

    Bakos, Jamie; Miyamoto, Henry K.

    2006-09-01

    SHEC LABS - Solar Hydrogen Energy Corporation constructed a pilot-plant to demonstrate a Dry Fuel Reforming (DFR) system that is heated primarily by sunlight focusing-mirrors. The pilot-plant consists of: 1) a solar mirror array and solar concentrator and shutter system; and 2) two thermo-catalytic reactors to convert Methane, Carbon Dioxide, and Water into Hydrogen. Results from the pilot study show that solar Hydrogen generation is feasible and cost-competitive with traditional Hydrogen production. More than 95% of Hydrogen commercially produced today is by the Steam Methane Reformation (SMR) of natural gas, a process that liberates Carbon Dioxide to the atmosphere. The SMR process provides a net energy loss of 30 to 35% when converting from Methane to Hydrogen. Solar Hydrogen production provides a 14% net energy gain when converting Methane into Hydrogen since the energy used to drive the process is from the sun. The environmental benefits of generating Hydrogen using renewable energy include significant greenhouse gas and criteria air contaminant reductions.

  17. Future hydrogen markets for large-scale hydrogen production systems

    International Nuclear Information System (INIS)

    Forsberg, Charles W.

    2007-01-01

    The cost of delivered hydrogen includes production, storage, and distribution. For equal production costs, large users (>10 6 m 3 /day) will favor high-volume centralized hydrogen production technologies to avoid collection costs for hydrogen from widely distributed sources. Potential hydrogen markets were examined to identify and characterize those markets that will favor large-scale hydrogen production technologies. The two high-volume centralized hydrogen production technologies are nuclear energy and fossil energy with carbon dioxide sequestration. The potential markets for these technologies are: (1) production of liquid fuels (gasoline, diesel and jet) including liquid fuels with no net greenhouse gas emissions and (2) peak electricity production. The development of high-volume centralized hydrogen production technologies requires an understanding of the markets to (1) define hydrogen production requirements (purity, pressure, volumes, need for co-product oxygen, etc.); (2) define and develop technologies to use the hydrogen, and (3) create the industrial partnerships to commercialize such technologies. (author)

  18. Fusion Energy for Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Fillo, J. A.; Powell, J. R.; Steinberg, M.; Salzano, F.; Benenati, R.; Dang, V.; Fogelson, S.; Isaacs, H.; Kouts, H.; Kushner, M.; Lazareth, O.; Majeski, S.; Makowitz, H.; Sheehan, T. V.

    1978-09-01

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approximately 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of approximately 50 to 70% are projected for fusion reactors using high temperature blankets.

  19. Hydrogen Production by Thermophilic Fermentation

    NARCIS (Netherlands)

    Niel, van E.W.J.; Willquist, K.; Zeidan, A.A.; Vrije, de T.; Mars, A.E.; Claassen, P.A.M.

    2012-01-01

    Of the many ways hydrogen can be produced, this chapter focuses on biological hydrogen production by thermophilic bacteria and archaea in dark fermentations. The thermophiles are held as promising candidates for a cost-effective fermentation process, because of their relatively high yields and broad

  20. Hydrogen production using plasma processing

    International Nuclear Information System (INIS)

    Wagner, D.; Whidden, T.K.

    2006-01-01

    Plasma processing is a promising method of extracting hydrogen from natural gas while avoiding the greenhouse gas (GHG) production typical of other methods such as steam methane reforming. This presentation describes a plasma discharge process based that, in a single reactor pass, can yield hydrogen concentrations of up to 50 % by volume in the product gas mixture. The process is free of GHG's, does not require catalysts and is easily scalable. Chemical and morphological analyses of the gaseous and solid products of the process by gas-chromatography/mass-spectrometry, microscopic Raman analyses and electron microscopy respectively are reviewed. The direct production of hydrogen-enriched natural gas (HENG) as a fuel for low pollution internal combustion engines and its purification to high-purity hydrogen (99.99%) from the product gas by pressure swing adsorption (PSA) purifier beds are reviewed. The presentation reviews potential commercial applications for the technology

  1. Hydrogen production by nuclear heat

    International Nuclear Information System (INIS)

    Crosbie, Leanne M.; Chapin, Douglas

    2003-01-01

    A major shift in the way the world obtains energy is on the horizon. For a new energy carrier to enter the market, several objectives must be met. New energy carriers must meet increasing production needs, reduce global pollution emissions, be distributed for availability worldwide, be produced and used safely, and be economically sustainable during all phases of the carrier lifecycle. Many believe that hydrogen will overtake electricity as the preferred energy carrier. Hydrogen can be burned cleanly and may be used to produce electricity via fuel cells. Its use could drastically reduce global CO 2 emissions. However, as an energy carrier, hydrogen is produced with input energy from other sources. Conventional hydrogen production methods are costly and most produce carbon dioxide, therefore, negating many of the benefits of using hydrogen. With growing concerns about global pollution, alternatives to fossil-based hydrogen production are being developed around the world. Nuclear energy offers unique benefits for near-term and economically viable production of hydrogen. Three candidate technologies, all nuclear-based, are examined. These include: advanced electrolysis of water, steam reforming of methane, and the sulfur-iodine thermochemical water-splitting cycle. The underlying technology of each process, advantages and disadvantages, current status, and production cost estimates are given. (author)

  2. Hydrogen production from hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Docekal, J

    1986-01-01

    Hydrogen is an important feed stock for chemical and petroleum industries, in addition to being considered as the energy carrier of the future. At the present time the feed stock hydrogen is mainly manufactured from hydrocarbons using steam reforming. In steam reforming two processes are employed, the conventional process and PSA (pressure swing adsorption) process. These two processes are described and compared. The results show that the total costs and the maintenance costs are lower for the PSA process, the capital outlay is lower for the conventional process, and the operating costs are similar for the two processes.

  3. Production of hydrogen from organic waste via hydrogen sulfide

    International Nuclear Information System (INIS)

    McMahon, M.; Davis, B.R.; Roy, A.; Daugulis, A.

    2007-01-01

    In this paper an integrated process is proposed that converts organic waste to hydrogen via hydrogen sulphide. The designed bioreactor has achieved high volumetric productivities comparable to methanogenic bioreactors. Proposed process has advantages of bio-methane production and is more resilient to process upset. Thermochemical conversion of hydrogen sulphide to hydrogen is exothermic and also requires smaller plant infrastructure

  4. Hydrogen Production Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    The Hydrogen Production Technical Team Roadmap identifies research pathways leading to hydrogen production technologies that produce near-zero net greenhouse gas (GHG) emissions from highly efficient and diverse renewable energy sources. This roadmap focuses on initial development of the technologies, identifies their gaps and barriers, and describes activities by various U.S. Department of Energy (DOE) offices to address the key issues and challenges.

  5. Technical Analysis of Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Ali T-Raissi

    2005-01-14

    The aim of this work was to assess issues of cost, and performance associated with the production and storage of hydrogen via following three feedstocks: sub-quality natural gas (SQNG), ammonia (NH{sub 3}), and water. Three technology areas were considered: (1) Hydrogen production utilizing SQNG resources, (2) Hydrogen storage in ammonia and amine-borane complexes for fuel cell applications, and (3) Hydrogen from solar thermochemical cycles for splitting water. This report summarizes our findings with the following objectives: Technoeconomic analysis of the feasibility of the technology areas 1-3; Evaluation of the hydrogen production cost by technology areas 1; and Feasibility of ammonia and/or amine-borane complexes (technology areas 2) as a means of hydrogen storage on-board fuel cell powered vehicles. For each technology area, we reviewed the open literature with respect to the following criteria: process efficiency, cost, safety, and ease of implementation and impact of the latest materials innovations, if any. We employed various process analysis platforms including FactSage chemical equilibrium software and Aspen Technologies AspenPlus and HYSYS chemical process simulation programs for determining the performance of the prospective hydrogen production processes.

  6. Hydrogen Production from Nuclear Energy

    Science.gov (United States)

    Walters, Leon; Wade, Dave

    2003-07-01

    During the past decade the interest in hydrogen as transportation fuel has greatly escalated. This heighten interest is partly related to concerns surrounding local and regional air pollution from the combustion of fossil fuels along with carbon dioxide emissions adding to the enhanced greenhouse effect. More recently there has been a great sensitivity to the vulnerability of our oil supply. Thus, energy security and environmental concerns have driven the interest in hydrogen as the clean and secure alternative to fossil fuels. Remarkable advances in fuel-cell technology have made hydrogen fueled transportation a near-term possibility. However, copious quantities of hydrogen must be generated in a manner independent of fossil fuels if environmental benefits and energy security are to be achieved. The renewable technologies, wind, solar, and geothermal, although important contributors, simply do not comprise the energy density required to deliver enough hydrogen to displace much of the fossil transportation fuels. Nuclear energy is the only primary energy source that can generate enough hydrogen in an energy secure and environmentally benign fashion. Methods of production of hydrogen from nuclear energy, the relative cost of hydrogen, and possible transition schemes to a nuclear-hydrogen economy will be presented.

  7. Nuclear hydrogen: An assessment of product flexibility and market viability

    International Nuclear Information System (INIS)

    Botterud, Audun; Yildiz, Bilge; Conzelmann, Guenter; Petri, Mark C.

    2008-01-01

    Nuclear energy has the potential to play an important role in the future energy system as a large-scale source of hydrogen without greenhouse gas emissions. Thus far, economic studies of nuclear hydrogen tend to focus on the levelized cost of hydrogen without accounting for the risks and uncertainties that potential investors would face. We present a financial model based on real options theory to assess the profitability of different nuclear hydrogen production technologies in evolving electricity and hydrogen markets. The model uses Monte Carlo simulations to represent uncertainty in future hydrogen and electricity prices. It computes the expected value and the distribution of discounted profits from nuclear hydrogen production plants. Moreover, the model quantifies the value of the option to switch between hydrogen and electricity production, depending on what is more profitable to sell. We use the model to analyze the market viability of four potential nuclear hydrogen technologies and conclude that flexibility in output product is likely to add significant economic value for an investor in nuclear hydrogen. This should be taken into account in the development phase of nuclear hydrogen technologies

  8. Use of nuclear energy for hydrogen production

    International Nuclear Information System (INIS)

    Axente, Damian

    2006-01-01

    Full text: The potentials of three hydrogen production processes under development for the industrial production of hydrogen using nuclear energy, namely the advanced electrolysis the steam reforming, the sulfur-iodine water splitting cycle, are compared and evaluated in this paper. Water electrolysis and steam reforming of methane are proven and used extensively today for the production of hydrogen. The overall thermal efficiency of the electrolysis includes the efficiency of the electrical power generation and of the electrolysis itself. The electrolysis process efficiency is about 75 % and of electrical power generation is only about 30 %, the overall thermal efficiency for H 2 generation being about 25 %. Steam reforming process consists of reacting methane (or natural gas) and steam in a chemical reactor at 800-900 deg. C, with a thermal efficiency of about 70 %. In a reforming process, with heat supplied by nuclear reactor, the heat must be supplied by a secondary loop from the nuclear side and be transferred to the methane/steam mixture, via a heat exchanger type reactor. The sulfur-iodine cycle, a thermochemical water splitting, is of particular interest because it produces hydrogen efficiently with no CO 2 as byproduct. If heated with a nuclear source it could prove to be an ideal environmental solution to hydrogen production. Steam reforming remains the cheapest hydrogen production method based on the latest estimates, even when implemented with nuclear reactor. The S-I cycle offers a close second solution and the electrolysis is the most expensive of the options for industrial H 2 production. The nuclear plant could power electrolysis operations right away; steam reforming with nuclear power is a little bit further off into the future, the first operation with nuclear facility is expected to have place in Japan in 2008. The S-I cycle implementation is still over the horizon, it will be more than 10 years until we will see that cycle in full scale

  9. Hydrogen production from solar energy

    Science.gov (United States)

    Eisenstadt, M. M.; Cox, K. E.

    1975-01-01

    Three alternatives for hydrogen production from solar energy have been analyzed on both efficiency and economic grounds. The analysis shows that the alternative using solar energy followed by thermochemical decomposition of water to produce hydrogen is the optimum one. The other schemes considered were the direct conversion of solar energy to electricity by silicon cells and water electrolysis, and the use of solar energy to power a vapor cycle followed by electrical generation and electrolysis. The capital cost of hydrogen via the thermochemical alternative was estimated at $575/kW of hydrogen output or $3.15/million Btu. Although this cost appears high when compared with hydrogen from other primary energy sources or from fossil fuel, environmental and social costs which favor solar energy may prove this scheme feasible in the future.

  10. Negative hydrogen ion production mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Bacal, M. [UPMC, LPP, Ecole Polytechnique, UMR CNRS 7648, Palaiseau (France); Wada, M. [School of Science and Engineering, Doshisha University, Kyoto 610-0321 (Japan)

    2015-06-15

    Negative hydrogen/deuterium ions can be formed by processes occurring in the plasma volume and on surfaces facing the plasma. The principal mechanisms leading to the formation of these negative ions are dissociative electron attachment to ro-vibrationally excited hydrogen/deuterium molecules when the reaction takes place in the plasma volume, and the direct electron transfer from the low work function metal surface to the hydrogen/deuterium atoms when formation occurs on the surface. The existing theoretical models and reported experimental results on these two mechanisms are summarized. Performance of the negative hydrogen/deuterium ion sources that emerged from studies of these mechanisms is reviewed. Contemporary negative ion sources do not have negative ion production electrodes of original surface type sources but are operated with caesium with their structures nearly identical to volume production type sources. Reasons for enhanced negative ion current due to caesium addition to these sources are discussed.

  11. Solar Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Koval, C. [Univ. of Colorado, Boulder (United States); Sutin, N. [Brookhaven National Lab., Upton, NY (United States); Turner, J. [National Renewable Energy Lab., Golden, CO (United States)

    1996-09-01

    This panel addressed different methods for the photoassisted dissociation of water into its component parts, hydrogen and oxygen. Systems considered include PV-electrolysis, photoelectrochemical cells, and transition-metal based microheterogeneous and homogeneous systems. While none of the systems for water splitting appear economically viable at the present time, the panel identified areas of basic research that could increase the overall efficiency and decrease the costs. Common to all the areas considered was the underlying belief that the water-to-hydrogen half reaction is reasonably well characterized, while the four-electron oxidation of water-to-oxygen is less well understood and represents a significant energy loss. For electrolysis, research in electrocatalysis to reduce overvoltage losses was identified as a key area for increased efficiency. Non-noble metal catalysts and less expensive components would reduce capital costs. While potentially offering higher efficiencies and lower costs, photoelectrochemical-based direct conversion systems undergo corrosion reactions and often have poor energetics for the water reaction. Research is needed to understand the factors that control the interfacial energetics and the photoinduced corrosion. Multi-photon devices were identified as promising systems for high efficiency conversion.

  12. Selecting appropriate technology for hydrogen production

    International Nuclear Information System (INIS)

    Tamhankar, S.S.

    2004-01-01

    'Full text:' Technologies for the production of synthesis gas (H2 + CO), a precursor to hydrogen, from a variety of fossil fuels are well known in industrial applications at relatively large scale. These include Steam Reforming (SR), Auto-Thermal Reforming (ATR) and Partial Oxidation (POX). A particular technology is selected based on the feed type and the desired products. Steam reforming is a mature technology, and is most prevalent for hydrogen production because of its high efficiency. However, at the smaller scale, the capital cost becomes a more significant factor, and a substantial reduction in this cost is necessary to meet the overall H2 gas cost targets, such as that stated by DOE ($1.50/kg). In developing small-scale H2 technologies, often, incremental improvements are incorporated. While useful, these are not adequate for the desired cost reduction. Also, for effective cost reduction, the whole system, including production, purification and associated equipment needs to be evaluated; cost reduction in just one of the units is not sufficient. This paper provides a critical assessment of the existing as well as novel technology options, specifically targeted at small scale H2 production. The technology options are evaluated to clearly point out which may or may not work and why. (author)

  13. Production of hydrogen from hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Lohmueller, R

    1984-03-01

    Hydrocarbons are the preferred starting materials for the industrial production of hydrogen. Most hydrogen is produced by steam reforming of light hydrocarbons. Partial oxidation of heavy oil and residue is used for the production of H/sub 2/ and synthesis gas in large plants. In both cases gas purification was improved. Hydrogen-rich gases like coke oven gas, refinery-offgas, and offgases from the chemical and petrochemical industry have high potential for becoming a major source of hydrogen. Processes for recovering H/sub 2/ (and by-products) are condensation and rectification at low temperatures and, most attractive and versatile for the production of very pure H/sub 2/, adsorption (PSA). The environmental impact of H/sub 2/ production lies mainly in the emission of CO/sub 2/ and heat. Other forms of pollution can be considerably reduced by conventional methods. The economy of H/sub 2/ production depends essentially on price and availability of the raw materials.

  14. The hydrogen production; La production d'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    Aujollet, P.; Goldstein, St. [CEA Cadarach, Dir. de l' Energie Nucleaire, 13 - Saint Paul lez Durance (France); Lucchese, P. [CEA Fontenay aux Roses, Dir. des Nouvelles Technologies de l' Energie, 92 (France)

    2002-07-01

    This paper gives an overview on the implementing of the hydrogen as substitution fuel in the transportation sector. It presents also the problems of this fuel storage and exploitation and describes the production modes and their safety. It also presents the main lines of the japan HTGR program. (A.L.B.)

  15. Photoelectrochemical Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jian

    2013-12-23

    The objectives of this project, covering two phases and an additional extension phase, were the development of thin film-based hybrid photovoltaic (PV)/photoelectrochemical (PEC) devices for solar-powered water splitting. The hybrid device, comprising a low-cost photoactive material integrated with amorphous silicon (a-Si:H or a-Si in short)-based solar cells as a driver, should be able to produce hydrogen with a 5% solar-to-hydrogen conversion efficiency (STH) and be durable for at least 500 hours. Three thin film material classes were studied and developed under this program: silicon-based compounds, copper chalcopyrite-based compounds, and metal oxides. With the silicon-based compounds, more specifically the amorphous silicon carbide (a-SiC), we achieved a STH efficiency of 3.7% when the photoelectrode was coupled to an a-Si tandem solar cell, and a STH efficiency of 6.1% when using a crystalline Si PV driver. The hybrid PV/a-SiC device tested under a current bias of -3~4 mA/cm{sup 2}, exhibited a durability of up to ~800 hours in 0.25 M H{sub 2}SO{sub 4} electrolyte. Other than the PV driver, the most critical element affecting the photocurrent (and hence the STH efficiency) of the hybrid PV/a-SiC device was the surface energetics at the a-SiC/electrolyte interface. Without surface modification, the photocurrent of the hybrid PEC device was ~1 mA/cm{sup 2} or lower due to a surface barrier that limits the extraction of photogenerated carriers. We conducted an extensive search for suitable surface modification techniques/materials, of which the deposition of low work function metal nanoparticles was the most successful. Metal nanoparticles of ruthenium (Ru), tungsten (W) or titanium (Ti) led to an anodic shift in the onset potential. We have also been able to develop hybrid devices of various configurations in a monolithic fashion and optimized the current matching via altering the energy bandgap and thickness of each constituent cell. As a result, the short

  16. Zero emission distributed hydrogen production

    International Nuclear Information System (INIS)

    Maddaloni, J.; Rowe, A.; Bailey, R.; McDonald, J.D.

    2004-01-01

    The need for distributed production facilities has become a critical issue in developing a hydrogen infrastructure. Hydrogen generation using processes that make effective use of what would normally be considered waste streams or process inefficiencies can have more favorable economics than stand-alone technologies. Currently, natural gas is distributed to industrial and residential customers through a network of pipelines. High pressure main lines move gas to the vicinity of consumers where the pressure is reduced for local, low pressure distribution. Often, the practice is to use an isenthalpic expansion which results in a cooling of the gas stream. Some of the natural gas is burned to preheat the fuel so that the temperature after the expansion is near ambient. This results in the destruction of exergy in the high pressure gas stream and produces CO 2 in the process. If, instead, a turbo-expander is used to reduce the stream pressure, work can be recovered using a generator and hydrogen can be produced via electrolysis. This method of hydrogen production is free of green-house gas emissions, makes use of existing gas distribution facilities, and uses exergy that would otherwise be destroyed. Pressure reduction using the work producing process (turbo-expander) is accompanied by a large drop in temperature, on the average of 70 K. The local gas distributor requires the gas temperature to be raised again to near 8 o C to prevent damage to valve assemblies. The required heating power after expansion can be on the order of megawatts (site dependent.) Supplying the heat can be seen as a cost if energy is taken from the system to reheat the fuel; however, the low temperature stream may also be considered an asset if the cooling power can be used for a local process. This analysis is the second stage of a study to examine the technical and economic feasibility of using pressure let-down sites as hydrogen production facilities. This paper describes a proposed

  17. A method of hydrogen production

    International Nuclear Information System (INIS)

    Schulten, R.; Teggers, H.; Schulze-Bentrop, R.

    1975-01-01

    This method of producing hydrogen from water in a multistage cycle process works without anorganic salts and requires only gases and liquids. Carbon oxide is catalytically converted into carbon dioxide and water by means of water vapour. The carbon dioxide is then converted into sulphuric acid and carbon oxide using water and sulphur dioxide at high temperatures and pressures, and the sulphuric acid is separated into sulphur dioxide, oxygen and water via the intermediate SO 2 . The SO 2 and CO 2 thus obtained are led back into the appropriate reaction stages, and hydrogen and oxygen are removed from the process as end products. (A schematic flow diagram is given.) (UWI) [de

  18. Chemistry - Toward efficient hydrogen production at surfaces

    DEFF Research Database (Denmark)

    Nørskov, Jens Kehlet; Christensen, Claus H.

    2006-01-01

    Calculations are providing a molecular picture of hydrogen production on catalytic surfaces and within enzymes, knowledge that may guide the design of new, more efficient catalysts for the hydrogen economy.......Calculations are providing a molecular picture of hydrogen production on catalytic surfaces and within enzymes, knowledge that may guide the design of new, more efficient catalysts for the hydrogen economy....

  19. Research on hydrogen production system

    International Nuclear Information System (INIS)

    Nakagiri, Toshio

    2002-07-01

    Hydrogen is closely watched for environmental issues in recent years. In this research, hydrogen production systems and production techniques are widely investigated, and selected some hydrogen production process which have high validity for FBR system. Conclusions of the investigation are shown below. (1) Water-electrolysis processes and steam reform processes at low temperatures are already realized in other fields, so they well be easily adopted for FBR system. FBR system has no advantage when compared with other systems, because water-electrolysis processes can be adopted for other electricity generation system. On the other hand, FBR system has an advantage when steam reforming processes at low temperatures will be adopted, because steam reforming processes at 550-600degC can't be adopted for LWR. (2) Thermochemical processes will be able to adopted for FBR when process temperature will be lowered and material problems solved, because their efficiencies are expected high. Radiolysis processes which use ray (for example, gamma rya) emitted in reactor can be generate hydrogen easily, so they will be able to be adopted for FBR if splitting efficiency will be higher. Further investigation and R and D to realize these processes are considered necessary. (author)

  20. Hydrogen Storage and Production Project

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, Abhijit [Univ. of Arkansas, Little Rock, AR (United States); Biris, A. S. [Univ. of Arkansas, Little Rock, AR (United States); Mazumder, M. K. [Univ. of Arkansas, Little Rock, AR (United States); Karabacak, T. [Univ. of Arkansas, Little Rock, AR (United States); Kannarpady, Ganesh [Univ. of Arkansas, Little Rock, AR (United States); Sharma, R. [Univ. of Arkansas, Little Rock, AR (United States)

    2011-07-31

    This is the final technical report. This report is a summary of the project. The goal of our project is to improve solar-to-hydrogen generation efficiency of the PhotoElectroChemical (PEC) conversion process by developing photoanodes with high absorption efficiency in the visible region of the solar radiation spectrum and to increase photo-corrosion resistance of the electrode for generating hydrogen from water. To meet this goal, we synthesized nanostructured heterogeneous semiconducting photoanodes with a higher light absorption efficiency compared to that of TiO2 and used a corrosion protective layer of TiO2. While the advantages of photoelectrochemical (PEC) production of hydrogen have not yet been realized, the recent developments show emergence of new nanostructural designs of photoanodes and choices of materials with significant gains in photoconversion efficiency.

  1. Hydrogen - From hydrogen to energy production

    International Nuclear Information System (INIS)

    Klotz, Gregory

    2005-01-01

    More than a century ago, Jules Verne wrote in 'The Mysterious Island' that water would one day be employed as fuel: 'Hydrogen and oxygen, which constitute it, used singly or together, will furnish an inexhaustible source of heat and light'. Today, the 'water motor' is not entirely the dream of a writer. Fiction is about to become fact thanks to hydrogen, which can be produced from water and when burned in air itself produces water. Hydrogen is now at the heart of international research. So why do we have such great expectations of hydrogen? 'Hydrogen as an energy system is now a major challenge, both scientifically and from an environmental and economic point of view'. Dominated as it is by fossil fuels (oil, gas and coal), our current energy system has left a dual threat hovering over our environment, exposing the planet to the exhaustion of its natural reserves and contributing to the greenhouse effect. If we want sustainable development for future generations, it is becoming necessary to diversify our methods of producing energy. Hydrogen is not, of course, a source of energy, because first it has to be produced. But it has the twofold advantage of being both inexhaustible and non-polluting. So in the future, it should have a very important role to play. (author)

  2. Options for CO2-lean hydrogen export from Norway to Germany

    International Nuclear Information System (INIS)

    Stiller, Christoph; Buenger, Ulrich; Svensson, Ann Mari; Moeller-Holst, Steffen; Espegren, Kari Aamodt; Holm, Oeystein Bindesboell; Tomasgaard, Asgeir

    2008-01-01

    Norway is a nation with an abundant supply of energy, both from fossil and renewable resources. Due to limited domestic demand, Norway is today exporting large amounts of petroleum products. For the future, various options for export of CO 2 -lean energy exist, both from Northern and Southern Norway, and both from fossil sources (including carbon capture and storage), and renewable energies (particularly wind power). Transport vectors are hydrogen pipelines, liquid hydrogen ships and HVDC cables, and a plausible customer is central Europe due to its proximity, high population density and lack of domestic energy resources. Within the framework of the ''NorWays'' project, various options to deliver energy for hydrogen-based transportation from Norway to Germany were studied. Eight CO 2 -lean well-to-wheel energy export chains were evaluated with respect to efficiency, GHG emissions and other environmental impacts, costs and utilisation of Norwegian R and D experience. In the chosen scenarios, energy export via hydrogen pipelines and ships appeared energetically and economically interesting against existing approaches as NG and electricity export. Furthermore, increased utilisation of Norwegian R and D experience and higher value creation is anticipated by the export of a higher refined product. (author)

  3. Hydrogen Production Using Nuclear Energy

    Energy Technology Data Exchange (ETDEWEB)

    Verfondern, K. [Research Centre Juelich (Germany)

    2013-03-15

    world. In recent years, the scope of the IAEA's programme has been widened to include other more promising applications such as nuclear hydrogen production and higher temperature process heat applications. The OECD Nuclear Energy Agency, Euratom and the Generation IV International Forum have also shown interest in the non-electric applications of nuclear power based on future generation advanced and innovative nuclear reactors. This report was developed under an IAEA project with the objective of providing updated, balanced and objective information on the current status of hydrogen production processes using nuclear energy. It documents the state of the art of the development of hydrogen as an energy carrier in many Member States, as well as its corresponding production through the use of nuclear power. The report includes an introduction to the technology of nuclear process heat reactors as a means of producing hydrogen or other upgraded fuels, with a focus on high temperature reactor technology to achieve simultaneous generation of electricity and high temperature process heat and steam. Special emphasis is placed on the safety aspects of nuclear hydrogen production systems.

  4. Status of hydrogen production by nuclear power

    International Nuclear Information System (INIS)

    Chang, Jong Wa; Yoo, Kun Joong; Park, Chang Kue

    2001-07-01

    Hydrogen production methods, such as electrolysis, thermochemical method, biological method, and photochemical method, are introduced in this report. Also reviewed are current status of the development of High Temperatrue Gas Coooled Reactor, and it application for hydrogen production

  5. Hydrogen production in fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Sudo, S.; Tomita, Y.; Yamaguchi, S.; Iiyoshi, A.; Momota, H.; Motojima, O.; Okamoto, M.; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1993-11-01

    As one of methods of innovative energy production in fusion reactors without having a conventional turbine-type generator, an efficient use of radiation produced in a fusion reactor with utilizing semiconductor and supplying clean fuel in a form of hydrogen gas are studied. Taking the candidates of reactors such as a toroidal system and an open system for application of the new concepts, the expected efficiency and a concept of plant system are investigated. (author).

  6. Hydrogen production in fusion reactors

    Science.gov (United States)

    Sudo, S.; Tomita, Y.; Yamaguchi, S.; Iiyoshi, A.; Momota, H.; Motojima, O.; Okamoto, M.; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1993-11-01

    As one of the methods of innovative energy production in fusion reactors (that do not include a conventional turbine-type generator), the efficient use of fusion-reactor radiation and semiconductors to supply clean fuel in the form of hydrogen gas is studied. Taking the reactor candidates such as a toroidal system and an open system for application of the new concepts, the expected efficiency and a plant system concept are investigated.

  7. Hydrogen production in fusion reactors

    International Nuclear Information System (INIS)

    Sudo, S.; Tomita, Y.; Yamaguchi, S.; Iiyoshi, A.; Momota, H.; Motojima, O.; Okamoto, M.; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1993-11-01

    As one of methods of innovative energy production in fusion reactors without having a conventional turbine-type generator, an efficient use of radiation produced in a fusion reactor with utilizing semiconductor and supplying clean fuel in a form of hydrogen gas are studied. Taking the candidates of reactors such as a toroidal system and an open system for application of the new concepts, the expected efficiency and a concept of plant system are investigated. (author)

  8. Hydrogen Production for Refuelling Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hulteberg, Christian; Aagesen, Diane (Intelligent Energy, Long Beach, CA (United States))

    2009-08-15

    /day); Feedstock Cost (USD 0.15 - USD 0.45 per kg); Availability (85% - 95%). The return-on-investment is between USD 90 000 and USD 180 000 in 60 % of the 5 000 simulation runs, which leads to the conclusion that given these assumptions the owning and operation of such a unit can be profitable. As for the performance of the system, it is concluded to be within targets based on the different performance measures reported above. The conversion is in the expected range (80-85%), given the throughput of 16 kg of hydrogen per day. The efficiency as reported is in the acceptable range (approx65%), with some room for improvement within the given system architecture, if desired. However, there is a trade-off between throughput, efficiency and cost that will have to be considered in every redesign of the system. The PSA chosen for the task has performed well during the 200+ hours of operation and there is no doubt that it will be sufficient for the task. The same thing can be said with respect to the system performance with respect to thermo-mechanical stress; which was proven by operating the system for more than 500 hours and performing 58 start-and-stop cycles during the testing. There does not seem to be any major differences between operating on natural gas or methane, based on the testing performed. The slight decrease in hydrogen production can be due to a difference in the H{sub 2}/CO ratio between the various fuels. As expected the efficiency increases with load as well as the hydrogen production rate. Based on the results disseminated above, there is no indication why the current reactor system cannot be configured into a field deployable system. The operation of the system has given valuable experience that will be embedded into any field deployed unit

  9. Hydrogen production processes; Procedes de production d'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The goals of this first Gedepeon workshop on hydrogen production processes are: to stimulate the information exchange about research programs and research advances in the domain of hydrogen production processes, to indicate the domains of interest of these processes and the potentialities linked with the coupling of a nuclear reactor, to establish the actions of common interest for the CEA, the CNRS, and eventually EDF, that can be funded in the framework of the Gedepeon research group. This document gathers the slides of the 17 presentations given at this workshop and dealing with: the H{sub 2} question and the international research programs (Lucchese P.); the CEA's research program (Lucchese P., Anzieu P.); processes based on the iodine/sulfur cycle: efficiency of a facility - flow-sheets, efficiencies, hard points (Borgard J.M.), R and D about the I/S cycle: Bunsen reaction (Colette S.), R and D about the I/S cycle: the HI/I{sub 2}/H{sub 2}O system (Doizi D.), demonstration loop/chemical engineering (Duhamet J.), materials and corrosion (Terlain A.); other processes under study: the Westinghouse cycle (Eysseric C.), other processes under study at the CEA (UT3, plasma,...) (Lemort F.), database about thermochemical cycles (Abanades S.), Zn/ZnO cycle (Broust F.), H{sub 2} production by cracking, high temperature reforming with carbon trapping (Flamant G.), membrane technology (De Lamare J.); high-temperature electrolysis: SOFC used as electrolyzers (Grastien R.); generic aspects linked with hydrogen production: technical-economical evaluation of processes (Werkoff F.), thermodynamic tools (Neveu P.), the reactor-process coupling (Aujollet P.). (J.S.)

  10. Ulster Carpets - Cleaner Production option report

    DEFF Research Database (Denmark)

    Wenzel, Henrik; Mercer, David

    A survey on options for saving water and energy was conducted at Ulster Carpets on 14th November 2002 by Henrik Wenzel from the Institute for Product Development in Denmark, and David Mercer from Enviros, South Africa. This report details observations made during this site visit and makes...

  11. The Utilization of Solar Energy by Way of Hydrogen Production

    International Nuclear Information System (INIS)

    Broda, E.

    1977-01-01

    It is suggested to produce hydrogen gas by photolytic splitting of water, and to feed it into a hydrogen economy. One approach to obtain good yields in photolysis consist in the application of asymmetric membranes that release the different, reactive, primary products of the photochemical reaction on opposite sides of the membranes so that a back reaction is prevented. Through this solar-chemical option a very large part of the energy needs of mankind could be covered in the long run. (author)

  12. Challenges for renewable hydrogen production

    International Nuclear Information System (INIS)

    Levin, D.B.; Chahine, R.

    2009-01-01

    The increasing demand for H 2 for heavy oil upgrading, desulfurization and upgrading of conventional petroleum, and for production of ammonium, in addition to the projected demand for H 2 as a transportation fuel and portable power, will require H 2 production on a massive scale. Increased production of H 2 by current technologies will consume greater amounts of conventional hydrocarbons (primarily natural gas) which in turn will generate greater greenhouse gas emissions. Production of H 2 from renewable sources derived from agricultural or other waste streams offers the possibility to contribute to the production capacity with lower or no net greenhouse gas emissions (without carbon sequestration technologies), increasing the flexibility and improving the economics of distributed and semi-centralized reforming. Electrolysis, thermo-catalytic, and biological production can be easily adapted to on-site decentralized production of H 2 , circumventing the need to establish a large and costly distribution infrastructure. Each of these H 2 production technologies, however, faces technical challenges, including conversion efficiencies, feedstock type, and the need to safely integrate H 2 production systems with H 2 purification and storage technologies. These issues are being addressed by H2CAN, a recently launched NSERC funded national strategic network in hydrogen production, purification, storage, infrastructure and safety. (author)

  13. Solar based hydrogen production systems

    CERN Document Server

    Dincer, Ibrahim

    2013-01-01

    This book provides a comprehensive analysis of various solar based hydrogen production systems. The book covers first-law (energy based) and second-law (exergy based) efficiencies and provides a comprehensive understanding of their implications. It will help minimize the widespread misuse of efficiencies among students and researchers in energy field by using an intuitive and unified approach for defining efficiencies. The book gives a clear understanding of the sustainability and environmental impact analysis of the above systems. The book will be particularly useful for a clear understanding

  14. Nuclear hydrogen production and its safe handling

    International Nuclear Information System (INIS)

    Chung, Hongsuk; Paek, Seungwoo; Kim, Kwang-Rag; Ahn, Do-Hee; Lee, Minsoo; Chang, Jong Hwa

    2003-01-01

    An overview of the hydrogen related research presently undertaken at the Korea Atomic Energy Research Institute are presented. These encompass nuclear hydrogen production, hydrogen storage, and the safe handling of hydrogen, High temperature gas-cooled reactors can play a significant role, with respect to large-scale hydrogen production, if used as the provider of high temperature heat in fossil fuel conversion or thermochemical cycles. A variety of potential hydrogen production methods for high temperature gas-cooled reactors were analyzed. They are steam reforming of natural gas, thermochemical cycles, etc. The produced hydrogen should be stored safely. Titanium metal was tested primarily because its hydride has very low dissociation pressures at normal storage temperatures and a high capacity for hydrogen, it is easy to prepare and is non-reactive with air in the expected storage conditions. There could be a number of potential sources of hydrogen evolution risk in a nuclear hydrogen production facility. In order to reduce the deflagration detonation it is necessary to develop hydrogen control methods that are capable of dealing with the hydrogen release rate. A series of experiments were conducted to assess the catalytic recombination characteristics of hydrogen in an air stream using palladium catalysts. (author)

  15. Hydrogen storage for wind parks: A real options evaluation for an optimal investment in more flexibility

    International Nuclear Information System (INIS)

    Kroniger, Daniel; Madlener, Reinhard

    2014-01-01

    Highlights: • Economic analysis of investing in H 2 storage for excess wind power production. • Use of real options analysis to account for uncertainty and managerial flexibility. • Hourly profits are simulated for profit-maximizing operation of the storage device. • Revenues by load factor increase, offering minute reserve, temporal arbitrage, H 2 sale. • Power-to-power is unprofitable under current techno-political conditions in Germany. - Abstract: In this paper, we investigate the economic viability of hydrogen storage for excess electricity produced in wind power plants. For the analysis, we define two scenarios (50 MW system with and without re-electrification unit) and apply Monte Carlo simulation and real options analysis (ROA) to compute hourly profits under uncertainty regarding wind speed, spot market electricity prices, and call of minute reserve capacity. Hydrogen as a storage medium helps to either (1) increase capacity utilization of the wind park in case of grid disconnection; (2) to offer minute reserve; or (3) to exploit temporal price arbitrage at the electricity spot market; additionally, hydrogen can also be directly sold as a commodity. We find that power-to-power operation is highly uneconomical under current framework conditions in Germany, irrespective of potential energy efficiency gains. Interestingly, due to counterbalancing effects, offshore wind parks are found to have only a modest economic advantage compared to onshore ones. The power-to-fuel plant can be operated profitably (at hydrogen prices of more than 0.36 € m −3 and a 100% utilization of the electrolyzer) if hydrogen is directly marketed instead of used to store and re-generate electrical energy. The ROA recommends investment in a storage device without re-electrification unit beyond an expected project value that is about twice the investment cost of the storage device, a figure which is reduced markedly as conversion efficiency rises, assuming technical change

  16. Hydrogen production from biomass by biological systems

    International Nuclear Information System (INIS)

    Sharifan, H.R.; Qader, S.

    2009-01-01

    Hydrogen gas is seen as a future energy carrier, not involved in 'greenhouse' gas and its released energy in combustion can be converted to electric power. Biological system with low energy can produce hydrogen compared to electrochemical hydrogen production via solar battery-based water splitting which requires the use of solar batteries with high energy requirements. The biological hydrogen production occurs in microalgae and cyanobacteria by photosynthesis. They consume biochemical energy to produce molecular hydrogen. Hydrogen in some algae is an anaerobic production in the absence of light. In cyanobacteria the hydrogen production simultaneously happens with nitrogen fixation, and also catalyzed by nitrogenase as a side reaction. Hydrogen production by photosynthetic bacteria is mediated by nitrogenase activity, although hydrogenases may be active for both hydrogen production and hydrogen uptake under some conditions. Genetic studies on photosynthetic microorganisms have markedly increased in recent times, relatively few genetic engineering studies have focused on altering the characteristics of these microorganisms, particularly with respect to enhancing the hydrogen-producing capabilities of photosynthetic bacteria and cyanobacteria. (author)

  17. Production, storage, transporation and utilization of hydrogen

    International Nuclear Information System (INIS)

    Akiba, E.

    1992-01-01

    Hydrogen is produced from water and it can be used for fuel. Water is formed again by combustion of hydrogen with oxygen in the air. Hydrogen is an ideal fuel because hydrogen itself and gases formed by the combustion of hydrogen are not greenhouse and ozone layer damaging gases. Therefore, hydrogen is the most environmental friendly fuel that we have ever had. Hydrogen gas does not naturally exist. Therefore, hydrogen must be produced from hydrogen containing compounds such as water and hydrocarbons by adding energy. At present, hydrogen is produced in large scale as a raw material for the synthesis of ammonia, methanol and other chemicals but not for fuel. In other words, hydrogen fuel has not been realized but will be actualized in the near future. In this paper hydrogen will be discussed as fuel which will be used for aircraft, space application, power generation, combustion, etc. Especially, production of hydrogen is a very important technology for achieving hydrogen energy systems. Storage, transportation and utilization of hydrogen fuel will also be discussed in this paper

  18. Fermentative hydrogen production by diverse microflora

    International Nuclear Information System (INIS)

    Baghchehsaraee, B.; Nakhla, G.; Karamanev, D.; Margaritis, A.

    2009-01-01

    'Full text': In this study of hydrogen production with activated sludge, a diverse bacterial source has been investigated and compared to microflora from anaerobic digester sludge, which is less diverse. Batch experiments were conducted at mesophilic (37 o C) and thermophilic (55 o C) temperatures. The hydrogen production yields with activated sludge at 37 o C and 55 o C were 0.25 and 0.93 mol H 2 /mol glucose, respectively. The maximum hydrogen production rates with activated sludge in both temperatures were 4.2 mL/h. Anaerobic digester sludge showed higher hydrogen production yields and rates at both mesophilic and thermophilic temperatures. The results of repeated batch experiments with activated sludge showed an increase in the hydrogen production during the consecutive batches. However, hydrogen production was not stable along the repeated batches. The observed instability was due to the formation of lactic acid and ethanol. (author)

  19. Hydrogen production from microbial strains

    Science.gov (United States)

    Harwood, Caroline S; Rey, Federico E

    2012-09-18

    The present invention is directed to a method of screening microbe strains capable of generating hydrogen. This method involves inoculating one or more microbes in a sample containing cell culture medium to form an inoculated culture medium. The inoculated culture medium is then incubated under hydrogen producing conditions. Once incubating causes the inoculated culture medium to produce hydrogen, microbes in the culture medium are identified as candidate microbe strains capable of generating hydrogen. Methods of producing hydrogen using one or more of the microbial strains identified as well as the hydrogen producing strains themselves are also disclosed.

  20. Production of Hydrogen from Bio-ethanol

    International Nuclear Information System (INIS)

    Fabrice Giroudiere; Christophe Boyer; Stephane His; Robert Sanger; Kishore Doshi; Jijun Xu

    2006-01-01

    IFP and HyRadix are collaborating in the development of a new hydrogen production system from liquid feedstock such as bio-ethanol. Reducing greenhouse gas (GHG) emissions along with high hydrogen yield are the key objectives. Market application of the system will be hydrogen refueling stations as well as medium scale hydrogen consumers including the electronics, metals processing, and oils hydrogenation industries. The conversion of bio-ethanol to hydrogen will be performed within a co-developed process including an auto-thermal reformer working under pressure. The technology will produce high-purity hydrogen with ultralow CO content. The catalytic auto-thermal reforming technology combines the exothermic and endothermic reaction and leads to a highly efficient heat integration. The development strategy to reach a high hydrogen yield target with the bio-ethanol hydrogen generator is presented. (authors)

  1. HTTR workshop (workshop on hydrogen production technology)

    International Nuclear Information System (INIS)

    Shiina, Yasuaki; Takizuka, Takakazu

    2004-12-01

    Various research and development efforts have been performed to solve the global energy and environmental problems caused by large consumption of fossil fuels. Research activities on advanced hydrogen production technology by the use of nuclear heat from high temperature gas cooled reactors, for example, have been flourished in universities, research institutes and companies in many countries. The Department of HTTR Project and the Department of Advanced Nuclear Heat Technology of JAERI held the HTTR Workshop (Workshop on Hydrogen Production Technology) on July 5 and 6, 2004 to grasp the present status of R and D about the technology of HTGR and the nuclear hydrogen production in the world and to discuss about necessity of the nuclear hydrogen production and technical problems for the future development of the technology. More than 110 participants attended the Workshop including foreign participants from USA, France, Korea, Germany, Canada and United Kingdom. In the Workshop, the presentations were made on such topics as R and D programs for nuclear energy and hydrogen production technologies by thermo-chemical or other processes. Also, the possibility of the nuclear hydrogen production in the future society was discussed. The workshop showed that the R and D for the hydrogen production by the thermo-chemical process has been performed in many countries. The workshop affirmed that nuclear hydrogen production could be one of the competitive supplier of hydrogen in the future. The second HTTR Workshop will be held in the autumn next year. (author)

  2. Microstructured reactors for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Aartun, Ingrid

    2005-07-01

    Small scale hydrogen production by partial oxidation (POX) and oxidative steam reforming (OSR) have been studied over Rh-impregnated microchannel Fecralloy reactors and alumina foams. Trying to establish whether metallic microchannel reactors have special advantages for hydrogen production via catalytic POX or OSR with respect to activity, selectivity and stability was of special interest. The microchannel Fecralloy reactors were oxidised at 1000 deg C to form a {alpha}-Al2O3 layer in the channels in order to enhance the surface area prior to impregnation. Kr-BET measurements showed that the specific surface area after oxidation was approximately 10 times higher than the calculated geometric surface area. Approximately 1 mg Rh was deposited in the channels by impregnation with an aqueous solution of RhCl3. Annular pieces (15 mm o.d.,4 mm i.d., 14 mm length) of extruded {alpha}-Al2O3 foams were impregnated with aqueous solutions of Rh(NO3)3 to obtain 0.01, 0.05 and 0.1 wt.% loadings, as predicted by solution uptake. ICP-AES analyses showed that the actual Rh loadings probably were higher, 0.025, 0.077 and 0.169 wt.% respectively. One of the microchannel Fecralloy reactors and all Al2O3 foams were equipped with a channel to allow for temperature measurement inside the catalytic system. Temperature profiles obtained along the reactor axes show that the metallic microchannel reactor is able to minimize temperature gradients as compared to the alumina foams. At sufficiently high furnace temperature, the gas phase in front of the Rh/Al2O3/Frecralloy microchannel reactor and the 0.025 wt.% Rh/Al2O3 foams ignites. Gas phase ignition leads to lower syngas selectivity and higher selectivity to total oxidation products and hydrocarbon by-products. Before ignition of the gas phase the hydrogen selectivity is increased in OSR as compared to POX, the main contribution being the water-gas shift reaction. After gas phase ignition, increased formation of hydrocarbon by-products

  3. Hydrogen production by recombinant Escherichia coli strains

    Science.gov (United States)

    Maeda, Toshinari; Sanchez‐Torres, Viviana; Wood, Thomas K.

    2012-01-01

    Summary The production of hydrogen via microbial biotechnology is an active field of research. Given its ease of manipulation, the best‐studied bacterium Escherichia coli has become a workhorse for enhanced hydrogen production through metabolic engineering, heterologous gene expression, adaptive evolution, and protein engineering. Herein, the utility of E. coli strains to produce hydrogen, via native hydrogenases or heterologous ones, is reviewed. In addition, potential strategies for increasing hydrogen production are outlined and whole‐cell systems and cell‐free systems are compared. PMID:21895995

  4. Energy scenarios for hydrogen production in Mexico

    International Nuclear Information System (INIS)

    Ortega V, E.; Francois L, J. L.

    2009-10-01

    The hydrogen is a clean and very efficient fuel, its combustion does not produce gases of greenhouse effect, ozone precursors and residual acids. Also the hydrogen produced by friendly energy sources with the environment like nuclear energy could help to solve the global problems that it confronts the energy at present time. Presently work fuel cycles of hydrogen production technologies in Mexico are judged, by means of a structured methodology in the concept of sustainable development in its social, economic and environmental dimensions. The methodology is divided in three scenarios: base, Outlook 2030 and capture of CO 2 . The first scenario makes reference to cycles analysis in a current context for Mexico, the second taking in account the demand projections reported by the IAEA in its report Outlook and the third scenario, capture of CO 2 , the technologies are analyzed supposing a reduction in capture costs of 75%. Each scenario also has four cases (base, social, environmental and economic) by means of which the cycles are analyzed in the dimensions of sustainable development. For scenarios base and capture, results show that combination nuclear energy- reformed of gas it is the best alternative for cases base and economic. For social case, the evaluated better technology is the hydraulics, and for environmental case, the best option is represented by the regenerative thermochemistry cycles. The scenario Outlook 2030 show a favorable tendency of growth of renewable sources, being the aeolian energy the best technology evaluated in the cases base and environmental, the hydraulics technology in the social case and in the economic case the reformed of natural gas that uses nuclear heat. (Author)

  5. Hydrogen production by alkaline water electrolysis

    OpenAIRE

    Santos, Diogo M. F.; Sequeira, César A. C.; Figueiredo, José L.

    2013-01-01

    Water electrolysis is one of the simplest methods used for hydrogen production. It has the advantage of being able to produce hydrogen using only renewable energy. To expand the use of water electrolysis, it is mandatory to reduce energy consumption, cost, and maintenance of current electrolyzers, and, on the other hand, to increase their efficiency, durability, and safety. In this study, modern technologies for hydrogen production by water electrolysis have been investigated. In this article...

  6. Nuclear energy for sustainable Hydrogen production

    International Nuclear Information System (INIS)

    Gyoshev, G.

    2004-01-01

    There is general agreement that hydrogen as an universal energy carrier could play increasingly important role in energy future as part of a set of solutions to a variety of energy and environmental problems. Given its abundant nature, hydrogen has been an important raw material in the organic chemical industry. At recent years strong competition has emerged between nations as diverse as the U.S., Japan, Germany, China and Iceland in the race to commercialize hydrogen energy vehicles in the beginning of 21st Century. Any form of energy - fossil, renewable or nuclear - can be used to generate hydrogen. The hydrogen production by nuclear electricity is considered as a sustainable method. By our presentation we are trying to evaluate possibilities for sustainable hydrogen production by nuclear energy at near, medium and long term on EC strategic documents basis. The main EC documents enter water electrolysis by nuclear electricity as only sustainable technology for hydrogen production in early stage of hydrogen economy. In long term as sustainable method is considered the splitting of water by thermochemical technology using heat from high temperature reactors too. We consider that at medium stage of hydrogen economy it is possible to optimize the sustainable hydrogen production by high temperature and high pressure water electrolysis by using a nuclear-solar energy system. (author)

  7. Hydrogenic systems for calculable frequency standards. Status and options

    International Nuclear Information System (INIS)

    Flowers, J.; Klein, H.; Knight, D.

    2001-01-01

    The study of hydrogen and hydrogenic (one-electron) ions is an area of rapid progress and one of great potential for future frequency standards. In 1997, the two-photon 1S-2S transition in the hydrogen atom was included in the list of approved radiations for the practical realisation of the metre, and since then revolutions in optical frequency metrology have reduced the uncertainty in its frequency by more than an order of magnitude, to 1.8 parts in 10 14 . Hydrogenic systems are simple enough that the frequencies of their transitions can be calculated in terms of the Rydberg constant with an accuracy that can approach or exceed the measurement uncertainty. Transitions in such systems can be thought of as forming a natural frequency scale, and offer the prospect of a set of quantum frequency standards which are directly related to the fundamental constants. The Rydberg constant is currently best determined from optical frequency measurements in hydrogen. However, to take full advantage of the recent high accuracy 1S-2S frequency measurement requires: Improved measurements of other transition frequencies in the hydrogen atom; Reduced uncertainty in the quantum electrodynamic (QED) contributions to the energy levels, in particular the two-loop binding corrections; An improved value for the proton charge radius. In He + and one-electron systems of higher atomic number Z, the two-loop binding corrections are a fractionally larger part of the Lamb shift due to their rapid scaling with Z. Measurements of the Lamb shift in medium-Z hydrogenic ions can therefore provide tests of these corrections, and feed in to the theoretical understanding of hydrogen itself Although both theory and experiment are less accurate at higher Z, there is the potential for a new range of X-ray standards, providing that the QED corrections are well understood and new absolute measurement techniques can be developed. A number of areas are suggested for future investigation: Improving the

  8. Exergetic life cycle assessment of hydrogen production from renewables

    Science.gov (United States)

    Granovskii, Mikhail; Dincer, Ibrahim; Rosen, Marc A.

    Life cycle assessment is extended to exergetic life cycle assessment and used to evaluate the exergy efficiency, economic effectiveness and environmental impact of producing hydrogen using wind and solar energy in place of fossil fuels. The product hydrogen is considered a fuel for fuel cell vehicles and a substitute for gasoline. Fossil fuel technologies for producing hydrogen from natural gas and gasoline from crude oil are contrasted with options using renewable energy. Exergy efficiencies and greenhouse gas and air pollution emissions are evaluated for all process steps, including crude oil and natural gas pipeline transportation, crude oil distillation and natural gas reforming, wind and solar electricity generation, hydrogen production through water electrolysis, and gasoline and hydrogen distribution and utilization. The use of wind power to produce hydrogen via electrolysis, and its application in a fuel cell vehicle, exhibits the lowest fossil and mineral resource consumption rate. However, the economic attractiveness, as measured by a "capital investment effectiveness factor," of renewable technologies depends significantly on the ratio of costs for hydrogen and natural gas. At the present cost ratio of about 2 (per unit of lower heating value or exergy), capital investments are about five times lower to produce hydrogen via natural gas rather than wind energy. As a consequence, the cost of wind- and solar-based electricity and hydrogen is substantially higher than that of natural gas. The implementation of a hydrogen fuel cell instead of an internal combustion engine permits, theoretically, an increase in a vehicle's engine efficiency of about of two times. Depending on the ratio in engine efficiencies, the substitution of gasoline with "renewable" hydrogen leads to (a) greenhouse gas (GHG) emissions reductions of 12-23 times for hydrogen from wind and 5-8 times for hydrogen from solar energy, and (b) air pollution (AP) emissions reductions of 38

  9. Hydrogen production in a PWR during LOCA

    International Nuclear Information System (INIS)

    Cassette, P.

    1984-01-01

    Hydrogen generation during a PWR LOCA has been estimated for design basis accident and for two more severe hypothetical accidents. Hydrogen production during design basis accident is a rather slow mechanism, allowing in the worst case, 15 days to connect a hydrogen recombining unit to the containment atmosphere monitoring system. Hydrogen generated by steam oxidation during more severe hypothetical accidents was found limited by steam availability and fuel melting phenomena. Uncertainty is, however, still remaining on corium-zirconium-steam interaction. In the worst case, calculations lead to the production of 500 kg of hydrogen, thus leading to a volume concentration of 15% in containment atmosphere, assuming homogeneous hydrogen distribution within the reactor building. This concentration is within flammability limits but not within detonation limits. However, hydrogen detonation due to local hydrogen accumulation cannot be discarded. A major uncertainty subsisting on hydrogen hazard is hydrogen distribution during the first hours of the accident. This point determines the effects and consequences of local detonation or deflagration which could possibly be harmful to safeguard systems, or induce missile generation in the reactor building. As electrical supply failures are identified as an important contributor to severe accident risk, corrective actions have been taken in France to improve their reliability, including the installation of a gas turbine on each site to supplement the existing sources. These actions are thus contributing to hydrogen hazard reduction

  10. Technical Integration of Nuclear Hydrogen Production Technology

    International Nuclear Information System (INIS)

    Lee, Ki Young; Chang, J. H.; Park, J. K.

    2007-06-01

    These works focus on the development of attainment indices for nuclear hydrogen key technologies, the analysis of the hydrogen production process and the performance estimation for hydrogen production system, and the assessment of the nuclear hydrogen production economy. To estimate the attainments of the key technologies in progress with the performance goals of GIF, itemized are the attainment indices based on SRP published in VHTR R and D steering committee of Gen-IV. For assessing the degree of attainments in comparison with the final goals of VHTR technologies in progress of researches, subdivided are the prerequisite items conformed to the NHDD concepts established in a preconceptual design in 2005. The codes for analyzing the hydrogen production economy are developed for calculating the unit production cost of nuclear hydrogen. We developed basic R and D quality management methodology to meet design technology of VHTR's needs. By putting it in practice, we derived some problems and solutions. We distributed R and D QAP and Q and D QAM to each teams and these are in operation. Computer simulations are performed for estimating the thermal efficiency for the electrodialysis component likely to adapting as one of the hydrogen production system in Korea and EED-SI process known as the key components of the hydrogen production systems. Using the commercial codes, the process diagrams and the spread-sheets were produced for the Bunsen reaction process, Sulphuric Acid dissolution process and HI dissolution process, respectively, which are the key components composing of the SI process

  11. Scenarios of hydrogen production from wind power

    Energy Technology Data Exchange (ETDEWEB)

    Klaric, Mario

    2010-09-15

    Since almost total amount of hydrogen is currently being produced from natural gas, other ways of cleaner and 'more renewable' production should be made feasible in order to make benchmarks for total 'hydrogen economy'. Hydrogen production from wind power combined with electrolysis imposes as one possible framework for new economy development. In this paper various wind-to-hydrogen scenarios were calculated. Cash flows of asset based project financing were used as decision making tool. Most important parameters were identified and strategies for further research and development and resource allocation are suggested.

  12. Hydrogen production through biocatalyzed electrolysis

    NARCIS (Netherlands)

    Rozendal, R.A.

    2007-01-01

    cum laude graduation (with distinction) To replace fossil fuels, society is currently considering alternative clean fuels for transportation. Hydrogen could be such a fuel. In theory, large amounts of renewable hydrogen can be produced from organic contaminants in wastewater. During his PhD research

  13. Technoeconomic analysis of renewable hydrogen production, storage, and detection systems

    Energy Technology Data Exchange (ETDEWEB)

    Mann, M.K.; Spath, P.L.; Kadam, K. [National Renewable Energy Lab., Golden, CO (United States)

    1996-10-01

    Technical and economic feasibility studies of different degrees of completeness and detail have been performed on several projects being funded by the Department of Energy`s Hydrogen Program. Work this year focused on projects at the National Renewable Energy Laboratory, although analyses of projects at other institutions are underway or planned. Highly detailed analyses were completed on a fiber optic hydrogen leak detector and a process to produce hydrogen from biomass via pyrolysis followed by steam reforming of the pyrolysis oil. Less detailed economic assessments of solar and biologically-based hydrogen production processes have been performed and focused on the steps that need to be taken to improve the competitive position of these technologies. Sensitivity analyses were conducted on all analyses to reveal the degree to which the cost results are affected by market changes and technological advances. For hydrogen storage by carbon nanotubes, a survey of the competing storage technologies was made in order to set a baseline for cost goals. A determination of the likelihood of commercialization was made for nearly all systems examined. Hydrogen from biomass via pyrolysis and steam reforming was found to have significant economic potential if a coproduct option could be co-commercialized. Photoelectrochemical hydrogen production may have economic potential, but only if low-cost cells can be modified to split water and to avoid surface oxidation. The use of bacteria to convert the carbon monoxide in biomass syngas to hydrogen was found to be slightly more expensive than the high end of currently commercial hydrogen, although there are significant opportunities to reduce costs. Finally, the cost of installing a fiber-optic chemochromic hydrogen detection system in passenger vehicles was found to be very low and competitive with alternative sensor systems.

  14. Hydrogen production and storage: R & D priorities and gaps

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-05-04

    This review of priorities and gaps in hydrogen production and storage R & D has been prepared by the IEA Hydrogen Implementing Agreement in the context of the activities of the IEA Hydrogen Co-ordination Group. It includes two papers. The first is by Trygve Riis, Elisabet F. Hagen, Preben J.S. Vie and Oeystein Ulleberg. This offers an overview of the technologies for hydrogen production. The technologies discussed are reforming of natural gas; gasification of coal and biomass; and the splitting of water by water-electrolysis, photo-electrolysis, photo-biological production and high-temperature decomposition. The second paper is by Trygve Riis, Gary Sandrock, Oeystein Ulleberg and Preben J.S. Vie. The objective of this paper is to provide a brief overview of the possible hydrogen storage options available today and in the foreseeable future. Hydrogen storage can be considered for onboard vehicular, portable, stationary, bulk, and transport applications, but the main focus of this paper is on vehicular storage, namely fuel cell or ICE/electric hybrid vehicles. 7 refs., 24 figs., 14 tabs.

  15. How green are the hydrogen production processes?

    International Nuclear Information System (INIS)

    Miele, Ph.; Demirci, U.B.

    2010-01-01

    Molecular hydrogen is recognised as being one of the most promising fuels alternate to fossil fuels. Unfortunately it only exists combined with other elements like e.g. oxygen in the case of water and therefore has to be produced. Today various methods for producing molecular hydrogen are being investigated. Besides its energy potential, molecular hydrogen is regarded as being a green energy carrier because it can be produced from renewable sources and its combustion/oxidation generates water. However as it has to be produced its greenness merits a deeper discussion especially stressing on its production routes. The goal of the present article is to discuss the relative greenness of the various hydrogen production processes on the basis of the twelve principles of green chemistry. It is mainly showed that the combination 'renewable raw materials, biological or electrochemical methods, and renewable energies (e.g. solar or wind)' undeniably makes the hydrogen production green. (authors)

  16. Fusion reactors for hydrogen production via electrolysis

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.; Steinberg, M.

    1979-01-01

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of approx. 50 to 70% are projected for fusion reactors using high temperature blankets

  17. Hydrogen Infrastructure Decisions through a Real Option Lens

    NARCIS (Netherlands)

    Li, Y.|info:eu-repo/dai/nl/31485021X

    2018-01-01

    Hydrogen has emerged as a possible transportation fuel for addressing long-term, sustainable energy supply, security, and environmental problems. The transition from fossil-fuel based energy consumption towards sustainable energy solutions is a complex societal process. The innovation process for

  18. Developments and constraints in fermentative hydrogen production

    NARCIS (Netherlands)

    Bartacek, J.; Zabranska, J.; Lens, P.N.L.

    2007-01-01

    Fermentative hydrogen production is a novel aspect of anaerobic digestion. The main advantage of hydrogen is that it is a clean and renewable energy source/carrier with high specific heat of combustion and no contribution to the Greenhouse effect, and can be used in many industrial applications.

  19. Primary energy sources for hydrogen production

    International Nuclear Information System (INIS)

    Hassmann, K.; Kuehne, H.M.

    1993-01-01

    The costs for hydrogen production through water electrolysis are estimated, assuming the electricity is produced from solar, hydro-, fossil, or nuclear power. The costs for hydrogen end-use in the power generation, heat and transportation sectors are also calculated, based on a state of the art technology and a more advanced technology expected to represent the state by the year 2010. The costs for hydrogen utilization (without energy taxes) are shown to be higher than current prices for fossil fuels (including taxes). Without restrictions imposed on fossil fuel consumption, hydrogen shall not gain a significant market share in either of the cases discussed. 2 figs., 3 tabs., 4 refs

  20. Production of hydrogen by microbial fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Roychowdhury, S.; Cox, D.; Levandowsky, M.

    1988-01-01

    Production of hydrogen by defined and undefined bacterial cultures was studied, using pure sugars (glucose and maltose) or natural sources rich in either pure sugars or polysaccharides. The latter included sugar cane juice, corn pulp (enzymatically treated or untreated), and enzymatically treated paper. Mixed microbial flora from sewage and landfill sediments, as well as pure and mixed cultures of known coliform bacteria produced mixtures of hydrogen and carbon dioxide at 37/sup 0/C and 55/sup 0/C, with hydrogen concentrations as high as 87%. In the case of the pure glucose substrate, an average yield of 0.7 mol hydrogen per mol glucose was obtained.

  1. Hydrogen Production Costs of Various Primary Energy Sources

    International Nuclear Information System (INIS)

    Choi, Jae Hyuk; Tak, Nam Il; Kim, Yong Hee; Park, Won Seok

    2005-11-01

    Many studies on the economical aspects of hydrogen energy technologies have been conducted with the increase of the technical and socioeconomic importance of the hydrogen energy. However, there is still no research which evaluates the economy of hydrogen production from the primary energy sources in consideration of Korean situations. In this study, the hydrogen production costs of major primary energy sources are compared in consideration of the Korean situations such as feedstock price, electricity rate, and load factor. The evaluation methodology is based on the report of the National Academy of Science (NAS) of U.S. The present study focuses on the possible future technology scenario defined by NAS. The scenario assumes technological improvement that may be achieved if present research and development (R and D) programs are successful. The production costs by the coal and natural gas are 1.1 $/kgH 2 and 1.36 $/kgH 2 , respectively. However, the fossil fuels are susceptible to the price variation depending on the oil and the raw material prices, and the hydrogen production cost also depends on the carbon tax. The economic competitiveness of the renewable energy sources such as the wind, solar, and biomass are relatively low when compared with that of the other energy sources. The estimated hydrogen production costs from the renewable energy sources range from 2.35 $/kgH 2 to 6.03 $/kgH 2 . On the other hand, the production cost by nuclear energy is lower than that of natural gas or coal when the prices of the oil and soft coal are above $50/barrel and 138 $/ton, respectively. Taking into consideration the recent rapid increase of the oil and soft coal prices and the limited fossil resource, the nuclear-hydrogen option appears to be the most economical way in the future

  2. Biological hydrogen production from industrial wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Peixoto, Guilherme; Pantoja Filho, Jorge Luis Rodrigues; Zaiat, Marcelo [Universidade de Sao Paulo (EESC/USP), Sao Carlos, SP (Brazil). School of Engineering. Dept. Hydraulics and Sanitation], Email: peixoto@sc.usp.br

    2010-07-01

    This research evaluates the potential for producing hydrogen in anaerobic reactors using industrial wastewaters (glycerol from bio diesel production, wastewater from the parboilization of rice, and vinasse from ethanol production). In a complementary experiment the soluble products formed during hydrogen production were evaluated for methane generation. The assays were performed in batch reactors with 2 liters volume, and sucrose was used as a control substrate. The acidogenic inoculum was taken from a packed-bed reactor used to produce hydrogen from a sucrose-based synthetic substrate. The methanogenic inoculum was taken from an upflow anaerobic sludge blanket reactor treating poultry slaughterhouse wastewater. Hydrogen was produced from rice parboilization wastewater (24.27 ml H{sub 2} g{sup -1} COD) vinasse (22.75 ml H{sub 2} g{sup -1} COD) and sucrose (25.60 ml H{sub 2} g{sup -1} COD), while glycerol only showed potential for methane generation. (author)

  3. Liquid hydrogen production via hydrogen sulfide methane reformation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Cunping; T-Raissi, Ali [University of Central Florida, Florida Solar Energy Center, 1769 Clearlake Road, Cocoa, FL 32922 (United States)

    2008-01-03

    Hydrogen sulfide (H{sub 2}S) methane (CH{sub 4}) reformation (H{sub 2}SMR) (2H{sub 2}S + CH{sub 4} = CS{sub 2} + 4H{sub 2}) is a potentially viable process for the removal of H{sub 2}S from sour natural gas resources or other methane containing gases. Unlike steam methane reformation that generates carbon dioxide as a by-product, H{sub 2}SMR produces carbon disulfide (CS{sub 2}), a liquid under ambient temperature and pressure - a commodity chemical that is also a feedstock for the synthesis of sulfuric acid. Pinch point analyses for H{sub 2}SMR were conducted to determine the reaction conditions necessary for no carbon lay down to occur. Calculations showed that to prevent solid carbon formation, low inlet CH{sub 4} to H{sub 2}S ratios are needed. In this paper, we analyze H{sub 2}SMR with either a cryogenic process or a membrane separation operation for production of either liquid or gaseous hydrogen. Of the three H{sub 2}SMR hydrogen production flowsheets analyzed, direct liquid hydrogen generation has higher first and second law efficiencies of exceeding 80% and 50%, respectively. (author)

  4. Liquid hydrogen production via hydrogen sulfide methane reformation

    Science.gov (United States)

    Huang, Cunping; T-Raissi, Ali

    Hydrogen sulfide (H 2S) methane (CH 4) reformation (H 2SMR) (2H 2S + CH 4 = CS 2 + 4H 2) is a potentially viable process for the removal of H 2S from sour natural gas resources or other methane containing gases. Unlike steam methane reformation that generates carbon dioxide as a by-product, H 2SMR produces carbon disulfide (CS 2), a liquid under ambient temperature and pressure-a commodity chemical that is also a feedstock for the synthesis of sulfuric acid. Pinch point analyses for H 2SMR were conducted to determine the reaction conditions necessary for no carbon lay down to occur. Calculations showed that to prevent solid carbon formation, low inlet CH 4 to H 2S ratios are needed. In this paper, we analyze H 2SMR with either a cryogenic process or a membrane separation operation for production of either liquid or gaseous hydrogen. Of the three H 2SMR hydrogen production flowsheets analyzed, direct liquid hydrogen generation has higher first and second law efficiencies of exceeding 80% and 50%, respectively.

  5. Hydrogen production using ammonia borane

    Science.gov (United States)

    Hamilton, Charles W; Baker, R. Thomas; Semelsberger, Troy A; Shrestha, Roshan P

    2013-12-24

    Hydrogen ("H.sub.2") is produced when ammonia borane reacts with a catalyst complex of the formula L.sub.nM-X wherein M is a base metal such as iron, X is an anionic nitrogen- or phosphorus-based ligand or hydride, and L is a neutral ancillary ligand that is a neutral monodentate or polydentate ligand.

  6. Electrolytic production and dispensing of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, C.E.; Kuhn, I.F. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

    1995-09-01

    The fuel cell electric vehicle (FCEV) is undoubtedly the only option that can meet both the California zero emission vehicle (ZEV) standard and the President`s goal of tripling automobile efficiency without sacrificing performance in a standard 5-passenger vehicle. The three major automobile companies are designing and developing FCEVs powered directly by hydrogen under cost-shared contracts with the Department of Energy. Once developed, these vehicles will need a reliable and inexpensive source of hydrogen. Steam reforming of natural gas would produce the least expensive hydrogen, but funding may not be sufficient initially to build both large steam reforming plants and the transportation infrastructure necessary to deliver that hydrogen to geographically scattered FCEV fleets or individual drivers. This analysis evaluates the economic feasibility of using small scale water electrolysis to provide widely dispersed but cost-effective hydrogen for early FCEV demonstrations. We estimate the cost of manufacturing a complete electrolysis system in large quantities, including compression and storage, and show that electrolytic hydrogen could be cost competitive with fully taxed gasoline, using existing residential off-peak electricity rates.

  7. Renewable solar hydrogen production and utilization

    International Nuclear Information System (INIS)

    Bakos, J.

    2006-01-01

    There is a tremendous opportunity to generate large quantities of hydrogen from low grade and economical sources of methane including landfill gas, biogas, flare gas, and coal bed methane. The environmental benefits of generating hydrogen using renewable energy include significant greenhouse gas and air contaminant reductions. Solar Hydrogen Energy Corporation (SHEC LABS) recently constructed and demonstrated a Dry Fuel Reforming (DFR) hydrogen generation system that is powered primarily by sunlight focusing-mirrors in Tempe, Arizona. The system comprises a solar mirror array, a temperature controlling shutter system, and two thermo-catalytic reactors to convert methane, carbon dioxide, and water into hydrogen. This process has shown that solar hydrogen generation is feasible and cost-competitive with traditional hydrogen production. The presentation will provide the following: An overview of the results of the testing conducted in Tempe, Arizona; A look at the design and installation of the scaled-up technology site at a landfill site in Canada; An examination of the economic and environmental benefits of renewable hydrogen production using solar energy

  8. The US department of energy programme on hydrogen production

    International Nuclear Information System (INIS)

    Paster, M.D.

    2004-01-01

    Clean forms of energy are needed to support sustainable global economic growth while mitigating greenhouse gas emissions and impacts on air quality. To address these challenges, the U.S. President's National Energy Policy and the U.S. Department of Energy's (DOE's) Strategic Plan call for expanding the development of diverse domestic energy supplies. Working with industry, the Department developed a national vision for moving toward a hydrogen economy - a solution that holds the potential to provide sustainable clean, safe, secure, affordable, and reliable energy. In February 2003, President George W. Bush announced a new Hydrogen Fuel Initiative to achieve this vision. To realize this vision, the U.S. must develop and demonstrate advanced technologies for hydrogen production, delivery, storage, conversion, and applications. Toward this end, the DOE has worked with public and private organizations to develop a National Hydrogen Energy Technology Road-map. The Road-map identifies the technological research, development, and demonstration steps required to make a successful transition to a hydrogen economy. One of the advantages of hydrogen is that it can utilize a variety of feedstocks and a variety of production technologies. Feedstock options include fossil resources such as coal, natural gas, and oil, and non-fossil resources such as biomass and water. Production technologies include thermochemical, biological, electrolytic and photolytic processes. Energy needed for these processes can be supplied through fossil, renewable, or nuclear sources. Hydrogen can be produced in large central facilities and distributed to its point of use or it can be produced in a distributed manner in small volumes at the point of use such as a refueling station or stationary power facility. In the shorter term, distributed production will play an important role in initiating the use of hydrogen due to its lower capital investment. In the longer term, it is likely that centralized

  9. Berg River Textiles - Cleaner Production Option Report

    DEFF Research Database (Denmark)

    Wenzel, Henrik; Schneider, Zsig

    schematics on the various wet treatment operations in the dyehouse, and water and energy balances were made to the extent data allowed. A number of options for saving water, energy and chemicals were identified. The potentials monetary savings and necessary investments were estimated, and a list of priority...... projects including milestone plans for their implementation was made. A saving potential of around 3 mill. R was identified with a pay-back period of around 0.2 years as average of the identified options. The company implemented a large number of the options right away....

  10. Evaluation of Nuclear Hydrogen Production System

    International Nuclear Information System (INIS)

    Park, Won Seok; Park, C. K.; Park, J. K. and others

    2006-04-01

    The major objective of this work is tow-fold: one is to develop a methodology to determine the best VHTR types for the nuclear hydrogen demonstration project and the other is to evaluate the various hydrogen production methods in terms of the technical feasibility and the effectiveness for the optimization of the nuclear hydrogen system. Both top-tier requirements and design requirements have been defined for the nuclear hydrogen system. For the determination of the VHTR type, a comparative study on the reference reactors, PBR and PBR, was conducted. Based on the analytic hierarchy process (AHP) method, a systematic methodology has been developed to compare the two VHTR types. Another scheme to determine the minimum reactor power was developed as well. Regarding the hydrogen production methods, comparison indices were defined and they were applied to the IS (Iodine-Sulfur) scheme, Westinghouse process, and the, high-temperature electrolysis method. For the HTE, IS, and MMI cycle, the thermal efficiency of hydrogen production were systematically evaluated. For the IS cycle, an overall process was identified and the functionality of some key components was identified. The economy of the nuclear hydrogen was evaluated, relative to various primary energy including natural gas coal, grid-electricity, and renewable. For the international collaborations, two joint research centers were established: NH-JRC between Korea and China and NH-JDC between Korea and US. Currently, several joint researches are underway through the research centers

  11. Microwave plasma for hydrogen production from liquids

    Directory of Open Access Journals (Sweden)

    Czylkowski Dariusz

    2016-06-01

    Full Text Available The hydrogen production by conversion of liquid compounds containing hydrogen was investigated experimentally. The waveguide-supplied metal cylinder-based microwave plasma source (MPS operated at frequency of 915 MHz at atmospheric pressure was used. The decomposition of ethanol, isopropanol and kerosene was performed employing plasma dry reforming process. The liquid was introduced into the plasma in the form of vapour. The amount of vapour ranged from 0.4 to 2.4 kg/h. Carbon dioxide with the flow rate ranged from 1200 to 2700 NL/h was used as a working gas. The absorbed microwave power was up to 6 kW. The effect of absorbed microwave power, liquid composition, liquid flow rate and working gas fl ow rate was analysed. All these parameters have a clear influence on the hydrogen production efficiency, which was described with such parameters as the hydrogen production rate [NL(H2/h] and the energy yield of hydrogen production [NL(H2/kWh]. The best achieved experimental results showed that the hydrogen production rate was up to 1116 NL(H2/h and the energy yield was 223 NL(H2 per kWh of absorbed microwave energy. The results were obtained in the case of isopropanol dry reforming. The presented catalyst-free microwave plasma method can be adapted for hydrogen production not only from ethanol, isopropanol and kerosene, but also from different other liquid compounds containing hydrogen, like gasoline, heavy oils and biofuels.

  12. Microwave Hydrogen Production from Methane

    Science.gov (United States)

    2012-04-01

    combustion NOx control of reciprocating engine exhaust and fuel cell application of biogas . Our target is to obtain the methane conversion efficiency...demonstration of MW technology removing and destroying hydrogen sulfide (H2S) and siloxanes from biogas produced by Sacramento Regional Wastewater...running on biogas and is currently conducting the field demonstration of the unit at Tollenaar Dairy in Elk Grove, CA. SMUD, California Air Resources

  13. Hydrolysis reactor for hydrogen production

    Science.gov (United States)

    Davis, Thomas A.; Matthews, Michael A.

    2012-12-04

    In accordance with certain embodiments of the present disclosure, a method for hydrolysis of a chemical hydride is provided. The method includes adding a chemical hydride to a reaction chamber and exposing the chemical hydride in the reaction chamber to a temperature of at least about 100.degree. C. in the presence of water and in the absence of an acid or a heterogeneous catalyst, wherein the chemical hydride undergoes hydrolysis to form hydrogen gas and a byproduct material.

  14. Analysis of economic and infrastructure issues associated with hydrogen production from nuclear energy

    International Nuclear Information System (INIS)

    Summers, W.A.; Gorensek, M.B.; Danko, E.; Schultz, K.R.; Richards, M.B.; Brown, L.C.

    2004-01-01

    Consideration is being given to the large-scale transition of the world's energy system from one based on carbon fuels to one based on the use of hydrogen as the carrier. This transition is necessitated by the declining resource base of conventional oil and gas, air quality concerns, and the threat of global climate change linked to greenhouse gas emissions. Since hydrogen can be produced from water using non-carbon primary energy sources, it is the ideal sustainable fuel. The options for producing the hydrogen include renewables (e.g. solar and wind), fossil fuels with carbon sequestration, and nuclear energy. A comprehensive study has been initiated to define economically feasible concepts and to determine estimates of efficiency and cost for hydrogen production using next generation nuclear reactors. A unique aspect of the study is the assessment of the integration of a nuclear plant, a hydrogen production process and the broader infrastructure requirements. Hydrogen infrastructure issues directly related to nuclear hydrogen production are being addressed, and the projected cost, value and end-use market for hydrogen will be determined. The infrastructure issues are critical, since the combined cost of storing, transporting, distributing, and retailing the hydrogen product could well exceed the cost of hydrogen production measured at the plant gate. The results are expected to be useful in establishing the potential role that nuclear hydrogen can play in the future hydrogen economy. Approximately half of the three-year study has been completed. Results to date indicate that nuclear produced hydrogen can be competitive with hydrogen produced from natural gas for use at oil refineries or ammonia plants, indicating a potential early market opportunity for large-scale centralized hydrogen production. Extension of the hydrogen infrastructure from these large industrial users to distributed hydrogen users such as refueling stations and fuel cell generators could

  15. South Africa's nuclear hydrogen production development programme

    International Nuclear Information System (INIS)

    Van Ravenswaay, J.P.; Van Niekerk, F.; Kriek, R.J.; Blom, E.; Krieg, H.M.; Van Niekerk, W.M.K.; Van der Merwe, F.; Vosloo, H.C.M.

    2010-01-01

    In May 2007 the South African Cabinet approved a National Hydrogen and Fuel Cell Technologies R and D and Innovation Strategy. The strategy will focus on research, development and innovation for: i) wealth creation through high value-added manufacturing and developing platinum group metals catalysis; ii) building on the existing knowledge in high temperature gas-cooled reactors (HTGR) and coal gasification Fischer-Tropsch technology, to develop local cost-competitive hydrogen production solutions; iii) to promote equity and inclusion in the economic benefits from South Africa's natural resource base. As part of the roll-out strategy, the South African Department of Science and Technology (DST) created three Competence Centres (CC), including a Hydrogen Infrastructure Competence Centre hosted by the North-West University (NWU) and the Council for Scientific and Industrial Research (CSIR). The Hydrogen Infrastructure CC is tasked with developing hydrogen production, storage, distribution as well as codes and standards programmes within the framework of the DST strategic objectives to ensure strategic national innovation over the next fifteen years. One of the focus areas of the Hydrogen Infrastructure CC will be on large scale CO 2 free hydrogen production through thermochemical water-splitting using nuclear heat from a suitable heat source such as a HTGR and the subsequent use of the hydrogen in applications such as the coal-to-liquid process and the steel industry. This paper will report on the status of the programme for thermochemical water-splitting as well as the associated projects for component and technology development envisaged in the Hydrogen Infrastructure CC. The paper will further elaborate on current and future collaboration opportunities as well as expected outputs and deliverables. (authors)

  16. Solar driven technologies for hydrogen production

    Directory of Open Access Journals (Sweden)

    Medojević Milovan M.

    2016-01-01

    Full Text Available Bearing in mind that the production of hydrogen based on renewable energy sources, without doubt, is an important aspect to be taken into account when considering the potential of this gas, where as particularly interesting technologies stand out the ones which are based on the use of solar energy to produce hydrogen. The goal of this paper provides basic technological trajectories, with the possibility of combining, for solar driven hydrogen production, such as: electrochemical, photochemical and thermochemical process. Furthermore, the paper presents an analysis of those technologies from a technical as well as economic point of view. In addition, the paper aims to draw attention to the fact that the generation of hydrogen using renewable energy should be imposed as a logical and proper way to store solar energy in the form of chemical energy.

  17. Low-cost process for hydrogen production

    Science.gov (United States)

    Cha, Chang Y.; Bauer, Hans F.; Grimes, Robert W.

    1993-01-01

    A method is provided for producing hydrogen and carbon black from hydrocarbon gases comprising mixing the hydrocarbon gases with a source of carbon and applying radiofrequency energy to the mixture. The hydrocarbon gases and the carbon can both be the products of gasification of coal, particularly the mild gasification of coal. A method is also provided for producing hydrogen an carbon monoxide by treating a mixture of hydrocarbon gases and steam with radio-frequency energy.

  18. Bio-hydrogen production from renewable organic wastes

    Energy Technology Data Exchange (ETDEWEB)

    Shihwu Sung

    2004-04-30

    Methane fermentation has been in practice over a century for the stabilization of high strength organic waste/wastewater. Although methanogenesis is a well established process and methane--the end-product of methanogenesis is a useful energy source; it is a low value end product with relatively less energy content (about 56 kJ energy/g CH{sub 4}). Besides, methane and its combustion by-product are powerful greenhouse gases, and responsible for global climate change. So there is a pressing need to explore alternative environmental technologies that not only stabilize the waste/wastewater but also generate benign high value end products. From this perspective, anaerobic bioconversion of organic wastes to hydrogen gas is an attractive option that achieves both goals. From energy security stand point, generation of hydrogen energy from renewable organic waste/wastewater could substitute non-renewable fossil fuels, over two-third of which is imported from politically unstable countries. Thus, biological hydrogen production from renewable organic waste through dark fermentation represents a critically important area of bioenergy production. This study evaluated both process engineering and microbial physiology of biohydrogen production.

  19. Appraisal of bio-hydrogen production schemes

    International Nuclear Information System (INIS)

    Bent Sorensen

    2006-01-01

    Work is ongoing on several schemes of biological hydrogen production. At one end is the genetic modification of biological systems (such as algae or cyanobacteria) to produce hydrogen from photosynthesis, instead of the energy-rich compounds (such as NADPH 2 ) normally constituting the endpoint of the transformations through the photo-systems. A second route is to collect and use the biomass produced by normal plant growth processes in a separate step that produces hydrogen. This may be done similar to biogas production by fermentation, where the endpoint is methane (plus CO 2 and minor constituents). Hydrogen could be the outcome of a secondary process starting from methane, involving any of the conventional methods of hydrogen production from natural gas. An alternative to fermentation is gasification of the biomass, followed by a shift-reaction leading to hydrogen. I compare advantages and disadvantages of these three routes, notably factors such as system efficiency, cost and environmental impacts, and also compare them to liquid biofuels. (author)

  20. Low-cost storage options for solar hydrogen systems for remote area power supply

    International Nuclear Information System (INIS)

    Suhaib Muhammad Ali; John Andrews

    2006-01-01

    Equipment for storing hydrogen gas under pressure typically accounts for a significant proportion of the total capital cost of solar-hydrogen systems for remote area power supply (RAPS). RAPS remain a potential early market for renewable energy - hydrogen systems because of the relatively high costs of conventional energy sources in remote regions. In the present paper the storage requirements of PV-based solar-hydrogen RAPS systems employing PEM electrolysers and fuel cells to meet a range of typical remote area daily and annual demand profiles are investigated using a spread sheet-based simulation model. It is found that as the costs of storage are lowered the requirement for longer-term storage from summer to winter is increased with consequent potential gains in the overall economics of the solar-hydrogen system. In many remote applications, there is ample space for hydrogen storages with relatively large volumes. Hence it may be most cost-effective to store hydrogen at low to medium pressures achievable by using PEM electrolysers directly to generate the hydrogen at the pressures required, without a requirement for separate electrically-driven compressors. The latter add to system costs while requiring significant parasitic electricity consumption. Experimental investigations into a number of low-cost storage options including plastic tanks and low-to-medium pressure metal and composite cylinders are reported. On the basis of these findings, the economics of solar-hydrogen RAPS systems employing large-volume low-cost storage are investigated. (authors)

  1. Continuous hydrogen production from starch by fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, Keigo; Tanisho, Shigeharu [Yokohama National Univ. (Japan)

    2010-07-01

    This study was investigated the effect of hydraulic retention time (HRT) on hydrogen production rate, hydrogen yield and the production rate of volatile fatty acid. The experiment was performed in a continuous stirred tank reactor (CSTR) with a working volume of 1 L by using a Clostridium sp. The temperature of the CSTR was regulated 37 C. The pH was controlled 6.0 by the addition of 3 M of NaOH solution. Starch was used as the carbon source with the concentration of 30 g L{sup -1}. Hydrogen production rate increased from 0.9 L-H{sub 2} L-culture{sup -1} h{sup -1} to 3.2 L-H{sub 2} L-culture{sup -1} h{sup -1} along with the decrease of HRT from 9 h to 1.5 h. Hydrogen yield decreased at low HRT. The major volatile fatty acids are acetic acid, butyric acid and lactic acid. The production rates of acetic acid and butyric acid increased along with the decrease of HRT. On the other hand, the rate of lactic acid was low at high HRT while it increased at HRT 1.5 h. The increase of the production rate of lactic acid suggested one of the reasons that hydrogen yield decreased. (orig.)

  2. Hydrogen as a clean energy option; Option Wasserstoff als sauberer Energietraeger

    Energy Technology Data Exchange (ETDEWEB)

    Newi, G. [Consulectra Unternehmensberatung GmbH, Hamburg (Germany)

    1998-06-01

    Many visionary action programmes are based on the conviction that hydrogen produced from renewable, environmentally sustainable resources is the chemical energy carrier of the future. In Hamburg there have been various pilot projects over the past ten years which deal explicitly with problems of infrastructure relating to the integration of renewable energy sources in the existing energy supply. One such example is the fuel cell block heating station in Hamburg Behrenfeld which has been supplying residential buildings for some time now. Another is a practice-oriented pilot project involving a hydrogen-fuelled PAFC with 220 kW thermal and 200 kW electrical power output. The hydrogen is supplied by a 60 m-3 LH{sub 2} tank, the first of its kind to be approved by the authorities and accepted by the public. [Deutsch] Viele visionaere Aktionsprogramme sehen aus dauerhaft umweltvertraeglichen Quellen erzeugten Wasserstoff als chemischen Energietraeger der Zukunft. In Hamburg gibt es seit rd. 10 Jahren verschiedene Pilotprojekte, die sich insbesondere mit Fragen der Infrastruktur zur Integration erneuerbarer Energiequellen in die bestehende Energieversorgung befassen. Ein Beispiel ist das in Hamburg-Behrenfeld seit einiger Zeit betriebene Brennstoffzellen-Blockheizkraftwerk zur Versorgung von Wohngebaeuden. Als praxisbezogenes Pilotprojekt wird u.a. eine H{sub 2}-versorgte PAFC mit 220 kW thermischer und 200 kW elektrischer Leistung betrieben. Die Wasserstoffversorgung aus einem oberirdischen 60 m{sup 3} LH{sub 2}-Tank wurde erstmals in dieser Anwendungsform behoerdlich genehmigt und von der Oeffentlichkeit akzeptiert. (orig./MSK)

  3. Union Spinning Mills - Cleaner Production option report

    DEFF Research Database (Denmark)

    Wenzel, Henrik; Schneider, Zsig

    operations in the dyehouse, and water and energy balances were made to the extent data allowed. A number of options for saving water, energy and chemicals were identified. The potentials monetary savings and necessary investments were estimated, and a list of priority projects including milestone plans...

  4. The Modular Helium Reactor for Hydrogen Production

    International Nuclear Information System (INIS)

    E. Harvego; M. Richards; A. Shenoy; K. Schultz; L. Brown; M. Fukuie

    2006-01-01

    For electricity and hydrogen production, an advanced reactor technology receiving considerable international interest is a modular, passively-safe version of the high-temperature, gas-cooled reactor (HTGR), known in the U.S. as the Modular Helium Reactor (MHR), which operates at a power level of 600 MW(t). For hydrogen production, the concept is referred to as the H2-MHR. Two concepts that make direct use of the MHR high-temperature process heat are being investigated in order to improve the efficiency and economics of hydrogen production. The first concept involves coupling the MHR to the Sulfur-Iodine (SI) thermochemical water splitting process and is referred to as the SI-Based H2-MHR. The second concept involves coupling the MHR to high-temperature electrolysis (HTE) and is referred to as the HTE-Based H2-MHR

  5. Method for the enzymatic production of hydrogen

    Science.gov (United States)

    Woodward, J.; Mattingly, S.M.

    1999-08-24

    The present invention is an enzymatic method for producing hydrogen comprising the steps of: (a) forming a reaction mixture within a reaction vessel comprising a substrate capable of undergoing oxidation within a catabolic reaction, such as glucose, galactose, xylose, mannose, sucrose, lactose, cellulose, xylan and starch; the reaction mixture also comprising an amount of glucose dehydrogenase in an amount sufficient to catalyze the oxidation of the substrate, an amount of hydrogenase sufficient to catalyze an electron-requiring reaction wherein a stoichiometric yield of hydrogen is produced, an amount of pH buffer in an amount sufficient to provide an environment that allows the hydrogenase and the glucose dehydrogenase to retain sufficient activity for the production of hydrogen to occur and also comprising an amount of nicotinamide adenine dinucleotide phosphate sufficient to transfer electrons from the catabolic reaction to the electron-requiring reaction; (b) heating the reaction mixture at a temperature sufficient for glucose dehydrogenase and the hydrogenase to retain sufficient activity and sufficient for the production of hydrogen to occur, and heating for a period of time that continues until the hydrogen is no longer produced by the reaction mixture, wherein the catabolic reaction and the electron-requiring reactions have rates of reaction dependent upon the temperature; and (c) detecting the hydrogen produced from the reaction mixture. 8 figs.

  6. Large-scale hydrogen production using nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ryland, D.; Stolberg, L.; Kettner, A.; Gnanapragasam, N.; Suppiah, S. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    For many years, Atomic Energy of Canada Limited (AECL) has been studying the feasibility of using nuclear reactors, such as the Supercritical Water-cooled Reactor, as an energy source for large scale hydrogen production processes such as High Temperature Steam Electrolysis and the Copper-Chlorine thermochemical cycle. Recent progress includes the augmentation of AECL's experimental capabilities by the construction of experimental systems to test high temperature steam electrolysis button cells at ambient pressure and temperatures up to 850{sup o}C and CuCl/HCl electrolysis cells at pressures up to 7 bar and temperatures up to 100{sup o}C. In parallel, detailed models of solid oxide electrolysis cells and the CuCl/HCl electrolysis cell are being refined and validated using experimental data. Process models are also under development to assess options for economic integration of these hydrogen production processes with nuclear reactors. Options for large-scale energy storage, including hydrogen storage, are also under study. (author)

  7. Concepts for Large Scale Hydrogen Production

    OpenAIRE

    Jakobsen, Daniel; Åtland, Vegar

    2016-01-01

    The objective of this thesis is to perform a techno-economic analysis of large-scale, carbon-lean hydrogen production in Norway, in order to evaluate various production methods and estimate a breakeven price level. Norway possesses vast energy resources and the export of oil and gas is vital to the country s economy. The results of this thesis indicate that hydrogen represents a viable, carbon-lean opportunity to utilize these resources, which can prove key in the future of Norwegian energy e...

  8. Hydrogen production by alkaline water electrolysis

    Directory of Open Access Journals (Sweden)

    Diogo M. F. Santos

    2013-01-01

    Full Text Available Water electrolysis is one of the simplest methods used for hydrogen production. It has the advantage of being able to produce hydrogen using only renewable energy. To expand the use of water electrolysis, it is mandatory to reduce energy consumption, cost, and maintenance of current electrolyzers, and, on the other hand, to increase their efficiency, durability, and safety. In this study, modern technologies for hydrogen production by water electrolysis have been investigated. In this article, the electrochemical fundamentals of alkaline water electrolysis are explained and the main process constraints (e.g., electrical, reaction, and transport are analyzed. The historical background of water electrolysis is described, different technologies are compared, and main research needs for the development of water electrolysis technologies are discussed.

  9. Construction apparatus for thermochemical hydrogen production process

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, S.; Nakajima, H.; Higashi, S.; Onuki, K.; Akino, S.S.N. [Japan Atomic Energy Research Inst., Ibaraki-ken (Japan). Nuclear Heat Utilization Engineering Lab

    2001-06-01

    Studies have been carried out at the Japan Atomic Energy Research Institute (JAERI) on hydrogen production through thermochemical processes such as water-splitting. These studies are classified with iodine-sulphur cycle studies using heat from high temperature gas-cooled reactors. An experimental apparatus was constructed with fluorine resin, glass and quartz. It can produce hydrogen at a rate of 50 litres per hour. Electricity provides the heat required for the operation. The closed chemical process requires special control techniques. The process flow diagram for the apparatus was designed based on the results of previous studies including one where hydrogen production was successfully achieved at a rate of one liter per hour for 48 hours. Experimental operations under atmospheric pressure will be carried out for the next four years to develop the process. The data will be used in the next research and development programs aimed at designing a bench-scale apparatus. 7 refs., 1 tab., 8 figs.

  10. Optical pumping production of spin polarized hydrogen

    International Nuclear Information System (INIS)

    Knize, R.J.; Happer, W.; Cecchi, J.L.

    1984-01-01

    There has been much interest recently in the production of large quantities of spin polarized hydrogen in various fields including controlled fusion, quantum fluids, high energy, and nuclear physics. One promising method for the development of large quantities of spin polarized hydrogen is the utilization of optical pumping with a laser. Optical pumping is a process where photon angular momentum is converted into electron and nuclear spin. The advent of tunable CW dye lasers (approx. 1 watt) allow the production of greater than 10 18 polarized atoms/sec. We have begun a program at Princeton to investigate the physics and technology of using optical pumping to produce large quantities of spin polarized hydrogen. Initial experiments have been done in small closed glass cells. Eventually, a flowing system, open target, or polarized ion source could be constructed

  11. Hydrogen - High pressure production and storage

    International Nuclear Information System (INIS)

    Lauretta, J.R

    2005-01-01

    The development of simple, safe and more and more efficient technologies for the production and the storage of hydrogen is necessary condition for the transition towards the economy of hydrogen.In this work the hydrogen production studies experimentally to high pressure by electrolysis of alkaline solutions without the intervention of compressing systems and its direct storage in safe containers.The made tests show that the process of electrolysis to high pressure is feasible and has better yield than to low pressure, and that is possible to solve the operation problems, with relatively simple technology.The preliminary studies and tests indicate that the system container that studied is immune to the outbreak and can have forms and very different sizes, nevertheless, to reach or to surpass the efficiency of storage of the conventional systems the investments necessary will be due to make to be able to produce aluminum alloy tubes of high resistance

  12. Safety issues of nuclear production of hydrogen

    International Nuclear Information System (INIS)

    Piera, Mireia; Martinez-Val, Jose M.; Jose Montes, Ma

    2006-01-01

    Hydrogen is not an uncommon issue in Nuclear Safety analysis, particularly in relation to severe accidents. On the other hand, hydrogen is a household name in the chemical industry, particularly in oil refineries, and is also a well known chemical element currently produced by steam reforming of natural gas, and other methods (such as coal gasification). In the not-too-distant future, hydrogen will have to be produced (by chemical reduction of water) using renewable and nuclear energy sources. In particular, nuclear fission seems to offer the cheapest way to provide the primary energy in the medium-term. Safety principles are fundamental guidelines in the design, construction and operation both of hydrogen facilities and nuclear power plants. When these two technologies are integrated, a complete safety analysis must consider not only the safety practices of each industry, but any interaction that could be established between them. In particular, any accident involving a sudden energy release from one of the facilities can affect the other. Release of dangerous substances (chemicals, radiotoxic effluents) can also pose safety problems. Although nuclear-produced hydrogen facilities will need specific approaches and detailed analysis on their safety features, a preliminary approach is presented in this paper. No significant roadblocks are identified that could hamper the deployment of this new industry, but some of the hydrogen production methods will involve very demanding safety standards

  13. Technical Integration of Nuclear Hydrogen Production Technology

    International Nuclear Information System (INIS)

    Lee, Ki Young; Park, J. K.; Chang, J. H.

    2009-04-01

    These works focus on the development of attainment indices for nuclear hydrogen key technologies, the analysis of the hydrogen production process and the performance estimation for hydrogen production systems, and the assessment of the nuclear hydrogen production cost. For assessing the degree of attainments in comparison with the final goals of VHTR technologies in progress of researches, subdivided are the prerequisite items confirmed to the NHDD concepts. We developed and applied R and D quality management methodology to meet 'Development of Key Technologies for Nuclear Hydrogen' project. And we also distributed R and D QAM and R and D QAP to each teams and are in operation. The preconceptual flow diagrams of SI, HTSE, and HyS processes are introduced and their material and energy balances have been proposed. The hydrogen production thermal efficiencies of not only the SI process as a reference process but also the HTSE and HyS processes were also estimated. Technical feasibility assessments of SI, HTSE, and HyS processes have been carried out by using the pair-wise comparison and analytic hierarchy process, and it is revealed that the experts are considering the SI process as the most feasible process. The secondary helium pathway across the SI process is introduced. Dynamic simulation codes for the H2S04vaporizer, sulfuric acid and sulfur trioxide decomposers, and HI decomposer on the secondary helium pathway and for the primary and secondary sulfuric acid distillation columns, HIx solution distillation column, and preheater for HI vapor have been developed and integrated

  14. Hydrogen production by fermentative consortia

    Energy Technology Data Exchange (ETDEWEB)

    Valdez-Vazquez, Idania [Centro de Investigacion Cientifica y de Educacion Superior de Ensenada (CICESE), Department of Marine Biotechnology, Ensenada, B.C. Mexico (Mexico); Poggi-Varaldo, Hector M. [CINVESTAV-IPN, Department of Biotechnology and Bioengineering, PO Box 14-740, Mexico D.F. 07000 (Mexico)

    2009-06-15

    In this work, H{sub 2} production by anaerobic mixed cultures was reviewed. First, the different anaerobic microbial communities that have a direct relation with the generation or consumption of H{sub 2} are discussed. Then, the different methods used to inhibit the H{sub 2}-consuming bacteria are analyzed (mainly in the methanogenesis phase) such as biokinetic control (low pH and short hydraulic retention time), heat-shock treatment and chemical inhibitors along with their advantages/disadvantages for their application on an industrial scale. After that, biochemical pathways of carbohydrate degradation to H{sub 2}, organic acids and solvents are showed. Fourth, structure, diversity and dynamics of H{sub 2}-producers communities are detailed. Later, the hydrogenase structure and activity is related with H{sub 2} production. Also, the causes for H{sub 2} production inhibition are analyzed along with strategies to avoid it. Finally, immobilized-cells systems are presented as a way to enhance H{sub 2} production. (author)

  15. Synfuel (hydrogen) production from fusion power

    International Nuclear Information System (INIS)

    Krakowski, R.A.; Cox, K.E.; Pendergrass, J.H.; Booth, L.A.

    1979-01-01

    A potential use of fusion energy for the production of synthetic fuel (hydrogen) is described. The hybrid-thermochemical bismuth-sulfate cycle is used as a vehicle to assess the technological and economic merits of this potential nonelectric application of fusion power

  16. Reactors Save Energy, Costs for Hydrogen Production

    Science.gov (United States)

    2014-01-01

    While examining fuel-reforming technology for fuel cells onboard aircraft, Glenn Research Center partnered with Garrettsville, Ohio-based Catacel Corporation through the Glenn Alliance Technology Exchange program and a Space Act Agreement. Catacel developed a stackable structural reactor that is now employed for commercial hydrogen production and results in energy savings of about 20 percent.

  17. Hydrogen production from paper sludge hydrolysate

    NARCIS (Netherlands)

    Kádár, Z.; Vrije, de G.J.; Budde, M.A.W.; Szengyel, Z.; Reczey, K.; Claassen, P.A.M.

    2003-01-01

    The main objective of this study was to develop a system for the production of 'renewable' hydrogen. Paper sludge is a solid industrial waste yielding mainly cellulose, which can be used, after hydrolysis, as a feedstock in anaerobic fermentation by (hyper)thermophilic organisms, such as Thermotoga

  18. Catalytic glycerol steam reforming for hydrogen production

    International Nuclear Information System (INIS)

    Dan, Monica; Mihet, Maria; Lazar, Mihaela D.

    2015-01-01

    Hydrogen production from glycerol by steam reforming combine two major advantages: (i) using glycerol as raw material add value to this by product of bio-diesel production which is obtained in large quantities around the world and have a very limited utilization now, and (ii) by implication of water molecules in the reaction the efficiency of hydrogen generation is increased as each mol of glycerol produces 7 mol of H 2 . In this work we present the results obtained in the process of steam reforming of glycerol on Ni/Al 2 O 3 . The catalyst was prepared by wet impregnation method and characterized through different methods: N 2 adsorption-desorption, XRD, TPR. The catalytic study was performed in a stainless steel tubular reactor at atmospheric pressure by varying the reaction conditions: steam/carbon ratio (1-9), gas flow (35 ml/min -133 ml/min), temperature (450-650°C). The gaseous fraction of the reaction products contain: H 2 , CH 4 , CO, CO 2 . The optimum reaction conditions as resulted from this study are: temperature 550°C, Gly:H 2 O ratio 9:1 and Ar flow 133 ml/min. In these conditions the glycerol conversion to gaseous products was 43% and the hydrogen yield was 30%

  19. Catalytic glycerol steam reforming for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Dan, Monica, E-mail: monica.dan@itim-cj.ro; Mihet, Maria, E-mail: maria.mihet@itim-cj.ro; Lazar, Mihaela D., E-mail: diana.lazar@itim-cj.ro [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj Napoca (Romania)

    2015-12-23

    Hydrogen production from glycerol by steam reforming combine two major advantages: (i) using glycerol as raw material add value to this by product of bio-diesel production which is obtained in large quantities around the world and have a very limited utilization now, and (ii) by implication of water molecules in the reaction the efficiency of hydrogen generation is increased as each mol of glycerol produces 7 mol of H{sub 2}. In this work we present the results obtained in the process of steam reforming of glycerol on Ni/Al{sub 2}O{sub 3}. The catalyst was prepared by wet impregnation method and characterized through different methods: N{sub 2} adsorption-desorption, XRD, TPR. The catalytic study was performed in a stainless steel tubular reactor at atmospheric pressure by varying the reaction conditions: steam/carbon ratio (1-9), gas flow (35 ml/min -133 ml/min), temperature (450-650°C). The gaseous fraction of the reaction products contain: H{sub 2}, CH{sub 4}, CO, CO{sub 2}. The optimum reaction conditions as resulted from this study are: temperature 550°C, Gly:H{sub 2}O ratio 9:1 and Ar flow 133 ml/min. In these conditions the glycerol conversion to gaseous products was 43% and the hydrogen yield was 30%.

  20. Return handling options and order quantities for single period products

    NARCIS (Netherlands)

    D. Vlachos (Dimitrios); R. Dekker (Rommert)

    2000-01-01

    textabstractProducts which are sold through E-commerce or mail sales catalogues tend to have a much higher return rate than traditional products. The returns are especially problematic for seasonal products. To support decision making in these situations we study various options, which may be

  1. Decentralized production of hydrogen from hydrocarbons with reduced CO2 emission

    International Nuclear Information System (INIS)

    Nazim Muradov; Franklyn Smith; Cunping Huang; Ali T-Raissi

    2006-01-01

    Currently, most of the industrial hydrogen production is based on steam methane reforming process that releases significant amount of CO 2 into the atmosphere. CO 2 sequestration is one approach to solving the CO 2 emission problem for large centralized hydrogen plants, but it would be impractical for decentralized H 2 production units. The objective of this paper is to explore new routes to hydrogen production from natural gas without (or drastically reduced) CO 2 emissions. One approach analyzed in this paper is based on thermo-catalytic decomposition (TCD) of hydrocarbons (e.g., methane) to hydrogen gas and elemental carbon. The paper discusses some technological aspects of the TCD process development: (1) thermodynamic analysis of TCD using AspenPlus chemical process simulator, (2) heat input options to the endothermic process, (3) catalyst activity issues, etc. Production of hydrogen and carbon via TCD of methane was experimentally verified using carbon-based catalysts. (authors)

  2. Thermochemical hydrogen production based on magnetic fusion

    International Nuclear Information System (INIS)

    Krikorian, O.H.; Brown, L.C.

    1982-01-01

    Conceptual design studies have been carried out on an integrated fusion/chemical plant system using a Tandem Mirror Reactor fusion energy source to drive the General Atomic Sulfur-Iodine Water-Splitting Cycle and produce hydrogen as a future feedstock for synthetic fuels. Blanket design studies for the Tandem Mirror Reactor show that several design alternatives are available for providing heat at sufficiently high temperatures to drive the General Atomic Cycle. The concept of a Joule-boosted decomposer is introduced in one of the systems investigated to provide heat electrically for the highest temperature step in the cycle (the SO 3 decomposition step), and thus lower blanket design requirements and costs. Flowsheeting and conceptual process designs have been developed for a complete fusion-driven hydrogen plant, and the information has been used to develop a plot plan for the plant and to estimate hydrogen production costs. Both public and private utility financing approaches have been used to obtain hydrogen production costs of $12-14/GJ based on July 1980 dollars

  3. A critical review on factors influencing fermentative hydrogen production.

    Science.gov (United States)

    Kothari, Richa; Kumar, Virendra; Pathak, Vinayak V; Ahmad, Shamshad; Aoyi, Ochieng; Tyagi, V V

    2017-03-01

    Biohydrogen production by dark fermentation of different waste materials is a promising approach to produce bio-energy in terms of renewable energy exploration. This communication has reviewed various influencing factors of dark fermentation process with detailed account of determinants in biohydrogen production. It has also focused on different factors such as improved bacterial strain, reactor design, metabolic engineering and two stage processes to enhance the bioenergy productivity from substrate. The study also suggest that complete utilization of substrates for biological hydrogen production requires the concentrated research and development for efficient functioning of microorganism with integrated application for energy production and bioremediation. Various studies have been taken into account here, to show the comparative efficiency of different substrates and operating conditions with inhibitory factors and pretreatment option for biohydrogen production. The study reveals that an extensive research is needed to observe field efficiency of process using low cost substrates and integration of dark and photo fermentation process. Integrated approach of fermentation process will surely compete with conventional hydrogen process and replace it completely in future.

  4. Effectiveness of technological options for minimising production ...

    African Journals Online (AJOL)

    Farmer perceptions of technology effectiveness, to some extent, agreed with econometric evidence from this study. Study results have two implications: firstly, the need to develop and disseminate location specific adaptation technologies to reduce production risks, instead of blanket recommendations of similar adaptation ...

  5. Photobiological hydrogen production : photochemical efficiency and bioreactor design

    NARCIS (Netherlands)

    Akkerman, I.; Janssen, M.; Rocha, J.; Wijffels, R.H.

    2002-01-01

    Biological production of hydrogen can be carried out by photoautotrophic or photoheterotrophic organisms. Here, the photosystems of both processes are described. The main drawback of the photoautotrophic hydrogen production process is oxygen inhibition. The few efficiencies reported on the

  6. Feasibility Study of Hydrogen Production at Existing Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Schey

    2009-07-01

    Cooperative Agreement DE-FC07-06ID14788 was executed between the U.S. Department of Energy, Electric Transportation Applications, and Idaho National Laboratory to investigate the economics of producing hydrogen by electrolysis using electricity generated by nuclear power. The work under this agreement is divided into the following four tasks: Task 1 – Produce Data and Analyses Task 2 – Economic Analysis of Large-Scale Alkaline Electrolysis Task 3 – Commercial-Scale Hydrogen Production Task 4 – Disseminate Data and Analyses. Reports exist on the prospect that utility companies may benefit from having the option to produce electricity or produce hydrogen, depending on market conditions for both. This study advances that discussion in the affirmative by providing data and suggesting further areas of study. While some reports have identified issues related to licensing hydrogen plants with nuclear plants, this study provides more specifics and could be a resource guide for further study and clarifications. At the same time, this report identifies other area of risks and uncertainties associated with hydrogen production on this scale. Suggestions for further study in some of these topics, including water availability, are included in the report. The goals and objectives of the original project description have been met. Lack of industry design for proton exchange membrane electrolysis hydrogen production facilities of this magnitude was a roadblock for a significant period. However, recent design breakthroughs have made costing this facility much more accurate. In fact, the new design information on proton exchange membrane electrolyzers scaled to the 1 kg of hydrogen per second electrolyzer reduced the model costs from $500 to $100 million. Task 1 was delayed when the original electrolyzer failed at the end of its economic life. However, additional valuable information was obtained when the new electrolyzer was installed. Products developed during this study

  7. Yttrium bismuth titanate pyrochlore mixed oxides for photocatalytic hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Merka, Oliver

    2012-10-18

    In this work, the sol-gel synthesis of new non-stoichiometric pyrochlore titanates and their application in photocatalytic hydrogen production is reported. Visible light response is achieved by introducing bismuth on the A site or by doping the B site by transition metal cations featuring partially filled d orbitals. This work clearly focusses on atomic scale structural changes induced by the systematical introduction of non-stoichiometry in pyrochlore mixed oxides and the resulting influence on the activity in photocatalytic hydrogen production. The materials were characterized in detail regarding their optical properties and their atomic structure. The pyrochlore structure tolerates tremendous stoichiometry variations. The non-stoichiometry in A{sub 2}O{sub 3} rich compositions is compensated by distortions in the cationic sub-lattice for the smaller Y{sup 3+} cation and by evolution of a secondary phase for the larger Bi{sup 3+} cation on the A site. For TiO{sub 2} rich compositions, the non-stoichiometry leads to a special vacancy formation in the A and optionally O' sites. It is shown that pyrochlore mixed oxides in the yttrium bismuth titanate system represent very active and promising materials for photocatalytic hydrogen production, if precisely and carefully tuned. Whereas Y{sub 2}Ti{sub 2}O{sub 7} yields stable hydrogen production rates over time, the bismuth richer compounds of YBiTi{sub 2}O{sub 7} and Bi{sub 2}Ti{sub 2}O{sub 7} are found to be not stable under irradiation. This drawback is overcome by applying a special co-catalyst system consisting of a precious metal core and a Cr{sub 2}O{sub 3} shell on the photocatalysts.

  8. Startech Hydrogen Production Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Startech Engineering Department

    2007-11-27

    The assigned work scope includes the modification and utilization of the Plasma Converter System, Integration of a StarCell{trademark} Multistage Ceramic Membrane System (StarCell), and testing of the integrated systems towards DOE targets for gasification and membrane separation. Testing and evaluation was performed at the Startech Engineering and Demonstration Test Center in Bristol, CT. The Objectives of the program are as follows: (1) Characterize the performance of the integrated Plasma Converter and StarCell{trademark} Systems for hydrogen production and purification from abundant and inexpensive feedstocks; (2) Compare integrated hydrogen production performance to conventional technologies and DOE benchmarks; (3) Run pressure and temperature testing to baseline StarCell's performance; and (4) Determine the effect of process contaminants on the StarCell{trademark} system.

  9. Photochemical Production of Hydrogen from Water

    International Nuclear Information System (INIS)

    Broda, E.

    1978-01-01

    The energy flux in sunlight is 40 000 kW per head of the world population. Theoretically much of this energy can be used to photolyze water, in presence of a sensitizer, to H2 (and 02) for a hydrogen economy. The main difficulty in a homogeneous medium is the back-reaction of the primary products. According to the 'membrane principle', the reducing and the oxidizing primary products are released on opposite sides of asymmetric membranes, and so prevented from back-reacting. In essence, this is the mechanism of the photosynthetic machinery in plants and bacteria. This therefore serves as an example in the artificial construction of suitable asymmetric, 'vectorial', membranes. Relatively small areas of photolytic collectors, e.g. in tropical deserts, could cover the energy needs of large populations through hydrogen. (author)

  10. Hydrogen Production from Nuclear Energy via High Temperature Electrolysis

    International Nuclear Information System (INIS)

    James E. O'Brien; Carl M. Stoots; J. Stephen Herring; Grant L. Hawkes

    2006-01-01

    This paper presents the technical case for high-temperature nuclear hydrogen production. A general thermodynamic analysis of hydrogen production based on high-temperature thermal water splitting processes is presented. Specific details of hydrogen production based on high-temperature electrolysis are also provided, including results of recent experiments performed at the Idaho National Laboratory. Based on these results, high-temperature electrolysis appears to be a promising technology for efficient large-scale hydrogen production

  11. Microbial electrolysis cells as innovative technology for hydrogen production

    International Nuclear Information System (INIS)

    Chorbadzhiyska, Elitsa; Hristov, Georgi; Mitov, Mario; Hubenova, Yolina

    2011-01-01

    Hydrogen production is becoming increasingly important in view of using hydrogen in fuel cells. However, most of the production of hydrogen so far comes from the combustion of fossil fuels and water electrolysis. Microbial Electrolysis Cell (MEC), also known as Bioelectrochemically Assisted Microbial Reactor, is an ecologically clean, renewable and innovative technology for hydrogen production. Microbial electrolysis cells produce hydrogen mainly from waste biomass assisted by various bacteria strains. The principle of MECs and their constructional elements are reviewed and discussed. Keywords: microbial Electrolysis Cells, hydrogen production, waste biomass purification

  12. Study on commercial HTGR hydrogen production system

    International Nuclear Information System (INIS)

    Nishihara, Tetsuo

    2000-07-01

    The Japanese energy demand in 2030 will increase up to 117% in comparison with one in 2000. We have to avoid a large consumption of fossil fuel that induces a large CO 2 emission from viewpoint of global warming. Furthermore new energy resources expected to resolve global warming have difficulty to be introduced more because of their low energy density. As a result, nuclear power still has a possibility of large introduction to meet the increasing energy demand. On the other hand, in Japan, 40% of fossil fuels in the primary energy are utilized for power generation, and the remaining are utilized as a heat source. New clean energy is required to reduce the consumption of fossil fuels and hydrogen is expected as a alternative energy resource. Prediction of potential hydrogen demand in Japan is carried out and it is clarified that the demand will potentially increase up to 4% of total primary energy in 2050. In present, steam reforming method is the most economical among hydrogen generation processes and the cost of hydrogen production is about 7 to 8 yen/m 3 in Europe and the United States and about 13 yen/m 3 in Japan. JAERI has proposed for using the HTGR whose maximum core outlet temperature is at 950degC as a heat source in the steam reforming to reduced the consumption of fossil fuels and resulting CO 2 emission. Based on the survey of the production rate and the required thermal energy in conventional industry, it is clarified that a hydrogen production system by the steam reforming is the best process for the commercial HTGR nuclear heat utilization. The HTGR steam reforming system and other candidate nuclear heat utilization systems are considered from viewpoint of system layout and economy. From the results, the hydrogen production cost in the HTGR stream reforming system is expected to be about 13.5 yen/m 3 if the cost of nuclear heat of the HTGR is the same as one of the LWR. (author)

  13. Photobiological hydrogen production and carbon dioxide sequestration

    Science.gov (United States)

    Berberoglu, Halil

    Photobiological hydrogen production is an alternative to thermochemical and electrolytic technologies with the advantage of carbon dioxide sequestration. However, it suffers from low solar to hydrogen energy conversion efficiency due to limited light transfer, mass transfer, and nutrient medium composition. The present study aims at addressing these limitations and can be divided in three parts: (1) experimental measurements of the radiation characteristics of hydrogen producing and carbon dioxide consuming microorganisms, (2) solar radiation transfer modeling and simulation in photobioreactors, and (3) parametric experiments of photobiological hydrogen production and carbon dioxide sequestration. First, solar radiation transfer in photobioreactors containing microorganisms and bubbles was modeled using the radiative transport equation (RTE) and solved using the modified method of characteristics. The study concluded that Beer-Lambert's law gives inaccurate results and anisotropic scattering must be accounted for to predict the local irradiance inside a photobioreactor. The need for accurate measurement of the complete set of radiation characteristics of microorganisms was established. Then, experimental setup and analysis methods for measuring the complete set of radiation characteristics of microorganisms have been developed and successfully validated experimentally. A database of the radiation characteristics of representative microorganisms have been created including the cyanobacteria Anabaena variabilis, the purple non-sulfur bacteria Rhodobacter sphaeroides and the green algae Chlamydomonas reinhardtii along with its three genetically engineered strains. This enabled, for the first time, quantitative assessment of the effect of genetic engineering on the radiation characteristics of microorganisms. In addition, a parametric experimental study has been performed to model the growth, CO2 consumption, and H 2 production of Anabaena variabilis as functions of

  14. effectiveness of technological options for minimising production risks

    African Journals Online (AJOL)

    ACSS

    preferred technologies in reducing production risk related to climate variability in Eastern Uganda. Data for this study were ..... Set of technological options employed by farmers to reduce climate-induced production risk. Dummy = 1 if farmer. 0.71. 0.46 ..... cation exchange capacity for holding nutrients against leaching loss.

  15. Hydrogen in Ecomare. Options for uses; Waterstof bij Ecomare. Opties voor inzet

    Energy Technology Data Exchange (ETDEWEB)

    Kraaij, G.J. [ECN Waterstof en Schoon Fossiel, Petten (Netherlands)

    2009-02-15

    Hydrogen is a clean fuel with very low emissions. In fuel cells the hydrogen can be converted to electricity with a high efficiency that can be used in electric transport and stationary applications. In order to promote and demonstrate this aspect ECN has investigated which applications Ecomare can use and demonstrate. Ecomare is the centre for Wadden and North Sea on Texel. The following options are investigated: Bicycles with fuel cells on hydrogen; Small utility vehicles with fuel cells on hydrogen; Back-up systems with fuel cells on hydrogen; Combined heat and power system with fuel cells on natural gas. The availability of transport systems with fuel cells is still small; from the bicycle market the cargobike from Masterflex is the best option. The cargobike will become available by mid 2009. The small utility vehicle that is potentially available is the VEM vehicle as developed in the Hychain project. For both vehicles the hydrogen logistic requires special attention since nonstandard hydrogen storage cylinders are used. For the stationary applications the demonstration aspect is less compared to the transport applications. The back-up systems are no necessity for Ecomare and the heat requirement in summertime is to small to for possible combined heat and power systems using fuel cells. Special attention is required for permits from the local authorities and fire department, and the transport of hydrogen by the ferry to Texel. [Dutch] Waterstof is bij gebruik een schone brandstof; er komen nauwelijks emissies bij vrij. Met behulp van brandstofcellen kan waterstof met een hoog rendement omgezet worden in elektriciteit, eventueel te gebruiken voor elektrisch vervoer. Om deze aspecten te promoten en tijdens het gebruik te laten zien wil Ecomare door ECN laten onderzoeken welke waterstoftoepassingen bij Ecomare ingezet kunnen worden. De volgende 4 opties zijn verder onderzocht: Fietsen met brandstofcellen op waterstof; Klein bedrijfsvoertuig met brandstofcellen

  16. Plasma processing methods for hydrogen production

    International Nuclear Information System (INIS)

    Mizeraczyk, J.; Jasinski, M.

    2016-01-01

    In the future a transfer from the fossil fuel-based economy to hydrogen-based economy is expected. Therefore the development of systems for efficient H_2 production becomes important. The several conventional methods of mass-scale (or central) H_2 production (methane, natural gas and higher hydrocarbons reforming, coal gasification reforming) are well developed and their costs of H_2 production are acceptable. However, due to the H_2 transport and storage problems the small-scale (distributed) technologies for H_2 production are demanded. However, these new technologies have to meet the requirement of producing H_2 at a production cost of $(1-2)/kg(H_2) (or 60 g(H_2)/kWh) by 2020 (the U.S. Department of Energy's target). Recently several plasma methods have been proposed for the small-scale H_2 production. The most promising plasmas for this purpose seems to be those generated by gliding, plasmatron and nozzle arcs, and microwave discharges. In this paper plasma methods proposed for H_2 production are briefly described and critically evaluated from the view point of H_2 production efficiency. The paper is aiming at answering a question if any plasma method for the small-scale H_2 production approaches such challenges as the production energy yield of 60 g(H_2)/kWh, high production rate, high reliability and low investment cost. (authors)

  17. Roles Prioritization of Hydrogen Production Technologies for Promoting Hydrogen Economy in the Current State of China

    DEFF Research Database (Denmark)

    Ren, Jingzheng; Gao, Suzhao; Tan, Shiyu

    2015-01-01

    Hydrogen production technologies play an important role in the hydrogen economy of China. However, the roles of different technologies played in promoting the development of hydrogen economy are different. The role prioritization of various hydrogen production technologies is of vital importance...... information. The prioritization results by using the proposed method demonstrated that the technologies of coal gasification with CO2 capture and storage and hydropower-based water electrolysis were regarded as the two most important hydrogen production pathways for promoting the development of hydrogen...... for the stakeholders/decision-makers to plan the development of hydrogen economy in China and to allocate the finite R&D budget reasonably. In this study, DPSIR framework was firstly used to identify the key factors concerning the priorities of various hydrogen production technologies; then, a fuzzy group decision...

  18. Resource Assessment for Hydrogen Production: Hydrogen Production Potential from Fossil and Renewable Energy Resources

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Penev, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heimiller, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-09-01

    This study examines the energy resources required to produce 4-10 million metric tonnes of domestic, low-carbon hydrogen in order to fuel approximately 20-50 million fuel cell electric vehicles. These projected energy resource requirements are compared to current consumption levels, projected 2040 business as usual consumptions levels, and projected 2040 consumption levels within a carbonconstrained future for the following energy resources: coal (assuming carbon capture and storage), natural gas, nuclear (uranium), biomass, wind (on- and offshore), and solar (photovoltaics and concentrating solar power). The analysis framework builds upon previous analysis results estimating hydrogen production potentials and drawing comparisons with economy-wide resource production projections

  19. Hydrogen production from glucose in ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Assenbaum, D.W.; Taccardi, N.; Berger, M.E.M.; Boesmann, A.; Enzenberger, F.; Woelfel, R.; Wasserscheid, P. [Erlangen-Nuernberg Univ. (Germany). Lehrstuhl fuer chemische Reaktionstechnik

    2010-07-01

    Depletion of oil and gas reserves and growing global warming concerns have created a world-wide interest in new concepts for future sustainable energy supplies. The development of effective ways to produce hydrogen from biomass is expected to be one important contribution to such a goal [1]. Nowadays, three main processes are considered for future industrial application, namely: gasification of biomass [2], reforming in supercritical water [3] and aqueous phase reforming [4,5]. Other technologies such as enzymatic decomposition of sugars or steam reforming of bio-oils suffer from low hydrogen production rates and/or complex processing requirements and can probably not be considered for industrial applications in the closer future [6,7]. On the other hand, either the gasification of biomass, which is typically carried out at temperatures above 800 C using Ni or Fe catalysts [8,9,10,11], or the reforming in supercritical water, which is typically carried out in presence of Ru catalyst at pressures of 300bar and temperatures ranging from 500 to 700 C [12], suffer of poor energetic efficiency as a lot of energy is required to run the reactions. More recently, an alternative to the two aforementioned high temperature processes has been proposed as ''aqueous phase reforming'' (APR) by Dumesic and coworkers [13,14,15,16,17]. They achieved the reforming of polyols (such as ethylene glycol, glycerol and sorbitol) using heterogeneous catalysts at temperatures between 200 and 250 C and pressure typically between 15-50bar.The temperature level of the reaction allows generating hydrogen with low amounts of CO in a single reactor. The process typically forms 35 % of hydrogen, 40 % of CO2 and 25 % of combined alkanes. The high amount of formed alkanes originates eventually from CO hydrogenation and Fischer-Tropsch (F-T) reaction [18,19,20,21], those are thermodynamically favored in the above mentioned conditions. However, heterogeneously catalyzed APR

  20. Electrocatalysis research for fuel cells and hydrogen production

    CSIR Research Space (South Africa)

    Mathe, MK

    2012-01-01

    Full Text Available The CSIR undertakes research in the Electrocatalysis of fuel cells and for hydrogen production. The Hydrogen South Africa (HySA) strategy supports research on electrocatalysts due to their importance to the national beneficiation strategy. The work...

  1. Solid oxide fuel cells and hydrogen production

    International Nuclear Information System (INIS)

    Dogan, F.

    2009-01-01

    'Full text': A single-chamber solid oxide fuel cell (SC-SOFC), operating in a mixture of fuel and oxidant gases, provides several advantages over the conventional SOFC such as simplified cell structure (no sealing required). SC-SOFC allows using a variety of fuels without carbon deposition by selecting appropriate electrode materials and cell operating conditions. The operating conditions of single chamber SOFC was studied using hydrocarbon-air gas mixtures for a cell composed of NiO-YSZ / YSZ / LSCF-Ag. The cell performance and catalytic activity of the anode was measured at various gas flow rates. The results showed that the open-circuit voltage and the power density increased as the gas flow rate increased. Relatively high power densities up to 660 mW/cm 2 were obtained in a SC-SOFC using porous YSZ electrolytes instead of dense electrolytes required for operation of a double chamber SOFC. In addition to propane- or methane-air mixtures as a fuel source, the cells were also tested in a double chamber configuration using hydrogen-air mixtures by controlling the hydrogen/air ratio at the cathode and the anode. Simulation of single chamber conditions in double chamber configurations allows distinguishing and better understanding of the electrode reactions in the presence of mixed gases. Recent research efforts; the effect of hydrogen-air mixtures as a fuel source on the performance of anode and cathode materials in single-chamber and double-chamber SOFC configurations,will be presented. The presentation will address a review on hydrogen production by utilizing of reversible SOFC systems. (author)

  2. GAT 4 production and storage of hydrogen. Report July 2004

    International Nuclear Information System (INIS)

    2004-01-01

    This paper concerns two aspects of the hydrogen: the production and the storage. For both parts the challenges and a state of the art are presented. It discusses also the hydrogen production by renewable energies, by solar energy, the hydrogen of hydrocarbons reforming purification, active phases development, thermal transfer simulation. Concerning the hydrogen storage the hydrogen adsorption by large surface solid, the storage by metallic hydrides, the alanates and light hydrides, the adsorption on carbon nano-tubes, the storage in nano-structures, the thermal and mechanical simulation of the hydrogen are presented. (A.L.B.)

  3. Hydrogen production by a PEM electrolyser

    International Nuclear Information System (INIS)

    Aragón-González, G; León-Galicia, A; Camacho, J M Rivera; Uribe-Salazar, M; González-Huerta, R

    2015-01-01

    A PEM electrolyser for hydrogen production was evaluated. It was fed with water and a 400 mA, 3.5 V cc electrical power source. The electrolyser was built with two acrylic plates to form the anode and the cathode, two meshes to distribute the current, two seals, two gas diffusers and an assembly membrane-electrode. A small commercial neoprene sheet 1.7 mm thin was used to provide for the water deposit in order to avoid the machining of the structure. For the assembly of the proton interchange membrane a thin square 50 mm layer of Nafion 115 was used

  4. Advances and bottlenecks in microbial hydrogen production.

    Science.gov (United States)

    Stephen, Alan J; Archer, Sophie A; Orozco, Rafael L; Macaskie, Lynne E

    2017-09-01

    Biological production of hydrogen is poised to become a significant player in the future energy mix. This review highlights recent advances and bottlenecks in various approaches to biohydrogen processes, often in concert with management of organic wastes or waste CO 2 . Some key bottlenecks are highlighted in terms of the overall energy balance of the process and highlighting the need for economic and environmental life cycle analyses with regard also to socio-economic and geographical issues. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  5. French perspectives for production of hydrogen using nuclear energy

    International Nuclear Information System (INIS)

    Vitart, Xavier; Yvon, Pascal; Carles, Philippe; Naour, Francois Le

    2009-01-01

    The demand for hydrogen, driven by classical applications such as fertilizers or oil refining a well as new applications (synthetic fuels, fuel cells ... ) is growing significantly. Presently, most of the hydrogen produced in the world uses methane or another fossil feedstock, which is not a sustainable option, given the limited fossil resources and need to reduce CO 2 emissions. This stimulates the need to develop alternative processes of production which do not suffer from these drawbacks. Water decomposition combined with nuclear energy appears to be an attractive option. Low temperature electrolysis, even if it is used currently for limited amounts is a mature technology which can be generalized in the near future. However, this technology, which requires about 4 kWh of electricity per Nm 3 of hydrogen produced, is energy intensive and presents a low efficiency. Therefore the French Atomic Energy Commission (CEA) launched an extensive research and development program in 2001 in order to investigate advanced processes which could use directly the nuclear heat and present better economic potential. In the frame of this program, high temperature steam electrolysis along with several thermochemical cycles has been extensively studied. HTSE offers the advantage of reducing the electrical energy needed by substituting thermal energy, which promises to be cheaper. The need for electricity is also greatly reduced for the leading thermochemical cycles, the iodine-sulfur and the hybrid sulfur cycles, but they require high temperatures and hence coupling to a gas cooled reactor. Therefore interest is also paid to other processes such as the copper-chlorine cycle which operates at lower temperatures and could be coupled to other generation IV nuclear systems. The technical development of these processes involved acquisition of basic thermodynamic data, optimization of flowsheets, design and test of components and lab scale experiments in the kW range. This will demonstrate

  6. Life cycle assessment of hydrogen production and fuel cell systems

    International Nuclear Information System (INIS)

    Dincer, I.

    2007-01-01

    This paper details life cycle assessment (LCA) of hydrogen production and fuel cell system. LCA is a key tool in hydrogen and fuel cell technologies for design, analysis, development; manufacture, applications etc. Energy efficiencies and greenhouse gases and air pollution emissions have been evaluated in all process steps including crude oil and natural gas pipeline transportation, crude oil distillation, natural gas reprocessing, wind and solar electricity generation , hydrogen production through water electrolysis and gasoline and hydrogen distribution and utilization

  7. Comparison of pulp-mill-integrated hydrogen production from gasified black liquor with stand-alone production from gasified biomass

    International Nuclear Information System (INIS)

    Andersson, E.; Harvey, S.

    2007-01-01

    When gasified black liquor is used for hydrogen production, significant amounts of biomass must be imported. This paper compares two alternative options for producing hydrogen from biomass: (A) pulp-mill-integrated hydrogen production from gasified back liquor; and (B) stand-alone production of hydrogen from gasified biomass. The comparison assumes that the same amount of biomass that is imported in Alternative A is supplied to a stand-alone hydrogen production plant and that the gasified black liquor in Alternative B is used in a black liquor gasification combined cycle (BLGCC) CHP unit. The comparison is based upon equal amounts of black liquor fed to the gasifier, and identical steam and power requirements for the pulp mill. The two systems are compared on the basis of total CO 2 emission consequences, based upon different assumptions for the reference energy system that reflect different societal CO 2 emissions reduction target levels. Ambitions targets are expected to lead to a more CO 2 -lean reference energy system, in which case hydrogen production from gasified black liquor (Alternative A) is best from a CO 2 emissions' perspective, whereas with high CO 2 emissions associated with electricity production, hydrogen from gasified biomass and electricity from gasified black liquor (Alternative B) is preferable. (author)

  8. Assessment of Combustion and Potash Production as Options for ...

    African Journals Online (AJOL)

    This study assessed combustion and potash production as options for management of wood waste. The percentage reduction in volume by combustion and potash generation potential of wood waste from nine different common species of wood obtained from a wood factory in Ibadan were evaluated. Potash from the ashes ...

  9. Techno Economic Analysis of Hydrogen Production by gasification of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Francis Lau

    2002-12-01

    Biomass represents a large potential feedstock resource for environmentally clean processes that produce power or chemicals. It lends itself to both biological and thermal conversion processes and both options are currently being explored. Hydrogen can be produced in a variety of ways. The majority of the hydrogen produced in this country is produced through natural gas reforming and is used as chemical feedstock in refinery operations. In this report we will examine the production of hydrogen by gasification of biomass. Biomass is defined as organic matter that is available on a renewable basis through natural processes or as a by-product of processes that use renewable resources. The majority of biomass is used in combustion processes, in mills that use the renewable resources, to produce electricity for end-use product generation. This report will explore the use of hydrogen as a fuel derived from gasification of three candidate biomass feedstocks: bagasse, switchgrass, and a nutshell mix that consists of 40% almond nutshell, 40% almond prunings, and 20% walnut shell. In this report, an assessment of the technical and economic potential of producing hydrogen from biomass gasification is analyzed. The resource base was assessed to determine a process scale from feedstock costs and availability. Solids handling systems were researched. A GTI proprietary gasifier model was used in combination with a Hysys(reg. sign) design and simulation program to determine the amount of hydrogen that can be produced from each candidate biomass feed. Cost estimations were developed and government programs and incentives were analyzed. Finally, the barriers to the production and commercialization of hydrogen from biomass were determined. The end-use of the hydrogen produced from this system is small PEM fuel cells for automobiles. Pyrolysis of biomass was also considered. Pyrolysis is a reaction in which biomass or coal is partially vaporized by heating. Gasification is a more

  10. Preliminary Cost Estimates for Nuclear Hydrogen Production: HTSE System

    International Nuclear Information System (INIS)

    Yang, K. J.; Lee, K. Y.; Lee, T. H.

    2008-01-01

    KAERI is now focusing on the research and development of the key technologies required for the design and realization of a nuclear hydrogen production system. As a preliminary study of cost estimates for nuclear hydrogen systems, the hydrogen production costs of the nuclear energy sources benchmarking GTMHR and PBMR are estimated in the necessary input data on a Korean specific basis. G4-ECONS was appropriately modified to calculate the cost for hydrogen production of HTSE (High Temperature Steam Electrolysis) process with VHTR (Very High Temperature nuclear Reactor) as a thermal energy source. The estimated costs presented in this paper show that hydrogen production by the VHTR could be competitive with current techniques of hydrogen production from fossil fuels if CO 2 capture and sequestration is required. Nuclear production of hydrogen would allow large-scale production of hydrogen at economic prices while avoiding the release of CO 2 . Nuclear production of hydrogen could thus become the enabling technology for the hydrogen economy. The major factors that would affect the cost of hydrogen were also discussed

  11. A photoneutron production option for MCNP4A

    International Nuclear Information System (INIS)

    Gallmeier, F.X.

    1996-01-01

    A photoneutron production option was implemented in the MCNP4A code, mainly to supply a tool for reactor shielding calculations in beryllium and heavy water environments of complicated three dimensional geometries. Subroutines were developed to calculate the probability of the photoneutron production at the photon collision sites and the energy and flight direction of the created photoneutrons with the help of user supplied data. These subroutines are accessed through subroutine colidp which processes the photon collisions

  12. IS process for thermochemical hydrogen production

    International Nuclear Information System (INIS)

    Onuki, Kaoru; Nakajima, Hayato; Ioka, Ikuo; Futakawa, Masatoshi; Shimizu, Saburo

    1994-11-01

    The state-of-the-art of thermochemical hydrogen production by IS process is reviewed including experimental data obtained at JAERI on the chemistry of the Bunsen reaction step and on the corrosion resistance of the structural materials. The present status of laboratory scale demonstration at JAERI is also included. The study on the chemistry of the chemical reactions and the products separations has identified feasible methods to function the process. The flowsheeting studies revealed a process thermal efficiency higher than 40% is achievable under efficient process conditions. The corrosion resistance of commercially available structural materials have been clarified under various process conditions. The basic scheme of the process has been realized in a laboratory scale apparatus. R and D requirements to proceed to the engineering demonstration coupled with HTTR are briefly discussed. (author)

  13. Biological hydrogen production from biomass by thermophilic bacteria

    International Nuclear Information System (INIS)

    Claassen, P.A.M.; Mars, A.E.; Budde, M.A.W.; Lai, M.; de Vrije, T.; van Niel, E.W.J.

    2006-01-01

    To meet the reduction of the emission of CO 2 imposed by the Kyoto protocol, hydrogen should be produced from renewable primary energy. Besides the indirect production of hydrogen by electrolysis using electricity from renewable resources, such as sunlight, wind and hydropower, hydrogen can be directly produced from biomass. At present, there are two strategies for the production of hydrogen from biomass: the thermochemical technology, such as gasification, and the biotechnological approach using micro-organisms. Biological hydrogen production delivers clean hydrogen with an environmental-friendly technology and is very suitable for the conversion of wet biomass in small-scale applications, thus having a high chance of becoming an economically feasible technology. Many micro-organisms are able to produce hydrogen from mono- and disaccharides, starch and (hemi)cellulose under anaerobic conditions. The anaerobic production of hydrogen is a common phenomenon, occurring during the process of anaerobic digestion. Here, hydrogen producing micro-organisms are in syn-trophy with methanogenic bacteria which consume the hydrogen as soon as it is produced. In this way, hydrogen production remains obscure and methane is the end-product. By uncoupling hydrogen production from methane production, hydrogen becomes available for recovery and exploitation. This study describes the use of extreme thermophilic bacteria, selected because of a higher hydrogen production efficiency as compared to mesophilic bacteria, for the production of hydrogen from renewable resources. As feedstock energy crops like Miscanthus and Sorghum bicolor and waste streams like domestic organic waste, paper sludge and potato steam peels were used. The feedstock was pretreated and/or enzymatically hydrolyzed prior to fermentation to make a fermentable substrate. Hydrogen production by Caldicellulosiruptor saccharolyticus, Thermotoga elfii and T. neapolitana on all substrates was observed. Nutrient

  14. Decentralized and direct solar hydrogen production: Towards a hydrogen economy in MENA region

    Energy Technology Data Exchange (ETDEWEB)

    Bensebaa, Farid; Khalfallah, Mohamed; Ouchene, Majid

    2010-09-15

    Hydrogen has certainly some advantages in spite of its high cost and low efficiency when compared to other energy vectors. Solar energy is an abundant, clean and renewable source of energy, currently competing with fossil fuel for water heating without subsidy. Photo-electrochemical, thermo-chemicals and photo-biological processes for hydrogen production processes have been demonstrated. These decentralised hydrogen production processes using directly solar energy do not require expensive hydrogen infrastructure for packaging and delivery in the short and medium terms. MENA region could certainly be considered a key area for a new start to a global deployment of hydrogen economy.

  15. Limits for hydrogen production of a solar - hydrogen system in Cuernavaca, Mexico

    International Nuclear Information System (INIS)

    Arriaga, H.L.G.; Gutierrez, S.L.; Cano, U.

    2006-01-01

    In this work experimental data are used in order to estimate the production of hydrogen as a function of irradiance of a direct-interconnection of solar panel system with a SPE (Solid Polymer Electrolyte) electrolyzer (also Solar-Hydrogen system). The solar - hydrogen system, consists of a photovoltaic solar array of 36 panels (75 Watts each) of monocrystalline silicon interconnected with an electrolyzer stack of 25 cells (around 100 cm 2 of geometrical area) with a maximum hydrogen production of 1 Nm 3 /h. By the use of voltage, current density, energy consumption values of the whole solar-hydrogen system, an average efficiency up to 5% was estimated and an average of 3,800 NL of hydrogen per day can be expected. Also the maximum hydrogen production for the months of July and December (sunniest and least sunny months in the location) is predicted. (authors)

  16. Limits for hydrogen production of a solar - hydrogen system in Cuernavaca, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Arriaga, H.L.G.; Gutierrez, S.L.; Cano, U. [Instituto de Investigaciones Electricas Av. Reforma 113, col. Palmira c.p.62490 Cuernavaca Morelos (Mexico)

    2006-07-01

    In this work experimental data are used in order to estimate the production of hydrogen as a function of irradiance of a direct-interconnection of solar panel system with a SPE (Solid Polymer Electrolyte) electrolyzer (also Solar-Hydrogen system). The solar - hydrogen system, consists of a photovoltaic solar array of 36 panels (75 Watts each) of monocrystalline silicon interconnected with an electrolyzer stack of 25 cells (around 100 cm{sup 2} of geometrical area) with a maximum hydrogen production of 1 Nm{sup 3}/h. By the use of voltage, current density, energy consumption values of the whole solar-hydrogen system, an average efficiency up to 5% was estimated and an average of 3,800 NL of hydrogen per day can be expected. Also the maximum hydrogen production for the months of July and December (sunniest and least sunny months in the location) is predicted. (authors)

  17. DESIGN CONSIDERATIONS UPON PRODUCT END-OF-LIFE OPTIONS

    Directory of Open Access Journals (Sweden)

    BARSAN Lucian

    2016-11-01

    Full Text Available The paper presents some considerations about the necessity of evaluating the environmental impact of a product during its entire life. The present situation (economic, social and ecologic imposes solutions to reduce this impact as a result of an analysis performed during all stages of the life cycle. This paper focuses on design solutions with consequences in the last stage, the end-of-life. Reusing products, with, or without remanufacturing and recycling the materials from products that cannot be reused represent some options analysed in this paper. The end-of-life options should be known even from the beginning of the design process and should be included as design objectives or, at least as constrictions. Considering them as human needs would naturally include them in the requirements list.

  18. Recent advances on membranes and membrane reactors for hydrogen production

    NARCIS (Netherlands)

    Gallucci, F.; Fernandez Gesalaga, E.; Corengia, P.; Sint Annaland, van M.

    2013-01-01

    Membranes and membrane reactors for pure hydrogen production are widely investigated not only because of the important application areas of hydrogen, but especially because mechanically and chemically stable membranes with high perm-selectivity towards hydrogen are available and are continuously

  19. Efficiency analysis of hydrogen production methods from biomass

    NARCIS (Netherlands)

    Ptasinski, K.J.

    2008-01-01

    Abstract: Hydrogen is considered as a universal energy carrier for the future, and biomass has the potential to become a sustainable source of hydrogen. This article presents an efficiency analysis of hydrogen production processes from a variety of biomass feedstocks by a thermochemical method –

  20. Long term hydrogen production potential of concentrated photovoltaic (CPV) system in tropical weather of Singapore

    KAUST Repository

    Burhan, Muhammad

    2016-08-23

    Concentrated photovoltaic (CPV) system provides highest solar energy conversion efficiency among all the photovoltaic technologies and provides the most suitable option to convert solar energy into hydrogen, as future sustainable energy carrier. So far, only conventional flat plate PV systems are being used for almost all of the commercial applications. However, most of the studies have only shown the maximum efficiency of hydrogen production using CPV. In actual field conditions, the performance of CPV-Hydrogen system is affected by many parameter and it changes continuously during whole day operation. In this paper, the daily average and long term performances are proposed to analyze the real field potential of the CPV-Hydrogen system, which is of main interest for designers and consumers. An experimental setup is developed and a performance model is proposed to investigate the average and long term production potential of CPV-Hydrogen system. The study is carried out in tropical weather of Singapore. The maximum CPV efficiency of 27-28% and solar to hydrogen (STH) efficiency of 18%, were recorded. In addition, the CPV-Hydrogen system showed the long term average efficiency of 15.5%, for period of one year (12-months), with electrolyser rating of 47 kWh/kg and STH production potential of 218 kWh/kg. Based upon the DNI availability, the system showed hydrogen production potential of 0.153-0.553 kg/m/month, with average production of 0.43 kg/m/month. However, CPV-Hydrogen system has shown annual hydrogen production potential of 5.162 kg/m/year in tropical weather of Singapore.

  1. Biological production of hydrogen by dark fermentation of OFMSW and co-fermentation with slaughterhouse wastes

    Energy Technology Data Exchange (ETDEWEB)

    Moran, A.; Gomez, X.; Cuestos, M. J.

    2005-07-01

    Hydrogen is an ideal, clean and sustainable energy source for the future because of its high conversion and nonpolluting nature (Lin and Lay, 2003). There are different methods for the production of hydrogen, the traditional ones, are the production from fossil fuels. Aiming to reach a development based on sustainable principles the production of hydrogen from renewable sources is a desirable goal. Among the environmental friendly alternatives for the production of hydrogen are the biological means. Dark fermentation as it is known the process when light is not used; it is a preferable option thanks to the knowledge already collected from its homologous process, the anaerobic digestion for the production of methane. There are several studies intended to the evaluation of the production of hydrogen, many are dedicated to the use of pure cultures or the utilization of basic substrates as glucose or sucrose (Lin and Lay, 2003; Chang et al., 2002, Kim et al., 2005). This study is performed to evaluate the fermentation of a mixture of wastes for the production of hydrogen. It is used as substrate the organic fraction of municipal solid wastes (OFMSW) and a mixture of this residue with slaughterhouse waste. (Author)

  2. Dispatchable Hydrogen Production at the Forecourt for Electricity Demand Shaping

    Directory of Open Access Journals (Sweden)

    Abdulla Rahil

    2017-10-01

    Full Text Available Environmental issues and concerns about depletion of fossil fuels have driven rapid growth in the generation of renewable energy (RE and its use in electricity grids. Similarly, the need for an alternative to hydrocarbon fuels means that the number of fuel cell vehicles is also expected to increase. The ability of electricity networks to balance supply and demand is greatly affected by the variable, intermittent output of RE generators; however, this could be relieved using energy storage and demand-side response (DSR techniques. One option would be production of hydrogen by electrolysis powered from wind and solar sources. The use of tariff structures would provide an incentive to operate electrolysers as dispatchable loads. The aim of this paper is to compare the cost of hydrogen production by electrolysis at garage forecourts in Libya, for both dispatchable and continuous operation, without interruption of fuel supply to vehicles. The coastal city of Derna was chosen as a case study, with the renewable energy being produced via a wind turbine farm. Wind speed was analysed in order to determine a suitable turbine, then the capacity was calculated to estimate how many turbines would be needed to meet demand. Finally, the excess power was calculated, based on the discrepancy between supply and demand. The study looked at a hydrogen refueling station in both dispatchable and continuous operation, using an optimisation algorithm. The following three scenarios were considered to determine whether the cost of electrolytic hydrogen could be reduced by a lower off-peak electricity price. These scenarios are: Standard Continuous, in which the electrolyser operates continuously on a standard tariff of 12 p/kWh; Off-peak Only, in which the electrolyser operates only during off-peak periods at the lower price of 5 p/kWh; and 2-Tier Continuous, in which the electrolyser operates continuously on a low tariff at off-peak times and a high tariff at other

  3. Economical hydrogen production by electrolysis using nano pulsed DC

    Energy Technology Data Exchange (ETDEWEB)

    Dharmaraj, C.H. [Tangedco, Tirunelveli, ME Environmental Engineering (India); Adshkumar, S. [Department of Civil Engineering, Anna University of Technology Tirunelveli, Tirunelveli - 627007 (India)

    2012-07-01

    Hydrogen is an alternate renewable eco fuel. The environmental friendly hydrogen production method is electrolysis. The cost of electrical energy input is major role while fixing hydrogen cost in the conventional direct current Electrolysis. Using nano pulse DC input makes the input power less and economical hydrogen production can be established. In this investigation, a lab scale electrolytic cell developed and 0.58 mL/sec hydrogen/oxygen output is obtained using conventional and nano pulsed DC. The result shows that the nano pulsed DC gives 96.8 % energy saving.

  4. Nano cobalt oxides for photocatalytic hydrogen production

    KAUST Repository

    Mangrulkar, Priti A.; Joshi, Meenal M.; Tijare, Saumitra N.; Polshettiwar, Vivek; Labhsetwar, Nitin K.; Rayalu, Sadhana Suresh

    2012-01-01

    of various operating parameters in hydrogen generation by nano cobalt oxide was then studied in detail. Copyright © 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  5. Creating load for new hydrogen production

    International Nuclear Information System (INIS)

    Smith, R.

    2006-01-01

    This presentation provides an update of the activities of the Hydrogen Village. The Hydrogen Village is a public-private partnership of approximately 40 companies with the goal of advancing awareness of the environmental, economic and social benefits of hydrogen and fuel cell technologies. The intent of the hydrogen village is to create a sustainable commercial market for these technologies within the Greater Toronto Area and to help to catalyze such markets in other areas

  6. Present status of research on hydrogen energy and perspective of HTGR hydrogen production system

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Yoshiaki; Ogawa, Masuro; Akino, Norio [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment] [and others

    2001-03-01

    A study was performed to make a clear positioning of research and development on hydrogen production systems with a High Temperature Gas-cooled Reactor (HTGR) under currently promoting at the Japan Atomic Energy Research Institute through a grasp of the present status of hydrogen energy, focussing on its production and utilization as an energy in future. The study made clear that introduction of safe distance concept for hydrogen fire and explosion was practicable for a HTGR hydrogen production system, including hydrogen properties and need to provide regulations applying to handle hydrogen. And also generalization of hydrogen production processes showed technical issues of the HTGR system. Hydrogen with HTGR was competitive to one with fossil fired system due to evaluation of production cost. Hydrogen is expected to be used as promising fuel of fuel cell cars in future. In addition, the study indicated that there were a large amount of energy demand alternative to high efficiency power generation and fossil fuel with nuclear energy through the structure of energy demand and supply in Japan. Assuming that hydrogen with HTGR meets all demand of fuel cell cars, an estimation would show introduction of the maximum number of about 30 HTGRs with capacity of 100 MWt from 2020 to 2030. (author)

  7. Methods and systems for the production of hydrogen

    Science.gov (United States)

    Oh, Chang H [Idaho Falls, ID; Kim, Eung S [Ammon, ID; Sherman, Steven R [Augusta, GA

    2012-03-13

    Methods and systems are disclosed for the production of hydrogen and the use of high-temperature heat sources in energy conversion. In one embodiment, a primary loop may include a nuclear reactor utilizing a molten salt or helium as a coolant. The nuclear reactor may provide heat energy to a power generation loop for production of electrical energy. For example, a supercritical carbon dioxide fluid may be heated by the nuclear reactor via the molten salt and then expanded in a turbine to drive a generator. An intermediate heat exchange loop may also be thermally coupled with the primary loop and provide heat energy to one or more hydrogen production facilities. A portion of the hydrogen produced by the hydrogen production facility may be diverted to a combustor to elevate the temperature of water being split into hydrogen and oxygen by the hydrogen production facility.

  8. Solar Thermochemical Hydrogen Production Research (STCH)

    Energy Technology Data Exchange (ETDEWEB)

    Perret, Robert [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2011-05-01

    Eight cycles in a coordinated set of projects for Solar Thermochemical Cycles for Hydrogen production (STCH) were self-evaluated for the DOE-EERE Fuel Cell Technologies Program at a Working Group Meeting on October 8 and 9, 2008. This document reports the initial selection process for development investment in STCH projects, the evaluation process meant to reduce the number of projects as a means to focus resources on development of a few most-likely-to-succeed efforts, the obstacles encountered in project inventory reduction and the outcomes of the evaluation process. Summary technical status of the projects under evaluation is reported and recommendations identified to improve future project planning and selection activities.

  9. Solar Cell Production in Nigeria: Prospects, Options and Problems

    International Nuclear Information System (INIS)

    Fasasi, A. Y.; Siyanbola, W.O.; Ibitoye, F. I.; Pelemo, D. A.

    2002-01-01

    The prospects and problems facing solar cell production in Nigeria are discussed. The paper reviews many proven solar cell materials in terms of their current efficiencies and production costs. Silicon solar cell production appears to be the best technology option for Nigeria because of the abundant quartz sand and waste products from our phosphate fertiliser company that can be employed as starting materials to produce solar grade silicon. Factors affecting solar cell efficiency, choice of solar cell as well as financial and material problems limiting the progress on silicon solar cell production are also discussed. Finally, the paper recommends the simultaneous production of solar grade silicon and coordinated development of the balance of system components as first steps towards actualizing this objective

  10. Solutions to commercializing metal hydride hydrogen storage products

    International Nuclear Information System (INIS)

    Tomlinson, J.J.; Belanger, R.

    2004-01-01

    'Full text:' Whilst the concept of a Hydrogen economy in the broad sense may for some analysts and Fuel Cell technology developers be an ever moving target the use of hydrogen exists and is growing in other markets today. The use of hydrogen is increasing. Who are the users? What are their unique needs? How can they better be served? As the use of hydrogen increases there are things we can do to improve the perception and handling of hydrogen as an industrial gas that will impact the future issues of hydrogen as a fuel thereby assisting the mainstream availability of hydrogen fuel a reality. Factors that will induce change in the way hydrogen is used, handled, transported and stored are the factors to concentrate development efforts on. Other factors include: cost; availability; safety; codes and standards; and regulatory authorities acceptance of new codes and standards. New methods of storage and new devices in which the hydrogen is stored will influence and bring about change and increased use. New innovative products based on Metal Hydride hydrogen storage will address some of the barriers to widely distributed hydrogen as a fuel or energy carrier to which successful fuel cell product commercialization is subject. Palcan has developed innovative products based on it's Rare Earth Metal Hydride alloy. Some of these innovations will aid the distribution of hydrogen as a fuel and offer alternatives to the existing hydrogen user and to the Fuel Cell product developer. An overview of the products and how these products will affect the distribution and use of hydrogen as an industrial gas and fuel is presented. (author)

  11. Hydrogen from algal biomass: A review of production process

    Directory of Open Access Journals (Sweden)

    Archita Sharma

    2017-09-01

    Full Text Available Multifariousness of biofuel sources has marked an edge to an imperative energy issue. Production of hydrogen from microalgae has been gathering much contemplation right away. But, mercantile production of microalgae biofuels considering bio-hydrogen is still not practicable because of low biomass concentration and costly down streaming processes. This review has taken up the hydrogen production by microalgae. Biofuels are the up and coming alternative to exhaustible, environmentally and unsafe fossil fuels. Algal biomass has been considered as an enticing raw material for biofuel production, these days photobioreactors and open-air systems are being used for hydrogen production from algal biomass. The formers allow the careful cultivation control whereas the latter ones are cheaper and simpler. A contemporary, encouraging optimization access has been included called algal cell immobilization on various matrixes which has resulted in marked increase in the productivity per volume of a reactor and addition of the hydrogen-production phase.

  12. Hydrogen production using Rhodopseudomonas palustris WP 3-5 with hydrogen fermentation reactor effluent

    International Nuclear Information System (INIS)

    Chi-Mei Lee; Kuo-Tsang Hung

    2006-01-01

    The possibility of utilizing the dark hydrogen fermentation stage effluents for photo hydrogen production using purple non-sulfur bacteria should be elucidated. In the previous experiments, Rhodopseudomonas palustris WP3-5 was proven to efficiently produce hydrogen from the effluent of hydrogen fermentation reactors. The highest hydrogen production rate was obtained at a HRT value of 48 h when feeding a 5 fold effluent dilution from anaerobic hydrogen fermentation. Besides, hydrogen production occurred only when the NH 4 + concentration was below 17 mg-NH 4 + /l. Therefore, for successful fermentation effluent utilization, the most important things were to decrease the optimal HRT, increase the optimal substrate concentration and increase the tolerable ammonia concentration. In this study, a lab-scale serial photo-bioreactor was constructed. The reactor overall hydrogen production efficiency with synthetic wastewater exhibiting an organic acid profile identical to that of anaerobic hydrogen fermentation reactor effluent and with effluent from two anaerobic hydrogen fermentation reactors was evaluated. (authors)

  13. Comparative Analysis of Hydrogen Production Methods with Nuclear Reactors

    International Nuclear Information System (INIS)

    Morozov, Andrey

    2008-01-01

    Hydrogen is highly effective and ecologically clean fuel. It can be produced by a variety of methods. Presently the most common are through electrolysis of water and through the steam reforming of natural gas. It is evident that the leading method for the future production of hydrogen is nuclear energy. Several types of reactors are being considered for hydrogen production, and several methods exist to produce hydrogen, including thermochemical cycles and high-temperature electrolysis. In the article the comparative analysis of various hydrogen production methods is submitted. It is considered the possibility of hydrogen production with the nuclear reactors and is proposed implementation of research program in this field at the IPPE sodium-potassium eutectic cooling high temperature experimental facility (VTS rig). (authors)

  14. Advances in hydrogen production by thermochemical water decomposition: A review

    International Nuclear Information System (INIS)

    Rosen, Marc A.

    2010-01-01

    Hydrogen demand as an energy currency is anticipated to rise significantly in the future, with the emergence of a hydrogen economy. Hydrogen production is a key component of a hydrogen economy. Several production processes are commercially available, while others are under development including thermochemical water decomposition, which has numerous advantages over other hydrogen production processes. Recent advances in hydrogen production by thermochemical water decomposition are reviewed here. Hydrogen production from non-fossil energy sources such as nuclear and solar is emphasized, as are efforts to lower the temperatures required in thermochemical cycles so as to expand the range of potential heat supplies. Limiting efficiencies are explained and the need to apply exergy analysis is illustrated. The copper-chlorine thermochemical cycle is considered as a case study. It is concluded that developments of improved processes for hydrogen production via thermochemical water decomposition are likely to continue, thermochemical hydrogen production using such non-fossil energy will likely become commercial, and improved efficiencies are expected to be obtained with advanced methodologies like exergy analysis. Although numerous advances have been made on sulphur-iodine cycles, the copper-chlorine cycle has significant potential due to its requirement for process heat at lower temperatures than most other thermochemical processes.

  15. What is required to make hydrogen a real energy carrier option?

    Energy Technology Data Exchange (ETDEWEB)

    Braeuninger, S.; Schindler, G.; Schwab, E.; Weck, A. [BASF SE, Ludwigshafen (Germany)

    2010-12-30

    The driver for the introduction of hydrogen as mobile energy-carrier is regulatory measures to avoid the CO{sub 2} emissions which are related to the current fossil carbon based situation. H{sub 2} is a large volume chemical product with an annual production of about 45 million tons, most of which currently is also derived from fossil sources. The German transport sector consumes 2,6.10{sup 12} MJ/a which in terms of energy is equivalent to nearly 50% of the current world hydrogen production. There is the proposal to start the ''hydrogen economy'' with ''excess H{sub 2}'' which is believed to be available as inadvertently occurring byproduct of chemical processes. A potential {proportional_to}2 million tons is estimated for this ''excess H{sub 2}'' in Europe; the proposal however does not take into account, that current uses of this H{sub 2} would have to be substituted. Therefore, an overall gain for the environment cannot be expected. Therefore, a sustainable hydrogen based energy scenario has to rely on new sources. Besides Biomass gasification which in terms of technology would resemble the conventional fossil based hydrogen production, the only other viable carbon-free hydrogen source is water, which has to be split into its constituting elements. The current paper is restricted to the latter path, the feasibility of the biomass approach needs to be discussed elsewhere. If hypothetically the above mentioned energy for the German transport sector would be provided by H{sub 2} from water electrolysis an electricity input of 4.10{sup 12} MJ would be needed. This number exceeds the currently installed German wind turbine capacity by a factor of 6 and even by a factor of 36, if the weather-based {proportional_to}16% year-round on-stream factor for onshore plants is taken into account. (orig.)

  16. EVALUATING HYDROGEN PRODUCTION IN BIOGAS REFORMING IN A MEMBRANE REACTOR

    Directory of Open Access Journals (Sweden)

    F. S. A. Silva

    2015-03-01

    Full Text Available Abstract Syngas and hydrogen production by methane reforming of a biogas (CH4/CO2 = 2.85 using carbon dioxide was evaluated in a fixed bed reactor with a Pd-Ag membrane in the presence of a nickel catalyst (Ni 3.31% weight/γ-Al2O3 at 773 K, 823 K, and 873 K and 1.01×105 Pa. Operation with hydrogen permeation at 873 K increased the methane conversion to approximately 83% and doubled the hydrogen yield relative to operation without hydrogen permeation. A mathematical model was formulated to predict the evolution of the effluent concentrations. Predictions based on the model showed similar evolutions for yields of hydrogen and carbon monoxide at temperatures below 823 K for operations with and without the hydrogen permeation. The hydrogen yield reached approximately 21% at 823 K and 47% at 873 K under hydrogen permeation conditions.

  17. Cobalt Ferrite Nanocrystallites for Sustainable Hydrogen Production Application

    Directory of Open Access Journals (Sweden)

    Rajendra S. Gaikwad

    2011-01-01

    Full Text Available Cobalt ferrite, CoFe2O4, nanocrystalline films were deposited using electrostatic spray method and explored in sustainable hydrogen production application. Reflection planes in X-ray diffraction pattern confirm CoFe2O4 phase. The surface scanning microscopy photoimages reveal an agglomeration of closely-packed CoFe2O4 nanoflakes. Concentrated solar-panel, a two-step water splitting process, measurement technique was preferred for measuring the hydrogen generation rate. For about 5 hr sustainable, 440 mL/hr, hydrogen production activity was achieved, confirming the efficient use of cobalt ferrite nanocrystallites film in hydrogen production application.

  18. Hydrogen sulfide production from subgingival plaque samples.

    Science.gov (United States)

    Basic, A; Dahlén, G

    2015-10-01

    Periodontitis is a polymicrobial anaerobe infection. Little is known about the dysbiotic microbiota and the role of bacterial metabolites in the disease process. It is suggested that the production of certain waste products in the proteolytic metabolism may work as markers for disease severity. Hydrogen sulfide (H2S) is a gas produced by degradation of proteins in the subgingival pocket. It is highly toxic and believed to have pro-inflammatory properties. We aimed to study H2S production from subgingival plaque samples in relation to disease severity in subjects with natural development of the disease, using a colorimetric method based on bismuth precipitation. In remote areas of northern Thailand, adults with poor oral hygiene habits and a natural development of periodontal disease were examined for their oral health status. H2S production was measured with the bismuth method and subgingival plaque samples were analyzed for the presence of 20 bacterial species with the checkerboard DNA-DNA hybridization technique. In total, 43 subjects were examined (age 40-60 years, mean PI 95 ± 6.6%). Fifty-six percent had moderate periodontal breakdown (CAL > 3  7 mm) on at least one site. Parvimonas micra, Filifactor alocis, Porphyromonas endodontalis and Fusobacterium nucleatum were frequently detected. H2S production could not be correlated to periodontal disease severity (PPD or CAL at sampled sites) or to a specific bacterial composition. Site 21 had statistically lower production of H2S (p = 0.02) compared to 16 and 46. Betel nut chewers had statistically significant lower H2S production (p = 0.01) than non-chewers. Rapid detection and estimation of subgingival H2S production capacity was easily and reliably tested by the colorimetric bismuth sulfide precipitation method. H2S may be a valuable clinical marker for degradation of proteins in the subgingival pocket. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Hydrogen production from municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Wallman, P.H.; Richardson, J.H.; Thorsness, C.B. [and others

    1996-06-28

    We have modified a Municipal Solid Waste (MSW) hydrothermal pretreatment pilot plant for batch operation and blowdown of the treated batch to low pressure. We have also assembled a slurry shearing pilot plant for particle size reduction. Waste paper and a mixture of waste paper/polyethylene plastic have been run in the pilot plant with a treatment temperature of 275{degrees}C. The pilot-plant products have been used for laboratory studies at LLNL. The hydrothermal/shearing pilot plants have produced acceptable slurries for gasification tests from a waste paper feedstock. Work is currently underway with combined paper/plastic feedstocks. When the assembly of the Research Gasification Unit at Texaco (feed capacity approximately 3/4-ton/day) is complete (4th quarter of FY96), gasification test runs will commence. Laboratory work on slurry samples during FY96 has provided correlations between slurry viscosity and hydrothermal treatment temperature, degree of shearing, and the presence of surfactants and admixed plastics. To date, pumpable slurries obtained from an MSW surrogate mixture of treated paper and plastic have shown heating values in the range 13-15 MJ/kg. Our process modeling has quantified the relationship between slurry heating value and hydrogen yield. LLNL has also performed a preliminary cost analysis of the process with the slurry heating value and the MSW tipping fee as parameters. This analysis has shown that the overall process with a 15 MJ/kg slurry gasifier feed can compete with coal-derived hydrogen with the assumption that the tipping fee is of the order $50/ton.

  20. Pyrolysis of biomass for hydrogen production

    International Nuclear Information System (INIS)

    Constantinescu, Marius; David, Elena; Bucura, Felicia; Sisu, Claudia; Niculescu, Violeta

    2006-01-01

    Biomass processing is a new technology within the area of renewable energies. Current energy supplies in the world are dominated by fossil fuels (some 80% of the total use of over 400 EJ per year). Nevertheless, about 10-15% of this demand is covered by biomass resources, making biomass by far the most important renewable energy source used to date. On average, in the industrialized countries biomass contributes some 9-13% to the total energy supplies, but in developing countries the proportion is as high as a fifth to one third. In quite a number of countries biomass covers even over 50 to 90% of the total energy demand. Classic application of biomass combustion is heat production for domestic applications. A key issue for bio-energy is that its use should be modernized to fit into a sustainable development path. Especially promising are the production of electricity via advanced conversion concepts (i.e. gasification and state-of-the-art combustion and co-firing) and modern biomass derived fuels like methanol, hydrogen and ethanol from ligno-cellulosic biomass, which can reach competitive cost levels within 1-2 decades (partly depending on price developments with petroleum). (authors)

  1. Substrate and product inhibition of hydrogen production by the extreme thermophile, Caldicellulosiruptor saccharolyticus

    NARCIS (Netherlands)

    Niel, van E.W.J.; Claassen, P.A.M.; Stams, A.J.M.

    2003-01-01

    Substrate and product inhibition of hydrogen production during sucrose fermentation by the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus was studied. The inhibition kinetics were analyzed with a noncompetitive, nonlinear inhibition model. Hydrogen was the most severe

  2. Hydrogen production from water: Recent advances in photosynthesis research

    Energy Technology Data Exchange (ETDEWEB)

    Greenbaum, E.; Lee, J.W. [Oak Ridge National Lab., TN (United States). Chemical Technology Div.

    1997-12-31

    The great potential of hydrogen production by microalgal water splitting is predicated on quantitative measurement of the algae`s hydrogen-producing capability, which is based on the following: (1) the photosynthetic unit size of hydrogen production; (2) the turnover time of photosynthetic hydrogen production; (3) thermodynamic efficiencies of conversion of light energy into the Gibbs free energy of molecular hydrogen; (4) photosynthetic hydrogen production from sea water using marine algae; (5) the potential for research advances using modern methods of molecular biology and genetic engineering to maximize hydrogen production. ORNL has shown that sustained simultaneous photoevolution of molecular hydrogen and oxygen can be performed with mutants of the green alga Chlamydomonas reinhardtii that lack a detectable level of the Photosystem I light reaction. This result is surprising in view of the standard two-light reaction model of photosynthesis and has interesting scientific and technological implications. This ORNL discovery also has potentially important implications for maximum thermodynamic conversion efficiency of light energy into chemical energy by green plant photosynthesis. Hydrogen production performed by a single light reaction, as opposed to two, implies a doubling of the theoretically maximum thermodynamic conversion efficiency from {approx}10% to {approx}20%.

  3. Principle and perspectives of hydrogen production through biocatalyzed electrolysis

    NARCIS (Netherlands)

    Rozendal, R.A.; Hamelers, H.V.M.; Euverink, G.J.W.; Metz, S.J.; Buisman, C.J.N.

    2006-01-01

    Biocatalyzed electrolysis is a novel biological hydrogen production process with the potential to efficiently convert a wide range of dissolved organic materials in wastewaters. Even substrates formerly regarded to be unsuitable for hydrogen production due to the endothermic nature of the involved

  4. Achievements of European projects on membrane reactor for hydrogen production

    NARCIS (Netherlands)

    di Marcoberardino, G.; Binotti, M.; Manzolini, G.; Viviente, J.L.; Arratibel Plazaola, A.; Roses, L.; Gallucci, F.

    2017-01-01

    Membrane reactors for hydrogen production can increase both the hydrogen production efficiency at small scale and the electric efficiency in micro-cogeneration systems when coupled with Polymeric Electrolyte Membrane fuel cells. This paper discusses the achievements of three European projects

  5. Maximizing Light Utilization Efficiency and Hydrogen Production in Microalgal Cultures

    Energy Technology Data Exchange (ETDEWEB)

    Melis, Anastasios [Univ. of California, Berkeley, CA (United States)

    2014-12-31

    The project addressed the following technical barrier from the Biological Hydrogen Production section of the Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan: Low Sunlight Utilization Efficiency in Photobiological Hydrogen Production is due to a Large Photosystem Chlorophyll Antenna Size in Photosynthetic Microorganisms (Barrier AN: Light Utilization Efficiency).

  6. Composition of hydrogenation products of Borodino brown coal

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Gyul' malieva; A.S. Maloletnev; G.A. Kalabin; A.M. Gyul' maliev [Institute for Fossil Fuels, Moscow (Russian Federation)

    2008-02-15

    The composition of liquid products of hydrogenation of brown coal from the Borodino deposit was determined by means of {sup 13}C NMR spectroscopy and chemical thermodynamics methods. It was shown that the group composition of the liquid hydrogenation products at thermodynamic equilibrium is predictable from the elemental composition of the organic matter of parent coal. 9 refs., 5 figs., 6 tabs.

  7. Primary energy sources for hydrogen production

    International Nuclear Information System (INIS)

    Hassmann, K.; Kuehne, H.-M.

    1993-01-01

    The cost of hydrogen from water electrolysis is estimated, assuming that the electricity was produced from solar, hydro-, fossil, or nuclear power. The costs for hydrogen end-use in the sectors of power generation, heat and transportation are calculated, based on a state-of-the-art technology and a more advanced technology expected to represent the state by the year 2010. The cost of hydrogen utilization (without energy taxes) is higher than the current price of fossil fuels (including taxes). Without restrictions imposed on fossil fuel consumption, hydrogen will not gain a significant market share in either of the cases discussed. (Author)

  8. Hydrogen Production by Water Electrolysis Via Photovoltaic Panel

    Directory of Open Access Journals (Sweden)

    Hydrogen Production by Water Electrolysis Via Photovoltaic Panel

    2016-07-01

    Full Text Available Hydrogen fuel is a good alternative to fossil fuels. It can be produced using a clean energy without contaminated emissions. This work is concerned with experimental study on hydrogen production via solar energy. Photovoltaic module is used to convert solar radiation to electrical energy. The electrical energy is used for electrolysis of water into hydrogen and oxygen by using alkaline water electrolyzer with stainless steel electrodes. A MATLAB computer program is developed to solve a four-parameter-model and predict the characteristics of PV module under Baghdad climate conditions. The hydrogen production system is tested at different NaOH mass concentration of (50,100, 200, 300 gram. The maximum hydrogen production rate is 153.3 ml/min, the efficiency of the system is 20.88% and the total amount of hydrogen produced in one day is 220.752 liter.

  9. LARGE-SCALE PRODUCTION OF HYDROGEN BY NUCLEAR ENERGY FOR THE HYDROGEN ECONOMY

    International Nuclear Information System (INIS)

    SCHULTZ, K.R.; BROWN, L.C.; BESENBRUCH, G.E.; HAMILTON, C.J.

    2003-01-01

    OAK B202 LARGE-SCALE PRODUCTION OF HYDROGEN BY NUCLEAR ENERGY FOR THE HYDROGEN ECONOMY. The ''Hydrogen Economy'' will reduce petroleum imports and greenhouse gas emissions. However, current commercial hydrogen production processes use fossil fuels and releases carbon dioxide. Hydrogen produced from nuclear energy could avoid these concerns. The authors have recently completed a three-year project for the US Department of Energy whose objective was to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the energy source''. Thermochemical water-splitting, a chemical process that accomplishes the decomposition of water into hydrogen and oxygen, met this objective. The goal of the first phase of this study was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen and to select one for further detailed consideration. The authors selected the Sulfur-Iodine cycle, In the second phase, they reviewed all the basic reactor types for suitability to provide the high temperature heat needed by the selected thermochemical water splitting cycle and chose the helium gas-cooled reactor. In the third phase they designed the chemical flowsheet for the thermochemical process and estimated the efficiency and cost of the process and the projected cost of producing hydrogen. These results are summarized in this paper

  10. Experimental measurements of negative hydrogen ion production from surfaces

    International Nuclear Information System (INIS)

    Graham, W.G.

    1977-09-01

    Experimental measurements of the production of H - from surfaces bombarded with hydrogen are reviewed. Some measurements of H + and H 0 production from surfaces are also discussed with particular emphasis on work which might be relevant to ion source applications

  11. Fermentative hydrogen production from agroindustrial lignocellulosic substrates

    Science.gov (United States)

    Reginatto, Valeria; Antônio, Regina Vasconcellos

    2015-01-01

    To achieve economically competitive biological hydrogen production, it is crucial to consider inexpensive materials such as lignocellulosic substrate residues derived from agroindustrial activities. It is possible to use (1) lignocellulosic materials without any type of pretreatment, (2) lignocellulosic materials after a pretreatment step, and (3) lignocellulosic materials hydrolysates originating from a pretreatment step followed by enzymatic hydrolysis. According to the current literature data on fermentative H2 production presented in this review, thermophilic conditions produce H2 in yields approximately 75% higher than those obtained in mesophilic conditions using untreated lignocellulosic substrates. The average H2 production from pretreated material is 3.17 ± 1.79 mmol of H2/g of substrate, which is approximately 50% higher compared with the average yield achieved using untreated materials (2.17 ± 1.84 mmol of H2/g of substrate). Biological pretreatment affords the highest average yield 4.54 ± 1.78 mmol of H2/g of substrate compared with the acid and basic pretreatment - average yields of 2.94 ± 1.85 and 2.41 ± 1.52 mmol of H2/g of substrate, respectively. The average H2 yield from hydrolysates, obtained from a pretreatment step and enzymatic hydrolysis (3.78 ± 1.92 mmol of H2/g), was lower compared with the yield of substrates pretreated by biological methods only, demonstrating that it is important to avoid the formation of inhibitors generated by chemical pretreatments. Based on this review, exploring other microorganisms and optimizing the pretreatment and hydrolysis conditions can make the use of lignocellulosic substrates a sustainable way to produce H2. PMID:26273246

  12. Development of interface technology for nuclear hydrogen production system

    International Nuclear Information System (INIS)

    Lee, Ki Young; Park, J. K.; Chang, J. H.

    2012-06-01

    These works focus on the development of attainment indices for nuclear hydrogen key technologies, the analysis of the hydrogen production process and the performance estimation for hydrogen production systems, and the assessment of the nuclear hydrogen production economy. The codes for analyzing the hydrogen production economy are developed for calculating the unit production cost of nuclear hydrogen. We developed basic R and D quality management methodology to meet design technology of VHTR's needs. By putting it in practice, we derived some problems and solutions. We distributed R and D QAP and Q and D QAM to each teams and these are in operation. Computer simulations are performed for estimating the thermal efficiency for the electrodialysis component likely to adapting as one of the hydrogen production system in Korea and EED-SI process known as the key components of the hydrogen production systems. Using the commercial codes, the process diagrams and the spread-sheets were produced for the Bunsen reaction process, Sulphuric Acid dissolution process and HI dissolution process, respectively, which are the key components composing of the SI process

  13. Multi-Scale Ordered Cell Structure for Cost Effective Production of Hydrogen by HTWS

    Energy Technology Data Exchange (ETDEWEB)

    Elangovan, Elango [Ceramatec, Inc., West Valley City, UT (United States); Rao, Ranjeet [PARC, Palo Alto, CA (United States); Colella, Whitney [Gaia Energy Research Inst. LLC, Arlington, VA (United States)

    2017-12-20

    Production of hydrogen using an electrochemical device provides for large scale, high efficiency conversion and storage of electrical energy. When renewable electricity is used for conversion of steam to hydrogen, a low-cost and low emissions pathway to hydrogen production emerges. This project was intended to demonstrate a high efficiency High Temperature Water Splitting (HTWS) stack for the electrochemical production of low cost H2. The innovations investigated address the limitations of the state of the art through the use of a novel architecture that introduces macro-features to provide mechanical support of a thin electrolyte, and micro-features of the electrodes to lower polarization losses. The approach also utilizes a combination of unique sets of fabrication options that are scalable to achieve manufacturing cost objectives. The development of HTWS process and device is guided by techno-economic and life cycle analyses.

  14. Hydrogen Production Cost Estimate Using Biomass Gasification: Independent Review

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, M.

    2011-10-01

    This independent review is the conclusion arrived at from data collection, document reviews, interviews and deliberation from December 2010 through April 2011 and the technical potential of Hydrogen Production Cost Estimate Using Biomass Gasification. The Panel reviewed the current H2A case (Version 2.12, Case 01D) for hydrogen production via biomass gasification and identified four principal components of hydrogen levelized cost: CapEx; feedstock costs; project financing structure; efficiency/hydrogen yield. The panel reexamined the assumptions around these components and arrived at new estimates and approaches that better reflect the current technology and business environments.

  15. Hydrogen production at hydro-power plants

    Science.gov (United States)

    Tarnay, D. S.

    A tentative design for hydrogen-producing installations at hydropower facilities is discussed from technological, economic and applications viewpoints. The plants would use alternating current to electrolyze purified river water. The hydrogen would be stored in gas or liquid form and oxygen would be sold or vented to the atmosphere. The hydrogen could later be burned in a turbine generator for meeting peak loads, either in closed or open cycle systems. The concept would allow large hydroelectric plants to function in both base- and peak-load modes, thus increasing the hydraulic utilization of the plant and the capacity factor to a projected 0.90. Electrolyzer efficiencies ranging from 0.85-0.90 have been demonstrated. Excess hydrogen can be sold for other purposes or, eventually, as domestic and industrial fuel, at prices competitive with current industrial hydrogen.

  16. Fermentative hydrogen production by microbial consortium

    Energy Technology Data Exchange (ETDEWEB)

    Maintinguer, Sandra I.; Fernandes, Bruna S.; Duarte, Iolanda C.S.; Saavedra, Nora Katia; Adorno, M. Angela T.; Varesche, M. Bernadete [Department of Hydraulics and Sanitation, School of Engineering of Sao Carlos, University of Sao Paulo, Av. Trabalhador Sao-carlense, 400, 13566-590 Sao Carlos-SP (Brazil)

    2008-08-15

    Heat pre-treatment of the inoculum associated to the pH control was applied to select hydrogen-producing bacteria and endospores-forming bacteria. The source of inoculum to the heat pre-treatment was from a UASB reactor used in the slaughterhouse waste treatment. The molecular biology analyses indicated that the microbial consortium presented microorganisms affiliated with Enterobacter cloacae (97% and 98%), Clostridium sp. (98%) and Clostridium acetobutyricum (96%), recognized as H{sub 2} and volatile acids' producers. The following assays were carried out in batch reactors in order to verify the efficiencies of sucrose conversion to H{sub 2} by the microbial consortium: (1) 630.0 mg sucrose/L, (2) 1184.0 mg sucrose/L, (3) 1816.0 mg sucrose/L and (4) 4128.0 mg sucrose/L. The subsequent yields were obtained as follows: 15% (1.2 mol H{sub 2}/mol sucrose), 20% (1.6 mol H{sub 2}/mol sucrose), 15% (1.2 mol H{sub 2}/mol sucrose) and 4% (0.3 mol H{sub 2}/mol sucrose), respectively. The intermediary products were acetic acid, butyric acid, methanol and ethanol in all of the anaerobic reactors. (author)

  17. Management options to reduce the carbon footprint of livestock products

    DEFF Research Database (Denmark)

    Hermansen, John Erik; Kristensen, Troels

    2011-01-01

    Livestock products carry a large carbon footprint compared with other foods, and thus there is a need to focus on how to reduce it. The major contributing factors are emissions related to feed use and manure handling as well as the nature of the land required to produce the feed in question. We can....... Basically, it is important to make sure that all beneficial interactions in the livestock system are optimized instead of focusing only on animal productivity. There is an urgent need to arrive at a sound framework for considering the interaction between land use and carbon footprints of foods....... conclude that the most important mitigation options include - better feed conversion at the system level, - use of feeds that increase soil carbon sequestration versus carbon emission, - ensure that the manure produced substitutes for synthetic fertilizer, and - use manure for bio-energy production...

  18. Hydrogen production by the decomposition of water

    Science.gov (United States)

    Hollabaugh, C.M.; Bowman, M.G.

    A process is described for the production of hydrogen from water by a sulfuric acid process employing electrolysis and thermo-chemical decomposition. The water containing SO/sub 2/ is electrolyzed to produce H/sub 2/ at the cathode and to oxidize the SO/sub 2/ to form H/sub 2/SO/sub 4/ at the anode. After the H/sub 2/ has been separated, a compound of the type M/sub r/X/sub s/ is added to produce a water insoluble sulfate of M and a water insoluble oxide of the metal in the radical X. In the compound M/sub r/X/sub s/, M is at least one metal selected from the group consisting of Ba/sup 2 +/, Ca/sup 2 +/, Sr/sup 2 +/, La/sup 2 +/, and Pb/sup 2 +/; X is at least one radical selected from the group consisting of molybdate (MoO/sub 4//sup 2 -/), tungstate (WO/sub 4//sup 2 -/), and metaborate (BO/sub 2//sup 1 -/); and r and s are either 1, 2, or 3 depending upon the valence of M and X. The precipitated mixture is filtered and heated to a temperature sufficiently high to form SO/sub 3/ gas and to reform M/sub r/X/sub s/. The SO/sub 3/ is dissolved in a small amount of H/sub 2/O to produce concentrated H/sub 2/SO/sub 4/, and the M/sub r/X/sub s/ is recycled to the process. Alternatively, the SO/sub 3/ gas can be recycled to the beginning of the process to provide a continuous process for the production of H/sub 2/ in which only water need be added in a substantial amount. (BLM)

  19. Selective production of hydrogen peroxide and oxidation of hydrogen sulfide in an unbiased solar photoelectrochemical cell

    DEFF Research Database (Denmark)

    Zong, Xu; Chen, Hongjun; Seger, Brian

    2014-01-01

    A solar-to-chemical conversion process is demonstrated using a photoelectrochemical cell without external bias for selective oxidation of hydrogen sulfide (H2S) to produce hydrogen peroxide (H2O2) and sulfur (S). The process integrates two redox couples anthraquinone/anthrahydroquinone and I−/I3......−, and conceptually illustrates the remediation of a waste product for producing valuable chemicals....

  20. Microbiological Hydrogen Production by Anaerobic Fermentation and Photosynthetic Process

    International Nuclear Information System (INIS)

    Asada, Y.; Ohsawa, M.; Nagai, Y.; Fukatsu, M.; Ishimi, K.; Ichi-ishi, S.

    2009-01-01

    Hydrogen gas is a clean and renewable energy carrier. Microbiological hydrogen production from glucose or starch by combination used of an anaerobic fermenter and a photosynthetic bacterium, Rhodobacter spheroides RV was studied. In 1984, the co-culture of Clostridium butyricum and RV strain to convert glucose to hydrogen was demonstrated by Miyake et al. Recently, we studied anaerobic fermentation of starch by a thermophilic archaea. (Author)

  1. Process for the production of hydrogen from water

    Science.gov (United States)

    Miller, William E [Naperville, IL; Maroni, Victor A [Naperville, IL; Willit, James L [Batavia, IL

    2010-05-25

    A method and device for the production of hydrogen from water and electricity using an active metal alloy. The active metal alloy reacts with water producing hydrogen and a metal hydroxide. The metal hydroxide is consumed, restoring the active metal alloy, by applying a voltage between the active metal alloy and the metal hydroxide. As the process is sustainable, only water and electricity is required to sustain the reaction generating hydrogen.

  2. Compact hydrogen production systems for solid polymer fuel cells

    Science.gov (United States)

    Ledjeff-Hey, K.; Formanski, V.; Kalk, Th.; Roes, J.

    Generally there are several ways to produce hydrogen gas from carbonaceous fuels like natural gas, oil or alcohols. Most of these processes are designed for large-scale industrial production and are not suitable for a compact hydrogen production system (CHYPS) in the power range of 1 kW. In order to supply solid polymer fuel cells (SPFC) with hydrogen, a compact fuel processor is required for mobile applications. The produced hydrogen-rich gas has to have a low level of harmful impurities; in particular the carbon monoxide content has to be lower than 20 ppmv. Integrating the reaction step, the gas purification and the heat supply leads to small-scale hydrogen production systems. The steam reforming of methanol is feasible at copper catalysts in a low temperature range of 200-350°C. The combination of a small-scale methanol reformer and a metal membrane as purification step forms a compact system producing high-purity hydrogen. The generation of a SPFC hydrogen fuel gas can also be performed by thermal or catalytic cracking of liquid hydrocarbons such as propane. At a temperature of 900°C the decomposition of propane into carbon and hydrogen takes place. A fuel processor based on this simple concept produces a gas stream with a hydrogen content of more than 90 vol.% and without CO and CO2.

  3. Production of bioplastics and hydrogen gas by photosynthetic microorganisms

    Science.gov (United States)

    Yasuo, Asada; Masato, Miyake; Jun, Miyake

    1998-03-01

    Our efforts have been aimed at the technological basis of photosynthetic-microbial production of materials and an energy carrier. We report here accumulation of poly-(3-hydroxybutyrate) (PHB), a raw material of biodegradable plastics and for production of hydrogen gas, and a renewable energy carrier by photosynthetic microorganisms (tentatively defined as cyanobacteria plus photosynthetic bateria, in this report). A thermophilic cyanobacterium, Synechococcus sp. MA19 that accumulates PHB at more than 20% of cell dry wt under nitrogen-starved conditions was isolated and microbiologically identified. The mechanism of PHB accumulation was studied. A mesophilic Synechococcus PCC7942 was transformed with the genes encoding PHB-synthesizing enzymes from Alcaligenes eutrophus. The transformant accumulated PHB under nitrogen-starved conditions. The optimal conditions for PHB accumulation by a photosynthetic bacterium grown on acetate were studied. Hydrogen production by photosynthetic microorganisms was studied. Cyanobacteria can produce hydrogen gas by nitrogenase or hydrogenase. Hydrogen production mediated by native hydrogenase in cyanobacteria was revealed to be in the dark anaerobic degradation of intracellular glycogen. A new system for light-dependent hydrogen production was targeted. In vitro and in vivo coupling of cyanobacterial ferredoxin with a heterologous hydrogenase was shown to produce hydrogen under light conditions. A trial for genetic trasformation of Synechococcus PCC7942 with the hydrogenase gene from Clostridium pasteurianum is going on. The strong hydrogen producers among photosynthetic bacteria were isolated and characterized. Co-culture of Rhodobacter and Clostriumdium was applied to produce hydrogen from glucose. Conversely in the case of cyanobacteria, genetic regulation of photosynthetic proteins was intended to improve conversion efficiency in hydrogen production by the photosynthetic bacterium, Rhodobacter sphaeroides RV. A mutant acquired by

  4. Production of 177Lu for targeted radionuclide therapy: Available options

    International Nuclear Information System (INIS)

    Dah, Ashutosh; Pillai, Maroor Raghavan Ambikalmajan; Knapp, Furn F. Jr.

    2015-01-01

    This review provides a comprehensive summary of the production of 177 Lu to meet expected future research and clinical demands. Availability of options represents the cornerstone for sustainable growth for the routine production of adequate activity levels of 177 Lu having the required quality for preparation of a variety of 177 Lu-labeled radiopharmaceuticals. The tremendous prospects associated with production of 177 Lu for use in targeted radionuclide therapy (TRT) dictate that a holistic consideration should evaluate all governing factors that determine its success. While both “direct” and “indirect” reactor production routes offer the possibility for sustainable 177 Lu availability, there are several issues and challenges that must be considered to realize the full potential of these production strategies. This article presents a mini review on the latest developments, current status, key challenges and possibilities for the near future. A broad understanding and discussion of the issues associated with 177 Lu production and processing approaches would not only ensure sustained growth and future expansion for the availability and use of 177 Lu-labeled radiopharmaceuticals, but also help future developments

  5. Method and apparatus for hydrogen production from water

    Science.gov (United States)

    Muradov, Nazim Z. (Inventor)

    2012-01-01

    A method, apparatuses and chemical compositions are provided for producing high purity hydrogen from water. Metals or alloys capable of reacting with water and producing hydrogen in aqueous solutions at ambient conditions are reacted with one or more inorganic hydrides capable of releasing hydrogen in aqueous solutions at ambient conditions, one or more transition metal compounds are used to catalyze the reaction and, optionally, one or more alkali metal-based compounds. The metal or alloy is preferably aluminum. The inorganic hydride is from a family of complex inorganic hydrides; most preferably, NaBH.sub.4. The transition metal catalyst is from the groups VIII and IB; preferably, Cu and Fe. The alkali metal-based compounds are preferably NaOH, KOH, and the like. Hydrogen generated has a purity of at least 99.99 vol. % (dry basis), and is used without further purification in all types of fuel cells, including the polymer electrolyte membrane (PEM) fuel cell.

  6. Hydrogen production in a PWR during LOCA

    International Nuclear Information System (INIS)

    Cassette, P.

    1983-12-01

    The purpose of this paper is to provide information on hydrogen generation during LOCA in French 900 MW PWR power plants. The design basis accident is taken into account as well as more severe accidents assuming failure of emergency systems

  7. An experimental study of the growth and hydrogen production of C. reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Tamburic, B.; Burgess, S.; Nixon, P.J.; Hellgardt, K. [Imperial College London (United Kingdom)

    2010-07-01

    Some unicellular green algae, such as C. reinhardtii, have the ability to photosynthetically produce molecular hydrogen under anaerobic conditions. They offer a biological route to renewable, carbon-neutral hydrogen production from two of nature's most plentiful resources - sunlight and water. This process provides the additional benefit of carbon dioxide sequestration and the option of deriving valuable products from algal biomass. The growth of dense and healthy algal biomass is a prerequisite for efficient hydrogen production. This study investigates the growth of C. reinhardtii under different cyclic light regimes and at various continuous light intensities. Algal growth is characterised in terms of the cell count, chlorophyll content and optical density of the culture. The consumption of critical nutrients such as acetate and sulphate is measured by chromatography techniques. C. reinhardtii wild-type CC-124 strain is analysed in a 3 litre tubular flow photobioreactor featuring a large surface-to-volume ratio and excellent light penetration through the culture. Key parameters of the hydrogen production process are continuously monitored and controlled; these include pH, pO{sub 2}, optical density, temperature, agitation and light intensity. Gas phase hydrogen production is determined by mass spectrometry. (orig.)

  8. Nano cobalt oxides for photocatalytic hydrogen production

    KAUST Repository

    Mangrulkar, Priti A.

    2012-07-01

    Nano structured metal oxides including TiO 2, Co 3O 4 and Fe 3O 4 have been synthesized and evaluated for their photocatalytic activity for hydrogen generation. The photocatalytic activity of nano cobalt oxide was then compared with two other nano structured metal oxides namely TiO 2 and Fe 3O 4. The synthesized nano cobalt oxide was characterized thoroughly with respect to EDX and TEM. The yield of hydrogen was observed to be 900, 2000 and 8275 mmol h -1 g -1 of photocatalyst for TiO 2, Co 3O 4 and Fe 3O 4 respectively under visible light. It was observed that the hydrogen yield in case of nano cobalt oxide was more than twice to that of TiO 2 and the hydrogen yield of nano Fe 3O 4 was nearly four times as compared to nano Co 3O 4. The influence of various operating parameters in hydrogen generation by nano cobalt oxide was then studied in detail. Copyright © 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  9. Climate Change: Seed Production and Options for Adaptation

    Directory of Open Access Journals (Sweden)

    John G. Hampton

    2016-07-01

    Full Text Available Food security depends on seed security and the international seed industry must be able to continue to deliver the quantities of quality seed required for this purpose. Abiotic stress resulting from climate change, particularly elevated temperature and water stress, will reduce seed yield and quality. Options for the seed industry to adapt to climate change include moving sites for seed production, changing sowing date, and the development of cultivars with traits which allow them to adapt to climate change conditions. However, the ability of seed growers to make these changes is directly linked to the seed system. In the formal seed system operating in developed countries, implementation will be reasonably straight forward. In the informal system operating in developing countries, the current seed production challenges including supply failing to meet demand and poor seed quality will increase with changing climates.

  10. A techno-economic analysis of decentralized electrolytic hydrogen production for fuel cell vehicles

    International Nuclear Information System (INIS)

    Prince-Richard, S.; Whale, M.; Djilali, N.

    2000-01-01

    Fueling is a central issue in the development of fuel cell systems, especially for transportation applications. Which fuels will be used to provide the necessary hydrogen and what kind of production / distribution infrastructure will be required are key questions for the large scale market penetration of fuel cell vehicles. Methanol, gasoline and hydrogen are currently the three most seriously considered fuel options. Primarily because of economic considerations, these energy currencies would all be largely produced from fossil fuel sources in the near future. One problem in using fossil fuel sources as a feedstock is their associated emissions, in particular greenhouse gases. This paper presents some elements of a study currently underway to assess the techno-economic prospects of decentralized electrolytic hydrogen production for fuel cell vehicles

  11. On-Board Hydrogen Gas Production System For Stirling Engines

    Science.gov (United States)

    Johansson, Lennart N.

    2004-06-29

    A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed. A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed.

  12. Technical suitability mapping of feedstocks for biological hydrogen production

    NARCIS (Netherlands)

    Panagiotopoulos, I.A.; Karaoglanoglou, L.S.; Koullas, D.P.; Bakker, R.R.; Claassen, P.A.M.; Koukios, E.G.

    2015-01-01

    The objective of this work was to map and compare the technical suitability of different raw materials for biological hydrogen production. Our model was based on hydrogen yield potential, sugar mobilization efficiency, fermentability and coproduct yield and value. The suitability of the studied

  13. Bibliographic Review about Solar Hydrogen Production Through Thermochemical Cycles

    International Nuclear Information System (INIS)

    Fernandez Saavedra, R.

    2007-01-01

    This report presents a summary of the different thermical processes used to obtain hydrogen through solar energy, paying more attention to the production of hydrogen from water through thermochemical cycles. In this aspect, it is briefly described the most interesting thermochemical cycles, focusing on thermochemical cycles based on oxides. (Author) 25 refs

  14. Improvements in Fermentative Biological Hydrogen Production Through Metabolic Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Hallenbeck, P. C.; Ghosh, D.; Sabourin-Provost, G.

    2009-07-01

    Dramatically rising oil prices and increasing awareness of the dire environmental consequences of fossil fuel use, including startling effects of climate change, are refocusing attention world-wide on the search for alternative fuels. Hydrogen is poised to become an important future energy carrier. Renewable hydrogen production is pivotal in making it a truly sustainable replacement for fossil fuels. (Author)

  15. Improvements in Fermentative Biological Hydrogen Production Through Metabolic Engineering

    International Nuclear Information System (INIS)

    Hallenbeck, P. C.; Ghosh, D.; Sabourin-Provost, G.

    2009-01-01

    Dramatically rising oil prices and increasing awareness of the dire environmental consequences of fossil fuel use, including startling effects of climate change, are refocusing attention world-wide on the search for alternative fuels. Hydrogen is poised to become an important future energy carrier. Renewable hydrogen production is pivotal in making it a truly sustainable replacement for fossil fuels. (Author)

  16. Liquid hydrogen production and economics for NASA Kennedy Space Center

    Science.gov (United States)

    Block, D. L.

    1985-12-01

    Detailed economic analyses for the production of liquid hydrogen used to power the Space Shuttle are presented. The hydrogen production and energy needs of the NASA Kennedy Space Center are reviewed, and steam reformation, polygeneration, and electrolysis for liquid hydrogen production are examined on an equal economic basis. The use of photovoltaics as an electrolysis power source is considered. The 1985 present worth is calculated based on life cycle costs over a 21-year period beginning with full operation in 1990. Two different sets of escalation, inflation, and discount rates are used, with revenue credit being given for energy or other products of the hydrogen production process. The results show that the economic analyses are very dependent on the escalation rates used. The least net present value is found for steam reformation of natural gas, while the best net present value is found for the electrolysis process which includes the phasing of photovoltaics.

  17. Modeling of combustion products composition of hydrogen-containing fuels

    International Nuclear Information System (INIS)

    Assad, M.S.

    2010-01-01

    Due to the usage of entropy maximum principal the algorithm and the program of chemical equilibrium calculation concerning hydrogen--containing fuels are devised. The program enables to estimate the composition of combustion products generated in the conditions similar to combustion conditions in heat engines. The program also enables to reveal the way hydrogen fraction in the conditional composition of the hydrocarbon-hydrogen-air mixture influences the harmful components content. It is proven that molecular hydrogen in the mixture is conductive to the decrease of CO, CO 2 and CH x concentration. NO outlet increases due to higher combustion temperature and N, O, OH concentrations in burnt gases. (authors)

  18. Prospect of HTGRs for hydrogen production in Indonesia

    International Nuclear Information System (INIS)

    Rusli, A.; Dasuki, A.S.; Rahman, M.; Nuriman; Sudarto

    1997-01-01

    Hydrogen energy system is interesting to many people of the world that because of hydrogen promised to save our planet earth from destroying of burning of fossil fuels. The selected development of hydrogen production from water such as electrolysis and thermochemical cycles are evaluated. These processes are allowed to split the water at lower temperature, still in the range of HTGRs' working temperature. An overview of related studies in recent years enables the development of research to be followed, studied and evaluated are mentioned. The prospect of hydrogen market in Indonesia and economic consideration based on previous studied are also analyzed and evaluated. (author). 11 refs, 5 figs, 13 tabs

  19. Evidence For The Production Of Slow Antiprotonic Hydrogen In Vacuum

    CERN Document Server

    Zurlo, N.; Amsler, C.; Bonomi, G.; Carraro, C.; Cesar, C.L.; Charlton, M.; Doser, M.; Fontana, A.; Funakoshi, R.; Genova, P.; Hayano, R.S.; Jorgensen, L.V.; Kellerbauer, A.; Lagomarsino, V.; Landua, R.; Lodi Rizzini, E.; Macri, M.; Madsen, N.; Manuzio, G.; Mitchard, D.; Montagna, P.; Posada, L.G.; Pruys, H.; Regenfus, C.; Rotondi, A.; Testera, G.; der Werf, D.P.Van; Variola, A.; Venturelli, L.; Yamazaki, Y.

    2006-01-01

    We present evidence showing how antiprotonic hydrogen, the quasistable antiproton-proton (pbar-p) bound system, has been synthesized following the interaction of antiprotons with the hydrogen molecular ion (H2+) in a nested Penning trap environment. From a careful analysis of the spatial distributions of antiproton annihilation events, evidence is presented for antiprotonic hydrogen production with sub-eV kinetic energies in states around n=70, and with low angular momenta. The slow antiprotonic hydrogen may be studied using laser spectroscopic techniques.

  20. Estimation of bacterial hydrogen sulfide production in vitro

    Directory of Open Access Journals (Sweden)

    Amina Basic

    2015-06-01

    Full Text Available Oral bacterial hydrogen sulfide (H2S production was estimated comparing two different colorimetric methods in microtiter plate format. High H2S production was seen for Fusobacterium spp., Treponema denticola, and Prevotella tannerae, associated with periodontal disease. The production differed between the methods indicating that H2S production may follow different pathways.

  1. Effects of methanogenic effluent recycle on fermentative hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Kraemer, J.T.; Bagley, D.M. [Toronto Univ., ON (Canada). Dept. of Civil Engineering

    2004-07-01

    Most research on fermentative hydrogen production has focused on optimizing the process and not on the practicalities of pH control although active pH control in a hydrogen reactor is necessary for stable and efficient performance. Batch experiments have shown that hydrogen ceases to be produced when there is no pH control. This study determined if recycle effluent from the methane reactor of a two-phase hydrogen-producing system would reduce the external alkali needed for pH control in a hydrogen reactor. It also determined if recycle affected the performance of the hydrogen reactor and the overall two-phase system. This paper describes the experimental laboratory-scale, two-phase hydrogen producing system which was operated alternately with and without effluent recycle from a methane reactor to the hydrogen reactor. The two-phase hydrogen producing system yielded 5.7 times more energy recovery than that obtained by the fermentative hydrogen producing reactor alone. The use of effluent from the methane reactor can reduce the operational cost of external alkali for pH control. 6 refs., 5 figs.

  2. Hydrogen Production Costs of Various Primary Energy Sources

    International Nuclear Information System (INIS)

    Choi, Jae Hyuk; Tak, Nam Il; Kim, Yong Hee; Park, Won Seok

    2005-01-01

    The limited resource and environmental impacts of fossil fuels are becoming more and more serious problems in the world. Consequently, hydrogen is in the limelight as a future alternative energy due to its clean combustion and inexhaustibility and a transition from the traditional fossil fuel system to a hydrogen-based energy system is under considerations. Several countries are already gearing the industries to the hydrogen economy to cope with the limitations of the current fossil fuels. Unfortunately, hydrogen has to be chemically separated from the hydrogen compounds in nature such as water by using some energy sources. In this paper, the hydrogen production costs of major primary energy sources are compared in consideration of the Korean situations. The evaluation methodology is based on the report of the National Academy of Science (NAS) of U.S

  3. The hydrogen resource. Productive, technical and economic analysis

    International Nuclear Information System (INIS)

    De Fronzo, G.

    2000-01-01

    Diffusion of hydrogen as an energetic vector meets with a lot of obstacles that don't depend on available raw material, but on hydrogen combination with other elements. It is necessary, therefore, to separate hydrogen picking out the available different technologies to have different pure hydrogen of variable quantities. Besides, its diffusion as fuel is limited because of the great production cost compared to fuels sprung from petroleum. Hydrogen used on a large scale could have advantages on the environment and occupation, but there are economic and politic obstacles to limit its diffusion. Future of economic system, based on hydrogen as the main energetic vector, will depend on the programme that national and international qualified governing bodies will be able to do [it

  4. Research and development of HTTR hydrogen production systems

    International Nuclear Information System (INIS)

    Shiozawa, Shusaku; Ogawa, Masuro; Inagaki, Yoshiyuki; Onuki, Kaoru; Takeda, Tetsuaki; Nishihara, Tetsuo; Hayashi, Koji; Kubo, Shinji; Inaba, Yoshitomo; Ohashi, Hirofumi

    2002-01-01

    The Japan Atomic Energy Research Institute (JAERI) has constructed the High Temperature Engineering Test Reactor (HTTR) with a thermal output of 30MW and a reactor out let coolant temper at ure of 950 .deg. C. There search and development (R and D) program on nuclear production of hydrogen was started on January in 1997 as a study consigned by Ministry of Education, Culture, Sports, Science and Technology. A hydrogen production system connected to the HTTR is being designed to be able to produce hydrogen of about 4000m 3 /h by steam reforming of natural gas, using a nuclear heat of 10MW supplied by the HTTR hydrogen production system. In order to confirm controllability, safety and performance of key components in the HTTR hydrogen production system, the facility for the out-of-pile test was constructed on the scale of approximately 1/30 of the HTTR hydrogen production system. In parallel to the out-of-pile test, the following tests as essential problem, a corrosion test of a reforming tube, a permeation test of hydrogen isotopes through heat exchanger and reforming tubes, and an integrity test of a high-temperature isolation valve are carried out to obtain detailed data for safety review and development of analytical codes. Other basis studies on the hydrogen production technology of thermochemical water splitting called an iodine sulfur (IS) process, has been carried out for more effective and various uses of nuclear heat. This paper describes the present status and a future plan on the R and D of the HTTR hydrogen production systems in JAERI

  5. Conceptual design of the HTTR-IS hydrogen production system

    International Nuclear Information System (INIS)

    Sakaba, Nariaki; Sato, Hiroyuki; Hara, Teruo; Kato, Ryoma; Ohashi, Kazutaka; Nishihara, Tetsuo; Kunitomi, Kazuhiko

    2007-08-01

    Since hydrogen produced by nuclear should be economically competitive compared with other methods in a hydrogen society, it is important to build hydrogen production system to be coupled with the reactor as a conventional chemical plant. Japan Atomic Energy Agency started the safety study to establish a new safety philosophy to meet safety requirements for non-nuclear grade hydrogen production system. Also, structural concepts with integrating functions for the Bunsen reactor and sulphuric acid decomposer were proposed to reduce construction cost of the IS process hydrogen production system. In addition, HI decomposer which enables the process condition to be eased consisting of conventional materials and technologies was studied. Moreover, technical feasibility of the HTTR-IS system in which the hydrogen production rate of 1,000 Nm 3 /h by using the supplied heat of 10 MW from the intermediate heat exchanger of the HTTR was confirmed. This paper describes the conceptual design of the HTTR-IS hydrogen production system. (author)

  6. Hydrogen production econometric studies. [hydrogen and fossil fuels

    Science.gov (United States)

    Howell, J. R.; Bannerot, R. B.

    1975-01-01

    The current assessments of fossil fuel resources in the United States were examined, and predictions of the maximum and minimum lifetimes of recoverable resources according to these assessments are presented. In addition, current rates of production in quads/year for the fossil fuels were determined from the literature. Where possible, costs of energy, location of reserves, and remaining time before these reserves are exhausted are given. Limitations that appear to hinder complete development of each energy source are outlined.

  7. Comparative environmental impact and efficiency assessment of selected hydrogen production methods

    Energy Technology Data Exchange (ETDEWEB)

    Ozbilen, Ahmet, E-mail: Ahmet.Ozbilen@uoit.ca; Dincer, Ibrahim, E-mail: Ibrahim.Dincer@uoit.ca; Rosen, Marc A., E-mail: Marc.Rosen@uoit.ca

    2013-09-15

    The environmental impacts of various hydrogen production processes are evaluated and compared, considering several energy sources and using life cycle analysis. The results indicate that hydrogen produced by thermochemical water decomposition cycles are more environmentally benign options compared to conventional steam reforming of natural gas. The nuclear based four-step Cu–Cl cycle has the lowest global warming potential (0.559 kg CO{sub 2}-eq per kg hydrogen production), mainly because it requires the lowest quantity of energy of the considered processes. The acidification potential results show that biomass gasification has the highest impact on environment, while wind based electrolysis has the lowest. The relation is also investigated between efficiency and environmental impacts. -- Highlights: • Environmental performance of nuclear-based hydrogen production is investigated. • The GWP and AP results are compared with various hydrogen production processes. • Nuclear based 4-step Cu–Cl cycle is found to be an environmentally benign process. • Wind-based electrolysis has the lowest AP value.

  8. Status of the Korean nuclear hydrogen production project

    International Nuclear Information System (INIS)

    Jonghwa, Chang; Won-Jae, Lee

    2010-01-01

    The rapid climate changes and the heavy reliance on imported fuel in Korea have motivated interest in the hydrogen economy. The Korean government has set up a long-term vision for transition to the hydrogen economy. To meet the expected demand of hydrogen as a fuel, hydrogen production using nuclear energy was also discussed. Recently the Korean Atomic Energy Committee has approved nuclear hydrogen production development and demonstration which will lead to commercialisation in late 2030's. An extensive research and development programme for the production of hydrogen using nuclear power has been underway since 2004 in Korea. During the first three years, a technological area was identified for the economic and efficient production of hydrogen using a VHTR. A pre-conceptual design of the commercial nuclear hydrogen production plant was also performed. As a result, the key technology area in the core design, the hydrogen production process, the coupling between reactor and chemical side, and the coated fuel were identified. During last three years, research activities have been focused on the key technology areas. A nuclear hydrogen production demonstration plant (NHDD) consisting of a 200 MWth capacity VHTR and five trains of water-splitting plants was proposed for demonstration of the performance and the economics of nuclear hydrogen. The computer tools for the VHTR and the water-splitting process were created and validated to some extent. The TRISO-coated particle fuel was fabricated and qualified. The properties of high temperature materials, including nuclear graphite, were studied. The sulphur-iodine thermochemical process was proved on a 3 litre/ hour scale. A small gas loop with practical pressure and temperature with the secondary sulphur acid loop was successfully built and commissioned. The results of the first phase research increased the confidence in the nuclear hydrogen technology. From 2009, the government decided to support further key technology

  9. Hydrogen Production by Homogeneous Catalysis: Alcohol Acceptorless Dehydrogenation

    DEFF Research Database (Denmark)

    Nielsen, Martin

    2015-01-01

    in hydrogen production from biomass using homogeneous catalysis. Homogeneous catalysis has the advance of generally performing transformations at much milder conditions than traditional heterogeneous catalysis, and hence it constitutes a promising tool for future applications for a sustainable energy sector...

  10. Hydrogen production from algal biomass - Advances, challenges and prospects.

    Science.gov (United States)

    Show, Kuan-Yeow; Yan, Yuegen; Ling, Ming; Ye, Guoxiang; Li, Ting; Lee, Duu-Jong

    2018-06-01

    Extensive effort is being made to explore renewable energy in replacing fossil fuels. Biohydrogen is a promising future fuel because of its clean and high energy content. A challenging issue in establishing hydrogen economy is sustainability. Biohydrogen has the potential for renewable biofuel, and could replace current hydrogen production through fossil fuel thermo-chemical processes. A promising source of biohydrogen is conversion from algal biomass, which is abundant, clean and renewable. Unlike other well-developed biofuels such as bioethanol and biodiesel, production of hydrogen from algal biomass is still in the early stage of development. There are a variety of technologies for algal hydrogen production, and some laboratory- and pilot-scale systems have demonstrated a good potential for full-scale implementation. This work presents an elucidation on development in biohydrogen encompassing biological pathways, bioreactor designs and operation and techno-economic evaluation. Challenges and prospects of biohydrogen production are also outlined. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Accident sequences and causes analysis in a hydrogen production process

    Energy Technology Data Exchange (ETDEWEB)

    Jae, Moo Sung; Hwang, Seok Won; Kang, Kyong Min; Ryu, Jung Hyun; Kim, Min Soo; Cho, Nam Chul; Jeon, Ho Jun; Jung, Gun Hyo; Han, Kyu Min; Lee, Seng Woo [Hanyang Univ., Seoul (Korea, Republic of)

    2006-03-15

    Since hydrogen production facility using IS process requires high temperature of nuclear power plant, safety assessment should be performed to guarantee the safety of facility. First of all, accident cases of hydrogen production and utilization has been surveyed. Based on the results, risk factors which can be derived from hydrogen production facility were identified. Besides the correlation between risk factors are schematized using influence diagram. Also initiating events of hydrogen production facility were identified and accident scenario development and quantification were performed. PSA methodology was used for identification of initiating event and master logic diagram was used for selection method of initiating event. Event tree analysis was used for quantification of accident scenario. The sum of all the leakage frequencies is 1.22x10{sup -4} which is similar value (1.0x10{sup -4}) for core damage frequency that International Nuclear Safety Advisory Group of IAEA suggested as a criteria.

  12. Hydrogen production from fusion reactors coupled with high temperature electrolysis

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.; Steinberg, M.

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and complement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Processes which may be considered for this purpose include electrolysis, thermochemical decomposition or thermochemical-electrochemical hybrid cycles. Preliminary studies at Brookhaven indicate that high temperature electrolysis has the highest potential efficiency for production of hydrogen from fusion. Depending on design electric generation efficiencies of approximately 40 to 60 percent and hydrogen production efficiencies of approximately 50 to 70 percent are projected for fusion reactors using high temperature blankets

  13. Hydrogen production as a promising nuclear energy application

    International Nuclear Information System (INIS)

    Vanek, V.

    2003-01-01

    Hydrogen production from nuclear is a field of application which eventually can outweigh power production by nuclear power plants. There are two feasible routes of hydrogen production. The one uses heat to obtain hydrogen from natural gas through steam reforming of methane. This is an highly energy-consuming process requiring temperatures up to 900 deg C and producing carbon dioxide as a by-product. The other method includes direct thermochemical processes to obtain hydrogen, using sulfuric acid for instance. Sulfuric acid is decomposed thermally by the reaction: H 2 SO 4 -> H 2 O = SO 2 + (1/2) O 2 , followed by the processes I 2 + SO 2 + 2H O -> 2HI + H 2 SO 4 and 2HI -> H 2 + I 2 . The use of nuclear for this purpose is currently examined in Japan and in the US. (P.A.)

  14. Biological hydrogen production by moderately thermophilic anaerobic bacteria

    International Nuclear Information System (INIS)

    HP Goorissen; AJM Stams

    2006-01-01

    This study focuses on the biological production of hydrogen at moderate temperatures (65-75 C) by anaerobic bacteria. A survey was made to select the best (moderate) thermophiles for hydrogen production from cellulolytic biomass. From this survey we selected Caldicellulosiruptor saccharolyticus (a gram-positive bacterium) and Thermotoga elfii (a gram-negative bacterium) as potential candidates for biological hydrogen production on mixtures of C 5 -C 6 sugars. Xylose and glucose were used as model substrates to describe growth and hydrogen production from hydrolyzed biomass. Mixed substrate utilization in batch cultures revealed differences in the sequence of substrate consumption and in catabolites repression of the two microorganisms. The regulatory mechanisms of catabolites repression in these microorganisms are not known yet. (authors)

  15. The research for flexible product family manufacturing based on real options

    Directory of Open Access Journals (Sweden)

    Maozhu Jin

    2015-01-01

    Full Text Available Purpose: The goal of this paper is to find the best production strategy for product mix, which means the largest value of the options. And finally, give a case and find the solution of the optimal production strategy for product mix. Design/methodology/approach: This article, based on the production with characteristics of a call option and 0-1 integer programming model, build new-products mix strategy, and through case demonstrate that traditional method underestimates the value of the products mix. Finding: According to market being volatility and uncertainty and the production can being delayed, firms can flexibly arrange the best time for products to manufacture. Use real options theory to analyze product decision and the best production timing decision. Find the total options value is higher than the traditional methods. Research limitations/implications: We are not applied to real option pricing theory in modular flexible production system. We just applied real option pricing theory to the product platform. The basic model needs to improve. While the thinking of this paper provides some research ideas for flexible production systems based on real option in further research. Practical Implications: The introduction of the real option make the company can achieve dynamic planning and flexible management for production of products mix and get the better benefit. Originality/value: The central contribution of this paper is to introduce the option mechanism in the production timing for the product mix.

  16. NGNP Process Heat Applications: Hydrogen Production Accomplishments for FY2010

    Energy Technology Data Exchange (ETDEWEB)

    Charles V Park

    2011-01-01

    This report summarizes FY10 accomplishments of the Next Generation Nuclear Plant (NGNP) Engineering Process Heat Applications group in support of hydrogen production technology development. This organization is responsible for systems needed to transfer high temperature heat from a high temperature gas-cooled reactor (HTGR) reactor (being developed by the INL NGNP Project) to electric power generation and to potential industrial applications including the production of hydrogen.

  17. Hydrogen production from sewage sludge by steam gasification

    Energy Technology Data Exchange (ETDEWEB)

    Aye, L.; Klinkajorn, P. [Melbourne Univ. International Technologies Centre, Melbourne, Victoria (Australia). Dept. of Civil and Environmental Engineering

    2006-07-01

    Because of the shortage of energy sources in the near future, renewable energy, such as biomass, has become an important source of energy. One of the most common approaches for producing gaseous fuels from biomass is gasification. The main product gases of gasification are hydrogen, carbon monoxide, methane and low molecular weight hydrocarbons. Because of the capability of very low emission at the point of use, the interest in using hydrogen for electrical power generation and in electric-vehicles has been increasing. Hydrogen from biomass steam gasification (SG) is a net zero green house gas emission fuel. Sewage sludge (SS) has a potential to produce hydrogen-rich gaseous fuel. Therefore, hydrogen production from sewage sludge may be a solution for cleaner fuel and the sewage sludge disposal problem. This paper presented the results of a computer model for SSSG by using Gibbs free energy minimization (GFEM) method. The computer model developed was used to determine the hydrogen production limits for various steam to biomass ratios. The paper presented an introduction to renewable energy and gasification and discussed the Gibbs free energy minimization method. The study used a RAND algorithm. It presented the computer model input parameters and discussed the results of the stoichiometric analysis and Gibbs free energy minimization. The energy requirement for hydrogen production was also presented. 17 refs., 1 tab., 6 figs.

  18. In vitro hydrogen production by glucose dehydrogenase and hydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Woodward, J. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    A new in vitro enzymatic pathway for the generation of molecular hydrogen from glucose has been demonstrated. The reaction is based upon the oxidation of glucose by Thermoplasma acidophilum glucose dehydrogenase with the concomitant oxidation of NADPH by Pyrococcus furiosus hydrogenase. Stoichiometric yields of hydrogen were produced from glucose with continuous cofactor recycle. This simple system may provide a method for the biological production of hydrogen from renewable sources. In addition, the other product of this reaction, gluconic acid, is a high-value commodity chemical.

  19. An Efficiency Model For Hydrogen Production In A Pressurized Electrolyzer

    Energy Technology Data Exchange (ETDEWEB)

    Smoglie, Cecilia; Lauretta, Ricardo

    2010-09-15

    The use of Hydrogen as clean fuel at a world wide scale requires the development of simple, safe and efficient production and storage technologies. In this work, a methodology is proposed to produce Hydrogen and Oxygen in a self pressurized electrolyzer connected to separate containers that store each of these gases. A mathematical model for Hydrogen production efficiency is proposed to evaluate how such efficiency is affected by parasitic currents in the electrolytic solution. Experimental set-up and results for an electrolyzer are also presented. Comparison of empirical and analytical results shows good agreement.

  20. The resources and methods of hydrogen production

    Czech Academy of Sciences Publication Activity Database

    Bičáková, Olga; Straka, Pavel

    2010-01-01

    Roč. 7, č. 2 (2010), s. 175-183 ISSN 1214-9705 R&D Projects: GA ČR(CZ) GA105/07/1407 Institutional research plan: CEZ:AV0Z30460519 Keywords : hydrogen * pyrolysis * co-pyrolysis Subject RIV: DD - Geochemistry Impact factor: 0.452, year: 2010

  1. Safe production and application of hydrogen at Munich airport

    Energy Technology Data Exchange (ETDEWEB)

    Szamer, R.

    2005-07-01

    At Munich International Airport the world's first public filling station for liquid and gaseous hydrogen with on-site hydrogen gas production has been installed. In order to prove the safety, liability and economic feasibility of hydrogen this pilot project examined the complete sequence of hydrogen production and application: on-site production with pressurized electrolyser and steam reformer, storage and filling of gaseous and liquid hydrogen, application of hydrogen for propelling several vehicles, e.g. airport busses in day to day operation, cars, fork lifter. TUV SUD Group, one of the largest service provider for technical safety and quality, was involved in the safety evaluation of the hydrogen project from the very beginning with the following services: safety consultancy throughout all project phases, e.g. for licensing procedures, plant design and operation safety analysis of the overall plant and of subsystems (electrolyser, filling stations, storage tanks, control systems etc.) safety assessment and acceptance testing of CH2 busses, CH2 fork lifter and LH2 passenger cars inspections and tests The challenges of this complex project relating to safety will be presented in the lecture, e.g. identification of potential hazards, safety requirements for the design and operation of the hydrogen plant as wells as for the various applications. Project description The hydrogen plant (cf. Figure 1) comprises two supply paths, one for compressed gaseous hydrogen (CH2) and one for cryogenic liquid hydrogen. Gaseous hydrogen is produced via high-pressure electrolysis at an operating pressure of 3 MPa (30 bar) and/or steam reforming process. The hydrogen will be led into a compressor, compressed to 35 MPa (350 bar) and stored in high pressure cylinders with a total geometrical storage volume of 10 m. The cylinders supply the high-pressure filling stations which refuels the 3 hydrogen buses and the fork lifter. Liquid hydrogen (LH2) is delivered in tank trucks and

  2. Technology selection for hydrogen production using nuclear energy

    International Nuclear Information System (INIS)

    Siti Alimah; Erlan Dewita

    2008-01-01

    The NPP can either be used to produce electricity, or as heat source for non-electric applications (cogeneration). High Temperature Reactor (HTR) with high outlet coolant temperature around 900~1000 o C, is a reactor type potential for cogeneration purposes such as hydrogen production and other chemical industry processes that need high heat. Considering the national energy policy that a balanced arrangement of renewable and unrenewable natural resources has to be made to keep environmental conservation for the sake of society prosperity in the future, hydrogen gas production using nuclear heat is an appropriate choice. Hydrogen gas is a new energy which is environmentally friendly that it is a prospecting alternative energy source in the future. Within the study, a comparison of three processes of hydrogen gas production covering electrolysis, steam reforming and sulfur-iodine cycle, have been conducted. The parameters that considered are the production cost, capital cost and energy cost, technological status, the independence of fossil fuel, the environmental friendly aspect, as well as the efficiency and the independence of corrosion-resistance material. The study result showed that hydrogen gas production by steam reforming is a better process compared to electrolysis and sulfur-iodine process. Therefore, steam reforming process can be a good choice for hydrogen gas production using nuclear energy in Indonesia. (author)

  3. Hydrogen production from coal using a nuclear heat source

    Science.gov (United States)

    Quade, R. N.

    1976-01-01

    A strong candidate for hydrogen production in the intermediate time frame of 1985 to 1995 is a coal-based process using a high-temperature gas-cooled reactor (HTGR) as a heat source. Expected process efficiencies in the range of 60 to 70% are considerably higher than all other hydrogen production processes except steam reforming of a natural gas. The process involves the preparation of a coal liquid, hydrogasification of that liquid, and steam reforming of the resulting gaseous or light liquid product. A study showing process efficiency and cost of hydrogen vs nuclear reactor core outlet temperature has been completed, and shows diminishing returns at process temperatures above about 1500 F. A possible scenario combining the relatively abundant and low-cost Western coal deposits with the Gulf Coast hydrogen users is presented which provides high-energy density transportation utilizing coal liquids and uranium.

  4. Photocatalytic hydrogen production under direct solar light in a CPC based solar reactor: Reactor design and preliminary results

    International Nuclear Information System (INIS)

    Jing Dengwei; Liu Huan; Zhang Xianghui; Zhao Liang; Guo Liejin

    2009-01-01

    In despite of so many types of solar reactors designed for solar detoxification purposes, few attempts have been made for photocatalytic hydrogen production, which in our option, is one of the most promising approaches for solar to chemical energy conversion. Addressing both the similarity and dissimilarity for these two processes and by fully considering the special requirements for the latter reaction, a Compound Parabolic Concentrator (CPC) based photocatalytic hydrogen production solar reactor has been designed for the first time. The design and optimization of this CPC based solar reactor has been discussed in detail. Preliminary results demonstrated that efficient photocatalytic hydrogen production under direct solar light can be accomplished by coupling tubular reactors with CPC concentrators. It is anticipated that this first demonstration of concentrator-based solar photocatalytic hydrogen production would draw attention for further studies in this promising direction.

  5. Bio-hydrogen Production Potential from Market Waste

    Directory of Open Access Journals (Sweden)

    Lanna Jaitalee

    2010-07-01

    Full Text Available This research studied bio-hydrogen production from vegetable waste from a fresh market in order to recover energy. A series of batch experiments were conducted to investigate the effects of initial volatile solids concentration on the bio-hydrogen production process. Lab bench scale anaerobic continuous stirred-tank reactors (CSTR were used to study the effect of substrate and sludge inoculation on hydrogen production. Three different concentrations of initial total volatile solids (TVS of organic waste were varied from 2%, 3% and 5% respectively. The pH was controlled at 5.5 for all batches in the experiment. The results showed that bio-hydrogen production depended on feed-substrate concentration. At initial TVS content of 3%, the highest hydrogen production was achieved at a level of 0.59 L-H2/L at pH 5.5. The maximum hydrogen yield was 15.3 ml H2/g TVS or 8.5 ml H2/g COD. The composition of H2 in the biogas ranged from 28.1-30.9% and no CH4 was detected in all batch tests.

  6. Hydrogen Production from Optimal Wind-PV Energies Systems

    Energy Technology Data Exchange (ETDEWEB)

    Tafticht, T.; Agbossou, K. [Institut de recherche sur l hydrogene, Universite du Quebec - Trois-Rivieres, C.P. 500, Trois-Rivieres, (Ciheam), G9A 5H7, (Canada)

    2006-07-01

    Electrolytic hydrogen offers a promising alternative for long-term energy storage of renewable energies (RE). A stand-alone RE system based on hydrogen production has been developed at the Hydrogen Research Institute and successfully tested for automatic operation with designed control devices. The system is composed of a wind turbine, a photovoltaic (PV) array, an electrolyser, batteries for buffer energy storage, hydrogen and oxygen storage tanks, a fuel cell, AC and DC loads, power conditioning devices and different sensors. The long-term excess energy with respect to load demand has been sent to the electrolyser for hydrogen production and then the fuel cell has utilised this stored hydrogen to produce electricity when there were insufficient wind and solar energies with respect to load requirements. The RE system components have substantially different voltage-current characteristics and they are integrated on the DC bus through power conditioning devices for optimal operation by using the developed Maximum Power Point Tracking (MPPT) control method. The experimental results show that the power gain obtained by this method clearly increases the hydrogen production and storage rate from wind-PV systems. (authors)

  7. Hydrogen Production from Optimal Wind-PV Energies Systems

    International Nuclear Information System (INIS)

    T Tafticht; K Agbossou

    2006-01-01

    Electrolytic hydrogen offers a promising alternative for long-term energy storage of renewable energies (RE). A stand-alone RE system based on hydrogen production has been developed at the Hydrogen Research Institute and successfully tested for automatic operation with designed control devices. The system is composed of a wind turbine, a photovoltaic (PV) array, an electrolyzer, batteries for buffer energy storage, hydrogen and oxygen storage tanks, a fuel cell, AC and DC loads, power conditioning devices and different sensors. The long-term excess energy with respect to load demand has been sent to the electrolyser for hydrogen production and then the fuel cell has utilised this stored hydrogen to produce electricity when there were insufficient wind and solar energies with respect to load requirements. The RE system components have substantially different voltage-current characteristics and they are integrated on the DC bus through power conditioning devices for optimal operation by using the developed Maximum Power Point Tracking (MPPT) control method. The experimental results show that the power gain obtained by this method clearly increases the hydrogen production and storage rate from wind-PV systems. (authors)

  8. Hydrogen Production from Optimal Wind-PV Energies Systems

    International Nuclear Information System (INIS)

    Tafticht, T.; Agbossou, K.

    2006-01-01

    Electrolytic hydrogen offers a promising alternative for long-term energy storage of renewable energies (RE). A stand-alone RE system based on hydrogen production has been developed at the Hydrogen Research Institute and successfully tested for automatic operation with designed control devices. The system is composed of a wind turbine, a photovoltaic (PV) array, an electrolyser, batteries for buffer energy storage, hydrogen and oxygen storage tanks, a fuel cell, AC and DC loads, power conditioning devices and different sensors. The long-term excess energy with respect to load demand has been sent to the electrolyser for hydrogen production and then the fuel cell has utilised this stored hydrogen to produce electricity when there were insufficient wind and solar energies with respect to load requirements. The RE system components have substantially different voltage-current characteristics and they are integrated on the DC bus through power conditioning devices for optimal operation by using the developed Maximum Power Point Tracking (MPPT) control method. The experimental results show that the power gain obtained by this method clearly increases the hydrogen production and storage rate from wind-PV systems. (authors)

  9. Hydrogen Production from Optimal Wind-PV Energies Systems

    Energy Technology Data Exchange (ETDEWEB)

    T Tafticht; K Agbossou [Institut de recherche sur l hydrogene, Universite du Quebec - Trois-Rivieres, C.P. 500, Trois-Rivieres, (Ciheam), G9A 5H7, (Canada)

    2006-07-01

    Electrolytic hydrogen offers a promising alternative for long-term energy storage of renewable energies (RE). A stand-alone RE system based on hydrogen production has been developed at the Hydrogen Research Institute and successfully tested for automatic operation with designed control devices. The system is composed of a wind turbine, a photovoltaic (PV) array, an electrolyzer, batteries for buffer energy storage, hydrogen and oxygen storage tanks, a fuel cell, AC and DC loads, power conditioning devices and different sensors. The long-term excess energy with respect to load demand has been sent to the electrolyser for hydrogen production and then the fuel cell has utilised this stored hydrogen to produce electricity when there were insufficient wind and solar energies with respect to load requirements. The RE system components have substantially different voltage-current characteristics and they are integrated on the DC bus through power conditioning devices for optimal operation by using the developed Maximum Power Point Tracking (MPPT) control method. The experimental results show that the power gain obtained by this method clearly increases the hydrogen production and storage rate from wind-PV systems. (authors)

  10. Hydrogen Production from Semiconductor-based Photocatalysis via Water Splitting

    Directory of Open Access Journals (Sweden)

    Jeffrey C. S. Wu

    2012-10-01

    Full Text Available Hydrogen is the ideal fuel for the future because it is clean, energy efficient, and abundant in nature. While various technologies can be used to generate hydrogen, only some of them can be considered environmentally friendly. Recently, solar hydrogen generated via photocatalytic water splitting has attracted tremendous attention and has been extensively studied because of its great potential for low-cost and clean hydrogen production. This paper gives a comprehensive review of the development of photocatalytic water splitting for generating hydrogen, particularly under visible-light irradiation. The topics covered include an introduction of hydrogen production technologies, a review of photocatalytic water splitting over titania and non-titania based photocatalysts, a discussion of the types of photocatalytic water-splitting approaches, and a conclusion for the current challenges and future prospects of photocatalytic water splitting. Based on the literatures reported here, the development of highly stable visible–light-active photocatalytic materials, and the design of efficient, low-cost photoreactor systems are the key for the advancement of solar-hydrogen production via photocatalytic water splitting in the future.

  11. USE OF THE MODULAR HELIUM REACTOR FOR HYDROGEN PRODUCTION

    International Nuclear Information System (INIS)

    SCHULTZ, K.R.

    2003-01-01

    OAK-B135 A significant ''Hydrogen Economy'' is predicted that will reduce our dependence on petroleum imports and reduce pollution and greenhouse gas emissions. Hydrogen is an environmentally attractive fuel that has the potential to displace fossil fuels, but contemporary hydrogen production is primarily based on fossil fuels. The author has recently completed a three-year project for the US Department of Energy (DOE) whose objective was to ''define an economically feasible concept for production of hydrogen, using an advanced high-temperature nuclear reactor as the energy source''. Thermochemical water-slitting, a chemical process that accomplishes the decomposition of water into hydrogen and oxygen, met this objective. The goal of the first phase of this study was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen, and to select one for further detailed consideration. They selected the Sulfur-Iodine cycle. In the second phase, they reviewed all the basic reactor types for suitability to provide the high temperature heat needed by the selected thermochemical water splitting cycle and chose the helium gas-cooled reactor. In the third phase they designed the chemical flowsheet for the thermochemical process and estimated the efficiency and cost of the process and the projected cost of producing hydrogen. These results are summarized in this report

  12. Prospects of sugarcane milling waste utilization for hydrogen production in India

    International Nuclear Information System (INIS)

    Singh, S.P.; Asthana, R.K.; Singh, A.P.

    2007-01-01

    Cane-sugar producing countries also generate sufficient waste (bagasse) that is mostly utilized ''on-site'' as a replacement to coal in specialized boilers. In addition to sugar and molasses, about 25% by-product of the cane milling is bagasse that still retains 2.5% sugar on dry wt. basis.This paper deals with the prospects of bagasse fermentation for hydrogen production. It seems relevant, as India and Brazil are the major sugarcane producers in the world. The results obtained confirm bagasse, annually generated to a tune of 40 Mt (million tons) in India, can be diverted from the conventional burning or composting to fermentative hydrogen production in a cost-effective way. The processing cost of bagasse for hydrogen production (3Nm 3 ) equivalent to 1L petrol is about half. The system optimization for accessibility of polysaccharides in bagasse and the use of genetically efficient bacterial strains for agrowaste-based hydrogen production seems the ideal option for clean energy generation

  13. Evaluation of the Potential Environmental Impacts from Large-Scale Use and Production of Hydrogen in Energy and Transportation Applications

    Energy Technology Data Exchange (ETDEWEB)

    Wuebbles, D.J.; Dubey, M.K., Edmonds, J.; Layzell, D.; Olsen, S.; Rahn, T.; Rocket, A.; Wang, D.; Jia, W.

    2010-06-01

    The purpose of this project is to systematically identify and examine possible near and long-term ecological and environmental effects from the production of hydrogen from various energy sources based on the DOE hydrogen production strategy and the use of that hydrogen in transportation applications. This project uses state-of-the-art numerical modeling tools of the environment and energy system emissions in combination with relevant new and prior measurements and other analyses to assess the understanding of the potential ecological and environmental impacts from hydrogen market penetration. H2 technology options and market penetration scenarios will be evaluated using energy-technology-economics models as well as atmospheric trace gas projections based on the IPCC SRES scenarios including the decline in halocarbons due to the Montreal Protocol. Specifically we investigate the impact of hydrogen releases on the oxidative capacity of the atmosphere, the long-term stability of the ozone layer due to changes in hydrogen emissions, the impact of hydrogen emissions and resulting concentrations on climate, the impact on microbial ecosystems involved in hydrogen uptake, and criteria pollutants emitted from distributed and centralized hydrogen production pathways and their impacts on human health, air quality, ecosystems, and structures under different penetration scenarios

  14. A Study on Methodology of Assessment for Hydrogen Explosion in Hydrogen Production Facility

    International Nuclear Information System (INIS)

    Jung, Gun Hyo

    2007-02-01

    Due to the exhaustion of fossil fuel as energy sources and international situation insecurity for political factor, unstability of world energy market is rising, consequently, a substitute energy development have been required. Among substitute energy to be discussed, producing hydrogen from water by nuclear energy which does not release carbon is a very promising technology. Very high temperature gas cooled reactor is expected to be utilized since the procedure of producing hydrogen requires high temperature over 1000 .deg. C. Hydrogen production facility using very high temperature gas cooled reactor lies in situation of high temperature and corrosion which makes hydrogen release easily. In case of hydrogen release, there lies a danger of explosion. Moreover explosion not only has a bad influence upon facility itself but very high temperature gas cooled reactor which also result in unsafe situation that might cause serious damage. However, from point of thermal-hydraulics view, long distance makes low efficiency result. In this study, therefore, outlines of hydrogen production using nuclear energy is researched. Several methods for analyzing the effects of hydrogen explosion upon high temperature gas cooled reactor are reviewed. Reliability physics model which is appropriate for assessment is used. Using this model, leakage probability, rupture probability and structure failure probability of very high temperature gas cooled reactor is evaluated classified by detonation volume and distance. Also based on standard safety criteria which is a value of 1x10 -6 , the safety distance between very high temperature and hydrogen production facility is calculated. In the future, assessment for characteristic of very high temperature gas cooled reactor, capacity to resist pressure from outside hydrogen explosion and overpressure for large amount of detonation volume in detail is expected to identify more precise distance using reliability physics model in this paper. This

  15. Onboard Plasmatron Hydrogen Production for Improved Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Daniel R. Cohn; Leslie Bromberg; Kamal Hadidi

    2005-12-31

    A plasmatron fuel reformer has been developed for onboard hydrogen generation for vehicular applications. These applications include hydrogen addition to spark-ignition internal combustion engines, NOx trap and diesel particulate filter (DPF) regeneration, and emissions reduction from spark ignition internal combustion engines First, a thermal plasmatron fuel reformer was developed. This plasmatron used an electric arc with relatively high power to reform fuels such as gasoline, diesel and biofuels at an oxygen to carbon ratio close to 1. The draw back of this device was that it has a high electric consumption and limited electrode lifetime due to the high temperature electric arc. A second generation plasmatron fuel reformer was developed. It used a low-current high-voltage electric discharge with a completely new electrode continuation. This design uses two cylindrical electrodes with a rotating discharge that produced low temperature volumetric cold plasma., The lifetime of the electrodes was no longer an issue and the device was tested on several fuels such as gasoline, diesel, and biofuels at different flow rates and different oxygen to carbon ratios. Hydrogen concentration and yields were measured for both the thermal and non-thermal plasmatron reformers for homogeneous (non-catalytic) and catalytic reforming of several fuels. The technology was licensed to an industrial auto part supplier (ArvinMeritor) and is being implemented for some of the applications listed above. The Plasmatron reformer has been successfully tested on a bus for NOx trap regeneration. The successful development of the plasmatron reformer and its implementation in commercial applications including transportation will bring several benefits to the nation. These benefits include the reduction of NOx emissions, improving engine efficiency and reducing the nation's oil consumption. The objective of this program has been to develop attractive applications of plasmatron fuel reformer

  16. Hydrogen production from small hyropower sites. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-04-01

    A synergistic relationship was not found to exist between low-head hydropower and electrolytic hydrogen production. The storageability of hydrogen was expected to mitigate problems of hydrogen generation variability associated with the use of low-head hydropower as the power source. The expense of gaseous hydrogen storage equipment effectively eliminates storage as a means to decouple hydrogen demand and power/hydrogen production. From the opposite perspective, the availability of a low and stable cost of power from low-head hydro was expected to improve the competitiveness of electrolysis. In actuality, the results indicated that hydroelectric power from small dams would be comparatively expensive by current grid power standards (mid-1979). Electrolysis, in the capacity range considered here, is less sensitive to the cost of the power than originally presumed. Other costs including depreciation and capital related charges are more significant. Due to power generation variability, sole reliance on low-head hydropower to provide electricity to the cells would reduce the utilization of the hydrogen production investment, resulting in an increase in unit production costs. These factors were paramount in the Air Products recommendation to discontinue the study before continuing to more detailed stages of analysis, including an analysis of a site specific facility and the construction of a demonstration facility. Another major factor was the unavailability of a pipeline hydrogen supply situation which, because of lower distribution and capital costs, could have been commercially viable. An unfavorable judgment on the combined facility should not be misinterpreted and extended to the component systems. Although a detailed analysis of the individual prospects for electrolysis and low-head hydropower was beyond the study scope, the reader will realize, as the study is reviewed, that each is worthy of individual consideration.

  17. Climate policy, emissions trading and hydrogen : Results of a Mannesmann Pilotentwicklung study and options for the hydrogen community

    International Nuclear Information System (INIS)

    Geres, R.

    2002-01-01

    The use of emissions trading for the introduction of hydrogen technologies into the market was studied under the Mannesmann Pilotentwicklung. It was argued that the integration of environmental effects becomes part of the business planning on the revenue side, provided a scenario with environmental benefits like the reduction of greenhouse gas emissions in the atmosphere. New possibilities and opportunities are available for hydrogen technologies. It enables the definition of more detailed projects within the hydrogen community, considering factors such as economic, strategic, technological and political aims. The projects involve both mobile and stationary applications, and cover regional activities as well as international cooperation. Public institutions or the private sector can undertake them. As a result of the ratification of the Kyoto Protocol, an emissions trading scheme is scheduled to begin in 2005 inside the European Union. 2 refs., 2 tabs., 2 figs

  18. EXPERIMENTAL STUDY OF THE PRODUCTION OF SOLAR HYDROGEN IN ALGERIA

    Directory of Open Access Journals (Sweden)

    W. Bendaikha

    2015-08-01

    Full Text Available Hydrogen is a sustainable fuel option and one of the potential solutions for the current energy and environmental problems. In this study hydrogen is produced using a hydrogen generator with a Proton Exchange Membrane (PEM electrolyser. An experimental study is done in the Center of Development of the Renewable Energy, Algiers, Algeria.The experimental device contains essentially a photovoltaic module, a PEM electrolyser, a gasometer and the devices of measures of characteristics of the PEM electrolyser as well as two pyranometers for the horizontal and diffuse global radiance registration. This system in pilots scale is permitted on the one hand, to measured and analyzed the characteristics: of the PEM electrolyser for two different pressures of working (Patm and P=3 bar, on the other hand, to study the volume of hydrogen produces in the time with different sources of electrical power (generator, photovoltaic module, fluorescent lamp, the efficiency for every case is calculated and compared. We present in this paper the variation of the solar hydrogen flow rate produced according to the global radiance and according to the time for a typical day’s of August.

  19. Hydrogen production by catalytic processing of renewable methane-rich gases

    Energy Technology Data Exchange (ETDEWEB)

    Muradov, Nazim; Smith, Franklyn; T-Raissi, Ali [Florida Solar Energy Center, University of Central Florida, Cocoa, FL 32922-5703 (United States)

    2008-04-15

    Biomass-derived methane-rich gases such as landfill gas (LFG), biogas and digester gas are promising renewable resources for near-future production of hydrogen. The technical and economical feasibility of hydrogen production via catalytic reforming of LFG and other methane-rich gases is evaluated in this paper. The thermodynamic equilibrium calculations and experimental measurements of reformation of methane-rich CH{sub 4}-CO{sub 2} mixtures over Ni-based catalyst were conducted. The problems associated with the catalyst deactivation due to carbon lay down and effects of steam and oxygen on the process sustainability were explored. Two technological approaches distinguished by the mode of heat input to the endothermic process (i.e., external vs autothermal) were modeled using AspenPlus trademark chemical process simulator and validated experimentally. A 5 kW{sub th} pilot unit for hydrogen production from LFG-mimicking CH{sub 4}-CO{sub 2} mixture was fabricated and operated. A preliminary techno-economic assessment indicates that the liquid hydrogen production costs are in the range of 3.00-7.00 per kilogram depending upon the plant capacity, the process heat input option and whether or not carbon sequestration is included in the process. (author)

  20. State of the art of biological hydrogen production processes

    International Nuclear Information System (INIS)

    Loubette, N.; Junker, M.

    2006-01-01

    Our report gives an overview of hydrogen production processes with bacteria or algae. 4 main processes are described: water biophotolysis, photo- fermentation biological CO conversion and dark fermentation. Chemical phenomena which lead to hydrogen generation are exp/aired. Performances, limits and outlook are given for each process. Main projects, programs and key players involved in this field of research have been listed. This paper resumes few results of this report. (authors)

  1. State of the art of biological hydrogen production processes

    International Nuclear Information System (INIS)

    Nicolas Loubette; Michel Junker

    2006-01-01

    Our report gives an overview of hydrogen production processes with bacteria or algae. 4 main processes are described: water bio-photolysis, photo-fermentation biological CO conversion and dark fermentation. Chemical phenomena which lead to hydrogen generation are explained. Performances, limits and outlook are given for each process. Main projects, programs and key players involved in this field of research have been listed. This paper resumes few results of this report. (authors)

  2. Hydrogen production from biomass by thermochemical recuperative energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Fushimi, C.; Araki, K.; Yamaguchi, Y.; Tsutsumi, A. [Tokyo Univ. (Japan). Dept. of Chemical System Engineering

    2002-07-01

    The authors conducted, using a thermogravimetric reactor, a kinetic study of production of thermochemical recuperative hydrogen from biomass. The four different biomass materials used were: cellulose, lignin, metroxylon stem, and coconut husk. Under both rapid heating and slow heating conditions, the weight changes of the biomass samples during the steam gasification or pyrolysis were measured at 973 Kelvin. Simultaneously, measurements of the evolution rates of low-molecular-weight gas products such as hydrogen, methane, carbon monoxide, and carbon dioxide were taken with the help of a mass spectrometer and a micro gas chromatograph (GC). The steam gasification of char significantly increased the amount of hydrogen and carbon dioxide production. The results also indicated that at higher heating rate, the cold gas efficiency of steam gasification was increased. This can be explained by the suppression of the tar production at lower temperature. 25 refs., 2 tabs., 10 figs.

  3. Fuel options for the fuel cell vehicle: hydrogen, methanol or gasoline?

    International Nuclear Information System (INIS)

    Thomas, C.E.; James, B.D.; Lomax, F.D. Jr.; Kuhn, I.F. Jr.

    2000-01-01

    Fuel cell vehicles can be powered directly by hydrogen or, with an onboard chemical processor, other liquid fuels such as gasoline or methanol. Most analysts agree that hydrogen is the preferred fuel in terms of reducing vehicle complexity, but one common perception is that the cost of a hydrogen infrastructure would be excessive. According to this conventional wisdom, the automobile industry must therefore develop complex onboard fuel processors to convert methanol, ethanol or gasoline to hydrogen. We show here, however, that the total fuel infrastructure cost to society including onboard fuel processors may be less for hydrogen than for either gasoline or methanol, the primary initial candidates currently under consideration for fuel cell vehicles. We also present the local air pollution and greenhouse gas advantages of hydrogen fuel cell vehicles compared to those powered by gasoline or methanol. (Author)

  4. Production of hydrogen by thermocatalytic cracking of natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Muradov, N. [Florida Solar Energy Center, Cocoa, FL (United States)

    1996-10-01

    The conventional methods of hydrogen production from natural gas (for example, steam reforming and partial oxidation) are complex, multi-step processes that produce large quantities of CO{sub 2}. The main goal of this project is to develop a technologically simple process for hydrogen production from natural gas (NG) and other hydrocarbon fuels via single-step decomposition of hydrocarbons. This approach eliminates or significantly reduces CO{sub 2} emission. Carbon is a valuable by-product of this process, whereas conventional methods of hydrogen production from NG produce no useful by-products. This approach is based on the use of special catalysts that reduce the maximum temperature of the process from 1400-1500{degrees}C (thermal non-catalytic decomposition of methane) to 500-900{degrees}C. Transition metal based catalysts and various forms of carbon are among the candidate catalysts for the process. This approach can advantageously be used for the development of compact NG reformers for on-site production of hydrogen-methane blends at refueling stations and, also, for the production of hydrogen-rich gas for fuel cell applications. The author extended the search for active methane decomposition catalysts to various modifications of Ni-, Fe-, Mo- and Co-based catalysts. Variation in the operational parameters makes it possible to produce H{sub 2}-CH{sub 4} blends with a wide range of hydrogen concentrations that vary from 15 to 98% by volume. The author found that Ni-based catalysts are more effective at temperatures below 750{degrees}C, whereas Fe-based catalysts are effective at temperatures above 800{degrees}C for the production of hydrogen with purity of 95% v. or higher. The catalytic pyrolysis of liquid hydrocarbons (pentane, gasoline) over Fe-based catalyst was conducted. The author observed the production of a hydrogen-rich gas (hydrogen concentration up to 97% by volume) at a rate of approximately 1L/min.mL of hydrocarbon fuel.

  5. Two dimensional simulation of hydrogen iodide decomposition reaction using fluent code for hydrogen production using nuclear technology

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Jung Sik [The Institute of Machinery and Electronic Technology, Mokpo National Maritime University, Mokpo (Korea, Republic of); Shin, Young Joon; Lee, Ki Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Choi, Jae Hyuk [Division of Marine Engineering System, Korea Maritime and Ocean University, Busan (Korea, Republic of)

    2015-06-15

    The operating characteristics of hydrogen iodide (HI) decomposition for hydrogen production were investigated using the commercial computational fluid dynamics code, and various factors, such as hydrogen production, heat of reaction, and temperature distribution, were studied to compare device performance with that expected for device development. Hydrogen production increased with an increase of the surface-to-volume (STV) ratio. With an increase of hydrogen production, the reaction heat increased. The internal pressure and velocity of the HI decomposer were estimated through pressure drop and reducing velocity from the preheating zone. The mass of H2O was independent of the STV ratio, whereas that of HI decreased with increasing STV ratio.

  6. Microbial production of hydrogen from starch-manufacturing wastes

    Energy Technology Data Exchange (ETDEWEB)

    Yokoi, H.; Maki, R.; Hirose, J.; Hayashi, S. [Miyazaki Univ. (Japan). Dept. of Applied Chemistry

    2002-05-01

    Effective hydrogen production from starch-manufacturing wastes by microorganisms was investigated. Continuous hydrogen production in high yield of 2.7 mol H{sub 2} mol{sup -1} glucose was attained by a mixed culture of Clostridium butyricum and Enterobacter aerogenes HO-39 in the starch waste medium consisting of sweet potato starch residue as a carbon source and corn steep liquor as a nitrogen source in a repeated batch culture. Rhodobacter sp. M-19 could produce hydrogen from the supernatant of the culture broth obtained in the repeated batch culture of C. butyricum and E. aerogenes HO-39. Hydrogen yield of 4.5 mol H{sub 2} mol{sup -1} glucose was obtained by culturing Rhodobacter sp. M-19 in the supernatant supplemented with 20{mu}gl{sup -1} Na{sub 2}MoO{sub 4} 2H{sub 2}O and 10mgl{sup -1} EDTA in a repeated batch culture with pH control at 7.5. Therefore, continuous hydrogen production with total hydrogen yield of 7.2 mol H{sub 2} mol{sup -1} glucose from the starch remaining in the starch residue was attained by the repeated batch culture with C. butyricum and E. aerogenes HO-39 and by the successive repeated batch culture with Rhodobacter sp. M-19. (Author)

  7. Potential Fusion Market for Hydrogen Production Under Environmental Constraints

    International Nuclear Information System (INIS)

    Konishi, Satoshi

    2005-01-01

    Potential future hydrogen market and possible applications of fusion were analyzed. Hydrogen is expected as a major energy and fuel mediun for the future, and various processes for hydrogen production can be considered as candidates for the use of fusion energy. In order to significantly contribute to reduction of CO 2 emission, fusion must be deployed in developing countries, and must substitute fossil based energy with synthetic fuel such as hydrogen. Hydrogen production processes will have to evaluated and compared from the aspects of energy efficiency and CO 2 emission. Fusion can provide high temperature heat that is suitable for vapor electrolysis, thermo-chemical water decomposition and steam reforming with biomass waste. That is a possible advantage of fusion over renewables and Light water power reactor. Despite of its technical difficulty, fusion is also expected to have less limitation for siting location in the developing countries. Under environmental constraints, fusion has a chance to be a major primary energy source, and production of hydrogen enhances its contribution, while in 'business as usual', fusion will not be selected in the market. Thus if fusion is to be largely used in the future, meeting socio-economic requirements would be important

  8. Annex 15 of the IEA Hydrogen Implementing Agreement : Photobiological hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Lindblad, P. [Uppsala Univ., Uppsala (Sweden)]|[International Energy Agency, Paris (France)

    2004-07-01

    Task 15 of the Hydrogen Implementation Agreement of the International Energy Agency is to advance the science of biophotosynthesis of hydrogen, which is the biological production of hydrogen from water and sunlight using microalgal photosynthesis. A practical process for biophotolysis would result in an innovative biological source of sustainable and environmentally benign renewable energy source. Japan, Norway, Sweden and the United States initially committed to the project. Since then Canada, the Netherlands and the United Kingdom have joined. The current task is to produce hydrogen from both green algae and cyanobacteria with focus on early-stage applied research on biophotolysis processes with intermediate carbon dioxide fixation. Significant advances have also occurred in the scientific field of cyanobacterial biohydrogen. Cyanobacteria has enzymes that metabolise hydrogen. Photosynthetic cyanobacteria have simple nutritional requirements and can grow in air, water, or mineral salts with light as the only source of energy. This research will help provide the advances needed to achieve practical efficiencies and cost objectives of biological hydrogen production. tabs., figs.

  9. Ovonic Renewable Hydrogen (ORH) - low temperature hydrogen production from renewable fuels

    International Nuclear Information System (INIS)

    Reichman, B.; Mays, W.; Strebe, J.; Fetcenko, M.

    2009-01-01

    'Full text': ECD has developed a new technology to produce hydrogen from various organic matters. In this technology termed Ovonic Renewable Hydrogen (ORH), base material such as NaOH is used as a reactant to facilitate the reforming of the organic matters to hydrogen gas. This Base-Facilitated Reforming (BFR) process is a one-step process and has number of advantages over the conventional steam reforming and gasification processes including lower operation temperature and lower heat consumption. This paper will describe the ORH process and discuss its technological and economics advantages over the conventional hydrogen production processes. ORH process has been studied and demonstrated on variety of renewable fuels including liquid biofuels and solid biomass materials. Results of these studies will be presented. (author)

  10. Hydrogen production by aqueous phase catalytic reforming of glycerine

    International Nuclear Information System (INIS)

    Ozguer, Derya Oncel; Uysal, Bekir Zuehtue

    2011-01-01

    Hydrogen is believed to be the one of the main energy carriers in the near future. In this research glycerine, which is produced in large quantities as a by-product of biodiesel process, was converted to hydrogen aiming to contribute to clean energy initiative. Conversion of glycerol to hydrogen was achieved via aqueous-phase reforming (APR) with Pt/Al 2 O 3 catalyst. The experiments were carried out in an autoclave reactor and a continuous fixed-bed reactor. The effects of reaction temperature (160-280 o C), feed flow rate (0.05-0.5 mL/dak) and feed concentration (5-85 wt-% glycerine) on product distribution were investigated. Optimum temperature for hydrogen production with APR was determined as 230 o C. Maximum gas production rate was found at the feed flow rates around 0.1 mL/min. It was also found that hydrogen concentration in the gas product increased with decreasing glycerol concentration in the feed.

  11. Hydrogen and oxygen production with nuclear heat

    International Nuclear Information System (INIS)

    Barnert, H.

    1979-09-01

    After some remarks on the necessity of producing secondary energy sources for the heat market, the thermodynamic fundamentals of the processes for producing hydrogen and oxygen from water on the basis of nuclear thermal energy are briefly explained. These processes are summarized as one class of the 'thermochemical cycle process' for the conversion of thermal into chemical energy. A number of thermochemical cycle processes are described. The results of the design work so far are illustrated by the example of the 'sulphuric acid hybrid process'. The nuclear heat source of the thermochemical cycle process is the high-temperature reactor. Statements concerning rentability are briefly commented upon, and the research and development efforts and expenditure required are sketched. (orig.) 891 GG/orig. 892 MB [de

  12. 40 CFR 415.330 - Applicability; description of the carbon monoxide and by-product hydrogen production subcategory.

    Science.gov (United States)

    2010-07-01

    ... carbon monoxide and by-product hydrogen production subcategory. 415.330 Section 415.330 Protection of... MANUFACTURING POINT SOURCE CATEGORY Carbon Monoxide and By-Product Hydrogen Production Subcategory § 415.330 Applicability; description of the carbon monoxide and by-product hydrogen production subcategory. The provisions...

  13. The calculation of specific heats for some important solid components in hydrogen production process based on CuCl cycle

    Directory of Open Access Journals (Sweden)

    Avsec Jurij

    2014-01-01

    Full Text Available Hydrogen is one of the most promising energy sources of the future enabling direct production of power and heat in fuel cells, hydrogen engines or furnaces with hydrogen burners. One of the last remainder problems in hydrogen technology is how to produce a sufficient amount of cheap hydrogen. One of the best options is large scale thermochemical production of hydrogen in combination with nuclear power plant. copper-chlorine (CuCl cycle is the most promissible thermochemical cycle to produce cheap hydrogen.This paper focuses on a CuCl cycle, and the describes the models how to calculate thermodynamic properties. Unfortunately, for many components in CuCl cycle the thermochemical functions of state have never been measured. This is the reason that we have tried to calculate some very important thermophysical properties. This paper discusses the mathematical model for computing the thermodynamic properties for pure substances and their mixtures such as CuCl, HCl, Cu2OCl2 important in CuCl hydrogen production in their fluid and solid phase with an aid of statistical thermodynamics. For the solid phase, we have developed the mathematical model for the calculation of thermodynamic properties for polyatomic crystals. In this way, we have used Debye functions and Einstein function for acoustical modes and optical modes of vibrations to take into account vibration of atoms. The influence of intermolecular energy we have solved on the basis of Murnaghan equation of state and statistical thermodynamics.

  14. Photovoltaic hydrogen production with commercial alkaline electrolysers

    Energy Technology Data Exchange (ETDEWEB)

    Ursua, A.; Lopez, J.; Gubia, E.; Marroyo, L.; Sanchis, P. [Public Univ. of Navarra, Pamplona (Spain). Dept. of Electric and Electronic Engineering

    2010-07-01

    Renewable energy sources and Electrolysis generate the so-called green Hydrogen, a zero-emission and potentially fossil fuel independent energy source. However, the inherent variability of the renewable energy sources implies a mode of operation for which most current electrolysers have not been designed. This paper analyses the operation of a water electrolyser fed with photovoltaic (PV) generator electric profile. The system, Integrated by a 1 Nm{sup 3}/h Hydrogenics alkaline electrolyser and a 5100 W PV generator with 60 BP585 modules, is installed at the Public University of Navarra (Spain). The PV generator profile fed to the electrolyser is emulated by a custom-made apparatus designed and built by the authors of this paper. The profile is designed according to real irradiance data measured by a calibration cell. The irradiance data are converted to the electric power profile that the PV generator would have delivered in case of having been connected to the electrolyser by means of a DC/DC converter with maximum power point tracking (MPPT). Finally, from previously measured power-current electrolyser characteristic curves, the current profile to be delivered to the electrolyser is obtained and programmed to the electronic device. The electrolyser was tested for two types of days. During the first day, the irradiance was very stable, whereas during the second day, the irradiance was very variable. The experimental results show an average power consumption rate and an efficiency of 4908 Wh/Nm{sup 3} and 72.1%, on the first day, and 4842 Wh/Nm{sup 3} and 73.3% on the second day. The electrolyser performance was particularly good in spite of the high variability of the electric supply of the second day. (orig.)

  15. Processes of hydrogen production, coupled with nuclear reactors: Economic perspectives

    International Nuclear Information System (INIS)

    Werkoff, Francois; Avril, Sophie; Mansilla, Christine; Sigurvinsson, Jon

    2006-01-01

    Hydrogen production, using nuclear power is considered from a technic-economic (TE) point of view. Three different processes are examined: Alkaline electrolysis, High-temperature steam electrolysis (HTE) and the thermochemical Sulphur-Iodine (S/I) cycle. The three processes differ, in the sense that the first one is operational and both last ones are still at demonstration stages. For them, it is at present only possible to identify key points and limits of competitiveness. The cost of producing hydrogen by alkaline electrolysis is analysed. Three major contributions to the production costs are examined: the electricity consumption, the operation and maintenance expenditures and the depreciation capital expenditures. A technic-economic evaluation of hydrogen production by HTE coupled to a high-temperature reactor (HTR) is presented. Key points appear to be the electrolyser and the high temperature heat exchangers. The S/I thermochemical cycle is based on the decomposition and the re-composition of H 2 SO 4 and HI acids. The energy consumption and the recovery of iodine are key points of the S/I cycle. With the hypothesis that the hydrogen energy will progressively replace the fossil fuels, we give a first estimate of the numbers of nuclear reactors (EPR or HTR) that would be needed for a massive nuclear hydrogen production. (authors)

  16. Hydrogen production from coal using a nuclear heat source

    International Nuclear Information System (INIS)

    Quade, R.N.

    1977-01-01

    A strong candidate for hydrogen production in the intermediate time frame of 1990 to 1995 is a coal-based process using a high-temperature gas-cooled reactor (HTGR) as a heat source. Expected process efficiencies in the range of 60 to 70% are considerably higher than all other hydrogen production processes except steam reforming of a natural gas - a feedstock which may not be available in large quantities in this time frame. The process involves the preparation of a coal liquid, hydrogasification of that liquid, and steam reforming of the resulting gaseous or light liquid product. Bench-scale experimental work on the hydrogasification of coal liquids is being carried out. A study showing process efficiency and cost of hydrogen vs nuclear reactor core outlet temperature has been completed and shows diminishing returns at process temperatures above about 1500 0 F. (author)

  17. 19 CFR 151.47 - Optional entry of net quantity of petroleum or petroleum products.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Optional entry of net quantity of petroleum or petroleum products. 151.47 Section 151.47 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF... Petroleum and Petroleum Products § 151.47 Optional entry of net quantity of petroleum or petroleum products...

  18. Hydrogen as an energy carrier and its production by nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    The impact of power generation on environment is becoming an ever increasing concern in decision making when considering the energy options and power systems required by a country in order to sustain its economic growth and development. Hydrogen is a strong emerging candidate with a significant role as a clean, environmentally benign and safe to handle major energy carrier in the future. Its enhanced utilization in distributed power generation as well as in propulsion systems for mobile applications will help to significantly mitigate the strong negative effects on the environment. It ia also the nuclear power that will be of utmost importance in the energy supply of many countries over the next decades. The development of new, innovative reactor concepts utilizing passive safety features for process heat and electricity generation are considered by many to play a substantial role in the world`s energy future in helping to reduce greenhouse gas emissions. This report produced by IAEA documents past and current activities in Member States in the development of hydrogen production as an energy carrier and its corresponding production through the use of nuclear power. It provides an introduction to nuclear technology as a means of producing hydrogen or other upgraded fuels and to the energy carries hydrogen and its main fields of application. Emphasis is placed on high-temperature reactor technology which can achieve the simultaneous generation of electricity and the production of high-temperature process heat Refs, figs, tabs

  19. Hydrogen as an energy carrier and its production by nuclear power

    International Nuclear Information System (INIS)

    1999-05-01

    The impact of power generation on environment is becoming an ever increasing concern in decision making when considering the energy options and power systems required by a country in order to sustain its economic growth and development. Hydrogen is a strong emerging candidate with a significant role as a clean, environmentally benign and safe to handle major energy carrier in the future. Its enhanced utilization in distributed power generation as well as in propulsion systems for mobile applications will help to significantly mitigate the strong negative effects on the environment. It ia also the nuclear power that will be of utmost importance in the energy supply of many countries over the next decades. The development of new, innovative reactor concepts utilizing passive safety features for process heat and electricity generation are considered by many to play a substantial role in the world's energy future in helping to reduce greenhouse gas emissions. This report produced by IAEA documents past and current activities in Member States in the development of hydrogen production as an energy carrier and its corresponding production through the use of nuclear power. It provides an introduction to nuclear technology as a means of producing hydrogen or other upgraded fuels and to the energy carries hydrogen and its main fields of application. Emphasis is placed on high-temperature reactor technology which can achieve the simultaneous generation of electricity and the production of high-temperature process heat

  20. Production of hydrogen through the carbonation-calcination reaction applied to CH4/CO2 mixtures

    International Nuclear Information System (INIS)

    Barelli, L.; Bidini, G.; Corradetti, A.; Desideri, U.

    2007-01-01

    The production of hydrogen combined with carbon capture represents a possible option for reducing CO 2 emissions in atmosphere and anthropogenic greenhouse effect. Nowadays the worldwide hydrogen production is based mainly on natural gas reforming, but the attention of the scientific community is focused also on other gas mixtures with significant methane content. In particular mixtures constituted mainly by methane and carbon dioxide are extensively used in energy conversion applications, as they include land-fill gas, digester gas and natural gas. The present paper addresses the development of an innovative system for hydrogen production and CO 2 capture starting from these mixtures. The plant is based on steam methane reforming, coupled with the carbonation and calcination reactions for CO 2 absorption and desorption, respectively. A thermodynamic approach is proposed to investigate the plant performance in relation to the CH 4 content in the feeding gas. The results suggest that, in order to optimize the hydrogen purity and the efficiency, two different methodologies can be adopted involving both the system layout and operating parameters. In particular such methodologies are suitable for a methane content, respectively, higher and lower than 65%

  1. Challenges for renewable hydrogen production from biomass

    International Nuclear Information System (INIS)

    Levin, David B.; Chahine, Richard

    2010-01-01

    The increasing demand for H 2 for heavy oil upgrading, desulfurization and upgrading of conventional petroleum, and for production of ammonium, in addition to the projected demand for H 2 as a transportation fuel and portable power, will require H 2 production on a massive scale. Increased production of H 2 by current technologies will consume greater amounts of conventional hydrocarbons (primarily natural gas), which in turn will generate greater greenhouse gas emissions. Production of H 2 from renewable sources derived from agricultural or other waste streams offers the possibility to contribute to the production capacity with lower or no net greenhouse gas emissions (without carbon sequestration technologies), increasing the flexibility and improving the economics of distributed and semi-centralized reforming. Electrolysis, thermocatalytic, and biological production can be easily adapted to on-site decentralized production of H 2 , circumventing the need to establish a large and costly distribution infrastructure. Each of these H 2 production technologies, however, faces technical challenges, including conversion efficiencies, feedstock type, and the need to safely integrate H 2 production systems with H 2 purification and storage technologies. (author)

  2. Studies on membrane acid electrolysis for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Marco Antonio Oliveira da; Linardi, Marcelo; Saliba-Silva, Adonis Marcelo [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Celulas a Combustivel e Hidrogenio], Email: saliba@ipen.br

    2010-07-01

    Hydrogen represents great opportunity to be a substitute for fossil fuels in the future. Water as a renewable source of hydrogen is of great interest, since it is abundant and can decompose, producing only pure H{sub 2} and O{sub 2}. This decomposition of water can be accomplished by processes such as electrolysis, thermal decomposition and thermochemical cycles. The electrolysis by membrane has been proposed as a viable process for hydrogen production using thermal and electrical energy derived from nuclear energy or any renewable source like solar energy. In this work, within the context of optimization of the electrolysis process, it is intended to develop a mathematical model that can simulate and assist in parameterization of the electrolysis performed by polymer membrane electrolytic cell. The experimental process to produce hydrogen via the cell membrane, aims to optimize the amount of gas produced using renewable energy with noncarbogenic causing no harm by producing gases deleterious to the environment. (author)

  3. Coupling the modular helium reactor to hydrogen production processes

    International Nuclear Information System (INIS)

    Richards, M.B.; Shenoy, A.S.; Schultz, K.R.

    2004-01-01

    Steam reforming of natural gas (methane) currently produces the bulk of hydrogen gas used in the world today. Because this process depletes natural gas resources and generates the greenhouse gas carbon dioxide as a by-product, there is a growing interest in using process heat and/or electricity generated by nuclear reactors to generate hydrogen by splitting water. Process heat from a high temperature nuclear reactor can be used directly to drive a set of chemical reactions, with the net result of splitting water into hydrogen and oxygen. For example, process heat at temperatures in the range 850 deg C to 950 deg C can drive the sulphur-iodine (S-I) thermochemical process to produce hydrogen with high efficiency. The S-I process produces highly pure hydrogen and oxygen, with formation, decomposition, regeneration, and recycle of the intermediate chemical reagents. Electricity can also 1)e used directly to split water, using conventional, low-temperature electrolysis (LTE). Hydrogen can also be produced with hybrid processes that use both process heat and electricity to generate hydrogen. An example of a hybrid process is high-temperature electrolysis (HTE), in which process heat is used to generate steam, which is then supplied to an electrolyzer to generate hydrogen. This process is of interest because the efficiency of electrolysis increases with temperature. Because of its high temperature capability, advanced stage of development relative to other high-temperature reactor concepts, and passive-safety features, the modular helium reactor (MHR) is well suited for producing hydrogen using nuclear energy. In this paper we investigate the coupling of the MHR to the S-I process, LTE, and HTE. These concepts are referred to as the H2-MHR. (author)

  4. A study of wind hydrogen production of systems for Malaysia

    International Nuclear Information System (INIS)

    Ibrahim, M.Z.; Kamaruzzaman Sopian; Wan Ramli Wan Daud; Othman, M.Y.; Baharuddin Yatim; Veziroglu, T.N.

    2006-01-01

    Recently, Malaysia is looking into the potential of using hydrogen as future fuel. By recognizing the potential of hydrogen fuel, the government had channeled a big amount of money in funds to related organizations to embark on hydrogen research and development programmed. The availability of indigenous renewable resources, high trade opportunities, excellent research capabilities and current progress in hydrogen research at the university are some major advantages for the country to attract government and industry investment in hydrogen. It is envisaged that overall energy demand in Malaysia as stated in the Eighth Malaysia Plan (EMP) report will increase by about 7.8 percent per annum in this decade at the present economic growth. Considering the vast potential inherent in renewable energy (RE), it could be a significant contributor to the national energy supply. Malaysia had been blessed with abundant and varied resources of energy, nevertheless, concerted efforts should be undertaken to ensure that the development of energy resources would continue to contribute to the nation's economic expansion. In this regard, an initial study has been carried out to see the available potential of wind energy towards the hydrogen production, that could be utilized in various applications particularly in Malaysian climate condition via a computer simulation (HYDROGEMS), which built for TRNSYS (a transient system simulation program) version 15. The system simulated in this study consist of one unit (1 kW) wind turbine, an electrolyze (1 kW), a hydrogen (H 2 ) storage tank, and a power conditioning system. A month hourly data of highest wind speed is obtained from the local weather station that is at Kuala Terengganu Air Port located at 5''o 23'' latitude (N) and 103''o 06'' Longitude (E). The results show, wind energy in Malaysian Climate has a potential to generate hydrogen with the minimum rate approximately 9 m 3 /hr and storage capacity of 60 Nm 3 , State of Charge (SOC

  5. Once-through hybrid sulfur process for nuclear hydrogen production

    International Nuclear Information System (INIS)

    Jeong, Y. H.

    2008-01-01

    Increasing concern about the global climate change spurs the development of low- or zero-carbon energy system. Nuclear hydrogen production by water electrolysis would be the one of the short-term solutions, but low efficiency and high production cost (high energy consumption) is the technical hurdle to be removed. In this paper the once-through sulfur process composed of the desulfurization and the water electrolysis systems is proposed. Electrode potential for the conventional water electrolysis (∼2.0 V) can be reduced significantly by the anode depolarization using sulfur dioxide: down to 0.6 V depending on the current density This depolarized electrolysis is the electrolysis step of the hybrid sulfur process originally proposed by the Westinghouse. However; recycling of sulfur dioxide requires a high temperature heat source and thus put another technical hurdle on the way to nuclear hydrogen production: the development of high temperature nuclear reactors and corresponding sulfuric acid decomposition system. By the once-through use of sulfur dioxide rather than the closed recycle, the hurdle can be removed. For the sulfur feed, the desulfurization system is integrated into the water electrolysis system. Fossil fuels include a few percent of sulfur by weight. During the refinement or energy conversion, most of the sulfur should be separated The separated sulfur can be fed to the water electrolysis system and the final product would be hydrogen and sulfuric acid, which is number one chemical in the world by volume. Lowered electrode potential and additional byproduct, the sulfuric acid, can provide economically affordable hydrogen. In this study, the once-through hybrid sulfur process for hydrogen production was proposed and the process was optimized considering energy consumption in electrolysis and sulfuric acid concentration. Economic feasibility of the proposed process was also discussed. Based on currently available experimental data for the electrode

  6. Calculation of LUEC using HEEP Software for Nuclear Hydrogen Production Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongho; Lee, Kiyoung; Kim, Minhwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    To achieve the hydrogen economy, it is very important to produce a massive amount of hydrogen in a clean, safe and efficient way. Nuclear production of hydrogen would allow massive production of hydrogen at economic prices while avoiding environments pollution by reducing the release of carbon dioxide. A Very High Temperature Reactor (VHTR) is considered as an efficient reactor to couple with the thermo-chemical Sulfur Iodine (SI) cycle to achieve the hydrogen economy. HEEP(Hydrogen Economy Evaluation Program) is one of the software tools developed by IAEA to evaluate the economy of the nuclear hydrogen production system by estimating unit hydrogen production cost. In this paper, the LUHC (Levelized Unit Hydrogen Cost) is calculated by using HEEP for nuclear hydrogen production plant, which consists of 4 modules of 600 MWth VHTR coupled with SI process. The levelized unit hydrogen production cost(LUHC) was calculated by the HEEP software.

  7. System Evaluations and Life-Cycle Cost Analyses for High-Temperature Electrolysis Hydrogen Production Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Edwin A. Harvego; James E. O' Brien; Michael G. McKellar

    2012-05-01

    This report presents results of system evaluations and lifecycle cost analyses performed for several different commercial-scale high-temperature electrolysis (HTE) hydrogen production concepts. The concepts presented in this report rely on grid electricity and non-nuclear high-temperature process heat sources for the required energy inputs. The HYSYS process analysis software was used to evaluate both central plant designs for large-scale hydrogen production (50,000 kg/day or larger) and forecourt plant designs for distributed production and delivery at about 1,500 kg/day. The HYSYS software inherently ensures mass and energy balances across all components and it includes thermodynamic data for all chemical species. The optimized designs described in this report are based on analyses of process flow diagrams that included realistic representations of fluid conditions and component efficiencies and operating parameters for each of the HTE hydrogen production configurations analyzed. As with previous HTE system analyses performed at the INL, a custom electrolyzer model was incorporated into the overall process flow sheet. This electrolyzer model allows for the determination of the average Nernst potential, cell operating voltage, gas outlet temperatures, and electrolyzer efficiency for any specified inlet steam, hydrogen, and sweep-gas flow rates, current density, cell active area, and external heat loss or gain. The lifecycle cost analyses were performed using the H2A analysis methodology developed by the Department of Energy (DOE) Hydrogen Program. This methodology utilizes spreadsheet analysis tools that require detailed plant performance information (obtained from HYSYS), along with financial and cost information to calculate lifecycle costs. There are standard default sets of assumptions that the methodology uses to ensure consistency when comparing the cost of different production or plant design options. However, these assumptions may also be varied within the

  8. Thermochemical cycles for the production of hydrogen

    Science.gov (United States)

    Steinberg, M.; Dang, V.D.

    Two-step processes for the preparation of hydrogen are described: CrCl/sub 3/(g) ..-->.. CrCl/sub 2/(g) + 1/2Cl/sub 2/(g) and CrCl/sub 2/(s) + HCl(g) reversible CrCl/sub 3/(s) + 1/2H/sub 2/(g); UCl/sub 4/(g) ..-->.. UCl/sub 3/(g) + 1/2Cl/sub 2/(g) and UCl/sub 3/(s) + HCl(g) ..-->.. UCl/sub 4/(s) + 1/2H/sub 2/(g); and CaSO/sub 4/(s) ..-->.. CaO(s) + SO/sub 2/(g) + 1/2O/sub 2/(g) and CaO(s) + SO/sub 2/(g) + H/sub 2/O(l) ..-->.. CaSO/sub 4/(s) + H/sub 2/(g). The high temperature available from solar collectors, high temperature gas reactors or fusion reactors is utilized in the first step in which the reaction is endothermic. The efficiency is at least 60% and with process heat recovery, the efficiency may be increased up to 74.4%. An apparatus fr carrying out the process in conjunction with a fusion reactor, is described.

  9. Thermodynamic analysis of hydrogen production from biomass gasification

    International Nuclear Information System (INIS)

    Cohce, M.K.; Dincer, I.; Rosen, M.A.

    2009-01-01

    'Full Text': Biomass resources have the advantage of being renewable and can therefore contribute to renewable hydrogen production. In this study, an overview is presented of hydrogen production methods in general, and biomass-based hydrogen production in particular. For two methods in the latter category (direct gasification and pyrolysis), assessments are carried out, with the aim of investigating the feasibility of producing hydrogen from biomass and better understanding the potential of biomass as a renewable energy source. A simplified model is presented here for biomass gasification based on chemical equilibrium considerations, and the effects of temperature, pressure and the Gibbs free energy on the equilibrium hydrogen yield are studied. Palm oil (designated C 6 H 10 O 5 ), one of the most common biomass resources in the world, is considered in the analyses. The gasifier is observed to be one of the most critical components of a biomass gasification system, and is modeled using stoichiometric reactions. Various thermodynamic efficiencies are evaluated, and both methods are observed to have reasonably high efficiencies. (author)

  10. Carbon-free hydrogen production from low rank coal

    Science.gov (United States)

    Aziz, Muhammad; Oda, Takuya; Kashiwagi, Takao

    2018-02-01

    Novel carbon-free integrated system of hydrogen production and storage from low rank coal is proposed and evaluated. To measure the optimum energy efficiency, two different systems employing different chemical looping technologies are modeled. The first integrated system consists of coal drying, gasification, syngas chemical looping, and hydrogenation. On the other hand, the second system combines coal drying, coal direct chemical looping, and hydrogenation. In addition, in order to cover the consumed electricity and recover the energy, combined cycle is adopted as addition module for power generation. The objective of the study is to find the best system having the highest performance in terms of total energy efficiency, including hydrogen production efficiency and power generation efficiency. To achieve a thorough energy/heat circulation throughout each module and the whole integrated system, enhanced process integration technology is employed. It basically incorporates two core basic technologies: exergy recovery and process integration. Several operating parameters including target moisture content in drying module, operating pressure in chemical looping module, are observed in terms of their influence to energy efficiency. From process modeling and calculation, two integrated systems can realize high total energy efficiency, higher than 60%. However, the system employing coal direct chemical looping represents higher energy efficiency, including hydrogen production and power generation, which is about 83%. In addition, optimum target moisture content in drying and operating pressure in chemical looping also have been defined.

  11. Study on hydrogen production by high temperature electrolysis of steam

    International Nuclear Information System (INIS)

    Hino, Ryutaro; Aita, Hideki; Sekita, Kenji; Haga, Katsuhiro; Iwata, Tomo-o.

    1997-09-01

    In JAERI, design and R and D works on hydrogen production process have been conducted for connecting to the HTTR under construction at the Oarai Research Establishment of JAERI as a nuclear heat utilization system. As for a hydrogen production process by high-temperature electrolysis of steam, laboratory-scale experiments were carried out with a practical electrolysis tube with 12 cells connected in series. Hydrogen was produced at a maximum density of 44 Nml/cm 2 h at 950degC, and know-how of operational procedures and operational experience were also accumulated. Thereafter, a planar electrolysis cell supported by a metallic plate was fabricated in order to improve hydrogen production performance and durability against thermal cycles. In the preliminary test with the planar cell, hydrogen has been produced continuously at a maximum density of 33.6 Nml/cm 2 h at an electrolysis temperature of 950degC. This report presents typical test results mentioned above, a review of previous studies conducted in the world and R and D items required for connecting to the HTTR. (author)

  12. Hydrogen production through nuclear energy, a sustainable scenario in Mexico

    International Nuclear Information System (INIS)

    Ortega V, E.; Francois L, J.L.

    2007-01-01

    The energy is a key point in the social and economic development of a country, for such motive to assure the energy supply in Mexico it is of vital importance. The hydrogen it is without a doubt some one of the alternating promising fuels before the visible one necessity to decentralize the energy production based on hydrocarbons. The versatility of their applications, it high heating power and having with the more clean fuel cycle of the energy basket with which count at the moment, they are only some examples of their development potential. However the more abundant element of the universe it is not in their elementary form in our planet, it forms molecules like in the hydrocarbons or water and it stops their use it should be extracted. At the present time different methods are known for the extraction of hydrogen, there is thermal, electric, chemical, photovoltaic among others. The election of the extraction method and the primary energy source to carry out it are decisive to judge the sustainability of the hydrogen production. The sustainable development is defined as development that covers the present necessities without committing the necessity to cover the necessities of the future generations, and in the mark of this definition four indicators of the sustainable development of the different cycles of fuel were evaluated in the hydrogen production in Mexico. These indicators take in consideration the emissions of carbon dioxide in the atmosphere (environment), the readiness of the energy resources (technology), the impacts in the floor use (social) and the production costs of the cycles (economy). In this work the processes were studied at the moment available for the generation of hydrogen, those that use coal, natural gas, hydraulic, eolic energy, biomass and nuclear, as primary energy sources. These processes were evaluated with energy references of Mexico to obtain the best alternative for hydrogen production. (Author)

  13. Potential of biogenic hydrogen production for hydrogen driven remediation strategies in marine environments.

    Science.gov (United States)

    Hosseinkhani, Baharak; Hennebel, Tom; Boon, Nico

    2014-09-25

    Fermentative production of bio-hydrogen (bio-H2) from organic residues has emerged as a promising alternative for providing the required electron source for hydrogen driven remediation strategies. Unlike the widely used production of H2 by bacteria in fresh water systems, few reports are available regarding the generation of biogenic H2 and optimisation processes in marine systems. The present research aims to optimise the capability of an indigenous marine bacterium for the production of bio-H2 in marine environments and subsequently develop this process for hydrogen driven remediation strategies. Fermentative conversion of organics in marine media to H2 using a marine isolate, Pseudoalteromonas sp. BH11, was determined. A Taguchi design of experimental methodology was employed to evaluate the optimal nutritional composition in batch tests to improve bio-H2 yields. Further optimisation experiments showed that alginate-immobilised bacterial cells were able to produce bio-H2 at the same rate as suspended cells over a period of several weeks. Finally, bio-H2 was used as electron donor to successfully dehalogenate trichloroethylene (TCE) using biogenic palladium nanoparticles as a catalyst. Fermentative production of bio-H2 can be a promising technique for concomitant generation of an electron source for hydrogen driven remediation strategies and treatment of organic residue in marine ecosystems. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Mitigation of climate change via a copper-chlorine hybrid thermochemical water splitting cycle for hydrogen production from nuclear energy

    International Nuclear Information System (INIS)

    Orhan, M.F.; Dincer, I.; Rosen, M.A.

    2009-01-01

    Concerns regarding climate change have motivated research on clean energy resources. While many energy resources have limitations, nuclear energy has the potential to supply a significant share of energy supply without contributing to climate change. Nuclear energy has been used mainly for electric power generation, but hydrogen production via thermochemical water decomposition provides another option for the utilization of nuclear thermal energy. This paper describes nuclear-based hydrogen production technologies and discusses the role of the Cu-Cl cycle for thermochemical water decomposition, potentially driven in part by waste heat from a nuclear generating station, in reducing greenhouse gas emissions. (author)

  15. Hydrogen Production by Geobacter Species and a Mixed Consortium in a Microbial Electrolysis Cell

    KAUST Repository

    Call, D. F.; Wagner, R. C.; Logan, B. E.

    2009-01-01

    A hydrogen utilizing exoelectrogenic bacterium (Geobacter sulfurreducens) was compared to both a nonhydrogen oxidizer (Geobacter metallireducens) and a mixed consortium in order to compare the hydrogen production rates and hydrogen recoveries

  16. Economical analysis of biofuel products and nuclear plant hydrogen

    International Nuclear Information System (INIS)

    Edwaren Liun

    2011-01-01

    The increasing in oil prices over the last six years is unprecedented that should be seen as a spur to increased efficiency. The surge in oil prices on the world market today is driven by strong demand factors in the depletion of world oil reserves. To replace the fuel oil from the bowels of the earth the various alternatives should be considered, including other crops or vegetable oil production of bio-fuels and hydrogen are produced by high temperature nuclear reactors. Biofuels in the form of ethanol made from corn or sugar cane and biodiesel made from palm oil or jatropha. With the latest world oil prices, future fuel vegetable oil and nuclear hydrogen-based energy technologies become popular in various parts of the world. Economics of biodiesel will be changed in accordance with world oil prices and subsidy regulations which apply to fuel products. On the other hand the role of nuclear energy in hydrogen production with the most potential in the techno-economics is a form of high temperature steam electrolysis, using heat and electricity from nuclear reactors. The production cost of biodiesel fuel on the basis of ADO type subsidy is 10.49 US$/MMBTU, while the production cost of hydrogen as an energy carrier of high temperature reactor is 15.30 US$/MMBTU. Thus, both types seem to have strong competitiveness. (author)

  17. Designer proton-channel transgenic algae for photobiological hydrogen production

    Science.gov (United States)

    Lee, James Weifu [Knoxville, TN

    2011-04-26

    A designer proton-channel transgenic alga for photobiological hydrogen production that is specifically designed for production of molecular hydrogen (H.sub.2) through photosynthetic water splitting. The designer transgenic alga includes proton-conductive channels that are expressed to produce such uncoupler proteins in an amount sufficient to increase the algal H.sub.2 productivity. In one embodiment the designer proton-channel transgene is a nucleic acid construct (300) including a PCR forward primer (302), an externally inducible promoter (304), a transit targeting sequence (306), a designer proton-channel encoding sequence (308), a transcription and translation terminator (310), and a PCR reverse primer (312). In various embodiments, the designer proton-channel transgenic algae are used with a gas-separation system (500) and a gas-products-separation and utilization system (600) for photobiological H.sub.2 production.

  18. Liquid hydrogen production and commercial demand in the United States

    Science.gov (United States)

    Heydorn, Barbara

    1990-01-01

    Kennedy Space Center, the single largest purchaser of liquid hydrogen (LH2) in the United States, evaluated current and anticipated hydrogen production and consumption in the government and commercial sectors. Specific objectives of the study are as follows: (1) identify LH2 producers in the United States and Canada during 1980-1989 period; (2) compile information in expected changes in LH2 production capabilities over the 1990-2000 period; (3) describe how hydrogen is used in each consuming industry and estimate U.S. LH2 consumption for the chemicals, metals, electronics, fats and oil, and glass industries, and report data on a regional basis; (4) estimate historical and future consumption; and (5) assess the influence of international demands on U.S. plants.

  19. Process for the production of hydrogen/deuterium-containing gas

    International Nuclear Information System (INIS)

    Nitschke, E.; Desai, A.; Ilgner, H.

    1978-01-01

    A process for the production of hydrogen/deuterium-containing gas is described in which the enriched condensate obtained from the production of a hydrogen/deuterium-containing gas mixture is collected and subjected to a direct exchange of isotopes with the feedsteam admitted to the process. Such condensate can be brought into direct exchange of isotopes with the gas water vapor mixture within the process, viz. ahead of the CO conversion section. The exchange of isotopes may be performed according to the counter-current principle. If it is intended to maintain in the hydrogen/deuterium-containing gas a certain definite content of water vapor whose phase condition is superior to the condition achieved when using normal cooling water, this gas, at least 0.6 kg/m 3 of gas, is subjected to an exchange of isotopes with the water fed additionally into the process

  20. Hydrogen production via catalytic processing of renewable feedstocks

    International Nuclear Information System (INIS)

    Nazim Muradov; Franklyn Smith; Ali T-Raissi

    2006-01-01

    Landfill gas (LFG) and biogas can potentially become important feedstocks for renewable hydrogen production. The objectives of this work were: (1) to develop a catalytic process for direct reforming of CH 4 -CO 2 gaseous mixture mimicking LFG, (2) perform thermodynamic analysis of the reforming process using AspenPlus chemical process simulator, (3) determine operational conditions for auto-thermal (or thermo-neutral) reforming of a model CH 4 -CO 2 feedstock, and (4) fabricate and test a bench-scale hydrogen production unit. Experimental data obtained from catalytic reformation of the CH 4 -CO 2 and CH 4 -CO 2 -O 2 gaseous mixtures using Ni-catalyst were in a good agreement with the simulation results. It was demonstrated that catalytic reforming of LFG-mimicking gas produced hydrogen with the purity of 99.9 vol.%. (authors)

  1. Hydrogen sulfide oxidation without oxygen - oxidation products and pathways

    International Nuclear Information System (INIS)

    Fossing, H.

    1992-01-01

    Hydrogen sulfide oxidation was studied in anoxic marine sediments-both in undisturbed sediment cores and in sediment slurries. The turn over of hydrogen sulfide was followed using 35 S-radiolabeled hydrogen sulfide which was injected into the sediment. However, isotope exchange reactions between the reduced sulfur compounds, in particular between elemental sulfur and hydrogen sulfide, influenced on the specific radioactivity of these pools. It was, therefore, not possible to measure the turn over rates of the reduced sulfur pools by the radiotracer technique but merely to use the radioisotope to demonstrate some of the oxidation products. Thiosulfate was one important intermediate in the anoxic oxidation of hydrogen sulfide and was continuously turned over by reduction, oxidation and disproportionation. The author discusses the importance of isotope exchange and also presents the results from experiments in which both 35 S-radiolabeled elemental sulfur, radiolabeled hydrogen sulfide and radiolabeled thiosulfate were used to study the intermediates in the oxidative pathways of the sulfur cycle

  2. Hydrogen and syngas production from sewage sludge via steam gasification

    Energy Technology Data Exchange (ETDEWEB)

    Nipattummakul, Nimit [The Combustion Laboratory, Dept. of Mechanical Engineering, University of Maryland, College Park, MD (United States); The Waste Incineration Research Center, Dept. of Mechanical and Aerospace Engineering, King Mongkut' s University of Technology, North Bangkok (Thailand); Ahmed, Islam I.; Gupta, Ashwani K. [The Combustion Laboratory, Dept. of Mechanical Engineering, University of Maryland, College Park, MD (United States); Kerdsuwan, Somrat [The Waste Incineration Research Center, Dept. of Mechanical and Aerospace Engineering, King Mongkut' s University of Technology, North Bangkok (Thailand)

    2010-11-15

    High temperature steam gasification is an attractive alternative technology which can allow one to obtain high percentage of hydrogen in the syngas from low-grade fuels. Gasification is considered a clean technology for energy conversion without environmental impact using biomass and solid wastes as feedstock. Sewage sludge is considered a renewable fuel because it is sustainable and has good potential for energy recovery. In this investigation, sewage sludge samples were gasified at various temperatures to determine the evolutionary behavior of syngas characteristics and other properties of the syngas produced. The syngas characteristics were evaluated in terms of syngas yield, hydrogen production, syngas chemical analysis, and efficiency of energy conversion. In addition to gasification experiments, pyrolysis experiments were conducted for evaluating the performance of gasification over pyrolysis. The increase in reactor temperature resulted in increased generation of hydrogen. Hydrogen yield at 1000 C was found to be 0.076 g{sub gas} g{sub sample}{sup -1}. Steam as the gasifying agent increased the hydrogen yield three times as compared to air gasification. Sewage sludge gasification results were compared with other samples, such as, paper, food wastes and plastics. The time duration for sewage sludge gasification was longer as compared to other samples. On the other hand sewage sludge yielded more hydrogen than that from paper and food wastes. (author)

  3. Methane and hydrogen production from crop biomass through anaerobic digestion

    Energy Technology Data Exchange (ETDEWEB)

    Pakarinen, O.

    2011-07-01

    The feasibility of methane and hydrogen production from energy crops through anaerobic digestion was evaluated in this thesis. The effects of environmental conditions, e.g. pH and temperature, as well as inoculum source on H{sub 2} yield were studied in batch assays. In addition, the effects of pre-treatments on methane and hydrogen yield as well as the feasibility of two-stage H{sub 2} + CH{sub 4} production was evaluated. Moreover, the effect of storage on methane yield of grasses was evaluated. Monodigestion of grass silage for methane production was studied, as well as shifting the methanogenic process to hydrogenic. Hydrogen production from grass silage and maize was shown to be possible with heat-treated inoculum in batch assays, with highest H{sub 2} yields of 16.0 and 9.9 ml gVS{sub added}-1 from untreated grass silage and maize, respectively. Pre-treatments (NaOH, HCl and water-extraction) showed some potential in increasing H{sub 2} yields, while methane yields were not affected. Two-stage H{sub 2} + CH{sub 4} producing process was shown to improve CH{sub 4} yields when compared to traditional one-stage CH{sub 4} process. Methane yield from grass silage monodigestion in continuously stirred tank reactor (CSTR) with organic loading rate (OLR) of 2 kgVS (m3d)-1 and hydraulic retention time (HRT) of 30 days was at most 218 l kgVS{sub fed}-1. Methanogenic process was shifted to hydrogenic by increasing the OLR to 10 kgVS (m3d)-1 and shortening the HRT to 6 days. Highest H{sub 2} yield from grass silage was 42 l kgVS{sub fed}-1 with a maximum H{sub 2} content of 24 %. Energy crops can be successfully stored even for prolonged periods without decrease in methane yield. However, under sub-optimal storage conditions loss in volatile solids (VS) content and methane yield can occur. According to present results energy crops such as grass silage and maize can be converted to hydrogen or methane in AD process. Hydrogen energy yields are typically only 2-5 % of the

  4. Rubisco mutants of Chlamydomonas reinhardtii enhance photosynthetic hydrogen production.

    Science.gov (United States)

    Pinto, T S; Malcata, F X; Arrabaça, J D; Silva, J M; Spreitzer, R J; Esquível, M G

    2013-06-01

    Molecular hydrogen (H2) is an ideal fuel characterized by high enthalpy change and lack of greenhouse effects. This biofuel can be released by microalgae via reduction of protons to molecular hydrogen catalyzed by hydrogenases. The main competitor for the reducing power required by the hydrogenases is the Calvin cycle, and rubisco plays a key role therein. Engineered Chlamydomonas with reduced rubisco levels, activity and stability was used as the basis of this research effort aimed at increasing hydrogen production. Biochemical monitoring in such metabolically engineered mutant cells proceeded in Tris/acetate/phosphate culture medium with S-depletion or repletion, both under hypoxia. Photosynthetic activity, maximum photochemical efficiency, chlorophyll and protein levels were all measured. In addition, expression of rubisco, hydrogenase, D1 and Lhcb were investigated, and H2 was quantified. At the beginning of the experiments, rubisco increased followed by intense degradation. Lhcb proteins exhibited monomeric isoforms during the first 24 to 48 h, and D1 displayed sensitivity under S-depletion. Rubisco mutants exhibited a significant decrease in O2 evolution compared with the control. Although the S-depleted medium was much more suitable than its complete counterpart for H2 production, hydrogen release was observed also in sealed S-repleted cultures of rubisco mutated cells under low-moderate light conditions. In particular, the rubisco mutant Y67A accounted for 10-15-fold higher hydrogen production than the wild type under the same conditions and also displayed divergent metabolic parameters. These results indicate that rubisco is a promising target for improving hydrogen production rates in engineered microalgae.

  5. Renewable hydrogen production via thermochemical/electrochemical coupling

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosini, Andrea [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Babiniec, Sean Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, James E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    A coupled electrochemical/thermochemical cycle was investigated to produce hydrogen from renewable resources. Like a conventional thermochemical cycle, this cycle leverages chemical energy stored in a thermochemical working material that is reduced thermally by solar energy. However, in this concept, the stored chemical energy only needs to be partially, but not fully, capable of splitting steam to produce hydrogen. To complete the process, a proton-conducting membrane is driven to separate hydrogen as it is produced, thus shifting the thermodynamics toward further hydrogen production. This novel coupled-cycle concept provides several benefits. First, the required oxidation enthalpy of the reversible thermochemical material is reduced, enabling the process to occur at lower temperatures. Second, removing the requirement for spontaneous steam-splitting widens the scope of materials compositions, allowing for less expensive/more abundant elements to be used. Lastly, thermodynamics calculations suggest that this concept can potentially reach higher efficiencies than photovoltaic-to-electrolysis hydrogen production methods. This Exploratory Express LDRD involved assessing the practical feasibility of the proposed coupled cycle. A test stand was designed and constructed and proton-conducting membranes were synthesized. While the full proof of concept was not achieved, the individual components of the experiment were validated and new capabilities that can be leveraged by a variety of programs were developed.

  6. Hydrogen production from high temperature electrolysis and fusion reactor

    International Nuclear Information System (INIS)

    Dang, V.D.; Steinberg, J.F.; Issacs, H.S.; Lazareth, O.; Powell, J.R.; Salzano, F.J.

    1978-01-01

    Production of hydrogen from high temperature electrolysis of steam coupled with a fusion reactor is studied. The process includes three major components: the fusion reactor, the high temperature electrolyzer and the power conversion cycle each of which is discussed in the paper. Detailed process design and analysis of the system is examined. A parametric study on the effect of process efficiency is presented

  7. Hydrogen production from palm oil mill effluent by fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Tanisho, S.; Shimazaki, T. [Yokohama National Univ., Shigeharu TANISHO and Tsuruyo SHIMAZAKI, Yokohama (Japan)

    2003-09-01

    Hydrogen production by fermentation was examined by using palm oil mill effluent. Clostridium butyricum produced more than 2.2 NL of hydrogen from 1 L of raw POME at pH 5.0, and Enterobacter aerogenes produced ca. 1.9 NL at pH 6.0. While from the culture liquid added 1% of peptone on the raw POME, C. butyricum produced more than 3.3 NL and also E. aerogenes 3.4 NL at pH 6.0 and 5.0, respectively. In this manner, the addition of nitrogen source to the POME liquid exerted an influence on the volume of hydrogen production. Since Aspergillus niger has ability to produce cellulase, co-cultivation of C.butyricum with A. niger was tried to utilize celluloses in the POME. Against our expectations, however, the results were lower productivities than pure cultivation's. We analyzed the components of POME by liquid chromatography and capillary electrophoresis before and after cultivation. The main substrate for hydrogen production was found to be glycerol. (authors)

  8. Utilization of hydrogen gas production for electricity generation in ...

    African Journals Online (AJOL)

    Utilization of hydrogen gas production for electricity generation in fuel cell by Enterobacter aerogenes ADH 43 with many kinds of carbon sources in batch stirred tank reactor. MA Rachman, LD Eniya, Y Liasari, MM Nasef, A Ahmad, H Saidi ...

  9. Managing ulcerative colitis by increasing hydrogen production via ...

    African Journals Online (AJOL)

    The main side-effect of treatment with Acarbose, flatulence, occurs when undigested carbohydrates are fermented by colonic bacteria, resulting in considerable amounts of hydrogen. We found that the enteric benefits of Acarbose are partly due to be their ability to neutralise oxidative stress via increased production of H2 in ...

  10. Production of hydrogen from renewable resources and its effectiveness

    Czech Academy of Sciences Publication Activity Database

    Bičáková, Olga; Straka, Pavel

    2012-01-01

    Roč. 37, č. 16 (2012), s. 11563-11578 ISSN 0360-3199 R&D Projects: GA ČR(CZ) GA105/07/1407 Institutional research plan: CEZ:AV0Z30460519 Keywords : hydrogen production * biological processes * conventional methods Subject RIV: EI - Biotechnology ; Bionics Impact factor: 3.548, year: 2012

  11. Non-thermal production of pure hydrogen from biomass : HYVOLUTION

    NARCIS (Netherlands)

    Claassen, P.A.M.; Vrije, de G.J.

    2006-01-01

    HYVOLUTION is the acronym of an Integrated Project ¿Non-thermal production of pure hydrogen from biomass¿ which has been granted in the Sixth EU Framework Programme on Research, Technological Development and Demonstration, Priority 6.1.ii, Sustainable Energy Systems. The aim of HYVOLUTION:

  12. Study on hydrogen production using the fast breeder reactors (FBR)

    International Nuclear Information System (INIS)

    Kani, Yoshio

    2003-01-01

    As the fast breeder reactor (FBR) can effectively convert uranium-238 difficult to carry out nuclear fission at thermal neutron reactors to nuclear fissionable plutonium-239 to use it remarkable upgrading of application on uranium can be performed, to be expected for sustainable energy source. And, by reuse minor actinides of long half-life nuclides in reprocessed high level wasted solutions for fuels of nuclear reactors, reduction of radioactive poison based on high level radioactive wastes was enabled. As high temperature of about 800 centigrade was required on conventional hydrogen production, by new hydrogen production technique even at operation temperature of sodium-cooled FBR it can be enabled. Here were described for new hydrogen production methods applicable to FBR on palladium membrane hydrogen separation method carrying out natural gas/steam modification at reaction temperature of about 500 centigrade, low temperature thermo-chemical method expectable simultaneous simplification of production process, and electrolysis method expected on power load balancing. (G.K.)

  13. Hydrogen Production From catalytic reforming of greenhouse gases ...

    African Journals Online (AJOL)

    ADOWIE PERE

    a fixed bed stainless steel reactor. The 20wt%. ... catalytic activity for hydrogen production with the highest yield and selectivity of 32.5% and 17.6% respectively. © JASEM ... CO2 reforming of methane is however not fully developed ..... Design and preparation of .... catalytic nickel membrane for gas to liquid (GTL) process.

  14. Fermentative hydrogen production from pretreated biomass: A comparative study

    NARCIS (Netherlands)

    Panagiotopoulos, I.A.; Bakker, R.R.; Budde, M.A.W.; Vrije, de G.J.; Claassen, P.A.M.; Koukios, E.G.

    2009-01-01

    The aim of this work was to evaluate the potential of employing biomass resources from different origin as feedstocks for fermentative hydrogen production. Mild-acid pretreated and hydrolysed barley straw (BS) and corn stalk (CS), hydrolysed barley grains (BG) and corn grains (CG), and sugar beet

  15. Warranty of Misinforming as an Option in Product Utilization Process

    Directory of Open Access Journals (Sweden)

    Dimitar Grozdanov Christozov

    2016-05-01

    Full Text Available The following definition of “option” is given in Wikipedia - “In finance, an option is a contract, which gives the buyer (the owner or holder the right, but not the obligation, to buy or sell an underlying asset or instrument at a specified strike price on or before a specified date, depending on the form of the option” (“Option,” n.d.. Option as a risk management (mitigation tool is broadly used in finance and trade. At the same time, it introduces asymmetry in the sense that, probabilistically, it limits the level of losses (e.g., the price of the option and allows for unlimited gains. In the market of sophisticated devices (as smart phones, tablets, etc., where technologies are rapidly advancing, customers usually do not have the experience to use all features of the device at the time of the purchase. Due to the lack of appropriate expertise, the risk of misinforming, leading to not purchasing the “right” device is high, but given enough time to learn the capabilities of the device and map these to the needs and tasks that device will be used for, could provide the client with substantial long term benefits. Warranty of misinforming is a mechanism that provides the client with the opportunity to explore the device and master its features under limited risk of financial losses. Thus, the warranty of misinforming could be considered as an option - the custom-ers buy it (at a fixed cost and may gain (theoretically unlimited benefit by realizing (within the terms of the warranty that the device can be used to solve a variety of problems not envisaged at the time of purchase. In this study we present the idea of treating the warranty of misinforming as an option in finances and provide examples to illustrate our viewpoint.

  16. Renewable hydrogen utilisation for the production of methanol

    International Nuclear Information System (INIS)

    Galindo Cifre, P.; Badr, O.

    2007-01-01

    Electrolytic hydrogen production is an efficient way of storing renewable energy generated electricity and securing the contribution of renewables in the future electricity supply. The use of this hydrogen for the production of methanol results in a liquid fuel that can be utilised directly with minor changes in the existing infrastructure. To utilise the renewable generated hydrogen for production of renewable methanol, a sustainable carbon source is needed. This carbon can be provided by biomass or CO 2 in the flue gases of fossil fuel-fired power stations, cement factories, fermentation processes and water purification plants. Methanol production pathways via biomass gasification and CO 2 recovery from the flue gasses of a fossil fuel-fired power station have been reviewed in this study. The cost of methanol production from biomass was found to lie in the range of 300-400 EUR/tonne of methanol, and the production cost of CO 2 based methanol was between 500 and 600 EUR/tonne. Despite the higher production costs compared with methanol produced by conventional natural gas reforming (i.e. 100-200 EUR/tonne, aided by the low current price of natural gas), these new processes incorporate environmentally beneficial aspects that have to be taken into account. (author)

  17. Production of JET fuel containing molecules of high hydrogen content

    Directory of Open Access Journals (Sweden)

    Tomasek Sz.

    2017-12-01

    Full Text Available The harmful effects of aviation can only be reduced by using alternative fuels with excellent burning properties and a high hydrogen content in the constituent molecules. Due to increasing plastic consumption the amount of the plastic waste is also higher. Despite the fact that landfill plastic waste has been steadily reduced, the present scenario is not satisfactory. Therefore, the aim of this study is to produce JET fuel containing an alternative component made from straight-run kerosene and the waste polyethylene cracking fraction. We carried out our experiments on a commercial NiMo/Al2O3/P catalyst at the following process parameters: T=200-300°C, P=40 bar, LHSV=1.0-3.0 h-1, hydrogen/hydrocarbon ratio= 400 Nm3/m3. We investigated the effects of the feedstocks and the process parameters on the product yields, the hydrodesulfurization and hydrodearomatization efficiencies, and the main product properties. The liquid product yields varied between 99.7-99.8%. As a result of the hydrogenation the sulfur (1-1780 mg/kg and the aromatic contents (9.0-20.5% of the obtained products and the values of their smoke points (26.0-34.7 mm fulfilled the requirements of JET fuel standard. Additionally, the concentration of paraffins increased in the products and the burning properties were also improved. The freezing points of the products were higher than -47°C, therefore product blending is needed.

  18. Carbon catalysts for electrochemical hydrogen peroxide production in acidic media

    DEFF Research Database (Denmark)

    Čolić, Viktor; Yang, Sungeun; Révay, Zsolt

    2018-01-01

    Hydrogen peroxide is a commodity chemical, as it is an environmentally friendly oxidant. The electrochemical production of H2O2 from oxygen and water by the reduction of oxygen is of great interest, as it would allow the decentralized, on-site, production of pure H2O2. The ability to run...... the reaction in an acidic electrolyte with high performance is particularly important, as it would allow the use of polymer solid electrolytes and the production of pH-neutral hydrogen peroxide. Carbon catalysts, which are cheap, abundant, durable and can be highly selective show promise as potential catalysts...... for such systems. In this work, we examine the electrocatalytic performance and properties of seven commercially available carbon materials for H2O2 production by oxygen electroreduction. We show that the faradaic efficiencies for the reaction lie in a wide range of 18-82% for different carbon catalysts. In order...

  19. Extremophile mediated hydrogen production for hydrogenation of substrates in aqueous media

    Science.gov (United States)

    Anjom, Mouzhgun

    Catalytic hydrogenation reactions are pervasive throughout our economy, from production of margarine as food, liquid fuels for transportation and chiral drugs such as L-DOPA. H2 production from non-fossil fuel feedstocks is highly desirable for transition to the "Hydrogen Economy". Also, the rates of hydrogenation reactions that involve a substrate, H 2 gas and a catalyst are often limited by the solubility of H2 in solvent. The present research thus envisioned designing water-soluble catalysts that could effectively utilize biologically produced H2 in a coupled system to hydrogenate substrates in homogeneous mode (two-phase system). Biological production of H2 as an end product or byproduct of the metabolism of organisms that operate under strict anaerobic conditions has been proposed. However, contrary to what was previously observed, Thermotoga neapolitana, belonging to the order of Thermotogales efficiently produces H2 gas under microaerobic conditions (Van Ooteghem et al. 2004). For H2 production by T. neapolitana in the bacterial growth medium (DSM 5068) at an optimum temperature of 70 C, our results in batch mode show that: (1) H2 was produced from glucose though with 16% efficiency, the rest goes to biomass production, (2) H2 gas was produced even when the cultures were inoculated under microaerobic conditions (up to 8% (v/v) O2) suggesting a protective mechanism for one or more [Fe-Fe] hydrogenases in T. neapolitana, (3) H2 production was pH dependent but addition of simple, non-toxic physiological buffering additives such as Methylene succinic acid increased H2 production and (4) H2 production rate varied linearly in the 100--6800 kPa pressure range. We then screened various water-soluble metal catalysts in batch mode and selected the RhCl3.3H2O/TPPTS (TPPTS is a water-soluble ligand) system that achieved 86% hydrogenation of Methylene succinic acid (an olefin) in an aqueous medium pressurized with preformed H2. When water was replaced with the DSM 5068

  20. Catalytic activation of molecular hydrogen in alkyne hydrogenation reactions by lanthanide metal vapor reaction products

    International Nuclear Information System (INIS)

    Evans, W.J.; Bloom, I.; Engerer, S.C.

    1983-01-01

    A rotary metal vapor was used in the synthesis of Lu, Er, Nd, Sm, Yb, and La alkyne, diene, and phosphine complexes. A typical catalytic hydrogenation experiment is described. The lanthanide metal vapor product is dissolved in tetrahydrofuran or toluene and placed in a pressure reaction vessel 3-hexyne (or another substrate) is added, the chamber attached to a high vacuum line, cooled to -196 0 C, evacuated, warmed to ambient temperature and hydrogen is added. The solution is stirred magnetically while the pressure in monitored. The reaction products were analyzed by gas chromatography. Rates and products of various systems are listed. This preliminary survey indicates that catalytic reaction chemistry is available to these metals in a wide range of coordination environments. Attempts to characterize these compounds are hampered by their paramagnetic nature and their tendency to polymerize

  1. High-rate fermentative hydrogen production from beverage wastewater

    International Nuclear Information System (INIS)

    Sivagurunathan, Periyasamy; Sen, Biswarup; Lin, Chiu-Yue

    2015-01-01

    Highlights: • Hybrid immobilized-bacterial cells show stable operation over 175 days. • Low HRT of 1.5 h shows peak hydrogen production rate of 55 L/L-d. • Electricity generation is 9024 kW-d from 55 L/L-d hydrogen using beverage wastewater. • Granular sludge formed only at 2–3 h HRT with presence of Selenomonas sp. - Abstract: Hydrogen production from beverage industry wastewater (20 g/L hexose equivalent ) using an immobilized cell reactor with a continuous mode of operation was studied at various hydraulic retention times (HRT, 8–1.5 h). Maximum hydrogen production rate (HPR) of 55 L/L-d was obtained at HRT 1.5 h (an organic loading of 320 g/L-d hexose equivalent ). This HPR value is much higher than those of other industrial wastewaters employed in fermentative hydrogen production. The cell biomass concentration peaked at 3 h HRT with a volatile suspended solids (VSS) concentration of 6.31 g/L (with presence of self-flocculating Selenomonas sp.), but it dropped to 3.54 gVSS/L at 1.5 h HRT. With the shortening of HRT, lactate concentration increased but the concentration of the dominant metabolite butyrate did not vary significantly. The Clostridium species dynamics was not significantly affected, but total microbial community structure changed with respect to HRT variation as evident from PCR–DGGE analyses. Analysis of energy production rate suggests that beverage wastewater is a high energy yielding feedstock, and can replace 24% of electricity consumption in a model beverage industry

  2. Nuclear hydrogen production programme in the United States

    International Nuclear Information System (INIS)

    Sink, C.

    2010-01-01

    The Nuclear Hydrogen Initiative (NHI) is focused on demonstrating the economic, commercial-scale production of hydrogen using process heat derived from nuclear energy. NHI-supported research has concentrated to date on three technologies compatible with the Next Generation Nuclear Plant (NGNP): high temperature steam electrolysis (HTE); sulphur-iodine (S-I) thermochemical; and hybrid sulphur (HyS) thermochemical. In 2009 NHI will down select to a single technology on which to focus its future development efforts, for which the next step will be a pilot-scale experiment. (author)

  3. Thermochemical hydrogen production studies at LLNL: a status report

    International Nuclear Information System (INIS)

    Krikorian, O.H.

    1982-01-01

    Currently, studies are underway at the Lawrence Livermore National Laboratory (LLNL) on thermochemical hydrogen production based on magnetic fusion energy (MFE) and solar central receivers as heat sources. These areas of study were described earlier at the previous IEA Annex I Hydrogen Workshop (Juelich, West Germany, September 23-25, 1981), and a brief update will be given here. Some basic research has also been underway at LLNL on the electrolysis of water from fused phosphate salts, but there are no current results in that area, and the work is being terminated

  4. Hydrogen: Adding Value and Flexibility to the Nuclear Power Industry

    International Nuclear Information System (INIS)

    Lee, J.; Bhatt, V.; Friley, P.; Horak, W.; Reisman, A.

    2004-01-01

    The objective of this study was to assess potential synergies between the hydrogen economy and nuclear energy options. Specifically: to provide a market analysis of advanced nuclear energy options for hydrogen production in growing hydrogen demand; to conduct an impact evaluation of nuclear-based hydrogen production on the economics of the energy system, environmental emissions, and energy supply security; and to identify competing technologies and challenges to nuclear options

  5. Improving the yield from fermentative hydrogen production.

    Science.gov (United States)

    Kraemer, Jeremy T; Bagley, David M

    2007-05-01

    Efforts to increase H(2) yields from fermentative H(2) production include heat treatment of the inoculum, dissolved gas removal, and varying the organic loading rate. Although heat treatment kills methanogens and selects for spore-forming bacteria, the available evidence indicates H(2) yields are not maximized compared to bromoethanesulfonate, iodopropane, or perchloric acid pre-treatments and spore-forming acetogens are not killed. Operational controls (low pH, short solids retention time) can replace heat treatment. Gas sparging increases H(2) yields compared to un-sparged reactors, but no relationship exists between the sparging rate and H(2) yield. Lower sparging rates may improve the H(2) yield with less energy input and product dilution. The reasons why sparging improves H(2) yields are unknown, but recent measurements of dissolved H(2) concentrations during sparging suggest the assumption of decreased inhibition of the H(2)-producing enzymes is unlikely. Significant disagreement exists over the effect of organic loading rate (OLR); some studies show relatively higher OLRs improve H(2) yield while others show the opposite. Discovering the reasons for higher H(2) yields during dissolved gas removal and changes in OLR will help improve H(2) yields.

  6. Formate detection by potassium permanganate for enhanced hydrogen production in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, Toshinari [Artie McFerrin Department of Chemical Engineering, 220 Jack E. Brown Building, Texas A and M University, College Station, TX 77843-3122 (United States); Wood, Thomas K. [Artie McFerrin Department of Chemical Engineering, 220 Jack E. Brown Building, Texas A and M University, College Station, TX 77843-3122 (United States); Department of Biology, Texas A and M University, College Station, TX 77843-3258 (United States); Zachry Department of Civil and Environmental Engineering, Texas A and M University, College Station, TX 77843-3136 (United States)

    2008-05-15

    Mutagenesis of Escherichia coli for hydrogen production is difficult since there is no high-throughput screen. Here we describe a method for rapid detection of enhanced hydrogen production by engineered strains by detecting formate via potassium permanganate; in E. coli, hydrogen is synthesized from formate using the formate hydrogen lyase system. (author)

  7. Efficiency of hydrogen gas production in a stand-alone solar hydrogen system

    International Nuclear Information System (INIS)

    Singh, K.; Tamakloe, R.Y.

    2003-01-01

    Many photovoltaic systems operate in a decentralised electricity producing system, or stand-alone mode and the total energy demand is met by the output of the photovoltaic array. The output of the photovoltaic system fluctuates and is unpredictable for many applications making some forms of energy storage system necessary. The role of storage medium is to store the excess energy produced by the photovoltaic arry, to absorb momentary power peaks and to supply energy during sunless periods. One of the storage modes is the use of electrochemical techniques, with batteries and water electrolysis as the most important examples. The present study includes three main parts: the first one is the hydrogen production form the electrolysis of water depending on the DC output current of the photovoltaic (PV) energy source and the charging of the battery. The second part presents the influence of various parameters on the efficiency of hydrogen gas production. The final part includes simulation studies with focus on solar hydrogen efficiency under the influence of various physical and chemical parameters. For a 50W panel-battery-electrolyser system, the dependence of volume of hydrogen gas on voltage, current and power yielded a maximum efficiency of 13.6% (author)

  8. Hydrogen production by the hyperthermophilic bacterium Thermotoga maritima Part II: modeling and experimental approaches for hydrogen production.

    Science.gov (United States)

    Auria, Richard; Boileau, Céline; Davidson, Sylvain; Casalot, Laurence; Christen, Pierre; Liebgott, Pierre Pol; Combet-Blanc, Yannick

    2016-01-01

    Thermotoga maritima is a hyperthermophilic bacterium known to produce hydrogen from a large variety of substrates. The aim of the present study is to propose a mathematical model incorporating kinetics of growth, consumption of substrates, product formations, and inhibition by hydrogen in order to predict hydrogen production depending on defined culture conditions. Our mathematical model, incorporating data concerning growth, substrates, and products, was developed to predict hydrogen production from batch fermentations of the hyperthermophilic bacterium, T. maritima . It includes the inhibition by hydrogen and the liquid-to-gas mass transfer of H 2 , CO 2 , and H 2 S. Most kinetic parameters of the model were obtained from batch experiments without any fitting. The mathematical model is adequate for glucose, yeast extract, and thiosulfate concentrations ranging from 2.5 to 20 mmol/L, 0.2-0.5 g/L, or 0.01-0.06 mmol/L, respectively, corresponding to one of these compounds being the growth-limiting factor of T. maritima . When glucose, yeast extract, and thiosulfate concentrations are all higher than these ranges, the model overestimates all the variables. In the window of the model validity, predictions of the model show that the combination of both variables (increase in limiting factor concentration and in inlet gas stream) leads up to a twofold increase of the maximum H 2 -specific productivity with the lowest inhibition. A mathematical model predicting H 2 production in T. maritima was successfully designed and confirmed in this study. However, it shows the limit of validity of such mathematical models. Their limit of applicability must take into account the range of validity in which the parameters were established.

  9. Hydrogen.

    Science.gov (United States)

    Bockris, John O'M

    2011-11-30

    The idea of a "Hydrogen Economy" is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO₂ in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H₂ from the electrolyzer. Methanol made with CO₂ from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan). Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs) by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  10. Hydrogen production from methane reforming: thermodynamic assessment

    Energy Technology Data Exchange (ETDEWEB)

    Assis, A.J.; Hori, Carla E.; Avila Neto, Cicero; Franco, Tatiana [Federal University of Uberlandia (UFU), MG (Brazil). School of Chemical Engineering]. E-mail: adilsonjassis@gmail.com

    2008-07-01

    The main contributions of this study are to conduct a comparative thermodynamic analysis of methane reforming reactions and to asses the influence of key operational variables on chemical equilibrium using an in-house code, developed in the open-source software Scilab{sup c} INRIA-ENPC (www.scilab.org). Equilibrium compositions are calculated by two distinct methods: evaluation of equilibrium constants and Lagrange multipliers. Both methods result in systems of non-linear algebraic equations, solved numerically using the Scilab function 'fsolve'. Comparison between experimental and simulated equilibrium data, published in the literature, was used to validate the simulated results. Effects of temperature, pressure, initial H{sub 2}O/CH{sub 4} ratio (steam reforming), initial CH{sub 4}:CO{sub 2}:N{sub 2} ratio (dry reforming) and initial O{sub 2}/CH{sub 4} ratio (partial oxidation) on the reaction products were evaluated. (author)

  11. Thermochemical production of hydrogen from water

    International Nuclear Information System (INIS)

    Funk, J.E.; Conger, W.L.; Carty, R.H.; Barker, R.E.

    1975-01-01

    A review of recent developments in the selection and evaluation of multi-step thermochemical water-splitting cycles is presented. A computerized and thermodynamic and chemical engineering analysis procedure is discussed with calculates, among other things, the thermal efficiency of the process which is defined to be the ratio of the enthalpy change for water decomposition to the total thermal energy required by the process. Changes in the thermodynamic state in each step of the process are also determined. Engineering considerations such as the effect of approach to equilibrium in the chemical reaction steps on the work of separation, and the magnitude of the recycle streams are included. Important practical matters such as thermal regeneration in the product and reactant streams are dealt with in some detail. The effect of reaction temperature on thermal efficiency is described and the use of the analysis procedure is demonstrated by applying it to several processes. (author)

  12. Sequestration of carbon dioxide with hydrogen to useful products

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Michael W. W.; Kelly, Robert M.; Hawkins, Aaron B.; Menon, Angeli Lal; Lipscomb, Gina Lynette Pries; Schut, Gerrit Jan

    2017-03-07

    Provided herein are genetically engineered microbes that include at least a portion of a carbon fixation pathway, and in one embodiment, use molecular hydrogen to drive carbon dioxide fixation. In one embodiment, the genetically engineered microbe is modified to convert acetyl CoA, molecular hydrogen, and carbon dioxide to 3-hydroxypropionate, 4-hydroxybutyrate, acetyl CoA, or the combination thereof at levels greater than a control microbe. Other products may also be produced. Also provided herein are cell free compositions that convert acetyl CoA, molecular hydrogen, and carbon dioxide to 3-hydroxypropionate, 4-hydroxybutyrate, acetyl CoA, or the combination thereof. Also provided herein are methods of using the genetically engineered microbes and the cell free compositions.

  13. Water electrolysis for hydrogen production in Brazilian perspective

    Energy Technology Data Exchange (ETDEWEB)

    Saliba-Silva, Adonis Marcelo; Carvalho, Fatima M.S.; Bergamaschi, Vanderlei Sergio; Linardi, Marcelo [Instituto de Pesquisas Energeticas e Nucleares (CCCH/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Fuel Cell and Hydrogen Center], Email: saliba@ipen.br

    2009-07-01

    Hydrogen is a promising energy carrier, which potentially could replace the fossil fuels used in the transportation and distributed energy sector of Brazilian economy. Fossil fuels are polluting by carbogenic emissions from their combustion, being so co-responsible for present global warming. However, no large scale, cost-effective, environmentally non-carbogenic hydrogen production process is currently available for commercialization. There are feasible possibilities to use electrolysis as one of the main sources of hydrogen, especially thinking on combination with renewable sources of energy, mainly eolic and solar. In this work some perspectives for Brazilian energy context is presented, where electrolysis combined with renewable power source and fuel cell power generation would be a good basis to improve the distributed energy supply for remote areas, where the electricity grid is not present or is deficient. (author)

  14. A CFD Simulation of Hydrogen Production in Microreactors

    Directory of Open Access Journals (Sweden)

    Javad Sabziani

    2015-01-01

    Full Text Available In this study, the modeling of hydrogen production process in microreactors by methanol-steam reforming reaction is investigated. The catalytic reaction of methanol-steam reforming producing hydrogen is simulated considering a 3D geometry for the microreactor. To calculate diffusion among species, mixture average correlations are compared to Stephan-Maxwell equations. The reactions occurring inside the microreactor include reforming of methanol with steam, methanol decomposition, and a reaction between carbon dioxide and hydrogen. The main objectives of this study are the prediction of temperature profile along the microreactor using either mixture average method or Stephan-Maxwell one and the comparison between the present predictions and some existing experimental data. The simulation results indicate that Stephan-Maxwell method conforms more suitably to the experimental results. The difference is more at lower feed flow rates since, when the flow rate increases, mass transfer mechanism changes from diffusion to convection, which in turn reduces the difference.

  15. Photoelectrochemical based direct conversion systems for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Kocha, S.; Peterson, M.; Arent, D. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-10-01

    Photon driven, direct conversion systems consist of a light absorber and a water splitting catalyst as a monolithic system; water is split directly upon illumination. This one-step process eliminates the need to generate electricity externally and subsequently feed it to an electrolyzer. These configurations require only the piping necessary for transport of hydrogen to an external storage system or gas pipeline. This work is focused on multiphoton photoelectrochemical devices for production of hydrogen directly using sunlight and water. Two types of multijunction cells, one consisting of a-Si triple junctions and the other GaInP{sub 2}/GaAs homojunctions, were studied for the photoelectrochemical decomposition of water into hydrogen and oxygen from an aqueous electrolyte solution. To catalyze the water decomposition process, the illuminated surface of the device was modified either by addition of platinum colloids or by coating with ruthenium dioxide. These colloids have been characterized by gel electrophoresis.

  16. Dynamic Simulation and Optimization of Nuclear Hydrogen Production Systems

    Energy Technology Data Exchange (ETDEWEB)

    Paul I. Barton; Mujid S. Kaximi; Georgios Bollas; Patricio Ramirez Munoz

    2009-07-31

    This project is part of a research effort to design a hydrogen plant and its interface with a nuclear reactor. This project developed a dynamic modeling, simulation and optimization environment for nuclear hydrogen production systems. A hybrid discrete/continuous model captures both the continuous dynamics of the nuclear plant, the hydrogen plant, and their interface, along with discrete events such as major upsets. This hybrid model makes us of accurate thermodynamic sub-models for the description of phase and reaction equilibria in the thermochemical reactor. Use of the detailed thermodynamic models will allow researchers to examine the process in detail and have confidence in the accurary of the property package they use.

  17. Biological hydrogen production by dark fermentation: challenges and prospects towards scaled-up production.

    Science.gov (United States)

    RenNanqi; GuoWanqian; LiuBingfeng; CaoGuangli; DingJie

    2011-06-01

    Among different technologies of hydrogen production, bio-hydrogen production exhibits perhaps the greatest potential to replace fossil fuels. Based on recent research on dark fermentative hydrogen production, this article reviews the following aspects towards scaled-up application of this technology: bioreactor development and parameter optimization, process modeling and simulation, exploitation of cheaper raw materials and combining dark-fermentation with photo-fermentation. Bioreactors are necessary for dark-fermentation hydrogen production, so the design of reactor type and optimization of parameters are essential. Process modeling and simulation can help engineers design and optimize large-scale systems and operations. Use of cheaper raw materials will surely accelerate the pace of scaled-up production of biological hydrogen. And finally, combining dark-fermentation with photo-fermentation holds considerable promise, and has successfully achieved maximum overall hydrogen yield from a single substrate. Future development of bio-hydrogen production will also be discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Nuclear Production of Hydrogen Using Thermochemical Water-Splitting Cycles

    International Nuclear Information System (INIS)

    Brown, L.C.; Besenbruch, G.E.; Schultz, K.R.; Marshall, A.C.; Showalter, S.K.; Pickard, P.S.; Funk, J.F.

    2002-01-01

    The purpose of this work is to determine the potential for efficient, cost-effective, large-scale production of hydrogen utilizing high-temperature heat from an advanced nuclear power station in a thermochemical water-splitting cycle. We carried out a detailed literature search to create a searchable database with 115 cycles and 822 references. We developed screening criteria to reduce the list to 25 cycles. We used detailed evaluation to select two cycles that appear most promising, the Adiabatic UT-3 cycle and the Sulfur-Iodine cycle. We have selected the Sulfur-Iodine thermochemical water-splitting cycle for further development. We then assessed the suitability of various nuclear reactor types to the production of hydrogen from water using the Sulfur-Iodine cycle. A basic requirement is to deliver heat to the process interface heat exchanger at temperatures up to 900 deg. C. We considered nine categories of reactors: pressurized water-cooled, boiling water-cooled, organic-cooled, alkali metal-cooled, heavy metal-cooled, gas-cooled, molten salt-cooled, liquid-core and gas-core reactors. We developed requirements and criteria to carry out the assessment, considering design, safety, operational, economic and development issues. This assessment process led to our choice of the helium gas-cooled reactor for coupling to the Sulfur-Iodine cycle. In continuing work, we are investigating the improvements that have been proposed to the Sulfur-Iodine cycle and will generate an integrated flowsheet describing a hydrogen production plant powered by a high-temperature helium gas-cooled nuclear reactor. This will allow us to size process equipment and calculate hydrogen production efficiency and capital cost, and to estimate the cost of the hydrogen produced as a function of nuclear reactor cost. (authors)

  19. Lichen Symbiosis: Nature's High Yielding Machines for Induced Hydrogen Production

    Science.gov (United States)

    Papazi, Aikaterini; Kastanaki, Elizabeth; Pirintsos, Stergios; Kotzabasis, Kiriakos

    2015-01-01

    Hydrogen is a promising future energy source. Although the ability of green algae to produce hydrogen has long been recognized (since 1939) and several biotechnological applications have been attempted, the greatest obstacle, being the O2-sensitivity of the hydrogenase enzyme, has not yet been overcome. In the present contribution, 75 years after the first report on algal hydrogen production, taking advantage of a natural mechanism of oxygen balance, we demonstrate high hydrogen yields by lichens. Lichens have been selected as the ideal organisms in nature for hydrogen production, since they consist of a mycobiont and a photobiont in symbiosis. It has been hypothesized that the mycobiont’s and photobiont’s consumption of oxygen (increase of COX and AOX proteins of mitochondrial respiratory pathways and PTOX protein of chrolorespiration) establishes the required anoxic conditions for the activation of the phycobiont’s hydrogenase in a closed system. Our results clearly supported the above hypothesis, showing that lichens have the ability to activate appropriate bioenergetic pathways depending on the specific incubation conditions. Under light conditions, they successfully use the PSII-dependent and the PSII-independent pathways (decrease of D1 protein and parallel increase of PSaA protein) to transfer electrons to hydrogenase, while under dark conditions, lichens use the PFOR enzyme and the dark fermentative pathway to supply electrons to hydrogenase. These advantages of lichen symbiosis in combination with their ability to survive in extreme environments (while in a dry state) constitute them as unique and valuable hydrogen producing natural factories and pave the way for future biotechnological applications. PMID:25826211

  20. Lichen symbiosis: nature's high yielding machines for induced hydrogen production.

    Directory of Open Access Journals (Sweden)

    Aikaterini Papazi

    Full Text Available Hydrogen is a promising future energy source. Although the ability of green algae to produce hydrogen has long been recognized (since 1939 and several biotechnological applications have been attempted, the greatest obstacle, being the O2-sensitivity of the hydrogenase enzyme, has not yet been overcome. In the present contribution, 75 years after the first report on algal hydrogen production, taking advantage of a natural mechanism of oxygen balance, we demonstrate high hydrogen yields by lichens. Lichens have been selected as the ideal organisms in nature for hydrogen production, since they consist of a mycobiont and a photobiont in symbiosis. It has been hypothesized that the mycobiont's and photobiont's consumption of oxygen (increase of COX and AOX proteins of mitochondrial respiratory pathways and PTOX protein of chrolorespiration establishes the required anoxic conditions for the activation of the phycobiont's hydrogenase in a closed system. Our results clearly supported the above hypothesis, showing that lichens have the ability to activate appropriate bioenergetic pathways depending on the specific incubation conditions. Under light conditions, they successfully use the PSII-dependent and the PSII-independent pathways (decrease of D1 protein and parallel increase of PSaA protein to transfer electrons to hydrogenase, while under dark conditions, lichens use the PFOR enzyme and the dark fermentative pathway to supply electrons to hydrogenase. These advantages of lichen symbiosis in combination with their ability to survive in extreme environments (while in a dry state constitute them as unique and valuable hydrogen producing natural factories and pave the way for future biotechnological applications.

  1. Production of hydrogen gas from novel chemical hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Aiello, R.; Matthews, M.A. [South Carolina Univ., Chemical Engineering Dept., Columbia, SC (United States); Reger, D.L.; Collins, J.E. [South Carolina Univ., Chemistry and Biochemistry Dept., Columbia, SC (United States)

    1998-12-01

    Six ligand-stabilized complexes have been synthesized and tested for use as hydrogen storage media for portable fuel cell applications. The new hydrides are: [HC(3,5-Me{sub 2}pz){sub 3}]LiBH{sub 4} (1), [[H{sub 2}C(3,5-Me{sub 2}pz){sub 2}]LiBH{sub 4})]{sub 2} (2) (pz = pyrazolyl), [(TMEDA)Li(BH{sub 4})]{sub 2} (3) (TMEDA (CH{sub 3}){sub 2}NCH{sub 2}CH{sub 2}N(CH{sub 3}){sub 2}), [HC(pz){sub 3}]LiBH{sub 4} (4), [[H{sub 2}C(pz){sub 2}]Li(BH{sub 4})]{sub 2} (5) and Mg(BH{sub 4}){sub 2}3THF (6) (THF = tetrahydrofuran). Hydrolysis reactions of the compounds liberate hydrogen in quantities which range from 56 to 104 ({+-}5%) of the theoretical yield. Gas chromatographic analysis of the product gases from these reactions indicate that hydrogen is the only gas produced. Thermally initiated reactions of the novel compounds with NH{sub 4}Cl were unsuccessful. Although the amount of hydrogen energy which can be theoretically obtained per unit weight is lower than that of the classical hydrides such as LiBH{sub 4} and NaBH{sub 4}, the reactions are less violent and hydrolysis of compounds 1, 2, 4, 5 and 6 releases less heat per mole of hydrogen generated. (Author)

  2. Renewable energy for hydrogen production and sustainable urban mobility

    International Nuclear Information System (INIS)

    Briguglio, N.; Andaloro, L.; Ferraro, M.; Di Blasi, A.; Dispenza, G.; Antonucci, V.; Matteucci, F.; Breedveld, L.

    2010-01-01

    In recent years, the number of power plants based on renewable energy (RWE) has been increasing and hydrogen as an energy carrier has become a suitable medium-to-long term storage solution as well as a ''fuel'' for FCEV's because of its CO 2 -free potential. In this context, the aim of the present study is to carry out both an economic and environmental analysis of a start-up RWE plant using a simulation code developed in previous work and a Life Cycle Assessment (LCA). The plant will be located in the South of Italy (Puglia) and will consist of different RWE sources (Wind Power, Photovoltaic, Biomass). RWE will be used to produce hydrogen from an electrolyzer, which will feed a fleet of buses using different fuels (methane, hydrogen, or a mixture of these). In particular, a wind turbine of 850 kW will feed a hydrogen production plant and a biomass plant will produce methane. Preliminary studies have shown that it is possible to obtain hydrogen at a competitive cost (DOE target) and that components (wind turbine, electrolyzer, vessel, etc.) influence the final price. In addition, LCA results have permitted a comparison of different minibuses using either fossil fuels or renewable energy sources. (author)

  3. Renewable energy for hydrogen production and sustainable urban mobility

    Energy Technology Data Exchange (ETDEWEB)

    Briguglio, N.; Andaloro, L.; Ferraro, M.; Di Blasi, A.; Dispenza, G.; Antonucci, V. [Istituto di Tecnologie avanzate per l' Energia ' ' Nicola Giordano' ' Salita S, Lucia sopra Contesse, 5, 98126 Messina (Italy); Matteucci, F. [TRE SpA Tozzi Renewable Energy, Via Zuccherificio, 10, 48100 Mezzano (RA) (Italy); Breedveld, L. [2B Via della Chiesa Campocroce, 4, 31021 Mogliano Veneto (TV) (Italy)

    2010-09-15

    In recent years, the number of power plants based on renewable energy (RWE) has been increasing and hydrogen as an energy carrier has become a suitable medium-to-long term storage solution as well as a ''fuel'' for FCEV's because of its CO{sub 2}-free potential. In this context, the aim of the present study is to carry out both an economic and environmental analysis of a start-up RWE plant using a simulation code developed in previous work and a Life Cycle Assessment (LCA). The plant will be located in the South of Italy (Puglia) and will consist of different RWE sources (Wind Power, Photovoltaic, Biomass). RWE will be used to produce hydrogen from an electrolyzer, which will feed a fleet of buses using different fuels (methane, hydrogen, or a mixture of these). In particular, a wind turbine of 850 kW will feed a hydrogen production plant and a biomass plant will produce methane. Preliminary studies have shown that it is possible to obtain hydrogen at a competitive cost (DOE target) and that components (wind turbine, electrolyzer, vessel, etc.) influence the final price. In addition, LCA results have permitted a comparison of different minibuses using either fossil fuels or renewable energy sources. (author)

  4. Hydrogen production from the monomeric sugars hydrolyzed from hemicellulose by Enterobacter aerogenes

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Yunli; Wang, Jianji; Liu, Zhen; Ren, Yunlai; Li, Guozhi [School of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Luoyang 471039, Henan (China)

    2009-12-15

    Relatively large percentages of xylose with glucose, arabinose, mannose, galactose and rhamnose constitute the hydrolysis products of hemicellulose. In this paper, hydrogen production performance of facultative anaerobe (Enterobacter aerogenes) has been investigated from these different monomeric sugars except glucose. It was shown that the stereoisomers of mannose and galactose were more effective for hydrogen production than those of xylose and arabinose. The substrate of 5 g/l xylose resulted in a relative high level of hydrogen yield (73.8 mmol/l), hydrogen production efficiency (2.2 mol/mol) and a maximum hydrogen production rate (249 ml/l/h). The hydrogen yield, hydrogen production efficiency and the maximum hydrogen production rate reached 104 mmol/l, 2.35 mol/mol and 290 ml/l/h, respectively, on a substrate of 10 g/l galactose. The hydrogen yields and the maximum hydrogen production rates increased with an increase of mannose concentrations and reached 119 mmol/l and 518 ml/l/h on the culture of 25 g/l mannose. However, rhamnose was a relative poor carbon resource for E. aerogenes to produce hydrogen, from which the hydrogen yield and hydrogen production efficiency were about one half of that from the mannose substrate. E. aerogenes was found to be a promising strain for hydrogen production from hydrolysis products of hemicellulose. (author)

  5. Microbial control of hydrogen sulfide production

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, A.D.; Bhupathiraju, V.K.; Wofford, N.; McInerney, M.J. [Univ. of Oklahoma, Tulsa, OK (United States)] [and others

    1995-12-31

    A sulfide-resistant strain of Thiobacillus denitrificans, strain F, prevented the accumulation of sulfide by Desulfovibrio desulfuricans when both organisms were grown in liquid medium. The wild-type strain of T. denitrificans did not prevent the accumulation of sulfide produced by D. desulfuricans. Strain F also prevented the accumulation of sulfide by a mixed population of sulfate-reducing bacteria enriched from an oil field brine. Fermentation balances showed that strain F stoichiometrically oxidized the sulfide produced by D. desulfuricans and the oil field brine enrichment to sulfate. The ability of a strain F to control sulfide production in an experimental system of cores and formation water from the Redfield, Iowa, natural gas storage facility was also investigated. A stable, sulfide-producing biofilm was established in two separate core systems, one of which was inoculated with strain F while the other core system (control) was treated in an identical manner, but was not inoculated with strain F. When formation water with 10 mM acetate and 5 mM nitrate was injected into both core systems, the effluent sulfide concentrations in the control core system ranged from 200 to 460 {mu}M. In the test core system inoculated with strain F, the effluent sulfide concentrations were lower, ranging from 70 to 110 {mu}M. In order to determine whether strain F could control sulfide production under optimal conditions for sulfate-reducing bacteria, the electron donor was changed to lactate and inorganic nutrients (nitrogen and phosphate sources) were added to the formation water. When nutrient-supplemented formation water with 3.1 mM lactate and 10 mM nitrate was used, the effluent sulfide concentrations of the control core system initially increased to about 3,800 {mu}M, and then decreased to about 1,100 {mu}M after 5 weeks. However, in the test core system inoculated with strain F, the effluent sulfide concentrations were much lower, 160 to 330 {mu}M.

  6. Study of organic waste for production of hydrogen in reactor

    International Nuclear Information System (INIS)

    Guzmán Chinea, Jesús Manuel; Guzmán Marrero, Elizabeth; Pérez Ponce, Alejandro

    2015-01-01

    Biological processes have long been used for the treatment of organic waste makes, especially our study is based on the anaerobic process in reactors, using residual organic industry. Without excluding other non-industrial we have studied. Fundamental objectives treating organic waste is to reduce the pollutant load to the environment, another aim is to recover the waste recovering the energy contained in it. In this context, the biological hydrogen production from organic waste is an interesting alternative because it has low operating costs and raw material is being used as a residue in any way should be treated before final disposal. Hydrogen can be produced sustainable by anaerobic bacteria that grow in the dark with rich carbohydrate substrates giving as final products H 2 , CO 2 and volatile fatty acids. The whey byproduct from cheese production, has great potential to be used for the generation of hydrogen as it has a high carbohydrate content and a high organic load. The main advantages of using anaerobic processes in biological treatment of organic waste, are the low operating costs, low power consumption, the ability to degrade high organic loads, resistance biomass to stay long in the absence of substrate, without lose their metabolic activity, and low nutritional requirements and increase the performance of 0.9 mol H2 / mol lactose. (full text)Biological processes have long been used for the treatment of organic waste makes, especially our study is based on the anaerobic process in reactors, using residual organic industry. Without excluding other non-industrial we have studied. Fundamental objectives treating organic waste is to reduce the pollutant load to the environment, another aim is to recover the waste recovering the energy contained in it. In this context, the biological hydrogen production from organic waste is an interesting alternative because it has low operating costs and raw material is being used as a residue in any way should be treated

  7. A Barrier Options Approach to Modeling Project Failure : The Case of Hydrogen Fuel Infrastructure

    NARCIS (Netherlands)

    Engelen, P.J.; Kool, C.J.M.; Li, Y.

    2016-01-01

    Hydrogen fuel cell vehicles have the potential to contribute to a sustainable transport system with zero tailpipe emissions. This requires the construction of a network of fuel stations, a long-term, expensive and highly uncertain investment. We contribute to the literature by including a knock-out

  8. Thermocatalytic CO2-Free Production of Hydrogen from Hydrocarbon Fuels

    Energy Technology Data Exchange (ETDEWEB)

    University of Central Florida

    2004-01-30

    The main objective of this project is the development of an economically viable thermocatalytic process for production of hydrogen and carbon from natural gas or other hydrocarbon fuels with minimal environmental impact. The three major technical goals of this project are: (1) to accomplish efficient production of hydrogen and carbon via sustainable catalytic decomposition of methane or other hydrocarbons using inexpensive and durable carbon catalysts, (2) to obviate the concurrent production of CO/CO{sub 2} byproducts and drastically reduce CO{sub 2} emissions from the process, and (3) to produce valuable carbon products in order to reduce the cost of hydrogen production The important feature of the process is that the reaction is catalyzed by carbon particulates produced in the process, so no external catalyst is required (except for the start-up operation). This results in the following advantages: (1) no CO/CO{sub 2} byproducts are generated during hydrocarbon decomposition stage, (2) no expensive catalysts are used in the process, (3) several valuable forms of carbon can be produced in the process depending on the process conditions (e.g., turbostratic carbon, pyrolytic graphite, spherical carbon particles, carbon filaments etc.), and (4) CO{sub 2} emissions could be drastically reduced (compared to conventional processes).

  9. Effects of bioenergy production on European nature conservation options

    Science.gov (United States)

    Schleupner, C.; Schneider, U. A.

    2009-04-01

    To increase security of energy supply and reduce greenhouse gas (GHG) emissions the European Commission set out a long-term strategy for renewable energy in the European Union (EU). Bioenergy from forestry and agriculture plays a key role for both. Since the last decade a significant increase of biomass energy plantations has been observed in Europe. Concurrently, the EU agreed to halt the loss of biodiversity within its member states. One measure is the Natura2000 network of important nature sites that actually covers about 20% of the EU land surface. However, to fulfil the biodiversity target more nature conservation and restoration sites need to be designated. There are arising concerns that an increased cultivation of bioenergy crops will decrease the land available for nature reserves and for "traditional" agriculture and forestry. In the following the economic and ecological impacts of structural land use changes are demonstrated by two examples. First, a case study of land use changes on the Eiderstedt peninsula in Schleswig-Holstein/Germany evaluates the impacts of grassland conversion into bioenergy plantations under consideration of selected meadow birds. Scenarios indicate not only a quantitative loss of habitats but also a reduction of habitat quality. The second study assesses the role of bioenergy production in light of possible negative impacts on potential wetland conservation sites in Europe. By coupling the spatial wetland distribution model "SWEDI" (cf. SCHLEUPNER 2007) to the European Forest and Agricultural Sector Optimization Model (EUFASOM; cf. SCHNEIDER ET AL. 2008) economic and environmental aspects of land use are evaluated simultaneously. This way the costs and benefits of the appropriate measures and its consequences for agriculture and forestry are investigated. One aim is to find the socially optimal balance between alternative wetland uses by integrating biological benefits - in this case wetlands - and economic opportunities - here

  10. Potential for greenhouse gas emission reductions using surplus electricity in hydrogen, methane and methanol production via electrolysis

    International Nuclear Information System (INIS)

    Uusitalo, Ville; Väisänen, Sanni; Inkeri, Eero; Soukka, Risto

    2017-01-01

    Highlights: • Greenhouse gas emission reductions using power-to-x processes are studied using life cycle assessment. • Surplus electricity use led to greenhouse gas emission reductions in all studied cases. • Highest reductions can be achieved by using hydrogen to replace fossil based hydrogen. • High reductions are also achieved when fossil transportation fuels are replaced. - Abstract: Using a life cycle perspective, potentials for greenhouse gas emission reductions using various power-to-x processes via electrolysis have been compared. Because of increasing renewable electricity production, occasionally surplus renewable electricity is produced, which leads to situations where the price of electricity approach zero. This surplus electricity can be used in hydrogen, methane and methanol production via electrolysis and other additional processes. Life cycle assessments have been utilized to compare these options in terms of greenhouse gas emission reductions. All of the power-to-x options studied lead to greenhouse gas emission reductions as compared to conventional production processes based on fossil fuels. The highest greenhouse gas emission reductions can be gained when hydrogen from steam reforming is replaced by hydrogen from the power-to-x process. High greenhouse gas emission reductions can also be achieved when power-to-x products are utilized as an energy source for transportation, replacing fossil transportation fuels. A third option with high greenhouse gas emission reduction potential is methane production, storing and electricity conversion in gas engines during peak consumption hours. It is concluded that the power-to-x processes provide a good potential solution for reducing greenhouse gas emissions in various sectors.

  11. Solar to hydrogen: Compact and cost effective CPV field for rooftop operation and hydrogen production

    KAUST Repository

    Burhan, Muhammad

    2016-11-25

    Current commercial CPV systems are designed as large units which are targeted to be installed in open desert fields with high DNI availability. It appeared that the CPV is among some of those technologies which gained very little attention of people, with less customers and market. For conventional PV systems, the installations at the rooftop of commercial and residential buildings have a significant share in the total installed capacity of PV systems. That is why for most of the countries, the PV installations at the rooftop of commercial and residential buildings are aimed to be increased to half of total installed PV. On the other hand, there is no commercial CPV system available to be suitable for rooftop operation, giving motivation for the development of CPV field of compact systems. This paper discusses the development of a CPV field for the rooftop operation, comprising of compact CPV system with cost effective but highly accurate solar tracking sensor and wireless master slave control. In addition, the performance of the developed CPV systems is evaluated for production of hydrogen, which can be used as energy carrier or energy storage and a maximum solar to hydrogen efficiency of 18% is obtained. However, due to dynamic nature of the weather data and throughout the day variations in the performance of CPV and electrolyser, the solar to hydrogen performance is proposed to be reported as daily and long term average efficiency. The CPV-Hydrogen system showed daily average conversion efficiency of 15%, with solar to hydrogen production rate of 218 kW h/kg.

  12. Production of hydrogen from fermentation of pina agroindustrial waste

    International Nuclear Information System (INIS)

    Montoya Perez, Luisa

    2012-01-01

    The performance of biohydrogen production was assesed a laboratory level, by anaerobic fermentation using agroindustrial residue of pineapple heart and employing microorganisms own of sludges from the bottom of an anaerobic digester belonging to a wastewater treatment plant from a seafood processor. Residue of pineapple heart was characterized physicochemically. The amounts were quantified: moisture, ashes, crude fiber, glucose, reducing sugars, hydrogen potential, soluble solids (Brix grades), boron, nitrogen, phosphorus, calcium, magnesium, potassium, sulfur, zinc, iron, copper and manganese. Per gram of pineapple heart is obtained 0,113 g of reducing sugars and 0,0114 g of glucose, which has made it a carbohydrate rich material that could ferment and produce hydrogen or other metabolites of commercial interest. A maximum yield was obtained of 0,0484 mol H 2 / mol of glucose consumed with a hydrogen maximum output of 1,260 mmol, at a maximum production rate of 0.070 mmol/h with a time lag in the production of hydrogen to 7,833 h under the following conditions: initial pH of 5,5, substrate initial concentration of 5 g/L and using a medium of mineral formulation based on sodium, calcium, iodine, zinc, nickel and molybdenum, in a container 125 mL where was consumed 88,4% of the initial glucose. A maximum yield of 1,541 mol H 2 / mol of consumed glucose was obtained, in a fermentation time of 30 h, with a maximum hydrogen production of 41,227 mmol, at a maximum production rate of 6,740 mmol/h with a lag time in the production of hydrogen for 16 h, under the following conditions: initial pH of 5,5, substrate initial concentration of 5 g/L and using a middle of mineral formulation based on sodium, calcium, iodine, zinc, nickel and molybdenum in a fermentor of 5 L where 96,39% was consumed of the initial glucose. The maximum yield from 1,541 mol H 2 / mol of glucose consumed has corresponded to 38% of the target value of the United States Department of Energy equivalent

  13. High temperature electrolysis for hydrogen production using nuclear energy

    International Nuclear Information System (INIS)

    Herring, J. Stephen; O'brien, James E.; Stoots, Carl M.; Hawkes, Grant L.; Hartvigsen, Joseph J.

    2005-01-01

    High-temperature nuclear reactors have the potential for substantially increasing the efficiency of hydrogen production from water splitting, which can be accomplished via high-temperature electrolysis (HTE) or thermochemical processes. In order to achieve competitive efficiencies, both processes require high-temperature operation (∼850degC). High-temperature electrolytic water splitting supported by nuclear process heat and electricity has the potential to produce hydrogen with overall system efficiencies of 45 to 55%. At the Idaho National Laboratory, we are developing solid-oxide cells to operate in the steam electrolysis mode. The research program includes both experimental and modeling activities. Experimental results were obtained from ten-cell and 22-cell planar electrolysis stacks, fabricated by Ceramatec, Inc. The electrolysis cells are electrolyte-supported, with scandia-stabilized zirconia electrolytes (∼200 μm thick, 64 cm 2 active area), nickel-cermet steam/hydrogen electrodes, and manganite air-side electrodes. The metallic interconnect plates are fabricated from ferritic stainless steel. The experiments were performed over a range of steam inlet mole fractions, gas glow rates, and current densities. Hydrogen production rates greater than 100 normal liters per hour for 196 hours have been demonstrated. In order to evaluate the performance of large-scale HTE operations, we have developed single-cell models, based on FLUENT, and a process model, using the systems-analysis code HYSYS. (author)

  14. Potential of hydrogen production from wind energy in Pakistan

    International Nuclear Information System (INIS)

    Uqaili, M. A.; Harijan, K.; Memon, M.

    2007-01-01

    The transport sector consumes about 34% of the total commercial energy consumption in Pakistan. About 97% of fuel used in this sector is oil and the remaining 3% is CNG and electricity. The indigenous reserves of oil and gas are limited and the country is heavily dependent on the import of oil. The oil import bill is serious strain on the country's economy. The production, transportation and consumption of fossil fuels also degrade the environment. Therefore, it is important to explore the opportunities for clean renewable energy for long-term energy supply in the transport sector. Sindh, the second largest province of Pakistan, has about 250 km long coastline. The estimated average annual wind speed at 50 m height at almost all sites is about 6-7 m/s, indicating that Sindh has the potential to effectively utilize wind energy source for power generation and hydrogen production. A system consisting of wind turbines coupled with electrolyzers is a promising design to produce hydrogen. This paper presents an assessment of the potential of hydrogen production from wind energy in the coastal area of Sindh, Pakistan. The estimated technical potential of wind power is 386 TWh per year. If the wind electricity is used to power electrolyzers, 347.4 TWh hydrogen can be produced annually, which is about 1.2 times the total energy consumption in the transport sector of Pakistan in 2005. The substitution of oil with renewable hydrogen is essential to increase energy independence, improve domestic economies, and reduce greenhouse gas and other harmful emissions

  15. The impact of carbon sequestration on the production cost of electricity and hydrogen from coal and natural-gas technologies in Europe in the medium term

    International Nuclear Information System (INIS)

    Tzimas, Evangelos; Peteves, Stathis D.

    2005-01-01

    Carbon sequestration is a distinct technological option with a potential for controlling carbon emissions; it complements other measures, such as improvements in energy efficiency and utilization of renewable energy sources. The deployment of carbon sequestration technologies in electricity generation and hydrogen production will increase the production costs of these energy carriers. Our economic assessment has shown that the introduction of carbon sequestration technologies in Europe in 2020, will result in an increase in the production cost of electricity by coal and natural gas technologies of 30-55% depending on the electricity-generation technology used; gas turbines will remain the most competitive option for generating electricity; and integrated gasification combined cycle technology will become competitive. When carbon sequestration is coupled with natural-gas steam reforming or coal gasification for hydrogen production, the production cost of hydrogen will increase by 14-16%. Furthermore, natural-gas steam reforming with carbon sequestration is far more economically competitive than coal gasification

  16. IEA hydrogen agreement, task 15: photobiological hydrogen production - an international collaboration

    International Nuclear Information System (INIS)

    Lindblad, P.; Asada, Y.; Benemann, J.; Hallenbeck, P.; Melis, A.; Miyake, J.; Seibert, M.; Skulberg, O.

    2000-01-01

    Biological hydrogen production, the production of H 2 by microorganisms, has been an active field of basic and applied research for many years. Realization of practical processes for photobiological hydrogen production from water using solar energy would result in a major, novel source of sustainable and renewable energy, without greenhouse gas emissions or environmental pollution. However, development of such processes requires significant scientific and technological advances, and long-term basic and applied R and D. This International Energy Agency (lEA) Task covers research areas and needs at the interface of basic and applied R and D which are of mutual interest to the countries and researchers participating in the lEA Hydrogen Agreement. The overall objective is to sufficiently advance the basic and early-stage applied science in this area of research over the next five years to allow an evaluation of the potential of such a technology to be developed as a practical renewable energy source for the 21st Century. (author)

  17. Thermal-Hydraulic Sensitivity Study of Intermediate Loop Parameters for Nuclear Hydrogen Production System

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jong Hwa; Lee, Heung Nae; Park, Jea Ho [KONES Corp., Seoul (Korea, Republic of); Lee, Won Jae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Sang Il; Yoo, Yeon Jae [Hyundai Engineering Co., Seoul (Korea, Republic of)

    2016-10-15

    The heat generated from the VHTR is transferred to the intermediate loop through Intermediate Heat Exchanger (IHX). It is further passed on to the Sulfur-Iodine (SI) hydrogen production system (HPS) through Process Heat Exchanger (PHX). The IL provides the safety distance between the VHTR and HPS. Since the IL performance affects the overall nuclear HPS efficiency, it is required to optimize its design and operation parameters. In this study, the thermal-hydraulic sensitivity of IL parameters with various coolant options has been examined by using MARS-GCR code, which was already applied for the case of steam generator. Sensitivity study of the IL and PHX parameters has been carried out based on their thermal-hydraulic performance. Several parameters for design and operation, such as the pipe diameter, safety distance and surface area, are considered for different coolant options, He, CO{sub 2} and He-CO{sub 2} (2:8). It was found that the circulator work is the major factor affecting on the overall nuclear hydrogen production system efficiency. Circulator work increases with the safety distance, and decreases with the operation pressure and loop pipe diameter. Sensitivity results obtained from this study will contribute to the optimization of the IL design and operation parameters and the optimal coolant selection.

  18. Photoelectrochemical Hydrogen Production Using New Combinatorial Chemistry Derived Materials

    Energy Technology Data Exchange (ETDEWEB)

    Jaramillo, Thomas F.; Baeck, Sung-Hyeon; Kleiman-Shwarsctein, Alan; Stucky, Galen D. (PI); McFarland, Eric W. (PI)

    2004-10-25

    Solar photoelectrochemical water-splitting has long been viewed as one of the “holy grails” of chemistry because of its potential impact as a clean, renewable method of fuel production. Several known photocatalytic semiconductors can be used; however, the fundamental mechanisms of the process remain poorly understood and no known material has the required properties for cost effective hydrogen production. In order to investigate morphological and compositional variations in metal oxides as they relate to opto-electrochemical properties, we have employed a combinatorial methodology using automated, high-throughput, electrochemical synthesis and screening together with conventional solid-state methods. This report discusses a number of novel, high-throughput instruments developed during this project for the expeditious discovery of improved materials for photoelectrochemical hydrogen production. Also described within this report are results from a variety of materials (primarily tungsten oxide, zinc oxide, molybdenum oxide, copper oxide and titanium dioxide) whose properties were modified and improved by either layering, inter-mixing, or doping with one or more transition metals. Furthermore, the morphologies of certain materials were also modified through the use of structure directing agents (SDA) during synthesis to create mesostructures (features 2-50 nm) that increased surface area and improved rates of hydrogen production.

  19. Thermodynamic evaluation of hydrogen production via bioethanol steam reforming

    Energy Technology Data Exchange (ETDEWEB)

    Tasnadi-Asztalos, Zsolt; Cormos, Ana-Maria; Imre-Lucaci, Árpád; Cormos, Călin C. [Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, Arany Janos 11, RO-400028, Cluj-Napoca (Romania)

    2013-11-13

    In this article, a thermodynamic analysis for bioethanol steam reforming for hydrogen production is presented. Bioethanol is a newly proposed renewable energy carrier mainly produced from biomass fermentation. Reforming of bioethanol provides a promising method for hydrogen production from renewable resources. Steam reforming of ethanol (SRE) takes place under the action of a metal catalyst capable of breaking C-C bonds into smaller molecules. A large domain for the water/bioethanol molar ratio as well as the temperature and average pressure has been used in the present work. The interval of investigated temperature was 100-800°C, the pressure was in the range of 1-10 bar and the molar ratio was between 3-25. The variations of gaseous species concentration e.g. H{sub 2}, CO, CO{sub 2}, CH{sub 4} were analyzed. The concentrations of the main products (H{sub 2} and CO) at lower temperature are smaller than the ones at higher temperature due to by-products formation (methane, carbon dioxide, acetylene etc.). The concentration of H2 obtained in the process using high molar ratio (>20) is higher than the one at small molar ratio (near stoichiometric). When the pressure is increased the hydrogen concentration decreases. The results were compared with literature data for validation purposes.

  20. Kicking the habit[Hydrogen fuel

    Energy Technology Data Exchange (ETDEWEB)

    Jones, N.; Lawton, G.; Pearce, F.

    2000-11-25

    This article focuses on the use of clean non-polluting hydrogen fuel as opposed to the use of fossil fuels which ties western nations to the Middle East. Details are given of Iceland's plans to use hydrogen fuelled buses, cars, trucks and trawlers, car manufacturers' options of using internal combustion engines burning hydrogen and hydrogen fuel cells, and the production of hydrogen using electrolysis of water and steam reforming of hydrocarbons. The 'Green Dream' of pollution-free hydrogen production, the use of solar energy for renewable hydrogen production in California, and problems associated with hydrogen storage are discussed.

  1. Hydrogen production with a solar steam–methanol reformer and colloid nanocatalyst

    KAUST Repository

    Lee, Ming-Tsang; Werhahn, Michael; Hwang, David J.; Hotz, Nico; Greif, Ralph; Poulikakos, Dimos; Grigoropoulos, Costas P.

    2010-01-01

    of the reformer and thereby increase hydrogen production. The hydrogen production output efficiency is determined and a value of 5% is achieved. Experiments using concentrated solar simulator light as the radiation source are also carried out. The results show

  2. Solar photochemical production of HBr for off-peak electrolytic hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Heaton, H. [Solar Reactor Technologies Inc., Miami, FL (United States)

    1996-10-01

    Progress is reported on the development of a unique and innovative hydrogen production concept utilizing renewable (Solar) energy and incorporating energy storage. The concept is based on a solar-electrolytic system for production of hydrogen and oxygen. It employs water, bromine, solar energy, and supplemental electrical power. The process consumes only water, sunlight and off-peak electricity, and produces only hydrogen, oxygen, and peaking electrical power. No pollutants are emitted, and fossil fuels are not consumed. The concept is being developed by Solar Reactor Technologies, Inc., (SRT) under the auspices of a Cooperative Agreement with the U.S. Department of Energy (DOE).

  3. Utilization of solar and nuclear energy for hydrogen production

    International Nuclear Information System (INIS)

    Fischer, M.

    1987-01-01

    Although the world-wide energy supply situation appears to have eased at present, non-fossil primary energy sources and hydrogen as a secondary energy carrier will have to take over a long-term and increasing portion of the energy supply system. The only non-fossil energy sources which are available in relevant quantities, are nuclear energy, solar energy and hydropower. The potential of H 2 for the extensive utilization of solar energy is of particular importance. Status, progress and development potential of the electrolytic H 2 production with photovoltaic generators, solar-thermal power plants and nuclear power plants are studied and discussed. The joint German-Saudi Arabian Research, Development and Demonstration Program HYSOLAR for the solar hydrogen production and utilization is summarized. (orig.)

  4. Incentive Policy Options for Product Remanufacturing: Subsidizing Donations or Resales?

    Science.gov (United States)

    Zhu, Xiaodong; Wang, Yue; Li, Bangyi

    2017-01-01

    Remanufactured products offer better environmental benefits, and governments encourage manufacturers to remanufacture through various subsidy policies. This practice has shown that, in addition to product sales, remanufactured product can also achieve its value through social donation. Based on the remanufactured product value realization approaches, governments provide two kinds of incentive policies, which are remanufactured product sales subsidies and remanufactured product donation subsidies. This paper constructs a two-stage Stackelberg game model including a government and a manufacturer under two different policies, which can be solved by backward induction. By comparing the optimal decision of the two policies, our results show that, compared with the remanufacturing sales subsidy, donation subsidy weakens the cannibalization of remanufactured products for new products and increases the quantity of new products. It reduces the sales quantity of remanufactured products, but increases their total quantity. Under certain conditions of low subsidy, the manufacturer adopting sales subsidy provides better economic and environmental benefits. Under certain conditions of high subsidy, the manufacturer adopting donation subsidy offers better economic and environmental benefits. When untreated product environmental impact is large enough, donation subsidy policy has a better social welfare. Otherwise, the choice of social welfare of these two different policies depends on the social impact of remanufactured product donated. PMID:29194411

  5. Incentive Policy Options for Product Remanufacturing: Subsidizing Donations or Resales?

    Science.gov (United States)

    Zhu, Xiaodong; Wang, Zhe; Wang, Yue; Li, Bangyi

    2017-12-01

    Remanufactured products offer better environmental benefits, and governments encourage manufacturers to remanufacture through various subsidy policies. This practice has shown that, in addition to product sales, remanufactured product can also achieve its value through social donation. Based on the remanufactured product value realization approaches, governments provide two kinds of incentive policies, which are remanufactured product sales subsidies and remanufactured product donation subsidies. This paper constructs a two-stage Stackelberg game model including a government and a manufacturer under two different policies, which can be solved by backward induction. By comparing the optimal decision of the two policies, our results show that, compared with the remanufacturing sales subsidy, donation subsidy weakens the cannibalization of remanufactured products for new products and increases the quantity of new products. It reduces the sales quantity of remanufactured products, but increases their total quantity. Under certain conditions of low subsidy, the manufacturer adopting sales subsidy provides better economic and environmental benefits. Under certain conditions of high subsidy, the manufacturer adopting donation subsidy offers better economic and environmental benefits. When untreated product environmental impact is large enough, donation subsidy policy has a better social welfare. Otherwise, the choice of social welfare of these two different policies depends on the social impact of remanufactured product donated.

  6. Final Report: Hydrogen Production Pathways Cost Analysis (2013 – 2016)

    Energy Technology Data Exchange (ETDEWEB)

    James, Brian David [Strategic Analysis Inc., Arlington, VA (United States); DeSantis, Daniel Allan [Strategic Analysis Inc., Arlington, VA (United States); Saur, Genevieve [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-30

    This report summarizes work conducted under a three year Department of Energy (DOE) funded project to Strategic Analysis, Inc. (SA) to analyze multiple hydrogen (H2) production technologies and project their corresponding levelized production cost of H2. The analysis was conducted using the H2A Hydrogen Analysis Tool developed by the DOE and National Renewable Energy Laboratory (NREL). The project was led by SA but conducted in close collaboration with the NREL and Argonne National Laboratory (ANL). In-depth techno-economic analysis (TEA) of five different H2 production methods was conducted. These TEAs developed projections for capital costs, fuel/feedstock usage, energy usage, indirect capital costs, land usage, labor requirements, and other parameters, for each H2 production pathway, and use the resulting cost and system parameters as inputs into the H2A discounted cash flow model to project the production cost of H2 ($/kgH2). Five technologies were analyzed as part of the project and are summarized in this report: Proton Exchange Membrane technology (PEM), High temperature solid oxide electrolysis cell technology (SOEC), Dark fermentation of biomass for H2 production, H2 production via Monolithic Piston-Type Reactors with rapid swing reforming and regeneration reactions, and Reformer-Electrolyzer-Purifier (REP) technology developed by Fuel Cell Energy, Inc. (FCE).

  7. Hydrogen production from steam methane reforming and electrolysis as part of a near-term hydrogen infrastructure

    International Nuclear Information System (INIS)

    Roberts, K.

    2003-01-01

    Building a complete hydrogen infrastructure for a transportation system based on Fuel Cells (FC) and hydrogen is a risky and expensive ordeal, especially given that it is not known with complete certainty that Fuel Cells will indeed replace the gasoline ICE. But how can we expect the diffusion of an automotive technology if there is no infrastructure to support its fuel needs? This gives rise to a chicken and egg type problem. One way to get around this problem is to produce hydrogen when and where it is needed. This solves the problems of high costs associated with expensive pipeline distribution networks, the high energy-intensities associated with liquefaction of hydrogen and the high costs of cryogenic equipment. This paper will consider the advantages and disadvantages of two such hydrogen production mechanisms, namely, onsite production of hydrogen from Electrolysis and onsite production of hydrogen from Steam Methane Reforming (SMR). Although SMR hydrogen may be more economical due to the availability and low cost of methane, under certain market and technological conditions onsite electrolytic hydrogen can be more attractive. The paper analyses the final price of delivered hydrogen based on its sensitivity to market conditions and technology developments. (author)

  8. Advances in ethanol reforming for the production of hydrogen

    Directory of Open Access Journals (Sweden)

    Laura Guerrero

    2014-06-01

    Full Text Available Catalytic steam reforming of ethanol (SRE is a promising route for the production of renewable hydrogen (H2. This article reviews the influence of doping supported-catalysts used in SRE on the conversion of ethanol, selectivity for H2, and stability during long reaction periods. In addition, promising new technologies such as membrane reactors and electrochemical reforming for performing SRE are presented.

  9. Process Integration Analysis of an Industrial Hydrogen Production Process

    OpenAIRE

    Stolten, Detlef; Grube, Thomas; Tock, Laurence; Maréchal, François; Metzger, Christian; Arpentinier, Philippe

    2010-01-01

    The energy efficiency of an industrial hydrogen production process using steam methane reforming (SMR) combined with the water gas shift reaction (WGS) is analyzed using process integration techniques based on heat cascade calculation and pinch analysis with the aim of identifying potential measures to enhance the process performance. The challenge is to satisfy the high temperature heat demand of the SMR reaction by minimizing the consumption of natural gas to feed the combustion and to expl...

  10. Review of Supported Pd-Based Membranes Preparation by Electroless Plating for Ultra-Pure Hydrogen Production.

    Science.gov (United States)

    Alique, David; Martinez-Diaz, David; Sanz, Raul; Calles, Jose A

    2018-01-23

    In the last years, hydrogen has been considered as a promising energy vector for the oncoming modification of the current energy sector, mainly based on fossil fuels. Hydrogen can be produced from water with no significant pollutant emissions but in the nearest future its production from different hydrocarbon raw materials by thermochemical processes seems to be more feasible. In any case, a mixture of gaseous compounds containing hydrogen is produced, so a further purification step is needed to purify the hydrogen up to required levels accordingly to the final application, i.e., PEM fuel cells. In this mean, membrane technology is one of the available separation options, providing an efficient solution at reasonable cost. Particularly, dense palladium-based membranes have been proposed as an ideal chance in hydrogen purification due to the nearly complete hydrogen selectivity (ideally 100%), high thermal stability and mechanical resistance. Moreover, these membranes can be used in a membrane reactor, offering the possibility to combine both the chemical reaction for hydrogen production and the purification step in a unique device. There are many papers in the literature regarding the preparation of Pd-based membranes, trying to improve the properties of these materials in terms of permeability, thermal and mechanical resistance, poisoning and cost-efficiency. In this review, the most relevant advances in the preparation of supported Pd-based membranes for hydrogen production in recent years are presented. The work is mainly focused in the incorporation of the hydrogen selective layer (palladium or palladium-based alloy) by the electroless plating, since it is one of the most promising alternatives for a real industrial application of these membranes. The information is organized in different sections including: (i) a general introduction; (ii) raw commercial and modified membrane supports; (iii) metal deposition insights by electroless-plating; (iv) trends in

  11. Safety considerations for continuous hydrogen production test apparatus with capacity of 50 N-litter hydrogen per hour

    International Nuclear Information System (INIS)

    Onuki, Kaoru; Akino, Norio; Shimizu, Saburo; Nakajima, Hayato; Higashi, Shunichi; Kubo, Shinji

    2001-03-01

    Since the thermochemical hydrogen production Iodine-Sulfur process decomposes water into hydrogen and oxygen using toxic chemicals such as sulfuric acid, iodine and hydriodic acid, safety considerations are very important in its research and development. Therefore, before construction of continuous hydrogen production test apparatus with capacity of 50 N-litter hydrogen per hour, comprehensive safety considerations were carried out to examine the design and construction works of the test apparatus, and the experimental plans using the apparatus. Emphasis was given on the safety considerations on prevention of breakage of glasswares and presumable abnormalities, accidents and their countermeasures. This report summarizes the results of the considerations. (author)

  12. Hydrogen production and purification for fuel cell applications

    Science.gov (United States)

    Chin, Soo Yin

    The increased utilization of proton-exchange membrane (PEM) fuel cells as an alternative to internal combustion engines is expected to increase the demand for hydrogen, which is used as the energy source in these systems. Currently, production of hydrogen for fuel cells is primarily achieved via steam reforming, partial oxidation or autothermal reforming of natural gas, or steam reforming of methanol. However, in all of these processes CO is a by-product that must be subsequently removed due to its adverse effects on the Pt-based electrocatalysts of the PEM fuel cell. Our efforts have focused on production of CO-free hydrogen via catalytic decomposition of hydrocarbons and purification of H2 via the preferential oxidation of CO. The catalytic decomposition of hydrocarbons is an attractive alternative for the production of H2. Previous studies utilizing methane have shown that this approach can indeed produce CO-free hydrogen, with filamentous carbon formed as the by-product and deposited on the catalyst. We have further extended this approach to the decomposition of ethane. In addition to hydrogen and filamentous carbon however, methane is also formed in this case as a by-product. Studies conducted at different temperatures and space velocities suggest that hydrogen is the primary product while methane is formed in a secondary step. Ni/SiO2 catalysts are active for ethane decomposition at temperatures above 500°C. Although the yield of hydrogen increases with temperature, the catalyst deactivation rate also accelerates at higher temperatures. The preferential oxidation of CO is currently used for the purification of CO-contaminated hydrogen streams due to its efficiency and simplicity. Conventional Pt catalysts used for this reaction have been shown to effectively remove CO, but have limited selectivity (i.e., substantial amounts of H 2 also react with O2). Our work focused on alternative catalytic materials, such as Ru and bimetallic Ru-based catalysts (Pt-Ru, Ru

  13. Bio-hydrogen production from hyacinth by anaerobic fermentation

    International Nuclear Information System (INIS)

    Cheng Jun; Zhou Junhu; Qi Feng; Xie Binfei; Cen Kefa

    2006-01-01

    The bio-hydrogen production from hyacinth by anaerobic fermentation of digested sludge is studied in this paper. The compositions of bio-gases and volatile fatty acids in fermentation liquids are determined on TRACE 2000 gas chromatography. It is found that the H 2 concentration in the biogas is 10%-20% and no CH 4 is detected. The bio-hydrogen production from hyacinth with the initial pH value of 5.5 is higher than that with the initial pH value of 4.5. The fermentation temperature of 55 C is better than that of 35 C, while the weight ratio of hyacinth to microorganism of 1:1 is better than that of 3:7. The highest hydrogen production of 122.3 mL/g is obtained when the initial pH value of fermentation solution is 5.5, the fermentation temperature is 55 C and the weight ratio of hyacinth to microorganism is 1:1. (authors)

  14. Optimization of Hydrogen Production in Anaerobic Digestion Processes

    International Nuclear Information System (INIS)

    Cesar-Arturo Aceves-Lara; Eric Latrille; Thierry Conte; Nicolas Bernet; Pierre Buffiere; Jean-Philippe Steyer

    2006-01-01

    The hydrogen production using anaerobic digestion processes is strongly related to the operational conditions such as pH in the reactor, agitation of the liquid phase and hydraulic retention time (HRT). In this study, an experimental design has been carried out and the main effects and interactions between the three above mentioned factors have been evaluated. Experiments were performed in a continuous bioreactor with HRT of 6, 10 or 14 h, pH was regulated to 5.5, 5.75 or 6 and agitation speed was maintained at 150, 225 or 300 rpm. Molasses were used as substrate with a feeding concentration of 10 gCOD.L -1 . The maximum hydrogen rate production was 5.4 L.Lreactor -1 .d -1 . It was obtained for a pH of 5.5, a retention time of 6 h and an agitation speed of 300 rpm. The mathematical analysis of the experimental data revealed that two reactions could explain 89% of the total variance of the experimental data. Finally, the pseudo-stoichiometric coefficients were estimated and the effects of the operational conditions on the hydrogen production rates were calculated. (authors)

  15. Hydrogen production by thermal water splitting using a thermal plasma

    International Nuclear Information System (INIS)

    Boudesocque, N.; Lafon, C.; Girold, C.; Vandensteendam, C.; Baronnet, J.M.

    2006-01-01

    CEA has been working for more than 10 years in plasma technologies devoted to waste treatment: incineration, vitrification, gases and liquid treatment. Based on this experience, CEA experiments since several years an innovative route for hydrogen production by thermal water splitting, using a plasma as heat source. This new approach could be considered as an alternative to electrolysis for massive hydrogen production from water and electricity. This paper presents a brief state of the art of water thermal plasmas, showing the temperatures and quench velocity ranges technologically achievable today. Thermodynamic properties of a water plasma are presented and discussed. A kinetic computational model is presented, describing the behavior of splitted products during the quench in a plasma plume for various parameters, such as the quench rate. The model results are compared to gas analysis in the plasma plume obtained with in-situ sampling probe. The plasma composition measurements are issued from an Optical Emission Spectroscopic method (OES). The prediction of 30 % H 2 recovery with a 108 K.s -1 quench rate has been verified. A second experimentation has been performed: mass gas analysis, flowrate measurement and OES to study the 'behavior' and species in underwater electrical arc stricken between graphite electrodes. With this quench, a synthesis gas was produced with a content 55 % of hydrogen. (authors)

  16. Specificities of micro-reactors for hydrogen production and purification

    Energy Technology Data Exchange (ETDEWEB)

    Mirodatos, C.; Dupont, N.; Germani, G.; Veen, A. C. ven; Schuurman, Y.

    2005-07-01

    Sustainable chemistry and exploitation of energy sources for the next decades requires considerable progress in process intensification. A development of new tools and equipments meeting the objectives of high efficiency, improved safety, compactness and low implementation costs is therefore subject of intensive research effort. Among the various scenarios tested in R and D, micro-structured reactors appear as a highly promising technology 1 and perspectives of mass production are already announced by technology providers 2. These reactors are based on assembly/stacking of micro structured plates or fibres. Due to their high heat and/or mass transfer, low pressure drop and good phase contacting, they sound particularly adapted to the large domain of hydrogen production by fuel reforming and purification. This presentation aims at outlining the state of the art, the advantages and drawbacks of using micro-structured reactors to intensify hydrogen production and purification. Two case studies will illustrate this approach: i) comparison between fixed bed and micro-structured reactor for the reforming of methanol into hydrogen and carbon oxides and ii) use of those devices in kinetic studies on the WGS reaction. (Author)

  17. 40 CFR 415.420 - Applicability; description of the hydrogen cyanide production subcategory.

    Science.gov (United States)

    2010-07-01

    ... hydrogen cyanide production subcategory. 415.420 Section 415.420 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Hydrogen Cyanide Production Subcategory § 415.420 Applicability; description of the hydrogen cyanide production subcategory. This subpart applies to discharges to waters of the United States...

  18. Continuous fermentative hydrogen production in different process conditions

    Energy Technology Data Exchange (ETDEWEB)

    Nasirian, N. [Islamic Azad Univ., Shoushtar (Iran, Islamic Republic of). Dept. of Agricultural Mechanization; Almassi, M.; Minaee, S. [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Dept. of Agricultural Mechanization; Widmann, R. [Duisburg-Essen Univ., Essen (Germany). Dept. of Environmental Engineering, Waste and Water

    2010-07-01

    This paper reported on a study in which hydrogen was produced by fermentation of biomass. A continuous process using a non-sterile substrate with a readily available mixed microflora was used on heat treated digested sewage sludge from a wastewater treatment plant. Hydrogen was produced from waste sugar at a pH of 5.2 and a temperature of 37 degrees C. An experimental setup of three 5.5 L working volume continuously stirred tank reactors (CSTR) in different stirring speeds were constructed and operated at 7 different hydraulic retention times (HRTs) and different organic loading rates (OLR). Dissolved organic carbon was examined. The results showed that the stirring speed of 135 rpm had a beneficial effect on hydrogen fermentation. The best performance was obtained in 135 rpm and 8 h of HRT. The amount of gas varied with different OLRs, but could be stabilized on a high level. Methane was not detected when the HRT was less than 16 h. The study identified the reactor in which the highest specific rate of hydrogen production occurred.

  19. Pathway of Fermentative Hydrogen Production by Sulfate-reducing Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Judy D. [Univ. of Missouri, Columbia, MO (United States)

    2015-02-16

    Biofuels are a promising source of sustainable energy. Such biofuels are intermediate products of microbial metabolism of renewable substrates, in particular, plant biomass. Not only are alcohols and solvents produced in this degradative process but energy-rich hydrogen as well. Non photosynthetic microbial hydrogen generation from compounds other than sugars has not been fully explored. We propose to examine the capacity of the abundant soil anaerobes, sulfate-reducing bacteria, for hydrogen generation from organic acids. These apparently simple pathways have yet to be clearly established. Information obtained may facilitate the exploitation of other microbes not yet readily examined by molecular tools. Identification of the flexibility of the metabolic processes to channel reductant to hydrogen will be useful in consideration of practical applications. Because the tools for genetic and molecular manipulation of sulfate-reducing bacteria of the genus Desulfovibrio are developed, our efforts will focus on two strains, D. vulgaris Hildenborough and Desulfovibrio G20.Therefore total metabolism, flux through the pathways, and regulation are likely to be limiting factors which we can elucidate in the following experiments.

  20. Development of efficient photoreactors for solar hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Cunping; Yao, Weifeng; T-Raissi, Ali; Muradov, Nazim [University of Central Florida, Florida Solar Energy Center, 1679 Clearlake Road, Cocoa, Fl 32922-5703 (United States)

    2011-01-15

    The rate of hydrogen evolution from a photocatalytic process depends not only on the activity of a photocatalyst, but also on photoreactor design. Ideally, a photoreactor should be able to absorb the incident light, promoting photocatalytic reactions in an effective manner with minimal photonic losses. There are numerous technical challenges and cost related issues when designing a large-scale photoreactor for hydrogen production. Active stirring of the photocatalyst slurry within a photoreactor is not practical in large-scale applications due to cost related issues. Rather, the design should allow facile self-mixing of the flow field within the photoreactor. In this paper two types of photocatalytic reactor configurations are studied: a batch type design and another involving passive self-mixing of the photolyte. Results show that energy loss from a properly designed photoreactor is mainly due to reflection losses from the photoreactor window. We describe the interplay between the reaction and the photoreactor design parameters as well as effects on the rate of hydrogen evolution. We found that a passive self-mixing of the photolyte is possible. Furthermore, the use of certain engineering polymer films as photoreactor window materials has the potential for substantial cost savings in large-scale applications, with minimal reduction of photon energy utilization efficiency. Eight window materials were tested and the results indicate that Aclar trademark polymer film used as the photoreactor window provides a substantial cost saving over other engineering polymers, especially with respect to fused silica glass at modest hydrogen evolution rates. (author)

  1. Production of hyperthermal hydrogen atoms by an arc discharge

    International Nuclear Information System (INIS)

    Samano, E.C.

    1993-01-01

    A magnetically confined thermal electric arc gas heater has been designed and built as a suitable source of heat for dissociating hydrogen molecules with energy in the range of a few eV. Specifically, the average beam kinetic energy is determined to be 1.5 eV, the dissociation rate is 0.5 atoms per molecule and the atom beam intensity in the forward direction is 1018 atoms/sr-sec. The working pressure in the arc discharge region is from 15 to 25 torr. This novel atom source has been successfully ignited and operated with pure hydrogen during several hours of continuous performance, maintaining its characteristics. The hyperthermal hydrogen atom beam, which is obtained from this source is analyzed and characterized in a high vacuum system, the characterization of the atom beam is accomplished by two different methods: calorimetry and surface ionization. Calorimetic sensor were used for detecting the atom beam by measuring the delivered power of the impinging atoms on the sensor surface. In the second approach an H-surface production backscattering experiment from a low work function surface was conducted. The validity of these two methods is discussed, and the results are compared. The different collision mechanisms to dissociate and ionize hydrogen molecules in the arch discharge are reviewed, as well as the physics of electric arcs. Finally, a Monte Carlo simulation program is used to calculate the ionization probability of low energy atoms perpendicularly reflected from a surface converter, as a model for atom surface ionization

  2. Coupling of copper-chloride hybrid thermochemical water splitting cycle with a desalination plant for hydrogen production from nuclear energy

    International Nuclear Information System (INIS)

    Orhan, Mehmet F.; Dincer, Ibrahim; Naterer, Greg F.; Rosen, Marc A.

    2010-01-01

    Energy and environmental concerns have motivated research on clean energy resources. Nuclear energy has the potential to provide a significant share of energy supply without contributing to environmental emissions and climate change. Nuclear energy has been used mainly for electric power generation, but hydrogen production via thermochemical water decomposition provides another pathway for the utilization of nuclear thermal energy. One option for nuclear-based hydrogen production via thermochemical water decomposition uses a copper-chloride (Cu-Cl) cycle. Another societal concern relates to supplies of fresh water. Thus, to avoid causing one problem while solving another, hydrogen could be produced from seawater rather than limited fresh water sources. In this study we analyze a coupling of the Cu-Cl cycle with a desalination plant for hydrogen production from nuclear energy and seawater. Desalination technologies are reviewed comprehensively to determine the most appropriate option for the Cu-Cl cycle and a thermodynamic analysis and several parametric studies of this coupled system are presented for various configurations. (author)

  3. Advanced Electrochemical Technologies for Hydrogen Production by Alternative Thermochemical Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Lvov, Serguei; Chung, Mike; Fedkin, Mark; Lewis, Michele; Balashov, Victor; Chalkova, Elena; Akinfiev, Nikolay; Stork, Carol; Davis, Thomas; Gadala-Maria, Francis; Stanford, Thomas; Weidner, John; Law, Victor; Prindle, John

    2011-01-06

    Hydrogen fuel is a potentially major solution to the problem of climate change, as well as addressing urban air pollution issues. But a key future challenge for hydrogen as a clean energy carrier is a sustainable, low-cost method of producing it in large capacities. Most of the world's hydrogen is currently derived from fossil fuels through some type of reforming processes. Nuclear hydrogen production is an emerging and promising alternative to the reforming processes for carbon-free hydrogen production in the future. This report presents the main results of a research program carried out by a NERI Consortium, which consisted of Penn State University (PSU) (lead), University of South Carolina (USC), Tulane University (TU), and Argonne National Laboratory (ANL). Thermochemical water decomposition is an emerging technology for large-scale production of hydrogen. Typically using two or more intermediate compounds, a sequence of chemical and physical processes split water into hydrogen and oxygen, without releasing any pollutants externally to the atmosphere. These intermediate compounds are recycled internally within a closed loop. While previous studies have identified over 200 possible thermochemical cycles, only a few have progressed beyond theoretical calculations to working experimental demonstrations that establish scientific and practical feasibility of the thermochemical processes. The Cu-Cl cycle has a significant advantage over other cycles due to lower temperature requirements – around 530 °C and below. As a result, it can be eventually linked with the Generation IV thermal power stations. Advantages of the Cu-Cl cycle over others include lower operating temperatures, ability to utilize low-grade waste heat to improve energy efficiency, and potentially lower cost materials. Another significant advantage is a relatively low voltage required for the electrochemical step (thus low electricity input). Other advantages include common chemical agents and

  4. Critical Research for Cost-Effective Photoelectrochemical Production of Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Liwei [Midwest Optoelectronics, LLC, Toledo, OH (United States); Deng, Xunming [Univ. of Toledo, OH (United States); Abken, Anka [Midwest Optoelectronics, LLC, Toledo, OH (United States); Cao, Xinmin [Midwest Optoelectronics, LLC, Toledo, OH (United States); Du, Wenhui [Midwest Optoelectronics, LLC, Toledo, OH (United States); Vijh, Aarohi [Xunlight Corporation, Toledo, OH (United States); Ingler, William [Univ. of Toledo, OH (United States); Chen, Changyong [Univ. of Toledo, OH (United States); Fan, Qihua [Univ. of Toledo, OH (United States); Collins, Robert [Univ. of Toledo, OH (United States); Compaan, Alvin [Univ. of Toledo, OH (United States); Yan, Yanfa [Univ. of Toledo, OH (United States); Giolando, Dean [Univ. of Toledo, OH (United States); Turner, John [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-10-29

    The objective of this project is to develop critical technologies required for cost-effective production of hydrogen from sunlight and water using a-Si triple junction solar cell based photo-electrodes. In this project, Midwest Optoelectronics, LLC (MWOE) and its collaborating organizations utilize triple junction a-Si thin film solar cells as the core element to fabricate photoelectrochemical (PEC) cells. Triple junction a-Si/a-SiGe/a-SiGe solar cell is an ideal material for making cost-effective PEC system which uses sun light to split water and generate hydrogen. It has the following key features: 1) It has an open circuit voltage (Voc ) of ~ 2.3V and has an operating voltage around 1.6V. This is ideal for water splitting. There is no need to add a bias voltage or to inter-connect more than one solar cell. 2) It is made by depositing a-Si/a-SiGe/aSi-Ge thin films on a conducting stainless steel substrate which can serve as an electrode. When we immerse the triple junction solar cells in an electrolyte and illuminate it under sunlight, the voltage is large enough to split the water, generating oxygen at the Si solar cell side (for SS/n-i-p/sunlight structure) and hydrogen at the back, which is stainless steel side. There is no need to use a counter electrode or to make any wire connection. 3) It is being produced in large rolls of 3ft wide and up to 5000 ft long stainless steel web in a 25MW roll-to-roll production machine. Therefore it can be produced at a very low cost. After several years of research with many different kinds of material, we have developed promising transparent, conducting and corrosion resistant (TCCR) coating material; we carried out extensive research on oxygen and hydrogen generation catalysts, developed methods to make PEC electrode from production-grade a-Si solar cells; we have designed and tested various PEC module cases and carried out extensive outdoor testing; we were able to obtain a solar to hydrogen conversion efficiency (STH

  5. A hydrogen production experiment by the thermo-chemical and electrolytic hybrid hydrogen production in lower temperature range. System viability and preliminary thermal efficiency estimation

    International Nuclear Information System (INIS)

    Takai, Toshihide; Nakagiri, Toshio; Inagaki, Yoshiyuki

    2008-10-01

    A new experimental apparatus by the thermo-chemical and electrolytic Hybrid-Hydrogen production in Lower Temperature range (HHLT) was developed and hydrogen production experiment was performed to confirm the system operability. Hydrogen production efficiency was estimated and technical problems were clarified through the experimental results. Stable operation of the SO 3 electrolysis cell and the sulfur dioxide solution electrolysis cell were confirmed during experimental operation and any damage which would be affected solid operation was not detected under post operation inspection. To improve hydrogen production efficiency, it was found that the reduction of sulfuric acid circulation and the decrease in the cell voltage were key issues. (author)

  6. Manufacture of aromatic hydrocarbons from coal hydrogenation products

    Energy Technology Data Exchange (ETDEWEB)

    A.S. Maloletnev; M.A. Gyul' malieva [Institute for Fossil Fuels, Moscow (Russian Federation)

    2007-08-15

    The manufacture of aromatic hydrocarbons from coal distillates was experimentally studied. A flow chart for the production of benzene, ethylbenzene, toluene, and xylenes was designed, which comprised the hydrogen treatment of the total wide-cut (or preliminarily dephenolized) fraction with FBP 425{sup o}C; fractional distillation of the hydrotreated products into IBP-60, 60-180, 180-300, and 300-425{sup o}C fractions; the hydro-cracking of middle fractions for increasing the yield of gasoline fractions whenever necessary; the catalytic reform of the fractions with bp up to 180{sup o}C; and the extraction of aromatic hydrocarbons.

  7. Multiperiod Production and Ordering Policies for a Retailer-Led Supply Chain through Option Contracts

    Directory of Open Access Journals (Sweden)

    Nana Wan

    2018-01-01

    Full Text Available This paper formulates two groups of multiperiod production and ordering models with call and bidirectional option contracts for a two-party supply chain consisting of one followed supplier and one dominant retailer, respectively. Based on dynamic programming theory, we characterize the optimal policy structures for two partners in each period. We also provide an approximation for the corresponding policy parameters evaluation in two cases. Then, we investigate the impacts of different option contracts and the demand risk on the decisions and performances of two members. Our results suggest that, whether concerning call or bidirectional option contracts, the optimal policies for two members always follow a base stock type. When the price parameters are the same for different option contracts, the service levels of both the system and the retailer are higher with call option contracts than with bidirectional ones, whereas the retailer’s inventory risk is lower with bidirectional option contracts than with call ones. Under the same conditions stated above, call option contracts can always benefit the supplier, but not the retailer. Owing to the retailer’s dominant position, call option contracts are better choice for the supply chain if the option (exercise price is low (high, while bidirectional option contracts are more suitable choice for the supply chain if the option (exercise price is high (low. In addition, an increase in the demand risk would prompt the supplier to increase his production quantity and the retailer to reduce the initial firm order quantity, either with call or bidirectional option contracts.

  8. Hydrogen

    Directory of Open Access Journals (Sweden)

    John O’M. Bockris

    2011-11-01

    Full Text Available The idea of a “Hydrogen Economy” is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO2 in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H2 from the electrolyzer. Methanol made with CO2 from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan. Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  9. Valuation of exploration and production assets. An overview of real options models

    International Nuclear Information System (INIS)

    Dias, Marco Antonio Guimaraes

    2004-01-01

    This paper presents a set of selected real options models to evaluate investments in petroleum exploration and production (E and P) under market and technical uncertainties. First are presented some simple examples to develop the intuition about concepts like option value and optimal option exercise, comparing them with the concepts from the traditional net present value (NPV) criteria. Next, the classical model of Paddock, Siegel and Smith is presented, including a discussion on the practical values for the input parameters. The modeling of oil price uncertainty is presented by comparing some alternative stochastic processes. Other E and P applications discussed here are the selection of mutually exclusive alternatives under uncertainty, the wildcat drilling decision, the appraisal investment decisions, and the analysis of option to expand the production through optional wells

  10. Effect of some environmental parameters on fermentative hydrogen production by Enterobacter cloacae DM11

    Energy Technology Data Exchange (ETDEWEB)

    Nath, K.; Kumar, A.; Das, D. [Indian Inst. of Technology, Kharagpur (India). Dept. of Biotechnology, Fermentation Technology Laboratory

    2006-06-15

    This study addressed the issue of using biological systems for hydrogen production as an environmentally sound alternative to conventional thermochemical and electrochemical processes. In particular, it examined the potential for anaerobic fermentation for biological hydrogen production and the possibility of coupling gaseous energy generation with simultaneous treatment of biodegradable waste materials. The study focused on hydrogen production by anaerobic fermentation using Enterobacter cloacae DM11, a Gram-negative, motile facultative anaerobe. Although hydrogen production by these bacteria depends on many environmental parameters, there is very little information on the effects of these factors in the hydrogen production potential of this organism. For that reason, this study examined the effect of initial medium pH, reaction temperature, initial glucose concentration, and iron (Fe2+) concentration on the fermentative production of hydrogen. Fermentative hydrogen production was carried out by Enterobacter cloacae DM11, using glucose as the substrate. Batch cultivations were performed in a 500 ml custom-designed vertical tubular bioreactor. The maximum molar yield of hydrogen was 3.31 mol (mol glucose){sub 1}. The rate and cumulative volume of hydrogen production decreased at higher initial glucose concentration. The pH of 6.5 at a temperature of 37 degrees C was most suitable for maximum rate of production of hydrogen in batch fermentation. The addition of Fe2+ on hydrogen production had a marginal enhancing effect on total hydrogen production. A simple model developed from the modified Gompertz equation was used to fit the cumulative hydrogen production curve and to estimate the hydrogen production potential, maximum production rate, and lag time. It was concluded that these study results could be used in the development of a high rate continuous hydrogen production process. 30 refs., 4 tabs., 3 figs.

  11. HIGH-TEMPERATURE ELECTROLYSIS FOR HYDROGEN PRODUCTION FROM NUCLEAR ENERGY

    Energy Technology Data Exchange (ETDEWEB)

    James E. O& #39; Brien; Carl M. Stoots; J. Stephen Herring; Joseph J. Hartvigsen

    2005-10-01

    An experimental study is under way to assess the performance of solid-oxide cells operating in the steam electrolysis mode for hydrogen production over a temperature range of 800 to 900ºC. Results presented in this paper were obtained from a ten-cell planar electrolysis stack, with an active area of 64 cm2 per cell. The electrolysis cells are electrolyte-supported, with scandia-stabilized zirconia electrolytes (~140 µm thick), nickel-cermet steam/hydrogen electrodes, and manganite air-side electrodes. The metallic interconnect plates are fabricated from ferritic stainless steel. The experiments were performed over a range of steam inlet mole fractions (0.1 - 0.6), gas flow rates (1000 - 4000 sccm), and current densities (0 to 0.38 A/cm2). Steam consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation. Cell operating potentials and cell current were varied using a programmable power supply. Hydrogen production rates up to 90 Normal liters per hour were demonstrated. Values of area-specific resistance and stack internal temperatures are presented as a function of current density. Stack performance is shown to be dependent on inlet steam flow rate.

  12. Novel Auto thermal Reforming Process for Pure Hydrogen Production

    International Nuclear Information System (INIS)

    Chen, Z.; Elnashaie, S.S.E.H.

    2004-01-01

    Steam reforming of heptane for hydrogen production is investigated in a novel Circulating Fluidized Bed Membrane Reformer-Regenerator system (CFBMRR) utilizing a number of hydrogen and oxygen selective membranes. It is shown that although the amount of carbon deposition is significant, the effect on catalyst deactivation is negligible due to the large solid to gas mass feed ratio and the continuous catalyst regeneration in the system. The combustion of the deposited carbon in the catalyst regenerator supplies the heat needed for the endothermic steam reforming as well as the combustion of flammable gases from the riser reformer. Auto thermal operation is achievable for the entire adiabatic reformer-regenerator system when the exothermic heat generated from the regenerator is sufficient to compensate the endothermic heat consumed in the reformer. Multiplicity of the steady states exists in the range of steam to carbon feed ratio of 1.4442.251 mol/mol. The novel configuration has the potential advantages not only with respect to hydrogen production but also energy minimization

  13. Extraction of Carbon Dioxide and Hydrogen from Seawater and Hydrocarbon Production Therefrom

    Science.gov (United States)

    2016-04-05

    acidification of seawater by subjecting the seawater to an ion exchange reaction to exchange H.sup. ions for Na.sup. ions. Carbon dioxide may be...extracted from the acidified seawater. Optionally, the ion exchange reaction can be conducted under conditions which produce hydrogen as well as carbon dioxide . The carbon dioxide and hydrogen may be used to produce hydrocarbons.

  14. Production of hydrogen from by-products of food industries by rhodospirillaceae

    Energy Technology Data Exchange (ETDEWEB)

    Reh, U.

    1983-11-01

    The decomposition of organic substances from food-by-products as whey, beet sugar molasses, cane-sugar-molasses and potato-water by the Rhodospirillaceae Rp. capsulata, Rp. acidophila, Rm. vannielii, Rs. rubrum, and Rs. tenue to hydrogen and carbon dioxide were tested. In a pre-cultivation Lactobacillus bulgaricus converted the sugars of the by-products into lactic acid, which is easier in handling. Rs. rubrum was superior in producing hydrogen from this nutrient. It released from whey up to 56% of the substrate hydrogen, from beet sugar molasses 42%, from cane-sugar-molasses 89% and from potato-water 19%. Out-door-researches were made to evaluate the decrease of hydrogen yield under the influence of weather as well as day and night periods compared to the homogeneous conditions of the laboratory. From 200 m/sup 3/ whey, the daily output of a dairy, 4000 m/sup 3/ hydrogen corresponding to an energy equivalent of 1000 l fuel oil could be produced. To achieve this, 130 000 m/sup 2/ have to be covered with batch fermenters. These results show, that there is nearly no hope to decompose food by-products by Rhodospirillaceae in large scale technology, unless a new processing technology using a flow-fermenter and raising the hydrogen production significantly will be found.

  15. Chemical Hydride Slurry for Hydrogen Production and Storage

    Energy Technology Data Exchange (ETDEWEB)

    McClaine, Andrew W

    2008-09-30

    The purpose of this project was to investigate and evaluate the attractiveness of using a magnesium chemical hydride slurry as a hydrogen storage, delivery, and production medium for automobiles. To fully evaluate the potential for magnesium hydride slurry to act as a carrier of hydrogen, potential slurry compositions, potential hydrogen release techniques, and the processes (and their costs) that will be used to recycle the byproducts back to a high hydrogen content slurry were evaluated. A 75% MgH2 slurry was demonstrated, which was just short of the 76% goal. This slurry is pumpable and storable for months at a time at room temperature and pressure conditions and it has the consistency of paint. Two techniques were demonstrated for reacting the slurry with water to release hydrogen. The first technique was a continuous mixing process that was tested for several hours at a time and demonstrated operation without external heat addition. Further work will be required to reduce this design to a reliable, robust system. The second technique was a semi-continuous process. It was demonstrated on a 2 kWh scale. This system operated continuously and reliably for hours at a time, including starts and stops. This process could be readily reduced to practice for commercial applications. The processes and costs associated with recycling the byproducts of the water/slurry reaction were also evaluated. This included recovering and recycling the oils of the slurry, reforming the magnesium hydroxide and magnesium oxide byproduct to magnesium metal, hydriding the magnesium metal with hydrogen to form magnesium hydride, and preparing the slurry. We found that the SOM process, under development by Boston University, offers the lowest cost alternative for producing and recycling the slurry. Using the H2A framework, a total cost of production, delivery, and distribution of $4.50/kg of hydrogen delivered or $4.50/gge was determined. Experiments performed at Boston

  16. Hydrogenation of Maltose in Catalytic Membrane Reactor for Maltitol Production

    Directory of Open Access Journals (Sweden)

    Makertihartha I.G.B.N.

    2018-01-01

    Full Text Available Maltitol is one of the low-calorie sweeteners which has a major role in food industries. Due to its characteristics of comparable sweetness level to sucrose, maltitol can be a suitable sugar replacement. In this work, catalytic membrane reactor (CMR was examined in maltitol production through hydrogenation of maltose. Commercial ceramic membrane impregnated with Kalcat 8030 Nickel was used as the CMR. The reaction was conducted at a batch mode operation, 95 to 110°C of temperature, and 5 to 8 bar of pressure. In the range of working conditions used in this study, up to 47% conversion was achieved. The reaction conversion was significantly affected by temperature and pressure. Results of this preliminary study indicated that CMR can be used for hydrogenation of maltose with good performance under a relatively low operating pressure.

  17. Novel technique for coal pyrolysis and hydrogenation production analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pfefferle, L.D.

    1990-01-01

    The overall objective of this study is to establish vacuum ultraviolet photoionization-MS and VUV pulsed EI-MS as useful tools for a simpler and more accurate direct mass spectrometric measurement of a broad range of hydrocarbon compounds in complex mixtures for ultimate application to the study of the kinetics of coal hydrogenation and pyrolysis processes. The VUV-MS technique allows ionization of a broad range of species with minimal fragmentation. Many compounds of interest can be detected with the 118 nm wavelength, but additional compound selectivity is achievable by tuning the wavelength of the photo-ionization source in the VUV. Resonant four wave mixing techniques in Hg vapor will allow near continuous tuning from about 126 to 106 nm. This technique would facilitate the scientific investigation of coal upgrading processes such as pyrolysis and hydrogenation by allowing accurate direct analysis of both stable and intermediate reaction products.

  18. Management options for food production systems affected by a nuclear accident. Task 2 options for minimising the production of contaminated milk

    CERN Document Server

    Smith, J G; Mercer, J A; Nisbet, A F; Wilkins, B T

    2002-01-01

    This report describes an evaluation of three possible means by which the production of waste milk could be reduced following a nuclear accident. The three options studied are the reduction of contaminated pasture in the diet, the drying off of lactating dairy cattle and the slaughter of dairy cattle. The practicability of each of these is considered using criteria such as technical feasibility, capacity, cost, impact and acceptability, where appropriate. In theory reductions in waste milk arisings can be achieved with each option, however, there are a number of limitations associated with their practical application.

  19. Management options for food production systems affected by a nuclear accident. Task 2: options for minimising the production of contaminated milk

    International Nuclear Information System (INIS)

    Smith, J.G.; Nisbet, A.F.; Mercer, J.A.; Brown, J.; Wilkins, B.T.

    2002-01-01

    This report describes an evaluation of three possible means by which the production of waste milk could be reduced following a nuclear accident. The three options studied are the reduction of contaminated pasture in the diet, the drying off of lactating dairy cattle and the slaughter of dairy cattle. The practicability of each of these is considered using criteria such as technical feasibility, capacity, cost, impact and acceptability, where appropriate. In theory reductions in waste milk arisings can be achieved with each option, however, there are a number of limitations associated with their practical application. (author)

  20. Process and reactor design for biophotolytic hydrogen production.

    Science.gov (United States)

    Tamburic, Bojan; Dechatiwongse, Pongsathorn; Zemichael, Fessehaye W; Maitland, Geoffrey C; Hellgardt, Klaus

    2013-07-14

    The green alga Chlamydomonas reinhardtii has the ability to produce molecular hydrogen (H2), a clean and renewable fuel, through the biophotolysis of water under sulphur-deprived anaerobic conditions. The aim of this study was to advance the development of a practical and scalable biophotolytic H2 production process. Experiments were carried out using a purpose-built flat-plate photobioreactor, designed to facilitate green algal H2 production at the laboratory scale and equipped with a membrane-inlet mass spectrometry system to accurately measure H2 production rates in real time. The nutrient control method of sulphur deprivation was used to achieve spontaneous H2 production following algal growth. Sulphur dilution and sulphur feed techniques were used to extend algal lifetime in order to increase the duration of H2 production. The sulphur dilution technique proved effective at encouraging cyclic H2 production, resulting in alternating Chlamydomonas reinhardtii recovery and H2 production stages. The sulphur feed technique enabled photobioreactor operation in chemostat mode, resulting in a small improvement in H2 production duration. A conceptual design for a large-scale photobioreactor was proposed based on these experimental results. This photobioreactor has the capacity to enable continuous and economical H2 and biomass production using green algae. The success of these complementary approaches demonstrate that engineering advances can lead to improvements in the scalability and affordability of biophotolytic H2 production, giving increased confidence that H2 can fulfil its potential as a sustainable fuel of the future.

  1. A novel biological hydrogen production system. Impact of organic loading

    Energy Technology Data Exchange (ETDEWEB)

    Hafez, Hisham; Nakhla, George; El Naggar, Hesham [Western Ontario Univ. (Canada)

    2010-07-01

    The patent-pending system comprises a novel biohydrogen reactor with a gravity settler for decoupling of SRT from HRT. Two biohydrogenators were operated for 220 days at 37 C, hydraulic retention time 8 h and solids retention time ranged from 1.4 to 2 days under four different glucose concentrations of 2, 8, 16, 32, 48 and 64 g/L, corresponding to organic loading rates of 6.5-206 kg COD/m{sup 3}-d, and started up using anaerobically-digested sludge from the St. Marys wastewater treatment plant (St.Mary, Ontario, Canada) as the seed. The system steadily produced hydrogen with no methane. A maximum hydrogen yield of 3.1 mol H{sub 2} /mol glucose was achieved in the system for all the organic loading rates with an average of 2.8mol H{sub 2} /mol glucose. Acetate and butyrate were the main effluent liquid products at concentrations ranging from 640-7400 mg/L and 400-4600 mg/l, respectively, with no lactate detection. Microbial community analysis using denaturing gradient gel electrophoresis (DGGE) confirmed the absence of lactate producing bacteria Lactobacillus fermentum and other non-hydrogen producing species, and the predominance of various Clostridium species. Biomass concentrations in the biohydrogenators were steady, during the runs, varying form 1500 mg/L at the OLR of 6.5 kg COD/m{sup 3}-d to 14000 mg/L at the 104 kg COD/m{sup 3}-d, thus emphasizing the potential of this novel system for sustained stable hydrogen production and prevention of biomass washout. (orig.)

  2. Storage and production of hydrogen for fuel cell applications

    Science.gov (United States)

    Aiello, Rita

    The increased utilization of proton-exchange membrane (PEM) fuel cells as an alternative to internal combustion engines is expected to increase the demand for hydrogen, which is used as the energy source in these systems. The objective of this work is to develop and test new methods for the storage and production of hydrogen for fuel cells. Six ligand-stabilized hydrides were synthesized and tested as hydrogen storage media for use in portable fuel cells. These novel compounds are more stable than classical hydrides (e.g., NaBH4, LiAlH4) and react to release hydrogen less exothermically upon hydrolysis with water. Three of the compounds produced hydrogen in high yield (88 to 100 percent of the theoretical) and at significantly lower temperatures than those required for the hydrolysis of NaBH4 and LiAlH4. However, a large excess of water and acid were required to completely wet the hydride and keep the pH of the reaction medium neutral. The hydrolysis of the classical hydrides with steam can overcome these limitations. This reaction was studied in a flow reactor and the results indicate that classical hydrides can be hydrolyzed with steam in high yields at low temperatures (110 to 123°C) and in the absence of acid. Although excess steam was required, the pH of the condensed steam was neutral. Consequently, steam could be recycled back to the reactor. Production of hydrogen for large-scale transportation fuel cells is primarily achieved via the steam reforming, partial oxidation or autothermal reforming of natural gas or the steam reforming of methanol. However, in all of these processes CO is a by-product that must be subsequently removed because the Pt-based electrocatalyst used in the fuel cells is poisoned by its presence. The direct cracking of methane over a Ni/SiO2 catalyst can produce CO-free hydrogen. In addition to hydrogen, filamentous carbon is also produced. This material accumulates on the catalyst and eventually deactivates it. The Ni/SiO2 catalyst

  3. Renewable hydrogen production by catalytic steam reforming of peanut shells pyrolysis products

    Energy Technology Data Exchange (ETDEWEB)

    Evans, R.J.; Chornet, E.; Czernik, S.; Feik, C.; French, R.; Phillips, S. [National Renewable Energy Lab., Golden, CO (United States); Abedi, J.; Yeboah, Y.D. [Clark Atlanta Univ., Atlanta, GA (United States); Day, D.; Howard, J. [Scientific Carbons Inc., Blakely, GA (United States); McGee, D. [Enviro-Tech Enterprises Inc., Matthews, NC (United States); Realff, M.J. [Georgia Inst. of Technology, Atlanta, GA (United States)

    2002-07-01

    A project was initiated to determine the feasibility of producing hydrogen from agricultural wastes at a cost comparable to methane-reforming technologies. It is possible that hydrogen can be produced cost competitively with natural gas reforming by integrating hydrogen production with existing waste product utilization processes. This report presents initial results of an engineering demonstration project involving the development of a steam reforming process by a team of government, industrial and academic organizations working at the thermochemical facility at the National Renewable Energy Laboratory. The process is to be used on the gaseous byproducts from a process for making activated carbon from densified peanut shells. The reactor is interfaced with a 20 kg/hour fluidized-bed fast pyrolysis system and takes advantage of process chemical analysis and computer control and monitoring capacity. The reactor will be tested on the pyrolysis vapors produced in the activated carbon process. The final phase of the project will look at the production of hydrogen through the conversion of residual CO to H{sub 2} over a shift catalyst and separating hydrogen from CO{sub 2} using pressure swing adsorption. The purified oxygen will be mixed with natural gas and used for transportation purposes. The study demonstrates the potential impact of hydrogen and bioenergy on the economic development and diversification of rural areas. 11 refs., 2 tabs., 5 figs.

  4. Low Carbon Technology Options for the Natural Gas Electricity Production

    Science.gov (United States)

    The ultimate goal of this task is to perform environmental and economic analysis of natural gas based power production technologies (different routes) to investigate and evaluate strategies for reducing emissions from the power sector. It is a broad research area. Initially, the...

  5. Designing foods: animal product options in the marketplace

    National Research Council Canada - National Science Library

    1988-01-01

    ... of Animal Products Board on Agriculture National Research Council NATIONAL ACADEMY PRESS Washington, D.C. 1988 i Copyrighttrue Please breaks inserted. are Page files. accidentally typesetting been have may original from the errors not typographic original retained, and from the created cannot be files XML from however, formatting, recomposed typesetti...

  6. US work on technical and economic aspects of electrolytic, thermochemical, and hybrid processes for hydrogen production at temperatures below 550 deg. C

    International Nuclear Information System (INIS)

    Petri, M.C.; Yyldyz, B.; Klickman, A.E.

    2006-01-01

    Hydrogen demand is increasing, but there are few options for affordable hydrogen production free of greenhouse gas emissions. Nuclear power is one of the most promising options. Most research is focused on high-temperature electrolytic and thermochemical processes for nuclear-generated hydrogen, but it will be many years before very high temperature reactors become commercially available. For light water reactors or supercritical reactors, low-temperature water electrolysis is a currently available technology for hydrogen production. Higher efficiencies may be gained through thermo-electrochemical hydrogen production cycles, but there are only a limited number that have heat requirements consistent with the lower temperatures of light-water reactor technology. Indeed, active research is ongoing for only three such cycles in the USA. Reductions in electricity and system costs would be needed (or the imposition of a carbon tax) for low-temperature water electrolysis to compete with today's costs for steam methane reformation. The interactions between hydrogen and electricity markets and hydrogen and electricity producers are complex and will evolve as the markets evolve. (author)

  7. Options for electricity production, the actual opportunities and regulatory framework

    International Nuclear Information System (INIS)

    Raphals, P.

    2006-01-01

    Thermal power and nuclear power represent the traditional methods of generating electricity. This paper presented opportunities for alternative centralized power production methods that include wind energy, biomass and solar energy. It also discussed decentralized alternatives for power generation, such as geothermal energy and cogeneration, including microturbines. The primary focus was on aspects of competitive market design for residential and small commercial applications as well as commercial and industrial applications. Law 116 of Quebec's Energy Board was reviewed in terms of energy policy and utility regulation. In particular, the framework agreement between Hydro-Quebec Production (HQP) and Hydro-Quebec Distribution (HQD) was discussed with reference to balancing electricity produced from renewable energy sources and energy security. The presentation also addressed issues regarding the role of competition, regulation and environmental implications of electricity trade. refs., tabs., figs

  8. Hydrogen production via autothermal reforming of Diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Pasel, J.; Meissner, J.; Pors, Z.; Cremer, P.; Peters, R.; Stolten, D. [Forschungszentrum Juelich GmbH, Institute for Materials and Processes in Energy Systems (IWV 3), D-52425 Juelich (Germany); Palm, C. [BASF Schwarzheide GmbH, Schipkauer Str. 1, Einheit PFO/I, D-01986 Schwarzheide (Germany)

    2004-08-01

    Hydrogen, for the operation of a polymer electrolyte fuel cell, can be produced by means of autothermal reforming of liquid hydrocarbons. Experiments, especially with ATR 4, which produces a molar hydrogen stream equivalent to an electrical power in the fuel cell of 3 kW, showed that the process should be preferably run in the temperature range between 700 and 850 . This ensures complete hydrocarbon conversion and avoids the formation of considerable amounts of methane and organic compounds in the product water. Experiments with commercial diesel showed promising results but insufficient long-term stability. Experiments concerning the ignition of the catalytic reaction inside the reformer proved that within 60 s after the addition of water and hydrocarbons the reformer reached 95% of its maximum molar hydrogen flow. Measurements, with respect to reformer start-up, showed that it takes approximately 7 min. to heat up the monolith to a temperature of 340 using an external heating device. Modelling is performed, aimed at the modification of the mixing chamber of ATR Type 5, which will help to amend the homogeneous blending of diesel fuel with air and water in the mixing chamber. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  9. Status of photoelectrochemical production of hydrogen and electrical energy

    Science.gov (United States)

    Byvik, C. E.; Walker, G. H.

    1976-01-01

    The efficiency for conversion of electromagnetic energy to chemical and electrical energy utilizing semiconductor single crystals as photoanodes in electrochemical cells was investigated. Efficiencies as high as 20 percent were achieved for the conversion of 330 nm radiation to chemical energy in the form of hydrogen by the photoelectrolysis of water in a SrTiO3 based cell. The SrTiO3 photoanodes were shown to be stable in 9.5 M NaOH solutions for periods up to 48 hours. Efficiencies of 9 percent were measured for the conversion of broadband visible radiation to hydrogen using n-type GaAs crystals as photoanodes. Crystals of GaAs coated with 500 nm of gold, silver, or tin for surface passivation show no significant change in efficiency. By suppressing the production of hydrogen in a CdSe-based photogalvanic cell, an efficiency of 9 percent was obtained in conversion of 633 nm light to electrical energy. A CdS-based photogalvanic cell produced a conversion efficiency of 5 percent for 500 nm radiation.

  10. Hydrogen production by gasification of municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, R. III

    1994-05-20

    As fossil fuel reserves run lower and lower, and as their continued widespread use leads toward numerous environmental problems, the need for clean and sustainable energy alternatives becomes ever clearer. Hydrogen fuel holds promise as such as energy source, as it burns cleanly and can be extracted from a number of renewable materials such as municipal solid waste (MSW), which can be considered largely renewable because of its high content of paper and biomass-derived products. A computer model is being developed using ASPEN Plus flow sheeting software to simulate a process which produces hydrogen gas from MSW; the model will later be used in studying the economics of this process and is based on an actual Texaco coal gasification plant design. This paper gives an overview of the complete MSW gasification process, and describes in detail the way in which MSW is modeled by the computer as a process material. In addition, details of the gasifier unit model are described; in this unit modified MSW reacts under pressure with oxygen and steam to form a mixture of gases which include hydrogen.

  11. Pricing of Traffic Light Options and other Hybrid Products

    DEFF Research Database (Denmark)

    Kokholm, Thomas

    2009-01-01

    companies stay solvent in the traffic light stress test system introduced by the Danish Financial Supervisory Authorities in 2001. Similar systems are now being implemented in several other European countries. A pricing approach for general payoffs is presented and illustrated with simulation via...... the pricing of a hybrid derivative known as the EUR Sage Note. The approach can be used to price many existing structured products....

  12. Hydrogen production by hyperthermophilic and extremely thermophilic bacteria and archaea: mechanisms for reductant disposal

    NARCIS (Netherlands)

    Verhaart, M.R.A.; Bielen, A.A.M.; Oost, van der J.; Stams, A.J.M.; Kengen, S.W.M.

    2010-01-01

    Hydrogen produced from biomass by bacteria and archaea is an attractive renewable energy source. However, to make its application more feasible, microorganisms are needed with high hydrogen productivities. For several reasons, hyperthermophilic and extremely thermophilic bacteria and archaea are

  13. Hydrogen production from high moisture content biomass in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Antal, M.J. Jr.; Xu, X. [Univ. of Hawaii, Honolulu, HI (United States). Hawaii Natural Energy Inst.

    1998-08-01

    By mixing wood sawdust with a corn starch gel, a viscous paste can be produced that is easily delivered to a supercritical flow reactor by means of a cement pump. Mixtures of about 10 wt% wood sawdust with 3.65 wt% starch are employed in this work, which the authors estimate to cost about $0.043 per lb. Significant reductions in feed cost can be achieved by increasing the wood sawdust loading, but such an increase may require a more complex pump. When this feed is rapidly heated in a tubular flow reactor at pressures above the critical pressure of water (22 MPa), the sawdust paste vaporizes without the formation of char. A packed bed of carbon catalyst in the reactor operating at about 650 C causes the tarry vapors to react with water, producing hydrogen, carbon dioxide, and some methane with a trace of carbon monoxide. The temperature and history of the reactor`s wall influence the hydrogen-methane product equilibrium by catalyzing the methane steam reforming reaction. The water effluent from the reactor is clean. Other biomass feedstocks, such as the waste product of biodiesel production, behave similarly. Unfortunately, sewage sludge does not evidence favorable gasification characteristics and is not a promising feedstock for supercritical water gasification.

  14. Hydrogen production characteristics of the organic fraction of municipal solid wastes by anaerobic mixed culture fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Li; Yu, Zhang [Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640 (China)]|[Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Zhenhong, Yuan; Yongming, Sun; Xiaoying, Kong [Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640 (China)

    2009-01-15

    The hydrogen production from the organic fraction of municipal solid waste (OFMSW) by anaerobic mixed culture fermentation was investigated using batch experiments at 37 C. Seven varieties of typical individual components of OFMSW including rice, potato, lettuce, lean meat, oil, fat and banyan leaves were selected to estimate the hydrogen production potential. Experimental results showed that the boiling treated anaerobic sludge was effective mixed inoculum for fermentative hydrogen production from OFMSW. Mechanism of fermentative hydrogen production indicates that, among the OFMSW, carbohydrates is the most optimal substrate for fermentative hydrogen production compared with proteins, lipids and lignocelluloses. This conclusion was also substantiated by experimental results of this study. The hydrogen production potentials of rice, potato and lettuce were 134 mL/g-VS, 106 mL/g-VS, and 50 mL/g-VS respectively. The hydrogen percentages of the total gas produced from rice, potato and lettuce were 57-70%, 41-55% and 37-67%. (author)

  15. The safe production of hydrogen by nuclear power

    International Nuclear Information System (INIS)

    Verfondern, Karl

    2009-01-01

    One of the most promising 'GEN-IV' nuclear reactor concepts is the Very High Temperature Reactor (VHTR). It is characterized by a helium-cooled, graphite moderated, thermal neutron spectrum reactor core of 400-600 MW(th). Coolant outlet temperatures of 900-1000 .deg. C ideally suited for a wide spectrum of high temperature process heat or process steam applications, which allow to deliver, besides the classical electricity, also non-electrical products such as hydrogen or other fuels. In a future energy economy, hydrogen as a storable medium could adjust a variable demand for electricity by means of fuel cell power plants providing much more flexibility in optimized energy structures. The mass production of hydrogen is a major goal for Gen-IV systems. In a nuclear hydrogen production facility, the coupling between the nuclear plant and the process heat/steam application side is given by an intermediate heat exchanger (IHX), a component which provides a clear separation preventing the primary coolant from accessing the heat application plant and, vice versa, any process gases from being routed through the reactor containment. The physical separation has the advantage that the heat application facility can be conventionally designed, and repair works can be conducted under non-nuclear conditions. With regard to the safety of combined nuclear and chemical facilities, apart from their own specific categories of hazards, a qualitatively new class of events will have to be taken into account characterized by interacting influences. Arising problems to be covered by a decent overall safety concept are the questions of safety of the nuclear plant in case of fire and explosion hazards resulting from the leakage of flammable substances, the tolerable tritium contamination of the product hydrogen, or the situations of thermo-dynamic feedback in case of a loss of heat source (nuclear) or heat sink (chemical) resulting in thermal turbulences. A safety-related issue is the

  16. Life Cycle Assessment of Hydrogen Production and Consumption in an Isolated Territory

    DEFF Research Database (Denmark)

    Zhao, Guangling; Pedersen, Allan Schrøder

    2018-01-01

    cylinder by road and ferry. The hydrogen is used to provide electricity and heat through fuel cell stacks as well as hydrogen fuel for fuel cell vehicles. In order to evaluate the environmental impacts related to the hydrogen production and utilisation, this work conducts an investigation of the entire...... life cycle of the described hydrogen production, transportation, and utilisation. All the processes related to the equipment manufacture, operation, maintenance, and disposal are considered in this study....

  17. Enhanced thermophilic fermentative hydrogen production from cassava stillage by chemical pretreatments.

    Science.gov (United States)

    Wang, Wen; Luo, Gang; Xie, Li; Zhou, Qi

    2013-01-01

    Acid and alkaline pretreatments for enhanced hydrogen production from cassava stillage were investigated in the present study. The result showed that acid pretreatment was suitable for enhancement of soluble carbohydrate while alkaline pretreatment stimulated more soluble total organic carbon production from cassava stillage. Acid pretreatment thereby has higher capacity to promote hydrogen production compared with alkaline pretreatment. Effects of pretreatment temperature, time and acid concentration on hydrogen production were also revealed by response surface methodology. The results showed that the increase of all factors increased the soluble carbohydrate production, whereas hydrogen production was inhibited when the factors exceeded their optimal values. The optimal conditions for hydrogen production were pretreatment temperature 89.5 °C, concentration 1.4% and time 69 min for the highest hydrogen production of 434 mL, 67% higher than raw cassava stillage.

  18. Efficient production and economics of the clean fuel hydrogen. Paper no. IGEC-1-Keynote-Elnashaie

    International Nuclear Information System (INIS)

    Elnashaie, S.

    2005-01-01

    This paper/plenary lecture to this green energy conference briefly discusses six main issues: 1) The future of hydrogen economy; 2) Thermo-chemistry of hydrogen production for different techniques of autothermic operation using different feedstocks; 3) Improvement of the hydrogen yield and minimization of reformer size through combining fast fluidization with hydrogen and oxygen membranes together with CO 2 sequestration; 4) Efficient production of hydrogen using novel Autothermal Circulating Fluidized Bed Membrane Reformer (ACFBMR); 5) Economics of hydrogen production; and, 6) Novel gasification process for hydrogen production from biomass. It is shown that hydrogen economy is not a Myth as some people advocate, and that with well-directed research it will represent a bright future for humanity utilizing such a clean, everlasting fuel, which is also free of deadly conflicts for the control of energy sources. It is shown that autothermic production of hydrogen using novel reformers configurations and wide range of feedstocks is a very promising route towards achieving a successful hydrogen economy. A novel process for the production of hydrogen from different renewable biomass sources is presented and discussed. The process combines the principles of pyrolysis with the simultaneous use of catalyst, membranes and CO 2 sequestration to produce pure hydrogen directly from the unit. Some of the novel processes presented are essential components of modern bio-refineries. (author)

  19. Offshore wind farms for hydrogen production subject to uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Kassem, Nabil [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Energy Processes

    2002-07-01

    Wind power is a source of clean, nonpolluting electricity, which is fully competitive, if installed at favorable wind sites, with fossil fuel and nuclear power generation. Major technical growth has been in Europe, where government policies and high conventional energy costs favor the use of wind power. As part of its strategy, the EU-Commission has launched a target to increase the installed capacity of Wind power from 7 GWe, in 1998 to 40 GWe by year 2012. Wind power is an intermittent electricity generator, thus it does not provide electric power on an 'as needed' basis. Off-peak power generated from offshore wind farms can be utilized for hydrogen production using water electrolysis. Like electricity, hydrogen is a second energy carrier, which will pave the way for future sustainable energy systems. It is environmentally friendly, versatile, with great potentials in stationary and mobile power applications. Water electrolysis is a well-established technology, which depends on the availability of cheap electrical power. Offshore wind farms have longer lifetime due to lower mechanical fatigue loads, yet to be economic, they have to be of sizes greater than 150 MW using large turbines (> 1.5 MW). The major challenge in wind energy assessment is how accurately the wind speed and hence the error in wind energy can be predicted. Therefore, wind power is subject to a great deal of uncertainties, which should be accounted for in order to provide meaningful and reliable estimates of performance and economic figures-of-merit. Failure to account for uncertainties would result in deterministic estimates that tend to overstate performance and underestimate costs. This study uses methods of risk analysis to evaluate the simultaneous effect of multiple input uncertainties, and provide Life Cycle Assessment (LCA) of the-economic viability of offshore wind systems for hydrogen production subject to technical and economical uncertainties (Published in summary form only)

  20. Improvement of anaerobic bio-hydrogen gas production from organic sludge waste

    International Nuclear Information System (INIS)

    Lee, S.; Lee, Y. H.

    2009-01-01

    Microbial hydrogen gas production from organic matters stands out as one of the most promising alternatives for sustainable green energy production. Based on the literature review, investigation of anaerobic bio-hydrogen gas production from organic sludge waste using a mixed culture has been very limited. The objective of this study was to assess the anaerobic bio-hydrogen gas production from organic sludge waste under various conditions. (Author)

  1. Technology status of hydrogen road vehicles. IEA technical report from the IEA Agreement of the production and utilization of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, T.A.

    1998-01-31

    The report was commissioned under the Hydrogen Implementing Agreement of the International Energy Agency (IEA) and examines the state of the art in the evolving field of hydrogen-fueled vehicles for road transport. The first phase surveys and analyzes developments since 1989, when a comprehensive review was last published. The report emphasizes the following: problems, especially backfiring, with internal combustion engines (ICEs); operational safety; hydrogen handling and on-board storage; and ongoing demonstration projects. Hydrogen vehicles are receiving much attention, especially at the research and development level. However, there has been a steady move during the past 5 years toward integral demonstrations of operable vehicles intended for public roads. Because they emit few, or no greenhouse gases, hydrogen vehicles are beginning to be taken seriously as a promising solution to the problems of urban air quality. Since the time the first draft of the report was prepared (mid-19 96), the 11th World Hydrogen Energy Conference took place in Stuttgart, Germany. This biennial conference can be regarded as a valid updating of the state of the art; therefore, the 1996 results are included in the current version. Sections of the report include: hydrogen production and distribution to urban users; on-board storage and refilling; vehicle power units and drives, and four appendices titled: 'Safety questions of hydrogen storage and use in vehicles', 'Performance of hydrogen fuel in internal production engines for road vehicles, 'Fuel cells for hydrogen vehicles', and 'Summaries of papers on hydrogen vehicles'. (refs., tabs.)

  2. Assessing alternative production options for eco-efficient food supply chains using multi-objective optimization

    NARCIS (Netherlands)

    Banasik, Aleksander; Kanellopoulos, Argyris; Claassen, G.D.H.; Bloemhof-Ruwaard, Jacqueline M.; Vorst, van der Jack G.A.J.

    2017-01-01

    Due to tremendous losses of resources in modern food supply chains, higher priority should be given to reducing food waste and environmental impacts of food production. In practice, multiple production options are available, but must be quantitatively assessed with respect to economic and

  3. ENHANCED HYDROGEN ECONOMICS VIA COPRODUCTION OF FUELS AND CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Kennel, Elliot B; Bhagavatula, Abhijit; Dadyburjor, Dady; Dixit, Santhoshi; Garlapalli, Ravinder; Magean, Liviu; Mukkha, Mayuri; Olajide, Olufemi A; Stiller, Alfred H; Yurchick, Christopher L

    2011-03-31

    This Department of Energy National Energy Technology Laboratory sponsored research effort to develop environmentally cleaner projects as a spin-off of the FutureGen project, which seeks to reduce or eliminate emissions from plants that utilize coal for power or hydrogen production. New clean coal conversion processes were designed and tested for coproducing clean pitches and cokes used in the metals industry as well as a heavy crude oil. These new processes were based on direct liquefaction and pyrolysis techniques that liberate volatile liquids from coal without the need for high pressure or on-site gaseous hydrogen. As a result of the research, a commercial scale plant for the production of synthetic foundry coke has broken ground near Wise, Virginia under the auspices of Carbonite Inc. This plant will produce foundry coke by pyrolyzing a blend of steam coal feedstocks. A second plant is planned by Quantex Energy Inc (in Texas) which will use solvent extraction to coproduce a coke residue as well as crude oil. A third plant is being actively considered for Kingsport, Tennessee, pending a favorable resolution of regulatory issues.

  4. Neutron-induced hydrogen and helium production in iron

    Energy Technology Data Exchange (ETDEWEB)

    Haight, Robert C.

    2004-01-01

    In support of the Advanced Fuel Cycle Initiative, cross sections for hydrogen and helium production by neutrons are being investigated on structural materials from threshold to 100 MeV with the continuous-in-energy spallation neutron source at the Los Alamos Neutron Science Center (LANSCE). The present measurements are for elemental iron. The results are compared with values from the ENDF/B-VI library and its extension with LA150 evaluations. For designs in the Advanced Fuel Cycle Initiative, structural materials will be subjected to very large fluences of neutrons, and the selection of these materials will be guided by their resistance to radiation damage. The macroscopic effects of radiation damage result both from displacement of atoms in the materials as well as nuclear transmutation. We are studying the production of hydrogen and helium by neutrons, because these gases can lead to significant changes in materials properties such as embrittlement and swelling. Our experiments span the full range from threshold to 100 MeV. The lower neutron energies are those characteristic of fission neutrons, whereas the higher energies are relevant for accelerator-based irradiation test facilities. Results for the nickel isotopes, {sup 58,60}Ni, have been reported previously. The present studies are on natural iron.

  5. High temperature fast reactor for hydrogen production in Brazil

    International Nuclear Information System (INIS)

    Nascimento, Jamil A. do; Ono, Shizuca; Guimaraes, Lamartine N.F.

    2008-01-01

    The main nuclear reactors technology for the Generation IV, on development phase for utilization after 2030, is the fast reactor type with high temperature output to improve the efficiency of the thermo-electric conversion process and to enable applications of the generated heat in industrial process. Currently, water electrolysis and thermo chemical cycles using very high temperature are studied for large scale and long-term hydrogen production, in the future. With the possible oil scarcity and price rise, and the global warming, this application can play an important role in the changes of the world energy matrix. In this context, it is proposed a fast reactor with very high output temperature, ∼ 1000 deg C. This reactor will have a closed fuel cycle; it will be cooled by lead and loaded with nitride fuel. This reactor may be used for hydrogen, heat and electricity production in Brazil. It is discussed a development strategy of the necessary technologies and some important problems are commented. The proposed concept presents characteristics that meet the requirements of the Generation IV reactor class. (author)

  6. The prisoner's dilemma in the production of nuclear hydrogen

    International Nuclear Information System (INIS)

    Mendoza, A.; Francois, J. L.; Martin del Campo, C.

    2011-11-01

    The human beings take to daily decisions, so much at individual as social level, that affect their quality of life in more or minor measure and modify the conditions of their environment. Decisions like to use the car or the public transportation or government policies to adopt and energy development plan that includes technologies like the production of nuclear hydrogen, present a grade of global influence, not only affect or benefit at the person or government that it carries out them, but also present consequences in the individuals and resources of the environment. The hydrogen production using nuclear energy as supply of thermal energy is in itself decision matter; from investing or not in their investigation until fomenting laws and policies that impel their development and incorporation to the industrial panorama. The countries and institutes that opt to impel this technology have the possibility to obtain economic and environmental benefits in contrast with those that do not make it, these last only benefited of the first ones in the environmental aspect. High cost for the technological transfer and economic sanctions sustained in environmental arguments toward those -non cooperators- would be a possible consequence of the cooperators action in the search of a Nash balance. The Prisoner's dilemma exemplifies and increases the comprehension of this type of problems to search for better conditions in the system that improve the situation of all the participants, in this case: governments and institutions. (Author)

  7. Modeling, Simulation and Optimization of Hydrogen Production Process from Glycerol using Steam Reforming

    International Nuclear Information System (INIS)

    Park, Jeongpil; Cho, Sunghyun; Kim, Tae-Ok; Shin, Dongil; Lee, Seunghwan; Moon, Dong Ju

    2014-01-01

    For improved sustainability of the biorefinery industry, biorefinery-byproduct glycerol is being investigated as an alternate source for hydrogen production. This research designs and optimizes a hydrogen-production process for small hydrogen stations using steam reforming of purified glycerol as the main reaction, replacing existing processes relying on steam methane reforming. Modeling, simulation and optimization using a commercial process simulator are performed for the proposed hydrogen production process from glycerol. The mixture of glycerol and steam are used for making syngas in the reforming process. Then hydrogen are produced from carbon monoxide and steam through the water-gas shift reaction. Finally, hydrogen is separated from carbon dioxide using PSA. This study shows higher yield than former U.S.. DOE and Linde studies. Economic evaluations are performed for optimal planning of constructing domestic hydrogen energy infrastructure based on the proposed glycerol-based hydrogen station

  8. A comparative economic assessment of hydrogen production from large central versus smaller distributed plant in a carbon constrained world

    International Nuclear Information System (INIS)

    Nguyen, Y.V.; Ngo, Y.A.; Tinkler, M.J.; Cowan, N.

    2003-01-01

    This paper compares the economics of producing hydrogen at large central plants versus smaller distributed plants at user sites. The economics of two types of central plant, each at 100 million standard cubic feet per day of hydrogen, based on electrolysis and natural gas steam reforming technologies, will be discussed. The additional cost of controlling CO 2 emissions from the natural gas steam reforming plant will be included in the analysis in order to satisfy the need to live in a future carbon constrained world. The cost of delivery of hydrogen from the large central plant to the user sites in a large metropolitan area will be highlighted, and the delivered cost will be compared to the cost from on-site distributed generation plants. Five types of distributed generation plants, based on proton exchange membrane, alkaline electrolysis and advanced steam reforming, will be analysed and discussed. Two criteria were used to rank various hydrogen production options, the cost of production and the price of hydrogen to achieve an acceptable return of investment. (author)

  9. A Simulation Study of Inter Heat Exchanger Process in SI Cycle Process for Hydrogen Production

    International Nuclear Information System (INIS)

    Shin, Jae Sun; Cho, Sung Jin; Choi, Suk Hoon; Qasim, Faraz; Lee, Euy Soo; Park, Sang Jin; Lee, Heung N.; Park, Jae Ho; Lee, Won Jae

    2014-01-01

    SI Cyclic process is one of the thermochemical hydrogen production processes using iodine and sulfur for producing hydrogen molecules from water. VHTR (Very High Temperature Reactor) can be used to supply heat to hydrogen production process, which is a high temperature nuclear reactor. IHX (Intermediate Heat Exchanger) is necessary to transfer heat to hydrogen production process safely without radioactivity. In this study, the strategy for the optimum design of IHX between SI hydrogen process and VHTR is proposed for various operating pressures of the reactor, and the different cooling fluids. Most economical efficiency of IHX is also proposed along with process conditions

  10. Contribution to the study of new hydrogen production, purification and storage processes

    International Nuclear Information System (INIS)

    Manaud, Jean-Pierre

    1984-01-01

    This research thesis addresses the various aspects of hydrogen production, purification and process within the scope of hydrogen-based energy production. Hydrogen production is achieved by water decomposition through a thermo-chemical process. The author reports the thermodynamic assessment of a water decomposition thermo-chemical cycle for chlorine and sulphur-related cycles. He reports the experimental investigation of hydrogen purification by selective diffusion, the study of contamination of a CeMg12 alloy by nitrogen, oxygen and water vapour with application to hydrogen storage under the form of hydrides [fr

  11. Autothermal catalytic pyrolysis of methane as a new route to hydrogen production with reduced CO{sub 2} emissions

    Energy Technology Data Exchange (ETDEWEB)

    Muradov, Nazim; Smith, Franklyn; Huang, Cunping; T-Raissi, Ali [Florida Solar Energy Center, University of Central Florida, Cocoa, FL 32922 (United States)

    2006-08-15

    Hydrogen production plants are among major sources of CO{sub 2} emissions into the atmosphere. The objective of this paper is to explore new routes to hydrogen production from natural gas (or methane) with drastically reduced CO{sub 2} emissions. One approach analyzed in this paper is based on thermocatalytic decomposition (or pyrolysis) of methane into hydrogen gas and elemental carbon over carbon-based catalysts. Several heat input options to the endothermic process are discussed in the paper. The authors conduct thermodynamic analysis of methane decomposition in the presence of small amounts of oxygen in an autothermal (or thermo-neutral) regime using AspenPlus(TM) chemical process simulator. Methane conversion, products yield, effluent gas composition, process enthalpy flows as a function of temperature, pressure and O{sub 2}/CH{sub 4} ratio has been determined. CO{sub 2} emissions (per m{sup 3} of H{sub 2} produced) from the process could potentially be a factor of 3-5 less than from conventional hydrogen production processes. Oxygen-assisted decomposition of methane over activated carbon (AC) and AC-supported iron catalysts over wide range of temperatures and O{sub 2}/CH{sub 4} ratios was experimentally verified. Problems associated with the catalyst deactivation and the effect of iron doping on the catalyst stability are discussed. (author)

  12. Long-term effect of inoculum pretreatment on fermentative hydrogen production by repeated batch cultivations: homoacetogenesis and methanogenesis as competitors to hydrogen production

    DEFF Research Database (Denmark)

    Luo, Gang; Karakashev, Dimitar Borisov; Xie, Li

    2011-01-01

    Long-term effects of inoculum pretreatments(heat, acid, loading-shock) on hydrogen production from glucose under different temperatures (378C, 558C) and initial pH (7 and 5.5) were studied by repeated batch cultivations. Results obtained showed that it was necessary to investigate the long......-term effect of inoculum pretreatment on hydrogen production since pretreatments may just temporarily inhibit the hydrogen consuming processes. After long-term cultivation, pretreated inocula did not enhance hydrogen production compared to untreated inocula under mesophilic conditions (initial pH 7 and pH 5.......5) and thermophilic conditions (initial pH 7). However, pretreatment could inhibit lactate production and lead to higher hydrogen yield under thermophilic conditions at initial pH 5.5. The results further demonstrated that inoculum pretreatment could not permanently inhibit either methanogenesis or homoacetogenesis...

  13. Simulation of a porous ceramic membrane reactor for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Yu, W.; Ohmori, T.; Yamamoto, T.; Endo, A.; Nakaiwa, M.; Hayakawa, T. [National Inst. of Advanced Industrial Science and Technology, Tsukuba (Japan); Itoh, N. [National Inst. of Advanced Industrial Science and Technology, Tsukuba (Japan); Utsunomiya Univ. (Japan). Dept. of Applied Chemistry

    2005-08-01

    A systematic simulation study was performed to investigate the performance of a porous ceramic membrane reactor for hydrogen production by means of methane steam reforming. The results show that the methane conversions much higher than the corresponding equilibrium values can be achieved in the membrane reactor due to the selective removal of products from the reaction zone. The comparison of isothermal and non-isothermal model predictions was made. It was found that the isothermal assumption overestimates the reactor performance and the deviation of calculation results between the two models is subject to the operating conditions. The effects of various process parameters such as the reaction temperature, the reaction side pressure, the feed flow rate and the steam to methane molar feed ratio as well as the sweep gas flow rate and the operation modes, on the behavior of membrane reactor were analyzed and discussed. (author)

  14. VHTR-based Nuclear Hydrogen Plant Analysis for Hydrogen Production with SI, HyS, and HTSE Facilities

    International Nuclear Information System (INIS)

    Shin, Youngjoon; Lee, Taehoon; Lee, Kiyoung; Kim, Minhwan

    2016-01-01

    In this paper, analyses of material and heat balances on the SI, HyS, and HTSE processes coupled to a Very High Temperature gas-cooled Reactor (VHTR) were performed. The hydrogen production efficiency including the thermal to electric energy ratio demanded from each process is found and the normalized evaluation results obtained from three processes are compared to each other. The currently technological issues to maintain the long term continuous operation of each process will be discussed at the conference site. VHTR-based nuclear hydrogen plant analysis for hydrogen production with SI, HyS, and HTSE facilities has been carried out to determine the thermal efficiency. It is evident that the thermal to electrical energy ratio demanded from each hydrogen production process is an important parameter to select the adequate process for hydrogen production. To improve the hydrogen production efficiency in the SI process coupled to the VHTR without electrical power generation, the demand of electrical energy in the SI process should be minimized by eliminating an electrodialysis step to break through the azeotrope of the HI/I_2/H_2O ternary aqueous solution

  15. Sorption Enhanced Reaction Process (SERP) for production of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Anand, M.; Hufton, J.; Mayorga, S. [Air Products and Chemicals, Inc., Allentown, PA (United States)] [and others

    1996-10-01

    Sorption Enhanced Reaction Process (SERP) is a novel process that is being developed for the production of lower cost hydrogen by steam-methane reforming (SMR). In this process the reaction of methane with steam is carried out in the presence of an admixture of a catalyst and a selective adsorbent for carbon dioxide. The key consequences of SERP are: (i) reformation reaction is carried out at a significantly lower temperature (300-500{degrees}C) than that in a conventional SMR reactor (800-1100{degrees}C), while achieving the same conversion of methane to hydrogen, (ii) the product hydrogen is obtained at reactor pressure (200-400 psig) and at 98+% purity directly from the reactor (compared to only 70-75% H{sub 2} from conventional SMR reactor), (iii) downstream hydrogen purification step is either eliminated or significantly reduced in size. The first phase of the program has focused on the development of a sorbent for CO{sub 2} which has (a) reversible CO{sub 2} capacity >0.3 mmol/g at low partial pressures of CO{sub 2} (0.1 - 1.0 atm) in the presence of excess steam (pH{sub 2}O/pCO{sub 2}>20) at 400-500{degrees}C and (b) fast sorption-desorption kinetics for CO{sub 2}, at 400-500{degrees}C. Several families of supported sorbents have been identified that meet the target CO{sub 2} capacity. A few of these sorbents have been tested under repeated sorption/desorption cycles and extended exposure to high pressure steam at 400-500{degrees}C. One sorbent has been scaled up to larger quantities (2-3 kg) and tested in the laboratory process equipment for sorption and desorption kinetics of CO{sub 2}. The CO{sub 2}, sorption and desorption kinetics are desirably fast. This was a critical path item for the first phase of the program and now has been successfully demonstrated. A reactor has been designed that will allow nearly isothermal operation for SERP-SMR. This reactor was integrated into an overall process flow diagram for the SERP-SMR process.

  16. Life Cycle Greenhouse Gas Emissions of By-product Hydrogen from Chlor-Alkali Plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong-Yeon [Argonne National Lab. (ANL), Argonne, IL (United States). Systems Assessment Group, Energy Systems Division; Elgowainy, Amgad A. [Argonne National Lab. (ANL), Argonne, IL (United States). Systems Assessment Group, Energy Systems Division; Dai, Qiang [Argonne National Lab. (ANL), Argonne, IL (United States). Systems Assessment Group, Energy Systems Division

    2017-12-01

    Current hydrogen production capacity in the U.S. is about 15.8 million tonne (or metric ton) per year (Brown 2016). Some of the hydrogen (2 million tonne) is combusted for its heating energy value, which makes total annual net production 13.8 million tonne (Table 1). If captive by-product hydrogen (3.3 million tonne) from catalytic reforming at oil refineries is excluded (Brown 2016; EIA 2008), approximately 11 million tonne is available from the conventional captive and merchant hydrogen market (DOE 2013). Captive hydrogen (owned by the refiner) is produced and consumed on site (e.g., process input at refineries), whereas merchant hydrogen is produced and sold as a commodity to external consumers. Whether it is merchant or captive, most hydrogen produced in the U.S. is on-purpose (not by-product)— around 10 million tonne/year.

  17. Design and construction of a photobioreactor for hydrogen production, including status in the field.

    Science.gov (United States)

    Skjånes, Kari; Andersen, Uno; Heidorn, Thorsten; Borgvang, Stig A

    Several species of microalgae and phototrophic bacteria are able to produce hydrogen under certain conditions. A range of different photobioreactor systems have been used by different research groups for lab-scale hydrogen production experiments, and some few attempts have been made to upscale the hydrogen production process. Even though a photobioreactor system for hydrogen production does require special construction properties (e.g., hydrogen tight, mixing by other means than bubbling with air), only very few attempts have been made to design photobioreactors specifically for the purpose of hydrogen production. We have constructed a flat panel photobioreactor system that can be used in two modes: either for the cultivation of phototrophic microorganisms (upright and bubbling) or for the production of hydrogen or other anaerobic products (mixing by "rocking motion"). Special emphasis has been taken to avoid any hydrogen leakages, both by means of constructional and material choices. The flat plate photobioreactor system is controlled by a custom-built control system that can log and control temperature, pH, and optical density and additionally log the amount of produced gas and dissolved oxygen concentration. This paper summarizes the status in the field of photobioreactors for hydrogen production and describes in detail the design and construction of a purpose-built flat panel photobioreactor system, optimized for hydrogen production in terms of structural functionality, durability, performance, and selection of materials. The motivations for the choices made during the design process and advantages/disadvantages of previous designs are discussed.

  18. Hydrogen production system based on high temperature gas cooled reactor energy using the sulfur-iodine (SI) thermochemical water splitting cycle

    International Nuclear Information System (INIS)

    Garcia, L.; Gonzalez, D.

    2011-01-01

    Hydrogen production from water using nuclear energy offers one of the most attractive zero-emission energy strategies and the only one that is practical on a substantial scale. Recently, strong interest is seen in hydrogen production using heat of a high-temperature gas-cooled reactor. The high-temperature characteristics of the modular helium reactor (MHR) make it a strong candidate for producing hydrogen using thermochemical or high-temperature electrolysis (HTE) processes. Eventually it could be also employ a high-temperature gas-cooled reactor (HTGR), which is particularly attractive because it has unique capability, among potential future generation nuclear power options, to produce high-temperature heat ideally suited for nuclear-heated hydrogen production. Using heat from nuclear reactors to drive a sulfur-iodine (SI) thermochemical hydrogen production process has been interest of many laboratories in the world. One of the promising approaches to produce large quantity of hydrogen in an efficient way using the nuclear energy is the sulfur-iodine (SI) thermochemical water splitting cycle. Among the thermochemical cycles, the sulfur iodine process remains a very promising solution in matter of efficiency and cost. This work provides a pre-conceptual design description of a SI-Based H2-Nuclear Reactor plant. Software based on chemical process simulation (CPS) was used to simulate the thermochemical water splitting cycle Sulfur-Iodine for hydrogen production. (Author)

  19. High-temperature nuclear reactor power plant cycle for hydrogen and electricity production – numerical analysis

    Directory of Open Access Journals (Sweden)

    Dudek Michał

    2016-01-01

    Full Text Available High temperature gas-cooled nuclear reactor (called HTR or HTGR for both electricity generation and hydrogen production is analysed. The HTR reactor because of the relatively high temperature of coolant could be combined with a steam or gas turbine, as well as with the system for heat delivery for high-temperature hydrogen production. However, the current development of HTR’s allows us to consider achievable working temperature up to 750°C. Due to this fact, industrial-scale hydrogen production using copper-chlorine (Cu-Cl thermochemical cycle is considered and compared with high-temperature electrolysis. Presented calculations show and confirm the potential of HTR’s as a future solution for hydrogen production without CO2 emission. Furthermore, integration of a hightemperature nuclear reactor with a combined cycle for electricity and hydrogen production may reach very high efficiency and could possibly lead to a significant decrease of hydrogen production costs.

  20. A proposal for safety design philosophy of HTGR for coupling hydrogen production plant

    International Nuclear Information System (INIS)

    Sato, Hiroyuki; Ohashi, Hirofumi; Tazawa, Yujiro; Imai, Yoshiyuki; Nakagawa, Shigeaki; Tachibana, Yukio; Kunitomi, Kazuhiko

    2013-06-01

    Japan Atomic Energy Agency (JAEA) has been conducting research and development for hydrogen production utilizing heat from High Temperature Gas-cooled Reactors (HTGRs). Towards the realization of nuclear hydrogen production, coupled hydrogen production plants should not be treated as an extension of a nuclear plant in order to open the door for the entry of non-nuclear industries as well as assuring reactor safety against postulated abnormal events initiated in the hydrogen production plants. Since hydrogen production plant utilizing nuclear heat has never been built in the world, little attention has been given to the establishment of a safety design for such system including the High Temperature engineering Test Reactor (HTTR). In the present study, requirements in order to design, construct and operate hydrogen production plants under conventional chemical plant standards are identified. In addition, design considerations for safety design of nuclear facility are suggested. Furthermore, feasibility of proposed safety design and design considerations are evaluated. (author)

  1. Evaluation of hydrogen production system coupling with HTTR using dynamic analysis code

    International Nuclear Information System (INIS)

    Sato, Hiroyuki; Ohashi, Hirofumi; Inaba, Yoshitomo; Nishihara, Tetsuo; Hayashi, Koji; Inagaki, Yoshiyuki

    2006-01-01

    The Japan Atomic Energy Agency (JAEA) was entrusted 'Development of Nuclear Heat Utilization Technology' by Ministry of Education, Culture, Sports, Science and Technology. In this development, the JAEA investigated the system integration technology to couple the hydrogen production system by steam reforming with the High Temperature Engineering Test Reactor (HTTR). Prior to the construction of the hydrogen production system coupling with the HTTR, a dynamic analysis code had to be developed to evaluate the system transient behaviour of the hydrogen production system because there are no examples of chemical facilities coupled with nuclear reactor in the world. This report describes the evaluation of the hydrogen production system coupling with HTTR using analysis code, N-HYPAC, which can estimate transient behaviour of the hydrogen production system by steam reforming. The results of this investigation provide that the influence of the thermal disturbance caused by the hydrogen production system on the HTTR can be estimated well. (author)

  2. Hydrogen and methane production from household solid waste in the two-stage fermentation process

    DEFF Research Database (Denmark)

    Lui, D.; Liu, D.; Zeng, Raymond Jianxiong

    2006-01-01

    A two-stage process combined hydrogen and methane production from household solid waste was demonstrated working successfully. The yield of 43 mL H-2/g volatile solid (VS) added was generated in the first hydrogen production stage and the methane production in the second stage was 500 mL CH4/g VS...... added. This figure was 21% higher than the methane yield from the one-stage process, which was run as control. Sparging of the hydrogen reactor with methane gas resulted in doubling of the hydrogen production. PH was observed as a key factor affecting fermentation pathway in hydrogen production stage....... Furthermore, this study also provided direct evidence in the dynamic fermentation process that, hydrogen production increase was reflected by acetate to butyrate ratio increase in liquid phase. (c) 2006 Elsevier Ltd. All rights reserved....

  3. Hydrogen production by co-cultures of Lactobacillus and a photosynthetic bacterium, Rhodobacter sphaeroides RV

    Energy Technology Data Exchange (ETDEWEB)

    Asada, Yasuo; Ishimi, Katsuhiro [Department of General Education, College of Science and Technology, Nihon University, Narashinodai, Chiba 274-8501 (Japan); Tokumoto, Masaru; Aihara, Yasuyuki; Oku, Masayo; Kohno, Hideki [Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University, Izumi-cho, Chiba 275-8575 (Japan); Wakayama, Tatsuki; Miyake, Jun [Research Institute for Cell Engineering, National Institute of Advanced Industrial Science and Technology, Nakoji, Amagasaki, Hyogo 661-0974 (Japan); Tomiyama, Masamitsu [Genetic Diversity Department, National Institute of Agrobiological Science, Tsukuba, Ibaraki 305-8602 (Japan)

    2006-09-15

    Hydrogen production with glucose by using co-immobilized cultures of a lactic acid bacterium, Lactobacillus delbrueckii NBRC13953, and a photosynthetic bacterium, Rhodobacter sphaeroides RV, in agar gels was studied. Glucose was converted to hydrogen gas in a yield of 7.1mol of hydrogen per mole of glucose at a maximum under illuminated conditions. (author)

  4. Aqueous-Phase Reforming of Renewable Polyols for Production of Hydrogen using Platinum Catalysts

    NARCIS (Netherlands)

    Boga, D.A.

    2013-01-01

    Hydrogen has the potential to fuel the energy needs of a more sustainable society. As hydrogen is not found in nature in any appreciable quantities, this energy carrier needs to be produced from a primary energy source. Biomass can serve as a source for sustainable hydrogen production. In principle,

  5. Hydrogen production from nano-porous Si powder formed by stain etching

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko, S.; Alekseev, S.; Kuznetsov, G.; Skryshevsky, V. [Institute of High Technology of National Taras Shevchenko University of Kyiv, Volodymyrs' ka 64, Kyiv 01601 (Ukraine); Lysenko, V.; Barbier, D. [Lyon Institute of Nanotechnologies (INL), CNRS UMR-5270, University of Lyon, INSA de Lyon, 7 avenue Jean Capelle, Bat. Blaise Pascal, 69621 Villeurbanne Cedex (France); Venturello, A.; Geobaldo, F.; Garrone, E. [Politecnico di Torino, Department of Materials Science and Chemical Engineering, 10129 Torino (Italy); Gulina, L.; Tolstoy, V. [St-Petersburg State University, Chemical Department (Russian Federation)

    2010-07-15

    Hydrogen reservoirs based on porous silicon (PS) nanostructures are considered. Silicon-based hydrogen tanks are believed to be applicable for portable device energy supply and compatible with micro-sources of energy of new generation. Stain etching of silicon powder to produce PS is studied as a technology alternative to conventional electrochemical etching and application of the PS powder for hydrogen production is also described. Size selection of initial Si micro-particles constituting the powders was carried out by sedimentation technique. Hydrogen content in PS was investigated by FTIR spectroscopy. Extraction of hydrogen in water environment in presence of small amount of NH{sub 3} as catalyst was shown to have advantages such as safety and tunability, additional production of hydrogen from water dissociation, and a possibility to characterize PS as a hydrogen source material in terms of hydrogen effective shell and crystalline core conception. (author)

  6. Durability of solid oxide electrolysis cells for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Hauch, A.; Hoejgaard Jensen, S.; Dalgaard Ebbesen, S.

    2007-05-15

    In the perspective of the increasing interest in renewable energy and hydrogen economy, the reversible solid oxide cells (SOCs) is a promising technology as it has the potential of providing efficient and cost effective hydrogen production by high temperature electrolysis of steam (HTES). Furthermore development of such electrolysis cells can gain from the results obtained within the R and D of SOFCs. For solid oxide electrolysis cells (SOEC) to become interesting from a technological point of view, cells that are reproducible, high performing and long-term stable need to be developed. In this paper we address some of the perspectives of the SOEC technology i.e. issues such as a potential H2 production price as low as 0.71 US dollar/kg H{sub 2} using SOECs for HTES; is there a possible market for the electrolysers? and what R and D steps are needed for the realisation of the SOEC technology? In the experimental part we present electrolysis test results on SOCs that have been optimized for fuel cell operation but applied for HTES. The SOCs are produced on a pre-pilot scale at Risoe National Laboratory. These cells have been shown to have excellent initial electrolysis performance, but the durability of such electrolysis cells are not optimal and examples of results from SOEC tests over several hundreds of hours are given here. The long-term tests have been run at current densities of -0.5 A/cm{sup 2} and -1 A/cm{sup 2}, temperatures of 850 deg. C and 950 deg. C and p(H{sub 2}O)/p(H{sub 2}) of 0.5/0.5 and 0.9/0.1. Long-term degradation rates are shown to be up to 5 times higher for SOECs compared to similar SOFC testing. Furthermore, hydrogen and synthetic fuel production prices are calculated using the experimental results from long-term electrolysis test as input and a short outlook for the future work on SOECs will be given as well. (au)

  7. Effect of cesium seeding on hydrogen negative ion volume production

    International Nuclear Information System (INIS)

    Bacal, M.; Balghiti-Sube, F. El; Elizarov, L. I.; Tontegode, A. J.

    1998-01-01

    The effect of cesium vapor partial pressure on the plasma parameters has been studied in the dc hybrid negative ion source ''CAMEMBERT III.'' The cesium vapor pressure was varied up to 10 -5 Torr and was determined by a surface ionization gauge in the absence of the discharge. The negative ion relative density measured by laser photodetachment in the center of the plasma extraction region increases by a factor of four when the plasma is seeded with cesium. However the plasma density and the electron temperature (determined using a cylindrical electrostatic probe) are reduced by the cesium seeding. As a result, the negative ion density goes up by a factor of two at the lowest hydrogen pressure studied. The velocity of the directed negative ion flow to the plasma electrode, determined from two-laser beam photodetachment experiments, appears to be affected by the cesium seeding. The variation of the extracted negative ion and electron currents versus the plasma electrode bias will also be reported for pure hydrogen and cesium seeded plasmas. The cesium seeding leads to a dramatic reduction of the electron component, which is consistent with the reduced electron density and temperature. The negative ion current is enhanced and a goes through a maximum at plasma electrode bias lower than 1 V. These observations lead to the conclusion that the enhancement of pure volume production occurs in this type of plasma. Possible mechanisms for this type of volume process will be discussed

  8. Hydrogen production by autothermal reforming of ethanol: pilot plant

    Energy Technology Data Exchange (ETDEWEB)

    Marin Neto, Antonio Jose; Camargo, Joao Carlos; Lopes, Daniel Gabriel; Ferreira, Paulo F.P. [Hydrogen Technology (HyTron), Campinas, SP (Brazil)], Email: antonio@hytron.com.br; Neves Junior, Newton Pimenta; Pinto, Edgar A. de Godoi Rodrigues; Silva, Ennio Peres da [Universidade Estadual de Campinas (DFA/ IFGW/UNICAMP), SP (Brazil). Inst. de Fisica Gleb Wataghin. Dept. de Fisica Aplicada; Furlan, Andre Luis [Universidade Estadual de Campinas (FEC/UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica

    2010-07-01

    This work provides information about the development of an integrated unit for hydrogen production by auto thermal reforming of ethanol with nominal capacity of 1 kg/h H{sub 2} 4.5 (99.995%). The unit is composed by a Fuel Processing Module (FPM), resulting from auto thermal and shift reactor integration, responsible for the thermochemical step, plus an over heater of the liquid input (EtOH and H{sub 2}O), operated recovering thermal energy from PSA blown-down (H{sub 2} Purification Module - MPH2), besides other thermal equipment which completes the integration. Using a computational routine for scaling the process and preliminary performance analysis, it was possible to optimize operating conditions, essential along unit operations design. Likewise, performance estimation of the integrated unit proceeds, which shows efficiency about 72.5% from FPM. Coupled with the PSA recovery rate, 72.7%, the unit could achieve overall energy performance of 52.7%, or 74.4% working in co-generation of hydrogen and heat. (author)

  9. Solar pumped laser and its application to hydrogen production

    International Nuclear Information System (INIS)

    Imasaki, K.; Saiki, T.; Li, D.; Motokosi, S.; Nakatsuka, M.

    2007-01-01

    Solar pumped laser has been studied. Recently, a small ceramic laser pumped by pseudo solar light shows high efficiency of more than 40% which exceeds a solar cell. Such solar pumped laser can concentrate the large area of solar energy in a focused spot of small area. This fact implies the application of such laser for clean and future renewable energy source as hydrogen. For this purpose, 100 W level laboratory solar laser HELIOS is completed using disk ceramic active mirror laser to achieve high temperature. This laser is a kind of MOPA system. Oscillator of additional small laser is used. Laser light is generated in oscillator and is amplified in ceramic disks of solar pumped. The temperature from this system is to be more than 1500 K. We will use a simple graphite cavity for laser power absorption and to get a high temperature. We are also designing a 10 MW CW laser based on this technology. This may be expected an application of solar energy for hydrogen production with total efficiency of 30%

  10. Evaluation of feed COD/sulfate ratio as a control criterion for the biological hydrogen sulfide production and lead precipitation

    International Nuclear Information System (INIS)

    Velasco, Antonio; Ramirez, Martha; Volke-Sepulveda, Tania; Gonzalez-Sanchez, Armando; Revah, Sergio

    2008-01-01

    The ability of sulfate-reducing bacteria to produce hydrogen sulfide and the high affinity of sulfide to react with divalent metallic cations represent an excellent option to remove heavy metals from wastewater. Different parameters have been proposed to control the hydrogen sulfide production by anaerobic bacteria, such as the organic and sulfate loading rates and the feed COD/SO 4 2- ratio. This work relates the feed COD/SO 4 2- ratio with the hydrogen sulfide production and dissolved lead precipitation, using ethanol as carbon and energy source in an up-flow anaerobic sludge blanket reactor. A maximum dissolved sulfide concentration of 470 ± 7 mg S/L was obtained at a feed COD/SO 4 2- ratio of 2.5, with sulfate and ethanol conversions of approximately 94 and 87%, respectively. The lowest dissolved sulfide concentration (145 ± 10 mg S/L) was observed with a feed COD/SO 4 2- ratio of 0.67. Substantial amounts of acetate (510-1730 mg/L) were produced and accumulated in the bioreactor from ethanol oxidation. Although only incomplete oxidation of ethanol to acetate was observed, the consortium was able to remove 99% of the dissolved lead (200 mg/L) with a feed COD/SO 4 2- ratio of 1.5. It was found that the feed COD/SO 4 2- ratio could be an adequate parameter to control the hydrogen sulfide production and the consequent precipitation of dissolved lead

  11. Improving The Efficiency Of Ammonia Electrolysis For Hydrogen Production

    Science.gov (United States)

    Palaniappan, Ramasamy

    Given the abundance of ammonia in domestic and industrial wastes, ammonia electrolysis is a promising technology for remediation and distributed power generation in a clean and safe manner. Efficiency has been identified as one of the key issues that require improvement in order for the technology to enter the market phase. Therefore, this research was performed with the aim of improving the efficiency of hydrogen production by finding alternative materials for the cathode and electrolyte. 1. In the presence of ammonia the activity for hydrogen evolution reaction (HER) followed the trend Rh>Pt>Ru>Ni. The addition of ammonia resulted in lower rates for HER for Pt, Ru, and Ni, which have been attributed to competition from the ammonia adsorption reaction. 2. The addition of ammonia offers insight into the role of metal-hydrogen underpotential deposition (M-Hupd) on HER kinetics. In addition to offering competition via ammonia adsorption it resulted in fewer and weaker M-Hupd bonds for all metals. This finding substantiates the theory that M-Hupd bonds favor HER on Pt electrocatalyst. However, for Rh results suggest that M-Hupd bond may hinder the HER. In addition, the presence of unpaired valence shell electrons is suggested to provide higher activity for HER in the presence of ammonia. 3. Bimetals PtxM1-x (M = Ir, Ru, Rh, and Ni) offered lower overpotentials for HER compared to the unalloyed metals in the presence of ammonia. The activity of HER in the presence of ammonia follows the trend Pt-Ir>Pt-Rh>Pt-Ru>Pt-Ni. The higher activity of HER is attributed to the synergistic effect of the alloy, where ammonia adsorbs onto the more electropositive alloying metal leaving Pt available for Hupd formation and HER to take place. Additionally, this supports the theory that the presence of a higher number of unpaired electrons favors the HER in the presence of ammonia. 4. Potassium polyacrylate (PAA-K) was successfully used as a substitute for aqueous KOH for ammonia

  12. Switchable photosystem-II designer algae for photobiological hydrogen production

    Science.gov (United States)

    Lee, James Weifu

    2010-01-05

    A switchable photosystem-II designer algae for photobiological hydrogen production. The designer transgenic algae includes at least two transgenes for enhanced photobiological H.sub.2 production wherein a first transgene serves as a genetic switch that can controls photosystem II (PSII) oxygen evolution and a second transgene encodes for creation of free proton channels in the algal photosynthetic membrane. In one embodiment, the algae includes a DNA construct having polymerase chain reaction forward primer (302), a inducible promoter (304), a PSII-iRNA sequence (306), a terminator (308), and a PCR reverse primer (310). In other embodiments, the PSII-iRNA sequence (306) is replaced with a CF.sub.1-iRNA sequence (312), a streptomycin-production gene (314), a targeting sequence (316) followed by a proton-channel producing gene (318), or a PSII-producing gene (320). In one embodiment, a photo-bioreactor and gas-product separation and utilization system produce photobiological H.sub.2 from the switchable PSII designer alga.

  13. Bio-hydrogen production by Enterobacter asburiae SNU-1 isolated from a landfill

    Energy Technology Data Exchange (ETDEWEB)

    Jong-Hwan Shin; Jong Hyun Yoon; Tai Hyun Park [School of Chemical and Biological Engineering, Seoul National University, Seoul 151-744, (Korea, Republic of)

    2006-07-01

    A new fermentative hydrogen-producing bacterium was isolated from a landfill, and it was identified as Enterobacter asburiae strain using a genomic DNA hybridization method. Environmental factors and metabolic flux influencing the hydrogen production were investigated, including pH, initial glucose and formate concentrations. The major hydrogen production pathway of this strain is considered to be a formate pathway by using formate hydrogen lyase (FHL). Optimum pH for the hydrogen production was pH 7.0 in PYG medium, at which hydrogen production/unit volume and overall hydrogen productivity were 2615 ml/l and 174 ml H{sub 2}/l/hr, respectively, at 25 g glucose/l. The maximum hydrogen productivity was estimated to be 417 ml H{sub 2}/l/hr at 15 g glucose/l. This strain produced bio-hydrogen mostly in the stationary phase, in which formate concentration was high. In this paper, hydrogen production was tried in formate medium after cell harvest. (authors)

  14. Bio-hydrogen production by Enterobacter asburiae SNU-1 isolated from a landfill

    International Nuclear Information System (INIS)

    Jong-Hwan Shin; Jong Hyun Yoon; Tai Hyun Park

    2006-01-01

    A new fermentative hydrogen-producing bacterium was isolated from a landfill, and it was identified as Enterobacter asburiae strain using a genomic DNA hybridization method. Environmental factors and metabolic flux influencing the hydrogen production were investigated, including pH, initial glucose and formate concentrations. The major hydrogen production pathway of this strain is considered to be a formate pathway by using formate hydrogen lyase (FHL). Optimum pH for the hydrogen production was pH 7.0 in PYG medium, at which hydrogen production/unit volume and overall hydrogen productivity were 2615 ml/l and 174 ml H 2 /l/hr, respectively, at 25 g glucose/l. The maximum hydrogen productivity was estimated to be 417 ml H 2 /l/hr at 15 g glucose/l. This strain produced bio-hydrogen mostly in the stationary phase, in which formate concentration was high. In this paper, hydrogen production was tried in formate medium after cell harvest. (authors)

  15. Carbon Dioxide-Free Hydrogen Production with Integrated Hydrogen Separation and Storage.

    Science.gov (United States)

    Dürr, Stefan; Müller, Michael; Jorschick, Holger; Helmin, Marta; Bösmann, Andreas; Palkovits, Regina; Wasserscheid, Peter

    2017-01-10

    An integration of CO 2 -free hydrogen generation through methane decomposition coupled with hydrogen/methane separation and chemical hydrogen storage through liquid organic hydrogen carrier (LOHC) systems is demonstrated. A potential, very interesting application is the upgrading of stranded gas, for example, gas from a remote gas field or associated gas from off-shore oil drilling. Stranded gas can be effectively converted in a catalytic process by methane decomposition into solid carbon and a hydrogen/methane mixture that can be directly fed to a hydrogenation unit to load a LOHC with hydrogen. This allows for a straight-forward separation of hydrogen from CH 4 and conversion of hydrogen to a hydrogen-rich LOHC material. Both, the hydrogen-rich LOHC material and the generated carbon on metal can easily be transported to destinations of further industrial use by established transport systems, like ships or trucks. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Correlation of H- production and the work function of a surface in a hydrogen plasma

    International Nuclear Information System (INIS)

    Wada, M.

    1983-03-01

    Surface-plasma negative hydrogen ion sources are being developed as possible parts for future neutral beam systems. In these ion sources, negative hydrogen ions (H - ) are produced at low work function metal surfaces immersed in hydrogen plasmas. To investigate the correlation between the work function and the H - production at the surface with a condition similar to the one in the actual plasma ion source, these two parameters were simultaneously measured in the hydrogen plasma environment

  17. IEA agreement on the production and utilization of hydrogen: 2000 annual report

    International Nuclear Information System (INIS)

    Elam, Carolyn C.

    2001-01-01

    The 2000 annual report of the IEA Hydrogen Agreement contains an overview of the agreement, including its guiding principles, latest strategic plan, and a report from the Chairman, Mr. Neil P. Rossmeissl, U.S. Department of Energy. Overviews of the National Hydrogen Programs of nine member countries are given: Canada, Japan, Lithuania, the Netherlands, Norway, Spain, Sweden, Switzerland, and the United States. Task updates are provided on the following annexes: Annex 12 - Metal Hydrides and Carbon for Hydrogen Storage, Annex 13 - Design and Optimization of Integrated Systems, Annex 14 - Photoelectrolytic Production of Hydrogen, and, Annex 15 - Photobiological Production of Hydrogen

  18. IEA Agreement on the production and utilization of hydrogen: 1999 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Elam, Carolyn C. (National Renewable Energy Lab, Golden, CO (US)) (ed.)

    2000-01-31

    The annual report begins with an overview of the IEA Hydrogen Agreement, including guiding principles and their strategic plan followed by the Chairman's report providing the year's highlights. Annex reports included are: the final report for Task 11, Integrated Systems; task updates for Task 12, Metal Hydrides and Carbon for Hydrogen Storage, Task 13, Design and Optimization of Integrated Systems, Task 14, Photoelectrolytic Production of Hydrogen, and Task 15, Photobiological Production of Hydrogen; and a feature article by Karsten Wurr titled 'Large-Scale Industrial Uses of Hydrogen: Final Development Report'.

  19. IEA agreement on the production and utilization of hydrogen: 2000 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Elam, Carolyn C. [National Renewable Energy Lab., Golden, CO (US)] (ed.)

    2001-12-01

    The 2000 annual report of the IEA Hydrogen Agreement contains an overview of the agreement, including its guiding principles, latest strategic plan, and a report from the Chairman, Mr. Neil P. Rossmeissl, U.S. Department of Energy. Overviews of the National Hydrogen Programs of nine member countries are given: Canada, Japan, Lithuania, the Netherlands, Norway, Spain, Sweden, Switzerland, and the United States. Task updates are provided on the following annexes: Annex 12 - Metal Hydrides and Carbon for Hydrogen Storage, Annex 13 - Design and Optimization of Integrated Systems, Annex 14 - Photoelectrolytic Production of Hydrogen, and, Annex 15 - Photobiological Production of Hydrogen.

  20. Enhanced thermophilic fermentative hydrogen production from cassava stillage by chemical pretreatments

    DEFF Research Database (Denmark)

    Wang, Wen; Luo, Gang; Xie, Li

    2013-01-01

    Acid and alkaline pretreatments for enhanced hydrogen production from cassava stillage were investigated in the present study. The result showed that acid pretreatment was suitable for enhancement of soluble carbohydrate while alkaline pretreatment stimulated more soluble total organic carbon...... that the increase of all factors increased the soluble carbohydrate production, whereas hydrogen production was inhibited when the factors exceeded their optimal values. The optimal conditions for hydrogen production were pretreatment temperature 89.5 °C, concentration 1.4% and time 69 min for the highest hydrogen...

  1. Co-production of hydrogen and electricity with CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Arienti, S.; Cotone, P.; Davison, J. [Foster Wheeler Italiana (Italy)

    2007-07-01

    This paper summarizes the results of a study carried out by Foster Wheeler for the IEA Greenhouse Gas R & D Programme that focused on different IGCC configurations with CO{sub 2} capture and H{sub 2} production. The three following main cases are compared: production of hydrogen, with minimum amount of electricity for a stand-alone plant production; co-production of the optimum hydrogen/electricity ratio; and co-production of hydrogen and electricity in a flexible plant that varies the hydrogen/electricity ratio. The paper reviews three available gasification technologies and presents the results of a more detailed evaluation of the selected one. The scope of this paper is to underline possible advantages of hydrogen and electricity co-production from coal, that is likely going to replace natural gas and petroleum as a source of hydrogen in the long term. Expected advantage of co-production will be the ability to vary the hydrogen/electricity ratio to meet market demands. A natural gas, diesel and gasoline demand market analysis has been performed for the Netherlands and the USA to determine the expected future hydrogen demand. Plant performance and costs are established and electric power production costs are evaluated. Electricity and hydrogen co-production plants are compared to plants that produce electricity only, with and without CO{sub 2} capture, to evaluate the costs of CO{sub 2} avoidance. 4 refs., 8 figs., 4 tabs.

  2. Evaluation of hydrogen production from CO2 corrosion of steel drums in SFR, Part 2

    International Nuclear Information System (INIS)

    Dugstad, A.; Videm, K.

    1987-06-01

    An experimental program has been carried out for the investigation of the hydrogen formation due to corrosion of steel by water containing CO 2 produced by microbiologic decomposition of paper in waste drums. The hydrogen production will be limited by a limited rate of CO 2 production, as CO 2 is consumed by corrosive reactions producing carbonate containing corrosion products. Experiments indicated that also iron oxide and hydroxides were formed together with FeCO 3 at low CO 2 partial pressures but at a rate which leads to a rather slow increase in hydrogen production. Hydrogen evaluation has been overestimated in previous reports on this subject. (authors)

  3. Training for power plant personnel on hydrogen production and control

    International Nuclear Information System (INIS)

    Dickelman, G.J.

    1982-01-01

    It is the purpose of this paper to address the issue of training for power plant personnel in the area of hydrogen control. The authors experience in the training business indicates that most of the operations and engineering personnel have a very limited awareness of this phenomenon. Topics discussed in this paper include: 1) theory of hydrogen combustion kinetics; 2) incidents involving hydrogen combustion events; 3) normal operations interfacing with hydrogen; 4) accident conditions; and 5) mitigation schemes

  4. Hydrogen production by water-splitting and HTGR

    International Nuclear Information System (INIS)

    Courvoisier, P.; Rastouin, J.; Tilliette, Z.C.

    1976-01-01

    Some aspects of the use of heat of nuclear origin for the production of hydrogen by water-splitting are considered. General notions pertaining to the yield of chemical cycles are discussed and the heat balance corresponding to two specific processes is evaluated. The possibilities of high temperature reactors, with respect to the coolant temperature levels, are examined from the standpoint of core design and technology of some components. Furthermore these reactors can lead to excellent use of nuclear fuel. The coupling of the nuclear reactor with the chemical plant by means of a secondary helium circuit gives rise to the design of an intermediate heat exchanger, which is an important component of the overall installation [fr

  5. Studies on closed-cycle processes for hydrogen production, 3

    International Nuclear Information System (INIS)

    Sato, Shoichi; Ikezoe, Yasumasa; Shimizu, Saburo; Nakajima, Hayato; Kobayashi, Toshiaki

    1978-10-01

    Studies made in fiscal 1977 on the thermochemical and radiation chemical processes for hydrogen production are reported. In the thermochemical process, cerium (III) carbonate was used as an intermediate, and a workable process was found, which consisted of eight reaction steps. In other feasible processes, carbon dioxide was made to react with iron (II) chloride or iodide at high temperature to form carbon monoxide, and three or four reaction steps ensued. Also, an improved process of the sulfur cycle was studied. In this process, nickel salts were separated by solvent extraction. Estimated thermal efficiency (HHV) of the process was 30 - 40%, assuming 70 - 80% heat recovery. In the radiation chemical process, carbon dioxide was added with propane or nitrogen dioxide and radiolyzed: reaction mechanisms are discussed. (author)

  6. Hydrogen production from biomass tar by catalytic steam reforming

    International Nuclear Information System (INIS)

    Yoon, Sang Jun; Choi, Young-Chan; Lee, Jae-Goo

    2010-01-01

    The catalytic steam reforming of model biomass tar, toluene being a major component, was performed at various conditions of temperature, steam injection rate, catalyst size, and space time. Two kinds of nickel-based commercial catalyst, the Katalco 46-3Q and the Katalco 46-6Q, were evaluated and compared with dolomite catalyst. Production of hydrogen generally increased with reaction temperature, steam injection rate and space time and decreased with catalyst size. In particular, zirconia-promoted nickel-based catalyst, Katalco 46-6Q, showed a higher tar conversion efficiency and shows 100% conversion even relatively lower temperature conditions of 600 deg. C. Apparent activation energy was estimated to 94 and 57 kJ/mol for dolomite and nickel-based catalyst respectively.

  7. Energy and exergy analyses of electrolytic hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, M A [Ryerson Polytechnic Univ., Toronto, ON (Canada). Dept. of Mechanical Engineering

    1995-07-01

    The thermodynamic performance is investigated of a water-electrolysis process for producing hydrogen, based on current-technology equipment. Both energy and exergy analyses are used. Three cases are considered in which the principal driving energy inputs are (i) electricity, (ii) the high-temperature heat used to generate the electricity, and (iii) the heat source used to produce the high-temperature heat. The nature of the heat source (e.g.) fossil fuel, nuclear fuel, solar energy, (etc.) is left as general as possible. The analyses indicate that, when the main driving input is the hypothetical heat source, the principal thermodynamic losses are associated with water splitting, electricity generation and heat production; the losses are mainly due to the irreversibilities associated with converting a heat source to heat, and heat transfer across large temperature differences. The losses associated with the waste heat in used cooling water, because of its low quality, are not as significant as energy analysis indicates. (Author)

  8. Durable solid oxide electrolysis cells for hydrogen production

    DEFF Research Database (Denmark)

    Sun, Xiufu; Chen, Ming; Hendriksen, Peter Vang

    2014-01-01

    production is required for promoting commercialization of the SOEC technology. In this work, we report a recent 4400 hours test of a state-of-the-art Ni-YSZ electrode supported SOEC cell. The cell consists of a Ni-YSZ (YSZ: yttria stabilized zirconia) support and active fuel electrode, an YSZ electrolyte...... that except for the first 250 hours fast initial degradation, for the rest of the testing period, the cell showed rather stable performance with an moderate degradation rate of around 25 mV/1000 h. The electrochemical impedance spectra show that both serial resistance and polarization resistance of the cell...... and changing of porosity inside the active layer. The degree of these microstructural changes becomes less and less severe along the hydrogen-steam flow path. The present test results show that this type of cell can be used for early demonstration electrolysis at 1A/cm2. Future work should be focus on reducing...

  9. Analysis of the potential for hydrogen production in the province of Cordoba, Argentina, from wind resources

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, C.R.; Santa Cruz, R.; Aisa, S. [Universidad Empresarial Siglo 21, Monsenor Pablo Cabrera s/n calle, 5000 Cordoba (Argentina); Riso, M.; Jimenez Yob, G.; Ottogalli, R. [Subsecretaria de Infraestructuras y Programas, Ministerio de Obras y Servicios Publicos del Gobierno de la Provincia de Cordoba, Av. Poeta Lugones 12, 2do. Piso, 5000 Cordoba (Argentina); Jeandrevin, G. [Instituto Universitario Aeronautico, Avenida Fuerza Aerea km 6 1/2, 5022 Cordoba (Argentina); Leiva, E.P.M. [INFIQC, Unidad de Matematica y Fisica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Haya de la Torre s/n, 5010 Cordoba (Argentina)

    2010-06-15

    The potential for hydrogen production from wind resources in the province of Cordoba, second consumer of fossil fuels for transportation in Argentina, is analyzed. Three aspects of the problem are considered: the evaluation of the hydrogen resource from wind power, the analysis of the production costs via electrolysis and the annual requirements of wind energy to generate hydrogen to fuel the vehicular transport of the province. Different scenarios were considered, including pure hydrogen as well as the so-called CNG plus, where hydrogen is mixed with compressed natural gas in a 20% V/V dilution of the former. The potential for hydrogen production from wind resources is analyzed for each department of the province, excluding those regions not suited for wind farms. The analysis takes into account the efficiency of the electrolyzer and the capacity factor of the wind power system. It is concluded that the automotive transportation could be supplied by hydrogen stemming from wind resources via electrolysis. (author)

  10. Production of Hydrogen by Superadiabatic Decomposition of Hydrogen Sulfide - Final Technical Report for the Period June 1, 1999 - September 30, 2000

    Energy Technology Data Exchange (ETDEWEB)

    Rachid B. Slimane; Francis S. Lau; Javad Abbasian

    2000-10-01

    The objective of this program is to develop an economical process for hydrogen production, with no additional carbon dioxide emission, through the thermal decomposition of hydrogen sulfide (H{sub 2}S) in H{sub 2}S-rich waste streams to high-purity hydrogen and elemental sulfur. The novel feature of the process being developed is the superadiabatic combustion (SAC) of part of the H{sub 2}S in the waste stream to provide the thermal energy required for the decomposition reaction such that no additional energy is required. The program is divided into two phases. In Phase 1, detailed thermochemical and kinetic modeling of the SAC reactor with H{sub 2}S-rich fuel gas and air/enriched air feeds is undertaken to evaluate the effects of operating conditions on exit gas products and conversion efficiency, and to identify key process parameters. Preliminary modeling results are used as a basis to conduct a thorough evaluation of SAC process design options, including reactor configuration, operating conditions, and productivity-product separation schemes, with respect to potential product yields, thermal efficiency, capital and operating costs, and reliability, ultimately leading to the preparation of a design package and cost estimate for a bench-scale reactor testing system to be assembled and tested in Phase 2 of the program. A detailed parametric testing plan was also developed for process design optimization and model verification in Phase 2. During Phase 2 of this program, IGT, UIC, and industry advisors UOP and BP Amoco will validate the SAC concept through construction of the bench-scale unit and parametric testing. The computer model developed in Phase 1 will be updated with the experimental data and used in future scale-up efforts. The process design will be refined and the cost estimate updated. Market survey and assessment will continue so that a commercial demonstration project can be identified.

  11. Radiolytic hydrogen production in the subseafloor basaltic aquifer

    Directory of Open Access Journals (Sweden)

    Mary E Dzaugis

    2016-02-01

    Full Text Available Hydrogen (H2 is produced in geological settings by dissociation of water due to radiation from radioactive decay of naturally occurring uranium (238U, 235U, thorium (232Th and potassium (40K. To quantify the potential significance of radiolytic H2 as an electron donor for microbes within the South Pacific subseafloor basaltic aquifer, we use radionuclide concentrations of 43 basalt samples from IODP Expedition 329 to calculate radiolytic H2 production rates in basement fractures. The samples are from three sites with very different basement ages and a wide range of alteration types. U, Th and K concentrations vary by up to an order of magnitude from sample to sample at each site. Comparison of our samples to each other and to the results of previous studies of unaltered East Pacific Rise basalt suggests that significant variations in radionuclide concentrations are due to differences in initial (unaltered basalt concentrations (which can vary between eruptive events and post-emplacement alteration. In our samples, there is no clear relationship between alteration type and calculated radiolytic yields. Local maxima in U, Th, and K produce hotspots of H2 production, causing calculated radiolytic rates to differ by up to a factor of 80 from sample to sample. Fracture width also greatly influences H2 production, where microfractures are hotspots for radiolytic H2 production. For example, H2 production rates normalized to water volume are 190 times higher in 1 μm wide fractures than in fractures that are 10 cm wide. To assess the importance of water radiolysis for microbial communities in subseafloor basaltic aquifers, we compare electron transfer rates from radiolysis to rates from iron oxidation in subseafloor basalt. Radiolysis appears likely to be a more important electron donor source than iron oxidation in old (>10 Ma basement basalt. Radiolytic H2 production in the volume of water adjacent to a square cm of the most radioactive SPG basalt may

  12. The production of high dose hydrogen gas by the AMS-H-01 for treatment of disease

    OpenAIRE

    Richard Camara; Lei Huang; John H Zhang

    2016-01-01

    Hydrogen gas is a new and promising treatment option for a variety of diseases including stroke. Here, we introduce the AMS-H-01, a medically approved machine capable of safely producing ~66% hydrogen gas. Furthermore, we propose the significance of this machine in the future of hydrogen gas research.

  13. Economics and synergies of electrolytic and thermochemical methods of environmentally benign hydrogen production

    International Nuclear Information System (INIS)

    Naterer, G.F.

    2010-01-01

    Most of the world's hydrogen (about 97%) is currently derived from fossil fuels. For reduction of greenhouse gases, improvement of urban air quality, and energy security, among other reasons, carbon-free sources of hydrogen production are crucial to hydrogen becoming a significant energy carrier. Nuclear hydrogen production is a promising carbon-free alternative for large-scale, low-cost production of hydrogen in the future. Two nuclear technologies, applied in tandem, have a promising potential to generate hydrogen economically without leading to greenhouse gas emissions: 1) electrolysis and 2) thermochemical decomposition of water. This paper will investigate their unique complementary roles and economics of producing hydrogen, from a Canadian perspective. Together they can serve a unique potential for both de-centralized hydrogen needs in periods of low-demand electricity, and centralized base-load production from a nuclear station. Hydrogen production has a significantly higher thermal efficiency, but electrolysis can take advantage of low electricity prices during off-peak hours. By effectively linking these systems, water-based production of hydrogen can become more competitive against the predominant existing technology, SMR (steam-methane reforming). (orig.)

  14. Hydrogen peroxide as a sustainable energy carrier: Electrocatalytic production of hydrogen peroxide and the fuel cell

    International Nuclear Information System (INIS)

    Fukuzumi, Shunichi; Yamada, Yusuke; Karlin, Kenneth D.

    2012-01-01

    This review describes homogeneous and heterogeneous catalytic reduction of dioxygen with metal complexes focusing on the catalytic two-electron reduction of dioxygen to produce hydrogen peroxide. Whether two-electron reduction of dioxygen to produce hydrogen peroxide or four-electron O 2 -reduction to produce water occurs depends on the types of metals and ligands that are utilized. Those factors controlling the two processes are discussed in terms of metal–oxygen intermediates involved in the catalysis. Metal complexes acting as catalysts for selective two-electron reduction of oxygen can be utilized as metal complex-modified electrodes in the electrocatalytic reduction to produce hydrogen peroxide. Hydrogen peroxide thus produced can be used as a fuel in a hydrogen peroxide fuel cell. A hydrogen peroxide fuel cell can be operated with a one-compartment structure without a membrane, which is certainly more promising for the development of low-cost fuel cells as compared with two compartment hydrogen fuel cells that require membranes. Hydrogen peroxide is regarded as an environmentally benign energy carrier because it can be produced by the electrocatalytic two-electron reduction of O 2 , which is abundant in air, using solar cells; the hydrogen peroxide thus produced could then be readily stored and then used as needed to generate electricity through the use of hydrogen peroxide fuel cells.

  15. Hydrogen Peroxide as a Sustainable Energy Carrier: Electrocatalytic Production of Hydrogen Peroxide and the Fuel Cell.

    Science.gov (United States)

    Fukuzumi, Shunichi; Yamada, Yusuke; Karlin, Kenneth D

    2012-11-01

    This review describes homogeneous and heterogeneous catalytic reduction of dioxygen with metal complexes focusing on the catalytic two-electron reduction of dioxygen to produce hydrogen peroxide. Whether two-electron reduction of dioxygen to produce hydrogen peroxide or four-electron O 2 -reduction to produce water occurs depends on the types of metals and ligands that are utilized. Those factors controlling the two processes are discussed in terms of metal-oxygen intermediates involved in the catalysis. Metal complexes acting as catalysts for selective two-electron reduction of oxygen can be utilized as metal complex-modified electrodes in the electrocatalytic reduction to produce hydrogen peroxide. Hydrogen peroxide thus produced can be used as a fuel in a hydrogen peroxide fuel cell. A hydrogen peroxide fuel cell can be operated with a one-compartment structure without a membrane, which is certainly more promising for the development of low-cost fuel cells as compared with two compartment hydrogen fuel cells that require membranes. Hydrogen peroxide is regarded as an environmentally benign energy carrier because it can be produced by the electrocatalytic two-electron reduction of O 2 , which is abundant in air, using solar cells; the hydrogen peroxide thus produced could then be readily stored and then used as needed to generate electricity through the use of hydrogen peroxide fuel cells.

  16. Performance test results of mock-up test facility of HTTR hydrogen production system

    International Nuclear Information System (INIS)

    Ohashi, Hirofumi; Inaba, Yoshitomo; Nishihara, Tetsuo

    2004-01-01

    For the purpose to demonstrate effectiveness of high-temperature nuclear heat utilization, Japan Atomic Energy Research Institute has been developing a hydrogen production system and has planned to connect the hydrogen production system to High Temperature Engineering Test Reactor (HTTR). Prior to construction of a HTTR hydrogen production system, a mock-up test facility was constructed to investigate transient behavior of the