WorldWideScience

Sample records for hydrogen pickup behavior

  1. The Hydrogen Pickup Behavior for Zirconium-based Alloys in Various Out-of-pile Corrosion Test Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Aomi, M.; Etoh, Y.; Ishimoto, S.; Une, K. [Nippon Nuclear Fuel Development, Co., Ltd., 2163 Narita-cho, Oarai-machi, Ibaraki-ken, 311-1313 (Japan); Ito, K. [Global Nuclear Fuel Japan Co., Ltd., 3-1 Uchikawa 2-chome, Yokosuka-shi, Kanagawa-ken, 239-0836 (Japan)

    2009-06-15

    An acceleration of hydrogen absorption in zirconium alloy claddings at high burnups is one of the most important issues limiting the fuel performance from the viewpoint of cladding integrity. In this context, advanced cladding materials with higher corrosion resistant and lower hydrogen absorption properties have been widely searched in various organizations. In this study, four kinds of zirconium-based alloys, whose in-pile data had been acquired [1,2] were subjected to comprehensive out-of-pile corrosion tests with various temperature and atmosphere conditions in order to investigate the correlation between in-pile and out-of-pile corrosion and hydrogen pick-up behavior, i.e. Zry-2, GNF-Ziron (Zry-2-based alloy with {approx}0.25 wt % of Fe), Hi-FeNi Zircaloy (Zry-2-based alloy with {approx}0.25 wt % of Fe and {approx}0.1 wt% Ni), and VB (Zr-based alloy containing Sn, Cr, and {approx}0.5 wt % of Fe). All the alloys were annealed in RXA condition. The out-of-pile corrosion tests were carried out in three different conditions of 400 deg. C steam, 475 deg. C supercritical water, and 290 deg. C LiOH aqueous solution. In addition to these alloys, several Zry-2-based alloys with various iron contents were tested in 290 deg. C LiOH aqueous solution. Among the four corrosion conditions, the 290 deg. C LiOH aqueous solution test well screened the hydrogen pick-up behavior of the alloys. The hydrogen absorption decreased with higher iron contents in the alloys in both the out-of-pile and in-pile conditions. Especially, the distinct suppression of hydrogen absorption was observed for VB with the highest iron content. The similar dependence of iron content on the hydrogen pick-up fraction was also obtained for the Zry-2-based alloys with different iron contents, which were corroded in the 290 deg. C LiOH aqueous solution condition. As for the corrosion behavior in the 290 deg. C LiOH aqueous solution condition, the weight gains of Zry-2, GNF-Ziron and VB followed the 1

  2. Hydrogen pickup and redistribution in alpha-annealed Zircaloy-4

    International Nuclear Information System (INIS)

    Kammenzind, B.F.; Franklin, D.G.; Duffin, W.J.; Peters, H.R.

    1996-01-01

    Zircaloy-4, which is widely used as a core structural material in Pressurized-Water Reactors (PWR), picks up hydrogen during service. Hydrogen solubility in Zircaloy-4 is low and hydrides precipitate after the Zircaloy-4 matrix becomes supersaturated with hydrogen. These hydrides embrittle the Zircaloy-4. To study hydrogen pickup and concentration, a postirradiation nondestructive radiographic technique for measuring hydrogen concentration was developed and qualified. Experiments on hydrogen pickup were conducted in the Advanced Test Reactor (ATR). Ex-reactor tests were conducted to determine the conditions for which hydrogen would dissolve, migrate, and precipitate. Finally, a phenomenological model for hydrogen diffusion was indexed to the data. This presentation describes the equipment and the model, presents the results of experiments, and compares the model predictions to experimental results

  3. In-situ electrochemical impedance spectroscopy measurements of zirconium alloy oxide conductivity: Relationship to hydrogen pickup

    International Nuclear Information System (INIS)

    Couet, Adrien; Motta, Arthur T.; Ambard, Antoine; Livigni, Didier

    2017-01-01

    Highlights: • In-situ electrochemistry on zirconium alloys in 360 °C pure water show oxide layer resistivity changes during corrosion. • A linear relationship is observed between oxide resistivity and instantaneous hydrogen pickup fraction. • The resistivity of the oxide layer formed on Zircaloy-4 (and thus its hydrogen pickup fraction) is higher than on Zr-2.5Nb. - Abstract: Hydrogen pickup during nuclear fuel cladding corrosion is a critical life-limiting degradation mechanism for nuclear fuel. Following a program dedicated to zirconium alloys, corrosion, it has been hypothesized that oxide electronic resistivity determines hydrogen pickup. In-situ electrochemical impedance spectroscopy experiments were performed on Zircaloy-4 and Zr-2.5Nb alloys in 360 °C water. The oxide resistivity was measured as function of time. The results show that as the oxide resistivity increases so does the hydrogen pickup fraction. The resistivity of the oxide layer formed on Zircaloy-4 is higher than on Zr-2.5Nb, resulting in a higher hydrogen pickup fraction of Zircaloy-4, compared to Zr-2.5Nb.

  4. Detection of interstellar pick-up hydrogen in the solar system

    Science.gov (United States)

    Gloeckler, G.; Geiss, J.; Balsiger, H.; Fisk, L. A.; Galvin, A. B.; Ipavich, F. M.; Ogilvie, K. W.; Von Steiger, R.; Wilken, B.

    1993-01-01

    Interstellar hydrogen ionized primarily by the solar wind has been detected by the Solar Wind Ion Composition Spectrometer instrument on the Ulysses spacecraft at a distance of 4.8 AUs from the sun. This 'pick-up' hydrogen is identified by its distinct velocity distribution function, which drops abruptly at twice the local solar wind speed. From the measured fluxes of pick-up protons and singly charged helium, the number densities of neutral hydrogen and helium in the distant regions of the solar system are estimated to be 0.077 +/- 0.015 and 0.013 +/- 0.003 per cu cm, respectively.

  5. A model for hydrogen pickup for BWR cladding materials

    International Nuclear Information System (INIS)

    Hede, G.; Kaiser, U.

    2001-01-01

    It has been observed that rod elongation is driven by the hydrogen pickup but not by corrosion as such. Based on this a non-destructive method to determine clad hydrogen concentration has been developed. The method is based on the observation that there are three different mechanisms behind the rod growth: the effect of neutron irradiation on the Zircaloy microstructure, the volume increase of the cladding as an effect of hydride precipitation and axial pellet-cladding-mechanical-interaction (PCMI). The derived correlation is based on the experience of older cladding materials, inspected at hot-cell laboratories, that obtained high hydrogen levels (above 500 ppm) at lower burnup (assembly burnup below 50 MWd/kgU). Now this experience can be applied, by interpolation, on more modern cladding materials with a burnup beyond 50 MWd/kgU by analysis of the rod growth database of the respective cladding materials. Hence, the method enables an interpolation rather than an extrapolation of present day hydrogen pickup database, which improves the reliability and accuracy. Further, one can get a good estimate of the hydrogen pickup during an ongoing outage based on a non-destructive method. Finally, rod growth measurements are normally performed for a large population of rods, hence giving a good statistics compared to examination of a few rods at a hot cell. (author)

  6. An assessment of the waterside corrosion and hydrogen pick-up in the zircaloy-2 pressure tubes of PHWR

    International Nuclear Information System (INIS)

    Sah, D.N.

    1992-01-01

    In view of the deleterious effect of hydriding on the operating life of zircaloy-2 pressure tubes in PHWRs there is an urgent need for the assessment of the status of the pressure tubes with respect to corrosion and hydrogen pick-up in the operating PHWRs. A model has been developed for analysing the waterside corrosion and hydrogen pick-up in the zircaloy-2 pressure tubes under reactor operating conditions. This model predicts the axial profiles of oxide layer thickness and hydrogen pick-up in the pressure tubes as a function of the operating time of the reactor. The prediction of hydrogen pick-up by the model in the F-10 pressure tube of RAPS-I have been found to be in good agreement with the measured value of hydrogen content. This report gives a brief description of the model and its predictions on the present status of hydrogen pick-up in the pressure tubes of lead reactor RAPS-II. (author). 6 refs., 5 figs., 2 tabs

  7. Oxide characterization and hydrogen behaviors of Zr-based alloys

    International Nuclear Information System (INIS)

    Kim, Y. S.; Kim, D. J.; Kwon, S. H.; Lee, H. S.; Oh, S. J.; Yim, B. J.; Son, S. B.; Yun, S. P.

    2006-03-01

    The work scope and contents of the research are as follows : basic properties of zirconium alloys, hydrogen pick-up mechanism of zirconium alloy, effects of hydride on the corrosion behaviors of zirconium alloys, estimation on stress of oxide layer in the zirconium alloy, microstructure and characteristic of oxide in pre-hydrided zirconium alloys

  8. Probing the Martian Exosphere and Neutral Escape Using Pickup Ions Measured by MAVEN

    Science.gov (United States)

    Rahmati, A.; Larson, D. E.; Cravens, T.; Halekas, J. S.; Lillis, R. J.; McFadden, J. P.; Mitchell, D. L.; Thiemann, E.; Connerney, J. E. P.; Dunn, P.; DiBraccio, G. A.; Espley, J. R.; Eparvier, F. G.; Jakosky, B. M.

    2016-12-01

    Soon after the MAVEN (Mars Atmosphere and Volatile EvolutioN) spacecraft started orbiting Mars in September 2014, the SEP (Solar Energetic Particle), SWIA (Solar Wind Ion Analyzer), and STATIC (Supra-Thermal and Thermal Ion Composition) instruments onboard the spacecraft started detecting planetary pickup ions. SEP can measure energetic (>50 keV) oxygen pickup ions, the source of which is the extended hot oxygen exosphere of Mars. Model results show that these pickup ions originate from tens of Martian radii upstream of Mars and are energized by the solar wind motional electric field as they gyrate back towards Mars. SEP is blind to pickup hydrogen, as the low energy threshold for detection of hydrogen in SEP is 20 keV; well above the maximum pickup hydrogen energy, which is four times the solar wind proton energy. SWIA and STATIC, on the other hand, can detect both pickup oxygen and pickup hydrogen with energies below 30 keV and created closer to Mars. During the times when MAVEN is outside the Martian bow shock and in the upstream undisturbed solar wind, the solar wind velocity measured by SWIA and the solar wind (or interplanetary) magnetic field measured by the MAG (magnetometer) instrument can be used to model pickup oxygen and hydrogen fluxes near Mars. Solar wind flux measurements of the SWIA instrument are used in calculating charge-exchange frequencies, and data from the EUVM (Extreme Ultraviolet Monitor) and SWEA (Solar Wind Electron Analyzer) instruments are also used in calculating photo-ionization and electron impact frequencies of neutral species in the Martian exosphere. By comparing SEP, SWIA, and STATIC measured pickup ion fluxes with model results, the Martian thermal hydrogen and hot oxygen neutral densities can be probed outside the bow shock, which would place constraints on estimates of oxygen and hydrogen neutral escape rates. We will present model-data comparisons of pickup ions measured outside the Martian bow shock. Our analysis reveals an

  9. MAVEN Pickup Ion Constraints on Mars Neutral Escape

    Science.gov (United States)

    Rahmati, A.; Larson, D. E.; Cravens, T.; Lillis, R. J.; Dunn, P.; Halekas, J. S.; McFadden, J. P.; Mitchell, D. L.; Thiemann, E.; Connerney, J. E. P.; DiBraccio, G. A.; Espley, J. R.; Eparvier, F. G.

    2017-12-01

    Mars is currently losing its atmosphere mainly due to the escape of neutral hydrogen and oxygen. Directly measuring the rate of escaping neutrals is difficult, because the neutral density in the Mars exosphere is dominated, up to several Martian radii, by atoms that are gravitationally bound to the planet. Neutral atoms in the Martian exosphere, however, can get ionized, picked up, and accelerated by the solar wind motional electric field and energized to energies high enough for particle detectors to measure them. The MAVEN SEP instrument detects O+ pickup ions that are created at altitudes where the escaping part of the exosphere is dominant. Fluxes of these ions reflect neutral densities in the distant exosphere of Mars, allowing us to constrain neutral oxygen escape rates. The MAVEN SWIA and STATIC instruments measure pickup H+ and O+ created closer to Mars; comparisons of these data with models can be used to constrain exospheric hot O and thermal H densities and escape rates. In this work, pickup ion measurements from SEP, SWIA, and STATIC, taken during the first 3 Earth years of the MAVEN mission, are compared to the outputs of a pickup ion model to constrain the variability of neutral escape at Mars. The model is based on data from six MAVEN instruments, namely, MAG providing magnetic field used in calculating pickup ion trajectories, SWIA providing solar wind velocity as well as 3D pickup H+ and O+ spectra, SWEA providing solar wind electron spectrum used in electron impact ionization rate calculations, SEP providing pickup O+ spectra, STATIC providing mass resolved 3D pickup H+ and O+ spectra, and EUVM providing solar EUV spectra used in photoionization rate calculations. A variability of less than a factor of two is observed in hot oxygen escape rates, whereas thermal escape of hydrogen varies by an order of magnitude with Mars season. This hydrogen escape variability challenges our understanding of the H cycle at Mars, but is consistent with other

  10. Review of theoretical conceptions on regimes of oxidation and hydrogen pickup in Zr-alloys

    International Nuclear Information System (INIS)

    Likhanskii, V.; Evdokimov, I.

    2008-01-01

    In this paper the following issues are presented: 1) Experimental observations published in the journals on corrosion regimes of zirconium alloys of various compositions both for ex-pile oxidation experiments and for in-pile operating conditions of the materials. Factors experimentally stated on the effect of alloying composition, microstructure and texture on the rate of uniform corrosion and susceptibility of alloys to nodular corrosion. 2) Phenomenological models existing in publications, which describe conditions of uniform and nodular corrosion for Zr-alloys of various composition and microstructures, effect of irradiation and oxidizing medium; 3) Experimental data and phenomenological models describing regimes of hydrogen absorption in zirconium alloys; 4) Examples of application of physical models in explaining regimes, peculiarities of oxidation and hydrogen pickup for zirconium claddings of various alloying composition and microstructure

  11. The effect of minor alloying elements on oxidation and hydrogen pickup in Zr-2.5Nb

    International Nuclear Information System (INIS)

    Ploc, R.A.

    2002-01-01

    In CANDU reactors, fuel and coolant are contained in horizontal pressure tubes made of Zr-2.5 wt% Nb alloy. In the past decade, the effect of more than 20 impurity elements, in various concentrations, on oxidation and deuterium pickup (at 300 o C, pD = 10.5, Li 2 O) have been investigated in over 70 Zr-2.5Nb alloys. The studies were performed using non-consumable arc-melted alloy logs that were rolled and made into corrosion coupons and corroded in autoclaves. This study represents one of the largest collections of previously unpublished data on the effect of impurity elements on oxide film growth and deuterium pickup in a zirconium alloy. Elements such as Al, Ti, Mn, and Pt, to name but a few, were found to significantly accelerate the corrosion process. Some elements, such as tin, had a positive effect on oxidation (lowers the rate of oxide film development) and a negative effect on hydrogen pickup (increases pickup). Three parameters were important to the corrosion process, namely, microstructure, surface finish, and synergistic interactions between the impurity elements. The above studies culminated in two response surface analyses (RSA). The first was conducted on the effect of C and Fe on oxygen and deuterium pickup in Zr-2.5Nb drop castings corroded at 325 o C in CANDU conditions. The second study was performed in autoclaves at 300 o C on the affect of four impurity elements, C, Fe, Cr, and Si, in Zr-2.5Nb micro-tubes, which possess the same microstructure as full-size pressure tubes. The first RSA revealed a quadratic dependence of corrosion on C and Fe concentrations, with an optimum resistance at about 30 ppm (wt) C and 1100 ppm (wt) Fe. This has been partially confirmed by out-reactor corrosion of Zr-2.5Nb-Fe micro-pressure tubes. Trends in- and out-reactor were similar for oxidation but different in magnitude for deuterium pickup. There is no linear dependence on the Fe concentration in-reactor, implying that Fe and C form a complex. The second RSA

  12. The effect of minor alloying elements on oxidation and hydrogen pickup in Zr-2.5Nb

    International Nuclear Information System (INIS)

    Ploc, R.A.

    2002-01-01

    In CANDU reactors, fuel and coolant are contained in horizontal pressure tubes made of Zr-2.5 wt% Nb alloy. In the past decade, the effect of more than 20 impurity elements, in various concentrations, on oxidation and deuterium pickup (at 300 deg C, pD = 10.5, Li 2 O) have been investigated in over 70 Zr-2.5Nb alloys. The studies were performed using non-consumable arc-melted alloy logs that were rolled and made into corrosion coupons and corroded in autoclaves. This study represents one of the largest collections of previously unpublished data on the effect of impurity elements on oxide film growth and deuterium pickup in a zirconium alloy. Elements such as Al, Ti, Mn, and Pt, to name but a few, were found to significantly accelerate the corrosion process. Some elements, such as tin, had a positive effect on oxidation (lowers the rate of oxide film development) and a negative effect on hydrogen pickup (increases pickup). Three parameters were important to the corrosion process, namely, microstructure, surface finish, and synergistic interactions between the impurity elements. The above studies culminated in two response surface analyses (RSA). The first was conducted on the effect of C and Fe on oxygen and deuterium pickup in Zr-2.5Nb drop castings corroded at 325 deg C in CANDU conditions. The second study was performed in autoclaves at 300 deg C on the affect of four impurity elements, C, Fe, Cr, and Si, in Zr-2.5Nb micro-tubes, which possess the same microstructure as full-size pressure tubes. The first RSA revealed a quadratic dependence of corrosion on C and Fe concentrations, with an optimum resistance at about 30 ppm (wt) C and 1100 ppm (wt) Fe. This has been partially confirmed by out-reactor corrosion of Zr-2.5Nb-Fe micro-pressure tubes. Trends in- and out-reactor were similar for oxidation but different in magnitude for deuterium pickup. There is no linear dependence on the Fe concentration in-reactor, implying that Fe and C form a complex. The second

  13. Dynamic devices: A primer on pickups and kickers

    International Nuclear Information System (INIS)

    Goldberg, D.A.; Lambertson, G.R.

    1991-11-01

    A charged-particle beam generates electromagnetic fields which in turn interact with the beam's surroundings. These interactions can produce fields which act back on the beam itself, or, if the ''surroundings'' are of suitably designed form (e.g., sensing electrodes with electrical connection to the ''outside world''), can provide information on various properties of the beam; such electrodes are generally known as pickups. Similarly, charged- particle beams respond to the presence of externally imposed electromagnetic fields; devices used to generate such fields are generally known as kickers. As we shall show, the behavior of an electrode system when it functions as a pickup is intimately related to its behavior as a kicker. A number of papers on pickup behavior have appeared in recent years in most of which the primary emphasis has been on beam instrumentation; there have also been several workshops on the subject. There have been several papers which have treated both pickup and kicker behavior of a particular electrode system, but this has been done in the context of discussing a specialized application, such as a stochastic cooling system. The approach in the present paper is similar to that of earlier works by one of the authors, which is to provide a unified treatment of pickup and kicker behavior, and, it is hoped, to give the reader an understanding which is both general and fundamental enough to make the above references easily accessible to him. As implied by the revised title, we have done the re-writing with the non-expert in mind. We have made the introduction both lengthier and more detailed, and done the same with much of the explanatory material and discussion

  14. Dynamic devices: A primer on pickups and kickers

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, D.A.; Lambertson, G.R.

    1991-11-01

    A charged-particle beam generates electromagnetic fields which in turn interact with the beam`s surroundings. These interactions can produce fields which act back on the beam itself, or, if the ``surroundings`` are of suitably designed form (e.g., sensing electrodes with electrical connection to the ``outside world``), can provide information on various properties of the beam; such electrodes are generally known as pickups. Similarly, charged- particle beams respond to the presence of externally imposed electromagnetic fields; devices used to generate such fields are generally known as kickers. As we shall show, the behavior of an electrode system when it functions as a pickup is intimately related to its behavior as a kicker. A number of papers on pickup behavior have appeared in recent years in most of which the primary emphasis has been on beam instrumentation; there have also been several workshops on the subject. There have been several papers which have treated both pickup and kicker behavior of a particular electrode system, but this has been done in the context of discussing a specialized application, such as a stochastic cooling system. The approach in the present paper is similar to that of earlier works by one of the authors, which is to provide a unified treatment of pickup and kicker behavior, and, it is hoped, to give the reader an understanding which is both general and fundamental enough to make the above references easily accessible to him. As implied by the revised title, we have done the re-writing with the non-expert in mind. We have made the introduction both lengthier and more detailed, and done the same with much of the explanatory material and discussion.

  15. Dynamic devices: A primer on pickups and kickers

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, D.A.; Lambertson, G.R.

    1991-11-01

    A charged-particle beam generates electromagnetic fields which in turn interact with the beam's surroundings. These interactions can produce fields which act back on the beam itself, or, if the surroundings'' are of suitably designed form (e.g., sensing electrodes with electrical connection to the outside world''), can provide information on various properties of the beam; such electrodes are generally known as pickups. Similarly, charged- particle beams respond to the presence of externally imposed electromagnetic fields; devices used to generate such fields are generally known as kickers. As we shall show, the behavior of an electrode system when it functions as a pickup is intimately related to its behavior as a kicker. A number of papers on pickup behavior have appeared in recent years in most of which the primary emphasis has been on beam instrumentation; there have also been several workshops on the subject. There have been several papers which have treated both pickup and kicker behavior of a particular electrode system, but this has been done in the context of discussing a specialized application, such as a stochastic cooling system. The approach in the present paper is similar to that of earlier works by one of the authors, which is to provide a unified treatment of pickup and kicker behavior, and, it is hoped, to give the reader an understanding which is both general and fundamental enough to make the above references easily accessible to him. As implied by the revised title, we have done the re-writing with the non-expert in mind. We have made the introduction both lengthier and more detailed, and done the same with much of the explanatory material and discussion.

  16. Possible origin and roles of nano-porosity in ZrO2 scales for hydrogen pick-up in Zr alloys

    Science.gov (United States)

    Lindgren, Mikaela; Geers, Christine; Panas, Itai

    2017-08-01

    A mechanistic understanding of Wagnerian build-up and subsequent non-Wagnerian break-down of barrier oxide upon oxidation of zirconium alloys by water is reiterated. Hydrogen assisted build-up of nano-porosity is addressed. Growth of sub-nanometer wide stalactitic pores owing to increasing aggregation of neutral oxygen vacancies offering a means to permeate hydrogen into the alloy is explored by density functional theory. The Wagnerian channel utilizes charge separation allowing charged oxygen vacancies and electrons to move separately from nominal anode to nominal cathode. This process becomes increasingly controlled by the charging of the barrier oxide resulting in sub-parabolic rate law for oxide growth. The break-down of the barrier oxide is understood to be preceded by avalanching hydrogen pick-up in the alloy. Pore mediated diffusion allows water to effectively short circuit the barrier oxide.

  17. Pickup Protons: Comparisons using the Three-Dimensional MHD HHMS-PI model and Ulysses SWICS Measurements

    Science.gov (United States)

    Intriligator, Devrie S.; Detman, Thomas; Gloecker, George; Gloeckler, Christine; Dryer, Murray; Sun, Wei; Intriligator, James; Deehr, Charles

    2012-01-01

    We report the first comparisons of pickup proton simulation results with in situ measurements of pickup protons obtained by the SWICS instrument on Ulysses. Simulations were run using the three dimensional (3D) time-dependent Hybrid Heliospheric Modeling System with Pickup Protons (HHMS-PI). HHMS-PI is an MHD solar wind model, expanded to include the basic physics of pickup protons from neutral hydrogen that drifts into the heliosphere from the local interstellar medium. We use the same model and input data developed by Detman et al. (2011) to now investigate the pickup protons. The simulated interval of 82 days in 2003 2004, includes both quiet solar wind (SW) and also the October November 2003 solar events (the Halloween 2003 solar storms). The HHMS-PI pickup proton simulations generally agree with the SWICS measurements and the HHMS-PI simulated solar wind generally agrees with SWOOPS (also on Ulysses) measurements. Many specific features in the observations are well represented by the model. We simulated twenty specific solar events associated with the Halloween 2003 storm. We give the specific values of the solar input parameters for the HHMS-PI simulations that provide the best combined agreement in the times of arrival of the solar-generated shocks at both ACE and Ulysses. We show graphical comparisons of simulated and observed parameters, and we give quantitative measures of the agreement of simulated with observed parameters. We suggest that some of the variations in the pickup proton density during the Halloween 2003 solar events may be attributed to depletion of the inflowing local interstellar medium (LISM) neutral hydrogen (H) caused by its increased conversion to pickup protons in the immediately preceding shock.

  18. The role of charge-exchange cross-section for pickup protons and neutrals in the inner heliosheath

    Science.gov (United States)

    Chalov, S. V.

    2018-06-01

    The process of deceleration of the solar wind downstream of the termination shock is studied on the basis of a one-dimensional multi-component model. It is assumed that the solar wind consists of thermal protons, electrons and interstellar pickup protons. The protons interact with interstellar hydrogen atoms by charge-exchange. Two cases are considered. In the first one, the charge-exchange cross-section for thermal protons and hydrogen atoms is the same as for pickup protons and atoms. Under this condition, there is a strong dependence of the solar wind velocity on the downstream temperature of pickup protons. When the proton temperature is close to 10 keV, the change in the velocity with the distance from the termination shock is similar to that measured on the Voyager 1 spacecraft: linear velocity decrease is accompanied by an extended transition region with near-zero velocity. However, with a more careful approach to the choice of the charge-exchange cross-section, the situation changes dramatically. The strong dependence of the solar wind speed on the pickup proton temperature disappears and the transition region in the heliosheath disappears as well, at least at reasonable distances from the TS.

  19. AA, stochastic precooling pickup

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    The freshly injected antiprotons were subjected to fast stochastic "precooling". In this picture of a precooling pickup, the injection orbit is to the left, the stack orbit to the far right. After several seconds of precooling with the system's kickers (in momentum and in the vertical plane), the precooled antiprotons were transferred, by means of RF, to the stack tail, where they were subjected to further stochastic cooling in momentum and in both transverse planes, until they ended up, deeply cooled, in the stack core. During precooling, a shutter near the central orbit shielded the pickups from the signals emanating from the stack-core, whilst the stack-core was shielded from the violent action of the precooling kickers by a shutter on these. All shutters were opened briefly during transfer of the precooled antiprotons to the stack tail. Here, the shutter is not yet mounted. Precooling pickups and kickers had the same design, except that the kickers had cooling circuits and the pickups had none. Peering th...

  20. The Influence of Pickup Protons, from Interstellar Neutral Hydrogen, on the Propagation of Interplanetary Shocks from the Halloween 2003 Solar Events to ACE and Ulysses: A 3-D MHD Modeling Study

    Science.gov (United States)

    Detman, T. R.; Intriligator, D. S.; Dryer, M.; Sun, W.; Deehr, C. S.; Intriligator, J.

    2012-01-01

    We describe our 3-D, time ]dependent, MHD solar wind model that we recently modified to include the physics of pickup protons from interstellar neutral hydrogen. The model has a time-dependent lower boundary condition, at 0.1 AU, that is driven by source surface map files through an empirical interface module. We describe the empirical interface and its parameter tuning to maximize model agreement with background (quiet) solar wind observations at ACE. We then give results of a simulation study of the famous Halloween 2003 series of solar events. We began with shock inputs from the Fearless Forecast real ]time shock arrival prediction study, and then we iteratively adjusted input shock speeds to obtain agreement between observed and simulated shock arrival times at ACE. We then extended the model grid to 5.5 AU and compared those simulation results with Ulysses observations at 5.2 AU. Next we undertook the more difficult tuning of shock speeds and locations to get matching shock arrival times at both ACE and Ulysses. Then we ran this last case again with neutral hydrogen density set to zero, to identify the effect of pickup ions. We show that the speed of interplanetary shocks propagating from the Sun to Ulysses is reduced by the effects of pickup protons. We plan to make further improvements to the model as we continue our benchmarking process to 10 AU, comparing our results with Cassini observations, and eventually on to 100 AU, comparing our results with Voyager 1 and 2 observations.

  1. Hydrogen and Nitrogen Control in Ladle and Casting Operations

    Energy Technology Data Exchange (ETDEWEB)

    Richard J. Fruehan; Siddhartha Misra

    2005-01-15

    In recent years there has been an increasing demand to reduce and control the amount of dissolved gases in steel. Hydrogen and nitrogen are two of the most important gases which when dissolved in liquid steel affect its properties significantly. Several steelmaking additions have been investigated in this research for their effect on the hydrogen and nitrogen content of steels. It has been established that calcium hydroxide (hydrated lime) acts as a source of hydrogen. Carburizers, such as metallurgical coke, were found to result in no hydrogen pickup when added to liquid steel. Addition of petroleum coke, on the other hand, increased the hydrogen content of liquid steel. Ferroalloy such as medium carbon ferromanganese when added to the liquid iron was found to increase its nitrogen content, the increase being proportional to the amount of ferroalloy added. Similarly, addition of pitch coke, which had a significant nitrogen impurity, increased the nitrogen content of liquid iron. A mathematical model was developed to quantify the absorption of nitrogen and hydrogen from the air bubbles entrained during tapping of liquid steel. During the bottom stirring of liquid metal in a ladle, the inert gas escaping from the top displaces the slag layer and often forms an open eye. The absorption of atmospheric nitrogen through the spout eye was estimated for different slag thickness and gas flow rate. The ultimate goal of this research was to develop a comprehensive set of equations which could predict the nitrogen and hydrogen pickup from their various sources. Estimates of hydrogen and nitrogen pickup during the steel transfer operations such as tapping and ladle stirring and the predicted pickup from steelmaking additions were integrated into empirical equations. The comprehensive model is designed to predict the gas pickup under varying operating conditions such as the metal oxygen and sulfur content, the total tapping or stirring time, the stirring gas flow rate and the

  2. Embodied intersubjective engagement in mother-infant tactile communication: a cross-cultural study of Japanese and Scottish mother-infant behaviors during infant pick-up.

    Science.gov (United States)

    Negayama, Koichi; Delafield-Butt, Jonathan T; Momose, Keiko; Ishijima, Konomi; Kawahara, Noriko; Lux, Erin J; Murphy, Andrew; Kaliarntas, Konstantinos

    2015-01-01

    This study examines the early development of cultural differences in a simple, embodied, and intersubjective engagement between mothers putting down, picking up, and carrying their infants between Japan and Scotland. Eleven Japanese and ten Scottish mothers with their 6- and then 9-month-old infants participated. Video and motion analyses were employed to measure motor patterns of the mothers' approach to their infants, as well as their infants' collaborative responses during put-down, pick-up, and carry phases. Japanese and Scottish mothers approached their infants with different styles and their infants responded differently to the short duration of separation during the trial. A greeting-like behavior of the arms and hands was prevalent in the Scottish mothers' approach, but not in the Japanese mothers' approach. Japanese mothers typically kneeled before making the final reach to pick-up their children, giving a closer, apparently gentler final approach of the torso than Scottish mothers, who bent at the waist with larger movements of the torso. Measures of the gap closure between the mothers' hands to their infants' heads revealed variably longer duration and distance gap closures with greater velocity by the Scottish mothers than by the Japanese mothers. Further, the sequence of Japanese mothers' body actions on approach, contact, pick-up, and hold was more coordinated at 6 months than at 9 months. Scottish mothers were generally more variable on approach. Measures of infant participation and expressivity indicate more active participation in the negotiation during the separation and pick-up phases by Scottish infants. Thus, this paper demonstrates a culturally different onset of development of joint attention in pick-up. These differences reflect cultures of everyday interaction.

  3. Embodied intersubjective engagement in mother–infant tactile communication: a cross-cultural study of Japanese and Scottish mother–infant behaviors during infant pick-up

    Science.gov (United States)

    Negayama, Koichi; Delafield-Butt, Jonathan T.; Momose, Keiko; Ishijima, Konomi; Kawahara, Noriko; Lux, Erin J.; Murphy, Andrew; Kaliarntas, Konstantinos

    2015-01-01

    This study examines the early development of cultural differences in a simple, embodied, and intersubjective engagement between mothers putting down, picking up, and carrying their infants between Japan and Scotland. Eleven Japanese and ten Scottish mothers with their 6- and then 9-month-old infants participated. Video and motion analyses were employed to measure motor patterns of the mothers’ approach to their infants, as well as their infants’ collaborative responses during put-down, pick-up, and carry phases. Japanese and Scottish mothers approached their infants with different styles and their infants responded differently to the short duration of separation during the trial. A greeting-like behavior of the arms and hands was prevalent in the Scottish mothers’ approach, but not in the Japanese mothers’ approach. Japanese mothers typically kneeled before making the final reach to pick-up their children, giving a closer, apparently gentler final approach of the torso than Scottish mothers, who bent at the waist with larger movements of the torso. Measures of the gap closure between the mothers’ hands to their infants’ heads revealed variably longer duration and distance gap closures with greater velocity by the Scottish mothers than by the Japanese mothers. Further, the sequence of Japanese mothers’ body actions on approach, contact, pick-up, and hold was more coordinated at 6 months than at 9 months. Scottish mothers were generally more variable on approach. Measures of infant participation and expressivity indicate more active participation in the negotiation during the separation and pick-up phases by Scottish infants. Thus, this paper demonstrates a culturally different onset of development of joint attention in pick-up. These differences reflect cultures of everyday interaction. PMID:25774139

  4. Dynamic devices - pickups and kickers

    International Nuclear Information System (INIS)

    Lambertson, G.

    1986-08-01

    A given configuration of electrodes may be used either as a pickup or as a kicker; that duality is addressed. Some general relations between longitudinal and transverse effects and between the respones as pickup and as kicker are derived. Dynamic effects are seen to be entirely determined by the longitudinal electric fields in the direction of the beam current when the electrode is excited as a kicker. Response functions that serve as figures of merit are defined. The responses of specific examples of pickups and kickers are analyzed. An approach to the calculation of the transverse variation of coupling over the electrode aperture is preented

  5. Seasonal variation of Martian pick-up ions: Evidence of breathing exosphere

    Science.gov (United States)

    Yamauchi, M.; Hara, T.; Lundin, R.; Dubinin, E.; Fedorov, A.; Sauvaud, J.-A.; Frahm, R. A.; Ramstad, R.; Futaana, Y.; Holmstrom, M.; Barabash, S.

    2015-12-01

    The Mars Express (MEX) Ion Mass Analyser (IMA) found that the detection rate of the ring-like distribution of protons in the solar wind outside of the bow shock to be quite different between Mars orbital summer (around perihelion) and orbital winter (around aphelion) for four Martian years, while the north-south asymmetry is much smaller than the perihelion-aphelion difference. Further analyses using eight years of MEX/IMA solar wind data between 2005 and 2012 has revealed that the detection frequency of the pick-up ions originating from newly ionized exospheric hydrogen with certain flux strongly correlates with the Sun-Mars distance, which changes approximately every two years. Variation due to the solar cycle phase is not distinguishable partly because this effect is masked by the seasonal variation under the MEX capability of plasma measurements. This finding indicates that the variation in solar UV has a major effect on the formation of the pick-up ions, but this is not the only controlling factor.

  6. Pick-up ion energization at the termination shock

    Energy Technology Data Exchange (ETDEWEB)

    Gary, S Peter [Los Alamos National Laboratory; Winske, Dan [Los Alamos National Laboratory; Wu, Pin [BOSTON UNIV.; Schwadron, N A [BOSTON UNIV.

    2009-01-01

    One-dimensional hybrid simulations are used to investigate how pickup ions are energized at the perpendicular termination shock. Contrary to previous models based on pickup ion energy gain by repeated crossings of the shock front (shock surfing) or due to a reforming shock front, the present simulations show that pickup ion energy gain involves a gyro-phasedependent interaction with the inhomogeneous motional electric field at the shock. The process operates at all relative concentrations of pickup ion density.

  7. Inner Source Pickup Ions Observed by Ulysses

    Science.gov (United States)

    Gloeckler, G.

    2016-12-01

    The existence of an inner source of pickup ions close to the Sun was proposed in order to explain the unexpected discovery of C+ in the high-speed polar solar wind. Here I report on detailed analyses of the composition and the radial and latitudinal variations of inner source pickup ions measured with the Solar Wind Ion Composition Spectrometer on Ulysses from 1991 to 1998, approaching and during solar minimum. We find that the C+ intensity drops off with radial distance R as R-1.53, peaks at mid latitudes and drops to its lowest value in the ecliptic. Not only was C+ observed, but also N+, O+, Ne+, Na+, Mg+, Ar+, S+, K+, CH+, NH+, OH+, H2O+, H3O+, MgH+, HCN+, C2H4+, SO+ and many other singly-charged heavy ions and molecular ions. The measured velocity distributions of inner source pickup C+ and O+ indicate that these inner source pickup ions are most likely produced by charge exchange, photoionization and electron impact ionization of neutrals close to the Sun (within 10 to 30 solar radii). Possible causes for the unexpected latitudinal variations and the neutral source(s) producing the inner source pickup ions as well as plausible production mechanisms for inner source pickup ions will be discussed.

  8. Modeling and Observation of Interstellar He+ Pickup Ions in the Inner Heliosphere

    Science.gov (United States)

    Chen, Junhong

    activity and suspect that these variations may be due to the influence of electron impact ionization, solar wind structures, and slow pitch angle scattering. Electron impact ionization, which does not scale as 1/r 2, is shown to have negligible influence on the cooling index and its variations. However, the effects of solar wind compression and rarefaction regions are found to be important. Comparisons of the pickup ion cooling behavior in the compression and rarefaction regions show that the radial solar wind expansion behaviors that differer from the usual 1/r 2 scaling may play the leading roles in the observed variations. A kinetic model of PUI is used to quantitatively describe their behavior in co-rotating interaction regions (CIR). The simulated distributions mimic closely the observed variations in the cooling behavior of PUIs in these regions. In addition, suprathermal tails appear to emerge from the PUI distributions inside compression regions, which provide further evidence that some particles of this population are accelerated locally in CIR compression regions even in the absence of shocks.

  9. Five Characteristics of China Made Pickup

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    <正> Compared with imported ones, the domestic-made pick-ups have the characteristics as follows: Technology: over the past several years, along with the fierce market competition, the technologies of over 30 pick-up makers in China seem to be mature. Some makers have possessed a production capacity of 30,000 units every

  10. High frequency permeameter with semi-rigid pick-up coil

    International Nuclear Information System (INIS)

    Shin, Sung-Yong; Shin, Kwang-Ho . E-mail : khshin@star.ks.ac.kr; Kim, Jong-sung; Kim, Young-Hak; Lim, Sang-Ho; Sa-gong, Geon

    2006-01-01

    In this study, we propose the application of semi-rigid cable loop as a single turn shielded loop pick-up coil for the high frequency permeameter. Since the semi-rigid cable pick-up coil has simple structure, it is very easy to make the pick-up coil with bending and conventional soldering. The permeability of cobalt base amorphous ribbon was investigated using the developed permeameter for demonstrating its performance. The permeability of the amorphous ribbon was driven from the S-parameters measured using a network analyzer and permameter having the semi-rigid pick-up coil

  11. Electrostatic pickup station

    CERN Multimedia

    CERN PhotoLab

    1982-01-01

    Electrostatic pickup station, with 4 interleaved electrodes, to measure beam position in the horizontal and vertical plane. This type is used in the transfer lines leaving the PS (TT2, TT70, TTL2). See also 7904075.

  12. AA, closed orbit observation pickup

    CERN Multimedia

    1980-01-01

    Electrostatic pickups around the circumference of the AA served for the measurement of the closed orbits across the wide momentum range of +- 3% to either side of central orbit. The pickups were of the "shoebox" type, with diagonal cuts, a horizontal and a vertical one mechanically coupled together. They were located where they would not require extra space. The small ones, like the one we see here, were inserted into the vacuum chamber of the BLG (long and narrow) bending magnets. See also 8001372, 8010042, 8010045

  13. High-performance pickups for beam diagnostics. Design, analysis, characterization and implementation

    International Nuclear Information System (INIS)

    Angelovski, Aleksandar

    2015-01-01

    This work introduces the design, analysis, characterization and implementation of high-performance pickups for two beam diagnostic instruments, a Bunch Arrival-time Monitor (BAM) and an Energy Beam Position Monitor (EBPM) at the European XFEL. As a part of the BAM the cone-shaped pickups are proposed along with the corresponding RF-frontend. The designed pickups deliver a beam induced signal with a slope steepness of around 400 mV/ps and a bandwidth of 40 GHz. These signal characteristics are well inside the design requirements, i.e., a slope steepness of 300 mV/ps and more than ten times better compared to the signal from the state-of-the-art pickups. The pickups are installed and commissioned at three accelerator facilities, FLASH at DESY, the quasi-CW SRF accelerator ELBE at the Helmholtz-Zentrum Dresden-Rossendorf and the SwissFEL injector test facility at Paul Scherrer Institute. The obtained measurement results from the installed pickups are in good agreement with the simulations. A comparison between the signal measurements with the cone-shaped pickup and the state-of-the-art is performed at ELBE showing an improvement by a factor of ten. The potential of the pickups for sub-10 fs arrival-time measurements for bunch charges of 20 pC is demonstrated at ELBE and at SwissFEL injector test facility. The introduced coneshaped pickups are the first commercially available pickups with a bandwidth of up to 40 GHz. For the EBPM, a modular pickup structure with two types of planar pickups, microstrip transmission line and grounded coplanar waveguide with perpendicular connectors is investigated. The transition region between the connector and the line is optimized for two substrate materials, alumina and glass with a reflection coefficient better than -20 dB up to 6 GHz.

  14. AA, closed orbit observation pickup

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    Electrostatic pickups around the circumference of the AA served for the measurement of the closed orbits across the wide momentum range of +- 3% to either side of central orbit. The pickups were of the "shoebox" type, with diagonal cuts, a horizontal and a vertical one mechanically coupled together. They were located where they would not require extra space. The wide ones (very wide indeed: 70 cm), like the one we see here, were placed inside the vacuum chamber of the wide quadrupoles QFW, at maximum dispersion. See also 8001372, 8001383, 8010045

  15. AA, closed orbit observation pickup

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    Electrostatic pickups around the circumference of the AA served for the measurement of the closed orbits across the wide momentum range of +- 3% to either side of central orbit. The pickups were of the "shoebox" type, with diagonal cuts, a horizontal and a vertical one mechanically coupled together. They were located where they would not require extra space. The wide ones (very wide indeed: 70 cm), like the one we see here, were placed inside the vacuum chamber of the wide quadrupoles, QFW, at maximum dispersion. See also 8001372,8001383, 8010042

  16. AA, closed orbit observation pickup

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    Electrostatic pickups around the circumference of the AA served for the measurement of the closed orbits across the wide momentum range of +- 3% to either side of central orbit. The pickups were of the "shoebox" type, with diagonal cuts, a horizontal and a vertical one mechanically coupled together. They were located where they would not require extra space. The small ones, like the one we see here, were inserted into the vacuum chamber of the BLG (long and narrow) bending magnets. Werner Sax contemplates his achievement. See also 8001383, 8010042, 8010045.

  17. Ionization of Interstellar Hydrogen

    Science.gov (United States)

    Whang, Y. C.

    1996-09-01

    Interstellar hydrogen can penetrate through the heliopause, enter the heliosphere, and may become ionized by photoionization and by charge exchange with solar wind protons. A fluid model is introduced to study the flow of interstellar hydrogen in the heliosphere. The flow is governed by moment equations obtained from integration of the Boltzmann equation over the velocity space. Under the assumption that the flow is steady axisymmetric and the pressure is isotropic, we develop a method of solution for this fluid model. This model and the method of solution can be used to study the flow of neutral hydrogen with various forms of ionization rate β and boundary conditions for the flow on the upwind side. We study the solution of a special case in which the ionization rate β is inversely proportional to R2 and the interstellar hydrogen flow is uniform at infinity on the upwind side. We solve the moment equations directly for the normalized density NH/NN∞, bulk velocity VH/VN∞, and temperature TH/TN∞ of interstellar hydrogen as functions of r/λ and z/λ, where λ is the ionization scale length. The solution is compared with the kinetic theory solution of Lallement et al. The fluid solution is much less time-consuming than the kinetic theory solutions. Since the ionization rate for production of pickup protons is directly proportional to the local density of neutral hydrogen, the high-resolution solution of interstellar neutral hydrogen obtained here will be used to study the global distribution of pickup protons.

  18. Electrostatic pickup station

    CERN Multimedia

    CERN PhotoLab

    1979-01-01

    Electrostatic pickup station, with 4 electrodes, to measure beam position in the horizontal and vertical plane. This type is used in the transfer lines leaving the PS (TT2, TTL2, TT70). See also 8206063, where the electrode shapes are clearly visible.

  19. Investigation of hydrogen bubbles behavior in tungsten by high-flux hydrogen implantation

    Science.gov (United States)

    Zhao, Jiangtao; Meng, Xuan; Guan, Xingcai; Wang, Qiang; Fang, Kaihong; Xu, Xiaohui; Lu, Yongkai; Gao, Jun; Liu, Zhenlin; Wang, Tieshan

    2018-05-01

    Hydrogen isotopes retention and bubbles formation are critical issues for tungsten as plasma-facing material in future fusion reactors. In this work, the formation and growing up behavior of hydrogen bubbles in tungsten were investigated experimentally. The planar TEM samples were implanted by 6.0keV hydrogens to a fluence of 3.38 ×1018 H ṡ cm-2 at room temperature, and well-defined hydrogen bubbles were observed by TEM. It was demonstrated that hydrogen bubbles formed when exposed to a fluence of 1.5 ×1018 H ṡ cm-2 , and the hydrogen bubbles grew up with the implantation fluence. In addition, the bubbles' size appeared larger with higher beam flux until saturated at a certain flux, even though the total fluence was kept the same. Finally, in order to understand the thermal annealing effect on the bubbles behavior, hydrogen-implanted samples were annealed at 400, 600, 800, and 1000 °C for 3 h. It was obvious that hydrogen bubbles' morphology changed at temperatures higher than 800 °C.

  20. Effects of time-dependent photoionization on interstellar pickup atoms

    International Nuclear Information System (INIS)

    Isenberg, P.A.; Lee, M.A.

    1995-01-01

    We present an analytical model for the density variations of interstellar pickup ions in the solar wind due to a time-dependent variation in the photoionization rate, our model predicts a pickup ion density enhancement lasting for a time of the order of the duration of the increase plus the solar wind convection time to the observation point. If the photoionization rate returns to its initial value, this enhancement is followed by a decreased pickup ion density resulting from a depleted interstellar neutral particle density. In the absence of further variations in the photoionization rate, the pickup ion density recovers on a time which scales as the radial position of the observation point divided by the inflow speed of the neutral particles. Gradual variations in the photoionization rate result in a pickup ion density which tends to track the ionization rate, though the density variations are smoothed and delayed in time due to the solar wind convection of ions picked up at points closer to the Sun. 27 refs., 4 figs

  1. A study of charge-pickup interactions by (158A GeV) Pb nuclei

    International Nuclear Information System (INIS)

    Sher, G.; Shahzad, M.I.

    2012-01-01

    Study of the relativistic heavy-ion collision is important to focus on probing phase transitions between hadrons and quark-gluon phases in the extreme conditions of temperature and density of nuclear matter formed in the collisions. These states of nuclear matter are expected to be created in relativistic nuclear collisions with large overlap of interacting nuclei, the Lorentz-boosted Coulomb potential Vc proportional to alpha gamma Z/b of a partner with charge Z is very strong, where b is impact parameter and is the fine structure constant. Either one or both nuclei may be disintegrated by the electromagnetic forces in ultra-peripheral collisions at b = R1 + R2, where R1 and R2 are the nuclear radii. This distinct feature of electromagnetic dissociation makes it possible to study the behavior of nuclear matter under electromagnetic fields. The nuclear charge-pickup ( delta Z = +1) by Pb projectiles at energy 158A GeV interacting with targets Bi, Pb, Cu and Al was investigated using CR39 nuclear track detectors. The target-detector stacks were exposed at CERN SPS beam facility. The projectile and fragments charge states have been identified using the etch-cone lengths for charge-pickup at Z = 83 of residual nuclei. Our measured charge-pickup cross sections (delta Z = +1) are shown. It was observed that for the heavy targets the increase in the cross section is anticipated by substantial contribution of electromagnetic dissociation process of production by virtual photons which is almost negligible at 10.6A GeV. In the light target region, our measured cross sections and charge-pickup cross sections reported at energy 10.6A GeV show dominant nuclear contribution and very small contribution of electromagnetic dissociation term. A strong dependence of charge-pickup cross sections on the target mass number was observed particularly in the heavy targets. (orig./A.B.)

  2. Controlling hydrogen behavior in light water reactors

    International Nuclear Information System (INIS)

    Cullingford, H.S.; Edeskuty, F.J.

    1981-01-01

    In the aftermath of the incident at Three Mile Island Unit 2 (TMI-2), a new and different treatment of the Light Water Reactor (LWR) risks is needed for public safety because of the specific events involving hydrogen generation, transport, and behavior following the core damage. Hydrogen behavior in closed environments such as the TMI-2 containment building is a complex phenomenon that is not fully understood. Hence, an engineering approach is presented for prevention of loss of life, equipment, and environment in case of a large hydrogen generation in an LWR. A six-level defense strategy is described that minimizes the possibility of ignition of released hydrogen gas and otherwise mitigates the consequences of hydrogen release. Guidance is given to reactor manufacturers, utility companies, regulatory agencies, and research organizations committed to reducing risk factors and insuring safety of life, equipment, and environment

  3. Fatigue crack growth behavior in niobium-hydrogen alloys

    International Nuclear Information System (INIS)

    Lin, M.C.C.; Salama, K.

    1997-01-01

    Near-threshold fatigue crack growth behavior has been investigated in niobium-hydrogen alloys. Compact tension specimens (CTS) with three hydrogen conditions are used: hydrogen-free, hydrogen in solid solution, and hydride alloy. The specimens are fatigued at a temperature of 296 K and load ratios of 0.05, 0.4, and 0.75. The results at load ratios of 0.05 and 0.4 show that the threshold stress intensity range (ΔK th ) decreases as hydrogen is added to niobium. It reaches a minimum at the critical hydrogen concentration (C cr ), where maximum embrittlement occurs. The critical hydrogen concentration is approximately equal to the solubility limit of hydrogen in niobium. As the hydrogen concentration exceeds C cr , ΔK th increases slowly as more hydrogen is added to the specimen. At load ratio 0.75, ΔK th decreases continuously as the hydrogen concentration is increased. The results provide evidence that two mechanisms are responsible for fatigue crack growth behavior in niobium-hydrogen alloys. First, embrittlement is retarded by hydride transformation--induced and plasticity-induced crack closures. Second, embrittlement is enhanced by the presence of hydrogen and hydride

  4. Beam-phase monitoring with non-destructive pickup

    International Nuclear Information System (INIS)

    Bogaty, J.; Clifft, B.E.

    1995-01-01

    An intensity and phase-sensitive capacitive pickup was installed at the entrance to the PII linac. This device is based on an extension of the design of the Beam Current Monitor developed as part of the ATLAS radiation safety system. The purpose of the pickup is to allow the arrival phase of the beam from the ECR source at the entrance to the PII linac to be set to a standard which reproduces previous tune conditions and establishes a standard. The new pickups and associated electronics demonstrated sensitivity well below 1 electrical nanoamp but can handle beam currents of many electrical microamps as well. In addition to phase information, beam current is also measured by the units thus providing a continuous, non-intercepting current readout as well. From the very first use of PII, we established a few open-quotes reference tunesclose quotes for the linac and scaled those tunes for any other beam desired. For such scaling to work properly, the velocity and phase of the beam from the ion source must be fixed and reproducible. In last year's FWP the new ATLAS Master Oscillator System was described. The new system has the ability of easily adjusting the beam arrival phase at the entrance to each of the major sections of the facility - PII, Booster, ATLAS. Our present techniques for establishing the beam arrival phase at the entrance of each of the linac sections are cumbersome and, sometimes, intellectually challenging. The installation of these capacitative pickups at the entrance to each of the linac sections will make the determination and setting of the beam arrival phase direct, simple, and dynamic. This should dramatically shorten our setup time for open-quotes old-tuneclose quotes configurations and increase useful operating hours. Permanent electronics for the PII entrance pickup is under construction

  5. Mechanohydrogen processing as an element of hydrogen process of production of titanium alloy parts

    International Nuclear Information System (INIS)

    Egorova, Yu.B.; Il'in, A.A.; Levochkin, A.A.

    2002-01-01

    The regularities of the effect of hydrogen on cutting machinability of titanium alloys are generalized. The main principles of mechanohydrogen treatment are founded. The effectiveness of titanium alloys machining with the use of reversible hydrogen alloying depends on hydrogen content, hydrogen pickup temperature and cutting modes. High-performance technological processes of manufacturing parts and constructions made of titanium alloys are proposed [ru

  6. Hydrogen behavior in light-water reactors

    International Nuclear Information System (INIS)

    Berman, M.; Cummings, J.C.

    1984-01-01

    The Three Mile Island accident resulted in the generation of an estimated 150 to 600 kg of hydrogen, some of which burned inside the containment building, causing a transient pressure rise of roughly 200 kPa (2 atm). With this accident as the immediate impetus and the improved safety of reactors as the long-term goal, the nuclear industry and the Nuclear Regulatory Commission initiated research programs to study hydrogen behavior and control during accidents at nuclear plants. Several fundamental questions and issues arise when the hydrogen problem for light-water-reactor plants is examined. These relate to four aspects of the problem: hydrogen production; hydrogen transport, release, and mixing; hydrogen combustion; and prevention or mitigation of hydrogen combustion. Although much has been accomplished, some unknowns and uncertainties still remain, for example, the rate of hydrogen production during a degraded-core or molten-core accident, the rate of hydrogen mixing, the effect of geometrical structures and scale on combustion, flame speeds, combustion completeness, and mitigation-scheme effectiveness. This article discusses the nature and extent of the hydrogen problem, the progress that has been made, and the important unresolved questions

  7. Slot-type pickup/kicker for AA stochastic cooling

    CERN Multimedia

    1979-01-01

    A "slotted transmission line" was used for both pickups and kickers of the stochastic cooling systems of the AA. They served for the cooling of the high-density antiproton stack, in momentum and both transverse planes. In the beginning, in a single band, 1-2 GHz, later in 2 bands, 2-4 and 4-8 GHz. View down the centre of a pickup or kicker. See also 7906189, 7906190, 7906583.

  8. Hydrogen behavior in ice condenser containments

    Energy Technology Data Exchange (ETDEWEB)

    Lundstroem, P.; Hongisto, O. [Power Plant Lab., Helsinki (Finland); Theofanous, T.G. [Univ. of California, Santa Barbara, CA (United States)] [and others

    1995-09-01

    A new hydrogen management strategy is being developed for the Loviisa ice condenser containment. The strategy relies on containment-wide natural circulations that develop, once the ice condenser doors are forced open, to effectively produce a well-mixed behavior, and a correspondingly slow rise in hydrogen concentration. Levels can then be kept low by a distributed catalytic recombiner system, and (perhaps) an igniter system as a backup, while the associated energy releases can be effectively dissipated in the ice bed. Verification and fine-tuning of the approach is carried out experimentally in the VICTORIA facility and by associated scaling/modelling studies. VICTORIA represents an 1/15th scale model of the Loviisa containment, hydrogen is simulated by helium, and local concentration measurements are obtained by a newly developed instrument specifically for this purpose, called SPARTA. This paper is focused on experimental results from several key experiments that provide a first delineation of key behaviors.

  9. Chemisorption of a hydrogen adatom on metal doped α-Zr (0 0 0 1 surfaces in a vacuum and an implicit solvation environment

    Directory of Open Access Journals (Sweden)

    Cheng Zeng

    2017-12-01

    Full Text Available First-principles calculations have been carried out to investigate the adsorption of a hydrogen adatom on 24 metal doped α-Zr (0 0 0 1 surfaces in both a vacuum and an implicit solvation environment. The dopant are the elements in the 4th and 5th periods in the periodic table. Doping elements at the tail of the 4th and 5th periods can significantly reduce the hydrogen pickup in a vacuum environment. A weighted d-band center theory is used to analyze the doping effect. On the other hand, the hydrogen adsorption energies in water are relatively lower for all doped slabs and the surface adsorption of hydrogen adatom is stronger than that in a vacuum environment, especially, for the slabs with doping elements at the tail of the 4th and 5th periods. In the solvation environment, electronegativity difference affects the adsorption. Doping elements Ag, Ga, Ge, Sn, and Sb can reduce the hydrogen pickup in vacuum, while Ag and Cu can reduce the hydrogen pickup of the zirconium alloys in solvent environment.

  10. Acoustic emission pickup essentially for waveguide

    International Nuclear Information System (INIS)

    Asty, Michel; Saglio, Robert.

    1979-01-01

    Lambda wave length acoustic emission pickup comprising two juxtaposed piezoelectric capsules of equal lambda/2 thickness and with opposite polarization, separated by an electrically insulating foil, the two opposite sides of the capsules being earthed. The electric signal resulting from the acoustic emission is picked up on the two sides facing both sides of the insulating foil and the assembly of the two piezoelectric capsules is mounted on a base insulating it from the structure on which the acoustic emission is being listened to. Application of this pickup to the surveillance of defects in the steel vessels of nuclear reactors, characterized in that it is placed at the end of a metal ultrasonic wave guide the other end of which is welded directly to the vessel [fr

  11. BEHAVIOR OF THERMAL SPRAY COATINGS AGAINST HYDROGEN ATTACK

    OpenAIRE

    Vargas, Fabio; Latorre, Guillermo; Uribe, Iván

    2003-01-01

    The behavior of nickel and chrome alloys applied as thermal spray coatings to be used as protection against embrittlement by hydrogen is studied. Coatings were applied on a carbon steel substrate, under conditions that allow obtain different crystalline structures and porosity levels, in order to determine the effect of these variables on the hydrogen permeation kinetics and as a protection means against embrittlement caused this element. In order to establish behaviors as barriers and protec...

  12. PAL-XFEL cavity beam position monitor pick-up design and beam test

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sojeong, E-mail: sojung8681@postech.ac.kr; Park, Young Jung; Kim, Changbum; Kim, Seung Hwan; Shin, Dong Cheol; Han, Jang-Hui; Ko, In Soo

    2016-08-11

    As an X-ray Free Electron Laser, PAL-XFEL is about to start beam commissioning. X-band cavity beam position monitor (BPM) is used in the PAL-XFEL undulator beam line. Prototypes of cavity BPM pick-up were designed and fabricated to test the RF characteristics. Also, the beam test of a cavity BPM pick-up was done in the Injector Test Facility (ITF). In the beam test, the raw signal properties of the cavity BPM pick-up were measured at a 200 pC bunch charge. According to the RF test and beam test results, the prototype cavity BPM pick-up design was confirmed to meet the requirements of the PAL-XFEL cavity BPM system.

  13. Characterization of BPM pickup designs for the HESR rate at FAIR using simulations and numerical calculations

    Energy Technology Data Exchange (ETDEWEB)

    Halama, Arthur; Kamerdzhiev, Vsevolod; Boehme, Christian; Srinivasan, Sudharsan [Forschungszentrum Juelich, IKP-4 (Germany)

    2016-07-01

    The institute of Nuclear Physics 4(IKP-4) of the Research Center Juelich (FZJ) is in charge of building and commissioning the High Energy Storage Ring (HESR) within the international Facility for Antiproton and Ion Research (FAIR) at Darmstadt. Simulations and numerical calculations were performed to characterize the initial beam position pickup design. Capacitive couplings of the electrodes and the behavior of the electrical equivalent circuit were investigated. This made room for changes to the design and performance increase. A prototype of the BPM pickup was constructed and tested on a dedicated test bench. Preliminary results will be presented. In order to gain higher signal levels and higher sensitivity, another suggested design was characterized as well and put into comparison.

  14. Fatigue behavior of niobium--hydrogen alloys

    International Nuclear Information System (INIS)

    Chung, D.W.; Stoloff, N.S.

    1978-01-01

    The effects of hydrogen on room temperature fatigue behavior of niobium were investigated under both high frequency stress control and low frequency strain control conditions, in air. Hydrogen markedly improved the fatigue life in high frequency tests, while low frequency tests resulted in decreased fatigue life with increasing hydrogen content. Notches in hydrogen-charged alloys reduced high cycle life significantly but had little effect on low cycle tests. Fracture surfaces of annealed niobium mainly exhibited striations, with numerous cracks originating at troughs of striated bands in both stress and strain control tests. The fracture mode for alloys with hydrogen in solution was mixed, with striations interspersed with cleavage facets at high frequencies but generally cleavage steps at low frequencies. For the hydrided alloys, distinctive steps of mixed ductile-brittle appearance were revealed under high frequency conditions, but large cleavage facets only were observed for low frequency tests. The results are discussed in terms of the effects of hydrogen on the cyclic strain hardening rate, as well as on fatigue strength and ductility of niobium

  15. Fabrication characteristics and hydrogenation behavior of hydrogen storage alloys for sealed Ni-MH batteries

    Science.gov (United States)

    Kim, Ho-Sung; Kim, Jeon Min; Kim, Tae-Won; Oh, Ik-Hyun; Choi, Jeon; Park, Choong Nyeon

    2008-08-01

    Hydrogen storage alloys based on LmNi4.2Co0.2Mn0.3Al0.3 were fabricated to study the equilibrium hydrogen pressure and electrochemical performance. The surface morphology and structure of the alloys were analyzed by SEM and XRD, and then the hydrogenation behaviors of all alloys were evaluated by PCT and electrochemical half-cell. We studied the hydrogenation behavior of the Lm-based alloy with changes in composition elements such as Mn, Al, and Co and investigated the optimal design for Lm-based alloy in a sealed battery system. As a result of studying the hydrogenation characterization of alloys with the substitution elements, hydrogen storage alloys such as LmNi3.75Co0.15Mn0.5Al0.3 and LmNi3.5Co0.5Mn0.5Al0.5 were obtained to correspond with the characteristics of a sealed battery with a higher capacity, long life cycle, lower internal pressure, and lower battery cost. The capacity preservation rate of LmNi3.5Co0.5Mn0.5Al0.5 was greatly improved to 92.7% (255 mAh/g) at 60 cycles, indicating a low equilibrium hydrogen pressure of 0.03 atm in PCT devices.

  16. Hydrogen pick-up effect on the deformation characteristics of the 20 steel

    International Nuclear Information System (INIS)

    Steklov, O.I.; Perunov, B.Vs.; Krovyakova, V.M.

    1977-01-01

    An experiment aimed at ascertaining the possibility of using plasticity characteristis as a criterion of the resistance of a material to slow failure through hydrogenation is set up in a manner to permit an evaluation of the individual effects of mechanical stresses hydrogenation medium and their combined action upon the plasticity characteristics. It is shown that the variation of the rupturing load for hydrogenated specimens of grade 20 steel, held under load, takes place on the initial holding stage, after which the changes in the plasticity characteritics are immaterial. In consequence, the deformation characteristics allow no judgement to be made on the resistance to slow cracking of grade 20 steel due to hydrogenation

  17. Assessing tether anchor labeling and usability in pickup trucks.

    Science.gov (United States)

    Klinich, Kathleen D; Manary, Miriam A; Malik, Laura A; Flannagan, Carol A; Jermakian, Jessica S

    2018-04-03

    The objective of this study was to investigate vehicle factors associated with child restraint tether use and misuse in pickup trucks and evaluate 4 labeling interventions designed to educate consumers on proper tether use. Volunteer testing was performed with 24 subjects and 4 different pickup trucks. Each subject performed 8 child restraint installations among the 4 pickups using 2 forward-facing restraints: a Britax Marathon G4.1 and an Evenflo Triumph. Vehicles were selected to represent 4 different implementations of tether anchors among pickups: plastic loop routers (Chevrolet Silverado), webbing routers (Ram), back wall anchors (Nissan Frontier), and webbing routers plus metal anchors (Toyota Tundra). Interventions included a diagram label, Quick Response (QR) Code linked to video instruction, coordinating text label, and contrasting text tag. Subjects used the child restraint tether in 93% of trials. However, tether use was completely correct in only 9% of trials. An installation was considered functional if the subject attached the tether to a tether anchor and had a tight installation (ignoring routing and head restraint position); 28% of subjects achieved a functional installation. The most common installation error was attaching the tether hook to the anchor/router directly behind the child restraint (near the top of the seatback) rather than placing the tether through the router and attaching it to the anchor in the adjacent seating position. The Nissan Frontier, with the anchor located on the back wall of the cab, had the highest rate of correct installations but also had the highest rate of attaching the tether to components other than the tether anchor (seat adjustor, child restraint storage hook, around head restraint). None of the labeling interventions had a significant effect on correct installation; not a single subject scanned the QR Code to access the video instruction. Subjects with the most successful installations spent extensive time

  18. Charge-pickup of 238U at relativistic energies

    International Nuclear Information System (INIS)

    Rubehn, T.; Bassini, R.; Blaich, T.; Imme, G.; Iori, I.; Kunze, W.D.; Lindenstruth, V.; Lynen, U.; Moehlenkamp, T.; Moretto, L.G.; Ocker, B.; Pochodzalla, J.; Raciti, G.; Schuettauf, A.; Serfling, V.; Trautmann, W.; Trzcinski, A.; Verde, G.; Woerner, A.; Zude, E.; Zwieglinski, B.

    1995-10-01

    Cross sections for the charge-pickup of 238 U projectiles were measured at E/A=600 and 1000 MeV for seven different targets (Be, C, Al, Cu, In, Au and U). Events with two fission fragments with a sum charge of 93 in the exit channel were selected. Due to the significant excitation energy, the dominant part of produced Np nuclei fission instead of decaying to the ground state by evaporation. The observed cross sections can be well reproduced by intranuclear-cascade-plus-evaporation calculations and, therefore, confirm recent results that no exotic processes are needed to explain charge-pickup processes. (orig.)

  19. Oxygen Pickup Ions Measured by MAVEN Outside the Martian Bow Shock

    Science.gov (United States)

    Rahmati, A.; Cravens, T.; Larson, D. E.; Lillis, R. J.; Dunn, P.; Halekas, J. S.; Connerney, J. E. P.; Eparvier, F. G.; Thiemann, E.; Mitchell, D. L.; Jakosky, B. M.

    2015-12-01

    The MAVEN (Mars Atmosphere and Volatile EvolutioN) spacecraft entered orbit around Mars on September 21, 2014 and has since been detecting energetic oxygen pickup ions by its SEP (Solar Energetic Particles) and SWIA (Solar Wind Ion Analyzer) instruments. The oxygen pickup ions detected outside the Martian bowshock and in the upstream solar wind are associated with the extended hot oxygen exosphere of Mars, which is created mainly by the dissociative recombination of molecular oxygen ions with electrons in the ionosphere. We use analytic solutions to the equations of motion of pickup ions moving in the undisturbed upstream solar wind magnetic and motional electric fields and calculate the flux of oxygen pickup ions at the location of MAVEN. Our model calculates the ionization rate of oxygen atoms in the exosphere based on the hot oxygen densities predicted by Rahmati et al. (2014), and the sources of ionization include photo-ionization, charge exchange, and electron impact ionization. The photo-ionization frequency is calculated using the FISM (Flare Irradiance Spectral Model) solar flux model, based on MAVEN EUVM (Extreme Ultra-Violet Monitor) measurements. The frequency of charge exchange between a solar wind proton and an oxygen atom is calculated using MAVEN SWIA solar wind proton flux measurements, and the electron impact ionization frequency is calculated based on MAVEN SWEA (Solar Wind Electron Analyzer) solar wind electron flux measurements. The solar wind magnetic field used in the model is from the measurements taken by MAVEN MAG (magnetometer) in the upstream solar wind. The good agreement between our predicted pickup oxygen fluxes and the MAVEN SEP and SWIA measured ones confirms detection of oxygen pickup ions and these model-data comparisons can be used to constrain models of hot oxygen densities and photochemical escape flux.

  20. Effect of high-temperature water and hydrogen on the fracture behavior of a low-alloy reactor pressure vessel steel

    International Nuclear Information System (INIS)

    Roychowdhury, S.; Seifert, H.-P.; Spätig, P.; Que, Z.

    2016-01-01

    Structural integrity of reactor pressure vessels (RPV) is critical for safety and lifetime. Possible degradation of fracture resistance of RPV steel due to exposure to coolant and hydrogen is a concern. In this study tensile and elastic-plastic fracture mechanics (EPFM) tests in air (hydrogen pre-charged) and EFPM tests in hydrogenated/oxygenated high-temperature water (HTW) was done, using a low-alloy RPV steel. 2–5 wppm hydrogen caused embrittlement in air tensile tests at room temperature (25 °C) and at 288 °C, effects being more significant at 25 °C and in simulated weld coarse grain heat affected zone material. Embrittlement at 288 °C is strain rate dependent and is due to localized plastic deformation. Hydrogen pre-charging/HTW exposure did not deteriorate the fracture resistance at 288 °C in base metal, for investigated loading rate range. Clear change in fracture morphology and deformation structures was observed, similar to that after air tests with hydrogen. - Highlights: • Hydrogen content, microstructure of LAS, and strain rate affects tensile properties at 288 °C. • Strength affects hydrogen embrittlement susceptibility to a greater extent than grain size. • Hydrogen in LAS leads to strain localization and restricts cross-slip at 288 °C. • Possible hydrogen pickup due to exposure to 288 °C water alters fracture surface appearance without affecting fracture toughness in bainitic base material. • Simulated weld heat affected zone microstructure shows unstable crack propagation in 288 °C water.

  1. Effect of high-temperature water and hydrogen on the fracture behavior of a low-alloy reactor pressure vessel steel

    Energy Technology Data Exchange (ETDEWEB)

    Roychowdhury, S., E-mail: sroy27@gmail.com [Paul Scherrer Institut, Nuclear Energy and Safety Research Department, Laboratory for Nuclear Materials, 5232 Villigen, PSI (Switzerland); Materials Processing & Corrosion Engineering Division, Mod-Lab, D-Block, Bhabha Atomic Research Centre, Mumbai 400085 (India); Seifert, H.-P.; Spätig, P.; Que, Z. [Paul Scherrer Institut, Nuclear Energy and Safety Research Department, Laboratory for Nuclear Materials, 5232 Villigen, PSI (Switzerland)

    2016-09-15

    Structural integrity of reactor pressure vessels (RPV) is critical for safety and lifetime. Possible degradation of fracture resistance of RPV steel due to exposure to coolant and hydrogen is a concern. In this study tensile and elastic-plastic fracture mechanics (EPFM) tests in air (hydrogen pre-charged) and EFPM tests in hydrogenated/oxygenated high-temperature water (HTW) was done, using a low-alloy RPV steel. 2–5 wppm hydrogen caused embrittlement in air tensile tests at room temperature (25 °C) and at 288 °C, effects being more significant at 25 °C and in simulated weld coarse grain heat affected zone material. Embrittlement at 288 °C is strain rate dependent and is due to localized plastic deformation. Hydrogen pre-charging/HTW exposure did not deteriorate the fracture resistance at 288 °C in base metal, for investigated loading rate range. Clear change in fracture morphology and deformation structures was observed, similar to that after air tests with hydrogen. - Highlights: • Hydrogen content, microstructure of LAS, and strain rate affects tensile properties at 288 °C. • Strength affects hydrogen embrittlement susceptibility to a greater extent than grain size. • Hydrogen in LAS leads to strain localization and restricts cross-slip at 288 °C. • Possible hydrogen pickup due to exposure to 288 °C water alters fracture surface appearance without affecting fracture toughness in bainitic base material. • Simulated weld heat affected zone microstructure shows unstable crack propagation in 288 °C water.

  2. Calculations of hydrogen diffusivity in Zr-based alloys: Influence of alloying elements and effect of stress

    International Nuclear Information System (INIS)

    Yu, J.; Jiang, C.; Zhang, Y.

    2017-01-01

    This report summarizes the progress on modeling hydrogen diffusivity in Zr-based alloys. The presence of hydrogen (H) can detrimentally affect the mechanical properties of many metals and alloys. To mitigate these detrimental effects requires fundamental understanding of the thermodynamics and kinetics governing H pickup and hydride formation. In this work, we focus on H diffusion in Zr-based alloys by studying the effects of alloying elements and stress, factors that have been shown to strongly affect H pickup and hydride formation in nuclear fuel claddings. A recently developed accelerated kinetic Monte Carlo method is used for the study. It is found that for the alloys considered here, H diffusivity depends weakly on composition, with negligible effect at high temperatures in the range of 600-1200 K. Therefore, the small variation in compositions of these alloys is likely not a major cause of the very different H pickup rates. In contrast, stress strongly affects H diffusivity. This effect needs to be considered for studying hydride formation and delayed hydride cracking.

  3. Calculations of hydrogen diffusivity in Zr-based alloys: Influence of alloying elements and effect of stress

    Energy Technology Data Exchange (ETDEWEB)

    Yu, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jiang, C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhang, Y. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-06-01

    This report summarizes the progress on modeling hydrogen diffusivity in Zr-based alloys. The presence of hydrogen (H) can detrimentally affect the mechanical properties of many metals and alloys. To mitigate these detrimental effects requires fundamental understanding of the thermodynamics and kinetics governing H pickup and hydride formation. In this work, we focus on H diffusion in Zr-based alloys by studying the effects of alloying elements and stress, factors that have been shown to strongly affect H pickup and hydride formation in nuclear fuel claddings. A recently developed accelerated kinetic Monte Carlo method is used for the study. It is found that for the alloys considered here, H diffusivity depends weakly on composition, with negligible effect at high temperatures in the range of 600-1200 K. Therefore, the small variation in compositions of these alloys is likely not a major cause of the very different H pickup rates. In contrast, stress strongly affects H diffusivity. This effect needs to be considered for studying hydride formation and delayed hydride cracking.

  4. A study on hydrogen adsorption behaviors of open-tip carbon nanocones

    International Nuclear Information System (INIS)

    Liao Mingliang

    2012-01-01

    Hydrogen adsorption behaviors of single-walled open-tip (tip-truncated) carbon nanocones (CNCs) with apex angles of 19.2° at temperatures of 77 and 300 K were investigated by the molecular dynamics simulations. Four nanomaterials (including three CNCs with different dimensions and a reference CNT) were analyzed to examine the hydrogen adsorption behaviors and influences of cone sharpness on the behaviors of the CNCs. Physisorption of hydrogen molecules could be observed from the distribution pattern of the hydrogen molecules adsorbed on the nanomaterials. Because of the cone geometry effect, the open-tip CNCs could have larger storage weight percentage and less desorption of hydrogen molecules (caused by the temperature growth) on their outer surfaces, as compared with those of the reference CNT. The hydrogen molecules inside the CNCs and the reference CNT, however, were noted to have similar desorption behaviors owing to the confinement effects from the structures of the nanomaterials. In addition, the sharper CNC could have higher storage weight percentage but the cone sharpness does not have evident enhancement in the average adsorption energy of the CNC. Combination of confinement and repulsion effects existing near the tip region of the CNC would be responsible for the non-enhancement feature.

  5. Hydrogen fueling stations in Japan hydrogen and fuel cell demonstration project

    International Nuclear Information System (INIS)

    Koseki, K.; Tomuro, J.; Sato, H.; Maruyama, S.

    2004-01-01

    A new national demonstration project of fuel cell vehicles, which is called Japan Hydrogen and Fuel Cell Demonstration Project (JHFC Project), has started in FY2002 on a four-year plan. In this new project, ten hydrogen fueling stations have been constructed in Tokyo and Kanagawa area in FY2002-2003. The ten stations adopt the following different types of fuel and fueling methods: LPG reforming, methanol reforming, naphtha reforming, desulfurized-gasoline reforming, kerosene reforming, natural gas reforming, water electrolysis, liquid hydrogen, by-product hydrogen, and commercially available cylinder hydrogen. Approximately fifty fuel cell passenger cars and a fuel cell bus are running on public roads using these stations. In addition, two hydrogen stations will be constructed in FY2004 in Aichi prefecture where The 2005 World Exposition (EXPO 2005) will be held. The stations will service eight fuel cell buses used as pick-up buses for visitors. We, Engineering Advancement Association of Japan (ENAA), are commissioned to construct and operate a total of twelve stations by Ministry of Economy Trade and Industry (METI). We are executing to demonstrate or identify the energy-saving effect, reduction of the environmental footprint, and issues for facilitating the acceptance of hydrogen stations on the basis of the data obtained from the operation of the stations. (author)

  6. Capacitively coupled pickup in MCP-based photodetectors using a conductive metallic anode

    Energy Technology Data Exchange (ETDEWEB)

    Angelico, E.; Seiss, T. [Enrico Fermi Institute, University of Chicago, 5640 S Ellis Ave, Chicago, IL 60637 (United States); Adams, B. [Incom, Inc., 294 SouthBridge Rd, Charlton, Massachusetts 01507 (United States); Elagin, A.; Frisch, H.; Spieglan, E. [Enrico Fermi Institute, University of Chicago, 5640 S Ellis Ave, Chicago, IL 60637 (United States)

    2017-02-21

    We have designed and tested a robust 20×20 cm{sup 2} thin metal film internal anode capacitively coupled to an external array of signal pads or micro-strips for use in fast microchannel plate photodetectors. The internal anode, in this case a 10 nm-thick NiCr film deposited on a 96% pure Al{sub 2}O{sub 3} 3 mm-thick ceramic plate and connected to HV ground, provides the return path for the electron cascade charge. The multi-channel pickup array consists of a printed-circuit card or glass plate with metal signal pickups on one side and the signal ground plane on the other. The pickup can be put in close proximity to the bottom outer surface of the sealed photodetector, with no electrical connections through the photodetector hermetic vacuum package other than a single ground connection to the internal anode. Two pickup patterns were tested using a small commercial MCP-PMT as the signal source: 1) parallel 50 Ω 25-cm-long micro-strips with an analog bandwidth of 1.5 GHz, and 2) a 20×20 cm{sup 2} array of 2-dimensional square ‘pads’ with sides of 1.27 cm or 2.54 cm. The rise-time of the fast input pulse is maintained for both pickup patterns. For the pad pattern, we observe 80% of the directly coupled amplitude. For the strip pattern we measure 34% of the directly coupled amplitude on the central strip of a broadened signal. The physical decoupling of the photodetector from the pickup pattern allows easy customization for different applications while maintaining high analog bandwidth.

  7. Buoyant Unstable Behavior of Initially Spherical Lean Hydrogen-Air Premixed Flames

    Directory of Open Access Journals (Sweden)

    Zuo-Yu Sun

    2014-07-01

    Full Text Available Buoyant unstable behavior in initially spherical lean hydrogen-air premixed flames within a center-ignited combustion vessel have been studied experimentally under a wide range of pressures (including reduced, normal, and elevated pressures. The experimental observations show that the flame front of lean hydrogen-air premixed flames will not give rise to the phenomenon of cellular instability when the equivalence ratio has been reduced to a certain value, which is totally different from the traditional understanding of the instability characteristics of lean hydrogen premixed flames. Accompanied by the smoothened flame front, the propagation mode of lean hydrogen premixed flames transitions from initially spherical outwardly towards upwardly when the flames expand to certain sizes. To quantitatively investigate such buoyant instability behaviors, two parameters, “float rate (ψ” and “critical flame radius (Rcr”, have been proposed in the present article. The quantitative results demonstrate that the influences of initial pressure (Pint on buoyant unstable behaviors are different. Based on the effects of variation of density difference and stretch rate on the flame front, the mechanism of such buoyant unstable behaviors has been explained by the competition between the stretch force and the results of gravity and buoyancy, and lean hydrogen premixed flames will display buoyant unstable behavior when the stretch effects on the flame front are weaker than the effects of gravity and buoyancy.

  8. XUV-exposed, non-hydrostatic hydrogen-rich upper atmospheres of terrestrial planets. Part II: hydrogen coronae and ion escape.

    Science.gov (United States)

    Kislyakova, Kristina G; Lammer, Helmut; Holmström, Mats; Panchenko, Mykhaylo; Odert, Petra; Erkaev, Nikolai V; Leitzinger, Martin; Khodachenko, Maxim L; Kulikov, Yuri N; Güdel, Manuel; Hanslmeier, Arnold

    2013-11-01

    We studied the interactions between the stellar wind plasma flow of a typical M star, such as GJ 436, and the hydrogen-rich upper atmosphere of an Earth-like planet and a "super-Earth" with a radius of 2 R(Earth) and a mass of 10 M(Earth), located within the habitable zone at ∼0.24 AU. We investigated the formation of extended atomic hydrogen coronae under the influences of the stellar XUV flux (soft X-rays and EUV), stellar wind density and velocity, shape of a planetary obstacle (e.g., magnetosphere, ionopause), and the loss of planetary pickup ions on the evolution of hydrogen-dominated upper atmospheres. Stellar XUV fluxes that are 1, 10, 50, and 100 times higher compared to that of the present-day Sun were considered, and the formation of high-energy neutral hydrogen clouds around the planets due to the charge-exchange reaction under various stellar conditions was modeled. Charge-exchange between stellar wind protons with planetary hydrogen atoms, and photoionization, lead to the production of initially cold ions of planetary origin. We found that the ion production rates for the studied planets can vary over a wide range, from ∼1.0×10²⁵ s⁻¹ to ∼5.3×10³⁰ s⁻¹, depending on the stellar wind conditions and the assumed XUV exposure of the upper atmosphere. Our findings indicate that most likely the majority of these planetary ions are picked up by the stellar wind and lost from the planet. Finally, we estimated the long-time nonthermal ion pickup escape for the studied planets and compared them with the thermal escape. According to our estimates, nonthermal escape of picked-up ionized hydrogen atoms over a planet's lifetime within the habitable zone of an M dwarf varies between ∼0.4 Earth ocean equivalent amounts of hydrogen (EO(H)) to <3 EO(H) and usually is several times smaller in comparison to the thermal atmospheric escape rates.

  9. XUV-Exposed, Non-Hydrostatic Hydrogen-Rich Upper Atmospheres of Terrestrial Planets. Part II: Hydrogen Coronae and Ion Escape

    Science.gov (United States)

    Lammer, Helmut; Holmström, Mats; Panchenko, Mykhaylo; Odert, Petra; Erkaev, Nikolai V.; Leitzinger, Martin; Khodachenko, Maxim L.; Kulikov, Yuri N.; Güdel, Manuel; Hanslmeier, Arnold

    2013-01-01

    Abstract We studied the interactions between the stellar wind plasma flow of a typical M star, such as GJ 436, and the hydrogen-rich upper atmosphere of an Earth-like planet and a “super-Earth” with a radius of 2 REarth and a mass of 10 MEarth, located within the habitable zone at ∼0.24 AU. We investigated the formation of extended atomic hydrogen coronae under the influences of the stellar XUV flux (soft X-rays and EUV), stellar wind density and velocity, shape of a planetary obstacle (e.g., magnetosphere, ionopause), and the loss of planetary pickup ions on the evolution of hydrogen-dominated upper atmospheres. Stellar XUV fluxes that are 1, 10, 50, and 100 times higher compared to that of the present-day Sun were considered, and the formation of high-energy neutral hydrogen clouds around the planets due to the charge-exchange reaction under various stellar conditions was modeled. Charge-exchange between stellar wind protons with planetary hydrogen atoms, and photoionization, lead to the production of initially cold ions of planetary origin. We found that the ion production rates for the studied planets can vary over a wide range, from ∼1.0×1025 s−1 to ∼5.3×1030 s−1, depending on the stellar wind conditions and the assumed XUV exposure of the upper atmosphere. Our findings indicate that most likely the majority of these planetary ions are picked up by the stellar wind and lost from the planet. Finally, we estimated the long-time nonthermal ion pickup escape for the studied planets and compared them with the thermal escape. According to our estimates, nonthermal escape of picked-up ionized hydrogen atoms over a planet's lifetime within the habitable zone of an M dwarf varies between ∼0.4 Earth ocean equivalent amounts of hydrogen (EOH) to stars—Early atmospheres—Earth-like exoplanets—Energetic neutral atoms—Ion escape—Habitability. Astrobiology 13, 1030–1048. PMID:24283926

  10. Crevice corrosion and hydrogen embrittlement of grades-2 and -12 titanium under Canadian nuclear waste vault conditions

    International Nuclear Information System (INIS)

    Ikeda, B.M.; Bailey, M.G.; Clarke, C.F.; Shoesmith, D.W.

    1990-01-01

    Results on the corrosion of titanium grades 2 and 12 under the saline conditions anticipated in Canadian nuclear waste vaults are presented. The experimental approach included short-term electrochemical experiments to determine corrosion mechanisms, the susceptibility of titanium to crevice corrosion under a variety of conditions, and the extent of hydrogen uptake under controlled conditions; medium-term corrosion tests lasting a few weeks to a few months; and long-term immersion tests to provide rates for uniform corrosion, crevice corrosion, and hydrogen pickup. Results indicated that propagation, not initiation, is important in establishing susceptibility to crevice corrosion. Increasing the iron content of Ti-2 to 0.13 weight percent prevents crevice corrosion by causing repassivation. Crevice corrosion initiates on Ti-12, but repassivation is rapid. The supply of oxidant is essential to maintain crevice propagation. Hydrogen embrittlement is unlikely unless oxide film breakdown occurs. Film breakdown occurs under crevice conditions, and hydrogen pickup is to be expected. Film breakdown could occur if the strain or creep rate is fast enough to compete with repassivation reactions, a highly unlikely situation

  11. Development of a doorframe-typed swinging seedling pick-up device for automatic field transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Han, H.; Mao, H.; Hu, J.; Tian, K.

    2015-07-01

    A doorframe-typed swing seedling pick-up device for automatic field transplanters was developed and evaluated in a laboratory. The device, consisting of a path manipulator and two grippers, can move the pins slowly to extract seedlings from the tray cells and return quickly to the pick-up point for the next extraction. The path manipulator was constructed with the creative design of type-Ⅱ mechanism combination in series. It consists of an oscillating guide linkage mechanism and a grooved globoidal cam mechanism. The gripper is a pincette-type mechanism using the pick-up pins to penetrate into the root mass for seedling extraction. The dynamic analysis of the designed seedling pick-up device was simulated with ADAMS software. Being the first prototype, various performance tests under local production conditions were conducted to find out the optimal machine operation parameters and transplant production conditions. As the gripper with multiple fine pins was moved by the swing pick-up device, it can effectively complete the transplanting work cycle of extracting, transferring, and discharging a seedling. The laboratory evaluation showed that the pick-up device equipped with two grippers can extract 80 seedlings/min with a 90% success and a 3% failure in discharging seedlings, using 42-day-old tomato plantlets. The quality of extracting seedlings was satisfactory. (Author)

  12. Single-Commodity Vehicle Routing Problem with Pickup and Delivery Service

    Directory of Open Access Journals (Sweden)

    Goran Martinovic

    2008-01-01

    Full Text Available We present a novel variation of the vehicle routing problem (VRP. Single commodity cargo with pickup and delivery service is considered. Customers are labeled as either cargo sink or cargo source, depending on their pickup or delivery demand. This problem is called a single commodity vehicle routing problem with pickup and delivery service (1-VRPPD. 1-VRPPD deals with multiple vehicles and is the same as the single-commodity traveling salesman problem (1-PDTSP when the number of vehicles is equal to 1. Since 1-VRPPD specializes VRP, it is hard in the strong sense. Iterative modified simulated annealing (IMSA is presented along with greedy random-based initial solution algorithm. IMSA provides a good approximation to the global optimum in a large search space. Experiment is done for the instances with different number of customers and their demands. With respect to average values of IMSA execution times, proposed method is appropriate for practical applications.

  13. AA precooling pickup

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    The freshly injected antiprotons, while circulating on the injection orbit, were subjected to fast stochastic "precooling" for several seconds (in momentum and in the vertical plane). This precooling pickup is being readied by Gerard Laurent for installation in its tank. Precooling PUs and kickers were of identical construction (except for the kickers having cooling circuits), with C-shaped ferrites sandwiched between C-shaped metal plates and couplers at the back of the C. For reasons explained in 8002234, they were also equipped with shutters which closed the open side of the C when there was beam on the injection orbit. For more on precooling see 8020234, 8004064.

  14. Development of 80- and 100- Mile Work Day Cycles Representative of Commercial Pickup and Delivery Operation

    Energy Technology Data Exchange (ETDEWEB)

    Duran, Adam W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kelly, Kenneth J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kresse, John [Cummins; Li, Ke [Cummins

    2018-04-03

    When developing and designing new technology for integrated vehicle systems deployment, standard cycles have long existed for chassis dynamometer testing and tuning of the powertrain. However, to this day with recent developments and advancements in plug-in hybrid and battery electric vehicle technology, no true 'work day' cycles exist with which to tune and measure energy storage control and thermal management systems. To address these issues and in support of development of a range-extended pickup and delivery Class 6 commercial vehicle, researchers at the National Renewable Energy Laboratory in collaboration with Cummins analyzed 78,000 days of operational data captured from more than 260 vehicles operating across the United States to characterize the typical daily performance requirements associated with Class 6 commercial pickup and delivery operation. In total, over 2.5 million miles of real-world vehicle operation were condensed into a pair of duty cycles, an 80-mile cycle and a 100-mile cycle representative of the daily operation of U.S. class 3-6 commercial pickup and delivery trucks. Using novel machine learning clustering methods combined with mileage-based weighting, these composite representative cycles correspond to 90th and 95th percentiles for daily vehicle miles traveled by the vehicles observed. In addition to including vehicle speed vs time drive cycles, in an effort to better represent the environmental factors encountered by pickup and delivery vehicles operating across the United States, a nationally representative grade profile and key status information were also appended to the speed vs. time profiles to produce a 'work day' cycle that captures the effects of vehicle dynamics, geography, and driver behavior which can be used for future design, development, and validation of technology.

  15. Solenoid pick-up problem in the CREN-K Triga Mark 2 reactor

    International Nuclear Information System (INIS)

    Malu wa Kalenga; Kobakozete Itono; Diazengwa Mpaka; Mampaka Mana Mouiny; Itio Momba

    1981-01-01

    During a lazy susan forty irradiation tube inspection with the specimen lifting device, the solenoid-operated specimen pick-up tool happened to be locked in the number fourteen position loading tube. The present paper describes the successful experiment which was carried out to solve a potential damaging situation for the safe and useful operation of the reactor. The first step in the investigation process was to ascertain what has indeed occurred in the reactor core to avoid any ill advised step which will worsen the situation. The alternatives were the following: a) The specimen tube was not lined with the loading tube; b) The lazy susan was not working properly due example to the fact that a roll pin in a drive shaft coupling inside the drive shaft tube has been broken; c) The pick-up tool has produced through the cleanout hole in the bottom of the specimen tube and engage the hole; d) The pick-up tool might have slided most of the way between the lazy susan and its housing. By moving up and down the pick-up tool and rotating back and forth the lazy susan it was possible to come to the conclusion that alternative c) was the most likely. It was not possible to release the pick-up tool because its engaging arms could not be activated as was often the case when lifting aluminium container

  16. Solenoid pick-up problem in the CREN-K Triga Mark 2 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Malu wa Kalenga; Kobakozete Itono; Diazengwa Mpaka; Mampaka Mana Mouiny; Itio Momba (Commissariat des Sciences Nucleaires, Kinshasa (Zaire). Centre Regional d' Etudes Nucleaires)

    1981-01-01

    During a lazy susan forty irradiation tube inspection with the specimen lifting device, the solenoid-operated specimen pick-up tool happened to be locked in the number fourteen position loading tube. The present paper describes the successful experiment which was carried out to solve a potential damaging situation for the safe and useful operation of the reactor. The first step in the investigation process was to ascertain what has indeed occurred in the reactor core to avoid any ill advised step which will worsen the situation. The alternatives were the following: a) The specimen tube was not lined with the loading tube; b) The lazy susan was not working properly due example to the fact that a roll pin in a drive shaft coupling inside the drive shaft tube has been broken; c) The pick-up tool has produced through the cleanout hole in the bottom of the specimen tube and engage the hole; d) The pick-up tool might have slided most of the way between the lazy susan and its housing. By moving up and down the pick-up tool and rotating back and forth the lazy susan it was possible to come to the conclusion that alternative c) was the most likely. It was not possible to release the pick-up tool because its engaging arms could not be activated as was often the case when lifting aluminium container.

  17. The effect of hydrogen on the multiaxial stress-strain behavior of titanium tubing

    International Nuclear Information System (INIS)

    Lentz, C.W.; Hecker, S.S.; Koss, D.A.; Stout, M.G.

    1983-01-01

    The influence of internal hydrogen on the multiaxial stress-strain behavior of commercially pure titanium has been studied. Thin-walled specimens containing either 20 or 1070 ppm hydrogen were tested at constant stress ratios in combined tension and internal pressure. Hydrogen lowers the yield strength but has no significant effect on strain hardening behavior at strains epsilon greater than or equal to 0.02. Thus, hydrogen embrittlement under plain strain or equibiaxial loading is not a consequence of changes of flow behavior. The yielding behavior is described well by Hill's quadratic yield criterion. As measured mechanically and pole figure analysis, the plastic anisotropy changes with deformation in a manner which depends on stress state. A strain dependent, texture-induced strengthening effect in equibiaxial tension an enhanced strain hardening rate

  18. Molecular dynamics simulation of effect of hydrogen atoms on crack propagation behavior of α-Fe

    Energy Technology Data Exchange (ETDEWEB)

    Song, H.Y., E-mail: gsfshy@sohu.com; Zhang, L.; Xiao, M.X.

    2016-12-16

    The effect of the hydrogen concentration and hydrogen distribution on the mechanical properties of α-Fe with a pre-existing unilateral crack under tensile loading is investigated by molecular dynamics simulation. The results reveal that the models present good ductility when the front region of crack tip has high local hydrogen concentration. The peak stress of α-Fe decreases with increasing hydrogen concentration. The studies also indicate that for the samples with hydrogen atoms, the crack propagation behavior is independent of the model size and boundaries. In addition, the crack propagation behavior is significantly influenced by the distribution of hydrogen atoms. - Highlights: • The distribution of hydrogen plays a critical role in the crack propagation. • The peak stress decrease with the hydrogen concentration increasing. • The crack deformation behavior is disclosed and analyzed.

  19. Analytical model of tilted driver–pickup coils for eddy current nondestructive evaluation

    Science.gov (United States)

    Cao, Bing-Hua; Li, Chao; Fan, Meng-Bao; Ye, Bo; Tian, Gui-Yun

    2018-03-01

    A driver-pickup probe possesses better sensitivity and flexibility due to individual optimization of a coil. It is frequently observed in an eddy current (EC) array probe. In this work, a tilted non-coaxial driver-pickup probe above a multilayered conducting plate is analytically modeled with spatial transformation for eddy current nondestructive evaluation. Basically, the core of the formulation is to obtain the projection of magnetic vector potential (MVP) from the driver coil onto the vector along the tilted pickup coil, which is divided into two key steps. The first step is to make a projection of MVP along the pickup coil onto a horizontal plane, and the second one is to build the relationship between the projected MVP and the MVP along the driver coil. Afterwards, an analytical model for the case of a layered plate is established with the reflection and transmission theory of electromagnetic fields. The calculated values from the resulting model indicate good agreement with those from the finite element model (FEM) and experiments, which validates the developed analytical model. Project supported by the National Natural Science Foundation of China (Grant Nos. 61701500, 51677187, and 51465024).

  20. Hydrogen effect on the fatigue behavior of LBM Inconel 718

    Directory of Open Access Journals (Sweden)

    Puydebois Simon

    2018-01-01

    Full Text Available For several years, Inconel 718 made by Laser Beam Melting (LBM has been used for components of the Ariane propulsion systems manufactured by ArianeGroup. In the aerospace field, many components of space engines are used under hydrogen environment. The risk of hydrogen embrittlement (HE can be therefore a first order problem. Consequently, to improve the HE sensitivity of LBM Inconel 718, a systematic approach needs to be developed to characterize the microstructure at different scales and its interaction with hydrogen. This study addresses the impact of gaseous hydrogen on the material mechanical behavior under fatigue loadings. In a first step, the low cycle fatigue behavior under 300 bar of hydrogen gas has been evaluated with specimen loaded at a constant load ratio of R=0.1 and a frequency of 0.5 Hz. A reduction in the cycle number of fracture is shown. This reduction of fatigue life is a consequence of the impact of hydrogen damage processes. The impact of hydrogen is evaluated at the stages of crack initiation, crack propagation. These results are discussed in relation with the hydrogen embrittlement mechanisms and particularly in terms of hydrogen / plasticity interactions. To achieve this, the fracture surface morphology was first examined using scanning electron microscopy and second samples near the fracture surface were extracted using Focused-Ion Beam machining from regions containing striation. The main result observed is a reduction of the size of dislocation organization in relation with a decrease of the striation distance.

  1. Determination of interstellar pickup ion distributions in the solar wind with SOHO and Cluster

    Directory of Open Access Journals (Sweden)

    E. Möbius

    1996-05-01

    Full Text Available Over the last 10 years, the experimental basis for the study of the local interstellar medium has been substantially enhanced by the direct detection of interstellar pickup ions and of interstellar neutral helium within the heliosphere. Pickup ions can be studied for a wide range of interstellar species. However, currently the accuracy of the method to determine the parameters of the interstellar medium, namely neutral density, temperature and relative velocity, is hampered by two problems: (1 In most cases the crucial ionization rates are not available from simultaneous measurements and (2 the transport of the pickup ions in the interplanetary medium substantially modifies the measured spatial distribution of the ions. In this study we will discuss how the enhanced capabilities of the instrumentation on SOHO and Cluster in combination with ongoing efforts to model the pickup ion distributions will lead to a significant improvement over the coming years.

  2. Analysis of Pick-Up Development in Punching

    DEFF Research Database (Denmark)

    Olsson, David Dam; Bay, Niels; Andreasen, Jan Lasson

    2002-01-01

    The development of pick-up of work piece material on the punch surface with increasing number of strokes during punching of stainless steel sheet is investigated applying Scanning Electron Microscopy (SEM), 3D roughness mapping and measurements of the backstroke force. It is found that pick...

  3. Pickup protons at quasi-perpendicular shocks: full particle electrodynamic simulations

    Directory of Open Access Journals (Sweden)

    S. Matsukiyo

    2007-02-01

    Full Text Available We have performed 3 one-dimensional full particle electromagnetic simulations of a quasi-perpendicular shock with the same Alfvén Mach number MA~5, shock normal-magnetic field angle ΘBn=87° and ion and electron beta (particle to magnetic field pressure of 0.1. In the first run we used an ion to electron mass ratio close to the physical one (mi/me=1024. As expected from previous high mass ratio simulations the Modified Two-Stream instability develops in the foot of the shock, and the shock periodically reforms itself. We have then self-consistently included in the simulation 10% pickup protons distributed on a shell in velocity space as a third component. In a run with an unrealistically low mass ratios of 200 the shock still reforms itself; reformation is due to accumulation of specularly reflected particles at the upstream edge of the foot. In a third run including pickup protons we used a mass ratio of 1024. The shock reforms periodically as in the low mass ratio run with a somewhat smaller time constant. The specular reflection of pickup protons results in an increase of the shock potential some distance ahead of the shock foot and ramp. The minimum scale of the cross shock potential during reformation is about 7 electron inertial length λe. We do not find any pickup proton acceleration in the ramp or downstream of the shock beyond the energy which specularly reflected ions gain by the motional electric field of the solar wind during their upstream gyration.

  4. Chemical aspects of hydrogen ingress in zirconium and zircaloy pressure tubes: ageing management of Indian PHWR coolant channels - determination of hydrogen and deuterium

    International Nuclear Information System (INIS)

    Sayi, Y.S.; Shankaran, P.S.; Yadav, C.S.; Ramanjaneyulu, P.S.; Venugopal, V.; Ramakumar, K.L.; Chhapru, G.C.; Prasad, R.; Jain, H.C.; Sood, D.D.

    2009-02-01

    Pressurized heavy water reactors (PHWRs) use zirconium and zirconium based alloys as clad and coolant tubes since its beginning. The first ever zircaloy-2 pressure tube failure occurred in 1983 at Ontario Hydro's Pickering Unit 2 in Canada which necessitated a thorough examination of causes of such failure. The failure was attributed to massive hydriding at the failed spot of pressure tube. Continuous usage of zirconium alloys could result in their hydrogen and deuterium pick-up leading to hydrogen/ deuterium embrittlement. The life of the zircaloy coolant channels is dictated by hydrogen/deuterium content and hence ageing management of the pressure tubes is essential for ensuring their trouble-free usage. It is desirable to have a sound knowledge on the chemical aspects of zirconium and zirconium based alloys metallurgy, the mechanistic principles of hydrogen ingress into the pressure tubes during in reactor service, and identifying suitable analytical methodologies for precise and accurate determination of hydrogen in wafer thin sliver samples carved out from insides of pressure tubes without causing any structural damage so that it can continue to remain in service. This is desirable so that the ageing management does not result in cost-escalation. This report is divided in to three main parts. The first part deals with the chemical aspects of zirconium and zirconium based alloy metallurgy, the mechanism of hydrogen pick-up and hydride formation in zirconium matrix. The second part describes various methodologies and their limitations, available for hydrogen/deuterium determination. The third part deals in detail, about the extensive investigations carried out at Radioanalytical Chemistry Division (RACD) in Radiochemistry and Isotope Group for establishing an indigenously developed hot vacuum extraction system in combination with quadrupole mass spectrometry for precise determination of hydrogen and deuterium in wafer thin sliver sample of zircaloy. The

  5. Preparation of platinum-decorated porous graphite nanofibers, and their hydrogen storage behaviors.

    Science.gov (United States)

    Kim, Byung-Joo; Lee, Young-Seak; Park, Soo-Jin

    2008-02-15

    In this work, the hydrogen storage behaviors of porous graphite nanofibers (GNFs) decorated by Pt nanoparticles were investigated. The Pt nanoparticles were introduced onto the GNF surfaces using a well-known chemical reduction method. We investigated the hydrogen storage capacity of the Pt-doped GNFs for the platinum content range of 1.3-7.5 mass%. The microstructure of the Pt/porous GNFs was characterized by X-ray diffraction and transmission electron microscopy. The hydrogen storage behaviors of the Pt/GNFs were studied using a PCT apparatus at 298 K and 10 MPa. It was found that amount of hydrogen stored increased with increasing Pt content to 3.4 mass%, and then decreased. This result indicates that the hydrogen storage capacity of porous carbons is based on both their metal content and dispersion rate.

  6. Three-dimensional magnetic nanoparticle imaging using small field gradient and multiple pickup coils

    Energy Technology Data Exchange (ETDEWEB)

    Sasayama, Teruyoshi, E-mail: sasayama@sc.kyushu-u.ac.jp; Tsujita, Yuya; Morishita, Manabu; Muta, Masahiro; Yoshida, Takashi; Enpuku, Keiji

    2017-04-01

    We propose a magnetic particle imaging (MPI) method based on third harmonic signal detection using a small field gradient and multiple pickup coils. First, we developed a system using two pickup coils and performed three-dimensional detection of two magnetic nanoparticle (MNP) samples, which were spaced 15 mm apart. In the experiments, an excitation field strength of 1.6 mT was used at an operating frequency of 3 kHz. A DC gradient field with a typical value of 0.2 T/m was also used to produce the so-called field-free line. A third harmonic signal generated by the MNP samples was detected using the two pickup coils, and the samples were then mechanically scanned to obtain field maps. The field maps were subsequently analyzed using the nonnegative least squares method to obtain three-dimensional position information for the MNP samples. The results show that the positions of the two MNP samples were estimated with good accuracy, despite the small field gradient used. Further improvement in MPI performance will be achieved by increasing the number of pickup coils used. - Highlights: • 3D magnetic particle imaging system combining field-free line and two pickup coils. • Imaging method based on third harmonic signal detection and small field gradient. • Nonnegative least squares method for 3D magnetic nanoparticle image reconstruction. • High spatial resolution despite use of small field gradient.

  7. Carbon monoxide poisoning in children riding in the back of pickup trucks.

    Science.gov (United States)

    Hampson, N B; Norkool, D M

    OBJECTIVE - To describe the case characteristics of a series of children poisoned with carbon monoxide while traveling in the back of pickup trucks. DESIGN - Pediatric cases referred for treatment of carbon monoxide poisoning with hyperbaric oxygen between 1986 and 1991 were reviewed. Those cases that occurred during travel in the back of pickup trucks were selected. Clinical follow-up by telephone interview ranged from 2 to 55 months. SETTING - A private, urban, tertiary care center in Seattle, Wash. PATIENTS - Twenty children ranging from 4 to 16 years of age. INTERVENTION - All patients were treated with hyperbaric oxygen. MAIN OUTCOME MEASURES - Characteristics of the poisoning incident and clinical patient outcome. RESULTS - Of 68 pediatric patients treated for accidental carbon monoxide poisoning, 20 cases occurred as children rode in the back of pickup trucks. In 17 of these, the children were riding under a rigid closed canopy on the rear of the truck, while three episodes occurred as children rode beneath a tarpaulin. Average carboxyhemoglobin level on emergency department presentation was 18.2% +/- 2.4% (mean +/- SEM; range, 1.6% to 37.0%). Loss of consciousness occurred in 15 of the 20 children. One child died of cerebral edema, one had permanent neurologic deficits, and 18 had no recognizable sequelae related to the episode. In all cases, the truck exhaust system had a previously known leak or a tail pipe that exited at the rear rather than at the side of the pickup truck. CONCLUSIONS - Carbon monoxide poisoning is a significant hazard for children who ride in the back of pickup trucks. If possible, this practice should be avoided.

  8. Pickup protons at quasi-perpendicular shocks: full particle electrodynamic simulations

    Directory of Open Access Journals (Sweden)

    S. Matsukiyo

    2007-02-01

    Full Text Available We have performed 3 one-dimensional full particle electromagnetic simulations of a quasi-perpendicular shock with the same Alfvén Mach number MA~5, shock normal-magnetic field angle ΘBn=87° and ion and electron beta (particle to magnetic field pressure of 0.1. In the first run we used an ion to electron mass ratio close to the physical one (mi/me=1024. As expected from previous high mass ratio simulations the Modified Two-Stream instability develops in the foot of the shock, and the shock periodically reforms itself. We have then self-consistently included in the simulation 10% pickup protons distributed on a shell in velocity space as a third component. In a run with an unrealistically low mass ratios of 200 the shock still reforms itself; reformation is due to accumulation of specularly reflected particles at the upstream edge of the foot. In a third run including pickup protons we used a mass ratio of 1024. The shock reforms periodically as in the low mass ratio run with a somewhat smaller time constant. The specular reflection of pickup protons results in an increase of the shock potential some distance ahead of the shock foot and ramp. The minimum scale of the cross shock potential during reformation is about 7 electron inertial length λe. We do not find any pickup proton acceleration in the ramp or downstream of the shock beyond the energy which specularly reflected ions gain by the motional electric field of the solar wind during their upstream gyration.

  9. Hydrogen-rich saline attenuates anxiety-like behaviors in morphine-withdrawn mice.

    Science.gov (United States)

    Wen, Di; Zhao, Peng; Hui, Rongji; Wang, Jian; Shen, Qianchao; Gong, Miao; Guo, Hongyan; Cong, Bin; Ma, Chunling

    2017-05-15

    Hydrogen therapy is a new medical approach for a wide range of diseases. The effects of hydrogen on central nervous system-related diseases have recently become increasingly appreciated, but little is known about whether hydrogen affects the morphine withdrawal process. This study aims to investigate the potential effects of hydrogen-rich saline (HRS) administration on naloxone-precipitated withdrawal symptoms and morphine withdrawal-induced anxiety-like behaviors. Mice received gradually increasing doses (25-100 mg/kg, i.p.) of morphine over 3 days. In the naloxone-precipitated withdrawal procedure, the mice were treated with three HRS (20 μg/kg, i.p.) injections, and naloxone (1 mg/kg, i.p.) was given 30 min after HRS administration. Body weight, jumping behavior and wet-dog shakes were immediately assessed. In the spontaneous withdrawal procedure, the mice were treated with HRS (20 μg/kg, i.p.) every 8-h. Mice underwent naloxone-precipitated or spontaneous withdrawal were tested for anxiety-like behaviors in the elevated plus-maze (EPM) and light/dark box (L/D box) paradigm, respectively. In addition, the levels of plasma corticosterone were measured. We found that HRS administration significantly reduced body weight loss, jumping behavior and wet-dog shakes in mice underwent naloxone-precipitated withdrawal, and attenuated anxiety-like behaviors in the EPM and L/D box tests after naloxone-precipitated withdrawal or a 2-day spontaneous withdrawal period. Hypo-activity or motor impairment after HRS administration was not observed in the locomotion tests. Furthermore, HRS administration significantly decreased the levels of corticosterone in morphine-withdrawn mice. These are the first findings to indicate that hydrogen might ameliorate withdrawal symptoms and exert an anxiolytic-like effect in morphine-withdrawal mice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Interaction of intersteller pick-up ions with the solar wind

    International Nuclear Information System (INIS)

    Mobius, E.; Klecker, B.; Hovestadt, D.; Scholer, M.

    1988-01-01

    The interaction of interstellar pick-up ions with the solar wind is studied by comparing a model for the velocity distribution function of pick-up ions with actual measurements of He + ions in the solar wind. The model includes the effects of pitch-angle diffusion due to interplanetary Alfven waves, adiabatic deceleration in the expanding solar wind and the radial variation of the source function. It is demonstrated that the scattering mean free path is in the range ≤0.1 AU and that energy diffusion can be neglected as compared with adiabatic deceleration. The effects of adiabatic focusing, of the radial variation of the neutral density and of an variation of the solar wind velocity with distance from the Sun are investigated. With the correct choice of these parameters the authors can model the measured energy spectra of the pick-up ions does not vary with the solar wind velocity and the direction of the interplanetary magnetic field for a given local neutral gas density and ionization rate. Therefore, the comparison of the model distributions with the measurements leads to a quantitative determination of the local interstellar gas density

  11. Novel hydrogen decrepitation behaviors of (La, Ce)-Fe-B strips

    Science.gov (United States)

    Jin, Jiaying; Bai, Guohua; Zhang, Yujing; Peng, Baixing; Liu, Yongsheng; Ma, Tianyu; Yan, Mi

    2018-05-01

    La and Ce substitution for Nd in the 2:14:1-type sintered magnet is of commercial interest to reduce the material cost and to balance the utilization of rare earth (RE) sources. As hydrogen decrepitation (HD) is widely utilized to prepare the magnetic powders during magnets fabrication, incorporating La and Ce into the Nd-Fe-B permanent magnets, however, may exert complex influences on the decrepitation behavior. In the present work, through a comparative study of the HD behaviors between the (La, Ce)-Fe-B strips and the conventional Nd-Fe-B ones, we find that similar to the Nd-Fe-B system, increasing hydrogen pressures from 2.5 to 5.5 MPa do not break the 2:14:1 tetragonal structure of (La, Ce)-Fe-B strips. The enhanced hydrogen absorption behaviors are observed with increasing pressure, which are still inferior to that of the Nd-Fe-B strips. This should be ascribed to the higher oxygen affinity of La and Ce than that of Nd, leading to the decreased amount of active RE-rich phase and limited hydrogen diffusion channel. As a result, the hydrogen absorption of 2:14:1 matrix phase is significantly suppressed, dramatically weakening the exothermic effect. This finding suggests that La and Ce with stable 2:14:1 tetragonal structure upon HD process are promising alternatives for Nd, despite that more precise oxygen control is necessary for the microstructure modification and magnetic performance enhancement of (La, Ce)-Fe-B sintered magnets.

  12. The annealing behavior of hydrogen implanted into Al-Si alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ogura, Masahiko; Yamaji, Norisuke; Imai, Makoto; Itoh, Akio; Imanishi, Nobutsugu [Kyoto Univ. (Japan). Faculty of Engineering

    1997-03-01

    We have studied effects of not only defects but also an added elements on trap-sites of hydrogen in metals. For the purpose, we observed depth profiles and thermal behaviors of hydrogen implanted into Al-1.5at.%Si alloy samples in an implantation-temperature range of liquid nitrogen temperature (LNT) to 373K at different doses. The results were compared with those for pure aluminum samples. It was found that hydrogen is trapped as molecules in grain boundaries of Al/Si. (author)

  13. Naturalistic drive cycle synthesis for pickup trucks.

    Science.gov (United States)

    Liu, Zifan; Ivanco, Andrej; Filipi, Zoran

    2015-09-01

    Future pick-up trucks are meeting much stricter fuel economy and exhaust emission standards. Design tradeoffs will have to be carefully evaluated to satisfy consumer expectations within the regulatory and cost constraints. Boundary conditions will obviously be critical for decision making: thus, the understanding of how customers are driving in naturalistic settings is indispensable. Federal driving schedules, while critical for certification, do not capture the richness of naturalistic cycles, particularly the aggressive maneuvers that often shape consumer perception of performance. While there are databases with large number of drive cycles, applying all of them directly in the design process is impractical. Therefore, representative drive cycles that capture the essence of the naturalistic driving should be synthesized from naturalistic driving data. Naturalistic drive cycles are firstly categorized by investigating their micro-trip components, defined as driving activities between successive stops. Micro-trips are expected to characterize underlying local traffic conditions, and separate different driving patterns. Next, the transitions from one vehicle state to another vehicle state in each cycle category are captured with Transition Probability Matrix (TPM). Candidate drive cycles can subsequently be synthesized using Markov Chain based on TPMs for each category. Finally, representative synthetic drive cycles are selected through assessment of significant cycle metrics to identify the ones with smallest errors. This paper provides a framework for synthesis of representative drive cycles from naturalistic driving data, which can subsequently be used for efficient optimization of design or control of pick-up truck powertrains. Manufacturers will benefit from representative drive cycles in several aspects, including quick assessments of vehicle performance and energy consumption in simulations, component sizing and design, optimization of control strategies, and

  14. Hydrogen storage behaviors of platinum-supported multi-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Park, Soo-Jin; Lee, Seul-Yi [Department of Chemistry, Inha University, 253 Nam-gu, Incheon 402-751 (Korea, Republic of)

    2010-12-15

    In this work, the hydrogen storage behaviors of multi-walled carbon nanotubes (MWNTs) loaded by crystalline platinum (Pt) particles were studied. The microstructure of the Pt/MWNTs was characterized by X-ray diffraction and transmission electron microscopy. The pore structure and total pore volumes of the Pt/MWNTs were analyzed by N{sub 2}/77 K adsorption isotherms. The hydrogen storage capacity of the Pt/MWNTs was evaluated at 298 K and 100 bar. From the experimental results, it was found that Pt particles were homogeneously distributed on the MWNT surfaces. The amount of hydrogen storage capacity increased in proportion to the Pt content, with Pt-5/MWNTs exhibiting the largest hydrogen storage capacity. The superior amount of hydrogen storage was linked to an increase in the number of active sites and the optimum-controlled micropore volume for hydrogen adsorption due to the well-dispersed Pt particles. Therefore, it can be concluded that Pt particles play an important role in hydrogen storage characteristics due to the hydrogen spillover effect. (author)

  15. Tracked "Pick-Up" Ultrasound for Robot-Assisted Minimally Invasive Surgery.

    Science.gov (United States)

    Schneider, Caitlin; Nguan, Christopher; Rohling, Robert; Salcudean, Septimiu

    2016-02-01

    We present a novel "pick-up" ultrasound transducer for intraabdominal robot-assisted minimally invasive surgery. Such a "pick-up" ultrasound transducer is inserted through an abdominal incision at the beginning of the procedure and remains in the abdominal cavity throughout, eliminating the need for a dedicated port or a patient bedside surgical assistant. The transducer has a handle that can be grasped in a repeatable manner using a da Vinci Prograsp tool, allowing the transducer to be accurately manipulated by the surgeon using the da Vinci Robot. This is one way to enable 3-D tracking of the transducer, and, thus, mapping of the vasculature. The 3-D vascular images can be used to register preoperative CT to intraoperative camera images. To demonstrate the feasibility of the approach, we use an ultrasound vessel phantom to register a CT surface model to extracted ultrasound vessel models. The 3-D vascular phantom images are generated by segmenting B-mode images and tracking the pick-up ultrasound transducer with the da Vinci kinematics, internal electromagnetic sensor, or visible fiducials suitable for camera tracking. Reconstruction results using da Vinci kinematics for tracking give a target registration error of 5.4 ± 1.7 mm.

  16. Experimental study of combustion behavior during continuous hydrogen injection with an operating igniter

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Zhe, E-mail: zhe.liang@cnl.ca; Clouthier, Tony; Thomas, Bryan

    2016-03-15

    Highlights: • Combustion during continuous hydrogen release. • Periodical slow burning with a low release rate or weak turbulence. • Fast global burning with stratified hydrogen or strong turbulence. • Initiation of standing flame. - Abstract: Deliberate hydrogen ignition systems have been widely installed in many water cooled nuclear power plants to mitigate hydrogen risk in a loss-of-coolant accident. Experimental studies were performed at a large scale facility to simulate a post-accident containment scenario, where hydrogen is released into a volume (not closed) with an energized igniter. The test chamber had a volume of 60 m{sup 3}. The test parameters included hydrogen injection mass flow rate, injection elevation, igniter elevation, and level of turbulence in the chamber. Several dynamic combustion behaviors were observed. Under certain conditions, slow burning occurred periodically or locally without significant pressurization, and the hydrogen concentration could be maintained near the lean hydrogen flammability limit or a steady hydrogen distribution profile could be formed with a maximum hydrogen concentration less than 9 vol.%. Under other conditions, a global fast burn or a burn moving along the hydrogen dispersion pathway was observed and was followed by an immediate initiation of a standing flame. The study provided a better understanding of the dynamic combustion behavior induced by a deliberate igniter during a continuous hydrogen release. The data can be used for validation of combustion models used for hydrogen safety analysis.

  17. Development of assessment technology for hydrogen burn and fission product behavior in containment

    International Nuclear Information System (INIS)

    Kim, S. B.; Kim, J. T.; Ha, K. S.; Hong, S. W.; Song, Y. M.; Park, J. H.; Cho, Y. R.; Kang, H. S.

    2012-04-01

    Analysis tools for hydrogen burn was established to resolve the hydrogen issues in containment. To validate CFX commercial CFD(computational fluid dynamics) code, the hydrogen combustion experiments such as FLAME and ENACEFF for reactor containment were analyzed. And OpenFOAM hydrogen combustion code was developed and validated. Experiments for the flame propagation characteristics in IRWST and the run-up-distance for DDT(Deflagration to detonation transition) were performed and analytical model was evaluated to evaluation of the performance of hydrogen mitigation system, that is, PAR(Passive auto-catalistic re-combiner) To improvement of the fission product modelling in containment, separate analysis module for Iodine behavior and its application tool of K-IODIP (Korea IODIne Package) were developed. PHEBUS FPT-3 analysis was performed to validate MELCOR code. And also the characteristics of fission product behaviors in Future Reactors(GEN-IV) were compared

  18. Hydrogen permeation behavior through F82H at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, S.; Katayama, K.; Shimozori, M.; Fukada, S. [Interdisciplinary Graduate School of Engineering Science, Kyushu University, Kyushu (Japan); Ushida, H. [Energy Science and Engineering, Faculty of Engineering, Kyushu University, Kyushu (Japan); Nishikawa, M. [Malaysia-Japan International Institute of Technology, UTM, Kuala Lumpur (Malaysia)

    2015-03-15

    F82H is a primary candidate of structural material and coolant pipe material in a blanket of a fusion reactor. Understanding tritium permeation behavior through F82H is important. In a normal operation of a fusion reactor, the temperature of F82H will be controlled below 550 C. degrees because it is considered that F82H can be used up to 30,000 hours at 550 C. degrees. However, it is necessary to assume the situation where F82H is heated over 550 C. degrees in a severe accident. In this study, hydrogen permeation behavior through F82H was investigated in the temperature range from 500 to 800 C. degrees. In some cases, water vapor was added in a sample gas to investigate an effect of water vapor on hydrogen permeation. The permeability of hydrogen in the temperature range from 500 to 700 C. degrees agreed well with the permeability reported by E. Serra et al. The degradation of the permeability by water vapor was not observed. After the hydrogen permeation reached in a steady state at 700 C. degrees, the F82H sample was heated to 800 C. degrees. The permeability of hydrogen through F82H sample which was once heated up to 800 C. degrees was lower than that of the original one. (authors)

  19. Uptake of methanol on mixed HNO3/H2O clusters: An absolute pickup cross section

    Science.gov (United States)

    Pysanenko, A.; Lengyel, J.; Fárník, M.

    2018-04-01

    The uptake of atmospheric oxidized organics on acid clusters is relevant for atmospheric new particle formation. We investigate the pickup of methanol (CH3OH) on mixed nitric acid-water clusters (HNO3)M(H2O)N by a combination of mass spectrometry and cluster velocity measurements in a molecular beam. The mass spectra of the mixed clusters exhibit (HNO3)m(H2O)nH+ series with m = 0-3 and n = 0-12. In addition, CH3OH.(HNO3)m(H2O)nH+ series with very similar patterns appear in the spectra after the methanol pickup. The velocity measurements prove that the undoped (HNO3)m(H2O)nH+ mass peaks in the pickup spectra originate from the neutral (HNO3)M(H2O)N clusters which have not picked up any CH3OH molecule, i.e., methanol has not evaporated upon the ionization. Thus the fraction of the doped clusters can be determined and the mean pickup cross section can be estimated, yielding σs ¯ ≈ 20 Å2. This is compared to the lower estimate of the mean geometrical cross section σg ¯ ≈ 60 Å2 obtained from the theoretical cluster geometries. Thus the "size" of the cluster corresponding to the methanol pickup is at least 3-times smaller than its geometrical size. We have introduced a method which can yield the absolute pickup cross sections relevant to the generation and growth of atmospheric aerosols, as illustrated in the example of methanol and nitric acid clusters.

  20. Revisiting the theory of the evolution of pick-up ion distributions: magnetic or adiabatic cooling?

    Directory of Open Access Journals (Sweden)

    H. J. Fahr

    2007-01-01

    Full Text Available We study the phasespace behaviour of heliospheric pick-up ions after the time of their injection as newly created ions into the solar wind bulk flow from either charge exchange or photoionization of interplanetary neutral atoms. As interaction with the ambient MHD wave fields we allow for rapid pitch angle diffusion, but for the beginning of this paper we shall neglect the effect of quasilinear or nonlinear energy diffusion (Fermi-2 acceleration induced by counterflowing ambient waves. In the up-to-now literature connected with the convection of pick-up ions by the solar wind only adiabatic cooling of these ions is considered which in the solar wind frame takes care of filling the gap between the injection energy and energies of the thermal bulk of solar wind ions. Here we reinvestigate the basics of the theory behind this assumption of adiabatic pick-up ion reactions and correlated predictions derived from it. We then compare it with the new assumption of a pure magnetic cooling of pick-up ions simply resulting from their being convected in an interplanetary magnetic field which decreases in magnitude with increase of solar distance. We compare the results for pick-up ion distribution functions derived along both ways and can point out essential differences of observational and diagnostic relevance. Furthermore we then include stochastic acceleration processes by wave-particle interactions. As we can show, magnetic cooling in conjunction with diffusive acceleration by wave-particle interaction allows for an unbroken power law with the unique power index γ=−5 beginning from lowest velocities up to highest energy particles of about 100 KeV which just marginally can be in resonance with magnetoacoustic turbulences. Consequences for the resulting pick-up ion pressures are also analysed.

  1. Revisiting the theory of the evolution of pick-up ion distributions: magnetic or adiabatic cooling?

    Directory of Open Access Journals (Sweden)

    H. J. Fahr

    2008-01-01

    Full Text Available We study the phasespace behaviour of heliospheric pick-up ions after the time of their injection as newly created ions into the solar wind bulk flow from either charge exchange or photoionization of interplanetary neutral atoms. As interaction with the ambient MHD wave fields we allow for rapid pitch angle diffusion, but for the beginning of this paper we shall neglect the effect of quasilinear or nonlinear energy diffusion (Fermi-2 acceleration induced by counterflowing ambient waves. In the up-to-now literature connected with the convection of pick-up ions by the solar wind only adiabatic cooling of these ions is considered which in the solar wind frame takes care of filling the gap between the injection energy and energies of the thermal bulk of solar wind ions. Here we reinvestigate the basics of the theory behind this assumption of adiabatic pick-up ion reactions and correlated predictions derived from it. We then compare it with the new assumption of a pure magnetic cooling of pick-up ions simply resulting from their being convected in an interplanetary magnetic field which decreases in magnitude with increase of solar distance. We compare the results for pick-up ion distribution functions derived along both ways and can point out essential differences of observational and diagnostic relevance. Furthermore we then include stochastic acceleration processes by wave-particle interactions. As we can show, magnetic cooling in conjunction with diffusive acceleration by wave-particle interaction allows for an unbroken power law with the unique power index γ=−5 beginning from lowest velocities up to highest energy particles of about 100 KeV which just marginally can be in resonance with magnetoacoustic turbulences. Consequences for the resulting pick-up ion pressures are also analysed.

  2. Behavior of implanted hydrogen in ferritic/martensitic steels under irradiation

    Science.gov (United States)

    Wan, F.; Takahashi, H.; Ohnuki, S.; Nagasaki, R.

    1988-07-01

    The aim of this study was to clarify the behavior of hydrogen under irradiation in ferritic/martensitic stainless steel Fe-10Cr-2Mo-1Ni. Hydrogen was implanted into the specimens by ion accelerator or chemical cathodic charging method, followed by electron irradiation in a HVEM at temperatures from room temperature to 773 K. Streaks in the electron diffraction patterns were observed only during electron irradiation at 623-723 K. From these results it is suggested that the occurrence of the streak pattern is due to the formation of radiation-induced complexes of Ni or Cr with hydrogen along directions.

  3. Nanoscale microstructure effects on hydrogen behavior in rapidly solidified aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tashlykova-Bushkevich, Iya I. [Belarusian State University of Informatics and Radioelectronics, Minsk (Belarus)

    2015-12-31

    The present work summarizes recent progress in the investigation of nanoscale microstructure effects on hydrogen behavior in rapidly solidified aluminum alloys foils produced at exceptionally high cooling rates. We focus here on the potential of modification of hydrogen desorption kinetics in respect to weak and strong trapping sites that could serve as hydrogen sinks in Al materials. It is shown that it is important to elucidate the surface microstructure of the Al alloy foils at the submicrometer scale because rapidly solidified microstructural features affect hydrogen trapping at nanostructured defects. We discuss the profound influence of solute atoms on hydrogen−lattice defect interactions in the alloys. with emphasis on role of vacancies in hydrogen evolution; both rapidly solidified pure Al and conventionally processed aluminum samples are considered.

  4. Hydrogen storage behavior of ZrCo1-xNix alloys

    International Nuclear Information System (INIS)

    Jat, Ram Avtar; Parida, S.C.; Agarwal, Renu; Kulkarni, S.G.

    2012-01-01

    Intermetallic compound ZrCo is proposed as a candidate material for storage, supply and recovery of hydrogen isotopes in International Thermonuclear Experimental Reactor (ITER) Storage and Delivery System (SDS). However, it has been reported that upon repeated hydriding-dehydriding cycles, ZrCo undergoes disproportionation as per the reaction; 2ZrCo + H 2 ↔ ZrH 2 + ZrCO 2 . This results in reduction in hydrogen storage capacity of ZrCo, which is not a desirable property for SDS. Konishi et al. reported that the disproportionation reaction can be suppressed by decreasing the desorption temperature. It is anticipated that suitable ternary alloying of ZrCo can elevated the hydrogen equilibrium pressure and hence decrease the desorption temperature for supply of 100 kPa of hydrogen. In this study, we have investigated the effect of Ni content on the hydrogenation behavior of ZrCo 1-x Ni x alloys

  5. Hydrogen retention behavior of beryllides as advanced neutron multipliers

    Directory of Open Access Journals (Sweden)

    Y. Fujii

    2016-12-01

    Full Text Available Beryllium intermetallic compounds (beryllides are the most promising candidate materials for use as advanced neutron multipliers in future fusion reactors because of their low swelling and high stability at high temperatures. Recently, beryllium–titanium beryllide pebbles such as Be12Ti have been successfully fabricated using a novel granulation process. In this study, the fundamental aspects of the behavior of hydrogen isotopes in Be12Ti pebbles were investigated via thermal desorption spectroscopy and transmission electron microscopy. In addition, atomistic calculations using first principles electronic-structure methods were applied to determine the solution energy of hydrogen in Be12Ti. The results showed simpler and weaker hydrogen-trapping efficiency for Be12Ti than for pure Be.

  6. High-lying neutron hole strengths observed in pick-up reactions

    International Nuclear Information System (INIS)

    Gales, S.

    1980-01-01

    Neutron-hole states in orbits well below the Fermi surface have been observed in a number of medium-heavy nuclei from A=90 to 209 using one nucleon pick-up reactions. The excitation energies, angular distributions of such broad and enhanced structures will be discussed. The fragmentation of the neutron-hole strengths as well as the spreading of such simple mode of excitations into more complex states are compared to recent calculations within the quasiparticle-phonon or the single particle-vibration coupling nuclear models. We report on recent measurements of J for inner-hole states in 89 Zr and 115 Sn 119 Sn using the analyzing power of the (p,d) and (d,t) reactions. Large enhancement of cross-sections are observed at high excitation energy in the study of the (p,t) reactions on Zr, Cd, Sn, Te and Sm isotopes. The systematic features of such high-lying excitation are related to the ones observed in one neutron pick-up experiments. The origin of such concentration of two neutron-hole strengths in Cd and Sn isotopes will be discussed. Preliminary results obtained in the study of the (α, 6 He) reaction at 218 MeV incident energy on 90 Zr, 118 Sn and 208 Pb targets are presented and compared to the (p,t) results. Finally the properties of hole-analog states populated in neutron pick-up reactions (from 90 Zr to 208 Pb) will be presented

  7. Vehicle test report: Battronic pickup truck

    Science.gov (United States)

    Price, T. W.; Shain, T. W.; Freeman, R. J.; Pompa, M. F.

    1982-01-01

    An electric pickup truck was tested to characterize certain parameters and to provide baseline data that can be used for the comparison of improved batteries that may be incorporated into the vehicle at a later time. The vehicle tests were concentrated on the electrical drive subsystem; i.e., the batteries, controller, and motor. The tests included coastdowns to characterize the road load and range evaluations for both cyclic and constant speed conditions. A qualitative evaluation of the vehicle's performance was made by comparing its constant speed range performance with other vehicles.

  8. Slot-type pickup/kicker for AA stochastic cooling

    CERN Multimedia

    CERN PhotoLab

    1979-01-01

    A "slotted transmission line" was used for both pickups and kickers of the stochastic cooling systems of the AA. They served for the cooling of the high-density antiproton stack, in momentum and both transverse planes. In the beginning in a single band, 1-2 GHz, later in 2 bands, 2-4 and 4-8 GHz. See also 7906190, 7906193.

  9. Effect of hydrogen on the corrosion behavior of the Mg–xZn alloys

    Directory of Open Access Journals (Sweden)

    Yingwei Song

    2014-09-01

    Full Text Available Hydrogen evolution reaction is inevitable during the corrosion of Mg alloys. The effect of hydrogen on the corrosion behavior of the Mg–2Zn and Mg–5Zn alloys is investigated by charging hydrogen treatment. The surface morphologies of the samples after charging hydrogen were observed using a scanning electron microscopy (SEM and the corrosion resistance was evaluated by polarization curves. It is found that there are oxide films formed on the surface of the charged hydrogen samples. The low hydrogen evolution rate is helpful to improve the corrosion resistance of Mg alloys, while the high hydrogen evolution rate can increases the defects in the films and further deteriorates their protection ability. Also, the charging hydrogen effect is greatly associated with the microstructure of Mg substrate.

  10. Hydrogen behavior in a large-dry pressurized water reactor containment building during a severe accident

    International Nuclear Information System (INIS)

    Hsu Wensheng; Chen Hungpei; Hung Zhenyu; Lin Huichen

    2014-01-01

    Following severe accidents in nuclear power plants, large quantities of hydrogen may be generated after core degradation. If the hydrogen is transported from the reactor vessel into the containment building, an explosion might occur, which might threaten the integrity of the building; this can ultimately cause the release of radioactive materials. During the Fukushima Daiichi nuclear accident in 2011, the primary containment structures remained intact but contaminated fragments broke off the secondary containment structures, which disrupted mitigation activities and triggered subsequent explosions. Therefore, the ability to predict the behavior of hydrogen after severe accidents may facilitate the development of effective nuclear reactor accident management procedures. The present study investigated the behavior of hydrogen in a large-dry pressurized water reactor (PWR). The amount of hydrogen produced was calculated using the Modular Accident Analysis Program. The hydrogen transport behavior and the effect of the explosion on the PWR containment building were simulated using the Flame Acceleration Simulator. The simulation results showed that the average hydrogen volume fraction is approximately 7% in the containment building and that the average temperature is 330 K. The maximum predicted pressure load after ignition is 2.55 bar, which does not endanger the structural integrity of the containment building. The results of this investigation indicate that the hydrogen mitigation system should be arranged on both the upper and lower parts of the containment building to reduce the impact of an explosion. (author)

  11. The Velocity Distribution Of Pickup He+ Measured at 0.3 AU by MESSENGER

    Science.gov (United States)

    Gershman, Daniel J.; Fisk, Lennard A.; Gloeckler, George; Raines, Jim M.; Slavin, James A.; Zurbuchen, Thomas H.; Solomon, Sean C.

    2014-06-01

    During its interplanetary trajectory in 2007-2009, the MErcury Surface, Space ENvrionment, GEochemistry, and Ranging (MESSENGER) spacecraft passed through the gravitational focusing cone for interstellar helium multiple times at a heliocentric distance R ≈ 0.3 AU. Observations of He+ interstellar pickup ions made by the Fast Imaging Plasma Spectrometer sensor on MESSENGER during these transits provide a glimpse into the structure of newly formed inner heliospheric pickup-ion distributions. This close to the Sun, these ions are picked up in a nearly radial interplanetary magnetic field. Compared with the near-Earth environment, pickup ions observed near 0.3 AU will not have had sufficient time to be energized substantially. Such an environment results in a nearly pristine velocity distribution function that should depend only on pickup-ion injection velocities (related to the interstellar gas), pitch-angle scattering, and cooling processes. From measured energy-per-charge spectra obtained during multiple spacecraft observational geometries, we have deduced the phase-space density of He+ as a function of magnetic pitch angle. Our measurements are most consistent with a distribution that decreases nearly monotonically with increasing pitch angle, rather than the more commonly modeled isotropic or hemispherically symmetric forms. These results imply that pitch-angle scattering of He+ may not be instantaneous, as is often assumed, and instead may reflect the velocity distribution of initially injected particles. In a slow solar wind stream, we find a parallel-scattering mean free path of λ || ~ 0.1 AU and a He+ production rate of ~0.05 m-3 s-1 within 0.3 AU.

  12. Musical instrument pickup based on a laser locked to an optical fiber resonator.

    Science.gov (United States)

    Avino, Saverio; Barnes, Jack A; Gagliardi, Gianluca; Gu, Xijia; Gutstein, David; Mester, James R; Nicholaou, Costa; Loock, Hans-Peter

    2011-12-05

    A low-noise transducer based on a fiber Fabry-Perot (FFP) cavity was used as a pickup for an acoustic guitar. A distributed feedback (DFB) laser was locked to a 25 MHz-wide resonance of the FFP cavity using the Pound-Drever-Hall method. The correction signal was used as the audio output and was preamplified and sampled at up to 96 kHz. The pickup system is largely immune against optical noise sources, exhibits a flat frequency response from the infrasound region to about 25 kHz, and has a distortion-free audio output range of about 50 dB.

  13. Effect of p-type multi-walled carbon nanotubes for improving hydrogen storage behaviors

    International Nuclear Information System (INIS)

    Lee, Seul-Yi; Yop Rhee, Kyong; Nahm, Seung-Hoon; Park, Soo-Jin

    2014-01-01

    In this study, the hydrogen storage behaviors of p-type multi-walled carbon nanotubes (MWNTs) were investigated through the surface modification of MWNTs by immersing them in sulfuric acid (H 2 SO 4 ) and hydrogen peroxide (H 2 O 2 ) at various ratios. The presence of acceptor-functional groups on the p-type MWNT surfaces was confirmed by X-ray photoelectron spectroscopy. Measurement of the zeta-potential determined the surface charge transfer and dispersion of the p-type MWMTs, and the hydrogen storage capacity was evaluated at 77 K and 1 bar. From the results obtained, it was found that acceptor-functional groups were introduced onto the MWNT surfaces, and the dispersion of MWNTs could be improved depending on the acid-mixed treatment conditions. The hydrogen storage was increased by acid-mixed treatments of up to 0.36 wt% in the p-type MWNTs, compared with 0.18 wt% in the As-received MWNTs. Consequently, the hydrogen storage capacities were greatly influenced by the acceptor-functional groups of p-type MWNT surfaces, resulting in increased electron acceptor–donor interaction at the interfaces. - Graphical abstract: Hydrogen storage behaviors of the p-type MWNTs with the acid-mixed treatments are described. Display Omitted Display Omitted

  14. Photodissociation of hydrogen iodide on the surface of large argon clusters: The orientation of the librational wave function and the scattering from the cluster cage

    International Nuclear Information System (INIS)

    Slavicek, Petr; Jungwirth, Pavel; Lewerenz, Marius; Nahler, N. Hendrik; Farnik, Michal; Buck, Udo

    2004-01-01

    A set of photodissociation experiments and simulations of hydrogen iodide (HI) on Ar n clusters, with an average size =139, has been carried out for different laser polarizations. The doped clusters are prepared by a pick-up process. The HI molecule is then photodissociated by a UV laser pulse and the outgoing H fragment is ionized by resonance enhanced multiphoton ionization in a (2+1) excitation scheme within the same laser pulse at the wavelength of 243 nm. The measured time-of-flight spectra are transformed into hydrogen kinetic energy distributions. They exhibit a strong fraction of caged H atoms at zero-kinetic energy and peaks at the unperturbed cage exit for both spin-orbit channels nearly independent of the polarization. At this dissociation wavelength, the bare HI molecule exhibits a strict state separation, with a parallel transition to the spin-orbit excited state and perpendicular transitions to the ground state. The experimental results have been reproduced using molecular simulation techniques. Classical molecular dynamics was used to estimate the HI dopant distribution after the pick-up procedure. Subsequently, quasi-classical molecular dynamics (Wigner trajectories approach) has been applied for the photodissociation dynamics. The following main results have been obtained: (i) The HI dopant lands on the surface of the argon cluster during the pick-up process, (ii) zero-point energy plays a dominant role for the hydrogen orientation in the ground state of HI-Ar n surface clusters, qualitatively changing the result of the photodissociation experiment upon increasing the number of argon atoms, and, finally, (iii) the scattering of hydrogen atoms from the cage which originate from different dissociation states seriously affects the experimentally measured kinetic energy distributions

  15. Effect of hydrogen on transformation characteristics and deformation behavior in a Ti-Ni shape memory alloy

    International Nuclear Information System (INIS)

    Hoshiya, Taiji; Ando, Hiroei; Den, Shoji; Katsuta, Hiroshi.

    1992-01-01

    Transformation characteristics and deformation behavior of hydrogenated Ti-50.5 at% Ni alloys, which were occluded in a low pressure range of hydrogen between 1.1 and 78.5 kPa, have been studied by electrical resistivity measurement, tensile test, X-ray diffraction analysis and microstructural observation. M S temperature of the Ti-Ni alloys decreased with an increase in hydrogen content. This corresponds to the stabilization of the parent phase during cooling, which was confirmed by X-ray diffraction: The suppression effect of hydrogen takes place on the martensitic transformation. Critical stress for slip deformation of hydrogenated Ti-Ni alloys changed with hydrogen content and thus hydrogen had a major influence on deformation behavior of those alloys. With hydrogen contents above 0.032 mol%, hardening was distinguished from softening which was pronounced in the contents from 0 to 0.032 mol% H. Hydrides were formed in hydrogen contents over 1.9 mol%. The hydride formation results in the reorientation in variants of the R phase and increase in the lattice strains of the parent phase. (author)

  16. Hydrogen isotope storage behavior of Zr1-xTixCo alloys

    International Nuclear Information System (INIS)

    Jat, Ram Avtar; Pati, Subhasis; Parida, S.C.; Agarwal, Renu; Mukerjee, S.K.

    2016-01-01

    Tritium storage properties similar to uranium make ZrCo as a suitable candidate material for storage, supply and recovery of hydrogen isotopes in various tritium facilities. Beside non-radioactive, nonpyrophoric at room temperature and higher storage capacity (H/f.u. up to 3, f.u. = ZrCo), it has been reported that upon repeated hydriding-dehydriding cycles, ZrCo undergoes dis-proportionation as per the reaction; ZrCo + H 2 ↔ ZrH 2 + ZrCo 2 . The present study is aimed to investigate the effect of Ti content on the hydrogen storage behavior of Zr 1-x Ti x Co alloys and the hydrogen isotope effect

  17. Power, Space and Resistance: Foucauldian Reading of "The Pickup"

    Science.gov (United States)

    Babapi, Nasrin; Parvaneh, Farid

    2015-01-01

    The present article is an attempt to read Nadin Gordimer's "The Pickup" from the lens of Foucault. It starts with Foucault's assumption that power is everything and any kind of relation in the world is defined through the discourses of power. It discusses the techniques through which the power dominates its authority over the subjects…

  18. Position pickup of the PS Booster

    CERN Multimedia

    CERN PhotoLab

    1975-01-01

    The beam position around the 4 rings of the PS Booster (originally 800 MeV, now 1.4 GeV), is measured with electrostatic pickups (PU). They consist of a ceramic cylinder forming part of the vacuum chamber, and, in order to save space, they are located inside the multipole lenses. The inside of the ceramic is coated with a metallic layer, into which the form of the electrodes was cut by computer-controlled micro-sandblasting. Each PU has a pair of horizontal and a pair of vertical electrodes, as well as a separate intensity-sensing circular electrode.

  19. Branch-and-Cut-and-Price for the Pickup and Delivery Problem with Time Windows

    DEFF Research Database (Denmark)

    Røpke, Stefan; Cordeau, Jean-Francois

    2009-01-01

    In the pickup and delivery problem with time windows (PDPTW), vehicle routes must be designed to satisfy a set of transportation requests, each involving a pickup and a delivery location, under capacity, time window, and precedence constraints. This paper introduces a new branch......-and-cut-and-price algorithm in which lower bounds are computed by solving through column generation the linear programming relaxation of a set partitioning formulation. Two pricing subproblems are considered in the column generation algorithm: an elementary and a non-elementary shortest path problem. Valid inequalities...

  20. Recent progress of hydrogen isotope behavior studies for neutron or heavy ion damaged W

    International Nuclear Information System (INIS)

    Oya, Yasuhisa; Hatano, Yuji; Shimada, Masashi; Buchenauer, Dean; Kolasinski, Robert; Merrill, Brad; Kondo, Sosuke; Hinoki, Tatsuya; Alimov, Vladimir Kh.

    2016-01-01

    Highlights: • This paper reviews recent results pertaining to hydrogen isotope behavior in neutron and heavy ion damaged W. • Accumulation of damage in W creates stable trapping sites for hydrogen isotopes, thereby changing the observed desorption behavior. • The distribution of defects throughout the sample also changes the shape of TDS spectrum. • Experimental results show that production of Re by nuclear reaction of W with neutrons reduces the density of trapping sites, though no remarkable retention enhancement is observed. - Abstract: This paper reviews recent results pertaining to hydrogen isotope behavior in neutron and heavy ion damaged W. Accumulation of damage in W creates stable trapping sites for hydrogen isotopes, thereby changing the observed desorption behavior. In particular, the desorption temperature shifts higher as the defect concentration increases. In addition, the distribution of defects throughout the sample also changes the shape of TDS spectrum. Even if low energy traps were distributed in the bulk region, the D diffusion toward the surface requires additional time for trapping/detrapping during surface-to-bulk transport, contributing to a shift of desorption peaks toward higher temperatures. It can be said that both of distribution of damage (e.g. hydrogen isotope trapping sites) and their stabilities would have a large impact on desorption. In addition, transmutation effects should be also considered for an actual fusion environment. Experimental results show that production of Re by nuclear reaction of W with neutrons reduces the density of trapping sites, though no remarkable retention enhancement is observed.

  1. Recent progress of hydrogen isotope behavior studies for neutron or heavy ion damaged W

    Energy Technology Data Exchange (ETDEWEB)

    Oya, Yasuhisa, E-mail: syoya@ipc.shizuoka.ac.jp [Shizuoka University, 836 Ohya, Suruga-ku Shizuoka 422-8529 (Japan); Hatano, Yuji [University of Toyama, 3190 Gofuku, Toyama 939-8555 (Japan); Shimada, Masashi [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Buchenauer, Dean; Kolasinski, Robert [Sandia National Laboratories, Livermore, CA 94551 (United States); Merrill, Brad [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Kondo, Sosuke; Hinoki, Tatsuya [Kyoto University, Gokasho, Uji 611-0011 (Japan); Alimov, Vladimir Kh. [University of Toyama, 3190 Gofuku, Toyama 939-8555 (Japan)

    2016-12-15

    Highlights: • This paper reviews recent results pertaining to hydrogen isotope behavior in neutron and heavy ion damaged W. • Accumulation of damage in W creates stable trapping sites for hydrogen isotopes, thereby changing the observed desorption behavior. • The distribution of defects throughout the sample also changes the shape of TDS spectrum. • Experimental results show that production of Re by nuclear reaction of W with neutrons reduces the density of trapping sites, though no remarkable retention enhancement is observed. - Abstract: This paper reviews recent results pertaining to hydrogen isotope behavior in neutron and heavy ion damaged W. Accumulation of damage in W creates stable trapping sites for hydrogen isotopes, thereby changing the observed desorption behavior. In particular, the desorption temperature shifts higher as the defect concentration increases. In addition, the distribution of defects throughout the sample also changes the shape of TDS spectrum. Even if low energy traps were distributed in the bulk region, the D diffusion toward the surface requires additional time for trapping/detrapping during surface-to-bulk transport, contributing to a shift of desorption peaks toward higher temperatures. It can be said that both of distribution of damage (e.g. hydrogen isotope trapping sites) and their stabilities would have a large impact on desorption. In addition, transmutation effects should be also considered for an actual fusion environment. Experimental results show that production of Re by nuclear reaction of W with neutrons reduces the density of trapping sites, though no remarkable retention enhancement is observed.

  2. Mechanical behavior of NiTi arc wires under pseudoelastic cycling and cathodically hydrogen charging

    Science.gov (United States)

    Sarraj, R.; Hassine, T.; Gamaoun, F.

    2018-01-01

    NiTi wires are mainly used to design orthodontic devices. However, they may be susceptible to a delayed fracture while they are submitted to cyclic loading with the presence of hydrogen in the oral cavity. Hydrogen may cause the embrittlement of the structure, leading to lower ductility and to a change in transformation behavior. The aim of the present study is to predict the NiTi behavior under cyclic loading with hydrogen charging. One the one hand, samples are submitted to superelastic cyclic loading, which results in investigating their performance degradations. On the other hand, after hydrogen charging, cyclic tensile aging tests are carried out on NiTi orthodontic wires at room temperature in the air. During cyclic loading, we notice that the critical stress for the martensite transformation evolves, the residual strain is accumulated in the structure and the hysteresis loop changes. Thus, via this work, we can assume that the embrittlement is due to the diffusion of hydrogen and the generation of dislocations after aging. The evolution of mechanical properties of specimens becomes more significant with hydrogen charging rather than without it.

  3. Enhancement of Hydrogen Storage Behavior of Complex Hydrides via Bimetallic Nanocatalysts Doping

    Directory of Open Access Journals (Sweden)

    Prakash C. Sharma

    2012-10-01

    Full Text Available Pristine complex quaternary hydride (LiBH4/2LiNH2 and its destabilized counterpart (LiBH4/2LiNH2/nanoMgH2 have recently shown promising reversible hydrogen storage capacity under moderate operating conditions. The destabilization of complex hydride via nanocrystalline MgH2 apparently lowers the thermodynamic heat values and thus enhances the reversible hydrogen storage behavior at moderate temperatures. However, the kinetics of these materials is rather low and needs to be improved for on-board vehicular applications. Nanocatalyst additives such as nano Ni, nano Fe, nano Co, nano Mn and nano Cu at low concentrations on the complex hydride host structures have demonstrated a reduction in the decomposition temperature and overall increase in the hydrogen desorption reaction rates. Bi-metallic nanocatalysts such as the combination of nano Fe and nano Ni have shown further pronounced kinetics enhancement in comparison to their individual counterparts. Additionally, the vital advantage of using bi-metallic nanocatalysts is to enable the synergistic effects and characteristics of the two transitional nanometal species on the host hydride matrix for the optimized hydrogen storage behavior.

  4. Survey of pickup ion signatures in the vicinity of Titan using CAPS/IMS

    Science.gov (United States)

    Regoli, L. H.; Coates, A. J.; Thomsen, M. F.; Jones, G. H.; Roussos, E.; Waite, J. H.; Krupp, N.; Cox, G.

    2016-09-01

    Pickup ion detection at Titan is challenging because ion cyclotron waves are rarely detected in the vicinity of the moon. In this work, signatures left by freshly produced pickup heavy ions (m/q ˜ 16 to m/q ˜ 28) as detected in the plasma data by the Cassini Plasma Spectrometer/Ion Mass Spectrometer (CAPS/IMS) instrument on board Cassini are analyzed. In order to discern whether these correspond to ions of exospheric origin, one of the flybys during which the reported signatures were observed is investigated in detail. For this purpose, ion composition data from time-of-flight measurements and test particle simulations to constrain the ions' origin are used. After being validated, the detection method is applied to all the flybys for which the CAPS/IMS instrument gathered valid data, constraining the region around the moon where the signatures are observed. The results reveal an escape region located in the anti-Saturn direction as expected from the nominal corotation electric field direction. These findings provide new constraints for the area of freshly produced pickup ion escape, giving an approximate escape rate of 3.3-2+3×1023 ions· s-1.

  5. ENERGETIC NEUTRAL ATOMS: AN ADDITIONAL SOURCE FOR HELIOSPHERIC PICKUP IONS

    International Nuclear Information System (INIS)

    Bochsler, Peter; Moebius, Eberhard

    2010-01-01

    Recently, Schwadron and McComas discussed the possibility of inner source pickup particles originating from the ionization of energetic neutral atoms (ENAs), based on new data from the IBEX mission. This proposition has some interesting features, namely, it might be able to explain why inner source pickup ions (PUIs) have a composition resembling solar abundances and show no indication of overabundance of refractory elements, although this should be expected, if the conventional explanation of solar wind-dust interaction for the origin of this heliospheric component were correct. In this Letter, we explore further consequences for ENA-related PUIs and investigate their velocity distributions. We conclude that this model will not reproduce the observed velocity distributions of inner source PUIs and point out a substantial deviation in their composition. However, it seems likely that the ionization of ENAs as observed with IBEX could contribute a significant amount of heliospheric suprathermal tail ions. Some possible consequences of our investigation for heliospheric particle populations are briefly discussed.

  6. Minimum pickup velocity (U{sub pu}) of nanoparticles in gas–solid pneumatic conveying

    Energy Technology Data Exchange (ETDEWEB)

    Anantharaman, Aditya [Nanyang Technological University, School of Chemical and Biomedical Engineering (Singapore); Ommen, J. Ruud van [Delft University of Technology, Department of Chemical Engineering (Netherlands); Chew, Jia Wei, E-mail: JChew@ntu.edu.sg [Nanyang Technological University, School of Chemical and Biomedical Engineering (Singapore)

    2015-12-15

    This paper is the first systematic study of the pneumatic conveying of nanoparticles. The minimum pickup velocity, U{sub pu}, of six nanoparticle species of different materials [i.e., silicon dioxide (SiO{sub 2}), aluminum oxide (Al{sub 2}O{sub 3}), and titanium dioxide (TiO{sub 2})] and surfaces (i.e., apolar and polar) was determined by the weight loss method. Results show that (1) due to relative lack of hydrogen bonding, apolar nanoparticles had higher mass loss values at the same velocities, mass loss curves with accentuated S-shaped profiles, and lower U{sub pu} values, (2) among the three species, SiO{sub 2}, which has the lowest Hamaker coefficient, exhibited the greatest discrepancy between apolar and polar surfaces with respect to both mass loss curves and U{sub pu} values, (3) U{sub mf,polar}/U{sub mf,apolar} was between 1 and 3.5 times that of U{sub pu,polar}/U{sub pu,apolar} due to greater extents of hydrogen bonding associated with U{sub mf}, (4) U{sub pu} values were at least an order-of-magnitude lower than that expected from the well-acknowledged U{sub pu} correlation (Kalman et al., Powder Technol 160:103–113, 2005) due to agglomeration, (5) although nanoparticles should be categorized as Zone III (Kalman et al. 2005) (or Geldart group C, Powder Technol 7:285–292, 1973), the nanoparticles, and primary and complex agglomerates agreed more with the Zone I (or Geldart group B) correlation.

  7. The pipeline fracture behavior and pressure assessment under HIC (Hydrogen induced cracking) environment

    Energy Technology Data Exchange (ETDEWEB)

    Shaohua, Dong [China National Petroleum Corporation (CNPC), Beijing (China); Lianwei, Wang [University of Science and Technology Beijing (USTB), Beijing (China)

    2009-07-01

    As Hydrogen's transmit and diffuse, after gestating for a while, the density of hydrogen around crack tip of pipeline will get to the critical density, and the pipeline material will descend, make critical stress factor, the reason of pipeline Hydrogen Induced Cracking is Hydrogen's transmit and diffuse. The stress factor of Hydrogen Induced Cracking under surroundings-condition of stress is the key that estimate material's rupture behavior. The paper study the relationship among hydrogen concentrate, crack tip stress, stain field, hydrogen diffusion and inner pressure for crack tip process zone, then determined the length of HIC (hydrogen induced cracking) process zone. Based on the theory of propagation which reason micro-crack making core, dislocation model is produced for fracture criteria of HIC, the influence between material and environments under the HIC is analyzed, step by step pipeline maximum load pressure and threshold of J-integrity ( J{sub ISCC} ) is calculated, which is very significant for pipeline safety operation. (author)

  8. Integrated waste hydrogen utilization project

    International Nuclear Information System (INIS)

    Armstrong, C.

    2004-01-01

    'Full text:' The BC Hydrogen Highway's, Integrated Waste Hydrogen Utilization Project (IWHUP) is a multi-faceted, synergistic collaboration that will capture waste hydrogen and promote its use through the demonstration of 'Hydrogen Economy' enabling technologies developed by Canadian companies. IWHUP involves capturing and purifying a small portion of the 600 kg/hr of by-product hydrogen vented to the atmosphere at the ERCO's electrochemical sodium chlorate plant in North Vancouver, BC. The captured hydrogen will then be compressed so it is suitable for transportation on roadways and can be used as a fuel in transportation and stationary fuel cell demonstrations. In summary, IWHUP invests in the following; Facilities to produce up to 20kg/hr of 99.999% pure 6250psig hydrogen using QuestAir's leading edge Pressure Swing Absorption technology; Ultra high-pressure transportable hydrogen storage systems developed by Dynetek Industries, Powertech Labs and Sacre-Davey Engineering; A Mobile Hydrogen Fuelling Station to create Instant Hydrogen Infrastructure for light-duty vehicles; Natural gas and hydrogen (H-CNG) blending and compression facilities by Clean Energy for fueling heavy-duty vehicles; Ten hydrogen, internal combustion engine (H-ICE), powered light duty pick-up vehicles and a specialized vehicle training, maintenance, and emissions monitoring program with BC Hydro, GVRD and the District of North Vancouver; The demonstration of Westport's H-CNG technology for heavy-duty vehicles in conjunction with local transit properties and a specialized vehicle training, maintenance, and emissions monitoring program; The demonstration of stationary fuel cell systems that will provide clean power for reducing peak-load power demands (peak shaving), grid independence and water heating; A comprehensive communications and outreach program designed to educate stakeholders, the public, regulatory bodies and emergency response teams in the local community, Supported by industry

  9. Ac-loss measurement of coated conductors: The influence of the pick-up coil position

    International Nuclear Information System (INIS)

    Schmidt, Curt

    2008-01-01

    The ac-loss measurement by the magnetization method requires calibration for obtaining absolute values. A convenient way of calibration is the calorimetric measurement which yields, within the measuring accuracy, absolute loss values. In the magnetization measurement the hysteresis loop of sample magnetization which determines the losses is measured via the integration of magnetic flux penetrating a pick-up coil. The ratio of flux integral to magnetization integral and hence the calibration factor is however, for a given pick-up coil geometry, not exactly a constant, but depends on the magnetization current pattern within the sample. Especially for thin tapes in perpendicular external field this effect has to be taken into consideration in order to avoid miss measurements. The relation between measured flux and sample magnetization was calculated for special cases of magnetization current distribution in the sample as a function of the pick-up coil position. Furthermore calibration factors were measured as a function of the ac-field amplitude and the result compared with available theoretical models. A good agreement was found between experiment and theory

  10. GRASP with path-relinking for the selective pickup and delivery problem

    DEFF Research Database (Denmark)

    Ho, Sin C.; Szeto, W. Y.

    2016-01-01

    Bike sharing systems are very popular nowadays. One of the characteristics is that bikes are picked up from some surplus bike stations and transported to all deficit bike stations by a repositioning vehicle with limited capacity to satisfy the demand of deficit bike stations. Motivated by this real...... world bicycle repositioning problem, we study the selective pickup and delivery problem, where demand at every delivery node has to be satisfied by the supply collected from a subset of pickup nodes. The objective is to minimize the total travel cost incurred from visiting the nodes. We present a GRASP...... with path-relinking for solving the described problem. Experimental results show that this simple heuristic improves the existing results in the literature with an average improvement of 5.72% using small computing times. The proposed heuristic can contribute to the development of effective and efficient...

  11. MgB2 magnetometer with directly coupled pick-up loop

    NARCIS (Netherlands)

    Portesi, C.; Mijatovic, D.; Veldhuis, Dick; Brinkman, Alexander; Monticone, E.; Gonnelli, R.S.

    2006-01-01

    magnetometer with a directly coupled pick-up loop. We used an all in situ technique for fabricating magnesium diboride films, which consists of the co-evaporation of B and Mg by means of an e-gun and a resistive heater respectively. Consequently, we realized the superconducting device, which

  12. Slot-type pickup/kicker for AA stochastic cooling

    CERN Multimedia

    CERN PhotoLab

    1979-01-01

    A "slotted transmission line" was used for both pickups and kickers of the cooling systems of the AA. They served for the cooling of the high-density antiproton stack, in momentum and both transverse planes. In the beginning in a single band, 1-2 GHz, later in 2 bands, 2-4 and 4-8 GHz. Here we see the slotted electrodes partly pulled out of the outer casing. See also 7906189, 7906581X, 7896193.

  13. (p, α) reactions: knock-on(out) or pick-up

    International Nuclear Information System (INIS)

    Gadioli, E.

    1983-01-01

    Nothwithstanding the great lot of data collected starting from the beginning of fifties, it cannot be said that a good degree of knowledge about the (p, α) reaction mechanism has been reached. Experimental data are usually interpreted or on the basis of a pure pick-up or knock-on(out) mechanism, though many results suggest the importance of both mechanism

  14. Status and task of the study on the hydrogen embrittlement of zirconium alloys

    International Nuclear Information System (INIS)

    Nagase, Fumihisa; Furuta, Teruo; Seino, Shun; Komatsu, Kazushi.

    1995-08-01

    As the burnup of the LWR fuel is extended, waterside corrosion and hydrogen pickup increase in the Zircaloy cladding. Hydrogen embrittlement of Zircaloy is one of the main factors which may limit the life of the fuel rod. This report presents a review on the hydrogen embrittlement of zirconium and its alloys including the irradiated materials. Research tasks for the reduction of ductility in the high burnup fuel cladding are also discussed. Many fundamental investigations have been performed on the hydrogen embrittlement of zirconium alloys. However, the embrittlement mechanism of the high burnup fuel cladding is complicated. Especially, a coupled effect of hydrides and radiation defects are expected to be pronounced with neutron dose increase. In order to evaluate the reduction of ductility of the higher burnup fuel cladding properly, it is necessary to investigate the coupled effect of these two factors by systematic examinations. (author) 64 refs

  15. Role of hydrogen on the incipient crack tip deformation behavior in α-Fe: An atomistic perspective

    Science.gov (United States)

    Adlakha, I.; Solanki, K. N.

    2018-01-01

    A crack tip in α-Fe presents a preferential trap site for hydrogen, and sufficient concentration of hydrogen can change the incipient crack tip deformation response, causing a transition from a ductile to a brittle failure mechanism for inherently ductile alloys. In this work, the effect of hydrogen segregation around the crack tip on deformation in α-Fe was examined using atomistic simulations and the continuum based Rice-Thompson criterion for various modes of fracture (I, II, and III). The presence of a hydrogen rich region ahead of the crack tip was found to cause a decrease in the critical stress intensity factor required for incipient deformation for various crack orientations and modes of fracture examined here. Furthermore, the triaxial stress state ahead of the crack tip was found to play a crucial role in determining the effect of hydrogen on the deformation behavior. Overall, the segregation of hydrogen atoms around the crack tip enhanced both dislocation emission and cleavage behavior suggesting that hydrogen has a dual role during the deformation in α-Fe.

  16. Ford F250 Dedicated CNG Pickup

    International Nuclear Information System (INIS)

    Eudy, Leslie

    1999-01-01

    The U.S. Department of Energy (DOE) is encouraging the use of alternative fuels and alternative fuel vehicles (AFVs). To support this activity, DOE has directed the National Renewable Energy Laboratory (NREL) to conduct projects to evaluate the performance and acceptability of light-duty AFVs. In this study, we tested a pair of 1998 Ford F-250 pickups: one dedicated compressed natural gas (CNG) model and a gasoline model as closely matched as possible. Each vehicle was run through a series of tests to evaluate acceleration, fuel economy, braking, and cold-start capabilities, as well as more subjective performance indicators such as handling, climate control, and noise

  17. The behavior of hydrogen in metals

    International Nuclear Information System (INIS)

    Hirabayashi, Makoto

    1975-01-01

    Explanation is made on the equilibrium diagrams of metal-hydrogen systems and the state of hydrogen in metals. Some metals perform exothermic reaction with hydrogen, and the others endothermic reaction. The former form stable hydrides and solid solutions over a wide range of composition. Hydrogen atoms in fcc and bcc metals are present at the interstitial positions of tetrahedron lattice and octahedron lattice. For example, hydrogen atoms in palladium are present at the intersititial positions of octahedron. When the ratio of the composition of hydrogen and palladium is 1:1, the structure becomes NaCl type. Hydrogen atoms in niobium and vanadium and present interstitially in tetrahedron lattice. Metal hydrides with high hydrogen concentration are becoming important recently as the containers of hydrogen. Hydrogen atoms diffuse in metals quite easily. The activation energy of the diffusion of hydrogen atoms in Nb and V is about 2-3 kcal/g.atom. The diffusion coefficient is about 10 -5 cm 2 /sec in alpha phase at room temperature. The number of jumps of a hydrogen atom between neighboring lattice sites is 10 11 --10 12 times per second. This datum is almost the same as that of liquid metals. Discussion is also made on the electronic state of hydrogen in metals. (Fukutomi, T.)

  18. Analysis of transient permeation behavior of hydrogen isotope caused by abrupt temperature change of first wall and blanket wall material

    International Nuclear Information System (INIS)

    Yamawaki, Michio; Tanaka, Satoru; Kiyoshi, Tsukasa

    1989-01-01

    To obtain further information on the transient permeation behavior of hydrogen isotopes as caused by an abrupt temperature change, numerical calculations were carried out for two typical metals, nickel and vanadium. Deuterium permeation through nickel is analyzed as a typical case of bulk-diffusion-limited permeation. Its transient behavior changed dramatically according to the specimen thickness. The transient behavior, in general, is separated into two parts, initial and latter period behaviors. Conditions which cause such a separation were evaluated. Evaluation of the hydrogen diffusivity and solubility by an analysis of transient curves of hydrogen permeation was carried out. The transient behavior of simultaneous gas- and ion-driven hydrogen permeation through vanadium was also analyzed. Overshooting of the hydrogen permeation rate appears with an abrupt temperature increase. Increasing the impinging ion flux causes the overshooting peak to become sharper, and also reduces the change of the steady-state permeation rate to be attained after the temperature change compared with the initial value. (orig.)

  19. Cassini CAPS Identification of Pickup Ion Compositions at Rhea

    Science.gov (United States)

    Desai, R. T.; Taylor, S. A.; Regoli, L. H.; Coates, A. J.; Nordheim, T. A.; Cordiner, M. A.; Teolis, B. D.; Thomsen, M. F.; Johnson, R. E.; Jones, G. H.; Cowee, M. M.; Waite, J. H.

    2018-02-01

    Saturn's largest icy moon, Rhea, hosts a tenuous surface-sputtered exosphere composed primarily of molecular oxygen and carbon dioxide. In this Letter, we examine Cassini Plasma Spectrometer velocity space distributions near Rhea and confirm that Cassini detected nongyrotropic fluxes of outflowing CO2+ during both the R1 and R1.5 encounters. Accounting for this nongyrotropy, we show that these possess comparable along-track densities of ˜2 × 10-3 cm-3. Negatively charged pickup ions, also detected during R1, are surprisingly shown as consistent with mass 26 ± 3 u which we suggest are carbon-based compounds, such as CN-, C2H-, C2-, or HCO-, sputtered from carbonaceous material on the moon's surface. The negative ions are calculated to possess along-track densities of ˜5 × 10-4 cm-3 and are suggested to derive from exogenic compounds, a finding consistent with the existence of Rhea's dynamic CO2 exosphere and surprisingly low O2 sputtering yields. These pickup ions provide important context for understanding the exospheric and surface ice composition of Rhea and of other icy moons which exhibit similar characteristics.

  20. Fatigue Crack Growth Behavior of Austempered AISI 4140 Steel with Dissolved Hydrogen

    Directory of Open Access Journals (Sweden)

    Varun Ramasagara Nagarajan

    2017-11-01

    Full Text Available The focus of this investigation was to examine the influence of dissolved hydrogen on the fatigue crack growth behavior of an austempered low-alloy AISI 4140 steel. The investigation also examined the influence of dissolved hydrogen on the fatigue threshold in this material. The material was tested in two conditions, as-received (cold rolled and annealed and austempered (austenitized at 882 °C for 1 h and austempered at 332 °C for 1 h. The microstructure of the annealed specimens consisted of a mix of ferrite and fine pearlite; the microstructure of the austempered specimens was lower bainite. Tensile and Compact Tension specimens were prepared. To examine the influence of dissolved hydrogen, two subsets of the CT specimens were charged with hydrogen for three different time periods between 150 and 250 h. All of the CT samples were then subjected to fatigue crack growth tests in the threshold and linear regions at room temperature. The test results indicate that austempering resulted in significant improvement in the yield and tensile strength as well as the fracture toughness of the material. The test results also show that, in the absence of dissolved hydrogen, the crack growth rate in the threshold and linear regions was lower in austempered samples compared to the as-received (annealed samples. The fatigue threshold was also slightly greater in the austempered samples. In presence of dissolved hydrogen, the crack growth rate was dependent upon the ∆K value. In the low ∆K region (<30 MPa√m, the presence of dissolved hydrogen caused the crack growth rate to be higher in the austempered samples as compared to annealed samples. Above this value, the crack growth rate was increasingly greater in the annealed specimens when compared to the austempered specimens in presence of dissolved hydrogen. It is concluded that austempering of 4140 steel appears to provide a processing route by which the strength, hardness, and fracture toughness of

  1. A Study on the VHCF Fatigue Behaviors of Hydrogen Attacked Inconel 718 Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Chang-Min [Kyungpook National Univ., DMI Senior Fellow, Daegu (Korea, Republic of); Nahm, Seung-Hoon [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of); Kim, Jun-Hyong; Pyun, Young-Sik [Sun Moon Univ., Chunan (Korea, Republic of)

    2016-07-15

    This study is to investigate the influence of hydrogen attack and UNSM on fatigue behaviors of the Inconel 718 alloy. The decrease of the fatigue life between the untreated and the hydrogen attacked material is 10-20%. The fatigue lives of hydrogen attacked specimen decreased without a fatigue limit, similar to those of nonferrous materials. Due to hydrogen embrittlement, about 80% of the surface cracks were smaller than the average grain size of 13 μm. Many small surface cracks caused by the embrittling effect of hydrogen attack were initiated at the grain boundaries and surface scratches. Cracks were irregularly distributed, grew, and then coalesced through tearing, leading to a reduction of fatigue life. Results revealed that the fatigue lives of UNSM-treated specimens were longer than those of the untreated specimens.

  2. Studies on displacement behavior between hydrogen and deuterium in hydride column

    International Nuclear Information System (INIS)

    Lu Guangda; Li Gan; Jiang Guoqiang

    2001-01-01

    A series displacement experiments between hydrogen and deuterium in ZrCo, LaNi 5 , LaNi 4.7 Al 0.3 and Pd hydride column had been conducted at room temperature about. Results indicate that displacement characteristics related to factors such as temperature, gas flow rate, ratio surface area of solid phase and hydrogen isotope separation factor of the metal-hydrogen system. The palladium hydride have the best displacement characteristics, and LaNi 5 , LaNi 4.7 Al 0.3 and ZrCo are in the next places. Theoretical study reveals that the rule of the exchange reaction of hydrogen isotopes in gas-solid interface determines the displacement behavior and the displacing efficiency depends on exchange rate. The ideal stage mode could be used to describe the displacement breakthrough curve. The height equivalent to theoretical place (HETP) indicates the displacing effects. Also, the separation factor has a serious influence to HETP under the same condition

  3. First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Galactic Signal Contamination from Sidelobe Pickup

    Science.gov (United States)

    Barnes, C.; Hill, R. S.; Hinshaw, G.; Page, L.; Bennett, C. L.; Halpern, M.; Jarosik, N.; Kogut, A.; Limon, M.; Meyer, S. S.; Tucker, G. S.; Wollack, E.; Wright, E. L.

    2003-09-01

    Since the Galactic center is ~1000 times brighter than fluctuations in the cosmic microwave background (CMB), CMB experiments must carefully account for stray Galactic pickup. We present the level of contamination due to sidelobes for the first-year CMB maps produced by the Wilkinson Microwave Anisotropy Probe (WMAP) observatory. For each radiometer, full 4π sr antenna gain patterns are determined from a combination of numerical prediction and ground-based and space-based measurements. These patterns are convolved with the WMAP first-year sky maps and observatory scan pattern to generate the expected sidelobe signal contamination, for both intensity and polarized microwave sky maps. When the main beams are outside of the Galactic plane, we find rms values for the expected sidelobe pickup of 15, 2.1, 2.0, 0.3, and 0.5 μK for the K, Ka, Q, V, and W bands, respectively. Except for at the K band, the rms polarized contamination is the Galactic pickup are presented. WMAP is the result of a partnership between Princeton University and the NASA Goddard Space Flight Center. Scientific guidance is provided by the WMAP Science Team.

  4. Investigation for GOTHIC-3D prediction capability for the local hydrogen behavior analysis in the NPP containment

    International Nuclear Information System (INIS)

    Lee, Un-jang; Park, Goon-cherl

    2002-01-01

    Under a severe accident condition, hydrogen can be generated mainly from the reaction of zirconium cladding with hot steam and flammable hydrogen/air/steam mixtures can be formed. Thus hydrogen analysis is needed for a variety of reasons in the containment building; to predict the global containment response against the threat potential by hydrogen; to address certain safety issues such as the safety feature survivability due to global burning or explosion of hydrogen; or for designing and positioning of the hydrogen controller. In this study an analytical tool was used to predict the local hydrogen behavior in a small compartment and its analytical capability was examined through verification tests, which have been performed in SNU hydrogen mixing facilities. The analytical tool that was employed is the code GOTHIC which is a 3D three-fields (vapor, liquid and droplets) code specially developed for the containment analysis, and has the additional capability of modeling a number of different gases as well as air. The comparison between experimental and analytical tests results showed that the GOTHIC code is not applicable for the analysis of local hydrogen behavior in the highly transient condition and/or in small size compartment. (authors)

  5. The ATLAS beam pick-up based timing system

    International Nuclear Information System (INIS)

    Ohm, C.; Pauly, T.

    2010-01-01

    The ATLAS BPTX stations are composed of electrostatic button pick-up detectors, located 175 m away along the beam pipe on both sides of ATLAS. The pick-ups are installed as a part of the LHC beam instrumentation and used by ATLAS for timing purposes. The usage of the BPTX signals in ATLAS is twofold: they are used both in the trigger system and for LHC beam monitoring. The BPTX signals are discriminated with a constant-fraction discriminator to provide a Level-1 trigger when a bunch passes through ATLAS. Furthermore, the BPTX detectors are used by a stand-alone monitoring system for the LHC bunches and timing signals. The BPTX monitoring system measures the phase between collisions and clock with a precision better than 100 ps in order to guarantee a stable phase relationship for optimal signal sampling in the sub-detector front-end electronics. In addition to monitoring this phase, the properties of the individual bunches are measured and the structure of the beams is determined. On September 10, 2008, the first LHC beams reached the ATLAS experiment. During this period with beam, the ATLAS BPTX system was used extensively to time in the read-out of the sub-detectors. In this paper, we present the performance of the BPTX system and its measurements of the first LHC beams.

  6. Sodium Pick-Up Ion Observations in the Solar Wind Upstream of Mercury

    Science.gov (United States)

    Jasinski, J. M.; Raines, J. M.; Slavin, J. A.; Regoli, L. R.; Murphy, N.

    2018-05-01

    We present the first observations of sodium pick-up ions upstream of Mercury’s magnetosphere. From these observations we infer properties of Mercury’s sodium exosphere and implications for the solar wind interaction with Mercury’s magnetosphere.

  7. Testbeam Studies on Pick-Up in Sensors with Embedded Pitch Adapters

    CERN Document Server

    Rehnisch, Laura; The ATLAS collaboration

    2018-01-01

    Embedded pitch adapters are an alternative solution to external pitch adapters widely used to facilitate the wire-bonding step when connecting silicon strip sensors and readout electronics of different pitch. The pad-pitch adaption can be moved into the sensor fabrication step by implementing a second layer of metal tracks, connected by vias to the primary metal layer of sensor strips. Such a solution, however, might bear the risk of performance losses introduced by various phenomena. One of these effects, the undesired capacitive coupling between the silicon bulk and this second metal layer (pick-up) has been investigated in photon testbeam measurements. For a worst-case embedded pitch adapter design, expected to be maximally susceptible to pick-up, a qualitative analysis has visualized the effect as a function of the location on the second metal layer structure. It was further found that the unwanted effect decreases towards expected values for operating thresholds of the binary readout used. Suggestions fo...

  8. Numerical Study on Hydrogen Flow Behavior in Two Compartments with Different Connecting Pipes

    Directory of Open Access Journals (Sweden)

    HanChen Liu

    2017-01-01

    Full Text Available Hydrogen accumulation in the containment compartments under severe accidents would result in high concentration, which could lead to hydrogen deflagration or detonation. Therefore, getting detailed hydrogen flow and distribution is a key issue to arrange hydrogen removal equipment in the containment compartments. In this study, hydrogen flow behavior in local compartments has been investigated in two horizontal compartments. The analysis model is built by 3-dimensional CFD code in Cartesian coordinates based on the connection structure of the Advanced Pressurized Water Reactor (PWR compartments. It consists of two cylindrical vessels, representing the Steam Generator compartment (SG and Core Makeup Tank compartment (CMT. With standard k-ε turbulence model, the effects of the connecting pipe size and location on hydrogen concentration distribution are investigated. Results show that increasing the diameter of connection pipe (IP which is located at 800 mm from 150 mm to 300 mm facilitates hydrogen flow between compartments. Decreasing the length of IP which is located at 800 mm from 1000 mm to 500 mm can also facilitate hydrogen flow between compartments. Lower IP is in favor of hydrogen mixing with air in non-source compartment. Higher IP is helpful for hydrogen flow to the non-source term compartment from source term compartment.

  9. Isotopic and velocity distributions of {sub 83}Bi produced in charge-pickup reactions of {sup 208}{sub 82}PB at 1 A GeV

    Energy Technology Data Exchange (ETDEWEB)

    Kelic, A.; Schmidt, K.H.; Enqvist, T. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (DE)] [and others

    2004-07-01

    Isotopically resolved cross sections and velocity distributions have been measured in charge-pickup reactions of 1 A GeV {sup 208}Pb with proton, deuterium and titanium target. The total and partial charge-pickup cross sections in the reactions {sup 208}Pb + {sup 1}H and {sup 208}Pb + {sup 2}H are measured to be the same in the limits of the error bars. A weak increase in the total charge-pickup cross section is seen in the reaction of {sup 208}Pb with the titanium target. The measured velocity distributions show different contributions - quasi-elastic scattering and {delta}-resonance excitation - to the charge-pickup production. Data on total and partial charge-pickup cross sections from these three reactions are compared with other existing data and also with model calculations based on the coupling of different intra-nuclear cascade codes and an evaporation code. (orig.)

  10. Research on the surface chemical behavior of uranium metal in hydrogen atmosphere by XPS

    International Nuclear Information System (INIS)

    Fu Xiaoguo; Wang Xiaolin; Yu Yong; Zhao Zhengping

    2001-01-01

    The surface chemical behavior clean uranium metal in hydrogen atmosphere at 100 and 200 degree C is studied by X-ray photoelectron spectroscopy (XPS), respectively. It leads to hydriding reaction when the hydrogen exposure is 12.0 Pa·s, and the U4f 7/2 binding energy of UH 3 is found to be 378.7 eV. The higher temperature (200 degree C) is beneficial to UH 3 formation at the same hydrogen exposures. XPS elemental depth profiles indicate that the distribution of uranium surface layer is UO 2 , UH 3 and U after exposure to 174.2 Pa·s hydrogen

  11. 47 CFR 74.431 - Special rules applicable to remote pickup stations.

    Science.gov (United States)

    2010-10-01

    ... occur outside the studio back to studio or production center. The transmitted material shall be intended... system. (b) Remote pickup mobile or base stations may be used for communications related to production..., Hawaii, Puerto Rico, and the Virgin Islands may be used for any purpose related to the programming or...

  12. Bifurcation behavior during the hydrogen production in two compatible configurations of a novel circulating fluidized bed membrane reformer

    International Nuclear Information System (INIS)

    Chen, Z.; Elnashaie, S.S.

    2004-01-01

    'Full text:' Multiplicity of steady states (Static Bifurcation Behavior, SBB) in a novel Circulating Fluidized Bed (CFB) membrane reformer for the efficient production of hydrogen by steam reforming of heptane (model component of heavy hydrocarbons and renewable bio-oils) is investigated. The present paper highlights the practical implications of this phenomenon on the behavior of this novel reformer with special focusing on hydrogen production. Two configurations are considered and compared. One is with the catalyst regeneration before the gas-solid separation and the other one is with the catalyst regeneration after the gas-solid separation. Multiplicity of the steady states prevails over a number of design and operating parameters with important impact on the reformer performance. The basis of process evaluation is focused on the net hydrogen production. The dependence of the behavior of this autothermal CFB is shown to be quite complex and defy the simple logic of non-autothermal processes. The unit can be a very efficient hydrogen producer provided its bifurcation behavior is well understood and correctly exploited. (author)

  13. Lubricant Film Breakdown and Material Pick-Up in Sheet Forming of Advanced High Strength Steels and Stainless Steels when Using Environmental Friendly Lubricants

    DEFF Research Database (Denmark)

    Ceron, Ermanno; Olsson, M.; Bay, Niels

    2014-01-01

    chemically with the tool and workpiece material forming thin films, which adhere strongly to the surfaces and reduce the tendency to metal-metal contact and material pick-up. Production tests of new, environmentally benign tribo-systems are, however, costly and laboratory tests are preferred as a preliminary...... the tribological performance, i.e. tendency to material pick-up and galling, of the evaluated tribo-systems. Moreover the SEM analysis shows that different workpiece materials result in different types of material pick-up....

  14. Preliminary Specifications for the PS Pick-ups Amplifier to be used in the Transverse Damping System

    CERN Document Server

    Belleman, J; CERN. Geneva. AB Department

    2003-01-01

    The pick-up amplification stage to be used for the CODD in the PS is presently under redesign. It appears that the constraints for the circuit are very similar to those of the transverse feedback project. The AB/BDI group and in particular its PI section has kindly agreed to fulfil the RF group constraints so as to obtain a common design with a common control interface. The reliability aspect is not treated here. Nevertheless radiation has been considered. At the locations foreseen for the pick-ups (SS 2, 94, 98), the annual dose measured on the vacuum chamber (ref: CERN-TIS-2002-06-TE) is about 1000 Gray per year. This value is to be compared to the 100 Gy considered as the critical dose for electronic circuits. The radiation problem has been solved for the CODD pick-ups using distance and shield (active circuits 2 meters below the floor composed of concrete slabs). The same lay out will be applied for the dampers with the drawback of the capacitive plates being loaded with a low impedance -5 meters long- ca...

  15. Normative values and the effects of age, gender, and handedness on the Moberg Pick-Up Test.

    Science.gov (United States)

    Amirjani, Nasim; Ashworth, Nigel L; Gordon, Tessa; Edwards, David C; Chan, K Ming

    2007-06-01

    The Moberg Pick-Up Test is a standardized test for assessing hand dexterity. Although reduction of sensation in the hand occurs with aging, the effect of age on a subject's performance of the Moberg Pick-Up Test has not been examined. The primary goal of this study was to examine the impact of aging and, secondarily, the impact of gender and handedness, on performance of the Moberg Pick-Up Test in 116 healthy subjects. The average time to complete each of the four subsets of the test was analyzed using the Kruskal-Wallis, Mann-Whitney U, and Wilcoxon signed-rank tests. The results show that hand dexterity of the subjects was significantly affected by age, with young subjects being the fastest and elderly subjects the slowest. Women accomplished the test faster than men, and task performance with the dominant hand was faster than with the non-dominant hand. Use of normative values established based on age and gender is a valuable objective tool to gauge hand function in patients with different neurologic disorders.

  16. Thermal desorption spectroscopy for investigating hydrogen isotope behavior in materials

    International Nuclear Information System (INIS)

    Xia Tirui; Yang Hongguang; Zhan Qin; Han Zhibo; He Changshui

    2012-01-01

    The behavior of hydrogen isotope generated in fusion reactor materials is the key issue for safety and economic operation of fusion reactors and becomes an interesting field. In order to investigate the mechanism of hydrogen isotope such as diffusion, release and retention, a high-sensitivity thermal desorption spectroscopy (TDS) in combination with a quadruple mass spectrometer (QMS) was developed. A major technical breakthrough in ultrahigh vacuum (UHV), low hydrogen background, linear heating and sensitivity calibration of TDS system was made. UHV of l × 10 -7 Pa and low hydrogen background of l × 10 -9 Pa were obtained by combining turbo molecule pump and sputter ion pump. Specimens can be linearly heated up to 1173 K at the rate of 1 to 50 K/min under the MCGS PID software. Sensitivity calibration of the TDS system was accomplished using a special deuterium leak in the detector mode of QMS second electron multiplier. The desorption sensitivity coefficient and the minimum detection limit of deuterium desorption rate are 6.22 × l0 24 s -l · and l.24 × l0 -10 s -1 , respectively. The measurement was also routinely conducted on a specimen of standard, deuterium-containing Zr-4 alloy maintained in the laboratory, so as to validate the TDS method. (authors)

  17. Effect of chemical treatments on hydrogen storage behaviors of multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Lee, Seul-Yi; Park, Soo-Jin

    2010-01-01

    In this work, the hydrogen storage behaviors of chemically treated multi-walled carbon nanotubes (MWNTs) were investigated. The surface properties of the functionalized MWNTs were confirmed by Fourier transfer infrared spectroscopy, X-ray diffraction, the Boehm titration method, and zeta-potential measurements. The hydrogen storage capacity of the MWNTs was evaluated at 298 K and 100 bar. In the experimental results, it was found that the chemical treatments introduced functional groups onto the MWNT surfaces. The amount of hydrogen storage was enhanced, by acidic surface treatment, to 0.42 wt.% in the acidic-treated MWNTs compared with 0.26 wt.% in the as-received MWNTs. Meanwhile, the basic surface treatment actually reduced the hydrogen storage capacity, to 0.24 wt.% in the basic-treated MWNTs sample. Consequently, it could be concluded that hydrogen storage is greatly influenced by the acidic characteristics of MWNT surfaces, resulting in enhanced electron acceptor-donor interaction at interfaces.

  18. Pickup Ions in the Plasma Environments of Mars, Comets, and Enceladus

    Science.gov (United States)

    Cravens, T.; Rahmati, A.; Sakai, S.; Madanian, H.; Larson, D. E.; Lillis, R. J.; Halekas, J. S.; Goldstein, R.; Burch, J. L.; Clark, G. B.; Jakosky, B. M.

    2015-12-01

    Ions created within a flowing plasma by ionization of neutrals respond to the electric and magnetic fields associated with the flow becoming what are called pick-up ions (PUI). PUI play an important role in many solar system plasma environments and affect the energy and momentum balance of the plasma flow. PUI have been observed during several recent space missions and PUI data will be compared and interpreted using models. Pick-up oxygen ions were observed in the solar wind upstream of Mars by the Solar Energetic Particle (SEP) and Solar Wind Ion Analyzer (SWIA) instruments on NASA's MAVEN (Mars Atmosphere and Volatile EvolutioN) spacecraft. The pick-up oxygen ions are created when atoms in the hot corona are ionized by solar radiation and charge exchange with solar wind protons. The ion fluxes measured by SEP can constrain the oxygen escape rate from Mars. PUI were also been detected at distances of 10 - 100 km from the nucleus of comet 67P/Churyumov- Gerasimenko (67P/CG) by plasma instruments (IES and ICA) onboard the Rosetta Orbiter when the comet was at 3 AU. The newly-born cometary ions are accelerated by the solar wind motional electric field but remain un-magnetized, as suggested by pre-encounter models (Rubin et al., 2014). The inner magnetosphere of Saturn and the water plume of the icy satellite Enceladus provide a third example of PUI. H2O+ ions created by ionization of neutral water producing ions that are picked-up by the co-rotating magnetospheric plasma flow. These ions then undergo a complex interaction with the plume gas including collisions that convert most H2O+ ions to H3O+, as measured by the Ion and Neutral Mass Spectrometer (INMS) onboard the Cassini spacecraft.

  19. Spin polarization of 34Al fragments produced by nucleon pickup at intermediate energies

    International Nuclear Information System (INIS)

    Turzo, K.; Himpe, P.; Borremans, D.; Mallion, S.; Neyens, G.; Vermeulen, N.; Yordanov, D.; Balabanski, D.L.; Belier, G.; Daugas, J.M.; Georgiev, G.; Oliveira de Santos, F.; Matea, I.; Stodel, Ch.; Penionzhkevich, Yu. E.

    2006-01-01

    The polarization of 34 Al fragments, produced by single neutron pickup from a 9 Be target by a 36 S projectile at 77.5 MeV/nucleon, have been observed at GANIL via the detection of resonantly destroyed β-asymmetry. The reaction-induced polarization is deduced using a tentative spin/parity assignment for the 34 Al ground state. A positive polarization was measured near the peak of the 34 Al yield curve. A kinematical model based on the spectator-participant model for projectile fragmentation reactions has been extended in order to take into account the features of pickup reactions, i.e., the picked-up nucleon having an average momentum equal to the Fermi momentum and aligned along the incident beam direction. The trend-line in the observed spin-orientation is very well reproduced by this model

  20. Pickup design for high bandwidth bunch arrival-time monitors in free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Angelovski, Aleksandar; Penirschke, Andreas; Jakoby, Rolf [TU Darmstadt (Germany). Institut fuer Mikrowellentechnik und Photonik; Kuhl, Alexander; Schnepp, Sascha [TU Darmstadt (Germany). Graduate School of Computational Engineering; Bock, Marie Kristin; Bousonville, Michael; Schlarb, Holger [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Weiland, Thomas [TU Darmstadt (Germany). Institut fuer Theorie Elektromagnetischer Felder

    2012-07-01

    The increased demands for low bunch charge operation mode in the free-electron lasers (FELs) require an upgrade of the existing synchronization equipment. As a part of the laser-based synchronization system, the bunch arrival-time monitors (BAMs) should have a sub-10 femtosecond precision for high and low bunch charge operation. In order to fulfill the resolution demands for both modes of operation, the bandwidth of such a BAM should be increased up to a cutoff frequency of 40 GHz. In this talk, we present the design and the realization of high bandwidth cone-shaped pickup electrodes as a part of the BAM for the FEL in Hamburg (FLASH) and the European X-ray free-electron laser (European XFEL). The proposed pickup was simulated with CST STUDIO SUITE, and a non-hermetic model was built up for radio frequency (rf) measurements.

  1. Hydrogen-enriched fuels

    Energy Technology Data Exchange (ETDEWEB)

    Roser, R. [NRG Technologies, Inc., Reno, NV (United States)

    1998-08-01

    NRG Technologies, Inc. is attempting to develop hardware and infrastructure that will allow mixtures of hydrogen and conventional fuels to become viable alternatives to conventional fuels alone. This commercialization can be successful if the authors are able to achieve exhaust emission levels of less than 0.03 g/kw-hr NOx and CO; and 0.15 g/kw-hr NMHC at full engine power without the use of exhaust catalysts. The major barriers to achieving these goals are that the lean burn regimes required to meet exhaust emissions goals reduce engine output substantially and tend to exhibit higher-than-normal total hydrocarbon emissions. Also, hydrogen addition to conventional fuels increases fuel cost, and reduces both vehicle range and engine output power. Maintaining low emissions during transient driving cycles has not been demonstrated. A three year test plan has been developed to perform the investigations into the issues described above. During this initial year of funding research has progressed in the following areas: (a) a cost effective single-cylinder research platform was constructed; (b) exhaust gas speciation was performed to characterize the nature of hydrocarbon emissions from hydrogen-enriched natural gas fuels; (c) three H{sub 2}/CH{sub 4} fuel compositions were analyzed using spark timing and equivalence ratio sweeping procedures and finally; (d) a full size pick-up truck platform was converted to run on HCNG fuels. The testing performed in year one of the three year plan represents a baseline from which to assess options for overcoming the stated barriers to success.

  2. Hydrogen Embrittlement Mechanism in Fatigue Behavior of Austenitic and Martensitic Stainless Steels

    Directory of Open Access Journals (Sweden)

    Sven Brück

    2018-05-01

    Full Text Available In the present study, the influence of hydrogen on the fatigue behavior of the high strength martensitic stainless steel X3CrNiMo13-4 and the metastable austenitic stainless steels X2Crni19-11 with various nickel contents was examined in the low and high cycle fatigue regime. The focus of the investigations were the changes in the mechanisms of short crack propagation. Experiments in laboratory air with uncharged and precharged specimen and uncharged specimen in pressurized hydrogen were carried out. The aim of the ongoing investigation was to determine and quantitatively describe the predominant processes of hydrogen embrittlement and their influence on the short fatigue crack morphology and crack growth rate. In addition, simulations were carried out on the short fatigue crack growth, in order to develop a detailed insight into the hydrogen embrittlement mechanisms relevant for cyclic loading conditions. It was found that a lower nickel content and a higher martensite content of the samples led to a higher susceptibility to hydrogen embrittlement. In addition, crack propagation and crack path could be simulated well with the simulation model.

  3. Laparoscopic ovum pick-up in spotted paca ( Cuniculus pacas )

    OpenAIRE

    Barros,F.F.P.C.; Teixeira,P.P.M.; Uscategui,R.A.R.; Coutinho,L.N.; Brito,M.B.S.; Kawanami,A.E.; Almeida,V.T.; Mariano,R.S.G.; Nociti,R.P.; Machado,M.R.F.; Vicente,W.R.R.

    2016-01-01

    ABSTRACT The aim of this work is study the laparoscopic ovum pick-up (LapOPU) technique in spotted paca, describing surgery details, complications and oocyte recovery rate. Nine healthy adult non-pregnant captive females were used, in a total of 39 procedures. When the surgical plane of anaesthesia was achieved, the females were positioned at 20º Trendelenburg. Three 6mm trocars were placed on right and left inguinal and hypogastric regions. Abdomen was inflated with CO2 and the intra-abdomin...

  4. The pick-up mechanism in composite particle emission processes

    International Nuclear Information System (INIS)

    Zhang Jingshang; Yan Shiwei; Wang Cuilan

    1992-01-01

    The pick-up mechanism has been included in the exciton model for the light composite particle emissions. Based on the cluster phase space integration method the formation probabilities of α,d,t, 3 He are obtained. The calculation results of (n,t) cross sections indicate that this theoretical method can reproduce the experimental data nicely. For triton emissions in pre-equilibrium reaction processes, the semi-direct reactions are the dominant terms which are just omitted in the previous model calculation

  5. Revisiting the Hydrogen Storage Behavior of the Na-O-H System

    Directory of Open Access Journals (Sweden)

    Jianfeng Mao

    2015-04-01

    Full Text Available Solid-state reactions between sodium hydride and sodium hydroxide are unusual among hydride-hydroxide systems since hydrogen can be stored reversibly. In order to understand the relationship between hydrogen uptake/release properties and phase/structure evolution, the dehydrogenation and hydrogenation behavior of the Na-O-H system has been investigated in detail both ex- and in-situ. Simultaneous thermogravimetric-differential thermal analysis coupled to mass spectrometry (TG-DTA-MS experiments of NaH-NaOH composites reveal two principal features: Firstly, an H2 desorption event occurring between 240 and 380 °C and secondly an additional endothermic process at around 170 °C with no associated weight change. In-situ high-resolution synchrotron powder X-ray diffraction showed that NaOH appears to form a solid solution with NaH yielding a new cubic complex hydride phase below 200 °C. The Na-H-OH phase persists up to the maximum temperature of the in-situ diffraction experiment shortly before dehydrogenation occurs. The present work suggests that not only is the inter-phase synergic interaction of protic hydrogen (in NaOH and hydridic hydrogen (in NaH important in the dehydrogenation mechanism, but that also an intra-phase Hδ+… Hδ– interaction may be a crucial step in the desorption process.

  6. Imprints from the solar cycle on the helium atom and helium pickup ion distributions

    Directory of Open Access Journals (Sweden)

    D. Rucinski

    Full Text Available Neutral interstellar helium atoms penetrate into the solar system almost unaffected by gas–plasma interactions in the heliospheric interface region, and thus can be considered as carriers of original information on the basic parameters (like density, temperature, bulk velocity of the Very Local Interstellar Medium (VLISM. Such information can nowadays be derived from analysis of data obtained from different experimental methods: in situ measurements of He atoms (Ulysses, observations of the solar backscattered He 584 A radiation (EUVE, in situ measurements of He + pickup ions (AMPTE, Ulysses, Wind, SOHO, ACE. In view of the current coordinated international ISSI campaign devoted to the study of the helium focusing cone structure and its evolution, we analyze expected variations of neutral He density, of He + pickup fluxes and of their phase space distributions at various phases of the solar activity cycle based on a realistic time-dependent modelling of the neutral helium and He + pickup ion distributions, which reflect solar cycle-induced variations of the photoionization rate. We show that the neutral helium density values are generally anticorrelated with the solar activity phase and in extreme cases (near the downwind axis the maximum-to-minimum density ratio may even exceed factors of ~ 3 at 1 AU. We also demonstrate that in the upwind hemisphere (at 1 AU and beyond the He + fluxes are correlated with the solar cycle activity, whereas on the downwind side the maximum of the expected flux up to distances of ~ 3 AU occurs around solar minimum epoch, and only further away does the correlation with solar activity become positive. Finally, we present the response of the phase space distribution spectra of He + pickup ions (in the solar wind frame for different epochs of the solar cycle and heliocentric distances from 1 to 5 AU covering the range of Ulysses, Wind and ACE observations.

    Key words. Solar physics, astrophysics and astronomy

  7. Imprints from the solar cycle on the helium atom and helium pickup ion distributions

    Directory of Open Access Journals (Sweden)

    D. Rucinski

    2003-06-01

    Full Text Available Neutral interstellar helium atoms penetrate into the solar system almost unaffected by gas–plasma interactions in the heliospheric interface region, and thus can be considered as carriers of original information on the basic parameters (like density, temperature, bulk velocity of the Very Local Interstellar Medium (VLISM. Such information can nowadays be derived from analysis of data obtained from different experimental methods: in situ measurements of He atoms (Ulysses, observations of the solar backscattered He 584 A radiation (EUVE, in situ measurements of He + pickup ions (AMPTE, Ulysses, Wind, SOHO, ACE. In view of the current coordinated international ISSI campaign devoted to the study of the helium focusing cone structure and its evolution, we analyze expected variations of neutral He density, of He + pickup fluxes and of their phase space distributions at various phases of the solar activity cycle based on a realistic time-dependent modelling of the neutral helium and He + pickup ion distributions, which reflect solar cycle-induced variations of the photoionization rate. We show that the neutral helium density values are generally anticorrelated with the solar activity phase and in extreme cases (near the downwind axis the maximum-to-minimum density ratio may even exceed factors of ~ 3 at 1 AU. We also demonstrate that in the upwind hemisphere (at 1 AU and beyond the He + fluxes are correlated with the solar cycle activity, whereas on the downwind side the maximum of the expected flux up to distances of ~ 3 AU occurs around solar minimum epoch, and only further away does the correlation with solar activity become positive. Finally, we present the response of the phase space distribution spectra of He + pickup ions (in the solar wind frame for different epochs of the solar cycle and heliocentric distances from 1 to 5 AU covering the range of Ulysses, Wind and ACE observations.Key words. Solar physics, astrophysics and astronomy

  8. High-performance integrated pick-up circuit for SPAD arrays in time-correlated single photon counting

    Science.gov (United States)

    Acconcia, Giulia; Cominelli, Alessandro; Peronio, Pietro; Rech, Ivan; Ghioni, Massimo

    2017-05-01

    The analysis of optical signals by means of Single Photon Avalanche Diodes (SPADs) has been subject to a widespread interest in recent years. The development of multichannel high-performance Time Correlated Single Photon Counting (TCSPC) acquisition systems has undergone a fast trend. Concerning the detector performance, best in class results have been obtained resorting to custom technologies leading also to a strong dependence of the detector timing jitter from the threshold used to determine the onset of the photogenerated current flow. In this scenario, the avalanche current pick-up circuit plays a key role in determining the timing performance of the TCSPC acquisition system, especially with a large array of SPAD detectors because of electrical crosstalk issues. We developed a new current pick-up circuit based on a transimpedance amplifier structure able to extract the timing information from a 50-μm-diameter custom technology SPAD with a state-of-art timing jitter as low as 32ps and suitable to be exploited with SPAD arrays. In this paper we discuss the key features of this structure and we present a new version of the pick-up circuit that also provides quenching capabilities in order to minimize the number of interconnections required, an aspect that becomes more and more crucial in densely integrated systems.

  9. Hi-Vision telecine system using pickup tube

    Science.gov (United States)

    Iijima, Goro

    1992-08-01

    Hi-Vision broadcasting, offering far more lifelike pictures than those produced by existing television broadcasting systems, has enormous potential in both industrial and commercial fields. The dissemination of the Hi-Vision system will enable vivid, movie theater quality pictures to be readily enjoyed in homes in the near future. To convert motion film pictures into Hi-Vision signals, a telecine system is needed. The Hi-Vision telecine systems currently under development are the "laser telecine," "flying-spot telecine," and "Saticon telecine" systems. This paper provides an overview of the pickup tube type Hi-Vision telecine system (referred to herein as the Saticon telecine system) developed and marketed by Ikegami Tsushinki Co., Ltd.

  10. A MEASUREMENT OF THE ADIABATIC COOLING INDEX FOR INTERSTELLAR HELIUM PICKUP IONS IN THE INNER HELIOSPHERE

    International Nuclear Information System (INIS)

    Saul, Lukas; Wurz, Peter; Kallenbach, Reinald

    2009-01-01

    Interstellar neutral gas enters the inner heliosphere where it is ionized and becomes the pickup ion population of the solar wind. It is often assumed that this population will subsequently cool adiabatically, like an expanding ideal gas due, to the divergent flow of the solar wind. Here, we report the first independent measure of the effective adiabatic cooling index in the inner heliosphere from SOHO CELIAS measurements of singly charged helium taken during times of perpendicular interplanetary magnetic field. We use a simple adiabatic transport model of interstellar pickup helium ions, valid for the upwind region of the inner heliosphere. The time averaged velocity spectrum of helium pickup ions measured by CELIAS/CTOF is fit to this model with a single free parameter which indicates an effective cooling rate with a power-law index of γ = 1.35 ± 0.2. While this average is consistent with the 'ideal-gas' assumption of γ = 1.5, the analysis indicates that such an assumption will not apply in general, and that due to observational constraints further measurements are necessary to constrain the cooling process. Implications are discussed for understanding the transport processes in the inner heliosphere and improving this measurement technique.

  11. Cometary pick-up ions observed near Giacobini-Zinner

    Science.gov (United States)

    Gloeckler, G.; Hovestadt, D.; Ipavich, F. M.; Scholer, M.; Klecker, B.

    1986-01-01

    The number and energy density of cometary water-group ions observed near Comet Giacobini-Zinner are derived using the rest-frame distribution functions. The data reveal that density profiles of inbound and outbound passes and their shape correlate with pick-up ion production model predictions. The lose rate and production rate of water-group cometary molecules calculated from predicted and measured density profiles are 2 x 10 to the -6th/sec and 2.6 x 10 to the 28th/sec respectively. The shapes of the distribution functions are examined to study the solar wind/cometary ions interaction process.

  12. MELCOR simulation of steam condensation effect on hydrogen behavior in THAI HM-2 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seongnyeon; Lee, Jung-Jae; Cho, Yong-Jin [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Kim, Sung Joong [Hanyang University, Seoul (Korea, Republic of)

    2015-10-15

    In this study, MELCOR simulation was carried out for THAI HM-2 experiment of OECD. As a results, stratification of hydrogen cloud was reasonably captured in MELCOR simulation. Furthermore, the pressure from simulation results in cases where mass transfer coefficient of MELCOR condensation model was modified was good agreement with the experimental results. Containment Filtered Ventilation System (CFVS) has been introduced as facility to prevent containment failure during severe accident. However, possibility of hydrogen risk has been issued due to inflow of hydrogen, condensation and removal of steam and complicated inner structure in CFVS. Preferentially benchmark work for THAI HM-2 experiment of OECD was decided to validate the methodology before detailed assessment of hydrogen risk in CFVS. The objectives of THAI HM-2 experiment were evaluation of hydrogen behavior, verification of numerical analysis tools and so on. In this paper, therefore, MELCOR simulation was carried out in comparison with the experiment results. Additionally, steam condensation effect was considered for detailed simulation. Hydrogen concentration from MELCOR results was underestimated in comparison to the experimental results.

  13. Evaluation of strip-line pick-up system for the SPS wideband transverse feedback system

    CERN Document Server

    Kotzian, G; Steinhagen, R J; Valuch, D; Wehrle, U

    2017-01-01

    The proposed SPS Wideband Transverse Feedback sys- tem requires a wide-band pick-up system to be able to de- tect intra-bunch motion within the SPS proton bunches, captured and accelerated in a 200 MHz bucket. We present the electro-magnetic design of transverse beam position pick-up options optimised for installation in the SPS and evaluate their performance reach with respect to direct time domain sampling of the intra-bunch motion. The analy- sis also discusses the achieved subsystem responses of the associated cabling with new low dispersion smooth wall coaxial cables, wide-band generation of intensity and posi- tion signals by means of 180 degree RF hybrids as well as passive techniques to electronically suppress the beam off- set signal, needed to optimise the dynamic range and posi- tion resolution of the planned digital intra-bunch feedback system.

  14. Hydrogen storage behaviors of Ni-doped graphene Oxide/MIL-101 hybrid composites.

    Science.gov (United States)

    Lee, Seul-Yi; Park, Soo-Jin

    2013-01-01

    In this work, Ni-doped graphene oxide/MIL-101 hybrid composites (Ni--GO/MIL) were prepared to investigate their hydrogen storage behaviors. Ni--GO/MIL was synthesized by adding Ni--GO in situ during the synthesis of MIL-101 using a hydrothermal process, which was conducted by conventional convection heating with Cr(III) ion as a metal center and telephthalic acid as organic ligands. The crystalline structures and morphologies were measured by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The specific surface area and micropore volume were investigated by N2/77 K adsorption isotherms using the Brunauer-Emmett-Teller (BET) method and Dubinin-Radushkevic (D-R) equation, respectively. The hydrogen storage capacity was investigated by BEL-HP at 77 K and 1 bar. The obtained results show that Ni--GO/MIL presents new directions for achieving novel hybrid materials with higher hydrogen storage capacity.

  15. The Multi-commodity One-to-one Pickup-and-delivery Traveling Salesman Problem with Path Duration Limits

    DEFF Research Database (Denmark)

    Plum, Christian Edinger Munk; Pisinger, David; Salazar-González, Juan-José

    2012-01-01

    The design of container shipping networks is an important real world problem, with assets and operational costs in billions of dollars. To guide the optimal deployment of the ships, a single vessel roundtrip is considered by minimizing operational costs and flowing the best paying cargo under...... commercial constraints. Inspiration for formulation and solution method is taken from the rich research done within pickup and delivery problems. The problem, the multicommodity one-toone pickup and delivery traveling salesman problem with path duration limits is, to the best of out knowledge, considered...... for the first time. An arc flow and a path flow model are presented. A Branch and Cut and Price solution method is proposed and implemented....

  16. Comparison of magnetic and electrostatic Schottky pick-up in the CERN AD

    CERN Document Server

    Federmann, S

    2013-01-01

    The present note is intended to exploit the possibility of using a dedicated electrostatic beam pick-up for Schottky diagnostics in the future ELENA ring. A test setup is described allowing the evaluation of its performance compared to the extra low-noise beam current transformer used successfully in the AD. The results of this experiment are summarized and discussed.

  17. On the Effects of Pickup Ion-driven Waves on the Diffusion Tensor of Low-energy Electrons in the Heliosphere

    Energy Technology Data Exchange (ETDEWEB)

    Engelbrecht, N. Eugene, E-mail: n.eugene.engelbrecht@gmail.com [Center for Space Research, North-West University, Potchefstroom, 2522 (South Africa)

    2017-11-01

    The effects of Alfvén cyclotron waves generated due to the formation in the outer heliosphere of pickup ions on the transport coefficients of low-energy electrons is investigated here. To this end, parallel mean free path (MFP) expressions are derived from quasilinear theory, employing the damping model of dynamical turbulence. These are then used as inputs for existing expressions for the perpendicular MFP and turbulence-reduced drift coefficient. Using outputs generated by a two-component turbulence transport model, the resulting diffusion coefficients are compared with those derived using a more typically assumed turbulence spectral form, which neglects the effects of pickup ion-generated waves. It is found that the inclusion of pickup ion effects greatly leads to considerable reductions in the parallel and perpendicular MFPs of 1–10 MeV electrons beyond ∼10 au, which are argued to have significant consequences for studies of the transport of these particles.

  18. VOYAGER OBSERVATIONS OF MAGNETIC WAVES DUE TO NEWBORN INTERSTELLAR PICKUP IONS: 2–6 au

    International Nuclear Information System (INIS)

    Aggarwal, Poornima; Taylor, David K.; Smith, Charles W.; Joyce, Colin J.; Fisher, Meghan K.; Isenberg, Philip A.; Vasquez, Bernard J.; Schwadron, Nathan A.; Cannon, Bradford E.; Richardson, John D.

    2016-01-01

    We report observations by the Voyager 1 and 2 spacecraft of low-frequency magnetic waves excited by newborn interstellar pickup ions H + and He + during 1978–1979 when the spacecraft were in the range from 2 to 6.3 au. The waves have the expected association with the cyclotron frequency of the source ions, are left-hand polarized in the spacecraft frame, and have minimum variance directions that are quasi-parallel to the local mean magnetic field. There is one exception to this in that one wave event that is excited by pickup H + is right-hand polarized in the spacecraft frame, but similar exceptions have been reported by Cannon et al. and remain unexplained. We apply the theory of Lee and Ip that predicts the energy spectrum of the waves and then compare growth rates with turbulent cascade rates under the assumption that turbulence acts to destroy the enhanced wave activity and transport the associated energy to smaller scales where dissipation heats the background plasma. As with Cannon et al., we find that the ability to observe the waves depends on the ambient turbulence being weak when compared with growth rates, thereby allowing sustained wave growth. This analysis implies that the coupled processes of pitch-angle scattering and wave generation are continuously associated with newly ionized pickup ions, despite the fact that the waves themselves may not be directly observable. When waves are not observed, but wave excitation can be argued to be present, the wave energy is simply absorbed by the turbulence at a rate that prevents significant accumulation. In this way, the kinetic process of wave excitation by scattering of newborn ions continues to heat the plasma without producing observable wave energy. These findings support theoretical models that invoke efficient scattering of new pickup ions, leading to turbulent driving in the outer solar wind and in the IBEX ribbon beyond the heliopause.

  19. Comparative pick-up ion distributions at Mars and Venus: Consequences for atmospheric deposition and escape

    Science.gov (United States)

    Curry, Shannon M.; Luhmann, Janet; Ma, Yingjuan; Liemohn, Michael; Dong, Chuanfei; Hara, Takuya

    2015-09-01

    Without the shielding of a substantial intrinsic dipole magnetic field, the atmospheres of Mars and Venus are particularly susceptible to similar atmospheric ion energization and scavenging processes. However, each planet has different attributes and external conditions controlling its high altitude planetary ion spatial and energy distributions. This paper describes analogous test particle simulations in background MHD fields that allow us to compare the properties and fates, precipitation or escape, of the mainly O+ atmospheric pick-up ions at Mars and Venus. The goal is to illustrate how atmospheric and planetary scales affect the upper atmospheres and space environments of our terrestrial planet neighbors. The results show the expected convection electric field-related hemispheric asymmetries in both precipitation and escape, where the degree of asymmetry at each planet is determined by the planetary scale and local interplanetary field strength. At Venus, the kinetic treatment of O+ reveals a strong nightside source of precipitation while Mars' crustal fields complicate the simple asymmetry in ion precipitation and drive a dayside source of precipitation. The pickup O+ escape pattern at both Venus and Mars exhibits low energy tailward escape, but Mars exhibits a prominent, high energy 'polar plume' feature in the hemisphere of the upward convection electric field while the Venus ion wake shows only a modest poleward concentration. The overall escape is larger at Venus than Mars (2.1 ×1025 and 4.3 ×1024 at solar maximum, respectively), but the efficiency (likelihood) of O+ escaping is 2-3 times higher at Mars. The consequences of these comparisons for pickup ion related atmospheric energy deposition, loss rates, and detection on spacecraft including PVO, VEX, MEX and MAVEN are considered. In particular, both O+ precipitation and escape show electric field controlled asymmetries that grow with energy, while the O+ fluxes and energy spectra at selected spatial

  20. VOYAGER OBSERVATIONS OF MAGNETIC WAVES DUE TO NEWBORN INTERSTELLAR PICKUP IONS: 2–6 au

    Energy Technology Data Exchange (ETDEWEB)

    Aggarwal, Poornima [Electrical Engineering Department, Cooper Union, New York, NY 10003 (United States); Taylor, David K. [Rensselaer Polytechnic Institute, Troy, NH 12180 (United States); Smith, Charles W.; Joyce, Colin J.; Fisher, Meghan K.; Isenberg, Philip A.; Vasquez, Bernard J.; Schwadron, Nathan A. [Physics Department and Space Science Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH 03824 (United States); Cannon, Bradford E. [Physics Department, Florida State University, Tallahassee, FL 32306 (United States); Richardson, John D., E-mail: neema2000@gmail.com, E-mail: daves@orol.org, E-mail: Charles.Smith@unh.edu, E-mail: cjl46@wildcats.unh.edu, E-mail: mkl54@wildcats.unh.edu, E-mail: Phil.Isenberg@unh.edu, E-mail: Bernie.Vasquez@unh.edu, E-mail: N.Schwadron@unh.edu, E-mail: bc13h@my.fsu.edu, E-mail: jdr@space.mit.edu [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 37-655, Cambridge, MA 02139 (United States)

    2016-05-10

    We report observations by the Voyager 1 and 2 spacecraft of low-frequency magnetic waves excited by newborn interstellar pickup ions H{sup +} and He{sup +} during 1978–1979 when the spacecraft were in the range from 2 to 6.3 au. The waves have the expected association with the cyclotron frequency of the source ions, are left-hand polarized in the spacecraft frame, and have minimum variance directions that are quasi-parallel to the local mean magnetic field. There is one exception to this in that one wave event that is excited by pickup H{sup +} is right-hand polarized in the spacecraft frame, but similar exceptions have been reported by Cannon et al. and remain unexplained. We apply the theory of Lee and Ip that predicts the energy spectrum of the waves and then compare growth rates with turbulent cascade rates under the assumption that turbulence acts to destroy the enhanced wave activity and transport the associated energy to smaller scales where dissipation heats the background plasma. As with Cannon et al., we find that the ability to observe the waves depends on the ambient turbulence being weak when compared with growth rates, thereby allowing sustained wave growth. This analysis implies that the coupled processes of pitch-angle scattering and wave generation are continuously associated with newly ionized pickup ions, despite the fact that the waves themselves may not be directly observable. When waves are not observed, but wave excitation can be argued to be present, the wave energy is simply absorbed by the turbulence at a rate that prevents significant accumulation. In this way, the kinetic process of wave excitation by scattering of newborn ions continues to heat the plasma without producing observable wave energy. These findings support theoretical models that invoke efficient scattering of new pickup ions, leading to turbulent driving in the outer solar wind and in the IBEX ribbon beyond the heliopause.

  1. Effects of molybdenum dithiocarbamate and zinc dialkyl dithiophosphate additives on tribological behaviors of hydrogenated diamond-like carbon coatings

    International Nuclear Information System (INIS)

    Yue, Wen; Liu, Chunyue; Fu, Zhiqiang; Wang, Chengbiao; Huang, Haipeng; Liu, Jiajun

    2014-01-01

    Highlights: • For MoDTC, DLC coating showed better anti-friction and worse anti-wear behaviors. • The improved anti-friction property was due to graphitization and MoS 2 . • Formation of MoO x resulted in a high wear volume. • For ZDDP, DLC coating showed the best anti-wear and the worst anti-friction behaviors. • Absence of friction reducing product and graphitized layer resulted in a higher friction. - Abstract: The tribological behaviors of hydrogenated diamond-like carbon (DLC) coatings under varied load conditions lubricated with polyalpha olefin (PAO), molybdenum dithiocarbamate (MoDTC) and zinc dialkyl dithiophosphate (ZDDP) additives were investigated in this paper. Hydrogenated DLC coatings were synthesized through the decomposition of acetylene by the ion source. The tribological performances were measured on a SRV tribometer. The morphologies and chemical structures of the DLC coatings were investigated by the scanning electron microscope (SEM), Raman spectrometer (Raman) and X-ray photoelectron spectroscope (XPS). It was shown that the low friction and high wear were achieved on the hydrogenated DLC coating under MoDTC lubrication, while low wear was found on the hydrogenated DLC coating lubricated by ZDDP. The primary reason was attributed to different tribofilms formed on the contact area and the formation of graphitic layer. Both factors working together leaded to quite different tribological behaviors

  2. Experimental cross sections for the pickup of electrons by relativistic nuclei

    International Nuclear Information System (INIS)

    Raisbeck, G.M.; Crawford, H.J.; Lindstroem, P.J.; Greiner, D.E.; Beiser, F.S.; Heckman, H.H.

    1977-01-01

    Cross sections for the pickup of electrons in a variety of targets have been measured with beams of 12 C (150, 250, 400 MeV/n), 20 Ne (250, 400, 1050, 2100 MeV/n) and 40 Ar (400, 1050 MeV/n) from the Bevalac accelerator. The interpretation of the results in terms of radiative and non-radiative capture, and the implications for cosmic ray propagation studies are discussed. (author)

  3. INTERSTELLAR PICKUP ION ACCELERATION IN THE TURBULENT MAGNETIC FIELD AT THE SOLAR WIND TERMINATION SHOCK USING A FOCUSED TRANSPORT APPROACH

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Junye; Roux, Jakobus A. le; Arthur, Aaron D. [Department of Space Science, University of Alabama in Huntsville, Huntsville, AL 35899 (United States)

    2016-08-01

    We study the physics of locally born interstellar pickup proton acceleration at the nearly perpendicular solar wind termination shock (SWTS) in the presence of a random magnetic field spiral angle using a focused transport model. Guided by Voyager 2 observations, the spiral angle is modeled with a q -Gaussian distribution. The spiral angle fluctuations, which are used to generate the perpendicular diffusion of pickup protons across the SWTS, play a key role in enabling efficient injection and rapid diffusive shock acceleration (DSA) when these particles follow field lines. Our simulations suggest that variation of both the shape ( q -value) and the standard deviation ( σ -value) of the q -Gaussian distribution significantly affect the injection speed, pitch-angle anisotropy, radial distribution, and the efficiency of the DSA of pickup protons at the SWTS. For example, increasing q and especially reducing σ enhances the DSA rate.

  4. In-situ investigation of hydrogen evolution behavior in vanadium redox flow batteries

    International Nuclear Information System (INIS)

    Wei, L.; Zhao, T.S.; Xu, Q.; Zhou, X.L.; Zhang, Z.H.

    2017-01-01

    Highlights: • An in-situ method to investigate hydrogen evolution in VRFBs is developed. • The rate of hydrogen evolution during battery operation is quantified. • The gas evolution behaviors in the charge process of VRFBs are observed. - Abstract: In this work, we conceived and fabricated a three-electrode electrochemical cell and transparent vanadium redox flow battery to in-situ investigate the hydrogen evolution reaction during battery operation. Experimental results show that operating temperature has a strong influence on the HER rate. In particular, compared with V"3"+ reduction reaction, HER is more sensitive to temperature variation. It is also found that, contrary to the conventional wisdom that side reactions occur at the late stage of the charge process, H_2 evolves at a relatively low SOC. About 0.26 and 1.94 mL H_2 were collected at an early (SOC lower than 20%) and end of the charge process, respectively, suggesting that attention to the hydrogen formation at the negative electrode in the early charge process should also be paid to during long-term battery operations. Moreover, the produced hydrogen gas at the negative side prefers to form macroscopically observable bubbles onto the electrode surface, covering the active sites for vanadium redox reactions, while oxygen evolution (including CO_2 production) at the positive side corrodes electrode surface and introduces certain oxygen-containing functional groups.

  5. Gamma irradiation testing of prototype ITER in-vessel magnetic pick-up coils

    International Nuclear Information System (INIS)

    Vermeeren, Ludo; Leysen, Willem

    2013-01-01

    Highlights: ► We tested five prototype ITER in-vessel coils up to a gamma dose of 72 MGy. ► Before and after irradiation thermal tests were also performed from 30 °C till 130 °C. ► The continuity resistances and the insulation resistances were continuously monitored. ► The observed behavior of all coils was satisfactory in all conditions. ► For the further design the mechanical robustness should be taken into account. -- Abstract: To fulfill the requirements for ITER in-vessel magnetic diagnostics, several coil prototypes have been developed, aiming at minimizing the disturbing effects of temperature gradients and radiation induced phenomena. As a first step in the radiation resistance testing of these prototypes, an in-situ high dose rate gamma radiation test on a selection of prototypes was performed. The aim of this test was to get a first experimental feedback regarding the behavior of the pick-up coil prototypes under radiation. Five prototypes (a coil wound with glass-insulated copper wire, two LTCC coils and two HTCC coils) were irradiated at a dose rate of 46 kGy/h up to a total dose of 72 MGy and at a temperature of 50 °C. During the irradiation, the continuity resistances and the insulation resistances were continuously measured. Before and after irradiation reference data were recorded as a function of temperature (from 30 °C to 130 °C). This paper includes the results of the temperature and irradiation tests and a discussion of the behavior of the prototype coils in terms of electrical and mechanical properties

  6. Characterization of hydrogenation behavior on Mo-modified Zr-Nb alloys as nuclear fuel cladding materials

    International Nuclear Information System (INIS)

    Yang, H.L.; Shibukawa, S.; Abe, H.; Satoh, Y.; Matsukawa, Y.; Kido, T.

    2014-01-01

    The effects of Mo in Zr-Nb alloys are investigated in terms of their mechanical properties associated with microstructure, as well as their behavior under hydrogen environment. Zr-Nb-Mo alloys were fabricated by arc melting and subsequently cold rolling and annealing below the eutectoid temperature. Hydrogen was absorbed in a furnace under argon and hydrogen gas flow environment at high temperature. X-Ray diffraction, electron backscatter diffraction, and tensile test were jointly utilized to carry out detailed microstructural characterization and mechanical properties. Results showed that fcc-δ-ZrH 1.66 was formed in all hydrogen-absorbed alloys, and the amount of hydride enhanced with increasing of hydrogen content. In addition, it was clear that δ-ZrH 1.66 was precipitated both in grain boundary and interior, and preferential precipitation was observed on the habit planes of (0001) and {101-bar7}. Moreover, the strengthening effect by Mo addition was observed. The ductility loss by hydrogen absorption was found from fracture surface observation. Large area cleavage facets were found in Mo-free specimen, and less cleavage facets was observed in Mo-containing specimen, showing an appropriate addition of Mo can increase the tolerance to hydrogen embrittlement. (author)

  7. THE IBEX RIBBON AND THE PICKUP ION RING STABILITY IN THE OUTER HELIOSHEATH. II. MONTE-CARLO AND PARTICLE-IN-CELL MODEL RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Niemiec, J. [Institute of Nuclear Physics PAN, Radzikowskiego 152 31-342 Krakow (Poland); Florinski, V.; Heerikhuisen, J. [Department of Space Science and Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Nishikawa, K.-I., E-mail: jacek.niemiec@ifj.edu.pl, E-mail: vaf0001@uah.edu, E-mail: jh0004@uah.edu, E-mail: ken-ichi.nishikawa-1@nasa.gov [Department of Physics, University of Alabama in Huntsville, Huntsville, AL 35899 (United States)

    2016-08-01

    The nearly circular ribbon of energetic neutral atom (ENA) emission discovered by NASA’s Interplanetary Boundary EXplorer satellite ( IBEX ), is most commonly attributed to the effect of charge exchange of secondary pickup ions (PUIs) gyrating about the magnetic field in the outer heliosheath (OHS) and the interstellar space beyond. The first paper in the series (Paper I) presented a theoretical analysis of the pickup process in the OHS and hybrid-kinetic simulations, revealing that the kinetic properties of freshly injected proton rings depend sensitively on the details of their velocity distribution. It was demonstrated that only rings that are not too narrow (parallel thermal spread above a few km s{sup −1}) and not too wide (parallel temperature smaller than the core plasma temperature) could remain stable for a period of time long enough to generate ribbon ENAs. This paper investigates the role of electron dynamics and the extra spatial degree of freedom in the ring ion scattering process with the help of two-dimensional full particle-in-cell (PIC) kinetic simulations. A good agreement is observed between ring evolution under unstable conditions in hybrid and PIC models, and the dominant modes are found to propagate parallel to the magnetic field. We also present more realistic ribbon PUI distributions generated using Monte Carlo simulations of atomic hydrogen in the global heliosphere and examine the effect of both the cold ring-like and the hot “halo” PUIs produced from heliosheath ENAs on the ring stability. It is shown that the second PUI population enhances the fluctuation growth rate, leading to faster isotropization of the solar-wind-derived ring ions.

  8. Electromagnetically-induced nuclear-charge pickup observed in ultra-relativistic Pb collisions

    International Nuclear Information System (INIS)

    Scheidenberger, C.; Aumann, T.; Pshenichnov, I.A.; Russian Academy of Sciences, Moscow

    2002-01-01

    A strong increase of inclusive nuclear-charge pickup cross sections, forming 83 Bi from 158 A GeV 82 Pb ions, is observed in comparison to similar measurements at 10.6 A GeV. From the dependence of these cross sections on target atomic number, this increase is attributed to the electromagnetic process of pion production by equivalent photons. The observed cross sections can be reproduced quantitatively using the recently developed RELDIS code. (orig.)

  9. What Skills and Tactics Are Needed to Play Adult Pick-Up Basketball Games?

    Science.gov (United States)

    Wang, Jianyu; Liu, Wenhao; Moffit, Jeffrey

    2010-01-01

    The purpose of this study was to examine skill levels and performance patterns of regular players of pick-up basketball games. By a survey, 65 participants were identified as regular players and participated in the study. An observational instrument used to analyze game performance of the participants was developed and both content and construct…

  10. A Combination of Meta-heuristic and Heuristic Algorithms for the VRP, OVRP and VRP with Simultaneous Pickup and Delivery

    Directory of Open Access Journals (Sweden)

    Maryam Ashouri

    2017-07-01

    Full Text Available Vehicle routing problem (VRP is a Nondeterministic Polynomial Hard combinatorial optimization problem to serve the consumers from central depots and returned back to the originated depots with given vehicles. Furthermore, two of the most important extensions of the VRPs are the open vehicle routing problem (OVRP and VRP with simultaneous pickup and delivery (VRPSPD. In OVRP, the vehicles have not return to the depot after last visit and in VRPSPD, customers require simultaneous delivery and pick-up service. The aim of this paper is to present a combined effective ant colony optimization (CEACO which includes sweep and several local search algorithms which is different with common ant colony optimization (ACO. An extensive numerical experiment is performed on benchmark problem instances addressed in the literature. The computational result shows that suggested CEACO approach not only presented a very satisfying scalability, but also was competitive with other meta-heuristic algorithms in the literature for solving VRP, OVRP and VRPSPD problems. Keywords: Meta-heuristic algorithms, Vehicle Routing Problem, Open Vehicle Routing Problem, Simultaneously Pickup and Delivery, Ant Colony Optimization.

  11. Study on the combustion behavior of radiolytically generated hydrogen explosion in small scale annular vessels at the reprocessing plant

    International Nuclear Information System (INIS)

    Kudo, Tatsuya; Tamauchi, Yoshikazu; Arai, Nobuyuki; Dai, Wenbin; Sakaihara, Motohiro; Kanehira, Osamu

    2017-01-01

    Hydrogen is generated by radiolysis of water, etc. in process vessels in reprocessing plant. Usually, the hydrogen is scavenged by compressed air into vessels to prevent hydrogen explosion. When an earthquake beyond design based occurs, for example, the compressed air may stop and the hydrogen starts accumulating in the vessels, and under this condition, an ignition source might set off hydrogen explosion. Therefore, the explosion derived by the radiolytically generated hydrogen is designated as one of severe accidents on Rokkasho Reprocessing Plant in new regulatory requirements. It is important to understand the combustion behavior of hydrogen explosion inside a vessel for consideration of safety measures against the severe accident, because the influences of detonation are not considered in the design basis of vessels. Especially, the investigations about the combustion behavior which considered influence of interior obstacles inside the vessel are not performed yet. In order to investigate the combustion behavior comprehensively, explosion experiment, combustion analysis and structural analysis are carried out using the representative vessels (small scale annular vessel, small scale plate vessel, large scale annular vessel and large scale cylindrical vessel) selected from Rokkasho Reprocessing Plant. In this paper, the results of experiments and analysis of small scale annular vessel (as one of representative vessel, imitated a pulsed column in the reprocessing plant) are reported. As imitated vessels, three vessels are manufactured with different interior obstacle arrangements as follows, A) cylindrical obstacles are faithfully reproduced and are arranged based on the actual vessel, B) cylindrical obstacles are arranged more densely than the actual vessel, and C) there are no obstacles inside the vessel. Experiments of hydrogen explosion are performed under condition of stoichiometric hydrogen-air ratio (premixed hydrogen-air is used). As a result of

  12. A study of hydrogen environment effects on microstructure property behavior of NASA-23 alloy and related alloy systems

    International Nuclear Information System (INIS)

    Diwan, R.M.

    1990-01-01

    The influence of hydrogen on the tensile properties and ductility behavior of NASA-23 alloy were analyzed. NASA-23 and other referenced alloys in cast and hipped conditions were solution treated and aged under selected conditions and characterized using optical metallography, scanning electron microscopy, and electron microprobe analysis techniques. The yield strength of NASA-23 is not affected much by hydrogen under tensile tests carried at 5000 psig conditions; however, the ultimate strength and ductility properties are degraded. This implies that the physical mechanisms operating would be related to the plastic deformation process. The fracture surfaces characteristics of NASA-23 specimens tensile tested in hydrogen, helium, and air were also analyzed. These revealed surface cracks around specimen periphery with the fracture surface showing a combination of intergranular and transgranular modes of fracture. It is seen that the specimens charged in hydrogen seem to favor a more brittle fracture mode in comparison to air and helium charged specimens. The AMCC casting characterization program is to be analyzed for their hydrogen behavior. As a result of this program, the basic microstructural factors and fracture characteristics in some cases were analyzed

  13. Analysis of hydrogen content and distribution in hydrogen storage alloys using neutron radiography

    International Nuclear Information System (INIS)

    Sakaguchi, Hiroki; Hatakeyama, Keisuke; Satake, Yuichi; Esaka, Takao; Fujine, Shigenori; Yoneda, Kenji; Kanda, Keiji

    2000-01-01

    Small amounts of hydrogen in hydrogen storage alloys, such as Mg 2 Ni, were detected using neutron radiography (NRG). Hydrogen concentrations in a hydrogenated solid solution were determined by this technique. Furthermore, we were able to obtain NRG images for an initial stage of hydrogen absorption in the hydrogen storage alloys. NRG would be a new measurement method to clarify the behavior of hydrogen in hydrogen storage alloys. (author)

  14. HTS planar gradiometer consisting of SQUID with multi-turn input coil and large pickup coil made of GdBCO coated conductor

    International Nuclear Information System (INIS)

    Tsukamoto, Akira; Adachi, Seiji; Oshikubo, Yasuo; Hato, Tsunehiro; Enpuku, Keiji; Sugisaki, Masaki; Arai, Eiichi; Tanabe, Keiichi

    2013-01-01

    Highlights: ► We fabricated a large HTS gradiometer with 350-mm-long baseline. ► A 6-turn gradiometric planar pickup was made of a HTS coated conductor. ► A 26-turn HTS input coil chip was stacked on a HTS thin film gradiometer chip. ► A mechanical balancing structure was also implemented. ► The fabricated gradiometer showed a gradient field noise of 0.8 fT/cm Hz 1/2 . -- Abstract: We have investigated the fabrication of a high-temperature superconducting (HTS) gradiometer with long baseline for geophysical applications. The proof-of-concept gradiometer using a 1-turn pickup coil made of a GdBa 2 Cu 3 O y coated conductor (GCC) and 5.5-turn input coil integrated on a SQUID was fabricated in our previous work. In this study, we have optimized the device structure to improve the frequency response, gradient field sensitivity and gradiometer balance. The fabricated flux transformer consists of a 6-turn planar gradiometric pickup coil and a 26-turn input coil made of an HTS thin film. A low-melting-point alloy was used to connect polished Ag surfaces of the CGG pickup coil and Au pads of the input coil. An HTS SQUID was formed on another substrate and stacked on the input coil. A mechanical balancing structure using three pieces of GCC as a superconducting shield was also implemented. The fabricated gradiometer showed a gradient field noise of 0.8 fT/cm Hz 1/2 in the white noise regions, a gradiometer balance of 1/142, and a cutoff frequency of 9 Hz corresponding to a 2 mΩ contact resistance between the pickup coil and the input coil

  15. Enhanced Photoelectrochemical Behavior of H-TiO2 Nanorods Hydrogenated by Controlled and Local Rapid Thermal Annealing.

    Science.gov (United States)

    Wang, Xiaodan; Estradé, Sonia; Lin, Yuanjing; Yu, Feng; Lopez-Conesa, Lluis; Zhou, Hao; Gurram, Sanjeev Kumar; Peiró, Francesca; Fan, Zhiyong; Shen, Hao; Schaefer, Lothar; Braeuer, Guenter; Waag, Andreas

    2017-12-01

    Recently, colored H-doped TiO 2 (H-TiO 2 ) has demonstrated enhanced photoelectrochemical (PEC) performance due to its unique crystalline core-disordered shell nanostructures and consequent enhanced conduction behaviors between the core-shell homo-interfaces. Although various hydrogenation approaches to obtain H-TiO 2 have been developed, such as high temperature hydrogen furnace tube annealing, high pressure hydrogen annealing, hydrogen-plasma assisted reaction, aluminum reduction and electrochemical reduction etc., there is still a lack of a hydrogenation approach in a controlled manner where all processing parameters (temperature, time and hydrogen flux) were precisely controlled in order to improve the PEC performance of H-TiO 2 and understand the physical insight of enhanced PEC performance. Here, we report for the first time a controlled and local rapid thermal annealing (RTA) approach to prepare hydrogenated core-shell H-TiO 2 nanorods grown on F:SnO 2 (FTO) substrate in order to address the degradation issue of FTO in the typical TiO 2 nanorods/FTO system observed in the conventional non-RTA treated approaches. Without the FTO degradation in the RTA approach, we systematically studied the intrinsic relationship between the annealing temperature, structural, optical, and photoelectrochemical properties in order to understand the role of the disordered shell on the improved photoelectrochemical behavior of H-TiO 2 nanorods. Our investigation shows that the improvement of PEC performance could be attributed to (i) band gap narrowing from 3.0 to 2.9 eV; (ii) improved optical absorption in the visible range induced by the three-dimensional (3D) morphology and rough surface of the disordered shell; (iii) increased proper donor density; (iv) enhanced electron-hole separation and injection efficiency due to the formation of disordered shell after hydrogenation. The RTA approach developed here can be used as a suitable hydrogenation process for TiO 2 nanorods

  16. Exact Solutions to the Symmetric and Asymmetric Vehicle Routing Problem with Simultaneous Delivery and Pick-Up

    Directory of Open Access Journals (Sweden)

    Julia Rieck

    2013-05-01

    Full Text Available In reverse logistics networks, products (e.g., bottles or containers have to be transported from a depot to customer locations and, after use, from customer locations back to the depot. In order to operate economically beneficial, companies prefer a simultaneous delivery and pick-up service. The resulting Vehicle Routing Problem with Simultaneous Delivery and Pick-up (VRPSDP is an operational problem, which has to be solved daily by many companies. We present two mixed-integer linear model formulations for the VRPSDP, namely a vehicle-flow and a commodity-flow model. In order to strengthen the models, domain-reducing preprocessing techniques, and effective cutting planes are outlined. Symmetric benchmark instances known from the literature as well as new asymmetric instances derived from real-world problems are solved to optimality using CPLEX 12.1.

  17. New formulation and branch-and-cut algorithm for the pickup and delivery traveling salesman problem with multiple stacks: new formulation and branch-and-cut algorithm

    NARCIS (Netherlands)

    Sampaio Oliveira, A.H.; Urrutia, S.

    2017-01-01

    In this paper, we consider the pickup and delivery traveling salesman problem with multiple stacks in which a single vehicle must serve a set of customer requests defined by a pair of pickup and delivery destinations of an item. The vehicle contains a fixed number of stacks, where each item is

  18. Background and Pickup Ion Velocity Distribution Dynamics in Titan's Plasma Environment: 3D Hybrid Simulation and Comparison with CAPS T9 Observations

    Science.gov (United States)

    Lipatov, A. S.; Sittler, E. C., Jr.; Hartle, R. E.; Cooper, J. F.; Simpson, D. G.

    2011-01-01

    In this report we discuss the ion velocity distribution dynamics from the 3D hybrid simulation. In our model the background, pickup, and ionospheric ions are considered as a particles, whereas the electrons are described as a fluid. Inhomogeneous photoionization, electron-impact ionization and charge exchange are included in our model. We also take into account the collisions between the ions and neutrals. The current simulation shows that mass loading by pickup ions H(+); H2(+), CH4(+) and N2(+) is stronger than in the previous simulations when O+ ions are introduced into the background plasma. In our hybrid simulations we use Chamberlain profiles for the atmospheric components. We also include a simple ionosphere model with average mass M = 28 amu ions that were generated inside the ionosphere. The moon is considered as a weakly conducting body. Special attention will be paid to comparing the simulated pickup ion velocity distribution with CAPS T9 observations. Our simulation shows an asymmetry of the ion density distribution and the magnetic field, including the formation of the Alfve n wing-like structures. The simulation also shows that the ring-like velocity distribution for pickup ions relaxes to a Maxwellian core and a shell-like halo.

  19. Calculation of axial hydrogen redistribution on the spent fuels during interim dry storage

    International Nuclear Information System (INIS)

    Sasahara, Akihiro; Matsumura, Tetsuo

    2006-01-01

    One of the phenomena that will affect fuel integrity during a spent fuel dry storage is a hydrogen axial migration in cladding. If there is a hydrogen pickup in cladding in reactor operation, hydrogen will move from hotter to colder cladding region in the axial direction under fuel temperature gradient during dry storage. Then hydrogen beyond solubility limit in colder region will be precipitated as hydride, and consequently hydride embrittlement may take place in the cladding. In this study, hydrogen redistribution experiments were carried out to obtain the data related to hydrogen axial migration by using actually twenty years dry (air) stored spent PWR-UO 2 fuel rods of which burn-ups were 31 and 58 MWd/kg HM. From the hydrogen redistribution experiments, the heat of transport of hydrogen of zircaloy-4 cladding from twenty years dry stored spent PWR-UO 2 fuel rods were from 10.1 to 18.6 kcal/mol and they were significantly larger than that of unirradiated zircaloy-4 cladding. This means that hydrogen in irradiated cladding can move easier than that in unirradiated cladding. In the hydrogen redistribution experiments, hydrogen diffusion coefficients and solubility limit were also obtained. There are few differences in the diffusion coefficients and solubility limits between the irradiated cladding and unirradiated cladding. The hydrogen redistribution in the cladding after dry storage for forty years was evaluated by one-dimensional diffusion calculation using the measured values. The maximum values as the heat of transports, diffusion coefficients and solubility limits of the irradiated cladding and various spent fuel temperature profiles reported were used in the calculation. The axial hydrogen migration was not significant after dry storage for forty years in helium atmosphere and the maximum values as the heat of transports, diffusion coefficients and solubility limits of the unirradiated cladding gave conservative evaluation for hydrogen redistribution

  20. SCC growth behavior of stainless steel weld heat-affected zone in hydrogenated high temperature water

    International Nuclear Information System (INIS)

    Yamada, Takuyo; Terachi, Takumi; Miyamoto, Tomoki; Arioka, Koji

    2010-01-01

    It is known that the SCC growth rate of stainless steels in high-temperature water is accelerated by cold-work (CW). The weld heat-affected-zone (HAZ) of stainless steels is also deformed by weld shrinkage. However, only little have been reported on the SCC growth of weld HAZ of SUS316 and SUS304 in hydrogenated high-temperature water. Thus, in this present study, SCC growth experiments were performed using weld HAZ of stainless steels, especially to obtain data on the dependence of SCC growth on (1) temperature and (2) hardness in hydrogenated water at temperatures from 250degC to 340degC. And then, the SCC growth behaviors were compared between weld HAZ and CW stainless steels. The following results have been obtained. Significant SCC growth were observed in weld HAZ (SUS316 and SUS304) in hydrogenated water at 320degC. The SCC growth rates of the HAZ are similar to that of 10% CW non-sensitized SUS316, in accordance with that the hardness of weld HAZ is also similar to that of 10% CW SUS316. Temperature dependency of SCC growth of weld HAZ (SUS316 and SUS304) is also similar to that of 10% CW non-sensitized SUS316. That is, no significant SCC were observed in the weld HAZ (SUS316 and SUS304) in hydrogenated water at 340degC. This suggests that SCC growth behaviors of weld HAZ and CW stainless steels are similar and correlated with the hardness or yield strength of the materials, at least in non-sensitized regions. And the similar temperature dependence between the HAZ and CW stainless steels suggests that the SCC growth behaviors are also attributed to the common mechanism. (author)

  1. Beam position pickup for antiprotons to the ISR

    CERN Multimedia

    CERN PhotoLab

    1981-01-01

    The Antiproton Project, launched for proton-antiproton collisions in the SPS (SPS collider), had a side-line for p-pbar collisions in the ISR. A new transfer line, TT6, was constructed to transport antiprotons from the 26 GeV PS to the injection line TT1 of ISR ring 2. Antiprotons were a scarce commodity. For setting up the lines, beam diagnostic devices in the antiproton path had to work reliably and precisely with just a few low-intensity pilot pules: single bunches of about 2x10**9 antiprotons every few hours. Electrostatic pickup electrodes were used to measure beam position. They could be mounted for measurement in the horizontal plane, as in this picture, or at 90 deg, for the vertical plane.

  2. Influence of surface treatments on micropore structure and hydrogen adsorption behavior of nanoporous carbons.

    Science.gov (United States)

    Kim, Byung-Joo; Park, Soo-Jin

    2007-07-15

    The scope of this work was to control the pore sizes of porous carbons by various surface treatments and to investigate the relation between pore structures and hydrogen adsorption capacity. The effects of various surface treatments (i.e., gas-phase ozone, anodic oxidation, fluorination, and oxygen plasma) on the micropore structures of porous carbons were investigated by N(2)/77 K isothermal adsorption. The hydrogen adsorption capacity was measured by H(2) isothermal adsorption at 77 K. In the result, the specific surface area and micropore volume of all of the treated samples were slightly decreased due to the micropore filling or pore collapsing behaviors. It was also found that in F(2)-treated carbons the center of the pore size distribution was shifted to left side, meaning that the average size of the micropores decreased. The F(2)- and plasma-treated samples showed higher hydrogen storage capacities than did the other samples, the F(2)-treated one being the best, indicating that the micropore size of the porous carbons played a key role in the hydrogen adsorption at 77 K.

  3. A study of hydrogen environment effects on microstructure property behavior of NASA-23 alloy and related alloy systems

    Science.gov (United States)

    Diwan, Ravinder M.

    1990-01-01

    This work is part of the overall advanced main combustion chamber (AMCC) casting characterization program of the Materials and Processes Laboratory of the Marshall Space Flight Center. The influence of hydrogen on the tensile properties and ductility behavior of NASA-23 alloy were analyzed. NASA-23 and other referenced alloys in cast and hipped conditions were solution treated and aged under selected conditions and characterized using optical metallography, scanning electron microscopy, and electron microprobe analysis techniques. The yield strength of NASA-23 is not affected much by hydrogen under tensile tests carried at 5000 psig conditions; however, the ultimate strength and ductility properties are degraded. This implies that the physical mechanisms operating would be related to the plastic deformation process. The fracture surfaces characteristics of NASA-23 specimens tensile tested in hydrogen, helium, and air were also analyzed. These revealed surface cracks around specimen periphery with the fracture surface showing a combination of intergranular and transgranular modes of fracture. It is seen that the specimens charged in hydrogen seem to favor a more brittle fracture mode in comparison to air and helium charged specimens. The AMCC casting characterization program is to be analyzed for their hydrogen behavior. As a result of this program, the basic microstructural factors and fracture characteristics in some cases were analyzed.

  4. A Data-driven Model of the Solar Wind, Interstellar Pickup Ions, and Turbulence Throughout the Interplanetary Space

    Science.gov (United States)

    Kim, T. K.; Kryukov, I.; Pogorelov, N. V.; Elliott, H. A.; Zank, G. P.

    2017-12-01

    The outer heliosphere is an interesting region characterized by the interaction between the solar wind and the interstellar neutral atoms. Having accomplished the mission to Pluto in 2015 and currently on the way to the Kuiper Belt, the New Horizons spacecraft is following the footsteps of the two Voyager spacecraft that previously explored this region lying roughly beyond 30 AU from the Sun. We model the three-dimensional, time-dependent solar wind plasma flow to the outer heliosphere using our own software Multi-Scale Fluid-Kinetic Simulation Suite (MS-FLUKSS), which, in addition to the thermal solar wind plasma, takes into account charge exchange of the solar wind protons with interstellar neutral atoms and treats nonthermal ions (i.e., pickup ions) born during this process as a separate fluid. Additionally, MS-FLUKSS allows us to model turbulence generated by pickup ions. We use MS-FLUKSS to investigate the evolution of plasma and turbulent fluctuations along the trajectory of the New Horizons spacecraft using plasma and turbulence parameters from OMNI data as time-dependent boundary conditions at 1 AU for the Reynolds-averaged MHD equations. We compare the model with in situ plasma observations by New Horizons, Voyager 2, and Ulysses. We also compare the model pickup proton parameters with those derived from the Ulysses-SWICS data.

  5. Receivers for processing electron beam pick-up electrode signals

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    There are several methods of determining the transverse position of the electron beam, based upon sensing either the electric field, the magnetic field, or both. At the NSLS the transverse beam position monitors each consist of a set of four circular electrodes. There are 48 sets of pick-up electrodes in the X-ray ring and 24 in the VUV storage ring for determining the electron orbit, and a few extra sets installed for specialized purposes. When the beam passes between the four electrodes, charge is induced on each electrode, the amount depending upon the distance of the beam from that electrode. If V a , V b , V c and V d given by a difference between pairs of electrodes normalized for variations in beam current by dividing by the sum of electrode voltages. The method of processing these signals depends upon their time structure. The electrons circulating around the vacuum chamber are concentrated in short bunches within stability buckets produced by the accelerating voltage in the RF cavities. The charges induced on the pickup electrodes then are narrow pulses, a fraction of a nanosecond long, and would result in a monopolar voltage pulses if it were not for the impedance of the cable connecting the electrode to the processing apparatus. The capacitance between each electrode and the chamber wall is only a few picofarads and is effectively in parallel with the cable impedance (50 ohms). Thus an appreciable amount of the charge flows off the electrode while the bunch is between the electrodes, resulting in potential of opposite sign as the bunch is leaving the vicinity of the electrode. The resulting signal consists of a series of bipolar pulses, each of less than one nanosecond duration

  6. Quantitative separation of the influence of hydrogen bonding of ethanol/water mixture on the shape recovery behavior of polyurethane shape memory polymer

    International Nuclear Information System (INIS)

    Lu, Haibao; Leng, Jinsong; Min Huang, Wei; Fu, Y Q

    2014-01-01

    A thermally responsive polyurethane shape memory polymer (SMP) can be actuated in water through a hydrogen bonding interaction between water and the SMP. In this work, we present a comprehensive approach to quantify the hydrogen bonding on the shape recovery behavior of a polyurethane SMP. The stimuli response to the hydrogen bonding of the polyurethane SMP was investigated in ethanol/water mixtures by varying the water content. It was found that depending on the water content, the SMP features a critical hydrogen bonding strength associated with its shape recovery behavior. The Hildebrand solubility parameter theory was employed to quantitatively identify and separate the hydrogen bonding effect of the ethanol/water mixture on the shape recovery ratio and the time. Furthermore, a phenomenological model was developed to predict the glass transition temperature and the shape recovery time of a polyurethane SMP and was verified by the available experimental results. (paper)

  7. Final version of the pick-up wheels in the Pelletron tandem accelerator at Lund

    International Nuclear Information System (INIS)

    Hakansson, K.; Hellborg, R.

    1993-01-01

    A new type of pick-up wheel has been designed and constructed for the charge transport system of the Lund 3UDH Pelletron tandem accelerator. The major improvements compared with older types are a slender design with only one ball bearing and more robust contact pins with a rubber ring between the pinhead and the wheel nave. (orig.)

  8. Heliospheric pick-up ions influencing thermodynamics and dynamics of the distant solar wind

    Directory of Open Access Journals (Sweden)

    H. J. Fahr

    2002-01-01

    Full Text Available Neutral interstellar H-atoms penetrate into the inner heliosphere and upon the event of ionization are converted into pick-up ions (PUIs. The magnetized solar wind flow incorporates these ions into the plasma bulk and enforces their co-motion. By nonlinear interactions with wind-entrained Alfvén waves, these ions are then processed in the comoving velocity space. The complete pick-up process is connected with forces acting back to the original solar wind ion flow, thereby decelerating and heating the solar wind plasma. As we show here, the resulting deceleration cannot be treated as a pure loading effect, but requires adequate consideration of the action of the pressure of PUI-scattered waves operating by the PUI pressure gradient. Hereby, it is important to take into proper account the stochastic acceleration which PUIs suffer from at their convection out of the inner heliosphere by quasi-linear interactions with MHD turbulences. Only then can the presently reported VOYAGER observations of solar wind decelerations and heatings in the outer heliosphere be understood in view of the most likely values of interstellar gas parameters, such as an H-atom density of 0.12 cm-3 . Solar wind protons (SWPs appear to be globally heated in their motion to larger solar distances. Ascribing the needed heat transfer to the action of suprathermal PUIs, which drive MHD waves that are partly absorbed by SWPs, in order to establish the observed SWP polytropy, we can obtain a quantitative expression for the solar wind proton pressure as a function of solar distance. This expression clearly shows the change from an adiabatic to a quasi-polytropic SWP behaviour with a decreasing polytropic index at increasing distances. This also allows one to calculate the average percentage of initial pick-up energy fed into the thermal proton energy. In a first order evaluation of this expression, we can estimate that about 10% of the initial PUI injection energy is eventually

  9. 49 CFR 1242.76 - Administration; pickup and delivery, marine line haul, and rail substitute service; loading...

    Science.gov (United States)

    2010-10-01

    ... haul, and rail substitute service; loading, unloading and local marine; protective services; freight... SEPARATION OF COMMON OPERATING EXPENSES BETWEEN FREIGHT SERVICE AND PASSENGER SERVICE FOR RAILROADS 1 Operating Expenses-Transportation § 1242.76 Administration; pickup and delivery, marine line haul, and rail...

  10. Hydrogen assisted cracking and CO2 corrosion behaviors of low-alloy steel with high strength used for armor layer of flexible pipe

    Science.gov (United States)

    Liu, Zhenguang; Gao, Xiuhua; Du, Linxiu; Li, Jianping; Zhou, Xiaowei; Wang, Xiaonan; Wang, Yuxin; Liu, Chuan; Xu, Guoxiang; Misra, R. D. K.

    2018-05-01

    In this study, hydrogen induced cracking (HIC), sulfide stress corrosion cracking (SSCC) and hydrogen embrittlement (HE) were carried out to study hydrogen assisted cracking behavior (HIC, SSCC and HE) of high strength pipeline steel used for armor layer of flexible pipe in ocean. The CO2 corrosion behavior of designed steel with high strength was studied by using immersion experiment. The experimental results demonstrate that the corrosion resistance of designed steel with tempered martensite to HIC, SSCC and HE is excellent according to specific standards, which contributes to the low concentration of dislocation and vacancies previously formed in cold rolling process. The corrosion mechanism of hydrogen induced cracking of designed steel, which involves in producing process, microstructure and cracking behavior, is proposed. The designed steel with tempered martensite shows excellent corrosion resistance to CO2 corrosion. Cr-rich compound was first formed on the coupon surface exposed to CO2-saturated brine condition and chlorine, one of the corrosion ions in solution, was rich in the inner layer of corrosion products.

  11. A spin-filter polarimeter for low energy hydrogen and deuterium ion beams

    International Nuclear Information System (INIS)

    Lemieux, S.K.; Clegg, T.B.; Karwowski, H.J.; Thompson, W.J.; Crosson, E.R.

    1993-01-01

    An efficient polarimeter which reveals populations of individual hyperfine states of nuclear-spin-polarized H ± (or D ± ) ion beams has been tested. This device is based on unique properties of a three-level interaction in the 2S 1/2 and 2P 1/2 states of hydrogen (or deuterium) atoms, created when the incident, polarized ion beams undergo electron pickup in cesium vapour. Used on a polarized ion source, its efficiency faciy facilitates both rapid optimization and continual monitoring of parameters that affect the beam polarization. With such sources, and perhaps in applications with polarized gas jet targets, the device has potential for an absolute accuracy of better than 2%. (orig.)

  12. An Inventory-Routing Problem with Pickups and Deliveries Arising in the Replenishment of Automated Teller Machines

    NARCIS (Netherlands)

    van Anholt, Roel G.; Coelho, Leandro C.; Laporte, Gilbert; Vis, Iris F. A.

    The purpose of this paper is to introduce, model, and solve a rich multiperiod inventory-routing problem with pickups and deliveries motivated by the replenishment of automated teller machines in the Netherlands. Commodities can be brought to and from the depot, as well as being exchanged among

  13. An inventory-routing problem with pickups and deliveries arising in the replenishment of automated teller machines

    NARCIS (Netherlands)

    Van Anholt, Roel G.; Coelho, Leandro C.; Laporte, Gilbert; Vis, Iris F.A.

    2016-01-01

    The purpose of this paper is to introduce, model, and solve a rich multiperiod inventory-routing problem with pickups and deliveries motivated by the replenishment of automated teller machines in the Netherlands. Commodities can be brought to and from the depot, as well as being exchanged among

  14. Hydrogen transport behavior of beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Anderl, R.A.; Hankins, M.R.; Longhurst, G.R.; Pawelko, R.J. (Idaho National Engineering Lab., EG and G Idaho, Inc., Idaho Falls, ID (United States)); Macaulay-Newcombe, R.G. (Dept. of Engineering Physics, Univ. Hamilton, ON (Canada))

    1992-12-01

    Beryllium is being evaluated for use as a plasma-facing material in the International Thermonuclear Experimental Reactor (ITER). One concern in the evaluation is the retention and permeation of tritium implanted into the plasma-facing surface. We performed laboratory-scale studies to investigate mechanisms that influence hydrogen transport and retention in beryllium foil specimens of rolled powder metallurgy product and rolled ingot cast beryllium. Specimen characterization was accomplished using scanning electron microscopy. Auger electron spectroscopy, and Rutherford backscattering spectrometry (RBS) techniques. Hydrogen transport was investigated using ion-beam permeation experiments and nuclear reaction analysis (NRA). Results indicate that trapping plays a significant role in permeation, re-emission, and retention, and that surface processes at both upstream and downstream surfaces are also important. (orig.).

  15. Understanding the Interaction between a Steel Microstructure and Hydrogen

    Science.gov (United States)

    Depover, Tom; Laureys, Aurélie; Wallaert, Elien

    2018-01-01

    The present work provides an overview of the work on the interaction between hydrogen (H) and the steel’s microstructure. Different techniques are used to evaluate the H-induced damage phenomena. The impact of H charging on multiphase high-strength steels, i.e., high-strength low-alloy (HSLA), transformation-induced plasticity (TRIP) and dual phase (DP) is first studied. The highest hydrogen embrittlement resistance is obtained for HSLA steel due to the presence of Ti- and Nb-based precipitates. Generic Fe-C lab-cast alloys consisting of a single phase, i.e., ferrite, bainite, pearlite or martensite, and with carbon contents of approximately 0, 0.2 and 0.4 wt %, are further considered to simplify the microstructure. Finally, the addition of carbides is investigated in lab-cast Fe-C-X alloys by adding a ternary carbide forming element to the Fe-C alloys. To understand the H/material interaction, a comparison of the available H trapping sites, the H pick-up level and the H diffusivity with the H-induced mechanical degradation or H-induced cracking is correlated with a thorough microstructural analysis. PMID:29710803

  16. Process improvements for enhanced productivity of PHWR garter springs

    International Nuclear Information System (INIS)

    Srinivasula Reddy, S.; Tonpe, Sunil; Saibaba, N.; Jayaraj, R.N.

    2009-01-01

    Full text: In Pressurised Heavy Water Reactors (PHWR), Garter springs are used as spacers between the coolant tube and calandria tube. Garter springs are made from Zirconium alloy containing 2.5 % Niobium and 0.5% copper. The springs are basically manufactured by coiling a wire of cross section 1.7 mm x 1.0 mm, which is produced by series of drawing and swaging operations using hot extruded rods of 19 mm diameter. The manufacturing process also involves heat treatment and chemical cleaning operations at appropriate stages. It is required to ensure that the life of springs against parameters like hydrogen pickup, residual stresses and low stiffness is improved at the manufacturing stage itself by improving manufacturing process. The impact of above problems on spring life and process improvements is briefly discussed. The critical factor affecting the garter spring performance in PHWR Reactor is mainly hydrogen. The life limiting factors for garter springs are the problems arising out of high total hydrogen content, which depends on the hydrogen pickup during reactor operation. This phenomenon can happen during the reactor operation, as springs are prone to pick-up hydrogen in the reactor environment. Hence acceptable hydrogen content for the springs is specified as 25 ppm (max.). Garter spring is susceptible to hydrogen pick-up during various production processes, which make material brittle and difficult for fabrication process such as wire drawing and coiling. By studying and optimizing the process parameters of spring manufacturing, the hydrogen pick-up of springs is brought down from 70 ppm to a level of 20 ppm. Garter springs are provided with a hook at each end to enable its assembly to coolant tube in the reactor. The hook portion is very critical in maintaining the integrity of the spring. It is desirable to have the hook portion relieved of all residual stresses. For this purpose manufacturing process has been modified and solutionising was introduced as

  17. Correlation between Fatigue Crack Growth Behavior and Fracture Surface Roughness on Cold-Rolled Austenitic Stainless Steels in Gaseous Hydrogen

    Directory of Open Access Journals (Sweden)

    Tai-Cheng Chen

    2018-03-01

    Full Text Available Austenitic stainless steels are often considered candidate materials for use in hydrogen-containing environments because of their low hydrogen embrittlement susceptibility. In this study, the fatigue crack growth behavior of the solution-annealed and cold-rolled 301, 304L, and 310S austenitic stainless steels was characterized in 0.2 MPa gaseous hydrogen to evaluate the hydrogen-assisted fatigue crack growth and correlate the fatigue crack growth rates with the fracture feature or fracture surface roughness. Regardless of the testing conditions, higher fracture surface roughness could be obtained in a higher stress intensity factor (∆K range and for the counterpart cold-rolled specimen in hydrogen. The accelerated fatigue crack growth of 301 and 304L in hydrogen was accompanied by high fracture surface roughness and was associated with strain-induced martensitic transformation in the plastic zone ahead of the fatigue crack tip.

  18. Semiclassical asymptotic behavior and the rearrangement mechanisms for Coulomb particles

    International Nuclear Information System (INIS)

    Bogdanov, A.V.; Gevorkyan, A.S.; Dubrovskii, G.V.

    1986-01-01

    The semiclassical asymptotic behavior of the eikonal amplitude of the resonance rearrangement in a system of three Coulomb particles is studied. It is shown that the general formula for the amplitude correctly describes two classical mechanisms (pickup and knockout) and one nonclassical mechanism (stripping). The classical mechanisms predominate at high energies, while the stripping mechanism predominates at lower energies. In the region of medium energies the dominant mechanism is the pickup (or Thomas) mechanism, which is realized by nonclassical means. For such transitions the classical cross section diverges, and the amplitude must be computed on a complex trajectory. The physical reasons for introducing the approximate complex trajectories are discussed. The contributions of all the mechanisms to the rearrangement cross section are found in their analytic forms

  19. Pick-Up Ion Instabilities at Planetary Magnetospheres

    Science.gov (United States)

    Strangeway, Robert J.; Sharber, James (Technical Monitor)

    2001-01-01

    This effort involved the analysis of low frequency waves as observed by the Galileo spacecraft near the Galilean moon, Io. Io is a significant source of material, especially SO2, and various products of dissociation, and further these atoms and molecules are readily ionized. The initial velocity of the ions is essentially that of the neutral species, i.e., the Keplerian velocity. The plasma, on the other hand is co-rotating, and there is a differential flow of the order 57 km/s between the plasma and the neutral particles. Thus pick-up ion instabilities are Rely to occur within the Jovian magnetosphere. Indeed, magnetometer observations from the Galileo spacecraft clearly show ion cyclotron waves that have been identified with a large variety of plasma species, such as O+, S++ (which has the same gyro-frequency as O+), S+, and SO2+. Typically, however, the dominant frequency is near the SO2+ gyro-frequency. The research effort was originally planned to be a team effort between Robert J. Strangeway as the Principal Investigator, and Debbie Huddleston, who was an Assistant Research Geophysicist at UCLA. Unfortunately, Dr. Huddleston took a position within Industry. The effort was therefore descoped, and Dr. Strangeway instead pursued a collaboration with Dr. Xochitl Blanco-Cano, of the Instituto de Geofisica, Universidad Nacional Autonoma de Mexico. This has proved to be a productive collaboration, with several papers and publications arising out of the effort. The magnetic field oscillations near lo generally fall into two types: ion cyclotron waves, with frequencies near an ion gyro-frequency, and lower frequency mirror-mode waves. The ion cyclotron waves are mainly transverse, and frequently propagate along the ambient magnetic field. The mirror-mode waves are compressional waves, and they have essentially zero frequency in the plasma rest frame. One of the purposes of our investigation is to understand what controls the types of wave modes that occur, since both

  20. The influence of hydrogen on the deformation behavior of zircaloy 4

    International Nuclear Information System (INIS)

    Flanagan, M. E.; Koss, D. A.; Motta, A. T.

    2008-01-01

    The deformation behavior of Zr based cladding forms a basis for fuel behavior codes and affects failure criteria; as such, it is critical to reactor safety. The present study examines the influence of hydrogen on the uniaxial deformation behavior of hydrided cold worked and stress relieved Zircaloy 4 plate material. Specimens of various orientations (i.e., stress axis aligned with the rolling direction, the transverse direction, or normal to the plate surface direction) were tested in compression at a range of temperatures (25 .deg. , 300 .deg. , and 400 .deg. C), and strain rates (from 10-4/s to 10-1/s). Contrasting the deformation behavior of the material containing ∼45 wt ppm H with that of the material containing ∼420 wt. ppm H shows that increasing H content (a) causes a small decrease in the 0.2% yield stress that is eliminated at 1.0% flow stress, (b) increases the strain hardening in the rolling direction but not in the other orientations, (c) has no effect on the temperature dependence of the strain hardening, and (d) does not affect the strain rate hardening behavior. Increasing H content also has no observable effect on the high degree of plastic anisotropy of this plate material which is manifested in difficult through thickness deformation, resulting in high flow stresses for specimens oriented in the normal to plate surface direction

  1. High pressure oxidation of sponge-Zr in steam/hydrogen mixtures

    International Nuclear Information System (INIS)

    Kim, Y.S.

    1997-01-01

    A thermogravimetric apparatus for operation in 1 and 70 atm steam-hydrogen or steam-helium mixtures was used to investigate the oxidation kinetics of sponge-Zr containing 215 ppm Fe. Weight-gain rates, reflecting both oxygen and hydrogen uptake, were measured in the temperature range 350-400 C. The specimens consisted of thin sponge-Zr layers metallurgically bonded to a Zircaloy disk. The edges of the disk specimens were coated with a thin layer of pure gold to avoid the deleterious effect of corners. Following each experiment, the specimens were examined metallographically to reveal the morphology of the oxide and/or hydride formed. Two types of oxide, one black and uniform and the other white and nodular, were observed on sponge-Zr surfaces oxidized in steam environments at 70 atm. The oxidation rate when white-nodular oxide formed was a factor of two higher than that of black-uniform oxide at 400 C for steam contents above 1 mol%. The oxidation rate was independent of total pressure, the carrier gas (H 2 or He) and steam content above ∝1 mol%. The oxidation kinetics of sponge-Zr follows a linear law for maximum reaction times up to ∝6 days. The oxidation rate in steam-hydrogen mixtures at 70 atm total pressure decreases when the steam content approaches the steam-starved region (∝0.5 mol% steam at 400 C and ∝0.02 mol% steam at 350 C). Lower steam concentrations cause massive hydriding of the specimens. Even at steam concentrations above the critical value, direct hydrogen absorption from the gas was manifest by hydrogen pickup fractions greater than unity. (orig.)

  2. Notch Effect on Tensile Deformation Behavior of 304L and 316L Steels in Liquid Helium and Hydrogen

    International Nuclear Information System (INIS)

    Shibata, K.; Fujii, H.

    2004-01-01

    Tensile tests of type 304L and 316L steels were carried out using round bar specimens with a notch in liquid helium, hydrogen, liquid nitrogen and at ambient temperature. The obtained tensile strengths were compared with the tensile strengths of smooth specimens. For smooth specimens, tensile strength increased with a decrease in temperature and the strengths in liquid helium and hydrogen show similar values in both steels. For notched specimen of 304L steel, tensile strength (including fracture strength) increased noticeably from ambient to liquid nitrogen temperature but showed a large decrease in liquid helium and hydrogen. In liquid hydrogen and helium, the tensile strength is a little lower in liquid hydrogen than in liquid helium and both strengths are lower than tensile strengths of smooth specimens. For notched specimen of 316L steel, an increase in tensile strength from ambient to liquid nitrogen temperature was not so large and a decrease from liquid nitrogen to liquid hydrogen was small. The tensile strengths in liquid helium and hydrogen were nearly same and higher than those of smooth specimens. Different behavior of serration was observed between liquid helium and hydrogen, and between 304L and 316L steels. The reasons for these differences were discussed using computer simulation

  3. Thermomechanical behavior modeling and experimental validation of polymer-wound composite multi-layers. Hydrogen storage application

    International Nuclear Information System (INIS)

    Gentilleau, Benoit

    2012-01-01

    The purpose of this research is to study the thermomechanical behavior of the constituent materials of a type IV hydrogen storage tank: a composite, ensuring the strength, is wound around the polyurethane liner that ensures sealing of the tank and thermal insulation; at the extremities, stainless steel parts are used to allow the process connection. In this type of tank, during filling, there is a significant increase in hydrogen temperature, resulting in a gradual heating of the structure and the presence of temperature gradients. The purpose of this study is primarily to characterize the behavior of such a structure when subjects to complex thermomechanical loading. Initially, mechanical and thermal characterization tests have been made over the service life range of temperature of the tank to obtain the necessary data for the realization of a thermomechanical numerical model. Then, a behavior law of the composite, easily transferable to a complex structure such as the whole tank and taking into account the non-linearity, the matrix damage, the progressive loss of shear modulus, and the thermo-dependence of the materials parameters, is developed. The tests on technological representative specimens have been performed to better understand the mechanisms that can appear in the tank and to validate the model. Finally, a numerical study of a tank was performed. The coupled influence of temperature and damage matrix on the behavior of this structure is analyzed. (author)

  4. Study on transient hydrogen behavior and effect on passive containment cooling system of the advanced PWR

    International Nuclear Information System (INIS)

    Wang Yan

    2014-01-01

    A certain amount of hydrogen will be generated due to zirconium-steam reaction or molten corium concrete interaction during severe accidents in the pressurized water reactor (PWR). The generated hydrogen releases into the containment, and the formed flammable mixture might cause deflagration or detonation to produce high thermal and pressure loads on the containment, which may threaten the integrity of the containment. The non-condensable hydrogen in containment may also reduce the steam condensation on the containment surface to affect the performance of the passive containment cooling system (PCCS). To study the transient hydrogen behavior in containment with the PCCS performance during the accidents is significant for the further study on the PCCS design and the hydrogen risk mitigation. In this paper, a new developed PCCS analysis code with self-reliance intellectual property rights, which had been validated by comparison on the transients in the containment during the design basis accidents with other developed PCCS analysis code, is brief introduced and used for the transient simulation in the containment under a postulated small break LOCA of cold-leg. The results show that the hydrogen will flow upwards with the coolant released from the break and spread in the containment by convection and diffusion, and it results in the increase of the pressure in the containment due to reducing the heat removal capacity of the PCCS. (author)

  5. Healing behavior of preexisting hydrogen micropores in aluminum alloys during plastic deformation

    International Nuclear Information System (INIS)

    Toda, H.; Minami, K.; Koyama, K.; Ichitani, K.; Kobayashi, M.; Uesugi, K.; Suzuki, Y.

    2009-01-01

    Synchrotron X-ray microtomography was used to observe the shrinkage and annihilation behaviors of hydrogen micropores in three dimensions during hot and cold plastic deformation of an Al-Mg alloy. Whether complete healing of micropores is achieved after plastic deformation was examined by exposing the material to a high temperature after plastic deformation. Although micropores generally show a pattern of shrinking and closing, closer inspection of a single specimen revealed a variety of geometrically variable behaviors. It is noteworthy that some of the micropores are reinitiated in positions identical to those before their annihilation, even after an 8-22% macroscopic strain has been further applied after annihilation. We attribute local variations such as these to significant local strain variation, which we measured in a series of tomographic volumes by tracking the microstructural features.

  6. Hydrogen isotope effect on storage behavior of U{sub 2}Ti and UZr{sub 2.3}

    Energy Technology Data Exchange (ETDEWEB)

    Jat, Ram Avtar; Sawant, S.G.; Rajan, M.B.; Dhanuskar, J.R. [Product Development Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Kaity, Santu [Radiometallurgy Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Parida, S.C., E-mail: sureshp@barc.gov.in [Product Development Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2013-11-15

    U{sub 2}Ti and UZr{sub 2.3} alloys were prepared by arc melting method, vacuum annealed and characterized by XRD, SEM and EDX methods. Hydrogen isotope effect on the storage behavior of these alloys were studied by measuring the hydrogen/deuterium desorption pressure–composition–temperature (PCT) profiles in the temperature range of 573–678 K using a Sievert’s type volumetric apparatus. It was observed that, in the temperature and pressure range of investigation, all the isotherms show a single desorption plateau. The PCT data reveals that both U{sub 2}Ti and UZr{sub 2.3} alloys had normal isotope effects on hydrogen/deuterium desorption at all experimental temperatures. Thermodynamic parameters for dehydrogenation and dedeuteration reactions of the corresponding hydrides and deuterides of the above alloys were deduced from the PCT data.

  7. Process chemistry related to hydrogen isotopes

    International Nuclear Information System (INIS)

    Iwasaki, Matae; Ogata, Yukio

    1991-01-01

    Hydrogen isotopes, that is, protium, deuterium and tritium, are all related deeply to energy in engineering region. Deuterium and tritium exist usually as water in extremely thin state. Accordingly, the improvement of the technology for separating these isotopes is a large engineering subject. Further, tritium is radioactive and its half-life period is 12.26 years, therefore, it is desirable to fix it in more stable form besides its confinement in the handling system. As the chemical forms of hydrogen, the molecular hydrogen with highest reactivity, metal hydride, carbon-hydrogen-halogen system compounds, various inorganic hydrides, most stable water and hydroxides are enumerated. The grasping of the behavior from reaction to stable state of these hydrogen compounds and the related materials is the base of process chemistry. The reaction of exchanging isotopes between water and hydrogen on solid catalyzers, the decomposition of ethane halide containing hydrogen, the behavior of water and hydroxides in silicates are reported. The isotope exchange between water and hydrogen is expected to be developed as the process of separating and concentrating hydrogen isotopes. (K.I.) 103 refs

  8. Multiferroic behavior associated with an order-disorder hydrogen bonding transition in metal-organic frameworks (MOFs) with the perovskite ABX3 architecture.

    Science.gov (United States)

    Jain, Prashant; Ramachandran, Vasanth; Clark, Ronald J; Zhou, Hai Dong; Toby, Brian H; Dalal, Naresh S; Kroto, Harold W; Cheetham, Anthony K

    2009-09-30

    Multiferroic behavior in perovskite-related metal-organic frameworks of general formula [(CH(3))(2)NH(2)]M(HCOO)(3), where M = Mn, Fe, Co, and Ni, is reported. All four compounds exhibit paraelectric-antiferroelectric phase transition behavior in the temperature range 160-185 K (Mn: 185 K, Fe: 160 K; Co: 165 K; Ni: 180 K); this is associated with an order-disorder transition involving the hydrogen bonded dimethylammonium cations. On further cooling, the compounds become canted weak ferromagnets below 40 K. This research opens up a new class of multiferroics in which the electrical ordering is achieved by means of hydrogen bonding.

  9. A study on the hydrogen behavior and its mitigation in the APR1400 containment during a severe accident

    International Nuclear Information System (INIS)

    Kim, Jong Tae; Hong, Seong Wan; Park, Rae Joon; Kim, Sang Baik

    2005-02-01

    During a hypothetical severe accident in a nuclear power plant (NPP), hydrogen is generated by the active reaction of fuel-cladding and steam in the reactor pressure vessel and released with steam into the containment. In this study, the analysis of the hydrogen and steam behavior during selected severe accidents in the APR1400 containment has been conducted by using the GASFLOW code. For the SBLOCA, hydrogen was accumulated in the containment dome region quickly when only PARSs were used. When the igniters were turned on, a standing flame was formed around a coolant pump and burnt most of the hydrogen blown-out. For the TLOFW accident, the flap-type pressure damper installed at the IRWST vents strongly affected the flow structure of the hydrogen. And by the steam-rich and oxygen starvation conditions in the IRWST, DDT is not likely to occur. For the SBO accident, dry hydrogen was release in the IRWST by the assumption of full condensation of the released steam in the IRWST water. In this case, the possibility of flame acceleration is high in the IRWST and annular compartment. In this study two design modifications were proposed in view of the hydrogen mitigation strategy and their effectiveness was evaluated by the GASFLOW analysis

  10. The corrosion rate and the hydrogen absorption behavior of titanium under reducing condition-III. Research document

    International Nuclear Information System (INIS)

    Suzuki, H.; Taniguchi, N.; Kawakami, S.

    2005-03-01

    Titanium is one of the candidate materials for overpacks as a high corrosion resistance metal. At the initial stage of repository, oxidizing condition will be given around the overpack because oxygen will be brought from the ground. The oxygen will be consumed by the reaction with impurities in buffer material or corrosion of overpack, and reducing condition will be achieved around the overpack. With the changing of redox condition, the water reduction becomes to dominate the cathodic reaction accompanying hydrogen generation. Crevice corrosion and hydrogen embrittlement are main causes of the damage of long term integrity of titanium overpack. However, it is not known about the corrosion resistance and hydrogen absorption behavior of titanium under reduction condition. In this study, the completely sealed ampoule test and the immersion test of titanium in aqueous solution and bentonite was carried out. In order to obtain reliable data about the hydrogen generation rate and the ratio of hydrogen absorption in titanium. From the result of 3 years immersion tests, corrosion rate of titanium were estimated to be in the order of 10 -2 ∼10 -1 μm/y in the aqueous solution, and 10 -3 ∼10 -2 μm/y in bentonite. This value is almost the same as the last report. Almost all the hydrogen generated by corrosion was absorbed in titanium in the immersion tests in completely sealed ampoule. In the examination that changed each parameter, it was suggested that the amount of the hydrogen absorption become 2∼3 times in 1M HCO 3- and pH13. (author)

  11. One-nucleon pickup reactions and compound-nuclear decays

    Science.gov (United States)

    Escher, J. E.; Burke, J. T.; Casperson, R. J.; Hughes, R. O.; Scielzo, N. D.

    2018-05-01

    One-nucleon transfer reactions, long used as a tool to study the structure of nuclei, are potentially valuable for determining reaction cross sections indirectly. This is significant, as many reactions of interest to astrophysics and other applications involve short-lived isotopes and cannot be measured directly. We describe a procedure for obtaining constraints for calculations of neutron capture cross sections using observables from experiments with transfer reactions. As a first step toward demonstrating the method, we outline the theory developments used to properly describe the production of the compound nucleus 88Y* via the one-nucleon pickup reaction 89Y(p,d)88Y* and test the description with data from a recent experiment. We indicate how this development can be used to extract the unknown 87Y(n,γ) cross section from 89Y(p,dγ) data. The example illustrates a more generally applicable method for determining unknown cross sections via a combination of theory and transfer (or inelastic scattering) experiments.

  12. Simulated annealing with restart strategy for the blood pickup routing problem

    Science.gov (United States)

    Yu, V. F.; Iswari, T.; Normasari, N. M. E.; Asih, A. M. S.; Ting, H.

    2018-04-01

    This study develops a simulated annealing heuristic with restart strategy (SA_RS) for solving the blood pickup routing problem (BPRP). BPRP minimizes the total length of the routes for blood bag collection between a blood bank and a set of donation sites, each associated with a time window constraint that must be observed. The proposed SA_RS is implemented in C++ and tested on benchmark instances of the vehicle routing problem with time windows to verify its performance. The algorithm is then tested on some newly generated BPRP instances and the results are compared with those obtained by CPLEX. Experimental results show that the proposed SA_RS heuristic effectively solves BPRP.

  13. Hydrogen embrittlement and galvanic corrosion of titanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Soh, Jeong Ryong; Jeong, Y. H.; Choi, B. K.; Baek, J. H.; Hwang, D. Y.; Choi, B. S.; Lee, D. J

    2000-06-01

    The material properties including the fracture behavior of titanium alloys used as a steam generator tube in SMART can be degraded de to the hydrogen embrittlement and the galvanic corrosion occurring as a result of other materials in contact with titanium alloys in a conducting corrosive environment. In this report the general concepts and trends of hydrogen embrittlement are qualitatively described to adequately understand and expect the fracture behavior from hydrogen within the bulk of materials and under hydrogen containing environments because hydrogen embrittlement may be very complicated process. And the characteristics of galvanic corrosion closely related to hydrogen embrittlement is qualitatively based on wimple electrochemical theory.

  14. Hydrogen embrittlement and galvanic corrosion of titanium alloys

    International Nuclear Information System (INIS)

    Soh, Jeong Ryong; Jeong, Y. H.; Choi, B. K.; Baek, J. H.; Hwang, D. Y.; Choi, B. S.; Lee, D. J.

    2000-06-01

    The material properties including the fracture behavior of titanium alloys used as a steam generator tube in SMART can be degraded de to the hydrogen embrittlement and the galvanic corrosion occurring as a result of other materials in contact with titanium alloys in a conducting corrosive environment. In this report the general concepts and trends of hydrogen embrittlement are qualitatively described to adequately understand and expect the fracture behavior from hydrogen within the bulk of materials and under hydrogen containing environments because hydrogen embrittlement may be very complicated process. And the characteristics of galvanic corrosion closely related to hydrogen embrittlement is qualitatively based on wimple electrochemical theory

  15. Hydrogenation Behaviors of MgH{sub x}-Graphene Composites by Reactive Mechanical Grinding

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Min-hyuk; Park, So-Hyun; Hong, Tae-Whan [Korea National University of Transportation, Chungju (Korea, Republic of)

    2016-04-15

    In order to mitigate the disadvantage of the Mg hydrides, several studies have been conducted that have used MgH{sub x} intermixed with carbon. Graphene is a kind of carbon allotrope that is easily subject to a desorption reaction at low temperatures because such a reaction is exothermic. In this work, an MgH{sub x}-graphene mixture has been prepared by reactive mechanical grinding. The synthesized powder was characterized by X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and simultaneous thermogravimetric (TG) and differential scanning calorimetric (DSC) analyses. The hydrogenation behaviors were evaluated using a Sievert’s type automatic pressure-composition-temperature (PCT) apparatus without activation treatment. From the characteristics of the absorption kinetics and the curves observed, the role of graphene as a catalyst in hydrogen absorption was determined. According to the results of the PCI curve, the available hydrogen storage amounts for MgH{sub x}-5 wt% graphene composites had maximum values of 3.69, 5.09, and 5.72 wt% at 423, 523, and 623 K, respectively. Those values for MgH{sub x}-10 wt% graphene were 5.08, 5.45, and 5.83 wt% at 423, 523, and 673K, respectively.

  16. The effect of Fe and C in modifying deuterium pickup in Zr-2.5Nb: a response surface analysis

    International Nuclear Information System (INIS)

    Ploc, R.A.

    2001-03-01

    A Response Surface Analysis of the effect of iron and carbon in Zr-2.5Nb-Fe/C drop-castings has shown that iron and carbon have at least a quadratic, synergistic relationship on oxidation and deuterium pickup. Tests were performed in the Halden test reactor and associated autoclave for 208 days at 598 K (325 o C). The synergism explains why pressure tube data have limited value when attempting to deduce the effect of impurity elements on pick up. Out- and in-reactor pick up were similar in trend and magnitude except for the in-reactor deuterium pickup, which was about one-quarter of that out-reactor. Minimum in-reactor deuterium ingress is predicted for 30 ppm (wt) carbon and approximately 1,100 ppm (wt) of iron. Out-reactor optimal values are similar but with slightly higher iron values. (author)

  17. On measuring the UNK SC-dipole bending strength with rotating pick-up coil

    International Nuclear Information System (INIS)

    Smirnov, N.L.; Tikhov, A.V.

    1993-01-01

    The experience in measuring the SC-dipole bending strength with the spotting method shown this measurement to be the most complicated and expensive. A convenient and simple method of rotating pick-up coil, which can not provide the required accuracy, may be used for this measurement combined with NMR measurements in the dipole central part. The physical ground and description of the method are given in the paper. The analysis of the errors and measurement results of the SPDMI SC-dipoles are presented. 9 refs..; 7 figs

  18. Effect of coexistent hydrogen isotopes on tracer diffusion of tritium in alpha phase of group-V metal-hydrogen systems

    International Nuclear Information System (INIS)

    Sakamoto, Kan; Hashizume, Kenichi; Sugisaki, Masayasu

    2009-01-01

    Tracer diffusion coefficients of tritium in the alpha phase of group-V metal-hydrogen systems, α-MH(D)xTy (M=V and Ta; x>>y), were measured in order to clarify the effects of coexistent hydrogen isotopes on the tritium diffusion behavior. The hydrogen concentration dependence of such behavior and the effects of the coexistent hydrogen isotopes (protium and deuterium) were determined. The results obtained in the present (for V and Ta) and previous (for Nb) studies revealed that tritium diffusion was definitely dependent on hydrogen concentration but was not so sensitive to the kind of coexistent hydrogen isotopes. By summarizing those data, it was found that the hydrogen concentration dependence of the tracer diffusion coefficient of tritium in the alpha phase of group-V metals could be roughly expressed by a single empirical curve. (author)

  19. Hydrogen behavior at a subcomparment in the containment building

    Energy Technology Data Exchange (ETDEWEB)

    Lee, U J; Park, G C [Seoul National University, Seoul (Korea, Republic of)

    1998-12-31

    For hydrogen management in severe accidents with degraded nuclear core of PWR`s, several experiments have been performed in the SNU hydrogen mixing facility. The objectives are understanding the extent of hydrogen mixing and analyzing the effects of factors which dominate uniform or non-uniform mixing at compartments in the containment building. The facility represents on a 1/11th linearly scaled model of the YGN unit 3 and 4, hydrogen was simulated by helium. Because there are the gaps between safety injection tank and compartment layers in the containment, the test facility was constructed in three dimensional mode for analyzing of mixture behaviour through the gaps. >From the experimental results we could conclude that overall hydrogen concentration distributed uniformly in the free volume of the test compartment, but fluctuated in the gaps. This paper is focused on experimental result from several experiments. 5 refs., 4 figs. (Author)

  20. Hydrogen behavior at a subcomparment in the containment building

    Energy Technology Data Exchange (ETDEWEB)

    Lee, U. J.; Park, G. C. [Seoul National University, Seoul (Korea, Republic of)

    1997-12-31

    For hydrogen management in severe accidents with degraded nuclear core of PWR`s, several experiments have been performed in the SNU hydrogen mixing facility. The objectives are understanding the extent of hydrogen mixing and analyzing the effects of factors which dominate uniform or non-uniform mixing at compartments in the containment building. The facility represents on a 1/11th linearly scaled model of the YGN unit 3 and 4, hydrogen was simulated by helium. Because there are the gaps between safety injection tank and compartment layers in the containment, the test facility was constructed in three dimensional mode for analyzing of mixture behaviour through the gaps. >From the experimental results we could conclude that overall hydrogen concentration distributed uniformly in the free volume of the test compartment, but fluctuated in the gaps. This paper is focused on experimental result from several experiments. 5 refs., 4 figs. (Author)

  1. Oxide film defects in Al alloys and the formation of hydrogen- related porosity

    International Nuclear Information System (INIS)

    Griffiths, W D; Yue, Y; Gerrard, A J

    2016-01-01

    Double oxide film defects have also been held responsible for the origins of hydrogen porosity, where hydrogen dissolved in the Al melt passes into the interior atmosphere of the double oxide film defect causing it to inflate. However, this is in opposition to long- established evidence that H cannot readily diffuse through aluminium oxide. To investigate this further, samples of commercial purity Al were first degassed to remove their initial H content, and then heated to above their melting point and held in atmospheres of air and nitrogen respectively, to determine any differences in H pick-up. The experiment showed that samples held in an oxidising atmosphere, and having an oxide skin, picked up significantly less H than when the samples were held in a nitrogen atmosphere, which resulted in the formation of AlN in cracks in the oxide skin of the sample. It is suggested that double oxide film defects can give rise to hydrogen-related porosity, but this occurs more quickly when the oxygen in the original oxide film defect has been consumed by reaction with the surrounding melt and nitrogen reacts to form AlN, which is more permeable to H than alumina, more easily allowing the oxide film defect to give rise to a hydrogen pore. This is used to interpret results from an earlier synchrotron experiment, in which a small pore was seen to grow into a larger pore, while an adjacent large pore remained at a constant size. (paper)

  2. Neutron time behavior for deuterium neutral beam injection into a hydrogen plasma in ORMAK

    International Nuclear Information System (INIS)

    England, A.C.; Howe, H.C.; Mihalczo, J.T.; Fowler, R.H.

    1977-10-01

    Neutrons were produced by D-D interactions when a 28-keV deuterium beam was coinjected into a hydrogen plasma in the Oak Ridge Tokamak (ORMAK). Fokker-Planck calculations, which correctly predict the time behavior of the neutron rate after beam turnon, show that the majority of the neutrons are from injected particles interacting with previously injected deuterons that have scattered to pitch angles of approximately 60 to 90 0 while slowing down

  3. Modelling of interplanetary pickup ion fluxes and relevance for LISM parameters

    International Nuclear Information System (INIS)

    Fahr, H.J.; Rucinski, D.

    1989-01-01

    It has been known for many years that neutral interstellar atoms enter the solar system from the upwind side and penetrate deep into the inner heliosphere. Helium atoms, in particular, advance towards very small solar distances before they are ionized and then again convected as He - pickup ions outwards with the solar wind. Since these ions were recently detected in space, we concentrate here on calculations of He + production rates and He + fluxes. It is shown that inside 1 a.u., the He - production is essentially determined both by solar e.u.v. photoionization and by electron impact ionization. We calculate He + production rates as a function of space coordinates, taking into account the core-halo structure of the energy distribution of solar wind electrons and their temperature distribution with distance according to relevant solar wind models. For this purpose, a newly developed program to compute He densities was used. In contrast to the production of H + , the He - production rates are found to be higher on the downwind axis than on the upwind axis by a factor of 5. We also determine partial and total He + ion fluxes as a function of solar distance and longitude. It is interesting to note that only the values for total fluxes agree well with the integrated He + fluxes measured by the SULEICA experiment aboard the AMPTE satellite. This indicates that pickup ions under the influence of the intrinsic MHD wave turbulence in the solar wind change their primary seed distribution function by rapid pitch-angle scattering and subsequent adiabatic cooling. To interpret the He + intensity profile along the orbit of the Earth in terms of LISM helium parameters, we point to the need to take into account carefully electron impact ionization in order to prevent misinterpretations. (author)

  4. Single neutron pick-up on 104Pd

    International Nuclear Information System (INIS)

    Rodrigues, M.R.D.; Andre, J.P.A.M. de; Borello-Lewin, T.; Horodynski-Matsushigue, L.B.; Duarte, J.L.M.; Rodrigues, C.L.; Ukita, G.M.

    2006-01-01

    Low-lying levels of 103 Pd have been investigated through the (d,t) reaction on 104 Pd, at an incident deuteron energy of 15.0 MeV. Outgoing particles were momentum analyzed by an Enge magnetic spectrograph and detected in nuclear emulsion plates, with an energy resolution of 8 keV. Previous (d,t) work suffered from a much worse resolution than that here achieved. A partial analysis of the data obtained is reported, referring to six out of the fourteen scattering angles for which data were obtained. Angular distributions associated with eight of the thirteen levels seen up to 1.1 MeV of excitation have been compared to DWBA one-neutron pick-up predictions. Both, the attributed excitation energy values and the transferred angular momenta are in excellent agreement with the results of other kind of experiments, as tabulated by the Nuclear Data Sheets. Some peculiar structure characteristics, associated with the yrast 5/2 + , 3/2 + and 7/2 + states found in the Ru chain could be recognized also in 103 Pd, pointing to the possibility of a more global understanding of this transitional mass region. (author)

  5. Pick-up and impact of flexible bodies

    Science.gov (United States)

    Singh, H.; Hanna, J. A.

    2017-09-01

    Picking up, laying down, colliding, rolling, and peeling are partial-contact interactions involving moving discontinuities. We examine the balances of momentum and energy across a moving discontinuity in a string, with allowance for injection or dissipation by singular supplies. We split the energy dissipation according to its invariance properties, discuss analogies with systems of particles and connections with the literature on shocks and phase transition fronts in various bodies, and derive a compatibility relation between supplies of momentum and translation-invariant energy. For a moving contact discontinuity between a string and a smooth rigid plane in the presence of gravity, we find a surprising asymmetry between the processes of picking up and laying down, such that steady-state kinks in geometry and associated jumps in tension are not admissible during pick-up. This prediction is consistent with experimental observations. We briefly discuss related problems including the falling folded chain, peeling of an adhesive tape, and the "chain fountain". Our approach is applicable to the study of impact and locomotion, and to systems such as moored floating structures and some musical instruments that feature vibrating string and cable elements interacting with a surface.

  6. Observation of Magnetic Waves Excited by Newborn Interstellar Pickup He+ Observed by the Voyager 2 Spacecraft at 30 au

    Energy Technology Data Exchange (ETDEWEB)

    Argall, Matthew R.; Hollick, Sophia J.; Pine, Zackary B., E-mail: Matthew.Argall@unh.edu, E-mail: sjhollick@hotmail.com, E-mail: zbpine@gmail.com [Physics Department and Space Science Center, Morse Hall, University of New Hampshire, Durham, New Hampshire (United States); and others

    2017-11-01

    We report two observations of magnetic waves due to He{sup +} pickup ions observed by the Voyager 2 spacecraft in mid-1989 to demonstrate that such waves occur as far out as ∼30 au from the Sun. The observations are sufficiently far from planets, interplanetary shocks, and other possible sources of energetic particles to make newborn interstellar He{sup +} the only likely explanation for the source of the waves. Additionally, the low-frequency waves that might be expected for a variety of cometary pickup species are not seen. The events studied here were picked from a preliminary list of ∼300 events that were discovered based on polarization signatures in daily spectrograms of the magnetic field between 1977 and 1990. Analysis of those observations is ongoing. We present an analysis of these two observations using the same techniques we have employed for recently reported observations closer to the Sun.

  7. Hydrogen and water reactor safety: proceedings

    International Nuclear Information System (INIS)

    1982-01-01

    Separate abstracts were prepared for papers presented in the following areas of interest: 1) hydrogen research programs; 2) hydrogen behavior during light water reactor accidents; 3) combustible gas generation; 4) hydrogen transport and mixing; 5) combustion modeling and experiments; 6) accelerated flames and detonations; 7) combustion mitigation and control; and 8) equipment survivability

  8. Hydrogen and water reactor safety: proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    Separate abstracts were prepared for papers presented in the following areas of interest: 1) hydrogen research programs; 2) hydrogen behavior during light water reactor accidents; 3) combustible gas generation; 4) hydrogen transport and mixing; 5) combustion modeling and experiments; 6) accelerated flames and detonations; 7) combustion mitigation and control; and 8) equipment survivability.

  9. Numerical Methods for an Analysis of Hydrogen Behaviors Coupled with Thermal Hydraulics in a NPP Containment

    International Nuclear Information System (INIS)

    Kim, Jongtae; Park, Rae-Joon; Hong, Seong-Wan; Kim, Gun-Hong

    2016-01-01

    In a containment safety analysis, multi-dimensional characteristics in thermal hydraulics are very important because the flow paths are not confined in a large free volume of the containment. The analysis is difficult because of a difference in length scales between a characteristic length of the flow and representative length of the containment. In order to simulate hydrogen and steam behaviors in a containment during postulated severe accidents, the GASFLOW code as a multi-dimensional analysis tool for NPP containment has been used for years because of its computational efficiency. Though GASFLOW is well developed for a real NPP containment analysis, there exist shortcomings in nodalization, two-phase and turbulence models. It is based on a Cartesian or cylindrical coordinate mesh, so it is impractical to refine a mesh locally in a region with a physical or geometrical complication. In this paper, the importance of the hydrogen safety in an NPP containment and requirements of the analysis tool was described. And physical models necessary for the hydrogen safety analysis code were listed. As a member of international collaborative project HYMERES for containment thermal hydraulics, KAERI is actively participating in an analytic working group. As an analysis tool for blind benchmarkes, the analysis code described in this paper was used. From the blind benchmark analyses, it was found that the code is very promising for hydrogen safety analysis. Currently, it is proposed to develop the code collaboratively in a hydrogen safety community based on an open-source strategy

  10. Numerical Methods for an Analysis of Hydrogen Behaviors Coupled with Thermal Hydraulics in a NPP Containment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongtae; Park, Rae-Joon; Hong, Seong-Wan; Kim, Gun-Hong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In a containment safety analysis, multi-dimensional characteristics in thermal hydraulics are very important because the flow paths are not confined in a large free volume of the containment. The analysis is difficult because of a difference in length scales between a characteristic length of the flow and representative length of the containment. In order to simulate hydrogen and steam behaviors in a containment during postulated severe accidents, the GASFLOW code as a multi-dimensional analysis tool for NPP containment has been used for years because of its computational efficiency. Though GASFLOW is well developed for a real NPP containment analysis, there exist shortcomings in nodalization, two-phase and turbulence models. It is based on a Cartesian or cylindrical coordinate mesh, so it is impractical to refine a mesh locally in a region with a physical or geometrical complication. In this paper, the importance of the hydrogen safety in an NPP containment and requirements of the analysis tool was described. And physical models necessary for the hydrogen safety analysis code were listed. As a member of international collaborative project HYMERES for containment thermal hydraulics, KAERI is actively participating in an analytic working group. As an analysis tool for blind benchmarkes, the analysis code described in this paper was used. From the blind benchmark analyses, it was found that the code is very promising for hydrogen safety analysis. Currently, it is proposed to develop the code collaboratively in a hydrogen safety community based on an open-source strategy.

  11. An adaptive large neighborhood search heuristic for the pickup and delivery problem with time Windows and scheduled lines

    NARCIS (Netherlands)

    Ghilas, V.; Demir, E.; van Woensel, T.

    2016-01-01

    The Pickup and Delivery Problem with Time Windows and Scheduled Lines (PDPTW-SL) concerns scheduling a set of vehicles to serve freight requests such that a part of the journey can be carried out on a scheduled public transportation line. Due to the complexity of the problem, which is NP-hard, we

  12. Large-field behavior of the LoSurdo-Stark resonances in atomic hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, G. (Departamento de Fisica Teorica, Facultad de Ciencias Fisicas, Universidad Complutense, 28040 Madrid (Spain)); Silverstone, H.J. (Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218 (United States))

    1994-12-01

    The Schroedinger equation for atomic hydrogen in a large electric field [ital F] is solved by separation in parabolic coordinates. As [ital F][r arrow][infinity], the scaled field [ital f] that enters the separated equations tends to 0. Thus the large-[ital F] asymptotics depend on the small-[ital f] behavior of the separated equations, each of which in turn is equivalent to a quarticly perturbed two-dimensional anharmonic oscillator. The Bender-Wu branch cuts of the oscillator play a major role in the hydrogen asymptotics. A simple iterative algorithm permits the calculation of the branch points at which two eigenvalues coincide. We have found numerically that, as [ital F][r arrow][infinity], the separation constant [beta][sub 1] returns to the smaller of the unperturbed values [beta][sub 1][sup (0)] or [beta][sub 2][sup (0)]. At the same time, [beta][sub 2] tends to the negative of the smaller value. As the real electric field [ital F] increases from 0 to [infinity], in each case that [beta][sub 1][sup (0)] and [beta][sub 2][sup (0)] are not equal, the trajectory of either [ital f] or [ital e][sup [minus][ital i][pi

  13. Influence of hydrogen reduction on photoelectro-chemical behavior of anodic oxidized n-TiO2 layers

    Energy Technology Data Exchange (ETDEWEB)

    Hartig, K J; Getoff, N

    1983-07-01

    The behavior of polycrystalline n-TiO2 photoanodes produced by anodic oxidation of Ti metal foils and subsequently reduced in hydrogen atmosphere at various temperatures and different times was investigated. The employed methods for their characterization were: scanning electron microscopy, X-ray diffraction, thickness determination, open-circuit voltage and capacitance/voltage studies as well as photoelectrochemical measurements. The reduction process results in an increase of oxygen deficiencies and a decrease of the amount of recombination centers and of grain-boundary energy barriers between the crystallites. All these parameters lead to a significant increase of the photoefficiency. The best photoanodes were obtained when the anodically oxidized samples were reduced under hydrogen at 800-850 C for 15 min (conversion of anatase to rutile crystal structures). 17 references.

  14. Hydrogenation and high temperature oxidation of Zirconium claddings

    International Nuclear Information System (INIS)

    Novotny, T.; Perez-Feró, E.; Horváth, M.

    2015-01-01

    In the last few years a new series of experiments started for supporting the new LOCA criteria, considering the proposals of US NRC. The effects which can cause the embrittlement of VVER fuel claddings were reviewed and evaluated in the framework of the project. The purpose of the work was to determine how the fuel cladding’s hydrogen uptake under normal operating conditions, effect the behavior of the cladding under LOCA conditions. As a first step a gas system equipment with gas valves and pressure gauge was built, in which the zirconium alloy can absorb hydrogen under controlled conditions. In this apparatus E110 (produced by electrolytic method, currently used at Paks NPP) and E110G (produced by a new technology) alloys were hydrogenated to predetermined hydrogen contents. According the results of ring compression tests the E110G alloys lose their ductility above 3200 ppm hydrogen content. This limit can be applied to determine the ductile-brittle transition of the nuclear fuel claddings. After the hydrogenation, high temperature oxidation experiments were carried out on the E110G and E110 samples at 1000 °C and 1200 °C. 16 pieces of E110G and 8 samples of E110 with 300 ppm and 600 ppm hydrogen content were tested. The oxidation of the specimens was performed in steam, under isothermal conditions. Based on the ring compression tests load-displacement curves were recorded. The main objective of the compression tests was to determine the ductile-brittle transition. These results were compared to the results of our previous experiments where the samples did not contain hydrogen. The original claddings showed more ductile behavior than the samples with hydrogen content. The higher hydrogen content resulted in a more brittle mechanical behavior. However no significant difference was observed in the oxidation kinetics of the same cladding types with different hydrogen content. The experiments showed that the normal operating hydrogen uptake of the fuel claddings

  15. Micromanipulation and pick-up system for X-Ray diffraction characterization of micrometer-sized single particles

    International Nuclear Information System (INIS)

    Takeichi, Y; Inami, N; Saito, K; Otori, H; Sagayama, R; Kumai, R; Ono, K; Ueno, T

    2014-01-01

    We describe a micromanipulation and pick-up system for preparing a micrometer-sized single particle for X-ray diffraction characterization. Combining a microgripper based on microelectromechanical systems, piezo-motor-driven linear stages, and a gamepad, the system provides precise and intuitive handling of the object. Single-crystal X-ray diffraction measurements of Sm-Fe-N permanent magnet were performed using this system. We also describe a method to distinguish crystallographically homogeneous particles found in powder-form samples.

  16. Corrosion behavior of construction materials for ionic liquid hydrogen compressor

    DEFF Research Database (Denmark)

    Arjomand Kermani, Nasrin; Petrushina, Irina; Nikiforov, Aleksey Valerievich

    2016-01-01

    The corrosion behavior of various commercially available stainless steels and nickel-based alloys as possible construction materials for components which are in direct contact with one of five different ionic liquids was evaluated. The ionic liquids, namely: 1-ethyl-3-methylimidazolium triflate, 1...... liquid hydrogen compressor. An electrochemical cell was specially designed, and steady-state cyclic voltammetry was used to measure the corrosion resistance of the alloys in the ionic liquids at 23 °C, under atmospheric pressure. The results showed a very high corrosion resistance and high stability...... for all the alloys tested. The two stainless steels, AISI 316L and AISI 347 showed higher corrosion resistance compared to AISI 321 in all the ionic liquids tested. It was observed that small addition of molybdenum, tantalum, and niobium to the alloys increased the corrosion stability in the ionic liquids...

  17. Membrane pumping technology, helium and hydrogen isotopes separation in the fusion hydrogen

    International Nuclear Information System (INIS)

    Pigarov, A.Yu.; Pistunovich, V.I.; Busnyuk, A.O.

    1994-01-01

    A gas pumping system for the ITER, improved by implementation of superpermeable membranes for selective hydrogen isotope exhaust, is considered. The study of the pumping capability of a niobium membrane for a hydrogen-helium mixture has been fulfilled. The membrane superpermeability can be only realized for atomic hydrogen. Helium does not pass through the membrane, and its presence does not affect the hydrogen pumping. A detailed Monte Carlo simulation of gas behavior for the experimental facility has been done. The probability of permeation for a hydrogen atom for one collision with the membrane is ∼0.1; the same probability of molecule permeation is ∼10 -5 . The probability for atomization, i.e. re-emission of an atomizer is ∼0.2; the probability of recombination of an atom is ∼0.2

  18. Musical instrument recordings made with a fiber Fabry-Perot cavity: photonic guitar pickup.

    Science.gov (United States)

    Ballard, Nicholas; Paz-Soldan, Daniel; Kung, Peter; Loock, Hans-Peter

    2010-04-10

    A 1 cm long, low-finesse fiber-optic cavity was used as a transducer for the vibrations of the soundboard of an acoustic guitar and of a violin. The reflected light is detected and then amplified and recorded using conventional audio instrumentation. The fiber-optic pickup is found to have a high response range in both amplitude (up to 100 microm displacement) and audio frequency (DC to 20 kHz) and good linearity up to a displacement of 225 microm. The audio noise is found to arise from the fiber-optic cables and, to a lesser extent, from the laser and laser driver.

  19. Stability and Behaviors of Methane/Propane and Hydrogen Micro Flames

    Science.gov (United States)

    Yoshimoto, Takamitsu; Kinoshita, Koichiro; Kitamura, Hideki; Tanigawa, Ryoichi

    The flame stability limits essentially define the fundamental operation of the combustion system. Recently the micro diffusion flame has been remarked. The critical conditions of the flame stability limit are highly dependent on nozzle diameter, species of fuel and so on. The micro diffusion flame of Methane/Propane and Hydrogen is formed by using the micro-scale nozzle of which inner diameter is less than 1mm. The configurations and behaviors of the flame are observed directly and visualized by the high speed video camera The criteria of stability limits are proposed for the micro diffusion flame. The objectives of the present study are to get further understanding of lifting/blow-off for the micro diffusion flame. The results obtained are as follows. (1) The behaviors of the flames are classified into some regions for each diffusion flame. (2) The micro diffusion flame of Methane/Propane cannot be sustained, when the nozzle diameter is less than 0.14 mm. (3) The diffusion flame cannot be sustained below the critical fuel flow rate. (4) The minimum flow which is formed does not depends on the average jet velocity, but on the fuel flow rate. (5) the micro flame is laminar. The flame length is decided by fuel flow rate.

  20. Effect of heating on the behaviors of hydrogen in C-TiC films with auger electron spectroscopy and secondary ion mass spectroscopy analyses

    International Nuclear Information System (INIS)

    Zou, Y.; Wang, L.W.; Huang, N.K.

    2007-01-01

    C-TiC films with a content of 75% TiC were prepared with magnetron sputtering deposition followed by Ar + ion bombardment. Effect of heating on the behaviors of hydrogen in C-TiC films before and after heating was studied with Auger Electron Spectroscopy and Secondary Ion Mass Spectroscopy (SIMS) analyses. SIMS depth profiles of hydrogen after H + ion implantation and thermal treatment show different hydrogen concentrations in C-TiC coatings and stainless steel. SIMS measurements show the existence of TiH, TiH 2 , CH 3 , CH 4 , C 2 H 2 bonds in the films after H + ion irradiation and the changes in the Ti LMM, Ti LMV and C KLL Auger line shape reveal that they have a good hydrogen retention ability after heating up to the temperature 393 K. All the results show that C-TiC coatings can be used as a hydrogen retainer or hydrogen permeable barrier on stainless steel to protect it from hydrogen brittleness

  1. Some calculated (p,α) cross-sections using the alpha particle knock-on and triton pick-up reaction mechanisms: An optimisation of the single-step Feshbach-Kerman-Koonin (FKK) theory

    Energy Technology Data Exchange (ETDEWEB)

    Olise, Felix S.; Ajala, Afis; Olamiyl, Hezekiah B. [Dept. of Physics and Engineering Physics, Obafemi Awolowo University, Ile-Ife (Nigeria)

    2016-04-15

    The Feshbach-Kerman-Koonin (FKK) multi-step direct (MSD) theory of pre-equilibrium reactions has been used to compute the single-step cross-sections for some (p,α) reactions using the knock-on and pick-up reaction mechanisms at two incident proton energies. For the knock-on mechanism, the reaction was assumed to have taken place by the direct ejection of a preformed alpha cluster in a shell-model state of the target. But the reaction was assumed to have taken place by the pick-up of a preformed triton cluster (also bound in a shell-model state of the target core) by the incident proton for the pick-up mechanism. The Yukawa forms of potential were used for the proton-alpha (for the knock-on process) and proton-triton (for the pick-up process) interaction and several parameter sets for the proton and alpha-particle optical potentials. The calculated cross-sections for both mechanisms gave satisfactory fits to the experimental data. Furthermore, it has been shown that some combinations of the calculated distorted wave Born approximation cross-sections for the two reaction mechanisms in the FKK MSD theory are able to give better fits to the experimental data, especially in terms of range of agreement. In addition, the theory has been observed to be valid over a wider range of energy.

  2. Some Calculated (p,α Cross-Sections Using the Alpha Particle Knock-On and Triton Pick-Up Reaction Mechanisms: An Optimisation of the Single-Step Feshbach–Kerman–Koonin (FKK Theory

    Directory of Open Access Journals (Sweden)

    Felix S. Olise

    2016-04-01

    Full Text Available The Feshbach–Kerman–Koonin (FKK multi-step direct (MSD theory of pre-equilibrium reactions has been used to compute the single-step cross-sections for some (p,α reactions using the knock-on and pick-up reaction mechanisms at two incident proton energies. For the knock-on mechanism, the reaction was assumed to have taken place by the direct ejection of a preformed alpha cluster in a shell-model state of the target. But the reaction was assumed to have taken place by the pick-up of a preformed triton cluster (also bound in a shell-model state of the target core by the incident proton for the pick-up mechanism. The Yukawa forms of potential were used for the proton-alpha (for the knock-on process and proton-triton (for the pick-up process interaction and several parameter sets for the proton and alpha-particle optical potentials. The calculated cross-sections for both mechanisms gave satisfactory fits to the experimental data. Furthermore, it has been shown that some combinations of the calculated distorted wave Born approximation cross-sections for the two reaction mechanisms in the FKK MSD theory are able to give better fits to the experimental data, especially in terms of range of agreement. In addition, the theory has been observed to be valid over a wider range of energy.

  3. Integration of agglutination assay for protein detection in microfluidic disc using Blu-ray optical pickup unit and optical fluid scanning

    DEFF Research Database (Denmark)

    Uddin, Rokon; Burger, Robert; Donolato, Marco

    2015-01-01

    We present a novel strategy for thrombin detection by combining a magnetic bead based agglutination assay and low-cost microfluidic disc. The detection method is based on an optomagnetic readout system implemented using a Blu-ray optical pickup unit (OPU) as main optoelectronic component. The ass...

  4. Weak hydrogen bonding interactions influence slip system activity and compaction behavior of pharmaceutical powders.

    Science.gov (United States)

    Khomane, Kailas S; Bansal, Arvind K

    2013-12-01

    Markedly different mechanical behavior of powders of polymorphs, cocrystals, hydrate/anhydrate pairs, or structurally similar molecules has been attributed to the presence of active slip planes system in their crystal structures. Presence of slip planes in the crystal lattice allows easier slip under the applied compaction pressure. This allows greater plastic deformation of the powder and results into increased interparticulate bonding area and greater tensile strength of the compacts. Thus, based on this crystallographic feature, tableting performance of the active pharmaceutical ingredients can be predicted. Recently, we encountered a case where larger numbers of CH···O type interactions across the proposed slip planes hinder the slip and thus resist plastic deformation of the powder under the applied compaction pressure. Hence, attention must be given to these types of interactions while identifying slip planes by visualization method. Generally, slip planes are visualized as flat layers often strengthened by a two-dimensional hydrogen-bonding network within the layers or planes. No hydrogen bonding should exist between these layers to consider them as slip planes. Moreover, one should also check the presence of CH···O type interactions across these planes. Mercury software provides an option for visualization of these weak hydrogen bonding interactions. Hence, caution must be exercised while selecting appropriate solid form based on this crystallographic feature. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  5. Single neutron pick-up on {sup 104}Pd

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, M.R.D.; Andre, J.P.A.M. de; Borello-Lewin, T.; Horodynski-Matsushigue, L.B.; Duarte, J.L.M.; Rodrigues, C.L. [Universidade de Sao Paulo, SP (Brazil). Inst. de Fisica; Ukita, G.M. [Universidade de Santo Amaro, SP (Brazil). Faculdade de Psicologia

    2006-12-15

    Low-lying levels of {sup 103}Pd have been investigated through the (d,t) reaction on {sup 104}Pd, at an incident deuteron energy of 15.0 MeV. Outgoing particles were momentum analyzed by an Enge magnetic spectrograph and detected in nuclear emulsion plates, with an energy resolution of 8 keV. Previous (d,t) work suffered from a much worse resolution than that here achieved. A partial analysis of the data obtained is reported, referring to six out of the fourteen scattering angles for which data were obtained. Angular distributions associated with eight of the thirteen levels seen up to 1.1 MeV of excitation have been compared to DWBA one-neutron pick-up predictions. Both, the attributed excitation energy values and the transferred angular momenta are in excellent agreement with the results of other kind of experiments, as tabulated by the Nuclear Data Sheets. Some peculiar structure characteristics, associated with the yrast 5/2{sup +}, 3/2{sup +} and 7/2{sup +} states found in the Ru chain could be recognized also in {sup 103}Pd, pointing to the possibility of a more global understanding of this transitional mass region. (author)

  6. Early construction and operation of the highly contaminated water treatment system in Fukushima Daiichi Nuclear Power Station (4). Assessment of hydrogen behavior in stored Cs adsorption vessel

    International Nuclear Information System (INIS)

    Kondo, Masahiro; Arai, Takahiro; Nishi, Yoshihisa

    2014-01-01

    Hydrogen diffusion behavior in a cesium adsorption vessel is assessed. The vessel is used to remove radioactive substance from contaminated water, which is proceeded from Fukushima accident. Experiment and numerical calculation are conducted to clarify the characteristics of natural circulation in the vessel. The natural circulation arising from the temperature difference between inside and outside the vessel is confirmed. We develop an evaluation model to predict the natural circulation and its prediction agrees well with the results obtained by the experiment and the calculation. Using the model, we predict steady and transient behavior of hydrogen concentration. Results indicate that hydrogen concentration is kept lower than the flammability limit when the short vent pipe is open. (author)

  7. Near Earth Inner-Source and Interstellar Pickup Ions Observed with the Hot Plasma Composition Analyzer of the Magnetospheric Multiscale Mission Mms-Hpca

    Science.gov (United States)

    Gomez, R. G.; Fuselier, S. A.; Mukherjee, J.; Gonzalez, C. A.

    2017-12-01

    Pickup ions found near the earth are generally picked up in the rest frame of the solar wind, and propagate radially outward from their point of origin. While propagating, they simultaneously gyrate about the magnetic field. Pickup ions come in two general populations; interstellar and inner source ions. Interstellar ions originate in the interstellar medium, enter the solar system in a neutral charge state, are gravitationally focused on the side of the sun opposite their arrival direction and, are ionized when they travel near the sun. Inner-source ions originate at a location within the solar system and between the sun and the observation point. Both pickup ion populations share similarities in composition and charge states, so measuring of their dynamics, using their velocity distribution functions, f(v)'s, is absolutely essential to distinguishing them, and to determining their spatial and temporal origins. Presented here will be the results of studies conducted with the four Hot Plasma Composition Analyzers of the Magnetospheric Multiscale Mission (MMS-HPCA). These instruments measure the full sky (4π steradians) distribution functions of near earth plasmas at a 10 second cadence in an energy-to-charge range 0.001-40 keV/e. The instruments are also capable of parsing this combined energy-solid angle phase space with 22.5° resolution polar angle, and 11.25° in azimuthal angle, allowing for clear measurement of the pitch angle scattering of the ions.

  8. Evaluation of hydrogen trapping mechanisms during performance of different hydrogen fugacity in a lean duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Silverstein, R., E-mail: barrav@post.bgu.ac.il [Department of Material Science and Engineering, Ben-Gurion University of the Negev, Beer-Sheva (Israel); Eliezer, D. [Department of Material Science and Engineering, Ben-Gurion University of the Negev, Beer-Sheva (Israel); Glam, B.; Eliezer, S.; Moreno, D. [Soreq Nuclear Research Center, Yavne, 81800 (Israel)

    2015-11-05

    Hydrogen trapping behavior in a lean duplex stainless steel (LDS) is studied by means of thermal desorption spectrometry (TDS). The susceptibility of a metal to hydrogen embrittlement is directly related to the trap characteristics: source or sink (reversible or irreversible, respectively). Since trapping affects the metal's diffusivity, it has a major influence on the hydrogen assisted cracking (HAC) phenomenon. It is known from previously published works that the susceptibility will depend on the competition between reversible and irreversible traps; meaning a direct relation to the hydrogen's initial state in the steel. In this research the trapping mechanism of LDS, exposed to different hydrogen charging environments, is analyzed by means of TDS. The TDS analysis was supported and confirmed by means of X-ray diffraction (XRD), hydrogen quantitative measurements and microstructural observations. It was found that gaseous charging (which produces lower hydrogen fugacity) creates ∼22% higher activation energy for hydrogen trapping compared with cathodic charging (which produces higher hydrogen fugacity). These results are due to the different effects on the hydrogen behavior in LDS which causes a major difference in the hydrogen contents and different hydrogen assisted phase transitions. The highest activation energy value in the cathodic charged sample was ascribed to the dominant phase transformation of γ → γ{sup ∗}, whereas in the gaseous charged sample it was ascribed to the dominant formation of intermetallic compound, sigma (σ). The relation between hydrogen distribution in LDS and hydrogen trapping mechanism is discussed in details. - Highlights: • The relation between hydrogen distribution and trapping in LDS is discussed. • Hydrogen's initial state in LDS causes different microstructural changes. • Gaseous charged LDS creates higher trapping energy compared to cathodic charged LDS. • The dominant phase transformation in

  9. Hydrogen and oxygen behaviors on Porous-Si surfaces observed using a scanning ESD ion microscope

    International Nuclear Information System (INIS)

    Itoh, Yuki; Ueda, Kazuyuki

    2004-01-01

    A scanning electron-stimulated desorption (ESD) ion microscope (SESDIM) measured the 2-D images of hydrogen and oxygen distribution on solid surfaces. A primary electron beam at 600 eV, with a pulse width of 220 ns, resulted in ion yields of H + and O + . This SESDIM is applied to the surface analysis of Porous-Si (Po-Si) partially covered with SiN films. During the heating of a specimen of the Po-Si at 800 deg. C under ultra-high-vacuum (UHV) conditions, the components of the surface materials were moved or diffused by thermal decomposition accompanied by a redistribution of hydrogen and oxygen. After cyclic heating of above 800 deg. C, the dynamic behaviors of H + and O + accompanied by the movements of the SiN layers were observed as images of H + and O + . This was because the H + and O + ions have been identified as composite materials by their kinetic energies

  10. Hydrogen transport behavior of metal coatings for plasma-facing components

    Energy Technology Data Exchange (ETDEWEB)

    Anderl, R.A.; Holland, D.F.; Longhurst, G.R. (Idaho National Engineering Lab., Idaho Falls (USA))

    1990-12-01

    Plasma-facing components for experimental and commercial fusion reactor studies may include cladding or coatings of refractory metals like tungsten on metallic structural substrates such as copper, vanadium alloys and austenitic stainless steel. Issues of safety and fuel economy include the potential for inventory buildup and permeation of tritium implanted into the plasma-facing surface. This paper reports on laboratory-scale studies with 3 keV D{sub 3}{sup +} ion beams to investigate the hydrogen transport behavior in tungsten coatings on substrates of copper. These experiments entailed measurements of the deuterium re-emission and permeation rates of tungsten, copper, and tungsten-coated copper specimens at temperatures ranging from 638 to 825 K and implanting particle fluxes of approximately 5x10{sup 19} D/m{sup 2} s. Diffusion constants and surface recombination coefficients with enhancement factors due to sputtering were obtained from these measurements. These data may be used in calculations to estimate permeation rates and inventory buildups for proposed diverter designs. (orig.).

  11. Hydrogen transport behavior of metal coatings for plasma-facing components

    Science.gov (United States)

    Anderl, R. A.; Holland, D. F.; Longhurst, G. R.

    1990-12-01

    Plasma-facing components for experimental and commercial fusion reactor studies may include cladding or coatings of refractory metals like tungsten on metallic structural substrates such as copper, vanadium alloys and austenitic stainless steel. Issues of safety and fuel economy include the potential for inventory buildup and permeation of tritium implanted into the plasma-facing surface. This paper reports on laboratory-scale studies with 3 keV D +3 ion beams to investigate the hydrogen transport behavior in tungsten coatings on substrates of copper. These experiments entailed measurements of the deuterium re-emission and permeation rates for tungsten, copper, and tungsten-coated copper specimens at temperatures ranging from 638 to 825 K and implanting particle fluxes of approximately 5 × 10 19 D/m 2 s. Diffusion constants and surface recombination coefficients with enhancement factors due to sputtering were obtained from these measurements. These data may be used in calculations to estimate permeation rates and inventory buildups for proposed diverter designs.

  12. Hydrogen transport behavior of metal coatings for plasma facing components

    International Nuclear Information System (INIS)

    Anderl, R.A.; Holland, D.F.; Longhurst, G.R.

    1990-01-01

    Plasma-facing components for experimental and commercial fusion reactor studies may include cladding or coatings of refractory metals like tungsten on metallic structural substrates such as copper, vanadium alloys and austenitic stainless steel. Issues of safety and fuel economy include the potential for inventory buildup and permeation of tritium implanted into the plasma-facing surface. This paper reports on laboratory-scale studies with 3-keV D 3 + ion beams to investigate the hydrogen transport behavior in tungsten coatings on substrates of copper. These experiments entailed measurements of the deuterium re-emission and permeation rates for tungsten, copper, and tungsten-coated copper specimens at temperatures ranging from 638 K to 825 K and implanting particle fluxes of approximately 5 x 10 19 D/m 2 s. Diffusion constants and surface recombination coefficients with enhancement factors due to sputtering were obtained from these measurements. These data may be used in calculations to estimate permeation rates and inventory buildups for proposed diverter designs. 18 refs., 3 figs., 3 tabs

  13. Welding Over Paint Primer

    National Research Council Canada - National Science Library

    Johnson, Kevin S; Liu, Stephen; Olson, David L

    1998-01-01

    .... According to the hydrogen-oxygen and }hydrogen-fluorine equilibrium considerations, an increase in the partial pressure of oxygen or fluorine could decrease the partial pressure of hydrogen within the welding arc. Consequently, a welding consumable that contains chemical ingredients of high oxygen and fluorine potential would be capable of minimizing hydrogen pick-up in the weld pool.

  14. Hydrogen storing and electrical properties of hyperbranched polymers-based nanoporous materials

    International Nuclear Information System (INIS)

    Abdel Rehim, Mona H.; Ismail, Nahla; Badawy, Abd El-Rahman A.A.; Turky, Gamal

    2011-01-01

    Highlights: · The hydrogen storage capacity of hyperbranched P-Urea, PAMAM and PAMAM and VO x is studied and electrical properties of the samples are also investigated; the measurements showed complete insulating behavior at hydrogenation measuring temperature. These investigations ensure that the polymer conductivity does not play a role in hydrogen uptake, also hyperbranched polymers are promising materials for hydrogen storage. · Electrical properties measurements for the samples showed complete insulating behavior at hydrogenation measuring temperature. · These investigations ensure that the polymer conductivity does not play a role in hydrogen uptake, also hyperbranched polymers are promising materials for hydrogen storage. - Abstract: Hydrogen storage and electrical properties of different hyperbranched polymer systems beside a nanocomposite are studied. The polymers examined are aliphatic hyperbranched poly urea (P-Urea), polyamide amine (PAMAM) and polyamide amine/vanadium oxide (PAMAM/VO x ) nanocomposite. At 80 K and up to 20 bar hydrogen pressure, the hydrogen storage capacity of hyperbranched P-Urea reached 1.6 wt%, 0.9 wt% in case of PAMAM and 0.6 wt% for VO x . The hydrogen storage capacity significantly enhanced when PAMAM and VO x form a nanocomposite and increased up to 2 wt%. At 298 K and up to 20 bar, all the samples did not show measurable hydrogen uptake. Electrical properties of the samples are also investigated; the measurements showed complete insulating behavior at hydrogenation measuring temperature. These investigations ensure that the polymer conductivity does not play a role in hydrogen uptake, also hyperbranched polymers are promising materials for hydrogen storage.

  15. Dimeric Self-assembling via Hydrogen Bonding and Emissive Behavior of a New Copper (I Complex

    Directory of Open Access Journals (Sweden)

    Juciely M. dos Reis

    2017-04-01

    Full Text Available This work describes the synthesis, structural characterization and emissive behavior of a new copper (I complex based on 1-thiocarbamoyl-5-(4-methoxiphenyl-3-phenyl-4,5-dihydro-1H-pyrazole ligand. A dimeric self-assembling via hydrogen bonding was determined by analyzing the short contacts present in the solid-state structure by means of X-ray crystallography. The spectroscopic properties were determined using UV-Vis and fluorescence experiments and an interesting behavior as bluish luminescence was assigned mainly to the mixed (MLCT + IL electronic transitions of the Cu(Id10 ® (S=C–Nligand type. The complete characterization of the new copper (I complex also included elemental analyses and IR spectroscopy. DOI: http://dx.doi.org/10.17807/orbital.v9i1.952

  16. On the Stability of Pick-up Ion Ring Distributions in the Outer Heliosheath

    Science.gov (United States)

    Summerlin, Errol J.; Viñas, Adolfo F.; Moore, Thomas E.; Christian, Eric R.; Cooper, John F.

    2014-10-01

    The "secondary energetic neutral atom (ENA)" hypothesis for the ribbon feature observed by the Interstellar Boundary Explorer (IBEX) posits that the neutral component of the solar wind continues beyond the heliopause and charge exchanges with interstellar ions in the Outer Heliosheath (OHS). This creates pick-up ions that gyrate about the draped interstellar magnetic field (ISMF) lines at pitch angles near 90° on the locus where the ISMF lies tangential to the heliopause and perpendicular to the heliocentric radial direction. This location closely coincides with the location of the ribbon feature according to the prevailing inferences of the ISMF orientation and draping. The locally gyrating ions undergo additional charge exchange and escape as free-flying neutral atoms, many of which travel back toward the inner solar system and are imaged by IBEX as a ribbon tracing out the locus described above. For this mechanism to succeed, the pick-up ions must diffuse in pitch angle slowly enough to permit secondary charge exchange before their pitch angle distribution substantially broadens away from 90°. Previous work using linear Vlasov dispersion analysis of parallel propagating waves has suggested that the ring distribution in the OHS is highly unstable, which, if true, would make the secondary ENA hypothesis incapable of rendering the observed ribbon. In this paper, we extend this earlier work to more realistic ring distribution functions. We find that, at the low densities necessary to produce the observed IBEX ribbon via the secondary ENA hypothesis, growth rates are highly sensitive to the temperature of the beam and that even very modest temperatures of the ring beam corresponding to beam widths of distributions necessary to produce the observed IBEX ENA flux via the secondary ENA hypothesis will be unstable to their own self-generated turbulence.

  17. Thermo analytic investigation of hydrogen effusion behavior - sensor evaluation and calibration

    Energy Technology Data Exchange (ETDEWEB)

    Ried, P.; Gaber, M.; Beyer, K.; Mueller, R.; Kipphardt, H.; Kannengiesser, T. [BAM, Federal Institute for Material Research and Testing, Berlin (Germany)

    2011-01-15

    The well established carrier gas analysis (CGA) method was used to test different hydrogen detectors comprising a thermal conductivity detector (TCD) and a metal oxide semiconducting (MOx) sensor. The MOx sensor provides high hydrogen sensitivity and selectivity, whereas the TCD exhibits a much shorter response time and a linear hydrogen concentration dependency. Therefore, the TCD was used for quantitative hydrogen concentration measurements above 50 {mu}mol/mol. The respective calibration was made using N{sub 2}/H{sub 2} gas mixtures. Furthermore, the hydrogen content and degassing behaviour of titanium hydride (TiH{sub 2-x}) was studied. This material turned out to be a potential candidate for a solid sample calibration. Vacuum hot extraction (VHE) coupled with a mass spectrometer (MS) was then calibrated with TiH{sub 2-x} as transfer standard. The calibration was applied for the evaluation of the hydrogen content of austenitic steel samples (1.4301) and the comparison of CGA-TCD and VHE-MS. (Copyright copyright 2011 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. A study of hydrogen effects on fracture behavior of radioactive waste storage tanks. Final report, October 1992-September 1994

    International Nuclear Information System (INIS)

    Murty, K.L.; Elleman, T.S.

    1994-01-01

    The processing of high-level radioactive wastes now stored at Hanford and Savannah River Laboratories will continue over many years and it will be necessary for some of the liquids to remain in the tanks until well into the next century. Continued tank integrity is therefore an issue of prime importance and it will be necessary to understand any processes which could lead to tank failure. Hydrogen embrittlement resulting from absorption of radiolytic hydrogen could alter tank fracture behavior and be an issue in evaluating the effect of stresses on the tanks from rapid chemical oxidation-reduction reactions. The intense radiation fields in some of the tanks could be a factor in increasing the hydrogen permeation rates through protective oxide films on the alloy surface and be an additional factor in contributing to embrittlement. The project was initiated in October 1992 for a two year period to evaluate hydrogen uptake in low carbon steels that are representative of storage tanks. Steel specimens were exposed to high gamma radiation fields to generate radiolytic hydrogen and to potentially alter the protective surface films to increase hydrogen uptake. Direct measurements of hydrogen uptake were made using tritium as a tracer and fracture studies were undertaken to determine any alloy embrittlement. The rates of hydrogen uptake were noted to be extremely low in the experimental steels. Gamma radiation did not reveal any significant changes in the mechanical and fracture characteristics following exposures as long as a month. It is highly desirable to investigate further the tritium diffusion under stress in a cracked body where stress-assisted diffusion is expected to enhance these rates. More importantly, since welds are the weakest locations in the steel structures, the mechanical and fracture tests should be performed on welds exposed to tritium with and without stressed crack-fronts

  19. Needs of thermal-hydraulic codes for analyzing hydrogen behavior of future chinese NPPs

    International Nuclear Information System (INIS)

    Zhiwei Zhou; Jianjun Xiao; Mengjia Yang

    2005-01-01

    severe accident management guidelines are therefore needed for dealing with both the in-vessel and ex-vessel phenomena, including hydrogen generation, diffusion/convection and deflagration/detonation. To develop the sophisticated thermalhydraulic codes for analyzing severe accident related hydrogen behavior of a light water reactor system is quite expensive and rather unrealistic for China along to bear the cost. Therefore, the most effective way for China to establish the design capability of analyzing severe accident for new nuclear power plant projects is to participate the international or multi-national R and D program, such as EUROATOM cost-sharing program and GEN-IV program, etc. By international cooperation, China can not only gain in most extent the successful experience of the countries with advanced technology in developing nuclear power plants, but also contribute itself most effectively in keeping the momentum of enlarging the peaceful utilization of nuclear energy in the world. Certainly, the future Chinese nuclear power market will be a significant industrial driver for developing the-state-of-the-art thermal-hydraulic codes, including hydrogen behavior analysis codes. This paper also reports some computational study on hydrogen diffusion/convection behavior in the containment related to Daya Bay NPP severe accident analysis with CFD code GASFLOW. The code validation were largely carried out in past few years in Germany and had been applied to EPR and other German NPPs. (authors)

  20. Semiempirical quantum model approach for hydrogen adsorption in ZrNi alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Bin-Hao, E-mail: binhao17@gmail.com [Department of Energy Application Engineering, Far East University, No. 49, Zhonghua Rd., Xinshi Dist., Tainan City 74448, Taiwan, ROC (China); Huang, Chien-Chung [Department of Hydrogen Energy and Fuel Cells, Green Energy and Eco-Technology Center, ITRI, No. 49, Zhonghua Rd., Xinshi Dist., Tainan City 74448, Taiwan, ROC (China); Yeh, Yen-Lian; Jang, Ming-Jyi [Department of Automation and Control Engineering, Far East University, No. 49, Zhonghua Rd., Xinshi Dist., Tainan City 74448, Taiwan, ROC (China)

    2013-12-15

    Highlights: •The hydrogen diffusion behavior in solid ZrNi alloy performs clearly by MD. •Shear and Young’s modulus agree with the experiment study very well. •Current model can apply to hydrogen-tech material development. -- Abstract: Hydrogen storage is an important topic because of its relevance to the future energy economy. Hydrogen diffusivity in materials plays an important role in hydrogen technology both for hydrogen separation and hydrogen storage. To clarify the mechanism of the rate-controlling step, diffusion mechanism of hydrogen in metallic materials is studied by molecular dynamics method. This study performs semi-empirical-quantum molecular dynamic simulations in order to clarify hydrogen atom diffusion behavior in ZrNi alloys materials. We investigate the mechanical properties change associated with temperature variation for ZrNi base alloys and also consider the influence of materials micro-structure change of hydrogen diffusion. Finally, current work presents a theoretically prediction of dynamical diffusion coefficient to compare diffusion kinetics of crystalline and amorphous structure.

  1. Simulation of hydrogen and hydrogen-assisted propane ignition in Pt catalyzed microchannel

    Energy Technology Data Exchange (ETDEWEB)

    Seshadri, Vikram; Kaisare, Niket S. [Department of Chemical Engineering, Indian Institute of Technology - Madras, Chennai 600 036 (India)

    2010-11-15

    This paper deals with self-ignition of catalytic microburners from ambient cold-start conditions. First, reaction kinetics for hydrogen combustion is validated with experimental results from the literature, followed by validation of a simplified pseudo-2D microburner model. The model is then used to study the self-ignition behavior of lean hydrogen/air mixtures in a Platinum-catalyzed microburner. Hydrogen combustion on Pt is a very fast reaction. During cold start ignition, hydrogen conversion reaches 100% within the first few seconds and the reactor dynamics are governed by the ''thermal inertia'' of the microburner wall structure. The self-ignition property of hydrogen can be used to provide the energy required for propane ignition. Two different modes of hydrogen-assisted propane ignition are considered: co-feed mode, where the microburner inlet consists of premixed hydrogen/propane/air mixtures; and sequential feed mode, where the inlet feed is switched from hydrogen/air to propane/air mixtures after the microburner reaches propane ignition temperature. We show that hydrogen-assisted ignition is equivalent to selectively preheating the inlet section of the microburner. The time to reach steady state is lower at higher equivalence ratio, lower wall thermal conductivity, and higher inlet velocity for both the ignition modes. The ignition times and propane emissions are compared. Although the sequential feed mode requires slightly higher amount of hydrogen, the propane emissions are at least an order of magnitude lower than the other ignition modes. (author)

  2. Influence of Manufacturing Parameters on Microstructure and Hydrogen Sorption Behavior of Electron Beam Melted Titanium Ti-6Al-4V Alloy.

    Science.gov (United States)

    Pushilina, Natalia; Syrtanov, Maxim; Kashkarov, Egor; Murashkina, Tatyana; Kudiiarov, Viktor; Laptev, Roman; Lider, Andrey; Koptyug, Andrey

    2018-05-10

    Influence of manufacturing parameters (beam current from 13 to 17 mA, speed function 98 and 85) on microstructure and hydrogen sorption behavior of electron beam melted (EBM) Ti-6Al-4V parts was investigated. Optical and scanning electron microscopies as well as X-ray diffraction were used to investigate the microstructure and phase composition of EBM Ti-6Al-4V parts. The average α lath width decreases with the increase of the speed function at the fixed beam current (17 mA). Finer microstructure was formed at the beam current 17 mA and speed function 98. The hydrogenation of EBM Ti-6Al-4V parts was performed at the temperatures 500 and 650 °С at the constant pressure of 1 atm up to 0.3 wt %. The correlation between the microstructure and hydrogen sorption kinetics by EBM Ti-6Al-4V parts was demonstrated. Lower average hydrogen sorption rate at 500 °C was in the sample with coarser microstructure manufactured at the beam current 17 mA and speed function 85. The difference of hydrogen sorption kinetics between the manufactured samples at 650 °C was insignificant. The shape of the kinetics curves of hydrogen sorption indicates the phase transition α H + β H →β H .

  3. Hydrogen storage behavior of one-dimensional TiBx chains

    International Nuclear Information System (INIS)

    Li Fen; Zhao Jijun; Chen Zhongfang

    2010-01-01

    We designed a series of one-dimensional TiB x (x = 2-6) chains used for hydrogen storage. Among them, TiB 5 possesses the lowest heat of formation and the highest binding energy, and is the most energetically favorable configuration. The binding energy per atom in TiB 5 is even larger than that in a Ti dimer, which suggests the preference of Ti atoms to combine with B 5 clusters rather than clustering. Each Ti atom in the TiB 5 chain can host four hydrogen molecules (corresponding to a hydrogen storage capacity of 7.3 wt%) with an average binding energy of 43.7 kJ mol -1 /H 2 . The significant charge transfer and strong Kubas σ-H 2 interaction between H 2 and Ti atoms contribute to the ideal dihydrogen binding energies.

  4. Preliminary analyses on hydrogen diffusion through small break of thermo-chemical IS process hydrogen plant

    International Nuclear Information System (INIS)

    Somolova, Marketa; Terada, Atsuhiko; Takegami, Hiroaki; Iwatsuki, Jin

    2008-12-01

    Japan Atomic Energy Agency has been conducting a conceptual design study of nuclear hydrogen demonstration plant, that is, a thermal-chemical IS process hydrogen plant coupled with the High temperature Engineering Test Reactor (HTTR-IS), which will be planed to produce a large amount of hydrogen up to 1000m 3 /h. As part of the conceptual design work of the HTTR-IS system, preliminary analyses on small break of a hydrogen pipeline in the IS process hydrogen plant was carried out as a first step of the safety analyses. This report presents analytical results of hydrogen diffusion behaviors predicted with a CFD code, in which a diffusion model focused on the turbulent Schmidt number was incorporated. By modifying diffusion model, especially a constant accompanying the turbulent Schmidt number in the diffusion term, analytical results was made agreed well with the experimental results. (author)

  5. Influence of precipitation behavior on mechanical properties and hydrogen induced cracking during tempering of hot-rolled API steel for tubing

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Joonoh, E-mail: mjo99@kims.re.kr [Ferrous Alloy Department, Advanced Metallic Materials Division, Korea Institute of Materials Science, 797 Changwondae-ro, Seongsan-gu, Changwon, Gyeongnam 642-831 (Korea, Republic of); Choi, Jongmin; Han, Seong-Kyung; Huh, Sungyul; Kim, Seong-Ju [Sheet Products Design Team, Technical Research Center, Hyundai Steel Company, 1480 Bukbusaneop-ro, Dangjin, Chungnam 343-823 (Korea, Republic of); Lee, Chang-Hoon; Lee, Tae-Ho [Ferrous Alloy Department, Advanced Metallic Materials Division, Korea Institute of Materials Science, 797 Changwondae-ro, Seongsan-gu, Changwon, Gyeongnam 642-831 (Korea, Republic of)

    2016-01-15

    Precipitation behavior and its effect on hydrogen embrittlement during tempering process of hot-rolled API steel designed with 0.4 wt% Cr and 0.25 wt% Mo were investigated. The base steel was normalized and then tempered at 650 °C for up to 60 min. The precipitation behavior of the examined steel was explored using transmission electron microscopy (TEM) analysis, and it was found that the precipitation sequence during tempering at 650 °C were as follows: MX+M{sub 3}C→MX→MX+M{sub 7}C{sub 3}+M{sub 23}C{sub 6}. The change of particle fraction was measured by electrolytic extraction technique. At the early stage of tempering, the particle fraction greatly decreased due to dissolution of M{sub 3}C particle, and increased after 10 min by the precipitation of M{sub 7}C{sub 3} and M{sub 23}C{sub 6} particles. The particle fraction showed a peak at 30 min tempering and decreased again due to the dissolution of M{sub 7}C{sub 3} particle. Vickers hardness tests of base steel and tempered samples were carried out, and then the hardness was changed by accompanying with the change of particle fraction. The sensitivity of hydrogen embrittlement was evaluated through hydrogen induced cracking (HIC) tests, and the results clearly proved that HIC resistance of tempered samples was better than that of base steel due to the formation of tempered martensite, and then the HIC resistance changed depending on the precipitation behavior during tempering, i.e., the precipitation of coarse M{sub 23}C{sub 6} and M{sub 7}C{sub 3} particles deteriorated the HIC resistance.

  6. Influence of precipitation behavior on mechanical properties and hydrogen induced cracking during tempering of hot-rolled API steel for tubing

    International Nuclear Information System (INIS)

    Moon, Joonoh; Choi, Jongmin; Han, Seong-Kyung; Huh, Sungyul; Kim, Seong-Ju; Lee, Chang-Hoon; Lee, Tae-Ho

    2016-01-01

    Precipitation behavior and its effect on hydrogen embrittlement during tempering process of hot-rolled API steel designed with 0.4 wt% Cr and 0.25 wt% Mo were investigated. The base steel was normalized and then tempered at 650 °C for up to 60 min. The precipitation behavior of the examined steel was explored using transmission electron microscopy (TEM) analysis, and it was found that the precipitation sequence during tempering at 650 °C were as follows: MX+M_3C→MX→MX+M_7C_3+M_2_3C_6. The change of particle fraction was measured by electrolytic extraction technique. At the early stage of tempering, the particle fraction greatly decreased due to dissolution of M_3C particle, and increased after 10 min by the precipitation of M_7C_3 and M_2_3C_6 particles. The particle fraction showed a peak at 30 min tempering and decreased again due to the dissolution of M_7C_3 particle. Vickers hardness tests of base steel and tempered samples were carried out, and then the hardness was changed by accompanying with the change of particle fraction. The sensitivity of hydrogen embrittlement was evaluated through hydrogen induced cracking (HIC) tests, and the results clearly proved that HIC resistance of tempered samples was better than that of base steel due to the formation of tempered martensite, and then the HIC resistance changed depending on the precipitation behavior during tempering, i.e., the precipitation of coarse M_2_3C_6 and M_7C_3 particles deteriorated the HIC resistance.

  7. Effects of microstructures on hydrogen induced cracking of electrochemically hydrogenated double notched tensile sample of 4340 steel

    Energy Technology Data Exchange (ETDEWEB)

    Sk, Mobbassar Hassan, E-mail: Skmobba@qu.edu.qa [Center for Advanced Materials, Qatar University, Doha (Qatar); Overfelt, Ruel A. [Materials Research and Education Center, Materials Engineer, Auburn University, Auburn, AL (United States); Abdullah, Aboubakr M. [Center for Advanced Materials, Qatar University, Doha (Qatar)

    2016-04-06

    Quantitative fractographic characteristics of 4340 steel is demonstrated for a grain size range of 10−100 µm and hardness range of 41–52 HRC. Double-notched tensile samples were electrochemically charged in-situ with hydrogen in 0.5 m H{sub 2}SO{sub 4}+5 mg/l As{sub 2}O{sub 3} solution for 0–40 min charging time. Hydrogen induced fracture initiations were analyzed by novel metallographic investigation of the “unbroken” notch while the overall fractographic behaviors were examined by the scanning electron microscopic imaging of the fracture surfaces of the actually broken notch. Effect of hydrogen was predominantly manifested as intergranular fracture for the harder samples and quasi-cleavage fracture for the softer counterparts. 10–40 µm samples showed the maximum intensity of the hydrogen induced fracture features (intergranular and/or quasi-cleavage) close to the notch which gradually reduced with increasing distance from the notch. The largest grained samples (100 µm) however showed brittle behavior even in absence of hydrogen with similar intensity of percent fracture features at all distance from the notch, while presence of hydrogen intensified the overall percent brittle fractures with their intensities being highest close to the notch. Finally, the brittle fracture characteristics of the hydrogen embrittled samples were shown to be distinguishably different from that of the liquid nitrogen treated samples of same grain sizes and hardnesses.

  8. An experimental study of odd mass promethium isotopes using proton stripping and pickup reactions

    International Nuclear Information System (INIS)

    Straume, O.

    1979-11-01

    Odd Pm isotopes have been studied by one proton pick-up and stripping reactions. Spin assignment and spectroscopic factors have been obtained for a number of energy levels. In the stripping reactions, the relative cross-sections have been measured with an unusually high precision by the use of a target of natural neodymium. The spectroscopic strengths have been extracted using standard distorted wave methods. The nuclear structures of these promethium isotopes fall into three categories. The spherical approach seems valid for 143 Pm and 145 Pm and the deformed regime covers 151 Pm and 153 Pm, while 147 Pm and 149 Pm remain as transitional nuclei. (Auth.)

  9. Hydrogen transport in 4130 steel

    International Nuclear Information System (INIS)

    Kass, W.J.

    1976-01-01

    The solubility data indicate that under glow discharge conditions hydrogen entering the lattice is already dissociated in the gas phase. Since subsequent diffusion is expected to be no longer limited by a surface process, the remaining anomalous low temperature diffusion behavior may be related to a bulk process such as trapping. The normal permeation behavior is consistent with a trapping mechanism since the steady state permeation rate is not affected by trapping. Consequently, in normal permeation measurements it appears that both perturbations to simple diffusion occur, the hydrogen dissociation is influenced by a slow surface step and the bulk diffusion is perturbed by trapping sites. Promising future work should be the analysis of the transient diffusion behavior under glow discharge conditions via the model of McNabb and Foster to determine if meaningful trapping parameters may be elicited

  10. Interaction of hydrogen with metallic nanojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Halbritter, Andras; Csonka, Szabolcs; Makk, Peter; Mihaly, Gyoergy [Electron Transport Research Group of the Hungarian Academy of Sciences and Department of Physics, Budapest University of Technology and Economics, 1111 Budapest (Hungary)

    2007-03-15

    We study the behavior of hydrogen molecules between atomic-sized metallic electrodes using the mechanically controllable break junction technique. We focus on the interaction H{sub 2} with monoatomic gold chains demonstrating the possibility of a hydrogen molecule being incorporated in the chain. We also show that niobium is strongly reactive with hydrogen, which enables molecular transport studies between superconducting electrodes. This opens the possibility for a full characterization of the transmission properties of molecular junctions with superconducting subgap structure measurements.

  11. Automatic detection of lift-off and touch-down of a pick-up walker using 3D kinematics.

    Science.gov (United States)

    Grootveld, L; Thies, S B; Ogden, D; Howard, D; Kenney, L P J

    2014-02-01

    Walking aids have been associated with falls and it is believed that incorrect use limits their usefulness. Measures are therefore needed that characterize their stable use and the classification of key events in walking aid movement is the first step in their development. This study presents an automated algorithm for detection of lift-off (LO) and touch-down (TD) events of a pick-up walker. For algorithm design and initial testing, a single user performed trials for which the four individual walker feet lifted off the ground and touched down again in various sequences, and for different amounts of frame loading (Dataset_1). For further validation, ten healthy young subjects walked with the pick-up walker on flat ground (Dataset_2a) and on a narrow beam (Dataset_2b), to challenge balance. One 88-year-old walking frame user was also assessed. Kinematic data were collected with a 3D optoelectronic camera system. The algorithm detected over 93% of events (Dataset_1), and 95% and 92% in Dataset_2a and b, respectively. Of the various LO/TD sequences, those associated with natural progression resulted in up to 100% correctly identified events. For the 88-year-old walking frame user, 96% of LO events and 93% of TD events were detected, demonstrating the potential of the approach. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  12. Resonant pickups for non-destructive single-particle detection in heavy-ion storage rings and first experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Sanjari, Mohammad Shahab

    2013-04-26

    Nuclear astrophysics studies on highly charged radionuclides benefit from accelerator facilities with storage rings, where exotic nuclides produced with small yields can be efficiently investigated. Currently there are two accelerator facilities capable of storing highly charged heavy ions, GSI in Darmstadt and IMP in Lanzhou. Non-destructive detection methods are often used for in-flight measurements based on frequency analysis. The sensitivity of such detection systems are of primary importance specially when number of stored ions is small. Furthermore, since the exotic nuclides of interest are as a rule short-lived, the detectors must be fast. One common form of such detectors are parallel plate SCHOTTKY monitors, on which particles induce a mirror charge at each passage. This method has been successfully used at ESR experimental storage ring of GSI since 1991. In this work we describe a new resonant SCHOTTKY pickup operating as a high sensitive cavity current monitor which was mounted and commissioned in the ESR early 2010. It was successfully used in several storage ring experiments. A very similar pickup was mounted in CSRe at IMP Lanzhou in 2011. First in-ring tests have been performed and new experimental results are pending. The spectral analysis of acquired signals by the new detector has enabled a broad range of new physics experiments. The theory of operation and first experimental results and future perspectives are presented in this thesis.

  13. Resonant pickups for non-destructive single-particle detection in heavy-ion storage rings and first experimental results

    International Nuclear Information System (INIS)

    Sanjari, Mohammad Shahab

    2013-01-01

    Nuclear astrophysics studies on highly charged radionuclides benefit from accelerator facilities with storage rings, where exotic nuclides produced with small yields can be efficiently investigated. Currently there are two accelerator facilities capable of storing highly charged heavy ions, GSI in Darmstadt and IMP in Lanzhou. Non-destructive detection methods are often used for in-flight measurements based on frequency analysis. The sensitivity of such detection systems are of primary importance specially when number of stored ions is small. Furthermore, since the exotic nuclides of interest are as a rule short-lived, the detectors must be fast. One common form of such detectors are parallel plate SCHOTTKY monitors, on which particles induce a mirror charge at each passage. This method has been successfully used at ESR experimental storage ring of GSI since 1991. In this work we describe a new resonant SCHOTTKY pickup operating as a high sensitive cavity current monitor which was mounted and commissioned in the ESR early 2010. It was successfully used in several storage ring experiments. A very similar pickup was mounted in CSRe at IMP Lanzhou in 2011. First in-ring tests have been performed and new experimental results are pending. The spectral analysis of acquired signals by the new detector has enabled a broad range of new physics experiments. The theory of operation and first experimental results and future perspectives are presented in this thesis.

  14. Catalytic effect of additional metallic phases on the hydrogen absorption behavior of a Zr-Based alloy

    International Nuclear Information System (INIS)

    Ruiz, F; Peretti, H; Castro, E; Real, S; Visitin, A; Triaca, W

    2005-01-01

    The electrochemical hydrogen absorption of electrodes containing Zr 0 .9Ti 0 .1(Ni 0 .5Mn 0 .25Cr 0 .20V 0 .05) 2 is studied in alkaline media by monitoring the activation and discharge capacity along charge-discharge cycling.The considered alloy is tested in both as melted and annealed condition in order to investigate the catalytic effect of small amounts of micro segregated secondary phases of the Zr-Ni system. Since these catalytic phases are only present in the as melted alloys, tests are also carried out using a composite material elaborated from powders of the annealed alloy with the addition of 18 wt.% of the suspected catalytic phases, melted separately.The hydrogen absorption-desorption behavior for the different cases is discussed and correlated with the metallurgical characterization of the materials.The catalytic effects are studied employing cyclic voltammetry and electrochemical impedance techniques. The results are analyzed in terms of a developed physicochemical model

  15. Influence of Manufacturing Parameters on Microstructure and Hydrogen Sorption Behavior of Electron Beam Melted Titanium Ti-6Al-4V Alloy

    Directory of Open Access Journals (Sweden)

    Natalia Pushilina

    2018-05-01

    Full Text Available Influence of manufacturing parameters (beam current from 13 to 17 mA, speed function 98 and 85 on microstructure and hydrogen sorption behavior of electron beam melted (EBM Ti-6Al-4V parts was investigated. Optical and scanning electron microscopies as well as X-ray diffraction were used to investigate the microstructure and phase composition of EBM Ti-6Al-4V parts. The average α lath width decreases with the increase of the speed function at the fixed beam current (17 mA. Finer microstructure was formed at the beam current 17 mA and speed function 98. The hydrogenation of EBM Ti-6Al-4V parts was performed at the temperatures 500 and 650 °С at the constant pressure of 1 atm up to 0.3 wt %. The correlation between the microstructure and hydrogen sorption kinetics by EBM Ti-6Al-4V parts was demonstrated. Lower average hydrogen sorption rate at 500 °C was in the sample with coarser microstructure manufactured at the beam current 17 mA and speed function 85. The difference of hydrogen sorption kinetics between the manufactured samples at 650 °C was insignificant. The shape of the kinetics curves of hydrogen sorption indicates the phase transition αH + βH→βH.

  16. PERMEABILITY, SOLUBILITY, AND INTERACTION OF HYDROGEN IN POLYMERS- AN ASSESSMENT OF MATERIALS FOR HYDROGEN TRANSPORT

    Energy Technology Data Exchange (ETDEWEB)

    Kane, M

    2008-02-05

    Fiber-reinforced polymer (FRP) piping has been identified as a leading candidate for use in a transport system for the Hydrogen Economy. Understanding the permeation and leakage of hydrogen through the candidate materials is vital to effective materials system selection or design and development of safe and efficient materials for this application. A survey of the literature showed that little data on hydrogen permeation are available and no mechanistically-based models to quantitatively predict permeation behavior have been developed. However, several qualitative trends in gaseous permeation have been identified and simple calculations have been performed to identify leakage rates for polymers of varying crystallinity. Additionally, no plausible mechanism was found for the degradation of polymeric materials in the presence of pure hydrogen. The absence of anticipated degradation is due to lack of interactions between hydrogen and FRP and very low solubility coefficients of hydrogen in polymeric materials. Recommendations are made to address research and testing needs to support successful materials development and use of FRP materials for hydrogen transport and distribution.

  17. The Relationship of Maternal Behavior and Acculturation to the Quality of Attachment in Hispanic Infants Living in New York City.

    Science.gov (United States)

    Fracasso, Maria P.; And Others

    1994-01-01

    Studied the relationship of parenting behavior and acculturation to the quality of attachment in 26 Puerto Rican and Dominican infants. Results revealed equal numbers of secure and insecure infants, although more boys than girls were secure. Mothers of secure infants were more sensitive and engaged in more frequent abrupt-interfering pick-ups. (KS)

  18. MgB2 magnetometer with a directly coupled pick-up loop

    Science.gov (United States)

    Portesi, C.; Mijatovic, D.; Veldhuis, D.; Brinkman, A.; Monticone, E.; Gonnelli, R. S.

    2006-05-01

    In this work, we show the results obtained in the fabrication and characterization of an MgB2 magnetometer with a directly coupled pick-up loop. We used an all in situ technique for fabricating magnesium diboride films, which consists of the co-evaporation of B and Mg by means of an e-gun and a resistive heater respectively. Consequently, we realized the superconducting device, which incorporates two nanobridges as weak links in a superconducting loop. The nanobridges were realized by focused ion beam milling; they were 240 nm wide and had a critical current density of 107 A cm-2. The magnetometer was characterized at different temperatures and also measurements of the noise levels have been performed. The device shows Josephson quantum interference up to 20 K and the calculated effective area at low temperatures was 0.24 mm2. The transport properties of the magnetometer allow determining fundamental materials properties of the MgB2 thin films, such as the penetration depth.

  19. Testbeam Studies on Pick-Up in Sensors with Embedded Pitch Adapters

    CERN Document Server

    Rehnisch, Laura; The ATLAS collaboration

    2017-01-01

    For silicon strip sensors, the tracking information specifications can lead to challenging requirements for wire bonding. A common strategy is to use external pitch adapters to facilitate this step in the production of detector modules. A novel approach previously discussed in [1], is to implement the pitch adapters in the sensor, by embedding a second layer of metal tracks. The use of these embedded pitch adapters (EPAs) decouples the bond pad layout of the sensor from its implant layout by moving the adaption to the sensor production step. This solution, however, can yield the risk of performance losses due to the increase of inter-strip capacitance, or unwanted capacitive coupling between the metal layers (cross-talk) or the silicon bulk and the second metal layer (pick-up). In the prototyping stage of the ATLAS tracker end-cap upgrade, where different bond-pad layouts on sensor and readout chip lead to extremely challenging wire-bonding conditions, sensors with different geometries of EPA implementations ...

  20. Influence of fillers on hydrogen penetration properties and blister fracture of rubber composites for O-ring exposed to high-pressure hydrogen gas

    Energy Technology Data Exchange (ETDEWEB)

    Yamabe, Junichiro; Nishimura, Shin [Department of Mechanical Science Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Research Center for Hydrogen Industrial Use and Storage (HYDROGENIUS), National Institute of Advanced Industrial Science and Technology (AIST), 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan)

    2009-02-15

    Ethylene-propylene rubber (EPDM) and nitrile-butadiene rubber (NBR) composites having carbon black, silica, and no fillers were exposed to hydrogen gas at a maximum pressure of 10 MPa; then, blister tests and the measurement of hydrogen content were conducted. The hydrogen contents of the composites were proportional to the hydrogen pressure, i.e., the behavior of their hydrogen contents follows Henry's law. This implies that hydrogen penetrates into the composite as a hydrogen molecule. The addition of carbon black raised the hydrogen content of the composite, while the addition of silica did not. Based on observations, the blister damages of composites with silica were less pronounced, irrespective of the hydrogen pressures. This may be attributed to their lower hydrogen content and relatively better tensile properties than the others. (author)

  1. Laparoscopic ovarian biopsy pick-up method for goats.

    Science.gov (United States)

    Brandão, Fabiana A S; Alves, Benner G; Alves, Kele A; Souza, Samara S; Silva, Yago P; Freitas, Vicente J F; Teixeira, Dárcio I A; Gastal, Eduardo L

    2018-02-01

    Biopsy pick-up (BPU) has been considered a safe method to harvest ovarian fragments from live animals. However, no studies have been reported on the use of BPU to collect in vivo ovarian tissue in goats. The goals of this study were: (i) to test different biopsy needle sizes to collect ovarian tissue in situ using the BPU method (Experiment 1), and (ii) to study ovarian tissue features such as preantral follicle density, morphology, class distribution, and stromal cell density in ovarian fragments obtained in vivo through a laparoscopic BPU method (Experiment 2). In Experiment 1, goat ovaries (n = 20) were collected in a slaughterhouse and subjected to in situ BPU. Three needles (16, 18, and 20G) were tested. In Experiment 2, the most efficient biopsy needle from Experiment 1 was used to perform laparoscopic BPU in goats (n = 8). In Experiment 1, the recovery rate was greater (P rate). Overall, 2054 preantral follicles were recorded in 5882 histological sections analyzed. Mean preantral follicular density was 28.4 ± 1.3 follicles per cm 2 . The follicular density differed (P rate in goats. Furthermore, this study described for the first time that goat ovarian biopsy fragments have a high heterogeneity in follicular density, morphology, class distribution, and stromal cell density. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Adsorption methods for hydrogen isotope storage on zeolite sieves

    International Nuclear Information System (INIS)

    Cristescu, Ioana; Cristescu, Ion; Vasut, Felicia; Brad, Sebastian; Lazar, Alin

    2001-01-01

    Adsorption molecular sieves and activated carbon were used for hydrogen isotopes. The adsorption process proceeds at liquid nitrogen and liquid hydrogen temperatures. The synthetic zeolites have similar properties as natural zeolites, but they have a regular pore structure and affinity for molecules of different size with defined shapes. Experimental results obtained at liquid nitrogen and liquid hydrogen temperatures evidenced the efficient behavior of the activated carbon and zeolite sieves for hydrogen isotope temporary storage. (authors)

  3. On the stability of pick-up ion ring distributions in the outer heliosheath

    International Nuclear Information System (INIS)

    Summerlin, Errol J.; Viñas, Adolfo F.; Moore, Thomas E.; Christian, Eric R.; Cooper, John F.

    2014-01-01

    The 'secondary energetic neutral atom (ENA)' hypothesis for the ribbon feature observed by the Interstellar Boundary Explorer (IBEX) posits that the neutral component of the solar wind continues beyond the heliopause and charge exchanges with interstellar ions in the Outer Heliosheath (OHS). This creates pick-up ions that gyrate about the draped interstellar magnetic field (ISMF) lines at pitch angles near 90° on the locus where the ISMF lies tangential to the heliopause and perpendicular to the heliocentric radial direction. This location closely coincides with the location of the ribbon feature according to the prevailing inferences of the ISMF orientation and draping. The locally gyrating ions undergo additional charge exchange and escape as free-flying neutral atoms, many of which travel back toward the inner solar system and are imaged by IBEX as a ribbon tracing out the locus described above. For this mechanism to succeed, the pick-up ions must diffuse in pitch angle slowly enough to permit secondary charge exchange before their pitch angle distribution substantially broadens away from 90°. Previous work using linear Vlasov dispersion analysis of parallel propagating waves has suggested that the ring distribution in the OHS is highly unstable, which, if true, would make the secondary ENA hypothesis incapable of rendering the observed ribbon. In this paper, we extend this earlier work to more realistic ring distribution functions. We find that, at the low densities necessary to produce the observed IBEX ribbon via the secondary ENA hypothesis, growth rates are highly sensitive to the temperature of the beam and that even very modest temperatures of the ring beam corresponding to beam widths of <1° are sufficient to damp the self-generated waves associated with the ring beam. Thus, at least from the perspective of linear Vlasov dispersion analysis of parallel propagating waves, there is no reason to expect that the ring distributions necessary to

  4. Two-proton pickup studies with the (6Li,8B) reaction

    International Nuclear Information System (INIS)

    Weisenmiller, R.B.

    1976-01-01

    The ( 6 Li, 8 B) reaction has been investigated on targets of 26 Mg, 24 Mg, 16 O, 13 C, 12 C, 11 B, 10 B, and 9 Be at a bombarding energy of 80.0 MeV, and on targets of 16 O, 12 C, 9 Be, 7 Li, and 6 Li at a bombarding energy of 93.3 MeV. Only levels consistent with direct, single-step two-proton pickup reaction mechanisms were observed to be strongly populated. On T/sub z/ = 0 targets, the spectroscopic selectivity of this reaction resembles that of the analogous (p,t) reaction. Additionally, these data demonstrate the dominance of spatially symmetric transfer of the two protons. On T/sub z/ greater than 0 targets the ( 6 Li, 8 B) reaction was employed to locate two previously unreported levels (at 7.47 +- 0.05 MeV and 8.86 +- 0.07 MeV) in the T/sub z/ = 2 nuclide 24 Ne and to establish the low-lying 1p-shell states in the T/sub z/ = 3 / 2 nuclei 11 Be, 9 Li, and 7 He. However, no evidence was seen for any narrow levels in the T/sub z/ = 3 / 2 nuclide 5 H nor for any narrow excited states in 7 He. The angular distributions reported here are rather featureless and decrease monotonically with increasing angle. This behavior can be shown by a semi-classical reaction theory to be a consequence of the reaction kinematics. A semi-classical approach also suggests that the kinematic term in the transition matrix element is only weakly dependent upon the angular momentum transfer (which is consistent with simple Distorted Wave Born Approximation calculations). However, only qualitative agreement was obtained between the observed relative transition yields and semi-classical predictions, using the two-nucleon coefficients of fractional parentage of Cohen and Kurath, probably due to the limitations of the semi-classical reaction theory

  5. Neutronographic measurements of the motion of hydrogen and hydrogeneous substances in liquids and solids

    International Nuclear Information System (INIS)

    Zeilinger, A.; Pochman, W.A.; Rauch, H.; Suleiman, M.

    1976-01-01

    Earlier measurements of hydrogen motion in liquids by neutron radiography have been extended to obtain additional parameters of governing the mixing behavior of light and heavy water. Furthermore motion of water in concrete was measured leading to a determination of (1) the vapor diffusion coefficient of water in concrete, (2) the porosity of the concrete, and (3) the mass transfer coefficient of vapor from the concrete to the environment. Recently the ability of neutron radiography to measure the hydrogen motion in metals was demonstrated and the diffusion coefficients of hydrogen in V, Ta, Nb and beta-Ti was determined. In addition, some work on resolution measurements of neutron radiography will be reported. (author)

  6. Evolution behavior of nanohardness after thermal-aging and hydrogen-charging on austenite and strain-induced martensite in pre-strained austenitic stainless steel

    Science.gov (United States)

    Zheng, Yuanyuan; Zhou, Chengshuang; Hong, Yuanjian; Zheng, Jinyang; Zhang, Lin

    2018-05-01

    Nanoindentation has been used to study the effects of thermal-aging and hydrogen on the mechanical property of the metastable austenitic stainless steel. Thermal-aging at 473 K decreases the nanohardness of austenite, while it increases the nanohardness of strain-induced ɑ‧ martensite. Hydrogen-charging at 473 K increases the nanohardness of austenite, while it decreases the nanohardness of strain-induced ɑ‧ martensite. The opposite effect on austenite and ɑ‧ martensite is first found in the same pre-strained sample. This abnormal evolution behavior of hardness can be attributed to the interaction between dislocation and solute atoms (carbon and hydrogen). Carbon atoms are difficult to move and redistribute in austenite compared with ɑ‧ martensite. Therefore, the difference in the diffusivity of solute atoms between austenite and ɑ‧ martensite may result in the change of hardness.

  7. Equilibrium amide hydrogen exchange and protein folding kinetics

    International Nuclear Information System (INIS)

    Bai Yawen

    1999-01-01

    The classical Linderstrom-Lang hydrogen exchange (HX) model is extended to describe the relationship between the HX behaviors (EX1 and EX2) and protein folding kinetics for the amide protons that can only exchange by global unfolding in a three-state system including native (N), intermediate (I), and unfolded (U) states. For these slowly exchanging amide protons, it is shown that the existence of an intermediate (I) has no effect on the HX behavior in an off-pathway three-state system (I↔U↔N). On the other hand, in an on-pathway three-state system (U↔I↔N), the existence of a stable folding intermediate has profound effect on the HX behavior. It is shown that fast refolding from the unfolded state to the stable intermediate state alone does not guarantee EX2 behavior. The rate of refolding from the intermediate state to the native state also plays a crucial role in determining whether EX1 or EX2 behavior should occur. This is mainly due to the fact that only amide protons in the native state are observed in the hydrogen exchange experiment. These new concepts suggest that caution needs to be taken if one tries to derive the kinetic events of protein folding from equilibrium hydrogen exchange experiments

  8. Solar cycle variation of interstellar neutral He, Ne, O density and pick-up ions along the Earth's orbit

    OpenAIRE

    Sokół, Justyna M.; Bzowski, Maciej; Kubiak, Marzena A.; Möbius, Eberhard

    2016-01-01

    We simulated the modulation of the interstellar neutral (ISN) He, Ne, and O density and pick-up ion (PUI) production rate and count rate along the Earth's orbit over the solar cycle from 2002 to 2013 to verify if solar cycle-related effects may modify the inferred ecliptic longitude of the ISN inflow direction. We adopted the classical PUI model with isotropic distribution function and adiabatic cooling, modified by time- and heliolatitude-dependent ionization rates and non-zero injection spe...

  9. Analysis of behavior of focusing error signals generated by astigmatic method when a focused spot moves beyond the radius of a land-groove-type optical disk

    Science.gov (United States)

    Shinoda, Masahisa; Nakatani, Hidehiko; Nakai, Kenya; Ohmaki, Masayuki

    2015-09-01

    We theoretically calculate behaviors of focusing error signals generated by an astigmatic method in a land-groove-type optical disk. The focusing error signal from the land does not coincide with that from the groove. This behavior is enhanced when a focused spot of an optical pickup moves beyond the radius of the optical disk. A gain difference between the slope sensitivities of focusing error signals from the land and the groove is an important factor with respect to stable focusing servo control. In our calculation, the format of digital versatile disc-random access memory (DVD-RAM) is adopted as the land-groove-type optical disk model, and the dependences of the gain difference on various factors are investigated. The gain difference strongly depends on the optical intensity distribution of the laser beam in the optical pickup. The calculation method and results in this paper will be reflected in newly developed land-groove-type optical disks.

  10. Anomalously deep penetration of hydrogen into niobium under action of pulse high temperature hydrogen plasma

    International Nuclear Information System (INIS)

    Didyk, A.Yu.

    2011-01-01

    The method of elastic recoil detection (ERD) has been used for the study of storage and redistribution processes of hydrogen atoms under the influence of pulse high temperature hydrogen plasma obtained using the 'Plasma Focus' PF-4 set-up in three high purity niobium foils. It was established that with an increase of number of PF-4 set-up pulses there occur spreading and transfer of implanted hydrogen atoms to large depths in three Nb-foils which are significantly larger than the projected range of hydrogen ions (with the velocity ∼ 10 8 cm/s). The maximum hydrogen concentration up to 60 at. % is reached in the nearest to Ph-4 surface of the third Nb-foil at 20 impulses of the Ph-4 set-up. The observed phenomenon can be described by transfer of implanted hydrogen atoms under the action of powerful shock waves, created by pulse hydrogen plasma and (or) by accelerating hydrogen atom diffusion under the influence of compression straining wave at the front of the shock wave at redistribution of hydrogen atoms at large depths. Similar behavior was discovered and described also in series of nickel, vanadium, niobium and tantalum foils (two or three foils and more in a series) including series of foils from heterogeneous (different) materials, which were studied, too

  11. Physiological behavior of hydrogen sulfide in rice plant. Part 5. Effect of hydrogen sulfide on respiration of rice roots

    Energy Technology Data Exchange (ETDEWEB)

    Okajima, H; Takagi, S

    1955-01-01

    The inhibitory effects of hydrogen sulfide on the respiration of rice plant roots were investigated using Warburg's manometory technique. Hydrogen sulfide inhibited not only aerobic respiration but anaerobic respiration process of roots. Inhibitory action of hydrogen sulfide and potassium cyanide on the respiration were apparently reversible, but the style of recovery reaction from inhibition was somewhat different in each case. Oxygen consumption of roots was increased by addition of ammonium salts, but the same effects were not recognized by the addition of any other salt examined (except nitrate salts). There was close relationship between respiration of roots and assimilation of nitrogen by roots. The increased oxygen uptake by addition of ammonium salt was also inhibited by hydrogen sulfide. The reactivation of this reaction occurred with the recovery of endogenous respiration of roots. 19 references, 8 figures, 3 tables.

  12. Influence of hydrogen on metals behavior. 1 - Mechanical behavior of Ti 6 pc Al 6 pc V 2 pc Sn titanium alloy versus hydrogen: influence of heat treatment and of oxygen content; Influence de l'hydrogene sur le comportement des metaux. 1 - comportement mecanique de l'alliage de titane T A6 V6 E2 vis-a-vis de l'hydrogene: influence du traitement thermique et de la teneur en oxygene

    Energy Technology Data Exchange (ETDEWEB)

    Schaller, Bernard

    1972-06-26

    The mechanical behavior of Ti 6 pc Al 6 pc V Sn alloy during dynamic testing has been investigated versus hydrogen and oxygen content. The hydrogen susceptibility depends only slightly on its microstructure, acicular or equi-axed: it depends much more on conditions of hydrogen contamination and on the thermal history afterward. When the alloy has been stabilized by annealing in {alpha} - {beta} and provided hydrogen absorption does not induce phase transformations, hydrogen sensitivity is relatively low: brittleness occurs suddenly but at a high concentration threshold (2000 ppm H), which coincides with hydrogen saturation of {beta} phase. When the alloy includes unstabilized phases, its response to hydrogen changes whether it has been finally annealed or not, in the 300 - 500 C temperature area, prone to {omega} phase formation. In the absence of such an annealing, a reduction in ductility only occurs at high concentrations (> 1500 ppm H). In the other and, after annealing at 400 C, alloy hardening and a ductility decrease start even at the lowest hydrogen amounts: then hydrogen susceptibility is very high. Low oxygen concentration (up to 2000 ppm) do not sensibly affect the good hydrogen tolerance of this alloy. Beyond 2500 ppm, oxygen, while improving tensile strength, yet severely decreases ductility. [French] Le comportement mecanique de l'alliage TA6-V6-E2 lors d'un essai dynamique a ete etudie en fonction de la teneur en hydrogene et en oxygene. La sensibilite vis-a-vis de l'hydrogene ne depend que tres faiblement de sa structure migrographique, aciculaire ou equiaxe; elle depend bien plus des conditions de contamination par l'hydrogene et de son histoire thermique apres contamination. Lorsque l'alliage a ete stabilise par un recuit dans le domaine biphase, et a condition que l'absorption d'hydrogene n'entraine pas de modification structurale, la sensibilite vis-a-vis de l'hydrogene est relativement faible: la fragilite apparait brutalement mais pour un

  13. Influence of hydrogen addition to a sweep gas on tritium behavior in a blanket module containing Li{sub 2}TiO{sub 3} pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Katayama, K., E-mail: kadzu@nucl.kyushu-u.ac.jp [Department of Advanced Energy Engineering Science, Kyushu University 6-1, Kasugakoen, Kasuga-shi, Fukuoka 816-8580 (Japan); Someya, Y.; Tobita, K. [National Institutes for Quantum and radiological Science and Technology, 2-166 Omotedate, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212 (Japan); Fukada, S. [Department of Advanced Energy Engineering Science, Kyushu University 6-1, Kasugakoen, Kasuga-shi, Fukuoka 816-8580 (Japan); Hatano, Y. [Hydrogen Isotope Research Center, University of Toyama, Gofuku 3190, Toyama 930-8555 (Japan); Chikada, T. [Department of Chemistry, Graduate school of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529 (Japan)

    2016-12-15

    Highlights: • Mass balance equations of H{sub 2}, H{sub 2}O, T{sub 2} and T{sub 2}O in a Li{sub 2}TiO{sub 3} pebble bed were numerically calculated. • In the temperature rising process, the pebbles were exposed to water vapor of relatively high concentration. • Tritium permeation rate to cooling water reduced with increasing hydrogen concentration in the sweep gas. • Tritium inventory in the grain bulk and the grain surface occupied 99.6% of total inventory. - Abstract: Hydrogen addition to a sweep gas of a solid breeder blanket module has been proposed to enhance tritium recovery from the surface of the breeders. However, the influence of hydrogen addition on the bred tritium behavior is not understood completely. Tritium behavior in the simplified blanket module of Li{sub 2}TiO{sub 3} pebbles was numerically calculated considering diffusion in the grain bulk, surface reactions on the grain surface and permeation through the cooling pipe. Although a partial pressure of T{sub 2} increases with increasing a partial pressure of H{sub 2} in the sweep gas, it was estimated that tritium permeation rate to the cooling water decreases. Additionally, the release duration of water vapor generated by the reaction of the pebbles and hydrogen is shortened with increasing a partial pressure of H{sub 2}. Tritium inventory in the grain bulk and the grain surface occupies 99.6 % of total tritium inventory in the blanket module.

  14. INTERSTELLAR PICKUP ION PRODUCTION IN THE GLOBAL HELIOSPHERE AND HELIOSHEATH

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y.; Florinski, V.; Guo, X., E-mail: yw0009@uah.edu [Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, Huntsville, AL 35805 (United States)

    2016-11-20

    Interstellar pickup ions (PUIs) play a significant part in mediating the solar wind (SW) interaction with the interstellar medium. In this paper, we examine the details of spatial variation of the PUI velocity distribution function (VDF) in the SW by solving the PUI transport equation. We assume the PUI distribution is isotropic resulting from strong pitch-angle scattering by wave–particle interaction. A three-dimensional model combining the MHD treatment of the background SW and neutrals with a kinetic treatment of PUIs throughout the heliosphere and the surrounding local interstellar medium has been developed. The model generates PUI power-law tails via second-order Fermi process. We analyze how PUIs transform across the heliospheric termination shock and obtain the PUI phase space distribution in the inner heliosheath including continuing velocity diffusion. Our simulated PUI spectra are compared with observations made by New Horizons , Ulysses , Voyager 1, 2 , and Cassini , and a satisfactory agreement is demonstrated. Some specific features in the observations, for example, a cutoff of PUI VDF at v = V {sub SW} and a f ∝ v {sup -5} tail in the reference frame of the SW, are well represented by the model.

  15. Light hydrogen isotopes in the single - walled carbon nano tube

    International Nuclear Information System (INIS)

    Khugaev, A.V.; Sultanov, R.A.; Guster, D.

    2007-01-01

    Full text: Progress of our understanding of the molecular hydrogen behavior in the nano tube interior open an intriguing possibility for the applications of these knowledge's to the solution of the hydrogen storage problem and light isotopes gas selectivity. That can strongly change the situation at the energy production in the world and completely change our civil life. These investigations underline the influence of the quantum effects on the properties of molecular hydrogen in the nano tube interior and it leads to the pure quantum-mechanical reformulation of the problem for the hydrogen behavior inside carbon nano tube as a problem of molecular quantum system behavior in the external field induced by the regular nano tube surface. In the present paper the molecular hydrogen behavior in the carbon nano tube was considered in the simple quantum mechanical manner. The main attention was paid to the investigation of the quantum sieving selectivity in the dependence of nano tube composition, radius and symmetry properties. For the interaction potential between hydrogen and nano tube surface was taken some phenomenological LJ(12,6) - (Lennard - Jones) potential and the external field induced by the nano tube in its interior is considered as a simple sum over the all nano tube carbon atoms. Influence of the structure of rotation (vibration) spectrum of the energy levels of diatomic molecules, such as H 2 , HD and D 2 on the final results and finite size of the nano tube along the axis of symmetry, its boundary effects is discussed in details. Thermal oscillations of nano tube surface were considered separately in the dependence of the temperature gradient along of the axis of symmetry

  16. Development of hydrogen oxidizing bacteria using hydrogen from radiolysis or metal corrosion

    International Nuclear Information System (INIS)

    Libert, M.F.; Sellier, R.; Marty, V.; Camaro, S.

    2000-01-01

    The effect of many parameters need to be studied to characterize the long term behavior of nuclear waste in a deep repository. These parameters concern the chemical effects, radiolytic effects, mechanical properties, water composition, and microbiological activity. To evaluate microbial activity in such an environment, work was focused on an inventory of key nutrients (C, H, 0, N, P, S) and energy sources required for bacterial growth. The production of hydrogen in the nuclear waste environment leads to the growth of hydrogen oxidizing bacteria, which modify the gas production balance. A deep repository containing bituminized waste drums implies several sources of hydrogen: - water radiolysis; -corrosion of metal containers; - radiolysis of the embedding matrix (bitumen). Two deep geological disposal conditions leading to H 2 production in a bituminized nuclear waste environment were simulated in the present study: - H 2 production by iron corrosion under anaerobic conditions was simulated by adding 10% of H 2 in the atmosphere; - H 2 production by radiolysis of bitumen matrix was approached by subjecting this material to external gamma irradiation with a dose rate near real conditions (6 Gy/h). The presence of dissolved H 2 in water allows the growth of hydrogen oxidizing bacteria leading to: - CO 2 and N 2 production; - H 2 consumption; - lower NO 3 - concentration caused by reduction to nitrogen. In the first case, hydrogen consumption is limited by the NO 3 - release rate from the bitumen matrix. In the second case, however, under gamma radiation at a low dose rate, hydrogen production is weak, and the hydrogen is completely consumed by microorganisms. Knowledge about these hydrogen oxidizing bacteria is just beginning to emerge. Heterotrophic denitrifying bacteria adapt well to hydrogen metabolism (autotrophic metabolism) by oxidizing H 2 instead of hydrocarbons. (authors)

  17. A study on hydrogen-storage behaviors of nickel-loaded mesoporous MCM-41.

    Science.gov (United States)

    Park, Soo-Jin; Lee, Seul-Yi

    2010-06-01

    The objective of the present work was to investigate the possibility of improving the hydrogen-storage capacity of mesoporous MCM-41 containing nickel (Ni) oxides (Ni/MCM-41). The MCM-41 and Ni/MCM-41 were prepared using a hydrothermal process as a function of Ni content (2, 5, and 10 wt.% in the MCM-41). The surface functional groups of the Ni/MCM-41 were identified by Fourier transform infrared spectroscopy (FTIR). The structure and morphology of the Ni/MCM-41 were characterized by X-ray diffraction (XRD) and field emission transmission electron microscopy (FE-TEM). XRD results showed a well-ordered hexagonal pore structure; FE-TEM also revealed, as a complementary technique, the structure and pore size. The textural properties of the Ni/MCM-41 were analyzed using N(2) adsorption isotherms at 77 K. The hydrogen-storage capacity of the Ni/MCM-41 was evaluated at 298 K/100 bar. It was found that the presence of Ni on mesoporous MCM-41 created hydrogen-favorable sites that enhanced the hydrogen-storage capacity by a spillover effect. Furthermore, it was concluded that the hydrogen-storage capacity was greatly influenced by the amount of nickel oxide, resulting in a chemical reaction between Ni/MCM-41 and hydrogen molecules. Crown Copyright © 2010. Published by Elsevier Inc. All rights reserved.

  18. Thermodynamic model for grain boundary effects on hydrogen solubility, diffusivity and permeability in poly-crystalline tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Oda, Takuji, E-mail: oda@snu.ac.kr

    2016-11-15

    Highlights: • A thermodynamic model to simulate grain boundary effects on hydrogen behaviors in poly-crystalline W was established. • With this model, the effective solubility, diffusivity and permeability of hydrogen are calculated as a function of grain size. • Grain boundary significantly change the hydrogen behaviors in poly-crystalline W up to around 1000 K. - Abstract: A thermodynamic model to evaluate effects of grain boundary (GB) on hydrogen behaviors in poly-crystalline tungsten is established. With this model, the effective solubility, diffusivity and permeability of hydrogen in tungsten equilibrated with surrounding H{sub 2} gas can be calculated as a function of grain size, temperature and H{sub 2} partial pressure. By setting 1.0 eV to the binding energy of hydrogen to GBs and 0.4 eV to the diffusion barrier of hydrogen along GBs, the model reasonably reproduces some experimental data on the effective diffusivity and permeability. Comparisons between calculation results by the model and available experimental data show that GBs significantly affect the hydrogen behaviors up to around 1000 K or higher in practical materials. Therefore, the effects of GBs need to be considered in analysis of experimental results, for which the present model can be utilized, and in prediction of tritium inventory and leakage in fusion reactors.

  19. Vehicle Routing Problem with Time Windows and Simultaneous Delivery and Pick-Up Service Based on MCPSO

    Directory of Open Access Journals (Sweden)

    Xiaobing Gan

    2012-01-01

    Full Text Available This paper considers two additional factors of the widely researched vehicle routing problem with time windows (VRPTW. The two factors, which are very common characteristics in realworld, are uncertain number of vehicles and simultaneous delivery and pick-up service. Using minimization of the total transport costs as the objective of the extension VRPTW, a mathematic model is constructed. To solve the problem, an efficient multiswarm cooperative particle swarm optimization (MCPSO algorithm is applied. And a new encoding method is proposed for the extension VRPTW. Finally, comparing with genetic algorithm (GA and particle swarm optimization (PSO algorithm, the MCPSO algorithm performs best for solving this problem.

  20. Microporous Metal Organic Materials for Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    S. G. Sankar; Jing Li; Karl Johnson

    2008-11-30

    We have examined a number of Metal Organic Framework Materials for their potential in hydrogen storage applications. Results obtained in this study may, in general, be summarized as follows: (1) We have identified a new family of porous metal organic framework materials with the compositions M (bdc) (ted){sub 0.5}, {l_brace}M = Zn or Co, bdc = biphenyl dicarboxylate and ted = triethylene diamine{r_brace} that adsorb large quantities of hydrogen ({approx}4.6 wt%) at 77 K and a hydrogen pressure of 50 atm. The modeling performed on these materials agree reasonably well with the experimental results. (2) In some instances, such as in Y{sub 2}(sdba){sub 3}, even though the modeling predicted the possibility of hydrogen adsorption (although only small quantities, {approx}1.2 wt%, 77 K, 50 atm. hydrogen), our experiments indicate that the sample does not adsorb any hydrogen. This may be related to the fact that the pores are extremely small or may be attributed to the lack of proper activation process. (3) Some samples such as Zn (tbip) (tbip = 5-tert butyl isophthalate) exhibit hysteresis characteristics in hydrogen sorption between adsorption and desorption runs. Modeling studies on this sample show good agreement with the desorption behavior. It is necessary to conduct additional studies to fully understand this behavior. (4) Molecular simulations have demonstrated the need to enhance the solid-fluid potential of interaction in order to achieve much higher adsorption amounts at room temperature. We speculate that this may be accomplished through incorporation of light transition metals, such as titanium and scandium, into the metal organic framework materials.

  1. Development of Zirconium alloys (for pressure tubes)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Suk; Kwon, Sang Chul; Choo, Ki Nam; Jung, Chung Hwan; Yim, Kyong Soo; Kim, Sung Soo; Baek, Jong Hyuk; Jeong, Yong Hwan; Kim, Kyong Ho; Cho, Hae Dong [Korea Atomic Energy Research Inst., Daeduk (Korea, Republic of); Hwang, S. K.; Kim, M. H. [Inha Univ., Incheon (Korea, Republic of); Kwon, S. I [Korea Univ., Seoul (Korea, Republic of); Kim, I. S. [Korea Advanced Inst. of Science and Technology, Taejon (Korea, Republic of)

    1997-09-01

    The objective of this research is to set up the basic technologies for the evaluation of pressure tube integrity and to develop improved zirconium alloys to prevent pressure tube failures due to DHC and hydride blister caused by excessive creep-down of pressure tubes. The experimental procedure and facilities for characterization of pressure tubes were developed. The basic research related to a better understanding of the in-reactor performances of pressure tubes leads to noticeable findings for the first time : the microstructural effect on corrosion and hydrogen pick-up behavior of Zr-2.5Nb pressure tubes, texture effect on strength and DHC resistance and enhanced recrystallization by Fe in zirconium alloys and etc. Analytical methodology for the assessment of pressure tubes with surface flaws was set up. A joint research is being under way with AECL to determine the fracture toughness of O-8 at the EOL (End of Life) that had been quadruple melted and was taken out of the Wolsung Unit-1 after 10 year operation. In addition, pressure tube with texture controlled is being made along with VNINM in Russia as a joint project between KAERI and Russia. Finally, we succeeded in developing 4 different kinds of zirconium alloys with better corrosion resistance, low hydrogen pickup fraction and higher creep strength. (author). 121 refs., 65 tabs., 260 figs

  2. Challenges in the determination of the interstellar flow longitude from the pickup ion cutoff

    Science.gov (United States)

    Taut, A.; Berger, L.; Möbius, E.; Drews, C.; Heidrich-Meisner, V.; Keilbach, D.; Lee, M. A.; Wimmer-Schweingruber, R. F.

    2018-03-01

    Context. The interstellar flow longitude corresponds to the Sun's direction of movement relative to the local interstellar medium. Thus, it constitutes a fundamental parameter for our understanding of the heliosphere and, in particular, its interaction with its surroundings, which is currently investigated by the Interstellar Boundary EXplorer (IBEX). One possibility to derive this parameter is based on pickup ions (PUIs) that are former neutral ions that have been ionized in the inner heliosphere. The neutrals enter the heliosphere as an interstellar wind from the direction of the Sun's movement against the partially ionized interstellar medium. PUIs carry information about the spatial variation of their neutral parent population (density and flow vector field) in their velocity distribution function. From the symmetry of the longitudinal flow velocity distribution, the interstellar flow longitude can be derived. Aim. The aim of this paper is to identify and eliminate systematic errors that are connected to this approach of measuring the interstellar flow longitude; we want to minimize any systematic influences on the result of this analysis and give a reasonable estimate for the uncertainty. Methods: We use He+ data measured by the PLAsma and SupraThermal Ion Composition (PLASTIC) sensor on the Solar TErrestrial RElations Observatory Ahead (STEREO A) spacecraft. We analyze a recent approach, identify sources of systematic errors, and propose solutions to eliminate them. Furthermore, a method is introduced to estimate the error associated with this approach. Additionally, we investigate how the selection of interplanetary magnetic field angles, which is closely connected to the pickup ion velocity distribution function, affects the result for the interstellar flow longitude. Results: We find that the revised analysis used to address part of the expected systematic effects obtains significantly different results than presented in the previous study. In particular

  3. Listing of 502 Times When the Ulysses Magnetic Fields Instrument Observed Waves Due to Newborn Interstellar Pickup Protons

    International Nuclear Information System (INIS)

    Cannon, Bradford E.; Smith, Charles W.; Isenberg, Philip A.; Vasquez, Bernard J.; Joyce, Colin J.; Murphy, Neil; Nuno, Raquel G.

    2017-01-01

    In two earlier publications we analyzed 502 intervals of magnetic waves excited by newborn interstellar pickup protons that were observed by the Ulysses spacecraft. Due to the considerable effort required in identifying these events, we provide a list of the times for the 502 wave event intervals previously identified. In the process, we provide a brief description of how the waves were found and what their properties are. We also remind the reader of the conditions that permit the waves to reach observable levels and explain why the waves are not seen more often.

  4. Listing of 502 Times When the Ulysses Magnetic Fields Instrument Observed Waves Due to Newborn Interstellar Pickup Protons

    Energy Technology Data Exchange (ETDEWEB)

    Cannon, Bradford E. [Physics Department, Florida State University, Tallahassee, Florida (United States); Smith, Charles W.; Isenberg, Philip A.; Vasquez, Bernard J.; Joyce, Colin J. [Physics Department and Space Science Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, New Hampshire (United States); Murphy, Neil [Jet Propulsion Laboratory, Mail Stop 180-600, 4800 Oak Grove Drive, Pasadena, California (United States); Nuno, Raquel G., E-mail: bc13h@my.fsu.edu, E-mail: Charles.Smith@unh.edu, E-mail: Phil.Isenberg@unh.edu, E-mail: Bernie.Vasquez@unh.edu, E-mail: Colin.Joyce@unh.edu, E-mail: Neil.Murphy@jpl.nasa.gov, E-mail: rgnuno@ucla.edu [Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, Los Angeles, CA (United States)

    2017-05-01

    In two earlier publications we analyzed 502 intervals of magnetic waves excited by newborn interstellar pickup protons that were observed by the Ulysses spacecraft. Due to the considerable effort required in identifying these events, we provide a list of the times for the 502 wave event intervals previously identified. In the process, we provide a brief description of how the waves were found and what their properties are. We also remind the reader of the conditions that permit the waves to reach observable levels and explain why the waves are not seen more often.

  5. Journal Of The Korean Hydrogen Energy Society 2

    International Nuclear Information System (INIS)

    2001-11-01

    This book deals with studies such as new ball-milled metal hydride electrode for rechargeable batteries by Noh, Haki; Park, Chung Nyeon, hydrogen absorption by laves phase related BCC solid solution alloys by Etsuo Akiba. The hydrogen absorption kinetics in very thin pd film by Cho, Young Sin; Lee, Jong Suk; Kim, Chang Won. The effect of the ceramic precipitates on the hydrogen solubility in pd alloys by Koh, Je Mann; Lee, Kil Hong; Bada, Seung Nam; Noh, Hak, and AC impedance study of the electrochemical behavior of hydrogen, Oxygen gas mixture at nafion, catalyst electrode interface by Song, S. M and Lee, W. M.

  6. Band structure of hydrogenated Si nanosheets and nanotubes

    International Nuclear Information System (INIS)

    Guzman-Verri, G G; Lew Yan Voon, L C

    2011-01-01

    The band structures of fully hydrogenated Si nanosheets and nanotubes are elucidated by the use of an empirical tight-binding model. The hydrogenated Si sheet is a semiconductor with an indirect band gap of about 2.2 eV. The symmetries of the wavefunctions allow us to explain the origin of the gap. We predict that, for certain chiralities, hydrogenated Si nanotubes represent a new type of semiconductor, one with coexisting direct and indirect gaps of exactly the same magnitude. This behavior is different from that governed by the Hamada rule established for non-hydrogenated carbon and silicon nanotubes. A comparison to the results of an ab initio calculation is made.

  7. Develop and pilot test smart phone/tablet app for paratransit demand-response passenger pick-up alerts to assist passengers with disabilities and reduce no-shows and dwell times.

    Science.gov (United States)

    2016-12-01

    This research produced an arrival notification system for paratransit passengers with disabilities. Almost all existing curb-to-curb paratransit services have significantly large pick-up time window ranging from 20 to 40 minutes from the scheduled ti...

  8. Hydrogen safety in nuclear power - issues and measures. Preparing 'handbook for improved hydrogen safety in nuclear power'

    International Nuclear Information System (INIS)

    Ogawa, Tooru; Nakajima, Kiyoshi; Hino, Ryutaro

    2015-01-01

    In response to hydrogen explosion at the reactor building of TEPCO Fukushima Daiichi Nuclear Power Station, the common understanding among researchers in various fields has been required for the chain of various events surrounding hydrogen in case of the accident of a light water reactor. The group composed of specialists of nuclear power and gas combustion/explosion from universities, nuclear power equipment manufacturers, business interests, and nuclear power institutes is promoting the preparation work of 'Handbook for upgrading the safety of hydrogen measures related to nuclear power,' which is scheduled to be published in the end of 2015. The main themes dealt with in the handbook are as follows; (1) severe accident management and hydrogen control, (2) hydrogen combustion phenomena to be considered, (3) behavior of air - water vapor - hydrogen system, (4) passive autocatalytic recombiner (PAR) / igniter / containment spray, and (5) water-containing waste management. This paper introduces the outline of these movements and latest achievements. (A.O.)

  9. Hydrogen as a fuel for today and tomorrow: expectations for advanced hydrogen storage materials/systems research.

    Science.gov (United States)

    Hirose, Katsuhiko

    2011-01-01

    History shows that the evolution of vehicles is promoted by several environmental restraints very similar to the evolution of life. The latest environmental strain is sustainability. Transport vehicles are now facing again the need to advance to use sustainable fuels such as hydrogen. Hydrogen fuel cell vehicles are being prepared for commercialization in 2015. Despite intensive research by the world's scientists and engineers and recent advances in our understanding of hydrogen behavior in materials, the only engineering phase technology which will be available for 2015 is high pressure storage. Thus industry has decided to implement the high pressure tank storage system. However the necessity of smart hydrogen storage is not decreasing but rather increasing because high market penetration of hydrogen fuel cell vehicles is expected from around 2025 onward. In order to bring more vehicles onto the market, cheaper and more compact hydrogen storage is inevitable. The year 2025 seems a long way away but considering the field tests and large scale preparation required, there is little time available for research. Finding smart materials within the next 5 years is very important to the success of fuel cells towards a low carbon sustainable world.

  10. Laser controlled magnetism in hydrogenated fullerene films

    International Nuclear Information System (INIS)

    Makarova, Tatiana L.; Shelankov, Andrei L.; Kvyatkovskii, Oleg E.; Zakharova, Irina B.; Buga, Sergei G.; Volkov, Aleksandr P.

    2011-01-01

    Room temperature ferromagnetic-like behavior in fullerene photopolymerized films treated with monatomic hydrogen is reported. The hydrogen treatment controllably varies the paramagnetic spin concentration and laser induced polymerization transforms the paramagnetic phase to a ferromagnetic-like one. Excess laser irradiation destroys magnetic ordering, presumably due to structural changes, which was continuously monitored by Raman spectroscopy. We suggest an interpretation of the data based on first-principles density-functional spin-unrestricted calculations which show that the excess spin from mono-atomic hydrogen is delocalized within the host fullerene and the laser-induced polymerization promotes spin exchange interaction and spin alignment in the polymerized phase.

  11. Quantitative estimation of hydrogen concentration on the Ni3Al specimens surface in the process of hydrogen release

    International Nuclear Information System (INIS)

    Katano, Gen; Sano, Shogo; Saito, Hideo; Mori, Minoru

    2000-01-01

    The method to calculate the hydrogen concentration in metal specimens is given by tritium counts with the liquid scintillation counter. As segments to measure, Ni 3 Al intermetallic compound crystals were used. Tritium was charged to crystals with the method of cathode charging. The charged tritium was transported by diffusion and released from specimen surface. The tritium releasing rate was calculated from the increasing rate of tritium activity. Then the concentration of hydrogen at the surface was calculated from tritium counts. The outcome showed that the hydrogen concentration decreases at specimens surface by elapsed time. Then, the behavior of tritium diffusion was affected by doped boron (up to 0.235 atom% B and 0.470 atom% B) in Ni 3 Al crystals. As the amount of boron increased, the tritium diffusion coefficient decreased. And the hydrogen concentration varied with the amount of boron. After passing enough time, the hydrogen concentration in crystals with boron was much larger than the one without boron. Since it is very likely that the hydrogen concentration is affected by the number of hydrogen sites in the crystal, it is obvious judging by these phenomena, that by doping boron, numbers of hydrogen trapping sites were created. As the hydrogen distribution becomes homogenous after passing enough time, it is possible to measure the hydrogen concentration in all the crystals from β-ray counts at specimens surface. (author)

  12. Ship Routing with Pickup and Delivery for a Maritime Oil Transportation System: MIP Modeland Heuristics

    DEFF Research Database (Denmark)

    Rodrigues, Vinicius Picanco; Morabito, Reinaldo; Yamashita, Denise

    2016-01-01

    This paper examines a ship routing problem with pickup and delivery and time windowsfor maritime oil transportation, motivated by the production and logistics activities of an oil companyoperating in the Brazilian coast. The transportation costs from offshore platforms to coastal terminalsare...... application of two tailor-made MIP heuristics, based on relax-and-fix and timedecomposition procedures. The model minimizes fuel costs of a heterogeneous fleet of oil tankersand costs related to freighting contracts. The model also considers company-specific constraints foroffshore oil transportation....... Computational experiments based on the mathematical models and therelated MIP heuristics are presented for a set of real data provided by the company, which confirmthe potential of optimization-based methods to find good solutions for problems of moderate sizes....

  13. Hydrogen permeation and corrosion behavior of high strength steel MCM 430 in cyclic wet-dry SO2 environment

    International Nuclear Information System (INIS)

    Nishimura, Rokuro; Shiraishi, Daisuke; Maeda, Yasuaki

    2004-01-01

    Hydrogen permeation caused by corrosion under a cyclic wet (2 h)-dry (10 h) SO 2 condition was investigated for a high strength steel of MCM 430 by using an electrochemical technique in addition to the corrosion behavior obtained from weight loss measurement and the determination of corrosion products by using X-ray diffraction method. The hydrogen content converted from hydrogen permeation current density was observed in both wet and dry periods. The origin of proton was estimated to be from (1) the hydrolysis of ferrous ions, (2) the oxidation of ferrous ions and ferrous hydroxide, and (3) hydrolysis of SO 2 and formation of FeSO 4 , but not from the dissociation of H 2 O. With respect to the determination of the corrosion products consisting of inner (adherent) and outer (not adherent) layers, the outer layer is composed of α-FeOOH, amorphous phase and γ-FeOOH, where α-FeOOH increases with the increase in the wet-dry cycle, and amorphous phase shows the reverse trend. The corrosion product in the inner layer is mainly Fe 3 O 4 with them. On the basis of the results obtained, the role of the dry or wet period, the effect of SO 2 and the corrosion process during the cyclic wet-dry periods were discussed

  14. Mechanical properties and tribological behavior of fullerene-like hydrogenated carbon films prepared by changing the flow rates of argon gas

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Junmeng [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences , Lanzhou 730000 (China); School of Petrochemical Engineering, Lanzhou University of Technology , Lanzhou 730000 (China); Wang, Yongfu; Liang, Hongyu; Liang, Aimin [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences , Lanzhou 730000 (China); Zhang, Junyan, E-mail: zhangjunyan@licp.cas.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences , Lanzhou 730000 (China)

    2016-02-28

    Graphical abstract: - Highlights: • We prepared hydrogenated carbon films with different content of the fullerene-like nanostructure. • There is a linear relationship between the fullerene-like content and the mechanical properties, tribological behavior of as-deposited FL-C:H films. • New fullerene-like nanostructure may serve as a self-lubrication without addition of any other lubricant during the friction process. • New fullerene-like nanostructure may originate from the rapid annealing and stress relaxation during friction process. - Abstract: Fullerene-like hydrogenated carbon (FL-C:H) films as carbon materials were prepared by direct current plasma enhanced chemical vapor deposition (dc-PECVD) technique. The content of FL nanostructure was confirmed by high-resolution transmission electron microscopy (HRTEM), visible Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The effect of fullerene-like nanostructure on the friction behavior of the films was studied using a reciprocating ball-on-flat tribometer in humid environment. It is concluded that the curved FL nanostructure provide the film excellent mechanical properties and friction performance. Interestingly, combining with the results of Raman analyses of the wear debris, we find that new FL nanostructure form during the friction process. These new FL nanostructure may originate from the rapid annealing and stress relaxation of unstable carbon clusters.

  15. A study of hydrogen effects on fracture behavior of radioactive waste storage tanks

    International Nuclear Information System (INIS)

    Murty, K.L.; Elleman, T.S.

    1993-01-01

    Since the high-level radioactive waste at Savannah River and Hanford may have to occupy steel tanks for many years before processing, research was directed toward examination of hydrogen effects in carbon steels and identification of radiation-enhanced hydrogen uptake in steels. Results to date are too preliminary for any conclusions to be made; however, experimental methods for measuring hydrogen gradients appear to be satisfactory. 5 figs, 1 fig

  16. Controlled beta-quenching of fuel channels using inert gas

    Energy Technology Data Exchange (ETDEWEB)

    Moeckel, Andreas; Cremer, Ingo; Kratzer, Anton; Walter, Dirk [AREVA NP (Germany)

    2008-07-01

    The trend towards higher fuel assembly discharge burnups poses new challenges for fuel channels in terms of their dimensional behavior and corrosion resistance. This led AREVA NP to develop a new technique for beta quenching of fuel channels that combines the effect of beta-quenching with the optimization of the microstructure. The first set of fuel channels with these optimized material properties have been placed in the core of a German boiling water reactor (BWR) nuclear power plant in spring of 2004. Some more channels have been sited in the core of a Scandinavian BWR in fall of 2007 to broaden the in-pile experience with these channels. Dimensional stability is the major requirement that is applied to fuel channels. High corrosion resistance and low hydrogen pickup are certainly required as well. However, corrosion and hydrogen pickup are usually not life limiting factors due to the large wall thickness of the material. Since thick layers of oxide may spall off extensively at high burnup and cause increase of the dose rate for the personnel, high corrosion resistance of fuel channels is mandatory. The fuel channels which surround BWR fuel assemblies are exposed to neutron irradiation as well as to loads induced by the reactor coolant flowing through them. These service conditions induce material growth and creep which cause permanent changes in the dimensions of the channels. Especially, fuel channel bow is of certain interest as increased channel bow may lead to some friction with control blades. Fuel channel bow is mainly induced by fluence gradients. However, there may be additional influences such as oxidation and hydrogen uptake to cause increased channel bow. The effect of hydrogen is currently discussed in the nuclear community to explain the unexpected high fuel channel bow that has been observed in some nuclear power plants. (orig.)

  17. Two-proton pickup studies with the (6Li,8B) reaction

    Energy Technology Data Exchange (ETDEWEB)

    Weisenmiller, R.B.

    1976-12-03

    The (/sup 6/Li,/sup 8/B) reaction has been investigated on targets of /sup 26/Mg, /sup 24/Mg, /sup 16/O, /sup 13/C, /sup 12/C, /sup 11/B, /sup 10/B, and /sup 9/Be at a bombarding energy of 80.0 MeV, and on targets of /sup 16/O, /sup 12/C, /sup 9/Be, /sup 7/Li, and /sup 6/Li at a bombarding energy of 93.3 MeV. Only levels consistent with direct, single-step two-proton pickup reaction mechanisms were observed to be strongly populated. On T/sub z/ = 0 targets, the spectroscopic selectivity of this reaction resembles that of the analogous (p,t) reaction. Additionally, these data demonstrate the dominance of spatially symmetric transfer of the two protons. On T/sub z/ greater than 0 targets the (/sup 6/Li,/sup 8/B) reaction was employed to locate two previously unreported levels (at 7.47 +- 0.05 MeV and 8.86 +- 0.07 MeV) in the T/sub z/ = 2 nuclide /sup 24/Ne and to establish the low-lying 1p-shell states in the T/sub z/ = /sup 3///sub 2/ nuclei /sup 11/Be, /sup 9/Li, and /sup 7/He. However, no evidence was seen for any narrow levels in the T/sub z/ = /sup 3///sub 2/ nuclide /sup 5/H nor for any narrow excited states in /sup 7/He. The angular distributions reported here are rather featureless and decrease monotonically with increasing angle. This behavior can be shown by a semi-classical reaction theory to be a consequence of the reaction kinematics. A semi-classical approach also suggests that the kinematic term in the transition matrix element is only weakly dependent upon the angular momentum transfer (which is consistent with simple Distorted Wave Born Approximation calculations). However, only qualitative agreement was obtained between the observed relative transition yields and semi-classical predictions, using the two-nucleon coefficients of fractional parentage of Cohen and Kurath, probably due to the limitations of the semi-classical reaction theory.

  18. Thermomagnetic torque in hydrogen isotopes

    International Nuclear Information System (INIS)

    Cramer, J.A.

    1975-01-01

    The thermomagnetic torque has been measured in parahydrogen and ortho and normal deuterium for pressures from 0.10 to 2.0 torr and temperatures from 100 to 370 K. Since the torque depends on the precession of the molecular rotational magnetic moment around the field direction, coupling of the molecular nuclear spin to the rotational moment can affect the torque. Evidence of spin coupling effects is found for the torque in both deuterium modifications. In para hydrogen the torque at all temperatures and pressures exhibits behavior expected of a gas of zero nuclear spin molecules. Additionally, earlier data for hydrogen deuteride and for normal hydrogen from 105 to 374 K are evaluated and discussed. The high pressure limiting values of torque peak heights and positions for all these gases are compared with theory

  19. Doped phosphorene for hydrogen capture: A DFT study

    Science.gov (United States)

    Zhang, Hong-ping; Hu, Wei; Du, Aijun; Lu, Xiong; Zhang, Ya-ping; Zhou, Jian; Lin, Xiaoyan; Tang, Youhong

    2018-03-01

    Hydrogen capture and storage is the core of hydrogen energy application. With its high specific surface area, direct bandgap, and variety of potential applications, phosphorene has attracted much research interest. In this study, density functional theory (DFT) is utilized to study the interactions between doped phosphorenes and hydrogen molecules. The effects of different dopants and metallic or nonmetallic atoms on phosphorene/hydrogen interactions is systematically studied by adsorption energy, electron density difference, partial density of states analysis, and Hirshfeld population. Our results indicate that the metallic dopants Pt, Co, and Ni can help to improve the hydrogen capture ability of phosphorene, whereas the nonmetallic dopants have no effect on it. Among the various metallic dopants, Pt performs very differently, such that it can help to dissociate H2 on phosphorene. Specified doped phosphorene could be a promising candidate for hydrogen storage, with behaviors superior to those of intrinsic graphene sheet.

  20. Hydrogen gas embrittlement of stainless steels mainly austenitic steels. Volumes 1 and 2

    International Nuclear Information System (INIS)

    Azou, P.

    1988-01-01

    Steel behavior in regard to hydrogen is examined especially austenitic steels. Gamma steels are studied particularly the series 300 with various stabilities and gamma steels with improved elasticity limit for intermetallic phase precipitation and nitrogen additions. A two-phase structure γ + α' is also studied. All the samples are tested for mechanical behavior in gaseous hydrogen. Influence of metallurgical effects and of testing conditions on hydrogen embrittlement are evidenced. Microstructure resulting from mechanical or heat treatments, dislocation motion during plastic deformation and influence of deformation rate are studied in detail [fr

  1. Analytical tools and methodologies for evaluation of residual life of contacting pressure tubes in the early generation of Indian PHWRs

    International Nuclear Information System (INIS)

    Sinha, S.K.; Madhusoodanan, K.; Rupani, B.B.; Sinha, R.K.

    2002-01-01

    In-service life of a contacting Zircaloy-2 pressure tube (PT) in the earlier generation of Indian PHWRs, is limited mainly due to the accelerated hydrogen pick-up and nucleation and growth of hydride blister(s) at the cold spot(s) formed on outside surface of pressure tube as a result of its contact with the calandria tube (CT). The activities involving development of the analytical models for simulating the degradation mechanisms leading to PT-CT contact and the methodologies for the revaluation of their safe life under such condition form the important part of our extensive programme for the life management of contacting pressure tubes. Since after the PT-CT contact, rate of hydrogen pick-up and nucleation and growth of hydride blisters govern the safe residual life of the pressure tube, two analytical models (a) hydrogen pick-up model ('HYCON') and (b) model for the nucleation and growth of hydride blister at the contact spot ('BLIST -2D') have been developed in-house to estimate the extent of degradation caused by them. Along with them, a methodology for evaluation of safe residual life has also been formulated for evaluating the safe residual life of the contacting channels. This paper gives the brief description of the models and the methodologies relevant for the contacting Zircaloy-2 pressure tubes. (author)

  2. Fire Protection Engineering Design Brief Template. Hydrogen Refueling Station.

    Energy Technology Data Exchange (ETDEWEB)

    LaFleur, Angela Christine [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Muna, Alice Baca [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Groth, Katrina M. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-08-01

    Building a hydrogen infrastructure system is critical to supporting the development of alternate- fuel vehicles. This report provides a methodology for implementing a performance-based design of an outdoor hydrogen refueling station that does not meet specific prescriptive requirements in NFPA 2, The Hydrogen Technologies Code . Performance-based designs are a code-compliant alternative to meeting prescriptive requirements. Compliance is demonstrated by comparing a prescriptive-based fueling station design with a performance-based design approach using Quantitative Risk Assessment (QRA) methods and hydrogen risk assessment tools. This template utilizes the Sandia-developed QRA tool, Hydrogen Risk Analysis Models (HyRAM), which combines reduced-order deterministic models that characterize hydrogen release and flame behavior with probabilistic risk models to quantify risk values. Each project is unique and this template is not intended to account for site-specific characteristics. Instead, example content and a methodology are provided for a representative hydrogen refueling site which can be built upon for new hydrogen applications.

  3. Improved hydrogen sorption kinetics in wet ball milled Mg hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Li

    2011-05-04

    In this work, wet ball milling method is used in order to improve hydrogen sorption behaviour due to its improved microstructure of solid hydrogen materials. Compared to traditional ball milling method, wet ball milling has benefits on improvement of MgH{sub 2} microstructure and further influences on its hydrogen sorption behavior. With the help of solvent tetrahydrofuran (THF), wet ball milled MgH{sub 2} powder has much smaller particle size and its specific surface area is 7 times as large as that of dry ball milled MgH{sub 2} powder. Although after ball milling the grain size is decreased a lot compared to as-received MgH{sub 2} powder, the grain size of wet ball milled MgH{sub 2} powder is larger than that of dry ball milled MgH{sub 2} powder due to the lubricant effect of solvent THF during wet ball milling. The improved particle size and specific surface area of wet ball milled MgH{sub 2} powder is found to be determining its hydrogen sorption kinetics especially at relatively low temperatures. And it also shows good cycling sorption behavior, which decides on its industrial applicability. With three different catalysts MgH{sub 2} powder shows improved hydrogen sorption behavior as well as the cyclic sorption behavior. Among them, the Nb{sub 2}O{sub 5} catalyst is found to be the most effective one in this work. Compared to the wet ball milled MgH{sub 2} powder, the particle size and specific surface area of the MgH{sub 2} powder with catalysts are similar to the previous ones, while the grain size of the MgH{sub 2} with catalysts is much finer. In this case, two reasons for hydrogen sorption improvement are suggested: one is the reduction of the grain size. The other may be as pointed out in some literatures that formation of new oxidation could enhance the hydrogen sorption kinetics, which is also the reason why its hydrogen capacity is decreased compared to without catalysts. After further ball milling, the specific surface area of wet ball milled Mg

  4. Hydrogen diffusion in the anode of Ni/MH secondary batteries

    Science.gov (United States)

    Feng, F.; Northwood, D. O.

    Hydrogen diffusion coefficients ( D) were evaluated in a LaNi 4.7Al 0.3 metal hydride electrode as a function of depth of discharge (DoD) using a newly developed electrochemical method which describes more precisely the practical diffusion behavior. It was found that the hydrogen diffusion coefficient in this electrode increases with increasing DoD at ambient temperature, and for this electrode at 50% DoD, the hydrogen diffusion coefficient increases with increase in temperature, and the activation energy for hydrogen diffusion is 37.3 kJ mol -1.

  5. Hydrogen at extreme pressures (Review Article)

    International Nuclear Information System (INIS)

    Goncharov, Alexander F.; Howie, Ross T.; Gregoryanz Eugene

    2013-01-01

    Here we review recent experimental and theoretical studies of hydrogen approaching metallization regime. Experimental techniques have made great advances over the last several years making it possible to reach previously unachievable conditions of pressure and temperature and to probe hydrogen at these conditions. Theoretical methods have also greatly improved; exemplified through the prediction of new structural and ordered quantum states. Recently, a new solid phase of hydrogen, phase IV, has been discovered in a high-pressure high-temperature domain. This phase is quite unusual structurally and chemically as it represents an intermediate state between common molecular and monatomic configurations. Moreover, it shows remarkable fluxional characteristics related to its quantum nature, which makes it unique among the solid phases, even of light elements. However, phase IV shows the presence of a band gap and exhibits distinct phonon and libron characteristic of classical solids. The quantum behavior of hydrogen in the limit of very high pressure remains an open question. Prospects of studying hydrogen at more extreme conditions by static and combined static-dynamic methods are also presented.

  6. How Do Organic Chemistry Students Understand and Apply Hydrogen Bonding?

    Science.gov (United States)

    Henderleiter, J.; Smart, R.; Anderson, J.; Elian, O.

    2001-08-01

    Students completing a year-long organic chemistry sequence were interviewed to assess how they understood, explained, and applied knowledge of hydrogen bonding to the physical behavior of molecules. Students were asked to define hydrogen bonding and explain situations in which hydrogen bonding could occur. They were asked to predict and explain how hydrogen bonding influences boiling point, the solubility of molecules, and NMR and IR spectra. Results suggest that although students may be able to give appropriate definitions of hydrogen bonding and may recognize when this phenomenon can occur, significant numbers cannot apply their knowledge of hydrogen bonding to physical properties of molecules or to the interpretation of spectral data. Some possess misconceptions concerning boiling points and the ability of molecules to induce hydrogen bonding. Instructional strategies must be adjusted to address these issues.

  7. Autoignited laminar lifted flames of methane/hydrogen mixtures in heated coflow air

    KAUST Repository

    Choi, Byungchul; Chung, Suk-Ho

    2012-01-01

    Autoignited lifted flame behavior in laminar jets of methane/hydrogen mixture fuels has been investigated experimentally in heated coflow air. Three regimes of autoignited lifted flames were identified depending on initial temperature and hydrogen

  8. Automatic pickup of arrival time of channel wave based on multi-channel constraints

    Science.gov (United States)

    Wang, Bao-Li

    2018-03-01

    Accurately detecting the arrival time of a channel wave in a coal seam is very important for in-seam seismic data processing. The arrival time greatly affects the accuracy of the channel wave inversion and the computed tomography (CT) result. However, because the signal-to-noise ratio of in-seam seismic data is reduced by the long wavelength and strong frequency dispersion, accurately timing the arrival of channel waves is extremely difficult. For this purpose, we propose a method that automatically picks up the arrival time of channel waves based on multi-channel constraints. We first estimate the Jaccard similarity coefficient of two ray paths, then apply it as a weight coefficient for stacking the multichannel dispersion spectra. The reasonableness and effectiveness of the proposed method is verified in an actual data application. Most importantly, the method increases the degree of automation and the pickup precision of the channel-wave arrival time.

  9. Longitudinal beam diagnostic from a distributed electrostatic pick-up in CERN's ELENA ring

    CERN Document Server

    Angoletta, M E; Federmann, S; Molendijk, J; Sanchez-Quesada, J; Secouet, P J; Søby, L; Pedersen, F; Timmins, M

    2013-01-01

    The CERN Extra Low ENergy Antiproton (ELENA) Ring is a new synchrotron that will be commissioned in 2016 to further decelerate the antiprotons coming from CERN’s Antiproton Decelerator (AD). Required longitudinal diagnostics include the intensity measurement for bunched and debunched beam and the measurement of Dp/p to assess the electron cooling performance. A novel method for the calculation of these parameters is proposed for ELENA, where signals from the twenty electrostatic Pick-Ups (PU) used for orbit measurements will be combined to improve the signal-to-noise ratio. This requires that the signals be digitally down-converted, rotated and summed so that the many electrostatic PUs will function as a single, distributed PU from the processing system viewpoint. This method includes some challenges and will not be used as the baseline longitudinal diagnostics for the initial ELENA operation. This paper gives an overview of the hardware and digital signal processing involved, as well as of the challenges t...

  10. Solid Aluminum Borohydrides for Prospective Hydrogen Storage.

    Science.gov (United States)

    Dovgaliuk, Iurii; Safin, Damir A; Tumanov, Nikolay A; Morelle, Fabrice; Moulai, Adel; Černý, Radovan; Łodziana, Zbigniew; Devillers, Michel; Filinchuk, Yaroslav

    2017-12-08

    Metal borohydrides are intensively researched as high-capacity hydrogen storage materials. Aluminum is a cheap, light, and abundant element and Al 3+ can serve as a template for reversible dehydrogenation. However, Al(BH 4 ) 3 , containing 16.9 wt % of hydrogen, has a low boiling point, is explosive on air and has poor storage stability. A new family of mixed-cation borohydrides M[Al(BH 4 ) 4 ], which are all solid under ambient conditions, show diverse thermal decomposition behaviors: Al(BH 4 ) 3 is released for M=Li + or Na + , whereas heavier derivatives evolve hydrogen and diborane. NH 4 [Al(BH 4 ) 4 ], containing both protic and hydridic hydrogen, has the lowest decomposition temperature of 35 °C and yields Al(BH 4 ) 3 ⋅NHBH and hydrogen. The decomposition temperatures, correlated with the cations' ionic potential, show that M[Al(BH 4 ) 4 ] species are in the most practical stability window. This family of solids, with convenient and versatile properties, puts aluminum borohydride chemistry in the mainstream of hydrogen storage research, for example, for the development of reactive hydride composites with increased hydrogen content. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Design developments for the ITER in-Vessel equilibrium pick-up Coils and Halo current Sensors

    International Nuclear Information System (INIS)

    Chitarin, G; Grando, L.; Pomaro, N.; Peruzzo, S.; Taccon, C.

    2006-01-01

    The ITER magnetic diagnostics must provide essential information to be used both for plasma diagnostic purposes, and as feedback signals for the machine control loops. Some of the sensors have to be installed in a hostile environment characterized by severe neutron irradiation and plasma heat loads, which can reduce the sensor lifetime (due to mechanical and electrical damage) and also generate undesired DC signals, which might compromise the accuracy of the measurements obtained by time-integration. The paper is focused on the design development and optimization of a typical in-vessel tangential pick-up Coil. The work is aimed to achieve the required measurement precision in spite of Radiation Induced Electromotive Force (RIEMF) and Radiation Induced Thermo-Electric Sensitivity (RITES), which have recently been documented to take place in Mineral Insulated Cables (MIC). To this purpose, a substantial reduction of the thermal gradient and the maximum temperature due to nuclear heating in the pick-up coils is considered necessary. Within the limits of several heavy engineering constraints, a new concept of magnetic pick up coil has been developed. A winding made of a ceramic-coated conductor (instead of a MIC) and '' impregnated '' with ceramic filler is proposed. Different material choices for the coil support structure have been investigated. Similar issues are related to the Halo Sensor design. The possibility of replacing the circular tubes used as support of the Rogowski coils with a ceramic support in order to avoid the non-linear effect of the magnetic material has also been studied. The replacement of the MIC of the winding with a ceramic-coated wire is also investigated in order to increase of the effective area of the sensor. The paper includes also a critical review of each stage of the measurement chain (probes, cabling, conditioning electronics and data acquisition) in order to assess the compliance with the overall system precision that is required for

  12. MgB{sub 2} magnetometer with a directly coupled pick-up loop

    Energy Technology Data Exchange (ETDEWEB)

    Portesi, C [Istituto Elettrotecnico Nazionale Galileo Ferraris, Strada delle Cacce 91, I-10135 Turin (Italy); Mijatovic, D [Low Temperature Division and Mesa Research Institute, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands); Veldhuis, D [Low Temperature Division and Mesa Research Institute, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands); Brinkman, A [Low Temperature Division and Mesa Research Institute, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands); Monticone, E [Istituto Elettrotecnico Nazionale Galileo Ferraris, Strada delle Cacce 91, I-10135 Turin (Italy); Gonnelli, R S [INFM, Dipartimento di Fisica, Politecnico di Torino, Corso Duca degli Abruzzi 24, I-10129 Turin (Italy)

    2006-05-15

    In this work, we show the results obtained in the fabrication and characterization of an MgB{sub 2} magnetometer with a directly coupled pick-up loop. We used an all in situ technique for fabricating magnesium diboride films, which consists of the co-evaporation of B and Mg by means of an e-gun and a resistive heater respectively. Consequently, we realized the superconducting device, which incorporates two nanobridges as weak links in a superconducting loop. The nanobridges were realized by focused ion beam milling; they were 240 nm wide and had a critical current density of 10{sup 7} A cm{sup -2}. The magnetometer was characterized at different temperatures and also measurements of the noise levels have been performed. The device shows Josephson quantum interference up to 20 K and the calculated effective area at low temperatures was 0.24 mm{sup 2}. The transport properties of the magnetometer allow determining fundamental materials properties of the MgB{sub 2} thin films, such as the penetration depth.

  13. Hydrogen system (hydrogen fuels feasibility)

    International Nuclear Information System (INIS)

    Guarna, S.

    1991-07-01

    This feasibility study on the production and use of hydrogen fuels for industry and domestic purposes includes the following aspects: physical and chemical properties of hydrogen; production methods steam reforming of natural gas, hydrolysis of water; liquid and gaseous hydrogen transportation and storage (hydrogen-hydride technology); environmental impacts, safety and economics of hydrogen fuel cells for power generation and hydrogen automotive fuels; relevant international research programs

  14. Investigation of hydrogen micro-kinetics in metals with ion beam implantation and analysis

    International Nuclear Information System (INIS)

    Wang, T.S.; Peng, H.B.; Lv, H.Y.; Han, Y.C.; Grambole, D.; Herrmann, F.

    2007-01-01

    One of the most important subjects in the fusion material research is to study the hydrogen and helium concentration, diffusion and evolution in the structure material of fusion reactor, since the hydrogen and helium can be continuously produced by the large dose fast neutron irradiation on material. Various analysis Methods can be used, but the ion beam analysis method has some advantages for studying the hydrogen behaviors in nano- or micrometer resolution. In this work, the hydrogen motion and three-dimensional distribution after implantation into metal has been studied by resonance NRA, micro-ERDA and XRD etc Methods. The resolution of the H-depth-profile is in nanometer level and the lateral resolution can be reached to 2 micrometers. The evolution of hydrogen depth-profile in a titanium sample has been studied versus the change of normal stress in samples. Evident hydrogen diffusion has been observed, while a normal stress is changed in the range of 107-963 MPa. A new phase transformation during the hydrogenation is observed by the in-situ XRD analysis. The further study on the hydrogen behaviors in the structure materials of fusion reactor is in plan. (authors)

  15. Passivation behavior of AB{sub 5}-type hydrogen storage alloys for battery electrode application

    Energy Technology Data Exchange (ETDEWEB)

    Meli, F. [Fribourg Univ. (Switzerland). Inst. de Physique; Sakai, T. [Fribourg Univ. (Switzerland). Inst. de Physique; Zuettel, A. [Fribourg Univ. (Switzerland). Inst. de Physique; Schlapbach, L. [Fribourg Univ. (Switzerland). Inst. de Physique

    1995-04-15

    In many applications, AB{sub 5} type hydrogen storage alloys show passivation behavior, i.e. when fully discharged, metal hydride electrodes show (especially at higher temperatures) a decrease in activity and therefore a decrease in capacity at normal discharge currents for ensuing cycles. Passivation may continue to the point where activity becomes so low that the capacity is no longer accessible. Electrochemical measurements were taken of two different AB{sub 5}-type alloys, one with manganese and one without manganese (LaNi{sub 3.4}Co{sub 1.2}Al{sub 0.4} and LaNi{sub 3.4}Co{sub 1.2}Al{sub 0.3}Mn{sub 0.1}). Both alloys showed passivation behavior after remaining in the discharged state. The alloy with manganese showed a stronger tendency to passivation which is in contradiction with earlier observations. Photoelectron spectroscopic analysis together with sputter depth profiling was used to investigate the surface composition of samples which had undergone different surface pretreatments. Surface analysis of electrodes in the passivated state shows a lower content of metallic nickel and a thicker nickel surface oxide film. We attribute the low electrochemical kinetics of the alloys after passivation to the loss of metallic nickel and/or cobalt at the electrode-electrolyte interface. ((orig.))

  16. Study of the electrochemical behavior of the niobium in relation to the hydrogen cyclical charge and uncharge; Estudo do comportamento eletroquimico do niobio em relacao ao carregamento e descarregamento ciclicos de hidrogenio

    Energy Technology Data Exchange (ETDEWEB)

    Silva, A.G.S.G. da; Ponte, H.A.; Pashchuk, A. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Centro Politecnico. Lab. de Eletroquimica de Superficie e Corrosao (LESK)], e-mail: aleksantos@hotmail.com

    2006-07-01

    One of the greatest problems found in the oil industry is the control of the deterioration at the steels structures of the units that compose the process petroleum refine. This deterioration is related the mechanisms involving processes of hydrogen embrittlement. The work had as objective to study the electrochemical behavior of the niobium (Nb) with relation to the charging and uncharging of hydrogen, to evaluate the potential to use of the Nb in the construction of electrochemical hydrogen probes. For this study techniques of cronopotenciometry and potential of open circuit (OCP) for the pure Nb submitted the different hydrogen charging conditions had been used. The gotten partial results indicate the viability to use of the niobium as hydrogen probe, however, it is necessary one better understanding of the mechanisms of hydrogen interaction with the niobium. (author)

  17. Determining the Interstellar Wind Longitudinal Inflow Evolution Using Pickup Ions in the Helium Focusing Cone

    Science.gov (United States)

    Spitzer, S. A.; Gilbert, J. A.; Lepri, S. T.

    2017-12-01

    We propose to determine the longitudinal inflow direction of the local interstellar medium through the Heliosphere. This longitudinal inflow direction directly correlates to the longitudinal direction of the helium focusing cone with respect to the Sun. We can calculate this direction by finding the He+ pickup ion density peak as mass spectrometers such as ACE/SWICS, Wind/STICS, and Helios/Micrometeoroid Detector and Analyzer pass through the focusing cone. Mapping from the location of this density peak to the Sun, around which the helium is focused, will directly yield the desired longitudinal direction. We will find this direction for each year since the first measurements in the 1970s through the present and thereby analyze its evolution over time. This poster outlines our proposed method and initial results.

  18. Origin of the different behavior of some platinum decorated nanocarbons towards the electrochemical oxidation of hydrogen peroxide

    International Nuclear Information System (INIS)

    Malara, A.; Leonardi, S.G.; Bonavita, A.; Fazio, E.; Stelitano, S.; Neri, G.; Neri, F.; Santangelo, S.

    2016-01-01

    The electrochemical behavior of different platinum-decorated nanocarbons (Pt@C) towards the oxidation of hydrogen peroxide (H_2O_2) was investigated. Three different types of nanocarbons were considered: i) carbon black, ii) dahlia-like carbon nanohorns and iii) carbon nanotubes, which included both commercial (single-wall and multi-wall) and laboratory prepared (multi-wall) samples. Shape and size distribution of the platinum nanoparticles and morphology of the nanocarbons were analyzed by transmission electron microscopy. Their nanostructure was investigated by micro-Raman spectroscopy, while elemental composition of the samples and chemical bonding states were studied by X-ray photoelectron spectroscopy. Electrochemical behavior towards H_2O_2 oxidation was evaluated by means of cyclic voltammetry modifying the working screen-printed carbon electrode surface with the prepared Pt@C nanocomposites. Data obtained suggest that the size and dispersion of the Pt nanoparticles play a key role in increasing the sensitivity towards H_2O_2 detection. Thanks to the presence of smaller and more dispersed platinum particles and of a greater amount of platinum hydroxide, acting as intermediary in the H_2O_2 oxidation process, Pt@dahlia-like carbon nanohorns result to be the most promising platform for the development of H_2O_2 electrochemical sensors. - Highlights: • Different nanocarbons are decorated with Pt nanoparticles by wet impregnation method. • Pt@C-based hybrids are tested as active materials for sensing of hydrogen peroxide. • Sensor based on Pt@dahlia-like carbon nanohorns is the most performing device. • The origin of the different electrochemical behaviour is investigated. • Pt@C sensing performances are correlated with their structural and surface properties.

  19. Effects of alloying elements on nodular and uniform corrosion resistance of zirconium-based alloys

    International Nuclear Information System (INIS)

    Abe, Katsuhiro

    1992-01-01

    The effects of alloying and impurity elements (tin, iron, chromium, nickel, niobium, tantalum, oxygen, aluminum, carbon, nitrogen, silicon, and phosphorus) on the nodular and uniform corrosion resistance of zirconium-based alloys were studied. The improving effect of iron, nickel and niobium in nodular corrosion resistance were observed. The uniform corrosion resistance was also improved by nickel, niobium and tantalum. The effects of impurity elements, nitrogen, aluminum and phosphorus were negligibly small but increasing the silicon content seemed to improve slightly the uniform corrosion resistance. Hydrogen pick-up fraction were not changed by alloying and impurity elements except nickel. Nickel addition increased remarkably hydrogen pick-up fraction. Although the composition of secondary precipitates changed with contents of alloying elements, the correlation of composition of secondary precipitates to corrosion resistance was not observed. (author)

  20. Anelastic mechanical loss spectrometry of hydrogen in austenitic stainless steels

    International Nuclear Information System (INIS)

    Yagodzinskyy, Y.; Andronova, E.; Ivanchenko, M.; Haenninen, H.

    2009-01-01

    Atomic distribution of hydrogen, its elemental diffusion jumps and its interaction with dislocations in a number of austenitic stainless steels are studied with anelastic mechanical loss (AML) spectrometry in combination with the hydrogen thermal desorption method. Austenitic stainless steels of different chemical composition, namely, AISI 310, AISI 201, and AISI 301LN, as well as LDX 2101 duplex stainless steel are studied to clarify the role of different alloying elements on the hydrogen behavior. Activation analyses of the hydrogen Snoek-like peaks are performed with their decomposition to sets of Gaussian components. Fine structure of the composite hydrogen peaks is analyzed under the assumption that each component corresponds to diffusion transfer of hydrogen between octahedral positions with certain atomic compositions of the nearest neighbouring lattice sites. An additional component originating from hydrogen-dislocation interaction is considered. Binding energies for hydrogen-dislocation interaction are also estimated for the studied austenitic stainless steels.

  1. Hydrogen/deuterium isotope effects in water and aqueous solutions of organic molecules and proteins

    International Nuclear Information System (INIS)

    Price, David L.; Fu, Ling; Bermejo, F. Javier; Fernandez-Alonso, Felix; Saboungi, Marie-Louise

    2013-01-01

    Highlights: ► Hydrogen/deuterium substitution has significant effects in hydrogenous materials. ► The effects can involve structure, phase behavior and protein stability. ► The effects must be kept in mind in the interpretation of scattering experiments. ► The effects may be mitigated by an appropriate choice of experimental conditions. - Abstract: It is pointed out that hydrogen/deuterium substitution, frequently used in neutron scattering studies of the structure and dynamics of hydrogenous samples, can have significant effects on structure, phase behavior and protein stability. The effects must be kept in mind in the interpretation of such experiments. In suitable cases, these effects can be mitigated by an appropriate choice of experimental conditions

  2. High-temperature oxidation kinetics of sponge-based E110 cladding alloy

    Science.gov (United States)

    Yan, Yong; Garrison, Benton E.; Howell, Mike; Bell, Gary L.

    2018-02-01

    Two-sided oxidation experiments were recently conducted at 900°C-1200 °C in flowing steam with samples of sponge-based Zr-1Nb alloy E110. Although the old electrolytic E110 tubing exhibited a high degree of susceptibility to nodular corrosion and experienced breakaway oxidation rates in a relatively short time, the new sponge-based E110 demonstrated steam oxidation behavior comparable to Zircaloy-4. Sample weight gain and oxide layer thickness measurements were performed on oxidized E110 specimens and compared to oxygen pickup and oxide layer thickness calculations using the Cathcart-Pawel correlation. Our study shows that the sponge-based E110 follows the parabolic law at temperatures above 1015 °C. At or below 1015 °C, the oxidation rate was very low when compared to Zircaloy-4 and can be represented by a cubic expression. No breakaway oxidation was observed at 1000 °C for oxidation times up to 10,000 s. Arrhenius expressions are given to describe the parabolic rate constants at temperatures above 1015 °C and cubic rate constants are provided for temperatures below 1015 °C. The weight gains calculated by our equations are in excellent agreement with the measured sample weight gains at all test temperatures. In addition to the as-fabricated E110 cladding sample, prehydrided E110 cladding with hydrogen concentrations in the 100-150 wppm range was also investigated. The effect of hydrogen content on sponge-based E110 oxidation kinetics was minimal. No significant difference was found between as-fabricated and hydrided samples with regard to oxygen pickup and oxide layer thickness for hydrogen contents below 150 wppm.

  3. Corrosion and hydrogen absorption of commercially pure zirconium in acid fluoride solutions

    International Nuclear Information System (INIS)

    Yokoyama, Ken’ichi; Yamada, Daisuke; Sakai, Jun’ichi

    2013-01-01

    Highlights: •Zirconium corrodes and absorbs hydrogen in acid fluoride solutions. •Hydrogen thermal desorption is observed at 300–700 °C. •The resistance to hydrogen absorption of zirconium is higher than that of titanium. -- Abstract: The corrosion and hydrogen absorption of commercially pure zirconium have been investigated in acidulated phosphate fluoride (APF) solutions. Upon immersion in 2.0% APF solution of pH 5.0 at 25 °C, a granular corrosion product (Na 3 ZrF 7 ) deposits over the entire side surface of the specimen, thereby inhibiting further corrosion. In 0.2% APF solution, marked corrosion is observed from the early stage of immersion; no deposition of the corrosion product is observed by scanning electron microscopy. A substantial amount of hydrogen absorption is confirmed in both APF solutions by hydrogen thermal desorption analysis. The amount of absorbed hydrogen of the specimen immersed in the 2.0% APF solution is smaller than that in the 0.2% APF solution in the early stage of immersion. The hydrogen absorption behavior is not always consistent with the corrosion behavior. Hydrogen thermal desorption occurs in the temperature range of 300–700 °C for the specimen without the corrosion product. Under the same immersion conditions, the amount of absorbed hydrogen in commercially pure zirconium is smaller than that in commercially pure titanium as reported previously. The present results suggest that commercially pure zirconium, compared with commercially pure titanium, is highly resistant to hydrogen absorption, although corrosion occurs in fluoride solutions

  4. The effects of low fugacity hydrogen in duplex- and beta-annealed Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Tal-Gutelmacher, E.; Eliezer, D.; Eylon, D.

    2004-01-01

    Due to its excellent combination of a high strength/weight ratio and good corrosion behavior, Ti-6Al-4V alloys are ranked among the most important advanced materials for a variety of aerospace, chemical engineering, biomaterials, marine and commercial applications. However, in many of these technological applications, this alloy is exposed to environments which can act as sources of hydrogen, and severe problems may arise based on its susceptibility to hydrogen embrittlement. Even small hydrogen concentrations might lead to failure. Consequently, a comprehensive knowledge of hydrogen-trapping interactions is necessary to better understand the trapping mechanisms, the types of the trap sites, the trapped hydrogen content, in order to determine the safe service conditions of this alloy in the aerospace industry. The objective of this paper is to investigate the role of microstructure on hydrogen absorption/desorption behavior in Ti-6Al-4V alloy, with specific emphasis on the nature of the interaction between microstructural traps and hydrogen atoms. The effect of low fugacity hydrogen on the microstructure is studied using X-ray diffraction (XRD), and electron microscopy (SEM and TEM), while the absorption and desorption characteristics are determined by means of a hydrogen determinator and thermal desorption spectroscopy (TDS), respectively. The role of microstructure on hydrogen absorption and desorption behavior is discussed in detail

  5. Low temperature internal friction in pure iron charged with hydrogen or deuterium

    International Nuclear Information System (INIS)

    Moser, P.; Dufresne, J.F.; Ritchie, I.G.

    1977-01-01

    The search for the elusive hydrogen Snoek-peak in pure iron has been continued with specimens charged with either hydrogen or deuterium. The peaks observed are attributed to deformation produced during charging and can be classified as an α-type peak and a Snoek-Koester type peak. The detailed behavior of these peaks during systematic outgassing of hydrogen or deuterium is described

  6. Observations of Low-Frequency Magnetic Waves due to Newborn Interstellar Pickup Ions Using ACE, Ulysses, and Voyager Data

    Science.gov (United States)

    Smith, Charles W.; Aggarwal, Poornima; Argall, Matthew R.; Burlaga, Leonard F.; Bzowski, Maciej; Cannon, Bradford E.; Gary, S. Peter; Fisher, Meghan K.; Gilbert, Jason A.; Hollick, Sophia J.; Isenberg, Philip A.; Joyce, Colin J.; Murphy, Neil; Nuno, Raquel G.; Pine, Zackary B.; Richardson, John D.; Schwadron, Nathan A.; Skoug, Ruth M.; Sokół, Justyna M.; Taylor, David K.; Vasquez, Bernard J.

    2017-09-01

    Wave excitation by newborn interstellar pickup ions (PUIs) plays a significant role in theories that attempt to describe IBEX and Voyager observations in the solar wind and heliosheath. The same dynamic processes can be far-reaching and extend into the inner heliosphere to at least 1AU and likely to smaller heliocentric distances. While the high-resolution magnetic field measurements required to study these waves are not yet available in the heliosheath, we have studied a range of available observations and found evidence of waves due to interstellar PUIs using ACE (1998-2015 at 1 AU), Ulysses (1996-2006 at 2 to 5 AU, high and low latitudes) and Voyager (1978-1979 and 2 to 6 AU) observations. Efforts to extend the Voyager observations to 35 AU are ongoing. We have examined these data sets and report on observations of low-frequency waves that result from newborn interstellar pickup H+ and He+ ions. Although not as common as theory originally predicted, we presently have identified 524 independent occurrences. Our conclusion from studying these waves is that they are seen only when the ambient turbulence is sufficiently weak. The instability that generates these waves requires a slow accumulation of wave energy over several to tens of hours to achieve observable wave amplitudes. In regions where the turbulence is moderate to strong, the turbulence absorbs the wave energy before it can reach observable levels and transports the energy to the dissipation scales where it heats the background thermal particles. Only intervals with the weakest turbulence will permit energy accumulation over this time scale. These conditions are most often, but not exclusively, achieved in solar wind rarefaction regions.

  7. Specific equilibrium behavior of hydrogen isotopes adsorbed onto synthetic zeolite A-type governed by lithium cations

    International Nuclear Information System (INIS)

    Takashima, Shoji; Kotoh, Kenji

    2013-01-01

    Highlights: • Isotherms for H 2 and D 2 adsorbed onto SZ-LiA at 77.4 K are shown. • The adsorption isotherms exhibit specific deviation in the range lower than 10 Pa. • SZ-LiA indicates the power of several 100-times at 0.1 Pa, compared with SZ-NaA. • Experimental isotherms are described empirically by a dual-site Langmuir equation. • The isotope effect on adsorption isotherms appears in the Langmuir constants. -- Abstract: Since synthetic zeolites (SZs) are powerfully adsorptive for hydrogen isotopes at cryogenic temperatures such as liquefied nitrogen, adsorption processes using these have been considered applicable to such as recovery of tritium from the lithium blanket of DT fusion reactor system. Onto these zeolites the adsorptions isotherms for hydrogen isotopes onto SZ-NaA, SZ-CaA and SZ-NaX at 77.4 K were already clarified experimentally and analytically. These isotherms exhibit similar profiles of Langmuir type. In this work, adsorption isotherms were examined for H 2 and D 2 on SZ-LiA at 77.4 K. SZ-LiA was made from SZ-NaA by exchanging its sodium ions for lithium ones, provided by TOSOH Corp. The experimental results demonstrate the specific equilibrium behavior of hydrogen isotopes adsorbed on SZ-LiA, deviating from isothermal profiles on SZ-CaA and SZ-NaX. SZ-LiA show the isothermal profiles of adsorption for H 2 and D 2 similar to on the conventional zeolites in the range from around 1 kPa to the atmospheric pressure, but exhibit a plateau around 1 mol/kg between 0.1 Pa and 100 Pa, while other zeolites show linearly profiling isotherms. This deviation indicates the adsorptive power of SZ-LiA remarkably greater than that of the others

  8. Hydrogen absorption in CexGd1−x alloys

    International Nuclear Information System (INIS)

    Bereznitsky, M.; Bloch, J.; Yonovich, M.; Schweke, D.; Mintz, M.H.; Jacob, I.

    2012-01-01

    Highlights: ► Ce x Gd 1−x alloys exhibit the most negative heats of hydride formation ever found. ► Thermodynamics of H absorption in Ce x Gd 1−x correlates with the alloys hardness. ► The entropies of H solution and hydride formation reflect the hydrogen vibrations. ► Terminal hydrogen solubilities change in a monotonic way between Ce and Gd. - Abstract: The effect of alloying on the thermodynamics of hydrogen absorption was studied for Ce x Gd 1−x alloys (0 ≤ x ≤ 1) at temperatures between 850 K and 1050 K in the 1–10 −4 Torr pressure range. The temperature-dependent hydrogen solubilities and plateau pressures for hydride formation were obtained from hydrogen absorption isotherms. The terminal hydrogen solubility (THS) at a given temperature changes in a monotonic way as a function of x. It is approximately three times higher in Gd, than in Ce, throughout the investigated temperature range. This monotonic behavior is opposed to that of many other substitutional alloys, for which the hydrogen terminal solubility increases with increasing solute concentrations. The enthalpies, ΔH f , and the entropies, ΔS f , of the dihydride formation exhibit a pronounced and broad negative minimum starting at x ≈ 0.15, yielding the most negative ΔH f values ever found for metal hydrides. On the other hand, the enthalpies and entropies of ideal solution display a positive trend at x = 0.15 and x = 0.3. Both behaviors are considered in view of a reported distinct variation of the Ce x Gd 1−x hardness as a function of x. The particular compositional variations of the entropies of solution and formation as a function of x reflect most likely the vibrational properties of the hydrogen atoms in the metal matrices.

  9. Condensation in gas transmission pipelines. Phase behavior of mixtures of hydrogen with natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Schouten, J.A.; Michels, J.P.J. [Amsterdam Univ. (Netherlands). Van der Waals-Zeeman Inst.; Rosmalen, R.J. van [Energy, Roden (Netherlands)

    2005-05-01

    Several pressure and temperature reductions occur along gas transmission lines. Since the pressure and temperature conditions of the natural gas in the pipeline are often close to the dew point curve, liquid dropout can occur. Injection of hydrogen into the natural gas will change the phase envelope and thus the liquid dropout. This condensation of the heavy hydrocarbons requires continuous operational attention and a positive effect of hydrogen may affect the decision to introduce hydrogen. In this paper we report on calculations of the amount of condensate in a natural gas and in this natural gas mixed with 16.7% hydrogen. These calculations have been performed at conditions prevailing in gas transport lines. The results will be used to discuss the difference in liquid dropout in a natural gas and in a mixture with hydrogen at pressure reduction stations, at crossings under waterways, at side-branching, and at separators in the pipelines. (author)

  10. Light-water-reactor hydrogen manual

    International Nuclear Information System (INIS)

    Camp, A.L.; Cummings, J.C.; Sherman, M.P.; Kupiec, C.F.; Healy, R.J.; Caplan, J.S.; Sandhop, J.R.; Saunders, J.H.

    1983-06-01

    A manual concerning the behavior of hydrogen in light water reactors has been prepared. Both normal operations and accident situations are addressed. Topics considered include hydrogen generation, transport and mixing, detection, and combustion, and mitigation. Basic physical and chemical phenomena are described, and plant-specific examples are provided where appropriate. A wide variety of readers, including operators, designers, and NRC staff, will find parts of this manual useful. Different sections are written at different levels, according to the most likely audience. The manual is not intended to provide specific plant procedures, but rather, to provide general guidance that may assist in the development of such procedures

  11. Effect of direction of approach to temperature on the delayed hydrogen cracking behavior of cold-worked Zr-2.5Nb

    International Nuclear Information System (INIS)

    Ambler, J.F.R.

    1984-01-01

    The delayed hydrogen cracking behavior of cold-worked Zr-2.5Nb at temperatures above about 423 K depends upon the direction of approach to test temperature. Cooling to the test temperatures results in an increase in crack growth rate, da/dt, with increase in temperature, given by the following Arrhenius relationship da/dt = 6.86 X 10 -1 exp(--71500/RT) Heating from room temperature to the test temperature results in the same increase in da/dt with temperature, but only up to a certain temperature, T /SUB DAT/ . The temperature, T /SUB DAT/ , increases with the amount of hydride precipitated during cooling to room temperature, prior to heating, and with cooling rate. The results obtained can be explained in terms of the Simpson and Puls model of delayed hydrogen cracking, if the hydride precipitated at the crack tip is initially fully constrained and the matrix hydride loses constraint during heating

  12. Environmental Fatigue Behaviors of CF8M Stainless Steel in 310 .deg. C Deoxygenated Water - Effects of Hydrogen and Microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Hun; Cho, Pyungyeon; Jang, Changheui [KAIST, Daejeon (Korea, Republic of); Kim, Tae Soon [Korea Hydro and Nuclear Power Corporation, Seoul (Korea, Republic of)

    2014-01-15

    The effects of environment and microstructure on low cycle fatigue (LCF) behaviors of CF8M stainless steels containing 11% of ferrites were investigated in a 310 .deg. C deoxygenated water environment. The reduction of LCF life of CF8M in a 310 .deg. C deoxygenated water was smaller than 316LN stainless steels. Based on the microstructure and fatigue surface analyses, it was confirmed that the hydrogen induced cracking contributed to the reduction in LCF life for CF8M as well as for 316LN. However, many secondary cracks were found on the boundaries of ferrite phases in CF8M, which effectively reduced the stress concentration at the crack tip. Because of the reduced stress concentration, the accelerated fatigue crack growth by hydrogen induced cracking was less significant, which resulted in the smaller environmental effects for CF8M than 316LN in a 310 .deg. C deoxygenated water.

  13. Hydration dynamics of a lipid membrane: Hydrogen bond networks and lipid-lipid associations

    Science.gov (United States)

    Srivastava, Abhinav; Debnath, Ananya

    2018-03-01

    Dynamics of hydration layers of a dimyristoylphosphatidylcholine (DMPC) bilayer are investigated using an all atom molecular dynamics simulation. Based upon the geometric criteria, continuously residing interface water molecules which form hydrogen bonds solely among themselves and then concertedly hydrogen bonded to carbonyl, phosphate, and glycerol head groups of DMPC are identified. The interface water hydrogen bonded to lipids shows slower relaxation rates for translational and rotational dynamics compared to that of the bulk water and is found to follow sub-diffusive and non-diffusive behaviors, respectively. The mean square displacements and the reorientational auto-correlation functions are slowest for the interfacial waters hydrogen bonded to the carbonyl oxygen since these are buried deep in the hydrophobic core among all interfacial water studied. The intermittent hydrogen bond auto-correlation functions are calculated, which allows breaking and reformations of the hydrogen bonds. The auto-correlation functions for interfacial hydrogen bonded networks develop humps during a transition from cage-like motion to eventual power law behavior of t-3/2. The asymptotic t-3/2 behavior indicates translational diffusion dictated dynamics during hydrogen bond breaking and formation irrespective of the nature of the chemical confinement. Employing reactive flux correlation analysis, the forward rate constant of hydrogen bond breaking and formation is calculated which is used to obtain Gibbs energy of activation of the hydrogen bond breaking. The relaxation rates of the networks buried in the hydrophobic core are slower than the networks near the lipid-water interface which is again slower than bulk due to the higher Gibbs energy of activation. Since hydrogen bond breakage follows a translational diffusion dictated mechanism, chemically confined hydrogen bond networks need an activation energy to diffuse through water depleted hydrophobic environments. Our calculations

  14. Effects of modified surfaces produced at plasma-facing surface on hydrogen release behavior in the LHD

    Directory of Open Access Journals (Sweden)

    Y. Nobuta

    2017-08-01

    Full Text Available In the present study, an additional deuterium (D ion irradiation was performed against long-term samples mounted on the helical coil can and in the outer private region in the LHD during the 17th experimental campaign. Based on the release behavior of the D and hydrogen (H retained during the experimental campaign, the difference of release behavior at the top surface and in bulk of modified surfaces is discussed. Almost all samples on the helical coil can were erosion-dominant and some samples were covered with boron or carbon, while a very thick carbon films were formed in the outer private region. In the erosion-dominant area, the D desorbed at much lower temperatures compared to that of H retained during the LHD plasma operation. For the samples covered with boron, the D tended to desorb at lower temperatures compared to H. For the carbon deposition samples, the D desorbed at much higher temperatures compared to no deposition and boron-covered samples, which was very similar to that of H. The D retention capabilities at the top surface of carbon and boron films were 2–3 times higher than no deposition area. The results indicate that the retention and release behavior at the top surface of the modified layer can be different from that of bulk substrate material.

  15. Assessment of Effective Factor of Hydrogen Diffusion Equation Using FE Analysis

    International Nuclear Information System (INIS)

    Kim, Nak Hyun; Oh, Chang Sik; Kim, Yun Jae

    2010-01-01

    The coupled model with hydrogen transport and elasto-plasticity behavior was introduced. In this paper, the effective factor of the hydrogen diffusion equation has been described. To assess the effective factor, finite element (FE) analyses including hydrogen transport and mechanical loading for boundary layer specimens with low-strength steel properties are carried out. The results of the FE analyses are compared with those from previous studies conducted by Taha and Sofronis (2001)

  16. The hydrogen; L'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The hydrogen as an energy system represents nowadays a main challenge (in a scientific, economical and environmental point of view). The physical and chemical characteristics of hydrogen are at first given. Then, the challenges of an hydrogen economy are explained. The different possibilities of hydrogen production are described as well as the distribution systems and the different possibilities of hydrogen storage. Several fuel cells are at last presented: PEMFC, DMFC and SOFC. (O.M.)

  17. Origin of the different behavior of some platinum decorated nanocarbons towards the electrochemical oxidation of hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Malara, A. [Dipartimento di Ingegneria dell' Informazione, delle Infrastrutture e dell' Energia Sostenibile (DIIES), Università “Mediterranea”, 89122 Reggio Calabria (Italy); Leonardi, S.G.; Bonavita, A. [Dipartimento di Ingegneria Elettronica, Chimica ed Ingegneria Industriale (DIECII), Università di Messina, 98166 Messina (Italy); Fazio, E. [Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra (MIFT), Università di Messina, 98166 Messina (Italy); Stelitano, S. [Dipartimento di Fisica (DF), Università della Calabria, 87036 Arcavacata di Rende (Italy); Neri, G. [Dipartimento di Ingegneria Elettronica, Chimica ed Ingegneria Industriale (DIECII), Università di Messina, 98166 Messina (Italy); Neri, F. [Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra (MIFT), Università di Messina, 98166 Messina (Italy); Santangelo, S., E-mail: saveria.santangelo@unirc.it [Dipartimento di Ingegneria Civile, dell' Energia, dell' Ambiente e dei Materiali (DICEAM), Università “Mediterranea”, 89122 Reggio Calabria (Italy)

    2016-12-01

    The electrochemical behavior of different platinum-decorated nanocarbons (Pt@C) towards the oxidation of hydrogen peroxide (H{sub 2}O{sub 2}) was investigated. Three different types of nanocarbons were considered: i) carbon black, ii) dahlia-like carbon nanohorns and iii) carbon nanotubes, which included both commercial (single-wall and multi-wall) and laboratory prepared (multi-wall) samples. Shape and size distribution of the platinum nanoparticles and morphology of the nanocarbons were analyzed by transmission electron microscopy. Their nanostructure was investigated by micro-Raman spectroscopy, while elemental composition of the samples and chemical bonding states were studied by X-ray photoelectron spectroscopy. Electrochemical behavior towards H{sub 2}O{sub 2} oxidation was evaluated by means of cyclic voltammetry modifying the working screen-printed carbon electrode surface with the prepared Pt@C nanocomposites. Data obtained suggest that the size and dispersion of the Pt nanoparticles play a key role in increasing the sensitivity towards H{sub 2}O{sub 2} detection. Thanks to the presence of smaller and more dispersed platinum particles and of a greater amount of platinum hydroxide, acting as intermediary in the H{sub 2}O{sub 2} oxidation process, Pt@dahlia-like carbon nanohorns result to be the most promising platform for the development of H{sub 2}O{sub 2} electrochemical sensors. - Highlights: • Different nanocarbons are decorated with Pt nanoparticles by wet impregnation method. • Pt@C-based hybrids are tested as active materials for sensing of hydrogen peroxide. • Sensor based on Pt@dahlia-like carbon nanohorns is the most performing device. • The origin of the different electrochemical behaviour is investigated. • Pt@C sensing performances are correlated with their structural and surface properties.

  18. Multiscale Modeling of Hydrogen Embrittlement for Multiphase Material

    KAUST Repository

    Al-Jabr, Khalid A.

    2014-05-01

    Hydrogen Embrittlement (HE) is a very common failure mechanism induced crack propagation in materials that are utilized in oil and gas industry structural components and equipment. Considering the prediction of HE behavior, which is suggested in this study, is one technique of monitoring HE of equipment in service. Therefore, multi-scale constitutive models that account for the failure in polycrystalline Body Centered Cubic (BCC) materials due to hydrogen embrittlement are developed. The polycrystalline material is modeled as two-phase materials consisting of a grain interior (GI) phase and a grain boundary (GB) phase. In the first part of this work, the hydrogen concentration in the GI (Cgi) and the GB (Cgb) as well as the hydrogen distribution in each phase, were calculated and modeled by using kinetic regime-A and C, respectively. In the second part of this work, this dissertation captures the adverse effects of hydrogen concentration, in each phase, in micro/meso and macro-scale models on the mechanical behavior of steel; e.g. tensile strength and critical porosity. The models predict the damage mechanisms and the reduction in the ultimate strength profile of a notched, round bar under tension for different hydrogen concentrations as observed in the experimental data available in the literature for steels. Moreover, the study outcomes are supported by the experimental data of the Fractography and HE indices investigation. In addition to the aforementioned continuum model, this work employs the Molecular Dynamics (MD) simulations to provide information regarding bond formulation and breaking. The MD analyses are conducted for both single grain and polycrystalline BCC iron with different amounts of hydrogen and different size of nano-voids. The simulations show that the hydrogen atoms could form the transmission in materials configuration from BCC to FCC (Face Centered Cubic) and HCP (Hexagonal Close Packed). They also suggest the preferred sites of hydrogen for

  19. Investigation into the suitability of titanium as a corrosion resistant canister for nuclear waste

    International Nuclear Information System (INIS)

    Henriksson, S.; Pettersson, J.

    A literature study and inventory of experience has been carried out, aimed at assessing the possibilities of unalloyed and Pd-alloyed titanium withstanding corrosion for 1,000 to 10,000 years in contact with Baltic Sea water at 100 0 C and pH 4 to 10. Pitting, crevice corrosion, stress corrosion cracking and corrosion fatigue constitute no problem if the canister is made of unalloyed titanium corresponding to ASTM Grade 1. Titanium alloyed with palladium therefore need not be used. Linear extrapolation of reported corrosion rates for oxidation and general corrosion gives a life of between 1,000 and 10,000 years for a 5 mm thick canister. This estimate must be considered to be conservative since oxidation in fact follows a logarithmic law. Hydrogen embrittlement resulting from hydrogen pick-up from the deposition environment should not occur. Delayed failure caused by a redistribution of the hydrogen initially present in the titanium can be avoided if its concentration is maximized to 20 ppM. Pd-alloyed titanium is more sensitive than unalloyed titanium to hydrogen pick-up, especially in galvanic contact with less noble metals

  20. Autoignited laminar lifted flames of methane/hydrogen mixtures in heated coflow air

    KAUST Repository

    Choi, Byungchul

    2012-04-01

    Autoignited lifted flame behavior in laminar jets of methane/hydrogen mixture fuels has been investigated experimentally in heated coflow air. Three regimes of autoignited lifted flames were identified depending on initial temperature and hydrogen to methane ratio. At relatively high initial temperature, addition of a small amount of hydrogen to methane improved ignition appreciably such that the liftoff height decreased significantly. In this hydrogen-assisted autoignition regime, the liftoff height increased with jet velocity, and the characteristic flow time - defined as the ratio of liftoff height to jet velocity - correlated well with the square of the adiabatic ignition delay time. At lower temperature, the autoignited lifted flame demonstrated a unique feature in that the liftoff height decreased with increasing jet velocity. Such behavior has never been observed in lifted laminar and turbulent jet flames. A transition regime existed between these two regimes at intermediate temperature. © 2011 The Combustion Institute.

  1. A Review of Fatigue Crack Growth for Pipeline Steels Exposed to Hydrogen.

    Science.gov (United States)

    Nanninga, N; Slifka, A; Levy, Y; White, C

    2010-01-01

    Hydrogen pipeline systems offer an economical means of storing and transporting energy in the form of hydrogen gas. Pipelines can be used to transport hydrogen that has been generated at solar and wind farms to and from salt cavern storage locations. In addition, pipeline transportation systems will be essential before widespread hydrogen fuel cell vehicle technology becomes a reality. Since hydrogen pipeline use is expected to grow, the mechanical integrity of these pipelines will need to be validated under the presence of pressurized hydrogen. This paper focuses on a review of the fatigue crack growth response of pipeline steels when exposed to gaseous hydrogen environments. Because of defect-tolerant design principles in pipeline structures, it is essential that designers consider hydrogen-assisted fatigue crack growth behavior in these applications.

  2. Hydrogen isotope exchange in metal hydride columns

    International Nuclear Information System (INIS)

    Wiswall, R.; Reilly, J.; Bloch, F.; Wirsing, E.

    1977-01-01

    Several metal hydrides were shown to act as chromatographic media for hydrogen isotopes. The procedure was to equilibrate a column of hydride with flowing hydrogen, inject a small quantity of tritium tracer, and observe its elution behavior. Characteristic retention times were found. From these and the extent of widening of the tritium band, the heights equivalent to a theoretical plate could be calculated. Values of around 1 cm were obtained. The following are the metals whose hydrides were studied, together with the temperature ranges in which chromatographic behavior was observed: vanadium, 0 to 70 0 C; zirconium, 500 to 600 0 C; LaNi 5 , -78 to +30 0 C; Mg 2 Ni, 300 to 375 0 C; palladium, 0 to 70 0 C. A dual-temperature isotope separation process based on hydride chromatography was demonstrated. In this, a column was caused to cycle between two temperatures while being supplied with a constant stream of tritium-traced hydrogen. Each half-cycle was continued until ''breakthrough,'' i.e., until the tritium concentration in the effluent was the same as that in the feed. Up to that point, the effluent was enriched or depleted in tritium, by up to 20%

  3. Electron Cloud Buildup Characterization Using Shielded Pickup Measurements and Custom Modeling Code at CESRTA

    CERN Document Server

    Crittenden, James A

    2013-01-01

    The Cornell Electron Storage Ring Test Accelerator experimental program includes investigations into electron cloud buildup, applying various mitigation techniques in custom vacuum chambers. Among these are two 1.1-m-long sections located symmetrically in the east and west arc regions. These chambers are equipped with pickup detectors shielded against the direct beam-induced signal. They detect cloud electrons migrating through an 18-mm-diameter pattern of small holes in the top of the chamber. A digitizing oscilloscope is used to record the signals, providing time-resolved information on cloud development. Carbon-coated, TiN-coated and uncoated aluminum chambers have been tested. Electron and positron beams of 2.1, 4.0 and 5.3 GeV with a variety of bunch populations and spacings in steps of 4 and 14 ns have been used. Here we report on results from the ECLOUD modeling code which highlight the sensitivity of these measurements to the physical phenomena determining cloud buildup such as the photoelectron produ...

  4. Comet 73P Measurements of Solar Wind Interactions, Cometary Ion Pickup, and Spatial Distribution

    Science.gov (United States)

    Gilbert, J. A.; Lepri, S. T.; Rubin, M.; Combi, M. R.; Zurbuchen, T.

    2015-12-01

    Several fragments of Comet 73P/Schwassmann-Wachmann 3 passed near the Earth following a 2006 disintegration episode. Unique measurements regarding the charge state composition and the elemental abundances of both cometary and heliospheric plasma were made during this time by both the ACE/SWICS and Wind/STICS sensors. As the solar wind passed through the neutral cometary coma, it experienced charge exchange that was observed as an increase in the ratio of He+/He++. In addition, particles originating from fragments trailing the major cometary objects were ionized and picked up by the solar wind. The cometary material can be identified by the concentrations of water-group pickup ions having a mass-per-charge ratio of 16-18 amu/e, indicating that these are actively sublimating fragments. Here we present an analysis of cometary composition, spatial distribution, directionality, and heliospheric interactions with a focus on Helium, Carbon (C/O), and water-group ions.

  5. Solubility measurements of hydrogen in 1-butyl-3-methylimidazolium tetrafluoroborate and the effect of carbon dioxide and a selected catalyst on the hydrogen solubility in the ionic liquid

    NARCIS (Netherlands)

    Toussaint, V.A.; Kühne, E.; Shariati - Sarabi, A.; Peters, C.J.

    2013-01-01

    The high pressure phase behavior of a binary mixture containing hydrogen (H-2) and 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]) is studied by measuring bubble-point pressures at different temperatures for three compositions with hydrogen mole fractions of 5, 7.5 and 10 mol%. Since

  6. Development of hydrogen oxidizing bacteria using hydrogen from radiolysis or metal corrosion; Developpement de populations microbiennes oxydant l'hydrogene produit par radiolyse ou par corrosion des metaux

    Energy Technology Data Exchange (ETDEWEB)

    Libert, M F; Sellier, R; Marty, V; Camaro, S [CEA Cadarache, Dept. d' Entreposage et de Stockage des Dechets (DCC/DESD/SEP), 13 - Saint-Paul-lez-Durance (France)

    2000-07-01

    The effect of many parameters need to be studied to characterize the long term behavior of nuclear waste in a deep repository. These parameters concern the chemical effects, radiolytic effects, mechanical properties, water composition, and microbiological activity. To evaluate microbial activity in such an environment, work was focused on an inventory of key nutrients (C, H, 0, N, P, S) and energy sources required for bacterial growth. The production of hydrogen in the nuclear waste environment leads to the growth of hydrogen oxidizing bacteria, which modify the gas production balance. A deep repository containing bituminized waste drums implies several sources of hydrogen: - water radiolysis; -corrosion of metal containers; - radiolysis of the embedding matrix (bitumen). Two deep geological disposal conditions leading to H{sub 2} production in a bituminized nuclear waste environment were simulated in the present study: - H{sub 2} production by iron corrosion under anaerobic conditions was simulated by adding 10% of H{sub 2} in the atmosphere; - H{sub 2} production by radiolysis of bitumen matrix was approached by subjecting this material to external gamma irradiation with a dose rate near real conditions (6 Gy/h). The presence of dissolved H{sub 2} in water allows the growth of hydrogen oxidizing bacteria leading to: - CO{sub 2} and N{sub 2} production; - H{sub 2} consumption; - lower NO{sub 3}{sup -} concentration caused by reduction to nitrogen. In the first case, hydrogen consumption is limited by the NO{sub 3}{sup -} release rate from the bitumen matrix. In the second case, however, under gamma radiation at a low dose rate, hydrogen production is weak, and the hydrogen is completely consumed by microorganisms. Knowledge about these hydrogen oxidizing bacteria is just beginning to emerge. Heterotrophic denitrifying bacteria adapt well to hydrogen metabolism (autotrophic metabolism) by oxidizing H{sub 2} instead of hydrocarbons. (authors)

  7. Insight to the Thermal Decomposition and Hydrogen Desorption Behaviors of NaNH2-NaBH4 Hydrogen Storage Composite.

    Science.gov (United States)

    Pei, Ziwei; Bai, Ying; Wang, Yue; Wu, Feng; Wu, Chuan

    2017-09-20

    The lightweight compound material NaNH 2 -NaBH 4 is regarded as a promising hydrogen storage composite due to the high hydrogen density. Mechanical ball milling was employed to synthesize the composite NaNH 2 -NaBH 4 (2/1 molar ratio), and the samples were investigated utilizing thermogravimetric-differential thermal analysis-mass spectroscopy (TG-DTA-MS), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) analyses. The full-spectrum test (range of the ratio of mass to charge: 0-200) shows that the released gaseous species contain H 2 , NH 3 , B 2 H 6 , and N 2 in the heating process from room temperature to 400 °C, and possibly the impurity gas B 6 H 12 also exists. The TG/DTA analyses show that the composite NaNH 2 -NaBH 4 (2/1 molar ratio) is conductive to generate hydrogen so that the dehydrogenation process can be finished before 400 °C. Moreover, the thermal decomposition process from 200 to 400 °C involves two-step dehydrogenation reactions: (1) Na 3 (NH 2 ) 2 BH 4 hydride decomposes into Na 3 BN 2 and H 2 (200-350 °C); (2) remaining Na 3 (NH 2 ) 2 BH 4 reacts with NaBH 4 and Na 3 BN 2 , generating Na, BN, NH 3 , N 2 , and H 2 (350-400 °C). The better mechanism understanding of the thermal decomposition pathway lays a foundation for tailoring the hydrogen storage performance of the composite complex hydrides system.

  8. Modeling of hydrogen passivation process of silicon for solar cells applications

    International Nuclear Information System (INIS)

    Kuznicki, Z.T.; Ciach, R.; Gorley, P.M.; Voznyy, M.V.

    2001-01-01

    In this paper, results of investigation of evolution equations' system describing hydrogen passivation of silicon are presented. Using Lie group theory the classification of invariant solutions and initial system reduction to systems of ordinary differential equations (ODEs) is carried out for admissible infinitesimal operators under constant hydrogen atoms diffusivity in the sample. Possibility of analytical solution of passivation problem is shown. Analysis of system behavior taking into account diffusion and dissociation mechanisms is performed. It is ascertained that free hydrogen atoms diffusion in the sample and 'defect-hydrogen' dissociation spoil passivation. Analytical dependences obtained make it possible to predict spatial and time defect distribution under hydrogen passivation of silicon depending on experimental conditions

  9. Nondestructive technique application for corrosion evaluation by hydrogen charging of stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Kyung, E-mail: leejink@deu.ac.kr [Department of Mechanical Engineering, Dongeui University, Busan (Korea, Republic of); Bae, Dong Su [Department of Advanced Materials Engineering, Dongeui University, Busan (Korea, Republic of); Lee, Sang Pill; Hwang, Sung Guk [Department of Mechanical Engineering, Dongeui University, Busan (Korea, Republic of); Lee, Joon Hyun [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of)

    2016-11-01

    Highlights: • We have studied on the nondestructive technique application for corrosion evaluation by hydrogen charging of stainless steel. An ultrasonic test (UT) is an useful method to evaluate the mechanical properties of material. By measuring the velocity and the attenuation of ultrasonic wave propagating the hydrogen charged stainless steel, the relation of ultrasonic wave and mechanical properties of hydrogen charged 316L stainless steel was discussed. However, in order to evaluate the dynamic behavior of materials, an acoustic emission (AE) technique was applied to investigate the corrosion characteristics of hydrogen charged specimen. Acoustic emission is one of elastic waves caused by dislocation, cracks initiation and propagation within material from loading outside. The waveform of the acoustic emission is different depending on the damage mechanism of material. Lots of AE parameters such as energy, duration time, event and amplitude were used to analyze the dynamic behavior of the hydrogen charged specimen. • A conventional 316L stainless steel was used in this study, and electrochemical treat system for hydrogen charging of the specimen. ASTM (G142) type tensile specimens (diameter 6.0 mm, gage length 28.6 mm) were prepared, and sulfuric acid(H{sub 2}SO{sub 4}) and arsenic trioxide(As{sub 2}O{sub 3}) were used as the electrolyte, and potentiostat(HA 151) supplied the current to platinum wire and specimen. • Tensile strength and attenuation coefficient has a relation to some extent. Therefore, we could estimate the tensile strength and the hydrogen charging time by measuring the attenuation coefficient using ultrasonic wave nondestructively. • Acoustic emission technique was useful to evaluate the dynamic damage because AE parameters of AE event, average energy and average frequency showed various change by external loading at the specimens with and without hydrogen. - Abstract: Caused corrosion by hydrogen on stainless steel using

  10. Solubility and diffusion of hydrogen in pure metals and alloys

    International Nuclear Information System (INIS)

    Wipf, H.

    2001-01-01

    Basic facts are presented of the absorption of hydrogen gas by metals and the diffusion of hydrogen in metals. Specifically considered are crystalline metals without defects and lattice disorder (pure metals), low hydrogen concentrations and the possibility of high hydrogen gas pressures. The first introductory topic is a short presentation of typical phase diagrams of metal hydrogen systems. Then, hydrogen absorption is discussed and shown to be decisively determined by the enthalpy of solution, in particular by its sign which specifies whether absorption is exothermic or endothermic. The formation of high-pressure hydrogen gas bubbles in a metal, which can lead to blistering, is addressed. It is demonstrated that bubble formation will, under realistic conditions, only occur in strongly endothermically hydrogen absorbing metals. The chief aspects of hydrogen diffusion in metals are discussed, especially the large size of the diffusion coefficient and its dependence on lattice structure. It is shown that forces can act on hydrogen in metals, causing a directed hydrogen flux. Such forces arise, for instance, in the presence of stress and temperature gradients and can result in local hydrogen accumulation with potential material failure effects. The final aspect discussed is hydrogen permeation, where the absorption behavior of the hydrogen is found to be in general more decisive on the permeation rate than the value of the diffusion coefficient. (orig.)

  11. Hydrogen desorption reactions of Li-N-H hydrogen storage system: Estimation of activation free energy

    International Nuclear Information System (INIS)

    Matsumoto, Mitsuru; Haga, Tetsuya; Kawai, Yasuaki; Kojima, Yoshitsugu

    2007-01-01

    The dehydrogenation reactions of the mixtures of lithium amide (LiNH 2 ) and lithium hydride (LiH) were studied under an Ar atmosphere by means of temperature programmed desorption (TPD) technique. The dehydrogenation reaction of the LiNH 2 /LiH mixture was accelerated by addition of 1 mol% Ti(III) species (k = 3.1 x 10 -4 s -1 at 493 K), and prolonged ball-milling time (16 h) further enhanced reaction rate (k = 1.1 x 10 -3 s -1 at 493 K). For the hydrogen desorption reaction of Ti(III) doped samples, the activation energies estimated by Kissinger plot (95 kJ mol -1 ) and Arrhenius plot (110 kJ mol -1 ) were in reasonable agreement. The LiNH 2 /LiH mixture without Ti(III) species, exhibited slower hydrogen desorption process and the kinetic traces deviated from single exponential behavior. The results indicated the Ti(III) additives change the hydrogen desorption reaction mechanism of the LiNH 2 /LiH mixture

  12. Study of the hydrogen behavior in amorphous hydrogenated materials of type a - C:H and a - SiC:H facing fusion reactor plasma

    International Nuclear Information System (INIS)

    Barbier, G.

    1997-01-01

    Plasma facing components of controlled fusion test devices (tokamaks) are submitted to several constraints (irradiation, high temperatures). The erosion (physical sputtering and chemical erosion) and the hydrogen recycling (retention and desorption) of these materials influence many plasma parameters and thus affect drastically the tokamak running. First, we will describe the different plasma-material interactions. It will be pointed out, how erosion and hydrogen recycling are strongly related to both chemical and physical properties of the material. In order to reduce these interactions, we have selected two amorphous hydrogenated materials (a-C:H and a-SiC:H), which are known for their good thermal and chemical qualities. Some samples have been then implanted with lithium ions at different fluences. Our materials have been then irradiated with deuterium ions at low energy. From our results, it is shown that both the lithium implantation and the use of an a - SiC:H substrate can be beneficial in enhancing the hydrogen retention. These results were completed with thermal desorption studies of these materials. It was evidenced that the hydrogen fixation was more efficient in a-SiC:H than in a-C:H substrate. Results in good agreement with those described above have been obtained by exposing a - C:H and a - SiC:H samples to the scrape off layer of the tokamak of Varennes (TdeV, Canada). A modelling of hydrogen diffusion under irradiation has been also proposed. (author)

  13. Hydrogen generation behaviors of NaBH4-NH3BH3 composite by hydrolysis

    Science.gov (United States)

    Xu, Yanmin; Wu, Chaoling; Chen, Yungui; Huang, Zhifen; Luo, Linshan; Wu, Haiwen; Liu, Peipei

    2014-09-01

    In this work, NH3BH3 (AB) is used to induce hydrogen generation during NaBH4 (SB) hydrolysis in order to reduce the use of catalysts, simplify the preparation process, reduce the cost and improve desorption kinetics and hydrogen capacity as well. xNaBH4-yNH3BH3 composites are prepared by ball-milling in different proportions (from x:y = 1:1 to 8:1). The experimental results demonstrate that all composites can release more than 90% of hydrogen at 70 °C within 1 h, and their hydrogen yields can reach 9 wt% (taking reacted water into account). Among them, the composites in the proportion of 4:1 and 5:1, whose hydrogen yields reach no less than 10 wt%, show the best hydrogen generation properties. This is due to the impact of the following aspects: AB additive improves the dispersibility of SB particles, makes the composite more porous, hampers the generated metaborate from adhering to the surface of SB, and decreases the pH value of the composite during hydrolysis. The main solid byproduct of this hydrolysis system is NaBO2·2H2O. By hydrolytic kinetic simulation of the composites, the fitted activation energies of the complexes are between 37.2 and 45.6 kJ mol-1, which are comparable to the catalytic system with some precious metals and alloys.

  14. THE ROLE OF PICKUP IONS ON THE STRUCTURE OF THE VENUSIAN BOW SHOCK AND ITS IMPLICATIONS FOR THE TERMINATION SHOCK

    International Nuclear Information System (INIS)

    Lu Quanming; Shan Lican; Zhang Tielong; Wu Mingyu; Wang Shui; Zank, Gary P.; Yang Zhongwei; Du Aimin

    2013-01-01

    The recent crossing of the termination shock by Voyager 2 has demonstrated the important role of pickup ions (PUIs) in the physics of collisionless shocks. The Venus Express (VEX) spacecraft orbits Venus in a 24 hr elliptical orbit that crosses the bow shock twice a day. VEX provides a unique opportunity to investigate the role of PUIs on the structure of collisionless shocks more generally. Using VEX observations, we find that the strength of the Venusian bow shock is weaker when solar activity is strong. We demonstrate that this surprising anti-correlation is due to PUIs mediating the Venusian bow shock

  15. Fuel cladding behavior under rapid loading conditions

    Science.gov (United States)

    Yueh, K.; Karlsson, J.; Stjärnsäter, J.; Schrire, D.; Ledergerber, G.; Munoz-Reja, C.; Hallstadius, L.

    2016-02-01

    A modified burst test (MBT) was used in an extensive test program to characterize fuel cladding failure behavior under rapid loading conditions. The MBT differs from a normal burst test with the use of a driver tube to simulate the expansion of a fuel pellet, thereby producing a partial strain driven deformation condition similar to that of a fuel pellet expansion in a reactivity insertion accident (RIA). A piston/cylinder assembly was used to pressurize the driver tube. By controlling the speed and distance the piston travels the loading rate and degree of sample deformation could be controlled. The use of a driver tube with a machined gauge section localizes deformation and allows for continuous monitoring of the test sample diameter change at the location of maximum hoop strain, during each test. Cladding samples from five irradiated fuel rods were tested between 296 and 553 K and loading rates from 1.5 to 3.5/s. The test rods included variations of Zircaloy-2 with different liners and ZIRLO, ranging in burn-up from 41 to 74 GWd/MTU. The test results show cladding ductility is strongly temperature and loading rate dependent. Zircaloy-2 cladding ductility degradation due to operational hydrogen pickup started to recover at approximately 358 K for test condition used in the study. This recovery temperature is strongly loading rate dependent. At 373 K, ductility recovery was small for loading rates less than 8 ms equivalent RIA pulse width, but longer than 8 ms the ductility recovery increased exponentially with increasing pulse width, consistent with literature observations of loading rate dependent brittle-to-ductile (BTD) transition temperature. The cladding ductility was also observed to be strongly loading rate/pulse width dependent for BWR cladding below the BTD temperature and Pressurized Water Reactor (PWR) cladding at both 296 and 553 K.

  16. Zirconium mediated hydrogen outdiffusion from p-GaN

    Energy Technology Data Exchange (ETDEWEB)

    Kaminska, E.; Piotrowska, A.; Barcz, A.; Jasinski, J.; Zielinski, M.; Golaszewska, K.; Davis, R.F.; Goldys, E.; Tomsia, K.

    2000-07-01

    The authors have shown that Zr-based metallization can effectively remove hydrogen from the p-type GaN subsurface, which eventually leads to the formation of an ohmic contact. As the release of hydrogen starts at {approximately}900 C, the thermal stability of the contact system is of particular importance. The remarkable thermal behavior of the ZrN/ZrB{sub 2} metallization is associated to the microstructure of each individual Zr-based compound, as well as to the interfacial crystalline accommodation.

  17. Multiscale Modeling of Hydrogen Embrittlement for Multiphase Material

    KAUST Repository

    Al-Jabr, Khalid A.

    2014-01-01

    Hydrogen Embrittlement (HE) is a very common failure mechanism induced crack propagation in materials that are utilized in oil and gas industry structural components and equipment. Considering the prediction of HE behavior, which is suggested

  18. U.S. Department of Energy FreedomCar & Vehicle Technologies Program CARB Executive Order Exemption Process for a Hydrogen-fueled Internal Combustion engine Vehicle -- Status Report

    Energy Technology Data Exchange (ETDEWEB)

    2008-04-01

    The CARB Executive Order Exemption Process for a Hydrogen-fueled Internal Combustion Engine Vehicle was undertaken to define the requirements to achieve a California Air Resource Board Executive Order for a hydrogenfueled vehicle retrofit kit. A 2005 to 2006 General Motors Company Sierra/Chevrolet Silverado 1500HD pickup was assumed to be the build-from vehicle for the retrofit kit. The emissions demonstration was determined not to pose a significant hurdle due to the non-hydrocarbon-based fuel and lean-burn operation. However, significant work was determined to be necessary for Onboard Diagnostics Level II compliance. Therefore, it is recommended that an Experimental Permit be obtained from the California Air Resource Board to license and operate the vehicles for the durability of the demonstration in support of preparing a fully compliant and certifiable package that can be submitted.

  19. Hydrogen energy

    International Nuclear Information System (INIS)

    2005-03-01

    This book consists of seven chapters, which deals with hydrogen energy with discover and using of hydrogen, Korean plan for hydrogen economy and background, manufacturing technique on hydrogen like classification and hydrogen manufacture by water splitting, hydrogen storage technique with need and method, hydrogen using technique like fuel cell, hydrogen engine, international trend on involving hydrogen economy, technical current for infrastructure such as hydrogen station and price, regulation, standard, prospect and education for hydrogen safety and system. It has an appendix on related organization with hydrogen and fuel cell.

  20. Vacancy clustering behavior in hydrogen-charged martensitic steel AISI 410 under tensile deformation

    International Nuclear Information System (INIS)

    Sugita, K; Mutou, Y; Shirai, Y

    2016-01-01

    The formation and accumulation of defects under tensile deformation of hydrogen- charged AISI 410 martensitic steels were investigated by using positron lifetime spectroscopy. During the deformation process, dislocations and vacancy-clusters were introduced and increased with increasing strains. Between hydrogen-charged and uncharged samples with the same tensile strains there was no significant difference in the dislocation density and monovacancy equivalent vacancy density. (paper)

  1. Effect of trapping and temperature on the hydrogen embrittlement susceptibility of alloy 718

    Energy Technology Data Exchange (ETDEWEB)

    Galliano, Florian; Andrieu, Eric; Blanc, Christine; Cloue, Jean-Marc; Connetable, Damien; Odemer, Gregory, E-mail: gregory.odemer@ensiacet.fr

    2014-08-12

    Ni-based alloy 718 is widely used to manufacture structural components in the aeronautic and nuclear industries. Numerous studies have shown that alloy 718 may be sensitive to hydrogen embrittlement. In the present study, the susceptibilities of three distinct metallurgical states of alloy 718 to hydrogen embrittlement were investigated to identify both the effect of hydrogen trapping on hydrogen embrittlement and the role of temperature in the hydrogen-trapping mechanism. Cathodic charging in a molten salt bath was used to saturate the different hydrogen traps of each metallurgical state. Tensile tests at different temperatures and different strain rates were carried out to study the effect of hydrogen on mechanical properties and failure modes, in combination with hydrogen content measurements. The results demonstrated that Ni-based superalloy 718 was strongly susceptible to hydrogen embrittlement between 25 °C and 300 °C, and highlighted the dominant roles played by the hydrogen solubility and the hydrogen trapping on mechanical behavior and fracture modes.

  2. Proton pickup from /sup 27/Al via the (n,d) reaction at 56. 3 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Brady, F P; Shepard, J R; King, N S.P.; McNaughton, M W; Wang, J C [California Univ., Davis (USA)

    1977-09-26

    Energy spectra of deuterons from the /sup 27/Al(n,d)/sup 26/Mg reaction due to 56.3 MeV neutrons incident have been measured for 10/sup 0/ <= thetasub(c.m.) <= 55 /sup 0/. The angular distributions for the excitations observed at 0.0, 1.81, and 4.33 MeV are quite well described by DWBA calculations and yield spectroscopic factors in agreement with shell model calculations; but with calculations based on the rotational model, the agreement is less satisfactory particularly for the 4.33 MeV level. For the states at 7.86 and 9.16 MeV the fits, assuming p-shell pick-up, are only fair. Comparison with /sup 27/Al(d,/sup 3/He)/sup 26/Mg measurements shows that the deduced spectroscopic factors for the two reactions agree quite well.

  3. Hydrogen desorption from mechanically milled carbon micro coils hydrogenated at high temperature

    International Nuclear Information System (INIS)

    Yoshio Furuya; Shuichi Izumi; Seiji Motojima; Yukio Hishikawa

    2005-01-01

    Carbon micro coils (CMC) have been prepared by the catalytic pyrolysis of acetylene at 750-800 C. The as grown coils have an almost amorphous structure and contain about 1 mass% hydrogen. They have 0.1 - 10 mm coil length, 1-5 μm coil diameter, 0.1-0.5 μm coil pitch and about 100 m 2 /g specific surface area. They were graphitized, as maintaining the morphology of the coils, by heat-treating at a higher temperature than 2500 C in Ar atmosphere. The layer space (d) of graphitized CMC was determined to be 0.341 nm, forming a 'herringbone' structure with an inclination of 10-40 degree versus the coiled fiber axis, having a specific surface area of about 8 m 2 /g. The hydrogen absorption behaviors of CMC were investigated from RT to 1200 C by a thermal desorption spectrometry (TDS) using a quadrupole mass analyzer. In TDS measurements, pre-existing hydrogen, which was due to the residual acetylene incorporated into CMC on its growing, desorbed from 700 C and peaked at about 900 C. The increment in the main peak of desorbed hydrogen in the as-grown CMC heat-treated at 500 C for 1 h under high pressure of hydrogen gas (1.9 or 8.9 MPa) was not remarkable as is shown in Fig.1. While, in the CMC samples milled mechanically for 1 h at RT using a planetary ball mill, the increase of desorbed hydrogen became to be great with the hydrogen pressure (up to 8.9 MPa) on heat-treating at 500 C, as is shown in Fig.2. In these CMC samples, the building up temperature of the hydrogen desorption was shifted to a lower one and the temperature range of desorption became to be wider than those in the as-grown CMC because of the appearance of another desorption peak at about 600 C in addition to the peak ranging from 850 C to 900 C. The same kind of peak was also slightly observed in as-grown CMC (Fig.1). It is clear that this desorption at about 600 C has contributed to the remarkable increase of desorbed hydrogen in the milled CMC. In this work, values of more than 2 mass% were obtained

  4. Effect of hydrogen addition on autoignited methane lifted flames

    KAUST Repository

    Choin, Byung Chul

    2012-01-01

    Autoignited lifted flames in laminar jets with hydrogen-enriched methane fuels have been investigated experimentally in heated coflow air. The results showed that the autoignited lifted flame of the methane/hydrogen mixture, which had an initial temperature over 920 K, the threshold temperature for autoignition in methane jets, exhibited features typical of either a tribrachial edge or mild combustion depending on fuel mole fraction and the liftoff height increased with jet velocity. The liftoff height in the hydrogen-assisted autoignition regime was dependent on the square of the adiabatic ignition delay time for the addition of small amounts of hydrogen, as was the case for pure methane jets. When the initial temperature was below 920 K, where the methane fuel did not show autoignition behavior, the flame was autoignited by the addition of hydrogen, which is an ignition improver. The liftoff height demonstrated a unique feature in that it decreased nonlinearly as the jet velocity increased. The differential diffusion of hydrogen is expected to play a crucial role in the decrease in the liftoff height with increasing jet velocity.

  5. Hydrogen Storage Characteristics of CNT doped NaAlH4

    International Nuclear Information System (INIS)

    Pukazhselvan, D.; Sterlin Leo Hudson, M.; Bipin Kumar Gupta; Srivastava, O.N.

    2006-01-01

    The current Hydrogen based energy infrastructure required a high energy density consumer friendly hydrogen storage media. Although the desired goals for the hydrogen fueled vehicular transport has not yet met by any hydrogen storage material, complex Sodium Alanate is said to be a promising candidate under this demand due to its high hydrogen storage capacity and the thermodynamically permissible reversible hydrogen storage capacity. However its poor sorption behavior under moderate conditions (NaAlH 4 →Na 3 AlH 6 ; 3.7 wt % vs 50 hrs at ∼170 C and Na 3 AlH 6 →NaH; 1.85 wt % vs 30 hrs at ∼220 C) urges their limited uses in ages. But these limitations can be removed by using catalysts particularly transition elements but the location of catalyst in NaAlH 4 matrix and the possible mechanism is not yet clearly understood. The aim of the present investigation is to improve the overall sorption characteristics of NaAlH 4 by a new light weighted high surface area (1315 sq mtr/gm) material (CNT) admixing and to obtain a best doping level to NaAlH 4 . So far only Ti has been attempted as a suitable catalyst. It is believed that the high surface area of CNT can provide an additional solid-gas (H 2 ) surface/interface and it can produce thermal contact between grains (thermal conductivity Kth of MWCNT: 3000 w/k and Kth of NaAlH 4 : 0.32 w/k) for stimulating their thermally activated dissociation in NaAlH 4 . In parallel with this approach XRD of NaAlH 4 reveals that there was no change in lattice structure after doping by CNT, SEM picture depicts that CNT precipitation in grain surfaces. Catalytic concentration of various mole % of x values finds that x = 8 is the best doping level as it gives 3.3 wt % of hydrogen within 2 hrs. The comparative sorption behavior with Ti:NaAlH 4 also shows CNTs as an optimum alternative catalyst to NaAlH 4 and besides this CNT doped desorbed ingredients shown good re-hydrogenation behavior(3.7 wt % at 8. cycle and 4.2 wt % maximum at

  6. Simulation of the effect of hydrogen bonds on water activity of glucose and dextran using the Veytsman model.

    Science.gov (United States)

    De Vito, Francesca; Veytsman, Boris; Painter, Paul; Kokini, Jozef L

    2015-03-06

    Carbohydrates exhibit either van der Waals and ionic interactions or strong hydrogen bonding interactions. The prominence and large number of hydrogen bonds results in major contributions to phase behavior. A thermodynamic framework that accounts for hydrogen bonding interactions is therefore necessary. We have developed an extension of the thermodynamic model based on the Veytsman association theory to predict the contribution of hydrogen bonds to the behavior of glucose-water and dextran-water systems and we have calculated the free energy of mixing and its derivative leading to chemical potential and water activity. We compared our calculations with experimental data of water activity for glucose and dextran and found excellent agreement far superior to the Flory-Huggins theory. The validation of our calculations using experimental data demonstrated the validity of the Veytsman model in properly accounting for the hydrogen bonding interactions and successfully predicting water activity of glucose and dextran. Our calculations of the concentration of hydrogen bonds using the Veytsman model were instrumental in our ability to explain the difference between glucose and dextran and the role that hydrogen bonds play in contributing to these differences. The miscibility predictions showed that the Veytsman model is also able to correctly describe the phase behavior of glucose and dextran. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Hydrogen fuel cells for cars and buses

    NARCIS (Netherlands)

    Janssen, L.J.J.

    2007-01-01

    The use of hydrogen fuel cells for cars is strongly promoted by the governments of many countries and by international organizations like the European Community. The electrochem. behavior of the most promising fuel cell (polymer electrolyte membrane fuel cell, PEMFC) is critically discussed, based

  8. Gas Phase Fabrication of Pd-Ni Nanoparticle Arrays for Hydrogen Sensor Applications

    Directory of Open Access Journals (Sweden)

    Peng Xing

    2015-01-01

    Full Text Available Pd-Ni nanoparticles have been fabricated by gas aggregation process. The formation of Pd-Ni nano-alloys was confirmed by X-ray photoelectron spectroscopy measurements. By depositing Pd-Ni nanoparticles on the interdigital electrodes, quantum conductance-based hydrogen sensors were fabricated. The Ni content in the nanoparticle showed an obvious effect on the hydrogen response behavior corresponding to the conductance change of the nanoparticle film. Three typical response regions with different conductance-hydrogen pressure correlations were observed. It was found that the α-β phase transition region of palladium hydride moves to significant higher hydrogen pressure with the addition of nickel element, which greatly enhance the hydrogen sensing performance of the nanoparticle film.

  9. Hydrogen storage in binary and ternary Mg-based alloys. A comprehensive experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Kalisvaart, W.P.; Harrower, C.T.; Haagsma, J.; Zahiri, B.; Luber, E.J.; Ophus, C.; Miltin, D. [Alberta Univ., Edmonton (Canada); Poirier, E.; Fritzsche, H. [Canadian Neutron Beam Centre, Chalk River, ON (Canada)

    2010-07-01

    This study focuses on hydrogen sorption properties of cosputtered 1.5 micrometer thick Mg-based films with Al, Fe and Ti as alloying elements. We show that ternary Mg-Al-Ti and Mg-Fe-Ti alloys in particular display remarkable sorption behavior: at 200 C, the films are capable of absorbing 4-6 wt.% hydrogen in seconds, and desorbing in minutes. Furthermore, this sorption behavior is stable for over 100 ab- and desorption cycles for Mg-Al-Ti and Mg-Fe-Ti alloys. No degradation in capacity or kinetics is observed. Based on these observations, some general design principles for Mg-based hydrogen storage alloys are suggested. For Mg-Fe-Ti, encouraging preliminary results on multilayered systems are also presented. (orig.)

  10. PEDOT–PSSA as an alternative support for Pt electrodes in PEFCs

    Indian Academy of Sciences (India)

    Administrator

    trodes require only a two-phase boundary for the operation of the fuel cell unlike the ..... the constant charge required to oxidize a monolayer of hydrogen on smooth .... Patra S and Munichandraiah N 2009 Langmuir 25 1732. Pickup P G, Kean ...

  11. Hydrogen generation monitoring and mass gain analysis during the steam oxidation for Zircaloy using hydrogen and oxygen sensors

    International Nuclear Information System (INIS)

    Fukumoto, Michihisa; Hara, Motoi; Kaneko, Hiroyuki; Sakuraba, Takuya

    2015-01-01

    The oxidation behavior of Zircaloy-4 at high temperatures in a flowing Ar-H_2O (saturated at 323 K) mixed gas was investigated using hydrogen and oxygen sensors installed at a gas outlet, and the utility of the gas sensing methods by using both sensors was examined. The generated amount of hydrogen was determined from the hydrogen partial pressure continuously measured by the hydrogen sensor, and the resultant calculated oxygen amount that reacted with the specimen was in close agreement with the mass gain gravimetrically measured after the experiment. This result demonstrated that the hydrogen partial pressure measurement using a hydrogen sensor is an effective method for examining the steam oxidation of this metal as well as monitoring the hydrogen evolution. The advantage of this method is that the oxidation rate of the metal at any time as a differential quantity is able to be obtained, compared to the oxygen amount gravimetrically measured as an integral quantity. When the temperature was periodically changed in the range of 1173 K to 1523 K, highly accurate measurements could be carried out using this gas monitoring method, although reasonable measurements were not gravimetrically performed due to the fluctuating thermo-buoyancy during the experiment. A change of the oxidation rate was clearly detected at a monoclinic tetragonal transition temperature of ZrO_2. From the calculation of the water vapor partial pressure during the thermal equilibrium condition using the hydrogen and oxygen partial pressures, it became clear that a thermal equilibrium state is maintained when the isothermal condition is maintained, but is not when the temperature increases or decreases with time. Based on these results, it was demonstrated that the gas monitoring system using hydrogen and oxygen sensors is very useful for investigating the oxidation process of the Zircaloy in steam. (author)

  12. Release enhancement of tritium from graphite by addition of hydrogen

    International Nuclear Information System (INIS)

    Saeki, Masakatsu; Masaki, N.M.

    1989-01-01

    The release behavior of tritium from graphite was studied in pure He and He + H 2 atmosphere. The release from powdered graphite was significantly enhanced in hydrogen environment. Apparent diffusion coefficients of tritium in graphite also became much higher in an atmosphere containing hydrogen than values obtained in pure helium atmosphere. A careful investigation of the release processes resulted in the conclusion that the most important process of tritium behaviour in graphite was diffusion, but the desorption process of tritium from the surface played a significant role. The enhancement of the desorption process was controlled by atomic hydrogen. (orig.)

  13. Electrical properties and flux performance of composite ceramic hydrogen separation membranes

    DEFF Research Database (Denmark)

    Fish, J.S.; Ricote, Sandrine; O'Hayre, R.

    2015-01-01

    The electrical properties and hydrogen permeation flux behavior of the all-ceramic protonic/electronic conductor composite BaCe0.2Zr0.7Y0.1O3-δ/Sr0.95Ti0.9Nb0.1O3-δ (BCZY27/STN95: BS27) are evaluated. Conductivity and hydrogen permeability are examined as a function of phase volume ratios. Total ...

  14. Measurement of dissolved hydrogen and hydrogen gas transfer in a hydrogen-producing reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shizas, I.; Bagley, D.M. [Toronto Univ., ON (Canada). Dept. of Civil Engineering

    2004-07-01

    This paper presents a simple method to measure dissolved hydrogen concentrations in the laboratory using standard equipment and a series of hydrogen gas transfer tests. The method was validated by measuring hydrogen gas transfer parameters for an anaerobic reactor system that was purged with 10 per cent carbon dioxide and 90 per cent nitrogen using a coarse bubble diffuser stone. Liquid samples from the reactor were injected into vials and hydrogen was allowed to partition between the liquid and gaseous phases. The concentration of dissolved hydrogen was determined by comparing the headspace injections onto a gas chromatograph and a standard curve. The detection limit was 1.0 x 10{sup -5} mol/L of dissolved hydrogen. The gas transfer rate for hydrogen in basal medium and anaerobic digester sludge was used to validate the method. Results were compared with gas transfer models. In addition to monitoring dissolved hydrogen in reactor systems, this method can help improve hydrogen production potential. 1 ref., 4 figs.

  15. Degradation of the Mechanical Properties of Zirconium-base alloys due to Interaction with Hydrogen

    International Nuclear Information System (INIS)

    Bertolino, Graciela

    2001-01-01

    Security aspects and the purpose to extend the nuclear power plants lifetime motivate the renovated interest on the influence of the environment and radiation on the mechanical properties of in-reactor materials.Zirconium based alloys are the family of alloys most extensively used in nuclear core components.A consequence of the interaction of the in-reactor environment with these alloys is the formation of brittle phase Zr hydride, a process that greatly affects the component integrity.In this work we present a experimental study of the hydrogen influence on the Z ry-4 mechanical properties at different temperatures.As a complement we also present results of a finite elements simulations of the fracture process.We performed standard metallurgical and mechanical characterization in commercial Z ry-4 samples to obtain their basic properties. Different hydrogen pickup techniques were applied to obtain H concentration of charged samples between 10 and 2000 ppm, homogeneous or mainly localized at the crack tip zone.To obtain the fracture toughness of the alloys specimens were tested using elastoplastic fracture mechanics techniques.Specifically we implement J-integral methodology with partial unloading compliance measurements.Tests were performed in a temperature range of 20 to 200 o C.The negative influence of the H content on material toughness probed to be important even at very small concentrations, with an effect that decreases when temperature increases.While there was observed no change in the fracture mechanism in homogeneous charged samples, specimens charged under a superimposed stress field fractured by brittle mode when were tested at 20 to 70 o C. SEM observations of the crack growth, the fracture surface morphology and precipitates content showed the influence of the precipitates on fracture at different H concentrations.At least three stages with different fracture behavior depending on H content were identified.Complementary to the experimental work we

  16. Current state of the construction of an integrated test facility for hydrogen risk

    Energy Technology Data Exchange (ETDEWEB)

    Na, Young Su; Hong, Seong-Ho; Hong, Seong-Wan [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    Experimental research on hydrogen as a combustible gas is important for an assessment of the integrity of a containment building under a severe accident. The Korea Atomic Energy Research Institute (KAERI) is preparing a large-scaled test facility, called SPARC (SPray-Aerosol-Recombiner-Combustion), to estimate the hydrogen behavior such as the distribution, combustion and mitigation. This paper introduces the experimental research activity on hydrogen risk, which was presented at International Congress on Advances in Nuclear Power Plants (ICAPP) this year. The KAERI is preparing a test facility, called SPARC (SPray-Aerosol-Recombiner-Combustion test facility), for an assessment of the hydrogen risk. In the SPARC, hydrogen behavior such as mixing with steam and air, distribution, and combustion in the containment atmosphere will be observed. The SPARC consists of a pressure vessel with a 9.5 m height and 3.4 m in diameter and the operating system to control the thermal hydraulic conditions up to 1.5 MPa at 453 K in a vessel. The temperature, pressure, and gas concentration at various locations will be measured to estimate the atmospheric behavior in a vessel. To install the SPARC, an experimental building, called LIFE (Laboratory for Innovative mitigation of threats from Fission products and Explosion), was constructed at the KAERI site. LIFE has an area of 480 m''2 and height of 18.6 m, and it was designed by considering the experimental safety and specification of a large-sized test facility.

  17. Cation distribution in spinels and its effect on activity pick-up and passivation behaviour

    International Nuclear Information System (INIS)

    Subramanian, H.; Velmurugan, S.; Narasimhan, S.V.

    2000-01-01

    Spinels are found to be the major corrosion products in the primary heat transport system or nuclear reactors. These corrosion products are activated in the core and are picked up on the deposited corrosion product oxides, which lead to the radiation field buildup on out of core surfaces. In order to mitigate this phenomenon, it is extremely important to understand the structural changes that take place in a spinel in the primary heat transport system. Most of the spinels found in reactor systems are mixed spinels. Cation distribution in tetrahedral and octahedral sites of these spinels, which is temperature dependent, will affect the pickup of active metal ions from solution into these spinels. Distribution of cations in simple spinels was estimated by minimising the Gibbs energy change for the migration of ions between tetrahedral and octahedral sites, based on the assumption that it is the configurational entropy change for the process that dominates the distribution. Cation distribution for mixed spinels was also calculated using the same method. Energy demand for the exchange of an aqueous ion with these spinels has been estimated. (author)

  18. Decrease in Hydrogen Embrittlement Susceptibility of 10B21 Screws by Bake Aging

    Directory of Open Access Journals (Sweden)

    Kuan-Jen Chen

    2016-08-01

    Full Text Available The effects of baking on the mechanical properties and fracture characteristics of low-carbon boron (10B21 steel screws were investigated. Fracture torque tests and hydrogen content analysis were performed on baked screws to evaluate hydrogen embrittlement (HE susceptibility. The diffusible hydrogen content within 10B21 steel dominated the fracture behavior of the screws. The fracture torque of 10B21 screws baked for a long duration was affected by released hydrogen. Secondary ion mass spectroscopy (SIMS result showed that hydrogen content decreased with increasing baking duration, and thus the HE susceptibility of 10B21 screws improved. Diffusible hydrogen promoted crack propagation in high-stress region. The HE of 10B21 screws can be prevented by long-duration baking.

  19. Positron annihilation in hydrogenated and electron-irradiated titanium alloys

    International Nuclear Information System (INIS)

    Mukashev, K.M.; Zaikin, Yu.A.

    2002-01-01

    Important information on hydrogen behavior in titanium can be obtained from studies of radiation damage in previously hydrogenated metal. For this purpose annealed titanium samples were hydrogenated at the temperature 500 deg. C during 1 hour. Then both the original annealed samples and hydrogenated samples were irradiated by 4 MeV electrons in the fluence range 3·10 7 -1·10 19 cm - 2 at the temperature 60 deg. C. It is known that electron irradiation in these conditions predominantly creates vacancy-type defects with an average radius R ν =0.81 Angstrom. It was stated that annihilation probability after electron irradiation of previously hydrogenated titanium samples always has some intermediate values between those characteristic for hydrogenated and irradiated states of previously annealed metal. This is a reason to suppose that radiation defects of the vacancy type in previously hydrogenated titanium combine with hydrogen atoms in favorable conditions of their partial ionization. The estimated value of the average radius for such a complex is R ν =1.1 Angstrom, that is higher than vacancy size but lower than an atom radius. No dose dependence of hydrogen interaction with radiation defects was observed in our experiments.The results of isochrone annealing of the materials under study have shown that the single annealing recovery stage with activation energy E a equal to 1.22 eV is observed in electron irradiated but not previously hydrogenated titanium in the temperature range 170-240 deg. C. Electron irradiation of the previously hydrogenated metal shifts beginning of the first recovery stage to the temperature about 225-230 deg. C and finishes near the temperature 330 deg. C. Therefore, the bound state vacancy-hydrogen in titanium is characterized by higher temperature range of dissociation and annealing with activation energy equal to 1.38 eV. However, subsequent measurements, of the angular distribution of annihilation photons (ADAP) have demonstrated

  20. Laparoscopic ovum pick-up in spotted paca ( Cuniculus pacas

    Directory of Open Access Journals (Sweden)

    F.F.P.C. Barros

    2016-08-01

    Full Text Available ABSTRACT The aim of this work is study the laparoscopic ovum pick-up (LapOPU technique in spotted paca, describing surgery details, complications and oocyte recovery rate. Nine healthy adult non-pregnant captive females were used, in a total of 39 procedures. When the surgical plane of anaesthesia was achieved, the females were positioned at 20º Trendelenburg. Three 6mm trocars were placed on right and left inguinal and hypogastric regions. Abdomen was inflated with CO2 and the intra-abdominal pressure was stablished in 10mmHg. Follicular punctures were performed moving the ovaries with atraumatic forceps. For punctures, an 18-gauge 3.5 inch long needle attached to a vacuum system with pressure not exceeding 65mmHg was used. Oocytes were recovered into 50mL centrifuge tubes with media composed of PBS supplemented with 10 IU/mL of heparin and kept at 36°C. R Software was used for statistical analysis. Data normality distribution (Shapiro test and variances homoscedasticity (Bartlett test were tested and descriptive statistics (mean±SD was used to present the results. It was only possible to perform LapOPU in 30 of 39 laparoscopies (76.92%. The surgical total time was 37.34 ± 18.53 minutes. The total number of visualized follicles, aspirated follicles, and retrieved oocytes were 502, 415, and 155, respectively. And the same parameters per animal were: 14.34 ± 12.23, 11.86 ± 10.03, and 4.43 ± 4.69 respectively. Oocyte recovery rate was 32.56 ± 27.32%. In conclusion, caudal positioning of portals with slight triangulation allows good viewing of the abdominal cavity and eases the manipulation of the ovaries. Thus this described LapOPU technique is feasible in spotted paca and easy to perform.

  1. Characterization of hydrogen levels by ultrasonic techniques in zirconium alloys of nuclear interest

    International Nuclear Information System (INIS)

    Gomez, Martin P.

    2003-01-01

    In this work, a Master Thesis, it was examined the ratio between hydrogen quantity forming hydrides, and ultrasonic waves parameters such as propagation velocity and attenuation, for Zry-4 samples. It was to find some typical behavior for the studied parameters changing hydrogen quantity added as hydrides, for a future use as an on field NDT. With that purpose were constructed fourteen samples, eleven with added hydrogen. Three samples were left without charge as standard samples for charge and annealing processes. The quantity of hydrogen added as hydrides was varied between 0 and 516.7 ppm. Ultrasound measurements were made with compressive waves at frequencies of 10 and 30 MHz. Attenuation has been measured at both frequencies and velocity at 30 MHz. Propagation velocity showed a raising rate for test samples. For samples with hydridation conditions used in this work, this parameter would allow to measure hydrogen quantity forming hydrides with an error in the two digits of the ppm range. Attenuation measurements showed a raising tendency too, but in this case are unable for hydrides quantification, caused by a high error in attenuation measurements for both frequencies and for a fluctuating behavior at 30 MHz. (author) [es

  2. Hydrogen recycle modeling in transport codes

    International Nuclear Information System (INIS)

    Howe, H.C.

    1979-01-01

    The hydrogen recycling models now used in Tokamak transport codes are reviewed and the method by which realistic recycling models are being added is discussed. Present models use arbitrary recycle coefficients and therefore do not model the actual recycling processes at the wall. A model for the hydrogen concentration in the wall serves two purposes: (1) it allows a better understanding of the density behavior in present gas puff, pellet, and neutral beam heating experiments; and (2) it allows one to extrapolate to long pulse devices such as EBT, ISX-C and reactors where the walls are observed or expected to saturate. Several wall models are presently being studied for inclusion in transport codes

  3. Influence of rolling direction and carbide precipitation on IGSCC susceptibility in hydrogenated high temperature water

    International Nuclear Information System (INIS)

    Arioka, Koji; Yamada, Takuyo; Terachi, Takumi; Chiba, Goro

    2005-01-01

    IGSCC growth behaviors of austenitic stainless steels in hydrogenated high temperature water were studied using compact type specimens (0.5T for cold worked materials). The effect of cold rolling direction, alloy composition and carbide precipitation on crack growth behaviors was studied in hydrogenated high temperature water. Then, to examine the effect of cold work and carbide precipitation on IGSCC behaviors, the role of grain boundary sliding studied in high temperature air using CT specimens. The similar dependences of carbide precipitation and cold work on IGSCC and creep behaviors suggest that grain boundary sliding might play an important role by itself or in conjunction with other reactions such as crack tip dissolution etc. (author)

  4. Dependence of hydrogen-induced lattice defects and hydrogen embrittlement of cold-drawn pearlitic steels on hydrogen trap state, temperature, strain rate and hydrogen content

    International Nuclear Information System (INIS)

    Doshida, Tomoki; Takai, Kenichi

    2014-01-01

    The effects of the hydrogen state, temperature, strain rate and hydrogen content on hydrogen embrittlement susceptibility and hydrogen-induced lattice defects were evaluated for cold-drawn pearlitic steel that absorbed hydrogen in two trapping states. Firstly, tensile tests were carried out under various conditions to evaluate hydrogen embrittlement susceptibility. The results showed that peak 2 hydrogen, desorbed at temperatures above 200 °C as determined by thermal desorption analysis (TDA), had no significant effect on hydrogen embrittlement susceptibility. In contrast, hydrogen embrittlement susceptibility increased in the presence of peak 1 hydrogen, desorbed from room temperature to 200 °C as determined by TDA, at temperatures higher than −30 °C, at lower strain rates and with higher hydrogen content. Next, the same effects on hydrogen-induced lattice defects were also evaluated by TDA using hydrogen as a probe. Peak 2 hydrogen showed no significant effect on either hydrogen-induced lattice defects or hydrogen embrittlement susceptibility. It was found that hydrogen-induced lattice defects formed under the conditions where hydrogen embrittlement susceptibility increased. This relationship indicates that hydrogen embrittlement susceptibility was higher under the conditions where the formation of hydrogen-induced lattice defects tended to be enhanced. Since hydrogen-induced lattice defects formed by the interaction between hydrogen and strain were annihilated by annealing at a temperature of 200 °C, they were presumably vacancies or vacancy clusters. One of the common atomic-level changes that occur in cold-drawn pearlitic steel showing higher hydrogen embrittlement susceptibility is the formation of vacancies and vacancy clusters

  5. Transient dynamic finite element analysis of hydrogen distribution test chamber structure for hydrogen combustion loads

    International Nuclear Information System (INIS)

    Singh, R.K.; Redlinger, R.; Breitung, W.

    2005-09-01

    Design and analysis of blast resistant structures is an important area of safety research in nuclear, aerospace, chemical process and vehicle industries. Institute for Nuclear and Energy Technologies (IKET) of Research Centre- Karlsruhe (Forschungszentrum Karlsruhe or FZK) in Germany is pursuing active research on the entire spectrum of safety evaluation for efficient hydrogen management in case of the postulated design basis and beyond the design basis severe accidents for nuclear and non-nuclear applications. This report concentrates on the consequence analysis of hydrogen combustion accidents with emphasis on the structural safety assessment. The transient finite element simulation results obtained for 2gm, 4gm, 8gm and 16gm hydrogen combustion experiments concluded recently on the test-cell structure are described. The frequencies and damping of the test-cell observed during the hammer tests and the combustion experiments are used for the present three dimensional finite element model qualification. For the numerical transient dynamic evaluation of the test-cell structure, the pressure time history data computed with CFD code COM-3D is used for the four combustion experiments. Detail comparisons of the present numerical results for the four combustion experiments with the observed time signals are carried out to evaluate the structural connection behavior. For all the combustion experiments excellent agreement is noted for the computed accelerations and displacements at the standard transducer locations, where the measurements were made during the different combustion tests. In addition inelastic analysis is also presented for the test-cell structure to evaluate the limiting impulsive and quasi-static pressure loads. These results are used to evaluate the response of the test cell structure for the postulated over pressurization of the test-cell due to the blast load generated in case of 64 gm hydrogen ignition for which additional sets of computations were

  6. Hydrogen and helium trapping in tungsten deposition layers formed by RF plasma sputtering

    International Nuclear Information System (INIS)

    Kazunari Katayama; Kazumi Imaoka; Takayuki Okamura; Masabumi Nishikawa

    2006-01-01

    Understanding of tritium behavior in plasma facing materials is an important issue for fusion reactor from viewpoints of fuel control and radiation safety. Tungsten is used as a plasma facing material in the divertor region of ITER. However, investigation of hydrogen isotope behavior in tungsten deposition layer is not sufficient so far. It is also necessary to evaluate an effect of helium on a formation of deposition layer and an accumulation of hydrogen isotopes because helium generated by fusion reaction exists in fusion plasma. In this study, tungsten deposition layers were formed by sputtering method using hydrogen and helium RF plasma. An erosion rate and a deposition rate of tungsten were estimated by weight measurement. Hydrogen and helium retention were investigated by thermal desorption method. Tungsten deposition was performed using a capacitively-coupled RF plasma device equipped with parallel-plate electrodes. A tungsten target was mounted on one electrode which is supplied with RF power at 200 W. Tungsten substrates were mounted on the other electrode which is at ground potential. The plasma discharge was continued for 120 hours where pressure of hydrogen or helium was controlled to be 10 Pa. The amounts of hydrogen and helium released from deposition layers was quantified by a gas chromatograph. The erosion rate of target tungsten under helium plasma was estimated to be 1.8 times larger than that under hydrogen plasma. The deposition rate on tungsten substrate under helium plasma was estimated to be 4.1 times larger than that under hydrogen plasma. Atomic ratio of hydrogen to tungsten in a deposition layer formed by hydrogen plasma was estimated to be 0.17 by heating to 600 o C. From a deposition layer formed by helium plasma, not only helium but also hydrogen was released by heating to 500 o C. Atomic ratios of helium and hydrogen to tungsten were estimated to be 0.080 and 0.075, respectively. The trapped hydrogen is probably impurity hydrogen

  7. Environmental concern and cooperative-competitive behavior in a simulated commons dilemma.

    Science.gov (United States)

    Smith, J M; Bell, P A

    1992-08-01

    Commons-dilemma simulation games are designed to examine behavior associated with preservation and destruction of slowly regenerating natural resources. In Experiment 1, 120 introductory psychology students in the United States were assigned to high- or low-environmental-concern conditions based on a median split of their scores from a pretest. They then played either a points game, in which they selected numerical points from a slowly regenerating pool, or a tree game, in which they harvested trees from a jointly managed forest. After the game, subjects were asked to sign a petition for an environmental cause, to participate in a litter pick-up, and to participate in a recycling drive. Neither environmental concern nor proenvironmental behaviors were related to commons dilemma performance. In Experiment 2, 57 other introductory psychology students were assessed on environmental concern and Machiavellian personality, size of other players' harvesting choices, and other players' altruistic choices, all correlated with subjects' outcomes in the game. Overall, cooperation and competition were more important than environmental concern in predicting behavior in the commons dilemma simulation game.

  8. Hydrogen sensor

    Science.gov (United States)

    Duan, Yixiang; Jia, Quanxi; Cao, Wenqing

    2010-11-23

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  9. Magnetism of Ta dichalcogenide monolayers tuned by strain and hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Manchanda, Priyanka; Sellmyer, D. J.; Skomski, Ralph [Department of Physics and Astronomy and Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588 (United States); Sharma, Vinit [Department of Materials Science and Engineering and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269 (United States); Yu, Hongbin [School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, Arizona 85287 (United States)

    2015-07-20

    The effects of strain and hydrogenation on the electronic, magnetic, and optical properties of monolayers of Ta based dichalcogenides (TaX{sub 2}; X = S, Se, and Te) are investigated using density-functional theory. We predict a complex scenario of strain-dependent magnetic phase transitions involving paramagnetic, ferromagnetic, and modulated antiferromagnetic states. Covering one of the two chalcogenide surfaces with hydrogen switches the antiferromagnetic/nonmagnetic TaX{sub 2} monolayers to a semiconductor, and the optical behavior strongly depends on strain and hydrogenation. Our research opens pathways towards the manipulation of magnetic as well as optical properties for future spintronics and optoelectronics applications.

  10. Density functional theory for hydrogen storage materials: successes and opportunities

    International Nuclear Information System (INIS)

    Hector, L G Jr; Herbst, J F

    2008-01-01

    Solid state systems for hydrogen storage continue to be the focus of considerable international research, driven to a large extent by technological demands, especially for mobile applications. Density functional theory (DFT) has become a valuable tool in this effort. It has greatly expanded our understanding of the properties of known hydrides, including electronic structure, hydrogen bonding character, enthalpy of formation, elastic behavior, and vibrational energetics. Moreover, DFT holds substantial promise for guiding the discovery of new materials. In this paper we discuss, within the context of results from our own work, some successes and a few shortcomings of state-of-the-art DFT as applied to hydrogen storage materials

  11. Effects of hydrogen on fatigue of vanadium and niobium. Annual report

    International Nuclear Information System (INIS)

    Stoloff, N.S.; Chung, D.W.

    1977-01-01

    The fatigue behavior of unalloyed vanadium and niobium as well as their alloys with hydrogen is described. The response of vanadium-hydrogen alloys to cyclic loading is shown to depend markedly upon the presence or absence of notches, the hydrogen level, method of test, and frequency. In general, hydrides improve high cycle life of unnotched alloys, but are detrimental in the presence of a notch. Low test frequencies also lead to reduced fatigue lives. Stress-assisted hydride growth in previously hydrided alloys has been noted both in fatigue and in delayed failure experiments. Unalloyed vanadium and solid solution vanadium-hydrogen alloys do not undergo delayed failure. Preliminary tests on unalloyed niobium and several niobium-vanadium alloys reveal improvements in stress-controlled fatigue life and decreased low cycle life, in agreement with previous observations on vanadium-hydrogen alloys

  12. Hydrogen-induced amorphization of SmFe{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Kubis, M.; Handstein, A.; Gebel, B.; Gutfleisch, O.; Mueller, K.-H.; Schultz, L. [Institut fuer Festkoerper- und Werkstofforschung Dresden e.V. (Germany). Inst. fuer Metallische Werkstoffe

    2000-07-01

    The hydrogen absorption behavior of SmFe{sub 3} (PuNi{sub 3}-type structure) was observed in the range from 0.05 to 4 MPa by differential scanning calorimetry. The structural changes were observed by X-ray diffraction measurements. For pressures below 0.8 MPa two exothermic reactions were found which are attributed (i) to the interstitial absorption and (ii) to the disproportionation into SmH{sub 2} and {alpha}-Fe. For higher hydrogen pressures, the second exothermic peak occured at significantly lower temperatures and splitted into two peaks. The first one was identified as the exothermic signal of the hydrogen-induced amorphization of the SmFe{sub 3} hydride. The second peak is caused by the precipitation of SmH{sub 2} and {alpha}-Fe from the amorphous material. (orig.)

  13. Plasma-surface interaction in negative hydrogen ion sources

    Science.gov (United States)

    Wada, Motoi

    2018-05-01

    A negative hydrogen ion source delivers more beam current when Cs is introduced to the discharge, but a continuous operation of the source reduces the beam current until more Cs is added to the source. This behavior can be explained by adsorption and ion induced desorption of Cs atoms on the plasma grid surface of the ion source. The interaction between the ion source plasma and the plasma grid surface of a negative hydrogen ion source is discussed in correlation to the Cs consumption of the ion source. The results show that operation with deuterium instead of hydrogen should require more Cs consumption and the presence of medium mass impurities as well as ions of the source wall materials in the arc discharge enlarges the Cs removal rate during an ion source discharge.

  14. Hail hydrogen

    International Nuclear Information System (INIS)

    Hairston, D.

    1996-01-01

    After years of being scorned and maligned, hydrogen is finding favor in environmental and process applications. There is enormous demand for the industrial gas from petroleum refiners, who need in creasing amounts of hydrogen to remove sulfur and other contaminants from crude oil. In pulp and paper mills, hydrogen is turning up as hydrogen peroxide, displacing bleaching agents based on chlorine. Now, new technologies for making hydrogen have the industry abuzz. With better capabilities of being generated onsite at higher purity levels, recycled and reused, hydrogen is being prepped for a range of applications, from waste reduction to purification of Nylon 6 and hydrogenation of specialty chemicals. The paper discusses the strong market demand for hydrogen, easier routes being developed for hydrogen production, and the use of hydrogen in the future

  15. Influence of hydrogen on the oxygen solubility in Zircaloy-4

    Energy Technology Data Exchange (ETDEWEB)

    Guilbert-Banti, Séverine, E-mail: severine.guilbert@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire, SEREX/LE2M, Bâtiment 327, BP3, 13115 Saint Paul lez Durance (France); Lacote, Pauline; Taraud, Gaëlle [Institut de Radioprotection et de Sûreté Nucléaire, SEREX/LE2M, Bâtiment 327, BP3, 13115 Saint Paul lez Durance (France); Berger, Pascal [NIMBE, CEA, CNRS, Université Paris-Saclay, 91191 Gif-sur-Yvette (France); Desquines, Jean; Duriez, Christian [Institut de Radioprotection et de Sûreté Nucléaire, SEREX/LE2M, Bâtiment 327, BP3, 13115 Saint Paul lez Durance (France)

    2016-02-15

    Despite the influence of hydrogen on the behavior of zirconium fuel cladding in many nuclear safety issues, the pseudo-binary Zircaloy-4 – oxygen phase diagram still lacks of data, especially above 1000 °C. The aim of this study was to provide experimental data to better assess the influence of hydrogen on the oxygen solubility in Zircaloy-4. Homogenized two-phase Zircaloy-4 samples were elaborated from 300 to 1000 wppm pre-hydrided samples. Local distributions were characterized thoroughly using Electron Probe Micro-Analysis (EPMA) for oxygen and Elastic Recoil Detection Analysis (ERDA) for hydrogen. The data obtained in this work were included in the pseudo-binary Zircaloy-4 – oxygen phase diagram and have shown that hydrogen has limited influence on the α + β → β transus. Regarding the α → α + β transus, no influence of hydrogen concentration in the α phase below 400 wppm was evidenced.

  16. Prediction of long term crevice corrosion and hydrogen embrittlement behavior of ASTM grade-12 titanium

    International Nuclear Information System (INIS)

    Ahn, T.M.; Jain, H.

    1984-01-01

    Crevice corrosion and hydrogen embrittlement are potential failure modes of Grade-12 titanium high-level nuclear waste containers emplaced in rock salt repositories. A method is presented to estimate the environment domains for which immunity to these failure modes will exist for periods of hundreds of years. The estimation is based on the identification and quantification of mechanisms involved. Macroscopic concentration cell formation is responsible for crevice corrosion. The cell formation is accompanied by oxygen depletion, potential drop, anion accumulation and acidification inside the crevice. This process is quantified by simple mass balance equations which show that the immunity domain is a function of the time the container is exposed to the corrosion environment. Strain induced hydride formation is responsible for hydrogen assisted crack initiation. A simple model for slow crack growth is developed using data on growth rates measured at various temperatures. The parameters obtained in the model are used to estimate the threshold stress intensity and hydrogen solubility limit in the alloy at infinite container service time. This value gives a crack size below which container failure will not occur for a given applied stress and hydrogen concentration, and a hydrogen concentration limit at a given stress intensity. 37 references, 5 figures, 4 tables

  17. Hydrogen storage in binary and ternary Mg-based alloys: A comprehensive experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Kalisvaart, W.P.; Harrower, C.T.; Haagsma, J.; Zahiri, B.; Luber, E.J.; Ophus, C.; Mitlin, D. [Chemical and Materials Engineering, University of Alberta and National Research Council Canada, National Institute for Nanotechnology, T6G 2V4, Edmonton, Alberta (Canada); Poirier, E.; Fritzsche, H. [National Research Council Canada, SIMS, Canadian Neutron Beam Centre, Chalk River Laboratories, Chalk River, Ontario, K0J 1J0 (Canada)

    2010-03-15

    This study focused on hydrogen sorption properties of 1.5 {mu}m thick Mg-based films with Al, Fe and Ti as alloying elements. The binary alloys are used to establish as baseline case for the ternary Mg-Al-Ti, Mg-Fe-Ti and Mg-Al-Fe compositions. We show that the ternary alloys in particular display remarkable sorption behavior: at 200 C the films are capable of absorbing 4-6 wt% hydrogen in seconds, and desorbing in minutes. Furthermore, this sorption behavior is stable over cycling for the Mg-Al-Ti and Mg-Fe-Ti alloys. Even after 100 absorption/desorption cycles, no degradation in capacity or kinetics is observed. For Mg-Al-Fe, the properties are clearly worse compared to the other ternary combinations. These differences are explained by considering the properties of all the different phases present during cycling in terms of their hydrogen affinity and catalytic activity. Based on these considerations, some general design principles for Mg-based hydrogen storage alloys are suggested. (author)

  18. Effects of hydrogen bonds on solid state TATB, RDX, and DATB under high pressures

    International Nuclear Information System (INIS)

    Guo Feng; Hu Hai-Quan; Zhang Hong; Cheng Xin-Lu

    2014-01-01

    To probe the behavior of hydrogen bonds in solid energetic materials, we conduct ReaxFF and SCC–DFTB molecular dynamics simulations of crystalline TATB, RDX, and DATB. By comparing the intra- and inter-molecular hydrogen bonding rates, we find that the crystal structures are stabilized by inter-molecular hydrogen bond networks. Under high-pressure, the inter- and intra-molecular hydrogen bonds in solid TATB and DATB are nearly equivalent. The hydrogen bonds in solid TATB and DATB are much shorter than in solid RDX, which suggests strong hydrogen bond interactions existing in these energetic materials. Stretching of the C–H bond is observed in solid RDX, which may lead to further decomposition and even detonation. (condensed matter: structural, mechanical, and thermal properties)

  19. Hydrogen molecules and hydrogen-related defects in crystalline silicon

    Science.gov (United States)

    Fukata, N.; Sasaki, S.; Murakami, K.; Ishioka, K.; Nakamura, K. G.; Kitajima, M.; Fujimura, S.; Kikuchi, J.; Haneda, H.

    1997-09-01

    We have found that hydrogen exists in molecular form in crystalline silicon treated with hydrogen atoms in the downstream of a hydrogen plasma. The vibrational Raman line of hydrogen molecules is observed at 4158 cm-1 for silicon samples hydrogenated between 180 and 500 °C. The assignment of the Raman line is confirmed by its isotope shift to 2990 cm-1 for silicon treated with deuterium atoms. The Raman intensity has a maximum for hydrogenation at 400 °C. The vibrational Raman line of the hydrogen molecules is broad and asymmetric. It consists of at least two components, possibly arising from hydrogen molecules in different occupation sites in crystalline silicon. The rotational Raman line of hydrogen molecules is observed at 590 cm-1. The Raman band of Si-H stretching is observed for hydrogenation temperatures between 100 and 500 °C and the intensity has a maximum for hydrogenation at 250 °C.

  20. A NEW MODEL FOR THE HELIOSPHERE’S “IBEX RIBBON”

    Energy Technology Data Exchange (ETDEWEB)

    Giacalone, J.; Jokipii, J. R. [Department of Planetary Sciences, University of Arizona, Tucson, AZ (United States)

    2015-10-10

    We present a model for the narrow, ribbon-like enhancement in the emission of ∼keV energetic neutral atoms (ENA) coming from the outer heliosphere, coinciding roughly with the plane of the very local interstellar magnetic field (LISMF). We show that the pre-existing turbulent LISMF has sufficient amplitude in magnitude fluctuations to efficiently trap ions with initial pitch-angles near 90°, primarily by magnetic mirroring, leading to a narrow region of enhanced pickup-proton intensity. The pickup protons interact with cold interstellar hydrogen to produce ENAs seen at 1 AU. The computed width of the resulting ribbon of emission is consistent with observations. We also present results from a numerical model that are also generally consistent with the observations. Our interpretation relies only on the pre-existing turbulent interstellar magnetic field to trap the pickup protons. This leads to a broader local pitch-angle distribution compared to that of a ring. Our numerical model also predicts that the ribbon is double-peaked with a central depression. This is a further consequence of the (primarily) magnetic mirroring of pickup ions with pitch-angles close to 90° in the pre-existing, turbulent interstellar magnetic field.

  1. Influence of hydrogen absorption on magnetic ordering in some zirconium-based Laves phase compounds

    International Nuclear Information System (INIS)

    Fujii, H.; Pourarian, F.; Wallace, W.E.

    1982-01-01

    Magnetization measurements were carried out on several zirconium-based hexagonal Laves phase compounds, i.e. the ZrMnsub(2+delta), (Zr,Ti)Mn 2 , Zr(Mn,Fe) 2 and Zr(Fe,Al) 2 systems and their hydrides. The absorbed hydrogen leads to a large increase (20%-30%) in volume without a change in the crystal structure. ZrMnsub(2+delta) is a weak Pauli paramagnet but becomes a spin glass near-ferromagnet by hydriding, indicating that the manganese moments are subjected to competing ferromagnetic and antiferromagnetic coupling tendencies. In the (Zrsub(1-x)Tisub(x))Mn 2 hydrides, ferromagnetic, spin-glass-like, ferromagnetic and antiferromagnetic behaviors appear at 4.2 K in the sequence of increasing x and/or decrease in hydrogen concentration. In the Zr(Mn,Fe) 2 system, the hydrogen absorption increases both the magnetic moments and the magnetic transition temperatures, while absorbed hydrogen leads to suppression of ferromagnetism in the Zr(Fe,Al) 2 system. These varied and complex magnetic behaviors are attributed to the effects of (1) variations in the interatomic distances, (2) changes in the 3d electron concentration and (3) varying local hydrogen concentrations occurring as a result of statistical fluctuations. (Auth.)

  2. Hydrogen-bonding behavior of various conformations of the HNO3…(CH3OH)2 ternary system.

    Science.gov (United States)

    Özsoy, Hasan; Uras-Aytemiz, Nevin; Balcı, F Mine

    2017-12-21

    Nine minima were found on the intermolecular potential energy surface for the ternary system HNO 3 (CH 3 OH) 2 at the MP2/aug-cc-pVDZ level of theory. The cooperative effect, which is a measure of the hydrogen-bonding strength, was probed in these nine conformations of HNO 3 …(CH 3 OH) 2 . The results are discussed here in terms of structures, energetics, infrared vibrational frequencies, and topological parameters. The cooperative effect was observed to be an important contributor to the total interaction energies of the cyclic conformers of HNO 3 …(CH 3 OH) 2 , meaning that it cannot be neglected in simulations in which the pair-additive potential is applied. Graphical abstract The H-bonding behavior of various conformations of the HNO 3 (CH 3 OH) 2 trimer was investigated.

  3. Hydrogen concentration control utilizing a hydrogen permeable membrane

    International Nuclear Information System (INIS)

    Keating, S.J. Jr.

    1976-01-01

    The concentration of hydrogen in a fluid mixture is controlled to a desired concentration by flowing the fluid through one chamber of a diffusion cell separated into two chambers by a hydrogen permeable membrane. A gradient of hydrogen partial pressure is maintained across the membrane to cause diffusion of hydrogen through the membrane to maintain the concentration of hydrogen in the fluid mixture at the predetermined level. The invention has particular utility for the purpose of injecting into and/or separating hydrogen from the reactor coolant of a nuclear reactor system

  4. A Mutualism Quantum Genetic Algorithm to Optimize the Flow Shop Scheduling with Pickup and Delivery Considerations

    Directory of Open Access Journals (Sweden)

    Jinwei Gu

    2015-01-01

    Full Text Available A mutualism quantum genetic algorithm (MQGA is proposed for an integrated supply chain scheduling with the materials pickup, flow shop scheduling, and the finished products delivery. The objective is to minimize the makespan, that is, the arrival time of the last finished product to the customer. In MQGA, a new symbiosis strategy named mutualism is proposed to adjust the size of each population dynamically by regarding the mutual influence relation of the two subpopulations. A hybrid Q-bit coding method and a local speeding-up method are designed to increase the diversity of genes, and a checking routine is carried out to ensure the feasibility of each solution; that is, the total physical space of each delivery batch could not exceed the capacity of the vehicle. Compared with the modified genetic algorithm (MGA and the quantum-inspired genetic algorithm (QGA, the effectiveness and efficiency of the MQGA are validated by numerical experiments.

  5. Hydrogen abstraction reactions by amide electron adducts

    International Nuclear Information System (INIS)

    Sevilla, M.D.; Sevilla, C.L.; Swarts, S.

    1982-01-01

    Electron reactions with a number of peptide model compounds (amides and N-acetylamino acids) in aqueous glasses at low temperature have been investigated using ESR spectroscopy. The radicals produced by electron attachment to amides, RC(OD)NDR', are found to act as hydrogen abstracting agents. For example, the propionamide electron adduct is found to abstract from its parent propionamide. Electron adducts of other amides investigated show similar behavior except for acetamide electron adduct which does not abstract from its parent compound, but does abstract from other amides. The tendency toward abstraction for amide electron adducts are compared to electron adducts of several carboxylic acids, ketones, aldehydes and esters. The comparison suggests the hydrogen abstraction tendency of the various deuterated electron adducts (DEAs) to be in the following order: aldehyde DEA > acid DEA = approximately ester DEA > ketone DEA > amide DEA. In basic glasses the hydrogen abstraction ability of the amide electron adducts is maintained until the concentration of base is increased sufficiently to convert the DEA to its anionic form, RC(O - )ND 2 . In this form the hydrogen abstracting ability of the radical is greatly diminished. Similar results were found for the ester and carboxylic acid DEA's tested. (author)

  6. Effects of hydrogen burning and associated engineered safety features on containment building response

    International Nuclear Information System (INIS)

    Iyer, S.S.; Deem, R.E.

    1982-01-01

    It is established that large amounts of hydrogen can be generated during degraded core events. The burning of this hydrogen can produce resulting loads which may represent a serious challenge to containment integrity. This paper presents some perspectives on hydrogen behavior during various degraded core events for a large dry containment. The analysis addresses the hydrogen transport and its subsequent diffusion once released to the containment. Since the distribution of hydrogen in the containment depends on the rate of release and various driving forces, the effects from various subsystems (i.e. fan coolers, sprays, heat structures, etc.) are examined to determine the sensitivity of each effect on the overall containment response. The sensitivity of results due to subcompartmentalization of the containment is also examined. Effects from localized hydrogen pocketing and burning will be addressed with emphasis on its relative impact on containment integrity

  7. Microscopic dynamics and relaxation processes in liquid hydrogen fluoride

    International Nuclear Information System (INIS)

    Angelini, R.; Giura, P.; Monaco, G.; Sette, F.; Fioretto, D.; Ruocco, G.

    2004-01-01

    Inelastic x-ray scattering and Brillouin light scattering measurements of the dynamic structure factor of liquid hydrogen fluoride have been performed in the temperature range T=214-283 K. The data, analyzed using a viscoelastic model with a two time-scale memory function, show a positive dispersion of the sound velocity c(Q) between the low frequency value c 0 (Q) and the high frequency value c ∞α (Q). This finding confirms the existence of a structural (α) relaxation directly related to the dynamical organization of the hydrogen bonds network of the system. The activation energy E a of the process has been extracted by the analysis of the temperature behavior of the relaxation time τ α (T) that follows an Arrhenius law. The obtained value for E a , when compared with that observed in another hydrogen bond liquid as water, suggests that the main parameter governing the α-relaxation process is the number of hydrogen bonds per molecule

  8. Effect of solvent on proton location and dynamic behavior in short intramolecular hydrogen bonds studied by molecular dynamics simulations and NMR experiments

    International Nuclear Information System (INIS)

    Mori, Yukie; Masuda, Yuichi

    2015-01-01

    Highlights: • MD simulations were performed to study dynamics of strong hydrogen bonds. • Nuclear magnetic relaxation times of proton were measured in solution. • The hydrogen bond of dibenzoylmethane enol is asymmetric in methanol solution. • Formation or breakage of intermolecular hydrogen bonds can trigger proton transfer. • Dimethylsulfoxide may form a bifurcated hydrogen bond with a hydrogen-bonded system. - Abstract: Hydrogen phthalate anion has a short strong O–H–O hydrogen bond (H-bond). According to previous experimental studies, the H-bond is asymmetric and two tautomers are interconverted in aqueous solutions. In the present study, the effects of polar solvents on the H-bond in a zwitterionic hydrogen phthalate derivative 1 were investigated by quantum mechanics/molecular mechanics molecular dynamics (MD) simulations. The analyses of the trajectories for the methanol solution showed that the H-bonding proton tends to be located closer to the carboxylate group that forms fewer intermolecular H-bonds, than to the other carboxylate group and that the intramolecular proton transfer in 1 is triggered by the breakage and/or formation of an intermolecular H-bond. The enol form of dibenzoylmethane (2) also has a short H-bond, and the OH bond is reported to be rather long (>1.1 Å) in the crystal. In the present study, the effects of the solvent on the H-bond in 2 were investigated by molecular orbital (MO) calculations, MD simulations and nuclear magnetic resonance (NMR) spectroscopy. Density functional theory (DFT) calculations for 2 in vacuum indicated that the barrier height for the intramolecular proton transfer is almost the same as the zero-point energy of the vibrational ground state, resulting in broad distribution of the proton density along the H-bond, owing to the nuclear quantum effect. The OH distances were determined in CCl 4 , acetonitrile, and dimethylsulfoxide solutions from the magnetic dipolar interactions between the 17 O and 1

  9. Effect of solvent on proton location and dynamic behavior in short intramolecular hydrogen bonds studied by molecular dynamics simulations and NMR experiments

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Yukie, E-mail: mori.yukie@ocha.ac.jp; Masuda, Yuichi

    2015-09-08

    Highlights: • MD simulations were performed to study dynamics of strong hydrogen bonds. • Nuclear magnetic relaxation times of proton were measured in solution. • The hydrogen bond of dibenzoylmethane enol is asymmetric in methanol solution. • Formation or breakage of intermolecular hydrogen bonds can trigger proton transfer. • Dimethylsulfoxide may form a bifurcated hydrogen bond with a hydrogen-bonded system. - Abstract: Hydrogen phthalate anion has a short strong O–H–O hydrogen bond (H-bond). According to previous experimental studies, the H-bond is asymmetric and two tautomers are interconverted in aqueous solutions. In the present study, the effects of polar solvents on the H-bond in a zwitterionic hydrogen phthalate derivative 1 were investigated by quantum mechanics/molecular mechanics molecular dynamics (MD) simulations. The analyses of the trajectories for the methanol solution showed that the H-bonding proton tends to be located closer to the carboxylate group that forms fewer intermolecular H-bonds, than to the other carboxylate group and that the intramolecular proton transfer in 1 is triggered by the breakage and/or formation of an intermolecular H-bond. The enol form of dibenzoylmethane (2) also has a short H-bond, and the OH bond is reported to be rather long (>1.1 Å) in the crystal. In the present study, the effects of the solvent on the H-bond in 2 were investigated by molecular orbital (MO) calculations, MD simulations and nuclear magnetic resonance (NMR) spectroscopy. Density functional theory (DFT) calculations for 2 in vacuum indicated that the barrier height for the intramolecular proton transfer is almost the same as the zero-point energy of the vibrational ground state, resulting in broad distribution of the proton density along the H-bond, owing to the nuclear quantum effect. The OH distances were determined in CCl{sub 4}, acetonitrile, and dimethylsulfoxide solutions from the magnetic dipolar interactions between the {sup 17

  10. Hydrogen absorption in Ce{sub x}Gd{sub 1-x} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Bereznitsky, M. [Department of Nuclear Engineering, Ben Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105 (Israel); Bloch, J. [Nuclear Research Center-Negev, P.O. Box 9001, Beer Sheva 84190 (Israel); Yonovich, M. [Department of Nuclear Engineering, Ben Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105 (Israel); Schweke, D. [Nuclear Research Center-Negev, P.O. Box 9001, Beer Sheva 84190 (Israel); Mintz, M.H. [Department of Nuclear Engineering, Ben Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105 (Israel); Nuclear Research Center-Negev, P.O. Box 9001, Beer Sheva 84190 (Israel); Jacob, I., E-mail: izi@bgu.ac.il [Department of Nuclear Engineering, Ben Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105 (Israel)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Ce{sub x}Gd{sub 1-x} alloys exhibit the most negative heats of hydride formation ever found. Black-Right-Pointing-Pointer Thermodynamics of H absorption in Ce{sub x}Gd{sub 1-x} correlates with the alloys hardness. Black-Right-Pointing-Pointer The entropies of H solution and hydride formation reflect the hydrogen vibrations. Black-Right-Pointing-Pointer Terminal hydrogen solubilities change in a monotonic way between Ce and Gd. - Abstract: The effect of alloying on the thermodynamics of hydrogen absorption was studied for Ce{sub x}Gd{sub 1-x} alloys (0 {<=} x {<=} 1) at temperatures between 850 K and 1050 K in the 1-10{sup -4} Torr pressure range. The temperature-dependent hydrogen solubilities and plateau pressures for hydride formation were obtained from hydrogen absorption isotherms. The terminal hydrogen solubility (THS) at a given temperature changes in a monotonic way as a function of x. It is approximately three times higher in Gd, than in Ce, throughout the investigated temperature range. This monotonic behavior is opposed to that of many other substitutional alloys, for which the hydrogen terminal solubility increases with increasing solute concentrations. The enthalpies, {Delta}H{sub f}, and the entropies, {Delta}S{sub f}, of the dihydride formation exhibit a pronounced and broad negative minimum starting at x Almost-Equal-To 0.15, yielding the most negative {Delta}H{sub f} values ever found for metal hydrides. On the other hand, the enthalpies and entropies of ideal solution display a positive trend at x = 0.15 and x = 0.3. Both behaviors are considered in view of a reported distinct variation of the Ce{sub x}Gd{sub 1-x} hardness as a function of x. The particular compositional variations of the entropies of solution and formation as a function of x reflect most likely the vibrational properties of the hydrogen atoms in the metal matrices.

  11. Diversity of hydrogen configuration and its roles in SrTiO3−δ

    Directory of Open Access Journals (Sweden)

    Yoshiki Iwazaki

    2014-01-01

    Full Text Available As a source of carrier electron, various configurations of hydrogen in SrTiO3 are searched by using first-principles calculations. The most stable form of hydrogen is found to be H−, where doubly charged oxygen vacancy VO2+ changes into singly charged HO+. Most importantly, an additional H− is found to be weakly trapped by HO+, which completely neutralizes carrier electrons by forming (2HO0. These unexpected behaviors of hydrogen, which can explain reported experimental results, expand the role of the hydrogen in carrier-control technology in transition-metal oxides.

  12. Model based optimization of driver-pickup separation for eddy current measurement of gap

    Science.gov (United States)

    Klein, G.; Morelli, J.; Krause, T. W.

    2018-04-01

    The fuel channels in CANDU® (CANada Deuterium Uranium) nuclear reactors consist of a pressure tube (PT) contained within a larger diameter calandria tube (CT). The separation between the tubes, known as the PT-CT gap, ensures PT hydride blisters, which could lead to potential cracking of the PT, do not develop. Therefore, accurate measurements are required to confirm that contact between PT and CT is not imminent. Gap measurement uses an eddy current probe. However this probe is sensitive to lift-off variations, which can adversely affect estimated gap. A validated analytical flat plate model of eddy current response to gap was used to examine the effect of driver-pickup spacing on lift-off and response to gap at a frequency of 4 kHz, which is used for in-reactor measurements. This model was compared against, and shown to have good agreement with, a COMSOL® finite element method (FEM) model. The optimum coil separation, which included the constraint of coil size, was found to be 11 mm, resulting in a phase response between lift-off and response to change in gap of 66°. This work demonstrates the advantages of using analytical models for optimizing coil designs for measurement of parameters that may negatively influence the outcome of an inspection measurement.

  13. INTERSTELLAR PICK-UP IONS OBSERVED BETWEEN 11 AND 22 AU BY NEW HORIZONS

    International Nuclear Information System (INIS)

    Randol, B. M.; McComas, D. J.; Schwadron, N. A.

    2013-01-01

    We report new observations by the Solar Wind Around Pluto instrument on the New Horizons spacecraft, which measures energy per charge (E/q) spectra of solar wind and interstellar pick-up ions (PUIs) between 11 AU and 22 AU from the Sun. The data provide an unprecedented look at PUIs as there have been very few measurements of PUIs beyond 10 AU. We analyzed the PUI part of the spectra by comparing them to the classic Vasyliunas and Siscoe PUI model. Our analysis indicates that PUIs are usually well-described by this distribution. We derive parameters relevant to PUI studies, such as the ionization rate normalized to 1 AU. Our result for the average ionization rate between 11 and 12 AU agrees with an independently derived average value found during the same time. Later, we find a general increase in the ionization rate, which is consistent with the increase in solar activity. We also calculate the PUI thermal pressure, which appears to be roughly consistent with previous results. Through fitting of the solar wind proton peaks in our spectra, we derive solar wind thermal pressures. Based on our analysis, we predict a ratio of PUI thermal pressure to solar wind thermal pressure just inside the termination shock to be between 100 and >1000.

  14. Visualization of hydrogen gas evolution during deformation and fracture in SCM 440 steel with different tempering conditions

    International Nuclear Information System (INIS)

    Horikawa, Keitaro; Ando, Nobuaki; Kobayashi, Hidetoshi; Urushihara, Wataru

    2012-01-01

    Highlights: ► We visualize emission sites of hydrogen atoms on the microstructures during deformation. ► Hydrogen atoms are emitted from slip lines and inclusions when deformed. ► We show the sequence of hydrogen gas evolution during deformation. ► Hydrogen evolution amount will increase if the steels with high strength are tested. - Abstract: In the present study, the hydrogen gas evolution behavior was investigated in SCM 440 steel by using a hydrogen microprint technique (HMT) and a testing machine equipped with a quadrupole mass spectrometer (QMS) in a ultrahigh vacuum (UHV) atmosphere. SCM 440 steels prepared by varying the tempering temperature over the range 200–700 °C were evaluated in order to elucidate the relationship between the hydrogen gas evolution and the tempered microstructures in the deformation. Cathodic hydrogen charging was carried out with a current density of 100 A/m 2 for 1 h at room temperature. For comparison, a tensile specimen was prepared without hydrogen charging. The HMT showed that silver particles, which are indicative of the hydrogen emission sites, were present mainly in the matrix as well as on the slip lines after the deformation. It is believed that the silver particles on the slip lines represent the effect of hydrogen transportation due to mobile dislocations. In addition, accumulation of silver particles around non-metallic inclusions such as Al 2 O 3 was also identified. This tendency was observed for different tempering conditions. From the relationship between the stress–strain curves and the hydrogen evolution, determined by using QMS under a UHV atmosphere, it was found that the hydrogen gas evolution behavior varied with the deformation stage.

  15. Hydrogen safety

    International Nuclear Information System (INIS)

    Frazier, W.R.

    1991-01-01

    The NASA experience with hydrogen began in the 1950s when the National Advisory Committee on Aeronautics (NACA) research on rocket fuels was inherited by the newly formed National Aeronautics and Space Administration (NASA). Initial emphasis on the use of hydrogen as a fuel for high-altitude probes, satellites, and aircraft limited the available data on hydrogen hazards to small quantities of hydrogen. NASA began to use hydrogen as the principal liquid propellant for launch vehicles and quickly determined the need for hydrogen safety documentation to support design and operational requirements. The resulting NASA approach to hydrogen safety requires a joint effort by design and safety engineering to address hydrogen hazards and develop procedures for safe operation of equipment and facilities. NASA also determined the need for rigorous training and certification programs for personnel involved with hydrogen use. NASA's current use of hydrogen is mainly for large heavy-lift vehicle propulsion, which necessitates storage of large quantities for fueling space shots and for testing. Future use will involve new applications such as thermal imaging

  16. Mutual Effects of Hydrogenation and Deformation in Ti-Nb Alloys

    National Research Council Canada - National Science Library

    Zander, D

    2002-01-01

    ...), transmission electron microscopy (TEM), thermal desorption spectroscopy (TDS), and microhardness tests, the influence of hydrogen at high fugacities on the phase stability, desorption behavior, and microhardness in Ti-Nb (20 to 45 wt pct Nb...

  17. Hydrogenated Graphene Nanoflakes: Semiconductor to Half-Metal Transition and Remarkable Large Magnetism

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yungang; Wang, Zhiguo; Yang, Ping; Sun, Xin; Zu, Xiaotao; Gao, Fei

    2012-03-08

    The electronic and magnetic properties of graphene nanoflakes (GNFs) can be tuned by patterned adsorption of hydrogen. Controlling the H coverage from bare GNFs to half hydrogenated and then to fully hydrogenated GNFs, the transformation of small-gap semiconductor {yields} half-metal {yields} wide-gap semiconductor occurs, accompanied by a magnetic {yields} magnetic {yields} nonmagnetic transfer and a nonmagnetic {yields} magnetic {yields} nonmagnetic transfer for triangular and hexagonal nanoflakes, respectively. The half hydrogenated GNFs, associated with strong spin polarization around the Fermi level, exhibit the unexpected large spin moment that is scaled squarely with the size of flakes. The induced spin magnetizations of these nanoflakes align parallel and lead to a substantial collective character, enabling the half hydrogenated GNFs to be spin-filtering flakes. These hydrogenation-dependent behaviors are then used to realize an attractive approach to engineer the transport properties, which provides a new route to facilitate the design of tunable spin devices.

  18. Acoustic emission monitoring of activation behavior of LaNi5 hydrogen storage alloy

    Directory of Open Access Journals (Sweden)

    Igor Maria De Rosa, Alessandro Dell'Era, Mauro Pasquali, Carlo Santulli and Fabrizio Sarasini

    2011-01-01

    Full Text Available The acoustic emission technique is proposed for assessing the irreversible phenomena occurring during hydrogen absorption/desorption cycling in LaNi5. In particular, we have studied, through a parametric analysis of in situ detected signals, the correlation between acoustic emission (AE parameters and the processes occurring during the activation of an intermetallic compound. Decreases in the number and amplitude of AE signals suggest that pulverization due to hydrogen loading involves progressively smaller volumes of material as the number of cycles increases. This conclusion is confirmed by electron microscopy observations and particle size distribution measurements.

  19. Hydrogen isotope effect through Pd in hydrogen transport pipe

    International Nuclear Information System (INIS)

    Tamaki, Masayoshi

    1992-01-01

    This investigation concerns hydrogen system with hydrogen transport pipes for transportation, purification, isotope separation and storage of hydrogen and its isotopes. A principle of the hydrogen transport pipe (heat pipe having hydrogen transport function) was proposed. It is comprised of the heat pipe and palladium alloy tubes as inlet, outlet, and the separation membrane of hydrogen. The operation was as follows: (1) gas was introduced into the heat pipe through the membrane in the evaporator; (2) the introduced gas was transported toward the condenser by the vapor flow; (3) the transported gas was swept and compressed to the end of the condenser by the vapor pressure; and (4) the compressed gas was exhausted from the heat pipe through the membrane in the condenser. The characteristics of the hydrogen transport pipe were examined for various working conditions. Basic performance concerning transportation, evacuation and compression was experimentally verified. Isotopic dihydrogen gases (H 2 and D 2 ) were used as feed gas for examining the intrinsic performance of the isotope separation by the hydrogen transport pipe. A simulated experiment for hydrogen isotope separation was carried out using a hydrogen-helium gas mixture. The hydrogen transport pipe has a potential for isotope separation and purification of hydrogen, deuterium and tritium in fusion reactor technology. (author)

  20. Design of a PC Based Pressure Indicator Using Inductive Pick-up Type Transducer and Bourdon Tube Sensor

    Directory of Open Access Journals (Sweden)

    S. C. BERA

    2009-08-01

    Full Text Available Bourdon tube is a mechanical type pressure sensor and the bourdon gauge measures gauge pressure of a process pipe line or a process tank. But it is a local indicator and special costlier techniques are required to transmit the reading of bourdon gauge to a remote distance. In the present paper, a very simple inductive pick-up type technique has been developed to transmit the reading of bourdon gauge to a remote distance in the form of 1-5 Volt D.C. signal. This signal has been optically isolated to design a PC based pressure indicator using Labtech Note Book Pro software. The theoretical analysis of the whole technique has been presented in the paper. The instrument developed using this technique has been experimentally tested and the experimental results are reported in the paper. A good linearity and repeatability of the instrument has been observed.

  1. Which hydrogen atom of toluene protonates PAH molecules in (+)-mode APPI MS analysis?

    Science.gov (United States)

    Ahmed, Arif; Ghosh, Manik Kumer; Choi, Myung Chul; Choi, Cheol Ho; Kim, Sunghwan

    2013-03-01

    A previous study (Ahmed, A. et al., Anal. Chem. 84, 1146-1151( 2012) reported that toluene used as a solvent was the proton source for polyaromatic hydrocarbon compounds (PAHs) that were subjected to (+)-mode atmospheric-pressure photoionization. In the current study, the exact position of the hydrogen atom in the toluene molecule (either a methyl hydrogen or an aromatic ring hydrogen) involved in the formation of protonated PAH ions was investigated. Experimental analyses of benzene and anisole demonstrated that although the aromatic hydrogen atom of toluene did not contribute to the formation of protonated anthracene, it did contribute to the formation of protonated acridine. Thermochemical data and quantum mechanical calculations showed that the protonation of anthracene by an aromatic ring hydrogen atom of toluene is endothermic, while protonation by a methyl hydrogen atom is exothermic. However, protonation of acridine by either an aromatic ring hydrogen or a methyl hydrogen atom of toluene is exothermic. The different behavior of acridine and anthracene was attributed to differences in gas-phase basicity. It was concluded that both types of hydrogen in toluene can be used for protonation of PAH compounds, but a methyl hydrogen atom is preferred, especially for non-basic compounds.

  2. Advanced materials for solid state hydrogen storage: “Thermal engineering issues”

    International Nuclear Information System (INIS)

    Srinivasa Murthy, S.; Anil Kumar, E.

    2014-01-01

    Hydrogen has been widely recognized as the “Energy Carrier” of the future. Efficient, reliable, economical and safe storage and delivery of hydrogen form important aspects in achieving success of the “Hydrogen Economy”. Gravimetric and volumetric storage capacities become important when one considers portable and mobile applications of hydrogen. In the case of solid state hydrogen storage, the gas is reversibly embedded (by physisorption and/or chemisorption) in a solid matrix. A wide variety of materials such as intermetallics, physisorbents, complex hydrides/alanates, metal organic frameworks, etc. have been investigated as possible storage media. This paper discusses the feasibility of lithium– and sodium–aluminum hydrides with emphasis on their thermodynamic and thermo-physical properties. Drawbacks such as poor heat transfer characteristics and poor kinetics demand special attention to the thermal design of solid state storage devices. - Highlights: • Advanced materials suitable for solid state hydrogen storage are discussed. • Issues related to thermodynamic and thermo-physical properties of hydriding materials are brought out. • Hydriding and dehydriding behavior including sorption kinetics of complex hydrides with emphasis on alanates are explained

  3. KINETIC BEHAVIOR IN THE HYDROGENATION OF FURFURAL OVER IR CATALYSTS SUPPORTED ON TIO2

    OpenAIRE

    ROJAS, HUGO; MARTÍNEZ, JOSÉ J.; REYES, PATRICIO

    2010-01-01

    The kinetics of the liquid-phase hydrogenation of furfuraldehyde to furfuryl alcohol over Ir catalysts supported over TiO2 was studied in the temperature range of 323 to 373 K. The effect of furfural concentration, hydrogen pressure and the solvent effect were also studied. A high selectivity towards furfuryl alcohol was demonstrated. Initial rates describes the order global of the reaction. The experimental data could also be explained using the Langmuir-Hinshelwood model with of a single-si...

  4. A Study on the Small Punch Test for Fracture Strength Evaluation of CANDU Pressure Tube Embrittled by Hydrogen

    International Nuclear Information System (INIS)

    Nho, Seung Hwan; Ong, Jang Woo; Yu, Hyo Sun; Chung, Se Hi

    1996-01-01

    The purpose of this study is to investigate the usefulness of small punch(SP) test using miniaturized specimens as a method for fracture strength evaluation of CANDU pressure tube embrittled by hydrogen. According to the test results, the fracture strength evaluation as a function of hydrogen concentration at -196 .deg. C was much better than that at room temperature, as the difference of SP fracture energy(Esp) with hydrogen concentration was more significant at -196 .deg. C than at room temperature for the hydrogen concentration up to 300ppm-H. It was also observed that the peak of average AE energy, the cumulative average AE energy and the cumulative average AE energy per equivalent fracture, strain increased with the increase of hydrogen concentration. From the results of load-displacement behaviors, Esp behaviors, macro- and micro-SEM fractographs and AE test it has been concluded that the SP test method using miniaturized specimen(10mmx10mmx0.5mm) will be a useful test method to evaluate the fracture strength for CANDU pressure tube embrittled by hydrogen

  5. Interaction of hydrogen in carbon matrix with impurities of nickel

    International Nuclear Information System (INIS)

    Gervasoni, L L; Segui, S

    2012-01-01

    This work aims to define general criteria to allow theoretical and experimental design of new materials with high hydrogen content, with a view to their potential application as moderators in reactors at high temperatures and hydrogen storage materials. To this end we study the effects of Ni impurities on the properties of pure carbon (slabs as well as nanoparticles and gels) in order to analyze the thermodynamical characteristics, and improve the behavior of alloys for Ni-metal hydride rechargeable batteries. These elements are chosen because they have a wide range of solubility of hydrogen, which from the technological point of view makes them important candidates for the search for new materials. Our results show that this kind of carbon material could be used as support for hydrogen storage improving the screening charge density and the density of available states, as analyzed by the authors in previous works (author)

  6. Improved synthesis and hydrogen storage of a microporous metal-organic framework material

    International Nuclear Information System (INIS)

    Cheng Shaojuan; Liu Shaobing; Zhao Qiang; Li Jinping

    2009-01-01

    A microporous metal-organic framework MOF-5 [Zn 4 O(BDC) 3 , BDC = 1,4-benzenedicarboxylic] was synthesized with and without H 2 O 2 by improved methods based on the previous studies. The obtained materials were characterized by X-ray diffraction, scanning electron microscopy and nitrogen adsorption, and their hydrogen storage capacities were measured. The synthesis experiments showed that H 2 O 2 favored the growth of high quality sample, large pore volume and high specific surface area. The measurements of hydrogen storage indicated that the sample with higher specific surface area and large pore volume showed better hydrogen storage behavior than other samples. It was suggested that specific surface area and pore volume influenced the capacity of hydrogen storage for MOF-5 material.

  7. Carbon nanotube materials for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, A.C.; Parilla, P.A.; Jones, K.M.; Riker, G.; Heben, M.J. [National Renewable Energy Lab., Golden, CO (United States)

    1998-08-01

    Carbon single-wall nanotubes (SWNTs) are essentially elongated pores of molecular dimensions and are capable of adsorbing hydrogen at relatively high temperatures and low pressures. This behavior is unique to these materials and indicates that SWNTs are the ideal building block for constructing safe, efficient, and high energy density adsorbents for hydrogen storage applications. In past work the authors developed methods for preparing and opening SWNTs, discovered the unique adsorption properties of these new materials, confirmed that hydrogen is stabilized by physical rather than chemical interactions, measured the strength of interaction to be {approximately} 5 times higher than for adsorption on planar graphite, and performed infrared absorption spectroscopy to determine the chemical nature of the surface terminations before, during, and after oxidation. This year the authors have made significant advances in synthesis and characterization of SWNT materials so that they can now prepare gram quantities of high-purity SWNT samples and measure and control the diameter distribution of the tubes by varying key parameters during synthesis. They have also developed methods which purify nanotubes and cut nanotubes into shorter segments. These capabilities provide a means for opening the tubes which were unreactive to the oxidation methods that successfully opened tubes, and offer a path towards organizing nanotube segments to enable high volumetric hydrogen storage densities. They also performed temperature programmed desorption spectroscopy on high purity carbon nanotube material obtained from collaborator Prof. Patrick Bernier and finished construction of a high precision Seivert`s apparatus which will allow the hydrogen pressure-temperature-composition phase diagrams to be evaluated for SWNT materials.

  8. Time-resolved Shielded-Pickup Measurements and Modeling of Beam Conditioning Effects on Electron Cloud Buildup at CesrTA

    CERN Document Server

    Crittenden, J A; Liu, X; Palmer, M A; Santos, S; Sikora, J P; Kato, S; Calatroni, S; Rumolo, G

    2012-01-01

    The Cornell Electron Storage Ring Test Accelerator program includes investigations into electron cloud buildup in vacuum chambers with various coatings. Two 1.1-mlong sections located symmetrically in the east and west arc regions are equipped with BPM-like pickup detectors shielded against the direct beam-induced signal. They detect cloud electrons migrating through an 18-mm-diameter pattern of 0.76 mm-diameter holes in the top of the chamber. A digitizing oscilloscope is used to record the signals, providing time-resolved information on cloud development. We present new measurements of the effect of beam conditioning on a newly-installed amorphous carbon coated chamber, as well as on an extensively conditioned chamber with a diamond-like carbon coating. The ECLOUD modeling code is used to quantify the sensitivity of these measurements to model parameters, differentiating between photoelectron and secondary-electron production processes.

  9. Hydrogen recombiner development at AECL

    International Nuclear Information System (INIS)

    Dewit, W.A.; Koroll, G.W.; Loesel Sitar, J.; Graham, W.R.C.

    1997-01-01

    pressure of hydrogen. The recombiner also reacts carbon monoxide, in the presence of hydrogen, at approximately the same rate as the hydrogen. The catalyst materials and wet-proofing are unaffected by radiation or high temperatures. Large scale tests confirm self-start behavior and demonstrate strong mixing, irrespective of recombiner placement. (author)

  10. Future hydrogen markets for large-scale hydrogen production systems

    International Nuclear Information System (INIS)

    Forsberg, Charles W.

    2007-01-01

    The cost of delivered hydrogen includes production, storage, and distribution. For equal production costs, large users (>10 6 m 3 /day) will favor high-volume centralized hydrogen production technologies to avoid collection costs for hydrogen from widely distributed sources. Potential hydrogen markets were examined to identify and characterize those markets that will favor large-scale hydrogen production technologies. The two high-volume centralized hydrogen production technologies are nuclear energy and fossil energy with carbon dioxide sequestration. The potential markets for these technologies are: (1) production of liquid fuels (gasoline, diesel and jet) including liquid fuels with no net greenhouse gas emissions and (2) peak electricity production. The development of high-volume centralized hydrogen production technologies requires an understanding of the markets to (1) define hydrogen production requirements (purity, pressure, volumes, need for co-product oxygen, etc.); (2) define and develop technologies to use the hydrogen, and (3) create the industrial partnerships to commercialize such technologies. (author)

  11. Hydrogen embrittlement due to hydrogen-inclusion interactions

    International Nuclear Information System (INIS)

    Yu, H.Y.; Li, J.C.M.

    1976-01-01

    Plastic flow around inclusions creates elastic misfit which attracts hydrogen towards the regions of positive dilatation. Upon decohesion of the inclusion-matrix interface, the excess hydrogen escapes into the void and can produce sufficient pressure to cause void growth by plastic deformation. This mechanism of hydrogen embrittlement can be used to understand the increase of ductility with temperature, the decrease of ductility with hydrogen content, and the increase of ductility with the ultimate strength of the matrix. An examination of the effect of the shape of spheroid inclusion reveals that rods are more susceptible to hydrogen embrittlement than disks. The size of the inclusion is unimportant while the volume fraction of inclusions plays the usual role

  12. Effect of hydrogen on the behavior of metals II - Hydrogen embrittlement of titanium alloy TV13CA - effect of oxygen - comparison with non-alloyed titanium

    International Nuclear Information System (INIS)

    Arditty, Jean-Pierre

    1973-01-01

    The effect of oxygen on the hydrogen embrittlement of non-alloyed titanium and the metastable β titanium alloy, TV13 CA, was studied during dynamic mechanical tests, the concentrations considered varying from 1000 to 5000 ppm (oxygen) and from 0 to 5000 ppm (hydrogen) respectively. TV13 CA alloy has a very high solubility for hydrogen. The establishment of a temperature range and a rate of deformation region in which the embrittlement of the alloy is maximum leads to the conclusion that an embrittlement mechanism occurs involving the dragging and accumulation of hydrogen by dislocations. This is the case for all annealings effected in the medium temperature range, which, by favoring the re-establishment of the stable two-phase α + β state of the alloy, produce hardening. The same is true for oxygen which, in addition to hardening the alloy by the solid solution effect, tends to increase its instability and, in consequence, favors the decomposition of the β phase. Nevertheless oxygen concentrations of up to 1500 ppm contribute to increasing the mechanical resistance without catastrophically reducing the deformation capacity. In the case of non-alloyed titanium, the hardening effect also leads to an increase in E 0.2p c and R, and to a reduction in the deformation capacity. Nevertheless, hydrogen is only very slightly soluble at room temperature and a distribution of the hydride phase linked to the thermal history of the sample predominates. Thus a fine acicular structure obtained from the β phase by quenching, enables an alloy having a good mechanical resistance to be conserved even when large quantities of hydrogen are present; the deformation capacity remains small. On the other hand, when the hydride phase separates the metallic phase into large grains, a very small elongation leads to a breakdown in mechanical resistance. (author) [fr

  13. Hydrogen molecules and hydrogen-related defects in crystalline silicon

    OpenAIRE

    Fukata, N.; Sasak, S.; Murakami, K.; Ishioka, K.; Nakamura, K. G.; Kitajima, M.; Fujimura, S.; Kikuchi, J.; Haneda, H.

    1997-01-01

    We have found that hydrogen exists in molecular form in crystalline silicon treated with hydrogen atoms in the downstream of a hydrogen plasma. The vibrational Raman line of hydrogen molecules is observed at 4158cm-1 for silicon samples hydrogenated between 180 and 500 °C. The assignment of the Raman line is confirmed by its isotope shift to 2990cm-1 for silicon treated with deuterium atoms. The Raman intensity has a maximum for hydrogenation at 400 °C. The vibrational Raman line of the hydro...

  14. Why hydrogen; Pourquoi l'hydrogene?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-02-01

    The energy consumption increase and the associated environmental risks, led to develop new energy sources. The authors present the potentialities of the hydrogen in this context of energy supply safety. They detail the today market and the perspectives, the energy sources for the hydrogen production (fossils, nuclear and renewable), the hydrogen transport, storage, distribution and conversion, the application domains, the associated risks. (A.L.B.)

  15. A cohesive zone model to simulate the hydrogen embrittlement effect on a high-strength steel

    Directory of Open Access Journals (Sweden)

    G. Gobbi

    2016-01-01

    Full Text Available The present work aims to model the fracture mechanical behavior of a high-strength low carbon steel, AISI 4130 operating in hydrogen contaminated environment. The study deals with the development of 2D finite element cohesive zone model (CZM reproducing a toughness test. Along the symmetry plane over the crack path of a C(T specimen a zero thickness layer of cohesive elements are implemented in order to simulate the crack propagation. The main feature of this kind of model is the definition of a traction-separation law (TSL that reproduces the constitutive response of the material inside to the cohesive elements. Starting from a TSL calibrated on hydrogen non-contaminated material, the embrittlement effect is simulated by reducing the cohesive energy according to the total hydrogen content including the lattice sites (NILS and the trapped amount. In this perspective, the proposed model consists of three steps of simulations. First step evaluates the hydrostatic pressure. It drives the initial hydrogen concentration assigned in the second step, a mass diffusion analysis, defining in this way the contribution of hydrogen moving across the interstitial lattice sites. The final stress analysis, allows getting the total hydrogen content, including the trapped amount, and evaluating the new crack initiation and propagation due to the hydrogen presence. The model is implemented in both plane strain and plane stress configurations; results are compared in the discussion. From the analyses, it resulted that hydrogen is located only into lattice sites and not in traps, and that the considered steel experiences a high hydrogen susceptibility. By the proposed procedure, the developed numerical model seems a reliable and quick tool able to estimate the mechanical behavior of steels in presence of hydrogen.

  16. Hydrogen Embrittlement

    Science.gov (United States)

    Woods, Stephen; Lee, Jonathan A.

    2016-01-01

    Hydrogen embrittlement (HE) is a process resulting in a decrease in the fracture toughness or ductility of a metal due to the presence of atomic hydrogen. In addition to pure hydrogen gas as a direct source for the absorption of atomic hydrogen, the damaging effect can manifest itself from other hydrogen-containing gas species such as hydrogen sulfide (H2S), hydrogen chloride (HCl), and hydrogen bromide (HBr) environments. It has been known that H2S environment may result in a much more severe condition of embrittlement than pure hydrogen gas (H2) for certain types of alloys at similar conditions of stress and gas pressure. The reduction of fracture loads can occur at levels well below the yield strength of the material. Hydrogen embrittlement is usually manifest in terms of singular sharp cracks, in contrast to the extensive branching observed for stress corrosion cracking. The initial crack openings and the local deformation associated with crack propagation may be so small that they are difficult to detect except in special nondestructive examinations. Cracks due to HE can grow rapidly with little macroscopic evidence of mechanical deformation in materials that are normally quite ductile. This Technical Memorandum presents a comprehensive review of experimental data for the effects of gaseous Hydrogen Environment Embrittlement (HEE) for several types of metallic materials. Common material screening methods are used to rate the hydrogen degradation of mechanical properties that occur while the material is under an applied stress and exposed to gaseous hydrogen as compared to air or helium, under slow strain rates (SSR) testing. Due to the simplicity and accelerated nature of these tests, the results expressed in terms of HEE index are not intended to necessarily represent true hydrogen service environment for long-term exposure, but rather to provide a practical approach for material screening, which is a useful concept to qualitatively evaluate the severity of

  17. Visualization of hydrogen gas evolution during deformation and fracture in SCM 440 steel with different tempering conditions

    Energy Technology Data Exchange (ETDEWEB)

    Horikawa, Keitaro, E-mail: horikawa@me.es.osaka-u.ac.jp [Department of Mechanical Science and Bioengineering, School of Engineering Science, Osaka University, Toyonaka 560-8531 (Japan); Ando, Nobuaki; Kobayashi, Hidetoshi [Department of Mechanical Science and Bioengineering, School of Engineering Science, Osaka University, Toyonaka 560-8531 (Japan); Urushihara, Wataru [Surface Design and Corrosion Research Section, Materials Research Laboratory, Kobe Steel, Ltd., Kobe 651-2271 (Japan)

    2012-02-01

    Highlights: Black-Right-Pointing-Pointer We visualize emission sites of hydrogen atoms on the microstructures during deformation. Black-Right-Pointing-Pointer Hydrogen atoms are emitted from slip lines and inclusions when deformed. Black-Right-Pointing-Pointer We show the sequence of hydrogen gas evolution during deformation. Black-Right-Pointing-Pointer Hydrogen evolution amount will increase if the steels with high strength are tested. - Abstract: In the present study, the hydrogen gas evolution behavior was investigated in SCM 440 steel by using a hydrogen microprint technique (HMT) and a testing machine equipped with a quadrupole mass spectrometer (QMS) in a ultrahigh vacuum (UHV) atmosphere. SCM 440 steels prepared by varying the tempering temperature over the range 200-700 Degree-Sign C were evaluated in order to elucidate the relationship between the hydrogen gas evolution and the tempered microstructures in the deformation. Cathodic hydrogen charging was carried out with a current density of 100 A/m{sup 2} for 1 h at room temperature. For comparison, a tensile specimen was prepared without hydrogen charging. The HMT showed that silver particles, which are indicative of the hydrogen emission sites, were present mainly in the matrix as well as on the slip lines after the deformation. It is believed that the silver particles on the slip lines represent the effect of hydrogen transportation due to mobile dislocations. In addition, accumulation of silver particles around non-metallic inclusions such as Al{sub 2}O{sub 3} was also identified. This tendency was observed for different tempering conditions. From the relationship between the stress-strain curves and the hydrogen evolution, determined by using QMS under a UHV atmosphere, it was found that the hydrogen gas evolution behavior varied with the deformation stage.

  18. Characterization of hydrogenated amorphous silicon. Some behaviors of hydrogen and impurities studied by film characterization techniques

    Energy Technology Data Exchange (ETDEWEB)

    Imura, Takeshi; Kubota, Kazuyoshi; Ushita, Katsumi; Hiraki, Akio

    1980-06-01

    Rutherford backscattering spectrometry and infrared absorption measurement were applied to determine composition in hydrogenated amorphous silicon fabricated either by glow discharge in SiH/sub 4/ plus H/sub 2/ or by reactive sputtering in Ar containing H/sub 2/ in a tetrode or diode sputtering apparatus. The atomic density of Si, the content and depth distribution of H, and the amount of impurities such as Ar were studied for the films deposited under several conditions of substrate temperature and gas pressure and constitution. Some difference was clarified between glow-discharge and sputter deposited films.

  19. Fuel Cell and Hydrogen Technology Validation | Hydrogen and Fuel Cells |

    Science.gov (United States)

    NREL Fuel Cell and Hydrogen Technology Validation Fuel Cell and Hydrogen Technology Validation The NREL technology validation team works on validating hydrogen fuel cell electric vehicles; hydrogen fueling infrastructure; hydrogen system components; and fuel cell use in early market applications such as

  20. Hydrogen program overview

    Energy Technology Data Exchange (ETDEWEB)

    Gronich, S. [Dept. of Energy, Washington, DC (United States). Office of Utility Technologies

    1997-12-31

    This paper consists of viewgraphs which summarize the following: Hydrogen program structure; Goals for hydrogen production research; Goals for hydrogen storage and utilization research; Technology validation; DOE technology validation activities supporting hydrogen pathways; Near-term opportunities for hydrogen; Market for hydrogen; and List of solicitation awards. It is concluded that a full transition toward a hydrogen economy can begin in the next decade.

  1. The prospects for hydrogen as an energy carrier: an overview of hydrogen energy and hydrogen energy systems

    International Nuclear Information System (INIS)

    Rosen, Marc A.; Koohi-Fayegh, Seama

    2016-01-01

    Hydrogen is expected to play a key role as an energy carrier in future energy systems of the world. As fossil-fuel supplies become scarcer and environmental concerns increase, hydrogen is likely to become an increasingly important chemical energy carrier and eventually may become the principal chemical energy carrier. When most of the world's energy sources become non-fossil based, hydrogen and electricity are expected to be the two dominant energy carriers for the provision of end-use services. In such a ''hydrogen economy,'' the two complementary energy carriers, hydrogen and electricity, are used to satisfy most of the requirements of energy consumers. A transition era will bridge the gap between today's fossil-fuel economy and a hydrogen economy, in which non-fossil-derived hydrogen will be used to extend the lifetime of the world's fossil fuels - by upgrading heavy oils, for instance - and the infrastructure needed to support a hydrogen economy is gradually developed. In this paper, the role of hydrogen as an energy carrier and hydrogen energy systems' technologies and their economics are described. Also, the social and political implications of hydrogen energy are examined, and the questions of when and where hydrogen is likely to become important are addressed. Examples are provided to illustrate key points. (orig.)

  2. Shannon entropy: A study of confined hydrogenic-like atoms

    Science.gov (United States)

    Nascimento, Wallas S.; Prudente, Frederico V.

    2018-01-01

    The Shannon entropy in the atomic, molecular and chemical physics context is presented by using as test cases the hydrogenic-like atoms Hc, Hec+ and Lic2 + confined by an impenetrable spherical box. Novel expressions for entropic uncertainty relation and Shannon entropies Sr and Sp are proposed to ensure their physical dimensionless characteristic. The electronic ground state energy and the quantities Sr,Sp and St are calculated for the hydrogenic-like atoms to different confinement radii by using a variational method. The global behavior of these quantities and different conjectures are analyzed. The results are compared, when available, with those previously published.

  3. Hydrogen economy

    Energy Technology Data Exchange (ETDEWEB)

    Pahwa, P.K.; Pahwa, Gulshan Kumar

    2013-10-01

    In the future, our energy systems will need to be renewable and sustainable, efficient and cost-effective, convenient and safe. Hydrogen has been proposed as the perfect fuel for this future energy system. The availability of a reliable and cost-effective supply, safe and efficient storage, and convenient end use of hydrogen will be essential for a transition to a hydrogen economy. Research is being conducted throughout the world for the development of safe, cost-effective hydrogen production, storage, and end-use technologies that support and foster this transition. This book discusses hydrogen economy vis-a-vis sustainable development. It examines the link between development and energy, prospects of sustainable development, significance of hydrogen energy economy, and provides an authoritative and up-to-date scientific account of hydrogen generation, storage, transportation, and safety.

  4. Hydrogen detector

    International Nuclear Information System (INIS)

    Kumagaya, Hiromichi; Yoshida, Kazuo; Sanada, Kazuo; Chigira, Sadao.

    1994-01-01

    The present invention concerns a hydrogen detector for detecting water-sodium reaction. The hydrogen detector comprises a sensor portion having coiled optical fibers and detects hydrogen on the basis of the increase of light transmission loss upon hydrogen absorption. In the hydrogen detector, optical fibers are wound around and welded to the outer circumference of a quartz rod, as well as the thickness of the clad layer of the optical fiber is reduced by etching. With such procedures, size of the hydrogen detecting sensor portion can be decreased easily. Further, since it can be used at high temperature, diffusion rate is improved to shorten the detection time. (N.H.)

  5. Investigation of hydrogen-deformation interactions in β-21S titanium alloy using thermal desorption spectroscopy

    International Nuclear Information System (INIS)

    Tal-Gutelmacher, E.; Eliezer, D.; Boellinghaus, Th.

    2007-01-01

    The focus of this paper is the investigation of the combined influence of hydrogen and pre-plastic deformation on hydrogen's absorption/desorption behavior, the microstructure and microhardness of a single-phased β-21S alloy. In this study, thermal desorption analyses (TDS) evaluation of various desorption and trapping parameters provide further insight on the relationships between hydrogen absorption/desorption processes and deformation, and their mutual influence on the microstructure and the microhardness of β-21S alloy. TDS spectra were supported by other experimental techniques, such as X-ray diffraction, scanning and transmission electron microscopy, hydrogen quantity analyses and microhardness tests. Pre-plastic deformation, performed before the electrochemical hydrogenation of the alloy, increased significantly the hydrogen absorption capacity. Its influence was also evident on the notably expanded lattice parameter of β-21S alloy after hydrogenation. However, no hydride precipitation was observed. An interesting softening effect of the pre-deformed hydrogenated alloy was revealed by microhardness tests. TDS demonstrated the significant effect of pre-plastic deformation on the hydrogen evolution process. Hydrogen desorption temperature and the activation energy for hydrogen release increased, additional trap states were observed and the amount of desorbed hydrogen decreased

  6. Para hydrogen equilibration in the atmospheres of the outer planets

    International Nuclear Information System (INIS)

    Conrath, B.J.

    1986-01-01

    The thermodynamic behavior of the atmospheres of the Jovian planets is strongly dependent on the extent to which local thermal equilibration of the ortho and para states of molecular hydrogen is achieved. Voyager IRIS data from Jupiter imply substantial departures of the para hydrogen fraction from equilibrium in the upper troposphere at low latitudes, but with values approaching equilibrium at higher latitudes. Data from Saturn are less sensitive to the orth-para ratio, but suggest para hydrogen fractions near the equilibrium value. Above approximately the 200 K temperature level, para hydrogen conversion can enhance the efficiency of convection, resulting in a substantial increase in overturning times on all of the outer planets. Currently available data cannot definitively establish the ortho-para ratios in the atmospheres of Uranus and Neptune, but suggest values closer to local equilibrium than to the 3.1 normal ratio. Modeling of sub-millimeter wavelength measurements of these planets suggest thermal structures with frozen equilibrium lapse rates in their convective regions

  7. Hydrogen peroxide and radiation water chemistry of boiling water reactors

    International Nuclear Information System (INIS)

    Ibe, E.; Watanabe, A.; Endo, M.; Takahashi, M.; Karasawa, H.

    1991-01-01

    G-values and rate constants at elevated temperature are reviewed and updated for computer simulation of water radiolysis in BWRs. Quantitative relationship between g-values of H 2 and OH was found out to govern numerically the radiolytic environment in the BWR primary system. Thermal decomposition of hydrogen peroxide was measured in stagnant water in a quartz cell and the rate constant was determined at 2.4 x 10 -7 s -1 with the activation energy of 53.3 kJ/mol. Behaviors of hydrogen peroxide under HWC simulated with updated variables were consistent with plant observation at Forsmark 1 and 2. The most likely decomposition scheme of hydrogen peroxide at surface was identified as H 2 O 2 → H + HO 2 . Based on the surface decomposition process, actual level of hydrogen peroxide was estimated at 200-400 ppb under NWC condition from measured at BWR sampling stations. The estimation was consistent with the numerical simulation of BWR water radiolysis with updated variables. (author)

  8. The prospects for hydrogen as an energy carrier: an overview of hydrogen energy and hydrogen energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, Marc A.; Koohi-Fayegh, Seama [Ontario Univ., Oshawa, ON (Canada). Inst. of Technology

    2016-02-15

    Hydrogen is expected to play a key role as an energy carrier in future energy systems of the world. As fossil-fuel supplies become scarcer and environmental concerns increase, hydrogen is likely to become an increasingly important chemical energy carrier and eventually may become the principal chemical energy carrier. When most of the world's energy sources become non-fossil based, hydrogen and electricity are expected to be the two dominant energy carriers for the provision of end-use services. In such a ''hydrogen economy,'' the two complementary energy carriers, hydrogen and electricity, are used to satisfy most of the requirements of energy consumers. A transition era will bridge the gap between today's fossil-fuel economy and a hydrogen economy, in which non-fossil-derived hydrogen will be used to extend the lifetime of the world's fossil fuels - by upgrading heavy oils, for instance - and the infrastructure needed to support a hydrogen economy is gradually developed. In this paper, the role of hydrogen as an energy carrier and hydrogen energy systems' technologies and their economics are described. Also, the social and political implications of hydrogen energy are examined, and the questions of when and where hydrogen is likely to become important are addressed. Examples are provided to illustrate key points. (orig.)

  9. Identification of intrinsic catalytic activity for electrochemical reduction of water molecules to generate hydrogen

    KAUST Repository

    Shinagawa, Tatsuya

    2015-01-01

    Insufficient hydronium ion activities at near-neutral pH and under unbuffered conditions induce diffusion-limited currents for hydrogen evolution, followed by a reaction with water molecules to generate hydrogen at elevated potentials. The observed constant current behaviors at near neutral pH reflect the intrinsic electrocatalytic reactivity of the metal electrodes for water reduction. This journal is © the Owner Societies.

  10. Fracture toughness of the F-82H steel-effect of loading modes, hydrogen, and temperature

    International Nuclear Information System (INIS)

    Li, H.-X.; Jones, R.H.; Hirth, J.P.; Gelles, D.S.

    1996-01-01

    The effects of loading mode, hydrogen, and temperature on fracture toughness and tearing modulus were examined for a ferritic/martensitic steel (F-82H). The introduction of a shear load component, mode III, significantly decreased the initiation and propagation resistance of cracks compared to the opening load, mode I, behavior. Mode I crack initiation and propagation exhibited the highest resistance. A minimum resistance occurred when the mode I and mode III loads were nearly equal. The presence of 4 wppm hydrogen decreased the cracking resistance compared to behavior without H regardless of the loading mode. The minimum mixed-mode fracture toughness with the presence of hydrogen was about 30% of the hydrogen-free mode I fracture toughness. The mixed-mode toughness exhibited a lesser sensitivity to temperature than the mode I toughness. The J IC value was 284 kJ/m 2 at room temperature, but only 60 kJ/m 2 at -55 C and 30 kJ/m 2 at -90 C. The ductile to brittle transition temperature (DBTT) was apparently higher than -55 C. (orig.)

  11. A toolkit for integrated deterministic and probabilistic assessment for hydrogen infrastructure.

    Energy Technology Data Exchange (ETDEWEB)

    Groth, Katrina M.; Tchouvelev, Andrei V.

    2014-03-01

    There has been increasing interest in using Quantitative Risk Assessment [QRA] to help improve the safety of hydrogen infrastructure and applications. Hydrogen infrastructure for transportation (e.g. fueling fuel cell vehicles) or stationary (e.g. back-up power) applications is a relatively new area for application of QRA vs. traditional industrial production and use, and as a result there are few tools designed to enable QRA for this emerging sector. There are few existing QRA tools containing models that have been developed and validated for use in small-scale hydrogen applications. However, in the past several years, there has been significant progress in developing and validating deterministic physical and engineering models for hydrogen dispersion, ignition, and flame behavior. In parallel, there has been progress in developing defensible probabilistic models for the occurrence of events such as hydrogen release and ignition. While models and data are available, using this information is difficult due to a lack of readily available tools for integrating deterministic and probabilistic components into a single analysis framework. This paper discusses the first steps in building an integrated toolkit for performing QRA on hydrogen transportation technologies and suggests directions for extending the toolkit.

  12. A first-principles study of hydrogen storage capacity based on Li-Na-decorated silicene.

    Science.gov (United States)

    Sheng, Zhe; Wu, Shujing; Dai, Xianying; Zhao, Tianlong; Hao, Yue

    2018-05-23

    Surface decoration with alkali metal adatoms has been predicted to be promising for silicene to obtain high hydrogen storage capacity. Herein, we performed a detailed study of the hydrogen storage properties of Li and Na co-decorated silicene (Li-Na-decorated silicene) based on first-principles calculations using van der Waals correction. The hydrogen adsorption behaviors, including the adsorption order, the maximum capacity, and the corresponding mechanism were analyzed in detail. Our calculations show that up to three hydrogen molecules can firmly bind to each Li atom and six for each Na atom, respectively. The hydrogen storage capacity is estimated to be as high as 6.65 wt% with a desirable average adsorption energy of 0.29 eV/H2. It is confirmed that both the charge-induced electrostatic interaction and the orbital hybridizations play a great role in hydrogen storage. Our results may enhance our fundamental understanding of the hydrogen storage mechanism, which is of great importance for the practical application of Li-Na-decorated silicene in hydrogen storage.

  13. A new concept for high-cycle-life LEO: Rechargeable MnO2-hydrogen

    Science.gov (United States)

    Appleby, A. J.; Dhar, H. P.; Kim, Y. J.; Murphy, O. J.

    1989-01-01

    The nickel-hydrogen secondary battery system, developed in the early 1970s, has become the system of choice for geostationary earth orbit (GEO) applications. However, for low earth orbit (LEO) satellites with long expected lifetimes the nickel positive limits performance. This requires derating of the cell to achieve very long cycle life. A new system, rechargeable MnO2-Hydrogen, which does not require derating, is described here. For LEO applications, it promises to have longer cycle life, high rate capability, a higher effective energy density, and much lower self-discharge behavior than those of the nickel-hydrogen system.

  14. Hydrogen burn assessment with the CONTAIN code

    International Nuclear Information System (INIS)

    van Rij, H.M.

    1986-01-01

    The CONTAIN computer code was developed at Sandia National Laboratories, under contract to the US Nuclear Regulatory Commission (NRC). The code is intended for calculations of containment loads during severe accidents and for prediction of the radioactive source term in the event that the containment leaks or fails. A strong point of the CONTAIN code is the continuous interaction of the thermal-hydraulics phenomena, aerosol behavior and fission product behavior. The CONTAIN code can be used for Light Water Reactors as well as Liquid Metal Reactors. In order to evaluate the CONTAIN code on its merits, comparisons between the code and experiments must be made. In this paper, CONTAIN calculations for the hydrogen burn experiments, carried out at the Nevada Test Site (NTS), are presented and compared with the experimental data. In the Large-Scale Hydrogen Combustion Facility at the NTS, 21 tests have been carried out. These tests were sponsored by the NRC and the Electric Power Research Institute (EPRI). The tests, carried out by EG and G, were performed in a spherical vessel 16 m in diameter with a design pressure of 700 kPa, substantially higher than that of most commercial nuclear containment buildings

  15. Ship Routing with Pickup and Delivery for a Maritime Oil Transportation System: MIP Model and Heuristics

    Directory of Open Access Journals (Sweden)

    Vinícius P. Rodrigues

    2016-09-01

    Full Text Available This paper examines a ship routing problem with pickup and delivery and time windows for maritime oil transportation, motivated by the production and logistics activities of an oil company operating in the Brazilian coast. The transportation costs from offshore platforms to coastal terminals are an important issue in the search for operational excellence in the oil industry, involving operations that demand agile and effective decision support systems. This paper presents an optimization approach to address this problem, based on a mixed integer programming (MIP model and a novel and exploratory application of two tailor-made MIP heuristics, based on relax-and-fix and time decomposition procedures. The model minimizes fuel costs of a heterogeneous fleet of oil tankers and costs related to freighting contracts. The model also considers company-specific constraints for offshore oil transportation. Computational experiments based on the mathematical models and the related MIP heuristics are presented for a set of real data provided by the company, which confirm the potential of optimization-based methods to find good solutions for problems of moderate sizes.

  16. Hydrogen storage in Mg: a most promising material

    International Nuclear Information System (INIS)

    Jain, I.P.; Jain, A.; Lal, C.

    2009-01-01

    hydrides stand as promising candidate for competitive hydrogen storage with reversible hydrogen capacity up to 7.6 wt% for on board applications. Efforts have been devoted to these materials to decrease their desorption temperature, enhance the kinetics and cycle life. The kinetics has been improved by adding an appropriate catalyst into the system as well as by ball milling that introduces defects with improved surface properties. The studies reported promising results, such as improved kinetics and lower desorption temperatures, however, the state of the art materials are still far from meeting the aimed target for their transport applications. Therefore further research work is needed to achieve the goal by improving development on hydrogenation, thermal and cyclic behavior of metal hydrides. In the present article the possibility of commercialization of Mg based alloys has been discussed. (author)

  17. Breath Hydrogen Produced by Ingestion of Commercial Hydrogen Water and Milk

    OpenAIRE

    Shimouchi, Akito; Nose, Kazutoshi; Yamaguchi, Makoto; Ishiguro, Hiroshi; Kondo, Takaharu

    2009-01-01

    Objective: To compare how and to what extent ingestion of hydrogen water and milk increase breath hydrogen in adults.Methods: Five subjects without specific diseases, ingested distilled or hydrogen water and milk as a reference material that could increase breath hydrogen. Their end-alveolar breath hydrogen was measured.Results: Ingestion of hydrogen water rapidly increased breath hydrogen to the maximal level of approximately 40 ppm 10–15 min after ingestion and thereafter rapidly decrease...

  18. Influence of hydrogen on high cycle fatigue of polycrystalline vanadium

    International Nuclear Information System (INIS)

    Chung, D.W.; Lee, K.S.; Stoloff, N.S.

    1977-02-01

    The room temperature fatigue behavior of several polycrystalline V-H 2 alloys is described. Hydrogen extends the life of unnotched vanadium but has a deleterious effect in notched materials. Crack propagation data are correlated with tensile yield stress and cyclic strain hardening data

  19. Hydrogen - From hydrogen to energy production

    International Nuclear Information System (INIS)

    Klotz, Gregory

    2005-01-01

    More than a century ago, Jules Verne wrote in 'The Mysterious Island' that water would one day be employed as fuel: 'Hydrogen and oxygen, which constitute it, used singly or together, will furnish an inexhaustible source of heat and light'. Today, the 'water motor' is not entirely the dream of a writer. Fiction is about to become fact thanks to hydrogen, which can be produced from water and when burned in air itself produces water. Hydrogen is now at the heart of international research. So why do we have such great expectations of hydrogen? 'Hydrogen as an energy system is now a major challenge, both scientifically and from an environmental and economic point of view'. Dominated as it is by fossil fuels (oil, gas and coal), our current energy system has left a dual threat hovering over our environment, exposing the planet to the exhaustion of its natural reserves and contributing to the greenhouse effect. If we want sustainable development for future generations, it is becoming necessary to diversify our methods of producing energy. Hydrogen is not, of course, a source of energy, because first it has to be produced. But it has the twofold advantage of being both inexhaustible and non-polluting. So in the future, it should have a very important role to play. (author)

  20. Hydrogen fuel. Uses

    International Nuclear Information System (INIS)

    Darkrim-Lamari, F.; Malbrunot, P.

    2006-01-01

    Hydrogen is a very energetic fuel which can be used in combustion to generate heat and mechanical energy or which can be used to generate electricity and heat through an electrochemical reaction with oxygen. This article deals with the energy conversion, the availability and safety problems linked with the use of hydrogen, and with the socio-economical consequences of a generalized use of hydrogen: 1 - hydrogen energy conversion: hydrogen engines, aerospace applications, fuel cells (principle, different types, domains of application); 2 - hydrogen energy availability: transport and storage (gas pipelines, liquid hydrogen, adsorbed and absorbed hydrogen in solid materials), service stations; 3 - hazards and safety: flammability, explosibility, storage and transport safety, standards and regulations; 4 - hydrogen economy; 5 - conclusion. (J.S.)