WorldWideScience

Sample records for hydrogen gas pressure

  1. Warm Pressurant Gas Effects on the Liquid Hydrogen Bubble Point

    Science.gov (United States)

    Hartwig, Jason W.; McQuillen, John B.; Chato, David J.

    2013-01-01

    This paper presents experimental results for the liquid hydrogen bubble point tests using warm pressurant gases conducted at the Cryogenic Components Cell 7 facility at the NASA Glenn Research Center in Cleveland, Ohio. The purpose of the test series was to determine the effect of elevating the temperature of the pressurant gas on the performance of a liquid acquisition device. Three fine mesh screen samples (325 x 2300, 450 x 2750, 510 x 3600) were tested in liquid hydrogen using cold and warm noncondensible (gaseous helium) and condensable (gaseous hydrogen) pressurization schemes. Gases were conditioned from 0 to 90 K above the liquid temperature. Results clearly indicate a degradation in bubble point pressure using warm gas, with a greater reduction in performance using condensable over noncondensible pressurization. Degradation in the bubble point pressure is inversely proportional to screen porosity, as the coarsest mesh demonstrated the highest degradation. Results here have implication on both pressurization and LAD system design for all future cryogenic propulsion systems. A detailed review of historical heated gas tests is also presented for comparison to current results.

  2. Hydrogen gas embrittlement and the disc pressure test

    Science.gov (United States)

    Bachelet, E. J.; Troiano, A. R.

    1973-01-01

    A disc pressure test has been used to study the influenced of a hydrogen gas environment on the mechanical properties of three high strength superalloys, Inconel 718, L-605 and A-286, in static and dynamic conditions. The influence of the hydrogen pressure, loading rate, temperature, mechanical and thermal fatigue has investigated. The permeation characteristics of Inconel 718 have been determined in collaboration with the French AEC. The results complemented by a fractographic study are consistent either with a stress-sorption or with an internal embrittlement type of mechanism.

  3. Numerical simulation of high pressure release and dispersion of hydrogen into air with real gas model

    Science.gov (United States)

    Khaksarfard, R.; Kameshki, M. R.; Paraschivoiu, M.

    2010-06-01

    Hydrogen is a renewable and clean source of energy, and it is a good replacement for the current fossil fuels. Nevertheless, hydrogen should be stored in high-pressure reservoirs to have sufficient energy. An in-house code is developed to numerically simulate the release of hydrogen from a high-pressure tank into ambient air with more accuracy. Real gas models are used to simulate the flow since high-pressure hydrogen deviates from ideal gas law. Beattie-Bridgeman and Abel Noble equations are applied as real gas equation of state. A transport equation is added to the code to calculate the concentration of the hydrogen-air mixture after release. The uniqueness of the code is to simulate hydrogen in air release with the real gas model. Initial tank pressures of up to 70 MPa are simulated.

  4. Inspection of the hydrogen gas pressure with metal shield by cold neutron radiography at CMRR

    Science.gov (United States)

    Li, Hang; Cao, Chao; Huo, Heyong; Wang, Sheng; Wu, Yang; Yin, Wei; Sun, Yong; Liu, Bin; Tang, Bin

    2017-04-01

    The inspection of the process of gas pressure change is important for some applications (e.g. gas tank stockpile or two phase fluid model) which need quantitative and non-touchable measurement. Neutron radiography provides a suitable tool for such investigations with nice resolution. The quantitative cold neutron radiography (CNR) is developed at China Mianyang Research Reactor (CMRR) to measure the hydrogen gas pressure with metal shield. Because of the high sensitivity to hydrogen, even small change of the hydrogen pressure can be inspected by CNR. The dark background and scattering neutron effect are both corrected to promote measurement precision. The results show that CNR can measure the hydrogen gas pressure exactly and the pressure value average relative error between CNR and barometer is almost 1.9%.

  5. Measurement and interpretation of threshold stress intensity factors for steels in high-pressure hydrogen gas.

    Energy Technology Data Exchange (ETDEWEB)

    Dadfarnia, Mohsen (University of Illinois at Urbana-Champaign, Urbana, IL); Nibur, Kevin A.; San Marchi, Christopher W.; Sofronis, Petros (University of Illinois at Urbana-Champaign, Urbana, IL); Somerday, Brian P.; Foulk, James W., III; Hayden, Gary A. (CP Industries, McKeesport, PA)

    2010-07-01

    Threshold stress intensity factors were measured in high-pressure hydrogen gas for a variety of low alloy ferritic steels using both constant crack opening displacement and rising crack opening displacement procedures. The sustained load cracking procedures are generally consistent with those in ASME Article KD-10 of Section VIII Division 3 of the Boiler and Pressure Vessel Code, which was recently published to guide design of high-pressure hydrogen vessels. Three definitions of threshold were established for the two test methods: K{sub THi}* is the maximum applied stress intensity factor for which no crack extension was observed under constant displacement; K{sub THa} is the stress intensity factor at the arrest position for a crack that extended under constant displacement; and K{sub JH} is the stress intensity factor at the onset of crack extension under rising displacement. The apparent crack initiation threshold under constant displacement, K{sub THi}*, and the crack arrest threshold, K{sub THa}, were both found to be non-conservative due to the hydrogen exposure and crack-tip deformation histories associated with typical procedures for sustained-load cracking tests under constant displacement. In contrast, K{sub JH}, which is measured under concurrent rising displacement and hydrogen gas exposure, provides a more conservative hydrogen-assisted fracture threshold that is relevant to structural components in which sub-critical crack extension is driven by internal hydrogen gas pressure.

  6. Hydrogen gas filling into an actual tank at high pressure and optimization of its thermal characteristics

    Science.gov (United States)

    Khan, Md. Tawhidul Islam; Monde, Masanori; Setoguchi, Toshiaki

    2009-09-01

    Gas with high pressure is widely used at present as fuel storage mode for different hydrogen vehicles. Different types of materials are used for constructing these hydrogen pressure vessels. An aluminum lined vessel and typically carbon fiber reinforced plastic (CFRP) materials are commercially used in hydrogen vessels. An aluminum lined vessel is easy to construct and posses high thermal conductivity compared to other commercially available vessels. However, compared to CFRP lined vessel, it has low strength capacity and safety factors. Therefore, nowadays, CFRP lined vessels are becoming more popular in hydrogen vehicles. Moreover, CFRP lined vessel has an advantage of light weight. CFRP, although, has many desirable properties in reducing the weight and in increasing the strength, it is also necessary to keep the material temperature below 85 °C for maintaining stringent safety requirements. While filling process occurs, the temperature can be exceeded due to the compression works of the gas flow. Therefore, it is very important to optimize the hydrogen filling system to avoid the crossing of the critical limit of the temperature rise. Computer-aided simulation has been conducted to characterize the hydrogen filling to optimize the technique. Three types of hydrogen vessels with different volumes have been analyzed for optimizing the charging characteristics of hydrogen to test vessels. Gas temperatures are measured inside representative vessels in the supply reservoirs (H2 storages) and at the inlet to the test tank during filling.

  7. A Study of the Critical Nozzle for Flow Rate Measurement of High-Pressure Hydrogen Gas

    Institute of Scientific and Technical Information of China (English)

    H.D.Kim; J.H.Lee; K.A.Park; T.Setoguchi; S.Matsuo

    2007-01-01

    The mass flow rate measurement using a critical nozzle shows the validity of the inviscid theory, indicating that the discharge coefficient increases and approaches unity as the Reynolds number increases under the ideal gas law.However, when the critical nozzle measures the mass flow rate of a real gas such as hydrogen at a pressure of hundreds bar, the discharge coefficient exceeds unity, and the real gas effects should be taken into account. The present study aims at investigating the flow features of the critical nozzle using high-pressured hydrogen gas. The axisymmetric, compressible Navier-Stokes computation is employed to simulate the critical nozzle flow, and a fully implicit finite volume method is used to discretize the governing equation system. The real gas effects are simulated to consider the intermolecular forces, which account for the possibility of liquefying hydrogen gas. The computational results are compared with past experimental data. It has been found that the coefficient of discharge for real gas can be corrected properly below unity adopting the real gas assumption.

  8. A Study on Gas Pressure Fluctuation Characteristics inside the Snubber and Pipe of Hydrogen

    Directory of Open Access Journals (Sweden)

    M. Sq. Rahman

    2009-01-01

    Full Text Available Hydrogen fuel cell is a developing technology that allows great amount of electrical power to be obtained using a source of hydrogen gas. It is a proven environment-friendly potential future fuel. During compression of hydrogen gas in reciprocating compressor, pressure fluctuation is built up. The pressure fluctuation and its reduction by the snubber are studied in this experiment. For different motor frequencies, the input and output pressure amplitude varies from 0.228 kPa–2.081 kPa and 0.095 kPa–0.898 kPa. The pressure magnitudes are 101.451–105.172 kPa and 101.388–102.565 kPa for input and output of the snubber, respectively. The acryl snubber reduces0.796 kPa (57.31% pressure amplitude on average with restoring its high pressure. Detail information about the pressure including the critical pressure zone inside the tube like snubber part and the whole system can be obtained by CFD.

  9. Certification Testing and Demonstration of Insulated Pressure Vessels for Vehicular Hydrogen and Natural Gas Storage

    Energy Technology Data Exchange (ETDEWEB)

    Aceves, S M; Martinez-Frias, J; Espinosa-Loza, F; Schaffer, R; Clapper, W

    2002-05-22

    We are working on developing an alternative technology for storage of hydrogen or natural gas on light-duty vehicles. This technology has been titled insulated pressure vessels. Insulated pressure vessels are cryogenic-capable pressure vessels that can accept either liquid fuel or ambient-temperature compressed fuel. Insulated pressure vessels offer the advantages of cryogenic liquid fuel tanks (low weight and volume), with reduced disadvantages (fuel flexibility, lower energy requirement for fuel liquefaction and reduced evaporative losses). The work described in this paper is directed at verifying that commercially available pressure vessels can be safely used to store liquid hydrogen or LNG. The use of commercially available pressure vessels significantly reduces the cost and complexity of the insulated pressure vessel development effort. This paper describes a series of tests that have been done with aluminum-lined, fiber-wrapped vessels to evaluate the damage caused by low temperature operation. All analysis and experiments to date indicate that no significant damage has resulted. Future activities include a demonstration project in which the insulated pressure vessels will be installed and tested on two vehicles. A draft standard will also be generated for obtaining insulated pressure vessel certification.

  10. Tank designs for combined high pressure gas and solid state hydrogen storage

    DEFF Research Database (Denmark)

    Mazzucco, Andrea

    for each storage solution investigated in this work. Attention is given to solutions that involve high-pressure solid-state and gas hydrogen storage with an integrated passive cooling system. A set of libraries is implemented in the modeling platform to select among different material compositions, kinetic......Many challenges have still to be overcome in order to establish a solid ground for significant market penetration of fuel cell hydrogen vehicles. The development of an effective solution for on-board hydrogen storage is one of the main technical tasks that need to be tackled. The present thesis...... deals with the development of a simulation tool to design and compare different vehicular storage options with respect to targets based upon storage and fueling efficiencies. The set targets represent performance improvements with regard to the state-of-the-art technology and are separately defined...

  11. Reduced-order modellin for high-pressure transient flow of hydrogen-natural gas mixture

    Science.gov (United States)

    Agaie, Baba G.; Khan, Ilyas; Alshomrani, Ali Saleh; Alqahtani, Aisha M.

    2017-05-01

    In this paper the transient flow of hydrogen compressed-natural gas (HCNG) mixture which is also referred to as hydrogen-natural gas mixture in a pipeline is numerically computed using the reduced-order modelling technique. The study on transient conditions is important because the pipeline flows are normally in the unsteady state due to the sudden opening and closure of control valves, but most of the existing studies only analyse the flow in the steady-state conditions. The mathematical model consists in a set of non-linear conservation forms of partial differential equations. The objective of this paper is to improve the accuracy in the prediction of the HCNG transient flow parameters using the Reduced-Order Modelling (ROM). The ROM technique has been successfully used in single-gas and aerodynamic flow problems, the gas mixture has not been done using the ROM. The study is based on the velocity change created by the operation of the valves upstream and downstream the pipeline. Results on the flow characteristics, namely the pressure, density, celerity and mass flux are based on variations of the mixing ratio and valve reaction and actuation time; the ROM computational time cost advantage are also presented.

  12. Hydrogen absorption of LaFe_(11.5)Si_(1.5) compound under low hydrogen gas pressure

    Institute of Scientific and Technical Information of China (English)

    Fu Bin; Long Yi; Shi Pu-Ji; Ma Tao; Bao Bo; Yan A-Ru; Chen Ren-Jie

    2009-01-01

    Hydrogen absorptions of LaFe_(11.5)Si_(1.5) compound in 1-atm hydrogen gas at different temperatures are investigated. The hydrogen content in the hydrogenated sample does not increase with the increase of temperature of hydrogen absorption but changes complicatedly. The characteristic offirst-order transition in LaFe_(11.5) Si_(1.5) compound is weakened after hydrogen absorption. It leads the peaks of magnetic entropy to become wider and the hysteresis loss to reduce significantly, but relative cooling power(RCP)is not changed considerably.

  13. Pressure of a partially ionized hydrogen gas: numerical results from exact low temperature expansions

    Energy Technology Data Exchange (ETDEWEB)

    Alastuey, A. [Laboratoire de Physique, ENS Lyon, CNRS, Lyon (France); Ballenegger, V. [Institut UTINAM, Universite de Franche-Comte, CNRS, Besancon (France)

    2010-01-15

    We consider a partially ionized hydrogen gas at low densities, where it reduces almost to an ideal mixture made with hydrogen atoms in their ground-state, ionized protons and ionized electrons. By performing systematic low-temperature expansions within the physical picture, in which the system is described as a quantum electron-proton plasma interacting via the Coulomb potential, exact formulae for the first.ve leading corrections to the ideal Saha equation of state have been derived[A. Alastuey, V. Ballenegger et al., J. Stat. Phys. 130, 1119 (2008)]. Those corrections account for all effects of interactions and thermal excitations up to order exp(E{sub H} /kT) included, where E{sub H} {approx_equal} -13.6 eV is the ground state energy of the hydrogen atom. Among the.ve leading corrections, three are easy to evaluate, while the remaining ones involve suitably truncated internal partition functions of H{sub 2} molecules and H{sup -} and H{sub 2}{sup +} ions, for which no analytical formulae are available in closed form. We estimate those partitions functions at.nite temperature via a simple phenomenology based on known values of rotational and vibrational energies. This allows us to compute numerically the leading deviations to the Saha pressure along several isotherms and isochores. Our values are compared with those of the OPAL tables (for pure hydrogen) calculated within the ACTEX method (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Prediction of gas pressurization and hydrogen generation for shipping hazard analysis : Six unstabilized PU 02 samples

    Energy Technology Data Exchange (ETDEWEB)

    Moody, E. W. (Eddie W.); Veirs, D. K. (Douglas Kirk); Lyman, J. L. (John L.)

    2001-01-01

    Radiolysis of water to form hydrogen gas is a safety concern for safe storage and transport of plutonium-bearing materials. Hydrogen gas is considered a safety hazard if its concentration in the container exceeds five percent hydrogen by volume, DOE Docket No. 00-1 1-9965. Unfortunately, water cannot be entirely avoided in a processing environment and these samples contain a range of water inherently. Thermodynamic, chemical, and radiolysis modeling was used to predict gas generation and changes in gas composition as a function of time within sealed containers containing plutonium bearing materials. The results are used in support of safety analysis for shipping six unstabilized (i.e. uncalcined) samples from Rocky Flats Environmental Technology Sits (RFETS) to the Material Identification and Surveillance (MIS) program at Los Alamos National Lab (LANL). The intent of this work is to establish a time window in which safe shipping can occur.

  15. Hydrogen Selective Inorganic membranes for Gas Separations under High Pressure Intermediate Temperature Hydrocarbonic Envrionment

    Energy Technology Data Exchange (ETDEWEB)

    Rich Ciora; Paul KT Liu

    2012-06-27

    In this project, we have successfully developed a full scale commercially ready carbon molecular sieve (CMS) based membrane for applications in H{sub 2} recovery from refinery waste and other aggressive gas streams. Field tests at a refinery pilot plant and a coal gasification facility have successfully demonstrated its ability to recovery hydrogen from hydrotreating and raw syngas respectively. High purity H{sub 2} and excellent stability of the membrane permeance and selectivity were obtained in testing conducted over >500 hours at each site. The results from these field tests as well as laboratory testing conclude that the membranes can be operated at high pressures (up to 1,000 psig) and temperatures (up to 300 C) in presence of aggressive contaminants, such as sulfur and nitrogen containing species (H{sub 2}S, CO{sub 2}, NH{sub 3}, etc), condensable hydrocarbons, tar-like species, heavy metals, etc. with no observable effect on membrane performance. By comparison, similar operating conditions and/or environments would rapidly destroy competing membranes, such as polymeric, palladium, zeolitic, etc. Significant cost savings can be achieved through recovering H{sub 2} from refinery waste gas using this newly developed CMS membrane. Annual savings of $2 to 4MM/year (per 20,000 scfd of waste gas) can be realized by recovering the H{sub 2} for reuse (versus fuel). Projecting these values over the entire US market, potential H{sub 2} savings from refinery waste gases on the order of 750 to 1,000MM scfd and $750 to $1,000MM per year are possible. In addition to the cost savings, potential energy savings are projected to be ca. 150 to 220 tBTU/yr and CO{sub 2} gas emission reductions are projected to be ca. 5,000 to 6,500MMtons/year. The full scale membrane bundle developed as part of this project, i.e., 85 x 30 inch ceramic membrane tubes packaged into a full ceramic potting, is an important accomplishment. No comparable commercial scale product exists in the

  16. Water-Gas-Shift Membrane Reactor for High-Pressure Hydrogen Production. A comprehensive project report (FY2010 - FY2012)

    Energy Technology Data Exchange (ETDEWEB)

    Klaehn, John [Idaho National Lab. (INL), Idaho Falls, ID (United States); Peterson, Eric [Idaho National Lab. (INL), Idaho Falls, ID (United States); Orme, Christopher [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bhandari, Dhaval [General Electric Global Research, Niskayuna, New York (United States); Miller, Scott [General Electric Global Research, Niskayuna, New York (United States); Ku, Anthony [General Electric Global Research, Niskayuna, New York (United States); Polishchuk, Kimberly [General Electric Global Research, Niskayuna, New York (United States); Narang, Kristi [General Electric Global Research, Niskayuna, New York (United States); Singh, Surinder [General Electric Global Research, Niskayuna, New York (United States); Wei, Wei [General Electric Global Research, Niskayuna, New York (United States); Shisler, Roger [General Electric Global Research, Niskayuna, New York (United States); Wickersham, Paul [General Electric Global Research, Niskayuna, New York (United States); McEvoy, Kevin [General Electric Global Research, Niskayuna, New York (United States); Alberts, William [General Electric Global Research, Niskayuna, New York (United States); Howson, Paul [General Electric Global Research, Niskayuna, New York (United States); Barton, Thomas [Western Research inst., Laramie, WY (United States); Sethi, Vijay [Western Research inst., Laramie, WY (United States)

    2013-01-01

    Idaho National Laboratory (INL), GE Global Research (GEGR), and Western Research Institute (WRI) have successfully produced hydrogen-selective membranes for water-gas-shift (WGS) modules that enable high-pressure hydrogen product streams. Several high performance (HP) polymer membranes were investigated for their gas separation performance under simulated (mixed gas) and actual syngas conditions. To enable optimal module performance, membranes with high hydrogen (H2) selectivity, permeance, and stability under WGS conditions are required. The team determined that the VTEC PI 80-051 and VTEC PI 1388 (polyimide from Richard Blaine International, Inc.) are prime candidates for the H2 gas separations at operating temperatures (~200°C). VTEC PI 80-051 was thoroughly analyzed for its H2 separations under syngas processing conditions using more-complex membrane configurations, such as tube modules and hollow fibers. These membrane formats have demonstrated that the selected VTEC membrane is capable of providing highly selective H2/CO2 separation (α = 7-9) and H2/CO separation (α = 40-80) in humidified syngas streams. In addition, the VTEC polymer membranes are resilient within the syngas environment (WRI coal gasification) at 200°C for over 1000 hours. The information within this report conveys current developments of VTEC PI 80-051 as an effective H2 gas separations membrane for high-temperature syngas streams.

  17. The Relationship Between Crack-Tip Strain and Subcritical Cracking Thresholds for Steels in High-Pressure Hydrogen Gas

    Science.gov (United States)

    Nibur, Kevin A.; Somerday, Brian P.; Marchi, Chris San; Foulk, James W.; Dadfarnia, Mohsen; Sofronis, Petros

    2013-01-01

    Threshold stress intensity factors were measured in high-pressure hydrogen gas for a variety of low alloy ferritic steels using both constant crack opening displacement and rising crack opening displacement procedures. Thresholds for crack extension under rising displacement, K THi, for crack extension under constant displacement, K_{{THi}}^{*} , and for crack arrest under constant displacement K THa, were identified. These values were not found to be equivalent, i.e. K THi assisted fracture mechanism was determined to be strain controlled for all of the alloys in this study, and the micromechanics of strain controlled fracture are used to explain the observed disparities between the different threshold measurements. K THa and K THi differ because the strain singularity of a stationary crack is stronger than that of a propagating crack; K THa must be larger than K THi to achieve equivalent crack tip strain at the same distance from the crack tip. Hydrogen interacts with deformation mechanisms, enhancing strain localization and consequently altering both the nucleation and growth stages of strain controlled fracture mechanisms. The timing of load application and hydrogen exposure, i.e., sequential for constant displacement tests and concurrent for rising displacement tests, leads to differences in the strain history relative to the environmental exposure history and promotes the disparity between K_{{THi}}^{*} and K THi. K THi is the only conservative measurement of fracture threshold among the methods presented here.

  18. Hydrogen gas storage in fluorinated ultramicroporous tunnel crystal.

    Science.gov (United States)

    Kataoka, Keisuke; Katagiri, Toshimasa

    2012-08-21

    We report hydrogen storage at an ordinary pressure due to a bottle-neck effect of an ultramicroporous crystal. Stored hydrogen was kept at an ordinary pressure below -110 °C. The amounts of stored hydrogen gas linearly correlated with the initial pressures. These phenomena suggested the ultramicroporous tunnels worked as a molecular gas cylinder.

  19. Hydrogen gas storage in fluorinated ultramicroporous tunnel crystal

    Science.gov (United States)

    Kataoka, Keisuke; Katagiri, Toshimasa

    2012-07-01

    We report hydrogen storage at an ordinary pressure due to a bottle-neck effect of an ultramicroporous crystal. Stored hydrogen was kept at an ordinary pressure below -110 °C. The amounts of stored hydrogen gas linearly correlated with the initial pressures. These phenomena suggested the ultramicroporous tunnels worked as a molecular gas cylinder.We report hydrogen storage at an ordinary pressure due to a bottle-neck effect of an ultramicroporous crystal. Stored hydrogen was kept at an ordinary pressure below -110 °C. The amounts of stored hydrogen gas linearly correlated with the initial pressures. These phenomena suggested the ultramicroporous tunnels worked as a molecular gas cylinder. Electronic supplementary information (ESI) available. CCDC 246922. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c2nr30940h

  20. Adsorption process to recover hydrogen from feed gas mixtures having low hydrogen concentration

    Science.gov (United States)

    Golden, Timothy Christopher; Weist, Jr., Edward Landis; Hufton, Jeffrey Raymond; Novosat, Paul Anthony

    2010-04-13

    A process for selectively separating hydrogen from at least one more strongly adsorbable component in a plurality of adsorption beds to produce a hydrogen-rich product gas from a low hydrogen concentration feed with a high recovery rate. Each of the plurality of adsorption beds subjected to a repetitive cycle. The process comprises an adsorption step for producing the hydrogen-rich product from a feed gas mixture comprising 5% to 50% hydrogen, at least two pressure equalization by void space gas withdrawal steps, a provide purge step resulting in a first pressure decrease, a blowdown step resulting in a second pressure decrease, a purge step, at least two pressure equalization by void space gas introduction steps, and a repressurization step. The second pressure decrease is at least 2 times greater than the first pressure decrease.

  1. Incorporating in-cylinder pressure data to predict NO{sub x} emissions from spark-ignition engines fueled with landfill gas/hydrogen mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Kornbluth, Kurt; McCaffrey, Zach; Erickson, Paul A. [Department of Mechanical and Aerospace Engineering, University of California, One Shields Avenue, Davis, CA 95616 (United States)

    2009-11-15

    A 0.745 L 2-cylinder spark-ignition engine was operated with compressed natural gas and with simulated landfill gas (60% CH{sub 4} and 40% CO{sub 2} by volume) containing hydrogen concentrations of 0, 30%, 40%, and 50% (by volume of the CH{sub 4} in the fuel) at constant rpm. This empirical data was compared with predictions from three existing semi-empirical engine models, using a first-law-based finite heat release model to correlate measured in-cylinder pressure data and burn rate for each fuel mixture. Of the three models only a two zone model incorporating thermal and prompt NO{sub x} came within 25% of predicting the measured NO{sub x} emissions. (author)

  2. Discussion pressure swing adsorption technology of Butane dehydrogenation tail gas extracting hydrogen%从丁烷脱氢尾气提取氢气的变压吸附方法讨论

    Institute of Scientific and Technical Information of China (English)

    屈玉玺; 迟建光

    2015-01-01

    丁烷脱氢尾气提取氢气变压吸附技术是一种新型的气体分离技术,本文探讨从丁烷脱氢尾气提取氢气的变压吸附方法。%Butane dehydrogenation tail gas extracting hydrogen pressure swing adsorption technology is a new type of gas separation technology, this paper discusses the pressure swing adsorption method of extracting hydrogen from butane dehydrogenation tail gas.

  3. Confinement of hydrogen at high pressure in carbon nanotubes

    Science.gov (United States)

    Lassila, David H.; Bonner, Brian P.

    2011-12-13

    A high pressure hydrogen confinement apparatus according to one embodiment includes carbon nanotubes capped at one or both ends thereof with a hydrogen-permeable membrane to enable the high pressure confinement of hydrogen and release of the hydrogen therethrough. A hydrogen confinement apparatus according to another embodiment includes an array of multi-walled carbon nanotubes each having first and second ends, the second ends being capped with palladium (Pd) to enable the high pressure confinement of hydrogen and release of the hydrogen therethrough as a function of palladium temperature, wherein the array of carbon nanotubes is capable of storing hydrogen gas at a pressure of at least 1 GPa for greater than 24 hours. Additional apparatuses and methods are also presented.

  4. Reactive extraction for preparation of hydrogen peroxide under pressure

    Institute of Scientific and Technical Information of China (English)

    Yongxi CHENG; Hongtao LI; Shuxiang L(U); Li WANG

    2008-01-01

    The preparation of hydrogen peroxide from anthrahydroquinone by reactive extraction was investi-gated.The integration process of oxidation of anthrahydro-quinone by air and extraction of hydrogen peroxide from the organic phase with water was carried out in a sieve plate column under'pressure.The conversion of anthrahydroqui-none increased with increasing pressure resulting in an increase of hydrogen peroxide concentration in the aqueous phase.However,no change in extraction efficiency of hydrogen peroxide was observed.A mathematical model for gas-liquid-liquid reactive extraction was established.In the model,the effects of pressure and gas superficial velocity on reaction were considered.With increasing gas superficial velocity,the conversion of anthrahydroquinone increased,and the fraction of hydrogen peroxide extracted reached a plateau with a maximum of 72.94%.However,both the conversion of anthrahydroquinone and the traction of hydrogen peroxide extracted decreased with increasing organic phase superficial velocity.

  5. Refuelling stations for hydrogen or reformate gas

    Energy Technology Data Exchange (ETDEWEB)

    Silversand, Fredrik [CATATOR AB, Lund (Sweden)

    2006-02-15

    . At the moment, hydrogen is produced from electricity via electrolysis (Stuart engineering). The hydrogen is stored in a number of gas cylinders and hydrogen production is performed in campaigns. The atmospheric fuel-processor system will produce reformate gas, which can be injected into natural gas to produce Hythane. One disadvantage is that the Hythane will be diluted with minor amounts of carbon oxides and nitrogen. Also, the reformate gas will be supplied at a low pressure and more power must be invested to compress the gas to the storage pressure. Another problem is that this system cannot provide pure hydrogen for an emerging fuel-cell market. The pressurized system will yield pure hydrogen at an elevated pressure. This system can easily be equipped with a fuel cell (PEM) for the internal power supply. The STUR- and Hestia-units are rather equal in size and weight (220/300 kg and 500/800 litres respectively). The operability and maintenance issues are considered equal for the units. Both units can operate on gaseous and liquid fuels and the catalyst compositions are chosen to tolerate 5-10 ppm (v/v) of sulphur containing compounds. The unit shall be able to operate in temperatures ranging from -40 to 40 deg C. The unit (including safety system) shall operate autonomously and the alarm signals shall be arranged to enable an easy failure diagnosis for the operator. Based on the evaluation and review performed in this prestudy, both technical solutions (Stur and Hestia) would work in the application. There are benefits and drawbacks with both solutions. The Stur design is simpler and somewhat cheaper (no pressure vessels). The drawback is that only reformate gas can be produced and only at atmospheric pressure. The Hestia-unit, although somewhat more expensive, will produce pure hydrogen at an elevated pressure. Start-up is somewhat quicker for the atmospheric system as compared to the pressurised system. The Hestia unit will be easier to implement into the

  6. Microbial corrosion and cracking in steel. A concept for evaluation of hydrogen-assisted stress corrosion cracking in cathodically protected high-pressure gas transmission pipelines

    DEFF Research Database (Denmark)

    Nielsen, Lars Vendelbo

    of high-strength pipeline steel and the concentration of hydrogen present in the steel. B. Determine the degree hydrogen absorption by cathodically protected steel exposed in natural soil sediment, which include activity of sulphate-reducing bacteria (SRB). C. Compare the above points with fracture......An effort has been undertaken in order to develop a concept for evaluation of the risk of hydrogen-assisted cracking in cathodically protected gas transmission pipelines. The effort was divided into the following subtasks: A. Establish a correlation between the fracture mechanical properties...... in this steel....

  7. Device removes hydrogen gas from enclosed spaces

    Science.gov (United States)

    Carson, W. N.

    1966-01-01

    Hydrogen-oxidant galvanic cell removes small amounts of hydrogen gas continually released from equipment, such as vented silver-zinc batteries, in enclosed compartments where air venting is not feasible. These cells are used in satellite compartments.

  8. [High Pressure Gas Tanks

    Science.gov (United States)

    Quintana, Rolando

    2002-01-01

    Four high-pressure gas tanks, the basis of this study, were especially made by a private contractor and tested before being delivered to NASA Kennedy Space Center. In order to insure 100% reliability of each individual tank the staff at KSC decided to again submit the four tanks under more rigorous tests. These tests were conducted during a period from April 10 through May 8 at KSC. This application further validates the predictive safety model for accident prevention and system failure in the testing of four high-pressure gas tanks at Kennedy Space Center, called Continuous Hazard Tracking and Failure Prediction Methodology (CHTFPM). It is apparent from the variety of barriers available for a hazard control that some barriers will be more successful than others in providing protection. In order to complete the Barrier Analysis of the system, a Task Analysis and a Biomechanical Study were performed to establish the relationship between the degree of biomechanical non-conformities and the anomalies found within the system on particular joints of the body. This relationship was possible to obtain by conducting a Regression Analysis to the previously generated data. From the information derived the body segment with the lowest percentage of non-conformities was the neck flexion with 46.7%. Intense analysis of the system was conducted including Preliminary Hazard Analysis (PHA), Failure Mode and Effect Analysis (FMEA), and Barrier Analysis. These analyses resulted in the identification of occurrences of conditions, which may be becoming hazardous in the given system. These conditions, known as dendritics, may become hazards and could result in an accident, system malfunction, or unacceptable risk conditions. A total of 56 possible dendritics were identified. Work sampling was performed to observe the occurrence each dendritic. The out of control points generated from a Weighted c control chart along with a Pareto analysis indicate that the dendritics "Personnel not

  9. Pressure Relief Devices for High-Pressure Gaseous Storage Systems: Applicability to Hydrogen Technology

    Energy Technology Data Exchange (ETDEWEB)

    Kostival, A.; Rivkin, C.; Buttner, W.; Burgess, R.

    2013-11-01

    Pressure relief devices (PRDs) are viewed as essential safety measures for high-pressure gas storage and distribution systems. These devices are used to prevent the over-pressurization of gas storage vessels and distribution equipment, except in the application of certain toxic gases. PRDs play a critical role in the implementation of most high-pressure gas storage systems and anyone working with these devices should understand their function so they can be designed, installed, and maintained properly to prevent any potentially dangerous or fatal incidents. As such, the intention of this report is to introduce the reader to the function of the common types of PRDs currently used in industry. Since high-pressure hydrogen gas storage systems are being developed to support the growing hydrogen energy infrastructure, several recent failure incidents, specifically involving hydrogen, will be examined to demonstrate the results and possible mechanisms of a device failure. The applicable codes and standards, developed to minimize the risk of failure for PRDs, will also be reviewed. Finally, because PRDs are a critical component for the development of a successful hydrogen energy infrastructure, important considerations for pressure relief devices applied in a hydrogen gas environment will be explored.

  10. The high pressure gas Cerenkov counter at the Omega Facility.

    CERN Multimedia

    1975-01-01

    The high-pressure gas Cerenkov was used to measure reactions as pion (or kaon)- hydrogen --> forward proton - X. It was built by the Ecole Polytechnique (Palaiseu). Here Peter Sonderegger and Patrick Fleury,

  11. Hydrogen Storage in Mesoporous Materials under High Pressure

    Science.gov (United States)

    Weinberger, Michelle; Somayazulu, Maddury; Hemley, Russell

    2008-03-01

    To date, the materials considered best candidates for hydrogen storage fuel cells include activated carbon and metal organic frameworks. Both very high surface area activated carbon and MOF-5 have been shown to adsorb around 4.5 wt % of hydrogen gas at 78 K. We have investigated the fundamental structural response of these materials to high pressure, as well as their behavior at high pressure when packed with dense hydrogen. Further investigation of these materials at low temperatures while still at elevated pressures may in fact provide a route for recovery of these hydrogen-packed materials to near ambient conditions. Covalent organic frameworks offer the potential for even better hydrogen storage capacity. These materials have significantly lower densities than the MOF materials and offer a significantly larger number of adsorption sites. Diamond anvil cells are uniquely suited for the study of these materials, allowing in situ measurements at high pressure as well as at low temperatures. Using X-ray diffraction and Raman spectroscopy and Infrared Spectroscopy we probe the behavior of the hydrogen confined in these porous materials at high pressure by tracking changes in the in situ high pressure x-ray diffraction patterns and shifts in the hydrogen vibron peaks.

  12. Hydrogen storage in insulated pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Aceves, S.M.; Garcia-Villazana, O. [Lawrence Livermore National Lab., CA (United States)

    1998-08-01

    Insulated pressure vessels are cryogenic-capable pressure vessels that can be fueled with liquid hydrogen (LH{sub 2}) or ambient-temperature compressed hydrogen (CH{sub 2}). Insulated pressure vessels offer the advantages of liquid hydrogen tanks (low weight and volume), with reduced disadvantages (lower energy requirement for hydrogen liquefaction and reduced evaporative losses). This paper shows an evaluation of the applicability of the insulated pressure vessels for light-duty vehicles. The paper shows an evaluation of evaporative losses and insulation requirements and a description of the current analysis and experimental plans for testing insulated pressure vessels. The results show significant advantages to the use of insulated pressure vessels for light-duty vehicles.

  13. Large pressure range hydrogen sensor

    NARCIS (Netherlands)

    Boelsma, C.; Dam, B.

    2015-01-01

    The present invention relates to a thin-film sensor, to a method for producing a thin-film device, to an alloy for use in an optical sensing layer, to use of an alloy for sensing a chemical species such as hydrogen, to a sensor, to an apparatus for detecting hydrogen, to an electro-magnetic transfor

  14. Large pressure range hydrogen sensor

    NARCIS (Netherlands)

    Boelsma, C.; Dam, B.

    2015-01-01

    The present invention relates to a thin-film sensor, to a method for producing a thin-film device, to an alloy for use in an optical sensing layer, to use of an alloy for sensing a chemical species such as hydrogen, to a sensor, to an apparatus for detecting hydrogen, to an electro-magnetic transfor

  15. Conversion of glycerol to hydrogen rich gas.

    Science.gov (United States)

    Tran, Nguyen H; Kannangara, G S Kamali

    2013-12-21

    Presently there is a glut of glycerol as the by-product of biofuel production and it will grow as production increases. The conundrum is how we can consume this material and convert it into a more useful product. One potential route is to reform glycerol to hydrogen rich gas including synthesis gas (CO + H2) and hydrogen. However, there is recent literature on various reforming techniques which may have a bearing on the efficiency of such a process. Hence in this review reforming of glycerol at room temperature (normally photo-catalytic), catalysis at moderate and high temperature and a non-catalytic pyrolysis process are presented. The high temperature processes allow the generation of synthesis gas with the hydrogen to carbon monoxide ratios being suitable for synthesis of dimethyl ether, methanol and for the Fischer-Tropsch process using established catalysts. Efficient conversion of synthesis gas to hydrogen involves additional catalysts that assist the water gas shift reaction, or involves in situ capture of carbon dioxide and hydrogen. Reforming at reduced temperatures including photo-reforming offers the opportunity of producing synthesis gas or hydrogen using single catalysts. Together, these processes will assist in overcoming the worldwide glut of glycerol, increasing the competitiveness of the biofuel production and reducing our dependency on the fossil based, hydrogen rich gas.

  16. Adsorption of hydrogen gas and redox processes in clays.

    Science.gov (United States)

    Didier, Mathilde; Leone, Laura; Greneche, Jean-Marc; Giffaut, Eric; Charlet, Laurent

    2012-03-20

    In order to assess the adsorption properties of hydrogen gas and reactivity of adsorbed hydrogen, we measured H(2)(g) adsorption on Na synthetic montmorillonite-type clays and Callovo-Oxfordian (COx) clayrock using gas chromatography. Synthetic montmorillonites with increasing structural Fe(III) substitution (0 wt %, 3.2 wt %, and 6.4 wt % Fe) were used. Fe in the synthetic montmorillonites is principally present as structural Fe(III) ions. We studied the concomitant reduction of structural Fe(III) in the clays using (57)Fe Mössbauer spectrometry. The COx, which mainly contains smectite/illite and calcite minerals, is also studied together with the pure clay fraction of this clayrock. Experiments were performed with dry clay samples which were reacted with hydrogen gas at 90 and 120 °C for 30 to 45 days at a hydrogen partial pressure close to 0.45 bar. Results indicate that up to 0.11 wt % of hydrogen is adsorbed on the clays at 90 °C under 0.45 bar of relative pressure. (57)Fe Mössbauer spectrometry shows that up to 6% of the total structural Fe(III) initially present in these synthetic clays is reduced upon adsorption of hydrogen gas. No reduction is observed with the COx sample in the present experimental conditions.

  17. Ignition during hydrogen release from high pressure into the atmosphere

    Science.gov (United States)

    Oleszczak, P.; Wolanski, P.

    2010-12-01

    The first investigations concerned with a problem of hydrogen jet ignition, during outflow from a high-pressure vessel were carried out nearly 40 years ago by Wolanski and Wojcicki. The research resulted from a dramatic accident in the Chorzow Chemical Plant Azoty, where the explosion of a synthesis gas made up of a mixture composed of three moles of hydrogen per mole of nitrogen, at 300°C and 30 MPa killed four people. Initial investigation had excluded potential external ignition sources and the main aim of the research was to determine the cause of ignition. Hydrogen is currently considered as a potential fuel for various vehicles such as cars, trucks, buses, etc. Crucial safety issues are of potential concern, associated with the storage of hydrogen at a very high pressure. Indeed, the evidence obtained nearly 40 years ago shows that sudden rupture of a high-pressure hydrogen storage tank or other component can result in ignition and potentially explosion. The aim of the present research is identification of the conditions under which hydrogen ignition occurs as a result of compression and heating of the air by the shock wave generated by discharge of high-pressure hydrogen. Experiments have been conducted using a facility constructed in the Combustion Laboratory of the Institute of Heat Engineering, Warsaw University of Technology. Tests under various configurations have been performed to determine critical conditions for occurrence of high-pressure hydrogen ignition. The results show that a critical pressure exists, leading to ignition, which depends mainly on the geometric configuration of the outflow system, such as tube diameter, and on the presence of obstacles.

  18. Experimental Study of Gas Explosions in Hydrogen Sulfide-Natural Gas-Air Mixtures

    Directory of Open Access Journals (Sweden)

    André Vagner Gaathaug

    2014-01-01

    Full Text Available An experimental study of turbulent combustion of hydrogen sulfide (H2S and natural gas was performed to provide reference data for verification of CFD codes and direct comparison. Hydrogen sulfide is present in most crude oil sources, and the explosion behaviour of pure H2S and mixtures with natural gas is important to address. The explosion behaviour was studied in a four-meter-long square pipe. The first two meters of the pipe had obstacles while the rest was smooth. Pressure transducers were used to measure the combustion in the pipe. The pure H2S gave slightly lower explosion pressure than pure natural gas for lean-to-stoichiometric mixtures. The rich H2S gave higher pressure than natural gas. Mixtures of H2S and natural gas were also studied and pressure spikes were observed when 5% and 10% H2S were added to natural gas and also when 5% and 10% natural gas were added to H2S. The addition of 5% H2S to natural gas resulted in higher pressure than pure H2S and pure natural gas. The 5% mixture gave much faster combustion than pure natural gas under fuel rich conditions.

  19. Technology of separation of hydrogen from coke oven gas

    Energy Technology Data Exchange (ETDEWEB)

    Budner, Z.; Morawiec, B.

    1989-01-01

    A process to beindustrialised at the Zdzieszowice coking plant and Kedzierzyn fertiliser works is described. Coke oven gas is scrubbed with methanol and subjected to pressure-swing adsorption. The hydrogen-rich fraction is converted with steam to reduce its CO content and then subjected again to pressure-swing adsorption. The methane-rich fraction from the first PSA stage is processed to 90% CH{sub 4} and a fraction containing 35% ethylene and 10% ethane.

  20. Evaporation in equilibrium, in vacuum, and in hydrogen gas

    Science.gov (United States)

    Nagahara, Hiroko

    1993-01-01

    Evaporation experiments were conducted for SiO2 in three different conditions: in equilibrium, in vacuum, and in hydrogen gas. Evaporation rate in vacuum is about two orders of magnitude smaller than that in equilibrium, which is consistent with previous works. The rate in hydrogen gas changes depending on hydrogen pressure. The rate at 10 exp -7 bar of hydrogen pressure is as small as that of free evaporation, but at 10 exp -5 bar of hydrogen pressure it is larger than that in equilibrium. In equilibrium and in vacuum, the evaporation rate is limited by decomposition of SiO2 on the crystal surface, but it is limited by a diffusion process for evaporation in hydrogen gas. Therefore, evaporation rate of minerals in the solar nebula can be shown neither by that in equilibrium nor by that in vacuum. The maximum temperature of the solar nebula at the midplane at 2-3 AU where chondrites are believed to have originated is calculated to be as low as 150 K, 1500 K, or in between them. The temperature is, in any case, not high enough for total evaporation of the interstellar materials. Therefore, evaporation of interstellar materials is one of the most important processes for the origin and fractionation of solid materials. The fundamental process of evaporation of minerals has been intensively studied for these several years. Those experiments were carried out either in equilibrium or in vacuum; however, evaporation in the solar nebula is in hydrogen (and much smaller amount of helium) gas. In order to investigate evaporation rate and compositional (including isotopic) fractionation during evaporation, vaporization experiments for various minerals in various conditions are conducted. At first, SiO2 was adopted for a starting material, because thermochemical data and its nature of congruent vaporization are well known. Experiments were carried out in a vacuum furnace system.

  1. Miniature fuel cells relieve gas pressure in sealed batteries

    Science.gov (United States)

    Frank, H. A.

    1971-01-01

    Miniature fuel cells within sealed silver zinc batteries consume evolved hydrogen and oxygen rapidly, preventing pressure rupturing. They do not significantly increase battery weight and they operate in all battery life phases. Complete gas pressure control requires two fuel cells during all phases of operation of silver zinc batteries.

  2. Integrated Mirco-Machined Hydrogen Gas Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Frank DiMeoJr. Ing--shin Chen

    2005-12-15

    The widespread use of hydrogen as both an industrial process gas and an energy storage medium requires fast, selective detection of hydrogen gas. This report discusses the development of a new type of solid-state hydrogen gas sensor that couples novel metal hydride thin films with a MEMS (Micro-Electro-Mechanical System) structure known as a micro-hotplate. In this project, Micro-hotplate structures were overcoated with engineered multilayers that serve as the active hydrogen-sensing layer. The change in electrical resistance of these layers when exposed to hydrogen gas was the measured sensor output. This project focused on achieving the following objectives: (1) Demonstrating the capabilities of micro-machined H2 sensors; (2) Developing an understanding of their performance; (3) Critically evaluating the utility and viability of this technology for life safety and process monitoring applications. In order to efficiently achieve these objectives, the following four tasks were identified: (1) Sensor Design and Fabrication; (2) Short Term Response Testing; (3) Long Term Behavior Investigation; (4) Systems Development. Key findings in the project include: The demonstration of sub-second response times to hydrogen; measured sensitivity to hydrogen concentrations below 200 ppm; a dramatic improvement in the sensor fabrication process and increased understanding of the processing properties and performance relationships of the devices; the development of improved sensing multilayers; and the discovery of a novel strain based hydrogen detection mechanism. The results of this program suggest that this hydrogen sensor technology has exceptional potential to meet the stringent demands of life safety applications as hydrogen utilization and infrastructure becomes more prevalent.

  3. Integrated Mirco-Machined Hydrogen Gas Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Frank DiMeoJr. Ing--shin Chen

    2005-12-15

    The widespread use of hydrogen as both an industrial process gas and an energy storage medium requires fast, selective detection of hydrogen gas. This report discusses the development of a new type of solid-state hydrogen gas sensor that couples novel metal hydride thin films with a MEMS (Micro-Electro-Mechanical System) structure known as a micro-hotplate. In this project, Micro-hotplate structures were overcoated with engineered multilayers that serve as the active hydrogen-sensing layer. The change in electrical resistance of these layers when exposed to hydrogen gas was the measured sensor output. This project focused on achieving the following objectives: (1) Demonstrating the capabilities of micro-machined H2 sensors; (2) Developing an understanding of their performance; (3) Critically evaluating the utility and viability of this technology for life safety and process monitoring applications. In order to efficiently achieve these objectives, the following four tasks were identified: (1) Sensor Design and Fabrication; (2) Short Term Response Testing; (3) Long Term Behavior Investigation; (4) Systems Development. Key findings in the project include: The demonstration of sub-second response times to hydrogen; measured sensitivity to hydrogen concentrations below 200 ppm; a dramatic improvement in the sensor fabrication process and increased understanding of the processing properties and performance relationships of the devices; the development of improved sensing multilayers; and the discovery of a novel strain based hydrogen detection mechanism. The results of this program suggest that this hydrogen sensor technology has exceptional potential to meet the stringent demands of life safety applications as hydrogen utilization and infrastructure becomes more prevalent.

  4. Prediction of Production Power for High-pressure Hydrogen by High-pressure Water Electrolysis

    Science.gov (United States)

    Kyakuno, Takahiro; Hattori, Kikuo; Ito, Kohei; Onda, Kazuo

    Recently the high attention for fuel cell electric vehicle (FCEV) is pushing to construct the hydrogen supplying station for FCEV in the world. The hydrogen pressure supplied at the current test station is intended to be high for increasing the FCEV’s driving distance. The water electrolysis can produce cleanly the hydrogen by utilizing the electricity from renewable energy without emitting CO2 to atmosphere, when it is compared to be the popular reforming process of fossil fuel in the industry. The power required for the high-pressure water electrolysis, where water is pumped up to high-pressure, may be smaller than the power for the atmospheric water electrolysis, where the produced atmospheric hydrogen is pumped up by compressor, since the compression power for water is much smaller than that for hydrogen gas. In this study the ideal water electrolysis voltage up to 70MPa and 523K is estimated referring to both the results by LeRoy et al up to 10MPa and 523K, and to the latest steam table. By using this high-pressure water electrolysis voltage, the power required for high-pressure hydrogen produced by the high-pressure water electrolysis method is estimated to be about 5% smaller than that by the atmospheric water electrolysis method, by assuming the compressor and pump efficiency of 50%.

  5. Delivery of cold hydrogen in glass fiber composite pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Weisberg, Andrew H.; Aceves, Salvador M.; Espinosa-Loza, Francisco; Ledesma-Orozco, Elias; Myers, Blake [Lawrence Livermore National Laboratory, Engineering, 7000 East Avenue L-792, Livermore, CA 94551 (United States)

    2009-12-15

    We are proposing to minimize hydrogen delivery cost through utilization of glass fiber tube trailers at 200 K and 70 MPa to produce a synergistic combination of container characteristics with properties of hydrogen gas: (1) hydrogen cooled to 200 K is {proportional_to}35% more compact for a small increase in theoretical storage energy (exergy); and (2) these cold temperatures (200 K) strengthen glass fibers by as much as 50%, expanding trailer capacity without the use of much more costly carbon fiber composite vessels. Analyses based on US Department of Energy H2A cost and efficiency parameters and economic methodology indicate the potential for hydrogen delivery costs below $1/kg H{sub 2}. Dispensing cold hydrogen may also allow rapid refueling without overtemperatures and overpressures which are typically as high as 25%, simplifying automotive vessel design and improving safety while potentially reducing vessel weight and cost. Based on these results, we suggest hydrogen delivery by truck with trailers carrying hydrogen gas at pressures as high as 70 MPa, cooled to approximately 200 K in glass fiber vessels. (author)

  6. Effects of gas types and models on optimized gas fuelling station reservoir's pressure

    OpenAIRE

    M. Farzaneh-Gord; M. Deymi-Dashtebayaz; Rahbari,H. R.

    2013-01-01

    There are similar algorithms and infrastructure for storing gas fuels at CNG (Compressed Natural Gas) and CHG (Compressed Hydrogen Gas) fuelling stations. In these stations, the fuels are usually stored in the cascade storage system to utilize the stations more efficiently. The cascade storage system generally divides into three reservoirs, commonly termed low, medium and high-pressure reservoirs. The pressures within these reservoirs have huge effects on performance of the stations. In the c...

  7. Field test of hydrogen in the natural gas grid

    Energy Technology Data Exchange (ETDEWEB)

    Iskov, H.

    2010-08-15

    line in the early 1980'ies. These pipe sections were exposed to pressure variations equal to twice the maximum daily swing in the Danish gas transmission grid. The number of pressure variations equals 80 years of operation. The results of analysing the weldings afterwards show no growths in defects. If the pipe sections available for the test are representative for the Danish gas transmission grid, the test result indicates that hydrogen can be compatible with the pressure swing in the gas transmission grid. (Author)

  8. Pressurization and expulsion of a flightweight liquid hydrogen tank

    Science.gov (United States)

    Vandresar, N. T.; Stochl, R. J.

    1993-01-01

    Experimental results are presented for pressurization and expulsion of a flight-weight 4.89 cu m liquid hydrogen storage tank under normal gravity conditions. Pressurization and expulsion times are parametrically varied to study the effects of longer transfer times expected in future space flight applications. It is found that the increase in pressurant consumption with increased operational time is significant at shorter pressurization or expulsion durations and diminishes as the duration lengthens. Gas-to-wall heat transfer in the ullage is the dominant mode of energy exchange, with more than 50 percent of the pressurant energy being lost to tank wall heating in expulsions and the long duration pressurizations. Advanced data analysis will require a multidimensional approach combined with improved measurement capabilities of liquid-vapor interfacial transport phenomena.

  9. Numerical analysis of accidental hydrogen releases from high pressure storage at low temperatures

    DEFF Research Database (Denmark)

    Markert, Frank; Melideo, Daniele; Baraldi, Daniele

    2014-01-01

    ) and temperatures (down to 20 K), e.g. cryogenic compressed gas storage covers pressures up to 35 MPa and temperatures between 33 K and 338 K. Accurate calculations of high pressure releases require real gas EOS. This paper compares a number of EOS to predict hydrogen properties typical in different storage types...

  10. Uncertainties in risk assessment of hydrogen discharges from pressurized storage vessels at low temperatures

    DEFF Research Database (Denmark)

    Markert, Frank; Melideo, D.; Baraldi, D.

    2013-01-01

    20K) e.g. the cryogenic compressed gas storage covers pressures up to 35 MPa and temperatures between 33K and 338 K. Accurate calculations of high pressure releases require real gas EOS. This paper compares a number of EOS to predict hydrogen properties typical in different storage types. The vessel...

  11. Enhanced-hydrogen gas production through underground gasification of lignite

    Institute of Scientific and Technical Information of China (English)

    LIU Shu-qin; WANG Yuan-yuan; ZHAO Ke; YANG Ning

    2009-01-01

    Underground coal gasification is one of the clean technologies of in-situ coal utilization. Hydrogen production from underground gasification of lignite was investigated in this study based on simulation experiments. Pyrolysis of lignite, gasification activity, oxygen-steam gasification and the effect of groundwater influx were studied. As well, the advantages of lignite for stable underground gasification were analyzed. The results indicate that lignite has a high activity for gasification. Coal pyrolysis is an important source of hydrogen emission. Under special heating conditions, hydrogen is released from coal seams at temperatures above 350 ℃ and reaches its maximum value between 725 and 825 ℃. Gas with a hydrogen concentration of 40% to 50% can be continuously obtained by oxygen-steam injection at an optimum ratio of steam to oxygen, while lignite properties will ensure stable gasification. Groundwater influx can be utilized for hydrogen preparation under certain geological conditions through pressure control. Therefore, enhanced-hydrogen gas production through underground gasification of lignite has experimentally been proved.

  12. Compressorless Gas Storage and Regenerative Hydrogen Purification Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Microwave regenerative sorption media gas storage/delivery techniques are proposed to address both compressed gas management and hydrogen purification requirements...

  13. Low-pressure hydrogen plasmas explored using a global model

    Science.gov (United States)

    Samuell, Cameron M.; Corr, Cormac S.

    2016-02-01

    Low-pressure hydrogen plasmas have found applications in a variety of technology areas including fusion, neutral beam injection and material processing applications. To better understand these discharges, a global model is developed to predict the behaviour of electrons, ground-state atomic and molecular hydrogen, three positive ion species (H+, \\text{H}2+ , and \\text{H}3+ ), a single negative ion species (H-), and fourteen vibrationally excited states of molecular hydrogen ({{\\text{H}}2}≤ft(\\upsilon =1\\right. -14)). The model is validated by comparison with experimental results from a planar inductively coupled GEC reference cell and subsequently applied to the MAGPIE linear helicon reactor. The MAGPIE reactor is investigated for a range of pressures from 1 to 100 mTorr and powers up to 5 kW. With increasing power between 50 W and 5 kW at 10 mTorr the density of all charged species increases as well as the dissociative fraction while the electron temperature remains almost constant at around 3 eV. For gas pressures from 1-100 mTorr at an input power of 1 kW, the electron density remains almost constant, the electron temperature and dissociative fraction decreases, while \\text{H}3+ density increases in density and also dominates amongst ion species. Across these power and pressure scans, electronegativity remains approximately constant at around 2.5%. The power and pressure determines the dominant ion species in the plasma with \\text{H}3+ observed to dominate at high pressures and low powers whereas H+ tends to be dominant at low pressures and high powers. A sensitivity analysis is used to demonstrate how experimental parameters (power, pressure, reactor wall material, geometry etc) influence individual species’ density as well as the electron temperature. Physical reactor changes including the length, radius and wall recombination coefficient are found to have the largest influence on outputs obtained from the model.

  14. Hydrogen interaction with intermetallic compounds and alloys at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Mitrokhin, S., E-mail: mitrokhin@hydride.chem.msu.ru; Zotov, T.; Movlaev, E.; Verbetsky, V.

    2013-12-15

    Highlights: •New hydrides of alloys previously considered as nonhydride-forming were obtained. •New phase transitions of hydrides at high pressure were found. •New materials for metal-hydride compressors were identified. -- Abstract: The paper presents a review of the recent work done in MSU on intermetallic hydrides with high dissociation pressure. Hydrogen sorption properties of a large variety of AB{sub 5}, AB{sub 2} and BCC intermetallic compounds and alloys were studied at pressures up to 3000 atm. Several new intermetallic hydrides with potential application in high-capacity hydrogen storage devices have been identified for the first time and fully characterised using a gas-volumetric analytical technique in a unique high-pressure apparatus. Basing on the experimental and literature results the relationships between hydrogen absorption capacity, thermodynamic parameters of interaction and composition of alloys were established. Obtained results provide a good perspective for practical application of the studied hydrides especially in metal-hydride compressors.

  15. Probing Hydrogen Diffusion under High Pressure

    Science.gov (United States)

    Bove, L. E.; Klotz, S.; Strassle, T.; Saitta, M.

    2012-12-01

    The study of the microscopic mechanism governing hydrogen and hydrogen-based liquids (as water, ammonia and methane) diffusion is crucial for a variety of scientific issues spanning most of natural sciences. As an example, characterizing hydrogen diffusion in a confined medium, like in porous systems or zeolites, is fundamental in problems relating to environment, hydrogen storage and industrial applications [1]. The presence of water diffusion in the minerals of the Earth's mantle have strong incidence on the processes governing volcanic eruptions and intermediate-depth seismicity. As last example, knowing in details the microscopic dynamics of hydrogen-based simple liquids under extreme conditions is essential in order to interpret observations and develop models of planet interiors [2]. On the other hand, water and other simple hydrogen-based liquids have always been key systems in the development of modern condensed-matter physics, because of their simple electronic structure and the peculiar properties deriving from the hydrogen-bond network. Their high compressibility and chemical reactivity have made these systems very challenging to study experimentally under static high P-T conditions. In the last few years, a large effort has been undertaken by several groups around the world [2] to extend the static and dynamic techniques to high temperatures and pressures, a program in which our group has been actively involved [3-6]. However, while the structure of water and other hydrogenated liquids of geological interest, is now known up to almost 20 GPa, the study of their transport properties greatly lags behind. We have recently developed a new large-volume gasket-anvil ensemble for the Paris-Edinburgh press based on a novel toroidal design [7], which allows to perform quasi elastic neutron scattering measurements on hydrogen based liquids up to one order of magnitude higher pressures (5 GPa) respect to what was achievable with standard methods [8]. The large

  16. Hydrogen termination of CVD diamond films by high-temperature annealing at atmospheric pressure

    NARCIS (Netherlands)

    Seshan, V.; Ullien, D.; Castellanos-Gomez, A.; Sachdeva, S.; Murthy, D.H.K.; Savenije, T.J.; Ahmad, H.A.; Nunney, T.S.; Janssens, S.D.; Haenen, K.; Nesládek, M.; Van der Zant, H.S.J.; Sudhölter, E.J.R.; De Smet, L.C.P.M.

    2013-01-01

    A high-temperature procedure to hydrogenate diamond films using molecular hydrogen at atmospheric pressure was explored. Undoped and doped chemical vapour deposited (CVD) polycrystalline diamond films were treated according to our annealing method using a H2 gas flow down to ∼50 ml/min (STP) at ∼850

  17. Sensoring hydrogen gas concentration using electrolyte made of proton

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, Yoshikatsu [Kyoto University, Japan; Kolesnikov, Alexander I [ORNL; Koyanaka, Hideki [Kyoto University, Japan

    2011-01-01

    Hydrogen gas promises to be a major clean fuel in the near future. Thus, sensors that can measure the concentrations of hydrogen gas over a wide dynamic range (e.g., 1 99.9%) are in demand for the production, storage, and utilization of hydrogen gas. However, it is difficult to directly measure hydrogen gas concentrations greater than 10% using conventional sensor [1 11]. We report a simple sensor using an electrolyte made of proton conductive manganese dioxide that enables in situmeasurements of hydrogen gas concentration over a wide range of 0.1 99.9% at room temperature.

  18. Gettering of hydrogen from Zr-2. 5Nb pressure tubes

    Energy Technology Data Exchange (ETDEWEB)

    Cann, C.D.; Sexton, E.E.; Bahurmuz, A.A.; White, A.J.; Balness, H.R.; Ledoux, G.A. (AECL Research, Whiteshell Labs., Pinawa, Manitoba (Canada))

    1991-09-10

    Yttrium is being investigated as a hydrogen getter to prevent delayed hydride cracking in Zr-2.5Nb pressure tubes in CANDU nuclear reactors. Yttrium strips have been encapsulated in zirconium alloy and attached to the ends of hydrided pressure tube sections to determine the effect of the degree of contact between the yttrium and the encapsulation on the gettering rate. Rates for strips hot isostatically pressed into the encapsulation were in good agreement with diffusion model predictions assuming complete contact. Rates for strips brought into contact by cold rolling were slightly lower than those for the hot-pressed strips, while little gettering was observed for loose strips sealed in the encapsulation by tungsten-inert gas welding. The effect of hydrogen flux rate to the yttrium on gettering was determined at 313degC for hydrogen fluxes from three to nine times those predicted in reactor. It was found that these fluxes did not affect the gettering rate for hydrogen concentrations up to 58 at.% in the hot isostatically pressed yttrium inserts. Inserts that were thermally cycled and inserts that had not been hot pressed achieved similar gettering rates. (orig.).

  19. Advanced Approaches to Greatly Reduce Hydrogen Gas Crossover Losses in PEM Electrolyzers Operating at High Pressures and Low Current Densities Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ElectroChem proposes a Phase II program to advance its very successful SBIR Phase I technology effort to the point of minimum hydrogen loss through the electrolyzer...

  20. Theory of high pressure hydrogen, made simple

    CERN Document Server

    Magdau, Ioan B; Ackland, Graeme J

    2015-01-01

    Phase I of hydrogen has several peculiarities. Despite having a close-packed crystal structure, it is less dense than either the low temperature Phase II or the liquid phase. At high pressure, it transforms into either phase III or IV, depending on the temperature. Moreover, spectroscopy suggests that the quantum rotor behaviour disappears with pressurisation, without any apparent phase transition. Here we present a simple thermodynamic model for this behaviour based on packing atoms and molecules and discuss the thermodynamics of the phase boundaries. We also report first principles molecular dynamics calculations for a more detailed look at the same phase transitions.

  1. Effects of gas types and models on optimized gas fuelling station reservoir's pressure

    Directory of Open Access Journals (Sweden)

    M. Farzaneh-Gord

    2013-06-01

    Full Text Available There are similar algorithms and infrastructure for storing gas fuels at CNG (Compressed Natural Gas and CHG (Compressed Hydrogen Gas fuelling stations. In these stations, the fuels are usually stored in the cascade storage system to utilize the stations more efficiently. The cascade storage system generally divides into three reservoirs, commonly termed low, medium and high-pressure reservoirs. The pressures within these reservoirs have huge effects on performance of the stations. In the current study, based on the laws of thermodynamics, conservation of mass and real/ideal gas assumptions, a theoretical analysis has been constructed to study the effects of gas types and models on performance of the stations. It is intended to determine the optimized reservoir pressures for these stations. The results reveal that the optimized pressure differs between the gas types. For ideal and real gas models in both stations (CNG and CHG, the optimized non-dimensional low pressure-reservoir pressure is found to be 0.22. The optimized non-dimensional medium-pressure reservoir pressure is the same for the stations, and equal to 0.58.

  2. Spectroscopic and thermodynamic properties of molecular hydrogen dissolved in water at pressures up to 200 MPa

    Energy Technology Data Exchange (ETDEWEB)

    Borysow, Jacek, E-mail: jborysow@mtu.edu; Rosso, Leonardo del; Celli, Milva; Ulivi, Lorenzo, E-mail: lorenzo.ulivi@isc.cnr.it [Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, Via Madonna del piano 10, I-50019 Sesto Fiorentino (Italy); Moraldi, Massimo [Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino (Italy)

    2014-04-28

    We have measured the Raman Q-branch of hydrogen in a solution with water at a temperature of about 280 K and at pressures from 20 to 200 MPa. From a least-mean-square fitting analysis of the broad Raman Q-branch, we isolated the contributions from the four lowest individual roto-vibrational lines. The vibrational lines were narrower than the pure rotational Raman lines of hydrogen dissolved in water measured previously, but significantly larger than in the gas. The separations between these lines were found to be significantly smaller than in gaseous hydrogen and their widths were slightly increasing with pressure. The lines were narrowing with increasing rotational quantum number. The Raman frequencies of all roto-vibrational lines were approaching the values of gas phase hydrogen with increasing pressure. Additionally, from the comparison of the integrated intensity signal of Q-branch of hydrogen to the integrated Raman signal of the water bending mode, we have obtained the concentration of hydrogen in a solution with water along the 280 K isotherm. Hydrogen solubility increases slowly with pressure, and no deviation from a smooth behaviour was observed, even reaching thermodynamic conditions very close to the transition to the stable hydrogen hydrate. The analysis of the relative hydrogen concentration in solution on the basis of a simple thermodynamic model has allowed us to obtain the molar volume for the hydrogen gas/water solution. Interestingly, the volume relative to one hydrogen molecule in solution does not decrease with pressure and, at high pressure, is larger than the volume pertinent to one molecule of water. This is in favour of the theory of hydrophobic solvation, for which a larger and more stable structure of the water molecules is expected around a solute molecule.

  3. Spectroscopic and thermodynamic properties of molecular hydrogen dissolved in water at pressures up to 200 MPa.

    Science.gov (United States)

    Borysow, Jacek; del Rosso, Leonardo; Celli, Milva; Moraldi, Massimo; Ulivi, Lorenzo

    2014-04-28

    We have measured the Raman Q-branch of hydrogen in a solution with water at a temperature of about 280 K and at pressures from 20 to 200 MPa. From a least-mean-square fitting analysis of the broad Raman Q-branch, we isolated the contributions from the four lowest individual roto-vibrational lines. The vibrational lines were narrower than the pure rotational Raman lines of hydrogen dissolved in water measured previously, but significantly larger than in the gas. The separations between these lines were found to be significantly smaller than in gaseous hydrogen and their widths were slightly increasing with pressure. The lines were narrowing with increasing rotational quantum number. The Raman frequencies of all roto-vibrational lines were approaching the values of gas phase hydrogen with increasing pressure. Additionally, from the comparison of the integrated intensity signal of Q-branch of hydrogen to the integrated Raman signal of the water bending mode, we have obtained the concentration of hydrogen in a solution with water along the 280 K isotherm. Hydrogen solubility increases slowly with pressure, and no deviation from a smooth behaviour was observed, even reaching thermodynamic conditions very close to the transition to the stable hydrogen hydrate. The analysis of the relative hydrogen concentration in solution on the basis of a simple thermodynamic model has allowed us to obtain the molar volume for the hydrogen gas/water solution. Interestingly, the volume relative to one hydrogen molecule in solution does not decrease with pressure and, at high pressure, is larger than the volume pertinent to one molecule of water. This is in favour of the theory of hydrophobic solvation, for which a larger and more stable structure of the water molecules is expected around a solute molecule.

  4. High Pressure Hydrogen from First Principles

    Science.gov (United States)

    Morales, M. A.

    2014-12-01

    Typical approximations employed in first-principles simulations of high-pressure hydrogen involve the neglect of nuclear quantum effects (NQE) and the approximate treatment of electronic exchange and correlation, typically through a density functional theory (DFT) formulation. In this talk I'll present a detailed analysis of the influence of these approximations on the phase diagram of high-pressure hydrogen, with the goal of identifying the predictive capabilities of current methods and, at the same time, making accurate predictions in this important regime. We use a path integral formulation combined with density functional theory, which allows us to incorporate NQEs in a direct and controllable way. In addition, we use state-of-the-art quantum Monte Carlo calculations to benchmark the accuracy of more approximate mean-field electronic structure calculations based on DFT, and we use GW and hybrid DFT to calculate the optical properties of the solid and liquid phases near metallization. We present accurate predictions of the metal-insulator transition on the solid, including structural and optical properties of the molecular phase. This work was supported by the U.S. Department of Energy at the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and by LDRD Grant No. 13-LW-004.

  5. Advanced IGCC/Hydrogen Gas Turbine Development

    Energy Technology Data Exchange (ETDEWEB)

    York, William [General Electric Company, Schenectady, NY (United States); Hughes, Michael [General Electric Company, Schenectady, NY (United States); Berry, Jonathan [General Electric Company, Schenectady, NY (United States); Russell, Tamara [General Electric Company, Schenectady, NY (United States); Lau, Y. C. [General Electric Company, Schenectady, NY (United States); Liu, Shan [General Electric Company, Schenectady, NY (United States); Arnett, Michael [General Electric Company, Schenectady, NY (United States); Peck, Arthur [General Electric Company, Schenectady, NY (United States); Tralshawala, Nilesh [General Electric Company, Schenectady, NY (United States); Weber, Joseph [General Electric Company, Schenectady, NY (United States); Benjamin, Marc [General Electric Company, Schenectady, NY (United States); Iduate, Michelle [General Electric Company, Schenectady, NY (United States); Kittleson, Jacob [General Electric Company, Schenectady, NY (United States); Garcia-Crespo, Andres [General Electric Company, Schenectady, NY (United States); Delvaux, John [General Electric Company, Schenectady, NY (United States); Casanova, Fernando [General Electric Company, Schenectady, NY (United States); Lacy, Ben [General Electric Company, Schenectady, NY (United States); Brzek, Brian [General Electric Company, Schenectady, NY (United States); Wolfe, Chris [General Electric Company, Schenectady, NY (United States); Palafox, Pepe [General Electric Company, Schenectady, NY (United States); Ding, Ben [General Electric Company, Schenectady, NY (United States); Badding, Bruce [General Electric Company, Schenectady, NY (United States); McDuffie, Dwayne [General Electric Company, Schenectady, NY (United States); Zemsky, Christine [General Electric Company, Schenectady, NY (United States)

    2015-07-30

    The objective of this program was to develop the technologies required for a fuel flexible (coal derived hydrogen or syngas) gas turbine for IGCC that met DOE turbine performance goals. The overall DOE Advanced Power System goal was to conduct the research and development (R&D) necessary to produce coal-based IGCC power systems with high efficiency, near-zero emissions, and competitive capital cost. To meet this goal, the DOE Fossil Energy Turbine Program had as an interim objective of 2 to 3 percentage points improvement in combined cycle (CC) efficiency. The final goal is 3 to 5 percentage points improvement in CC efficiency above the state of the art for CC turbines in IGCC applications at the time the program started. The efficiency goals were for NOx emissions of less than 2 ppm NOx (@15 % O2). As a result of the technologies developed under this program, the DOE goals were exceeded with a projected 8 point efficiency improvement. In addition, a new combustion technology was conceived of and developed to overcome the challenges of burning hydrogen and achieving the DOE’s NOx goal. This report also covers the developments under the ARRA-funded portion of the program that include gas turbine technology advancements for improvement in the efficiency, emissions, and cost performance of gas turbines for industrial applications with carbon capture and sequestration. Example applications could be cement plants, chemical plants, refineries, steel and aluminum plants, manufacturing facilities, etc. The DOE’s goal for more than 5 percentage point improvement in efficiency was met with cycle analyses performed for representative IGCC Steel Mill and IGCC Refinery applications. Technologies were developed in this program under the following areas: combustion, larger latter stage buckets, CMC and EBC, advanced materials and coatings, advanced configurations to reduce cooling, sealing and rotor purge flows, turbine aerodynamics, advanced sensors, advancements in first

  6. Visualizations of Gas fuel Jet and Combustion Flame on Hydrogen Rotary Engine

    OpenAIRE

    田端, 道彦; 香川, 良二

    2011-01-01

    [Abstract] In this paper, it is a purpose to obtain basic information of a hydrogen jet and combustion flame characteristics of the hydrogen rotary engine. The jet characteristics of the hydrogen gas injector were measured by using the high-speed shadowgraph method. As the result, the jet penetration of the low density gas was weak. The mixing of the direction of the jet axis was disturbed for the low jet pressure. Next, the combustion flame propagation of the hydrogen rotary engine was visua...

  7. a Study of Using Hydrogen Gas for Steam Boiler in CHOLOR- Alkali Manufacturing

    Science.gov (United States)

    Peantong, Sasitorn; Tangjitsitcharoen, Somkiat

    2017-06-01

    Main products of manufacturing of Cholor - Alkali, which commonly known as industrial chemical, are chlorine gas (Cl2), Sodium Hydroxide (NaOH) and hydrogen gas (H2). Chorine gas and sodium hydroxide are two main products for commercial profit; where hydrogen gas is by product. Most industries release hydrogen gas to atmosphere as it is non-profitable and less commercial scale. This study aims to make the most use of hydrogen as a substitute energy of natural gas for steam boiler to save energy cost. The second target of this study is to reduce level of CO2 release to air as a consequence of boiler combustion. This study suggests to install boiler that bases on hydrogen as main power with a high turndown ratio of at least 1:6. However, this case study uses boiler with two mode such as natural gas (NG) mode and mixed mode as they need to be flexible for production. Never the less, the best boiler selection is to use single mode energy of hydrogen. The most concerned issue about hydrogen gas is explosion during combustion stage. Stabilization measures at emergency stop is introduced to control H2 pressure to protect the explosion. This study varies ratio of natural gas to hydrogen gas to find the optimal level of two energy sources for boiler and measure total consumption through costing model; where CO2 level is measured at the boiler stack. The result of this study shows that hydrogen gas can be a substitute energy with natural gas and can reduce cost. Natural gas cost saving is 248,846 baht per month and reduce level of NOx is 80 ppm 7% O2 and 2 % of CO2 release to air as a consequence of boiler combustion.

  8. Sensor for measuring hydrogen partial pressure in parabolic trough power plant expansion tanks

    Science.gov (United States)

    Glatzmaier, Greg C.; Cooney, Daniel A.

    2017-06-01

    The National Renewable Energy Laboratory and Acciona Energy North America are working together to design and implement a process system that provides a permanent solution to the issue of hydrogen buildup at parabolic trough power plants. We are pursuing a method that selectively removes hydrogen from the expansion tanks that serve as reservoirs for the heat transfer fluid (HTF) that circulates in the collector field and power block components. Our modeling shows that removing hydrogen from the expansion tanks at a design rate reduces and maintains dissolved hydrogen in the circulating HTF to a selected target level. Our collaborative work consists of several tasks that are needed to advance this process concept to a development stage, where it is ready for implementation at a commercial power plant. Our main effort is to design and evaluate likely process-unit operations that remove hydrogen from the expansion tanks at a specified rate. Additionally, we designed and demonstrated a method and instrumentation to measure hydrogen partial pressure and concentration in the expansion-tank headspace gas. We measured hydrogen partial pressure in the headspace gas mixture using a palladium-alloy membrane, which is permeable exclusively to hydrogen. The membrane establishes a pure hydrogen gas phase that is in equilibrium with the hydrogen in the gas mixture. We designed and fabricated instrumentation, and demonstrated its effectiveness in measuring hydrogen partial pressures over a range of three orders of magnitude. Our goal is to install this instrument at the Nevada Solar One power plant and to demonstrate its effectiveness in measuring hydrogen levels in the expansion tanks under normal plant operating conditions.

  9. Sensor for Measuring Hydrogen Partial Pressure in Parabolic Trough Power Plant Expansion Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Glatzmaier, Greg C.; Cooney, Daniel A.

    2017-06-27

    The National Renewable Energy Laboratory and Acciona Energy North America are working together to design and implement a process system that provides a permanent solution to the issue of hydrogen buildup at parabolic trough power plants. We are pursuing a method that selectively removes hydrogen from the expansion tanks that serve as reservoirs for the heat transfer fluid (HTF) that circulates in the collector field and power block components. Our modeling shows that removing hydrogen from the expansion tanks at a design rate reduces and maintains dissolved hydrogen in the circulating HTF to a selected target level. Our collaborative work consists of several tasks that are needed to advance this process concept to a development stage, where it is ready for implementation at a commercial power plant. Our main effort is to design and evaluate likely process-unit operations that remove hydrogen from the expansion tanks at a specified rate. Additionally, we designed and demonstrated a method and instrumentation to measure hydrogen partial pressure and concentration in the expansion-tank headspace gas. We measured hydrogen partial pressure in the headspace gas mixture using a palladium-alloy membrane, which is permeable exclusively to hydrogen. The membrane establishes a pure hydrogen gas phase that is in equilibrium with the hydrogen in the gas mixture. We designed and fabricated instrumentation, and demonstrated its effectiveness in measuring hydrogen partial pressures over a range of three orders of magnitude. Our goal is to install this instrument at the Nevada Solar One power plant and to demonstrate its effectiveness in measuring hydrogen levels in the expansion tanks under normal plant operating conditions.

  10. High Pressure Hydrogen Materials Compatibility of Piezoelectric Films

    Energy Technology Data Exchange (ETDEWEB)

    Alvine, Kyle J.; Shutthanandan, V.; Bennett, Wendy D.; Bonham, Charles C.; Skorski, Daniel C.; Pitman, Stan G.; Dahl, Michael E.; Henager, Charles H.

    2010-12-02

    Abstract: Hydrogen is being considered as a next-generation clean burning fuel. However, hydrogen has well known materials issues, including blistering and embrittlement in metals. Piezoelectric materials are used as actuators in hydrogen fuel technology. We present studies of materials compatibility of piezoelectric films in a high pressure hydrogen environment. Absorption of high pressure hydrogen was studied with Elastic Recoil Detection Analysis (ERDA) and Rutherford Back Scattering (RBS) in lead zirconate titanate (PZT) and barium titanate (BTO) thin films. Hydrogen surface degradation in the form of blistering and Pb mixing was also observed.

  11. Low Cost, High Efficiency, High Pressure Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Mark Leavitt

    2010-03-31

    A technical and design evaluation was carried out to meet DOE hydrogen fuel targets for 2010. These targets consisted of a system gravimetric capacity of 2.0 kWh/kg, a system volumetric capacity of 1.5 kWh/L and a system cost of $4/kWh. In compressed hydrogen storage systems, the vast majority of the weight and volume is associated with the hydrogen storage tank. In order to meet gravimetric targets for compressed hydrogen tanks, 10,000 psi carbon resin composites were used to provide the high strength required as well as low weight. For the 10,000 psi tanks, carbon fiber is the largest portion of their cost. Quantum Technologies is a tier one hydrogen system supplier for automotive companies around the world. Over the course of the program Quantum focused on development of technology to allow the compressed hydrogen storage tank to meet DOE goals. At the start of the program in 2004 Quantum was supplying systems with a specific energy of 1.1-1.6 kWh/kg, a volumetric capacity of 1.3 kWh/L and a cost of $73/kWh. Based on the inequities between DOE targets and Quantum’s then current capabilities, focus was placed first on cost reduction and second on weight reduction. Both of these were to be accomplished without reduction of the fuel system’s performance or reliability. Three distinct areas were investigated; optimization of composite structures, development of “smart tanks” that could monitor health of tank thus allowing for lower design safety factor, and the development of “Cool Fuel” technology to allow higher density gas to be stored, thus allowing smaller/lower pressure tanks that would hold the required fuel supply. The second phase of the project deals with three additional distinct tasks focusing on composite structure optimization, liner optimization, and metal.

  12. Hydrogen-Enhanced Natural Gas Vehicle Program

    Energy Technology Data Exchange (ETDEWEB)

    Hyde, Dan; Collier, Kirk

    2009-01-22

    The project objective is to demonstrate the viability of HCNG fuel (30 to 50% hydrogen by volume and the remainder natural gas) to reduce emissions from light-duty on-road vehicles with no loss in performance or efficiency. The City of Las Vegas has an interest in alternative fuels and already has an existing hydrogen refueling station. Collier Technologies Inc (CT) supplied the latest design retrofit kits capable of converting nine compressed natural gas (CNG) fueled, light-duty vehicles powered by the Ford 5.4L Triton engine. CT installed the kits on the first two vehicles in Las Vegas, trained personnel at the City of Las Vegas (the City) to perform the additional seven retrofits, and developed materials for allowing other entities to perform these retrofits as well. These vehicles were used in normal service by the City while driver impressions, reliability, fuel efficiency and emissions were documented for a minimum of one year after conversion. This project has shown the efficacy of operating vehicles originally designed to operate on compressed natural gas with HCNG fuel incorporating large quantities of exhaust gas recirculation (EGR). There were no safety issues experienced with these vehicles. The only maintenance issue in the project was some rough idling due to problems with the EGR valve and piping parts. Once the rough idling was corrected no further maintenance issues with these vehicles were experienced. Fuel economy data showed no significant changes after conversion even with the added power provided by the superchargers that were part of the conversions. Driver feedback for the conversions was very favorable. The additional power provided by the HCNG vehicles was greatly appreciated, especially in traffic. The drivability of the HCNG vehicles was considered to be superior by the drivers. Most of the converted vehicles showed zero oxides of nitrogen throughout the life of the project using the State of Nevada emissions station.

  13. Upgrade to the Cryogenic Hydrogen Gas Target Monitoring System

    Science.gov (United States)

    Slater, Michael; Tribble, Robert

    2013-10-01

    The cryogenic hydrogen gas target at Texas A&M is a vital component for creating a secondary radioactive beam that is then used in experiments in the Momentum Achromat Recoil Spectrometer (MARS). A stable beam from the K500 superconducting cyclotron enters the gas cell and some incident particles are transmuted by a nuclear reaction into a radioactive beam, which are separated from the primary beam and used in MARS experiments. The pressure in the target chamber is monitored so that a predictable isotope production rate can be assured. A ``black box'' received the analog pressure data and sent RS232 serial data through an outdated serial connection to an outdated Visual Basic 6 (VB6) program, which plotted the chamber pressure continuously. The black box has been upgraded to an Arduino UNO microcontroller [Atmel Inc.], which can receive the pressure data and output via USB to a computer. It has been programmed to also accept temperature data for future upgrade. A new computer program, with updated capabilities, has been written in Python. The software can send email alerts, create audible alarms through the Arduino, and plot pressure and temperature. The program has been designed to better fit the needs of the users. Funded by DOE and NSF-REU Program.

  14. Viscosity Measurement of Hydrogen-Methane Mixed Gas for Future Energy Systems

    Science.gov (United States)

    Kobayashi, Yohei; Kurokawa, Akira; Hirata, Masaru

    In order to reduce the CO2 emission, in May 2004, the European Union (EU) started an experimental approach known as the “naturalhy Project” in order to transport hydrogen by mixing it with the existing high-pressure natural gas in the pipelines. Naturalhy represents a mixture of hydrogen and natural gas. In other words, this gas is also known as hythane, which is an abbreviation of hydrogen and methane. The name “hythane” is the registered trademark of Hydrogen Consulting Inc., USA. Why will this gas gain importance? It is generally considered that the sudden realization of a hydrogen energy society cannot take place. It is normally assumed that the present status of methane as an energy carrier gradually changes to a state of hydrogen-methane mixed gas and finally to 100% hydrogen. This is why the authors investigate the properties of this mixture. This study is considered to be the first to measure the temperature dependence of the viscosity of hydrogen-methane mixed gas. In order to measure the viscosity, the authors used a capillary method that measures the pressure drop in the laminar flow through a pipe. It was conducted in an electrically polished, ultra clean and smooth tube and the pressure drop between the upstream and downstream was carefully measured using a capacitance manometer. In order to remove the effect of temperature dependence, the tube was placed in a constant temperature bath, and the temperature fluctuation was maintained within ±0.3°C throughout this experimental study. The authors obtained the viscosity of the hydrogen-methane mixed gas within a temperature range of 20-70°C.

  15. Effect of gas pressure on ionization of ambient gas

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    An Nd: YAG pulsed laser (145 mJ) was used to ablate aluminum target and Ar was used as protecting gas. Time-and space-resolved spectra of the plasmas under pressure 100 Pa, 1 kPa, 10 kPa and 100 kPa were acquired with time- and space-resolved technique. The characteristics of the plasma radiating under each pressure were briefly described, and the laws of Ar characteristical radiaton were analyzed in detail. Based on the profile of Ar characteristical radiation under these pressure, the relation between protecting gas pressure and its ionization was briefly discussed, and explained with quantum theory. Farther more, the mechanism of ambient gas ionization was investigated. As the result, it was suggested that the main mechanism inducing protecting gas to ionize should be the absorption of the plasma continuum radiation by the gas.

  16. Gas Pressure-Drop Experiment

    Science.gov (United States)

    Luyben, William L.; Tuzla, Kemal

    2010-01-01

    Most chemical engineering undergraduate laboratories have fluid mechanics experiments in which pressure drops through pipes are measured over a range of Reynolds numbers. The standard fluid is liquid water, which is essentially incompressible. Since density is constant, pressure drop does not depend on the pressure in the pipe. In addition, flow…

  17. Effects of hydrogen partial pressure on autotrophic growth and product formation of Acetobacterium woodii.

    Science.gov (United States)

    Kantzow, Christina; Weuster-Botz, Dirk

    2016-08-01

    Low aqueous solubility of the gases for autotrophic fermentations (e.g., hydrogen gas) results in low productivities in bioreactors. A frequently suggested approach to overcome mass transfer limitation is to increase the solubility of the limiting gas in the reaction medium by increasing the partial pressure in the gas phase. An increased inlet hydrogen partial pressure of up to 2.1 bar (total pressure of 3.5 bar) was applied for the autotrophic conversion of hydrogen and carbon dioxide with Acetobacterium woodii in a batch-operated stirred-tank bioreactor with continuous gas supply. Compared to the autotrophic batch process with an inlet hydrogen partial pressure of 0.4 bar (total pressure of 1.0 bar) the final acetate concentration after 3.1 days was reduced to 50 % (29.2 g L(-1) compared to 59.3 g L(-1)), but the final formate concentration was increased by a factor of 18 (7.3 g L(-1) compared to 0.4 g L(-1)). Applying recombinant A. woodii strains overexpressing either genes for enzymes in the methyl branch of the Wood-Ljungdahl pathway or the genes phosphotransacetylase and acetate kinase at an inlet hydrogen partial pressure of 1.4 bar reduced the final formate concentration by up to 40 % and increased the final dry cell mass and acetate concentrations compared to the wild type strain. Solely the overexpression of the two genes for ATP regeneration at the end of the Wood-Ljungdahl pathway resulted in an initial switch off of formate production at increased hydrogen partial pressure until the maximum of the hydrogen uptake rate was reached.

  18. Mixture including hydrogen and hydrocarbon having pressure-temperature stability

    Science.gov (United States)

    Mao, Wendy L. (Inventor); Mao, Ho-Kwang (Inventor)

    2009-01-01

    The invention relates to a method of storing hydrogen that employs a mixture of hydrogen and a hydrocarbon that can both be used as fuel. In one embodiment, the method involves maintaining a mixture including hydrogen and a hydrocarbon in the solid state at ambient pressure and a temperature in excess of about 10 K.

  19. Experimental testing of the sorption-mechanical coupled behaviour of polyethylene into pressurized hydrogen

    Directory of Open Access Journals (Sweden)

    Comyn M.

    2010-06-01

    Full Text Available Coupling between pressurized gas sorption and tensile behavior was studied in a polyethylene (PE. Tensile and creep tests into hydrogen (30 bars and nitrogen (30 bars atmosphere were compared to experiments into atmospheric air. Gaseous environment was shown to have noticeable influence neither on the modulus / yield stress in tension, nor on the long term creep behavior. Mechanical consequence of a long term aging into hydrogen atmosphere was also investigated in samples previously exposed to hydrogen at various aging conditions (temperature, pressure, duration. No deleterious effect on the tensile properties of PE was evidenced.

  20. The Influence of Hydrogen Gas on the Measures of Efficiency of Diesel Internal Combustion Engine

    Directory of Open Access Journals (Sweden)

    Jurgis Latakas

    2014-12-01

    Full Text Available In this research paper energy and ecological parameters of diesel engine which works under addition of hydrogen (10, 20, 30 l/ min are presented. A survey of research literature has shown that addition of hydrogen gases improve diesel combustion; increase indicated pressure; decrease concentration of carbon dioxide (CO2, hydrocarbons (HC, particles; decrease fuel consumptions. Results of the experiment revealed that hydrogen gas additive decreased pressure in cylinder in kinetic combustion phase. Concentration of CO2 and nitrous oxides (NOx decreased not significantly, HC – increased. Concentration of particles in engine exhaust gases significantly decreased. In case when hydrogen gas as additive was supplied, the fuel consumptions decreased a little. Using AVL BOOST software combustion process analysis was made. It was determined that in order to optimize engine work process under hydrogen additive usage, it is necessary to adjust diesel injection angle.

  1. Effect of atomization gas pressure variation on gas flow field in supersonic gas atomization

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In this paper, a computational fluid flow model was adopted to investigate the effect of varying atomization gas pressure (P0) on the gas flow field in supersonic gas atomization. The influence of P0 on static pressure and velocity magnitude of the central axis of the flow field was also examined. The numerical results indicate that the maximum gas velocity within the gas field increases with increasing P0. The aspiration pressure (ΔP) is found to decrease as P0 increases at a lower atomization gas pressure. However, at a higher atomization gas pressure increasing P0 causes the opposite: the higher atomization gas pressure, the higher aspiration pressure. The alternation of ΔP is caused by the variations of stagnation point pressure and location of Mach disk, while hardly by the location of stagnation point. A radical pressure gradient is formed along the tip of the delivery tube and increases as P0 increases.

  2. Laboratory Studies of Hydrogen Gas Generation Using the Cobalt Chloride Catalyzed Sodium Borohydride-Water Reaction

    Science.gov (United States)

    2015-07-01

    is a plot of total hydrogen gas as a function of reaction time. This experiment was conducted in the pressure tank at an applied pressure of 13 psig...function of reaction time. This experiment was conducted in the pressure tank at an applied pressure of 50 psig using a H2O:NaBH4 ratio of 4.6:1 and 3.0... pressure tank (McMaster-Carr, part number. 6778K21). The pressure tank has a 185-psig maximum pressure rating at 37.8 ºC and a maximum operating

  3. Evaluation of insulated pressure vessels for cryogenic hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Aceves, S M; Garcia-Villazana, O; Martinez-Frias, J

    1999-03-01

    This paper presents an analytical and experimental evaluation of the applicability of insulated pressure vessels for hydrogen-fueled light-duty vehicles. Insulated pressure vessels are cryogenic-capable pressure vessels that can be fueled with liquid hydrogen (LH?) or ambient-temperature compressed hydrogen (CH2). Insulated pressure vessels offer the advantages of liquid hydrogen tanks (low weight and volume), with reduced disadvantages (lower energy requirement for hydrogen liquefaction and reduced evaporative losses). The purpose of this work is to verify that commercially available aluminum-lined, fiber- wrapped vessels can be used for cryogenic hydrogen storage. The paper reports on previous and ongoing tests and analyses that have the purpose of improving the system design and assure its safety.

  4. CYLINDER PRESSURE VARIATIONS OF THE FUMIGATED HYDROGEN-DIESEL DUAL FUEL COMBUSTION

    Directory of Open Access Journals (Sweden)

    Boonthum Wongchai

    2012-01-01

    Full Text Available Cylinder pressure is one of the main parameters of diesel engine combustion affecting several changes in exhaust gas emission composition and amount as well as engine useful power, specifically when alternative fuels are used. One among other alternative fuels for diesel engine is hydrogen that can be used as fumigated reagent with air prior to intake to engine in order to substitute the main fossil diesel. In this study, experimental investigation was accomplished using a single cylinder diesel engine for agriculture running on different ratios of hydrogen-to-diesel. Cylinder pressure traces corresponding to the crank angle positions were indicated and analyzed for maximum cylinder pressure and their coefficient of variation. The regression analysis is used to find the correlations between hydrogen percentage and the maximum cylinder pressure as well as its coefficient of variation. When higher hydrogen percentages were added, the combustion shifted toward later crank angles with the maximum cylinder pressure decreased and eminent effects at higher load and speed. The plots of hydrogen percentage against the coefficient of variation of the maximum cylinder pressure (COVPmax show the increase in variation of maximum cylinder pressure when the hydrogen percentage increased for all conditions tested. Gaseous hydrogen fumigated prior to intake to the engine reduced maximum cylinder pressure from the combustion while increasing the values of COVPmax. The maximum pressure-hydrogen percentage correlations and the COVPmax-hydrogen percentage correlations show better curve fittings by second order (n = 2 correlation compared to the first order (n = 1 correlation for all the test conditions.

  5. Study on the recovery of hydrogen from refinery (hydrogen+methane) gas mixtures using hydrate technology

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A novel technique for separating hydrogen from (H2 + CH4) gas mixtures through hydrate formation/dissociation was proposed. In this work, a systematic experimental study was performed on the separation of hydrogen from (H2 + CH4) feed mixtures with various hydrogen contents (mole fraction x = 40%-90%). The experimental results showed that the hydrogen content could be enriched to as high as ~94% for various feed mixtures using the proposed hydrate technology under a temperature slightly above 0℃ and a pressure below 5.0 MPa. With the addition of a small amount of suitable additives, the rate of hydrate formation could be increased significantly. Anti-agglomeration was used to disperse hydrate particles into the condensate phase. Instead of preventing hydrate growth (as in the kinetic inhibitor tests), hydrates were allowed to form, but only as small dispersed particles. Anti-agglomeration could keep hydrate particles suspended in a range of condensate types at 1℃ and 5 MPa in the water-in-oil emulsion.

  6. Study on the recovery of hydrogen from refinery (hydrogen + methane) gas mixtures using hydrate technology

    Institute of Scientific and Technical Information of China (English)

    WANG XiuLin; CHEN GuangJin; YANG LanYing; ZHANG LinWei

    2008-01-01

    A novel technique for separating hydrogen from (H2 + CH4) gas mixtures through hydrate forma-tion/dissociation was proposed.In this work, a systematic experimental study was performed on the separation of hydrogen from (H2+CH4) feed mixtures with various hydrogen contents (mole fraction x =40%-90%).The experimental results showed that the hydrogen content could be enriched to as high as~94% for various feed mixtures using the proposed hydrate technology under a temperature slightly above 0℃ and a pressure below 5.0 MPa.With the addition of a small amount of suitable additives, the rate of hydrate formation could be increased significantly.Anti-agglomeration was used to disperse hydrate particles into the condensate phase.Instead of preventing hydrate growth (as in the kinetic inhibitor tests), hydrates were allowed to form, but only as small dispersed particles.Anti-agglomera-tion could keep hydrate particles suspended in a range of condensate types at 1℃ and 5 MPa in the water-in-oil emulsion.

  7. High-pressure superconducting state in hydrogen

    Science.gov (United States)

    Duda, A. M.; Szczȩśniak, R.; Sowińska, M. A.; Kosiacka, A. H.

    2016-10-01

    The paper determines the thermodynamic parameters of the superconducting state in the metallic atomic hydrogen under the pressure at 1 TPa, 1.5 TPa, and 2.5 TPa. The calculations were conducted in the framework of the Eliashberg formalism. It has been shown that the critical temperature is very high (in the range from 301.2 K to 437.3 K), as well as high are the values of the electron effective mass (from 3.43me to 6.88me), where me denotes the electron band mass. The ratio of the low-temperature energy gap to the critical temperature explicitly violates the predictions of the BCS theory: 2 Δ (0) /kB TC ∈ . Additionally, the free energy difference between the superconducting and normal state, the thermodynamic critical field, and the specific heat of the superconducting state have been determined. Due to the significant strong-coupling and retardation effects those quantities cannot be correctly described in the framework of the BCS theory.

  8. Prediction of pressurant mass requirements for axisymmetric liquid hydrogen tanks

    Science.gov (United States)

    Vandresar, N. T.

    1995-01-01

    Experimental data from several test series are compared to an existing correlation that predicts the amount of pressurant gas mass required to expel liquid hydrogen from axisymmetric tanks. It was necessary to use an alternate definition of the tank equivalent diameter to accommodate thermal mass in the tank wall that is initially warm and to accommodate liquid residuals in the tank after expulsion is stopped. With this modification, the existing correlation predicted mass requirements to within 14 percent of experimental results. Revision of the correlation constants using a nonlinear least-squares fit of the current experimental data has a minor effect, thus supporting the validity of the original correlation's form, its fitted constants, and the alternate definition of the tank equivalent diameter.

  9. THE ABSORPTION OF HYDROGEN ON LOW PRESSURE HYDRIDE MATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, G.; Korinko, P.

    2012-04-03

    For this study, hydrogen getter materials (Zircaloy-4 and pure zirconium) that have a high affinity for hydrogen (and low overpressure) have been investigated to determine the hydrogen equilibrium pressure on Zircaloy-4 and pure zirconium. These materials, as with most getter materials, offered significant challenges to overcome given the low hydrogen equilibrium pressure for the temperature range of interest. Hydrogen-zirconium data exists for pure zirconium at 500 C and the corresponding hydrogen overpressure is roughly 0.01 torr. This manuscript presents the results of the equilibrium pressures for the absorption and desorption of hydrogen on zirconium materials at temperatures ranging from 400 C to 600 C. The equilibrium pressures in this temperature region range from 150 mtorr at 600 C to less than 0.1 mtorr at 400 C. It has been shown that the Zircaloy-4 and zirconium samples are extremely prone to surface oxidation prior to and during heating. This oxidation precludes the hydrogen uptake, and therefore samples must be heated under a minimum vacuum of 5 x 10{sup -6} torr. In addition, the Zircaloy-4 samples should be heated at a sufficiently low rate to maintain the system pressure below 0.5 mtorr since an increase in pressure above 0.5 mtorr could possibly hinder the H{sub 2} absorption kinetics due to surface contamination. The results of this study and the details of the testing protocol will be discussed.

  10. Absorption spectrum of very low pressure atomic hydrogen

    CERN Document Server

    Moret-Bailly, Jacques

    2015-01-01

    Spectra of quasars result primarily from interactions of natural light with atomic hydrogen. A visible absorption of a sharp and saturated spectral line in a gas requires a low pressure, so a long path without blushing as a cosmological redshift. Burbidge and Karlsson observed that redshifts of quasars result from fundamental redshifts, written 3K and 4K, that cause a shift of absorbed beta and gamma lines of H to alpha gas line. Thus absorbed spectrum is shifted until an absorbed line overlaps with Lyman alpha line of gas: redshift only occurs if an alpha absorption pumps atoms to 2P state. Thus, space is divided into spherical shells centered on the quasar, containing or not 2P atoms. Neglecting collisional de-excitations in absorbing shells, more and more atoms are excited until amplification of a beam having a long path in a shell, thus perpendicular to the observed ray, is large enough for a superradiant flash at alpha frequency. Energy is provided by atoms and observed ray, absorbing a line at local Lym...

  11. On-Board Hydrogen Gas Production System For Stirling Engines

    Science.gov (United States)

    Johansson, Lennart N.

    2004-06-29

    A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed. A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed.

  12. Application of CFRP with High Hydrogen Gas Barrier Characteristics to Fuel Tanks of Space Transportation System

    Science.gov (United States)

    Yonemoto, Koichi; Yamamoto, Yuta; Okuyama, Keiichi; Ebina, Takeo

    In the future, carbon fiber reinforced plastics (CFRPs) with high hydrogen gas barrier performance will find wide applications in all industrial hydrogen tanks that aim at weight reduction; the use of such materials will be preferred to the use of conventional metallic materials such as stainless steel or aluminum. The hydrogen gas barrier performance of CFRP will become an important issue with the introduction of hydrogen-fuel aircraft. It will also play an important role in realizing fully reusable space transportation system that will have high specific tensile CFRP structures. Such materials are also required for the manufacture of high-pressure hydrogen gas vessels for use in the fuel cell systems of automobiles. This paper introduces a new composite concept that can be used to realize CFRPs with high hydrogen gas barrier performance for applications in the cryogenic tanks of fully reusable space transportation system by the incorporation of a nonmetallic crystal layer, which is actually a dense and highly oriented clay crystal laminate. The preliminary test results show that the hydrogen gas barrier characteristics of this material after cryogenic heat shocks and cyclic loads are still better than those of other polymer materials by approximately two orders of magnitude.

  13. Development Of A Centrifugal Hydrogen Pipeline Gas Compressor

    Energy Technology Data Exchange (ETDEWEB)

    Di Bella, Francis A. [Concepts NREC, White River Junction, VY (United States)

    2015-04-16

    Concepts NREC (CN) has completed a Department of Energy (DOE) sponsored project to analyze, design, and fabricate a pipeline capacity hydrogen compressor. The pipeline compressor is a critical component in the DOE strategy to provide sufficient quantities of hydrogen to support the expected shift in transportation fuels from liquid and natural gas to hydrogen. The hydrogen would be generated by renewable energy (solar, wind, and perhaps even tidal or ocean), and would be electrolyzed from water. The hydrogen would then be transported to the population centers in the U.S., where fuel-cell vehicles are expected to become popular and necessary to relieve dependency on fossil fuels. The specifications for the required pipeline hydrogen compressor indicates a need for a small package that is efficient, less costly, and more reliable than what is available in the form of a multi-cylinder, reciprocating (positive displacement) compressor for compressing hydrogen in the gas industry.

  14. Energy density dependence of hydrogen combustion efficiency in atmospheric pressure microwave plasma

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, T.; Ezumi, N. [Nagano National College of Technology, Nagano-city, Nagano (Japan); Sawada, K. [Shinshu University, Nagano-city, Nagano (Japan); Tanaka, Y. [Kanazawa University, Kakuma-cho, Kanzawa-city, Ishikawa (Japan); Tanaka, M.; Nishimura, K. [National Insitute for Fusion Science, Toki-city, Gifu (Japan)

    2015-03-15

    The recovery of tritium in nuclear fusion plants is a key issue for safety. So far, the oxidation procedure using an atmospheric pressure plasma is expected to be part of the recovery method. In this study, in order to clarify the mechanism of hydrogen oxidation by plasma chemistry, we have investigated the dependence of hydrogen combustion efficiency on gas flow rate and input power in the atmospheric pressure microwave plasma. It has been found that the combustion efficiency depends on energy density of absorbed microwave power. Hence, the energy density is considered as a key parameter for combustion processes. Also neutral gas temperatures inside and outside the plasma were measured by an optical emission spectroscopy method and thermocouple. The result shows that the neutral gas temperature in the plasma is much higher than the outside temperature of plasma. The high neutral gas temperature may affect the combustion reaction. (authors)

  15. Influence of heat transfer rates on pressurization of liquid/slush hydrogen propellant tanks

    Science.gov (United States)

    Sasmal, G. P.; Hochstein, J. I.; Hardy, T. L.

    1993-01-01

    A multi-dimensional computational model of the pressurization process in liquid/slush hydrogen tank is developed and used to study the influence of heat flux rates at the ullage boundaries on the process. The new model computes these rates and performs an energy balance for the tank wall whereas previous multi-dimensional models required a priori specification of the boundary heat flux rates. Analyses of both liquid hydrogen and slush hydrogen pressurization were performed to expose differences between the two processes. Graphical displays are presented to establish the dependence of pressurization time, pressurant mass required, and other parameters of interest on ullage boundary heat flux rates and pressurant mass flow rate. Detailed velocity fields and temperature distributions are presented for selected cases to further illuminate the details of the pressurization process. It is demonstrated that ullage boundary heat flux rates do significantly effect the pressurization process and that minimizing heat loss from the ullage and maximizing pressurant flow rate minimizes the mass of pressurant gas required to pressurize the tank. It is further demonstrated that proper dimensionless scaling of pressure and time permit all the pressure histories examined during this study to be displayed as a single curve.

  16. Synthesis of hydrogen-carbon clathrate material and hydrogen evolution therefrom at moderate temperatures and pressures

    Science.gov (United States)

    Lueking, Angela [State College, PA; Narayanan, Deepa [Redmond, WA

    2011-03-08

    A process for making a hydrogenated carbon material is provided which includes forming a mixture of a carbon source, particularly a carbonaceous material, and a hydrogen source. The mixture is reacted under reaction conditions such that hydrogen is generated and/or released from the hydrogen source, an amorphous diamond-like carbon is formed, and at least a portion of the generated and/or released hydrogen associates with the amorphous diamond-like carbon, thereby forming a hydrogenated carbon material. A hydrogenated carbon material including a hydrogen carbon clathrate is characterized by evolution of molecular hydrogen at room temperature at atmospheric pressure in particular embodiments of methods and compositions according to the present invention.

  17. Hydrogen Gas Production from Nuclear Power Plant in Relation to Hydrogen Fuel Cell Technologies Nowadays

    Science.gov (United States)

    Yusibani, Elin; Kamil, Insan; Suud, Zaki

    2010-06-01

    Recently, world has been confused by issues of energy resourcing, including fossil fuel use, global warming, and sustainable energy generation. Hydrogen may become the choice for future fuel of combustion engine. Hydrogen is an environmentally clean source of energy to end-users, particularly in transportation applications because without release of pollutants at the point of end use. Hydrogen may be produced from water using the process of electrolysis. One of the GEN-IV reactors nuclear projects (HTGRs, HTR, VHTR) is also can produce hydrogen from the process. In the present study, hydrogen gas production from nuclear power plant is reviewed in relation to commercialization of hydrogen fuel cell technologies nowadays.

  18. Gas Phase Fabrication of Pd-Ni Nanoparticle Arrays for Hydrogen Sensor Applications

    Directory of Open Access Journals (Sweden)

    Peng Xing

    2015-01-01

    Full Text Available Pd-Ni nanoparticles have been fabricated by gas aggregation process. The formation of Pd-Ni nano-alloys was confirmed by X-ray photoelectron spectroscopy measurements. By depositing Pd-Ni nanoparticles on the interdigital electrodes, quantum conductance-based hydrogen sensors were fabricated. The Ni content in the nanoparticle showed an obvious effect on the hydrogen response behavior corresponding to the conductance change of the nanoparticle film. Three typical response regions with different conductance-hydrogen pressure correlations were observed. It was found that the α-β phase transition region of palladium hydride moves to significant higher hydrogen pressure with the addition of nickel element, which greatly enhance the hydrogen sensing performance of the nanoparticle film.

  19. Low cost hydrogen/novel membrane technology for hydrogen separation from synthesis gas, Phase 1. Quarterly technical progress report for the period ending December 31, 1986

    Energy Technology Data Exchange (ETDEWEB)

    1986-12-31

    During the last quarter several high performance membranes for the separation of hydrogen from nitrogen, carbon monoxide, hydrogen sulfide and carbon dioxide. The heat-resistant resin poly(etherimide) has been selected as the polymer with the most outstanding properties for the separation of hydrogen from nitrogen and carbon monoxide. Flat sheet and hollow fiber poly(etherimide) membranes have been prepared and evaluated with pure gases and gas mixtures at elevated pressures and temperatures. Multilayer composite poly(ether-ester-amide) membranes were also developed. These membranes are useful for the separation of carbon dioxide and hydrogen sulfide hydrogen. They have very high selectivities and extremely high normalized carbon dioxide and hydrogen sulfide fluxes. Separation of carbon dioxide/hydrogen streams is a key problem in hydrogen production from coal. The development of the two membranes now gives us two approaches to separate these gas streams, depending on the stream`s composition. If the stream contains small quantities of hydrogen, the hydrogen- permeable poly(etherimide) membrane would be used to produce a hydrogen-enriched permeate. If the stream contains small quantities of carbon dioxide or hydrogen sulfide, the poly(ether-ester-amide) membrane would be used to produce a carbon dioxide/hydrogen sulfide-free, hydrogen-enriched residue stream. 6 fig., 4 tabs.

  20. Low cost hydrogen/novel membrane technology for hydrogen separation from synthesis gas, Phase 1. [Poly(etherimide) and poly(ether-ester-amide) membranes

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    During the last quarter several high performance membranes for the separation of hydrogen from nitrogen, carbon monoxide, hydrogen sulfide and carbon dioxide. The heat-resistant resin poly(etherimide) has been selected as the polymer with the most outstanding properties for the separation of hydrogen from nitrogen and carbon monoxide. Flat sheet and hollow fiber poly(etherimide) membranes have been prepared and evaluated with pure gases and gas mixtures at elevated pressures and temperatures. Multilayer composite poly(ether-ester-amide) membranes were also developed. These membranes are useful for the separation of carbon dioxide and hydrogen sulfide hydrogen. They have very high selectivities and extremely high normalized carbon dioxide and hydrogen sulfide fluxes. Separation of carbon dioxide/hydrogen streams is a key problem in hydrogen production from coal. The development of the two membranes now gives us two approaches to separate these gas streams, depending on the stream's composition. If the stream contains small quantities of hydrogen, the hydrogen- permeable poly(etherimide) membrane would be used to produce a hydrogen-enriched permeate. If the stream contains small quantities of carbon dioxide or hydrogen sulfide, the poly(ether-ester-amide) membrane would be used to produce a carbon dioxide/hydrogen sulfide-free, hydrogen-enriched residue stream. 6 fig., 4 tabs.

  1. Shock-wave proton acceleration from a hydrogen gas jet

    Science.gov (United States)

    Cook, Nathan; Pogorelsky, Igor; Polyanskiy, Mikhail; Babzien, Marcus; Tresca, Olivier; Maharjan, Chakra; Shkolnikov, Peter; Yakimenko, Vitaly

    2013-04-01

    Typical laser acceleration experiments probe the interaction of intense linearly-polarized solid state laser pulses with dense metal targets. This interaction generates strong electric fields via Transverse Normal Sheath Acceleration and can accelerate protons to high peak energies but with a large thermal spectrum. Recently, the advancement of high pressure amplified CO2 laser technology has allowed for the creation of intense (10^16 Wcm^2) pulses at λ˜10 μm. These pulses may interact with reproducible, high rep. rate gas jet targets and still produce plasmas of critical density (nc˜10^19 cm-3), leading to the transference of laser energy via radiation pressure. This acceleration mode has the advantage of producing narrow energy spectra while scaling well with pulse intensity. We observe the interaction of an intense CO2 laser pulse with an overdense hydrogen gas jet. Using two pulse optical probing in conjunction with interferometry, we are able to obtain density profiles of the plasma. Proton energy spectra are obtained using a magnetic spectrometer and scintillating screen.

  2. Low Pressure Adsorbent for Recovery & Storage Vented Hydrogen Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A high performance fullerene-based adsorbent is proposed for recovery and storage hydrogen and separating helium via pressure-swing-adsorption (PSA) process....

  3. High pressure CO hydrogenation over bimetallic Pt-Co catalysts

    DEFF Research Database (Denmark)

    Christensen, Jakob Munkholt; Medford, Andrew James; Studt, Felix

    2014-01-01

    The potential of bimetallic Pt-Co catalysts for production of higher alcohols in high pressure CO hydrogenation has been assessed. Two catalysts (Pt3Co/SiO2 and PtCo/SiO2) were tested, and the existing literature on CO hydrogenation over Pt-Co catalysts was reviewed. It is found that the catalyst...

  4. [Raman spectroscopic investigation of hydrogen storage in nitrogen gas hydrates].

    Science.gov (United States)

    Meng, Qing-guo; Liu, Chang-ling; Ye, Yu-guang; Li, Cheng-feng

    2012-08-01

    Recently, hydrogen storage using clathrate hydrate as a medium has become a hotspot of hydrogen storage research In the present paper, the laser Raman spectroscopy was used to study the hydrogen storage in nitrogen hydrate. The synthetic nitrogen hydrate was reacted with hydrogen gas under relatively mild conditions (e.g., 15 MPa, -18 degrees C). The Raman spectra of the reaction products show that the hydrogen molecules have enclathrated the cavities of the nitrogen hydrate, with multiple hydrogen cage occupancies in the clathrate cavities. The reaction time is an important factor affecting the hydrogen storage in nitrogen hydrate. The experimental results suggest that nitrogen hydrates are expected to be an effective media for hydrogen storage.

  5. On some hydrogen bond correlations at high pressures

    Science.gov (United States)

    Sikka, S. K.

    2007-09-01

    In situ high pressure neutron diffraction measured lengths of O H and H O pairs in hydrogen bonds in substances are shown to follow the correlation between them established from 0.1 MPa data on different chemical compounds. In particular, the conclusion by Nelmes et al that their high pressure data on ice VIII differ from it is not supported. For compounds in which the O H stretching frequencies red shift under pressure, it is shown that wherever structural data is available, they follow the stretching frequency versus H O (or O O) distance correlation. For compounds displaying blue shifts with pressure an analogy appears to exist with improper hydrogen bonds.

  6. Analysis and Design of Cryogenic Pressure Vessels for Automotive Hydrogen Storage

    Science.gov (United States)

    Espinosa-Loza, Francisco Javier

    Cryogenic pressure vessels maximize hydrogen storage density by combining the high pressure (350-700 bar) typical of today's composite pressure vessels with the cryogenic temperature (as low as 25 K) typical of low pressure liquid hydrogen vessels. Cryogenic pressure vessels comprise a high-pressure inner vessel made of carbon fiber-coated metal (similar to those used for storage of compressed gas), a vacuum space filled with numerous sheets of highly reflective metalized plastic (for high performance thermal insulation), and a metallic outer jacket. High density of hydrogen storage is key to practical hydrogen-fueled transportation by enabling (1) long-range (500+ km) transportation with high capacity vessels that fit within available spaces in the vehicle, and (2) reduced cost per kilogram of hydrogen stored through reduced need for expensive structural material (carbon fiber composite) necessary to make the vessel. Low temperature of storage also leads to reduced expansion energy (by an order of magnitude or more vs. ambient temperature compressed gas storage), potentially providing important safety advantages. All this is accomplished while simultaneously avoiding fuel venting typical of cryogenic vessels for all practical use scenarios. This dissertation describes the work necessary for developing and demonstrating successive generations of cryogenic pressure vessels demonstrated at Lawrence Livermore National Laboratory. The work included (1) conceptual design, (2) detailed system design (3) structural analysis of cryogenic pressure vessels, (4) thermal analysis of heat transfer through cryogenic supports and vacuum multilayer insulation, and (5) experimental demonstration. Aside from succeeding in demonstrating a hydrogen storage approach that has established all the world records for hydrogen storage on vehicles (longest driving range, maximum hydrogen storage density, and maximum containment of cryogenic hydrogen without venting), the work also

  7. Trends in demand for hydrogen gas and gas separation technology

    Energy Technology Data Exchange (ETDEWEB)

    Osumi, Y.

    1983-01-01

    In the 1970s, the total world consumption of hydrogen was 2 x 10/SUP/1/SUP/1 Nm/SUP/3, of which approximately 50% was used for ammonia synthesis. Recently, however, large quantities of hydrogen have been used in the production of semiconductors and optical fibres. Hydrogen can be produced by steam reforming, partial oxidation, coal gasification, electrolysis, petroleum refining and thermochemical cycles. Cooling, adsorption, membranes and metal hydrides are used for separating the hydrogen. (In English)

  8. Low cost hydrogen/novel membrane technology for hydrogen separation from synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Baker, R.W.; Bell, C.M.; Chow, P.; Louie, J.; Mohr, J.M.; Peinemann, K.V.; Pinnau, I.; Wijmans, J.G.; Gottschlich, D.E.; Roberts, D.L.

    1990-10-01

    The production of hydrogen from synthesis gas made by gasification of coal is expensive. The separation of hydrogen from synthesis gas is a major cost element in the total process. In this report we describe the results of a program aimed at the development of membranes and membrane modules for the separation and purification of hydrogen from synthesis gas. The performance properties of the developed membranes were used in an economic evaluation of membrane gas separation systems in the coal gasification process. Membranes tested were polyetherimide and a polyamide copolymer. The work began with an examination of the chemical separations required to produce hydrogen from synthesis gas, identification of three specific separations where membranes might be applicable. A range of membrane fabrication techniques and module configurations were investigated to optimize the separation properties of the membrane materials. Parametric data obtained were used to develop the economic comparison of processes incorporating membranes with a base-case system without membranes. The computer calculations for the economic analysis were designed and executed. Finally, we briefly investigated alternative methods of performing the three separations in the production of hydrogen from synthesis gas. The three potential opportunities for membranes in the production of hydrogen from synthesis gas are: (1) separation of hydrogen from nitrogen as the final separation in a air-blown or oxygen-enriched air-blown gasification process, (2) separation of hydrogen from carbon dioxide and hydrogen sulfide to reduce or eliminate the conventional ethanolamine acid gas removal unit, and (3) separation of hydrogen and/or carbon dioxide form carbon monoxide prior to the shift reactor to influence the shift reaction. 28 refs., 54 figs., 40 tabs.

  9. Charge state studies of low energy heavy ions passing through hydrogen and helium gas

    CERN Document Server

    Liu, W; Buchmann, L; Chen, A A; D'Auria, J M; D'Onofrio, A; Engel, S; Gialanella, L; Greife, U; Hunter, D; Hussein, A; Hutcheon, D A; Olin, A; Ottewell, D; Rogalla, D; Rogers, J; Romano, M; Roy, G; Terrasi, F

    2003-01-01

    Studies of the charge state distribution of low energy (<1.5 MeV/u), low Z (<13) heavy ions passing through hydrogen and helium gas of varying target pressure have been performed using separate windowless gas target systems at TRIUMF and the University of Naples. Semi-empirical relationships have been deduced to estimate the equilibrium charge state distributions as a function of beam energy. From these distributions, cross-sections for the relevant charge changing reactions have been deduced.

  10. New perspectives on potential hydrogen storage materials using high pressure.

    Science.gov (United States)

    Song, Yang

    2013-09-21

    In addressing the global demand for clean and renewable energy, hydrogen stands out as the most suitable candidate for many fuel applications that require practical and efficient storage of hydrogen. Supplementary to the traditional hydrogen storage methods and materials, the high-pressure technique has emerged as a novel and unique approach to developing new potential hydrogen storage materials. Static compression of materials may result in significant changes in the structures, properties and performance that are important for hydrogen storage applications, and often lead to the formation of unprecedented phases or complexes that have profound implications for hydrogen storage. In this perspective article, 22 types of representative potential hydrogen storage materials that belong to four major classes--simple hydride, complex hydride, chemical hydride and hydrogen containing materials--were reviewed. In particular, their structures, stabilities, and pressure-induced transformations, which were reported in recent experimental works together with supporting theoretical studies, were provided. The important contextual aspects pertinent to hydrogen storage associated with novel structures and transitions were discussed. Finally, the summary of the recent advances reviewed and the insight into the future research in this direction were given.

  11. Drinking hydrogen water and intermittent hydrogen gas exposure, but not lactulose or continuous hydrogen gas exposure, prevent 6-hydorxydopamine-induced Parkinson’s disease in rats

    Directory of Open Access Journals (Sweden)

    Ito Mikako

    2012-05-01

    Full Text Available Abstract Background Lactulose is a synthetic disaccharide that can be catalyzed only by intestinal bacteria in humans and rodents, and a large amount of hydrogen is produced by bacterial catalysis of lactulose. We previously reported marked effects of ad libitum administration of hydrogen water on prevention of a rat model of Parkinson’s disease (PD. Methods End-alveolar breath hydrogen concentrations were measured in 28 healthy subjects and 37 PD patients, as well as in 9 rats after taking hydrogen water or lactulose. Six-hydroxydopamine (6-OHDA-induced hemi-PD model was stereotactically generated in rats. We compared effects of hydrogen water and lactulose on prevention of PD. We also analyzed effects of continuous and intermittent administration of 2% hydrogen gas. Results Hydrogen water increased breath hydrogen concentrations from 8.6 ± 2.1 to 32.6 ± 3.3 ppm (mean and SEM, n = 8 in 10 min in healthy subjects. Lactulose increased breath hydrogen concentrations in 86% of healthy subjects and 59% of PD patients. Compared to monophasic hydrogen increases in 71% of healthy subjects, 32% and 41% of PD patients showed biphasic and no increases, respectively. Lactulose also increased breath hydrogen levels monophasically in 9 rats. Lactulose, however, marginally ameliorated 6-OHDA-induced PD in rats. Continuous administration of 2% hydrogen gas similarly had marginal effects. On the other hand, intermittent administration of 2% hydrogen gas prevented PD in 4 of 6 rats. Conclusions Lack of dose responses of hydrogen and the presence of favorable effects with hydrogen water and intermittent hydrogen gas suggest that signal modulating activities of hydrogen are likely to be instrumental in exerting a protective effect against PD.

  12. Thermo-Gas Dynamics of Hydrogen Combustion and Explosion

    CERN Document Server

    Gelfand, Boris E; Medvedev, Sergey P; Khomik, Sergey V

    2012-01-01

    The potential of hydrogen as an important future energy source has generated fresh interest in the study of hydrogenous gas mixtures. Indeed, both its high caloricity and reactivity are unique properties, the latter underscoring safety considerations when handling such mixtures.   The present monograph is devoted to the various aspects of hydrogen combustion and explosion processes. In addition to theoretical and phenomenological considerations, this work also collates the results of many experiments from less well known sources. The text reviews the literature in this respect, thereby providing valuable information about the thermo-gas-dynamical parameters of combustion processes for selected experimental settings in a range of scientific and industrial applications.

  13. Steam reforming of natural gas with integrated hydrogen separation for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Oertel, M.; Schmitz, J.; Weirich, W.; Jendryssek-Neumann, D.; Schulten, R.

    1987-08-01

    The development of heat resistant permeation membranes has opened up new possibilities for the conversion of fossil energy resources. In steam reforming of natural gas, such membranes even permit a direct production of hydrogen at high temperatures during the conversion of feed hydrocarbons. Further gas processing, such as required for reformer gas in existing hydrogen production processes, is not necessary. Due to continuous hydrogen discharge directly in the reformer tube, the chemical equilibrium of the occurring reactions becomes displaced towards the products, resulting in more favourable process conditions and, consequently, in improved by 36% utilization of the feed hydrocarbons. At the same time, the hydrogen yield increases by 44%. The heat required, which is provided by a high temperature reactor, is 17% in excess of that in conventional plants. It can be expected that the simplified process design will produce substantial cost advantages over the existing processes for the production of hydrogen.

  14. Hydrogen mitigation Gas Characterization System: System design description

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, T.C.

    1998-07-17

    The Gas Characterization System (GCS) design is described for flammable gas monitoring. Tank 241-SY-101 (SY-101) is known to experience periodic tank level increases and decreases during which hydrogen gas is released. It is believed that the generated gases accumulate in the solids-containing layer near the bottom of the tank. Solids and gases are also present in the crust and may be present in the interstitial liquid layer. The accumulation of gases creates a buoyancy that eventually overcomes the density and bonding strength of the bottom layer. When this happens, the gas from the bottom layer is released upward through the liquid layer to the vapor space above the tank crust. Previous monitoring of the vapor space gases during such an event indicates hydrogen release concentrations greater than the lower flammability limit (LFL) of hydrogen in a partial nitrous oxide atmosphere. Tanks 241-AN-105, 241-AW-101, and 241-SY-103 have been identified as having the potential to behave similar to SY-101. These waste tanks have been placed on the flammable gas watch list (FGWL). All waste tanks on the FGWL will have a standard hydrogen monitoring system (SHMS) installed to measure hydrogen. In the event that hydrogen levels exceed 0.75% by volume, additional characterization will be required. The purpose of this additional vapor space characterization is to determine the actual lower flammability limit of these tanks, accurately measure low baseline gas release concentrations, and to determine potential hazards associated with larger Gas Release Events (GREs). The instruments to be installed in the GCS for vapor monitoring will allow accurate analysis of samples from the tank vapor space. It will be possible to detect a wide range of hydrogen from parts per million to percent by volume, as well as other gas species suspected to be generated in waste tanks.

  15. 21 CFR 868.2900 - Gas pressure transducer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Gas pressure transducer. 868.2900 Section 868.2900...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2900 Gas pressure transducer. (a) Identification. A gas pressure transducer is a device intended for medical purposes that is used to convert gas...

  16. Hydrogen Gas Sensors Based on Semiconductor Oxide Nanostructures

    Directory of Open Access Journals (Sweden)

    Yongming Hu

    2012-04-01

    Full Text Available Recently, the hydrogen gas sensing properties of semiconductor oxide (SMO nanostructures have been widely investigated. In this article, we provide a comprehensive review of the research progress in the last five years concerning hydrogen gas sensors based on SMO thin film and one-dimensional (1D nanostructures. The hydrogen sensing mechanism of SMO nanostructures and some critical issues are discussed. Doping, noble metal-decoration, heterojunctions and size reduction have been investigated and proved to be effective methods for improving the sensing performance of SMO thin films and 1D nanostructures. The effect on the hydrogen response of SMO thin films and 1D nanostructures of grain boundary and crystal orientation, as well as the sensor architecture, including electrode size and nanojunctions have also been studied. Finally, we also discuss some challenges for the future applications of SMO nanostructured hydrogen sensors.

  17. Megabar pressure phases of solid hydrogen

    Science.gov (United States)

    Chen, Nancy Hueling

    The behavior of solid Hsb2, Dsb2, and HD at low temperatures high pressures was investigated. The experimental data were obtained by combining high pressure diamond anvil cell apparatus with cryogenic and spectroscopic techniques. Megabar pressures (1 bar = 10sp5 Pa) and liquid helium temperatures were accessible. The observed phases and phase lines are discussed with respect to orientational order, crystal structure, and electronic properties. The orientational order-disorder phase transition in HD was studied by Raman spectroscopy. Due to the distinguishability of the nuclei in an HD molecule, the observed phase line exhibits surprising behavior relative to that expected for the homonuclear molecules Hsb2 and Dsb2. The megabar pressure phase diagram of solid Dsb2 was investigated by infrared and Raman spectroscopy. The broken symmetry phase (BSP) transition line and the D-A phase line were observed to meet at a triple point. The relative arrangement of phase lines in P-T space, combined with group theoretical analysis of observed infrared and Raman spectra within the phases, sets symmetry restrictions on the allowed crystal structures. The electronic properties of the high pressure H-A and D-A phases were examined, since these recently discovered phases were suspected of being metallic. Acquired broadband infrared absorption spectra extending to 10 mum were analyzed in terms of the Drude model for metals. No evidence indicating metallic behavior was found. Refinements in high pressure techniques were explored, in order to increase the maximum pressures attainable. A method of extending ruby fluorescence pressure measurements to multimegabar pressures was developed, which involved excitation of ruby fluorescence with red, rather than blue or green laser light.

  18. A METHOD FOR ESTIMATING GAS PRESSURE IN 3013 CONTAINERS USING AN ISP DATABASE QUERY

    Energy Technology Data Exchange (ETDEWEB)

    Friday, G; L. G. Peppers, L; D. K. Veirs, D

    2008-07-31

    The U.S. Department of Energy's Integrated Surveillance Program (ISP) is responsible for the storage and surveillance of plutonium-bearing material. During storage, plutonium-bearing material has the potential to generate hydrogen gas from the radiolysis of adsorbed water. The generation of hydrogen gas is a safety concern, especially when a container is breached within a glove box during destructive evaluation. To address this issue, the DOE established a standard (DOE, 2004) that sets the criteria for the stabilization and packaging of material for up to 50 years. The DOE has now packaged most of its excess plutonium for long-term storage in compliance with this standard. As part of this process, it is desirable to know within reasonable certainty the total maximum pressure of hydrogen and other gases within the 3013 container if safety issues and compliance with the DOE standards are to be attained. The principal goal of this investigation is to document the method and query used to estimate total (i.e. hydrogen and other gases) gas pressure within a 3013 container based on the material properties and estimated moisture content contained in the ISP database. Initial attempts to estimate hydrogen gas pressure in 3013 containers was based on G-values (hydrogen gas generation per energy input) derived from small scale samples. These maximum G-values were used to calculate worst case pressures based on container material weight, assay, wattage, moisture content, container age, and container volume. This paper documents a revised hydrogen pressure calculation that incorporates new surveillance results and includes a component for gases other than hydrogen. The calculation is produced by executing a query of the ISP database. An example of manual mathematical computations from the pressure equation is compared and evaluated with results from the query. Based on the destructive evaluation of 17 containers, the estimated mean absolute pressure was significantly

  19. Hydrogenation of Nd–Fe–B magnet powder under a high pressure of hydrogen

    Directory of Open Access Journals (Sweden)

    Y. Kataoka

    2015-01-01

    Full Text Available The hydrogenation of Nd2Fe14B under a high pressure of hydrogen has been investigated for the first time. At the heat-treatment temperature of 600 °C, almost complete decomposition of Nd2Fe14B into NdH2+x and α-Fe is observed, although a rather long heat-treatment time is necessary to achieve the sufficient hydrogenation. The desorption of hydrogen from NdH2+x does not occur in the furnace-cooling process.

  20. Recent neurochemical basis of inert gas narcosis and pressure effects.

    Science.gov (United States)

    Rostain, J C; Balon, N

    2006-01-01

    Compressed air or a nitrogen-oxygen mixture produces from 0.3 MPa nitrogen narcosis. The traditional view was that anaesthesia or narcosis occurs when the volume of a hydrophobic site is caused to expand beyond a critical amount by the absorption of molecules of a narcotic gas. The observation of the pressure reversal effect on general anaesthesia has for a long time supported the lipid theory. However, recently, protein theories are in increasing consideration since results have been interpreted as evidence for a direct anaesthetic-protein interaction. The question is to know whether inert gases act by binding processes on proteins of neurotransmitter receptors. Compression with breathing mixtures where nitrogen is replaced by helium which has a low narcotic potency induces from 1 MPa, the high pressure nervous syndrome which is related to neurochemical disturbances including changes of the amino-acid and monoamine neurotransmissions. The use of narcotic gas (nitrogen or hydrogen) added to a helium-oxygen mixture, reduced some symptoms of the HPNS but also had some effects due to an additional effect of the narcotic potency of the gas. The researches performed at the level of basal ganglia of the rat brain and particularly the nigro-striatal pathway involved in the control of the motor, locomotor and cognitive functions, disrupted by narcosis or pressure, have indicated that GABAergic neurotransmission is implicated via GABAa receptors.

  1. Scintillation luminescence for high-pressure xenon gas

    Science.gov (United States)

    Kobayashi, S.; Hasebe, N.; Igarashi, T.; Kobayashi, M.-N.; Miyachi, T.; Miyajima, M.; Okada, H.; Okudaira, O.; Tezuka, C.; Yokoyama, E.; Doke, T.; Shibamura, E.; Dmitrenko, V. V.; Ulin, S. E.; Vlasik, K. F.

    2004-09-01

    Scintillation and ionization yields in xenon gas for 5.49MeV alpha-particles were measured in the range of pressure from 0.35 to 3.7MPa and the electric field strength (E) over the number density of xenon atoms (N), E/N from 0 to 5×10-18Vcm2. When our data are normalized at the data point measured by Saito et al., the number of scintillation photons is 2.3×105 while the number of ionization electrons is 2.0×105 at 2.6MPa and at 3.7×10-18Vcm2. The scintillation and ionization yields of xenon doped with 0.2% hydrogen, High-Pressure Xenon gas[H2-0.2%], at 2.6MPa was also measured. Scintillation yield of the Xe-H2 mixture gas is 80% as high as that of pure xenon. It is found that the scintillation yield is luminous enough to generate a trigger pulse of the high-pressure xenon time projection chamber, which is expected as a promising MeV Compton gamma-ray camera.

  2. Biological production of methane from coal synthesis gas under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Ko, C.W.; Vega, J.L.; Barik, S.; Clausen, E.C.; Gaddy, J.L.

    1987-01-01

    Carbon monoxide, hydrogen and carbon dioxide, the major components of coal synthesis gas, may be converted to methane by the action of anaerobic bacteria. Both pure and mixed cultures have been developed to carry out the water-gas shift and methanation reactions. Reaction rates are severely limited by mass-transfer of these gaseous substrates. Research studies show that increased pressure results in a proportionate increase in reaction rate. This paper examines the effects of high pressure on the performance of organisms, such as P. productus and Methanothrix, in converting coal gas into methane. The effects of carbon monoxide inhibition and high pressure are presented and discussed.

  3. Analysis of Water Hammer with Different Closing Valve Laws on Transient Flow of Hydrogen-Natural Gas Mixture

    OpenAIRE

    Norazlina Subani; Norsarahaida Amin

    2015-01-01

    Water hammer on transient flow of hydrogen-natural gas mixture in a horizontal pipeline is analysed to determine the relationship between pressure waves and different modes of closing and opening of valves. Four types of laws applicable to closing valve, namely, instantaneous, linear, concave, and convex laws, are considered. These closure laws describe the speed variation of the hydrogen-natural gas mixture as the valve is closing. The numerical solution is obtained using the reduced order m...

  4. A model for pressurized hydrogen induced thin film blisters

    OpenAIRE

    Bos, R. A. J. M. van den; Reshetniak, V.; Lee, C. J.; Benschop1, J; Bijkerk, F

    2016-01-01

    We introduce a model for hydrogen induced blister formation in nanometer thick thin films. The model assumes that molecular hydrogen gets trapped under a circular blister cap causing it to deflect elastically outward until a stable blister is formed. In the first part, the energy balance required for a stable blister is calculated. From this model, the adhesion energy of the blister cap, the internal pressure and the critical H-dose for blister formation can be calculated. In the second part,...

  5. Metallization of Hydrogen and Other Small Molecules at 100 GPa Pressures

    Energy Technology Data Exchange (ETDEWEB)

    Nellis, W J

    2001-08-17

    Fluid hydrogen, oxygen, and nitrogen become metallic at 100 GPa (1 Mbar) pressures. Disorder is the primary reason for observing a metal at lower pressures in the fluid than expected for the ordered solid. This metallic transition is similar to those observed in fluid Cs and Rb by Hensel et al. All five undergo a Mott transition from a semiconducting to metallic fluid with the same electrical conductivities. In contrast, water is a proton conductor at pressures up to 200 GPa. Extreme conditions were achieved for {approx}100 ns with a reverberating shock wave generated with a two-stage light-gas gun.

  6. Production of hydrogen by thermocatalytic cracking of natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Muradov, N.Z. [Univ. of Central Florida, Cape Canaveral, FL (United States)

    1995-09-01

    It is universally accepted that in the next few decades hydrogen production will continue to rely on fossil fuels (primarily, natural gas). On the other hand, the conventional methods of hydrogen production from natural gas (for example, steam reforming) are complex multi-step processes. These processes also result in the emission of large quantities of CO{sub 2} into the atmosphere that produce adverse ecological effects. One alternative is the one-step thermocatalytic cracking (TCC) (or decomposition) of natural gas into hydrogen and carbon. Preliminary analysis indicates that the cost of hydrogen produced by thermal decomposition of natural gas is somewhat lower than the conventional processes after by-product carbon credit is taken. In the short term, this process can be used for on-site production of hydrogen-methane mixtures in gas-filling stations and for CO{sub x}-free production of hydrogen for fuel cell driven prime movers. The experimental data on the thermocatalytic cracking of methane over various catalysts and supports in a wide range of temperatures (500-900{degrees}C) are presented in this paper. Two types of reactors were designed and built at FSEC: continuous flow and pulse fix bed catalytic reactors. The temperature dependence of the hydrogen production yield using oxide type catalysts was studied. Alumina-supported Ni- and Fe-catalysts demonstrated relatively high efficiency in the methane cracking reaction at moderate temperatures (600-800{degrees}C). Kinetic curves of hydrogen production over metal and metal oxide catalysts at different temperatures are presented in the paper. Fe-catalyst demonstrated good stability (for several hours), whereas alumina-supported Pt-catalyst rapidly lost its catalytic activity.

  7. High pressure hydrocracking of vacuum gas oil to middle distillates

    Science.gov (United States)

    Lahiri, C. R.; Biswas, Dipa

    1986-05-01

    Hydrocracking of heavier petroleum fractions into lighter ones is of increasing importance today to meet the huge demand, particularly for gasoline and middle distillates. Much work on hydrocracking of a gas oil range feed stock to mainly gasoline using modified zeolite catalyst-base exchanged with metals (namely Ni, Pd, Mo, etc.) has been reported. In India, however, present demand is for a maximum amount of middle distillate. The present investigation was therefore aimed to maximize the yield of middle distillate (140-270°C boiling range) by hydrocracking a vacuum gas oil (365-450°C boiling range) fraction from an Indian Refinery at high hydrogen pressure and temperature. A zeolite catalyst-base exchanged with 4.5% Ni was chosen for the reaction. A high pressure batch reactor with a rocking arrangement was used for the study. No pretreatment of the feed stock for sulphur removal applied as the total sulphur in the feed was less than 2%. The process variables studied for the maximum yield of the middle distillate were temperature 300-450°C, pressure 100-200 bar and residence period 1-3 h at the feed to catalyst ratio of 9.3 (wt/wt). The optimum conditions for the maximum yield of 36% middle distillate of the product were: temperature 400°C, pressure 34.5 bar (initially) and residence period 2 h. A carbon balance of 90-92% was found for each run.

  8. Jet fire consequence modeling for high-pressure gas pipelines

    Science.gov (United States)

    Coccorullo, Ivano; Russo, Paola

    2016-12-01

    A simple and reliable approach for sizing the hazard area potentially affected by a jet fire as consequence of the failure of high-pressure pipeline is proposed. A release rate model, taking pipeline operation properties and source release properties into account, is coupled with SLAB dispersion model and point source radiation model to calculate the hazard distance. The hazard distance is set beyond the distance at which a low chance of fatality can occur to people exposed and a wooden structure is not expected to burn due to radiation heat of jet fire. The comparison between three gases with different physico-chemical properties (i.e. natural gas, hydrogen, ethylene) is shown. The influence of pipeline operating parameters, such as: pressure, pipeline diameter and length, hole size, on the hazard area for the three gases is evaluated. Finally, a simple correlation is proposed for calculating the hazard distance as function of these parameters.

  9. Improved Hydrogen Gas Getters for TRU Waste -- Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mark Stone; Michael Benson; Christopher Orme; Thomas Luther; Eric Peterson

    2005-09-01

    Alpha radiolysis of hydrogenous waste and packaging materials generates hydrogen gas in radioactive storage containers. For that reason, the Nuclear Regulatory Commission limits the flammable gas (hydrogen) concentration in the Transuranic Package Transporter-II (TRUPACT-II) containers to 5 vol% of hydrogen in air, which is the lower explosion limit. Consequently, a method is needed to prevent the build up of hydrogen to 5 vol% during the storage and transport of the TRUPACT-II containers (up to 60 days). One promising option is the use of hydrogen getters. These materials scavenge hydrogen from the gas phase and irreversibly bind it in the solid phase. One proven getter is a material called 1,4-bis (phenylethynyl) benzene, or DEB, characterized by the presence of carbon-carbon triple bonds. Carbon may, in the presence of suitable precious metal catalysts such as palladium, irreversibly react with and bind hydrogen. In the presence of oxygen, the precious metal may also eliminate hydrogen by catalyzing the formation of water. This reaction is called catalytic recombination. DEB has the needed binding rate and capacity for hydrogen that potentially could be generated in the TRUPACT II. Phases 1 and 2 of this project showed that uncoated DEB performed satisfactorily in lab scale tests. Based upon these results, Phase 3, the final project phase, included larger scale testing. Test vessels were scaled to replicate the ratio between void space in the inner containment vessel of a TRUPACT-II container and a payload of seven 55-gallon drums. The tests were run with an atmosphere of air for 63.9 days at ambient temperature (15-27°C) and a scaled hydrogen generation rate of 2.60E-07 moles per second (0.35 cc/min). A second type of getter known as VEI, a proprietary polymer hydrogen getter characterized by carbon-carbon double bonds, was also tested in Phase 3. Hydrogen was successfully “gettered” by both getter systems. Hydrogen concentrations remained below 5 vol% (in

  10. Picosecond High Pressure Gas Switch experiment

    Energy Technology Data Exchange (ETDEWEB)

    Cravey, W.R.; Freytag, E.K.; Goerz, D.A.; Poulsen, P.; Pincosy, P.A.

    1993-08-01

    A high Pressure Gas Switch has been developed and tested at LLNL. Risetimes on the order of 200 picoseconds have been observed at 1 kHz prf and 1 atmosphere pressures. Calculations show that switching closure times on the order of tens of picoseconds can be achieved at higher pressures and electric fields. A voltage hold-off of 1 MV/cm has been measured at 10 atmospheres and several MV/cm appears possible with the HPGS. With such high electric field levels, energy storage of tens of Joules in a reasonably sized package is achievable. Initial HPGS performance has been characterized using the WASP pulse generator at LLNL. A detailed description of the switch used for initial testing is given. Switch recovery times of 1-ms have been measured at 1 atmosphere. Data on the switching uniformity, voltage hold-off recovery, and pulse repeatability, is presented. In addition, a physics switch model is described and results are compared with experimental data. Modifications made to the WASP HV pulser in order to drive the HPGS will also be discussed. Recovery times of less than 1 ms were recorded without gas flow in the switch chambers. Low pressure synthetic air was used as the switch dielectric. Longer recovery times were required when it was necessary to over-voltage the switch.

  11. Testing of a Hydrogen Diffusion Flame Array Injector at Gas Turbine Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Weiland, Nathan T.; Sidwell, Todd G.; Strakey, Peter A.

    2013-07-03

    High-hydrogen gas turbines enable integration of carbon sequestration into coal-gasifying power plants, though NO{sub x} emissions are often high. This work explores nitrogen dilution of hydrogen diffusion flames to reduce thermal NO{sub x} emissions and avoid problems with premixing hydrogen at gas turbine pressures and temperatures. The burner design includes an array of high-velocity coaxial fuel and air injectors, which balances stability and ignition performance, combustor pressure drop, and flame residence time. Testing of this array injector at representative gas turbine conditions (16 atm and 1750 K firing temperature) yields 4.4 ppmv NO{sub x} at 15% O{sub 2} equivalent. NO{sub x} emissions are proportional to flame residence times, though these deviate from expected scaling due to active combustor cooling and merged flame behavior. The results demonstrate that nitrogen dilution in combination with high velocities can provide low NO{sub x} hydrogen combustion at gas turbine conditions, with significant potential for further NO{sub x} reductions via suggested design changes.

  12. Testing of a Hydrogen Diffusion Flame Array Injector at Gas Turbine Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Weiland, Nathan T.; Sidwell, Todd G.; Strakey, Peter A.

    2013-07-03

    High-hydrogen gas turbines enable integration of carbon sequestration into coal-gasifying power plants, though NO{sub x} emissions are often high. This work explores nitrogen dilution of hydrogen diffusion flames to reduce thermal NO{sub x} emissions and avoid problems with premixing hydrogen at gas turbine pressures and temperatures. The burner design includes an array of high-velocity coaxial fuel and air injectors, which balances stability and ignition performance, combustor pressure drop, and flame residence time. Testing of this array injector at representative gas turbine conditions (16 atm and 1750 K firing temperature) yields 4.4 ppmv NO{sub x} at 15% O{sub 2} equivalent. NO{sub x} emissions are proportional to flame residence times, though these deviate from expected scaling due to active combustor cooling and merged flame behavior. The results demonstrate that nitrogen dilution in combination with high velocities can provide low NO{sub x} hydrogen combustion at gas turbine conditions, with significant potential for further NO{sub x} reductions via suggested design changes.

  13. Hydrogen Gas Production in a Stand-Alone Wind Farm

    Directory of Open Access Journals (Sweden)

    M. Naziry Kordkandy

    2017-04-01

    Full Text Available This paper is analyzing the operation of a stand-alone wind farm with variable speed turbines, permanent magnet synchronous generators (PMSG and a system for converting wind energy during wind speed variations. On this paper, the design and modeling of a wind system which uses PMSG’s to provide the required power of a hydrogen gas electrolyzer system, is discussed. This wind farm consists of three wind turbines, boost DC-DC converters, diode full bridge rectifiers, permanent magnet synchronous generators, MPPT control and a hydrogen gas electrolyzer system. The MPPT controller based on fuzzy logic is designed to adjust the duty ratio of the boost DC-DC converters to absorb maximum power. The proposed fuzzy logic controller assimilates, with (PSF MPPT algorithm which generally used to absorb maximum power from paralleled wind turbines and stores it in form of hydrogen gas. The system is modeled and its behavior is studied using the MATLAB software.

  14. Blending Hydrogen into Natural Gas Pipeline Networks. A Review of Key Issues

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, M. W. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Antonia, O. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Penev, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-03-01

    This study assesses the potential to deliver hydrogen through the existing natural gas pipeline network as a hydrogen and natural gas mixture to defray the cost of building dedicated hydrogen pipelines. Blending hydrogen into the existing natural gas pipeline network has also been proposed as a means of increasing the output of renewable energy systems such as large wind farms.

  15. Significant Increase in Hydrogen Photoproduction Rates and Yields by Wild-Type Algae is Detected at High Photobioreactor Gas Phase Volume (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2012-07-01

    This NREL Hydrogen and Fuel Cell Technical Highlight describes how hydrogen photoproduction activity in algal cultures can be improved dramatically by increasing the gas-phase to liquid-phase volume ratio of the photobioreactor. NREL, in partnership with subcontractors from the Institute of Basic Biological Problems in Pushchino, Russia, demonstrated that the hydrogen photoproduction rate in algal cultures always decreases exponentially with increasing hydrogen partial pressure above the culture. The inhibitory effect of high hydrogen concentrations in the photobioreactor gas phase on hydrogen photoproduction by algae is significant and comparable to the effect observed with some anaerobic bacteria.

  16. Hydrogen Gas as a Fuel in Direct Injection Diesel Engine

    Science.gov (United States)

    Dhanasekaran, Chinnathambi; Mohankumar, Gabriael

    2016-04-01

    Hydrogen is expected to be one of the most important fuels in the near future for solving the problem caused by the greenhouse gases, for protecting environment and saving conventional fuels. In this study, a dual fuel engine of hydrogen and diesel was investigated. Hydrogen was conceded through the intake port, and simultaneously air and diesel was pervaded into the cylinder. Using electronic gas injector and electronic control unit, the injection timing and duration varied. In this investigation, a single cylinder, KIRLOSKAR AV1, DI Diesel engine was used. Hydrogen injection timing was fixed at TDC and injection duration was timed for 30°, 60°, and 90° crank angles. The injection timing of diesel was fixed at 23° BTDC. When hydrogen is mixed with inlet air, emanation of HC, CO and CO2 decreased without any emission (exhaustion) of smoke while increasing the brake thermal efficiency.

  17. Numerical estimation of ultrasonic production of hydrogen: Effect of ideal and real gas based models.

    Science.gov (United States)

    Kerboua, Kaouther; Hamdaoui, Oualid

    2018-01-01

    Based on two different assumptions regarding the equation describing the state of the gases within an acoustic cavitation bubble, this paper studies the sonochemical production of hydrogen, through two numerical models treating the evolution of a chemical mechanism within a single bubble saturated with oxygen during an oscillation cycle in water. The first approach is built on an ideal gas model, while the second one is founded on Van der Waals equation, and the main objective was to analyze the effect of the considered state equation on the ultrasonic hydrogen production retrieved by simulation under various operating conditions. The obtained results show that even when the second approach gives higher values of temperature, pressure and total free radicals production, yield of hydrogen does not follow the same trend. When comparing the results released by both models regarding hydrogen production, it was noticed that the ratio of the molar amount of hydrogen is frequency and acoustic amplitude dependent. The use of Van der Waals equation leads to higher quantities of hydrogen under low acoustic amplitude and high frequencies, while employing ideal gas law based model gains the upper hand regarding hydrogen production at low frequencies and high acoustic amplitudes. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. CO-PRODUCTION OF HYDROGEN AND ELECTRICITY USING PRESSURIZED CIRCULATING FLUIDIZED BED GASIFICATION TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Zhen Fan

    2006-05-30

    Foster Wheeler has completed work under a U.S. Department of Energy cooperative agreement to develop a gasification equipment module that can serve as a building block for a variety of advanced, coal-fueled plants. When linked with other equipment blocks also under development, studies have shown that Foster Wheeler's gasification module can enable an electric generating plant to operate with an efficiency exceeding 60 percent (coal higher heating value basis) while producing near zero emissions of traditional stack gas pollutants. The heart of the equipment module is a pressurized circulating fluidized bed (PCFB) that is used to gasify the coal; it can operate with either air or oxygen and produces a coal-derived syngas without the formation of corrosive slag or sticky ash that can reduce plant availabilities. Rather than fuel a gas turbine for combined cycle power generation, the syngas can alternatively be processed to produce clean fuels and or chemicals. As a result, the study described herein was conducted to determine the performance and economics of using the syngas to produce hydrogen for sale to a nearby refinery in a hydrogen-electricity co-production plant setting. The plant is fueled with Pittsburgh No. 8 coal, produces 99.95 percent pure hydrogen at a rate of 260 tons per day and generates 255 MWe of power for sale. Based on an electricity sell price of $45/MWhr, the hydrogen has a 10-year levelized production cost of $6.75 per million Btu; this price is competitive with hydrogen produced by steam methane reforming at a natural gas price of $4/MMBtu. Hence, coal-fueled, PCFB gasifier-based plants appear to be a viable means for either high efficiency power generation or co-production of hydrogen and electricity. This report describes the PCFB gasifier-based plant, presents its performance and economics, and compares it to other coal-based and natural gas based hydrogen production technologies.

  19. Silica membranes for hydrogen separation in coal gas processing

    Energy Technology Data Exchange (ETDEWEB)

    Gavalas, G.R.

    1993-01-01

    The general objective of this project was to synthesize permselective membranes suitable for hydrogen separation from coal gas. The specific objectives were: (i) to synthesize membranes by chemical vapor deposition (CVD) of SiO[sub 2] or other oxides on porous support tubes, (ii) characterize the membranes by permeation measurements of various gases and by electron microscopy, and (iii) obtain information about the mechanism and kinetics Of SiO[sub 2] deposition, and model the process of membrane formation. Silica glass and certain other glasses, in dense (nonporous) form, are highly selective to hydrogen permeation. Since this high selectivity is accompanied by low permeability, however, a practical membrane must have a composite structure consisting of a thin layer of the active oxide supported on a porous tube or plate providing mechanical support. In this project the membranes were synthesized by chemical vapor deposition (CVD) of SiO[sub 2], TiO[sub 2], Al[sub 2]O[sub 3] and B[sub 2]O[sub 3] layers inside the walls of porous Vycor tubes (5 mm ID, 7 mm OD, 40 [Angstrom] mean pore diameter). Deposition of the oxide layer was carried out using the reaction of SiCl[sub 4] (or TiCl[sub 4], AlCl[sub 3], BCl[sub 3]) and water vapor at elevated temperatures. The porous support tube was inserted concentrically into a larger quartz tube and fitted with flow lines and pressure gauges. The flow of the two reactant streams was regulated by mass flow controllers, while the temperature was controlled by placing the reactor into a split-tube electric furnace.

  20. Production of bioplastics and hydrogen gas by photosynthetic microorganisms

    Science.gov (United States)

    Yasuo, Asada; Masato, Miyake; Jun, Miyake

    1998-03-01

    Our efforts have been aimed at the technological basis of photosynthetic-microbial production of materials and an energy carrier. We report here accumulation of poly-(3-hydroxybutyrate) (PHB), a raw material of biodegradable plastics and for production of hydrogen gas, and a renewable energy carrier by photosynthetic microorganisms (tentatively defined as cyanobacteria plus photosynthetic bateria, in this report). A thermophilic cyanobacterium, Synechococcus sp. MA19 that accumulates PHB at more than 20% of cell dry wt under nitrogen-starved conditions was isolated and microbiologically identified. The mechanism of PHB accumulation was studied. A mesophilic Synechococcus PCC7942 was transformed with the genes encoding PHB-synthesizing enzymes from Alcaligenes eutrophus. The transformant accumulated PHB under nitrogen-starved conditions. The optimal conditions for PHB accumulation by a photosynthetic bacterium grown on acetate were studied. Hydrogen production by photosynthetic microorganisms was studied. Cyanobacteria can produce hydrogen gas by nitrogenase or hydrogenase. Hydrogen production mediated by native hydrogenase in cyanobacteria was revealed to be in the dark anaerobic degradation of intracellular glycogen. A new system for light-dependent hydrogen production was targeted. In vitro and in vivo coupling of cyanobacterial ferredoxin with a heterologous hydrogenase was shown to produce hydrogen under light conditions. A trial for genetic trasformation of Synechococcus PCC7942 with the hydrogenase gene from Clostridium pasteurianum is going on. The strong hydrogen producers among photosynthetic bacteria were isolated and characterized. Co-culture of Rhodobacter and Clostriumdium was applied to produce hydrogen from glucose. Conversely in the case of cyanobacteria, genetic regulation of photosynthetic proteins was intended to improve conversion efficiency in hydrogen production by the photosynthetic bacterium, Rhodobacter sphaeroides RV. A mutant acquired by

  1. The Influence of Gas-Phase Hydrogenation Parameters on the Processes of Activation, Sorption and Accumulation of Hydrogen in the Powder of Pure Titanium

    Directory of Open Access Journals (Sweden)

    Kudiiarov V.N.

    2016-01-01

    Full Text Available The technique for hydrogenation of powder hydrogen-storage materials based on gas-phase hydrogenation method has been developed in this work. The using of developed technique allow prepare pure titanium powder samples with hydrogen concentration in range from 0.5 to 4 wt.%. It was showed, that pressure increasing from 0.5 to 2 atm at constant temperature 400 °C leads to decreasing of powder activation time from 140 to 15 s. Temperature increasing on 50 °C and more degrees leads to significant decreasing of powder activation time. Pressure increasing from 0.5 to 2 atm leads to increasing of hydrogen sorption rate and concentration in 1.27 and 1.19 times respectively. Temperature increasing from 400 to 550 °C leads to increasing of hydrogen sorption rate in 1.3 times, but decreasing of hydrogen concentration in 1.45 times, which associated with decreasing of hydrogen saturation limit. Optimal values of temperature (400 °C and pressure (2 atm for pure titanium powder hydrogenation have been determined.

  2. Low cost hydrogen/novel membrane technology for hydrogen separation from synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    1986-02-01

    To make the coal-to-hydrogen route economically attractive, improvements are being sought in each step of the process: coal gasification, water-carbon monoxide shift reaction, and hydrogen separation. This report addresses the use of membranes in the hydrogen separation step. The separation of hydrogen from synthesis gas is a major cost element in the manufacture of hydrogen from coal. Separation by membranes is an attractive, new, and still largely unexplored approach to the problem. Membrane processes are inherently simple and efficient and often have lower capital and operating costs than conventional processes. In this report current ad future trends in hydrogen production and use are first summarized. Methods of producing hydrogen from coal are then discussed, with particular emphasis on the Texaco entrained flow gasifier and on current methods of separating hydrogen from this gas stream. The potential for membrane separations in the process is then examined. In particular, the use of membranes for H{sub 2}/CO{sub 2}, H{sub 2}/CO, and H{sub 2}/N{sub 2} separations is discussed. 43 refs., 14 figs., 6 tabs.

  3. Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, M. W.; Antonia, O.; Penev, M.

    2013-03-01

    The United States has 11 distinct natural gas pipeline corridors: five originate in the Southwest, four deliver natural gas from Canada, and two extend from the Rocky Mountain region. This study assesses the potential to deliver hydrogen through the existing natural gas pipeline network as a hydrogen and natural gas mixture to defray the cost of building dedicated hydrogen pipelines.

  4. Development of a hydrogen absorbing layer in the outer shell of high pressure hydrogen tanks

    Energy Technology Data Exchange (ETDEWEB)

    Janot, R. [Laboratoire de Chimie Metallurgique des Terres Rares, UPR 209 CNRS, Institut des Sciences Chimiques Seine-Amont, 2-8, rue Henri Dunant, 94320 Thiais (France); Latroche, M. [Laboratoire de Chimie Metallurgique des Terres Rares, UPR 209 CNRS, Institut des Sciences Chimiques Seine-Amont, 2-8, rue Henri Dunant, 94320 Thiais (France)]. E-mail: michel.latroche@iscsa.cnrs.fr; Percheron-Guegan, A. [Laboratoire de Chimie Metallurgique des Terres Rares, UPR 209 CNRS, Institut des Sciences Chimiques Seine-Amont, 2-8, rue Henri Dunant, 94320 Thiais (France)

    2005-11-25

    This study is focused on the development of a hydrogen absorbing Zr{sub 2}Fe layer in the outer shell of high pressure (70 MPa) hydrogen storage tanks. This layer aims to absorb hydrogen coming from micro-cracks, as those formed by hydrogen embrittlement of the aluminium liner. A multi-phased Zr{sub 2}Fe alloy prepared by induction melting presents a very fast absorption kinetic and a maximum absorption capacity of about 1.8 wt.%. The volume expansion upon hydrogen absorption reaches 19% and is very anisotropic. The good resistance to contamination of the Zr{sub 2}Fe alloy is also demonstrated, since the absorption kinetic remains very fast after heating in air at 150 deg. C with the carbon fiber-epoxy resin composite used for the reinforcement of the high pressure storage vessel. Moreover, Zr{sub 2}Fe ribbons can be prepared by melt-spinning. An annealing treatment above the recrystallization temperature of the amorphous phase (around 410 deg. C) is needed to obtain hydrogen absorption rate similar to that of induction-melted Zr{sub 2}Fe alloy. However, the annealing leads to the limitation of the hydrogen capacity to 1.2 wt.%, due to the occurrence of an absorption-disproportionation phenomenon.

  5. Hydrogen-air energy storage gas-turbine system

    Science.gov (United States)

    Schastlivtsev, A. I.; Nazarova, O. V.

    2016-02-01

    A hydrogen-air energy storage gas-turbine unit is considered that can be used in both nuclear and centralized power industries. However, it is the most promising when used for power-generating plants based on renewable energy sources (RES). The basic feature of the energy storage system in question is combination of storing the energy in compressed air and hydrogen and oxygen produced by the water electrolysis. Such a process makes the energy storage more flexible, in particular, when applied to RES-based power-generating plants whose generation of power may considerably vary during the course of a day, and also reduces the specific cost of the system by decreasing the required volume of the reservoir. This will allow construction of such systems in any areas independent of the local topography in contrast to the compressed-air energy storage gas-turbine plants, which require large-sized underground reservoirs. It should be noted that, during the energy recovery, the air that arrives from the reservoir is heated by combustion of hydrogen in oxygen, which results in the gas-turbine exhaust gases practically free of substances hazardous to the health and the environment. The results of analysis of a hydrogen-air energy storage gas-turbine system are presented. Its layout and the principle of its operation are described and the basic parameters are computed. The units of the system are analyzed and their costs are assessed; the recovery factor is estimated at more than 60%. According to the obtained results, almost all main components of the hydrogen-air energy storage gas-turbine system are well known at present; therefore, no considerable R&D costs are required. A new component of the system is the H2-O2 combustion chamber; a difficulty in manufacturing it is the necessity of ensuring the combustion of hydrogen in oxygen as complete as possible and preventing formation of nitric oxides.

  6. Development of gas pressure vortex regulator

    Science.gov (United States)

    Uss, A. Yu.; Chernyshyov, A. V.; Krylov, V. I.

    2017-08-01

    The present paper describes the applications of vortex regulators and the current state of the issue on the use and development of such devices. A patent review has been carried out. Automatic control systems using a vortex regulator are considered. Based on the analysis and preliminary numerical calculation of gas flow in the working cavity of the regulator, a new design of a vortex gas pressure regulator has been developed. An experimental sample of the device was made using additive technologies and a number of tests were carried out. The results of experimental studies confirmed the adequacy of the created mathematical model. Based on further numerical studies a new design of a vortex regulator with a distributed feed of the process control flow as well as with the regulated swirl of the supply and control process flows has been developed.

  7. Power to gas. The final breakthrough for the hydrogen economy?

    Energy Technology Data Exchange (ETDEWEB)

    Winkler-Goldstein, Raphael [Germany Trade and Invest (GTAI), Paris (France); Rastetter, Aline [Alphea Hydrogene, Forbach (France)

    2013-04-01

    In Germany more than 20% of the energy mix is made up of renewable energy and its share is rapidly increasing. The federal government expects renewables to account for 35% of Germany's electricity consumption by 2020, 50% by 2030 and 80% by 2050. According to the German Energy Agency, multi-billion euro investments in energy storage are expected by 2020 in order to reach these goals. The growth of this fluctuating energy supply has created demand for innovative storage options in Germany and it is accelerating the development of technologies in this field. Along with batteries and smart grids, hydrogen is expected to be one of the lead technologies. 2010 a commercialization roadmap for wind hydrogen was set up by the two northern federal states of Hamburg and Schleswig-Holstein with the goal of utilizing surplus wind power for the electrolytic production of hydrogen. With the creation of the 'performing energy initiative', 2011, Brandenburg and Lower Saxony joined this undertaking. The aim of this initiative is to set up demonstration projects in order to develop and optimize wind-hydrogen hybrid systems and prepare their commercialization for the time after 2020. Beside the conversion of hydrogen into electricity and fuel for cars, further markets like raw material for the chemical, petrochemical, metallurgy and food industry are going to be addressed. Considering the fact there are over 40 caves currently used for natural gas storage with a total volume of 23.5 billion cubic meters and 400 000 km gas grid available in Germany, the German Technical and Scientific Association for Gas and Water sees opportunities for hydrogen to be fed into the existing natural gas grid network. The name of this concept is power-to-gas. According to the current DVGW-Standards natural gas in Germany can contain up to 5% hydrogen. The GERG, European Group on the Gas Research sees potential to increase this amount up to 6% to 20%. Power-to-gas could serve both for fuel and for the

  8. Hydrogen Gas Inhalation Attenuates Seawater Instillation-Induced Acute Lung Injury via the Nrf2 Pathway in Rabbits.

    Science.gov (United States)

    Diao, Mengyuan; Zhang, Sheng; Wu, Lifeng; Huan, Le; Huang, Fenglou; Cui, Yunliang; Lin, Zhaofen

    2016-12-01

    Seawater instillation-induced acute lung injury involves oxidative stress and apoptosis. Although hydrogen gas inhalation is reportedly protective in multiple types of lung injury, the effect of hydrogen gas inhalation on seawater instillation-induced acute lung injury remains unknown. This study investigated the effect of hydrogen gas on seawater instillation-induced acute lung injury and explored the mechanisms involved. Rabbits were randomly assigned to control, hydrogen (2 % hydrogen gas inhalation), seawater (3 mL/kg seawater instillation), and seawater + hydrogen (3 mL/kg seawater instillation + 2 % hydrogen gas inhalation) groups. Arterial partial oxygen pressure and lung wet/dry weight ratio were detected. Protein content in bronchoalveolar lavage fluid (BALF) and serum as well as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 levels were determined. Hematoxylin-eosin staining was used to monitor changes in lung specimens, and malondialdehyde (MDA) content and myeloperoxidase (MPO) activity were assayed. In addition, NF-E2-related factor (Nrf) 2 and heme oxygenase (HO)-1 mRNA and protein expression were measured, and apoptosis was assessed by measuring caspase-3 expression and using terminal deoxy-nucleotidyl transferase dUTP nick end-labeling (TUNEL) staining. Hydrogen gas inhalation markedly improved lung endothelial permeability and decreased both MDA content and MPO activity in lung tissue; these changes were associated with decreases in TNF-α, IL-1β, and IL-6 in BALF. Hydrogen gas also alleviated histopathological changes and cell apoptosis. Moreover, Nrf2 and HO-1 expressions were significantly activated and caspase-3 expression was inhibited. These results demonstrate that hydrogen gas inhalation attenuates seawater instillation-induced acute lung injury in rabbits and that the protective effects observed may be related to the activation of the Nrf2 pathway.

  9. Mechanism for formation of NaBH4 proposed as low-pressure process for storing hydrogen in borosilicate glass–sodium solid system: a hydrogen storage material

    Indian Academy of Sciences (India)

    Aysel Kantürk Figen; Sabriye Pişkin

    2012-04-01

    The mechanism for the formation of sodium borohydride (NaBH4) was investigated for its ability to store hydrogen in the borosilicate glass–sodium (BSG–Na) solid system under low hydrogen pressure. BSG, which was prepared by melting borax with silica, was used as the starting material in the BSG–Na system that would be prepared to store hydrogen. It was observed that the mechanism for storing hydrogen in the BSG–Na solid system consisted of six steps and when the BSG–Na system was heated under a pressure of 4 atm, which was created through the use of hydrogen atmosphere, the storage of hydrogen occurred at nearly 480°C for approximate duration of 200 min, with the excellent yield (97%). In addition, the hydrogen storage capacity of the NaBH4 sample was measured using the Au–PS structure, which was designed as a mini-hydrogen cell. It was determined that the minimum amount of NaBH4 to generate the maximum volume of hydrogen gas was 12 mg/ml at 270 mV.

  10. A novel three-electrode solid electrolyte hydrogen gas sensor

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Min; Yang, Chunling; Zhang, Yan [Harbin Insitute of Technology, Harbin (China). School of Computer Science and Technology; Jia, Zheng [Harbin Insitute of Technology, Harbin (China). School of Chemical Engineering and Technology

    2013-07-01

    A three-electrode solid electrolyte hydrogen gas sensor is explored in this paper. The sensor utilized phosphotungstic acid as the electrolyte material and adopted platinum, nickel and tungsten as the three-electrode materials respectively. In real applications, platinum was used as the measuring electrode, nickel was used as the adjusting electrode and tungsten was used as the reference electrode. In order to compare the performance of the new sensor with that of the traditional two-electrode sensor, the hydrogen concentrations were adjusted so as to detect the output of the two-electrode sensor and the three-electrode sensor. The dynamic range between the measuring electrode and the reference electrode is about 0.65V and the highest detectable limit is 12% for the three-electrode solid hydrogen gas sensor. While the dynamic range is about 0.25V and and the highest detectable limit is 1% for the two-electrode solid electrolyte gas sensor. The results demonstrate that the three-electrode solid hydrogen gas sensor has a higher resolution and detectable limit than the two-electrode sensor. abstract environment.

  11. Hydrogen and Oxygen Gas Monitoring System Design and Operation

    Energy Technology Data Exchange (ETDEWEB)

    Lee C. Cadwallader; Kevin G. DeWall; J. Stephen Herring

    2007-06-01

    This paper describes pertinent design practices of selecting types of monitors, monitor unit placement, setpoint selection, and maintenance considerations for gas monitors. While hydrogen gas monitors and enriched oxygen atmosphere monitors as they would be needed for hydrogen production experiments are the primary focus of this paper, monitors for carbon monoxide and carbon dioxide are also discussed. The experiences of designing, installing, and calibrating gas monitors for a laboratory where experiments in support of the DOE Nuclear Hydrogen Initiative (NHI) are described along with codes, standards, and regulations for these monitors. Information from the literature about best operating practices is also presented. The NHI program has two types of activities. The first, near-term activity is laboratory and pilot-plant experimentation with different processes in the kilogram per day scale to select the most promising types of processes for future applications of hydrogen production. Prudent design calls for indoor gas monitors to sense any hydrogen leaks within these laboratory rooms. The second, longer-term activity is the prototype, or large-scale plants to produce tons of hydrogen per day. These large, outdoor production plants will require area (or “fencepost”) monitoring of hydrogen gas leaks. Some processes will have oxygen production with hydrogen production, and any oxygen releases are also safety concerns since oxygen gas is the strongest oxidizer. Monitoring of these gases is important for personnel safety of both indoor and outdoor experiments. There is some guidance available about proper placement of monitors. The fixed point, stationary monitor can only function if the intruding gas contacts the monitor. Therefore, monitor placement is vital to proper monitoring of the room or area. Factors in sensor location selection include: indoor or outdoor site, the location and nature of potential vapor/gas sources, chemical and physical data of the

  12. Hydrogen embrittlement susceptibility of a weld simulated X70 heat affected zone under H{sub 2} pressure

    Energy Technology Data Exchange (ETDEWEB)

    Alvaro, A., E-mail: antonio.alvaro@ntnu.no [Department of Engineering Design and Materials, NTNU, 7456 Trondheim (Norway); Olden, V. [SINTEF Materials and Chemistry, 7456 Trondheim (Norway); Macadre, A. [Kyushu University, WPI-I2CNER (World Premier Institute – International Institute for Carbon Neutral Energy Research) (Japan); Akselsen, Odd Magne [Department of Engineering Design and Materials, NTNU, 7456 Trondheim (Norway); SINTEF Materials and Chemistry, 7456 Trondheim (Norway)

    2014-03-01

    The present paper deals with hydrogen embrittlement (HE) susceptibility of a weld thermal simulated heat affected zone of X70 structural steel in high pressure hydrogen gas at 20 °C. Fracture mechanics Single Edge Notched Tension tests at various hydrogen pressures (0.1, 0.6, 10 and 40 MPa H{sub 2}) have been carried out. The HE susceptibility was quantified through the measurement of the fracture toughness K{sub Q} and J (the effect of hydrogen pressure was addressed through linear load increase conditions till failure was obtained). The results show that hydrogen causes a strong decrease in the fracture toughness with increasing hydrogen pressure. The critical hydrogen pressure for the onset of HE was observed to fall between 0.1 MPa and 0.6 MPa. These results were supported by Scanning Electron Microscope (SEM) investigations of the fracture surfaces which showed a clear shift in the fracture mode at 0.6 MPa H{sub 2}. Moreover, constant load tests were carried out in order to investigate the influence of hydrogen exposure time. The results imply that fracture always occurs within 8 h and that longer time to failure is related to stronger toughness reduction. This effect is more pronounced for test at 40 MPa than at 0.6 MPa hydrogen pressure levels. 3D Finite Element calculations of hydrogen diffusion have been performed and the results are discussed in relation to the experiments, in order to attempt to identify the hydrogen populations (diffusible or trapped) which act predominantly on the embrittlement of the material.

  13. Numerical simulation of premixed Hydrogen/air combustion pressure in a spherical vessel

    Directory of Open Access Journals (Sweden)

    Guo Han-yu

    2016-01-01

    Full Text Available In order to study the development process of hydrogen combustion in a closed vessel, an on-line chemical equilibrium calculator and a numerical simulation method would be used to analysis the combustion pressure and flame front of mixed gas, which based on 20L H2/air explosion experiments in spherical vessel (Crowl and Jo,2009. The results showed that, the turbulent model could reflect the process of combustion, and the error of combustion pressure by simulation is smaller than the Chemical Equilibrium Calculation. The heat loss and incomplete combustion are the main reason to cause the error.

  14. A fatigue initiation parameter for gas pipe steel submitted to hydrogen absorption

    Energy Technology Data Exchange (ETDEWEB)

    Capelle, J.; Gilgert, J.; Pluvinage, G. [LaBPS - Ecole Nationale d' Ingenieurs de Metz et Universite Paul Verlaine Metz, Ile du Saulcy, 57045 Metz (France)

    2010-01-15

    Fatigue initiation resistance has been determined on API 5L X52 gas pipe steel. Tests have been performed on Roman Tile (RT) specimen and fatigue initiation was detected by acoustic emission. A comparison between specimens electrolytically charged with hydrogen and specimens without hydrogen absorption were made and it has been noted that fatigue initiation time is reduced of about 3 times when hydrogen embrittlement occurs. It has been proposed to use the concept of Notch Stress Intensity Factor as parameter to describe the fatigue initiation process. Due to the fact that hydrogen is localised in area with high hydrostatic pressure, definitions of local effective stress and distance have been modified when hydrogen is absorbed. This modification can be explained by existence of a ductile-brittle transition with hydrogen concentration. The fatigue initiation resistance curve allows that to determine a threshold for large number of cycles of fatigue non initiation. This parameter introduced in a Failure Assessment Diagram (FAD) provides supplementary information about defect nocivity in gas pipes: a non-critical defect can be detected as dormant or not dormant defect i.e., as non propagating defect. (author)

  15. Liquid Hydrogen Propellant Tank Sub-Surface Pressurization with Gaseous Helium

    Science.gov (United States)

    Stephens, J. R.; Cartagena, W.

    2015-01-01

    A series of tests were conducted to evaluate the performance of a propellant tank pressurization system with the pressurant diffuser intentionally submerged beneath the surface of the liquid. Propellant tanks and pressurization systems are typically designed with the diffuser positioned to apply pressurant gas directly into the tank ullage space when the liquid propellant is settled. Space vehicles, and potentially propellant depots, may need to conduct tank pressurization operations in micro-gravity environments where the exact location of the liquid relative to the diffuser is not well understood. If the diffuser is positioned to supply pressurant gas directly to the tank ullage space when the propellant is settled, then it may become partially or completely submerged when the liquid becomes unsettled in a microgravity environment. In such case, the pressurization system performance will be adversely affected requiring additional pressurant mass and longer pressurization times. This series of tests compares and evaluates pressurization system performance using the conventional method of supplying pressurant gas directly to the propellant tank ullage, and then supplying pressurant gas beneath the liquid surface. The pressurization tests were conducted on the Engineering Development Unit (EDU) located at Test Stand 300 at NASA Marshall Space Flight Center (MSFC). EDU is a ground based Cryogenic Fluid Management (CFM) test article supported by Glenn Research Center (GRC) and MSFC. A 150 ft3 propellant tank was filled with liquid hydrogen (LH2). The pressurization system used regulated ambient helium (GHe) as a pressurant, a variable position valve to maintain flow rate, and two identical independent pressurant diffusers. The ullage diffuser was located in the forward end of the tank and was completely exposed to the tank ullage. The submerged diffuser was located in the aft end of the tank and was completely submerged when the tank liquid level was 10% or greater

  16. Performance of a CVD grown graphene-based planar device for a hydrogen gas sensor

    Science.gov (United States)

    Dutta, D.; Hazra, A.; Hazra, S. K.; Das, J.; Bhattacharyya, S.; Sarkar, C. K.; Basu, S.

    2015-11-01

    A multilayer graphene (MLG) film was grown on thermally oxidized silicon (SiO2/Si) substrate by atmospheric pressure chemical vapor deposition (APCVD). The formation of the MLG and the presence of the oxide on the graphene surface were confirmed by Raman spectroscopy and electron dispersive spectroscopy (EDS), respectively. An energy gap of 0.234 eV was determined by the optical transmission method. The surface morphology of the graphene film was studied by field emission scanning electron microscopy (FESEM) and by atomic force microscopy (AFM). A planar device with lateral Pd metal contacts was used for the hydrogen sensor studies. The sensor performance in the temperature range (110 °C-150 °C) revealed a relatively fast response (~12 s) and recovery (~24 s) for hydrogen sensing. The reproducibility, the selectivity, and the stability of the device were also studied. The sensor was found to be selective for hydrogen relative to methane in the temperature range studied. The gas sensing mechanism has been suggested on the basis of the interaction of palladium with hydrogen, the change in the interface barrier, and the adsorption-desorption processes related to the change in the hydrogen partial pressure and temperature. The AFM study indicates the reorientation of the graphene surface after the sensing operation, most probably due to hydrogen passivation.

  17. Reactor Design for CO2 Photo-Hydrogenation toward Solar Fuels under Ambient Temperature and Pressure

    Directory of Open Access Journals (Sweden)

    Chun-Ying Chen

    2017-02-01

    Full Text Available Photo-hydrogenation of carbon dioxide (CO2 is a green and promising technology and has received much attention recently. This technique could convert solar energy under ambient temperature and pressure into desirable and sustainable solar fuels, such as methanol (CH3OH, methane (CH4, and formic acid (HCOOH. It is worthwhile to mention that this direction can not only potentially depress atmospheric CO2, but also weaken dependence on fossil fuel. Herein, 1 wt % Pt/CuAlGaO4 photocatalyst was successfully synthesized and fully characterized by ultraviolet-visible light (UV-vis spectroscopy, X-ray diffraction (XRD, Field emission scanning electron microscopy using energy dispersive spectroscopy analysis (FE-SEM/EDS, transmission electron microscopy (TEM, X-ray photoelectron spectroscopy (XPS, and Brunauer-Emmett-Teller (BET, respectively. Three kinds of experimental photo-hydrogenation of CO2 in the gas phase, liquid phase, and gas-liquid phase, correspondingly, were conducted under different H2 partial pressures. The remarkable result has been observed in the gas-liquid phase. Additionally, increasing the partial pressure of H2 would enhance the yield of product. However, when an extra amount of H2 is supplied, it might compete with CO2 for occupying the active sites, resulting in a negative effect on CO2 photo-hydrogenation. For liquid and gas-liquid phases, CH3OH is the major product. Maximum total hydrocarbons 8.302 µmol·g−1 is achieved in the gas-liquid phase.

  18. Biomass & Natural Gas Based Hydrogen Fuel For Gas Turbine (Power Generation)

    Science.gov (United States)

    Significant progress has been made by major power generation equipment manufacturers in the development of market applications for hydrogen fuel use in gas turbines in recent years. Development of a new application using gas turbines for significant reduction of power plant CO2 e...

  19. Hydrogen Adsorption on Activated Carbon an Carbon Nanotubes Using Volumetric Differential Pressure Technique

    Science.gov (United States)

    Sanip, S. M.; Saidin, M. A. R.; Aziz, M.; Ismail, A. F.

    2010-03-01

    A simple hydrogen adsorption measurement system utilizing the volumetri differential pressure technique has been designed, fabricated and calibrated. Hydroge adsorption measurements have been carried out at temperatures 298 K and 77 K on activate carbon and carbon nanotubes with different surface areas. The adsorption data obtained will b helpful in understanding the adsorption property of the studied carbon materials using th fundamentals of adsorption theory. The principle of the system follows the Sievert-type metho The system measures a change in pressure between the reference cell, R1 and the sample cell S1, S2, S3 over a certain temperature range. R1, S1, S2, and S3 having known fixed volume The sample temperatures will be monitored by thermocouple TC while the pressures in R1 an S1, S2, S3 will be measured using a digital pressure transducer. The maximum operatin pressure of the pressure transducer is 20 bar and calibrated with an accuracy of ±0.01 bar. Hig purity hydrogen is being used in the system and the amount of samples for the study is betwee 1.0-2.0 grams. The system was calibrated using helium gas without any samples in S1, S2 an S3. This will provide a correction factor during the adsorption process providing an adsorption free reference point when using hydrogen gas resulting in a more accurate reading of th adsorption process by eliminating the errors caused by temperature expansion effects and oth non-adsorption related phenomena. The ideal gas equation of state is applied to calculate th hydrogen adsorption capacity based on the differential pressure measurements. Activated carbo with a surface area of 644.87 m2/g showed a larger amount of adsorption as compared to multiwalled nanotubes (commercial) with a surface area of 119.68 m2/g. This study als indicated that there is a direct correlation between the amounts of hydrogen adsorbed an surface area of the carbon materials under the conditions studied and that the adsorption significant at 77

  20. Production of hydrogen by thermocatalytic cracking of natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Muradov, N. [Florida Solar Energy Center, Cocoa, FL (United States)

    1996-10-01

    The conventional methods of hydrogen production from natural gas (for example, steam reforming and partial oxidation) are complex, multi-step processes that produce large quantities of CO{sub 2}. The main goal of this project is to develop a technologically simple process for hydrogen production from natural gas (NG) and other hydrocarbon fuels via single-step decomposition of hydrocarbons. This approach eliminates or significantly reduces CO{sub 2} emission. Carbon is a valuable by-product of this process, whereas conventional methods of hydrogen production from NG produce no useful by-products. This approach is based on the use of special catalysts that reduce the maximum temperature of the process from 1400-1500{degrees}C (thermal non-catalytic decomposition of methane) to 500-900{degrees}C. Transition metal based catalysts and various forms of carbon are among the candidate catalysts for the process. This approach can advantageously be used for the development of compact NG reformers for on-site production of hydrogen-methane blends at refueling stations and, also, for the production of hydrogen-rich gas for fuel cell applications. The author extended the search for active methane decomposition catalysts to various modifications of Ni-, Fe-, Mo- and Co-based catalysts. Variation in the operational parameters makes it possible to produce H{sub 2}-CH{sub 4} blends with a wide range of hydrogen concentrations that vary from 15 to 98% by volume. The author found that Ni-based catalysts are more effective at temperatures below 750{degrees}C, whereas Fe-based catalysts are effective at temperatures above 800{degrees}C for the production of hydrogen with purity of 95% v. or higher. The catalytic pyrolysis of liquid hydrocarbons (pentane, gasoline) over Fe-based catalyst was conducted. The author observed the production of a hydrogen-rich gas (hydrogen concentration up to 97% by volume) at a rate of approximately 1L/min.mL of hydrocarbon fuel.

  1. Computational phase diagrams of noble gas hydrates under pressure.

    Science.gov (United States)

    Teeratchanan, Pattanasak; Hermann, Andreas

    2015-10-21

    We present results from a first-principles study on the stability of noble gas-water compounds in the pressure range 0-100 kbar. Filled-ice structures based on the host water networks ice-Ih, ice-Ic, ice-II, and C0 interacting with guest species He, Ne, and Ar are investigated, using density functional theory (DFT) with four different exchange-correlation functionals that include dispersion effects to various degrees: the non-local density-based optPBE-van der Waals (vdW) and rPW86-vdW2 functionals, the semi-empirical D2 atom pair correction, and the semi-local PBE functional. In the He-water system, the sequence of stable phases closely matches that seen in the hydrogen hydrates, a guest species of comparable size. In the Ne-water system, we predict a novel hydrate structure based on the C0 water network to be stable or at least competitive at relatively low pressure. In the Ar-water system, as expected, no filled-ice phases are stable; however, a partially occupied Ar-C0 hydrate structure is metastable with respect to the constituents. The ability of the different DFT functionals to describe the weak host-guest interactions is analysed and compared to coupled cluster results on gas phase systems.

  2. Impact of pH on hydrogen oxidizing redox processes in aquifers due to gas intrusions

    Science.gov (United States)

    Metzgen, Adrian; Berta, Marton; Dethlefsen, Frank; Ebert, Markus; Dahmke, Andreas

    2017-04-01

    Hydrogen production from excess energy and its storage can help increasing the efficiency of solar and wind in the energy mix. Therefore, hydrogen needs large-scale intermediate storage independent of the intended later use as hydrogen gas or as reactant to produce methane in the Sabatier process. A possible storage solution is using the geological subsurface such as caverns built in salt deposits or aquifers that are not used for drinking water production. However, underground storage of hydrogen gas potentially leads to accidental gas leakages into near-surface potable aquifers triggering subsequent geochemical processes. These leakages pose potential risks that are currently not sufficiently understood. To close this gap in knowledge, a high-pressure laboratory column system was used to simulate a hydrogen gas intrusion into a shallow aquifer. Water and sediment were gained from a sandy Pleistocene aquifer near Neumünster, Germany. In the first stage of the experiment, 100% hydrogen gas was used to simulate dissolved hydrogen concentrations between 800 and 4000 µM by varying pH2 between 2 and 15 bars. pH values rose to between 7.9 and 10.4, partly due to stripping CO2 from the groundwater used during H2 gas addition. In a second stage, the pH was regulated in a range of 6.7 to 7.9 by using a gas mixture of 99% H2 and 1% CO2 at 5 bars of total gas pressure. Observed processes included hydrogen oxidation, sulfate reduction, acetogenesis, formate production, and methanogenesis, which were independent of the hydrogen concentration. Hydrogen oxidation and sulfate reduction showed zeroth order reaction rates and rate constants (106 to 412 µM/h and 12 to 33 µM/h, respectively) in the pH range between 8 and 10. At pH levels between 7 and 8, both reactions started out faster near the column's inflow but then seemed limited towards the columns outflow, suggesting the dependence of sulfate reduction on the pH-value. Acetogenesis dominated the pH range between 8 and 10

  3. High pressure gas vessels for neutron scattering experiments

    CERN Document Server

    Done, R; Evans, B E; Bowden, Z A

    2010-01-01

    The combination of high pressure techniques with neutron scattering proves to be a powerful tool for studying the phase transitions and physical properties of solids in terms of inter-atomic distances. In our report we are going to review a high pressure technique based on a gas medium compression. This technique covers the pressure range up to ~0.7GPa (in special cases 1.4GPa) and typically uses compressed helium gas as the pressure medium. We are going to look briefly at scientific areas where high pressure gas vessels are intensively used in neutron scattering experiments. After that we are going to describe the current situation in high pressure gas technology; specifically looking at materials of construction, designs of seals and pressure vessels and the equipment used for generating high pressure gas.

  4. Specific features of SRS-CARS monitoring of low impurity concentrations of hydrogen in dense gas mixtures

    Science.gov (United States)

    Mikheev, Gennady M.; Mogileva, Tatyana N.; Popov, Aleksey Yu.

    2006-09-01

    The possibility of measuring the hydrogen impurity concentration in dense gas mixtures by coherent anti-Stokes Raman scattering (CARS) is studied. In this technique, biharmonic laser pumping based on stimulated Raman scattering (SRS) in compressed hydrogen is used. Because of the interference between the coherent scattering components from buffer gas molecules and molecules of the impurity to be detected, the signal recorded may depend on the hydrogen concentration by a parabolic law, which has a minimum and makes the results uncertain. It is shown that this uncertainty can be removed if the frequency of the biharmonic laser pump, which is produced by the SRS oscillator, somewhat differs from the frequency of molecular oscillations of hydrogen in the test mixture. A sensitivity of 5 ppm is obtained as applied to the hydrogen-air mixture under normal pressure. The description of a set-up for the determination of the coefficient of the hydrogen diffusion in gas mixtures is given. The main assembly units are a diffusion chamber and an automated laser system for the selective hydrogen diagnostics in gas mixtures by the SRS-CARS method. The determination of the diffusion coefficient is based on the approximation of the experimental data describing the hydrogen concentration varying with time at a specified point in the diffusion chamber and the accurate solution of the diffusion equation for the selected one-dimensional geometry of the experiment.

  5. Thermal behavior of a 13-molecule hydrogen cluster under pressure.

    Science.gov (United States)

    Santamaria, Rubén; Soullard, Jacques; Jellinek, Julius

    2010-03-28

    The thermal behavior of a 13-molecule hydrogen cluster is studied as a function of pressure and temperature using a combination of trajectory and density functional theory simulations. The analysis is performed in terms of characteristic descriptors such as caloric curve, root-mean-square bond length fluctuation, pair correlation function, velocity autocorrelation function, volume thermal expansion, and diffusion coefficients. The discussion addresses on the peculiarities of the transition from the ordered-to-disordered state as exhibited by the cluster under different pressures and temperatures.

  6. Plasma-chemical treatment of hydrogen sulfide in natural gas processing. Final report, May 1991--December 1992

    Energy Technology Data Exchange (ETDEWEB)

    Harkness, J.B.L.; Doctor, R.D. [Argonne National Lab., IL (United States)

    1993-05-01

    A new process for the treatment of hydrogen sulfide waste that uses microwave plasma-chemical technology has been under development in Russia and the United States. Whereas the present waste-treatment technology, at best, only recovers sulfur, this novel process recovers both hydrogen and sulfur by dissociating hydrogen sulfide in a plasma by means of a microwave or radio-frequency reactor. A research project has been undertaken to determine the suitability of the plasma process in natural gas processing applications. The experiments tested acid-gas compositions with 30--65% carbon dioxide, 0--7% water, and 0--0.2% of a standard mixture of pipeline gas. The balance gas in all cases was hydrogen sulfide. The reactor pressure for the experiments was 50 torr, and the microwave power was 1.0 kW. Conversions of hydrogen sulfide ranged from 80 to 100%, while 35--50% of the carbon dioxide was converted to carbon monoxide. This conversion of carbon dioxide resulted in a loss of hydrogen production and an energy loss from a hydrogen sulfide waste-treatment perspective. Tests of a direct natural gas treatment concept showed that hydrocarbon losses were unacceptably high; consequently, the concept would not be economically viable.

  7. Hydrogen and Hydrogen/Natural Gas Station and Vehicle Operations - 2006 Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Francfort; Donald Karner; Roberta Brayer

    2006-09-01

    This report is a summary of the operations and testing of internal combustion engine vehicles that were fueled with 100% hydrogen and various blends of hydrogen and compressed natural gas (HCNG). It summarizes the operations of the Arizona Public Service Alternative Fuel Pilot Plant, which produces, compresses, and dispenses hydrogen fuel. Other testing activities, such as the destructive testing of a CNG storage cylinder that was used for HCNG storage, are also discussed. This report highlights some of the latest technology developments in the use of 100% hydrogen fuels in internal combustion engine vehicles. Reports are referenced and WWW locations noted as a guide for the reader that desires more detailed information. These activities are conducted by Arizona Public Service, Electric Transportation Applications, the Idaho National Laboratory, and the U.S. Department of Energy’s Advanced Vehicle Testing Activity.

  8. Recovery of Hydrogen from Ammonia Plant Tail Gas by Absorption-Hydration Hybrid Method

    Institute of Scientific and Technical Information of China (English)

    刘蓓; 王秀林; 唐绪龙; 杨兰英; 孙长宇; 陈光进

    2011-01-01

    In this work, the absorption-hydration hybrid method was used to recover (hydrogen + nitrogen) from (hydrogen + nitrogen + methane + argon) tail gas mixtures of synthetic ammonia plant through hydrate formation/dissociation. A high-pressure reactor with magnetic stirrer was used to study the separation efficiency. The in-fluences of the concentration of anti-agglomerant, temperature, pressure, initial gas-liquid volume ratio, and oil-water volume ratio on the separation efficiency were systematically investigated in the presence of tetrahydro-furan (THF). Anti-agglomerant was used to disperse hydrate particles into the condensate phase for water-in-oil emulsion system. Since nitrogen is the material for ammonia production, the objective production in our separation process is (hydrogen + nitrogen). Our experimental results show that by adopting appropriate operating conditions, high concentration of (hydrogen + nitrogen) can be obtained using the proposed technology based on forming hydrate.

  9. Effect of aeration on fast gas pressure tests

    Institute of Scientific and Technical Information of China (English)

    CHEN Yu-jia; JIANG Cheng-lin; LI Xiao-wei; TANG Jun; WANG Chen; YANG Fei-long; WANG Fa-kai; ZHANG Chao-jie; DENG Shu-hua

    2009-01-01

    Given the problem of the long time required for testing gas pressure, we propose a fast-test method in which we used a technique of fast borehole sealing and air replenishing. Based on the characteristics of gas emission from boreholes to be tested, we built a theoretical model for calculating parameters during the process of increasing natural pressure and aeration. Using this model, we investigated the effect of different aeration conditions on velocity of pressure tests. The result shows that: 1) aerating air into boreholes can speed up gas pressure tests and 2) the more similar the pressure of the aerated air to the original gas pressure, the smaller the gas volume absorbed by coal and the shorter the time needed in pressure test. A case study in the Lu'an mining area shows that the time needed for gas pressure test is only 4 h using our method of aeration and 29 h under conditions of increasing natural pressure, saving time by 86.2%. This case study also indicates that, by using the aeration method, only one hour is needed for gas pressure to reach a stable state, which breaks the record of the shortest time needed for gas pressure tests in China.

  10. Effect of ignition timing and hydrogen fraction on combustion and emission characteristics of natural gas direct-injection engine

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    An experimental study on the combustion and emission characteristics of a direct-injection spark-ignited engine fueled with natural gas/hydrogen blends under various ignition timings was conducted.The results show that ignition timing has a significant influence on engine performance,combustion and emissions.The interval between the end of fuel injection and ignition timing is a very important parameter for direct-injection natural gas engines.The turbulent flow in the combustion chamber generated by the fuel jet remains high and relative strong mixture stratification is introduced when decreasing the angle interval between the end of fuel injection and ignition timing giving fast burning rates and high thermal efficiencies.The maximum cylinder gas pressure,maximum mean gas temperature,maximum rate of pressure rise and maximum heat release rate increase with the advancing of ignition timing.However,these parameters do not vary much with hydrogen addition under specific ignition timing indicating that a small hydrogen fraction addition of less than 20% in the present experiment has little influence on combustion parameters under specific ignition timing.The exhaust HC emission decreases while the exhaust CO2 concentration increases with the advancing of ignition timing.In the lean combustion condition,the exhaust CO does not vary much with ignition timing.At the same ignition timing,the exhaust HC decreases with hydrogen addition while the exhaust CO and CO2 do not vary much with hydrogen addition.The exhaust NOx increases with the advancing of' ignition timing and the behavior tends to be more obvious at large ignition advance angle.The brake mean effective pressure and the effective thermal efficiency of natural gas/hydrogen mixture combustion increase compared with those of natural gas combustion when the hydrogen fraction is over 10%.

  11. Evaluation of Technical Feasibility of Homogeneous Charge Compression Ignition (HCCI) Engine Fueled with Hydrogen, Natural Gas, and DME

    Energy Technology Data Exchange (ETDEWEB)

    John Pratapas; Daniel Mather; Anton Kozlovsky

    2007-03-31

    The objective of the proposed project was to confirm the feasibility of using blends of hydrogen and natural gas to improve the performance, efficiency, controllability and emissions of a homogeneous charge compression ignition (HCCI) engine. The project team utilized both engine simulation and laboratory testing to evaluate and optimize how blends of hydrogen and natural gas fuel might improve control of HCCI combustion. GTI utilized a state-of-the art single-cylinder engine test platform for the experimental work in the project. The testing was designed to evaluate the feasibility of extending the limits of HCCI engine performance (i.e., stable combustion, high efficiency and low emissions) on natural gas by using blends of natural gas and hydrogen. Early in the project Ricardo provided technical support to GTI as we applied their engine performance simulation program, WAVE, to our HCCI research engine. Modeling support was later provided by Digital Engines, LLC to use their proprietary model to predict peak pressures and temperatures for varying operating parameters included in the Design of Experiments test plan. Digital Engines also provided testing support for the hydrogen and natural gas blends. Prof. David Foster of University of Wisconsin-Madison participated early in the project by providing technical guidance on HCCI engine test plans and modeling requirements. The main purpose of the testing was to quantify the effects of hydrogen addition to natural gas HCCI. Directly comparing straight natural gas with the hydrogen enhanced test points is difficult due to the complexity of HCCI combustion. With the same air flow rate and lambda, the hydrogen enriched fuel mass flow rate is lower than the straight natural gas mass flow rate. However, the energy flow rate is higher for the hydrogen enriched fuel due to hydrogen's significantly greater lower heating value, 120 mJ/kg for hydrogen compared to 45 mJ/kg for natural gas. With these caveats in mind, an

  12. Pure Hydrogen Production in Membrane Reactor with Mixed Reforming Reaction by Utilizing Waste Gas: A Case Study

    Directory of Open Access Journals (Sweden)

    Seyyed Mohammad Jokar

    2016-09-01

    Full Text Available A rise in CO2 and other greenhouse gases’ concentration from gas refinery flares and furnaces in the atmosphere causes environmental problems. In this work, a new process was designed to use waste gas (flue gas and flare gas of a domestic gas refinery to produce pure hydrogen in a membrane reactor. In particular, the process foresees that the energy and CO2 content of flue gas can provide the heat of the mixed reforming reaction to convert flare gas into hydrogen. Furthermore, the characteristics of the feed stream were obtained via simulation. Then, an experimental setup was built up to investigate the performance of a membrane reactor allocating an unsupported dense Pd-Ag membrane at the mentioned conditions. In this regard, a Ni/CeO2 catalyst was loaded in the membrane reformer for mixed reforming reaction, operating at 450 °C, in a pressure range between 100 and 350 kPa and a gas hourly space velocity of around 1000 h−1. The experimental results in terms of methane conversion, hydrogen recovery and yield, as well as products’ compositions are reported. The best results of this work were observed at 350 kPa, where the MR was able to achieve about 64%, 52% and 50% for methane conversion, hydrogen yield and recovery, respectively. Furthermore, with the assistance of the experimental tests, the proposed process was simulated in the scaling up to calculate the needed surface area for MR in the domestic gas refinery.

  13. Hydroformylation of Cyclohexene with Carbon Dioxide and Hydrogen Using Ruthenium Carbonyl Catalyst: Influence of Pressures of Gaseous Components

    Directory of Open Access Journals (Sweden)

    Masahiko Arai

    2007-08-01

    Full Text Available Hydroformylation of cyclohexene was studied with a catalyst system ofRu3(CO12 and LiCl using H2 and CO2 instead of CO in NMP. The influence of H2 andCO2 pressures on the total conversion and the product distribution was examined. It wasshown that increasing total pressure of H2 and CO2 promoted the reverse water gas shiftreaction and increased the yield of cyclohexanecarboxaldehyde. Its hydrogenation tocyclohexanemethanol was promoted with increasing H2 pressure but suppressed withincreasing CO2 pressure. Cyclohexane was also formed along with those products and thisdirect hydrogenation was suppressed with increasing CO2 pressure. The roles of CO2 as apromoter as well as a reactant were further examined by phase behavior observations andhigh pressure FTIR measurements.

  14. A Converter for Producing a Hydrogen-Containing Synthesis Gas

    Science.gov (United States)

    Malkov, Yu. P.; Molchanov, O. N.; Britov, B. K.; Fedorov, I. A.

    2016-11-01

    A computational thermodynamic and experimental investigation of the characteristics of a model of a converter for producing a hydrogen-containing synthesis gas from a hydrocarbon fuel (kerosene) with its separate delivery to thermal-oxidative and steam conversions has been carried out. It is shown that the optimum conditions of converter operation correspond to the oxidant excess coefficient in the converter's combustion chamber α > 0.5 at a temperature of the heat-transmitting wall (made from a heat-resistant KhN78T alloy (ÉI 435)) of 1200 K in the case of using a nickel corrugated tape catalyst. The content of hydrogen in the synthesis gas attains in this case 60 vol.%, and there is no release of carbon (soot) in the conversion products as well as no need for water cooling of the converter walls.

  15. Triboelectric Hydrogen Gas Sensor with Pd Functionalized Surface

    Directory of Open Access Journals (Sweden)

    Sung-Ho Shin

    2016-10-01

    Full Text Available Palladium (Pd-based hydrogen (H2 gas sensors have been widely investigated thanks to its fast reaction and high sensitivity to hydrogen. Various sensing mechanisms have been adopted for H2 gas sensors; however, all the sensors must be powered through an external battery. We report here an H2 gas sensor that can detect H2 by measuring the output voltages generated during contact electrification between two friction surfaces. When the H2 sensor, composed of Pd-coated ITO (indium tin oxide and PET (polyethylene Terephthalate film, is exposed to H2, its output voltage is varied in proportion to H2 concentration because the work function (WF of Pd-coated surface changes, altering triboelectric charging behavior. Specifically, the output voltage of the sensor is gradually increased as exposing H2 concentration increases. Reproducible and sensitive sensor response was observed up 1% H2 exposure. The approach introduced here can easily be adopted to development of triboelectric gas sensors detecting other gas species.

  16. An in situ tensile test apparatus for polymers in high pressure hydrogen.

    Science.gov (United States)

    Alvine, K J; Kafentzis, T A; Pitman, S G; Johnson, K I; Skorski, D; Tucker, J C; Roosendaal, T J; Dahl, M E

    2014-10-01

    Degradation of material properties by high-pressure hydrogen is an important factor in determining the safety and reliability of materials used in high-pressure hydrogen storage and delivery. Hydrogen damage mechanisms have a time dependence that is linked to hydrogen outgassing after exposure to the hydrogen atmosphere that makes ex situ measurements of mechanical properties problematic. Designing in situ measurement instruments for high-pressure hydrogen is challenging due to known hydrogen incompatibility with many metals and standard high-power motor materials such as Nd. Here we detail the design and operation of a solenoid based in situ tensile tester under high-pressure hydrogen environments up to 42 MPa (6000 psi). Modulus data from high-density polyethylene samples tested under high-pressure hydrogen at 35 MPa (5000 psi) are also reported as compared to baseline measurements taken in air.

  17. Effect of long-term hydrogen exposure on the mechanical properties of polymers used for pipes and tested in pressurized hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Castagnet, Sylvie, E-mail: sylvie.castagnet@ensma.fr [Institut P' (UPR CNRS 3346), CNRS-ENSMA-Universite de Poitiers, Departement de Physique et Mecanique des Materiaux, ENSMA, 1 Avenue Clement Ader, BP40109, 86961 Futuroscope cedex (France); Grandidier, Jean-Claude; Comyn, Mathieu; Benoit, Guillaume [Institut P' (UPR CNRS 3346), CNRS-ENSMA-Universite de Poitiers, Departement de Physique et Mecanique des Materiaux, ENSMA, 1 Avenue Clement Ader, BP40109, 86961 Futuroscope cedex (France)

    2012-01-15

    The influence of long-term exposure to hydrogen on the mechanical properties of polymers needs to be characterized for a reliable design of storage or transport facilities. However, mechanical tests in hydrogen atmosphere have been rarely reported. In the present study, two possible effects of hydrogen on tensile properties have been investigated in two polymers currently used for gas transport i.e. polyethylene (PE) and polyamide 11 (PA11): the mechanics-diffusion coupling and the influence of long-term exposure to hydrogen. Tensile tests in hydrogen atmosphere (30 bars) and atmospheric air at room temperature were compared, in the as-received materials as well as after aging in various conditions (pressure, temperature and duration). Results showed that the influence of hydrogen was prevalent neither on the tensile behavior nor on microstructure changes. This suggested that the design of hydrogen-dedicated parts could be based on data obtained in atmospheric air, even for long-term use. - Highlights: Black-Right-Pointing-Pointer Coupling between hydrogen diffusion and mechanics was addressed in polymers currently used for piping. Black-Right-Pointing-Pointer As-received and 13-month hydrogen-exposed polyethylene and polyamide 11 were tested. Black-Right-Pointing-Pointer Tensile tests in pressurized hydrogen and atmospheric air at ambient temperature were compared. Black-Right-Pointing-Pointer Microstructure changes during aging were tracked by standard calorimetry. Black-Right-Pointing-Pointer The influence of hydrogen was found to be prevalent neither on the tensile behavior nor on microstructure changes.

  18. Hydrogen production from banyan leaves using an atmospheric-pressure microwave plasma reactor.

    Science.gov (United States)

    Lin, Yuan-Chung; Wu, Tzi-Yi; Jhang, Syu-Ruei; Yang, Po-Ming; Hsiao, Yi-Hsing

    2014-06-01

    Growth of the hydrogen market has motivated increased study of hydrogen production. Understanding how biomass is converted to hydrogen gas can help in evaluating opportunities for reducing the environmental impact of petroleum-based fuels. The microwave power used in the reaction is found to be proportional to the rate of production of hydrogen gas, mass of hydrogen gas produced per gram of banyan leaves consumed, and amount of hydrogen gas formed with respect to the H-atom content of banyan leaves decomposed. Increase the microwave power levels results in an increase of H2 and decrease of CO2 concentrations in the gaseous products. This finding may possibly be ascribed to the water-gas shift reaction. These results will help to expand our knowledge concerning banyan leaves and hydrogen yield on the basis of microwave-assisted pyrolysis, which will improve the design of hydrogen production technologies.

  19. Gas turbine combustion performance test of hydrogen and carbon monoxide synthetic gas

    Energy Technology Data Exchange (ETDEWEB)

    Min Chul Lee; Seok Bin Seo; Jae Hwa Chung; Si Moon Kim; Yong Jin Joo; Dal Hong Ahn [Korea Electric Power Corporation, Daejeon (Republic of Korea). Green Growth Laboratory

    2010-07-15

    The development of coal IGCC (Integrated Gasification Combined Cycle) technology has made it possible to exploit electricity generated from coal at a low cost. Furthermore, IGCC is a pre-requisite for the development of CCS (Carbon Capture and Storage) technology and hydrogen generated from coal. To achieve the need to reduce CO{sub 2} emissions, Korea's 300 MW IGCC RDD&D (Research Development, Demonstration and Dissemination) project was launched in December 2006 under the leadership of the Korea Electric Power Corporation (KEPCO), with the support of the Korea Ministry of Knowledge Economy. When a new fuel is adapted to a gas turbine (such as syngas for IGCC), it is necessary to study the gas turbine combustion characteristics of the fuel, because gas turbines are very sensitive to its physical and chemical properties. This experimental study was conducted by investigating the combustion performance of synthetic gas, which is composed chiefly of hydrogen and carbon monoxide. The results of a test on synthetic gas combustion performance were compared with the results of methane combustion, which is a major component of natural gas. The results of the combustion test of both gases were examined in terms of the turbine's inlet temperature, combustion dynamics, emission characteristics, and flame structure. From the results of this experimental study, we were able to understand the combustion characteristics of synthetic gas and anticipate the problems when synthetic gas rather than natural gas is fuelled to a gas turbine. 21 refs., 11 figs., 1 tab.

  20. Gas and pressure effects on the synthesis of amorphous carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    ZHAO Tingkai; LIU Yongning; ZHU Jiewu

    2004-01-01

    The effects of gas, pressure and temperature on the production of amorphous carbon nanotubes were investigated using an arc discharging furnace at controlled temperature. Co/Ni alloy powder was used as catalyst.The discharge current was 80 A and voltage was 32 V. The optimal parameters were obtained: 600℃ temperature, hydrogen gas and 500 torr pressure. The productivity and purity of amorphous carbon nanotubes are 6.5 gram per hour and 80%, respectively. The diameter of the amorphous carbon nanotubes is about 7-20 nm.

  1. A model for pressurized hydrogen induced thin film blisters

    Science.gov (United States)

    van den Bos, R. A. J. M.; Reshetniak, V.; Lee, C. J.; Benschop, J.; Bijkerk, F.

    2016-12-01

    We introduce a model for hydrogen induced blister formation in nanometer thick thin films. The model assumes that molecular hydrogen gets trapped under a circular blister cap causing it to deflect elastically outward until a stable blister is formed. In the first part, the energy balance required for a stable blister is calculated. From this model, the adhesion energy of the blister cap, the internal pressure, and the critical H-dose for blister formation can be calculated. In the second part, the flux balance required for a blister to grow to a stable size is calculated. The model is applied to blisters formed in a Mo/Si multilayer after being exposed to hydrogen ions. From the model, the adhesion energy of the Mo/Si blister cap was calculated to be around 1.05 J/m2 with internal pressures in the range of 175-280 MPa. Based on the model, a minimum ion dose for the onset of blister formation was calculated to be d = 4.2 × 1018 ions/cm2. From the flux balance equations, the diffusion constant for the Mo/Si blister cap was estimated to be DH2=(10 ±1 )×10-18 cm2/s .

  2. EUV tools: hydrogen gas purification and recovery strategies

    Science.gov (United States)

    Landoni, Cristian; Succi, Marco; Applegarth, Chuck; Riddle Vogt, Sarah

    2015-03-01

    The technological challenges that have been overcome to make extreme ultraviolet lithography (EUV) a reality have been enormous1. This vacuum driven technology poses significant purity challenges for the gases employed for purging and cleaning the scanner EUV chamber and source. Hydrogen, nitrogen, argon and ultra-high purity compressed dry air (UHPCDA) are the most common gases utilized at the scanner and source level. Purity requirements are tighter than for previous technology node tools. In addition, specifically for hydrogen, EUV tool users are facing not only gas purity challenges but also the need for safe disposal of the hydrogen at the tool outlet. Recovery, reuse or recycling strategies could mitigate the disposal process and reduce the overall tool cost of operation. This paper will review the types of purification technologies that are currently available to generate high purity hydrogen suitable for EUV applications. Advantages and disadvantages of each purification technology will be presented. Guidelines on how to select the most appropriate technology for each application and experimental conditions will be presented. A discussion of the most common approaches utilized at the facility level to operate EUV tools along with possible hydrogen recovery strategies will also be reported.

  3. Gas-phase synthesis of Mg-Ti nanoparticles for solid-state hydrogen storage.

    Science.gov (United States)

    Calizzi, M; Venturi, F; Ponthieu, M; Cuevas, F; Morandi, V; Perkisas, T; Bals, S; Pasquini, L

    2016-01-07

    Mg-Ti nanostructured samples with different Ti contents were prepared via compaction of nanoparticles grown by inert gas condensation with independent Mg and Ti vapour sources. The growth set-up offered the option to perform in situ hydrogen absorption before compaction. Structural and morphological characterisation was carried out by X-ray diffraction, energy dispersive spectroscopy and electron microscopy. The formation of an extended metastable solid solution of Ti in hcp Mg was detected up to 15 at% Ti in the as-grown nanoparticles, while after in situ hydrogen absorption, phase separation between MgH2 and TiH2 was observed. At a Ti content of 22 at%, a metastable Mg-Ti-H fcc phase was observed after in situ hydrogen absorption. The co-evaporation of Mg and Ti inhibited nanoparticle coalescence and crystallite growth in comparison with the evaporation of Mg only. In situ hydrogen absorption was beneficial to subsequent hydrogen behaviour, studied by high pressure differential scanning calorimetry and isothermal kinetics. A transformed fraction of 90% was reached within 100 s at 300 °C during both hydrogen absorption and desorption. The enthalpy of hydride formation was not observed to differ from bulk MgH2.

  4. The Sticking Probability for Hydrogen on Ni, Pd, and Pt at a Hydrogen pressure of 1 bar

    DEFF Research Database (Denmark)

    Johansson, Martin; Lytken, Ole; Chorkendorff, Ib

    2007-01-01

    A technique for measurements of the sticking probability of hydrogen on metal surfaces at high (ambient) pressure is described. As an example, measurements for Ni, Pd and Pt at a hydrogen pressure of 1 bar and temperatures between 40 and 200 degrees C are presented. The sticking probabilities...

  5. Assessment of the hydrogen external tank pressure decay anomaly on Space Transportation System (STS) 51-L

    Science.gov (United States)

    Buckley, Theresa M.

    1988-01-01

    Following the Challenger tragedy, an evaluation of the integrated main propulsion system flight data revealed a premature decay in the hydrogen external tank ullage pressure. A reconstruction of predicted ullage pressure versus time indicated an inconsistency between predicted and measured ullage pressure starting at approximately 65.5 seconds into the flight and reaching a maximum value between 72 and 72.9 seconds. This discrepancy could have been caused by a hydrogen gas leak or by a liquied hydrogen leak that occurred either in the pressurization system or in the external tank. The corresponding leak rates over the time interval from 65.5 to 72.9 seconds were estimated to range from 0.28 kg/s (0.62 lbm/s) + or - 41 percent to between 0.43 and 0.51kg/s (0.94 and 1.12lbs/s) + or - 1 percent for a gas leak and from 72.9 kg/s (160.5 lbs/s) + or - 41 percent to between 111.6 and 133.2 kg/s (245.8 and 293.3 lbs/s) + or - 1 percent for a liquid leak. No speculation is made to ascertain whether the leak is liquid or gas, as this cannot be determined from the analysis performed. Four structural failures in the hydrogen external tank were considered to explain the leak rates. A break in the 5-cm (2 in) pressurization line, in the 13-cm (5 in) vent line, or in the 43-cm (17 in) feedline is not likely. A break in the 10-cm (4 in) recirculation line with a larger structural failure occurring in the 72 to 73-second time period, the time of the visibly identified premature pressure decay, does seem plausible and the most likely of the four modes considered. These modes are not all-inclusive and do not preclude the possibility of a leak elsewhere in the tank.

  6. Revisions to the hydrogen gas generation computer model

    Energy Technology Data Exchange (ETDEWEB)

    Jerrell, J.W.

    1992-08-31

    Waste Management Technology has requested SRTC to maintain and extend a previously developed computer model, TRUGAS, which calculates hydrogen gas concentrations within the transuranic (TRU) waste drums. TRUGAS was written by Frank G. Smith using the BASIC language and is described in the report A Computer Model of gas Generation and Transport within TRU Waste Drums (DP- 1754). The computer model has been partially validated by yielding results similar to experimental data collected at SRL and LANL over a wide range of conditions. The model was created to provide the capability of predicting conditions that could potentially lead to the formation of flammable gas concentrations within drums, and to assess proposed drum venting methods. The model has served as a tool in determining how gas concentrations are affected by parameters such as filter vent sizes, waste composition, gas generation values, the number and types of enclosures, water instrusion into the drum, and curie loading. The success of the TRUGAS model has prompted an interest in the program`s maintenance and enhancement. Experimental data continues to be collected at various sites on such parameters as permeability values, packaging arrangements, filter designs, and waste contents. Information provided by this data is used to improve the accuracy of the model`s predictions. Also, several modifications to the model have been made to enlarge the scope of problems which can be analyzed. For instance, the model has been used to calculate hydrogen concentrations inside steel cabinets containing retired glove boxes (WSRC-RP-89-762). The revised TRUGAS computer model, H2GAS, is described in this report. This report summarizes all modifications made to the TRUGAS computer model and provides documentation useful for making future updates to H2GAS.

  7. Revisions to the hydrogen gas generation computer model

    Energy Technology Data Exchange (ETDEWEB)

    Jerrell, J.W.

    1992-08-31

    Waste Management Technology has requested SRTC to maintain and extend a previously developed computer model, TRUGAS, which calculates hydrogen gas concentrations within the transuranic (TRU) waste drums. TRUGAS was written by Frank G. Smith using the BASIC language and is described in the report A Computer Model of gas Generation and Transport within TRU Waste Drums (DP- 1754). The computer model has been partially validated by yielding results similar to experimental data collected at SRL and LANL over a wide range of conditions. The model was created to provide the capability of predicting conditions that could potentially lead to the formation of flammable gas concentrations within drums, and to assess proposed drum venting methods. The model has served as a tool in determining how gas concentrations are affected by parameters such as filter vent sizes, waste composition, gas generation values, the number and types of enclosures, water instrusion into the drum, and curie loading. The success of the TRUGAS model has prompted an interest in the program's maintenance and enhancement. Experimental data continues to be collected at various sites on such parameters as permeability values, packaging arrangements, filter designs, and waste contents. Information provided by this data is used to improve the accuracy of the model's predictions. Also, several modifications to the model have been made to enlarge the scope of problems which can be analyzed. For instance, the model has been used to calculate hydrogen concentrations inside steel cabinets containing retired glove boxes (WSRC-RP-89-762). The revised TRUGAS computer model, H2GAS, is described in this report. This report summarizes all modifications made to the TRUGAS computer model and provides documentation useful for making future updates to H2GAS.

  8. Blending of hydrogen in natural gas distribution systems. Volume II. Combustion tests of blends in burners and appliances. Final report, June 1, 1976--August 30, 1977. [8, 11, 14, 20, 22, 25, and 31% hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-10-01

    The emerging ''hydrogen economy'' is a strong contender as one method to supplement or extend the domestic natural gas supply. This volume of the subject study ''Blending Hydrogen in Natural Gas Distribution Systems'' describes combustion studies to determine the maximum amount of hydrogen that can be blended in natural gas and utilized satisfactorily in typical appliances with no adjustment or conversion. Eleven pilot burners and twenty-three main burners typical of those in current use were operated on hydrogen-natural gas mixtures containing approximately 8, 11, 14, 20, 22, 25, and 31 percent, by volume, hydrogen. The eleven pilot burners and thirteen main burners were tested outside the appliance they were a part of. Ten main burners were tested in their respective appliances. Performance of the various burners tested are as follows: (1) Gas blends containing more than 6 to 11% hydrogen are the limiting mixtures for target type pilot burners. (2) Gas blends containing more than 20 to 22% hyrogen are the limiting mixtures for main burners operating in the open. (3) Gas blends containing more than 22 to 25% hydrogen are the limiting mixtures for main burners tested in appliances. (4) Modification of the orifice in target pilots or increasing the supply pressure to a minimum of 7 inches water column will permit the use of gas blends with 20% hydrogen.

  9. Superconductivity in hydrogen-rich materials at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Drozdov, Alexander

    2016-07-01

    A room temperature superconductor is probably one of the most desired systems in solid state physics. The highest critical temperature (T{sub c}) that has been achieved so far is in the copper oxide system: 133 kelvin (K) at ambient pressure ([82]Schilling et al. 1993) and 160 K under pressure ([42]Gao et al. 1994). The nature of superconductivity in the cuprates and in the recently discovered iron-based superconductor family (T{sub c}=57 K) is still not fully understood. In contrast, there is a class of superconductors which is well-described by the Bardeen, Cooper, Schrieffer (BCS) theory - conventional superconductors. Great efforts were spent in searching for high-temperature (T{sub c} > 77 K) conventional superconductor but only T{sub c} = 39 K has been reached in MgB2 ([68]Nagamatsu et al. 2001). BCS theory puts no bounds for T{sub c} as follows from Eliashberg's formulation of BCS theory. T{sub c} can be high, if there is a favorable combination of high-frequency phonons, strong electron-phonon coupling, and a high density of states. It does not predict however in which materials all three parameters are large. At least it gives a clear indication that materials with light elements are favorable as light elements provide high frequencies in the phonon spectrum. The lightest element is hydrogen, and Ashcroft made a first prediction that metallic hydrogen will be a high-temperature superconductor ([6]Ashcroft 1968). As pressure of hydrogen metallization was too high (about 400-500 GPa) for experimental techniques then he proposed that compounds dominated by hydrogen (hydrides) also might be good high temperature superconductors ([6]Ashcroft 1968; [7]Ashcroft 2004). A lot of the followed calculations supported this idea. T{sub c} in the range of 50-235 kelvin was predicted for many hydrides. Unfortunately, only a moderate T{sub c} of 17 kelvin has been observed experimentally ([27]Eremets et al. 2008) so far. A goal of the present work is to find a

  10. The relation between mid-plane pressure and molecular hydrogen in galaxies: Environmental dependence

    CERN Document Server

    Feldmann, Robert; Gnedin, Nickolay Y

    2012-01-01

    Molecular hydrogen (H2) is the primary component of the reservoirs of cold, dense gas that fuel star formation in our galaxy. While the H2 abundance is ultimately regulated by physical processes operating on small scales in the interstellar medium (ISM), observations have revealed a tight correlation between the ratio of molecular to atomic hydrogen in nearby spiral galaxies and the pressure in the mid-plane of their disks. This empirical relation has been used to predict H2 abundances in galaxies with potentially very different ISM conditions, such as metal-deficient galaxies at high redshifts. Here, we test the validity of this approach by studying the dependence of the pressure -- H2 relation on environmental parameters of the ISM. To this end, we follow the formation and destruction of H2 explicitly in a suite of hydrodynamical simulations of galaxies with different ISM parameters. We find that a pressure -- H2 relation arises naturally in our simulations for a variety of dust-to-gas ratios or strengths o...

  11. Interaction of gas phase atomic hydrogen with Pt(111): Direct evidence for the formation of bulk hydrogen species

    Institute of Scientific and Technical Information of China (English)

    JIANG ZhiQuan; HUANG WeiXin; BAO XinHe

    2007-01-01

    Employing hot tungsten filament to thermal dissociate molecular hydrogen, we generated gas phase atomic hydrogen under ultra-high vacuum (UHV) conditions and investigated its interaction with Pt(111) surface. Thermal desorption spectroscopy (TDS) results demonstrate that adsorption of molecular hydrogen on Pt(111) forms surface Had species whereas adsorption of atomic hydrogen forms not only surface Had species but also bulk Had species. Bulk Had species is more thermal-unstable than surface Had species on Pt(111), suggesting that bulk Had species is more energetic. This kind of weakly- adsorbed bulk Had species might be the active hydrogen species in the Pt-catalyzed hydrogenation reactions.

  12. The low-cost and precise piston gas pressure regulator

    Science.gov (United States)

    Kudasik, Mateusz; Skoczylas, Norbert

    2016-03-01

    The present paper discusses the concept and functioning of an innovative instrument for precise stabilization of gas pressure. The piston gas pressure regulator was constructed at the Strata Mechanics Research Institute of the Polish Academy of Sciences. The tests to which the instrument was subjected involved observing the values of stabilized pressure at the level of 10 bar and 3 bar, for various gas flow rates at the outlet of the instrument. The piston gas pressure regulator operates within the range of 0-10 bar and the gas flow range of 0-240 cm3 min-1. The precision of the process of stabilizing the initial pressure is  ±0.005 bar, regardless of the gas pressure value and the flow rate observed at the outlet of the instrument. Although the pressure transducer’s accuracy is 0.25% of the full range, the conducted tests of the regulator demonstrated that the obtained changeability of the stabilized pressure is at least two times lower. Unlike some other gas pressure regulators available on the market, the instrument constructed by the authors of the present paper is highly precise when it comes to the process of stabilization, and inexpensive to build.

  13. Superplastic forming gas pressure of titanium alloy bellows

    Institute of Scientific and Technical Information of China (English)

    王刚; 张凯锋; 陈军; 阮雪榆

    2004-01-01

    The complex superplastic forming (SPF) technology applying gas pressure and compressive axial load is an advanced forming method for titanium alloy bellows, whose forming process consists of the three main forming phases namely bulging, clamping and calibrating phase. The influence of forming gas pressure in various phases on the forming process was analyzed and the models of forming gas pressure for bellows were derived according to the thin shell theory and the plasticity deformation theory. Using the model values, taking a two-convolution DN250 Ti6Al-4V titanium alloy bellows as an example, a series of superplastic forming tests were performed to evaluate the influence of the variation of forming gas pressure on the forming process. According to the experimental results these models were corrected to make the forming gas pressures prediction more accurate.

  14. Hydrogen turbines for space power systems: A simplified axial flow gas turbine model

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, S.L.

    1988-01-01

    This paper descirbes a relatively simple axial flow gas expansion turbine mass model, which we developed for use in our space power system studies. The model uses basic engineering principles and realistic physical properties, including gas conditions, power level, and material stresses, to provide reasonable and consistent estimates of turbine mass and size. Turbine design modifications caused by boundary layer interactions, stress concentrations, stage leakage, or bending and thermal stresses are not accounted for. The program runs on an IBM PC, uses little computer time and has been incorporated into our system-level space power platform analysis computer codes. Parametric design studies of hydrogen turbines using this model are presented for both nickel superalloy and carbon/carbon composite turbines. The effects of speed, pressure ratio, and power level on hydrogen turbine mass are shown and compared to a baseline case 100-MWe, 10,000-rpm hydrogen turbine. Comparison with more detailed hydrogen turbine designs indicates that our simplified model provides mass estimates that are within 25% of the ones provided by more complex calculations. 8 figs.

  15. Inhalation of hydrogen gas reduces liver injury during major hepatotectomy in swine

    Institute of Scientific and Technical Information of China (English)

    Lei Xiang; Jing-Wang Tan; Li-Jie Huang; Lin Jia; Ya-Qian Liu; Yu-Qiong Zhao; Kai Wang; Jia-Hong Dong

    2012-01-01

    AIM:To study the effect of H2 gas on liver injury in massive hepatectomy using the Intermittent Pringle maneuver in swine.METHODS:Male Bama pigs (n =14) treated with ketamine hydrochloride and Sumianxin Ⅱ as induction drugs followed by inhalation anesthesia with 2% isoflurane,underwent 70% hepatotectomy with loss of bleeding less than 50 mL,and with hepatic pedicle occlusion for 20 min,were divided into two groups:Hydrogen-group (n =7),the pigs with inhalation of 2% hydrogen by the tracheal intubation during major hepatotectomy; Contrast-group (n =7),underwent 70% hepatotectomy without inhalation of hydrogen.Hemodynamic changes and plasma concentrations of alanine aminotransferase (ALT),aspartate aminotransferase (AST),hyaluronic acid (HA),tumor necrosis factor-α (TNF-α),interleukin-6 (IL-6),and malondialdehyde (MDA) in liver tissue were measured at pre-operation,post-hepatotectomy (PH) 1 h and 3 h.The apoptosis and proliferating cell nuclear antigen (PCNA) expression in liver remnant were evaluated at PH 3 h.Then we compared the two groups by these marks to evaluate the effect of the hydrogen in the liver injury during major hepatotectomy with the Pringle Maneuver in the swine.RESULTS:There were no significant differences in body weight,blood loss and removal liver weight between the two groups.There was no significant difference in changes of portal vein pressure between two groups at pre-operation,PH 30 min,but in hydrogen gas treated-group it slightly decrease and lower than its in Contrast-group at PH 3 h,although there were no significant difference (P =0.655).ALT and AST in Hydrogen-group was significantly lower comparing to Contrast-group (P =0.036,P =0.011,vs P =0.032,P =0.013) at PH 1 h and 3 h,although the two groups all increased.The MDA level increased between the two group at PH 1 h and 3 h.In the hydrogen gas treated-group,the MDA level was not significantly significant at pre-operation and significantly low at PH 1 h and 3 h comparing to

  16. Development and industrial application of catalyzer for low-temperature hydrogenation hydrolysis of Claus tail gas

    OpenAIRE

    Honggang Chang; Ronghai Zhu; Zongshe Liu; Jinlong He; Chongrong Wen; Sujuan Zhang; Yang Li

    2015-01-01

    With the implementation of more strict national environmental protection laws, energy conservation, emission reduction and clean production will present higher requirements for sulfur recovery tail gas processing techniques and catalyzers. As for Claus tail gas, conventional hydrogenation catalyzers are gradually being replaced by low-temperature hydrogenation catalyzers. This paper concentrates on the development of technologies for low-temperature hydrogenation hydrolysis catalyzers, prepar...

  17. Tri-Gas Pressurization System Testing and Modeling for Cryogenic Applications

    Science.gov (United States)

    Taylor, B.; Polsgrove, R.; Stephens, J.; Hedayat, A.

    2014-01-01

    The use of Tri-gas in rocket propulsion systems is somewhat of a new technology. This paper defines Tri-gas as a mixture of gases composed largely of helium with a small percentage of a stoichiometric mixture of hydrogen and oxygen. When exposed to a catalyst the hydrogen and oxygen in the mixture combusts, significantly raising the temperature of the mixture. The increase in enthalpy resulting from the combustion process significantly decreases the required quantity of gas needed to pressurize the ullage of the vehicle propellant tanks. The objective of this effort was to better understand the operating characteristics of Tri-gas in a pressurization system with low temperature applications. In conjunction with ongoing programs at NASA Marshall Space Flight Center, an effort has been undertaken to evaluate the operating characteristics of Tri-gas through modeling and bench testing. Through improved understanding of the operating characteristics, the risk of using this new technology in a launch vehicle propulsion system was reduced. Bench testing of Tri-gas was a multistep process that targeted gas characteristics and performance aspects that pose a risk to application in a pressurization system. Pressurization systems are vital to propulsion system performance. Keeping a target ullage pressure in propulsions tanks is necessary to supply propellant at the conditions and flow rates required to maintain desired engine functionality. The first component of testing consisted of sampling Tri-gas sources that had been stagnant for various lengths of time in order to determine the rate at which stratification takes place. Second, a bench test was set up in which Tri-gas was sent through a catalyst bed. This test was designed to evaluate the performance characteristics of Tri-gas, under low temperature inlet temperatures, in a flight-like catalyst bed reactor. The third, most complex, test examined the performance characteristics of Tri-gas at low temperature temperatures

  18. Electric and spectroscopic properties of argon-hydrogen RF microplasma jets at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Souza-Correa, J A; Oliveira, C; Amorim, J [Laboratorio Nacional de Ciencia e Tecnologia do Bioetanol-CTBE, Caixa Postal 6170, 13083-970, Campinas, Sao Paulo (Brazil); Gomes, M P, E-mail: jorge.correa@bioetanol.org.b, E-mail: carlos.filho@bioetanol.org.b, E-mail: gomesmp@ita.b, E-mail: jayr.amorim@bioetanol.org.b [Departamento de Fisica, Instituto Tecnologico de Aeronautica-ITA, Praca Marechal Eduardo Gomes 50, 12.228-900, Sao Jose dos Campos, Sao Paulo (Brazil)

    2010-10-06

    Microplasma jets of argon-hydrogen (Ar-H{sub 2}) gas mixture were generated by 144.0 MHz radio-frequency (RF) waves at powers of 5 W, 10 W, 20 W and 50 W. The experimental setup employed creates stable microplasmas at atmospheric pressure from 5.0 mm up to 20.0 mm visual glow lengths. We have determined the rms voltages, the rms electric currents and the power absorptions of these microplasma jets. By making use of optical spectroscopy, the emission spectra of Ar-H{sub 2} microplasma jets were recorded in the range 3060-8200 A, in order to estimate the axial distribution profiles of electron density, rotational temperature, excitation temperature and hydrogen atomic temperature.

  19. Hydrogen from biomass gas steam reforming for low temperature fuel cell: energy and exergy analysis

    Directory of Open Access Journals (Sweden)

    A. Sordi

    2009-03-01

    Full Text Available This work presents a method to analyze hydrogen production by biomass gasification, as well as electric power generation in small scale fuel cells. The proposed methodology is the thermodynamic modeling of a reaction system for the conversion of methane and carbon monoxide (steam reforming, as well as the energy balance of gaseous flow purification in PSA (Pressure Swing Adsorption is used with eight types of gasification gases in this study. The electric power is generated by electrochemical hydrogen conversion in fuel cell type PEMFC (Proton Exchange Membrane Fuel Cell. Energy and exergy analyses are applied to evaluate the performance of the system model. The simulation demonstrates that hydrogen production varies with the operation temperature of the reforming reactor and with the composition of the gas mixture. The maximum H2 mole fraction (0.6-0.64 mol.mol-1 and exergetic efficiency of 91- 92.5% for the reforming reactor are achieved when gas mixtures of higher quality such as: GGAS2, GGAS4 and GGAS5 are used. The use of those gas mixtures for electric power generation results in lower irreversibility and higher exergetic efficiency of 30-30.5%.

  20. Silica membranes for hydrogen separation from coal gas. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gavalas, G.R.

    1996-01-01

    This project is a continuation of a previous DOE-UCR project (DE-FG22- 89PC89765) dealing with the preparation of silica membranes highly permselective to hydrogen at elevated temperatures, suitable for hydrogen separation from coal gas. The membranes prepared in the previous project had very high selectivity but relatively low permeance. Therefore, the general objectives of this project were to improve the permeance of these membranes and to obtain fundamental information about membrane structure and properties. The specific objectives were: (1) to explore new silylation reagents and reaction conditions with the purpose of reducing the thickness and increasing the permeance of silica membranes prepared by chemical vapor deposition (CVD), (2) to characterize the membrane structure, (3) to delineate mechanism and kinetics of deposition, (4) to measure the permeability of silica layers at different extents of deposition, and (5) to mathematically model the relationship between structure and deposition kinetics.

  1. Engineering Development of Ceramic Membrane Reactor System for Converting Natural Gas to Hydrogen and Synthesis Gas for Liquid Transportation Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Air Products and Chemicals

    2008-09-30

    An Air Products-led team successfully developed ITM Syngas technology from the concept stage to a stage where a small-scale engineering prototype was about to be built. This technology produces syngas, a gas containing carbon monoxide and hydrogen, by reacting feed gas, primarily methane and steam, with oxygen that is supplied through an ion transport membrane. An ion transport membrane operates at high temperature and oxygen ions are transported through the dense membrane's crystal lattice when an oxygen partial pressure driving force is applied. This development effort solved many significant technical challenges and successfully scaled-up key aspects of the technology to prototype scale. Throughout the project life, the technology showed significant economic benefits over conventional technologies. While there are still on-going technical challenges to overcome, the progress made under the DOE-funded development project proved that the technology was viable and continued development post the DOE agreement would be warranted.

  2. Critical temperature of metallic hydrogen sulfide at 225-GPa pressure

    Science.gov (United States)

    Kudryashov, N. A.; Kutukov, A. A.; Mazur, E. A.

    2017-01-01

    The Eliashberg theory generalized for electron—phonon systems with a nonconstant density of electron states and with allowance made for the frequency behavior of the electron mass and chemical potential renormalizations is used to study T c in the SH3 phase of hydrogen sulfide under pressure. The phonon contribution to the anomalous electron Green's function is considered. The pairing within the total width of the electron band and not only in a narrow layer near the Fermi surface is taken into account. The frequency and temperature dependences of the complex mass renormalization Re Z(ω), the density of states N(ɛ) renormalized by the electron—phonon interactions, and the electron—phonon spectral function obtained computationally are used to calculate the anomalous electron Green's function. A generalized Eliashberg equation with a variable density of electron states has been solved. The frequency dependence of the real and imaginary parts of the order parameter in the SH3 phase has been obtained. The value of T c ≈ 177 K in the SH3 phase of hydrogen sulfide at pressure P = 225 GPa has been determined by solving the system of Eliashberg equations.

  3. High-Pressure Hydrogen from First-Principles

    Science.gov (United States)

    Morales, Miguel A.

    2014-03-01

    The main approximations typically employed in first-principles simulations of high-pressure hydrogen are the neglect of nuclear quantum effects (NQE) and the approximate treatment of electronic exchange and correlation, typically through a density functional theory (DFT) formulation. In this talk I'll present a detailed analysis of the influence of these approximations on the phase diagram of high-pressure hydrogen, with the goal of identifying the predictive capabilities of current methods and, at the same time, making accurate predictions in this important regime. We use a path integral formulation combined with density functional theory, which allows us to incorporate NQEs in a direct and controllable way. In addition, we use state-of-the-art quantum Monte Carlo calculations to benchmark the accuracy of more approximate mean-field electronic structure calculations based on DFT, and we use GW and hybrid DFT to calculate the optical properties of the solid and liquid phases near metallization. We present accurate predictions of the metal-insulator transition on the solid, including structural and optical properties of the molecular phase. MAM was supported by the U.S. Department of Energy at the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and by LDRD Grant No. 13-LW-004.

  4. SiC-BASED HYDROGEN SELECTIVE MEMBRANES FOR WATER-GAS-SHIFT REACTION

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2000-12-01

    A hydrogen selective membrane as a membrane reactor (MR) can significantly improve the power generation efficiency with a reduced capital and operating cost for the waster-gas-shift reaction. Existing hydrogen selective ceramic membranes are not suitable for the proposed MR due to their poor hydrothermal stability. In this project we have focused on the development of innovative silicon carbide (SiC) based hydrogen selective membranes, which can potentially overcome this technical barrier. During Year I, we have successfully fabricated SiC macro porous membranes via extrusion of commercially available SiC powder, which were then deposited with thin, micro-porous (6 to 40{angstrom} in pore size) films via sol-gel technique as intermediate layers. Finally, an SiC hydrogen selective thin film was deposited on this substrate via our CVD/I technique. The composite membrane thus prepared demonstrated excellent hydrogen selectivity at high temperature ({approx}600 C). More importantly, this membrane also exhibited a much improved hydrothermal stability at 600 C with 50% steam (atmospheric pressure) for nearly 100 hours. In parallel, we have explored an alternative approach to develop a H{sub 2} selective SiC membrane via pyrolysis of selected pre-ceramic polymers. Building upon the positive progress made in the Year I preliminary study, we will conduct an optimization study in Year II to develop an optimized H{sub 2} selective SiC membrane with sufficient hydrothermal stability suitable for the WGS environment.

  5. Selective permeation of hydrogen gas using cellulose nanofibril film.

    Science.gov (United States)

    Fukuzumi, Hayaka; Fujisawa, Shuji; Saito, Tsuguyuki; Isogai, Akira

    2013-05-13

    Biobased membranes that can selectively permeate hydrogen gas have been developed from aqueous dispersions of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofibrils (TOCN) prepared from wood cellulose: TOCN-coated plastic films and self-standing TOCN films. Compared with TOCNs with sodium, lithium, potassium, and cesium carboxylate groups, TOCN with free carboxyl groups (TOCN-COOH) had much high and selective H2 gas permeation performance. Because permeabilities of H2, N2, O2, and CO2 gases through the membranes primarily depended on their kinetic diameters, the gas permeation behavior of the various TOCNs can be explained in terms of a diffusion mechanism. Thus, the selective H2 gas permeability for TOCN-COOH was probably due to a larger average size in free volume holes present between nanofibrils in the layer and film than those of other TOCNs with metal carboxylate groups. The obtained results indicate that TOCN-COOH membranes are applicable as biobased H2 gas separation membranes in fuel cell electric power generation systems.

  6. ANALYSIS OF A HIGH TEMPERATURE GAS-COOLED REACTOR POWERED HIGH TEMPERATURE ELECTROLYSIS HYDROGEN PLANT

    Energy Technology Data Exchange (ETDEWEB)

    M. G. McKellar; E. A. Harvego; A. M. Gandrik

    2010-11-01

    An updated reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production has been developed. The HTE plant is powered by a high-temperature gas-cooled reactor (HTGR) whose configuration and operating conditions are based on the latest design parameters planned for the Next Generation Nuclear Plant (NGNP). The current HTGR reference design specifies a reactor power of 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 322°C and 750°C, respectively. The reactor heat is used to produce heat and electric power to the HTE plant. A Rankine steam cycle with a power conversion efficiency of 44.4% was used to provide the electric power. The electrolysis unit used to produce hydrogen includes 1.1 million cells with a per-cell active area of 225 cm2. The reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes a steam-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The overall system thermal-to-hydrogen production efficiency (based on the higher heating value of the produced hydrogen) is 42.8% at a hydrogen production rate of 1.85 kg/s (66 million SCFD) and an oxygen production rate of 14.6 kg/s (33 million SCFD). An economic analysis of this plant was performed with realistic financial and cost estimating The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.03/kg of hydrogen was calculated assuming an internal rate of return of 10% and a debt to equity ratio of 80%/20% for a reactor cost of $2000/kWt and $2.41/kg of hydrogen for a reactor cost of $1400/kWt.

  7. Measurement of neutral gas pressure in the D-module of GAMMA 10/PDX by using ASDEX type fast ionization gauge

    Science.gov (United States)

    Ichimura, K.; Fukumoto, M.; Islam, M. M.; Islam, M. S.; Shimizu, K.; Fukui, K.; Ohuchi, M.; Nojiri, K.; Terakado, A.; Yoshikawa, M.; Ezumi, N.; Sakamoto, M.; Nakashima, Y.

    2016-11-01

    In the divertor simulation experiments in the GAMMA 10/PDX tandem mirror, pressure of the neutral gas was investigated by using a fast ionization gauge. The gauge was absolutely calibrated for hydrogen gas by using a capacitance manometer. Change of the gauge sensitivity due to the magnetic field of GAMMA 10/PDX was also evaluated. The typical gas pressure measured in detached plasma experiments was 0.1-10 Pa. The degree of plasma detachment determined from the reduction of heat flux was enhanced as the gas pressure increases. Rapid increase of the gas pressure under the plasma flow was also observed.

  8. Measurement of neutral gas pressure in the D-module of GAMMA 10/PDX by using ASDEX type fast ionization gauge.

    Science.gov (United States)

    Ichimura, K; Fukumoto, M; Islam, M M; Islam, M S; Shimizu, K; Fukui, K; Ohuchi, M; Nojiri, K; Terakado, A; Yoshikawa, M; Ezumi, N; Sakamoto, M; Nakashima, Y

    2016-11-01

    In the divertor simulation experiments in the GAMMA 10/PDX tandem mirror, pressure of the neutral gas was investigated by using a fast ionization gauge. The gauge was absolutely calibrated for hydrogen gas by using a capacitance manometer. Change of the gauge sensitivity due to the magnetic field of GAMMA 10/PDX was also evaluated. The typical gas pressure measured in detached plasma experiments was 0.1-10 Pa. The degree of plasma detachment determined from the reduction of heat flux was enhanced as the gas pressure increases. Rapid increase of the gas pressure under the plasma flow was also observed.

  9. Reconstruction of Low Pressure Gas Supply System

    Directory of Open Access Journals (Sweden)

    S. N. Osipov

    2013-01-01

    Full Text Available The current reconstruction of residential areas in large cities especially with the developed heat-supply systems from thermal power stations and reduction of heat consumption for heating due to higher thermal resistance of building enclosing structures requires new technical solutions in respect of gas-supply problems. While making reconstruction of a gas-supply system of the modernized or new buildings in the operating zone of one gas-distribution plant it is necessary to change hot water-supply systems from gas direct-flow water heaters to centralized heat-supply and free gas volumes are to be used for other needs or gas-supply of new buildings with the current external gas distribution network.Selection of additional gas-line sections and points of gas-supply systems pertaining to new and reconstructed buildings for their connection to the current distribution system of gas-supply is to be executed in accordance with the presented methodology.

  10. Hydrogen gas sensing feature of polyaniline/titania (rutile) nanocomposite at environmental conditions

    Energy Technology Data Exchange (ETDEWEB)

    Milani Moghaddam, Hossain, E-mail: hossainmilani@yahoo.com [Solid State Physics Department, University of Mazandaran, Babolsar (Iran, Islamic Republic of); Nasirian, Shahruz [Solid State Physics Department, University of Mazandaran, Babolsar (Iran, Islamic Republic of); Basic Sciences Department, Mazandaran University of Science and Technology, Babol (Iran, Islamic Republic of)

    2014-10-30

    Graphical abstract: - Highlights: • Polyaniline/titania (rutile) nanocomposite (TPNC) was synthesized by a chemical oxidative polymerization method. • Surface morphology and titania (rutile) wt% in TPNC sensors were significant factors for H{sub 2} gas sensing. • TPNC sensors could be used for H{sub 2} gas sensing at different R.H. humidity. • TPNC Sensors exhibited considerable sensitive, reversible and repeatable response to H{sub 2} gas at environmental conditions. - Abstract: The resistance-based sensors of polyaniline/titania (rutile) nanocomposite (TPNC) were prepared by spin coating technique onto an epoxy glass substrate with Cu-interdigited electrodes to study their hydrogen (H{sub 2}) gas sensing features. Our findings are that the change of the surface morphology, porosity and wt% of titania in TPNCs have a significant effect on H{sub 2} gas sensing of sensors. All of the sensors had a reproducibility response toward 0.8 vol% H{sub 2} gas at room temperature, air pressure and 50% relative humidity. A sensor with 40 wt% of titania nanoparticles had better response/recovery time and the response than other sensors. Moreover, H{sub 2} gas sensing mechanism of TPNC sensors based contact areas and the correlation of energy levels between PANI chains and the titania grains were studied.

  11. [Performance of an innovative polyethylene carrier biotrickling filter treating hydrogen sulphide gas].

    Science.gov (United States)

    Wu, Yong-gang; Ren, Hong-qiang; Ding, Li-li

    2010-07-01

    Characteristics of double-layer biotrickling filter using high density polythene rasching rings carrier treating waste gas containing hydrogen sulphide was studied. Results showed that biotrickling filter had significant advantages of low pressure drop and even load distribution along the reactor height. When removal efficiency was greater than 90%, gas retention time was 12 s, maximum inlet load was 110 g/(m3 x h), elimination capacity was 84 g/(m3 x h). At steady state, about 37%-55% of hydrogen sulfide load was removed from the lower layer. During long-term operation, pressure drop kept to less than 280 Pa x m(-1), the backwashing period was longer than two months, no biomass accumulation happened in the lower layer, and abnormal increase in pressure drop can be used as a indicator of backwashing. Reactor recovery and restart experimental results showed that removal efficiency recovered to 95% in 1 day after 6 days without H2S, pH dramatic variation of spray liquid had significant adverse impact on biotrickling bed reactor.

  12. Monitoring Hydrogen Sulfide Using a Quantum Cascade Laser Based Trace Gas Sensing System

    Institute of Scientific and Technical Information of China (English)

    WANG Ling-Fang; SHARPLES Thomas-Roben

    2011-01-01

    @@ We present the detection of hydrogen sulfide (HS) in a quantum cascade laser (QCL) based gas sensing system employing direct laser absorption spectroscopy.The sensitivity is obtained to be 3.61 × 10 cm Hz and the HS broadening coefficient in N is analyzed by fitting to the plot of the Lorentzian half width at the half maximum as a function of N pressure is 0.1124±0.0031 cm.atm.A simulation based on data from the HITRAN database shows broad agreement with the experimentally obtained spectrum.

  13. Development of hydrogen sensors based on fiber Bragg grating with a palladium foil for online dissolved gas analysis in transformers

    Science.gov (United States)

    Fisser, Maximilian; Badcock, Rodney A.; Teal, Paul D.; Swanson, Adam; Hunze, Arvid

    2017-06-01

    Hydrogen evolution, identified by dissolved gas analysis (DGA), is commonly used for fault detection in oil immersed electrical power equipment. Palladium (Pd) is often used as a sensing material due to its high hydrogen absorption capacity and related change in physical properties. Hydrogen is absorbed by Pd causing an expansion of the lattice. The solubility, and therefore lattice expansion, increases with increasing partial pressure of hydrogen and decreasing temperature. As long as a phase change is avoided the expansion is reversible and can be utilized to transfer strain into a sensing element. Fiber Bragg gratings (FBG) are a well-established optical fiber sensor (OFS), mainly used for temperature and strain sensing. A safe, inexpensive, reliable and precise hydrogen sensor can be constructed using an FBG strain sensor to transduce the volumetric expansion of Pd due to hydrogen absorption. This paper reports on the development, and evaluation, of an FBG gas sensing OFS and long term measurements of dissolved hydrogen in transformer mineral oil. We investigate the effects of Pd foil cross-section and strain transfer between foil and fiber on the sensitivity of the OFS. Two types of Pd metal sensors were manufactured using modified Pd foil with 20 and 100 μm thickness. The sensors were tested in transformer oil at 90°C and a hydrogen concentration range from 20- 3200 ppm.

  14. Synthesis of hydrogen gas by thermal decomposition of methane gas with carbon sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Castro, A R [Escuela de Quimica, Facultad de Ciencias, Universidad Central de Venezuela, Caracas (Venezuela, Bolivarian Republic of); Manrique, C M [Departamento de Ciencia de los Materiales, GPUSB, Universidad Simon BolIvar, Caracas (Venezuela, Bolivarian Republic of); Castell, R; Ruiz, J [Departamento de Fisica, Universidad Simon BolIvar, Caracas (Venezuela, Bolivarian Republic of)

    2008-10-15

    Hydrogen gas synthesis by the thermal decomposition of methane gas in a non-transferred arc thermal plasma reactor is studied. A thermodynamic study was carried out obtaining free energy minimization plots for the C-H-N and C-H-N-Si systems by using the CSIRO thermo package. Nitrogen gas was used as an ionizing gas and metallic silicon fine powder was injected to promote the in fly silicon carbide nucleation. The effect of current intensity on the thermal decomposition of methane was studied. The degree of methane gas decomposition was in the range 84-97%. The fine solid product collected was characterized using the XRD and MEB-EDAX methods. Elemental carbon particles as well as silicon carbide particles in the nanometric range were identified by the last technique.

  15. Evaluation of Technical Feasibility of Homogeneous Charge Compression Ignition (HCCI) Engine Fueled with Hydrogen, Natural Gas, and DME

    Energy Technology Data Exchange (ETDEWEB)

    Pratapas, John; Mather, Daniel; Kozlovsky, Anton

    2013-03-31

    The objective of the proposed project was to confirm the feasibility of using blends of hydrogen and natural gas to improve the performance, efficiency, controllability and emissions of a homogeneous charge compression ignition (HCCI) engine. The project team utilized both engine simulation and laboratory testing to evaluate and optimize how blends of hydrogen and natural gas fuel might improve control of HCCI combustion. GTI utilized a state-of-the art single-cylinder engine test platform for the experimental work in the project. The testing was designed to evaluate the feasibility of extending the limits of HCCI engine performance (i.e., stable combustion, high efficiency and low emissions) on natural gas by using blends of natural gas and hydrogen. Early in the project Ricardo provided technical support to GTI as we applied their engine performance simulation program, WAVE, to our HCCI research engine. Modeling support was later provided by Digital Engines, LLC to use their proprietary model to predict peak pressures and temperatures for varying operating parameters included in the Design of Experiments test plan. Digital Engines also provided testing support for the hydrogen and natural gas blends. Prof. David Foster of University of Wisconsin-Madison participated early in the project by providing technical guidance on HCCI engine test plans and modeling requirements. The main purpose of the testing was to quantify the effects of hydrogen addition to natural gas HCCI. Directly comparing straight natural gas with the hydrogen enhanced test points is difficult due to the complexity of HCCI combustion. With the same air flow rate and lambda, the hydrogen enriched fuel mass flow rate is lower than the straight natural gas mass flow rate. However, the energy flow rate is higher for the hydrogen enriched fuel due to hydrogen’s significantly greater lower heating value, 120 mJ/kg for hydrogen compared to 45 mJ/kg for natural gas. With these caveats in mind, an

  16. Effects of Gas Pressure on the Failure Characteristics of Coal

    Science.gov (United States)

    Xie, Guangxiang; Yin, Zhiqiang; Wang, Lei; Hu, Zuxiang; Zhu, Chuanqi

    2017-07-01

    Several experiments were conducted using self-developed equipment for visual gas-solid coupling mechanics. The raw coal specimens were stored in a container filled with gas (99% CH4) under different initial gas pressure conditions (0.0, 0.5, 1.0, and 1.5 MPa) for 24 h prior to testing. Then, the specimens were tested in a rock-testing machine, and the mechanical properties, surface deformation and failure modes were recorded using strain gauges, an acoustic emission (AE) system and a camera. An analysis of the fractals of fragments and dissipated energy was performed to understand the changes observed in the stress-strain and crack propagation behaviour of the gas-containing coal specimens. The results demonstrate that increased gas pressure leads to a reduction in the uniaxial compression strength (UCS) of gas-containing coal and the critical dilatancy stress. The AE, surface deformation and fractal analysis results show that the failure mode changes during the gas state. Interestingly, a higher initial gas pressure will cause the damaged cracks and failure of the gas-containing coal samples to become severe. The dissipated energy characteristic in the failure process of a gas-containing coal sample is analysed using a combination of fractal theory and energy principles. Using the theory of fracture mechanics, based on theoretical analyses and calculations, the stress intensity factor of crack tips increases as the gas pressure increases, which is the main cause of the reduction in the UCS and critical dilatancy stress and explains the influence of gas in coal failure. More serious failure is created in gas-containing coal under a high gas pressure and low exterior load.

  17. Alkali free hydrolysis of sodium borohydride for hydrogen generation under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, M.J.F.; Pinto, A.M.F.R. [Centro de Estudos de Fenomenos de Transporte, Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto (Portugal); Gales, L. [Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto and Instituto de Ciencias Biomedicas Abel Salazar, Largo Prof. Abel Salazar 2, 4099-003 Porto (Portugal); Fernandes, V.R.; Rangel, C.M. [Laboratorio Nacional de Energia e Geologia - LNEG, Fuel Cells and Hydrogen Unit Estrada do Paco do Lumiar 22, 1649-038 Lisboa (Portugal)

    2010-09-15

    The present study is related with the production of hydrogen gas (H{sub 2}), at elevated pressures and with high gravimetric storage density, to supply a PEM fuel cell on-demand. To achieve this goal, solid sodium borohydride (NaBH{sub 4}) was mixed with a proper amount of a powder reused nickel-ruthenium based catalyst (Ni-Ru based/NaBH{sub 4}: 0.2 and 0.4 g/g; {approx}150 times reused) inside the bottom of a batch reactor. Then, a stoichiometric amount of pure liquid water (H{sub 2}O/NaBH{sub 4}: 2-8 mol/mol) was added and the catalyzed NaBH{sub 4} hydrolysis evolved, in the absence of an alkali inhibitor. In this way, this research work is designated alkali free hydrolysis of NaBH{sub 4} for H{sub 2} generation. This type of hydrolysis is excellent from an environmental point of view because it does not involve strongly caustic solutions. Experiments were performed in three batch reactors with internal volumes 646, 369 and 229 cm{sup 3}, and having different bottom geometries (flat and conical shapes). The H{sub 2} generated was a function of the added water and completion was achieved with H{sub 2}O/NaBH{sub 4} = 8 mol/mol. The results show that hydrogen yields and rates increase remarkably increasing both system temperature and pressure. Reactor bottom shape influences deeply H{sub 2} generation: the conical bottom shape greatly enhances the rate and practically eliminates the reaction induction time. Our system of compressed hydrogen generation up to 1.26 MPa shows 6.3 wt% and 70 kg m{sup -3}, respectively, for gravimetric and volumetric hydrogen storage capacities (materials-only basis) and therefore is a viable hydrogen storage candidate for portable applications. (author)

  18. Catalysts for selective oxidation of ammonia in a gas containing hydrogen

    DEFF Research Database (Denmark)

    2014-01-01

    The invention contributes to a cost effective way to solve the problem of trace ammonia removal from hydrogen containing gas. The set of catalysts of the invention selectively oxidised ammonia in ppm concentration even in gas mixture containing hydrogen gas in concentration of three orders...

  19. Catalysts for selective oxidation of ammonia in a gas containing hydrogen

    DEFF Research Database (Denmark)

    2015-01-01

    The invention contributes to a cost effective way to solve the problem of trace ammonia removal from a hydrogen and nitrogen containing gas. The set of catalysts of the invention selectively oxidised ammonia in ppm concentration even in gas mixtures containing hydrogen gas in concentrations...

  20. A new dynamic method for measuring hydrogen partial pressure in molten aluminum alloy

    Directory of Open Access Journals (Sweden)

    Sun Qian

    2011-02-01

    Full Text Available Hydrogen partial pressure is an important parameter to calculate hydrogen concentration levels in molten aluminum alloy. A new dynamic method for measuring hydrogen partial pressure in molten aluminum alloy is studied. Dynamic and rapid measurement is realized through changing the volume of the vacuum chamber and calculating the pressure difference ΔP between the theoretical and measured pressures in the vacuum chamber. Positive ΔP indicates hydrogen transmits from melt to vacuum chamber and negative ΔP means the reverse. When ΔP is equal to zero, hydrogen transmitted from both sides reached a state of dynamical equilibrium and the pressure in the vacuum chamber is equal to the hydrogen partial pressure in the molten aluminum alloy. Compared with other existing measuring methods, the new method can significantly shorten the testing time and reduce measuring cost.

  1. Methane conversion using a dielectric barrier discharge reactor at atmospheric pressure for hydrogen production

    Science.gov (United States)

    Khadir, N.; Khodja, K.; Belasri, A.

    2017-09-01

    In the present paper, we carried out a theoretical study of dielectric barrier discharge (DBD) filled with pure methane gas. The homogeneous discharge model used in this work includes a plasma chemistry unit, an electrical circuit, and the Boltzmann equation. The model was applied to the case of a sinusoidal voltage at a period frequency of 50 kHz and under a gas pressure of 600 Torr. We investigated the temporal variation of electrical and kinetic discharge parameters such as plasma and dielectric voltages, the discharge current density, electric field, deposited power density, and the species concentration. We also checked the physical model validity by comparing its results with experimental work. According to the results discussed herein, the dielectric capacitance is the parameter that has the greatest effect on the methane conversion and H2/CH4 ratio. This work enriches the knowledge for the improvement of DBD for CH4 conversion and hydrogen production.

  2. Attenuating water hammer pressure by means of gas storage tank

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The basic equations for computing the volume of gas storage tank were derived from the principles of attenuating water hammer pressure. Verifications using experiments indicate that the proposed equation can provide a fare precision in the predictions. By using the model of solid-liquid two-phase flow, the gas storage tank, pressure-relief valves and slow-closure reverse-control valves were compared with practical engineering problems, and the functions of gas storage tank in attenuating water hammer pressure were further investigated.

  3. Modern gas-based temperature and pressure measurements

    CERN Document Server

    Pavese, Franco

    2013-01-01

    This 2nd edition volume of Modern Gas-Based Temperature and Pressure Measurements follows the first publication in 1992. It collects a much larger set of information, reference data, and bibliography in temperature and pressure metrology of gaseous substances, including the physical-chemical issues related to gaseous substances. The book provides solutions to practical applications where gases are used in different thermodynamic conditions. Modern Gas-Based Temperature and Pressure Measurements, 2nd edition is the only comprehensive survey of methods for pressure measurement in gaseous media used in the medium-to-low pressure range closely connected with thermometry. It assembles current information on thermometry and manometry that involve the use of gaseous substances which are likely to be valid methods for the future. As such, it is an important resource for the researcher. This edition is updated through the very latest scientific and technical developments of gas-based temperature and pressure measurem...

  4. High-pressure hydrogen respiration in hydrothermal vent samples from the deep biosphere

    Science.gov (United States)

    Morgan-Smith, D.; Schrenk, M. O.

    2013-12-01

    Cultivation of organisms from the deep biosphere has met with many challenges, chief among them the ability to replicate this extreme environment in a laboratory setting. The maintenance of in situ pressure levels, carbon sources, and gas concentrations are important, intertwined factors which may all affect the growth of subsurface microorganisms. Hydrogen in particular is of great importance in hydrothermal systems, but in situ hydrogen concentrations are largely disregarded in attempts to culture from these sites. Using modified Hungate-type culture tubes (Bowles et al. 2011) within pressure-retaining vessels, which allow for the dissolution of higher concentrations of gas than is possible with other culturing methods, we have incubated hydrothermal chimney and hydrothermally-altered rock samples from the Lost City and Mid-Cayman Rise hydrothermal vent fields. Hydrogen concentrations up to 15 mmol/kg have been reported from Lost City (Kelley et al. 2005), but data are not yet available from the recently-discovered Mid-Cayman site, and the elevated concentration of 30 mmol/kg is being used in all incubations. We are using a variety of media types to enrich for various metabolic pathways including iron and sulfur reduction under anoxic or microaerophilic conditions. Incubations are being carried out at atmospheric (0.1 MPa), in situ (9, 23, or 50 MPa, depending on site), and elevated (50 MPa) pressure levels. Microbial cell concentrations, taxonomic diversity, and metabolic activities are being monitored during the course of these experiments. These experiments will provide insight into the relationships between microbial activities, pressure, and gas concentrations typical of deep biosphere environments. Results will inform further culturing studies from both fresh and archived samples. References cited: Bowles, M.W., Samarkin, V.A., Joye, S.B. 2011. Improved measurement of microbial activity in deep-sea sediments at in situ pressure and methane concentration

  5. Effect of Mixture Pressure and Equivalence Ratio on Detonation Cell Size for Hydrogen-Air Mixtures

    Science.gov (United States)

    2015-06-01

    EFFECT OF MIXTURE PRESSURE AND EQUIVALENCE RATIO ON DETONATION CELL SIZE FOR HYDROGEN -AIR MIXTURES...protection in the United States. AFIT-ENY-MS-15-J-045 EFFECT OF MIXTURE PRESSURE AND EQUIVALENCE RATIO ON DETONATION CELL SIZE FOR HYDROGEN -AIR...DISTRIBUTION UNLIMITED. AFIT-ENY-MS-15-J-045 EFFECT OF MIXTURE PRESSURE AND EQUIVALENCE RATIO ON DETONATION CELL SIZE FOR HYDROGEN -AIR MIXTURES

  6. Reactor for producing a carbon monoxide and hydrogen containing gas

    Energy Technology Data Exchange (ETDEWEB)

    Abraamov, E.; Achmatov, I.; Berger, F.

    1982-08-10

    The reactor for the production of CO and H/sub 2/ containing gases by means of a partial oxidation of powdery or liquid high ash fuels in a carburation fluid including free oxygen, at high temperatures and increased pressure, includes a pressure vessel enclosing a gas-tight housing whereby an interspace is formed between the inner wall of the vessel and the outer surface of the housing. Within the housing is arranged a cooling wall enclosing the reaction chamber proper. The cooling wall includes a coil of cooling pipes embedded in a mass of refractory material such as silicium carbide. The pipes are partially supported on web sections projecting from the inner surface of the housing into the refractory lining. The web sections prevent propagation of leaking hot gas from the reaction chamber along the inner surface of the housing.

  7. Diffusion membrane and process for separating hydrogen from gas mixture

    Energy Technology Data Exchange (ETDEWEB)

    Behr, F.; Schulten, R.; Weirich, W.

    1985-01-29

    For separation of hydrogen and its isotopes by diffusion through a membrane virtually impermeable to other gases, a non-porous hydrogen-permeable metallic membrane is provided on the gas access side with a coating of an alloy of palladium with at least 45 atomic % Cu or at least 50 atomic percent Ag or at least 7 atomic % Y, the membrane itself containing Cu, Ag or Y respectively in a concentration at least equilibrated with the coating at operation temperature. Preferably the membrane consists of a metal of niobium and/or tantalum bases especially of an alloy containing from 10 to 30 % Ti, 3 to 10 % V, 0 to 25 % Nb and at least 30 % Ta, all by weight, and preferably it is of a composition of 20 to 25 % Ti, 5 to 7,5 % V, 0 to 25 Nb, and at least 50 % Ta, being saturated with copper and or silver, while a copper and/or silver palladium alloy coating is used. Such inherently oxidation sensitive membranes can be stabilized by provision of an internal intermediate layer in the form of a melt forming or containing an alkaline metal hydride and/or an alkaline earth metal hydride. A melt containing alkaline metal and/or alkaline earth metal which forms a hydride, brought into contact on the secondary side of a membrane in accordance with the invention, provides a hydrogen sink on the secondary side and inhibits internal hydride formation and secondary side oxidation of the membrane.

  8. 有序度对Ni4Mo合金在氢气中脆性的影响%Effect of Ordering on Embrittlement of Ni4Mo Alloy in Hydrogen Gas

    Institute of Scientific and Technical Information of China (English)

    程晓英; 李慧改

    2005-01-01

    The fracture behavior of disordered and ordered Ni4 Mo alloy was investigated by tensile tests in hydrogen gas or during hydrogen charging. The results show that the ductility of the disordered alloy decreased slightly with the hydrogen pressure increasing, while that of the ordered alloy decreased rapidly with the hydrogen pressure increasing. However, the ductility of both disordered and ordered alloys reduced similarly seriously with the charging current density increasing. Therefore, the mechanism of order-induced embrittlement of Ni4 Mo alloy in hydrogen gas is supposed to be that atomic order accelerates the kinetics of the catalytic reaction for the dissociation of molecular H2 into atomic H.

  9. Pressure fluctuations in gas fluidized beds

    OpenAIRE

    Leckner Bo.; Palchonok Genadij I.; Johnsson Filip

    2002-01-01

    The pressure fluctuations in a fluidized bed are a result of the actions of the bubbles. However, the bubbles may be influenced by the air supply system and by the pressure drop of the air distributor. These interactions are treated for low as well as for high velocity beds by means of a simple model of the principal frequency of the pressure fluctuations. The model includes the interaction with the air supply system and describes qualitatively two important bubbling regimes: the single bubbl...

  10. In situ gas analysis for high pressure applications using property measurements.

    Science.gov (United States)

    Moeller, J; Span, R; Fieback, T

    2013-10-01

    As the production, distribution, and storage of renewable energy based fuels usually are performed under high pressures and as there is a lack of in situ high pressure gas analysis instruments on the market, the aim of this work was to develop a method for in situ high pressure gas analysis of biogas and hydrogen containing gas mixtures. The analysis is based on in situ measurements of optical, thermo physical, and electromagnetic properties in gas mixtures with newly developed high pressure sensors. This article depicts the calculation of compositions from the measured properties, which is carried out iteratively by using highly accurate equations of state for gas mixtures. The validation of the method consisted of the generation and measurement of several mixtures, of which three are presented herein: a first mixture of 64.9 mol. % methane, 17.1 mol. % carbon dioxide, 9 mol. % helium, and 9 mol. % ethane at 323 K and 423 K in a pressure range from 2.5 MPa to 17 MPa; a second mixture of 93.0 mol. % methane, 4.0 mol. % propane, 2.0 mol. % carbon dioxide, and 1.0 mol. % nitrogen at 303 K, 313 K, and 323 K in a pressure range from 1.2 MPa to 3 MPa; and a third mixture of 64.9 mol. % methane, 30.1 mol. % carbon dioxide, and 5.0 mol. % nitrogen at 303 K, 313 K, and 323 K in a pressure range from 2.5 MPa to 4 MPa. The analysis of the tested gas mixtures showed that with measured density, velocity of sound, and relative permittivity the composition can be determined with deviations below 1.9 mol. %, in most cases even below 1 mol. %. Comparing the calculated compositions with the generated gas mixture, the deviations were in the range of the combined uncertainty of measurement and property models.

  11. The effects of added hydrogen on a helium atmospheric-pressure plasma jet ambient desorption/ionization source.

    Science.gov (United States)

    Wright, Jonathan P; Heywood, Matthew S; Thurston, Glen K; Farnsworth, Paul B

    2013-03-01

    We present mass spectrometric data demonstrating the effect that hydrogen has on a helium-based dielectric-barrier discharge (DBD) atmospheric-pressure plasma jet used as an ambient desorption/ionization (ADI) source. The addition of 0.9 % hydrogen to the helium support gas in a 35-W plasma jet increased signals for a range of test analytes, with enhancement factors of up to 68, without proportional increases in background levels. The changes in signal levels result from a combination of changes in the desorption kinetics from the surface and increased ion production in the gas phase. The enhancement in ADI-MS performance despite the quenching of key plasma species reported in earlier studies suggests that ionization with a H2/He plasma jet is the result of an alternate mechanism involving the direct generation of ionized hydrogen.

  12. Ultrasonic gas alloy atomization under near-zero aspiration pressure

    Science.gov (United States)

    Yan, Pengfei; Wang, Deping; Yan, Biao

    2015-04-01

    In this paper, ultrasonic gas atomization (USGA) of Zn-Al under near-zero aspiration pressure was discussed. The protrusion length of delivery tube was modified to adjust the aspiration pressure. Under near-zero aspiration pressure, melt filming was observed by camera and more fine powders were produced. While under larger subambient aspiration pressure, melt filming was unavailable, corresponding to less fine powders. The results suggest that the position of the wake near the delivery tube can be optimized under near-zero aspiration. Less protrusion of delivery tube reduces the energy loss in gas flow deflection. Both facilitate to produce finer powders.

  13. Use of hydrogen as a carrier gas for the analysis of steroids with anabolic activity by gas chromatography-mass spectrometry.

    Science.gov (United States)

    Muñoz-Guerra, J A; Prado, P; García-Tenorio, S Vargas

    2011-10-14

    Due to the impact in the media and the requirements of sensitivity and robustness, the detection of the misuse of forbidden substances in sports is a really challenging area for analytical chemistry, where any study focused on enhancing the performance of the analytical methods will be of great interest. The aim of the present study was to evaluate the usefulness of using hydrogen instead of helium as a carrier gas for the analysis of anabolic steroids by gas chromatography-mass spectrometry with electron ionization. There are several drawbacks related with the use of helium as a carrier gas: it is expensive, is a non-renewable resource, and has limited availability in many parts of the world. In contrast, hydrogen is readily available using a hydrogen generator or high-pressure bottled gas, and allows a faster analysis without loss of efficiency; nevertheless it should not be forgotten that due to its explosiveness hydrogen must be handled with caution. Throughout the study the impact of the change of the carrier gas will be evaluated in terms of: performance of the chromatographic system, saving of time and money, impact on the high vacuum in the analyzer, changes in the fragmentation behaviour of the analytes, and finally consequences for the limits of detection achieved with the method.

  14. Hydrogen sulfide at high pressure: Change in stoichiometry

    Science.gov (United States)

    Goncharov, Alexander F.; Lobanov, Sergey S.; Kruglov, Ivan; Zhao, Xiao-Miao; Chen, Xiao-Jia; Oganov, Artem R.; Konôpková, Zuzana; Prakapenka, Vitali B.

    2016-05-01

    Hydrogen sulfide (H2S ) was studied by x-ray synchrotron diffraction and Raman spectroscopy up to 150 GPa at 180-295 K and by quantum-mechanical variable-composition evolutionary simulations. The experiments show that H2S becomes unstable with respect to formation of compounds with different structure and composition, including Cccm and a body-centered cubic like (R 3 m or I m -3 m ) H3S , the latter one predicted previously to show a record-high superconducting transition temperature, a Tc of 203 K. These experiments provide experimental ground for understanding of this record-high Tc. The experimental results are supported by theoretical structure searches that suggest the stability of H3S , H4S3 , H5S8 , H3S5 , and H S2 compounds that have not been reported previously at elevated pressures.

  15. Transport properties of liquid metal hydrogen under high pressures

    Science.gov (United States)

    Brown, R. C.; March, N. H.

    1972-01-01

    A theory is developed for the compressibility and transport properties of liquid metallic hydrogen, near to its melting point and under high pressure. The interionic force law is assumed to be of the screened Coulomb type, because hydrogen has no core electrons. The random phase approximation is used to obtain the structure factor S(k) of the system in terms of the Fourier transform of this force law. The long wavelenth limit of the structure factor S(o) is related to the compressibility, which is much lower than that of alkali metals at their melting points. The diffusion constant at the melting point is obtained in terms of the Debye frequency, using a frequency spectrum analogous with the phonon spectrum of a solid. A similar argument is used to obtain the combined shear and bulk viscosities, but these depend also on S(o). The transport coefficients are found to be about the same size as those of alkali metals at their melting points.

  16. Influence of high pressure hydrogen environment on tensile and fatigue properties of stainless steels at low temperatures

    Science.gov (United States)

    Ogata, T.

    2012-06-01

    Hydrogen environment embrittlement (HEE) of stainless steels in the environment of high pressure and low temperature hydrogen gas was evaluated using a very simple mechanical properties testing procedure. In the method, the high-pressure hydrogen environment is produced just inside the hole in the specimen. In this work, the effects of HEE on fatigue properties for austenitic stainless steels SUS304L and SUS316L were evaluated at 298 and 190 K. The effects of HEE on the tensile properties of higher strength stainless steels, such as strain-hardened 316, SUS630, and other alloys, SUH660 and Alloy 718 were also examined. The less effect of HEE on fatigue properties of SUS316L and tensile properties of strain-hardened 316 were observed compared with SUS304L and other steels at room temperature and 190 K.

  17. Development of Improved Composite Pressure Vessels for Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Newhouse, Norman L. [Hexagon Lincoln, Lincoln, NE (United States)

    2016-04-29

    Hexagon Lincoln started this DOE project as part of the Hydrogen Storage Engineering Center of Excellence (HSECoE) contract on 1 February 2009. The purpose of the HSECoE was the research and development of viable material based hydrogen storage systems for on-board vehicular applications to meet DOE performance and cost targets. A baseline design was established in Phase 1. Studies were then conducted to evaluate potential improvements, such as alternate fiber, resin, and boss materials. The most promising concepts were selected such that potential improvements, compared with the baseline Hexagon Lincoln tank, resulted in a projected weight reduction of 11 percent, volume increase of 4 percent, and cost reduction of 10 percent. The baseline design was updated in Phase 2 to reflect design improvements and changes in operating conditions specified by HSECoE Partners. Evaluation of potential improvements continued during Phase 2. Subscale prototype cylinders were designed and fabricated for HSECoE Partners’ use in demonstrating their components and systems. Risk mitigation studies were conducted in Phase 3 that focused on damage tolerance of the composite reinforcement. Updated subscale prototype cylinders were designed and manufactured to better address the HSECoE Partners’ requirements for system demonstration. Subscale Type 1, Type 3, and Type 4 tanks were designed, fabricated and tested. Laboratory tests were conducted to evaluate vacuum insulated systems for cooling the tanks during fill, and maintaining low temperatures during service. Full scale designs were prepared based on results from the studies of this program. The operating conditions that developed during the program addressed adsorbent systems operating at cold temperatures. A Type 4 tank would provide the lowest cost and lightest weight, particularly at higher pressures, as long as issues with liner compatibility and damage tolerance could be resolved. A Type 1 tank might be the choice if the

  18. Use of Expansion Turbines in Natural Gas Pressure Reduction Stations

    Directory of Open Access Journals (Sweden)

    Poživil Jaroslav

    2004-09-01

    Full Text Available Through the use of expansion turbines in natural gas pressure reduction stations it is possible to produce clean, “green” electricity.Such energy recovery unit utilize the potential energy of natural gas being delivered under high pressure. Expansion turbines are not onlyefficient and profitable but meet the environmental criteria – no emissions of sulfur dioxide, nitrogen oxides or carbon dioxide.

  19. Calculation of the safe pressure of gas according to eruptions

    Energy Technology Data Exchange (ETDEWEB)

    Bukhny, D.I.

    1981-01-01

    The dependency of the safe gas pressure according to eruptions on the durability of coal and the thickness of the layer was obtained. The numerical values of coefficients of the indicated dependence were determined for conditions of the Donets-Makeev and Central regions of the Donbas and, as a result, the formulas for the calculation of the safe gas pressure according to eruptions were obtained.

  20. Protective Effects of Hydrogen Gas on Experimental Acute Pancreatitis.

    Directory of Open Access Journals (Sweden)

    Hao-Xin Zhou

    Full Text Available Acute pancreatitis (AP is an inflammatory disease mediated by damage to acinar cells and pancreatic inflammation. In patients with AP, subsequent systemic inflammatory responses and multiple organs dysfunction commonly occur. Interactions between cytokines and oxidative stress greatly contribute to the amplification of uncontrolled inflammatory responses. Molecular hydrogen (H2 is a potent free radical scavenger that not only ameliorates oxidative stress but also lowers cytokine levels. The aim of the present study was to investigate the protective effects of H2 gas on AP both in vitro and in vivo. For the in vitro assessment, AR42J cells were treated with cerulein and then incubated in H2-rich or normal medium for 24 h, and for the in vivo experiment, AP was induced through a retrograde infusion of 5% sodium taurocholate into the pancreatobiliary duct (0.1 mL/100 g body weight. Wistar rats were treated with inhaled air or 2% H2 gas and sacrificed 12 h following the induction of pancreatitis. Specimens were collected and processed to measure the amylase and lipase activity levels; the myeloperoxidase activity and production levels; the cytokine mRNA expression levels; the 8-hydroxydeoxyguanosine, malondialdehyde, and glutathione levels; and the cell survival rate. Histological examinations and immunohistochemical analyses were then conducted. The results revealed significant reductions in inflammation and oxidative stress both in vitro and in vivo. Furthermore, the beneficial effects of H2 gas were associated with reductions in AR42J cell and pancreatic tissue damage. In conclusion, our results suggest that H2 gas is capable of ameliorating damage to the pancreas and AR42J cells and that H2 exerts protective effects both in vitro and in vivo on subjects with AP. Thus, the results obtained indicate that this gas may represent a novel therapy agent in the management of AP.

  1. Process and device for increasing output of gas reactions with the formation of hydrogen. Verfahren und Vorrichtung zur Umsatzsteigerung von mit Wasserstoffbildung ablaufenden Gasreaktionen

    Energy Technology Data Exchange (ETDEWEB)

    Oertel, M.; Schulten, R.; Weirich, W.

    1986-01-16

    The output of gas reactions, which generate reaction mixtures containing hydrogen is increased by the fact that the hydrogen formed is continuously tapped off from the reaction space via a hydrogen permeation wall. A space for accommodating hydrogen inside the reaction container is separated by a wall permeable to hydrogen, which is connected to means for extracting hydrogen. A support structure is preferably provided in this space for taking up the forces due to pressure differences and the wall permeable to hydrogen is formed by a diaphragm, whose surface is increased by corrugation or folding. A pipe reactor is particularly suitable as a device whose inside has a large number of generally tubular hydrogen extraction spaces passing through it.

  2. Conformable pressure vessel for high pressure gas storage

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Kevin L.; Johnson, Kenneth I.; Lavender, Curt A.; Newhouse, Norman L.; Yeggy, Brian C.

    2016-01-12

    A non-cylindrical pressure vessel storage tank is disclosed. The storage tank includes an internal structure. The internal structure is coupled to at least one wall of the storage tank. The internal structure shapes and internally supports the storage tank. The pressure vessel storage tank has a conformability of about 0.8 to about 1.0. The internal structure can be, but is not limited to, a Schwarz-P structure, an egg-crate shaped structure, or carbon fiber ligament structure.

  3. Numerical modeling of gas mixing and bio-chemical transformations during underground hydrogen storage within the project H2STORE

    Science.gov (United States)

    Hagemann, B.; Feldmann, F.; Panfilov, M.; Ganzer, L.

    2015-12-01

    The change from fossil to renewable energy sources is demanding an increasing amount of storage capacities for electrical energy. A promising technological solution is the storage of hydrogen in the subsurface. Hydrogen can be produced by electrolysis using excessive electrical energy and subsequently converted back into electricity by fuel cells or engine generators. The development of this technology starts with adding small amounts of hydrogen to the high pressure natural gas grid and continues with the creation of pure underground hydrogen storages. The feasibility of hydrogen storage in depleted gas reservoirs is investigated in the lighthouse project H2STORE financed by the German Ministry for Education and Research. The joint research project has project members from the University of Jena, the Clausthal University of Technology, the GFZ Potsdam and the French National Center for Scientic Research in Nancy. The six sub projects are based on laboratory experiments, numerical simulations and analytical work which cover the investigation of mineralogical, geochemical, physio-chemical, sedimentological, microbiological and gas mixing processes in reservoir and cap rocks. The focus in this presentation is on the numerical modeling of underground hydrogen storage. A mathematical model was developed which describes the involved coupled hydrodynamic and microbiological effects. Thereby, the bio-chemical reaction rates depend on the kinetics of microbial growth which is induced by the injection of hydrogen. The model has been numerically implemented on the basis of the open source code DuMuX. A field case study based on a real German gas reservoir was performed to investigate the mixing of hydrogen with residual gases and to discover the consequences of bio-chemical reactions.

  4. SIC-BASED HYDROGEN SELECTIVE MEMBRANES FOR WATER-GAS-SHIFT REACTION

    Energy Technology Data Exchange (ETDEWEB)

    Paul K.T. Liu

    2003-12-01

    A hydrogen selective membrane as a membrane reactor (MR) can significantly improve the power generation efficiency with a reduced capital and operating cost for the waster-gas-shift reaction. Existing hydrogen selective ceramic membranes are not suitable for the proposed MR due to their poor hydrothermal stability. In this project we have focused on the development of innovative silicon carbide (SiC) based hydrogen selective membranes, which can potentially overcome this technical barrier. SiC macro-porous membranes have been successfully fabricated via extrusion of commercially available SiC powder. Also, an SiC hydrogen selective thin film was prepared via our CVD/I technique. This composite membrane demonstrated excellent hydrogen selectivity at high temperature ({approx}600 C). More importantly, this membrane also exhibited a much improved hydrothermal stability at 600 C with 50% steam (atmospheric pressure) for nearly 100 hours. In parallel, we have explored an alternative approach to develop a H{sub 2} selective SiC membrane via pyrolysis of selected pre-ceramic polymers and sol-gel techniques. Building upon the positive progress made in the membrane development study, we conducted an optimization study to develop an H{sub 2} selective SiC membrane with sufficient hydrothermal stability suitable for the WGS environment. In addition, mathematical simulation has been performed to compare the performance of the membrane reactor (MR) vs conventional packed bed reactor for WGS reaction. Our result demonstrates that >99.999% conversion can be accomplished via WGS-MR using the hydrogen selective membrane developed by us. Further, water/CO ratio can be reduced, and >97% hydrogen recovery and <200 ppm CO can be accomplished according to the mathematical simulation. Thus, we believe that the operating economics of WGS can be improved significantly based upon the proposed MR concept. In parallel, gas separations and hydrothermal and long-term-storage stability of the

  5. First principles study of inert-gas (helium, neon, and argon) interactions with hydrogen in tungsten

    Science.gov (United States)

    Kong, Xiang-Shan; Hou, Jie; Li, Xiang-Yan; Wu, Xuebang; Liu, C. S.; Chen, Jun-Ling; Luo, G.-N.

    2017-04-01

    We have systematically evaluated binding energies of hydrogen with inert-gas (helium, neon, and argon) defects, including interstitial clusters and vacancy-inert-gas complexes, and their stable configurations using first-principles calculations. Our calculations show that these inert-gas defects have large positive binding energies with hydrogen, 0.4-1.1 eV, 0.7-1.0 eV, and 0.6-0.8 eV for helium, neon, and argon, respectively. This indicates that these inert-gas defects can act as traps for hydrogen in tungsten, and impede or interrupt the diffusion of hydrogen in tungsten, which supports the discussion on the influence of inert-gas on hydrogen retention in recent experimental literature. The interaction between these inert-gas defects and hydrogen can be understood by the attractive interaction due to the distortion of the lattice structure induced by inert-gas defects, the intrinsic repulsive interaction between inert-gas atoms and hydrogen, and the hydrogen-hydrogen repelling in tungsten lattice.

  6. Performance Evaluation Tests of Insulated Pressure Vessels for Vehicular Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Aceves, S M; Martinez-Frias, J; Espinoza-Loza, F

    2002-03-01

    Insulated pressure vessels are cryogenic-capable pressure vessels that can be fueled with liquid hydrogen or ambient-temperature compressed hydrogen. This flexibility results in multiple advantages with respect to compressed hydrogen tanks or low-pressure liquid hydrogen tanks. Our work is directed at verifying that commercially available aluminum-lined, fiber-wrapped pressure vessels can be safely used to store liquid hydrogen. A series of tests have been conducted, and the results indicate that no significant vessel damage has resulted from cryogenic operation. Future activities include a demonstration project in which the insulated pressure vessels will be installed and tested on two vehicles. A draft standard will also be generated for certification of insulated pressure vessels.

  7. Certification Testing and Demonstration of Insulated Pressure Vessels for Vehicular Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Aceves, S M; Martinez-Frias, J; Espinosa-Loza, F

    2002-05-22

    Insulated pressure vessels are cryogenic-capable pressure vessels that can be fueled with liquid hydrogen or ambient-temperature compressed hydrogen. This flexibility results in multiple advantages with respect to compressed hydrogen tanks or low-pressure liquid hydrogen tanks. Our work is directed at verifying that commercially available aluminum-lined, fiber-wrapped pressure vessels can be safely used to store liquid hydrogen. A series of tests have been conducted, and the results indicate that no significant vessel damage has resulted from cryogenic operation. Future activities include a demonstration project in which the insulated pressure vessels will be installed and tested on two vehicles. A draft standard will also be generated for certification of insulated pressure vessels.

  8. Gas generation from radiolytic attack of TRU-contaminated hydrogenous waste

    Energy Technology Data Exchange (ETDEWEB)

    Zerwekh, A.

    1979-06-01

    In 1970, the Waste Management and Transportation Division of the Atomic Energy Commission ordered a segregation of transuranic (TRU)-contaminated solid wastes. Those below a contamination level of 10 nCi/g could still be buried; those above had to be stored retrievably for 20 y. The possibility that alpha-radiolysis of hydrogenous materials might produce toxic, corrosive, and flammable gases in retrievably stored waste prompted an investigation of gas identities and generation rates in the laboratory and field. Typical waste mixtures were synthesized and contaminated for laboratory experiments, and drums of actual TRU-contaminated waste were instrumented for field testing. Several levels of contamination were studied, as well as pressure, temperature, and moisture effects. G (gas) values were determined for various waste matrices, and degradation products were examined.

  9. FINAL REPORT - Development of High Pressure Hydrogen Storage Tank for Storage and Gaseous Truck Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, Donald [Hexagon Lincoln LLC, Lincoln, NE (United States)

    2017-08-04

    The “Development of High Pressure Hydrogen Storage Tanks for Storage and Gaseous Truck Delivery” project [DE-FG36-08GO18062] was initiated on 01 July 2008. Hexagon Lincoln (then Lincoln Composites) received grant funding from the U.S. Department of Energy to support the design and development of an improved bulk hauling and storage solution for hydrogen in terms of cost, safety, weight and volumetric efficiency. The development of this capability required parallel development and qualification of large all-composites pressure vessels, a custom ISO container to transport and store said tanks, and performance of trade studies to identify optimal operating pressure for the system. Qualification of the 250 bar TITAN® module was completed in 2009 with supervision from the American Bureau of Shipping [ABS], and the equipment has been used internationally for bulk transportation of fuel gases since 2010. Phase 1 of the project was successfully completed in 2012 with the issuance of USDOT SP 14951, the special permit authorizing the manufacture, marking, sale and use of TITAN® Mobile Pipeline® equipment in the United States. The introduction of tube trailers with light weight composite tankage has meant that 2 to 3 times as much gaseous fuel can be transported with each trip. This increased hauling efficiency offers dramatically reduced operating costs and has enabled a profitable business model for over-the-road compressed natural gas delivery. The economic drivers of this business opportunity vary from country to country and region to region, but in many places gas distribution companies have realized profitable operations. Additional testing was performed in 2015 to characterize hydrogen-specific operating protocols for use of TITAN® systems in CHG service at 250 bar. This program demonstrated that existing compression and decompression methodologies can efficiently and safely fill and unload lightweight bulk hauling systems. Hexagon Lincoln and U.S. DOE agreed

  10. A Warm Molecular Hydrogen Tail Due to Ram Pressure Stripping of a Cluster Galaxy

    CERN Document Server

    Sivanandam, Suresh; Rieke, George H

    2009-01-01

    We have discovered a remarkable warm (140 - 160 K) molecular hydrogen tail with a mass of approximately 2.5*10^7 M_sun extending 20 kpc from a cluster spiral galaxy, ESO 137-001, in Abell 3627. Some portion of this gas is lost permanently to the intracluster medium, as the tail extends beyond the tidal radius of the galaxy. We also detect a hot (580 - 680 K) component in the tail that is approximately 1% of the mass of the warm component. This discovery is direct evidence that the galaxy is currently undergoing ram-pressure stripping, as also indicated by its X-ray and H\\alpha tail found by other studies. We estimate the galaxy is losing its interstellar gas at a rate of at least ~ 1 - 2 M_sun yr^-1. If the galaxy persists to lose mass at this estimated rate, it will exhaust its gas reservoir in a single pass through the cluster core, which will take approximately 0.5 - 1 Gyr. The results produced from the modeling of the ram-pressure stripping timescale are consistent with our upper limit and suggest that th...

  11. Atomic Hydrogen Gas in Dark-Matter Minihalos and the Compact High Velocity Clouds

    CERN Document Server

    Sternberg, A; Wolfire, M G

    2002-01-01

    We calculate the coupled hydrostatic and ionization structures of pressure-supported gas clouds that are confined by gravitationally dominant dark-matter (DM) mini-halos and by an external bounding pressure provided by a hot medium. We focus on clouds that are photoionized and heated by the present-day background metagalactic field and determine the conditions for the formation of warm (WNM), and multi-phased (CNM/WNM) neutral atomic hydrogen (HI) cores in the DM-dominated clouds. We consider LCDM dark-matter halos, and we compute models for a wide range of halo masses, total cloud gas masses, and external bounding pressures. We present models for the pressure-supported HI structures observed in the Local Group dwarf galaxies Leo A and Sag DIG. We then construct minihalo models for the multi-phased (and low-metallicity) compact high-velocity HI clouds (CHVCs). If the CHVCs are drawn from the same family of halos that successfully reproduce the dwarf galaxy observations, then the CHVCs must be "circumgalactic ...

  12. Gas-Liquid Two-Phase Axial Backmixing Through Structured Packing at Elevated Pressure

    Institute of Scientific and Technical Information of China (English)

    张鹏; 刘春江; 唐忠利; 袁希钢; 余国琮

    2003-01-01

    An experimental study of the extent of axial backmixing in both gas and liquid phases was conducted in a 150 mm ID column packed with Mellapak 250Y corrugated structured packing. The column was operated at pressures ranging from 0.3 MPa to 2.0 MPa with nitrogen and water flowing countercurrently through the packing.The amount of axial backmixing was experimentally evaluated by the pulse response techniques using hydrogen in gas phase and an aqueous solution of NaC1 in liquid phase as inert tracers. The response of the tracer was monitored by means of thermal conductivity in the gas phase and electrical conductance in the liquid phase. The experimentally determined residence time distribution (RTD) curves were interpreted in terms of the diffusion-type model. The results indicated that the axial backmixing in the gas increased notably with gas flowrate and slightly with operating pressure and liquid flowrate. The liquid-phase axial backmixing was an increasing function of both gas and liquid flowrates and insensitive to pressure. Various correlations were developed for reproducing the experimental mixing data. The agreement between experimental and correlated data appeared to be acceptable and within ±20% of difference.

  13. Numerical and experimental study on shear coaxial injectors with hot hydrogen-rich gas/oxygen-rich gas and GH2/GO2

    Science.gov (United States)

    Jin, Ping; Li, Mao; Cai, Guo-Biao

    2013-04-01

    The influences of the shear coaxial injector parameters on the combustion performance and the heat load of a combustor are studied numerically and experimentally. The injector parameters, including the ratio of the oxidizer pressure drop to the combustor pressure (DP), the velocity ratio of fuel to oxidizer (RV), the thickness (WO), and the recess (HO) of the oxidizer injector post tip, the temperature of the hydrogen-rich gas (TH) and the oxygen-rich gas (TO), are integrated by the orthogonal experimental design method to investigate the performance of the shear coaxial injector. The gaseous hydrogen/oxygen at ambient temperature (GH2/GO2), and the hot hydrogen-rich gas/oxygen-rich gas are used here. The length of the combustion (LC), the average temperatures of the combustor wall (TW), and the faceplate (TF) are selected as the indicators. The tendencies of the influences of injector parameters on the combustion performance and the heat load of the combustor for the GH2/GO2 case are similar to those in the hot propellants case. However, the combustion performance in the hot propellant case is better than that in the GH2/GO2 case, and the heat load of the combustor is also larger than that in the latter case.

  14. Numerical and experimental study on shear coaxial injectors with hot hydrogen-rich gas/oxygen-rich gas and GH2/GO2

    Institute of Scientific and Technical Information of China (English)

    Jin Ping; Li Mao; Cai Guo-Biao

    2013-01-01

    The influences of the shear coaxial injector parameters on the combustion performance and the heat load of a combustor are studied numerically and experimentally.The injector parameters,including the ratio of the oxidizer pressure drop to the combustor pressure (Dp),the velocity ratio of fuel to oxidizer (Rv),the thickness (Wo),and the recess (Ho) of the oxidizer injector post tip,the temperature of the hydrogen-rich gas (TH) and the oxygen-rich gas (To),are integrated by the orthogonal experimental design method to investigate the performance of the shear coaxial injector.The gaseous hydrogen/oxygen at ambient temperature (GH2/GO2),and the hot hydrogen-rich gas/oxygen-rich gas are used here.The length of the combustion (Lc),the average temperatures of the combustor wall (Tw),and the faceplate (TF) are selected as the indicators.The tendencies of the influences of injector parameters on the combustion performance and the heat load of the combustor for the GH2/GO2 case are similar to those in the hot propellants case.However,the combustion performancein the hot propellant case is better than that in the GH2/GO2 case,and the heat load of the combustor is also larger than that in the latter case.

  15. Microsensor measurements of hydrogen gas dynamics in cyanobacterial microbial mats.

    Science.gov (United States)

    Nielsen, Michael; Revsbech, Niels P; Kühl, Michael

    2015-01-01

    We used a novel amperometric microsensor for measuring hydrogen gas production and consumption at high spatio-temporal resolution in cyanobacterial biofilms and mats dominated by non-heterocystous filamentous cyanobacteria (Microcoleus chtonoplastes and Oscillatoria sp.). The new microsensor is based on the use of an organic electrolyte and a stable internal reference system and can be equipped with a chemical sulfide trap in the measuring tip; it exhibits very stable and sulfide-insensitive measuring signals and a high sensitivity (1.5-5 pA per μmol L(-1) H2). Hydrogen gas measurements were done in combination with microsensor measurements of scalar irradiance, O2, pH, and H2S and showed a pronounced H2 accumulation (of up to 8-10% H2 saturation) within the upper mm of cyanobacterial mats after onset of darkness and O2 depletion. The peak concentration of H2 increased with the irradiance level prior to darkening. After an initial build-up over the first 1-2 h in darkness, H2 was depleted over several hours due to efflux to the overlaying water, and due to biogeochemical processes in the uppermost oxic layers and the anoxic layers of the mats. Depletion could be prevented by addition of molybdate pointing to sulfate reduction as a major sink for H2. Immediately after onset of illumination, a short burst of presumably photo-produced H2 due to direct biophotolysis was observed in the illuminated but anoxic mat layers. As soon as O2 from photosynthesis started to accumulate, the H2 was consumed rapidly and production ceased. Our data give detailed insights into the microscale distribution and dynamics of H2 in cyanobacterial biofilms and mats, and further support that cyanobacterial H2 production can play a significant role in fueling anaerobic processes like e.g., sulfate reduction or anoxygenic photosynthesis in microbial mats.

  16. Microsensor Measurements of Hydrogen Gas Dynamics in Cyanobacterial Microbial Mats

    Directory of Open Access Journals (Sweden)

    Michael eNielsen

    2015-07-01

    Full Text Available We used a novel amperometric microsensor for measuring hydrogen gas production and consumption at high spatio-temporal resolution in cyanobacterial biofilms and mats dominated by non-heterocystous filamentous cyanobacteria (Microcoleus chtonoplastes and Oscillatoria spp.. The new microsensor is based on the use of an organic electrolyte and a stable internal reference system and can be equipped with a chemical sulfide trap in the measuring tip; it exhibits very stable and sulfide-insensitive measuring signals and a high sensitivity (1.5-5 pA per µmol L-1 H2. Hydrogen gas measurements were done in combination with microsensor measurements of scalar irradiance, O2, pH, and H2S and showed a pronounced H2 accumulation (of up to 8-10% H2 saturation within the upper mm of cyanobacterial mats after onset of darkness and O2 depletion. The peak concentration of H2 increased with the irradiance level prior to darkening. After an initial build-up over the first 1-2 hours in darkness, H2 was depleted over several hours due to efflux to the overlaying water, and due to biogeochemical processes in the uppermost oxic layers and the anoxic layers of the mats. Depletion could be prevented by addition of molybdate pointing to sulfate reduction as a major sink for H2. Immediately after onset of illumination, a short burst of presumably photo-produced H2 due to direct photobiolysis was observed in the illuminated but anoxic mat layers. As soon as O2 from photosynthesis started to accumulate, the H2 was consumed rapidly and production ceased. Our data give detailed insights into the microscale distribution and dynamics of H2 in cyanobacterial biofilms and mats, and further support that cyanobacterial H2 production can play a significant role in fueling anaerobic processes like e.g. sulfate reduction or anoxygenic photosynthesis in microbial mats.

  17. Potential hydrogen and oxygen partial pressures in legacy plutonium oxide packages at Oak Ridge

    Energy Technology Data Exchange (ETDEWEB)

    Veirs, Douglas K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-07-07

    An approach to estimate the maximum hydrogen and oxygen partial pressures within sealed containers is described and applied to a set of packages containing high-purity plutonium dioxide. The approach uses experimentally determined maximum hydrogen and oxygen partial pressures and scales the experimentally determined pressures to the relevant packaged material properties. The important material properties are the specific wattage and specific surface area (SSA). Important results from the experimental determination of maximum partial pressures are (1) the ratio of hydrogen to oxygen is stoichiometric, and (2) the maximum pressures increase with increasing initial rates of production. The material properties that influence the rates are the material specific wattage and the SSA. The unusual properties of these materials, high specific wattage and high SSA, result in higher predicted maximum pressures than typical plutonium dioxide in storage. The pressures are well within the deflagration range for mixtures of hydrogen and oxygen.

  18. Chemical bonding in hydrogen and lithium under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Naumov, Ivan I.; Hemley, Russell J. [Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Rd. NW, Washington, DC 20015 (United States); Hoffmann, Roald [Baker Laboratory, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853 (United States); Ashcroft, N. W. [Laboratory of Atomic and Solid State Physics and Cornell Center for Materials Research, Cornell University, Clark Hall, Ithaca, New York 14853 (United States)

    2015-08-14

    Though hydrogen and lithium have been assigned a common column of the periodic table, their crystalline states under common conditions are drastically different: the former at temperatures where it is crystalline is a molecular insulator, whereas the latter is a metal that takes on simple structures. On compression, however, the two come to share some structural and other similarities associated with the insulator-to-metal and metal-to-insulator transitions, respectively. To gain a deeper understanding of differences and parallels in the behaviors of compressed hydrogen and lithium, we performed an ab initio comparative study of these systems in selected identical structures. Both elements undergo a continuous pressure-induced s-p electronic transition, though this is at a much earlier stage of development for H. The valence charge density accumulates in interstitial regions in Li but not in H in structures examined over the same range of compression. Moreover, the valence charge density distributions or electron localization functions for the same arrangement of atoms mirror each other as one proceeds from one element to the other. Application of the virial theorem shows that the kinetic and potential energies jump across the first-order phase transitions in H and Li are opposite in sign because of non-local effects in the Li pseudopotential. Finally, the common tendency of compressed H and Li to adopt three-fold coordinated structures as found is explained by the fact that such structures are capable of yielding a profound pseudogap in the electronic densities of states at the Fermi level, thereby reducing the kinetic energy. These results have implications for the phase diagrams of these elements and also for the search for new structures with novel properties.

  19. Chemical bonding in hydrogen and lithium under pressure.

    Science.gov (United States)

    Naumov, Ivan I; Hemley, Russell J; Hoffmann, Roald; Ashcroft, N W

    2015-08-14

    Though hydrogen and lithium have been assigned a common column of the periodic table, their crystalline states under common conditions are drastically different: the former at temperatures where it is crystalline is a molecular insulator, whereas the latter is a metal that takes on simple structures. On compression, however, the two come to share some structural and other similarities associated with the insulator-to-metal and metal-to-insulator transitions, respectively. To gain a deeper understanding of differences and parallels in the behaviors of compressed hydrogen and lithium, we performed an ab initio comparative study of these systems in selected identical structures. Both elements undergo a continuous pressure-induced s-p electronic transition, though this is at a much earlier stage of development for H. The valence charge density accumulates in interstitial regions in Li but not in H in structures examined over the same range of compression. Moreover, the valence charge density distributions or electron localization functions for the same arrangement of atoms mirror each other as one proceeds from one element to the other. Application of the virial theorem shows that the kinetic and potential energies jump across the first-order phase transitions in H and Li are opposite in sign because of non-local effects in the Li pseudopotential. Finally, the common tendency of compressed H and Li to adopt three-fold coordinated structures as found is explained by the fact that such structures are capable of yielding a profound pseudogap in the electronic densities of states at the Fermi level, thereby reducing the kinetic energy. These results have implications for the phase diagrams of these elements and also for the search for new structures with novel properties.

  20. Estimation of the minimum and maximum substrate temperatures for diamond growth from hydrogen-hydrocarbon gas mixtures

    Science.gov (United States)

    Zhang, Yafei; Zhang, Fangqing; Chen, Guanghua

    1994-12-01

    It is proposed in this paper that the minimum substrate temperature for diamond growth from hydrogen-hydrocarbon gas mixtures be determined by the packing arrangements of hydrocarbon fragments at the surface, and the maximum substrate temperature be limited by the diamond growth surface reconstruction, which can be prevented by saturating the surface dangling bonds with atomic hydrogen. Theoretical calculations have been done by a formula proposed by Dryburgh [J. Crystal Growth 130 (1993) 305], and the results show that diamond can be deposited at the substrate temperatures ranging from ≈ 400 to ≈ 1200°C by low pressure chemical vapor deposition. This is consistent with experimental observations.

  1. Can hydrogen be stored inside carbon nanotubes under pressure in gigapascal range?

    OpenAIRE

    Zhang, X. H.; Gong, X. G.; Z. F. Liu

    2006-01-01

    By using a newly fitted multi-parameter potential to describe the van der Waals interaction between carbon and molecular hydrogen, we study the hydrogen storage inside carbon nanotubes (CNT's) under pressure in gigapascal range. Comparing with the results of graphite, we find that the shape change of the nanotubes (the curvature effect) provides a different storage mechanism for hydrogen. The negative free energy change for hydrogen storage inside CNT's makes it possible to use CNT's as the n...

  2. Temperature-pressure characteristics of SMH actuator system using hydrogen-absorbing alloys

    Science.gov (United States)

    Kim, Kyung; Ryu, Mun-Ho; Kim, Dong-Wook; Kwon, Tae-Kyu; Lee, Seong-Chul; Kim, Nam-Gyun

    2009-03-01

    This paper presents the temperature-pressure characteristics of a newly developed SMH actuator using hydrogen-absorbing alloys. The new special metal hydride(SMH) actuator is characterized by its small size, low weight, noiseless operation, and compliance similar to that of human bodies. The simple SMH actuator, consisting of plated hydrogen-absorbing alloys as a power source, Peltier modules as a thermal source, and a cylinder with metal bellows as a mechanical functioning part, has been developed. An assembly of copper pipes has been constructed to improve the thermal conductivity of the hydrogen-absorbing alloys. It is well known that hydrogen-absorbing alloys can reversibly absorb and desorb a large amount of hydrogen, more than about one thousand times of their own volume. By heating the hydrogen-absorbing alloys, the hydrogen equilibrium pressure increases due to desorption of hydrogen, whereas, by cooling the alloys, the hydrogen equilibrium pressure drops due to absorption of hydrogen by the alloys. The new SMH actuator utilizes the reversible reaction between the thermal energy and mechanical energy of the hydrogen absorbing alloys. To be able to use the SMH actuator in medical and rehabilitation applications, the desirable characteristics of the actuator have been studied. For this purpose, the detailed characteristics of the new SMH actuator for different temperature, pressure, and external loads were explored.

  3. Combined Solid State and High Pressure Hydrogen Storage

    DEFF Research Database (Denmark)

    Grube, Elisabeth; Jensen, Torben René

    Presented at The First European Early Stage Researcher's Conference on Hydrogen Storage in Belgrade, Serbia.......Presented at The First European Early Stage Researcher's Conference on Hydrogen Storage in Belgrade, Serbia....

  4. Enhanced performance of a wide-aperture copper vapour laser with hydrogen additive in neon buffer gas

    Indian Academy of Sciences (India)

    Bijendra Singh; V V Subramaniam; S R Daultabad; Ashim Chakraboty

    2010-11-01

    A wide-aperture copper vapour laser was demonstrated at ∼ 10 kHz rep-rate with hydrogen additive in its buffer gas. Maximum power in excess of ∼ 50 W (at 10 kHz) was achieved by adding 1.96% hydrogen to the neon buffer gas at 20 mbar total gas pressure. This increase in output power was about 70% as compared to ∼ 30 W achieved with pure neon at 5.5 kHz rep-rate. The 70% enhancement achieved was significantly higher than the maximum reported value of 50% so far in the literature. The enhancement was much higher (about 150%) as compared to its 20 W power at 10 kHz rep-rate using pure neon as the standard CVL operation.

  5. Diffractive Photon Dissociation in a High Pressure Hydrogen Time Projection Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Snow, Gregory Roy [Rockefeller Univ., New York, NY (United States)

    1983-11-01

    We have performed an experiment at the Tagged Photon Facility of Fermilab to study the diffraction dissociation of high energy photons on hydrogen y + p -+ x + p in the region 0.02 < $\\mid t \\mid$ < 0.1 $(GeV/c)^2$, $M_x$ $^2/s$ < 0.1. In this process, incident photons whose energies range from 70 to 140 GeV transform coherently to massive hadronic states in the mass range M < 5 GeV/c 2 • x We measure the inclusive differential cross section$\\frac{d^20}{dt dM_x ^2}$) The behavior of this cross section, especially when compared to the corresponding cross sections for the diffraction dissociation of incident hadrons (pions, kaons, and protons), reveals some fundamental characteristics of photon hadronic interactions. We use the Recoil Technique to determine the missing mass, $M_x$, and the square of the 4-momentum transfer, t. The recoil detector, TREAD, is a cylindrical time projection chamber filled with high pressure hydrogen gas which serves both as the target and as the drift medium for the ionization track created by recoil protons. The ionization drifts up to 75 cm in a high axial electric field. Concentric sense wires mounted on endplates sample different parts of the track, yielding the polar angle of the recoil. The energy of the recoil is determined by stopping the proton in scintillation counters located inside the high pressure vessel....

  6. Solar Thermal Upper Stage Liquid Hydrogen Pressure Control Testing

    Science.gov (United States)

    Moore, J. D.; Otto, J. M.; Cody, J. C.; Hastings, L. J.; Bryant, C. B.; Gautney, T. T.

    2015-01-01

    High-energy cryogenic propellant is an essential element in future space exploration programs. Therefore, NASA and its industrial partners are committed to an advanced development/technology program that will broaden the experience base for the entire cryogenic fluid management community. Furthermore, the high cost of microgravity experiments has motivated NASA to establish government/aerospace industry teams to aggressively explore combinations of ground testing and analytical modeling to the greatest extent possible, thereby benefitting both industry and government entities. One such team consisting of ManTech SRS, Inc., Edwards Air Force Base, and Marshall Space Flight Center (MSFC) was formed to pursue a technology project designed to demonstrate technology readiness for an SRS liquid hydrogen (LH2) in-space propellant management concept. The subject testing was cooperatively performed June 21-30, 2000, through a partially reimbursable Space Act Agreement between SRS, MSFC, and the Air Force Research Laboratory. The joint statement of work used to guide the technical activity is presented in appendix A. The key elements of the SRS concept consisted of an LH2 storage and supply system that used all of the vented H2 for solar engine thrusting, accommodated pressure control without a thermodynamic vent system (TVS), and minimized or eliminated the need for a capillary liquid acquisition device (LAD). The strategy was to balance the LH2 storage tank pressure control requirements with the engine thrusting requirements to selectively provide either liquid or vapor H2 at a controlled rate to a solar thermal engine in the low-gravity environment of space operations. The overall test objective was to verify that the proposed concept could enable simultaneous control of LH2 tank pressure and feed system flow to the thruster without necessitating a TVS and a capillary LAD. The primary program objectives were designed to demonstrate technology readiness of the SRS concept

  7. Analytical model of neutral gas shielding for hydrogen pellet ablation

    Energy Technology Data Exchange (ETDEWEB)

    Kuteev, Boris V.; Tsendin, Lev D. [State Technical Univ., St. Petersburg (Russian Federation)

    2001-11-01

    A kinetic gasdynamic scaling for hydrogen pellet ablation is obtained in terms of a neural gas shielding model using both numerical and analytical approaches. The scaling on plasma and pellet parameters proposed in the monoenergy approximation by Milora and Foster dR{sub pe}/dt{approx}S{sub n}{sup 2/3}R{sub p}{sup -2/3}q{sub eo}{sup 1/3}m{sub i}{sup -1/3} is confirmed. Here R{sub p} is the pellet radius, S{sub n} is the optical thickness of a cloud, q{sub eo} is the electron energy flux density and m{sub i} is the molecular mass. Only the numeral factor is approximately two times less than that for the monoenergy approach. Due to this effect, the pellet ablation rates, which were obtained by Kuteev on the basis of the Milora scaling, should be reduced by a factor of 1.7. Such a modification provides a reasonable agreement (even at high plasma parameters) between the two-dimensional kinetic model and the one-dimensional monoenergy approximation validated in contemporary tokamak experiments. As the could (in the kinetic approximation) is significantly thicker than that for the monoenergy case as well as the velocities of the gas flow are much slower, the relative effect of plasma and magnetic shielding on the ablation rate is strongly reduced. (author)

  8. Studies of THGEM-based detector at low-pressure Hydrogen/Deuterium, for AT-TPC applications

    CERN Document Server

    Cortesi, Marco; Mittig, Wolfgang; Bazin, Daniel; Beceiro-Novo, Saul; Stolz, Andreas

    2015-01-01

    We study the performance of single- and double- THick Gas Electron Multiplier (THGEM) detectors in pure Hydrogen and Deuterium at low pressures, in the range of 100-450 Torr. The effect of the pressure on the maximum achievable gain, ion-back flow and long-term gain stability are investigated for single and double cascade detectors. In particular, it was found that maximum achievable gains above 10^4, from single-photoelectrons avalanche, can be achieved for pressures of 200 Torr and above; for lower pressure the gains are limited by avalanche-induced secondary effects to a values of around 103. The results of this work are relevant in the field of avalanche mechanism in low-pressure, low-mass noble gases, in particular for applications of THGEM end-cap readout for active-target Time Projection Chambers (TPC) in the field of nuclear physics and nuclear astrophysics.

  9. Analysis of Pressure Variations in a Low-Pressure Nickel-Hydrogen Battery– Part 2: Cells with Metal Hydride Storage

    Science.gov (United States)

    Purushothaman, B. K.; Wainright, J. S.

    2012-01-01

    A sub-atmospheric pressure nickel hydrogen (Ni-H2) battery with metal hydride for hydrogen storage is developed for implantable neuroprosthetic devices. Pressure variations during charge and discharge of the cell are analyzed at different states of charge and are found to follow the desorption curve of the pressure composition isotherm (PCI) of the metal hydride. The measured pressure agreed well with the calculated theoretical pressure based on the PCI and is used to predict the state of charge of the battery. Hydrogen equilibration with the metal hydride during charge/discharge cycling is fast when the pressure is in the range from 8 to 13 psia and slower in the range from 6 to 8 psia. The time constant for the slower hydrogen equilibration, 1.37h, is similar to the time constant for oxygen recombination and therefore pressure changes due to different mechanisms are difficult to estimate. The self-discharge rate of the cell with metal hydride is two times lower in comparison to the cell with gaseous hydrogen storage alone and is a result of the lower pressure in the cell when the metal hydride is used. PMID:22711974

  10. Analysis of Pressure Variations in a Low-Pressure Nickel-Hydrogen Battery- Part 2: Cells with Metal Hydride Storage.

    Science.gov (United States)

    Purushothaman, B K; Wainright, J S

    2012-05-15

    A sub-atmospheric pressure nickel hydrogen (Ni-H(2)) battery with metal hydride for hydrogen storage is developed for implantable neuroprosthetic devices. Pressure variations during charge and discharge of the cell are analyzed at different states of charge and are found to follow the desorption curve of the pressure composition isotherm (PCI) of the metal hydride. The measured pressure agreed well with the calculated theoretical pressure based on the PCI and is used to predict the state of charge of the battery. Hydrogen equilibration with the metal hydride during charge/discharge cycling is fast when the pressure is in the range from 8 to 13 psia and slower in the range from 6 to 8 psia. The time constant for the slower hydrogen equilibration, 1.37h, is similar to the time constant for oxygen recombination and therefore pressure changes due to different mechanisms are difficult to estimate. The self-discharge rate of the cell with metal hydride is two times lower in comparison to the cell with gaseous hydrogen storage alone and is a result of the lower pressure in the cell when the metal hydride is used.

  11. PRESSURE FLUCTUATIONS IN GAS-SOLIDS FLUIDIZED BEDS

    Institute of Scientific and Technical Information of China (English)

    Hsiaotao Bi; Aihua Chen

    2003-01-01

    Pressure fluctuation data measured in a series of fluidized beds with diameters of 0.05, 0.1, 0.29, 0.60 and 1.56 m showed that the maximum amplitude or standard deviation increased with increasing the superficial gas velocity and static bed height for relatively shallow beds and became insensitive to the increase in static bed height in relatively deep beds. The amplitude appeared to be less dependent on the measurement location in the dense bed. Predictions based on bubble passage, bubble eruption at the upper bed surface and bed oscillation all failed to explain all observed trends and underestimated the amplitude of pressure fluctuations, suggesting that the global pressure fluctuations in gas-solids bubbling fluidized beds are the superposition of local pressure variations, bed oscillations and pressure waves generated from the bubble formation in the distributor region, bubble coalescence during their rise and bubble eruption at the upper bed surface.

  12. Catalytic decomposition of ammonia in fuel gas produced in pilot-scale pressurized fluidized-bed gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Mojtahedi, W.; Ylitalo, M.; Maunula, T.; Abbasian, J. [Enviropower Inc., Tampere (Finland)

    1995-12-01

    Integrated Gasification Combined Cycle (IGCC) process, incorporating pressurized gasification of solid fuels (coal, peat, biomass) and hot gas cleanup, is being developed worldwide to generate power with high efficiency and in an environmentally acceptable manner. The gasifier product gas contains, among others, ammonia and to a lesser extent hydrogen cyanide (HCN) which are converted to oxides of nitrogen (NO{sub x}) when the gas is combusted in the gas turbine. Several nickel-based catalysts were developed and evaluated for decomposition of ammonia present in the gasifier product gas, at Enviropower`s 15 MW{sub th} pilot plant in coal- and biomass-gasification tests. Up to 75% of ammonia in the product gas was decomposed at 800-900{degree}C temperature range and 12-22 bar pressure. 11 refs., 12 figs., 4 tabs.

  13. Hydrogen-enriched natural gas; Bridge to an ultra low carbon world

    Energy Technology Data Exchange (ETDEWEB)

    Samuel, Joshua; Oliver, Mike

    2010-09-15

    Natural gas is recognized as an important part of the solution to climate change, as it has the smallest carbon footprint among fossil fuels and can be used with high efficiency. This alone is not enough. Supplementing natural gas with hydrogen creating hydrogen-enriched natural gas (HENG), where the hydrogen comes from a low- or zero-carbon energy source. HENG, the subject of this paper, can leverage existing natural gas infrastructure to reduce CO2 and NOx, improve the efficiency of end-use equipment, and lower the overall carbon intensity of energy consumption.

  14. Integration of biohydrogen fermentation and gas separation processes to recover and enrich hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Belafi-Bako, K.; Bucsu, D. [Research Institute of Chemical and Process Engineering, University of Veszprem, Egyetem u. 2., 8200 Veszprem (Hungary); Pientka, Z. [Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq. 2., Prague (Czech Republic); Balint, B.; Herbel, Z.; Kovacs, K.L. [Department of Biotechnology and Institute of Biophysics, Biological Research Center, Hungarian Academy of Sciences, University of Szeged, Temesvari krt. 62., 6726 Szeged (Hungary); Wessling, M. [Membrane Technology Group, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands)

    2006-09-15

    An integrated system for biohydrogen production and separation was designed, constructed and operated where biohydrogen was fermented by Thermococcus litoralis, a heterotrophic archaebacterium, and a two-step gas separation process was coupled to recover and concentrate hydrogen. A special liquid seal system was built to deliver, compress and collect the laboratory scale, low volume gas mixtures consisting of hydrogen, nitrogen and carbon dioxide. As a result, gas mixture with 73% high hydrogen content was produced by a combination of a porous and a non-porous gas separation membrane. (author)

  15. Non-porous metal membranes for selective separation of hydrogen from gas mixtures at higher temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Winkelmann, U.; Schulten, R.; Weirich, W.; Kuegler, B.; Luecke, L.; Oertel, M.; Pietsch, M.; Schmitz, J.

    1986-10-01

    Materials for selective separation of hydrogen from gas mixtures by means of a metal membrane must have high permeability for dissolved oxygen, catalytically active surfaces, and mechanical stability in a hydrogen atmosphere. The transition metals Nb, Ta, and V have high hydrogen permeability, but they must be coated with a catalytically active Pd alloy in order to permit hydrogen permeation. The alloy TiNi can be used without a noble metal coating.

  16. Salt effect in the solubility of hydrogen in n-alcohols at pressures up to 10 MPa and temperatures up to 498.15 K

    Directory of Open Access Journals (Sweden)

    d?Angelo J. V.H.

    2000-01-01

    Full Text Available Gas-liquid solubility of hydrogen in methanol and ethanol systems with electrolytes was studied in the temperature range from 305.15 K to 498.15 K and pressures from 4 to 10 MPa. The experimental method used was the Total Pressure Method, which eliminates sampling and analysis of the phases, determining their composition at equilibrium using the following experimental data: moles of solute and solvent in the system; pressure, temperature and volume of the system at equilibrium; together with thermodynamic equations for fluid-phase equilibria. The salts used were lithium chloride and potassium acetate. The solubility of hydrogen increases with increasing temperature and pressure and the presence of salts causes a decrease in the solubility of hydrogen, when compared with the results of systems without salts, characterizing a "salting-out" effect, which is greater in conditions of lower temperature and pressure, specially for potassium acetate.

  17. Inverted Fuel Cell: Room-Temperature Hydrogen Separation from an Exhaust Gas by Using a Commercial Short-Circuited PEM Fuel Cell without Applying any Electrical Voltage.

    Science.gov (United States)

    Friebe, Sebastian; Geppert, Benjamin; Caro, Jürgen

    2015-06-26

    A short-circuited PEM fuel cell with a Nafion membrane has been evaluated in the room-temperature separation of hydrogen from exhaust gas streams. The separated hydrogen can be recovered or consumed in an in situ olefin hydrogenation when the fuel cell is operated as catalytic membrane reactor. Without applying an outer electrical voltage, there is a continuous hydrogen flux from the higher to the lower hydrogen partial pressure side through the Nafion membrane. On the feed side of the Nafion membrane, hydrogen is catalytically split into protons and electrons by the Pt/C electrocatalyst. The protons diffuse through the Nafion membrane, the electrons follow the short-circuit between the two brass current collectors. On the cathode side, protons and electrons recombine, and hydrogen is released. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. PRESSURIZED SOLID OXIDE FUEL CELL/GAS TURBINE POWER SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    W.L. Lundberg; G.A. Israelson; R.R. Moritz(Rolls-Royce Allison); S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann (Consultant)

    2000-02-01

    Power systems based on the simplest direct integration of a pressurized solid oxide fuel cell (SOFC) generator and a gas turbine (GT) are capable of converting natural gas fuel energy to electric power with efficiencies of approximately 60% (net AC/LHV), and more complex SOFC and gas turbine arrangements can be devised for achieving even higher efficiencies. The results of a project are discussed that focused on the development of a conceptual design for a pressurized SOFC/GT power system that was intended to generate 20 MWe with at least 70% efficiency. The power system operates baseloaded in a distributed-generation application. To achieve high efficiency, the system integrates an intercooled, recuperated, reheated gas turbine with two SOFC generator stages--one operating at high pressure, and generating power, as well as providing all heat needed by the high-pressure turbine, while the second SOFC generator operates at a lower pressure, generates power, and provides all heat for the low-pressure reheat turbine. The system cycle is described, major system components are sized, the system installed-cost is estimated, and the physical arrangement of system components is discussed. Estimates of system power output, efficiency, and emissions at the design point are also presented, and the system cost of electricity estimate is developed.

  19. Effect of gas sparging on continuous fermentative hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Hoon; Kim, Sang-Hyoun; Shin, Hang-Sik [Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Han, Sun-Kee [Department of Environmental Health, Korea National Open University, 169 Dongsung-dong, Jongno-gu, Seoul 110-791 (Korea, Republic of)

    2006-12-15

    The effect of gas sparging on continuous fermentative H{sub 2} production was investigated in completely stirred-tank reactors (CSTR) using internal biogas, N{sub 2} and CO{sub 2} with various flow rates (100, 200, 300 and 400ml/min). The sparging with external gases of N{sub 2} and CO{sub 2} showed higher H{sub 2} yield than the control of no sparging and internal biogas sparging. It indicated that the decrease of H{sub 2} partial pressure by external gas sparging had a beneficial effect on H{sub 2} fermentation. Especially, CO{sub 2} sparging was more effective in the reactor performance than N{sub 2} sparging, accompanied by higher production of H{sub 2} and butyrate. The best performance was obtained by CO{sub 2} sparging at 300ml/min, resulting in the highest H{sub 2} yield of 1.68molH{sub 2}/molhexose{sub consumed} and the maximum specific H{sub 2} production rate of 6.89L H{sub 2}/g VSS/day. Compared to N{sub 2} sparging, there might be another positive effect in CO{sub 2} sparging apart from lowering H{sub 2} partial pressure. High CO{sub 2} partial pressure had little effect on H{sub 2}-producing bacteria but inhibitory effect on other microorganisms such as acetogens and lactic acid bacteria which were competitive with H{sub 2}-producing bacteria. Only H{sub 2}-producing bacteria, such as Clostridium tyrobutyricum, C. proteolyticum and C. acidisoli were isolated under CO{sub 2} sparging conditions based on 16S rDNA analysis by PCR-DGGE. (author)

  20. Low cost hydrogen/novel membrane technology for hydrogen separation from synthesis gas. Task 1, Literature survey

    Energy Technology Data Exchange (ETDEWEB)

    1986-02-01

    To make the coal-to-hydrogen route economically attractive, improvements are being sought in each step of the process: coal gasification, water-carbon monoxide shift reaction, and hydrogen separation. This report addresses the use of membranes in the hydrogen separation step. The separation of hydrogen from synthesis gas is a major cost element in the manufacture of hydrogen from coal. Separation by membranes is an attractive, new, and still largely unexplored approach to the problem. Membrane processes are inherently simple and efficient and often have lower capital and operating costs than conventional processes. In this report current ad future trends in hydrogen production and use are first summarized. Methods of producing hydrogen from coal are then discussed, with particular emphasis on the Texaco entrained flow gasifier and on current methods of separating hydrogen from this gas stream. The potential for membrane separations in the process is then examined. In particular, the use of membranes for H{sub 2}/CO{sub 2}, H{sub 2}/CO, and H{sub 2}/N{sub 2} separations is discussed. 43 refs., 14 figs., 6 tabs.

  1. Treating exhaust gas from a pressurized fluidized bed reaction system

    Science.gov (United States)

    Isaksson, Juhani; Koskinen, Jari

    1995-01-01

    Hot gases from a pressurized fluidized bed reactor system are purified. Under superatmospheric pressure conditions hot exhaust gases are passed through a particle separator, forming a flitrate cake on the surface of the separator, and a reducing agent--such as an NO.sub.x reducing agent (like ammonia), is introduced into the exhaust gases just prior to or just after particle separation. The retention time of the introduced reducing agent is enhanced by providing a low gas velocity (e.g. about 1-20 cm/s) during passage of the gas through the filtrate cake while at superatmospheric pressure. Separation takes place within a distinct pressure vessel the interior of which is at a pressure of about 2-100 bar, and-introduction of reducing agent can take place at multiple locations (one associated with each filter element in the pressure vessel), or at one or more locations just prior to passage of clean gas out of the pressure vessel (typically passed to a turbine).

  2. Hydrogen gas sensor based on palladium and yttrium alloy ultrathin film

    Science.gov (United States)

    Yi, Liu; You-ping, Chen; Han, Song; Gang, Zhang

    2012-12-01

    Compared with the other hydrogen sensors, optical fiber hydrogen sensors based on thin films exhibits inherent safety, small volume, immunity to electromagnetic interference, and distributed remote sensing capability, but slower response characteristics. To improve response and recovery rate of the sensors, a novel reflection-type optical fiber hydrogen gas sensor with a 10 nm palladium and yttrium alloy thin film is fabricated. The alloy thin film shows a good hydrogen sensing property for hydrogen-containing atmosphere and a complete restorability for dry air at room temperature. The variation in response value of the sensor linearly increases with increased natural logarithm of hydrogen concentration (ln[H2]). The shortest response time and recovery response time to 4% hydrogen are 6 and 8 s, respectively. The hydrogen sensors based on Pd0.91Y0.09 alloy ultrathin film have potential applications in hydrogen detection and measurement.

  3. Silicon carbide-based hydrogen gas sensors for high-temperature applications.

    Science.gov (United States)

    Kim, Seongjeen; Choi, Jehoon; Jung, Minsoo; Joo, Sungjae; Kim, Sangchoel

    2013-10-09

    We investigated SiC-based hydrogen gas sensors with metal-insulator-semiconductor (MIS) structure for high temperature process monitoring and leak detection applications in fields such as the automotive, chemical and petroleum industries. In this work, a thin tantalum oxide (Ta2O5) layer was exploited with the purpose of sensitivity improvement, because tantalum oxide has good stability at high temperature with high permeability for hydrogen gas. Silicon carbide (SiC) was used as a substrate for high-temperature applications. We fabricated Pd/Ta2O5/SiC-based hydrogen gas sensors, and the dependence of their I-V characteristics and capacitance response properties on hydrogen concentrations were analyzed in the temperature range from room temperature to 500 °C. According to the results, our sensor shows promising performance for hydrogen gas detection at high temperatures.

  4. Operation of gas electron multiplier (GEM) with propane gas at low pressure and comparison with tissue-equivalent gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    De Nardo, L., E-mail: laura.denardo@unipd.it [University of Padova, Physics and Astronomy Department and PD-INFN, via Marzolo 8, I-35131 Padova (Italy); Farahmand, M., E-mail: majid.farahmand@rivm.nl [Centre for Environmental Safety and Security, National Institute for Public Health and the Environment (RIVM), PO Box 1, NL-3720 BA Bilthoven (Netherlands)

    2016-05-21

    A Tissue-Equivalent Proportional Counter (TEPC), based on a single GEM foil of standard geometry, has been tested with pure propane gas at low pressure, in order to simulate a tissue site of about 1 µm equivalent size. In this work, the performance of GEM with propane gas at a pressure of 21 and 28 kPa will be presented. The effective gas gain was measured in various conditions using a {sup 244}Cm alpha source. The dependence of effective gain on the electric field strength along the GEM channel and in the drift and induction region was investigated. A maximum effective gain of about 5×10{sup 3} has been reached. Results obtained in pure propane gas are compared with gas gain measurements in gas mixtures commonly employed in microdosimetry, that is propane and methane based Tissue-Equivalent gas mixtures.

  5. Measuring air pressure with a polymeric gas sensor

    Directory of Open Access Journals (Sweden)

    Juliana R. Cordeiro

    2010-01-01

    Full Text Available In this communication we describe the application of a conductive polymer gas sensor as an air pressure sensor. The device consists of a thin doped poly(4'-hexyloxy-2,5-biphenylene ethylene (PHBPE film deposited on an interdigitated metallic electrode. The sensor is cheap, easy to fabricate, lasts for several months, and is suitable for measuring air pressures in the range between 100 and 700 mmHg.

  6. 40 CFR 60.648 - Optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure. 1

    Science.gov (United States)

    2010-07-01

    ... hydrogen sulfide in acid gas-Tutwiler Procedure. 1 60.648 Section 60.648 Protection of Environment... procedure for measuring hydrogen sulfide in acid gas—Tutwiler Procedure. 1 1 Gas Engineers Handbook, Fuel.... In principle, this method consists of titrating hydrogen sulfide in a gas sample directly with...

  7. SLIPPAGE SOLUTION OF GAS PRESSURE DISTRIBUTION IN PROCESS OF LANDFILL GAS SEEPAGE

    Institute of Scientific and Technical Information of China (English)

    XUE Qiang; FENG Xia-ting; LIANG Bing

    2005-01-01

    A mathematical model of landfill gas migration was established under presumption of the effect of gas slippage. The slippage solutions to the nonlinear mathematical model were accomplished by the perturbation and integral transformation method. The distribution law of gas pressure in landfill site was presented under the conditions of considering and neglecting slippage effect. Sensitivity of the model input parameters was analyzed. The model solutions were compared to observation values.Results show that gas slippage effect has a large impact on gas pressure distribution.Landfill gas pressure and pressure gradient considering slippage effect is lower than that neglecting slippage effect, with reasonable agreement between model solution and measured data. It makes clear that the difference between considering and neglecting slippage effect is obvious and the effects of coupling cannot be ignored. The theoretical basis is provided for engineering design of security control and decision making of gas exploitation in landfill site. The solutions give scientific foundation to analyzing well test data in the process of low-permeability oil gas reservoir exploitation.

  8. Gas-phase hydrogen permeation through alpha iron, 4130 steel, and 304 stainless steel from less than 100 C to near 600 C

    Science.gov (United States)

    Nelson, H. G.; Stein, J. E.

    1973-01-01

    Gas phase hydrogen permeation studies were conducted on hollow, cylindrical membranes of triply zone-refined alpha iron, AISI 304 austenitic stainless steel, and AISI-SAE 4130 steel in both the normalized (ferrite and carbide) and quenched and tempered (martensite) conditions. Membrane temperature was varied from less than 100 C to near 600 C and hydrogen pressure was varied. For one membrane material, normalized 4130 steel, gas phase hydrogen transport under both steady state and nonsteady state conditions was demonstrated to be controlled by lattice diffusion. Additionally, Sievert's law was shown to be applicable. For all membrane materials, expressions for the coefficients for hydrogen permeation were determined by analysis of steady state transport; the coefficients for diffusion were determined by the lag time technique applied to nonsteady state transport; and through a knowledge of the Sievert's constants, the subsurface equilibrium lattice hydrogen concentrations were determined.

  9. Liquid Hydrogen Regulated Low Pressure High Flow Pneumatic Panel AFT Arrow Analysis

    Science.gov (United States)

    Jones, Kelley, M.

    2013-01-01

    Project Definition: Design a high flow pneumatic regulation panel to be used with helium and hydrogen. The panel will have two circuits, one for gaseous helium (GHe) supplied from the GHe Movable Storage Units (MSUs) and one for gaseous hydrogen (GH2) supplied from an existing GH2 Fill Panel. The helium will supply three legs; to existing panels and on the higher pressure leg and Simulated Flight Tanks (SFTs) for the lower pressure legs. The hydrogen line will pressurize a 33,000 gallon vacuum jacketed vessel.

  10. Interaction of gas phase atomic hydrogen with Pt(111):Direct evidence for the formation of bulk hydrogen species

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Employing hot tungsten filament to thermal dissociate molecular hydrogen,we generated gas phase atomic hydrogen under ultra-high vacuum(UHV)conditions and investigated its interaction with Pt(111) surface.Thermal desorption spectroscopy(TDS)results demonstrate that adsorption of molecular hy- drogen on Pt(111)forms surface Had species whereas adsorption of atomic hydrogen forms not only surface Had species but also bulk Had species.Bulk Had species is more thermal-unstable than surface Had species on Pt(111),suggesting that bulk Had species is more energetic.This kind of weakly- adsorbed bulk Had species might be the active hydrogen species in the Pt-catalyzed hydrogenation reactions.

  11. Removal of Hydrogen Sulfide Gas using Biofiltration - a Review

    Directory of Open Access Journals (Sweden)

    Cheerawit RATTANAPAN

    2012-03-01

    Full Text Available Hydrogen sulfide (H2S is extremely toxic to living organisms and plants. H2S gas contamination may be treated by both chemical and physical methods but they have high capital costs, demand large energy inputs and result in the generation of secondary hazardous wastes. Biofiltration, a biological technique, has significant economic advantages over other air pollution control technologies. Biofiltration is a process by which contaminated gases pass through the biofilter and pollutants are transported into the biofilm where they are utilized by microbes as a carbon source, an energy source. Thiobacillus sp. is the most frequently used microbial species in H2S biofiltration and can degrade H2S for energy and produce sulfate or sulfuric acid. Moreover, media selection for biofiltration (combing both natural and synthetic media is an important step towards the development of a successful biofiltration operation. In addition, the optimization parameters of a biofiltration operation are found. First, optimal moisture content may vary from 20 to 60 wt%. Second, most microbial growths occur near neutral pH and wide deviation from these levels will impact the efficiency of the biofiltration. Third, the optimum temperature of biofiltration is near the optimum temperature for microbial inoculation based on removal efficiency. Finally, because nutrient supply is less critical as H2S removal requires few nutrients, commercial fertilizer or secondary effluent from wastewater treatment plants can be used for humid and nutrient supply. Many biofiltrations are designed for H2S control.Graphical abstract

  12. A positive role for hydrogen gas in adventitious root development.

    Science.gov (United States)

    Zhu, Yongchao; Liao, Weibiao

    2016-06-02

    Our recent study highlights the role of hydrogen gas (H2) in adventitious root development in cucumber. H2 is an effective gaseous signal molecule with the abilities to regulate plant growth and development and enhance plant resistance to environmental stimulus. In addition, the effect of H2 on fruit senescence and flowering time also has been reported. Adventitious root development is a critical step in plant vegetative propagation affected by a serious of signaling molecules, such as auxin, nitric oxide (NO), carbon oxide (CO), ethylene and Ca(2+). Observational evidence has shown that H2 can regulate adventitious root development in a dose-dependent manner. H2 may regulate HO-1/CO pathway through or not through NO pathway during adventitious rooting. Rooting-related enzymes, peroxidase, polyphenol oxidase, indoleacetic acid oxidase were required for H2-induced adventitious root. CsDNAJ-1, CsCPDK1/5, CsCDC6, CsAUX228-like, and CsAUX22D-like genes also were involved in this process.

  13. Thermal hydrocracking of indan. Effects of the hydrogen pressure on the kinetics and Arrhenius parameters

    NARCIS (Netherlands)

    Boven, van M.; Roskam, G.J.; Penninger, J.M.L.

    1975-01-01

    The kinetics of the thermal hydrocracking of indan were investigatedin a high-pressure flow reactor at temperatures from 470 to 530°C, total pressures of up to 300 atm, and molar ratios from 3 to 40. The effect of the hydrogen pressure was reflected especially in a change of the experimental rate eq

  14. Thermal hydrocracking of indan. Effects of the hydrogen pressure on the kinetics and Arrhenius parameters

    NARCIS (Netherlands)

    van Boven, M.; Roskam, G.J.; Penninger, J.M.L.

    1975-01-01

    The kinetics of the thermal hydrocracking of indan were investigatedin a high-pressure flow reactor at temperatures from 470 to 530°C, total pressures of up to 300 atm, and molar ratios from 3 to 40. The effect of the hydrogen pressure was reflected especially in a change of the experimental rate

  15. Experimental study of hydrogen-rich/oxygen-rich gas-gas injectors

    Institute of Scientific and Technical Information of China (English)

    Jin Ping; Li Mao; Cai Guobiao

    2013-01-01

    Five types of coaxial injectors were investigated experimentally using hot hydrogen-rich gas and oxygen-rich gas, which were respectively provided by a GH2/GO2 hydrogen-rich perburner and a GH2/GO2 oxygen-rich preburner. The injectors were the shear coaxial injector, the oxidizer post expansion coaxial injector, the fuel impinging coaxial injector, the central body coaxial injec-tor, and the shear tri-coaxial injector. The characteristic velocity efficiency and the combustor’s wall temperatures were obtained for different design parameters through the experiments. It can be con-cluded that angles of the oxidizer post expansion and the fuel impinging have little influence on the combustion performance and the wall temperatures. The contact area between fuel and oxidizer and the mass flow rate have significant impacts on the combustion performance. The shear tri-coaxial injector has the best combustion performance but also the highest wall temperatures among the five types of injectors.

  16. A model for pressurized hydrogen induced thin film blisters

    NARCIS (Netherlands)

    van den Bos, R.A.J.M.; Reshetniak, V.; Lee, Christopher James; Benschop, Jozef Petrus Henricus; Bijkerk, Frederik

    2016-01-01

    We introduce a model for hydrogen induced blister formation in nanometer thick thin films. The model assumes that molecular hydrogen gets trapped under a circular blister cap causing it to deflect elastically outward until a stable blister is formed. In the first part, the energy balance required

  17. A model for pressurized hydrogen induced thin film blisters

    NARCIS (Netherlands)

    Bos, van den R.A.J.M.; Reshetniak, V.; Lee, C.J.; Benschop, J.P.H.; Bijkerk, F.

    2016-01-01

    We introduce a model for hydrogen induced blister formation in nanometer thick thin films. The model assumes that molecular hydrogen gets trapped under a circular blister cap causing it to deflect elastically outward until a stable blister is formed. In the first part, the energy balance required fo

  18. Probing the Hydrogen Sublattice of FeHx with High-Pressure Neutron Diffraction

    Science.gov (United States)

    Murphy, C. A.; Guthrie, M.; Boehler, R.; Somayazulu, M.; Fei, Y.; Molaison, J.; dos Santos, A. M.

    2013-12-01

    The combination of seismic, cosmochemical, and mineral physics observations have revealed that Earth's iron-rich core must contain some light elements, such as hydrogen, carbon, oxygen, silicon, and/or sulfur. Therefore, understanding the influence of these light elements on the structural, thermoelastic, and electronic properties of iron is important for constraining the composition of this remote layer of the Earth and, in turn, providing constraints on planetary differentiation and core formation models. The high-pressure structural and magnetic properties of iron hydride (FeHx) have previously been studied using synchrotron x-ray diffraction and Mössbauer spectroscopy. Such experiments revealed that the double hexagonal close-packed (dhcp) structure of FeHx is stable above a pressure of ~5 GPa and up to at least 80 GPa at 300 K [1]. In addition, dhcp-FeHx is ferromagnetic at low-pressures, but undergoes a magnetic collapse around 22 GPa [2]. X-ray experiments provide valuable insight into the properties of FeHx, but such techniques are largely sensitive to the iron component because it is difficult to detect the hydrogen sublattice with x-rays. Therefore, neutron diffraction has been used to investigate metastable FeHx, which is formed by quenching the high-pressure phase to liquid nitrogen temperatures and probing the sample at ambient pressure [3]. However, such neutron experiments have been limited to formation pressures below 10 GPa, and cannot be performed at ambient temperature. Here we present the first in-situ investigation of FeHx at 300 K using high-pressure neutron diffraction experiments performed at the Spallation Neutrons and Pressure Diffractometer (SNAP) instrument at the Spallation Neutron Source, Oak Ridge National Laboratory. In order to achieve pressures of ~50 GPa, we loaded iron samples with a hydrogen gas pressure medium into newly designed large-volume panoramic diamond-anvil cells (DACs) for neutron diffraction experiments [4; 5]. We

  19. Development of Electrolysis System Powered by Solar-Cell Array to Supply Hydrogen Gas for Fuel-Cell Energy Resource Systems

    Science.gov (United States)

    Priambodo, Purnomo Sidi; Yusivar, Feri; Subiantoro, Aries; Gunawan, Ridwan

    2009-09-01

    The huge demand of energy worldwide and the depletion of fossil based energy, is a strong reason to rapidly develop any kind of renewable energy resources, which has economical advantages and zero pollution effect. One of the renewable energy technologies aimed in this paper is the generation of electric-energy based on fuel-cell technology, where the input hydrogen (H2) gas is supplied by electrolysis system powered by renewable energy system based on solar cell. In this paper, the authors explain the development of electrolysis system which is powered by solar cell array to supply hydrogen for fuel-cell system. The authors explain in detail how to design an efficient electrolysis system to obtain high ratio conversion of electric energy to hydrogen gas volume. It includes the explanation of the usage of multiple anodes with a single cathode for many solar cell inputs in a single electrolysis system. Hereinafter this is referred as multiple anode electrolysis system. This multiple anode electrolysis system makes the management of hydrogen gas becomes more efficient and effective by using only a single hydrogen gas storage system. This paper also explain the careful design of the resistance value of the electrolysis system to protect or avoid the solar cell panel to deliver excessive current to the electrolysis system which can cause damage on the solar cell panel. Moreover, the electrolyte volume detector is applied on the system as a tool to measure the electrolyte concentration to assure the system resistance is still in the allowed range. Further, the hydrogen gas produced by electrolysis system is stored into the gas storage which consists of silica-gel purifier, first stage low pressure gas bottle, vacuum pump, and second stage high pressure gas bottle. In the first step, the pump will vacuum the first bottle. The first bottle will collect the hydrogen from the electrolysis system through the silica gel to get rid of water vapor. When the first bottle

  20. Carbon and hydrogen isotopic composition and generation pathway of biogenic gas in China

    Institute of Scientific and Technical Information of China (English)

    SHEN Ping; WANG Xiaofeng; XU Yin; SHI Baoguang; XU Yongchang

    2009-01-01

    The carbon and hydrogen isotopic composition of biogenic gas is of great importance for the study of its generation pathway and reservoiring characteristics. In this paper, the formation pathways and reservoiring characteristics of biogenic gas reservoirs in China are described in terms of the carbon and hydrogen isotopic compositions of 31 gas samples from 10 biogenic gas reservoirs. The study shows that the hydrogen isotopic compositions of these biogenic gas reservoirs can be divided into three intervals:δDCH4>-200‰,-250‰<δDCH4<-200‰ and δDCH4<-250‰. The forerunners believed that the main generation pathway of biogenic gas under the condition of continental fresh water is acetic fermentation. Our research results showed that the generation pathway of biogenic gas under the condition of marine facies is typical CO2- reduction, the biogenic gas has heavy hydrogen isotopic composition: its δDCH4 values are higher than -200‰; that the biogenic gas under the condition of continental facies also was generated by the same way, but its hydrogen isotopic composition is lighter than that of biogenetic gas generated under typical marine facies condition: -250‰<δDCH4<-200‰, the δDCH4 values may be related to the salinity of the water medium in ancient lakes. From the relevant data of the Qaidam Basin, it can be seen that the hydrogen isotopic composition of biogenic methane has the same variation trend with increasing salinity of water medium. There are biogenic gas reservoirs formed in transitional regions under the condition of continental facies. These gas reservoirs resulted from both CO2- reduction and acetic fermentation, the formation of which may be related to the non-variant salinity of ancient water medium and the relatively high geothermal gradient, as is the case encountered in the Baoshan Basin. The biogenic gas generating in these regions has light hydrogen isotopic composition: δDCH4<-250‰, and relatively heavy carbon isotopic

  1. High-pressure measuring cell for Raman spectroscopic studies of natural gas

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Berg, Rolf W.; Stenby, Erling Halfdan

    2001-01-01

    A system for obtaining Raman spectra of gases at high pressure has been constructed. In order to ensure that a natural gas sample is totally representative, a high-pressure gas-measuring cell has been developed, built up by stainless steel fittings and a sapphire tube. The design and construction...... of this cell are described. A perfect pressure seal has been demonstrated up to 15.0 MPaA (MPa absolute). The cell has been successfully used to obtain Raman spectra of natural gas samples. Some of these spectra are presented and assigned. The most remarkable observation in the spectra is that it is possible...... to detect hydrogen sulfide at concentrations of 1-3 mg H2S/Nm(3). An attempt to make a quantitative analysis of natural gas by the so-called "ratio method" is presented. In addition to this, the relative normalized differential Raman scattering cross sections for ethane and i-butane molecules at 8.0 MPa...

  2. Simulation of Oxygen Disintegration and Mixing With Hydrogen or Helium at Supercritical Pressure

    Science.gov (United States)

    Bellan, Josette; Taskinoglu, Ezgi

    2012-01-01

    The simulation of high-pressure turbulent flows, where the pressure, p, is larger than the critical value, p(sub c), for the species under consideration, is relevant to a wide array of propulsion systems, e.g. gas turbine, diesel, and liquid rocket engines. Most turbulence models, however, have been developed for atmospheric-p turbulent flows. The difference between atmospheric-p and supercritical-p turbulence is that, in the former situation, the coupling between dynamics and thermodynamics is moderate to negligible, but for the latter it is very significant, and can dominate the flow characteristics. The reason for this stems from the mathematical form of the equation of state (EOS), which is the perfect-gas EOS in the former case, and the real-gas EOS in the latter case. For flows at supercritical pressure, p, the large eddy simulation (LES) equations consist of the differential conservation equations coupled with a real-gas EOS. The equations use transport properties that depend on the thermodynamic variables. Compared to previous LES models, the differential equations contain not only the subgrid scale (SGS) fluxes, but also new SGS terms, each denoted as a correction. These additional terms, typically assumed null for atmospheric pressure flows, stem from filtering the differential governing equations, and represent differences between a filtered term and the same term computed as a function of the filtered flow field. In particular, the energy equation contains a heat-flux correction (q-correction) that is the difference between the filtered divergence of the heat flux and the divergence of the heat flux computed as a function of the filtered flow field. In a previous study, there was only partial success in modeling the q-correction term, but in this innovation, success has been achieved by using a different modeling approach. This analysis, based on a temporal mixing layer Direct Numerical Simulation database, shows that the focus in modeling the q

  3. Numerical analyses of high Reynolds number flow of high pressure fuel gas through rough pipes

    Energy Technology Data Exchange (ETDEWEB)

    Cadorin, Margherita; Morini, Mirko; Pinelli, Michele [ENDIF - Engineering Department in Ferrara, University of Ferrara, Via Saragat, 1 - 44122 Ferrara (Italy)

    2010-07-15

    In this paper, a CFD commercial code is used to evaluate the pressure drop through pipes in a stream of high pressure gas. Both hexahedral and tetrahedral grids are considered. Preliminarily, a grid sensitivity analysis is carried out by comparing CFD results with analytical results. Each grid is characterized by a different number and thickness of layers in order to investigate the behavior of the grid with respect to the boundary layer. Then, the model is validated by using a literature test case, in which high pressure gas flow through a rough pipe is experimentally studied. Moreover, various equations of state (i.e., constant properties, Ideal Gas and Redlich-Kwong equations) and boundary conditions (e.g., pressure, mass flow, etc.) are taken into consideration and compared. Finally, the model is used to extrapolate the behavior of gaseous fuels (i.e., natural gas, biogas and hydrogen-methane mixture) flowing at high pressure through pipes of different roughness. The analyses show that the radial depth of the prism layers on pipe wall has to be controlled to allow the correct resolution of the boundary layer. Moreover, the results highlight that the first element height of the prism layer should be high enough to avoid inconsistencies in the rough model application. At the same time, the grid used for calculations does not strongly influence the numerical results and hence tune of the first element height to perfectly fit the roughness is not always justified. The final analysis on the different gaseous fuels put into evidence the capability of the CFD analysis to determine the energy performance of fuel transportation in gas pipeline. (author)

  4. Analysis of Water Hammer with Different Closing Valve Laws on Transient Flow of Hydrogen-Natural Gas Mixture

    Directory of Open Access Journals (Sweden)

    Norazlina Subani

    2015-01-01

    Full Text Available Water hammer on transient flow of hydrogen-natural gas mixture in a horizontal pipeline is analysed to determine the relationship between pressure waves and different modes of closing and opening of valves. Four types of laws applicable to closing valve, namely, instantaneous, linear, concave, and convex laws, are considered. These closure laws describe the speed variation of the hydrogen-natural gas mixture as the valve is closing. The numerical solution is obtained using the reduced order modelling technique. The results show that changes in the pressure wave profile and amplitude depend on the type of closing laws, valve closure times, and the number of polygonal segments in the closing function. The pressure wave profile varies from square to triangular and trapezoidal shape depending on the type of closing laws, while the amplitude of pressure waves reduces as the closing time is reduced and the numbers of polygonal segments are increased. The instantaneous and convex closing laws give rise to minimum and maximum pressure, respectively.

  5. STUDY ON THE THRESHOLD GAS PRESSURE IN COAL AND GAS OUTBURST

    Institute of Scientific and Technical Information of China (English)

    俞启香

    1990-01-01

    Based on the statistical data of 26 outburst prone coal seams in China, this paper presents the relationship among the threshold gas pressure in coal and gas outburst and the volatile content and hardness of coal by mathematical statistics. The threshold value of gas pressure for outburst Pmin, in MPa maybe calculated by formula Pmin=5(0.1+0.07V∫), where f is the hardness and V the volatile content (%) of a soft bed. In China, the value of Pmin of some outburst prone coal seams ranges from 0.57 to 0.1 MPa.

  6. Cold Helium Gas Pressurization For Spacecraft Cryogenic Propulsion Systems

    Science.gov (United States)

    Morehead, Robert L.; Atwell. Matthew J.; Hurlbert, Eric A.; Melcher, J. C.

    2017-01-01

    To reduce the dry mass of a spacecraft pressurization system, helium pressurant may be stored at low temperature and high pressure to increase mass in a given tank volume. Warming this gas through an engine heat exchanger prior to tank pressurization both increases the system efficiency and simplifies the designs of intermediate hardware such as regulators, valves, etc. since the gas is no longer cryogenic. If this type of cold helium pressurization system is used in conjunction with a cryogenic propellant, though, a loss in overall system efficiency can be expected due to heat transfer from the warm ullage gas to the cryogenic propellant which results in a specific volume loss for the pressurant, interpreted as the Collapse Factor. Future spacecraft with cryogenic propellants will likely have a cold helium system, with increasing collapse factor effects as vehicle sizes decrease. To determine the collapse factor effects and overall implementation strategies for a representative design point, a cold helium system was hotfire tested on the Integrated Cryogenic Propulsion Test Article (ICPTA) in a thermal vacuum environment at the NASA Glenn Research Center Plum Brook Station. The ICPTA vehicle is a small lander-sized spacecraft prototype built at NASA Johnson Space Center utilizing cryogenic liquid oxygen/liquid methane propellants and cryogenic helium gas as a pressurant to operate one 2,800lbf 5:1 throttling main engine, two 28lbf Reaction Control Engines (RCE), and two 7lbf RCEs (Figure 1). This vehicle was hotfire tested at a variety of environmental conditions at NASA Plum Brook, ranging from ambient temperature/simulated high altitude, deep thermal/high altitude, and deep thermal/high vacuum conditions. A detailed summary of the vehicle design and testing campaign may be found in Integrated Cryogenic Propulsion Test Article Thermal Vacuum Hotfire Testing, AIAA JPC 2017.

  7. The Integration of a Structural Water Gas Shift Catalyst with a Vanadium Alloy Hydrogen Transport Device

    Energy Technology Data Exchange (ETDEWEB)

    Barton, Thomas; Argyle, Morris; Popa, Tiberiu

    2009-06-30

    component of conventional high temperature water gas shift iron oxide based catalysts. The catalysts contained Fe-Al-Cr-Cu-O and were synthesized by co-precipitation. A series of catalysts were prepared with 5 to 50 wt% Al2O3, with 8 wt% Cr2O3, 4 wt% CuO, and the balance Fe2O3. All of the catalysts were compared to a reference WGS catalyst (88 wt% FeOx, 8 wt% Cr2O3, and 4 wt% CuO) with no alumina. Alumina addition to conventional high temperature water gas shift catalysts at concentrations of approximately 15 wt% increased CO conversion rates and increase thermal stability. A series of high temperature water gas shift catalysts containing iron, chromia, and copper oxides were prepared with small amounts of added ceria in the system Fe-Cr-Cu-Ce-O. The catalysts were also tested kinetically under WGS conditions. 2-4 wt% ceria addition (at the expense of the iron oxide content) resulted in increased reaction rates (from 22-32% higher) compared to the reference catalyst. The project goal of a 10,000 liter per day WGS-membrane reactor was achieved by a device operating on coal derived syngas containing significant amounts of carbon monoxide and hydrogen sulfide. The membrane flux was equivalent to 52 scfh/ft2 based on a 600 psi syngas inlet pressure and corresponded to membranes costing $191 per square foot. Over 40 hours of iv exposure time to syngas has been achieved for a double membrane reactor. Two modules of the Chart reactor were tested under coal syngas for over 75 hours with a single module tested for 50 hours. The permeance values for the Chart membranes were similar to the REB reactor though total flux was reduced due to significantly thicker membranes. Overall testing of membrane reactors on coal derived syngas was over 115 hours for all reactors tested. Testing of the REB double membrane device exceeded 40 hours. Performance of the double membrane reactor has been similar to the results for the single reactor with good maintenance of flux even after these long

  8. Predicted reentrant melting of dense hydrogen at ultra-high pressures

    Science.gov (United States)

    Geng, Hua Y.; Wu, Q.

    2016-11-01

    The phase diagram of hydrogen is one of the most important challenges in high-pressure physics and astrophysics. Especially, the melting of dense hydrogen is complicated by dimer dissociation, metallization and nuclear quantum effect of protons, which together lead to a cold melting of dense hydrogen when above 500 GPa. Nonetheless, the variation of the melting curve at higher pressures is virtually uncharted. Here we report that using ab initio molecular dynamics and path integral simulations based on density functional theory, a new atomic phase is discovered, which gives an uplifting melting curve of dense hydrogen when beyond 2 TPa, and results in a reentrant solid-liquid transition before entering the Wigner crystalline phase of protons. The findings greatly extend the phase diagram of dense hydrogen, and put metallic hydrogen into the group of alkali metals, with its melting curve closely resembling those of lithium and sodium.

  9. Predicted reentrant melting of dense hydrogen at ultra-high pressures

    CERN Document Server

    Geng, Hua Y

    2016-01-01

    The phase diagram of hydrogen is one of the most important challenges in high-pressure physics and astrophysics. Especially, the melting of dense hydrogen is complicated by dimer dissociation, metallization and nuclear quantum effect of protons, which together lead to a cold melting of dense hydrogen when above 500 GPa. Nonetheless, the variation of the melting curve at higher pressures is virtually uncharted. Here we report that using ab initio molecular dynamics and path integral simulations based on density functional theory, a new atomic phase is discovered, which gives an uplifting melting curve of dense hydrogen when beyond 2 TPa, and results in a reentrant solid-liquid transition before entering the Wigner crystalline phase of protons. The findings greatly extend the phase diagram of dense hydrogen, and put metallic hydrogen into the group of alkali metals, with its melting curve closely resembling those of lithium and sodium.

  10. THE EFFECT OF ADDING HYDROGEN ON THE PERFORMANCE AND THE CYCLIC VARIABILITY OF A SPARK IGNITION ENGINE POWERED BY NATURAL GAS

    Directory of Open Access Journals (Sweden)

    Andrej Chríbik

    2014-02-01

    Full Text Available This paper deals with the influence of blending hydrogen (from 0 to 50% vol. on the parameters and the cyclic variability of a Lombardini LGW702 combustion engine powered by natural gas. The experimental measurements were carried out at various air excess ratios and at various angles of spark advance, at an operating speed of 1500 min−1. An analysis of the combustion pressure showed that as the proportion of hydrogen in the mixture increases, the maximum pressure value also increases. However, at the same time the cyclic variability decreases. Both the ignition-delay period and the period of combustion of the mixture become shorter, which requires optimization of the spark advance angle for various proportions of hydrogen in the fuel. The increasing proportion of hydrogen extends the flammability limit to the area of lean-burn mixtures and, at the same time, the coefficient of cyclic variability of the mean indicated pressure decreases.

  11. Apparatus Measures Friction In Vacuum Or Pressurized Gas

    Science.gov (United States)

    Trevathan, Joseph R.

    1996-01-01

    Friction-testing apparatus in small test chamber contains special atmosphere, which could include vacuum or pressurized gas. Provides readings indicative of friction between pin specimen and plate specimen sliding under pin in reciprocating linear motion. Pin and plate specimens made of same or different material.

  12. Low pressure gas collection system : solving environmental problems

    Energy Technology Data Exchange (ETDEWEB)

    Saputelli, L.A. [PDVSA Exploracion and Produccion (Venezuela)

    1998-09-01

    Alternative solutions to flaring for collecting low pressure gases in oil fields, were discussed. Many different solutions for boosting or collecting low pressure gases and mixing them into the oil stream were examined. A solution for collecting low pressure gases using existing field facilities was proposed. Main factors considered in designing this solution included: (1) the use of existing power facilities, (2) low up-scaling cost, (3) keeping harmony with the environment, and (4) maintaining well efficiencies. Field trials (conducted in 1982) consisted of the testing of 10 `Ecopres` compressors in the Bolivar coastal field, Lake Maracaibo, Venezuela, in order to maximize gas utilization. The tests showed that it was possible to recover up to 99 per cent of annular gas with no reduction in oil well productivity but there was a 21 per cent reduction in oil production when the annular flow was connected directly to the flow line. In the proposed alternative solution, annular spaces are open to atmospheric pressure. The proposed system consists of a single stage gas compressor attached to a heat exchanger and a single stage gas turbine. 4 refs., 9 figs.

  13. Fatigue test of carbon epoxy composite high pressure hydrogen storage vessel under hydrogen environment

    Institute of Scientific and Technical Information of China (English)

    Chuan-xiang ZHENG; Liang WANG; Rong LI; Zong-xin WEI; Wei-wei ZHOU

    2013-01-01

    A significant temperature raise within hydrogen vehicle cylinder during the fast filling process will be observed,while the strength and fatigue life of the cylinder will dramatically decrease at high temperature.In order to evaluate the strength and fatigue of composite hydrogen storage vessel,a 70-MPa fatigue test system using hydrogen medium was set up.Experimental study on the fatigue of composite hydrogen storage vessels under real hydrogen environment was performed.The experimental results show that the ultimate strength and fatigue life both decreased obviously compared with the values under hydraulic fatigue test.Furthermore,fatigue property,failure behavior,and safe hydrogen charging/discharging working mode of onboard hydrogen storage vessels were obtained through the fatigue tests.

  14. On the spectroscopic detection of neutral species in a low-pressure plasma containing boron and hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Lavrov, B P [Faculty of Physics, St. Petersburg State University, St. Petersburg, 198504 (Russian Federation); Osiac, M [Institut fuer Niedertemperatur-Plasmaphysik, 17489 Greifswald, Friedrich-Ludwig-Jahn-Str. 19 (Germany); Pipa, A V [Faculty of Physics, St. Petersburg State University, St. Petersburg, 198504 (Russian Federation); Roepcke, J [Institut fuer Niedertemperatur-Plasmaphysik, 17489 Greifswald, Friedrich-Ludwig-Jahn-Str. 19 (Germany)

    2003-11-01

    Spectroscopic studies of microwave discharges in H{sub 2}-Ar-B{sub 2}H{sub 6} gas mixtures (f = 2.45 GHz, P = 1.2-3.5 kW, p = 1-8 mbar) have been performed to improve the possibilities of diagnostics of non-equilibrium, low-pressure plasmas containing boron and hydrogen. For this purpose, UV-VIS optical emission spectroscopy and infrared absorption spectroscopy with tunable diode lasers (TDLAS) have been applied. It is shown that information about neutral species and the gas temperature may be obtained by means of new and modified spectroscopic methods. A method for the determination of the absolute number density of boron atoms from measured relative intensities of the components of the boron resonance doublet (distorted by reabsorption) is proposed and tested for validity. The maximum of the density was found to be 3.8x10{sup 11} atoms cm{sup -3} at an admixture of diborane of about 2%. The gas temperature was determined from the intensity distributions in the rotational structure of the emission bands of BH and H{sub 2} and from Doppler broadening of the absorption line profiles of the BH molecule. It was observed that values of the gas temperature obtained from the rotational intensity distributions are in good agreement with those obtained from Doppler widths (T{sub g} = 700-1070 K). Based on measurements of the relative line intensities of atomic and molecular hydrogen and the gas temperature, and using a simple excitation-deactivation model, the density of molecular hydrogen was found to be about 40 times higher than the density of atomic hydrogen. It is shown that some absorption lines of boron hydrides (B{sub 2}H{sub 6}, BH{sub 3} and BH) detected by TDLAS may be used for plasma diagnostics.

  15. Inhalation of hydrogen gas suppresses hepatic injury caused by ischemia/reperfusion through reducing oxidative stress.

    Science.gov (United States)

    Fukuda, Kei-ichi; Asoh, Sadamitsu; Ishikawa, Masahiro; Yamamoto, Yasuhiro; Ohsawa, Ikuroh; Ohta, Shigeo

    2007-09-28

    We have recently showed that molecular hydrogen has great potential for selectively reducing cytotoxic reactive oxygen species, such as hydroxyl radicals, and that inhalation of hydrogen gas decreases cerebral infarction volume by reducing oxidative stress [I. Ohsawa, M. Ishikawa, K. Takahashi, M. Watanabe, K. Nishimaki, K. Yamagata, K.-I. Katsura, Y. Katayama, S. Asoh, S. Ohta, Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals, Nat. Med., 13 (2007) 688-694]. Here we show that the inhalation of hydrogen gas is applicable for hepatic injury caused by ischemia/reperfusion, using mice. The portal triad to the left lobe and the left middle lobe of the liver were completely occluded for 90min, followed by reperfusion for 180min. Inhalation of hydrogen gas (1-4%) during the last 190min suppressed hepatic cell death, and reduced levels of serum alanine aminotransferase and hepatic malondialdehyde. In contrast, helium gas showed no protective effect, suggesting that the protective effect by hydrogen gas is specific. Thus, we propose that inhalation of hydrogen gas is a widely applicable method to reduce oxidative stress.

  16. Concept for premixed combustion of hydrogen-containing fuels in gas turbines; Konzept zur vorgemischten Verbrennung wasserstoffhaltiger Brennstoffe in Gasturbinen

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Christoph

    2012-07-19

    One of the main challenges for future gas turbines and their combustion systems is to provide fuel flexibility. The fuel range is expected to reach from the lowly reactive natural gas to highly reactive hydrogen-containing syngases. The objective of the project in which this work was pursued is to develop such a combustion system. The burner has to ensure premixed operation with an aerodynamically stabilized flame. The focus of this work is on characterizing and optimizing the operational safety of the system, but also on ensuring sufficientmixing and lowemissions. A burner and fuel injection design is achieved that leads not only to emissions far below the permissible values, but also to flashback safety for hydrogen combustion that comes close to the theoretically achievable maximum at atmospheric pressure conditions. In this design flashback due to combustion-induced vortex breakdown and wall boundary layer flashback is avoided. Flashback only takes place when the flow velocity reaches the flame velocity.

  17. Abnormal formation pressures and oil-gas migration in China

    Institute of Scientific and Technical Information of China (English)

    华保钦

    1995-01-01

    Abnormal formation pressures occur not only in marine strata but also in terrestrialsedimentary basins in China.It develops most in Tertiary,followed by Mesozoic and Palaeozoic.Residualpressure decreases with the age of strata.Abnormal pressure raainly results from imbalanced compaction andhydrocarbon generation,and depends on various geological conditions.The secondary cause is the uplift ofcrust at the late stage and the transformation of clay minerals.Practical data show that the abnormal forma-tion pressure provides the dynamic force and passages for the primary migration of oil-gas,and in reservoirs,itcan affect the distribution of flow potential,which controls the migration direction and the aocumulation placeof oil and gas.

  18. Zeolite Membrane Reactor for Water Gas Shift Reaction for Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jerry Y.S. [Arizona State Univ., Mesa, AZ (United States)

    2013-01-29

    Gasification of biomass or heavy feedstock to produce hydrogen fuel gas using current technology is costly and energy-intensive. The technology includes water gas shift reaction in two or more reactor stages with inter-cooling to maximize conversion for a given catalyst volume. This project is focused on developing a membrane reactor for efficient conversion of water gas shift reaction to produce a hydrogen stream as a fuel and a carbon dioxide stream suitable for sequestration. The project was focused on synthesizing stable, hydrogen perm-selective MFI zeolite membranes for high temperature hydrogen separation; fabricating tubular MFI zeolite membrane reactor and stable water gas shift catalyst for membrane reactor applications, and identifying experimental conditions for water gas shift reaction in the zeolite membrane reactor that will produce a high purity hydrogen stream. The project has improved understanding of zeolite membrane synthesis, high temperature gas diffusion and separation mechanisms for zeolite membranes, synthesis and properties of sulfur resistant catalysts, fabrication and structure optimization of membrane supports, and fundamentals of coupling reaction with separation in zeolite membrane reactor for water gas shift reaction. Through the fundamental study, the research teams have developed MFI zeolite membranes with good perm-selectivity for hydrogen over carbon dioxide, carbon monoxide and water vapor, and high stability for operation in syngas mixture containing 500 part per million hydrogen sulfide at high temperatures around 500°C. The research teams also developed a sulfur resistant catalyst for water gas shift reaction. Modeling and experimental studies on the zeolite membrane reactor for water gas shift reaction have demonstrated the effective use of the zeolite membrane reactor for production of high purity hydrogen stream.

  19. Effects of high-pressure hydrogen charging on the structure of austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Hoelzel, M. [Institute for Materials Science, Darmstadt University of Technology, Petersenstrasse 23, 64287 Darmstadt (Germany)]. E-mail: Markus.Hoelzel@frm2.tum.de; Danilkin, S.A. [Hahn-Meitner-Institut, SF2, Glienicker Str. 100, 14109 Berlin (Germany); Ehrenberg, H. [Institute for Materials Science, Darmstadt University of Technology, Petersenstrasse 23, 64287 Darmstadt (Germany); Toebbens, D.M. [Hahn-Meitner-Institut, SF2, Glienicker Str. 100, 14109 Berlin (Germany); Udovic, T.J. [NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, MS 8562, Gaithersburg, MD 20899-8562 (United States); Fuess, H. [Institute for Materials Science, Darmstadt University of Technology, Petersenstrasse 23, 64287 Darmstadt (Germany); Wipf, H. [Darmstadt University of Technology, Institute for Solid State Physics, Hochschulstrasse 6, 64289 Darmstadt (Germany)

    2004-10-25

    The effects of high-pressure hydrogen and deuterium charging on the structure of AISI type 304 and AISI type 310 austenitic stainless steels have been investigated by neutron and X-ray diffraction. Rietveld analyses of the neutron diffraction data revealed that hydrogen atoms occupy exclusively the octahedral interstitial sites in both steels. No phase transformations have been observed in 310 stainless steel within the whole range of hydrogen-to-metal atomic ratios H/Me up to {approx} 1. In 304 stainless steel, the formation of {epsilon}-martensite was observed not only after hydrogenation at 3.0 GPa (H/Me = 0.56), but also after applying a pressure of 4.0 GPa without hydrogen. The results differ significantly from published studies on cathodically hydrogenated samples, where high amounts of {epsilon}-martensite were observed in both steels. High-pressure hydrogenation and cathodic hydrogen charging result in different phase transformation behaviour. The discrepancies can be explained by different hydrogen distributions resulting in quite different stress states.

  20. Hydrogen pellet acceleration with a two-stage system consisting of a gas gun and a fuseless electromagnetic railgun

    Energy Technology Data Exchange (ETDEWEB)

    Honig, J.; Kim, K.; Wedge, S.W.

    1986-05-01

    Hydrogen pellets are successfully accelerated for the first time using a two-stage system consisting of a pneumatic gun and an electromagnetic railgun. The pneumatic gun preaccelerator forms cylindrical hydrogen ice pellets (1.6-mm diam x 2.15-mm long) and accelerates them with high-pressure helium gas to velocities in excess of 500 m/s. The booster accelerator, which is a fuseless, circular-bore electromagnetic railgun, derives its propulsive force from a plasma arc armature. The plasma arc armature is formed by electrically breaking down the propellant gas which follows the pellet from the gas gun into the railgun. The diagnostics are for the monitoring of the main capacitor bank and rail currents, for the pellet detection and velocity measurements at the breech and muzzle ends of the railgun, for the recording of the plasma-arc-armature movement inside the railgun bore, and for the photographing of the hydrogen pellet exiting the railgun. Using the system, which is a 60-cm long proof-of-principle machine for refueling magnetic fusion devices, hyrogen pellet velocities exceeding 1 km/s have been achieved for pellets exiting the gas gun at velocities of approx.500 m/s.

  1. First Operating Results of a Dynamic Gas Bearing Turbine in AN Industrial Hydrogen Liquefier

    Science.gov (United States)

    Bischoff, S.; Decker, L.

    2010-04-01

    Hydrogen has been brought into focus of industry and public since fossil fuels are depleting and costs are increasing dramatically. Beside these issues new high-tech processes in the industry are in need for hydrogen at ultra pure quality. To achieve these requirements and for efficient transportation, hydrogen is liquefied in industrial plants. Linde Gas has commissioned a new 5.5 TPD Hydrogen liquefier in Leuna, Germany, which has been engineered and supplied by Linde Kryotechnik. One of the four expansion turbines installed in the liquefaction process is equipped with dynamic gas bearings. Several design features and operational characteristics of this application will be discussed. The presentation will include results of efficiency and operational reliability that have been determined from performance tests. The advantages of the Linde dynamic gas bearing turbine for future use in hydrogen liquefaction plants will be shown.

  2. Hafnium-an optical hydrogen sensor spanning six orders in pressure.

    Science.gov (United States)

    Boelsma, C; Bannenberg, L J; van Setten, M J; Steinke, N-J; van Well, A A; Dam, B

    2017-06-05

    Hydrogen detection is essential for its implementation as an energy vector. So far, palladium is considered to be the most effective hydrogen sensing material. Here we show that palladium-capped hafnium thin films show a highly reproducible change in optical transmission in response to a hydrogen exposure ranging over six orders of magnitude in pressure. The optical signal is hysteresis-free within this range, which includes a transition between two structural phases. A temperature change results in a uniform shift of the optical signal. This, to our knowledge unique, feature facilitates the sensor calibration and suggests a constant hydrogenation enthalpy. In addition, it suggests an anomalously steep increase of the entropy with the hydrogen/metal ratio that cannot be explained on the basis of a classical solid solution model. The optical behaviour as a function of its hydrogen content makes hafnium well-suited for use as a hydrogen detection material.

  3. Hafnium—an optical hydrogen sensor spanning six orders in pressure

    Science.gov (United States)

    Boelsma, C.; Bannenberg, L. J.; van Setten, M. J.; Steinke, N.-J.; van Well, A. A.; Dam, B.

    2017-01-01

    Hydrogen detection is essential for its implementation as an energy vector. So far, palladium is considered to be the most effective hydrogen sensing material. Here we show that palladium-capped hafnium thin films show a highly reproducible change in optical transmission in response to a hydrogen exposure ranging over six orders of magnitude in pressure. The optical signal is hysteresis-free within this range, which includes a transition between two structural phases. A temperature change results in a uniform shift of the optical signal. This, to our knowledge unique, feature facilitates the sensor calibration and suggests a constant hydrogenation enthalpy. In addition, it suggests an anomalously steep increase of the entropy with the hydrogen/metal ratio that cannot be explained on the basis of a classical solid solution model. The optical behaviour as a function of its hydrogen content makes hafnium well-suited for use as a hydrogen detection material. PMID:28580959

  4. Hafnium--an optical hydrogen sensor spanning six orders in pressure

    Science.gov (United States)

    Boelsma, C.; Bannenberg, L. J.; van Setten, M. J.; Steinke, N.-J.; van Well, A. A.; Dam, B.

    2017-06-01

    Hydrogen detection is essential for its implementation as an energy vector. So far, palladium is considered to be the most effective hydrogen sensing material. Here we show that palladium-capped hafnium thin films show a highly reproducible change in optical transmission in response to a hydrogen exposure ranging over six orders of magnitude in pressure. The optical signal is hysteresis-free within this range, which includes a transition between two structural phases. A temperature change results in a uniform shift of the optical signal. This, to our knowledge unique, feature facilitates the sensor calibration and suggests a constant hydrogenation enthalpy. In addition, it suggests an anomalously steep increase of the entropy with the hydrogen/metal ratio that cannot be explained on the basis of a classical solid solution model. The optical behaviour as a function of its hydrogen content makes hafnium well-suited for use as a hydrogen detection material.

  5. The viscosity and density of sour gas fluids at high temperatures and high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Giri, B.R.; Marriott, R.A.; Blais, P.; Clark, P.D. [Alberta Sulphur Research Ltd., Calgary, AB (Canada); Calgary Univ., AB (Canada). Dept. of Chemistry

    2010-01-15

    This poster session discussed an experiment designed to measure the viscosity and density of sour gas fluids at high temperatures and pressures. An option for disposing acid gases while enhancing the production of oil and gas fields is the re-injection of gases rich in hydrogen sulphide/carbon dioxide (H{sub 2}S/CO{sub 2}) into reservoirs up to very high pressures, but issues with respect to corrosion, compression, pumping, and transport need addressing, and the reliable high-density/high-pressure data needed to arrive at an optimum process concept and the design of pumps, compressors, and transport lines had up to this point been lacking. The experimental set up involved the use of a Vibrating Tube Densimeter and a Cambridge Viscometer. Working with toxic gases at very high pressures and obtaining highly accurate data in a wide range of conditions were two of the challenges faced during the experiment. The experiment resulted in physical property measurement systems being recalibrated and a new daily calibration routine being adopted for accuracy. The densities and viscosities of pure CO{sub 2} and sulphur dioxide (SO{sub 2}) in a wide pressure and temperature range were determined. 1 tab., 9 figs.

  6. The Integration of a Structural Water Gas Shift Catalyst with a Vanadium Alloy Hydrogen Transport Device

    Energy Technology Data Exchange (ETDEWEB)

    Barton, Thomas; Argyle, Morris; Popa, Tiberiu

    2009-06-30

    component of conventional high temperature water gas shift iron oxide based catalysts. The catalysts contained Fe-Al-Cr-Cu-O and were synthesized by co-precipitation. A series of catalysts were prepared with 5 to 50 wt% Al2O3, with 8 wt% Cr2O3, 4 wt% CuO, and the balance Fe2O3. All of the catalysts were compared to a reference WGS catalyst (88 wt% FeOx, 8 wt% Cr2O3, and 4 wt% CuO) with no alumina. Alumina addition to conventional high temperature water gas shift catalysts at concentrations of approximately 15 wt% increased CO conversion rates and increase thermal stability. A series of high temperature water gas shift catalysts containing iron, chromia, and copper oxides were prepared with small amounts of added ceria in the system Fe-Cr-Cu-Ce-O. The catalysts were also tested kinetically under WGS conditions. 2-4 wt% ceria addition (at the expense of the iron oxide content) resulted in increased reaction rates (from 22-32% higher) compared to the reference catalyst. The project goal of a 10,000 liter per day WGS-membrane reactor was achieved by a device operating on coal derived syngas containing significant amounts of carbon monoxide and hydrogen sulfide. The membrane flux was equivalent to 52 scfh/ft2 based on a 600 psi syngas inlet pressure and corresponded to membranes costing $191 per square foot. Over 40 hours of iv exposure time to syngas has been achieved for a double membrane reactor. Two modules of the Chart reactor were tested under coal syngas for over 75 hours with a single module tested for 50 hours. The permeance values for the Chart membranes were similar to the REB reactor though total flux was reduced due to significantly thicker membranes. Overall testing of membrane reactors on coal derived syngas was over 115 hours for all reactors tested. Testing of the REB double membrane device exceeded 40 hours. Performance of the double membrane reactor has been similar to the results for the single reactor with good maintenance of flux even after these long

  7. Performance and Certification Testing of Insulated Pressure Vessels for Vehicular Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Aceves, S M; Martinez-Frias, J; Garcia-Villazana, O; Espinosa-Loza, F

    2001-06-03

    Insulated pressure vessels are cryogenic-capable pressure vessels that can be fueled with liquid hydrogen (LH2) or ambient-temperature compressed hydrogen (CH2). Insulated pressure vessels offer the advantages of liquid hydrogen tanks (low weight and volume), with reduced disadvantages (fuel flexibility, lower energy requirement for hydrogen liquefaction and reduced evaporative losses). The work described here is directed at verifying that commercially available pressure vessels can be safely used to store liquid hydrogen. The use of commercially available pressure vessels significantly reduces the cost and complexity of the insulated pressure vessel development effort. This paper describes a series of tests that have been done with aluminum-lined, fiber-wrapped vessels to evaluate the damage caused by low temperature operation. All analysis and experiments to date indicate that no significant damage has resulted. Required future tests are described that will prove that no technical barriers exist to the safe use of aluminum-fiber vessels at cryogenic temperatures. Future activities also include a demonstration project in which the insulated pressure vessels will be installed and tested on two vehicles. A draft standard will also be generated for obtaining certification for insulated pressure vessels.

  8. Insulated Pressure Vessels for Vehicular Hydrogen Storage: Analysis and Performance Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Aceves, S M; Martinez-Frias, J; Garcia-Villazana, O; Espinosa-Loza, F

    2001-06-26

    Insulated pressure vessels are cryogenic-capable pressure vessels that can be fueled with liquid hydrogen (LH{sub 2}) or ambient-temperature compressed hydrogen (CH{sub 2}). Insulated pressure vessels offer the advantages of liquid hydrogen tanks (low weight and volume), with reduced disadvantages (fuel flexibility, lower energy requirement for hydrogen liquefaction and reduced evaporative losses). The work described here is directed at verifying that commercially available pressure vessels can be safely used to store liquid hydrogen. The use of commercially available pressure vessels significantly reduces the cost and complexity of the insulated pressure vessel development effort. This paper describes a series of tests that have been done with aluminum-lined, fiber-wrapped vessels to evaluate the damage caused by low temperature operation. All analysis and experiments to date indicate that no significant damage has resulted. Required future tests are described that will prove that no technical barriers exist to the safe use of aluminum-fiber vessels at cryogenic temperatures. Future activities also include a demonstration project in which the insulated pressure vessels will be installed and tested on two vehicles. A draft standard will also be generated for obtaining certification for insulated pressure vessels.

  9. Effect of O2 pressure on the hydrothermal growth of CuO hierarchical microstructures: characterization and hydrogen adsorption capacity

    Science.gov (United States)

    Roble, M.; Diaz-Droguett, D.

    2017-08-01

    In the present study, the effect of injected O2 pressure to a hydrothermal reactor on the growth, morphology, structure and hydrogen adsorption properties of CuO hierarchical microstructures was investigated. The synthesis consisted of a simple one-step hydrothermal reaction using copper chloride and aqueous ammonia. Hydrothermal reactions were carried at 200 °C at reaction times of 1 and 12 h injecting at the beginning of the synthesis O2 pressures of 0, 30 or 60 bar. The samples were characterized by SEM and EDS for morphological and chemical information, XRD for determination of crystalline phases, lattice parameters and crystallinity grade using Rietveld refinement. Specific surface area was determined using BET method from nitrogen adsorption/desorption isotherm measurements. Hydrogen adsorption capacities at 20 °C were studied for key samples using the quartz crystal microbalance technique under gas exposure pressures between 3 and 100 Torr. It was found that the samples were of monoclinic CuO phase consisting mainly of sphere-like hierarchical microstructures of different average sizes assembled by sheets. The effect of the reactor pressure was mainly seen on average size of the CuO microstructures due to changes in the growth rate, specifically during the first stages of the hydrothermal reaction. Reactor pressure induced changes on the crystallinity of the samples were determined but no correlation was stated. Hydrogen adsorption capacities of studied samples measured at 100 Torr ranged from 0.27 to 0.6 wt%, indicating a good performance as compared with other reported values. Oxygen deficiency in CuO can influence on the hydrogen adsorption capacity.

  10. Enzymatic production of hydrogen gas from glucose and cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Mattingly, S.M.; Woodward, J. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    An enzymatic process has been used to convert glucose to molecular hydrogen with the ultimate goal of converting cellulose to hydrogen. Two enzymes from the Archae, Thermoplasma acidophilium glucose dehydrogenase (GDH) and Pyrococcus furiosus hydrogenase, were used to oxidize glucose and NADPH respectively, resulting in the formation of molecular hydrogen. The stoichiometric yield of hydrogen from glucose was close to the theoretical maximum expected. Further, the molar amount of hydrogen produced was greater than the molar equivalent of NADP{sup +} present in the reaction mixture indicating that this GDH cofactor was regenerated throughout the course of the reaction. Hydrogen was also shown to be produced from cellulose if cellulase was included in the reaction mixture.

  11. Materials for hydrogen storage

    Directory of Open Access Journals (Sweden)

    Andreas Züttel

    2003-09-01

    The goal is to pack hydrogen as close as possible, i.e. to reach the highest volumetric density by using as little additional material as possible. Hydrogen storage implies the reduction of an enormous volume of hydrogen gas. At ambient temperature and atmospheric pressure, 1 kg of the gas has a volume of 11 m3. To increase hydrogen density, work must either be applied to compress the gas, the temperature decreased below the critical temperature, or the repulsion reduced by the interaction of hydrogen with another material.

  12. Toxicological analysis of 17 autopsy cases of hydrogen sulfide poisoning resulting from the inhalation of intentionally generated hydrogen sulfide gas.

    Science.gov (United States)

    Maebashi, Kyoko; Iwadate, Kimiharu; Sakai, Kentaro; Takatsu, Akihiro; Fukui, Kenji; Aoyagi, Miwako; Ochiai, Eriko; Nagai, Tomonori

    2011-04-15

    Although many cases of fatal hydrogen sulfide poisoning have been reported, in most of these cases, it resulted from the accidental inhalation of hydrogen sulfide gas. In recent years, we experienced 17 autopsy cases of fatal hydrogen sulfide poisoning due to the inhalation of intentionally generated hydrogen sulfide gas. In this study, the concentrations of sulfide and thiosulfate in blood, urine, cerebrospinal fluid and pleural effusion were examined using GC/MS. The sulfide concentrations were blood: 0.11-31.84, urine: 0.01-1.28, cerebrospinal fluid: 0.02-1.59 and pleural effusion: 2.00-8.59 (μg/ml), while the thiosulfate concentrations were blood: 0-0.648, urine: 0-2.669, cerebrospinal fluid: 0.004-0.314 and pleural effusion: 0.019-0.140 (μmol/ml). In previous reports, the blood concentration of thiosulfate was said to be higher than that of sulfide in hydrogen sulfide poisoning cases, although the latter was higher than the former in 8 of the 14 cases examined in this study. These results are believed to be strongly influenced by the atmospheric concentration of hydrogen sulfide the victims were exposed to and the time interval between exposure and death.

  13. Gas chromatographic separation of hydrogen isotopes using metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Aldridge, F.T.

    1984-05-09

    A study was made of the properties of metal hydrides which may be suitable for use in chromatographic separation of hydrogen isotopes. Sixty-five alloys were measured, with the best having a hydrogen-deuterium separation factor of 1.35 at 60/sup 0/C. Chromatographic columns using these alloys produced deuterium enrichments of up to 3.6 in a single pass, using natural abundance hydrogen as starting material. 25 references, 16 figures, 4 tables.

  14. Diffusion in the gas phase: the effects of ambient pressure and gas composition.

    Science.gov (United States)

    Paganelli, C V; Rahn, A A; Wangensteen, O D

    1975-12-01

    Gas transport across the pores of a hen's egg shell occurs by a process of diffusion in the gas phase and for any particular gas depends upon its diffusion coefficient and the pore geometry. The egg shell is thus a convenient model for measuring the diffusive permeability of the shell to a given gas species when its diffusion coefficient is altered by either a change in ambient pressure or by changing the second gas in the diffusion pathway. In this study the permeability of the shell to water vapor and O2 was inversely proportional to ambient pressures over the range of .06 to 8 atmospheres' absolute (ata). The permeability of the shell to water vapor in a He environment (KH20, He) was 2.4 times KH20, air. If KO2, N2 is taken as unity, the permeabilities of the shell to O2 in He, Ar, CO2 and SF6 are 3.38, 0.95, 0.88, and 0.52, respectively. The results are interpreted in terms of the Chapman-Enskog equation, from which binary diffusion coefficients can be predicted for given gas pairs and ambient pressures. These results also provide explantations for the structural modification of egg shells in altitude-adapted chickens, and for the reduced insensible water loss in man at high ambient pressure.

  15. Silicon Carbide-Based Hydrogen Gas Sensors for High-Temperature Applications

    OpenAIRE

    Sangchoel Kim; Jehoon Choi; Minsoo Jung; Seongjeen Kim; Sungjae Joo

    2013-01-01

    We investigated SiC-based hydrogen gas sensors with metal-insulator-semiconductor (MIS) structure for high temperature process monitoring and leak detection applications in fields such as the automotive, chemical and petroleum industries. In this work, a thin tantalum oxide (Ta2O5) layer was exploited with the purpose of sensitivity improvement, because tantalum oxide has good stability at high temperature with high permeability for hydrogen gas. Silicon carbide (SiC) was used as a substrate ...

  16. A system for incubations at high gas partial pressure.

    Science.gov (United States)

    Sauer, Patrick; Glombitza, Clemens; Kallmeyer, Jens

    2012-01-01

    High-pressure is a key feature of deep subsurface environments. High partial pressure of dissolved gasses plays an important role in microbial metabolism, because thermodynamic feasibility of many reactions depends on the concentration of reactants. For gases, this is controlled by their partial pressure, which can exceed 1 MPa at in situ conditions. Therefore, high hydrostatic pressure alone is not sufficient to recreate true deep subsurface in situ conditions, but the partial pressure of dissolved gasses has to be controlled as well. We developed an incubation system that allows for incubations at hydrostatic pressure up to 60 MPa, temperatures up to 120°C, and at high gas partial pressure. The composition and partial pressure of gasses can be manipulated during the experiment. To keep costs low, the system is mainly made from off-the-shelf components with only very few custom-made parts. A flexible and inert PVDF (polyvinylidene fluoride) incubator sleeve, which is almost impermeable for gases, holds the sample and separates it from the pressure fluid. The flexibility of the incubator sleeve allows for sub-sampling of the medium without loss of pressure. Experiments can be run in both static and flow-through mode. The incubation system described here is usable for versatile purposes, not only the incubation of microorganisms and determination of growth rates, but also for chemical degradation or extraction experiments under high gas saturation, e.g., fluid-gas-rock-interactions in relation to carbon dioxide sequestration. As an application of the system we extracted organic compounds from sub-bituminous coal using H(2)O as well as a H(2)O-CO(2) mixture at elevated temperature (90°C) and pressure (5 MPa). Subsamples were taken at different time points during the incubation and analyzed by ion chromatography. Furthermore we demonstrated the applicability of the system for studies of microbial activity, using samples from the Isis mud volcano. We could

  17. A system for incubations at high gas partial pressure

    Directory of Open Access Journals (Sweden)

    Patrick eSauer

    2012-02-01

    Full Text Available High-pressure is a key feature of deep subsurface environments. High partial pressure of dissolved gasses plays an important role in microbial metabolism, because thermodynamic feasibility of many reactions depends on the concentration of reactants. For gases, this is controlled by their partial pressure, which can exceed one MPa at in-situ conditions. Therefore, high hydrostatic pressure alone is not sufficient to recreate true deep subsurface in-situ conditions, but the partial pressure of dissolved gasses has to be controlled as well.We developed an incubation system that allows for incubations at hydrostatic pressure up to 60 MPa, temperatures up to 120° C and at high gas partial pressure. The composition and partial pressure of gasses can be manipulated during the experiment. The system is mainly made from off-the-shelf components with only very few custom-made parts. A flexible and inert PVDF incubator sleeve, which is almost impermeable for gases, holds the sample and separates it from the pressure fluid. The flexibility of the incubator sleeve allows for sub-sampling of the medium without loss of pressure. Experiments can be run in both static and flow through mode. The incubation system described here is usable for versatile purposes, not only the incubation of microorganisms and determination of growth rates, but also for chemical degradation or extraction experiments under high gas saturation, e.g. fluid-gas-rock-interactions in relation to carbon dioxide sequestration.As an application of the system we extracted organic acids from sub-bituminous coal using H2O as well as a H2O-CO2 mixture at elevated temperature (90°C and pressure (5 MPa. Subsamples were taken during the incubation and analysed by ion chromatography. Furthermore we demonstrated the applicability of the system for studies of microbial activity, using samples from the Isis mud volcano. We could detect an increase in sulphate reduction rate upon the addition of

  18. Hydrogen separation process

    Science.gov (United States)

    Mundschau, Michael [Longmont, CO; Xie, Xiaobing [Foster City, CA; Evenson, IV, Carl; Grimmer, Paul [Longmont, CO; Wright, Harold [Longmont, CO

    2011-05-24

    A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to a hydrogen separation membrane system comprising a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to an integrated water gas shift/hydrogen separation membrane system wherein the hydrogen separation membrane system comprises a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for pretreating a membrane, comprising: heating the membrane to a desired operating temperature and desired feed pressure in a flow of inert gas for a sufficient time to cause the membrane to mechanically deform; decreasing the feed pressure to approximately ambient pressure; and optionally, flowing an oxidizing agent across the membrane before, during, or after deformation of the membrane. A method of supporting a hydrogen separation membrane system comprising selecting a hydrogen separation membrane system comprising one or more catalyst outer layers deposited on a hydrogen transport membrane layer and sealing the hydrogen separation membrane system to a porous support.

  19. Coriolis Mass-Flowmeter for aerostatic gas amount determination in zero pressure stratosperic balloons.

    Science.gov (United States)

    Behar, Jean-Baptiste

    2016-07-01

    The CNES ballooning community regularly operates zero pressure balloons in many countries around the world (recently in France, Sweden, Canada and soon, Australia in 2017). An important operational flight parameter is the aerostatic gas mass injected into the balloon (currently helium and hydrogen in the study). Besides the lifting force, it determines mainly the ascent rate from which the adiabatic expansion depends directly. A too high ascent velocity in very cold air temperature profiles could result in a gas temperature drop which if too great, might induce brittleness of the envelope. A precise gas mass determination is therefore critical for performance as well as for mission safety. The various gas supply tanks in various countries all have different characteristics with possible uncertainties with regard to their volumes. This makes the currently used gas mass determination method based on supply tank pressure measurements unreliable. This method also relies on tank temperature, another source of inaccuracy in the gas amount determination. CNES has therefore prospected for alternative methods to reduce inaccuracies and perhaps also ease the operational procedures during balloon inflation. Coriolis mass-flowmeters which have reached industrial maturity, offer the great advantage over other flowmeters to be able to directly measure the mass of the transferred fluid, and not deducing it from other parameters as other types of flowmeters would do. An industrial contractor has been therefore assigned to integrate this solution into the CNES operational setup. This new system is to be tested in February 2016. The presentation will briefly explain the Coriolis flowmeter's principle and display the February 2016 performance tests' results. The expected incidence on zero pressure balloons' trajectories will also be discussed based on simulations ran on a balloon flight simulator software.

  20. Upgrading of reformate gas for different applications with focus on small-scale hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Jannasch, Anna-Karin; Silversand, Fredrik [CATATOR AB, Lund (Sweden)

    2004-12-01

    Hydrogen gas or hydrogen rich gas is today used in many different applications, i.e. as fuel in fuel cells or additive in vehicle fuel (i.e. hythane) and as reagent or reducing agent in different industrial product lines. The majority of the hydrogen is produced either via electrolysis or reformation, where this work has entirely been focused on the latter alternative. The overarching aims of this project have been to demonstrate the need for reformate purification for different applications, and then, to investigate different available methods that can be used in order to enable the requested gas clean-up. The different purification methods have been examined with respect to parameters such as operating conditions (temperature, pressure), impurity tolerance, size, weight and cost. Another goal of the project has been to investigate how the reformer fuel type used influences the reformate gas quality and hence, the need for gas purification before the reformate can be fed to e.g. a low temperature polymer membrane fuel cell (PEMFC). For this reason, some experimental work has been performed. First, analysis of the reformate gas composition when natural gas, LPG, gasoline, diesel, kerosene (low and high S-concentration (i.e. JP8)) and ethanol have been processed. The reformation tests were carried out in a small scale reformer unit ({approx} 1 kW H{sub 2}) including Catator's catalyst formulations developed for the steam reforming, the water gas shift and the preferential oxidation reaction, respectively. Verification tests, with synthetic gas blends, including different potential reformate impurities, and with real reformate gas were thereafter performed with a commercial 4-cell PEMFC stack (3-5 W). Finally, some examination and also to some extent further development of Catator's existing gas purification units were made, i.e. chemical (WGS, PROX) and physical (regenerative adsorption). The Pd-alloy membrane seems to be the obvious choice of purification

  1. Low pressure storage of natural gas on activated carbon

    Science.gov (United States)

    Wegrzyn, J.; Wiesmann, H.; Lee, T.

    The introduction of natural gas to the transportation energy sector offers the possibility of displacing imported oil with an indigenous fuel. The barrier to the acceptance of natural gas vehicles (NGV) is the limited driving range due to the technical difficulties of on-board storage of a gaseous fuel. In spite of this barrier, compressed natural gas (CNG) vehicles are today being successfully introduced into the market place. The purpose of this work is to demonstrate an adsorbent natural gas (ANG) storage system as a viable alternative to CNG storage. It can be argued that low pressure ANG has reached near parity with CNG, since the storage capacity of CNG (2400 psi) is rated at 190 V/V, while low pressure ANG (500 psi) has reached storage capacities of 180 V/V in the laboratory. A program, which extends laboratory results to a full-scale vehicle test, is necessary before ANG technology will receive widespread acceptance. The objective of this program is to field test a 150 V/V ANG vehicle in FY 1994. As a start towards this goal, carbon adsorbents have been screened by Brookhaven for their potential use in a natural gas storage system. This paper reports on one such carbon, trade name Maxsorb, manufactured by Kansai Coke under an Amoco license.

  2. Measurements of Hydrogen Thermal Conductivity at High Pressure and High Temperature

    Science.gov (United States)

    Moroe, S.; Woodfield, P. L.; Kimura, K.; Kohno, M.; Fukai, J.; Fujii, M.; Shinzato, K.; Takata, Y.

    2011-09-01

    The thermal conductivity for normal hydrogen gas was measured in the range of temperatures from 323 K to 773 K at pressures up to 99 MPa using the transient short hot-wire method. The single-wire platinum probes had wire lengths of 10 mm to 15 mm with a nominal diameter of 10 μm. The volume-averaged transient temperature rise of the wire was calculated using a two-dimensional numerical solution to the unsteady heat conduction equation. A non-linear least-squares fitting procedure was employed to obtain the values of the thermal conductivity required for agreement between the measured temperature rise and the calculation. The experimental uncertainty in the thermal-conductivity measurements was estimated to be 2.2 % ( k = 2). An existing thermal-conductivity equation of state was modified to include the expanded range of conditions covered in the present study. The new correlation is applicable from 78 K to 773 K with pressures to 100 MPa and is in agreement with the majority of the present thermal-conductivity measurements within ±2 %.

  3. GFOC Project results: High Temperature / High Pressure, Hydrogen Tolerant Optical Fiber

    Energy Technology Data Exchange (ETDEWEB)

    E. Burov; A. Pastouret; E. Aldea; B. Overton; F. Gooijer; A. Bergonzo

    2012-02-12

    Tests results are given for exposure of multimode optical fiber to high temperatures (300 deg. C) and high partial pressure (15 bar) hydrogen. These results demonstrate that fluorine down doped optical fibers are much more hydrogen tolerant than traditional germanium doped multimode optical fibers. Also demonstrated is the similar hydrogen tolerance of carbon coated and non-carbon coated fibers. Model for reversible H2 impact in fiber versus T{sup o}C and H2 pressure is given. These results have significant impact for the longevity of use for distributed temperature sensing applications in harsh environments such as geothermal wells.

  4. Hydrogen in natural gases. [In natural gas, in methane in coal deposits and in petroleum deposits

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, A.K.

    1983-01-01

    Extensive factual material regarding hydrogen in the most diverse gases is generalized. Especial attention is focused on hydrogen contained in gases of carboniferous basins. Results are presented of studies of hydrogen content of coal gases of the Donets and L'vov-Volynskiy carboniferous basins, and also in gases of the fields of the Dnieper-Donets Basin. Differences were established in gases of the petroleum and coal series according to their content of hydrogen, and also coal beds and surrounding rocks which are dangerous and not dangerous for sudden blowout. Questions are examined of the genesis of hydrogen. Results are presented of experimental studies to reveal the secondary hydrogen in gases. It is indicated that hydrogen can serve as an important criterion in prospecting for a number of minerals and an indicator in predicting sudden blowouts of coal, rock and gas in mines.

  5. Hydrogen Embrittlement

    Science.gov (United States)

    Woods, Stephen; Lee, Jonathan A.

    2016-01-01

    Hydrogen embrittlement (HE) is a process resulting in a decrease in the fracture toughness or ductility of a metal due to the presence of atomic hydrogen. In addition to pure hydrogen gas as a direct source for the absorption of atomic hydrogen, the damaging effect can manifest itself from other hydrogen-containing gas species such as hydrogen sulfide (H2S), hydrogen chloride (HCl), and hydrogen bromide (HBr) environments. It has been known that H2S environment may result in a much more severe condition of embrittlement than pure hydrogen gas (H2) for certain types of alloys at similar conditions of stress and gas pressure. The reduction of fracture loads can occur at levels well below the yield strength of the material. Hydrogen embrittlement is usually manifest in terms of singular sharp cracks, in contrast to the extensive branching observed for stress corrosion cracking. The initial crack openings and the local deformation associated with crack propagation may be so small that they are difficult to detect except in special nondestructive examinations. Cracks due to HE can grow rapidly with little macroscopic evidence of mechanical deformation in materials that are normally quite ductile. This Technical Memorandum presents a comprehensive review of experimental data for the effects of gaseous Hydrogen Environment Embrittlement (HEE) for several types of metallic materials. Common material screening methods are used to rate the hydrogen degradation of mechanical properties that occur while the material is under an applied stress and exposed to gaseous hydrogen as compared to air or helium, under slow strain rates (SSR) testing. Due to the simplicity and accelerated nature of these tests, the results expressed in terms of HEE index are not intended to necessarily represent true hydrogen service environment for long-term exposure, but rather to provide a practical approach for material screening, which is a useful concept to qualitatively evaluate the severity of

  6. Composition and method for hydrogen storage

    Science.gov (United States)

    Mao, Wendy L. (Inventor); Mao, Ho-Kwang (Inventor)

    2004-01-01

    A method for hydrogen storage includes providing water and hydrogen gas to a containment volume, reducing the temperature of the water and hydrogen gas to form a hydrogen clathrate at a first cryogenic temperature and a first pressure and maintaining the hydrogen clathrate at second cryogenic temperature within a temperature range of up to 250 K to effect hydrogen storage. The low-pressure hydrogen hydrate includes H.sub.2 O molecules, H.sub.2 molecules and a unit cell including polyhedron cages of hydrogen-bonded frameworks of the H.sub.2 O molecules built around the H.sub.2 molecules.

  7. Synthesis, structural and hydrogenation properties of Mg-rich MgH2-TiH2 nanocomposites prepared by reactive ball milling under hydrogen gas.

    Science.gov (United States)

    Cuevas, Fermin; Korablov, Dmytro; Latroche, Michel

    2012-01-21

    MgH(2)-TiH(2) nanocomposites have been obtained by reactive ball milling of elemental powders under 8 MPa of hydrogen pressure. The composites consist of a mixture of β-rutile MgH(2), γ-orthorhombic high pressure MgH(2) and ε-tetragonal TiH(2) phases with nanosized crystallites ranging from 4 to 12 nm. In situ hydrogen absorption curves on milling reveal that nanocomposite formation occurs in less than 50 min through the consecutive synthesis of the TiH(2) and MgH(2) phases. The abrasive and catalytic properties of TiH(2) speed up the formation of the MgH(2) phase. Thermodynamic, kinetic and cycling hydrogenation properties have been determined for the 0.7MgH(2)-0.3TiH(2) composite and compared to nanometric MgH(2). Only the MgH(2) phase desorbs hydrogen reversibly at moderate temperature (523 to 598 K) and pressure (10(-3) to 1 MPa). The presence of TiH(2) does not modify the thermodynamic properties of the Mg/MgH(2) system. However, the MgH(2)-TiH(2) nanocomposite exhibits outstanding kinetic properties and cycling stability. At 573 K, H-sorption takes place in less than 100 s. This is 20 times faster than for a pure nanometric MgH(2) powder. We demonstrate that the TiH(2) phase inhibits grain coarsening of Mg, which allows extended nucleation of the MgH(2) phase in Mg nanoparticles before a continuous and blocking MgH(2) hydride layer is formed. The low crystallinity of the TiH(2) phase and its hydrogenation properties are also compatible with a gateway mechanism for hydrogen transfer from the gas phase to Mg. Mg-rich MgH(2)-TiH(2) nanocomposites are an excellent media for hydrogen storage at moderate temperatures.

  8. Modes of reaction front propagation and end-gas combustion of hydrogen/air mixtures in a closed chamber

    KAUST Repository

    Shi, Xian

    2017-01-05

    Modes of reaction front propagation and end-gas combustion of hydrogen/air mixtures in a closed chamber are numerically investigated using an 1-D unsteady, shock-capturing, compressible and reacting flow solver. Different combinations of reaction front propagation and end-gas combustion modes are observed, i.e., 1) deflagration without end-gas combustion, 2) deflagration to end-gas autoignition, 3) deflagration to end-gas detonation, 4) developing or developed detonation, occurring in the sequence of increasing initial temperatures. Effects of ignition location and chamber size are evaluated: the asymmetric ignition is found to promote the reactivity of unburnt mixture compared to ignitions at center/wall, due to additional heating from asymmetric pressure waves. End-gas combustion occurs earlier in smaller chambers, where end-gas temperature rise due to compression heating from the deflagration is faster. According to the ξ−ε regime diagram based on Zeldovich theory, modes of reaction front propagation are primarily determined by reactivity gradients introduced by initial ignition, while modes of end-gas combustion are influenced by the total amount of unburnt mixture at the time when autoignition occurs. A transient reactivity gradient method is provided and able to capture the occurrence of detonation.

  9. Modeling Pressure-Ionization of Hydrogen in the Context of Astrophysics

    CERN Document Server

    Saumon, D S; Wagner, D J; Xie, X

    1999-01-01

    The recent development of techniques for laser-driven shock compression of hydrogen has opened the door to the experimental determination of its behavior under conditions characteristic of stellar and planetary interiors. The new data probe the equation of state (EOS) of dense hydrogen in the complex regime of pressure ionization. The structure and evolution of dense astrophysical bodies depend on whether the pressure ionization of hydrogen occurs continuously or through a ``plasma phase transition'' (PPT) between a molecular state and a plasma state. For the first time, the new experiments constrain predictions for the PPT. We show here that the EOS model developed by Saumon and Chabrier can successfully account for the data, and we propose an experiment that should provide a definitive test of the predicted PPT of hydrogen. The usefulness of the chemical picture for computing astrophysical EOS and in modeling pressure ionization is discussed.

  10. High pressure gas filled RF cavity beam test at the Fermilab Mucool test area

    Science.gov (United States)

    Freemire, Ben

    With a new generation of lepton colliders being conceived, muons have been proposed as an alternative particle to electrons. Muons lose less energy to synchrotron radiation and a Muon Collider can provide luminosity within a smaller energy range than a comparable electron collider. This allows a circular collider to be built. As part of the accelerator, it would also be possible to allow the muons to decay to study neutrinos. Because the muon is an unstable particle, a muon beam must be cooled and accelerated within a short amount of time. Muons are generated with a huge phase space, so radio frequency cavities placed in strong magnetic fields are required to bunch, focus, and accelerate the muons. Unfortunately, traditional vacuum RF cavities have been shown to break down in the magnetic fields necessary. To successfully operate RF cavities in strong magnetic fields, the cavity can be filled with a high pressure gas in order to mitigate breakdown. The gas has the added benefit of providing cooling for the beam. The electron-ion plasma created in the cavity by the beam absorbs energy and degrades the accelerating electric field of the cavity. As electrons account for the majority of the energy loss in the cavity, their removal in a short time is highly desirable. The addition of an electronegative dopant gas can greatly decrease the lifetime of an electron in the cavity. Measurements in pure hydrogen of the energy consumption of electrons in the cavity range in 10-18 and 10-16 joules per RF cycle per electron. When hydrogen doped with dry air is used, measurements of the power consumption indicate an energy loss range of 10-20 to 10-18 joules per RF cycle per ion, two orders of magnitude improvement over non-doped measurements. The lifetime of electrons in a mixture of hydrogen gas and dry air has been measured from cooling-channel for either machine.

  11. Theoretical evaluation of the efficiency of gas single-stage reciprocating compressor medium pressure units

    Science.gov (United States)

    Busarov, S. S.; Vasil'ev, V. K.; Busarov, I. S.; Titov, D. S.; Panin, Ju. N.

    2017-08-01

    Developed earlier and tested in such working fluid as air, the technology of calculating the operating processes of slow-speed long-stroke reciprocating stages let the authors to obtain successful results concerning compression of gases to medium pressures in one stage. In this connection, the question of the efficiency of the application of slow-speed long-stroke stages in various fields of technology and the national economy, where the working fluid is other gas or gas mixture, is topical. The article presents the results of the efficiency evaluation of single-stage compressor units on the basis of such stages for cases when ammonia, hydrogen, helium or propane-butane mixture is used as the working fluid.

  12. A continuum damage analysis of hydrogen attack in a 2.25Cr–1Mo pressure vessel

    NARCIS (Netherlands)

    Burg, M.W.D. van der; Giessen, E. van der; Tvergaard, V.

    1998-01-01

    A micromechanically based continuum damage model is presented to analyze the stress, temperature and hydrogen pressure dependent material degradation process termed hydrogen attack, inside a pressure vessel. Hydrogen attack (HA) is the damage process of grain boundary facets due to a chemical reacti

  13. Thermally induced atmospheric pressure gas discharges using pyroelectric crystals

    Science.gov (United States)

    Johnson, Michael J.; Linczer, John; Go, David B.

    2014-12-01

    Using a heated pyroelectric crystal, an atmospheric pressure gas discharge was generated through the input of heat. When put through a change in temperature, the polarization of a pyroelectric can change significantly, creating a substantial electric potential at its surface. When configured with a grounded sharp counter electrode, a large inhomogeneous electric field forms in the interstitial gas to initiate a corona-like discharge. Under constant heating conditions, gaseous ions drifting to the pyroelectric accumulate and screen the electric field, extinguishing the discharge. By thermally cycling the pyroelectric, negative and positive discharges are generated during heating and cooling, respectively, with peak currents on the order of 80 nA. Time-integrated visualization confirmed the generation of both a corona-like discharge and a surface discharge on the pyroelectric. Parametric studies identified that thermal cycling conditions significantly influence discharge formation for this new atmospheric pressure discharge approach.

  14. Fabrication of stainless steel clad tubing. [gas pressure bonding

    Science.gov (United States)

    Kovach, C. W.

    1978-01-01

    The feasibility of producing stainless steel clad carbon steel tubing by a gas pressure bonding process was evaluated. Such a tube product could provide substantial chromium savings over monolithic stainless tubing in the event of a serious chromium shortage. The process consists of the initial assembly of three component tubesets from conventionally produced tubing, the formation of a strong metallurgical bond between the three components by gas pressure bonding, and conventional cold draw and anneal processing to final size. The quality of the tubes produced was excellent from the standpoint of bond strength, mechanical, and forming properties. The only significant quality problem encountered was carburization of the stainless clad by the carbon steel core which can be overcome by further refinement through at least three different approaches. The estimated cost of clad tubing produced by this process is greater than that for monolithic stainless tubing, but not so high as to make the process impractical as a chromium conservation method.

  15. Ferrous alloys cast under high pressure gas atmosphere

    Directory of Open Access Journals (Sweden)

    Pirowski Z.

    2007-01-01

    Full Text Available The main objective of this paper is describing the essence of the process of introducing nitrogen to the melt of ferrous alloys by application of overpressure above the metal bath. The problem was discussed in terms of both theory (the thermodynamic aspects of the process and practice (the technical and technological aspects, safety of the furnace stand operation, and technique of conducting the melt. The novel technique of melting under high pressure of the gas atmosphere (up to 5 MPa has not been used so far in the domestic industry, mainly because of the lack of proper equipment satisfyng the requirements of safe operation. Owing to cooperation undertaken with a partner from Bulgaria, a more detailed investigation of this technology has become possible and melting of selected ferrous alloys was conducted under the gas atmosphere at a pressure of about 3,5 MPa.

  16. Approaches for reducing the insulator-metal transition pressure in hydrogen

    Science.gov (United States)

    Carlsson, A. E.; Ashcroft, N. W.

    1983-01-01

    Two possible techniques for reducing the external pressure required to induce the insulator-metal transition in solid hydrogen are described. One uses impurities to lower the energy of the metallic phase relative to that of the insulating phase. The other utilizes a negative pressure induced in the insulating phase by electron-hole pairs, created either with laser irradiation or pulsed synchrotron sources.

  17. Hydrogen Absorption in Weldments of Overlaid Claded Pressure Vessel

    Directory of Open Access Journals (Sweden)

    Ronnie Rusli

    2010-10-01

    Full Text Available Cracks was found in type 347 stainless steel internal attachment welds of a reactor for a high temperature, and highpressure hydrogen service. One of the possible causes of cracking is low cycle fatigue cracking induced by repetition ofthermal stress to embrittled weld metal. Type 347 weld metal loses its ductility by presence of sigma phase andhydrogen.

  18. Upgrading of reformate gas for different applications with focus on small-scale hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Jannasch, Anna-Karin; Silversand, Fredrik [CATATOR AB, Lund (Sweden)

    2004-12-01

    Hydrogen gas or hydrogen rich gas is today used in many different applications, i.e. as fuel in fuel cells or additive in vehicle fuel (i.e. hythane) and as reagent or reducing agent in different industrial product lines. The majority of the hydrogen is produced either via electrolysis or reformation, where this work has entirely been focused on the latter alternative. The overarching aims of this project have been to demonstrate the need for reformate purification for different applications, and then, to investigate different available methods that can be used in order to enable the requested gas clean-up. The different purification methods have been examined with respect to parameters such as operating conditions (temperature, pressure), impurity tolerance, size, weight and cost. Another goal of the project has been to investigate how the reformer fuel type used influences the reformate gas quality and hence, the need for gas purification before the reformate can be fed to e.g. a low temperature polymer membrane fuel cell (PEMFC). For this reason, some experimental work has been performed. First, analysis of the reformate gas composition when natural gas, LPG, gasoline, diesel, kerosene (low and high S-concentration (i.e. JP8)) and ethanol have been processed. The reformation tests were carried out in a small scale reformer unit ({approx} 1 kW H{sub 2}) including Catator's catalyst formulations developed for the steam reforming, the water gas shift and the preferential oxidation reaction, respectively. Verification tests, with synthetic gas blends, including different potential reformate impurities, and with real reformate gas were thereafter performed with a commercial 4-cell PEMFC stack (3-5 W). Finally, some examination and also to some extent further development of Catator's existing gas purification units were made, i.e. chemical (WGS, PROX) and physical (regenerative adsorption). The Pd-alloy membrane seems to be the obvious choice of purification

  19. ZrNi5-based hydrogenated phases formed under high hydrogen pressure conditions

    Energy Technology Data Exchange (ETDEWEB)

    Filipek, Stanislaw M., E-mail: sfilipek@ichf.edu.pl [Institute of Physical Chemistry PAS, ul. Kasprzaka 44, 01-224 Warsaw (Poland); Paul-Boncour, Valerie [Laboratoire de Chimie Metallurgique des Terres Rares, CNRS, 2-8 rue H. Dunant, 94320 Thiais (France); Liu, Ru-Shi [Department of Chemistry, National Taiwan University, Taipei, Taiwan (China)

    2011-07-15

    Formation of novel hydrides from ZrNi{sub 5} alloy has been confirmed experimentally. After exposure of ZrNi{sub 5} at 0.9 GPa(H{sub 2}) and 100 {sup o}C for 6 days the alloy transformed into two hydrogenated phases {alpha} and {beta} containing initially more than 0.38 and 0.86 hydrogen atoms per formula unit respectively. At ambient conditions both hydrides were extremely unstable. Major part of hydrogen desorbed within few minutes. During this desorption the lattice parameters of both hydrides were continuously reduced what confirms their solid solution character.

  20. Hydrogen distribution in CVD diamond films prepared by DC arcjet operating at gas recycling mode

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Hydrogen distribution and content in diamond films deposited by DC arcjet under gas recycling mode was evaluated by nuclear reaction analysis (NRA). The films were characterized using scanning electron microscopy, X-ray diffraction and Raman spectrometry. The NRA results show that the hydrogen content in diamond films was approximately 0.6% (substrate temperature 770℃), and strongly depended on the substrate temperature. It was that the hydrogen content increased with the increase of the substrate temperature. The possibility of hydrogen trapping in the films was also discussed.

  1. Experimental research of optical fiber hydrogen gas sensing system based on palladium-silver alloy

    Science.gov (United States)

    Cui, Lu-jun; Zhou, Gao-feng; Li, Zheng-feng; Cao, Yan-long

    2016-11-01

    A novel optical fiber hydrogen sensing system based on palladium (Pd) and sliver (Ag) is proposed. By direct current (DC) magnetron process, Pd/Ag alloy ultra-thin films were deposited on the substrate to eliminate the hydrogen embrittlement of sensor based on pure Pd. Several samples with different thin film thicknesses were fabricated at different substrate temperatures and tested in the optical fiber hydrogen sensor setup. We do a series of experiments for obtaining optimum sputtering parameters, such as optimum sputtering temperature and thickness of Pd/Ag alloy film. The humidity effect and reliability experiment for the optical fiber hydrogen gas sensor are reported in detail. The testing results demonstrate the Pd/Ag alloy is a promising material for optical fiber hydrogen gas sensor.

  2. Effect of Soret diffusion on lean hydrogen/air flames at normal and elevated pressure and temperature

    KAUST Repository

    Zhou, Zhen

    2017-04-12

    The influence of Soret diffusion on lean premixed flames propagating in hydrogen/air mixtures is numerically investigated with a detailed chemical and transport models at normal and elevated pressure and temperature. The Soret diffusion influence on the one-dimensional (1D) flame mass burning rate and two-dimensional (2D) flame propagating characteristics is analysed, revealing a strong dependency on flame stretch rate, pressure and temperature. For 1D flames, at normal pressure and temperature, with an increase of Karlovitz number from 0 to 0.4, the mass burning rate is first reduced and then enhanced by Soret diffusion of H2 while it is reduced by Soret diffusion of H. The influence of Soret diffusion of H2 is enhanced by pressure and reduced by temperature. On the contrary, the influence of Soret diffusion of H is reduced by pressure and enhanced by temperature. For 2D flames, at normal pressure and temperature, during the early phase of flame evolution, flames with Soret diffusion display more curved flame cells. Pressure enhances this effect, while temperature reduces it. The influence of Soret diffusion of H2 on the global consumption speed is enhanced at elevated pressure. The influence of Soret diffusion of H on the global consumption speed is enhanced at elevated temperature. The flame evolution is more affected by Soret diffusion in the early phase of propagation than in the long run due to the local enrichment of H2 caused by flame curvature effects. The present study provides new insights into the Soret diffusion effect on the characteristics of lean hydrogen/air flames at conditions that are relevant to practical applications, e.g. gas engines and turbines.

  3. Structural and optical properties of silicon nanoparticles prepared by pulsed laser ablation in hydrogen background gas

    Science.gov (United States)

    Makino, T.; Inada, M.; Yoshida, K.; Umezu, I.; Sugimura, A.

    We studied the structural and optical properties of silicon (Si) nanoparticles (np-Si) prepared by pulsed laser ablation (PLA) in hydrogen (H2) background gas. The mean diameter of the np-Si was estimated to be approximately 5 nm. The infrared absorption corresponding to Si-Hn (n=1,2,3) bonds was observed at around 2100 cm-1, and a Raman scattering peak corresponding to crystalline Si was observed at around 520 cm-1. These results indicate that nanoparticles are not an alloy of Si and hydrogen but Si nanocrystal covered by hydrogen or hydrogenated silicon. This means that surface passivated Si nanoparticles can be prepared by PLA in H2 gas. The band-gap energy of np-Si prepared in H2 gas (1.9 eV) was larger than that of np-Si prepared in He gas (1.6 eV) even though they are almost the same diameter. After decreasing the hydrogen content in np-Si by thermal annealing, the band-gap energy decreased, and reached the same energy level as np-Si prepared in He gas. Thus, the optical properties of np-Si were affected by the hydrogenation of the surface of np-Si.

  4. Role of sodium hydroxide in the production of hydrogen gas from the hydrothermal gasification of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Onwudili, Jude A.; Williams, Paul T. [Energy and Resources Research Institute, University of Leeds, Leeds, LS2 9JT (United Kingdom)

    2009-07-15

    The role of sodium hydroxide as a promoter of hydrogen gas production during the hydrothermal gasification of glucose and other biomass samples has been investigated. Experiments were carried out in a batch reactor with glucose and also in the presence of the alkali from 200 C, 2 MPa to 450 C, 34 MPa at constant water loading. Without sodium hydroxide, glucose decomposed to produce mainly carbon dioxide, water, char and tar. Furfural, its derivatives and reaction products dominated the ethyl acetate extract of the water (organic fraction) at lower reaction conditions. This indicated that the dehydration of glucose to yield these products was unfavourable to hydrogen gas production. In the presence of sodium hydroxide however, glucose initially decomposed to form mostly alkylated and hydroxylated carbonyl compounds, whose further decomposition yielded hydrogen gas. It was observed that at 350 C, 21.5 MPa, half of the optimum hydrogen gas yield had formed and at 450 C, 34 MPa, more than 80 volume percent of the gaseous effluent was hydrogen gas, while the balance was hydrocarbon gases, mostly methane ({>=}10 volume percent). Other biomass samples were also comparably reacted at the optimum conditions observed for glucose. The rate of hydrogen production for the biomass samples was in the following order; glucose > cellulose, starch, rice straw > potato > rice husk. (author)

  5. Direct chlorination process for geothermal power plant off-gas - hydrogen sulfide abatement

    Energy Technology Data Exchange (ETDEWEB)

    Sims, A.V.

    1983-06-01

    The Direct Chlorination Process removes hydrogen sulfide from geothermal off-gases by reacting hydrogen sulfide with chlorine in the gas phase. Hydrogen chloride and elemental sulfur are formed by this reaction. The Direct Chlorination Process has been successfully demonstrated by an on-site operation of a pilot plant at the 3 M We HPG-A geothermal power plant in the Puna District on the island of Hawaii. Over 99.5 percent hydrogen sulfide removal was achieved in a single reaction stage. Chlorine gas did not escape the pilot plant, even when 90 percent excess chlorine gas was used. Because of the higher cost of chemicals and the restricted markets in Hawaii, the economic viability of this process in Hawaii is questionable.

  6. Direct chlorination process for geothermal power plant off-gas - hydrogen sulfide abatement

    Energy Technology Data Exchange (ETDEWEB)

    Sims, A.V.

    1983-06-01

    The Direct Chlorination Process removes hydrogen sulfide from geothermal off-gases by reacting hydrogen sulfide with chlorine in the gas phase. Hydrogen chloride and elemental sulfur are formed by this reaction. The Direct Chlorination Process has been successfully demonstrated by an on-site operation of a pilot plant at the 3 M We HPG-A geothermal power plant in the Puna District on the island of Hawaii. Over 99.5 percent hydrogen sulfide removal was achieved in a single reaction state. Chlorine gas did not escape the pilot plant, even when 90 percent excess chlorine gas was used. A preliminary economic evaluation of the Direct Chlorination Process indicates that it is very competitive with the Stretford Process. Compared to the Stretford Process, the Direct Chlorination Process requires about one-third the initial capital investment and about one-fourth the net daily expenditure.

  7. Gas Line Pressure Fluctuation Analysis of a Gas-Liquid Reactor

    Institute of Scientific and Technical Information of China (English)

    J.J.J. CHEN; J.C. ZHAO

    2005-01-01

    To ensure efficient operation of metallurgical gas-liquid reactors, the gas bubbles must be uniformly distributed.For high temperature metallurgical reactors, it is impractical and unsafe to carry out visual observations.An air-water model was used to study the relationship between the bubble flow patterns and the pressure fluctuation signals.The fluctuation signals captured in the time domain were transformed into the frequency domain. Various parameters obtained from the transformed data were analysed for their suitability for delineating the bubble flow pqtterns observed.These parameters and the flow patterns were found to be well-correlated using the gas flow number.

  8. Geochemical modelling of hydrogen gas migration in an unsaturated bentonite buffer

    NARCIS (Netherlands)

    Sedighi, M.; Thomas, H.R.; Al Masum, S.; Vardon, P.J.; Nicholson, D.; Chen, Q.

    2014-01-01

    This paper presents an investigation of the transport and fate of hydrogen gas through compacted bentonite buffer. Various geochemical reactions that may occur in the multiphase and multicomponent system of the unsaturated bentonite buffer are considered. A reactive gas transport model, developed

  9. Geochemical modelling of hydrogen gas migration in an unsaturated bentonite buffer

    NARCIS (Netherlands)

    Sedighi, M.; Thomas, H.R.; Al Masum, S.; Vardon, P.J.; Nicholson, D.; Chen, Q.

    2014-01-01

    This paper presents an investigation of the transport and fate of hydrogen gas through compacted bentonite buffer. Various geochemical reactions that may occur in the multiphase and multicomponent system of the unsaturated bentonite buffer are considered. A reactive gas transport model, developed wi

  10. Geochemical modelling of hydrogen gas migration in an unsaturated bentonite buffer

    NARCIS (Netherlands)

    Sedighi, M.; Thomas, H.R.; Al Masum, S.; Vardon, P.J.; Nicholson, D.; Chen, Q.

    2014-01-01

    This paper presents an investigation of the transport and fate of hydrogen gas through compacted bentonite buffer. Various geochemical reactions that may occur in the multiphase and multicomponent system of the unsaturated bentonite buffer are considered. A reactive gas transport model, developed wi

  11. Peak pressures from hydrogen deflagrations in the PFP thermal stabilization glovebox

    Energy Technology Data Exchange (ETDEWEB)

    Van Keuren, J.C.

    1998-08-11

    This document describes the calculations of the peak pressures due to hydrogen deflagrations in the glovebox used for thermal stabilization (glovebox HC-21A) in PFP. Two calculations were performed. The first considered the burning of hydrogen released from a 7 inch Pu can in the Inert Atmosphere Confinement (IAC) section of the glovebox. The peak pressure increase was 12400 Pa (1.8 psi). The second calculation considered burning of the hydrogen from 25 g of plutonium hydride in the airlock leading to the main portion of the glovebox. Since the glovebox door exposes most of the airlock when open, the deflagration was assumed to pressurize the entire glovebox. The peak pressure increase was 3860 Pa (0.56 psi).

  12. Development and industrial application of catalyzer for low-temperature hydrogenation hydrolysis of Claus tail gas

    Directory of Open Access Journals (Sweden)

    Honggang Chang

    2015-10-01

    Full Text Available With the implementation of more strict national environmental protection laws, energy conservation, emission reduction and clean production will present higher requirements for sulfur recovery tail gas processing techniques and catalyzers. As for Claus tail gas, conventional hydrogenation catalyzers are gradually being replaced by low-temperature hydrogenation catalyzers. This paper concentrates on the development of technologies for low-temperature hydrogenation hydrolysis catalyzers, preparation of such catalyzers and their industrial application. In view of the specific features of SO2 hydrogenation and organic sulfur hydrolysis during low-temperature hydrogenation, a new technical process involving joint application of hydrogenation catalyzers and hydrolysis catalyzers was proposed. In addition, low-temperature hydrogenation catalyzers and low-temperature hydrolysis catalyzers suitable for low-temperature conditions were developed. Joint application of these two kinds of catalyzers may reduce the inlet temperatures in the conventional hydrogenation reactors from 280 °C to 220 °C, at the same time, hydrogenation conversion rates of SO2 can be enhanced to over 99%. To further accelerate the hydrolysis rate of organic sulfur, the catalyzers for hydrolysis of low-temperature organic sulfur were developed. In lab tests, the volume ratio of the total sulfur content in tail gas can be as low as 131 × 10−6 when these two kinds of catalyzers were used in a proportion of 5:5 in volumes. Industrial application of these catalyzers was implemented in 17 sulfur recovery tail gas processing facilities of 15 companies. As a result, Sinopec Jinling Petrochemical Company had outstanding application performances with a tail gas discharging rate lower than 77.9 mg/m3 and a total sulfur recovery of 99.97%.

  13. Hydrogen gas reduces hyperoxic lung injury via the Nrf2 pathway in vivo

    Science.gov (United States)

    Kawamura, Tomohiro; Wakabayashi, Nobunao; Shigemura, Norihisa; Huang, Chien-Sheng; Masutani, Kosuke; Tanaka, Yugo; Noda, Kentaro; Peng, Ximei; Takahashi, Toru; Billiar, Timothy R.; Okumura, Meinoshin; Toyoda, Yoshiya; Kensler, Thomas W.

    2013-01-01

    Hyperoxic lung injury is a major concern in critically ill patients who receive high concentrations of oxygen to treat lung diseases. Successful abrogation of hyperoxic lung injury would have a huge impact on respiratory and critical care medicine. Hydrogen can be administered as a therapeutic medical gas. We recently demonstrated that inhaled hydrogen reduced transplant-induced lung injury and induced heme oxygenase (HO)-1. To determine whether hydrogen could reduce hyperoxic lung injury and investigate the underlying mechanisms, we randomly assigned rats to four experimental groups and administered the following gas mixtures for 60 h: 98% oxygen (hyperoxia), 2% nitrogen; 98% oxygen (hyperoxia), 2% hydrogen; 98% balanced air (normoxia), 2% nitrogen; and 98% balanced air (normoxia), 2% hydrogen. We examined lung function by blood gas analysis, extent of lung injury, and expression of HO-1. We also investigated the role of NF-E2-related factor (Nrf) 2, which regulates HO-1 expression, by examining the expression of Nrf2-dependent genes and the ability of hydrogen to reduce hyperoxic lung injury in Nrf2-deficient mice. Hydrogen treatment during exposure to hyperoxia significantly improved blood oxygenation, reduced inflammatory events, and induced HO-1 expression. Hydrogen did not mitigate hyperoxic lung injury or induce HO-1 in Nrf2-deficient mice. These findings indicate that hydrogen gas can ameliorate hyperoxic lung injury through induction of Nrf2-dependent genes, such as HO-1. The findings suggest a potentially novel and applicable solution to hyperoxic lung injury and provide new insight into the molecular mechanisms and actions of hydrogen. PMID:23475767

  14. Development of Criteria for Flashback Propensity in Jet Flames for High Hydrogen Content and Natural Gas Type Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kalantari, Alireza [Univ. of California, Irvine, CA (United States); Sullivan-Lewis, Elliot [Univ. of California, Irvine, CA (United States); McDonell, Vincent [Univ. of California, Irvine, CA (United States)

    2016-10-17

    Due to increasingly stringent air quality requirements stationary power gas turbines have moved to lean-premixed operation, which reduces pollutant emissions but can result in flashback. Curtailing flashback can be difficult with hydrocarbon fuels and becomes even more challenging when hydrogen is used as the fuel. In fact, flashback is a key operability issue associated with low emission combustion of high hydrogen content fuels. Flashback can cause serious damage to the premixer hardware. Hence, design tools to predict flashback propensity are of interest. Such a design tool has been developed based on the data gathered by experimental study to predict boundary layer flashback using non-dimensional parameters. The flashback propensity of a premixed jet flame has been studied experimentally. Boundary layer flashback has been investigated under turbulent flow conditions at elevated pressures and temperatures (i.e. 3 atm to 8 atm and 300 K to 500 K). The data presented in this study are for hydrogen fuel at various Reynolds numbers, which are representative of practical gas turbine premixer conditions and are significantly higher than results currently available in the literature. Three burner heads constructed of different materials (stainless steel, copper, and zirconia ceramic) were used to evaluate the effect of tip temperature, a parameter found previously to be an important factor in triggering flashback. This study characterizes flashback systematically by developing a comprehensive non-dimensional model which takes into account all effective parameters in boundary layer flashback propensity. The model was optimized for new data and captures the behavior of the new results well. Further, comparison of the model with the single existing study of high pressure jet flame flashback also indicates good agreement. The model developed using the high pressure test rig is able to predict flashback tendencies for a commercial gas turbine engine and can thus serve as a

  15. Hydrodynamic analysis of a three-fluidized bed reactor cold flow model for chemical looping hydrogen generation. Pressure characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Zhipeng; Xiang, Wenguo; Chen, Shiyi; Wang, Dong [Southeast Univ., Nanjing (China). School of Energy and Environment

    2013-07-01

    Chemical looping hydrogen generation (CLHG) can produce pure hydrogen with inherent separation of CO{sub 2} from fossils fuel. The process involves a metal oxide, as an oxygen carrier, such as iron oxide. The CLHG system consists of three reactors: a fuel reactor (FR), a steam reactor (SR) and an air reactor (AR). In the FR, the fuel gases react with iron oxides (hematite Fe{sub 2}O{sub 3}, magnetite Fe{sub 3}O{sub 4}, wuestite FeO), generating reduced iron oxides (FeO or even Fe), and with full conversion of gaseous fuels, pure CO{sub 2} can be obtained after cooling the flue gas from the fuel reactor; in the SR, FeO and Fe reacts with steam to generate magnetite (Fe{sub 3}O{sub 4}) and H{sub 2}, the latter representing the final target product of the process; in the AR, the magnetite is oxidized back to hematite which is used in another cycle. A cold flow model of three-fluidized bed for CLHG corresponding to 50 KW hot units has been built. A major novelty of this facility is the compact fuel reactor, which integrates a bubble and a fast fluidized bed to avoid the incomplete conversion of the fuel gas caused by the thermodynamics equilibrium. In order to study the pressure characteristics and the solids concentration of the system, especially in the fuel reactor, the gas velocity of three reactors, gas flow of L-type value, total solids inventory (TSI) and the secondary air of fuel reactor were varied. Results show that the pressure and the solids concentration are strongly influenced by the fluidizing-gas velocity of three reactors. Moreover, the entrainment of the upper part of fuel reactor increases as the total solids inventory increases, and the operating range of the FR can be changed by introducing secondary air or increasing the total solids inventory.

  16. Generalizing Microdischarge Breakdown Scaling Laws for Pressure and Gas

    Science.gov (United States)

    Loveless, Amanda; Garner, Allen

    2016-10-01

    Shrinking device dimensions for micro- and nanoelectromechanical systems necessitates accurate breakdown voltage predictions for reliable operation. Additionally, one must accurately predict breakdown voltage to optimize system geometry for applications in microplasmas and micropropulsion. Traditional approaches use Paschen's law (PL) to predict breakdown, but PL fails at small gap distances ( 15 μm) where field emission dominates. Subsequent work derived scaling laws and analytic expressions for breakdown voltage in argon at atmospheric pressure. Applications at high (e.g. combustion) and low (e.g. vacuum nanoelectronics) pressures for various gases motivate the generalization of these models for pressure and gas. This work addresses these concerns by deriving scaling laws generalized for gap distance, pressure, and gas, while also specifically incorporating and exploring the impact of field enhancement and work function. We compare these analytic scaling laws to experimental data and particle-in-cell simulations. Funded by a U.S. Nuclear Regulatory Commission Nuclear Education Program Faculty Development Grant Program at Purdue University.

  17. Purge gas protected transportable pressurized fuel cell modules and their operation in a power plant

    Science.gov (United States)

    Zafred, Paolo R.; Dederer, Jeffrey T.; Gillett, James E.; Basel, Richard A.; Antenucci, Annette B.

    1996-01-01

    A fuel cell generator apparatus and method of its operation involves: passing pressurized oxidant gas, (O) and pressurized fuel gas, (F), into fuel cell modules, (10 and 12), containing fuel cells, where the modules are each enclosed by a module housing (18), surrounded by an axially elongated pressure vessel (64), where there is a purge gas volume, (62), between the module housing and pressure vessel; passing pressurized purge gas, (P), through the purge gas volume, (62), to dilute any unreacted fuel gas from the modules; and passing exhaust gas, (82), and circulated purge gas and any unreacted fuel gas out of the pressure vessel; where the fuel cell generator apparatus is transpatable when the pressure vessel (64) is horizontally disposed, providing a low center of gravity.

  18. Gas film disturbance characteristics analysis of high-speed and high-pressure dry gas seal

    Science.gov (United States)

    Chen, Yuan; Jiang, Jinbo; Peng, Xudong

    2016-08-01

    The dry gas seal(DGS) has been widely used in high parameters centrifugal compressor, but the intense vibrations of shafting, especially in high-speed condition, usually result in DGS's failure. So the DGS's ability of resisting outside interference has become a determining factor of the further development of centrifugal compressor. However, the systematic researches of which about gas film disturbance characteristics of high parameters DGS are very little. In order to study gas film disturbance characteristics of high-speed and high-pressure spiral groove dry gas seal(S-DGS) with a flexibly mounted stator, rotor axial runout and misalignment are taken into consideration, and the finite difference method and analytical method are used to analyze the influence of gas film thickness disturbance on sealing performance parameters, what's more, the effects of many key factors on gas film thickness disturbance are systematically investigated. The results show that, when sealed pressure is 10.1MPa and seal face average linear velocity is 107.3 m/s, gas film thickness disturbance has a significant effect on leakage rate, but has relatively litter effect on open force; Excessively large excitation amplitude or excessively high excitation frequency can lead to severe gas film thickness disturbance; And it is beneficial to assure a smaller gas film thickness disturbance when the stator material density is between 3.1 g/cm3 to 8.4 g/cm3; Ensuring sealing performance while minimizing support axial stiffness and support axial damping can help to improve dynamic tracking property of dry gas seal. The proposed research provides the instruction to optimize dynamic tracking property of the DGS.

  19. Recent studies on nanosecond-timescale pressurized gas discharges

    Science.gov (United States)

    Yatom, S.; Shlapakovski, A.; Beilin, L.; Stambulchik, E.; Tskhai, S.; Krasik, Ya E.

    2016-12-01

    The results of recent experimental and numerical studies of nanosecond high-voltage discharges in pressurized gases are reviewed. The discharges were ignited in a diode filled by different gases within a wide range of pressures by an applied pulsed voltage or by a laser pulse in the gas-filled charged resonant microwave cavity. Fast-framing imaging of light emission, optical emission spectroscopy, x-ray foil spectrometry and coherent anti-Stokes Raman scattering were used to study temporal and spatial evolution of the discharge plasma density and temperature, energy distribution function of runaway electrons and dynamics of the electric field in the plasma channel. The results obtained allow a deeper understanding of discharge dynamical properties in the nanosecond timescale, which is important for various applications of these types of discharges in pressurized gases.

  20. Ways to improve the removal of hydrogen sulfide from coke-oven gas

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, M.D.; Lyannaya; No. 1, Z.G.; Ignatova, E.P.; Zbykovskii, I.I.; Shukh, Ya.I.; Andreiko, I.M.; Garkushenko, I.Ya.

    1979-01-01

    Our calculations showed that, if the gas temperatures ahead of the scrubbers were reuced to 30/sup 0/C and 300 to 400 liters/h of concentrated ammonia water were added to the circuit, the degree of hydrogen sulfide absorption could be brought to 58 to 65%, i.e., the hydrogen sulfide content in the return gas would be less than 2.5 g/m/sup 3/. All the hydrogen sulfide removed from the gas would enter the concentrated ammonia water, which would be delivered to facilities for production of soda by the ammonia method. The ammonium sulfide formed in the liquor would be a desirable component, acting to inhibit corrosion. This would provide the simplest solution to the problem of utilizing the hydrogen sulfide removed from the gas. Our investigation thus showed that the hydrogen sulfide content of the coke-oven gas can be reduced to a permissible level in the department as it now exists, without substantial remodelling of the scrubber department. Implementation of the proposed measures (installation of an additional gas cooler beyond the blower and introduction of 300 to 400 liters/h of 20% ammonia liquor into the circuit) will make it possible to improve air-pollution conditions in the carbonization department and adjoining areas, reduce the corrosion of the gaslines, utilize that portion of the gas now discharged into the atmosphere, and eliminate the need for construction of an expensive special facility for removal of hydrogen sulfide. Addition of concentrated ammonia liquor into the scrubber-liquor circuit in the amounts indicated above raised the degree of hydrogen sulfide absorption from 31 to 43 to 47%.

  1. Main reaction process simulation of hydrogen gas discharge in a cold cathode electric vacuum device

    Indian Academy of Sciences (India)

    Jing-Ye Liu; Yuan Gao; Gang Wang

    2012-07-01

    Based on the related theory of plasma discharge process and the COMSOL multiphysics software, and considering the corresponding boundary conditions, the related recation types in the hydrogen plasma discharge were simulated and analysed, and the main reactions of hydrogen discharge in small electric vacuum components at low pressure and weak ionization were confirmed. Among the 21 types of reactions in hydrogen discharge process, 11 of them play importnat roles under low pressure and weak ionization in cold cathode electric vacuum device. The simulated results are consistent with the test result.

  2. The pipeline fracture behavior and pressure assessment under HIC (Hydrogen induced cracking) environment

    Energy Technology Data Exchange (ETDEWEB)

    Shaohua, Dong [China National Petroleum Corporation (CNPC), Beijing (China); Lianwei, Wang [University of Science and Technology Beijing (USTB), Beijing (China)

    2009-07-01

    As Hydrogen's transmit and diffuse, after gestating for a while, the density of hydrogen around crack tip of pipeline will get to the critical density, and the pipeline material will descend, make critical stress factor, the reason of pipeline Hydrogen Induced Cracking is Hydrogen's transmit and diffuse. The stress factor of Hydrogen Induced Cracking under surroundings-condition of stress is the key that estimate material's rupture behavior. The paper study the relationship among hydrogen concentrate, crack tip stress, stain field, hydrogen diffusion and inner pressure for crack tip process zone, then determined the length of HIC (hydrogen induced cracking) process zone. Based on the theory of propagation which reason micro-crack making core, dislocation model is produced for fracture criteria of HIC, the influence between material and environments under the HIC is analyzed, step by step pipeline maximum load pressure and threshold of J-integrity ( J{sub ISCC} ) is calculated, which is very significant for pipeline safety operation. (author)

  3. Changes in entrapped gas content and hydraulic conductivity with pressure.

    Science.gov (United States)

    Marinas, Maricris; Roy, James W; Smith, James E

    2013-01-01

    Water table fluctuations continuously introduce entrapped air bubbles into the otherwise saturated capillary fringe and groundwater zone, which reduces the effective (quasi-saturated) hydraulic conductivity, K(quasi), thus impacting groundwater flow, aquifer recharge and solute and contaminant transport. These entrapped gases will be susceptible to compression or expansion with changes in water pressure, as would be expected with water table (and barometric pressure) fluctuations. Here we undertake laboratory experiments using sand-packed columns to quantify the effect of water table changes of up to 250 cm on the entrapped gas content and the quasi-saturated hydraulic conductivity, and discuss our ability to account for these mechanisms in ground water models. Initial entrapped air contents ranged between 0.080 and 0.158, with a corresponding K(quasi) ranging between 2 and 6 times lower compared to the K(s) value. The application of 250 cm of water pressure caused an 18% to 26% reduction in the entrapped air content, resulting in an increase in K(quasi) by 1.16 to 1.57 times compared to its initial (0 cm water pressure) value. The change in entrapped air content measured at pressure step intervals of 50 cm, was essentially linear, and could be modeled according to the ideal gas law. Meanwhile, the changes in K(quasi) with compression-expansion of the bubbles because of pressure changes could be adequately captured with several current hydraulic conductivity models. © Ground Water 2012 and © Her Majesty the Queen in Right of Canada 2012. Ground Water © 2012, National Ground Water Association.

  4. Numerical study on combustion characteristics of nitrogen diluted hydrogen-rich syngas at high pressures

    Institute of Scientific and Technical Information of China (English)

    FU Zhongguang∗; LU Ke; ZHOU Yang; ZHU Yiming; LIU Xueqi

    2014-01-01

    Aiming at investigating the micro-mixing combustion characteristics of nitrogen diluted hydrogen-rich syngas at high pressures,the combustion model corrected at atmospheric pressure was adopted to ana-lyze the temperature field,flame shape and pollution emissions under conditions with different pressures, powers and equivalent ratios.The results show that,with an increase in pressure,the flame temperature and outlet temperature of the burner rose first and then dropped slightly;the flame width decreased gradu-ally while its height grew;the NOx emission indexes increased and tended to be smooth when the pressure increased to higher than 1 4 MPa.

  5. High-Pressure Hydrogen Sulfide by Diffusion Quantum Monte Carlo

    CERN Document Server

    Azadi, Sam

    2016-01-01

    We use the diffusion quantum Monte Carlo to revisit the enthalpy-pressure phase diagram of the various products from the different proposed decompositions of H$_2$S at pressures above 150~GPa. Our results entails a revision of the ground-state enthalpy-pressure phase diagram. Specifically, we find that the C2/c HS$_2$ structure is persistent up to 440~GPa before undergoing a phase transition into the C2/m phase. Contrary to density functional theory, our calculations suggest that the C2/m phase of HS is more stable than the I4$_1$/amd HS structure over the whole pressure range from 150 to 400 GPa. Moreover, we predict that the Im-3m phase is the most likely candidate for H$_3$S, which is consistent with recent experimental x-ray diffraction measurements.

  6. Hydrogen.

    Science.gov (United States)

    Bockris, John O'M

    2011-11-30

    The idea of a "Hydrogen Economy" is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO₂ in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H₂ from the electrolyzer. Methanol made with CO₂ from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan). Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs) by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  7. Neutral gas density depletion due to neutral gas heating and pressure balance in an inductively coupled plasma

    Science.gov (United States)

    Shimada, Masashi; Tynan, George R.; Cattolica, Robert

    2007-02-01

    The spatial distribution of neutral gas temperature and total pressure have been measured for pure N2, He/5%N2 and Ar/5%N2 in an inductively coupled plasma (ICP) reactor, and a significant rise in the neutral gas temperature has been observed. When thermal transpiration is used to correct total pressure measurements, the total pressure remains constant regardless of the plasma condition. Neutral pressure is depleted due to the pressure balance when the plasma pressure (mainly electron pressure) becomes comparable to the neutral pressure in high density plasma. Since the neutral gas follows the ideal gas law, the neutral gas density profile was obtained from the neutral gas temperature and the corrected neutral pressure measurements. The results show that the neutral gas density at the centre of the plasma chamber (factor of 2-4 ×) decreases significantly in the presence of a plasma discharge. Significant spatial variation in neutral gas uniformity occurs in such plasmas due to neutral gas heating and pressure balance.

  8. Multi-Walled Carbon Nanotube-Doped Tungsten Oxide Thin Films for Hydrogen Gas Sensing

    Directory of Open Access Journals (Sweden)

    Adisorn Tuantranont

    2010-08-01

    Full Text Available In this work we have fabricated hydrogen gas sensors based on undoped and 1 wt% multi-walled carbon nanotube (MWCNT-doped tungsten oxide (WO3 thin films by means of the powder mixing and electron beam (E-beam evaporation technique. Hydrogen sensing properties of the thin films have been investigated at different operating temperatures and gas concentrations ranging from 100 ppm to 50,000 ppm. The results indicate that the MWCNT-doped WO3 thin film exhibits high sensitivity and selectivity to hydrogen. Thus, MWCNT doping based on E-beam co-evaporation was shown to be an effective means of preparing hydrogen gas sensors with enhanced sensing and reduced operating temperatures. Creation of nanochannels and formation of p-n heterojunctions were proposed as the sensing mechanism underlying the enhanced hydrogen sensitivity of this hybridized gas sensor. To our best knowledge, this is the first report on a MWCNT-doped WO3 hydrogen sensor prepared by the E-beam method.

  9. Multi-walled carbon nanotube-doped tungsten oxide thin films for hydrogen gas sensing.

    Science.gov (United States)

    Wongchoosuk, Chatchawal; Wisitsoraat, Anurat; Phokharatkul, Ditsayut; Tuantranont, Adisorn; Kerdcharoen, Teerakiat

    2010-01-01

    In this work we have fabricated hydrogen gas sensors based on undoped and 1 wt% multi-walled carbon nanotube (MWCNT)-doped tungsten oxide (WO(3)) thin films by means of the powder mixing and electron beam (E-beam) evaporation technique. Hydrogen sensing properties of the thin films have been investigated at different operating temperatures and gas concentrations ranging from 100 ppm to 50,000 ppm. The results indicate that the MWCNT-doped WO(3) thin film exhibits high sensitivity and selectivity to hydrogen. Thus, MWCNT doping based on E-beam co-evaporation was shown to be an effective means of preparing hydrogen gas sensors with enhanced sensing and reduced operating temperatures. Creation of nanochannels and formation of p-n heterojunctions were proposed as the sensing mechanism underlying the enhanced hydrogen sensitivity of this hybridized gas sensor. To our best knowledge, this is the first report on a MWCNT-doped WO(3) hydrogen sensor prepared by the E-beam method.

  10. Techno-economic Analysis of Distributed Hydrogen Production from Natural Gas

    Institute of Scientific and Technical Information of China (English)

    LUK Ho Ting; LEI Ho Man; NG Wai Yee; JU Yihan; LAM Koon Fung

    2012-01-01

    It is well established that hydrogen has the potential to make a significant contribution to the world energy production. In U.S., majority of hydrogen production plants implement steam methane reforming (SMR) for centralized hydrogen production. However, there is a wide lack of agreement on the nascent stage of using hydro- gen as fuel in vehicles industry because of the difficulty in delivery and storage. By performing technological and economic analysis, this work aims to establish the most feasible hydrogen production pathway for automotives in near future. From the evaluation, processes such as thermal cracking of ammonia and centralized hydrogen production followed by bulk delivery are eliminated while on-site steam reforming of methanol and natural gas are the most technologically feasible options. These two processes are further evaluated by comprehensive economic analysis. The results showed that the steam reforming (SR) of natural gas has a shorter payback time and a higher return on investment (ROI) and internal rate of return (IRR). Sensitivity analysis has also been constructed to evaluate the impact of variables like NG feedstock price, capital of investment and operating capacity factor on the overall production cost of hydrogen. Based on this study, natural gas is prompted to be the most economically and technologically available raw material for short-term hydrogen production before the transition to renewable energy source such as solar energy, biomass and wind power.

  11. Hydrogen Energy Storage (HES) and Power-to-Gas Economic Analysis; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Eichman, Joshua

    2015-07-30

    This presentation summarizes opportunities for hydrogen energy storage and power-to-gas and presents the results of a market analysis performed by the National Renewable Energy Laboratory to quantify the value of energy storage. Hydrogen energy storage and power-to-gas systems have the ability to integrate multiple energy sectors including electricity, transportation, and industrial. On account of the flexibility of hydrogen systems, there are a variety of potential system configurations. Each configuration will provide different value to the owner, customers and grid system operator. This presentation provides an economic comparison of hydrogen storage, power-to-gas and conventional storage systems. The total cost is compared to the revenue with participation in a variety of markets to assess the economic competitiveness. It is found that the sale of hydrogen for transportation or industrial use greatly increases competitiveness. Electrolyzers operating as demand response devices (i.e., selling hydrogen and grid services) are economically competitive, while hydrogen storage that inputs electricity and outputs only electricity have an unfavorable business case. Additionally, tighter integration with the grid provides greater revenue (e.g., energy, ancillary service and capacity markets are explored). Lastly, additional hours of storage capacity is not necessarily more competitive in current energy and ancillary service markets and electricity markets will require new mechanisms to appropriately compensate long duration storage devices.

  12. Life cycle greenhouse emissions of compressed natural gas-hydrogen mixtures for transportation in Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, P. [Instituto de Energia y Desarrollo Sustentable, CNEA, CONICET, Av. del Libertador 8250, Ciudad Autonoma de Buenos Aires (Argentina); Dawidowski, L.; Gomez, D. [Gerencia Quimica, CNEA, Av. Gral. Paz 1499, San Martin (Argentina); Pasquevich, D. [Instituto de Energia y Desarrollo Sustentable, CNEA, CONICET, Av. del Libertador 8250, Ciudad Autonoma de Buenos Aires (Argentina); Centro Atomico Bariloche, CNEA, Av. Bustillo 9500, S.C. de Bariloche (Argentina)

    2010-06-15

    We have developed a model to assess the life cycle greenhouse emissions of compressed natural gas-hydrogen (CNG-H{sub 2}) mixtures used for transportation in Argentina. The overall fuel life cycle is assessed through a well-to-wheel (WTW) analysis for different hydrogen generation and distribution options. The combustion stage in road vehicles is modeled using the COPERT IV model. Hydrogen generation options include classical steam methane reforming (SMR) and water electrolysis (WE) in central plants and distributed facilities at the refueling stations. Centralized hydrogen generation by electrolysis in nuclear plants as well as the use of solar photovoltaic and wind electricity is also considered. Hydrogen distribution options include gas pipeline and refrigerated truck transportation for liquefied hydrogen. A total number of fifteen fuel pathways are studied; in all the cases the natural gas-hydrogen mixture is made at the refueling station. The use of WE using nuclear or wind electricity appears to be less contaminant that the use of pure CNG. (author)

  13. Gas Injection And Fast Pressure-Rise Measurements For The Linac4 H− Source

    CERN Document Server

    Mahner, E; Lettry, J; Mattei, S; O'Neil, M; Neupert, H; Pasquino, C; Schmitzer, C

    2013-01-01

    In the era of the Large Hadron Collider, the CERN injector complex comprising the 34 years old Linac2 with its primary proton source, is presently upgraded with a new linear accelerator for H− (Linac4). The design, construction, and test of volume production and cesiated RF-driven H− ion sources is presently ongoing with the final goal of producing an H− beam with 80 mA beam current, 45 keV beam energy, 500 s pulse length, and a repetition rate of 2 Hz. In order to have quantitative information of the hydrogen gas density at the moment of plasma ignition the dynamic vacuum properties of the plasma generator were studied experimentally. We describe the experimental setup and present fast pressure-rise measurements for different parameters of the gas injection system, such as gas species (H2, He, N2, Ar), piezo valve voltage pulse length (200 - 500 s), and injection pressure (400 - 2800 mbar). The obtained data are compared with a conductance model of the plasma generator.

  14. Combustion Characteristics and Performance of Low-Swirl Injectors with Natural Gas and Alternative Fuels At Elevated Pressures and Temperatures

    Science.gov (United States)

    Beerer, David Joseph

    Stationary power-generating gas turbines in the United States have historically been fueled with natural gas, but due to its increasing price and the need to reduce carbon emissions, interest in alternative fuels is increasing. In order to effectively operate engines with these fuels their combustion characteristics need be well understood, especially at elevated pressures and temperatures. In this dissertation, the performance of blends of natural gas / methane with hydrogen and carbon dioxide, to simulate syngas and biogas, are evaluated in a model low-swirl stabilized combustor inside an optically accessible high-pressure vessel. The flashback and lean blow out limits, along with pollutant emissions, flow field, and turbulent displacement flame speeds, are measured as a function of fuel composition, pressure, inlet temperature, firing temperature, and flow rate in the range from 1 to 8 atm, 294 to 600K, 1350 to 1950K, and 20 to 60 m/s, respectively. These properties are quantified as a function of the inlet parameters. The lean blow-out limits are independent of pressure and inlet temperature but are weakly dependent on velocity. NOX emissions for both fuels were found to be exponentially dependent upon firing temperature, but emissions for the high-hydrogen flames were consistently higher than those of natural gas flames. The flashback limits for a 90%/10% (by volume) hydrogen/methane mixture increase with velocity and inlet temperature, but decrease with pressure. Correspondingly, the flame position progresses toward the combustor nozzle with increasing pressure and flame temperature, but away with increasing inlet temperature and velocity. Flashback occurred when the leading edge of the flame entered the nozzle. Local displacement turbulent flame speeds scale linearly with the turbulent fluctuating velocities, u', at the leading edge of the flame. Turbulent flame speeds for high-hydrogen fuels are twice that of natural gas for the same inlet conditions. The

  15. Magnetized direct current microdischarge I. Effect of the gas pressure

    Science.gov (United States)

    Levko, Dmitry; Raja, Laxminarayan L.

    2017-03-01

    Following Paschen's law, electrical breakdown of gaps with small pd, where p is the gas pressure and d is the interelectrode gap, requires extremely high voltages. This means that the breakdown voltage for low-pressure microdischarges is of the order of a few kilovolts. This makes impractical the generation of low-pressure dc microdischarges. The application of dc magnetic field confines electrons in the cathode-anode gap. This leads to the significant decrease in the breakdown voltage because each electron experiences many collisions during its diffusion toward the anode. However, as was obtained experimentally, magnetized low-pressure microdischarges experience numerous instabilities whose nature is still not completely understood. In the present paper, we study the influence of the magnetic field on the low-pressure microdischarges. We use the self-consistent one-dimensional Particle-in-Cell Monte Carlo collisions model, which takes into account the electron magnetization while ions remain unmagnetized. We obtain striations in the discharge. We show that these striations appear in both homogeneous and non-homogeneous magnetic fields. We find simple expression for the instability growth rate, which shows that the instability results from ionization processes.

  16. Systems and methods for regulating pressure of a filled-in gas

    Energy Technology Data Exchange (ETDEWEB)

    Stautner, Ernst Wolfgang; Michael, Joseph Darryl

    2016-05-03

    A system for regulating a pressure of a filled-in gas is presented. The system includes a reservoir that stores a reservoir gas adsorbed in a sorbent material at a storage temperature, a gas-filled tube containing the filled-in gas, a controller configured to determine a pressure change required in the filled-in gas based upon signals representative of a pressure of the filled-in gas inside the gas-filled tube and a required pressure threshold, determine an updated temperature of the sorbent material based upon the pressure change required in the filled-in gas, and regulate the pressure of the filled-in gas by controlling the reservoir to change the storage temperature of the sorbent material to reach the updated temperature of the sorbent material.

  17. Trial wave functions for High-Pressure Metallic Hydrogen

    CERN Document Server

    Pierleoni, Carlo; Morales, Miguel A; Ceperley, David M; Holzmann, Markus

    2007-01-01

    Many body trial wave functions are the key ingredient for accurate Quantum Monte Carlo estimates of total electronic energies in many electron systems. In the Coupled Electron-Ion Monte Carlo method, the accuracy of the trial function must be conjugated with the efficiency of its evaluation. We report recent progress in trial wave functions for metallic hydrogen implemented in the Coupled Electron-Ion Monte Carlo method. We describe and characterize several types of trial functions of increasing complexity in the range of the coupling parameter $1.0 \\leq r_s \\leq1.55$. We report wave function comparisons for disordered protonic configurations and preliminary results for thermal averages.

  18. Magnetron radio frequency sputtering growth of LaNi{sub 5} thin films and their hydrogen-sensitive properties at room temperature and ordinary pressure

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Han [Faculty of Computer Science and Information Engineering, Hubei University, 430062, Wuhan (China); Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, 430062, Wuhan (China); Chen, Kansong, E-mail: kschen1999@aliyun.com [Faculty of Computer Science and Information Engineering, Hubei University, 430062, Wuhan (China); School of Electronic Information, Huanggang Normal University, 438000, Huanggang (China); Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, 430062, Wuhan (China); Liu, Huarong; Xie, Kun [Faculty of Computer Science and Information Engineering, Hubei University, 430062, Wuhan (China); Gu, Haoshuang [Faculty of Computer Science and Information Engineering, Hubei University, 430062, Wuhan (China); Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, 430062, Wuhan (China)

    2015-03-15

    Highlights: • LaNi{sub 5} thin films were fabricated by sputtering for hydrogen-sensitive applications. • Various sputtering conditions on film growth were discussed. • Annealed LaNi{sub 5} thin films exhibit significantly improved RT hydrogen sensitivities. • The enhancement for hydrogen sensitivity properties was analyzed. - Abstract: In this study, polycrystalline LaNi{sub 5} thin films were prepared by a co-sputtering method. Structural changes in the films were investigated by XRD analysis. After annealing, hydrogen-sensing performance of LaNi{sub 5} thin films were examined at room temperature and ordinary pressure. Sensitivity, response, and recovery times upon exposure of LaNi{sub 5} thin films at different hydrogen gas concentrations were determined. To investigate sensitivity intrinsically, changes in the microstructure and material composition of LaNi{sub 5} thin films were characterized by scanning-electron microscopy, x-ray energy-dispersive spectroscopy, and x-ray photoelectron spectroscopy. Results show that LaNi{sub 5} thin films have improved hydrogen-sensing properties, which could be attributed to the assistance of La(OH){sub 3}–La{sub 2}O{sub 3}–Ni on the absorption–desorption process. In conclusion, sputtered and annealed LaNi{sub 5} thin films exhibit significantly improved hydrogen sensitivity at room temperature and ordinary pressure compared with other LaNi{sub 5} materials used in previous studies.

  19. Numerical study of test gas vitiation effects on hydrogen-fueled scramjet combustion%Numerical study of test gas vitiation effects on hydrogen-fueled scramjet combustion

    Institute of Scientific and Technical Information of China (English)

    CHEN Chao-qun; TIAN Liang; XU Xu

    2012-01-01

    The effects of major vitiated species (H2O and CO2) and minor vitiated species (H,OH and O radicals) produced by combustion air preheater on ignition and combustion of hydrogen-fueled seramjet were numerically investigated. Firstly, kinetic analyses with CHEMKIN SENKIN code were conducted to evaluate the effects of contamination on the ignition delay times of hydrogen fuel over a range of temperature and pressure variations. Then numerical simulation of a three-dimensional reacting flow in hydrogen-fueled seramjet combustor was performed. The two-equation shear stress transport k-ω turbulence model was used for modeling turbulence and 33 reactions finite-rate chemistry was used for modeling the H2/air kinetics. The results show that: free radical species such as H,O,and OH may significantly promote the ignition process of hydrogen-air at relatively low initial temperature and pressure. However, H2O and CO2 have inhibition effects on the ignition process. Under the same conditions, H2O has more effective inhibition effects than CO2. The temperature and pressure rise due to combustion are lower in the air vitiated with H2O and CO2 because of their higher heat capacities and more dissociation. Combustion efficiency and thrust calculated for vitiated air case are lower than clean air case. These results indicate the importance of accounting for vitiation effects when extrapolating performance data from ground test to flight demonstration.

  20. Evidence for inert gas narcosis mechanisms in the occurrence of psychotic-like episodes at pressure environment.

    Science.gov (United States)

    Abraini, J H

    1995-11-27

    Psychotic-like episodes in divers exposed to high pressure have been attributed to either the high-pressure neurological syndrome, confinement in pressure chamber, the subject's personality, or the addition of nitrogen or hydrogen to the basic helium-oxygen breathing mixture used for deep diving. Alternatively, it is suggested that these disorders are in fact paroxysmal narcotic symptoms that result from the sum of the individual narcotic potencies of each inert gas in the breathing mixture. This hypothesis is tested against a variety of lipid solubility theories of narcosis. The results clearly support the hypothesis and provide new information about the cellular interactions between inert gases at raised pressure and pressure itself.

  1. 40 CFR 63.165 - Standards: Pressure relief devices in gas/vapor service.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Standards: Pressure relief devices in gas/vapor service. 63.165 Section 63.165 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Standards: Pressure relief devices in gas/vapor service. (a) Except during pressure releases, each pressure...

  2. 40 CFR 265.1054 - Standards: Pressure relief devices in gas/vapor service.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Standards: Pressure relief devices in gas/vapor service. 265.1054 Section 265.1054 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...: Pressure relief devices in gas/vapor service. (a) Except during pressure releases, each pressure relief...

  3. Influence of impurity hydrogen on the structure and properties of bulk Li and pressure effects

    Institute of Scientific and Technical Information of China (English)

    LIU; Zhiming; MA; Yanming; HE; Zhi; GUI; Tian; HE; Wenjiong; LIU; Bingbing; ZOU; Guangtian

    2006-01-01

    The structure and properties of a 16-atom body-centered cubic lithium cell with an interstitial hydrogen atom are studied using a pseudopotential-plane-wave method within the density functional theory at 0 K and high pressures.The host lattice is dramatically distorted by the introduction of H.Although the hydrogen atom is stable at the tetragonal site in perfect bcc host lattice,it favors the octahedral site formed by six nonequivalent Li atoms after full relaxation of the cell,showing P4/mmm symmetry within the pressures ranging from 0 to 6 GPa.The lattice ratio (a/c) changes irregularly with external pressure at about 3 GPa.The hydrogen band lies in the bottom of the valence band,separated by a gap from the metallic bands,illustrating the electronegativity of hydrogen.High reflectivity in the low frequency area induced by the impurity hydrogen is observed when only interband transitions are taken account of.A dip in reflectivity due to parallel band transitions is observed at ~0.4 eV.Another dip at ~4.3 eV appears when external pressure increases over 4 GPa.

  4. Hot-gas filtration for pressurized fluidized-bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Chang, R.; Kuby, W.

    1984-03-01

    This topical report discusses the status of the work, conducted under EPRI contract 1336-4, on the evaluation and development of ceramic filter hot gas cleanup technology for pressurized fluidized bed combustion. This topical report represents the status of the work through September 1983. The goal of the effort is to achieve 6000 h of operation on a 13-filter durability test rig. The work includes two parallel tasks. The first is construction of a durability test facility, operation of the facility with an initial candidate filter media installed, and assessment of results. The second task includes a literature survey to identify state-of-the-art ceramic fibers suitable for high-temperature gas filtration applications and filter testing in a single-filter test facility to assess the performance of promising new filter media. The best candidate will be chosen for further evaluation in the durability facility.

  5. The structure of radiative shock waves. III. The model grid for partially ionized hydrogen gas

    CERN Document Server

    Fadeyev, Y A; Fadeyev, Yu. A.

    2001-01-01

    The grid of the models of radiative shock waves propagating through partially ionized hydrogen gas with temperature 3000K <= T_1 <= 8000K and density 10^{-12} gm/cm^3 <= \\rho_1 <= 10^{-9}gm/cm^3 is computed for shock velocities 20 km/s <= U_1 <= 90 km/s. The fraction of the total energy of the shock wave irreversibly lost due to radiation flux ranges from 0.3 to 0.8 for 20 km/s <= U_1 <= 70 km/s. The postshock gas is compressed mostly due to radiative cooling in the hydrogen recombination zone and final compression ratios are within 1 <\\rho_N/\\rho_1 \\lesssim 10^2, depending mostly on the shock velocity U_1. The preshock gas temperature affects the shock wave structure due to the equilibrium ionization of the unperturbed hydrogen gas, since the rates of postshock relaxation processes are very sensitive to the number density of hydrogen ions ahead the discontinuous jump. Both the increase of the preshock gas temperature and the decrease of the preshock gas density lead to lower postsh...

  6. Hyperbaric oxygen therapy for the prevention of arterial gas embolism in food grade hydrogen peroxide ingestion.

    Science.gov (United States)

    Hendriksen, Stephen M; Menth, Nicholas L; Westgard, Bjorn C; Cole, Jon B; Walter, Joseph W; Masters, Thomas C; Logue, Christopher J

    2016-12-14

    Food grade hydrogen peroxide ingestion is a relatively rare presentation to the emergency department. There are no defined guidelines at this time regarding the treatment of such exposures, and providers may not be familiar with the potential complications associated with high concentration hydrogen peroxide ingestions. In this case series, we describe four patients who consumed 35% hydrogen peroxide, presented to the emergency department, and were treated with hyperbaric oxygen therapy. Two of the four patients were critically ill requiring intubation. All four patients had evidence on CT or ultrasound of venous gas emboli and intubated patients were treated as if they had an arterial gas embolism since an exam could not be followed. After hyperbaric oxygen therapy each patient was discharged from the hospital neurologically intact with no other associated organ injuries related to vascular gas emboli. Hyperbaric oxygen therapy is an effective treatment for patients with vascular gas emboli after high concentration hydrogen peroxide ingestion. It is the treatment of choice for any impending, suspected, or diagnosed arterial gas embolism. Further research is needed to determine which patients with portal venous gas emboli should be treated with hyperbaric oxygen therapy.

  7. Development of a Low NOx Medium sized Industrial Gas Turbine Operating on Hydrogen-Rich Renewable and Opportunity Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, Ram

    2013-07-31

    This report presents the accomplishments at the completion of the DOE sponsored project (Contract # DE-FC26-09NT05873) undertaken by Solar Turbines Incorporated. The objective of this 54-month project was to develop a low NOx combustion system for a medium sized industrial gas turbine engine operating on Hydrogen-rich renewable and opportunity Fuels. The work in this project was focused on development of a combustion system sized for 15MW Titan 130 gas turbine engine based on design analysis and rig test results. Although detailed engine evaluation of the complete system is required prior to commercial application, those tasks were beyond the scope of this DOE sponsored project. The project tasks were organized in three stages, Stages 2 through 4. In Stage 2 of this project, Solar Turbines Incorporated characterized the low emission capability of current Titan 130 SoLoNOx fuel injector while operating on a matrix of fuel blends with varying Hydrogen concentration. The mapping in this phase was performed on a fuel injector designed for natural gas operation. Favorable test results were obtained in this phase on emissions and operability. However, the resulting fuel supply pressure needed to operate the engine with the lower Wobbe Index opportunity fuels would require additional gas compression, resulting in parasitic load and reduced thermal efficiency. In Stage 3, Solar characterized the pressure loss in the fuel injector and developed modifications to the fuel injection system through detailed network analysis. In this modification, only the fuel delivery flowpath was modified and the air-side of the injector and the premixing passages were not altered. The modified injector was fabricated and tested and verified to produce similar operability and emissions as the Stage 2 results. In parallel, Solar also fabricated a dual fuel capable injector with the same air-side flowpath to improve commercialization potential. This injector was also test verified to produce 15

  8. Screening of hydrogen storage media applying high pressure thermogravimetry

    DEFF Research Database (Denmark)

    Bentzen, J.J.; Pedersen, Allan Schrøder; Kjøller, J.

    2001-01-01

    A number of commercially available hydride-forming alloys of the MmNi5–xSnx (Mm=mischmetal, a mixture of lanthanides) type were examined using a high pressure, high temperature microbalance,scanning electron microscopy and X-ray diffraction. Activation conditions, reversible storage capacity, wor...

  9. Ultrahigh gas storage both at low and high pressures in KOH-activated carbonized porous aromatic frameworks.

    KAUST Repository

    Li, Yanqiang

    2013-01-01

    The carbonized PAF-1 derivatives formed by high-temperature KOH activation showed a unique bimodal microporous structure located at 0.6 nm and 1.2 nm and high surface area. These robust micropores were confirmed by nitrogen sorption experiment and high-resolution transmission electron microscopy (TEM). Carbon dioxide, methane and hydrogen sorption experiments indicated that these novel porous carbon materials have significant gas sorption abilities in both low-pressure and high-pressure environments. Moreover the methane storage ability of K-PAF-1-750 is among the best at 35 bars, and its low-pressure gas adsorption abilities are also comparable to the best porous materials in the world. Combined with excellent physicochemical stability, these materials are very promising for industrial applications such as carbon dioxide capture and high-density clean energy storage.

  10. Internal hysteresis experienced on a high pressure syn gas compressor

    Science.gov (United States)

    Zeidan, F. Y.

    1984-01-01

    A vibration instability phenomenon experienced in operating high pressure syn gas centrifugal compressors in two ammonia plants is described. The compressors were monitored by orbit and spectrum analysis for changes from baseline readings. It is found that internal hysteresis was the major destabilizing force; however, the problem was further complicated by seal lockup at the suction end of the compressor. A coupling lockup problem and a coupling fit problem, which frettage of the shaft, are also considered as contributors to the self excited vibrations.

  11. Plasma density perturbation caused by probes at low gas pressure

    Science.gov (United States)

    Sternberg, Natalia; Godyak, Valery

    2017-09-01

    An analysis of plasma parameter perturbations caused by a spherical probe immersed into a spherical plasma is presented for arbitrary collisionality and arbitrary ratios of probe to plasma dimensions. The plasma was modeled by the fluid plasma equations with ion inertia and nonlinear ion friction force that dominate plasma transport at low gas pressures. Significant depletion of the plasma density around the probe surface has been found. The area of plasma depletion coincides with the sensing area of different kinds of magnetic and microwave probes and will therefore lead to errors in data inferred from measurements with such probes.

  12. Gas-pressure forming of superplastic ceramic sheet

    Energy Technology Data Exchange (ETDEWEB)

    Nieh, T.G.; Wadsworth, J.

    1993-06-24

    Superplasticity in ceramics has now advanced to the stage that technologically viable superplastic deformation processing can be performed. In this paper, examples of biaxial gas-pressure forming of several ceramics are given. These include yttria stabilized, tetragonal zirconia (YTZP) a 20% alumina/YTZP composite, and silicon. In addition, the concurrent superplastic forming and diffusion bonding of a hybrid YTZP/C103 (ceramic-metal) structure are presented. These forming processes offer technological advantages of greater dimensional control and increased variety and complexity of shapes than is possible with conventional ceramic shaping technology.

  13. Steam Reforming of Dimethyl Ether by Gliding Arc Gas Discharge Plasma for Hydrogen Production

    Institute of Scientific and Technical Information of China (English)

    王保伟; 孙启梅; 吕一军; 杨美琳; 闫文娟

    2014-01-01

    Gliding arc gas discharge plasma was used for the generation of hydrogen from steam reforming of di-methyl ether (DME). A systemic procedure was employed to determine the suitable experimental conditions. It was found that DME conversion first increased up to the maximum and then decreased slightly with the increase of added water and air. The increase of total feed gas flow rate resulted in the decrease of DME conversion and hy-drogen yield, but hydrogen energy consumption dropped down to the lowest as total feed gas flow rate increased to 76 ml·min-1. Larger electrode gap and higher discharge voltage were advantageous. Electrode shape had an impor-tant effect on the conversion of DME and production of H2. Among the five electrodes, electrode 2# with valid length of 55 mm and the radian of 34 degrees of the top electrode section was the best option, which enhanced ob-viously the conversion of DME.

  14. Self-heated silicon nanowires for high performance hydrogen gas detection

    Science.gov (United States)

    Ahn, Jae-Hyuk; Yun, Jeonghoon; Moon, Dong-Il; Choi, Yang-Kyu; Park, Inkyu

    2015-03-01

    Self-heated silicon nanowire sensors for high-performance, ultralow-power hydrogen detection have been developed. A top-down nanofabrication method based on well-established semiconductor manufacturing technology was utilized to fabricate silicon nanowires in wafer scale with high reproducibility and excellent compatibility with electronic readout circuits. Decoration of palladium nanoparticles onto the silicon nanowires enables sensitive and selective detection of hydrogen gas at room temperature. Self-heating of silicon nanowire sensors allows us to enhance response and recovery performances to hydrogen gas, and to reduce the influence of interfering gases such as water vapor and carbon monoxide. A short-pulsed heating during recovery was found to be effective for additional reduction of operation power as well as recovery characteristics. This self-heated silicon nanowire gas sensor will be suitable for ultralow-power applications such as mobile telecommunication devices and wireless sensing nodes.

  15. Microbial electrolysis cells for high yield hydrogen gas production from organic matter.

    Science.gov (United States)

    Logan, Bruce E; Call, Douglas; Cheng, Shaoan; Hamelers, Hubertus V M; Sleutels, Tom H J A; Jeremiasse, Adriaan W; Rozendal, René A

    2008-12-01

    The use of electrochemically active bacteria to break down organic matter, combined with the addition of a small voltage (> 0.2 V in practice) in specially designed microbial electrolysis cells (MECs), can result in a high yield of hydrogen gas. While microbial electrolysis was invented only a few years ago, rapid developments have led to hydrogen yields approaching 100%, energy yields based on electrical energy input many times greater than that possible by water electrolysis, and increased gas production rates. MECs used to make hydrogen gas are similar in design to microbial fuel cells (MFCs) that produce electricity, but there are important differences in architecture and analytical methods used to evaluate performance. We review here the materials, architectures, performance, and energy efficiencies of these MEC systems that show promise as a method for renewable and sustainable energy production, and wastewater treatment.

  16. Microbial Electrolysis Cells for High Yield Hydrogen Gas Production from Organic Matter

    KAUST Repository

    Logan, Bruce E.

    2008-12-01

    The use of electrochemically active bacteria to break down organic matter, combined with the addition of a small voltage (>0.2 V in practice) in specially designed microbial electrolysis cells (MECs), can result in a high yield of hydrogen gas. While microbial electrolysis was invented only a few years ago, rapid developments have led to hydrogen yields approaching 100%, energy yields based on electrical energy input many times greater than that possible by water electrolysis, and increased gas production rates. MECs used to make hydrogen gas are similar in design to microbial fuel cells (MFCs) that produce electricity, but there are important differences in architecture and analytical methods used to evaluate performance. We review here the materials, architectures, performance, and energy efficiencies of these MEC systems that show promise as a method for renewable and sustainable energy production, and wastewater treatment. © 2008 American Chemical Society.

  17. A method for simulating the release of natural gas from the rupture of high-pressure pipelines in any terrain.

    Science.gov (United States)

    Deng, Yajun; Hu, Hongbing; Yu, Bo; Sun, Dongliang; Hou, Lei; Liang, Yongtu

    2017-08-24

    The rupture of a high-pressure natural gas pipeline can pose a serious threat to human life and environment. In this research, a method has been proposed to simulate the release of natural gas from the rupture of high-pressure pipelines in any terrain. The process of gas releases from the rupture of a high-pressure pipeline is divided into three stages, namely the discharge, jet, and dispersion stages. Firstly, a discharge model is established to calculate the release rate of the orifice. Secondly, an improved jet model is proposed to obtain the parameters of the pseudo source. Thirdly, a fast-modeling method applicable to any terrain is introduced. Finally, based upon these three steps, a dispersion model, which can take any terrain into account, is established. Then, the dispersion scenarios of released gas in four different terrains are studied. Moreover, the effects of pipeline pressure, pipeline diameter, wind speed and concentration of hydrogen sulfide on the dispersion scenario in real terrain are systematically analyzed. The results provide significant guidance for risk assessment and contingency planning of a ruptured natural gas pipeline. Copyright © 2017. Published by Elsevier B.V.

  18. Measurement of the Rate of Muon Capture in Hydrogen Gas and Determination of the Proton's Pseudoscalar Coupling $g_P$

    CERN Document Server

    Andreev, V A; Case, T A; Chitwood, D B; Clayton, S M; Crowe, K M; Deutsch, J; Egger, J; Freedman, S J; Ganzha, V A; Gorringe, T; Gray, F E; Hertzog, D W; Hildebrandt, M; Kammel, P; Kiburg, B; Knaack, S; Kravtsov, P A; Krivshich, A G; Lauss, B; Lynch, K L; Maev, E M; Maev, O E; Mulhauser, F; Özben, C S; Petitjean, C; Petrov, G E; Prieels, R; Schapkin, G N; Semenchuk, G G; Soroka, M A; Tishchenko, V; Vasilyev, A A; Vorobyov, A A; Vznuzdaev, M E; Winter, P

    2007-01-01

    The rate of nuclear muon capture by the proton has been measured using a new experimental technique based on a time projection chamber operating in ultra-clean, deuterium-depleted hydrogen gas at 1 MPa pressure. The capture rate was obtained from the difference between the measured $\\mu^-$ disappearance rate in hydrogen and the world average for the $\\mu^+$ decay rate. The target's low gas density of 1% compared to liquid hydrogen is key to avoiding uncertainties that arise from the formation of muonic molecules. The capture rate from the hyperfine singlet ground state of the $\\mu p$ atom is measured to be $\\Lambda_S=725.0 \\pm 17.4 s^{-1}$, from which the induced pseudoscalar coupling of the nucleon, $g_P(q^2=-0.88 m_\\mu^2)=7.3 \\pm 1.1$, is extracted. This result is consistent with theoretical predictions for $g_P$ that are based on the approximate chiral symmetry of QCD.

  19. Quantum theoretical study of hydrogen under high pressure

    CERN Document Server

    Biermann, S

    2001-01-01

    In the first chapter we will review our knowledge of the phase diagram of hydrogen. Chapter 2 is a summary of the standard density functional and molecular dynamics methods and shows how these are combined in the Car-Parrinello method. Here the nuclei are still treated as classical particles obeying Newtonian mechanics. In chapter 3 we drop this approximation. The path integral description of quantum statistics is added on top of the classical Car-Parrinello method and yields a formalism that includes quantum effects due to the finite de Broglie wavelength of the nuclei. Some technical aspects, namely the parallel implementation of the Path Integral Car-Parrinello (PICP) method, are discussed in chapter 4. In chapter 5 we present the results of our PICP calculations and compare them with prior calculations using the classical Car-Parrinello method as described in chapter 2.

  20. Ultraviolet-visible absorption spectra of solid hydrogen sulphide under high pressure

    CERN Document Server

    Kume, T; Sasaki, S; Shimizu, H

    2002-01-01

    Ultraviolet-visible absorption spectra of solid hydrogen sulphide (H sub 2 S) were measured at various pressures from 0.3 to 29 GPa. The absorption edge observed around 4.8 eV at 0.3 GPa indicated a red-shift with increasing pressure, and positioned below 3 eV at 29 GPa. On the basis of the spectra obtained, the energy gap was determined as a function of pressure. The transition to phase IV at 11 GPa was found to lead to a small jump in its pressure dependence and to yield an Urbach tail in the absorption edge.

  1. Comparison of hydrogen gas embrittlement of austenitic and ferritic stainless steels

    Science.gov (United States)

    Perng, T. P.; Altstetter, C. J.

    1987-01-01

    Hydrogen-induced slow crack growth (SCG) was compared in austenitic and ferritic stainless steels at 0 to 125 °Cand 11 to 216 kPa of hydrogen gas. No SCG was observed for AISI 310, while AISI 301 was more susceptible to hydrogen embrittlement and had higher cracking velocity than AL 29-4-2 under the same test conditions. The kinetics of crack propagation was modeled in terms of the hydrogen transport in these alloys. This is a function of temperature, microstructure, and stress state in the embrittlement region. The relatively high cracking velocity of AISI 301 was shown to be controlled by the fast transport of hydrogen through the stress-induced α' martensite at the crack tip and low escape rate of hydrogen through the γ phase in the surrounding region. Faster accumulation rates of hydrogen in the embrittlement region were expected for AISI 301, which led to higher cracking velocities. The mechanism of hydrogen-induced SCG was discussed based upon the concept of hydrogen-enhanced plasticity.

  2. NMR properties of hydrogen-bonded glycine cluster in gas phase

    Science.gov (United States)

    Carvalho, Jorge R.; da Silva, Arnaldo Machado; Ghosh, Angsula; Chaudhuri, Puspitapallab

    2016-11-01

    Density Functional Theory (DFT) calculations have been performed to study the effect of the hydrogen bond formation on the Nuclear Magnetic Resonance (NMR) parameters of hydrogen-bonded clusters of glycine molecules in gas-phase. DFT predicted isotropic chemical shifts of H, C, N and O of the isolated glycine with respect to standard reference materials are in reasonable agreement with available experimental data. The variations of isotropic and anisotropic chemical shifts for all atoms constituting these clusters containing up to four glycine molecules have been investigated systematically employing gradient corrected hybrid B3LYP functional with three different types of extended basis sets. The clusters are mainly stabilized by a network of strong hydrogen bonds among the carboxylic (COOH) groups of glycine monomers. The formation of hydrogen bond influences the molecular structure of the clusters significantly which, on the other hand, gets reflected in the variations of NMR properties. The carbon (C) atom of the sbnd COOH group, the bridging hydrogen (H) and the proton-donor oxygen (O) atom of the Osbnd H bond suffer downfield shift due to the formation of hydrogen bond. The hydrogen bond lengths and the structural complexity of the clusters are found to vary with the number of participating monomers. A direct correlation between the hydrogen bond length and isotropic chemical shift of the bridging hydrogen is observed in all cases. The individual variations of the principal axis elements in chemical shift tensor provide additional insight about the different nature of the monomers within the cluster.

  3. Development of the Raman lidar system for remote hydrogen gas detection

    Energy Technology Data Exchange (ETDEWEB)

    Choi, In Young; Baik, Sung Hoon; Park, Seung Kyu; Park, Nak Gyu; Choi, Young Soo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Detection of hydrogen (H{sub 2}) gas leakage is very important for safety of the nuclear power plant because H{sub 2} gas is very flammable and explosive. H{sub 2} gas is generated by oxidizing the nuclear fuel cladding during the critical accident and generated H{sub 2} gas leads to serious secondary damages in the containment building of nuclear power plant. Thus, various H{sub 2} gas detection techniques are used in the nuclear power plant such as catalytic combustion sensors, semiconducting oxide sensors, thermal conductivity sensors and electrochemical sensor. A Raman lidar (Light Detection And Ranging) system for remote detection of the H{sub 2} gas can cover the area in the containment building of a nuclear power plant. H{sub 2} gas has a very strong Raman Effect, and H{sub 2} Raman cells have been widely used for laser wavelength conversion. In this study, Raman lidar system was developed for H{sub 2} gas detection used in the containment building of nuclear power plant. In this study, remote hydrogen gas detection devices and measuring algorithm are developed by using the Raman lidar method. Through the experiment, we proved that our developed Raman lidar system was possible to measure the N{sub 2} and H{sub 2} gas scattering signal remotely.

  4. Gasification of oil shale for hydrogen containing gas production

    Energy Technology Data Exchange (ETDEWEB)

    Lapidus, A.L. [I.M. Gubkin Russian State Univ. of Oil and Gas, Moscow (Russian Federation); United Research and Development Center Ltd., Moscow (Russian Federation); Strizhakova, Yu. [Samara State Technical Univ. (Russian Federation); Zhagfarov, F.G.; Usova, T.; Avakyan, T. [I.M. Gubkin Russian State Univ. of Oil and Gas, Moscow (Russian Federation)

    2010-12-30

    Qualified using of combustible shale, peat and wood for production of fuel and chemical products is a very actual problem for our country because of their large resource. It is possible to carry out two principal different ways of their use: thermal processing and gasification with following processing of gas products. Production of synthesis gas with composition CO:H{sub 2}=1:2 (vol) is possible at gasification of combustible shale. This gas is converted into the mixture of hydrocarbons over cobalt catalysts at 170-280 C at 1-3 bar. The hydrocarbons can be used as motor, including diesel, or reactive fuel. We proposed the effective catalysts at which conversion of synthesis gas in liquid products equals 80-90%. (orig.)

  5. Real gas CFD simulations of hydrogen/oxygen supercritical combustion

    Science.gov (United States)

    Pohl, S.; Jarczyk, M.; Pfitzner, M.; Rogg, B.

    2013-03-01

    A comprehensive numerical framework has been established to simulate reacting flows under conditions typically encountered in rocket combustion chambers. The model implemented into the commercial CFD Code ANSYS CFX includes appropriate real gas relations based on the volume-corrected Peng-Robinson (PR) equation of state (EOS) for the flow field and a real gas extension of the laminar flamelet combustion model. The results indicate that the real gas relations have a considerably larger impact on the flow field than on the detailed flame structure. Generally, a realistic flame shape could be achieved for the real gas approach compared to experimental data from the Mascotte test rig V03 operated at ONERA when the differential diffusion processes were only considered within the flame zone.

  6. Combustion characteristics of natural gas-hydrogen hybrid fuel turbulent diffusion flame

    Energy Technology Data Exchange (ETDEWEB)

    El-Ghafour, S.A.A.; El-dein, A.H.E.; Aref, A.A.R. [Mechanical Power Engineering Department, Faculty of Engineering, Suez Canal University, Port-Said (Egypt)

    2010-03-15

    Combustion characteristics of natural gas - hydrogen hybrid fuel were investigated experimentally in a free jet turbulent diffusion flame flowing into a slow co-flowing air stream. Experiments were carried out at a constant jet exit Reynolds number of 4000 and with a wide range of NG-H{sub 2} mixture concentrations, varied from 100%NG to 50%NG-50% H{sub 2} by volume. The effect of hydrogen addition on flame stability, flame length, flame structure, exhaust species concentration and pollutant emissions was conducted. Results showed that, hydrogen addition sustains a progressive improvement in flame stability and reduction in flame length, especially for relatively high hydrogen concentrations. Hydrogen-enriched flames found to have a higher combustion temperatures and reactivity than natural gas flame. Also, it was found that hydrogen addition to natural gas is an ineffective strategy for NO and CO reduction in the studied range, while a significant reduction in the %CO{sub 2} molar concentration by about 30% was achieved. (author)

  7. Advances of zeolite based membrane for hydrogen production via water gas shift reaction

    Science.gov (United States)

    Makertihartha, I. G. B. N.; Zunita, M.; Rizki, Z.; Dharmawijaya, P. T.

    2017-07-01

    Hydrogen is considered as a promising energy vector which can be obtained from various renewable sources. However, an efficient hydrogen production technology is still challenging. One technology to produce hydrogen with very high capacity with low cost is through water gas shift (WGS) reaction. Water gas shift reaction is an equilibrium reaction that produces hydrogen from syngas mixture by the introduction of steam. Conventional WGS reaction employs two or more reactors in series with inter-cooling to maximize conversion for a given volume of catalyst. Membrane reactor as new technology can cope several drawbacks of conventional reactor by removing reaction product and the reaction will favour towards product formation. Zeolite has properties namely high temperature, chemical resistant, and low price makes it suitable for membrane reactor applications. Moreover, it has been employed for years as hydrogen selective layer. This review paper is focusing on the development of membrane reactor for efficient water gas shift reaction to produce high purity hydrogen and carbon dioxide. Development of membrane reactor is discussed further related to its modification towards efficient reaction and separation from WGS reaction mixture. Moreover, zeolite framework suitable for WGS membrane reactor will be discussed more deeply.

  8. Simulation study to determine the feasibility of injecting hydrogen sulfide, carbon dioxide and nitrogen gas injection to improve gas and oil recovery oil-rim reservoir

    Science.gov (United States)

    Eid, Mohamed El Gohary

    This study is combining two important and complicated processes; Enhanced Oil Recovery, EOR, from the oil rim and Enhanced Gas Recovery, EGR from the gas cap using nonhydrocarbon injection gases. EOR is proven technology that is continuously evolving to meet increased demand and oil production and desire to augment oil reserves. On the other hand, the rapid growth of the industrial and urban development has generated an unprecedented power demand, particularly during summer months. The required gas supplies to meet this demand are being stretched. To free up gas supply, alternative injectants to hydrocarbon gas are being reviewed to support reservoir pressure and maximize oil and gas recovery in oil rim reservoirs. In this study, a multi layered heterogeneous gas reservoir with an oil rim was selected to identify the most optimized development plan for maximum oil and gas recovery. The integrated reservoir characterization model and the pertinent transformed reservoir simulation history matched model were quality assured and quality checked. The development scheme is identified, in which the pattern and completion of the wells are optimized to best adapt to the heterogeneity of the reservoir. Lateral and maximum block contact holes will be investigated. The non-hydrocarbon gases considered for this study are hydrogen sulphide, carbon dioxide and nitrogen, utilized to investigate miscible and immiscible EOR processes. In November 2010, re-vaporization study, was completed successfully, the first in the UAE, with an ultimate objective is to examine the gas and condensate production in gas reservoir using non hydrocarbon gases. Field development options and proces schemes as well as reservoir management and long term business plans including phases of implementation will be identified and assured. The development option that maximizes the ultimate recovery factor will be evaluated and selected. The study achieved satisfactory results in integrating gas and oil

  9. Development of a new method for hydrogen isotope analysis of trace hydrocarbons in natural gas samples

    Directory of Open Access Journals (Sweden)

    Xibin Wang

    2016-12-01

    Full Text Available A new method had been developed for the analysis of hydrogen isotopic composition of trace hydrocarbons in natural gas samples by using solid phase microextraction (SPME combined with gas chromatography-isotope ratio mass spectrometry (GC/IRMS. In this study, the SPME technique had been initially introduced to achieve the enrichment of trace content of hydrocarbons with low abundance and coupled to GC/IRMS for hydrogen isotopic analysis. The main parameters, including the equilibration time, extraction temperature, and the fiber type, were systematically optimized. The results not only demonstrated that high extraction yield was true but also shows that the hydrogen isotopic fractionation was not observed during the extraction process, when the SPME device fitted with polydimethylsiloxane/divinylbenzene/carbon molecular sieve (PDMS/DVB/CAR fiber. The applications of SPME-GC/IRMS method were evaluated by using natural gas samples collected from different sedimentary basins; the standard deviation (SD was better than 4‰ for reproducible measurements; and also, the hydrogen isotope values from C1 to C9 can be obtained with satisfying repeatability. The SPME-GC/IRMS method fitted with PDMS/DVB/CAR fiber is well suited for the preconcentration of trace hydrocarbons, and provides a reliable hydrogen isotopic analysis for trace hydrocarbons in natural gas samples.

  10. In situ Gas Conditioning in Fuel Reforming for Hydrogen Generation

    Energy Technology Data Exchange (ETDEWEB)

    Bandi, A.; Specht, M.; Sichler, P.; Nicoloso, N.

    2002-09-20

    The production of hydrogen for fuel cell applications requires cost and energy efficient technologies. The Absorption Enhanced Reforming (AER), developed at ZSW with industrial partners, is aimed to simplify the process by using a high temperature in situ CO2 absorption. The in situ CO2 removal results in shifting the steam reforming reaction equilibrium towards increased hydrogen concentration (up to 95 vol%). The key part of the process is the high temperature CO2 absorbent. In this contribution results of Thermal Gravimetric Analysis (TGA) investigations on natural minerals, dolomites, silicates and synthetic absorbent materials in regard of their CO2 absorption capacity and absorption/desorption cyclic stability are presented and discussed. It has been found that the inert parts of the absorbent materials have a structure stabilizing effect, leading to an improved cyclic stability of the materials.

  11. Tracing ram-pressure stripping with warm molecular hydrogen emission

    Energy Technology Data Exchange (ETDEWEB)

    Sivanandam, Suresh [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, Rm 101, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Rieke, Marcia J.; Rieke, George H., E-mail: sivanandam@dunlap.utoronto.ca [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)

    2014-12-01

    We use the Spitzer Infrared Spectrograph to study four infalling cluster galaxies with signatures of ongoing ram-pressure stripping. H{sub 2} emission is detected in all four, and two show extraplanar H{sub 2} emission. The emission usually has a warm (T ∼ 115-160 K) and a hot (T ∼ 400-600 K) component that is approximately two orders of magnitude less massive than the warm one. The warm component column densities are typically 10{sup 19} to 10{sup 20} cm{sup –2} with masses of 10{sup 6} to 10{sup 8} M {sub ☉}. The warm H{sub 2} is anomalously bright compared with normal star-forming galaxies and therefore may be excited by ram-pressure. In the case of CGCG 97-073, the H{sub 2} is offset from the majority of star formation along the direction of the galaxy's motion in the cluster, suggesting that it is forming in the ram-pressure wake of the galaxy. Another galaxy, NGC 4522, exhibits a warm H{sub 2} tail approximately 4 kpc in length. These results support the hypothesis that H{sub 2} within these galaxies is shock-heated from the interaction with the intracluster medium. Stripping of dust is also a common feature of the galaxies. For NGC 4522, where the distribution of dust at 8 μm is well resolved, knots and ripples demonstrate the turbulent nature of the stripping process. The Hα and 24 μm luminosities show that most of the galaxies have star-formation rates comparable to similar mass counterparts in the field. Finally, we suggest a possible evolutionary sequence primarily related to the strength of ram-pressure that a galaxy experiences to explain the varied results observed in our sample.

  12. Silica membranes for hydrogen separation in coal gas processing. Final report, January 1993

    Energy Technology Data Exchange (ETDEWEB)

    Gavalas, G.R.

    1993-03-01

    The general objective of this project was to synthesize permselective membranes suitable for hydrogen separation from coal gas. The specific objectives were: (i) to synthesize membranes by chemical vapor deposition (CVD) of SiO{sub 2} or other oxides on porous support tubes, (ii) characterize the membranes by permeation measurements of various gases and by electron microscopy, and (iii) obtain information about the mechanism and kinetics Of SiO{sub 2} deposition, and model the process of membrane formation. Silica glass and certain other glasses, in dense (nonporous) form, are highly selective to hydrogen permeation. Since this high selectivity is accompanied by low permeability, however, a practical membrane must have a composite structure consisting of a thin layer of the active oxide supported on a porous tube or plate providing mechanical support. In this project the membranes were synthesized by chemical vapor deposition (CVD) of SiO{sub 2}, TiO{sub 2}, Al{sub 2}O{sub 3} and B{sub 2}O{sub 3} layers inside the walls of porous Vycor tubes (5 mm ID, 7 mm OD, 40 {Angstrom} mean pore diameter). Deposition of the oxide layer was carried out using the reaction of SiCl{sub 4} (or TiCl{sub 4}, AlCl{sub 3}, BCl{sub 3}) and water vapor at elevated temperatures. The porous support tube was inserted concentrically into a larger quartz tube and fitted with flow lines and pressure gauges. The flow of the two reactant streams was regulated by mass flow controllers, while the temperature was controlled by placing the reactor into a split-tube electric furnace.

  13. Tracing Ram-Pressure Stripping with Warm Molecular Hydrogen Emission

    CERN Document Server

    Sivanandam, Suresh; Rieke, George H

    2014-01-01

    We use the Spitzer Infrared Spectrograph (IRS) to study four infalling cluster galaxies with signatures of on-going ram-pressure stripping. H$_2$ emission is detected in all four; two show extraplanar H$_2$ emission. The emission usually has a warm (T $\\sim$ $115 - 160$K) and a hot (T $\\sim$ 400 $-$ 600K) component that is approximately two orders of magnitude less massive than the warm one. The warm component column densities are typically $10^{19} - 10^{20}$ cm$^{-2}$ with masses of $10^6 - 10^8 M_\\odot$. The warm H$_2$ is anomalously bright compared with normal star-forming galaxies and therefore may be excited by ram-pressure. In the case of CGCG 97-073, the H$_2$ is offset from the majority of star formation along the direction of the galaxy's motion in the cluster, suggesting it is forming in the ram-pressure wake of the galaxy. Another galaxy, NGC 4522, exhibits a warm H$_2$ tail approximately 4 kpc in length. These results support the hypothesis that H$_2$ within these galaxies is shock-heated from th...

  14. Influence of hydrogen input partial pressure on the polarity of InN on GaAs (1 1 1)A grown by metalorganic vapor phase epitaxy

    Science.gov (United States)

    Murakami, Hisashi; Eriguchi, Ken-ichi; Torii, Jun-ichi; Cho, Hyun-Chol; Kumagai, Yoshinao; Koukitu, Akinori

    2008-04-01

    Influences of hydrogen input partial pressure in the carrier gas ( F=PHo/(PHo+PNo)) on the crystalline quality and polarities of InN on GaAs (1 1 1)A surfaces were investigated by metalorganic vapor phase epitaxy (MOVPE). It was found that the polarity of the InN was affected by the hydrogen gas in the system regardless of the polarity of GaAs starting substrate. The polarity of InN layer grown with the hydrogen partial pressure of Fo=0.004 was a mixture of In-polarity and N-polarity, while that grown with Fo=0 was In-polarity. Degradation of the crystalline quality of InN grown with Fo=0.004 occurred due to the polarity inversion during the growth. The reason why the polarity of InN was influenced by the hydrogen carrier gas could be explained by the preferential growth of N-polarity InN in the H 2 contained ambient and/or the limiting reaction of InN decomposition.

  15. Multi-Walled Carbon Nanotube-Doped Tungsten Oxide Thin Films for Hydrogen Gas Sensing

    OpenAIRE

    2010-01-01

    In this work we have fabricated hydrogen gas sensors based on undoped and 1 wt% multi-walled carbon nanotube (MWCNT)-doped tungsten oxide (WO3) thin films by means of the powder mixing and electron beam (E-beam) evaporation technique. Hydrogen sensing properties of the thin films have been investigated at different operating temperatures and gas concentrations ranging from 100 ppm to 50,000 ppm. The results indicate that the MWCNT-doped WO3 thin film exhibits high sensitivity and selectivity ...

  16. Phase equilibria in molecular hydrogen-helium mixtures at high pressures

    Science.gov (United States)

    Streett, W. B.

    1973-01-01

    Experiments on phase behavior in hydrogen-helium mixtures have been carried out at pressures up to 9.3 kilobars, at temperatures from 26 to 100 K. Two distinct fluid phases are shown to exist at supercritical temperatures and high pressures. Both the trend of the experimental results and an analysis based on the van der Waals theory of mixtures suggest that this fluid-fluid phase separation persists at temperatures and pressures beyond the range of these experiments, perhaps even to the limits of stability of the molecular phases. The results confirm earlier predictions concerning the form of the hydrogen-helium phase diagram in the region of pressure-induced solidification of the molecular phases at supercritical temperatures. The implications of this phase diagram for planetary interiors are discussed.

  17. First-principles study of superconducting hydrogen sulfide at pressure up to 500 GPa.

    Science.gov (United States)

    Durajski, Artur P; Szczęśniak, Radosław

    2017-06-30

    We investigate the possibility of achieving the room-temperature superconductivity in hydrogen sulfide (H3S) through increasing external pressure, a path previously widely used to reach metallization and superconducting state in novel hydrogen-rich materials. The electronic properties and superconductivity of H3S in the pressure range of 250-500 GPa are determined by the first-principles calculations. The metallic character of a body-centered cubic Im[Formula: see text]m structure is found over the whole studied pressure. Moreover, the absence of imaginary frequency in phonon spectrum implies that this structure is dynamically stable. Furthermore, our calculations conducted within the framework of the Eliashberg formalism indicate that H3S in the range of the extremely high pressures is a conventional strong-coupling superconductor with a high superconducting critical temperature, however, the maximum critical temperature does not exceed the value of 203 K.

  18. Pressure dependent deuterium fractionation in the formation of molecular hydrogen in formaldehyde photolysis

    DEFF Research Database (Denmark)

    Nilsson, Elna Johanna Kristina; Andersen, Vibeke Friis; Skov, Henrik;

    2009-01-01

    the channels has been estimated using available values for the absorption 10 cross section and quantum yield. As a result of the change in pressure with altitude the isotope effect for production of molecular hydrogen is found to change from a value of kH/kD=1.8±0.2 at the surface to unity at 50 km....... The relative importance of the two product channels changes with altitude as a result of changes in both pressure and actinic flux. The study concludes that the D of photochemical hydrogen produced in 15 situ will increase substantially with altitude.......The pressure dependence of the relative photolysis rates of HCHO and HCDO has been investigated using a new photochemical reactor at the University of Copenhagen. The relative photolysis rate of HCHO vs. HCDO under UVA lamp irradiation was mea- 5 sured at total pressures of 50, 200, 400, 600...

  19. Polymeric hydrogen diffusion barrier, high-pressure storage tank so equipped, method of fabricating a storage tank and method of preventing hydrogen diffusion

    Science.gov (United States)

    Lessing, Paul A [Idaho Falls, ID

    2008-07-22

    An electrochemically active hydrogen diffusion barrier which comprises an anode layer, a cathode layer, and an intermediate electrolyte layer, which is conductive to protons and substantially impermeable to hydrogen. A catalytic metal present in or adjacent to the anode layer catalyzes an electrochemical reaction that converts any hydrogen that diffuses through the electrolyte layer to protons and electrons. The protons and electrons are transported to the cathode layer and reacted to form hydrogen. The hydrogen diffusion barrier is applied to a polymeric substrate used in a storage tank to store hydrogen under high pressure. A storage tank equipped with the electrochemically active hydrogen diffusion barrier, a method of fabricating the storage tank, and a method of preventing hydrogen from diffusing out of a storage tank are also disclosed.

  20. 信息动态%Hydrogen and oxidative stress injury-from an inert gas to a medical gas

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Oxidative stress is intensive cellular oxidation caused by redundant reactive oxygen species (ROs) or free radicals. Redundant ROs causes DNA fracture, lipid peroxidation and protein inactivation, thus leading to severe cell damage. Recent studies have shown that hydrogen is a good anti-oxidant. It selectively reduces the hydroxyl radical, the most cytotoxic of ROs; however, it does not react with other ROs, which play physiological roles. As a result, it could protect tissues against oxidative stress injuries, such as ischemia/reperfusion injury of the heart, liver and intestine, cisplatin nephrotoxicity, sepsis and colon inflammation. As a medical gas, hydrogen may have a prospect for far-reaching clinical application.

  1. Measurement of Concentration Distribution of Hydrogen Gas Flow by Measuring the Intensity of Raman Scattering Light

    Science.gov (United States)

    Asahi, Ippei; Ninomiya, Hideki

    An experimental study to visualize and measure the concentration distribution of hydrogen gas flow using the Raman scattering was performed. A Nd:YAG laser of wavelength at 355 nm was used, and the beam pattern was transformed into a rectangle and a sheet beam was formed. The Raman scattered light was observed at a right angle with respect to the laser beam axis using a gated ICCD camera and an interference filter. Shadowgraph images were obtained at the same condition. The Raman scattering light image from atmospheric nitrogen was first acquired and the function of Raman scattering light acquisition and the background light suppression was confirmed. Next, images of the Raman scattering light image and shadowgraph of hydrogen gas discharged from a nozzle into the atmosphere were acquired. The two obtained Raman images were compared and the spatial concentration distribution of the flow of the hydrogen gas at different flow rates was calculated. This method is effective for visualizing the gas flow and measuring the concentration distribution of the Raman active molecules, such as hydrogen gas.

  2. Materials for cryogenic storage of hydrogen and natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder Pedersen, A.

    1997-02-01

    Experiments have been carried out to describe the properties of selected plastic composites in relation to their use in liquid gas containers. Gas diffusion into the materials was measured by gravimetry. No uptake of gas was found at 77 K for the measured materials. For the majority of materials no uptake could be detected even at room temperature. In one case, PEEK, an uptake was measured at room temperature, but the rate was so low that it was concluded not to represent a hazard. Mechanical properties of 7 composite sample were measured by tensile testing and simultaneous recording of the accumulated acoustic emission caused by crack formation. For one material the acoustic emission indicated crack formation at relatively low stress. The rest of the samples only showed negligible acoustic emission up to 150 MPa, which is considered to be sufficient for application in a liquid gas container. In conclusion the work indicates, that composites are suitable for low temperature gas containers. (au) 2 tabs., 23 ills., 2 refs.

  3. Pressure-induced localisation of the hydrogen-bond network in KOH-VI

    Energy Technology Data Exchange (ETDEWEB)

    Hermann, Andreas, E-mail: a.hermann@ed.ac.uk; Nelmes, Richard J.; Loveday, John S. [Centre for Science at Extreme Conditions and SUPA, School of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom); Guthrie, Malcolm [Centre for Science at Extreme Conditions and SUPA, School of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom); European Spallation Source AB, P.O. Box 176, SE-22100 Lund (Sweden)

    2015-12-28

    Using a combination of ab initio crystal structure prediction and neutron diffraction techniques, we have solved the full structure of KOH-VI at 7 GPa. Rather than being orthorhombic and proton-ordered as had previously be proposed, we find that this high-pressure phase of potassium hydroxide is tetragonal (space group I4/mmm) and proton disordered. It has an unusual hydrogen bond topology, where the hydroxyl groups form isolated hydrogen-bonded square planar (OH){sub 4} units. This structure is stable above 6.5 GPa and, despite being macroscopically proton-disordered, local ice rules enforce microscopic order of the hydrogen bonds. We suggest the use of this novel type of structure to study concerted proton tunneling in the solid state, while the topology of the hydrogen bond network could conceivably be exploited in data storage applications based solely on the manipulations of hydrogen bonds. The unusual localisation of the hydrogen bond network under applied pressure is found to be favored by a more compact packing of the constituents in a distorted cesium chloride structure.

  4. Recovery Technology of Hydrogen from Refinery Dry Gas%炼厂干气回收制H2技术

    Institute of Scientific and Technical Information of China (English)

    王红伟; 徐静莉

    2012-01-01

    Membrane separation-pressure swing adsorption integration technique was used to recover hydrogen from dry gas in order to utilize effectively catalytic gas from Jilin oil refinery of petroleum corporation. Recovery rate of hydrogen could reach above 80% and concentration of recovery hydrogen was above 95 mol% by the technology.%为有效利用吉林石化炼油厂催化干气,对现有的制氢技术进行了研究,确定了采用膜分离-变压吸附集成工艺技术进行干气回收制H2,使H2回收率〉80%,回收H2浓度〉95mol%。

  5. Neutron spectroscopy study of single-walled carbon nanotubes hydrogenated under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Kolesnikov, A.I. [IPNS, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)], E-mail: akolesnikov@anl.gov; Bashkin, I.O.; Antonov, V.E. [Institute of Solid State Physics RAS, 142432 Chernogolovka, Moscow District (Russian Federation); Colognesi, D. [Consiglio Nazionale delle Ricerche, Istituto di Fisica Applicata ' Nello Carrara' , via Madonna del Piano, 50019 Sesto Fiorentino (Italy); Mayers, J. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Moravsky, A.P. [MER Corporation, 7960, South Kolb Road, Tucson, AZ 85706 (United States)

    2007-10-31

    Single-walled carbon nanotubes (SWNT) were loaded with 5.2 wt% hydrogen at a hydrogen pressure of 3 GPa and T = 620 K, quenched to 80 K and studied at ambient pressure and 15 K by inelastic neutron scattering (INS) in the range of energy transfers 3-400 meV. An analysis of the measured INS spectra showed that the quenched SWNT and H sample contained hydrogen in two different forms, as H atoms covalently bound to the carbon atoms ({approx}4.7 wt%) and as H{sub 2} molecules ({approx}0.5 wt%) exhibiting nearly free rotational behavior. Annealing the sample in vacuum at 332 K removed about 65% of the H{sub 2} molecules and annealing at 623 K removed all of them. This demonstrates that H{sub 2} molecules were kept in this sample more tightly than in earlier studied SWNT and H samples that were hydrogenated at lower pressures and temperatures and lost all molecular hydrogen on heating in vacuum to room temperature.

  6. Kinetic Models Study of Hydrogenation of Aromatic Hydrocarbons in Vacuum Gas Oil and Basrah Crude Oil Reaction

    Directory of Open Access Journals (Sweden)

    Muzher M. Ibraheem

    2013-05-01

    Full Text Available             The aim of this research is to study the kinetic reaction models for catalytic hydrogenation of aromatic content for Basrah crude oil (BCO and vacuum gas oil (VGO derived from Kirkuk crude oil which has the boiling point rang of (611-833K.            This work is performed using a hydrodesulphurization (HDS pilot plant unit located in AL-Basil Company. A commercial (HDS catalyst cobalt-molybdenum (Co-Mo supported in alumina (γ-Al2O3 is used in this work. The feed is supplied by North Refinery Company in Baiji. The reaction temperatures range is (600-675 K over liquid hourly space velocity (LHSV range of (0.7-2hr-1 and hydrogen pressure is 3 MPa with H2/oil ratio of 300 of Basrah Crude oil (BCO, while the corresponding conditions for vacuum gas oil (VGO are (583-643 K, (1.5-3.75 hr-1, 3.5 MPa and 250  respectively .            The results showed that the reaction kinetics is of second order for both types of feed. Activation energies are found to be 30.396, 38.479 kJ/mole for Basrah Crude Oil (BCO and Vacuum Gas Oil (VGO respectively.

  7. Thermodynamic evaluation of hydrogen production for fuel cells by using bio-ethanol steam reforming: Effect of carrier gas addition

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, Liliana; Kafarov, Viatcheslav [Universidad Industrial de Santander, Escuela de Ingenieria Quimica, Bucaramanga 678 (Colombia)

    2009-07-01

    Omitting the influence of the addition of carrier gas to the reaction system for hydrogen production by bio-ethanol steam reforming can lead to wrong conclusions, especially when it is going to be made to scale. The effect of carrier gas addition to produce hydrogen using bio-ethanol steam reforming to feed fuel cells was evaluated. Thermodynamic calculations in equilibrium conditions were made, however the analysis derived from them can also be applied to kinetic conditions. These calculations were made by using the Aspen-HYSYS software at atmospheric pressure and different values of temperature, water/ethanol molar ratios, and inert (argon)/(water/ethanol) molar ratios. The addition of inert carrier gas modifies the concentrations of the reaction products in comparison to those obtained without its presence. This behavior occurs because most of the reactions which take place in bio-ethanol steam reforming have a positive difference of moles. This fact enhances the system sensitivity to inert concentration at low and moderated temperatures (<700 C). At high values of temperature, the inert addition does not influence the composition of the reaction products because of the predominant effect of inverse WGS reaction. (author)

  8. Mathematical modelling and simulation on the adsorption of Hydrogen Sulfide (H2S) gas

    Science.gov (United States)

    Zulkefli, N. N.; Masdar, M. S.; Isahak, W. R. W.; Jahim, J.; Majlan, E. H.; Rejab, S. A. M.; Lye, C. C.

    2017-06-01

    Hydrogen sulfide, H2S, a pollutant in biofuel gas, i.e., biohydrogen and biomethane, is produced at concentrations ranging from 100 ppm to 10,000 ppm and is recommended to be removed at the early stage of gas purification because it is known as a problematic compound. In this study, adsorption technologies show a promising technique to remove H2S from biofuel gas, which mainly depends on the operating parameters and adsorbent ability. In this study, the development of the models is important to investigate the fundamentals of H2S adsorption mechanism. The fitted mathematics model was performed by considering several assumptions made for fixed-bed adsorption, leading to the determination of the breakthrough curve by solving a set of partial differential equations (PDEs). The operating parameters were as follows: varied inlet concentration at 1000 ppm to 10,000 ppm, flow rate at 0.2 L/min to 0.6 L/min, length bed used at 10 cm to 30 cm, and pressure at 1.5 atm to 5 atm. The adsorption performance was also studied by using commercial activated carbon such as palm kernel shell (PKS-AC), coconut shell activated carbon (coconut shell-AC), and zeolite ZSM-5. To support the effectiveness of the mathematical models, the adsorption test was performed by loading the adsorbent into the fixed-bed adsorption column at an overall diameter of 6 cm and height of 30 cm. The system operated under room temperature, H2S inlet concentration of 1000 ppm, and varying flow rate as in the modelling for PKS-AC. As a result, in the modelling study, the inlet concentration effect was highest in adsorption capacity, breakthrough time, and exhaustion time. However, the increase of flow rate and length bed used only affected the breakthrough and exhaustion times but not adsorption capacity. The total pressure used did not affect adsorption performance. Coconut shell-AC shows longer exhaustion time compared with other adsorbents due to the less frequent changes of adsorbent. In the experimental

  9. Hydrogen fracture toughness tester completion

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Michael J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-30

    The Hydrogen Fracture Toughness Tester (HFTT) is a mechanical testing machine designed for conducting fracture mechanics tests on materials in high-pressure hydrogen gas. The tester is needed for evaluating the effects of hydrogen on the cracking properties of tritium reservoir materials. It consists of an Instron Model 8862 Electromechanical Test Frame; an Autoclave Engineering Pressure Vessel, an Electric Potential Drop Crack Length Measurement System, associated computer control and data acquisition systems, and a high-pressure hydrogen gas manifold and handling system.

  10. Hydrogen/Oxygen Reactions at High Pressures and Intermediate Temperatures: Flow Reactor Experiments and Kinetic Modeling

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Christensen, Jakob Munkholt; Glarborg, Peter

    A series of experimental and numerical investigations into hydrogen oxidation at high pressures and intermediate temperatures has been conducted. The experiments were carried out in a high pressure laminar flow reactor at 50 bar pressure and a temperature range of 600–900 K. The equivalence ratio......, ignition occurs at the temperature of 775–800 K. In general, the present model provides a good agreement with the measurements in the flow reactor and with recent data on laminar burning velocity and ignition delay time.......A series of experimental and numerical investigations into hydrogen oxidation at high pressures and intermediate temperatures has been conducted. The experiments were carried out in a high pressure laminar flow reactor at 50 bar pressure and a temperature range of 600–900 K. The equivalence ratio......, the mechanism is used to simulate published data on ignition delay time and laminar burning velocity of hydrogen. The flow reactor results show that at reducing, stoichiometric, and oxidizing conditions, conversion starts at temperatures of 750–775 K, 800–825 K, and 800–825 K, respectively. In oxygen atmosphere...

  11. Hydrogen in the Methanol Production Process

    Science.gov (United States)

    Kralj, Anita Kovac; Glavic, Peter

    2006-01-01

    Hydrogen is a very important industrial gas in chemical processes. It is very volatile; therefore, it can escape from the process units and its mass balance is not always correct. In many industrial processes where hydrogen is reacted, kinetics are often related to hydrogen pressure. The right thermodynamic properties of hydrogen can be found for…

  12. Fundamental studies on kinetic isotope effect (KIE) of hydrogen isotope fractionation in natural gas systems

    Science.gov (United States)

    Ni, Y.; Ma, Q.; Ellis, G.S.; Dai, J.; Katz, B.; Zhang, S.; Tang, Y.

    2011-01-01

    Based on quantum chemistry calculations for normal octane homolytic cracking, a kinetic hydrogen isotope fractionation model for methane, ethane, and propane formation is proposed. The activation energy differences between D-substitute and non-substituted methane, ethane, and propane are 318.6, 281.7, and 280.2cal/mol, respectively. In order to determine the effect of the entropy contribution for hydrogen isotopic substitution, a transition state for ethane bond rupture was determined based on density function theory (DFT) calculations. The kinetic isotope effect (KIE) associated with bond rupture in D and H substituted ethane results in a frequency factor ratio of 1.07. Based on the proposed mathematical model of hydrogen isotope fractionation, one can potentially quantify natural gas thermal maturity from measured hydrogen isotope values. Calculated gas maturity values determined by the proposed mathematical model using ??D values in ethane from several basins in the world are in close agreement with similar predictions based on the ??13C composition of ethane. However, gas maturity values calculated from field data of methane and propane using both hydrogen and carbon kinetic isotopic models do not agree as closely. It is possible that ??D values in methane may be affected by microbial mixing and that propane values might be more susceptible to hydrogen exchange with water or to analytical errors. Although the model used in this study is quite preliminary, the results demonstrate that kinetic isotope fractionation effects in hydrogen may be useful in quantitative models of natural gas generation, and that ??D values in ethane might be more suitable for modeling than comparable values in methane and propane. ?? 2011 Elsevier Ltd.

  13. Fundamental studies on kinetic isotope effect (KIE) of hydrogen isotope fractionation in natural gas systems

    Science.gov (United States)

    Ni, Yunyan; Ma, Qisheng; Ellis, Geoffrey S.; Dai, Jinxing; Katz, Barry; Zhang, Shuichang; Tang, Yongchun

    2011-05-01

    Based on quantum chemistry calculations for normal octane homolytic cracking, a kinetic hydrogen isotope fractionation model for methane, ethane, and propane formation is proposed. The activation energy differences between D-substitute and non-substituted methane, ethane, and propane are 318.6, 281.7, and 280.2 cal/mol, respectively. In order to determine the effect of the entropy contribution for hydrogen isotopic substitution, a transition state for ethane bond rupture was determined based on density function theory (DFT) calculations. The kinetic isotope effect (KIE) associated with bond rupture in D and H substituted ethane results in a frequency factor ratio of 1.07. Based on the proposed mathematical model of hydrogen isotope fractionation, one can potentially quantify natural gas thermal maturity from measured hydrogen isotope values. Calculated gas maturity values determined by the proposed mathematical model using δD values in ethane from several basins in the world are in close agreement with similar predictions based on the δ 13C composition of ethane. However, gas maturity values calculated from field data of methane and propane using both hydrogen and carbon kinetic isotopic models do not agree as closely. It is possible that δD values in methane may be affected by microbial mixing and that propane values might be more susceptible to hydrogen exchange with water or to analytical errors. Although the model used in this study is quite preliminary, the results demonstrate that kinetic isotope fractionation effects in hydrogen may be useful in quantitative models of natural gas generation, and that δD values in ethane might be more suitable for modeling than comparable values in methane and propane.

  14. A study on the fire response of compressed hydrogen gas vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Yohsuke; Tomioka, Junichi; Suzuki, Jinji [Japan Automobile Research Institute (Japan)

    2010-07-01

    To investigate the events that could arise when fighting fires in vehicles with compressed hydrogen CFRP (carbon fiber reinforced plastic) composite cylinders, we conducted experiments to examine whether a hydrogen jet flame caused by the activation of the pressure relief device (PRD) can extinguished and how spraying water influences the cylinder and PRD. The experiments clarified that the hydrogen jet flame cannot be extinguished easily with water or dry powder extinguishers and that spraying water during activation of the PRD may result in closure of the PRD, but is useful for maintaining the strength of CFRP composite cylinders for vehicles. (orig.)

  15. Hydrogen Energy Storage and Power-to-Gas: Establishing Criteria for Successful Business Cases

    Energy Technology Data Exchange (ETDEWEB)

    Eichman, Joshua; Melaina, Marc

    2015-10-27

    As the electric sector evolves and increasing amounts of variable generation are installed on the system, there are greater needs for system flexibility, sufficient capacity and greater concern for overgeneration. As a result there is growing interest in exploring the role of energy storage and demand response technologies to support grid needs. Hydrogen is a versatile feedstock that can be used in a variety of applications including chemical and industrial processes, as well as a transportation fuel and heating fuel. Traditionally, hydrogen technologies focus on providing services to a single sector; however, participating in multiple sectors has the potential to provide benefits to each sector and increase the revenue for hydrogen technologies. The goal of this work is to explore promising system configurations for hydrogen systems and the conditions that will make for successful business cases in a renewable, low-carbon future. Current electricity market data, electric and gas infrastructure data and credit and incentive information are used to perform a techno-economic analysis to identify promising criteria and locations for successful hydrogen energy storage and power-to-gas projects. Infrastructure data will be assessed using geographic information system applications. An operation optimization model is used to co-optimizes participation in energy and ancillary service markets as well as the sale of hydrogen. From previous work we recognize the great opportunity that energy storage and power-to-gas but there is a lack of information about the economic favorability of such systems. This work explores criteria for selecting locations and compares the system cost and potential revenue to establish competitiveness for a variety of equipment configurations. Hydrogen technologies offer unique system flexibility that can enable interactions between multiple energy sectors including electric, transport, heating fuel and industrial. Previous research established that

  16. Superconductivity of lithium-doped hydrogen under high pressure.

    Science.gov (United States)

    Xie, Yu; Li, Quan; Oganov, Artem R; Wang, Hui

    2014-02-01

    The high-pressure lattice dynamics and superconductivity of newly proposed lithium hydrides (LiH2, LiH6 and LiH8) have been extensively studied using density functional theory. The application of the Allen-Dynes modified McMillan equation and electron-phonon coupling calculations show that LiH6 and LiH8 are superconductors with critical temperatures (T(c)) of 38 K at 150 GPa for LiH6 and 31 K at 100 GPa for LiH8, while LiH2 is not a superconductor. The T(c) of LiH6 increases rapidly with pressure and reaches 82 K at 300 GPa due to enhancement of the electron-phonon coupling and the increased density of states at the Fermi level, while the T(c) of LiH8 remains almost constant.

  17. Neurochemistry of Pressure-Induced Nitrogen and Metabolically Inert Gas Narcosis in the Central Nervous System.

    Science.gov (United States)

    Rostain, Jean-Claude; Lavoute, Cécile

    2016-06-13

    Gases that are not metabolized by the organism are thus chemically inactive under normal conditions. Such gases include the "noble gases" of the Periodic Table as well as hydrogen and nitrogen. At increasing pressure, nitrogen induces narcosis at 4 absolute atmospheres (ATAs) and more in humans and at 11 ATA and more in rats. Electrophysiological and neuropharmacological studies suggest that the striatum is a target of nitrogen narcosis. Glutamate and dopamine release from the striatum in rats are decreased by exposure to nitrogen at a pressure of 31 ATA (75% of the anesthetic threshold). Striatal dopamine levels decrease during exposure to compressed argon, an inert gas more narcotic than nitrogen, or to nitrous oxide, an anesthetic gas. Inversely, striatal dopamine levels increase during exposure to compressed helium, an inert gas with a very low narcotic potency. Exposure to nitrogen at high pressure does not change N-methyl-d-aspartate (NMDA) glutamate receptor activities in Substantia Nigra compacta and striatum but enhances gama amino butyric acidA (GABAA) receptor activities in Substantia Nigra compacta. The decrease in striatal dopamine levels in response to hyperbaric nitrogen exposure is suppressed by recurrent exposure to nitrogen narcosis, and dopamine levels increase after four or five exposures. This change, the lack of improvement of motor disturbances, the desensitization of GABAA receptors on dopamine cells during recurrent exposures and the long-lasting decrease of glutamate coupled with the higher sensitivity of NMDA receptors, suggest a nitrogen toxicity induced by repetitive exposures to narcosis. These differential changes in different neurotransmitter receptors would support the binding protein theory. © 2016 American Physiological Society. Compr Physiol 6:1579-1590, 2016.

  18. Arc Root Motions in an Argon-Hydrogen Direct-Current Plasma Torch at Reduced Pressure

    Institute of Scientific and Technical Information of China (English)

    HUANG He-Ji; PAN Wen-Xia; WU Cheng-Kang

    2008-01-01

    Arc root motions in generating dc argon hydrogen plasma at reduced pressure are optically observed using a high-speed video camera. The time resolved angular position of the arc root attachment point is measured and analysed. The arc root movement is characterized as a chaotic and jumping motion along the circular direction on the anode surface.

  19. Influence of high pressure hydrogen on cyclic load crack growth in metals

    Science.gov (United States)

    Jewett, R. P.; Walter, R. J.; Chandler, W. T.

    1978-01-01

    The effect of high pressure hydrogen on the crack growth rate of various nickel-base alloys was studied at ambient temperature. Considerable enhancement of the cyclic flaw growth rate was observed for Inconel 718, wrought and cast, and Waspaloy, a nickel-base alloy similar to Inconel 718. Only slight enhancement of the flaw growth rate for Alloy 903 was observed.

  20. Development of a high-pressure microbalance for hydrogen storage materials

    DEFF Research Database (Denmark)

    Vestbø, Andreas Peter; Jensen, Jens Oluf; Bjerrum, Niels

    2007-01-01

    Pressure-composition isotherms (PCI's) help to determine thermodynamic properties related to hydrogen uptake of materials. PCI's are normally obtained volumetrically with a Sieverts type apparatus or gravimetrically with a microbalance. A potential problem with the gravimetric technique is that t...

  1. Marrying gas power and hydrogen energy: A catalytic system for combining methane conversion and hydrogen generation

    NARCIS (Netherlands)

    Beckers, J.; Gaudillère, C.; Farrusseng, D.; Rothenberg, G.

    2009-01-01

    Ceria-based catalysts are good candidates for integrating methane combustion and hydrogen generation. These new, tuneable catalysts are easily prepared. They are robust inorganic crystalline materials, and perform well at the 400 °C-550 °C range, in some cases even without precious metals. This make

  2. CONCEPTUAL MODEL FOR ORIGIN OF ABNORMALLY PRESSURED GAS ACCUMULATIONS IN LOW-PERMEABILITY RESERVOIRS.

    Science.gov (United States)

    Law, B.E.; Dickinson, W.W.

    1985-01-01

    The paper suggests that overpressured and underpressured gas accumulations of this type have a common origin. In basins containing overpressured gas accumulations, rates of thermogenic gas accumulation exceed gas loss, causing fluid (gas) pressure to rise above the regional hydrostatic pressure. Free water in the larger pores is forced out of the gas generation zone into overlying and updip, normally pressured, water-bearing rocks. While other diagenetic processes continue, a pore network with very low permeability develops. As a result, gas accumulates in these low-permeability reservoirs at rates higher than it is lost. In basins containing underpressured gas accumulations, rates of gas generation and accumulation are less than gas loss. The basin-center gas accumulation persists, but because of changes in the basin dynamics, the overpressured accumulation evolves into an underpressured system.

  3. High-density automotive hydrogen storage with cryogenic capable pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Aceves, Salvador M.; Espinosa-Loza, Francisco; Ledesma-Orozco, Elias; Ross, Timothy O.; Weisberg, Andrew H. [Lawrence Livermore National Laboratory, P.O. Box 808, L-792, Livermore, CA 94551 (United States); Brunner, Tobias C.; Kircher, Oliver [BMW Group, Knorrstr. 147, 80788 Munich (Germany)

    2010-02-15

    LLNL is developing cryogenic capable pressure vessels with thermal endurance 5-10 times greater than conventional liquid hydrogen (LH{sub 2}) tanks that can eliminate evaporative losses in routine usage of (L)H{sub 2} automobiles. In a joint effort BMW is working on a proof of concept for a first automotive cryo-compressed hydrogen storage system that can fulfill automotive requirements on system performance, life cycle, safety and cost. Cryogenic pressure vessels can be fueled with ambient temperature compressed gaseous hydrogen (CGH{sub 2}), LH{sub 2} or cryogenic hydrogen at elevated supercritical pressure (cryo-compressed hydrogen, CcH{sub 2}). When filled with LH{sub 2} or CcH{sub 2}, these vessels contain 2-3 times more fuel than conventional ambient temperature compressed H{sub 2} vessels. LLNL has demonstrated fueling with LH{sub 2} onboard two vehicles. The generation 2 vessel, installed onboard an H{sub 2}-powered Toyota Prius and fueled with LH{sub 2} demonstrated the longest unrefueled driving distance and the longest cryogenic H{sub 2} hold time without evaporative losses. A third generation vessel will be installed, reducing weight and volume by minimizing insulation thickness while still providing acceptable thermal endurance. Based on its long experience with cryogenic hydrogen storage, BMW has developed its cryo-compressed hydrogen storage concept, which is now undergoing a thorough system and component validation to prove compliance with automotive requirements before it can be demonstrated in a BMW test vehicle. (author)

  4. Hydrogen

    Directory of Open Access Journals (Sweden)

    John O’M. Bockris

    2011-11-01

    Full Text Available The idea of a “Hydrogen Economy” is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO2 in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H2 from the electrolyzer. Methanol made with CO2 from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan. Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  5. Low cost hydrogen/novel membrane technology for hydrogen separation from synthesis gas, Phase 1. [Polyetherimide, cellulose acetate and ethylcellulose

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    The goal of this program is to develop polymer membranes useful in the preparation of hydrogen from coal-derived synthesis gas. During this quarter the first experiment were aimed at developing high performance composite membranes for the separation of hydrogen from nitrogen and carbon monoxide. Three polymers have been selected as materials for these membranes: polyetherimide cellulose acetate and ethylcellulose. This quarter the investigators worked on polyetherimide and cellulose acetate membranes. The overall structure of these membranes is shown schematically in Figure 1. As shown, a microporous support membrane is first coated with a high flux intermediate layer then with an ultrathin permselective layer and finally, if necessary, a thin protective high flux layer. 1 fig., 4 tabs.

  6. Hydrogenation of carbon dioxide towards synthetic natural gas. A route to effective future energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Schoder, M. [Hochschule Lausitz, Cottbus (Germany); Armbruster, U.; Martin, A. [Rostock Univ. (Germany). Leibniz Institute for Catalysis

    2012-07-01

    Ni- and Ru-based catalysts are best suited for the so-called Sabatier reaction, i.e., the hydrogenation of CO{sub 2} to synthetic natural gas (SNG). Besides using commercial materials, catalyst syntheses (5 wt% Ru or Ni) were carried out by incipient wetness impregnation of four carriers (TiO{sub 2}, SiO{sub 2}, ZrO{sub 2} and {gamma}-Al{sub 2}O{sub 3}). Some pre-tests revealed that catalysts supported on TiO{sub 2} and SiO{sub 2} mostly produced CO, and therefore, they were not studied in detail. The catalyst tests were carried out in a continuously operated tube reactor at 623-723 K and 1-20 bar. Ru/ZrO{sub 2} and Ni/{gamma}-Al{sub 2}O{sub 3} revealed best catalytic performance at ambient pressure. Methane selectivities of 99.9% at 81.2% CO{sub 2} conversion for Ru/ZrO{sub 2} (623 K) and of 98.9% at 73.8% CO{sub 2} conversion for Ni/{gamma}-Al{sub 2}O{sub 3} (673 K) were obtained. The conversion increased significantly with raising reaction pressure above 10 bar to reach more than 93% for the Ni-containing catalyst and more than 96% for the Zr catalysts. Methane as the target product was formed with a selectivity of 100%. In addition, the catalysts were characterized by various solid-state techniques such as BET, TPR, ICP-OES, XRD, XPS and TEM. (orig.)

  7. Novel atmospheric pressure plasma device releasing atomic hydrogen: reduction of microbial-contaminants and OH radicals in the air

    Science.gov (United States)

    Nojima, Hideo; Park, Rae-Eun; Kwon, Jun-Hyoun; Suh, Inseon; Jeon, Junsang; Ha, Eunju; On, Hyeon-Ki; Kim, Hye-Ryung; Choi, Kyoung Hui; Lee, Kwang-Hee; Seong, Baik-Lin; Jung, Hoon; Kang, Shin Jung; Namba, Shinichi; Takiyama, Ken

    2007-01-01

    A novel atmospheric pressure plasma device releasing atomic hydrogen has been developed. This device has specific properties such as (1) deactivation of airborne microbial-contaminants, (2) neutralization of indoor OH radicals and (3) being harmless to the human body. It consists of a ceramic plate as a positive ion generation electrode and a needle-shaped electrode as an electron emission electrode. Release of atomic hydrogen from the device has been investigated by the spectroscopic method. Optical emission of atomic hydrogen probably due to recombination of positive ions, H+(H2O)n, generated from the ceramic plate electrode and electrons emitted from the needle-shaped electrode have been clearly observed in the He gas (including water vapour) environment. The efficacy of the device to reduce airborne concentrations of influenza virus, bacteria, mould fungi and allergens has been evaluated. 99.6% of airborne influenza virus has been deactivated with the operation of the device compared with the control test in a 1 m3 chamber after 60 min. The neutralization of the OH radical has been investigated by spectroscopic and biological methods. A remarkable reduction of the OH radical in the air by operation of the device has been observed by laser-induced fluorescence spectroscopy. The cell protection effects of the device against OH radicals in the air have been observed. Furthermore, the side effects have been checked by animal experiments. The harmlessness of the device has been confirmed.

  8. Evaluation of candidate Stirling engine heater tube alloys after 3500 hours exposure to high pressure doped hydrogen or helium

    Science.gov (United States)

    Misencik, J. A.; Titran, R. H.

    1984-01-01

    The heater head tubes of current prototype automotive Stirling engines are fabricated from alloy N-155, an alloy which contains 20 percent cobalt. Because the United States imports over 90 percent of the cobalt used in this country and resource supplies could not meet the demand imposed by automotive applications of cobalt in the heater head (tubes plus cylinders and regenerator housings), it is imperative that substitute alloys free of cobalt be identified. The research described herein focused on the heater head tubes. Sixteen alloys (15 potential substitutes plus the 20 percent Co N-155 alloy) were evaluated in the form of thin wall tubing in the NASA Lewis Research Center Stirling simulator materials diesel fuel fired test rigs. Tubes filled with either hydrogen doped with 1 percent CO2 or with helium at a gas pressure of 15 MPa and a temperature of 820 C were cyclic endurance tested for times up to 3500 hr. Results showed that two iron-nickel base superalloys, CG-27 and Pyromet 901 survived the 3500 hr endurance test. The remaining alloys failed by creep-rupture at times less than 3000 hr, however, several other alloys had superior lives to N-155. Results further showed that doping the hydrogen working fluid with 1 vol % CO2 is an effective means of reducing hydrogen permeability through all the alloy tubes investigated.

  9. Leak Rate Quantification Method for Gas Pressure Seals with Controlled Pressure Differential

    Science.gov (United States)

    Daniels, Christopher C.; Braun, Minel J.; Oravec, Heather A.; Mather, Janice L.; Taylor, Shawn C.

    2015-01-01

    An enhancement to the pressure decay leak rate method with mass point analysis solved deficiencies in the standard method. By adding a control system, a constant gas pressure differential across the test article was maintained. As a result, the desired pressure condition was met at the onset of the test, and the mass leak rate and measurement uncertainty were computed in real-time. The data acquisition and control system were programmed to automatically stop when specified criteria were met. Typically, the test was stopped when a specified level of measurement uncertainty was attained. Using silicone O-ring test articles, the new method was compared with the standard method that permitted the downstream pressure to be non-constant atmospheric pressure. The two methods recorded comparable leak rates, but the new method recorded leak rates with significantly lower measurement uncertainty, statistical variance, and test duration. Utilizing this new method in leak rate quantification, projects will reduce cost and schedule, improve test results, and ease interpretation between data sets.

  10. A 3 kbar hydrogen-compatible gas loader for Paris-Edinburgh presses

    Science.gov (United States)

    Klotz, S.; Philippe, J.; Bull, C. L.; Loveday, J. S.; Nelmes, R. J.

    2013-03-01

    We present a device which allows compressed gases to be loaded into large volume opposed anvils used for high pressure neutron scattering in the multi-10 GPa range. The gases are initially loaded into clamps which can then be inserted into VX-Paris-Edinburgh load frames. The system is compatible with all inert gases as well as hydrogen and permits loading pressures of up to 3 kbar for which most gases have densities close to that of the liquid at ambient pressure. The device should have applications for the study of simple molecular solids as well as for loading gases as pressure-transmitting media.

  11. Influence of gas pressure state on the motion parameters of coal-gas flow in the outburst hole

    Institute of Scientific and Technical Information of China (English)

    SUN Dong-ling; LIANG Yun-pei; MIAO Fa-tian

    2007-01-01

    Carried on the one-dimensional analysis to the motion state of coal-gas flow in the outburst hole, and deduced the relational expression between the motion parameters (containing of velocity, flow rate and density etc.) of bursting coal-gas flow and gas pressure in the hole, then pointed out the critical state change of coal-gas flow under different pressure conditions which had the very tremendous influence on both stability and destructiveness of the entire coal and gas outburst system. The mathematical processing and results of one-dimensional flow under the perfect condition are simple and explicit in this paper, which has the certain practical significance.

  12. Characteristics of the absorption and the emission of hydrogen in palladium nanoparticles encapsulated into graphite at 1.0 MPa hydrogen pressure

    OpenAIRE

    Hirai, Nobumitsu; Takashima, Masayuki; Tanaka, Toshihiro; Hara, Shigeta

    2004-01-01

    Palladium nanoparticles encapsulated into graphite (Pd–graphite intercalation compound: Pd–GIC) were produced from two kinds of graphite, natural graphite (average flake size: 270 mm) and kish graphite (average flake size: 15 mm). Hydrogen storage properties of Pd– GIC have been investigated by means of differential scanning calorimetry (DSC) between 473 and 573 K at 1.0 MPa hydrogen pressure. It is found from the DSC measurement that Pd–GIC can absorb and emit hydrogen.

  13. Hydrogen trapping properties of Zr-based intermetallic compounds in the presence of CO contaminant gas

    Energy Technology Data Exchange (ETDEWEB)

    Prigent, Jocelyn [Chimie Metallurgie des Terres Rares, ICMPE-UMR 7182, CNRS, 2-8 rue Henri Dunant, 94320 Thiais (France); Latroche, Michel, E-mail: latroche@icmpe.cnrs.fr [Chimie Metallurgie des Terres Rares, ICMPE-UMR 7182, CNRS, 2-8 rue Henri Dunant, 94320 Thiais (France); Leoni, Elisa; Rohr, Valentin [AREVA NC, 1, rue des Herons, 78182 Montigny Le Bretonneux (France)

    2011-09-15

    Research highlights: > Hydrogen absorption in the presence of carbon monoxide is reported for several Zr rich intermetallic compounds. > Absorption rates have been determined and compared for pure and CO-containing hydrogen gases. > Using intermetallic compounds as getter materials in the presence of contaminant gases has been demonstrated. - Abstract: Intermetallic compounds, as hydrogen getters, are considered to control the quantity of hydrogen generated in radioactive waste packaging. The compounds ZrCo, Zr{sub 2}Fe and a Zr-rich Zr-Ti-V alloy have been chosen as they form very stable hydrides at ambient temperature. However, other gases are produced in the packaging such as carbon monoxide, a gas known to poison the surface of intermetallic compounds and to hinder the hydrogen sorption reaction. The three Zr-based compounds have been first characterized regarding their metallurgical state and their gas sorption properties toward pure hydrogen. Then, the sorption properties of the activated materials have been studied using a mixture of 5 vol.% CO + 95 vol.% H{sub 2}. We demonstrated that though the presence of CO sharply slows down the reaction rate the activated compounds still show significant sorption properties. Therefore, the presence of contaminant gases is not detrimental for the target application.

  14. Rapid analysis of urinary opiates using fast gas chromatography–mass spectrometry and hydrogen as a carrier gas

    Directory of Open Access Journals (Sweden)

    Sumandeep Rana

    2014-09-01

    Gas chromatographic–mass spectrometric analysis was performed in electron ionization mode by selective ion monitoring, using hydrogen as a carrier gas, a short narrow bore GC capillary column, and fast temperature program, allowing for a rapid analytical cycle to maximize the instrument time for high throughput laboratories. While maintaining specificity for these drugs, concentrations in human urine ranging from 50 to 5,000 ng/mL can be measured with intraday and interday imprecision, expressed as variation coefficients, of less than 2.3% for all analytes within a run time of less than 3.5 minutes.

  15. Rapid analysis of urinary opiates using fast gas chromatography–mass spectrometry and hydrogen as a carrier gas

    OpenAIRE

    Sumandeep Rana; Rakesh K. Garg; Anu Singla

    2014-01-01

    A sensitive and specific fast gas chromatography–mass spectrometry (FGC–MS) analytical method using hydrogen as a carrier gas is developed for the rapid simultaneous determination of morphine, codeine, hydrocodone and hydromorphone in human urine. Urine samples were spiked with deuterated internal standards, morphine-d3, codeine-d3, hydrocodone-d3 and hydro-morphone-d3, subjected to acid hydrolysis, treated with hydroxylamine to convert the keto-opiates to oximes and then extracted using a po...

  16. Synchrotron infrared spectroscopy at megabar pressures - Vibrational dynamics of hydrogen to 180 GPa

    Science.gov (United States)

    Hanfland, M.; Hemley, R. J.; Mao, H. K.; Williams, G. P.

    1992-01-01

    New techniques for measuring infrared spectra at megabar pressures using synchrotron radiation have been developed and applied to study the Q1(1), Qi(1) + Si(0), and QR(J) vibrational transitions of solid hydrogen to 180 GPa. The frequency difference between the Q1(1) infrared and Raman vibrons increases from 3/cm (zero pressure) to 510/cm (180 GPa), indicating a dramatic increase in intermolecular coupling with pressure. A negative frequency shift is observed for the infrared vibron above 140 GPa. A significant increase in frequency and LO-TO splitting of the lattice phonon is also documented.

  17. Photoluminescence and hydrogen gas-sensing properties of titanium dioxide nanostructures synthesized by hydrothermal treatments

    CSIR Research Space (South Africa)

    Sikhwivhilu, LM

    2012-03-01

    Full Text Available -1 ACS Appl. Mater. Interfaces 2012, 4, 1656-1665 dx.doi.org/10.1021/am2018089 Photoluminescence and Hydrogen Gas-Sensing Properties of Titanium Dioxide Nanostructures Synthesized by Hydrothermal Treatments Lucky M. Sikhwivhilu, Siyasanga Mpelane...

  18. NEAR-CONTINUOUS MEASUREMENT OF HYDROGEN SULFIDE AND CARBONYL SULFIDE BY AN AUTOMATIC GAS CHROMATOGRAPH

    Science.gov (United States)

    An automatic gas chromatograph with a flame photometric detector that samples and analyzes hydrogen sulfide and carbonyl sulfide at 30-s intervals is described. Temperature programming was used to elute trace amounts of carbon disulfide present in each injection from a Supelpak-S...

  19. Rapid hydrogen gas generation using reactive thermal decomposition of uranium hydride.

    Energy Technology Data Exchange (ETDEWEB)

    Kanouff, Michael P.; Van Blarigan, Peter; Robinson, David B.; Shugard, Andrew D.; Gharagozloo, Patricia E.; Buffleben, George M.; James, Scott Carlton; Mills, Bernice E.

    2011-09-01

    Oxygen gas injection has been studied as one method for rapidly generating hydrogen gas from a uranium hydride storage system. Small scale reactors, 2.9 g UH{sub 3}, were used to study the process experimentally. Complimentary numerical simulations were used to better characterize and understand the strongly coupled chemical and thermal transport processes controlling hydrogen gas liberation. The results indicate that UH{sub 3} and O{sub 2} are sufficiently reactive to enable a well designed system to release gram quantities of hydrogen in {approx} 2 seconds over a broad temperature range. The major system-design challenge appears to be heat management. In addition to the oxidation tests, H/D isotope exchange experiments were performed. The rate limiting step in the overall gas-to-particle exchange process was found to be hydrogen diffusion in the {approx}0.5 {mu}m hydride particles. The experiments generated a set of high quality experimental data; from which effective intra-particle diffusion coefficients can be inferred.

  20. Carbon dioxide emission in hydrogen production technology from coke oven gas with life cycle approach

    Directory of Open Access Journals (Sweden)

    Burmistrz Piotr

    2016-01-01

    Full Text Available The analysis of Carbon Footprint (CF for technology of hydrogen production from cleaned coke oven gas was performed. On the basis of real data and simulation calculations of the production process of hydrogen from coke gas, emission indicators of carbon dioxide (CF were calculated. These indicators are associated with net production of electricity and thermal energy and direct emission of carbon dioxide throughout a whole product life cycle. Product life cycle includes: coal extraction and its transportation to a coking plant, the process of coking coal, purification and reforming of coke oven gas, carbon capture and storage. The values were related to 1 Mg of coking blend and to 1 Mg of the hydrogen produced. The calculation is based on the configuration of hydrogen production from coke oven gas for coking technology available on a commercial scale that uses a technology of coke dry quenching (CDQ. The calculations were made using ChemCAD v.6.0.2 simulator for a steady state of technological process. The analysis of carbon footprint was conducted in accordance with the Life Cycle Assessment (LCA.

  1. Analysis of Trace Hydrogen Isotopes in Fusion Fuel Cycle by High Precision Gas Chromatograph

    Institute of Scientific and Technical Information of China (English)

    YANG; Li-ling; YANG; Hong-guang; ZHAO; Wei-wei; HE; Chang-shui; LIU; Zhen-xing; ZHAN; Qin

    2013-01-01

    It is essential to analysis of hydrogen isotopes in the fuel cycle system of fusion reactors,gas chromatography(GC)was found to be an effectively analytical technique.Compared with conventional GC,the high-precision GC with a cryogenic column could achieve fairly good performance to reduce the retention time.

  2. Microbial Electrolysis Cells for High Yield Hydrogen Gas Production from Organic Matter

    NARCIS (Netherlands)

    Logan, B.E.; Call, D.; Cheng, S.; Hamelers, H.V.M.; Sleutels, T.H.J.A.; Jeremiasse, A.W.; Rozendal, R.A.

    2008-01-01

    The use of electrochemically active bacteria to break down organic matter, combined with the addition of a small voltage (>0.2 V in practice) in specially designed microbial electrolysis cells (MECs), can result in a high yield of hydrogen gas. While microbial electrolysis was invented only a few

  3. Integration of phase change materials in compressed hydrogen gas systems: Modelling and parametric analysis

    DEFF Research Database (Denmark)

    Mazzucco, Andrea; Rothuizen, Erasmus; Jørgensen, Jens-Erik;

    2016-01-01

    temperature. Results show that a 10-mm-thick layer of paraffin wax can absorb enough heat to reduce the adiabatic temperature by 20 K when compared to a standard Type IV tank, but its influence on the hydrogen peak temperature that occurs at the end of refueling is modest. The heat transfer from the gas...

  4. Integration of biohydrogen fermentation and gas separation processes to recover and enrich hydrogen

    NARCIS (Netherlands)

    Bélafi-Bakó, K.; Búcsú, D.; Pientka, Z.; Bálint, B.; Herbel, Z.; Kovács, K.I.; Wessling, Matthias

    2006-01-01

    An integrated system for biohydrogen production and separation was designed, constructed and operated where biohydrogen was fermented by Thermococcus litoralis, a heterotrophic archaebacterium, and a two-step gas separation process was coupled to recover and concentrate hydrogen. A special liquid

  5. Microbial Electrolysis Cells for High Yield Hydrogen Gas Production from Organic Matter

    NARCIS (Netherlands)

    Logan, B.E.; Call, D.; Cheng, S.; Hamelers, H.V.M.; Sleutels, T.H.J.A.; Jeremiasse, A.W.; Rozendal, R.A.

    2008-01-01

    The use of electrochemically active bacteria to break down organic matter, combined with the addition of a small voltage (>0.2 V in practice) in specially designed microbial electrolysis cells (MECs), can result in a high yield of hydrogen gas. While microbial electrolysis was invented only a few

  6. Integration of biohydrogen fermentation and gas separation processes to recover and enrich hydrogen

    NARCIS (Netherlands)

    Bélafi-Bakó, K.; Búcsú, D.; Pientka, Z.; Bálint, B.; Herbel, Z.; Kovács, K.I.; Wessling, M.

    2006-01-01

    An integrated system for biohydrogen production and separation was designed, constructed and operated where biohydrogen was fermented by Thermococcus litoralis, a heterotrophic archaebacterium, and a two-step gas separation process was coupled to recover and concentrate hydrogen. A special liquid se

  7. Genesis of hydrogen sulfide of the Dauletabad-Donmezskiy gas field

    Energy Technology Data Exchange (ETDEWEB)

    Semenovich, V.V.; Guriyeva, S.M.; Maksimov, S.P.; Mekhtiyeva, V.L.; Pankina, R.G.

    1983-01-01

    An analysis was made of the content of hydrogen sulfide in isotope composition of sulfur in samples of condensation water (from a separator) at the gas-condensate field of DauletabadDonmez. Hydrogen sulfide was very enriched with heavy isotope deltaS/sup 34/ (deltaS/sup 34/ from +9.3 to +15.8 0/00) and close to sulfur of the evaporites of the Jurassic age. The findings are compared to the data of studying isotope composition of sulfur in gas fields of the Maudarya syneclise. A hypothesis is advanced for the origin of hydrogen sulfide in the Dauletabad-Donmezskiy field because of migration from the underlying Jurassic deposits.

  8. Application of an industrial gas supply system to a hydrogen water chemistry installation

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, D.; Kuberka, K.A.

    1988-01-01

    Equipment for a hydrogen gas supply and an oxygen gas supply was adapted to meet operating safety criteria for a hydrogen water chemistry (HWC) application at a boiling water reactor (BWR) plant. The oxygen and hydrogen gases are supplied by vaporizing cryogenic liquid drawn from storage tanks. Cryogenic storage tanks consist of an inner vessel supported within an outer vessel, with insulation in the space between vessels. The supports and product lines on the inner container are small and flexible for heat transfer and thermal flexibility considerations. Cryogenic storage tank systems inherently have low natural frequencies and must be analyzed for dynamic response to site seismic criteria. Equipment modifications to meet application criteria were made without compromising performance. The guidelines for HWC installations were supplemented by a comprehensive design safety review to assess the equipment safeguards required to control potential product releases.

  9. Heat and mass transfer rates during flow of dissociated hydrogen gas over graphite surface

    Science.gov (United States)

    Nema, V. K.; Sharma, O. P.

    1986-01-01

    To improve upon the performance of chemical rockets, the nuclear reactor has been applied to a rocket propulsion system using hydrogen gas as working fluid and a graphite-composite forming a part of the structure. Under the boundary layer approximation, theoretical predictions of skin friction coefficient, surface heat transfer rate and surface regression rate have been made for laminar/turbulent dissociated hydrogen gas flowing over a flat graphite surface. The external stream is assumed to be frozen. The analysis is restricted to Mach numbers low enough to deal with the situation of only surface-reaction between hydrogen and graphite. Empirical correlations of displacement thickness, local skin friction coefficient, local Nusselt number and local non-dimensional heat transfer rate have been obtained. The magnitude of the surface regression rate is found low enough to ensure the use of graphite as a linear or a component of the system over an extended period without loss of performance.

  10. On thermal conductivity of gas mixtures containing hydrogen

    Science.gov (United States)

    Zhukov, Victor P.; Pätz, Markus

    2016-12-01

    A brief review of formulas used for the thermal conductivity of gas mixtures in CFD simulations of rocket combustion chambers is carried out in the present work. In most cases, the transport properties of mixtures are calculated from the properties of individual components using special mixing rules. The analysis of different mixing rules starts from basic equations and ends by very complex semi-empirical expressions. The formulas for the thermal conductivity are taken for the analysis from the works on modelling of rocket combustion chambers. H_2- O_2 mixtures are chosen for the evaluation of the accuracy of the considered mixing rules. The analysis shows that two of them, of Mathur et al. (Mol Phys 12(6):569-579, 1967), and of Mason and Saxena (Phys Fluids 1(5):361-369, 1958), have better agreement with the experimental data than other equations for the thermal conductivity of multicomponent gas mixtures.

  11. On thermal conductivity of gas mixtures containing hydrogen

    Science.gov (United States)