WorldWideScience

Sample records for hydrogen fluoride gas

  1. Effects of hydrogen fluoride on plants

    Energy Technology Data Exchange (ETDEWEB)

    Yamazoe, F

    1970-07-15

    Symptoms of fluorosis in plants are chlorotic markings around the tip or edges of young leaves. Examples of damage to plants and livestock by fluorides are listed, including the retarded growth of silkworms fed on mulberry leaves polluted by more than 30 ppm fluorides. Plants can be classified into six groups according to their resistance to hydrogen fluoride. Threshold values of the fluoride concentration range from 5-10 ppb for the plants. Gladiolus is normally employed as a plant indicator for hydrogen fluoride and silkworms as indicator insects. The relationship between plant damage by fluorides and exposure time, density, soil, fertilizer, meteorology and location are examined. Several preventive measures are listed, including the spraying of water or lime on plant leaves. It is concluded that the establishment of an environmental standard is difficult because of the extremely high sensitivity of the plants to the gas. 8 references.

  2. 49 CFR 173.163 - Hydrogen fluoride.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Hydrogen fluoride. 173.163 Section 173.163... Hydrogen fluoride. (a) Hydrogen fluoride (hydrofluoric acid, anhydrous) must be packaged as follows: (1) In... filling ratio of 0.84. (b) A cylinder removed from hydrogen fluoride service must be condemned in...

  3. Toxic fluoride gas emissions from lithium-ion battery fires.

    Science.gov (United States)

    Larsson, Fredrik; Andersson, Petra; Blomqvist, Per; Mellander, Bengt-Erik

    2017-08-30

    Lithium-ion battery fires generate intense heat and considerable amounts of gas and smoke. Although the emission of toxic gases can be a larger threat than the heat, the knowledge of such emissions is limited. This paper presents quantitative measurements of heat release and fluoride gas emissions during battery fires for seven different types of commercial lithium-ion batteries. The results have been validated using two independent measurement techniques and show that large amounts of hydrogen fluoride (HF) may be generated, ranging between 20 and 200 mg/Wh of nominal battery energy capacity. In addition, 15-22 mg/Wh of another potentially toxic gas, phosphoryl fluoride (POF 3 ), was measured in some of the fire tests. Gas emissions when using water mist as extinguishing agent were also investigated. Fluoride gas emission can pose a serious toxic threat and the results are crucial findings for risk assessment and management, especially for large Li-ion battery packs.

  4. Anhydrous hydrogen fluoride electrolyte battery. [Patent application

    Science.gov (United States)

    Not Available

    1972-06-26

    It is an object of the invention to provide a primary cell or battery using ammonium fluoride--anhydrous hydrogen fluoride electrolyte having improved current and power production capabilities at low temperatures. It is operable at temperatures substantially above the boiling point of hydrogen fluoride. (GRA)

  5. Unusual hydrogen bonding in L-cysteine hydrogen fluoride.

    Science.gov (United States)

    Minkov, V S; Ghazaryan, V V; Boldyreva, E V; Petrosyan, A M

    2015-08-01

    L-Cysteine hydrogen fluoride, or bis(L-cysteinium) difluoride-L-cysteine-hydrogen fluoride (1/1/1), 2C3H8NO2S(+)·2F(-)·C3H7NO2S·HF or L-Cys(+)(L-Cys···L-Cys(+))F(-)(F(-)...H-F), provides the first example of a structure with cations of the 'triglycine sulfate' type, i.e. A(+)(A···A(+)) (where A and A(+) are the zwitterionic and cationic states of an amino acid, respectively), without a doubly charged counter-ion. The salt crystallizes in the monoclinic system with the space group P2(1). The dimeric (L-Cys···L-Cys(+)) cation and the dimeric (F(-)···H-F) anion are formed via strong O-H···O or F-H···F hydrogen bonds, respectively, with very short O···O [2.4438 (19) Å] and F···F distances [2.2676 (17) Å]. The F···F distance is significantly shorter than in solid hydrogen fluoride. Additionally, there is another very short hydrogen bond, of O-H···F type, formed by a L-cysteinium cation and a fluoride ion. The corresponding O···F distance of 2.3412 (19) Å seems to be the shortest among O-H···F and F-H···O hydrogen bonds known to date. The single-crystal X-ray diffraction study was complemented by IR spectroscopy. Of special interest was the spectral region of vibrations related to the above-mentioned hydrogen bonds.

  6. Heterogeneous catalysis in fluoride melts - reduction of uranium(V) by hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Kelmers, A D; Bennett, M R [Oak Ridge National Lab., Tenn. (USA)

    1976-01-01

    A necessary step in fuel reprocessing for the Molten-Salt Breeder Reactor is the reduction of pentavalent uranium to tetravalent uranium by hydrogen gas. The pentavalent uranium is dissolved in a mixed fluoride melt. Results are presented which show that the hydrogen reduction is rate limited, possibly due to the dissociation of hydrogen molecules to yield active hydrogen atoms; and that by the application of platinum catalysts a 10- to 100-fold increase in the reaction rate can be achieved.

  7. Development of a hydrogen fluoride laser

    International Nuclear Information System (INIS)

    Schilling, P.

    1974-01-01

    A hydrogen fluoride laser with variable pulse width (9 to 25 ns) was developed for measurements of shortlived dense plasmas. This multi-line laser with lambda approximately 2.9 μm operates without an optical pulse cutting system. Peak power of the pulses is about 400 kW. Measurements concerning dependence of FWHA, peak power and energy yield were carried out. Combined with an amplifier of 1 m length, peak power up to 13 MW and energies up to 0.5 J are attained. With this system, time dependence of the power amplification in the amplifier was tested for various gas mixtures. Furthermore preliminary measurements with time-resolved schlieren interferometry with this system are discussed. A plasma focus device was used as test object. (orig.) [de

  8. Chromosomal changes in maize induced by hydrogen fluoride gas

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, A H

    1970-01-01

    Maize seedlings were fumigated in growth chambers with hydrogen fluoride at a concentration of about 3 ..mu..g/m/sup 3/. The experiment was run for 10 days, with the first group of treated plants removed from the chambers after 4 days and then at intervals of 2 days. Microsporocyte smears from the treated plants revealed chromosomal aberrations that included asynaptic regions, translocations, inversions, and bridges plus fragments or fragments by themselves. It is believed that these abnormalities were due to the physiological effect of HF causing the chromosomes to become sticky and/or to the occurrence of chromatid breakage followed by reunion to sticky and/or to the occurrence of chromatid breakage followed by reunion to form structural changes. These findings indicate that HF is a mutagenic agent.

  9. Acute toxicity of uranium hexafluoride, uranyl fluoride and hydrogen fluoride

    International Nuclear Information System (INIS)

    Just, R.A.

    1988-01-01

    Uranium hexafluoride (UF 6 ) released into the atmosphere will react rapidly with moisture in the air to form the hydrolysis products uranyl fluoride (UO 2 F 2 ) and hydrogen fluoride (HF). Uranium compounds such as UF 6 and UO 2 F 2 exhibit both chemical toxicity and radiological effects, while HF exhibits only chemical toxicity. This paper describes the development of a methodology for assessing the human health consequences of a known acute exposure to a mixture of UF 6 , UO 2 F 2 , and HF. 4 refs., 2 figs., 5 tabs

  10. Quantitative infrared analysis of hydrogen fluoride

    International Nuclear Information System (INIS)

    Manuta, D.M.

    1997-04-01

    This work was performed at the Portsmouth Gaseous Diffusion Plant where hydrogen fluoride is produced upon the hydrolysis of UF 6 . This poses a problem for in this setting and a method for determining the mole percent concentration was desired. HF has been considered to be a non-ideal gas for many years. D. F. Smith utilized complex equations in his HF studies in the 1950s. We have evaluated HF behavior as a function of pressure from three different perspectives. (1) Absorbance at 3877 cm -1 as a function of pressure for 100% HF. (2) Absorbance at 3877 cm -1 as a function of increasing partial pressure HF. Total pressure = 300 mm HgA maintained with nitrogen. (3) Absorbance at 3877 cm -1 for constant partial pressure HF. Total pressure is increased to greater than 800 mm HgA with nitrogen. These experiments have shown that at partial pressures up to 35mm HgA, HIF follows the ideal gas law. The absorbance at 3877 cm -1 can be quantitatively analyzed via infrared methods

  11. Corrosion resistant materials for fluorine and hydrogen fluoride

    International Nuclear Information System (INIS)

    Hauffe, K.

    1984-01-01

    Aluminum and Duralumin are resistant against fluorine and hydrogen fluoride up to 600 and 700 K, respectively. The resistance of nickel and its alloys, particularly monel, against fluorine and hydrogen fluoride is fairly good up to 900 and 800 K. During the attack of nickel-chromium alloys by fluorine between 1000 and 1300 K, it appears an inner fluorination similarly to the inner oxidation. The resistance of titanium in water-free liquid fluorine at lower temperatures with -1 is comparable to that of nickel and monel. However, the corrosion of titanium in gaseous fluorine amounts at 377 K only 0,0082 mm.a -1 . In spite of their limited resistance against fluorine and hydrogen fluoride, very pure molybdenum and tungsten are employed as construction materials in the rocket technology because of their large strength at high temperatures if fluorine-hydrogen and fluorine-hydrazine flames are used. Lanthanum and calcium borides are only little attacked by fluorine hydrazine flames between 1400 and 1800 K; they are superior to all special grade alloys. The same is true in a lower temperature region (290-400 K) with fluorcarbon resins. Organic materials substitute in increasing extent metal alloys and non-metal inorganic materials. (orig.) [de

  12. Corrosion resistant materials for fluorine and hydrogen fluoride

    Energy Technology Data Exchange (ETDEWEB)

    Hauffe, K.

    1984-12-01

    Aluminum and Duralumin are resistant against fluorine and hydrogen fluoride up to 600 and 700 K, respectively. The resistance of nickel and its alloys, particularly monel, against fluorine and hydrogen fluoride is fairly good up to 900 and 800 K. During the attack of nickel-chromium alloys by fluorine between 1000 and 1300 K, it appears an inner fluorination similarly to the inner oxidation. The resistance of titanium in water-free liquid fluorine at lower temperatures with <0,3 mm.a/sup -1/ is comparable to that of nickel and monel. However, the corrosion of titanium in gaseous fluorine amounts at 377 K only 0,0082 mm.a/sup -1/. In spite of their limited resistance against fluorine and hydrogen fluoride, very pure molybdenum and tungsten are employed as construction materials in the rocket technology because of their large strength at high temperatures if fluorine-hydrogen and fluorine-hydrazine flames are used. Lanthanum and calcium borides are only little attacked by fluorine hydrazine flames between 1400 and 1800 K; they are superior to all special grade alloys. The same is true in a lower temperature region (290-400 K) with fluorcarbon resins. Organic materials substitute in increasing extent metal alloys and non-metal inorganic materials.

  13. The uptake of hydrogen fluoride by a forest

    International Nuclear Information System (INIS)

    Murphy, C.E. Jr.

    1980-01-01

    A mathematical model of hydrogen fluoride (HF) deposition and accumulation of fluoride in a Eucalyptus rostrata forest has been developed. The model is based on tree physiology and meteorological principles. The data base for the model was derived from a literature survey of the physiological characteristics of E. rostrata and similar eucalyptus species and from current knowledge of meteorological processes in plant canopies

  14. Study of the behaviour of some heavy elements in solvents containing hydrogen fluoride

    International Nuclear Information System (INIS)

    Tarnero, M.

    1967-01-01

    The anhydrous liquid mixtures: dinitrogen tetroxide-hydrogen fluoride and antimony pentafluoride-hydrogen fluoride were studied as solvents for heavy elements interesting nuclear energy: uranium, thorium, zirconium and for some of their compounds. For N 2 O 4 -HF mixtures, electric conductivity measurements and liquid phase infrared spectra were also obtained. Uranium and zirconium tetrafluoride are much more soluble in N 2 O 4 -HF mixtures than in pure hydrogen fluoride. Uranium dissolved in these mixtures is pentavalent. In SbF 5 -HF mixtures, uranium dissolves with hydrogen evolution and becomes trivalent. The solid compound resulting from the dissolution is a fluoro-antimonate: U(SbF 6 ) 3 . (author) [fr

  15. Corrosion and hydrogen absorption of commercially pure zirconium in acid fluoride solutions

    International Nuclear Information System (INIS)

    Yokoyama, Ken’ichi; Yamada, Daisuke; Sakai, Jun’ichi

    2013-01-01

    Highlights: •Zirconium corrodes and absorbs hydrogen in acid fluoride solutions. •Hydrogen thermal desorption is observed at 300–700 °C. •The resistance to hydrogen absorption of zirconium is higher than that of titanium. -- Abstract: The corrosion and hydrogen absorption of commercially pure zirconium have been investigated in acidulated phosphate fluoride (APF) solutions. Upon immersion in 2.0% APF solution of pH 5.0 at 25 °C, a granular corrosion product (Na 3 ZrF 7 ) deposits over the entire side surface of the specimen, thereby inhibiting further corrosion. In 0.2% APF solution, marked corrosion is observed from the early stage of immersion; no deposition of the corrosion product is observed by scanning electron microscopy. A substantial amount of hydrogen absorption is confirmed in both APF solutions by hydrogen thermal desorption analysis. The amount of absorbed hydrogen of the specimen immersed in the 2.0% APF solution is smaller than that in the 0.2% APF solution in the early stage of immersion. The hydrogen absorption behavior is not always consistent with the corrosion behavior. Hydrogen thermal desorption occurs in the temperature range of 300–700 °C for the specimen without the corrosion product. Under the same immersion conditions, the amount of absorbed hydrogen in commercially pure zirconium is smaller than that in commercially pure titanium as reported previously. The present results suggest that commercially pure zirconium, compared with commercially pure titanium, is highly resistant to hydrogen absorption, although corrosion occurs in fluoride solutions

  16. HERSCHEL/HIFI OBSERVATIONS OF HYDROGEN FLUORIDE TOWARD SAGITTARIUS B2(M)

    International Nuclear Information System (INIS)

    Monje, R. R.; Emprechtinger, M.; Phillips, T. G.; Lis, D. C.; Goldsmith, P. F.; Bergin, E. A.; Bell, T. A.; Neufeld, D. A.; Sonnentrucker, P.

    2011-01-01

    Herschel/HIFI observations have revealed the presence of widespread absorption by hydrogen fluoride (HF) J = 1-0 rotational transition, toward a number of Galactic sources. We present observations of HF J = 1-0 toward the high-mass star-forming region Sagittarius B2(M). The spectrum obtained shows a complex pattern of absorption, with numerous features covering a wide range of local standard of rest velocities (-130 to 100 km -1 ). An analysis of this absorption yields HF abundances relative to H 2 of ∼1.3 x 10 -8 , in most velocity intervals. This result is in good agreement with estimates from chemical models, which predict that HF should be the main reservoir of gas-phase fluorine under a wide variety of interstellar conditions. Interestingly, we also find velocity intervals in which the HF spectrum shows strong absorption features that are not present, or are very weak, in spectra of other molecules, such as 13 CO (1-0) and CS (2-1). HF absorption reveals components of diffuse clouds with small extinction that can be studied for the first time. Another interesting observation is that water is significantly more abundant than hydrogen fluoride over a wide range of velocities toward Sagittarius B2(M), in contrast to the remarkably constant H 2 O/HF abundance ratio with average value close to unity measured toward other Galactic sources.

  17. Formation of hydrogen fluoride by gamma and beta sterilisation in medical devices containing perfluoroheptane

    International Nuclear Information System (INIS)

    Zuendorf, Josef; Kremer, Stefan; Grueger, Thomas

    2008-01-01

    Infusion of hexadecafluoroheptane, a liquid perfluorocarbon released from repaired Althane dialysers was found to be the most probable reason for the deaths of 53 dialysis patients reported in the year 2001. This study focuses on toxic decomposition products generated due to gamma and beta sterilisation of hexadecafluoroheptane. The responsible dialysers were sterilised with a maximum dose of 45 kGy gamma irradiation. We investigated the influence of both 20-500 kGy gamma and beta irradiation on perfluoroheptane. Analysis of the irradiated samples verified the decomposition of perfluoroheptane in dependence on the dose of irradiation. Beta irradiation resulted in a higher degree of decomposition than the same dose of gamma irradiation. As decomposition products, hydrogen fluoride, CO 2 , and one saturated fluorinated hydrocarbon which could not be analysed exactly were identified. Even at 20 kGy gamma irradiation hydrogen fluoride was detectable. Our results provide evidence that hydrogen fluoride is generated as a highly toxic decomposition product when perfluoroheptane is sterilised with gamma irradiation as it was applied on the affected dialysers. There is no evidence of other toxic degradation products especially perfluoroisobutylene. Therefore, hydrogen fluoride or the dissociated fluoride ions might act as a toxic agent when medical devices containing liquid perfluorocarbons are sterilised by irradiation

  18. Effects of atmospheric hydrogen fluoride upon Drosophila melanogaster. I. Differential genotyptic response

    Energy Technology Data Exchange (ETDEWEB)

    Gerdes, R A; Smith, J D; Applegate, H G

    1971-01-01

    Four inbred lines of Drosophila melanogaster were exposed to various concentrations of gaseous hydrogen fluoride for a period of six weeks. The effects upon the viability of these populations were predominantly linear with respect to fluoride concentration over the range tested. Differential responses of the inbred lines were interpreted to mean that tolerance to fluoride contamination is influenced by genotype. 4 references, 1 figure, 1 table.

  19. Removal of hydrogen fluoride from uranium plant emissions

    International Nuclear Information System (INIS)

    Ramani, M.P.S.

    1997-01-01

    Uranium production technology involves the use of hydrogen fluoride at various stages. It is used in the production of uranium tetrafluoride as well as for the production of fluorine for the conversion of tetrafluoride to hexafluoride in isotopic enrichment plants. The sources of HF pollution in the industry, besides accidental spillages and leakages, are the final off-gases from the UF 4 production process or from the hydrogen reduction of hexafluoride (where such process is adopted), venting of tanks and reactors containing HF, safety pressure rupture discs as well as dust collection and ventilation systems

  20. Ab initio molecular dynamics simulation of hydrogen fluoride at several thermodynamic states

    DEFF Research Database (Denmark)

    Kreitmeir, M.; Bertagnolli, H.; Mortensen, Jens Jørgen

    2003-01-01

    Liquid hydrogen fluoride is a simple but interesting system for studies of the influence of hydrogen bonds on physical properties. We have performed ab initio molecular dynamics simulations of HF at several thermodynamic states, where we examine the microscopic structure of the liquid as well...

  1. Theory of nuclear quadrupole interactions in solid hydrogen fluoride

    International Nuclear Information System (INIS)

    Mohamed, N.S.; Sahoo, N.; Das, T.P.; Kelires, P.C.

    1990-01-01

    The nuclear quadrupole interaction of 19 F * (I=5/2) nucleus in solid hydrogen fluoride has been studied using the Hartree Fock cluster technique to understand the influence of both intrachain hydrogen bonding effects and the weak interchain interaction. On the basis of our investigations, the 34.04 MHz coupling constant observed by TDPAD measurements has been ascribed to the bulk solid while the observed 40.13 MHz coupling constant is suggested as arising from a small two- or three-molecule cluster produced during the proton irradiation process. Two alternate explanations are offered for the origin of coupling constants close to 40 MHz in a number of solid hydrocarbons containing hydrogen and fluorine ligands. (orig.)

  2. Hydrogen gas detector

    International Nuclear Information System (INIS)

    Bohl, T.L.

    1982-01-01

    A differential thermocouple hydrogen gas detector has one thermocouple junction coated with an activated palladium or palladium-silver alloy catalytic material to allow heated hydrogen gas to react with the catalyst and raise the temperature of that junction. The other juction is covered with inert glass or epoxy resin, and does not experience a rise in temperature in the presence of hydrogen gas. A coil heater may be mounted around the thermocouple junctions to heat the hydrogen, or the gas may be passed through a heated block prior to exposing it to the thermocouples

  3. Evaluation of cryolite from pitinga (Amazonas-Brazil as a source of hydrogen fluoride

    Directory of Open Access Journals (Sweden)

    Jéssica F. Paulino

    2016-05-01

    Full Text Available This paper reports the use of cryolite from the Pitinga Mine (Amazonas state, Brazil as raw material in hydrogen fluoride production. Samples were initially characterized by chemical and mineralogical analyses. They presented low silica content (< 4 wt.%. After milling, cryolite samples were digested with concentrated sulfuric acid under stirring (200 rpm and variable temperature, time and liquid to solid ratio conditions. Under the best experimental conditions (140 °C, 3-5 h, 96 wt.% of fluorine was recovered as hydrogen fluoride. The application of a 23 full factorial design showed that temperature and reaction time were relevant parameters during leaching, whereas liquid to solid ratio was not statistically significant.

  4. The sampling of hydrogen fluoride in air with impregnated filter paper

    NARCIS (Netherlands)

    Huygen, C.

    1963-01-01

    A method isproposed for the quantitative collection of hydrogen fluoride in air by drawing a known quantity of the air through filter paper impregnated with solutions of potassium hydroxide and glycerol or triethanolamine. Somu possibilities and limitations of the method are discussed.

  5. Microscopic dynamics and relaxation processes in liquid hydrogen fluoride

    International Nuclear Information System (INIS)

    Angelini, R.; Giura, P.; Monaco, G.; Sette, F.; Fioretto, D.; Ruocco, G.

    2004-01-01

    Inelastic x-ray scattering and Brillouin light scattering measurements of the dynamic structure factor of liquid hydrogen fluoride have been performed in the temperature range T=214-283 K. The data, analyzed using a viscoelastic model with a two time-scale memory function, show a positive dispersion of the sound velocity c(Q) between the low frequency value c 0 (Q) and the high frequency value c ∞α (Q). This finding confirms the existence of a structural (α) relaxation directly related to the dynamical organization of the hydrogen bonds network of the system. The activation energy E a of the process has been extracted by the analysis of the temperature behavior of the relaxation time τ α (T) that follows an Arrhenius law. The obtained value for E a , when compared with that observed in another hydrogen bond liquid as water, suggests that the main parameter governing the α-relaxation process is the number of hydrogen bonds per molecule

  6. Hydrogen permeation through Flinabe fluoride molten salts for blanket candidates

    Energy Technology Data Exchange (ETDEWEB)

    Nishiumi, Ryosuke, E-mail: r.nishiumi@aees.kyushu-u.ac.jp; Fukada, Satoshi; Nakamura, Akira; Katayama, Kazunari

    2016-11-01

    Highlights: • H{sub 2} diffusivity, solubility and permeability in Flinabe as T breeder are determined. • Effects in composition differences among Flibe, Fnabe and Flinabe are compared. • Changes of pressure dependence of Flinabe permeation rate are clarified. - Abstract: Fluoride molten salt Flibe (2LiF + BeF{sub 2}) is a promising candidate for the liquid blanket of a nuclear fusion reactor, because of its large advantages of tritium breeding ratio and heat-transfer fluid. Since its melting point is higher than other liquid candidates, another new fluoride molten salt Flinabe (LiF + NaF + BeF{sub 2}) is recently focused on because of its lower melting point while holding proper breeding properties. In this experiment, hydrogen permeation behavior through the three molten salts of Flibe (2LiF + BeF{sub 2}), Fnabe (NaF + BeF{sub 2}) and Flinabe are investigated in order to clarify the effects of their compositions on hydrogen transfer properties. After making up any of the three molten salts and purifying it using HF, hydrogen permeability, diffusivity and solubility of the molten salts are determined experimentally by using a system composed of tertiary cylindrical tubes. Close agreement is obtained between experimental data and analytical solutions. H{sub 2} permeability, diffusivity and solubility are correlated as a function of temperature and are compared among the three molten salts.

  7. Ionic liquid and solid HF equivalent amine-poly(hydrogen fluoride) complexes effecting efficient environmentally friendly isobutane-isobutylene alkylation.

    Science.gov (United States)

    Olah, George A; Mathew, Thomas; Goeppert, Alain; Török, Béla; Bucsi, Imre; Li, Xing-Ya; Wang, Qi; Marinez, Eric R; Batamack, Patrice; Aniszfeld, Robert; Prakash, G K Surya

    2005-04-27

    Isoparaffin-olefin alkylation was investigated using liquid as well as solid onium poly(hydrogen fluoride) catalysts. These new immobilized anhydrous HF catalysts contain varied amines and nitrogen-containing polymers as complexing agents. The liquid poly(hydrogen fluoride) complexes of amines are typical ionic liquids, which are convenient media and serve as HF equivalent catalysts with decreased volatility for isoparaffin-olefin alkylation. Polymeric solid amine:poly(hydrogen fluoride) complexes are excellent solid HF equivalents for similar alkylation acid catalysis. Isobutane-isobutylene or 2-butene alkylation gave excellent yields of high octane alkylates (up to RON = 94). Apart from their excellent catalytic performance, the new catalyst systems significantly reduce environmental hazards due to the low volatility of complexed HF. They represent a new, "green" class of catalyst systems for alkylation reactions, maintaining activity of HF while minimizing its environmental hazards.

  8. Measurement of dissolved hydrogen and hydrogen gas transfer in a hydrogen-producing reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shizas, I.; Bagley, D.M. [Toronto Univ., ON (Canada). Dept. of Civil Engineering

    2004-07-01

    This paper presents a simple method to measure dissolved hydrogen concentrations in the laboratory using standard equipment and a series of hydrogen gas transfer tests. The method was validated by measuring hydrogen gas transfer parameters for an anaerobic reactor system that was purged with 10 per cent carbon dioxide and 90 per cent nitrogen using a coarse bubble diffuser stone. Liquid samples from the reactor were injected into vials and hydrogen was allowed to partition between the liquid and gaseous phases. The concentration of dissolved hydrogen was determined by comparing the headspace injections onto a gas chromatograph and a standard curve. The detection limit was 1.0 x 10{sup -5} mol/L of dissolved hydrogen. The gas transfer rate for hydrogen in basal medium and anaerobic digester sludge was used to validate the method. Results were compared with gas transfer models. In addition to monitoring dissolved hydrogen in reactor systems, this method can help improve hydrogen production potential. 1 ref., 4 figs.

  9. Thermodynamics of the conversion of calcium and magnesium fluorides to the parent metal oxides and hydrogen fluoride

    International Nuclear Information System (INIS)

    West, M.H.; Axler, K.M.

    1997-02-01

    The authors have used thermodynamic modeling to examine the reaction of calcium fluoride (CaF 2 ) and magnesium fluoride (MgF 2 ) with water (H 2 O) at elevated temperatures. The calculated, equilibrium composition corresponds to the global free-energy minimum for the system. Optimum, predicted reaction temperatures and reactant mole ratios are reported for the recovery of hydrogen fluoride (HF), a valuable industrial feedstock. Complete conversion of MgF 2 is found at 1,000 C and a ratio of 40 moles of H 2 O per 1 mole of MgF 2 . For CaF 2 , temperatures as high as 1,400 C are required for complete conversion at a corresponding mole ratio of 40 moles of H 2 O per 1 mole of CaF 2 . The authors discuss the presence of minor chemical constituents as well as the stability of various potential container materials for the pyrohydrolysis reactions at elevated temperatures. CaF 2 and MgF 2 slags are available as wastes at former uranium production facilities within the Department of Energy Complex and other facilities regulated by the Nuclear Regulatory Commission. Recovery of HF from these wastes is an example of environmental remediation at such facilities

  10. New efficient hydrogen process production from organosilane hydrogen carriers derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Brunel, Jean Michel [Unite URMITE, UMR 6236 CNRS, Faculte de Medecine et de Pharmacie, Universite de la Mediterranee, 27 boulevard Jean Moulin, 13385 Marseille 05 (France)

    2010-04-15

    While the source of hydrogen constitutes a significant scientific challenge, addressing issues of hydrogen storage, transport, and delivery is equally important. None of the current hydrogen storage options, liquefied or high pressure H{sub 2} gas, metal hydrides, etc.. satisfy criteria of size, costs, kinetics, and safety for use in transportation. In this context, we have discovered a methodology for the production of hydrogen on demand, in high yield, under kinetic control, from organosilane hydrogen carriers derivatives and methanol as co-reagent under mild conditions catalyzed by a cheap ammonium fluoride salt. Finally, the silicon by-products can be efficiently recycle leading to an environmentally friendly source of energy. (author)

  11. Hydrogen gas sample environment for TOSCA

    International Nuclear Information System (INIS)

    Kibble, Mark G; Ramirez-Cuesta, Anibal J; Goodway, Chris M; Evans, Beth E; Kirichek, Oleg

    2014-01-01

    The idea of using hydrogen as a fuel has gained immense popularity over many years. Hydrogen is abundant, can be produced from renewable resources and is not a greenhouse gas. However development of hydrogen based technology is impossible without understanding of physical and chemical processes that involve hydrogen sometime in extreme conditions such as high pressure or low and high temperatures. Neutron spectroscopy allows measurement of a hydrogen atom motion in variety of samples. Here we describe and discuss a sample environment kit developed for hydrogen gas experiment in a broad range of pressure up to 7 kbar and temperatures from 4 K to 473 K. We also describe para-hydrogen rig which produces para-hydrogen gas required for studying the rotational line of molecular hydrogen

  12. Spectrographic determination of impurities in ammonium hydrogen fluoride samples

    International Nuclear Information System (INIS)

    Roca, M.; Capdevila, C.; Alduan, F.A.

    1976-01-01

    The quantitative spectrographic trace determination of Al, B, Cr, Cu, Fe, Mn, Mo, Ni, Pb and Si in ammonium hydrogen fluoride samples is considered. 10 A dc arc excitation and graphite electrodes with crate either 4.5 mm or 8 mm deep are employed. A comparison of various matrices such as graphite, gallium oxide, germanium oxide, magnesium oxide and zinc oxide, in the ratios 1:1 and 1:3, as well as a mixture 50% graphite - 50% zinc oxide in the ratio 1:1 is included. Zinc oxide in the ratio 1:1 and 4x8 mm craters show the best over-all results. (author)

  13. The Effects of Water Spray Cooling in Conjunction with Halogenated Extinguishants on Hydrogen Fluoride Generation and Decay

    National Research Council Canada - National Science Library

    Burch, Ian

    2007-01-01

    The halogenated extinguishants Halon 1301, HFC-227ea (FM200) and NAF-S-III used within Royal Australian Navy vessels for total flooding fire suppression applications have hydrogen fluoride (HF) toxicity concerns...

  14. Hydrogen fluoride damage to vegetation from peri-urban brick kilns in Asia: A growing but unrecognised problem?

    International Nuclear Information System (INIS)

    Ahmad, Muhammad Nauman; Berg, Leon J.L. van den; Shah, Hamid Ullah; Masood, Tariq; Büker, Patrick; Emberson, Lisa; Ashmore, Mike

    2012-01-01

    The rapid urbanisation of many cities in south and south-east Asia has increased the demand for bricks, which are typically supplied from brick kilns in peri-urban areas. We report visible foliar damage to mango, apricot and plum trees in the vicinity of traditional Bull’s Trench brick kilns in Peshawar, Pakistan. Visible injury symptoms, hydrogen fluoride concentrations in air, and foliar fluoride concentrations were all greater in the vicinity of brick kilns than at more distant sites, indicating that fluoride emissions from brick kilns were the main cause of damage. Interviews with local farmers established the significant impact of this damage on their livelihoods. Since poorly regulated brick kilns are often found close to important peri-urban agricultural areas, we suggest that this may be a growing but unrecognised environmental problem in regions of Asia where emission control in brick kilns has not been improved. - Highlights: ► Demand for bricks is increasing in many parts of Asia. ► Fluoride emissions from brick kilns may pose a threat to peri-urban agriculture. ► We found extensive injury to fruit orchards close to brick kilns in Peshawar. ► Local farmers suffered large economic losses but did not identify brick kilns as a cause of this. ► The extent of crop damage from brick kilns with poor emission control in the region may not be fully recognised. - Hydrogen fluoride emissions from brick kilns may cause extensive but unrecognised damage to peri-urban crops in Asia.

  15. Toxicity levels to humans during acute exposure to hydrogen fluoride

    International Nuclear Information System (INIS)

    Halton, D.M.; Dranitsaris, P.; Baynes, C.J.

    1984-11-01

    A literature review was conducted of the acute toxicity of hydrogen fluoride (HF) with emphasis on the effects of inhalation of gaseous HF. The data and findings of the relevant references were summarized under four categories: animal studies, controlled human studies, community exposure and industrial exposure. These were critically reviewed and then lethal concentration-time relationships were developed for humans, corresponding to LCsub(LO), LCsub(10) and LCsub(50) levels. The effects of age, health and other physiological variables on the sensitivity to HF were discussed, as well as antagonistic and synergistic effects with other substances

  16. Infrared analysis of hydrogen fluoride in uranium hexafluoride

    International Nuclear Information System (INIS)

    Ohwada, Ken; Soga, Takeshi; Iwasaki, Matae; Tsujimura, Shigeo

    1975-01-01

    Quantitative analysis by infrared technique was made on hydrogen fluoride (HF) contained in uranium hexafluoride (UF 6 ). It was found that, among the vibration-rotation bands, the R(1)-, R(2)-, P(2)- and P(3)-branches having relatively large absorbances are convenient for the analysis of HF. Upon comparing the calibration curves of pure HF with the HF absorbances observed in the presence of UF 6 (approx. 70--100 Torr), N 2 (approx. 100 Torr) and Ar(approx. 100 Torr) gases, it was observed that the first-mentioned calibration curve could be applied to the analysis of HF when mixed with other substances, as in the latter cases. The detectable limits of HF pressure, using a infrared cell of 10cm path length, were 0.5--1 Torr at room temperature. (auth.)

  17. Impact of hydrogen insertion on vehicular natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Strangueto, Karina Maretti; Silva, Ennio Peres da [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. of Mechanical Engineering. Energy Dept.], Email: karinakms@fem.unicamp.br

    2010-07-01

    This article aims to analyze the possibility of insertion of hydrogen in the vehicular natural gas or even the insertion of the hydrogen in the compressed natural gas used in Brazil. For the production of this hydrogen, the spilled turbinable energy from Itaipu would be harnessed. The calculation of production can be extended to other power plants which are close to the natural gas pipelines, where the hydrogen would be introduced. Then, it was analyzed the consumption of natural gas in vehicles in Brazil, the regulation of transportation, the sales of compressed natural gas to fuelling station, the specifications that the piped gas should follow to be sold, and how much hydrogen could be accepted in the mix. (author)

  18. Hydrogen desorption from hydrogen fluoride and remote hydrogen plasma cleaned silicon carbide (0001) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    King, Sean W., E-mail: sean.king@intel.com; Tanaka, Satoru; Davis, Robert F. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Nemanich, Robert J. [Department of Physics, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2015-09-15

    Due to the extreme chemical inertness of silicon carbide (SiC), in-situ thermal desorption is commonly utilized as a means to remove surface contamination prior to initiating critical semiconductor processing steps such as epitaxy, gate dielectric formation, and contact metallization. In-situ thermal desorption and silicon sublimation has also recently become a popular method for epitaxial growth of mono and few layer graphene. Accordingly, numerous thermal desorption experiments of various processed silicon carbide surfaces have been performed, but have ignored the presence of hydrogen, which is ubiquitous throughout semiconductor processing. In this regard, the authors have performed a combined temperature programmed desorption (TPD) and x-ray photoelectron spectroscopy (XPS) investigation of the desorption of molecular hydrogen (H{sub 2}) and various other oxygen, carbon, and fluorine related species from ex-situ aqueous hydrogen fluoride (HF) and in-situ remote hydrogen plasma cleaned 6H-SiC (0001) surfaces. Using XPS, the authors observed that temperatures on the order of 700–1000 °C are needed to fully desorb C-H, C-O and Si-O species from these surfaces. However, using TPD, the authors observed H{sub 2} desorption at both lower temperatures (200–550 °C) as well as higher temperatures (>700 °C). The low temperature H{sub 2} desorption was deconvoluted into multiple desorption states that, based on similarities to H{sub 2} desorption from Si (111), were attributed to silicon mono, di, and trihydride surface species as well as hydrogen trapped by subsurface defects, steps, or dopants. The higher temperature H{sub 2} desorption was similarly attributed to H{sub 2} evolved from surface O-H groups at ∼750 °C as well as the liberation of H{sub 2} during Si-O desorption at temperatures >800 °C. These results indicate that while ex-situ aqueous HF processed 6H-SiC (0001) surfaces annealed at <700 °C remain terminated by some surface C–O and

  19. Gas-chromatographic separation of hydrogen isotopic mixtures

    International Nuclear Information System (INIS)

    Preda, Anisoara; Bidica, Nicolae

    2005-01-01

    Full text: Gas chromatographic separation of hydrogen isotopes have been reported in the literature since late of 1950's. Gas chromatography is primarily an analytical method, but because of its properties it may be used in many other fields with excellent results. A simple method is proposed for the gas-chromatographic analysis of complex gas mixtures containing hydrogen isotopes; the method is based on the substantial difference in the thermal conductivity of these isotopes. One of the main disadvantages of the conventional gas chromatography is the long retention times required for the analysis of hydrogen gas mixtures while the column is operated at very low temperature. The method described in this paper was based on using a capillary molecular sieve 5A column operated for this kind of separation at 173 K. The carrier gas was Ne and the detector was TCD. In the paper chromatograms for various carrier flow rates and various hydrogen isotope mixtures are presented. (authors)

  20. Catalase and sodium fluoride mediated rehabilitation of enamel bleached with 37% hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Ruchi Thakur

    2015-01-01

    Full Text Available Background: Bleaching agents bring about a range of unwanted changes in the physical structure of enamel which needs to be restored qualitatively and timely. Catalase being an antioxidant ensures the effective removal of free radicals and improvement in fluoride mediated remineralization from the enamel microstructure which if retained may harm the integrity and affect the hardness of enamel. Materials and Methods: Thirty freshly extracted incisors were sectioned to 6 slabs which were divided into 5 groups: Group A, control; Group B, treatment with 37% hydrogen peroxide (HP; Group C, treatment with 37% HP and catalase, Group D, treatment with 37% HP and 5% sodium fluoride application, Group E, treatment with 37% HP followed by catalase and 5% sodium fluoride. Scanning electron microscope and microhardness analysis were done for all slabs. One-way ANOVA test was applied among different groups. Results: Vicker′s microhardness number (VHN of Group B and C was significantly lower. No significant difference between VHN of Group B and C. VHN of Group D was significantly higher than Group A, B, and C; but significantly lower than Group E. VHN of Group E was significantly higher than any other experimental group. One-way ANOVA revealed a highly significant P value (P = 0.0001 and so Tukey′s post-hoc Test for the group comparisons was employed. Conclusion: Subsequent treatment of bleached enamel with catalase and fluoride varnish separately results in repairing and significantly increasing the microhardness.

  1. Calculation of the electronic structure and contact hyperfine parameters of interstitial hydrogen in alkaline - earth fluorides

    International Nuclear Information System (INIS)

    Oliveira, L.E.M.C. de.

    1976-01-01

    The electronic structure of the interstitial hydrogen atom in alkaline-earth fluorides has been studied using the self-consistent-field multiple-scattering Xα method. In the calculations a cluster constituted by the hydrogen atom and its first anion and cation neighbors has been used. The contact parameters with the proton and the fluorine nuclei have been evaluated. The agreement obtained with the experimental results is in general good and indicates that this method is also appropriate to study defects in ionic crystals. (author) [pt

  2. BIG hydrogen: hydrogen technology in the oil and gas sector

    International Nuclear Information System (INIS)

    2006-01-01

    The BIG Hydrogen workshop was held in Calgary, Alberta, Canada on February 13, 2006. About 60 representatives of industry, academia and government attended this one-day technical meeting on hydrogen production for the oil and gas industry. The following themes were identified from the presentations and discussion: the need to find a BIG hydrogen replacement for Steam Methane Reformer (SMR) because of uncertainty regarding cost and availability of natural gas, although given the maturity of SMR process (reliability, known capital cost) how high will H2 prices have to rise?; need for a national strategy to link the near-term and the longer-term hydrogen production requirements, which can take hydrogen from chemical feedstock to energy carrier; and in the near-term Canada should get involved in demonstrations and build expertise in large hydrogen systems including production and carbon capture and sequestration

  3. DFT study of the interaction between 3-nitro-1,2,4-triazole-5-one and hydrogen fluoride

    International Nuclear Information System (INIS)

    Fang Guoyong; Xu Lina; Hu Xingen; Li Xinhua

    2008-01-01

    Three fully optimized geometries of 3-nitro-1,2,4-triazol-5-one-hydrogen fluoride (NTO-HF) complexes have been obtained with density functional theory (DFT) method at the B3LYP/6-311++G** level. The intermolecular interaction energy is calculated with zero point energy (ZPE) correction and basis set superposition error (BSSE) correction. The greatest corrected intermolecular interaction of the NTO-HF complexes is -34.155 kJ/mol. Electrons in complex systems transfer from NTO to HF. Natural bond orbital (NBO) analysis is performed to reveal the origin of the interaction. The strong hydrogen bonds contribute to the interaction energies dominantly. Frequency calculations are carried out on each optimized structure, and their IR spectra are discussed. Vibrational analysis show that there are large red-shifts for H-X (X = N and F) stretching vibrational frequencies in the NTO and hydrogen fluoride complexes. The changes of thermodynamic properties from the monomer to complexes with the temperature ranging from 200 K to 1500 K have been obtained using the statistical thermodynamic method. It is found that two of three NTO-HF complexes can be produced spontaneously from NTO and HF at room temperature

  4. DFT study of the interaction between 3-nitro-1,2,4-triazole-5-one and hydrogen fluoride

    Energy Technology Data Exchange (ETDEWEB)

    Fang Guoyong [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035 (China); Xu Lina [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035 (China)], E-mail: ahxulina@sohu.com; Hu Xingen; Li Xinhua [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035 (China)

    2008-12-15

    Three fully optimized geometries of 3-nitro-1,2,4-triazol-5-one-hydrogen fluoride (NTO-HF) complexes have been obtained with density functional theory (DFT) method at the B3LYP/6-311++G** level. The intermolecular interaction energy is calculated with zero point energy (ZPE) correction and basis set superposition error (BSSE) correction. The greatest corrected intermolecular interaction of the NTO-HF complexes is -34.155 kJ/mol. Electrons in complex systems transfer from NTO to HF. Natural bond orbital (NBO) analysis is performed to reveal the origin of the interaction. The strong hydrogen bonds contribute to the interaction energies dominantly. Frequency calculations are carried out on each optimized structure, and their IR spectra are discussed. Vibrational analysis show that there are large red-shifts for H-X (X = N and F) stretching vibrational frequencies in the NTO and hydrogen fluoride complexes. The changes of thermodynamic properties from the monomer to complexes with the temperature ranging from 200 K to 1500 K have been obtained using the statistical thermodynamic method. It is found that two of three NTO-HF complexes can be produced spontaneously from NTO and HF at room temperature.

  5. Hydrogen production with fully integrated fuel cycle gas and vapour core reactors

    International Nuclear Information System (INIS)

    Anghaie, S.; Smith, B.

    2004-01-01

    This paper presents results of a conceptual design study involving gas and vapour core reactors (G/VCR) with a combined scheme to generate hydrogen and power. The hydrogen production schemes include high temperature electrolysis as well as two dominant thermochemical hydrogen production processes. Thermochemical hydrogen production processes considered in this study included the calcium-bromine process and the sulphur-iodine processes. G/VCR systems are externally reflected and moderated nuclear energy systems fuelled by stable uranium compounds in gaseous or vapour phase that are usually operated at temperatures above 1500 K. A gas core reactor with a condensable fuel such as uranium tetrafluoride (UF 4 ) or a mixture of UF 4 and other metallic fluorides (BeF 2 , LiF, KF, etc.) is commonly known as a vapour core reactor (VCR). The single most relevant and unique feature of gas/vapour core reactors is that the functions of fuel and coolant are combined into one. The reactor outlet temperature is not constrained by solid fuel-cladding temperature limits. The maximum fuel/working fluid temperature in G/VCR is only constrained by the reactor vessel material limits, which is far less restrictive than the fuel clad. Therefore, G/VCRs can potentially provide the highest reactor and cycle temperature among all existing or proposed fission reactor designs. Gas and vapour fuel reactors feature very low fuel inventory and fully integrated fuel cycle that provide for exceptional sustainability and safety characteristics. With respect to fuel utilisation, there is no fuel burn-up limit for gas core reactors due to continuous recycling of the fuel. Owing to the flexibility in nuclear design characteristics of cavity reactors, a wide range of conversion ratio from completely burner to breeder is achievable. The continuous recycling of fuel in G/VCR systems allow for complete burning of actinides without removing and reprocessing of the fuel. The only waste products at the back

  6. Effects of hydrogen fluoride and wounding on respiratory enzymes in soybean leaves

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C J; Miller, G W; Welkie, G W

    1966-01-01

    Soybeans (Glycine max, merr, Var. Hawkeye) were cultured in Hoagland's solution and fumigated with hydrogen fluoride (ca. 100 ppb). After 24, 96 and 144 hr of fumigation, the enzyme activities of cytochrome oxidase, peroxidase, catalase, polyphenol oxidase, ascorbic acid oxidase and glucose-6-phosphate dehydrogenase were assayed in leaves from fumigated and control plants. The total oxygen uptake after each time of treatment was measured. The effect of mechanically wounding the tissue on the above enzymes was determined by rubbing with carborundum. Glucose-6-phosphate dehydrogenase activity from fumigated leaves showed an average increase of 5 to 22 times that of the control. Cytochrome oxidase, peroxidase and catalase activities were markedly stimulated by fluoride fumigation. Polyphenol oxidase activity was suppressed throughout the fumigation period. Ascorbic acid oxidase was stimulated at the initial state, then showed a steady decrease in activity. In vitro tests revealed that ascorbic acid oxidase and peroxidase were very sensitive to fluoride ions. Polyphenol oxidase was only slightly inhibited by 10/sup -2/M KF solution. Cytochrome oxidase and catalase were not affected by KF up to 10/sup -2/M. Total respiration throughout the treatment period showed an accelerated rate. All enzymes studied were stimulated by wounding. The effect of HF on respiration and specific enzymes is discussed in terms of direct effects and injury. 48 references, 8 tables.

  7. Adsorption process to recover hydrogen from feed gas mixtures having low hydrogen concentration

    Science.gov (United States)

    Golden, Timothy Christopher; Weist, Jr., Edward Landis; Hufton, Jeffrey Raymond; Novosat, Paul Anthony

    2010-04-13

    A process for selectively separating hydrogen from at least one more strongly adsorbable component in a plurality of adsorption beds to produce a hydrogen-rich product gas from a low hydrogen concentration feed with a high recovery rate. Each of the plurality of adsorption beds subjected to a repetitive cycle. The process comprises an adsorption step for producing the hydrogen-rich product from a feed gas mixture comprising 5% to 50% hydrogen, at least two pressure equalization by void space gas withdrawal steps, a provide purge step resulting in a first pressure decrease, a blowdown step resulting in a second pressure decrease, a purge step, at least two pressure equalization by void space gas introduction steps, and a repressurization step. The second pressure decrease is at least 2 times greater than the first pressure decrease.

  8. Application of gas chromatography in hydrogen isotope separation

    International Nuclear Information System (INIS)

    Ye Xiaoqiu; Sang Ge; Peng Lixia; Xue Yan; Cao Wei

    2008-01-01

    The principle of gas chromatographic separation of hydrogen isotopes was briefly introduced. The main technology and their development of separating hydrogen isotopes, including elution chromatography, hydrogen-displacement chromatography, self-displacement chromatography and frontal chromatography were discussed in detail. The prospect of hydrogen isotope separation by gas chromatography was presented. (authors)

  9. Gas-Liquid Precipitation of water dissolved heavy metal ions using hydrogen sulfide gas

    NARCIS (Netherlands)

    Al Tarazi, M.Y.M.

    2004-01-01

    Precipitation of solids promoted by gas-liquid reactions is applied in many industrial processes such as the production of ammonium phosphate, ammonium sulphate, barium carbonate, calcium carbonate, calcium fluoride, ypsum (calcium sulphate), goethite, sodium bicarbonate, strontium carbonate and

  10. Internal dosimetry of tritiated hydrogen gas

    International Nuclear Information System (INIS)

    Peterman, B.F.; Johnson, J.R.; Dunford, D.W.; McElroy, R.G.C.

    1985-02-01

    This document is a report on experiments to quantify the doses that may occur from the tritium gas that is converted 'in vivo' to tritiated water following the exposure to tritiated hydrogen gas contaminated air. This report also includes theoretical evaluation of the radiological hazards from the uptake through skin of tritium from tritiated hydrogen adsorbed on surfaces

  11. Feasibility study of hydrogen determination in blended gas mixture by an indigenously developed hydrogen determinator

    International Nuclear Information System (INIS)

    Gaikwad, Revati; Sonar, V.R.; Pandey, R.K.; Karekar, C.D.; Raul, Seema; Mahanty, B.; Kelkar, A.; Bhatt, R.B.; Behere, P.G.

    2017-01-01

    It is required to determine accurately the percentage composition of hydrogen in the blended gas of N 2 and H 2 prior to deliver to the sintering furnace. A feasibility study has been carried out to determine the percentage composition of hydrogen in the blended gas by using an indigenously developed hydrogen determinator. The instrument uses gas chromatograph-thermal conductivity (GC-TCD) technique to determine hydrogen. The flow of carrier gas was kept at 100 mL min -1 during the analysis. A very close agreement between the determined value and the reported value of hydrogen content in the commercially available N 2 -H 2 mixed cylinder was found by using the indigenous hydrogen determinator. (author)

  12. On-Board Hydrogen Gas Production System For Stirling Engines

    Science.gov (United States)

    Johansson, Lennart N.

    2004-06-29

    A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed. A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed.

  13. Hydrogen fluoride (HF) substance flow analysis for safe and sustainable chemical industry.

    Science.gov (United States)

    Kim, Junbeum; Hwang, Yongwoo; Yoo, Mijin; Chen, Sha; Lee, Ik-Mo

    2017-11-01

    In this study, the chemical substance flow of hydrogen fluoride (hydrofluoric acid, HF) in domestic chemical industries in 2014 was analyzed in order to provide a basic material and information for the establishment of organized management system to ensure safety during HF applications. A total of 44,751 tons of HF was made by four domestic companies (in 2014); import amount was 95,984 tons in 2014 while 21,579 tons of HF was imported in 2005. The export amount of HF was 2180 tons, of which 2074 ton (China, 1422 tons, U.S. 524 tons, and Malaysia, 128 tons) was exported for the manufacturing of semiconductors. Based on the export and import amounts, it can be inferred that HF was used for manufacturing semiconductors. The industries applications of 161,123 tons of HF were as follows: manufacturing of basic inorganic chemical substance (27,937 tons), manufacturing of other chemical products such as detergents (28,208 tons), manufacturing of flat display (24,896 tons), and manufacturing of glass container package (22,002 tons). In this study, an analysis of the chemical substance flow showed that HF was mainly used in the semiconductor industry as well as glass container manufacturing. Combined with other risk management tools and approaches in the chemical industry, the chemical substance flow analysis (CSFA) can be a useful tool and method for assessment and management. The current CSFA results provide useful information for policy making in the chemical industry and national systems. Graphical abstract Hydrogen fluoride chemical substance flows in 2014 in South Korea.

  14. Accumulation of fluoride by plants and vegetables

    International Nuclear Information System (INIS)

    Njenga, L.W.; Kariuki, D.N.

    1994-01-01

    Fluoride in plant and vegetable samples has been determined using ion selective electrode. The analysis was carried out after ashing the sample on an open flame, adding perchloric acid and allowing the hydrogen fluoride to diffuse into sodium hydroxide layer.The results obtained show that kale and pumpkins can accumulate more than ten times their normal values of fluoride while plants were found to accumulate upto 100μg/g fluoride when exposed to highlevels of fluoride in water or soil. (author)

  15. Condensation in gas transmission pipelines. Phase behavior of mixtures of hydrogen with natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Schouten, J.A.; Michels, J.P.J. [Amsterdam Univ. (Netherlands). Van der Waals-Zeeman Inst.; Rosmalen, R.J. van [Energy, Roden (Netherlands)

    2005-05-01

    Several pressure and temperature reductions occur along gas transmission lines. Since the pressure and temperature conditions of the natural gas in the pipeline are often close to the dew point curve, liquid dropout can occur. Injection of hydrogen into the natural gas will change the phase envelope and thus the liquid dropout. This condensation of the heavy hydrocarbons requires continuous operational attention and a positive effect of hydrogen may affect the decision to introduce hydrogen. In this paper we report on calculations of the amount of condensate in a natural gas and in this natural gas mixed with 16.7% hydrogen. These calculations have been performed at conditions prevailing in gas transport lines. The results will be used to discuss the difference in liquid dropout in a natural gas and in a mixture with hydrogen at pressure reduction stations, at crossings under waterways, at side-branching, and at separators in the pipelines. (author)

  16. Time-resolved output spectrum from a hydrogen fluoride laser using mixtures of SF6 and HI

    International Nuclear Information System (INIS)

    Greiner, N.R.

    1975-01-01

    The time-resolved spectrum from a transverse-discharge hydrogen fluoride (HF) laser using a mixture of SF 6 and HI is reported. Because this spectrum matches that from a high-pressure H 2 -F 2 laser, and because the SF 6 -HI mixture is chemically stable, this laser should be a suitable and convenient source for probing H 2 -F 2 amplifiers

  17. Quantification of trace level of fluoride content in uranium oxide produced by deconversion of HEX gas by ion chromatography

    International Nuclear Information System (INIS)

    Unnikrishnan, E.K.; Padmakumar, P.R.; Shanmugavelu, P.; Sudhakar, T.M.; Bhowmik, A.

    2015-01-01

    Fluoride content in nuclear fuel is detrimental due to its corrosion behavior with cladding material. It is essential to monitor and control the fluoride concentration in nuclear material at various processing stages. Deconversion of upgraded HEX gas is carried out to produce uranium oxide. The performance of the deconversion process of HEX gas is evaluated for which trace level of fluoride concentration accompanying uranium oxide is considered as a marker. An analytical method has been developed for testing the uranium oxide produced from deconversion process of HEX gas. The method involves sample pretreatment followed by analysis using ion chromatography. The test method was validated for its performance using in house synthetic uranyl fluoride (UO 2 F 2 ) standard solutions prepared with different level of fluoride content. The results are in agreement with the expected values with the recovery in the range of 80-95%. This method has been successfully implemented for routine analysis of samples at our lab. Since UO 2 F 2 reference material is not available to validate this method, in house UO 2 F 2 standards were prepared from U 3 O 8 prepared from nuclear grade uranyl nitrate solution. UO 2 F 2 standards were prepared by converting U 3 O 8 to UO 2 F 2 by the addition of HF followed by H 2 O 2 at 200°C on a hot plate. The entire yellow colored UO 2 F 2 was dissolved in nano pure water and recrystallised several times to ensure that all free HF is removed. The crystals dried in air oven at 120° for three hours. Samples containing 1000 mg kg -1 fluoride prepared from this UO 2 F 2 , and subsequently from this sample containing 5 mg kg -1 to 35 mg kg -1 fluoride samples were prepared and analysed against fluoride CRM and the fluoride concentration obtained was analysed

  18. Absorption, distribution and excretion of inhaled hydrogen fluoride in the rat

    Energy Technology Data Exchange (ETDEWEB)

    Morris, J.B.

    1979-01-01

    Rats were subjected to whole body HF exposure for 6 hrs or to nose-only HF exposure for 1 hr. Total and/or ionic fluoride concentrations in selected tissues were determined at various times following exposure. In rats sacrificed 6 hrs after whole body exposure, dose-dependent increases in lung, plasma, and kidney total and ionic fluoride concentration occurred. Rats excreted more fluoride in the urine after whole body exposure than could be explained by the amount of HF inhaled. Considerable evidence suggests that airborne HF deposits on fur and is then ingested due to preening activity. Urinary fluoride excretion was increased by nose-only exposure. The urinary fluoride excretion accounted for approximately twice the fluoride estimated to be inhaled during exposure. Tissue fluoride concentrations were elevated immediately after nose-only exposure. Fluoride concentrations in lung and kidney returned to control levels within 12 hrs. Plasma fluoride concentration was slightly elevated 24 hrs after the start of the 1 hr exposure but was at control levels at 96 hrs. Immediately following nose-only exposure, lung ionic fluoride concentrations were less than plasma ionic fluoride concentrations suggesting that the fluoride in the lung had reached that site via plasma transport rather than by inhalation. A dose-dependent increase in plasma ionic fluoride concentration occurred after upper respiratory tract HF exposure providing strong evidence that fluoride is absorbed systemically from that site. The plasma ionic fluoride concentration after upper respiratory tract exposure was of sufficient magnitude to account for the plasma fluoride concentrations observed in intact nose-only exposed rats. (ERB)

  19. Hydrogen fluoride effects on local mung bean and maize cereal crops from peri-urban brick kilns in south asia

    NARCIS (Netherlands)

    Ahmad, M.N.; Ahmad, S.S.; Zia, A.; Iqbal, M.S.; Shah, H.; Mian, A.A.; Shah, R.U.

    2014-01-01

    Increased urbanisation throughout South Asia has increased the number and output of the brick kilns that typically surround major cities, but the environmental and health impacts of their atmospheric emissions are poorly understood in Pakistan. We report the negative effects of hydrogen fluoride

  20. Metal-Free Catalytic Asymmetric Fluorination of Keto Esters Using a Combination of Hydrogen Fluoride (HF) and Oxidant: Experiment and Computation

    KAUST Repository

    Pluta, Roman

    2018-02-09

    A chiral iodoarene organocatalyst for the catalytic asymmetric fluorination has been developed. The catalyst was used in the asymmetric fluorination of carbonyl compounds, providing the products with a quaternary stereocenter with high enantioselectivities. Chiral hypervalent iodine difluoride intermediates were generated in situ by treatment of the catalyst with an oxidant and hydrogen fluoride as fluoride source. As such, the α-fluorination of a carbonyl compound was achieved with a nucleophilic fluorine source. A combined computational and experimental approach provided insight into the reaction mechanism and the origin of enantioselectivity.

  1. Metal-Free Catalytic Asymmetric Fluorination of Keto Esters Using a Combination of Hydrogen Fluoride (HF) and Oxidant: Experiment and Computation

    KAUST Repository

    Pluta, Roman; Krach, Patricia E.; Cavallo, Luigi; Falivene, Laura; Rueping, Magnus

    2018-01-01

    A chiral iodoarene organocatalyst for the catalytic asymmetric fluorination has been developed. The catalyst was used in the asymmetric fluorination of carbonyl compounds, providing the products with a quaternary stereocenter with high enantioselectivities. Chiral hypervalent iodine difluoride intermediates were generated in situ by treatment of the catalyst with an oxidant and hydrogen fluoride as fluoride source. As such, the α-fluorination of a carbonyl compound was achieved with a nucleophilic fluorine source. A combined computational and experimental approach provided insight into the reaction mechanism and the origin of enantioselectivity.

  2. The hydrogen economy - an opportunity for gas

    International Nuclear Information System (INIS)

    Soederbaum, J.; Martin, G.; O'Neill, C.

    2003-01-01

    Natural gas could play a pivotal role in any transition to a hydrogen economy-that is one of the findings of the recently-released National Hydrogen Study, commissioned by the Commonwealth Department of Industry, Tourism and Resources, and undertaken by the consulting firms ACIL Tasman and Parsons Brinckerhoff. The key benefits of hydrogen include zero emissions at the point of combustion (water is the main by-product) and its abundance Hydrogen can be produced from a range of primary energy sources including gas and coal, or through the electrolysis of water. Depending on the process used to manufacture hydrogen (especially the extent to which any associated carbon can be captured and sequestered), life-cycle emissions associated with its production and use can be reduced or entirely eliminated

  3. Method to separate hydrogen fluoride from an uranium hexafluoride-hydrogen fluoride mixture

    International Nuclear Information System (INIS)

    Pfistermeister, M.; Jokar, J.

    1978-01-01

    It is difficult to separate off HF in the purification of UF 6 from additional compounds. According to the invention, it is possible without too greater effort to form the hardly volatile tri-(perfluorobutyl)-ammonium fluoride by adding a perfluorate amine or a derivate of it, and then to separate off the UF 6 from the adduct by simple distillation or sublimation. The adduct can be easily split again with NaOH, so that the amine can be used again without loss. (RW) [de

  4. Tritium removal by hydrogen isotopic exchange between hydrogen gas and water on hydrophobic catalyst

    International Nuclear Information System (INIS)

    Morishita, T.; Isomura, S.; Izawa, H.; Nakane, R.

    1980-01-01

    Many kinds of the hydrophobic catalysts for hydrogen isotopic exchange between hydrogen gas and water have been prepared. The carriers are the hydrophobic organic materials such as polytetrafluoroethylene(PTFE), monofluorocarbon-PTFE mixture(PTFE-FC), and styrene-divinylbenzene copolymer(SDB). 0.1 to 2 wt % Pt is deposited on the carriers. The Pt/SDB catalyst has much higher activity than the Pt/PTFE catalyst and the Pt/PTFE-FC catalyst shows the intermediate value of catalytic activity. The observation of electron microscope shows that the degrees of dispersion of Pt particles on the hydrophobic carriers result in the difference of catalytic activities. A gas-liquid separated type column containing ten stages is constructed. Each stage is composed of both the hydrophobic catalyst bed for the hydrogen gas/water vapor isotopic exchange and the packed column type bed for the water vapor/liquid water isotopic exchange. In the column hydrogen gas and water flow countercurrently and hydrogen isotopes are separated

  5. Formation of H a - hydrogen centers upon additive coloration of alkaline-earth fluoride crystals

    Science.gov (United States)

    Radzhabov, E. A.; Egranov, A. V.; Shendrik, R. Yu.

    2017-06-01

    The mechanism of coloration of alkaline-earth fluoride crystals CaF2, SrF2, and BaF2 in calcium vapors in an autoclave with a cold zone is studied. It was found that the pressure in the autoclave upon constant evacuation by a vacuum pump within the temperature range of 500-800°C increases due to evaporation of metal calcium. In addition to the optical-absorption bands of color centers in the additively colored undoped crystals or to the bands of divalent ions in the crystals doped with rare-earth Sm, Yb, and Tm elements, there appear intense bands in the vacuum ultraviolet region at 7.7, 7.0, and 6.025 eV in CaF2, SrF2, and BaF2, respectively. These bands belong to the Ha - hydrogen centers. The formation of hydrogen centers is also confirmed by the appearance of the EPR signal of interstitial hydrogen atoms after X-ray irradiation of the additively colored crystals. Grinding of the outer edges of the colored crystals leads to a decrease in the hydrogen absorption-band intensity with depth to complete disappearance. The rate of hydrogen penetration inside the crystal is lower than the corresponding rate of color centers (anion vacancies) by a factor of tens. The visible color density of the outer regions of the hydrogen-containing crystals is several times lower than that of the inner region due to the competition between the color centers and hydrogen centers.

  6. Two-stage coal liquefaction without gas-phase hydrogen

    Science.gov (United States)

    Stephens, H.P.

    1986-06-05

    A process is provided for the production of a hydrogen-donor solvent useful in the liquefaction of coal, wherein the water-gas shift reaction is used to produce hydrogen while simultaneously hydrogenating a donor solvent. A process for the liquefaction of coal using said solvent is also provided. The process enables avoiding the use of a separate water-gas shift reactor as well as high pressure equipment for liquefaction. 3 tabs.

  7. Effects of fluorides on plants

    Energy Technology Data Exchange (ETDEWEB)

    Yamazoe, F

    1975-11-01

    Fluorine compounds known to be air pollutants, such as hydrogen fluoride and silicon tetrachloride, are highly poisonous to plants even at ppm - ppb levels. As solid microparticles, acidic sodium fluoride and cryolite cause problems by adhering to plant leaves and absorbing into plant bodies. Plants are classified by their susceptibility to hydrogen fluoride: gladiolus, apricot, buckwheat, turnip and Vaccinium vitis-idaea are most susceptible showing slight injury at less than 5 ppb for 7-9 days; maize, pepper, and dahlia are fairly susceptible, followed by azalea, rose, lilac, and alfalfa, then by oak and tomato. Gladiolus is used as an indicator plant. The exposure factor for one species was known. The symptoms of plants exposed to gaseous fluorine compounds are described in detail at various concentrations. The causal mechanism of the injuries due to fluorine compounds is described in detail, with the method of determining the fluorine content of plant parts. 7 references.

  8. Detailed kinetic and heat transport model for the hydrolysis of lignocellulose by anhydrous hydrogen fluoride vapor

    Energy Technology Data Exchange (ETDEWEB)

    Rorrer, G.L.; Mohring, W.R.; Lamport, D.T.A.; Hawley, M.C.

    1988-01-01

    Anhydrous Hydrogen Fluoride (HF) vapor at ambient conditions efficiently and rapidly hydrolyzed lignocellulose to glucose and lignin. The unsteady-state reaction of HF vapor with a single lignocellulose chip was mathematically modeled under conditions where external and internal mass-transfer resistances were minimized. The model incorporated physical adsorption of HF vapor onto the lignocellulosic matrix and solvolysis of cellulose to glucosyl fluoride by adsorbed HF into the differential material and energy balance expressions. Model predictions for the temperature distribution and global glucose yield in the HF-reacting lignocellulose chip as a function of reaction time and HF vapor stream temperature agreed reasonably with the complimentary experimental data. The model correctly predicted that even when mass-transfer resistances for the reaction of HF vapor with a single lignocellulose chip are minimized, external and internal heat-transfer resistances are still significant.

  9. A new technique for pumping hydrogen gas

    Science.gov (United States)

    Friedman, I.; Hardcastle, K.

    1970-01-01

    A system for pumping hydrogen gas without isotopic fractionation has been developed. The pump contains uranium metal, which when heated to about 80??C reacts with hydrogen to form UH3. The UH3 is heated to above 500??C to decompose the hydride and regenerate the hydrogen. ?? 1970.

  10. Method to separate off hydrogen fluoride from a uranium hexafluoride-hydrogen fluoride mixture

    International Nuclear Information System (INIS)

    Pfistermeister, M.; Jokar, J.

    1979-01-01

    There have been sofar difficulties involved in separating off HF when purifying UF 6 . According to the invention, this can be achieved without great expenditure if one adds a perfluorated amine or derivative of it to the UF 6 -HF mixture. The UF 6 can be separated by simple distillation or sublimation from the hardly-volatile formed tri-(perfluoro-butyl) ammonium fluoride. The adduct formed can be easily split again with NaOH so that the amine can be recycled without loss. (UWI) [de

  11. Role of a natural gas utility in the hydrogen economy

    International Nuclear Information System (INIS)

    Bayko, J.

    2004-01-01

    'Full text:' Enbridge Gas Distribution is the largest natural gas distribution company in Canada at about 1.7 million residential, commercial and industrial customers. Enbridge will speak to the role of a natural gas utility in the hydrogen economy, and outline the benefits of hydrogen production from natural gas reformation for both stationary and mobile applications. Hydrocarbon reformation will act at least as a bridge until a more fully developed hydrogen economy infrastructure is developed. Reformation allows immediate leveraging of the reliability of vast existing natural gas distribution systems, and a reduced need for on-site hydrogen storage. Natural gas powered fuel cells provide improved emissions over traditional internal combustion engines, and in the stationary market provide smarter use of resources through the higher efficiencies of cogeneration (the capture and use of otherwise waste heat). (author)

  12. Process for the production of hydrogen/deuterium-containing gas

    International Nuclear Information System (INIS)

    Nitschke, E.; Desai, A.; Ilgner, H.

    1978-01-01

    A process for the production of hydrogen/deuterium-containing gas is described in which the enriched condensate obtained from the production of a hydrogen/deuterium-containing gas mixture is collected and subjected to a direct exchange of isotopes with the feedsteam admitted to the process. Such condensate can be brought into direct exchange of isotopes with the gas water vapor mixture within the process, viz. ahead of the CO conversion section. The exchange of isotopes may be performed according to the counter-current principle. If it is intended to maintain in the hydrogen/deuterium-containing gas a certain definite content of water vapor whose phase condition is superior to the condition achieved when using normal cooling water, this gas, at least 0.6 kg/m 3 of gas, is subjected to an exchange of isotopes with the water fed additionally into the process

  13. Silicon Carbide-Based Hydrogen Gas Sensors for High-Temperature Applications

    Directory of Open Access Journals (Sweden)

    Sangchoel Kim

    2013-10-01

    Full Text Available We investigated SiC-based hydrogen gas sensors with metal-insulator-semiconductor (MIS structure for high temperature process monitoring and leak detection applications in fields such as the automotive, chemical and petroleum industries. In this work, a thin tantalum oxide (Ta2O5 layer was exploited with the purpose of sensitivity improvement, because tantalum oxide has good stability at high temperature with high permeability for hydrogen gas. Silicon carbide (SiC was used as a substrate for high-temperature applications. We fabricated Pd/Ta2O5/SiC-based hydrogen gas sensors, and the dependence of their I-V characteristics and capacitance response properties on hydrogen concentrations were analyzed in the temperature range from room temperature to 500 °C. According to the results, our sensor shows promising performance for hydrogen gas detection at high temperatures.

  14. Development Of A Centrifugal Hydrogen Pipeline Gas Compressor

    Energy Technology Data Exchange (ETDEWEB)

    Di Bella, Francis A. [Concepts NREC, White River Junction, VY (United States)

    2015-04-16

    Concepts NREC (CN) has completed a Department of Energy (DOE) sponsored project to analyze, design, and fabricate a pipeline capacity hydrogen compressor. The pipeline compressor is a critical component in the DOE strategy to provide sufficient quantities of hydrogen to support the expected shift in transportation fuels from liquid and natural gas to hydrogen. The hydrogen would be generated by renewable energy (solar, wind, and perhaps even tidal or ocean), and would be electrolyzed from water. The hydrogen would then be transported to the population centers in the U.S., where fuel-cell vehicles are expected to become popular and necessary to relieve dependency on fossil fuels. The specifications for the required pipeline hydrogen compressor indicates a need for a small package that is efficient, less costly, and more reliable than what is available in the form of a multi-cylinder, reciprocating (positive displacement) compressor for compressing hydrogen in the gas industry.

  15. Problems of flue gas desulphurization in the Matra power plants

    Energy Technology Data Exchange (ETDEWEB)

    Szilagyi, I.

    1999-07-01

    Main parameters of the investment are summarized and the technology of desulphurization is outlined. The use of wet limestone in the process, the path of flue gases (sulphur dioxide, hydrogen chloride and hydrogen fluoride) from the place of burning to the dust separation unit are dealt with. Emission values are evaluated in annual average and corrosion problems related to the technology of flue gas desulphurization are discussed.

  16. Experimental study on flame propagation characteristics of Hydrogen premixed gas in gas pipeline

    Science.gov (United States)

    Ma, Danzhu; Li, Zhuang; Jia, Fengrui; Li, Zhou

    2018-06-01

    Hydrogen is the cleanest high-energy gas fuel, and also is the main industrial material. However, hydrogen is more explosive and more powerful than conventional gas fuels, which restricts its application. In particular, the expansion of premixed combustion under a strong constraint is more complicated, the reaction spreads faster. The flame propagation characteristics of premixed hydrogen/air were investigated by experiment. The mechanism of reaction acceleration is discussed, and then the speed of the flame propagation and the reaction pressure were tested and analysed.

  17. Microwave interaction with nonuniform hydrogen gas in carbon nanotubes

    International Nuclear Information System (INIS)

    Babaei, S.; Babaei, Sh.

    2009-01-01

    In this paper we study the reflection, absorption, and transmission of microwave from nonuniform hydrogen gas in carbon nanotubes, grown by iron-catalyzed high-pressure carbon monoxide disproportionate (HiPco) process. A discussion on the effect of various hydrogen gas parameters on the reflected power, absorbed power, and transmitted power is presented. The nonuniform hydrogen gas slab is modeled by a series of subslabs. The overall number density profile across the whole slab follows a parabolic function. The total reflected, absorbed, and transmitted powers are then deduced and their functional dependence on the number density, collision frequency, and angle of propagation is studied

  18. Field effect-gas sensor for hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Plihal, M [Siemens A.G., Muenchen (Germany, F.R.). Forschungslaboratorium

    1977-01-01

    MIS diodes with palladium gate can be used to detect and to measure quantitatively the hydrogen concentration in gas mixtures. The dependence of the differential capacitance of these diodes on the partial pressure of hydrogen in nitrogen, oxygen and air is investigated. A theoretical model is developed which gives satisfactory agreement with most of the experimental results.

  19. Radiolytic and thermolytic bubble gas hydrogen composition

    Energy Technology Data Exchange (ETDEWEB)

    Woodham, W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-12-11

    This report describes the development of a mathematical model for the estimation of the hydrogen composition of gas bubbles trapped in radioactive waste. The model described herein uses a material balance approach to accurately incorporate the rates of hydrogen generation by a number of physical phenomena and scale the aforementioned rates in a manner that allows calculation of the final hydrogen composition.

  20. Zeolite Membrane Reactor for Water Gas Shift Reaction for Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jerry Y.S. [Arizona State Univ., Mesa, AZ (United States)

    2013-01-29

    Gasification of biomass or heavy feedstock to produce hydrogen fuel gas using current technology is costly and energy-intensive. The technology includes water gas shift reaction in two or more reactor stages with inter-cooling to maximize conversion for a given catalyst volume. This project is focused on developing a membrane reactor for efficient conversion of water gas shift reaction to produce a hydrogen stream as a fuel and a carbon dioxide stream suitable for sequestration. The project was focused on synthesizing stable, hydrogen perm-selective MFI zeolite membranes for high temperature hydrogen separation; fabricating tubular MFI zeolite membrane reactor and stable water gas shift catalyst for membrane reactor applications, and identifying experimental conditions for water gas shift reaction in the zeolite membrane reactor that will produce a high purity hydrogen stream. The project has improved understanding of zeolite membrane synthesis, high temperature gas diffusion and separation mechanisms for zeolite membranes, synthesis and properties of sulfur resistant catalysts, fabrication and structure optimization of membrane supports, and fundamentals of coupling reaction with separation in zeolite membrane reactor for water gas shift reaction. Through the fundamental study, the research teams have developed MFI zeolite membranes with good perm-selectivity for hydrogen over carbon dioxide, carbon monoxide and water vapor, and high stability for operation in syngas mixture containing 500 part per million hydrogen sulfide at high temperatures around 500°C. The research teams also developed a sulfur resistant catalyst for water gas shift reaction. Modeling and experimental studies on the zeolite membrane reactor for water gas shift reaction have demonstrated the effective use of the zeolite membrane reactor for production of high purity hydrogen stream.

  1. Adsorption of hydrogen gas and redox processes in clays.

    Science.gov (United States)

    Didier, Mathilde; Leone, Laura; Greneche, Jean-Marc; Giffaut, Eric; Charlet, Laurent

    2012-03-20

    In order to assess the adsorption properties of hydrogen gas and reactivity of adsorbed hydrogen, we measured H(2)(g) adsorption on Na synthetic montmorillonite-type clays and Callovo-Oxfordian (COx) clayrock using gas chromatography. Synthetic montmorillonites with increasing structural Fe(III) substitution (0 wt %, 3.2 wt %, and 6.4 wt % Fe) were used. Fe in the synthetic montmorillonites is principally present as structural Fe(III) ions. We studied the concomitant reduction of structural Fe(III) in the clays using (57)Fe Mössbauer spectrometry. The COx, which mainly contains smectite/illite and calcite minerals, is also studied together with the pure clay fraction of this clayrock. Experiments were performed with dry clay samples which were reacted with hydrogen gas at 90 and 120 °C for 30 to 45 days at a hydrogen partial pressure close to 0.45 bar. Results indicate that up to 0.11 wt % of hydrogen is adsorbed on the clays at 90 °C under 0.45 bar of relative pressure. (57)Fe Mössbauer spectrometry shows that up to 6% of the total structural Fe(III) initially present in these synthetic clays is reduced upon adsorption of hydrogen gas. No reduction is observed with the COx sample in the present experimental conditions.

  2. Blending Hydrogen into Natural Gas Pipeline Networks. A Review of Key Issues

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, M. W. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Antonia, O. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Penev, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-03-01

    This study assesses the potential to deliver hydrogen through the existing natural gas pipeline network as a hydrogen and natural gas mixture to defray the cost of building dedicated hydrogen pipelines. Blending hydrogen into the existing natural gas pipeline network has also been proposed as a means of increasing the output of renewable energy systems such as large wind farms.

  3. Device to remove hydrogen isotopes from a gas phase

    International Nuclear Information System (INIS)

    Morlock, G.; Wiesemes, J.; Bachner, D.

    1977-01-01

    The device described here guarantees the selective removal of hydrogen isotopes from gas phases in order to prevent the occurence of explosive H 2 gas mixtures, or to separate off radioactive tritium in nuclear plants from the gas phase. It consists of a closed container whose walls are selectively penetrable by hydrogen isotopes. It is simultaneously filled compactly and presssure-resistant with a metal bulk (e.g. powder, sponges or the like of titanium or other hydrogen isotope binding metal). Walling and bulk are maintained at suitable working temperatures by means of a system according to the Peltier effect. The whole thing is safeguarded by protective walling. (RB) [de

  4. Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, M. W.; Antonia, O.; Penev, M.

    2013-03-01

    The United States has 11 distinct natural gas pipeline corridors: five originate in the Southwest, four deliver natural gas from Canada, and two extend from the Rocky Mountain region. This study assesses the potential to deliver hydrogen through the existing natural gas pipeline network as a hydrogen and natural gas mixture to defray the cost of building dedicated hydrogen pipelines.

  5. Improvement of anaerobic bio-hydrogen gas production from organic sludge waste

    International Nuclear Information System (INIS)

    Lee, S.; Lee, Y. H.

    2009-01-01

    Microbial hydrogen gas production from organic matters stands out as one of the most promising alternatives for sustainable green energy production. Based on the literature review, investigation of anaerobic bio-hydrogen gas production from organic sludge waste using a mixed culture has been very limited. The objective of this study was to assess the anaerobic bio-hydrogen gas production from organic sludge waste under various conditions. (Author)

  6. Process for hydrogen isotope exchange and concentration between liquid water and hydrogen gas and catalyst assembly therefor

    International Nuclear Information System (INIS)

    Stevens, W.H.

    1975-01-01

    A bithermal, catalytic, hydrogen isotope exchange process between liquid water and hydrogen gas to effect concentration of the deuterium isotope of hydrogen is described. Liquid water and hydrogen gas are contacted with one another and with at least one catalytically active metal selected from Group VIII of the Periodic Table; the catalyst body has a water repellent, gas and water vapor permeable, organic polymer or resin coating, preferably a fluorinated olefin polymer or silicone resin coating, so that the isotope exchange takes place by two simultaneously occurring, and closely coupled in space, steps and concentration is effected by operating two interconnected sections containing catalyst at different temperatures. (U.S.)

  7. Potential application of gas chromatography to the analysis of hydrogen isotopes

    International Nuclear Information System (INIS)

    Warner, D.K.; Sprague, R.E.; Bohl, D.R.

    1976-01-01

    Gas chromatography is used at Mound Laboratory for the analysis of hydrogen isotopic impurities in gas mixtures. This instrumentation was used to study the applicability of the gas chromatography technique to the determination of the major components of hydrogen isotopic gas mixtures. The results of this study, including chromatograms and precision data, are presented

  8. Method of removing hydrogen sulphide from hot gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.; Yumura, M.

    1987-12-22

    Hydrogen sulphide can be removed from hot gas mixtures by contacting the hot gas mixture at temperatures in the range of 500-900/sup 0/C with an adsorbent consisting of managanese nodules. The nodules may contain additional calcium cations. In sulphided form, the nodules are catalytically active for hydrogen sulphide decomposition to produce hydrogen. Regeneration of the adsorbent can be accomplished by roasting in an oxidizing atmosphere. The nodules can be used to treat gaseous mixtures containing up to 20% hydrogen sulfide, for example, gases produced during pyrolysis, cracking, coking, and hydrotreating processes. Experiments using the processes described in this patent are also outlined. 6 tabs.

  9. Friedel-Crafts reaction of benzyl fluorides: selective activation of C-F bonds as enabled by hydrogen bonding.

    Science.gov (United States)

    Champagne, Pier Alexandre; Benhassine, Yasmine; Desroches, Justine; Paquin, Jean-François

    2014-12-08

    A Friedel-Crafts benzylation of arenes with benzyl fluorides has been developed. The reaction produces 1,1-diaryl alkanes in good yield under mild conditions without the need for a transition metal or a strong Lewis acid. A mechanism involving activation of the C-F bond through hydrogen bonding is proposed. This mode of activation enables the selective reaction of benzylic C-F bonds in the presence of other benzylic leaving groups. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Hydrogen-enriched natural gas; Bridge to an ultra low carbon world

    Energy Technology Data Exchange (ETDEWEB)

    Samuel, Joshua; Oliver, Mike

    2010-09-15

    Natural gas is recognized as an important part of the solution to climate change, as it has the smallest carbon footprint among fossil fuels and can be used with high efficiency. This alone is not enough. Supplementing natural gas with hydrogen creating hydrogen-enriched natural gas (HENG), where the hydrogen comes from a low- or zero-carbon energy source. HENG, the subject of this paper, can leverage existing natural gas infrastructure to reduce CO2 and NOx, improve the efficiency of end-use equipment, and lower the overall carbon intensity of energy consumption.

  11. a Study of Using Hydrogen Gas for Steam Boiler in CHOLOR- Alkali Manufacturing

    Science.gov (United States)

    Peantong, Sasitorn; Tangjitsitcharoen, Somkiat

    2017-06-01

    Main products of manufacturing of Cholor - Alkali, which commonly known as industrial chemical, are chlorine gas (Cl2), Sodium Hydroxide (NaOH) and hydrogen gas (H2). Chorine gas and sodium hydroxide are two main products for commercial profit; where hydrogen gas is by product. Most industries release hydrogen gas to atmosphere as it is non-profitable and less commercial scale. This study aims to make the most use of hydrogen as a substitute energy of natural gas for steam boiler to save energy cost. The second target of this study is to reduce level of CO2 release to air as a consequence of boiler combustion. This study suggests to install boiler that bases on hydrogen as main power with a high turndown ratio of at least 1:6. However, this case study uses boiler with two mode such as natural gas (NG) mode and mixed mode as they need to be flexible for production. Never the less, the best boiler selection is to use single mode energy of hydrogen. The most concerned issue about hydrogen gas is explosion during combustion stage. Stabilization measures at emergency stop is introduced to control H2 pressure to protect the explosion. This study varies ratio of natural gas to hydrogen gas to find the optimal level of two energy sources for boiler and measure total consumption through costing model; where CO2 level is measured at the boiler stack. The result of this study shows that hydrogen gas can be a substitute energy with natural gas and can reduce cost. Natural gas cost saving is 248,846 baht per month and reduce level of NOx is 80 ppm 7% O2 and 2 % of CO2 release to air as a consequence of boiler combustion.

  12. Study of the behaviour of some heavy elements in solvents containing hydrogen fluoride; Etude du comportement de quelques elements lourds dans des solvants a base d'acide fluorhydrique

    Energy Technology Data Exchange (ETDEWEB)

    Tarnero, M [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1967-01-01

    The anhydrous liquid mixtures: dinitrogen tetroxide-hydrogen fluoride and antimony pentafluoride-hydrogen fluoride were studied as solvents for heavy elements interesting nuclear energy: uranium, thorium, zirconium and for some of their compounds. For N{sub 2}O{sub 4}-HF mixtures, electric conductivity measurements and liquid phase infrared spectra were also obtained. Uranium and zirconium tetrafluoride are much more soluble in N{sub 2}O{sub 4}-HF mixtures than in pure hydrogen fluoride. Uranium dissolved in these mixtures is pentavalent. In SbF{sub 5}-HF mixtures, uranium dissolves with hydrogen evolution and becomes trivalent. The solid compound resulting from the dissolution is a fluoro-antimonate: U(SbF{sub 6}){sub 3}. (author) [French] On a etudie les melanges liquides anhydres: peroxyde d'azote-acide fluorhydrique et pentafluorure d'antimoine-acide fluorhydrique comme solvants d'elements lourds interessant l'energie nucleaire: uranium, thorium, zirconium et de quelques uns de leurs composes. Pour les melanges N{sub 2}O{sub 4}-HF on a egalement effectue des mesures de conductivite electrique, ainsi que des spectres d'absorption infrarouge en phase liquide. Le tetrafluorure d'uranium et le tetrafluorure de zirconium sont beaucoup plus solubles dans les melanges N{sub 2}O{sub 4}-HF que dans l'acide fluorhydrique. L'uranium dissous dans ces melanges est a l'etat pentavalent. Dans les melanges SbF{sub 5}-HF l'uranium se dissout avec degagement d'hydrogene et passe a l'etat trivalent. Le compose solide resultant de la dissolution est un fluoantimoniate: U(SbF{sub 6}){sub 3}. (auteur)

  13. Biochemical studies on the effect of fluoride on higher plants. II. The effect of fluoride on sucrose-synthesizing enzymes from higher plants

    Energy Technology Data Exchange (ETDEWEB)

    Yang, S F; Miller, G W

    1963-01-01

    A study was initiated to characterize the properties of partially purified phosphoglucomutase, uridine diphosphate glucose pyrophosphorylase and uridine diphosphate glucose-fructose transglucosyalse, from various plant sources, with respect to activation by metal ions and inhibition by fluoride. Of the three enzymes studied, only phosphoglucomutase was very sensitive to fluoride. It is likely that the inhibition of sucrose synthesis in fluoride-fumigated plants might be due to the inhibition of phosphoglucomutase, which plays an important role in carbohydrate metabolism. However, at present, there is insufficient evidence to show the inhibition of phosphoglucomutase in vivo by fumigation with hydrogen fluoride.

  14. First principles study of inert-gas (helium, neon, and argon) interactions with hydrogen in tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Xiang-Shan [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P. O. Box 1129, Hefei 230031 (China); Hou, Jie [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P. O. Box 1129, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); Li, Xiang-Yan [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P. O. Box 1129, Hefei 230031 (China); Wu, Xuebang, E-mail: xbwu@issp.ac.cn [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P. O. Box 1129, Hefei 230031 (China); Liu, C.S., E-mail: csliu@issp.ac.cn [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P. O. Box 1129, Hefei 230031 (China); Chen, Jun-Ling; Luo, G.-N. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2017-04-15

    We have systematically evaluated binding energies of hydrogen with inert-gas (helium, neon, and argon) defects, including interstitial clusters and vacancy-inert-gas complexes, and their stable configurations using first-principles calculations. Our calculations show that these inert-gas defects have large positive binding energies with hydrogen, 0.4–1.1 eV, 0.7–1.0 eV, and 0.6–0.8 eV for helium, neon, and argon, respectively. This indicates that these inert-gas defects can act as traps for hydrogen in tungsten, and impede or interrupt the diffusion of hydrogen in tungsten, which supports the discussion on the influence of inert-gas on hydrogen retention in recent experimental literature. The interaction between these inert-gas defects and hydrogen can be understood by the attractive interaction due to the distortion of the lattice structure induced by inert-gas defects, the intrinsic repulsive interaction between inert-gas atoms and hydrogen, and the hydrogen-hydrogen repelling in tungsten lattice.

  15. Experimental Study of Gas Explosions in Hydrogen Sulfide-Natural Gas-Air Mixtures

    Directory of Open Access Journals (Sweden)

    André Vagner Gaathaug

    2014-01-01

    Full Text Available An experimental study of turbulent combustion of hydrogen sulfide (H2S and natural gas was performed to provide reference data for verification of CFD codes and direct comparison. Hydrogen sulfide is present in most crude oil sources, and the explosion behaviour of pure H2S and mixtures with natural gas is important to address. The explosion behaviour was studied in a four-meter-long square pipe. The first two meters of the pipe had obstacles while the rest was smooth. Pressure transducers were used to measure the combustion in the pipe. The pure H2S gave slightly lower explosion pressure than pure natural gas for lean-to-stoichiometric mixtures. The rich H2S gave higher pressure than natural gas. Mixtures of H2S and natural gas were also studied and pressure spikes were observed when 5% and 10% H2S were added to natural gas and also when 5% and 10% natural gas were added to H2S. The addition of 5% H2S to natural gas resulted in higher pressure than pure H2S and pure natural gas. The 5% mixture gave much faster combustion than pure natural gas under fuel rich conditions.

  16. Measurement of laminar burning velocities and Markstein lengths of diluted hydrogen-enriched natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Haiyan; Jiao, Qi; Huang, Zuohua; Jiang, Deming [State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Eng., Xi' an Jiaotong University (China)

    2009-01-15

    The laminar flame characteristics of natural gas-hydrogen-air-diluent gas (nitrogen/CO{sub 2}) mixtures were studied in a constant volume combustion bomb at various diluent ratios, hydrogen fractions and equivalence ratios. Both unstretched laminar burning velocity and Markstein length were obtained. The results showed that hydrogen fraction, diluent ratio and equivalence ratio have combined influence on laminar burning velocity and flame instability. The unstretched laminar burning velocity is reduced at a rate that is increased with the increase of the diluent ratio. The reduction effect of CO{sub 2} diluent gas is stronger than that of nitrogen diluent gas. Hydrogen-enriched natural gas with high hydrogen fraction can tolerate more diluent gas than that with low hydrogen fraction. Markstein length can either increase or decrease with the increase of the diluent ratio, depending on the hydrogen fraction of the fuel. (author)

  17. Production of hydrogen by thermocatalytic cracking of natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Muradov, N. [Florida Solar Energy Center, Cocoa, FL (United States)

    1996-10-01

    The conventional methods of hydrogen production from natural gas (for example, steam reforming and partial oxidation) are complex, multi-step processes that produce large quantities of CO{sub 2}. The main goal of this project is to develop a technologically simple process for hydrogen production from natural gas (NG) and other hydrocarbon fuels via single-step decomposition of hydrocarbons. This approach eliminates or significantly reduces CO{sub 2} emission. Carbon is a valuable by-product of this process, whereas conventional methods of hydrogen production from NG produce no useful by-products. This approach is based on the use of special catalysts that reduce the maximum temperature of the process from 1400-1500{degrees}C (thermal non-catalytic decomposition of methane) to 500-900{degrees}C. Transition metal based catalysts and various forms of carbon are among the candidate catalysts for the process. This approach can advantageously be used for the development of compact NG reformers for on-site production of hydrogen-methane blends at refueling stations and, also, for the production of hydrogen-rich gas for fuel cell applications. The author extended the search for active methane decomposition catalysts to various modifications of Ni-, Fe-, Mo- and Co-based catalysts. Variation in the operational parameters makes it possible to produce H{sub 2}-CH{sub 4} blends with a wide range of hydrogen concentrations that vary from 15 to 98% by volume. The author found that Ni-based catalysts are more effective at temperatures below 750{degrees}C, whereas Fe-based catalysts are effective at temperatures above 800{degrees}C for the production of hydrogen with purity of 95% v. or higher. The catalytic pyrolysis of liquid hydrocarbons (pentane, gasoline) over Fe-based catalyst was conducted. The author observed the production of a hydrogen-rich gas (hydrogen concentration up to 97% by volume) at a rate of approximately 1L/min.mL of hydrocarbon fuel.

  18. Field test of hydrogen in the natural gas grid

    Energy Technology Data Exchange (ETDEWEB)

    Iskov, H

    2010-08-15

    In order to prepare for a future use of hydrogen as a fuel gas it became evident that very little information existed regarding the compatibility between long-term exposure and transportation of hydrogen in natural gas pipelines. A program was therefore set to study the transportation in a small-scale pilot grid at the research centre in Hoersholm, Denmark. The test program included steel pipes from the Danish gas transmission grid and polymer pipes from the Danish and Swedish gas distribution grid. The test of polymer pipes was devised so that samples of all test pipes were cut out of the grid each year and analysis performed on these pipe samples; in this way any form of influence on the integrity of the polyethylene pipe would be detected. The analytical program for polymer was devised in order to detect any influence on the additivation of the polyethylene as this has an influence on oxidative resistance, as well as checking already encountered possible degradation caused by extrusion of the material. Further tools as rheology and melt flow rate were used for detecting any structural changes on the material. On the mechanical property side the tensile strength and modulus were followed as well as the most important property for the pipe line, namely slow crack growth. The results of the polymer pipe tests show no degradations of any kind related to the continuous hydrogen exposure for more than 4 years. This is a strong indication of the compatibility to hydrogen of the tested polymer materials PE 80 and PE 100. The object of the steel pipe test was to see the effect on fatigue life of existing natural gas transmission lines with hydrogen replacing the natural gas. Full-scale dynamic tests were performed using randomly selected cut-out API 5L X70 pipe sections with a diameter of 20 inches and a wall thickness of 7 millimetres from the Danish natural gas transmission system. The pipe sections contained field girth weld made during the installation of the pipe

  19. Field test of hydrogen in the natural gas grid

    Energy Technology Data Exchange (ETDEWEB)

    Iskov, H.

    2010-08-15

    In order to prepare for a future use of hydrogen as a fuel gas it became evident that very little information existed regarding the compatibility between long-term exposure and transportation of hydrogen in natural gas pipelines. A program was therefore set to study the transportation in a small-scale pilot grid at the research centre in Hoersholm, Denmark. The test program included steel pipes from the Danish gas transmission grid and polymer pipes from the Danish and Swedish gas distribution grid. The test of polymer pipes was devised so that samples of all test pipes were cut out of the grid each year and analysis performed on these pipe samples; in this way any form of influence on the integrity of the polyethylene pipe would be detected. The analytical program for polymer was devised in order to detect any influence on the additivation of the polyethylene as this has an influence on oxidative resistance, as well as checking already encountered possible degradation caused by extrusion of the material. Further tools as rheology and melt flow rate were used for detecting any structural changes on the material. On the mechanical property side the tensile strength and modulus were followed as well as the most important property for the pipe line, namely slow crack growth. The results of the polymer pipe tests show no degradations of any kind related to the continuous hydrogen exposure for more than 4 years. This is a strong indication of the compatibility to hydrogen of the tested polymer materials PE 80 and PE 100. The object of the steel pipe test was to see the effect on fatigue life of existing natural gas transmission lines with hydrogen replacing the natural gas. Full-scale dynamic tests were performed using randomly selected cut-out API 5L X70 pipe sections with a diameter of 20 inches and a wall thickness of 7 millimetres from the Danish natural gas transmission system. The pipe sections contained field girth weld made during the installation of the pipe

  20. A mathematical framework for modelling and evaluating natural gas pipeline networks under hydrogen injection

    Energy Technology Data Exchange (ETDEWEB)

    Tabkhi, F.; Azzaro-Pantel, C.; Pibouleau, L.; Domenech, S. [Laboratoire de Genie Chimique, UMR5503 CNRS/INP/UPS, 5 rue Paulin Talabot F-BP1301, 31106 Toulouse Cedex 1 (France)

    2008-11-15

    This article presents the framework of a mathematical formulation for modelling and evaluating natural gas pipeline networks under hydrogen injection. The model development is based on gas transport through pipelines and compressors which compensate for the pressure drops by implying mainly the mass and energy balances on the basic elements of the network. The model was initially implemented for natural gas transport and the principle of extension for hydrogen-natural gas mixtures is presented. The objective is the treatment of the classical fuel minimizing problem in compressor stations. The optimization procedure has been formulated by means of a nonlinear technique within the General Algebraic Modelling System (GAMS) environment. This work deals with the adaptation of the current transmission networks of natural gas to the transport of hydrogen-natural gas mixtures. More precisely, the quantitative amount of hydrogen that can be added to natural gas can be determined. The studied pipeline network, initially proposed in [1] is revisited here for the case of hydrogen-natural gas mixtures. Typical quantitative results are presented, showing that the addition of hydrogen to natural gas decreases significantly the transmitted power: the maximum fraction of hydrogen that can be added to natural gas is around 6 mass% for this example. (author)

  1. Hydrogen extraction from liquid lithium-lead alloy by gas-liquid contact method

    International Nuclear Information System (INIS)

    Xie Bo; Weng Kuiping; Hou Jianping; Yang Guangling; Zeng Jun

    2013-01-01

    Hydrogen extraction experiment from liquid lithium-lead alloy by gas-liquid contact method has been carried out in own liquid lithium-lead bubbler (LLLB). Experimental results show that, He is more suitable than Ar as carrier gas in the filler tower. The higher temperature the tower is, the greater hydrogen content the tower exports. Influence of carrier gas flow rate on the hydrogen content in the export is jagged, no obvious rule. Although the difference between experimental results and literature data, but it is feasible that hydrogen isotopes extraction experiment from liquid lithium-lead by gas-liquid contact method, and the higher extraction efficiency increases with the growth of the residence time of the alloy in tower. (authors)

  2. Hydrogen enriched gas production in a multi-stage downdraft gasification process

    International Nuclear Information System (INIS)

    Dutta, A.; Jarungthammachote, S.

    2009-01-01

    To achieve hydrogen enriched and low-tar producer gas, multi-stage air-blown and air-steam gasification were studied in this research. Results showed that the tar content from multi-stage air-blown and air-steam gasification was lower compared to the average value of that from downdraft gasification. It was also seen that an air-steam gasification process could potentially increase the hydrogen concentration in the producer gas in the expense of carbon monoxide; however, the summation of hydrogen and carbon monoxide in the producer gas was increased. (author)

  3. Combustion characteristics of natural gas-hydrogen hybrid fuel turbulent diffusion flame

    Energy Technology Data Exchange (ETDEWEB)

    El-Ghafour, S.A.A.; El-dein, A.H.E.; Aref, A.A.R. [Mechanical Power Engineering Department, Faculty of Engineering, Suez Canal University, Port-Said (Egypt)

    2010-03-15

    Combustion characteristics of natural gas - hydrogen hybrid fuel were investigated experimentally in a free jet turbulent diffusion flame flowing into a slow co-flowing air stream. Experiments were carried out at a constant jet exit Reynolds number of 4000 and with a wide range of NG-H{sub 2} mixture concentrations, varied from 100%NG to 50%NG-50% H{sub 2} by volume. The effect of hydrogen addition on flame stability, flame length, flame structure, exhaust species concentration and pollutant emissions was conducted. Results showed that, hydrogen addition sustains a progressive improvement in flame stability and reduction in flame length, especially for relatively high hydrogen concentrations. Hydrogen-enriched flames found to have a higher combustion temperatures and reactivity than natural gas flame. Also, it was found that hydrogen addition to natural gas is an ineffective strategy for NO and CO reduction in the studied range, while a significant reduction in the %CO{sub 2} molar concentration by about 30% was achieved. (author)

  4. Basic study on high temperature gas cooled reactor technology for hydrogen production

    International Nuclear Information System (INIS)

    Chang, Jong Hwa; Lee, W. J.; Lee, H. M.

    2003-01-01

    The annual production of hydrogen in the world is about 500 billion m 3 . Currently hydrogen is consumed mainly in chemical industries. However hydrogen has huge potential to be consumed in transportation sector in coming decades. Assuming that 10% of fossil energy in transportation sector is substituted by hydrogen in 2020, the hydrogen in the sector will exceed current hydrogen consumption by more than 2.5 times. Currently hydrogen is mainly produced by steam reforming of natural gas. Steam reforming process is chiefest way to produce hydrogen for mass production. In the future, hydrogen has to be produced in a way to minimize CO2 emission during its production process as well as to satisfy economic competition. One of the alternatives to produce hydrogen under such criteria is using heat source of high-temperature gas-cooled reactor. The high-temperature gas-cooled reactor represents one type of the next generation of nuclear reactors for safe and reliable operation as well as for efficient and economic generation of energy

  5. Triboelectric Hydrogen Gas Sensor with Pd Functionalized Surface

    Directory of Open Access Journals (Sweden)

    Sung-Ho Shin

    2016-10-01

    Full Text Available Palladium (Pd-based hydrogen (H2 gas sensors have been widely investigated thanks to its fast reaction and high sensitivity to hydrogen. Various sensing mechanisms have been adopted for H2 gas sensors; however, all the sensors must be powered through an external battery. We report here an H2 gas sensor that can detect H2 by measuring the output voltages generated during contact electrification between two friction surfaces. When the H2 sensor, composed of Pd-coated ITO (indium tin oxide and PET (polyethylene Terephthalate film, is exposed to H2, its output voltage is varied in proportion to H2 concentration because the work function (WF of Pd-coated surface changes, altering triboelectric charging behavior. Specifically, the output voltage of the sensor is gradually increased as exposing H2 concentration increases. Reproducible and sensitive sensor response was observed up 1% H2 exposure. The approach introduced here can easily be adopted to development of triboelectric gas sensors detecting other gas species.

  6. Recommendations on X80 steel for the design of hydrogen gas transmission pipelines

    International Nuclear Information System (INIS)

    Briottet, L.; Batisse, R.; De Dinechin, G.; Langlois, P.; Thiers, L.

    2012-01-01

    By limiting the pipes thickness necessary to sustain high pressure, high-strength steels could prove economically relevant for transmitting large gas quantities in pipelines on long distance. Up to now, the existing hydrogen pipelines have used lower-strength steels to avoid any hydrogen embrittlement. The CATHY-GDF project, funded by the French National Agency for Research, explored the ability of an industrial X80 grade for the transmission of pressurized hydrogen gas in large diameter pipelines. This project has developed experimental facilities to test the material under hydrogen gas pressure. Indeed, tensile, toughness, crack propagation and disc rupture tests have been performed. From these results, the effect of hydrogen pressure on the size of some critical defects has been analyzed allowing proposing some recommendations on the design of X80 pipe for hydrogen transport. Cost of Hydrogen transport could be several times higher than natural gas one for a given energy amount. Moreover, building hydrogen pipeline using high grade steels could induce a 10 to 40% cost benefit instead of using low grade steels, despite their lower hydrogen susceptibility. (authors)

  7. A comparative economic assessment of hydrogen production from coke oven gas, water electrolysis and steam reforming of natural gas

    International Nuclear Information System (INIS)

    Nguyen, Y.V.; Ngo, Y.A.; Tinkler, M.J.; Cowan, N.

    2003-01-01

    This paper presents the comparative economics of producing hydrogen for the hydrogen economy by recovering it from waste gases from the steel industry, by water electrolysis and by conventional steam reforming of natural gas. Steel makers produce coke for their blast furnace operation by baking coal at high temperature in a reduced environment in their coke ovens. These ovens produce a coke oven gas from the volatiles in the coal. The gas, containing up to 60% hydrogen, is commonly used for its heating value with some of it being flared. The feasibility of recovering this hydrogen from the gas will be presented. A comparison of this opportunity with that of hydrogen from water electrolysis using low cost off-peak electricity from nuclear energy will be made. The impact of higher daily average electricity rate in Ontario will be discussed. The benefits of these opportunities compared with those from conventional steam reforming of natural gas will be highlighted. (author)

  8. Hydrodesulphurization of Light Gas Oil using hydrogen from the Water Gas Shift Reaction

    Science.gov (United States)

    Alghamdi, Abdulaziz

    2009-12-01

    The production of clean fuel faces the challenges of high production cost and complying with stricter environmental regulations. In this research, the ability of using a novel technology of upgrading heavy oil to treat Light Gas Oil (LGO) will be investigated. The target of this project is to produce cleaner transportation fuel with much lower cost of production. Recently, a novel process for upgrading of heavy oil has been developed at University of Waterloo. It is combining the two essential processes in bitumen upgrading; emulsion breaking and hydroprocessing into one process. The water in the emulsion is used to generate in situ hydrogen from the Water Gas Shift Reaction (WGSR). This hydrogen can be used for the hydrogenation and hydrotreating reaction which includes sulfur removal instead of the expensive molecular hydrogen. This process can be carried out for the upgrading of the bitumen emulsion which would improve its quality. In this study, the hydrodesulphurization (HDS) of LGO was conducted using in situ hydrogen produced via the Water Gas Shift Reaction (WGSR). The main objective of this experimental study is to evaluate the possibility of producing clean LGO over dispersed molybdenum sulphide catalyst and to evaluate the effect of different promoters and syn-gas on the activity of the dispersed Mo catalyst. Experiments were carried out in a 300 ml Autoclave batch reactor under 600 psi (initially) at 391°C for 1 to 3 hours and different amounts of water. After the hydrotreating reaction, the gas samples were collected and the conversion of carbon monoxide to hydrogen via WGSR was determined using a refinery gas analyzer. The sulphur content in liquid sample was analyzed via X-Ray Fluorescence. Experimental results showed that using more water will enhance WGSR but at the same time inhibits the HDS reaction. It was also shown that the amount of sulfur removed depends on the reaction time. The plan is to investigate the effect of synthesis gas (syngas

  9. Effects of hydrogen mixture into helium gas on deuterium removal from lithium titanate

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, Akihito, E-mail: tsuchiya@frontier.hokudai.ac.jp [Laboratory of Plasma Physics and Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo 060-8628 (Japan); Hino, Tomoaki; Yamauchi, Yuji; Nobuta, Yuji [Laboratory of Plasma Physics and Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo 060-8628 (Japan); Akiba, Masato; Enoeda, Mikio [Japan Atomic Energy Agency, 801-1, Mukoyama, Naka 311-0193 (Japan)

    2013-10-15

    Lithium titanate (Li{sub 2}TiO{sub 3}) pebbles were irradiated with deuterium ions with energy of 1.7 keV and then exposed to helium or helium–hydrogen mixed gas at various temperatures, in order to evaluate the effects of gas exposure on deuterium removal from the pebbles. The amounts of residual deuterium in the pebbles were measured by thermal desorption spectroscopy. The mixing of hydrogen gas into helium gas enhanced the removal amount of deuterium. In other words, the amount of residual deuterium after the helium–hydrogen mixed gas exposure at lower temperature was lower than that after the helium gas exposure. In addition, we also evaluated the pebbles exposed to the helium gas with different hydrogen mixture ratio from 0% to 1%, at 573 K. Although the amount of residual deuterium in the pebbles after the exposure decreased with increasing the hydrogen mixture ratio, the implanted deuterium partly remained after the exposure. These results suggest that the tritium inventory may occur at low temperature region in the blanket during the operation.

  10. PALLADIUM DOPED TIN OXIDE BASED HYDROGEN GAS SENSORS FOR SAFETY APPLICATIONS

    International Nuclear Information System (INIS)

    Kasthurirengan, S.; Behera, Upendra; Nadig, D. S.

    2010-01-01

    Hydrogen is considered to be a hazardous gas since it forms a flammable mixture between 4 to 75% by volume in air. Hence, the safety aspects of handling hydrogen are quite important. For this, ideally, highly selective, fast response, small size, hydrogen sensors are needed. Although sensors based on different technologies may be used, thin-film sensors based on palladium (Pd) are preferred due to their compactness and fast response. They detect hydrogen by monitoring the changes to the electrical, mechanical or optical properties of the films. We report the development of Pd-doped tin-oxide based gas sensors prepared on thin ceramic substrates with screen printed platinum (Pt) contacts and integrated nicrome wire heaters. The sensors are tested for their performances using hydrogen-nitrogen gas mixtures to a maximum of 4%H 2 in N 2 . The sensors detect hydrogen and their response times are less than a few seconds. Also, the sensor performance is not altered by the presence of helium in the test gas mixtures. By the above desired performance characteristics, field trials of these sensors have been undertaken. The paper presents the details of the sensor fabrication, electronic circuits, experimental setup for evaluation and the test results.

  11. Fiscal 1975 Sunshine Project research report. General research on hydrogen energy subsystems and their peripheral technologies (Research on hydrogen gas turbine); 1975 nendo suiso riyo subsystem no sogoteki kento to shuhen gijutsu ni kansuru kenkyu seika hokokusho. Suiso gas turbine ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-03-31

    This research aims at establishment of the meaning of using hydrogen as gas turbine fuel in the hydrogen energy system and various conditions for hydrogen gas turbines, and approaches to the feasibility study and R and D of hydrogen gas turbines in the future. In fiscal 1975, researches were made on (1) feasibility study on hydrogen-oxygen gas turbine, (2) establishment of various conditions for technical, social and economic realization of hydrogen gas turbines in the total energy system, and (3) study on technical troubles to be solved for realization of hydrogen gas turbines. For the above researches, study was made on hydrogen combustion based on the hydrogen combustion test result of gas mixture including hydrogen, and on the feasibility of aphodid cycle. In addition, study on the applicability of hydrogen-oxygen gas turbines, comparative study on hydrogen-oxygen gas turbine, MHD power generation and fuel cell, and the future prospect of hydrogen gas turbines for ships were made to place this hydrogen gas turbine. (NEDO)

  12. Rapid hydrogen gas generation using reactive thermal decomposition of uranium hydride.

    Energy Technology Data Exchange (ETDEWEB)

    Kanouff, Michael P.; Van Blarigan, Peter; Robinson, David B.; Shugard, Andrew D.; Gharagozloo, Patricia E.; Buffleben, George M.; James, Scott Carlton; Mills, Bernice E.

    2011-09-01

    Oxygen gas injection has been studied as one method for rapidly generating hydrogen gas from a uranium hydride storage system. Small scale reactors, 2.9 g UH{sub 3}, were used to study the process experimentally. Complimentary numerical simulations were used to better characterize and understand the strongly coupled chemical and thermal transport processes controlling hydrogen gas liberation. The results indicate that UH{sub 3} and O{sub 2} are sufficiently reactive to enable a well designed system to release gram quantities of hydrogen in {approx} 2 seconds over a broad temperature range. The major system-design challenge appears to be heat management. In addition to the oxidation tests, H/D isotope exchange experiments were performed. The rate limiting step in the overall gas-to-particle exchange process was found to be hydrogen diffusion in the {approx}0.5 {mu}m hydride particles. The experiments generated a set of high quality experimental data; from which effective intra-particle diffusion coefficients can be inferred.

  13. Device for removing hydrogen gas from the safety containment vessel of a nuclear reactor

    International Nuclear Information System (INIS)

    Stiefel, M.

    1983-01-01

    The safe processing of all concentrations of gas mixtures should be possible with such a device using a thermal recombiner of compact construction. A recombiner consisting of a metal case and diverter sheets situated in it is heated by induction. The incoming pipe for the gas mixture enriched with hydrogen and the outgoing pipe for the gas mixture with low hydrogen content are connected together by a three way valve. The third connection to the safety valve takes the larger port of the gas mixture with low hydrogen content back to the safety containment vessel. Sufficient amount of the gas mixture with low hydrogen content is taken via the three way valve to the safety containment vessel to ensure that the hydrogen content of the gas mixture taken to the recombiner remains below the 4% by volume limit. (orig./PW)

  14. Efficiency of hydrogen gas production in a stand-alone solar hydrogen system

    International Nuclear Information System (INIS)

    Singh, K.; Tamakloe, R.Y.

    2003-01-01

    Many photovoltaic systems operate in a decentralised electricity producing system, or stand-alone mode and the total energy demand is met by the output of the photovoltaic array. The output of the photovoltaic system fluctuates and is unpredictable for many applications making some forms of energy storage system necessary. The role of storage medium is to store the excess energy produced by the photovoltaic arry, to absorb momentary power peaks and to supply energy during sunless periods. One of the storage modes is the use of electrochemical techniques, with batteries and water electrolysis as the most important examples. The present study includes three main parts: the first one is the hydrogen production form the electrolysis of water depending on the DC output current of the photovoltaic (PV) energy source and the charging of the battery. The second part presents the influence of various parameters on the efficiency of hydrogen gas production. The final part includes simulation studies with focus on solar hydrogen efficiency under the influence of various physical and chemical parameters. For a 50W panel-battery-electrolyser system, the dependence of volume of hydrogen gas on voltage, current and power yielded a maximum efficiency of 13.6% (author)

  15. Improved Hydrogen Gas Getters for TRU Waste -- Final Report

    International Nuclear Information System (INIS)

    Mark Stone; Michael Benson; Christopher Orme; Thomas Luther; Eric Peterson

    2005-01-01

    Alpha radiolysis of hydrogenous waste and packaging materials generates hydrogen gas in radioactive storage containers. For that reason, the Nuclear Regulatory Commission limits the flammable gas (hydrogen) concentration in the Transuranic Package Transporter-II (TRUPACT-II) containers to 5 vol% of hydrogen in air, which is the lower explosion limit. Consequently, a method is needed to prevent the build up of hydrogen to 5 vol% during the storage and transport of the TRUPACT-II containers (up to 60 days). One promising option is the use of hydrogen getters. These materials scavenge hydrogen from the gas phase and irreversibly bind it in the solid phase. One proven getter is a material called 1,4-bis (phenylethynyl) benzene, or DEB, characterized by the presence of carbon-carbon triple bonds. Carbon may, in the presence of suitable precious metal catalysts such as palladium, irreversibly react with and bind hydrogen. In the presence of oxygen, the precious metal may also eliminate hydrogen by catalyzing the formation of water. This reaction is called catalytic recombination. DEB has the needed binding rate and capacity for hydrogen that potentially could be generated in the TRUPACT II. Phases 1 and 2 of this project showed that uncoated DEB performed satisfactorily in lab scale tests. Based upon these results, Phase 3, the final project phase, included larger scale testing. Test vessels were scaled to replicate the ratio between void space in the inner containment vessel of a TRUPACT-II container and a payload of seven 55-gallon drums. The tests were run with an atmosphere of air for 63.9 days at ambient temperature (15-27 C) and a scaled hydrogen generation rate of 2.60E-07 moles per second (0.35 cc/min). A second type of getter known as VEI, a proprietary polymer hydrogen getter characterized by carbon-carbon double bonds, was also tested in Phase 3. Hydrogen was successfully ''gettered'' by both getter systems. Hydrogen concentrations remained below 5 vol% (in

  16. Improved Hydrogen Gas Getters for TRU Waste -- Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mark Stone; Michael Benson; Christopher Orme; Thomas Luther; Eric Peterson

    2005-09-01

    Alpha radiolysis of hydrogenous waste and packaging materials generates hydrogen gas in radioactive storage containers. For that reason, the Nuclear Regulatory Commission limits the flammable gas (hydrogen) concentration in the Transuranic Package Transporter-II (TRUPACT-II) containers to 5 vol% of hydrogen in air, which is the lower explosion limit. Consequently, a method is needed to prevent the build up of hydrogen to 5 vol% during the storage and transport of the TRUPACT-II containers (up to 60 days). One promising option is the use of hydrogen getters. These materials scavenge hydrogen from the gas phase and irreversibly bind it in the solid phase. One proven getter is a material called 1,4-bis (phenylethynyl) benzene, or DEB, characterized by the presence of carbon-carbon triple bonds. Carbon may, in the presence of suitable precious metal catalysts such as palladium, irreversibly react with and bind hydrogen. In the presence of oxygen, the precious metal may also eliminate hydrogen by catalyzing the formation of water. This reaction is called catalytic recombination. DEB has the needed binding rate and capacity for hydrogen that potentially could be generated in the TRUPACT II. Phases 1 and 2 of this project showed that uncoated DEB performed satisfactorily in lab scale tests. Based upon these results, Phase 3, the final project phase, included larger scale testing. Test vessels were scaled to replicate the ratio between void space in the inner containment vessel of a TRUPACT-II container and a payload of seven 55-gallon drums. The tests were run with an atmosphere of air for 63.9 days at ambient temperature (15-27°C) and a scaled hydrogen generation rate of 2.60E-07 moles per second (0.35 cc/min). A second type of getter known as VEI, a proprietary polymer hydrogen getter characterized by carbon-carbon double bonds, was also tested in Phase 3. Hydrogen was successfully “gettered” by both getter systems. Hydrogen concentrations remained below 5 vol% (in

  17. Thermodynamic data for uranium fluorides

    International Nuclear Information System (INIS)

    Leitnaker, J.M.

    1983-03-01

    Self-consistent thermodynamic data have been tabulated for uranium fluorides between UF 4 and UF 6 , including UF 4 (solid and gas), U 4 F 17 (solid), U 2 F 9 (solid), UF 5 (solid and gas), U 2 F 10 (gas), and UF 6 (solid, liquid, and gas). Included are thermal function - the heat capacity, enthalpy, and free energy function, heats of formation, and vaporization behavior

  18. Construction and performance testing of a secondary cooling system with hydrogen gas (I)

    International Nuclear Information System (INIS)

    Hishida, M.; Nekoya, S.; Takizuka, T.; Emori, K.; Ogawa, M.; Ouchi, M.; Okamoto, Y.; Sanokawa, K.; Nakano, T.; Hagiwara, T.

    1979-08-01

    An experimental multi-purpose High-Temperature Gas Cooled Reactor (VHTR) which is supposed to be used for a direct steel-making is now being developed in JAeRI. In order to simulate the heat exchanging system between the primary helium gas and the secondary reducing gas system of VHTR, a hydrogen gas loop was constructed as a secondary cooling system of the helium gas loop. The maximum temperature and the maximum pressure of the hydrogen gas are 900 degrees C and 42 kg/cm 2 x G respectively. The construction of the hydrogen gas loop was completed in January, 1977, and was successfully operated for 1.000 h. Various performance tests, such as the hydrogen permeation test of a He/H2 heat exchanger and the thermal performance test of heat exchangers, were made. Especially, it was proved that hydrogen permeation rate through the heat exchanger was reduced to 1/30 to approximately 1/50 by a method of calorized coating, and the coating was stable during 1.000 h's operation. It was also stable against the temperature changes. This report describes the outline of the facility and performance of the components. (orig.) [de

  19. Producing hydrogen from coke-oven gas: the Solmer project. [PSA process

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, G; Vidal, J

    1984-05-01

    After presenting the energy situation at the Solmer plant, where coke-oven gas is produced to excess, the authors examine the technical and economic possibilities of utilizing this gas for hydrogen extraction. They describe a project (based on the PSA process) for producing some 65 t/d of hydrogen and present the technical features of the scheme. An evaluation of the energy and financial costs of producing the hydrogen confirms the competitive status of the process.

  20. Transport of a relativistic electron beam through hydrogen gas

    International Nuclear Information System (INIS)

    Haan, P. de.

    1981-01-01

    In this thesis the author describes the transport properties of an electron beam through vacuum and through hydrogen gas with pressure ranging from 25 to 1000 Pa. Maximum beam energy and current are 0.8 MeV and 6 kA, respectively. The pulse length is around 150 ns. A description is given of the experimental device. Also the diagnostics for probing the beam and the plasma, produced by the beam, are discussed, as well as the data acquisition system. The interaction between the beam and hydrogen gas with a pressure around 200 Pa is considered. A plasma with density around 10 19 m -3 is produced within a few nanoseconds. Measurements yield the atomic hydrogen temperature, electron density, beam energy loss, and induced plasma current and these are compared with the results of a model combining gas ionization and dissociation, and turbulent plasma heating. The angular distribution of the beam electrons about the magnetic field axis is discussed. (Auth.)

  1. Hydrogen Gas Production in a Stand-Alone Wind Farm

    Directory of Open Access Journals (Sweden)

    M. Naziry Kordkandy

    2017-04-01

    Full Text Available This paper is analyzing the operation of a stand-alone wind farm with variable speed turbines, permanent magnet synchronous generators (PMSG and a system for converting wind energy during wind speed variations. On this paper, the design and modeling of a wind system which uses PMSG’s to provide the required power of a hydrogen gas electrolyzer system, is discussed. This wind farm consists of three wind turbines, boost DC-DC converters, diode full bridge rectifiers, permanent magnet synchronous generators, MPPT control and a hydrogen gas electrolyzer system. The MPPT controller based on fuzzy logic is designed to adjust the duty ratio of the boost DC-DC converters to absorb maximum power. The proposed fuzzy logic controller assimilates, with (PSF MPPT algorithm which generally used to absorb maximum power from paralleled wind turbines and stores it in form of hydrogen gas. The system is modeled and its behavior is studied using the MATLAB software.

  2. A comparison of alumina, carbon and carbon-covered alumina as support for Ni-Mo-F additives: gas oil hydroprocessing studies

    Energy Technology Data Exchange (ETDEWEB)

    Boorman, P.M.; Kydd, R.A.; Sorensen, T.S.; Chong, K.; Lewis, J.M.; Bell, W.S. (University of Calgary, Calgary, AB (Canada). Dept. of Chemistry)

    1991-01-01

    Catalysts with 3 wt% NiO, 15 wt% MoO{sub 3} and 0-6.9 nominal wt% fluoride supported on alumina, carbon and carbon-covered alumina were studied to examine the role of fluoride and the influence of the support on hydroprocessing on Alberta gas oil. Experiments were carried out in a batch reactor at 410{degree}C and 6.9 MPa initial H{sub 2} pressure. It was found that fluoride promotion enhances cracking and hydrogenation reactions resulting in decreased aromatic and sulphur contents in the gas oil. The promotion is dependent on the type of support and is related to the strength of the fluoride-support interaction and the accessibility of the fluoride to the surface hydroxyl groups on the support. A maximum in activity at 3.6 wt% fluoride was observed for the alumina-supported catalysts whereas higher loadings of fluoride were required for carbon-covered alumina-supported catalysts to see an improvement over their carbon-supported counterparts. However, the carbon-covered alumina-supported catalysts seem to have a lower propensity for coke deposition than their alumina counterparts. 27 refs., 1 fig., 4 tabs.

  3. A comparison of alumina, carbon and carbon-covered alumina as supports for Ni-Mo-F additives: gas oil hydroprocessing studies

    Energy Technology Data Exchange (ETDEWEB)

    Boorman, P.M.; Kydd, R.A.; Sorensen, T.S.; Chong, K.; Lewis, J.M.; Bell, W.S. (Calgary Univ., AB (Canada). Dept. of Chemistry)

    1992-01-01

    Catalysts with 3 wt% NiO, 15 wt% MoO{sub 3} and 0-6.9 nominal wt% fluoride supported on alumina, carbon and carbon-covered alumina were studied to examine the role of fluoride and the influence of the support on hydroprocessing on Alberta gas oil. Experiments were carried out in a batch reactor at 410{sup o}C and 6.9 MPa initial H{sub 2} pressure. It was found that fluoride promotion enhances cracking and hydrogenation reactions resulting in decreased aromatic and sulphur contents in the gas oil. The promotion is dependent on the type of support and is related to the strength of the fluoride-support interaction and the accessibility of the fluoride to the surface hydroxyl groups on the support. A maximum in activity at 3.6 wt% fluoride was observed for the alumina-supported catalysts whereas higher loadings of fluoride were required for carbon-covered alumina-supported catalysts to see an improvement over their carbon supported counterparts. However, the carbon-covered alumina supported catalysts seem to have a lower propensity for coke deposition than their alumina counterparts. (author).

  4. Power to gas. The final breakthrough for the hydrogen economy?

    Energy Technology Data Exchange (ETDEWEB)

    Winkler-Goldstein, Raphael [Germany Trade and Invest (GTAI), Paris (France); Rastetter, Aline [Alphea Hydrogene, Forbach (France)

    2013-04-01

    In Germany more than 20% of the energy mix is made up of renewable energy and its share is rapidly increasing. The federal government expects renewables to account for 35% of Germany's electricity consumption by 2020, 50% by 2030 and 80% by 2050. According to the German Energy Agency, multi-billion euro investments in energy storage are expected by 2020 in order to reach these goals. The growth of this fluctuating energy supply has created demand for innovative storage options in Germany and it is accelerating the development of technologies in this field. Along with batteries and smart grids, hydrogen is expected to be one of the lead technologies. 2010 a commercialization roadmap for wind hydrogen was set up by the two northern federal states of Hamburg and Schleswig-Holstein with the goal of utilizing surplus wind power for the electrolytic production of hydrogen. With the creation of the 'performing energy initiative', 2011, Brandenburg and Lower Saxony joined this undertaking. The aim of this initiative is to set up demonstration projects in order to develop and optimize wind-hydrogen hybrid systems and prepare their commercialization for the time after 2020. Beside the conversion of hydrogen into electricity and fuel for cars, further markets like raw material for the chemical, petrochemical, metallurgy and food industry are going to be addressed. Considering the fact there are over 40 caves currently used for natural gas storage with a total volume of 23.5 billion cubic meters and 400 000 km gas grid available in Germany, the German Technical and Scientific Association for Gas and Water sees opportunities for hydrogen to be fed into the existing natural gas grid network. The name of this concept is power-to-gas. According to the current DVGW-Standards natural gas in Germany can contain up to 5% hydrogen. The GERG, European Group on the Gas Research sees potential to increase this amount up to 6% to 20%. Power-to-gas could serve both for fuel and for the

  5. Scaled Testing of Hydrogen Gas Getters for Transuranic Waste

    International Nuclear Information System (INIS)

    Kaszuba, J.; Mroz, E.; Haga, M.; Hollis, W. K.; Peterson, E.; Stone, M.; Orme, C.; Luther, T.; Benson, M.

    2006-01-01

    Alpha radiolysis of hydrogenous waste and packaging materials generates hydrogen gas in radioactive storage and shipment containers. Hydrogen forms a flammable mixture with air over a wide range of concentrations (5% to 75%), and very low energy is needed to ignite hydrogen-air mixtures. For these reasons, the concentration of hydrogen in waste shipment containers (Transuranic Package Transporter-II or TRUPACT-II containers) needs to remain below the lower explosion limit of hydrogen in air (5 vol%). Accident scenarios and the resulting safety analysis require that this limit not be exceeded. The use of 'hydrogen getters' is being investigated as a way to prevent the build up of hydrogen in TRUPACT-II containers. Preferred getters are solid materials that scavenge hydrogen from the gas phase and chemically and irreversibly bind it into the solid state. In this study, two getter systems are evaluated: a) 1,4-bis (phenylethynyl)benzene or DEB, characterized by the presence of carbon-carbon triple bonds; and b) a proprietary polymer hydrogen getter, VEI or TruGetter, characterized by carbon-carbon double bonds. Carbon in both getter types may, in the presence of suitable precious metal catalysts such as palladium, irreversibly react with and bind hydrogen. With oxygen present, the precious metal may also eliminate hydrogen by catalyzing the formation of water. This reaction is called catalytic recombination. DEB and VEI performed satisfactorily in lab scale tests using small test volumes (ml-scale), high hydrogen generation rates, and short time spans of hours to days. The purpose of this study is to evaluate whether DEB and VEI perform satisfactorily in actual drum-scale tests with realistic hydrogen generation rates and time frames. The two getter systems were evaluated in test vessels comprised of a Gas Generation Test Program-style bell-jar and a drum equipped with a composite drum filter. The vessels were scaled to replicate the ratio between void space in the

  6. Metal/glass composites for analysis of hydrogen isotopes by gas-chromatography

    International Nuclear Information System (INIS)

    Nicolae, Constantin Adrian; Sisu, Claudia; Stefanescu, Doina; Stanciu, Vasile

    1999-01-01

    The separation process of hydrogen isotopes by cryogenic distillation or thermal diffusion is a key technology for tritium separation from heavy water in CANDU reactor and for tritium fuel cycle in thermonuclear fusion reactor. In each process, analytical techniques for analyzing the hydrogen isotope mixture are required. An extensive experimental research has been carried out in order to produce the most suitable adsorbents and to establish the best operating conditions for selective separation and analysis of hydrogen isotopes by gas-chromatography. This paper describes the preparation of adsorbent materials used as stationary phases in the gas-chromatographic column for hydrogen isotope separation and the treatment (activation) of stationary phases. Modified thermoresisting glass with Fe(NH 4 ) 2 (SO 4 ) 2 ·6H 2 O and Cr 2 O 3 respectively have been experimentally investigated at 77 K for H 2 , HD and D 2 separation and the results of chromatographic runs are reported and discussed. The gas-chromatographic apparatus used in this study is composed of a Hewlett-Packard 7620A gas-chromatograph equipped with a gas carrier flow rate controller and a thermal conductivity detector. The apparatus comprises also a Dewar vessel containing the separation column. The hydrogen isotopes, H 2 , HD, D 2 , and their mixture have been obtained in our laboratories. The best operating conditions and parameters of the Fe 3+ /glass adsorbent column , i.e. granulometry, column length, pressure-drop along the column, carrier gas flow rate and sample volume have been studied by means of the analysis of the retention times, separation factors and HETP. (authors)

  7. Co-pyrolysis of coal with hydrogen-rich gases. 1. Coal pyrolysis under coke-oven gas and synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Liao, H.; Li, B.; Zhang, B. [Chinese Academy of Sciences, Taiyuan (China). State Key Lab. of Coal Conversion

    1998-06-01

    To improve the economics of the hydropyrolysis process, it has been suggested that cheaper hydrogen-rich gases (such as coke oven gas, synthesis gas) could be used instead of pure hydrogen. Pyrolysis of Chinese Xianfeng lignite was carried out with coke oven gas (COG) and synthesis gas (SG) as reactive gases at 0.1-5 MPa and at a final temperature up to 650{degree}C with a heating rate of 5-25{degree}C min{sup -1} in a 10 g fixed-bed reactor. The results indicate that it is possible to use COG and SG instead of pure hydrogen in hydropyrolysis, but that the experimental conditions must be adjusted to optimize the yields of the valuable chemicals. 14 refs., 3 figs., 6 tabs.

  8. Hysec Process: production of high-purity hydrogen from coke oven gas

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, S

    1984-01-01

    An account is given of the development of the Hysec Process by the Kansai Netsukagaku and Mitsubishi Kakoki companies. The process is outlined and its special features noted. The initial development aim was to obtain high-purity hydrogen from coke oven gas by means of PSA. To achieve this, ways had to be found for removing the impurities in the coke oven gas and the trace amounts of oxygen which are found in the product hydrogen. The resulting hydrogen is 99.9999% pure. 3 references.

  9. Acetal Resins, Acrylic & Modacrylic Fibers, Carbon Black, Hydrogen Fluoride, Polycarbonate, Ethylene, Spandex & Cyanide Chemical Manufacturing: NESHAP for Source Categories, Generic Maximum Achievable Control Technology Standards (40 CFR 63, Subpart YY)

    Science.gov (United States)

    Learn about the NESHAP for GMACT for acetal resins, hydrogen fluoride, polycarbonate, ethylene production and cyanide chemicals. Find the rule history information, federal register citations, legal authority, rule summary, and additional resources

  10. Extensive Atrophic Gastritis Increases Intraduodenal Hydrogen Gas

    Directory of Open Access Journals (Sweden)

    Yoshihisa Urita

    2008-01-01

    Full Text Available Objective. Gastric acid plays an important part in the prevention of bacterial colonization of the gastrointestinal tract. If these bacteria have an ability of hydrogen (H2 fermentation, intraluminal H2 gas might be detected. We attempted to measure the intraluminal H2 concentrations to determine the bacterial overgrowth in the gastrointestinal tract. Patients and methods. Studies were performed in 647 consecutive patients undergoing upper endoscopy. At the time of endoscopic examination, we intubated the stomach and the descending part of the duodenum without inflation by air, and 20 mL of intraluminal gas samples of both sites was collected through the biopsy channel. Intraluminal H2 concentrations were measured by gas chromatography. Results. Intragastric and intraduodenal H2 gas was detected in 566 (87.5% and 524 (81.0% patients, respectively. The mean values of intragastric and intraduodenal H2 gas were 8.5±15.9 and 13.2±58.0 ppm, respectively. The intraduodenal H2 level was increased with the progression of atrophic gastritis, whereas the intragastric H2 level was the highest in patients without atrophic gastritis. Conclusions. The intraduodenal hydrogen levels were increased with the progression of atrophic gastritis. It is likely that the influence of hypochlorhydria on bacterial overgrowth in the proximal small intestine is more pronounced, compared to that in the stomach.

  11. Hydrogen Production by Steam Reforming of Natural Gas Over Vanadium-Nickel-Alumina Catalysts.

    Science.gov (United States)

    Yoo, Jaekyeong; Park, Seungwon; Song, Ji Hwan; Song, In Kyu

    2018-09-01

    A series of vanadium-nickel-alumina (xVNA) catalysts were prepared by a single-step sol-gel method with a variation of vanadium content (x, wt%) for use in the hydrogen production by steam reforming of natural gas. The effect of vanadium content on the physicochemical properties and catalytic activities of xVNA catalysts in the steam reforming of natural gas was investigated. It was found that natural gas conversion and hydrogen yield showed volcano-shaped trends with respect to vanadium content. It was also revealed that natural gas conversion and hydrogen yield increased with decreasing nickel crystallite size.

  12. Laser-driven nuclear-polarized hydrogen internal gas target

    International Nuclear Information System (INIS)

    Seely, J.; Crawford, C.; Clasie, B.; Xu, W.; Dutta, D.; Gao, H.

    2006-01-01

    We report the performance of a laser-driven polarized internal hydrogen gas target (LDT) in a configuration similar to that used in scattering experiments. This target used the technique of spin-exchange optical pumping to produce nuclear spin polarized hydrogen gas that was fed into a cylindrical storage (target) cell. We present in this paper the performance of the target, methods that were tried to improve the figure-of-merit (FOM) of the target, and a Monte Carlo simulation of spin-exchange optical pumping. The dimensions of the apparatus were optimized using the simulation and the experimental results were in good agreement with the results from the simulation. The best experimental result achieved was at a hydrogen flow rate of 1.1x10 18 atoms/s, where the sample beam exiting the storage cell had 58.2% degree of dissociation and 50.5% polarization. Based on this measurement, the atomic fraction in the storage cell was 49.6% and the density averaged nuclear polarization was 25.0%. This represents the highest FOM for hydrogen from an LDT and is higher than the best FOM reported by atomic beam sources that used storage cells

  13. Hydrogen and Hydrogen/Natural Gas Station and Vehicle Operations - 2006 Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Francfort; Donald Karner; Roberta Brayer

    2006-09-01

    This report is a summary of the operations and testing of internal combustion engine vehicles that were fueled with 100% hydrogen and various blends of hydrogen and compressed natural gas (HCNG). It summarizes the operations of the Arizona Public Service Alternative Fuel Pilot Plant, which produces, compresses, and dispenses hydrogen fuel. Other testing activities, such as the destructive testing of a CNG storage cylinder that was used for HCNG storage, are also discussed. This report highlights some of the latest technology developments in the use of 100% hydrogen fuels in internal combustion engine vehicles. Reports are referenced and WWW locations noted as a guide for the reader that desires more detailed information. These activities are conducted by Arizona Public Service, Electric Transportation Applications, the Idaho National Laboratory, and the U.S. Department of Energy’s Advanced Vehicle Testing Activity.

  14. Effects of hydrogen fluoride fumigation of bean plants on the growth, development, and reproduction of the Mexican bean beetle

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, L H; McCune, D C; Mancini, J F; van Leuken, P

    1973-01-01

    The growth and behavior of Mexican bean beetle populations on control and hydrogen fluoride-fumigated bean plants (P. vulgaris L.) were investigated to assess the effects of such fumigation on beetle growth, development and reproduction. Beetles that were cultured on HF-fumigated plants were generally lighter than controls, although the occurrence and magnitude of this effect depended upon stage of development, age, and sex of the adult beetle and the number of generations of culture on HF-fumigated plants. A consistently decreased mass of larvae cultured on HF-fumigated tissue pupated and enclosed three to six days later than controls, and the adults commenced reproductive activity with the same lag in time. Beetles cultured on the fumigated plants also contained greater amounts of fluoride than the controls, and the fluoride content of females was greater than that of males on both HF-fumigated and control plants. Beetles raised on fumigated plants laid fewer egg masses and fewer eggs per mass, although when the first generation was repeated at a later date there was no significant effect. Feeding activity was reduced in both larval and adult stages in beetles cultured on the fumigated plants, and adults showed less flight activity than controls. A difference in color of the elytra was also noted; beetles on HF-fumigated plants were paler than controls.

  15. Chemically modified glasses for analysis of hydrogen isotopes by gas-chromatography

    International Nuclear Information System (INIS)

    Stanciu, Vasile; Stefanescu, Doina

    1999-01-01

    Hydrogen isotope separation process by such methods as cryogenic distillation or thermal diffusion method is one of the key technologies of the tritium separation from heavy water of CANDU reactors and in the tritium fuel cycle for a thermonuclear fusion reactor. In each process, the analytical techniques for measuring contents of hydrogen isotope mixture are necessary. An extensive experimental research has been carried out in order to produce the most suitable absorbent and define the best operating conditions for selective separation and analysis of hydrogen isotope by gas-chromatography. This paper describes the preparation of adsorbent materials utilised as stationary phase in the gas-chromatographic column for hydrogen isotope separation and treatment (activation) of stationary phase. Modified thermo-resisting glass with Fe(NH 4 ) 2 (SO 4 ) 2 6H 2 O and Cr 2 O 3 , respectively, have been experimentally investigated at 77 K for H 2 , HD and D 2 separation and the results of chromatographic runs are also reported and discussed. The gas-chromatographic apparatus used is composed of a Hewlett-Packard 7620A gas-chromatograph equipped with a gas carrier flow rate controller and a thermal conductivity detector (TCD). The apparatus comprises also a Dewar vessel containing the separation column. The hydrogen isotopes H 2 , HD, D 2 and their mixture have been obtained in our laboratories. The best operating conditions of the adsorbent column Fe (III)/glass and Cr 2 O 3 /glass, i.e. granulometry, column length, pressure-drop along the column, carrier gas flow rate, sample volume have been studied by means of the analysis of the retention times, separation factors and HETP. (authors)

  16. Tritium release from advanced beryllium materials after loading by tritium/hydrogen gas mixture

    Energy Technology Data Exchange (ETDEWEB)

    Chakin, Vladimir, E-mail: vladimir.chakin@kit.edu [Karlsruhe Institute of Technology, Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Rolli, Rolf; Moeslang, Anton; Kurinskiy, Petr; Vladimirov, Pavel [Karlsruhe Institute of Technology, Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Dorn, Christopher [Materion Beryllium & Composites, 6070 Parkland Boulevard, Mayfield Heights, OH 44124-4191 (United States); Kupriyanov, Igor [Bochvar Russian Scientific Research Institute of Inorganic Materials, Rogova str., 5, 123098 Moscow (Russian Federation)

    2016-06-15

    Highlights: • A major tritium release peak for beryllium samples occurs at temperatures higher than 1250 K. • A beryllium grade with comparatively smaller grain size has a comparatively higher tritium release compared to the grade with larger grain size. • The pebbles of irregular shape with the grain size of 10–30 μm produced by the crushing method demonstrate the highest tritium release rate. - Abstract: Comparison of different beryllium samples on tritium release and retention properties after high-temperature loading by tritium/hydrogen gas mixture and following temperature-programmed desorption (TPD) tests has been performed. The I-220-H grade produced by hot isostatic pressing (HIP) having the smallest grain size, the pebbles of irregular shape with the smallest grain size (10–30 μm) produced by the crushing method (CM), and the pebbles with 1 mm diameter produced by the fluoride reduction method (FRM) having a highly developed inherent porosity show the highest release rate. Grain size and porosity are considered as key structural parameters for comparison and ranking of different beryllium materials on tritium release and retention properties.

  17. Production of hydrogen gas from novel chemical hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Aiello, R.; Matthews, M.A. [South Carolina Univ., Chemical Engineering Dept., Columbia, SC (United States); Reger, D.L.; Collins, J.E. [South Carolina Univ., Chemistry and Biochemistry Dept., Columbia, SC (United States)

    1998-12-01

    Six ligand-stabilized complexes have been synthesized and tested for use as hydrogen storage media for portable fuel cell applications. The new hydrides are: [HC(3,5-Me{sub 2}pz){sub 3}]LiBH{sub 4} (1), [[H{sub 2}C(3,5-Me{sub 2}pz){sub 2}]LiBH{sub 4})]{sub 2} (2) (pz = pyrazolyl), [(TMEDA)Li(BH{sub 4})]{sub 2} (3) (TMEDA (CH{sub 3}){sub 2}NCH{sub 2}CH{sub 2}N(CH{sub 3}){sub 2}), [HC(pz){sub 3}]LiBH{sub 4} (4), [[H{sub 2}C(pz){sub 2}]Li(BH{sub 4})]{sub 2} (5) and Mg(BH{sub 4}){sub 2}3THF (6) (THF = tetrahydrofuran). Hydrolysis reactions of the compounds liberate hydrogen in quantities which range from 56 to 104 ({+-}5%) of the theoretical yield. Gas chromatographic analysis of the product gases from these reactions indicate that hydrogen is the only gas produced. Thermally initiated reactions of the novel compounds with NH{sub 4}Cl were unsuccessful. Although the amount of hydrogen energy which can be theoretically obtained per unit weight is lower than that of the classical hydrides such as LiBH{sub 4} and NaBH{sub 4}, the reactions are less violent and hydrolysis of compounds 1, 2, 4, 5 and 6 releases less heat per mole of hydrogen generated. (Author)

  18. Production of dissociated hydrogen gas by electro-magnetically driven shock

    International Nuclear Information System (INIS)

    Kondo, Kotaro; Moriyama, Takao; Hasegawa, Jun; Horioka, Kazuhiko; Oguri, Yoshiyuki

    2013-01-01

    Evaluation of ion stopping power which has a dependence on target temperature and density is an essential issue for heavy-ion-driven high energy density experiment. We focus on experimentally unknown dissociated hydrogen atoms as target for stopping power measurement. The precise measurement of shock wave velocity is required because the dissociated gas is produced by electro-magnetically driven shock. For beam-dissociated hydrogen gas interaction experiment, shock velocity measurement using laser refraction is proposed. (author)

  19. Construction and performance tests of a secondary hydrogen gas cooling system

    International Nuclear Information System (INIS)

    Sanokawa, K.; Hishida, M.

    1980-01-01

    With the aim of a multi-purpose use of nuclear energy, such as direct steel-making, an experimental multi-purpose high-temperature gas-cooled reactor (VHTR) is now being developed by the Japan Atomic Energy Research Institute (JAERI). In order to simulate a heat exchanging system between the primary helium gas loop and the secondary reducing gas system of the VHTR, a hydrogen gas loop as a secondary cooling system of the existing helium gas loop was completed in 1977, and was successfully operated for over 2000 hours. The objectives of constructing the H 2 secondary loop were: (1) To get basic knowledge for designing, constructing and operating a high-temperature and high-pressure gas facility; (2) To perform the following tests: (a) hydrogen permeation at the He/H 2 heat exchanger (the surfaces of the heat exchanger tubes are coated by calorizing to reduce hydrogen permeation), (b) thermal performance tests of the He/H 2 heat exchanger and the H 2 /H 2 regenerative heat exchanger, (c) performance test of internal insulation, and (d) performance tests of the components such as a H 2 gas heater and gas purifiers. These tests were carried out at He gas temperature of approximately 1000 0 C, H 2 gas temperature of approximately 900 0 C and gas pressures of approximately 40 kg/cm 2 G, which are almost the same as the operating conditions of the VHTR

  20. Measurements of hydrogen concentration in liquid sodium by using an inert gas carrier method

    International Nuclear Information System (INIS)

    Funada, T.; Nihei, I.; Yuhara, S.; Nakasuji, T.

    1979-01-01

    A technique was developed to measure the hydrogen level in liquid sodium using an inert gas carrier method. Hydrogen was extracted into an inert gas from sodium through a thin nickel membrane in the form of a helically wound tube. The amount of hydrogen in the inert gas was analyzed by gas chromatography. The present method is unique in that it can be used over the wide range of sodium temperatures (150 to 700 0 C) and has no problems associated with vacuum systems. The partial pressure of hydrogen in sodium was determined as a function of cold-trap temperature (T/sub c/). Sieverts' constant (K/sub s/) was determined as a function of sodium temperature (T). From Sieverts' constant, the solubility of hydrogen in sodium is calculated. It was found that other impurities in sodium, such as (O) and (OH), have little effect on the hydrogen pressure in the sodium loop

  1. Thermodynamic data for uranium fluorides

    Energy Technology Data Exchange (ETDEWEB)

    Leitnaker, J.M.

    1983-03-01

    Self-consistent thermodynamic data have been tabulated for uranium fluorides between UF/sub 4/ and UF/sub 6/, including UF/sub 4/ (solid and gas), U/sub 4/F/sub 17/ (solid), U/sub 2/F/sub 9/ (solid), UF/sub 5/ (solid and gas), U/sub 2/F/sub 10/ (gas), and UF/sub 6/ (solid, liquid, and gas). Included are thermal function - the heat capacity, enthalpy, and free energy function, heats of formation, and vaporization behavior.

  2. Hydrogen gas reduces hyperoxic lung injury via the Nrf2 pathway in vivo

    Science.gov (United States)

    Kawamura, Tomohiro; Wakabayashi, Nobunao; Shigemura, Norihisa; Huang, Chien-Sheng; Masutani, Kosuke; Tanaka, Yugo; Noda, Kentaro; Peng, Ximei; Takahashi, Toru; Billiar, Timothy R.; Okumura, Meinoshin; Toyoda, Yoshiya; Kensler, Thomas W.

    2013-01-01

    Hyperoxic lung injury is a major concern in critically ill patients who receive high concentrations of oxygen to treat lung diseases. Successful abrogation of hyperoxic lung injury would have a huge impact on respiratory and critical care medicine. Hydrogen can be administered as a therapeutic medical gas. We recently demonstrated that inhaled hydrogen reduced transplant-induced lung injury and induced heme oxygenase (HO)-1. To determine whether hydrogen could reduce hyperoxic lung injury and investigate the underlying mechanisms, we randomly assigned rats to four experimental groups and administered the following gas mixtures for 60 h: 98% oxygen (hyperoxia), 2% nitrogen; 98% oxygen (hyperoxia), 2% hydrogen; 98% balanced air (normoxia), 2% nitrogen; and 98% balanced air (normoxia), 2% hydrogen. We examined lung function by blood gas analysis, extent of lung injury, and expression of HO-1. We also investigated the role of NF-E2-related factor (Nrf) 2, which regulates HO-1 expression, by examining the expression of Nrf2-dependent genes and the ability of hydrogen to reduce hyperoxic lung injury in Nrf2-deficient mice. Hydrogen treatment during exposure to hyperoxia significantly improved blood oxygenation, reduced inflammatory events, and induced HO-1 expression. Hydrogen did not mitigate hyperoxic lung injury or induce HO-1 in Nrf2-deficient mice. These findings indicate that hydrogen gas can ameliorate hyperoxic lung injury through induction of Nrf2-dependent genes, such as HO-1. The findings suggest a potentially novel and applicable solution to hyperoxic lung injury and provide new insight into the molecular mechanisms and actions of hydrogen. PMID:23475767

  3. Production of bioplastics and hydrogen gas by photosynthetic microorganisms

    Science.gov (United States)

    Yasuo, Asada; Masato, Miyake; Jun, Miyake

    1998-03-01

    Our efforts have been aimed at the technological basis of photosynthetic-microbial production of materials and an energy carrier. We report here accumulation of poly-(3-hydroxybutyrate) (PHB), a raw material of biodegradable plastics and for production of hydrogen gas, and a renewable energy carrier by photosynthetic microorganisms (tentatively defined as cyanobacteria plus photosynthetic bateria, in this report). A thermophilic cyanobacterium, Synechococcus sp. MA19 that accumulates PHB at more than 20% of cell dry wt under nitrogen-starved conditions was isolated and microbiologically identified. The mechanism of PHB accumulation was studied. A mesophilic Synechococcus PCC7942 was transformed with the genes encoding PHB-synthesizing enzymes from Alcaligenes eutrophus. The transformant accumulated PHB under nitrogen-starved conditions. The optimal conditions for PHB accumulation by a photosynthetic bacterium grown on acetate were studied. Hydrogen production by photosynthetic microorganisms was studied. Cyanobacteria can produce hydrogen gas by nitrogenase or hydrogenase. Hydrogen production mediated by native hydrogenase in cyanobacteria was revealed to be in the dark anaerobic degradation of intracellular glycogen. A new system for light-dependent hydrogen production was targeted. In vitro and in vivo coupling of cyanobacterial ferredoxin with a heterologous hydrogenase was shown to produce hydrogen under light conditions. A trial for genetic trasformation of Synechococcus PCC7942 with the hydrogenase gene from Clostridium pasteurianum is going on. The strong hydrogen producers among photosynthetic bacteria were isolated and characterized. Co-culture of Rhodobacter and Clostriumdium was applied to produce hydrogen from glucose. Conversely in the case of cyanobacteria, genetic regulation of photosynthetic proteins was intended to improve conversion efficiency in hydrogen production by the photosynthetic bacterium, Rhodobacter sphaeroides RV. A mutant acquired by

  4. Membrane reforming in converting natural gas to hydrogen (part one)

    Energy Technology Data Exchange (ETDEWEB)

    Barba, D; Giacobbe, F; De Cesaris, A [Faculty of Chemical Engineering and Materials, University of L' Aquila (Italy); Farace, A; Iaquaniello, G; Pipino, A [TECHNIP-KTI S.p.a., Rome (Italy)

    2008-07-15

    Membrane reforming reactors (MRR) could play a key role in converting natural gas into hydrogen. The major advantage of MRR architecture is the possibility to shift the chemical equilibrium toward the right-hand side of the reaction, improving hydrogen production and allowing, the same time high methane conversion at relatively low temperatures such as 650 C. Such a low operating temperature makes it possible to locate the MRR downstream of a gas turbine, achieving an efficient hybrid system (power+hydrogen) with a significant reduction in energy consumption (around 10%). This paper discusses the whole innovative architecture where conventional tubular reforming is integrated with hydrogen permeable palladium membrane separators. The fundamental concepts are analyzed and integrated into a process scheme; the structural effects of variables design such as reactor temperature outlet, S/C ratio and recycle ratio throughout pinch and sensitivity analysis are described, and a comparison of the process economics with conventional hydrogen technology is presented at the end of the second part of this paper. The production of highly reliable, defect-free and reproducible, Pd-alloy membranes for selective hydrogen separation is a key issue in the proposed hybrid architecture. (author)

  5. A theoretical study of the hydrogen bonding between the vic-, cis- and trans-C 2H 2F 2 isomers and hydrogen fluoride

    Science.gov (United States)

    Rusu, Victor H.; da Silva, João Bosco P.; Ramos, Mozart N.

    2009-04-01

    MP2/6-31++G(d,p) and B3LYP/6-31++G(d,p) theoretical calculations have been employed to investigate the hydrogen bonding formation involving the vic-, cis- and trans-C 2H 2F 2 isomers and hydrogen fluoride. Our calculations have revealed for each isomer the preferential existence of two possible hydrogen-bonded complexes: a non-cyclic complex and a cyclic complex. For all the three isomers the binding energies for the non-cyclic and cyclic hydrogen complexes are essentially equal using both the MP2 and B3LYP calculations, being that the cyclic structure is slightly more stable. For instance, the binding energies including BSSE and ZPE corrections for the non-cyclic and cyclic structures of cis-C 2H 2F···HF are 8.7 and 9.0 kJ mol -1, respectively, using B3LYP calculations. The cyclic complex formation reduces the polarity, in contrast to what occurs with the non-cyclic complex. This result is more accentuated in vic-C 2H 2F 2···HF. In this latter, Δ μ(cyclic) is -3.07 D, whereas Δ μ(non-cyclic) is +1.92 D using B3LYP calculations. Their corresponding MP2 values are +0.44 D and -1.89 D, respectively. As expected, the complexation produces an H sbnd F stretching frequency downward shift, whereas its IR intensity is enhanced. On the other hand, the vibrational modes of the vic-, cis- and trans-C 2H 2F 2 isomers are little affected by complexation. The new vibrational modes due to hydrogen bonding formation show several interesting features, in particular the HF bending modes which are pure rotations in the free molecule.

  6. The use of the natural-gas pipeline infrastructure for hydrogen transport in a changing market structure

    International Nuclear Information System (INIS)

    Haeseldonckx, Dries; D'haeseleer, William

    2007-01-01

    In this paper, the transport and distribution aspects of hydrogen during the transition period towards a possible full-blown hydrogen economy are carefully looked at. Firstly, the energetic and material aspects of hydrogen transport through the existing natural-gas (NG) pipeline infrastructure is discussed. Hereby, only the use of centrifugal compressors and the short-term security of supply seem to constitute a problem for the NG to hydrogen transition. Subsequently, the possibility of percentwise mixing of hydrogen into the NG bulk is dealt with. Mixtures containing up to 17 vol% of hydrogen should not cause difficulties. As soon as more hydrogen is injected, replacement of end-use applications and some pipelines will be necessary. Finally, the transition towards full-blown hydrogen transport in (previously carrying) NG pipelines is treated. Some policy guidelines are offered, both in a regulated and a liberalised energy (gas) market. As a conclusion, it can be stated that the use of hydrogen-natural gas mixtures seems well suited for the transition from natural gas to hydrogen on a distribution (low pressure) level. However, getting the hydrogen gas to the distribution grid, by means of the transport grid, remains a major issue. In the end, the structure of the market, regulated or liberalised, turns out not to be important. (author)

  7. Sintering uranium oxide in the reaction product of hydrogen-carbon dioxide mixtures

    International Nuclear Information System (INIS)

    De Hollander, W.R.; Nivas, Y.

    1975-01-01

    Compacted pellets of uranium oxide alone or containing one or more additives such as plutonium dioxide, gadolinium oxide, titanium dioxide, silica, and alumina are heated to 900 to 1599 0 C in the presence of a mixture of hydrogen and carbon dioxide, either alone or with an inert carrier gas and held at the desired temperature in this atmosphere to sinter the pellets. The sintered pellets are then cooled in an atmosphere having an oxygen partial pressure of 10 -4 to 10 -18 atm of oxygen such as dry hydrogen, wet hydrogen, dry carbon monoxide, wet carbon monoxide, inert gases such as nitrogen, argon, helium, and neon and mixtures of ayny of the foregoing including a mixture of hydrogen and carbon dioxide. The ratio of hydrogen to carbon dioxide in the gas mixture fed to the furnace is controlled to give a ratio of oxygen to uranium atoms in the sintered particles within the range of 1.98:1 to about 2.10:1. The water vapor present in the reaction products in the furnace atmosphere acts as a hydrolysis agent to aid removal of fluoride should such impurity be present in the uranium oxide. (U.S.)

  8. Hydrogen generation from natural gas for the fuel cell systems of tomorrow

    Science.gov (United States)

    Dicks, Andrew L.

    In most cases hydrogen is the preferred fuel for use in the present generation of fuel cells being developed for commercial applications. Of all the potential sources of hydrogen, natural gas offers many advantages. It is widely available, clean, and can be converted to hydrogen relatively easily. When catalytic steam reforming is used to generate hydrogen from natural gas, it is essential that sulfur compounds in the natural gas are removed upstream of the reformer and various types of desulfurisation processes are available. In addition, the quality of fuel required for each type of fuel cell varies according to the anode material used, and the cell temperature. Low temperature cells will not tolerate high concentrations of carbon monoxide, whereas the molten fuel cell (MCFC) and solid oxide fuel cell (SOFC) anodes contain nickel on which it is possible to electrochemically oxidise carbon monoxide directly. The ability to internally reform fuel gas is a feature of the MCFC and SOFC. Internal reforming can give benefits in terms of increased electrical efficiency owing to the reduction in the required cell cooling and therefore parasitic system losses. Direct electrocatalysis of hydrocarbon oxidation has been the elusive goal of fuel cell developers over many years and recent laboratory results are encouraging. This paper reviews the principal methods of converting natural gas into hydrogen, namely catalytic steam reforming, autothermic reforming, pyrolysis and partial oxidation; it reviews currently available purification techniques and discusses some recent advances in internal reforming and the direct use of natural gas in fuel cells.

  9. Uranyl fluoride luminescence in acidic aqueous solutions

    International Nuclear Information System (INIS)

    Beitz, J.V.; Williams, C.W.

    1996-01-01

    Luminescence emission spectra and decay rates are reported for uranyl species in acidic aqueous solutions containing HF or added NaF. The longest luminescence lifetime, 0.269 ± 0.006 ms, was observed from uranyl in 1 M HF + 1 M HClO 4 at 296 K and decreased with increasing temperature. Based on a luminescence dynamics model that assumes equilibrium among electronically excited uranyl fluoride species and free fluoride ion, this long lived uranyl luminescence in aqueous solution is attributed primarily to UO 2 F 2 . Studies on the effect of added LiNO 3 or Na 2 WO 4 ·2H 2 O showed relatively weak quenching of uranyl fluoride luminescence which suggests that high sensitivity determination of the UF 6 content of WF 6 gas should be feasible via uranyl luminescence analysis of hydrolyzed gas samples of impure WF 6

  10. The production of high dose hydrogen gas by the AMS-H-01 for treatment of disease

    OpenAIRE

    Richard Camara; Lei Huang; John H Zhang

    2016-01-01

    Hydrogen gas is a new and promising treatment option for a variety of diseases including stroke. Here, we introduce the AMS-H-01, a medically approved machine capable of safely producing ~66% hydrogen gas. Furthermore, we propose the significance of this machine in the future of hydrogen gas research.

  11. Generation of oxy-hydrogen gas and its effect on performance of spark ignition engine

    Science.gov (United States)

    Patil, N. N.; Chavan, C. B.; More, A. S.; Baskar, P.

    2017-11-01

    Considering the current scenario of petroleum fuels, it has been observed that, they will last for few years from now. On the other hand, the ever increasing cost of a gasoline fuels and their related adverse effects on environment caught the attention of researchers to find a supplementary source. For commercial fuels, supplementary source is not about replacing the entire fuel, instead enhancing efficiency by simply making use of it in lesser amount. From the recent research that has been carried out, focus on the use of Hydrogen rich gas as a supplementary source of fuel has increased. But the problem related to the storage of hydrogen gas confines the application of pure hydrogen in petrol engine. Using oxy-hydrogen gas (HHO) generator the difficulties of storing the hydrogen have overcome up to a certain limit. The present study highlights on performance evaluation of conventional petrol engine by using HHO gas as a supplementary fuel. HHO gas was generated from the electrolysis of water. KOH solution of 3 Molar concentration was used which act as a catalyst and accelerates the rate of generation of HHO gas. Quantity of gas to be supplied to the engine was controlled by varying amount of current. It was observed that, engine performance was improved on the introduction of HHO gas.

  12. [Feasibility investigation of hydrogen instead of helium as carrier gas in the determination of five organophosphorus pesticides by gas chromatography-mass spectrometry].

    Science.gov (United States)

    Liu, Zhenxue; Zhou, Shixue

    2015-01-01

    Helium is almost the only choosable carrier gas used in gas chromatography-mass spectrometry (GC-MS). A mixed standard solution of five organophosphorus pesticides was analyzed by using GC-MS, and hydrogen or helium as carrier gas, so as to study the feasibility of hydrogen instead of helium as carrier gas for the determination of organophosphorus pesticides. Combining a mass spectrum database built by ourselves, the results were deconvolved and identified by Automated Mass Spectral Deconvolution & Identification System (AMDIS32), a software belonging to the workstation of the instrument. Then, the statistical software, IBM SPSS Statistics 19.0 was used for the clustering analysis of the data. The results indicated that when hydrogen was used as carrier gas, the peaks of the pesticides detected were slightly earlier than those when helium used as carrier gas, but the resolutions of the chromatographic peaks were lower, and the fraction good indices (Frac. Good) were lower, too. When hydrogen was used as carrier gas, the signals of the pesticides were unstable, the measuring accuracies of the pesticides were reduced too, and even more, some compounds were undetectable. Therefore, considering the measuring accuracy, the signal stability, and the safety, etc., hydrogen should be cautiously used as carrier gas in the determination of organophosphorus pesticides by GC-MS.

  13. Magnetic resonance studies of atomic hydrogen gas at low temperatures

    International Nuclear Information System (INIS)

    Hardy, W.N.; Morrow, M.; Jochemsen, R.; Statt, B.W.; Kubik, P.R.; Marsolais, R.M.; Berlinsky, A.J.; Landesman, A.

    1980-01-01

    Using a pulsed low temperature discharge in a closed cell containing H 2 and 4 He, we have been able to store a low density (approximately 10 12 atoms/cc) gas of atomic hydrogen for periods of order one hour in zero magnetic field and T=1 K. Pulsed magnetic resonance at the 1420 MHz hyperfine transition has been used to study a number of the properties of the gas, including the recombination rate H + H + 4 He→H 2 + 4 He, the hydrogen spin-exchange relaxation rates, the diffusion coefficient of H in 4 He gas and the pressure shift of the hyperfine frequency due to the 4 He buffer gas. Here we discuss the application of hyperfine frequency shifts as a probe of the H-He potential, and as a means for determining the binding energy of H on liquid helium

  14. Attenuation of hydrogen radicals traveling under flowing gas conditions through tubes of different materials

    International Nuclear Information System (INIS)

    Grubbs, R.K.; George, S.M.

    2006-01-01

    Hydrogen radical concentrations traveling under flowing gas conditions through tubes of different materials were measured using a dual thermocouple probe. The source of the hydrogen radicals was a toroidal radio frequency plasma source operating at 2.0 and 3.3 kW for H 2 pressures of 250 and 500 mTorr, respectively. The dual thermocouple probe was comprised of exposed and covered Pt/Pt13%Rh thermocouples. Hydrogen radicals recombined efficiently on the exposed thermocouple and the energy of formation of H 2 heated the thermocouple. The second thermocouple was covered by glass and was heated primarily by the ambient gas. The dual thermocouple probe was translated and measured temperatures at different distances from the hydrogen radical source. These temperature measurements were conducted at H 2 flow rates of 35 and 75 SCCM (SCCM denotes cubic centimeter per minute at STP) inside cylindrical tubes made of stainless steel, aluminum, quartz, and Pyrex. The hydrogen radical concentrations were obtained from the temperatures of the exposed and covered thermocouples. The hydrogen concentration decreased versus distance from the plasma source. After correcting for the H 2 gas flow using a reference frame transformation, the hydrogen radical concentration profiles yielded the atomic hydrogen recombination coefficient, γ, for the four materials. The methodology of measuring the hydrogen radical concentrations, the analysis of the results under flowing gas conditions, and the determination of the atomic hydrogen recombination coefficients for various materials will help facilitate the use of hydrogen radicals for thin film growth processes

  15. Current status of fluoride volatility method development

    Energy Technology Data Exchange (ETDEWEB)

    Uhlir, J.; Marecek, M.; Skarohlid, J. [UJV - Nuclear Research Institute, Research Centre Rez, CZ-250 68 Husinec - Rez 130 (Czech Republic)

    2013-07-01

    The Fluoride Volatility Method is based on a separation process, which comes out from the specific property of uranium, neptunium and plutonium to form volatile hexafluorides whereas most of fission products (mainly lanthanides) and higher transplutonium elements (americium, curium) present in irradiated fuel form nonvolatile tri-fluorides. Fluoride Volatility Method itself is based on direct fluorination of the spent fuel, but before the fluorination step, the removal of cladding material and subsequent transformation of the fuel into a powdered form with a suitable grain size have to be done. The fluorination is made with fluorine gas in a flame fluorination reactor, where the volatile fluorides (mostly UF{sub 6}) are separated from the non-volatile ones (trivalent minor actinides and majority of fission products). The subsequent operations necessary for partitioning of volatile fluorides are the condensation and evaporation of volatile fluorides, the thermal decomposition of PuF{sub 6} and the finally distillation and sorption used for the purification of uranium product. The Fluoride Volatility Method is considered to be a promising advanced pyrochemical reprocessing technology, which can mainly be used for the reprocessing of oxide spent fuels coming from future GEN IV fast reactors.

  16. Warm Pressurant Gas Effects on the Liquid Hydrogen Bubble Point

    Science.gov (United States)

    Hartwig, Jason W.; McQuillen, John B.; Chato, David J.

    2013-01-01

    This paper presents experimental results for the liquid hydrogen bubble point tests using warm pressurant gases conducted at the Cryogenic Components Cell 7 facility at the NASA Glenn Research Center in Cleveland, Ohio. The purpose of the test series was to determine the effect of elevating the temperature of the pressurant gas on the performance of a liquid acquisition device. Three fine mesh screen samples (325 x 2300, 450 x 2750, 510 x 3600) were tested in liquid hydrogen using cold and warm noncondensible (gaseous helium) and condensable (gaseous hydrogen) pressurization schemes. Gases were conditioned from 0 to 90 K above the liquid temperature. Results clearly indicate a degradation in bubble point pressure using warm gas, with a greater reduction in performance using condensable over noncondensible pressurization. Degradation in the bubble point pressure is inversely proportional to screen porosity, as the coarsest mesh demonstrated the highest degradation. Results here have implication on both pressurization and LAD system design for all future cryogenic propulsion systems. A detailed review of historical heated gas tests is also presented for comparison to current results.

  17. Hydrogen Addition for Improved Lean Burn Capability on Natural Gas Engine

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Tobias [Lund Inst. of Technology (Sweden). Dept. of Heat and Power Engineering

    2002-12-01

    Lean burn spark ignition (SI) engines powered by natural gas is an attractive alternative to the Diesel engine, especially in urban traffic, where reduction of tailpipe emissions are of great importance. A major benefit is the large reduction in soot (PM). Lean burn spark ignition (SI) engines yield high fuel conversion efficiency and also relatively low NO{sub x} emissions at full load. In order to improve the engine operating characteristics at lower loads, the {lambda}-value is normally reduced to some degree, with increased NO{sub x} emissions and reduced efficiency as a result. This is a drawback for the lean burn engines, especially in urban applications such as in city buses and distribution trucks for urban use. So, it is desirable to find ways to extend the lean limit at low loads. One way to improve these part load properties is to add hydrogen to the natural gas in order to improve the combustion characteristics of the fuel. It is possible to extend the lean limit of a natural gas engine by addition of hydrogen to the primary fuel. This report presents measurements made on a single cylinder 1.6 liter natural gas engine. Two combustion chambers, one slow and one fast burning, were tested with various amounts of hydrogen (0 to 20 %-vol) added to natural gas. Three operating conditions were investigated for each combustion chamber and each hydrogen content level; idle, wide open throttle (WOT) and a high load condition (simulated turbo charging). For all three operating conditions, the air/fuel ratio was varied between stoichiometric and the lean limit. For each operating point, the ignition timing was swept in order to find maximum brake torque (MBT) timing. In some cases were the ignition timing limited by knock. Heat release rate calculations were made in order to assess the influence of hydrogen addition on burn rate. Addition of hydrogen showed an increase in burn rate for both combustion chambers, resulting in more stable combustion close to the lean

  18. Fluoride absorption: independence from plasma fluoride levels

    International Nuclear Information System (INIS)

    Whitford, G.M.; Williams, J.L.

    1986-01-01

    The concept that there are physiologic mechanisms to homeostatically regulate plasma fluoride concentrations has been supported by results in the literature suggesting an inverse relationship between plasma fluoride levels and the absorption of the ion from the gastrointestinal tract of the rat. The validity of the relationship was questioned because of possible problems in the experimental design. The present work used four different methods to evaluate the effect of plasma fluoride levels on the absorption of the ion in rats: (i) the percentage of the daily fluoride intake that was excreted in the urine; (ii) the concentration of fluoride in femur epiphyses; (iii) the net areas under the time-plasma fluoride concentration curves after intragastric fluoride doses; and (iv) the residual amounts or fluoride in the gastrointestinal tracts after the intragastric fluoride doses. None of these methods indicated that plasma fluoride levels influence the rate or the degree or fluoride absorption. It was concluded that, unless extremely high plasma fluoride levels are involved (pharmacologic or toxic doses), the absorption of the ion is independent of plasma levels. The results provide further evidence that plasma fluoride concentrations are not homeostatically regulated

  19. Hydrogen Separation by Natural Zeolite Composite Membranes: Single and Multicomponent Gas Transport.

    Science.gov (United States)

    Farjoo, Afrooz; Kuznicki, Steve M; Sadrzadeh, Mohtada

    2017-10-06

    Single and multicomponent gas permeation tests were used to evaluate the performance of metal-supported clinoptilolite membranes. The efficiency of hydrogen separation from lower hydrocarbons (methane, ethane, and ethylene) was studied within the temperature and pressure ranges of 25-600 °C and 110-160 kPa, respectively. The hydrogen separation factor was found to reduce noticeably in the gas mixture compared with single gas experiments at 25 °C. The difference between the single and multicomponent gas results decreased as the temperature increased to higher than 300 °C, which is when the competitive adsorption-diffusion mechanism was replaced by Knudsen diffusion or activated diffusion mechanisms. To evaluate the effect of gas adsorption, the zeolite surface isotherms of each gas in the mixture were obtained from 25 °C to 600 °C. The results indicated negligible adsorption of individual gases at temperatures higher than 300 °C. Increasing the feed pressure resulted in a higher separation efficiency for the individual gases compared with the multicomponent mixture, due to the governing effect of the adsorptive mechanism. This study provides valuable insight into the application of natural zeolites for the separation of hydrogen from a mixture of hydrocarbons.

  20. Apparatus and method for treating pollutants in a gas using hydrogen peroxide and UV light

    Science.gov (United States)

    Cooper, Charles David (Inventor); Clausen, Christian Anthony (Inventor)

    2005-01-01

    An apparatus for treating pollutants in a gas may include a source of hydrogen peroxide, and a treatment injector for creating and injecting dissociated hydrogen peroxide into the flow of gas. The treatment injector may further include an injector housing having an inlet, an outlet, and a hollow interior extending therebetween. The inlet may be connected in fluid communication with the source of hydrogen peroxide so that hydrogen peroxide flows through the hollow interior and toward the outlet. At least one ultraviolet (UV) lamp may be positioned within the hollow interior of the injector housing. The at least one UV lamp may dissociate the hydrogen peroxide flowing through the tube. The dissociated hydrogen peroxide may be injected into the flow of gas from the outlet for treating pollutants, such as nitrogen oxides.

  1. FIRST OPERATING RESULTS OF A DYNAMIC GAS BEARING TURBINE IN AN INDUSTRIAL HYDROGEN LIQUEFIER

    International Nuclear Information System (INIS)

    Bischoff, S.; Decker, L.

    2010-01-01

    Hydrogen has been brought into focus of industry and public since fossil fuels are depleting and costs are increasing dramatically. Beside these issues new high-tech processes in the industry are in need for hydrogen at ultra pure quality. To achieve these requirements and for efficient transportation, hydrogen is liquefied in industrial plants. Linde Gas has commissioned a new 5.5 TPD Hydrogen liquefier in Leuna, Germany, which has been engineered and supplied by Linde Kryotechnik. One of the four expansion turbines installed in the liquefaction process is equipped with dynamic gas bearings. Several design features and operational characteristics of this application will be discussed. The presentation will include results of efficiency and operational reliability that have been determined from performance tests. The advantages of the Linde dynamic gas bearing turbine for future use in hydrogen liquefaction plants will be shown.

  2. Inspection of the hydrogen gas pressure with metal shield by cold neutron radiography at CMRR

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hang; Cao, Chao; Huo, Heyong; Wang, Sheng; Wu, Yang; Yin, Wei; Sun, Yong; Liu, Bin; Tang, Bin [Institute of Nuclear Physics and Chemistry, Chinese Academy of Engineering Physics, Mianyang (China); Key Laboratory of Neutron Physics, Chinese Academy of Engineering Physics, Mianyang (China)

    2017-04-11

    The inspection of the process of gas pressure change is important for some applications (e.g. gas tank stockpile or two phase fluid model) which need quantitative and non-touchable measurement. Neutron radiography provides a suitable tool for such investigations with nice resolution. The quantitative cold neutron radiography (CNR) is developed at China Mianyang Research Reactor (CMRR) to measure the hydrogen gas pressure with metal shield. Because of the high sensitivity to hydrogen, even small change of the hydrogen pressure can be inspected by CNR. The dark background and scattering neutron effect are both corrected to promote measurement precision. The results show that CNR can measure the hydrogen gas pressure exactly and the pressure value average relative error between CNR and barometer is almost 1.9%.

  3. A separation process for hydrogen fluoride from its mixtures with 1,1,1-trifluoro-2-chloroethane

    Energy Technology Data Exchange (ETDEWEB)

    Galland, J.M.; Perdriau, R.; Rouzies, D.

    1994-03-11

    When decanting the mixture of hydrogen fluoride (HF) and 1,1,1-trifluoro-2-chloroethane (F133a) at a temperature between -40 deg C and -10 deg C, a lower organic phase, poor in HF, and a superior phase, rich in HF, are obtained (the reaction may be activated with trichlorethylen); the superior phase can be directly recycled in the fluorination reactor or distilled in order to separate the HF-F133a azeotrope (the head), which is sent back to the decanter, and a quasi-pure HF (the ends). The lower phase distillation produces HF-F133a (head) and a mixture of F133a and trichlorethylen (ends); this mixture is then distilled and pure F133a is separated from trichlorethylen. 9 p., 2 fig.

  4. Synthesis and characterization of ruthenium fluorides and oxide fluorides with high oxidation states

    International Nuclear Information System (INIS)

    Meublat, L.

    1989-10-01

    The synthesis of ruthenium fluorides and oxide fluorides with high oxidation states was attempted from dioxide RuO 2 and tetroxide RuO 4 . Three fluorinating agents were used: fluorine, chlorine trifluoride and krypton difluoride. The reactions were achieved in anhydrous hydrogen fluoride at room temperature. Thus, the reaction of RuO 4 with CIF 3 enabled us to prepare chloryl hexafluororuthenate (V), CIO 2 + RuF 6 - , a new compound well identified by vibrational spectroscopy (infra-red and Raman), the structure of which was determined. The reaction of KrF 2 with RuO 4 gave the oxide tetrafluoride RuOF 4 , the previously published syntheses and properties of which were not in agreement with each other. This compound was definitely characterized here by chemical analysis, infra-red spectroscopy and X-ray powder diffraction. The product of thermal decomposition (70 0 C) of RuOF 4 is presumably RuF 4 since only oxygen is liberated during this decomposition. At last, the reaction of KrF 2 with RuO 2 probably leads to the formation of the new oxide fluoride RuO 2 F 4 . Indeed, no oxygen is given off during this reaction, the chemical analysis of the red-orange coloured solid residue is almost in agreement with the one proposed and its infra-red absorption spectrum indicates the presence of ruthenium-oxygen and ruthenium-terminal and bridging fluorine bonds [fr

  5. Synthesis and characterization of ruthenium fluorides and oxide fluorides with high oxidation states

    International Nuclear Information System (INIS)

    Meublat, L.

    1989-01-01

    The synthesis of ruthenium fluorides and oxide fluorides with high oxidation states was attempted from dioxide RuO 2 and tetroxide RuO 4 . Three fluorinating agents were used: fluorine, chlorine trifluoride and krypton difluoride. The reactions were achieved in anhydrous hydrogen fluoride at room temperature. Thus, the reaction of RuO 4 with CIF 3 enabled us to prepare chloryl hexafluororuthenate (V), ClO 2 + RuF 6 - , a new compound well idendified by vibrational spectroscopy (infra-red and Raman), the structure of which was determined. The reaction of KrF 2 with RuO 4 gave the oxide tetrafluoride RuOF 4 , the previously published syntheses and properties of which were not in agreement with each other. This compound was definitely characterized here by chemical analysis, infra-red spectroscopy and X-ray powder diffraction. The product of thermal decomposition (70 0 C) of RuOF 4 is presumably RuF 4 since only oxygen is liberated during this decomposition. At last, the reaction of KrF 2 with RuO 2 probably leads to the formation of the new oxide fluoride RuO 2 F 4 . Indeed, no oxygen is given off during this reaction, the chemical analysis of the red-orange coloured solid residue is almost in agreement with the one proposed and its infra-red absorption spectrum indicates the presence of ruthenium-oxygen and ruthenium-terminal and bridging fluorine bonds [fr

  6. Determination of hydrogen in uranium-niobium-zirconium alloy by inert-gas fusion

    International Nuclear Information System (INIS)

    Carden, W.F.

    1979-12-01

    An improved method has been developed using inert-gas fusion for determining the hydrogen content in uranium-niobium-zirconium (U-7.5Nb-2.5Zr) alloy. The method is applicable to concentrations of hydrogen ranging from 1 to 250 micrograms per gram and may be adjusted for analysis of greater hydrogen concentrations. Hydrogen is determined using a hydrogen determinator. The limit of error for a single determination at the 95%-confidence level (at the 3.7-μg/g-hydrogen level) is +-1.4 micrograms per gram hydrogen

  7. Operational problems associated with the use of particulate emission control for MACT compliance applications

    International Nuclear Information System (INIS)

    Compton, J.A.

    1992-03-01

    Tests of high-efficiency particulate air filters were requested following catastrophic failure of a filter by hydrogen fluoride gas from improper operation in a production line. Operational lives in hydrogen fluoride environments of high-efficiency particulate air filters were determined in statistically designed experiments for three variable. The variables studied were hydrogen fluoride gas concentration, water vapor concentration, and wind speed through a hydrogen fluoride-resistant filter medium. The program was terminated after 11 of the 16 runs were completed. The 11 runs indicate no statistically significant effect by any of the three variables. Two additional runs were completed with non-hydrogen fluoride-resistant filters and shorter operating lives were found. The tests determined that the interim operational safety limits imposed after the original filter failure were adequate. More frequent testing of the filters in the associated production line was recommended for assuring filter integrity. The tests also showed that filter efficiency loss is relatively slow at first, but accelerates

  8. Advances of zeolite based membrane for hydrogen production via water gas shift reaction

    Science.gov (United States)

    Makertihartha, I. G. B. N.; Zunita, M.; Rizki, Z.; Dharmawijaya, P. T.

    2017-07-01

    Hydrogen is considered as a promising energy vector which can be obtained from various renewable sources. However, an efficient hydrogen production technology is still challenging. One technology to produce hydrogen with very high capacity with low cost is through water gas shift (WGS) reaction. Water gas shift reaction is an equilibrium reaction that produces hydrogen from syngas mixture by the introduction of steam. Conventional WGS reaction employs two or more reactors in series with inter-cooling to maximize conversion for a given volume of catalyst. Membrane reactor as new technology can cope several drawbacks of conventional reactor by removing reaction product and the reaction will favour towards product formation. Zeolite has properties namely high temperature, chemical resistant, and low price makes it suitable for membrane reactor applications. Moreover, it has been employed for years as hydrogen selective layer. This review paper is focusing on the development of membrane reactor for efficient water gas shift reaction to produce high purity hydrogen and carbon dioxide. Development of membrane reactor is discussed further related to its modification towards efficient reaction and separation from WGS reaction mixture. Moreover, zeolite framework suitable for WGS membrane reactor will be discussed more deeply.

  9. WATER-GAS SHIFT WITH INTEGRATED HYDROGEN SEPARATION; A

    International Nuclear Information System (INIS)

    Maria Flytzani-Stephanopoulos; Jerry Meldon; Xiaomei Qi

    2001-01-01

    Optimization of the water-gas shift (WGS) reaction system for hydrogen production for fuel cells is of particular interest to the energy industry. To this end, it is desirable to couple the WGS reaction to hydrogen separation using a semi-permeable membrane, with both processes carried out at high temperature to improve reaction kinetics. Reduced equilibrium conversion of the WGS reaction at high temperatures is overcome by product H(sub 2) removal via the membrane. This project involves fundamental research and development of novel cerium oxide-based catalysts for the water-gas-shift reaction and the integration of these catalysts with Pd-alloy H(sub 2)-separation membranes supplying high purity hydrogen for fuel cell use. Conditions matching the requirements of coal gasifier-exit gas streams will be examined in the project. In the first year of the project, we prepared a series of nanostructured Cu- and Fe-containing ceria catalysts by a special gelation/precipitation technique followed by air calcination at 650 C. Each sample was characterized by ICP for elemental composition analysis, BET-N2 desorption for surface area measurement, and by temperature-programmed reduction in H(sub 2) to evaluate catalyst reducibility. Screening WGS tests with catalyst powders were conducted in a flow microreactor at temperatures in the range of 200-550 C. On the basis of both activity and stability of catalysts in simulated coal gas, and in CO(sub 2)-rich gases, a Cu-CeO(sub 2) catalyst formulation was selected for further study in this project. Details from the catalyst development and testing work are given in this report. Also in this report, we present H(sub 2) permeation data collected with unsupported flat membranes of pure Pd and Pd-alloys over a wide temperature window

  10. Hydrogen Gas Inhalation Attenuates Seawater Instillation-Induced Acute Lung Injury via the Nrf2 Pathway in Rabbits.

    Science.gov (United States)

    Diao, Mengyuan; Zhang, Sheng; Wu, Lifeng; Huan, Le; Huang, Fenglou; Cui, Yunliang; Lin, Zhaofen

    2016-12-01

    Seawater instillation-induced acute lung injury involves oxidative stress and apoptosis. Although hydrogen gas inhalation is reportedly protective in multiple types of lung injury, the effect of hydrogen gas inhalation on seawater instillation-induced acute lung injury remains unknown. This study investigated the effect of hydrogen gas on seawater instillation-induced acute lung injury and explored the mechanisms involved. Rabbits were randomly assigned to control, hydrogen (2 % hydrogen gas inhalation), seawater (3 mL/kg seawater instillation), and seawater + hydrogen (3 mL/kg seawater instillation + 2 % hydrogen gas inhalation) groups. Arterial partial oxygen pressure and lung wet/dry weight ratio were detected. Protein content in bronchoalveolar lavage fluid (BALF) and serum as well as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 levels were determined. Hematoxylin-eosin staining was used to monitor changes in lung specimens, and malondialdehyde (MDA) content and myeloperoxidase (MPO) activity were assayed. In addition, NF-E2-related factor (Nrf) 2 and heme oxygenase (HO)-1 mRNA and protein expression were measured, and apoptosis was assessed by measuring caspase-3 expression and using terminal deoxy-nucleotidyl transferase dUTP nick end-labeling (TUNEL) staining. Hydrogen gas inhalation markedly improved lung endothelial permeability and decreased both MDA content and MPO activity in lung tissue; these changes were associated with decreases in TNF-α, IL-1β, and IL-6 in BALF. Hydrogen gas also alleviated histopathological changes and cell apoptosis. Moreover, Nrf2 and HO-1 expressions were significantly activated and caspase-3 expression was inhibited. These results demonstrate that hydrogen gas inhalation attenuates seawater instillation-induced acute lung injury in rabbits and that the protective effects observed may be related to the activation of the Nrf2 pathway.

  11. Hydrogen Separation by Natural Zeolite Composite Membranes: Single and Multicomponent Gas Transport

    Directory of Open Access Journals (Sweden)

    Afrooz Farjoo

    2017-10-01

    Full Text Available Single and multicomponent gas permeation tests were used to evaluate the performance of metal-supported clinoptilolite membranes. The efficiency of hydrogen separation from lower hydrocarbons (methane, ethane, and ethylene was studied within the temperature and pressure ranges of 25–600 °C and 110–160 kPa, respectively. The hydrogen separation factor was found to reduce noticeably in the gas mixture compared with single gas experiments at 25 °C. The difference between the single and multicomponent gas results decreased as the temperature increased to higher than 300 °C, which is when the competitive adsorption–diffusion mechanism was replaced by Knudsen diffusion or activated diffusion mechanisms. To evaluate the effect of gas adsorption, the zeolite surface isotherms of each gas in the mixture were obtained from 25 °C to 600 °C. The results indicated negligible adsorption of individual gases at temperatures higher than 300 °C. Increasing the feed pressure resulted in a higher separation efficiency for the individual gases compared with the multicomponent mixture, due to the governing effect of the adsorptive mechanism. This study provides valuable insight into the application of natural zeolites for the separation of hydrogen from a mixture of hydrocarbons.

  12. Empirical Method to Estimate Hydrogen Embrittlement of Metals as a Function of Hydrogen Gas Pressure at Constant Temperature

    Science.gov (United States)

    Lee, Jonathan A.

    2010-01-01

    High pressure Hydrogen (H) gas has been known to have a deleterious effect on the mechanical properties of certain metals, particularly, the notched tensile strength, fracture toughness and ductility. The ratio of these properties in Hydrogen as compared to Helium or Air is called the Hydrogen Environment Embrittlement (HEE) Index, which is a useful method to classify the severity of H embrittlement and to aid in the material screening and selection for safety usage H gas environment. A comprehensive world-wide database compilation, in the past 50 years, has shown that the HEE index is mostly collected at two conveniently high H pressure points of 5 ksi and 10 ksi near room temperature. Since H embrittlement is directly related to pressure, the lack of HEE index at other pressure points has posed a technical problem for the designers to select appropriate materials at a specific H pressure for various applications in aerospace, alternate and renewable energy sectors for an emerging hydrogen economy. Based on the Power-Law mathematical relationship, an empirical method to accurately predict the HEE index, as a function of H pressure at constant temperature, is presented with a brief review on Sievert's law for gas-metal absorption.

  13. Development of the Raman lidar system for remote hydrogen gas detection

    Energy Technology Data Exchange (ETDEWEB)

    Choi, In Young; Baik, Sung Hoon; Park, Seung Kyu; Park, Nak Gyu; Choi, Young Soo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Detection of hydrogen (H{sub 2}) gas leakage is very important for safety of the nuclear power plant because H{sub 2} gas is very flammable and explosive. H{sub 2} gas is generated by oxidizing the nuclear fuel cladding during the critical accident and generated H{sub 2} gas leads to serious secondary damages in the containment building of nuclear power plant. Thus, various H{sub 2} gas detection techniques are used in the nuclear power plant such as catalytic combustion sensors, semiconducting oxide sensors, thermal conductivity sensors and electrochemical sensor. A Raman lidar (Light Detection And Ranging) system for remote detection of the H{sub 2} gas can cover the area in the containment building of a nuclear power plant. H{sub 2} gas has a very strong Raman Effect, and H{sub 2} Raman cells have been widely used for laser wavelength conversion. In this study, Raman lidar system was developed for H{sub 2} gas detection used in the containment building of nuclear power plant. In this study, remote hydrogen gas detection devices and measuring algorithm are developed by using the Raman lidar method. Through the experiment, we proved that our developed Raman lidar system was possible to measure the N{sub 2} and H{sub 2} gas scattering signal remotely.

  14. Application of CFRP with High Hydrogen Gas Barrier Characteristics to Fuel Tanks of Space Transportation System

    Science.gov (United States)

    Yonemoto, Koichi; Yamamoto, Yuta; Okuyama, Keiichi; Ebina, Takeo

    In the future, carbon fiber reinforced plastics (CFRPs) with high hydrogen gas barrier performance will find wide applications in all industrial hydrogen tanks that aim at weight reduction; the use of such materials will be preferred to the use of conventional metallic materials such as stainless steel or aluminum. The hydrogen gas barrier performance of CFRP will become an important issue with the introduction of hydrogen-fuel aircraft. It will also play an important role in realizing fully reusable space transportation system that will have high specific tensile CFRP structures. Such materials are also required for the manufacture of high-pressure hydrogen gas vessels for use in the fuel cell systems of automobiles. This paper introduces a new composite concept that can be used to realize CFRPs with high hydrogen gas barrier performance for applications in the cryogenic tanks of fully reusable space transportation system by the incorporation of a nonmetallic crystal layer, which is actually a dense and highly oriented clay crystal laminate. The preliminary test results show that the hydrogen gas barrier characteristics of this material after cryogenic heat shocks and cyclic loads are still better than those of other polymer materials by approximately two orders of magnitude.

  15. Fluoride varnish or fluoride mouth rinse?

    DEFF Research Database (Denmark)

    Keller, M K; Klausen, BJ; Twetman, S

    2016-01-01

    OBJECTIVE: In many Danish communities, school-based fluoride programs are offered to children with high caries risk in adjunct to tooth brushing. The purpose of this field trial was to compare the caries-preventive effectiveness of two different fluoride programs in 6-12 year olds. BASIC RESEARCH...... different schools were enrolled after informed consent and their class unit was randomly allocated to one of two fluoride programs. INTERVENTIONS: One group received a semi-annual fluoride varnish applications (FV) and the other group continued with an existing program with fluoride mouth rinses once per...... in caries development over two years among children participating in a school-based fluoride varnish or mouth rinse program....

  16. Variable composition hydrogen/natural gas mixtures for increased engine efficiency and decreased emissions

    Energy Technology Data Exchange (ETDEWEB)

    Sierens, R.; Rosseel, E.

    2000-01-01

    It is well known that adding hydrogen to natural gas extends the lean limit of combustion and that in this way extremely low emission levels can be obtained: even the equivalent zero emission vehicle (EZEV) requirements can be reached. The emissions reduction is especially important at light engine loads. In this paper results are presented for a GM V8 engine. Natural gas, pure hydrogen and different blends of these two fuels have been tested. The fuel supply system used provides natural gas/hydrogen mixtures in variable proportion, regulated independently of the engine operating condition. The influence of the fuel composition on the engine operating characteristics and exhaust emissions has been examined, mainly but not exclusively for 10 and 20% hydrogen addition. At least 10% hydrogen addition is necessary for a significant improvement in efficiency. Due to the conflicting requirements for low hydrocarbons and low NO{sub x} determining the optimum hythane composition is not straight-forward. For hythane mixtures with a high hydrogen fraction, it is found that a hydrogen content of 80% or less guarantees safe engine operation (no backfire nor knock), whatever the air excess factor. It is shown that to obtain maximum engine efficiency for the whole load range while taking low exhaust emissions into account, the mixture composition should be varied with respect to engine load.

  17. Lifecycle impacts of natural gas to hydrogen pathways on urban air quality

    International Nuclear Information System (INIS)

    Wang, Guihua; Ogden, Joan M.; Nicholas, Michael A.

    2007-01-01

    In this paper we examine the potential air quality impacts of hydrogen transportation fuel from a lifecycle analysis perspective, including impacts from fuel production, delivery, and vehicle use. We assume that hydrogen fuel cell vehicles are introduced in a specific region, Sacramento County, California. We consider two levels of market penetration where 9% or 20% of the light duty fleet are hydrogen fuel cell vehicles. The following three natural gas to hydrogen supply pathways are assessed in detail and compared in terms of emissions and the resulting changes in ambient air quality: (1) onsite hydrogen production; (2) centralized hydrogen production with gaseous hydrogen pipeline delivery systems; and (3) centralized hydrogen production with liquid hydrogen truck delivery systems. All the pathways examined use steam methane reforming (SMR) of natural gas to produce hydrogen. The source contributions to incremental air pollution are estimated and compared among hydrogen pathways. All of the hydrogen pathways result in extremely low contributions to ambient air concentrations of NO x , CO, particulates, and SO x , typically less than 0.1% of the current ambient pollution for both levels of market penetration. Among the hydrogen supply options, it is found that the central SMR with pipeline delivery systems is the lowest pollution option available provided the plant is located to avoid transport of pollutants into the city via prevailing winds. The onsite hydrogen pathway is comparable to the central hydrogen pathway with pipeline systems in terms of the resulting air pollution. The pathway with liquid hydrogen trucks has a greater impact on air quality relative to the other pathways due to emissions associated with diesel trucks and electricity consumption to liquefy hydrogen. However, all three hydrogen pathways result in negligible air pollution in the region. (author)

  18. Detail Design of the hydrogen system and the gas blanketing system for the HANARO-CNS

    International Nuclear Information System (INIS)

    Choi, Jung Woon; Kim, Hark Rho; Kim, Young Ki; Wu, Sang Ik; Kim, Bong Su; Lee, Yong Seop

    2007-04-01

    The cold neutron source (CNS), which will be installed in the vertical CN hole of the reflector tank at HANARO, makes thermal neutrons to moderate into the cold neutrons with the ranges of 0.1 ∼ 10 meV passing through a moderator at about 22K. A moderator to produce cold neutrons is liquid hydrogen, which liquefies by the heat transfer with cryogenic helium flowing from the helium refrigeration system (HRS). Because of its installed location, the hydrogen system is designed to be surrounded by the gas blanketing system to notify the leakage on the system and to prevent hydrogen leakage out of the CNS. The hydrogen system, consisted of hydrogen charging unit, hydrogen storage unit, hydrogen buffer tank, and hydrogen piping, is designed to smoothly and safely supply hydrogen to and to draw back hydrogen from the IPA of the CNS under the HRS operation mode. Described is that calculation for total required hydrogen amount in the CNS as well as operation schemes of the hydrogen system. The gas blanketing system (GBS) is designed for the supply of the compressed nitrogen gas into the air pressurized valves for the CNS, to isolate the hydrogen system from the air and the water, and to prevent air or water intrusion into the vacuum system as well as the hydrogen system. All detail descriptions are shown inhere as well as the operation scheme for the GBS

  19. Heat pump cycle by hydrogen-absorbing alloys to assist high-temperature gas-cooled reactor in producing hydrogen

    International Nuclear Information System (INIS)

    Satoshi, Fukada; Nobutaka, Hayashi

    2010-01-01

    A chemical heat pump system using two hydrogen-absorbing alloys is proposed to utilise heat exhausted from a high-temperature source such as a high-temperature gas-cooled reactor (HTGR), more efficiently. The heat pump system is designed to produce H 2 based on the S-I cycle more efficiently. The overall system proposed here consists of HTGR, He gas turbines, chemical heat pumps and reaction vessels corresponding to the three-step decomposition reactions comprised in the S-I process. A fundamental research is experimentally performed on heat generation in a single bed packed with a hydrogen-absorbing alloy that may work at the H 2 production temperature. The hydrogen-absorbing alloy of Zr(V 1-x Fe x ) 2 is selected as a material that has a proper plateau pressure for the heat pump system operated between the input and output temperatures of HTGR and reaction vessels of the S-I cycle. Temperature jump due to heat generated when the alloy absorbs H 2 proves that the alloy-H 2 system can heat up the exhaust gas even at 600 deg. C without any external mechanical force. (authors)

  20. Microbial Electrolysis Cells for High Yield Hydrogen Gas Production from Organic Matter

    KAUST Repository

    Logan, Bruce E.

    2008-12-01

    The use of electrochemically active bacteria to break down organic matter, combined with the addition of a small voltage (>0.2 V in practice) in specially designed microbial electrolysis cells (MECs), can result in a high yield of hydrogen gas. While microbial electrolysis was invented only a few years ago, rapid developments have led to hydrogen yields approaching 100%, energy yields based on electrical energy input many times greater than that possible by water electrolysis, and increased gas production rates. MECs used to make hydrogen gas are similar in design to microbial fuel cells (MFCs) that produce electricity, but there are important differences in architecture and analytical methods used to evaluate performance. We review here the materials, architectures, performance, and energy efficiencies of these MEC systems that show promise as a method for renewable and sustainable energy production, and wastewater treatment. © 2008 American Chemical Society.

  1. Dominant rate process of silicon surface etching by hydrogen chloride gas

    International Nuclear Information System (INIS)

    Habuka, Hitoshi; Suzuki, Takahiro; Yamamoto, Sunao; Nakamura, Akio; Takeuchi, Takashi; Aihara, Masahiko

    2005-01-01

    Silicon surface etching and its dominant rate process are studied using hydrogen chloride gas in a wide concentration range of 1-100% in ambient hydrogen at atmospheric pressure in a temperature range of 1023-1423 K, linked with the numerical calculation accounting for the transport phenomena and the surface chemical reaction in the entire reactor. The etch rate, the gaseous products and the surface morphology are experimentally evaluated. The dominant rate equation accounting for the first-order successive reactions at silicon surface by hydrogen chloride gas is shown to be valid. The activation energy of the dominant surface process is evaluated to be 1.5 x 10 5 J mol - 1 . The silicon deposition by the gaseous by-product, trichlorosilane, is shown to have a negligible influence on the silicon etch rate

  2. Effect of bioleaching on hydrogen-rich gas production by steam gasification of sewage sludge

    International Nuclear Information System (INIS)

    Li, Hanhui; Chen, Zhihua; Huo, Chan; Hu, Mian; Guo, Dabin; Xiao, Bo

    2015-01-01

    Highlights: • Bioleaching can modify the physicochemical property of sewage sludge. • The enhancement is mainly hydrogen. • Bioleaching can enhance the gas production in gasification of sewage sludge. • Study provides an insight for future application of bioleached sewage sludge. - Abstract: Effect of bioleaching on hydrogen-rich gas production by steam gasification of sewage sludge was carried out in a lab-scale fixed-bed reactor. The influence of sewage sludge solids concentrations (6–14% (w/v) in 2% increments) during the bioleaching process and reactor temperature (600–900 °C in 100 °C increments) on gasification product yields and gas composition were studied. Characterization of samples showed that bioleaching treatment, especially in 6% (w/v) sludge solids concentration, led to metal removal effectively and modifications in the physicochemical property of sewage sludge which was favored for gasification. The maximum gas yield (49.4%) and hydrogen content (46.4%) were obtained at 6% (w/v) sludge solids concentration and reactor temperature of 900 °C. Sewage sludge after the bioleaching treatment may be a feasible feedstock for hydrogen-rich gas product.

  3. Fuel hydrogen retention of tungsten and the reduction by inert gas glow discharges

    Energy Technology Data Exchange (ETDEWEB)

    Hino, T., E-mail: tomhino@qe.eng.hokudai.ac.jp [Laboratory of Plasma Physics and Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Yamauchi, Y.; Kimura, Y. [Laboratory of Plasma Physics and Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Nishimura, K. [National Institute for Fusion Science, Toki-shi, Gifu-ken 509-5292 (Japan); Ueda, Y. [Graduate School of Engineering, Osaka University, Suita-shi 565-0872 (Japan)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer The performances of inert gas glow discharges for reduction of fuel hydrogen retention in tungsten were systematically investigated. Black-Right-Pointing-Pointer For the tungsten with rough surface structure, the reduction of fuel hydrogen retention by inert gas discharges is quite small. Black-Right-Pointing-Pointer The deuterium glow discharge is quite useful to reduce the tritium retention in plasma facing walls in fusion reactor. Black-Right-Pointing-Pointer The wall baking with temperature higher than 700-800 K is also useful to reduce the tritium retention in plasma facing walls. - Abstract: Polycrystalline tungsten was exposed to deuterium glow discharge followed by He, Ne or Ar glow discharge. The amount of retained deuterium in the tungsten was measured using residual gas analysis. The amount of desorbed deuterium during the inert gas glow discharge was also measured. The amount of retained deuterium was 2-3 times larger compared with a case of stainless steel. The ratios of desorbed amount of deuterium by He, Ne and Ar glow discharges were 4.6, 3.1 and 2.9%, respectively. These values were one order of magnitude smaller compared with the case of stainless steel. The inert gas glow discharge is not suitable to reduce the fuel hydrogen retention for tungsten walls. However, the wall baking with a temperature higher than 700 K is suitable to reduce the fuel hydrogen retention. It is also shown that the use of deuterium glow discharge is effective to reduce the in-vessel tritium inventory in fusion reactors through the hydrogen isotope exchange.

  4. Investigation on the production of hydrogen rich gas in a plasma converter for motorcycle applications

    International Nuclear Information System (INIS)

    Horng, R.-F.; Chang, Y.-P.; Wu, S.-C.

    2006-01-01

    A plasma fuel converter producing a hydrogen rich gas fuel has been designed and constructed. The methodology included using a high voltage electric arc generator to ionize the mixture of methane fuel and air, which was then reformed into a hydrogen rich gas. It transpired from the experiment that the higher the arc frequency, the higher was the generated hydrogen concentration, with a maximum concentration of 43 vol.% attained with an arc frequency of 200 Hz and an O/C (O 2 /CH 4 ) ratio of 0.10. The maximum hydrogen yield of 0.55 was obtained with an arc frequency of 200 Hz and an O/C ratio between 0.20 and 0.25. By fueling a four stroke motorcycle engine with the hydrogen rich gas, low emissions during the cold start idle condition can be obtained

  5. Development and industrial application of catalyzer for low-temperature hydrogenation hydrolysis of Claus tail gas

    Directory of Open Access Journals (Sweden)

    Honggang Chang

    2015-10-01

    Full Text Available With the implementation of more strict national environmental protection laws, energy conservation, emission reduction and clean production will present higher requirements for sulfur recovery tail gas processing techniques and catalyzers. As for Claus tail gas, conventional hydrogenation catalyzers are gradually being replaced by low-temperature hydrogenation catalyzers. This paper concentrates on the development of technologies for low-temperature hydrogenation hydrolysis catalyzers, preparation of such catalyzers and their industrial application. In view of the specific features of SO2 hydrogenation and organic sulfur hydrolysis during low-temperature hydrogenation, a new technical process involving joint application of hydrogenation catalyzers and hydrolysis catalyzers was proposed. In addition, low-temperature hydrogenation catalyzers and low-temperature hydrolysis catalyzers suitable for low-temperature conditions were developed. Joint application of these two kinds of catalyzers may reduce the inlet temperatures in the conventional hydrogenation reactors from 280 °C to 220 °C, at the same time, hydrogenation conversion rates of SO2 can be enhanced to over 99%. To further accelerate the hydrolysis rate of organic sulfur, the catalyzers for hydrolysis of low-temperature organic sulfur were developed. In lab tests, the volume ratio of the total sulfur content in tail gas can be as low as 131 × 10−6 when these two kinds of catalyzers were used in a proportion of 5:5 in volumes. Industrial application of these catalyzers was implemented in 17 sulfur recovery tail gas processing facilities of 15 companies. As a result, Sinopec Jinling Petrochemical Company had outstanding application performances with a tail gas discharging rate lower than 77.9 mg/m3 and a total sulfur recovery of 99.97%.

  6. Geochemical modelling of hydrogen gas migration in an unsaturated bentonite buffer

    NARCIS (Netherlands)

    Sedighi, M.; Thomas, H.R.; Al Masum, S.; Vardon, P.J.; Nicholson, D.; Chen, Q.

    2014-01-01

    This paper presents an investigation of the transport and fate of hydrogen gas through compacted bentonite buffer. Various geochemical reactions that may occur in the multiphase and multicomponent system of the unsaturated bentonite buffer are considered. A reactive gas transport model, developed

  7. Experimental study on the natural gas dual fuel engine test and the higher the mixture ratio of hydrogen to natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B.S.; Lee, Y.S.; Park, C.K. [Cheonnam University, Kwangju (Korea); Masahiro, S. [Kyoto University, Kyoto (Japan)

    1999-05-28

    One of the unsolved problems of the natural gas dual fuel engine is that there is too much exhaust of Total Hydrogen Carbon(THC) at a low equivalent mixture ratio. To fix it, a natural gas mixed with hydrogen was applied to engine test. The results showed that the higher the mixture ratio of hydrogen to natural gas, the higher the combustion efficiency. And when the amount of the intake air is reached to 90% of WOT, the combustion efficiency was promoted. But, like a case making the injection timing earlier, the equivalent mixture ratio for the nocking limit decreases and the produce of NOx increases. 5 refs., 9 figs., 1 tab.

  8. Measurement of percent hydrogen in the mechanical vacuum pump gas stream during BWR startup

    International Nuclear Information System (INIS)

    Garcia, Susan E.; Odell, Andrew D.; Giannelli, Joseph F.

    2012-09-01

    All U.S BWRs use a Mechanical Vacuum Pump (MVP) to establish condenser vacuum during start-ups, normally from the initial heat-up to the point where sufficient reactor steam pressure and flow is available to place the Steam Jet Air Ejector (SJAE) and off-gas treatment system in service. MVP operation is restricted to <5% power and gas stream concentrations of <4% H 2 , the lower flammability limit (LFL) for hydrogen/air mixtures. For a particular plant startup prior to hydrogen injection for hydrogen water chemistry (HWC), the MVP %H 2 would depend on the air in-leakage rate, the H 2 gas generation rate from radiolysis and the gas/steam transport rate from the reactor vessel to the main condenser. The radiolysis rate at low power, which is not precisely known and has not been modeled for the BWR, is normally assumed to increase in proportion to thermal power. Two thirds of the radiolytic gas by volume would be H 2 and one third O 2 . The MVP is not equipped with %H 2 sampling and measurement capability, and many MVP systems include no flow measurement. No U.S plant or literature data on MVP %H 2 were found. The industry-first Early Hydrogen Water Chemistry (EHWC) demonstration at the Peach Bottom 3 nuclear power plant involved hydrogen gas injection into the reactor vessel during startup while the MVP was in service. To support the EHWC project, it was necessary to collect baseline MVP %H 2 data during a startup without hydrogen injection and to monitor MVP %H 2 during the startup with EHWC. The MVP system had no normal sample point, but included test taps in the suction and discharge piping. A sampling method and apparatus was invented (EPRI patent pending), designed, built and applied to obtain %H 2 measurements in the MVP gas stream. The apparatus allowed a gas sample stream to be taken from either the suction (vacuum) or discharge side of the MVP. The gas sample stream was preconditioned to remove moisture (the MVP uses water as a liquid compressant), flowed to

  9. Studies on the separation of hydrogen isotopes and spin isomers by gas chromatography

    International Nuclear Information System (INIS)

    Pushpa, K.K.; Annaji Rao, K.

    2000-08-01

    Separation and analysis of mixture of hydrogen isotopes has gained considerable importance because of various applications needing different isotopes in lasers, nuclear reactions and tracer or labelled compounds. In the literature gas chromatographic methods are reported using columns packed with partly dehydrated or thoroughly dehydrated alumina/molecular sieve stationary phase at 77 deg K with helium, neon and even hydrogen or deuterium as carrier gas. In the present study an attempt is made to compare the chromatographic behaviour of these two stationary phases using virgin and Fe doped form in partly dehydrated and thoroughly dehydrated state, using helium, neon, hydrogen and deuterium as carrier gas. The results of this study show that helium or neon carrier gas behave similarly broad peaks with some tailing. Sharp symmetric peaks are obtained with hydrogen or deuterium carrier gas. This is attributed to large hold up capacity for H 2 or D 2 at 77 deg K in these materials as compared to helium or neon. Spin isomers of H 2 or D 2 are separated on Fe free stationary phases, though ortho H 2 and HD are not resolved. Using a combination of Fe doped short column and plain alumina column, both maintained in dehydrated form, the effect of Fe doping on thermal equilibrium of ortho/para forms at 77 deg K is clearly demonstrated. (author)

  10. Hydrogen Gas from Serpentinite, Ophiolites and the Modern Ocean Floor as a Source of Green Energy

    Science.gov (United States)

    Coveney, R. M.

    2008-12-01

    Hydrogen gas is emitted by springs associated with serpentinites and extensive carbonate deposits in Oman, The Philippines, the USA and other continental locations. The hydrogen springs contain unusually alkaline fluids with pH values between 11 and 12.5. Other workers have described off-ridge submarine springs with comparably alkaline fluid compositions, serpentinite, abundant free hydrogen gas, and associated carbonate edifices such as Lost City on the Atlantis Massif 15 km west of the Mid-Atlantic Ridge (D.S. Kelley and associates, Science 2005). The association of hydrogen gas with ultramafites is a consistent one that has been attributed to a redox couple involving oxidation of divalent iron to the trivalent state during serpentinization, although other possibilities exist. Some of the hydrogen springs on land are widespread. For example in Oman dozens of alkaline springs (Neal and Stanger, EPSL 1983) can be found over thousands of sq km of outcropping ophiolite. While the deposits in Oman and the Philippines are well-known to much of the geochemical community, little interest seems to have been displayed toward either the ophiolitic occurrences or the submarine deposits for energy production. This may be a mistake as the showings because they could lead to an important source of green energy. Widespread skepticism currently exists about hydrogen as a primary energy source. It is commonly said that free hydrogen does not occur on earth and that it is therefore necessary to use other sources of energy to produce hydrogen, obviating the general environmental benefit. However the existence of numerous occurrences of hydrogen gas associated with ophiolites and submarine occurrences of hydrogen suggests the likelihood that natural hydrogen gas may be an important source of clean energy for modern society remaining to be tapped. Calculations in progress should establish whether or not this is likely to be the case.

  11. Advanced IGCC/Hydrogen Gas Turbine Development

    Energy Technology Data Exchange (ETDEWEB)

    York, William [General Electric Company, Schenectady, NY (United States); Hughes, Michael [General Electric Company, Schenectady, NY (United States); Berry, Jonathan [General Electric Company, Schenectady, NY (United States); Russell, Tamara [General Electric Company, Schenectady, NY (United States); Lau, Y. C. [General Electric Company, Schenectady, NY (United States); Liu, Shan [General Electric Company, Schenectady, NY (United States); Arnett, Michael [General Electric Company, Schenectady, NY (United States); Peck, Arthur [General Electric Company, Schenectady, NY (United States); Tralshawala, Nilesh [General Electric Company, Schenectady, NY (United States); Weber, Joseph [General Electric Company, Schenectady, NY (United States); Benjamin, Marc [General Electric Company, Schenectady, NY (United States); Iduate, Michelle [General Electric Company, Schenectady, NY (United States); Kittleson, Jacob [General Electric Company, Schenectady, NY (United States); Garcia-Crespo, Andres [General Electric Company, Schenectady, NY (United States); Delvaux, John [General Electric Company, Schenectady, NY (United States); Casanova, Fernando [General Electric Company, Schenectady, NY (United States); Lacy, Ben [General Electric Company, Schenectady, NY (United States); Brzek, Brian [General Electric Company, Schenectady, NY (United States); Wolfe, Chris [General Electric Company, Schenectady, NY (United States); Palafox, Pepe [General Electric Company, Schenectady, NY (United States); Ding, Ben [General Electric Company, Schenectady, NY (United States); Badding, Bruce [General Electric Company, Schenectady, NY (United States); McDuffie, Dwayne [General Electric Company, Schenectady, NY (United States); Zemsky, Christine [General Electric Company, Schenectady, NY (United States)

    2015-07-30

    The objective of this program was to develop the technologies required for a fuel flexible (coal derived hydrogen or syngas) gas turbine for IGCC that met DOE turbine performance goals. The overall DOE Advanced Power System goal was to conduct the research and development (R&D) necessary to produce coal-based IGCC power systems with high efficiency, near-zero emissions, and competitive capital cost. To meet this goal, the DOE Fossil Energy Turbine Program had as an interim objective of 2 to 3 percentage points improvement in combined cycle (CC) efficiency. The final goal is 3 to 5 percentage points improvement in CC efficiency above the state of the art for CC turbines in IGCC applications at the time the program started. The efficiency goals were for NOx emissions of less than 2 ppm NOx (@15 % O2). As a result of the technologies developed under this program, the DOE goals were exceeded with a projected 8 point efficiency improvement. In addition, a new combustion technology was conceived of and developed to overcome the challenges of burning hydrogen and achieving the DOE’s NOx goal. This report also covers the developments under the ARRA-funded portion of the program that include gas turbine technology advancements for improvement in the efficiency, emissions, and cost performance of gas turbines for industrial applications with carbon capture and sequestration. Example applications could be cement plants, chemical plants, refineries, steel and aluminum plants, manufacturing facilities, etc. The DOE’s goal for more than 5 percentage point improvement in efficiency was met with cycle analyses performed for representative IGCC Steel Mill and IGCC Refinery applications. Technologies were developed in this program under the following areas: combustion, larger latter stage buckets, CMC and EBC, advanced materials and coatings, advanced configurations to reduce cooling, sealing and rotor purge flows, turbine aerodynamics, advanced sensors, advancements in first

  12. Reduction of greenhouse gas emission on a medium-pressure boiler using hydrogen-rich fuel control

    International Nuclear Information System (INIS)

    Hsieh, S.-C.; Jou, Chih-Ju G.

    2007-01-01

    The increasing emission of greenhouse gases from the combustion of fossil fuel is believed to be responsible for global warming. A study was carried out to probe the influence of replacing fuel gas with hydrogen-rich refinery gas (R.G.) on the reduction of gas emission (CO 2 and NO x ) and energy saving. Test results show that the emission of CO 2 can be reduced by 16.4% annually (or 21,500 tons per year). The NO x emission can be 8.2% lower, or 75 tons less per year. Furthermore, the use of refinery gas leads to a saving of NT$57 million (approximately US$1.73 million) on fuel costs each year. There are no CO 2 , CO, SO x , unburned hydrocarbon, or particles generated from the combustion of added hydrogen. The hydrogen content in R.G. employed in this study was between 50 and 80 mol%, so the C/H ratio of the feeding fuel was reduced. Therefore, the use of hydrogen-rich fuel has practical benefits for both energy saving and the reduction of greenhouse gas emission

  13. Hydrogen gettering the overpressure gas from highly radioactive liquids

    International Nuclear Information System (INIS)

    Riley, D.L.; Schicker, J.R.

    1996-04-01

    Remediation of current inventories of high-activity radioactive liquid waste (HALW) requires transportation of Type-B quantities of radioactive material, possibly up to several hundred liters. However, the only currently certified packaging is limited to quantities of 50 ml (0.01 gal) quantities of Type-B radioactive liquid. Efforts are under way to recertify the existing packaging to allow the shipment of up to 4 L (1.1 gal) of Type-B quantities of HALW, but significantly larger packaging could be needed in the future. Scoping studies and preliminary designs have identified the feasibility of retrofitting an insert into existing casks, allowing the transport of up to 380 L (100 gal) of HALW. However, the insert design and ultimate certification strategy depend heavily on the gas-generating attributes of the HALW. A non-vented containment vessel filled with HALW, in the absence of any gas-mitigation technologies, poses a deflagration threat and, therefore, gas generation, specifically hydrogen generation, must be reliably controlled during all phases of transportation. Two techniques are available to mitigate hydrogen accumulation: recombiners and getters. Getters have an advantage over recombiners in that oxides are not required to react with the hydrogen. A test plan was developed to evaluate three forms of getter material in the presence of both simulated HALW and the gases that are produced by the HALW. These tests demonstrated that getters can react with hydrogen in the presence of simulated waste and in the presence of several other gases generated by the HALW, such as nitrogen, ammonia, nitrous oxide, and carbon monoxide. Although the use of such a gettering system has been shown to be technically feasible, only a preliminary design for its use has been completed. No further development is planned until the requirement for bulk transport of Type-B quantities of HALW is more thoroughly defined

  14. Evaluation of Technical Feasibility of Homogeneous Charge Compression Ignition (HCCI) Engine Fueled with Hydrogen, Natural Gas, and DME

    Energy Technology Data Exchange (ETDEWEB)

    John Pratapas; Daniel Mather; Anton Kozlovsky

    2007-03-31

    The objective of the proposed project was to confirm the feasibility of using blends of hydrogen and natural gas to improve the performance, efficiency, controllability and emissions of a homogeneous charge compression ignition (HCCI) engine. The project team utilized both engine simulation and laboratory testing to evaluate and optimize how blends of hydrogen and natural gas fuel might improve control of HCCI combustion. GTI utilized a state-of-the art single-cylinder engine test platform for the experimental work in the project. The testing was designed to evaluate the feasibility of extending the limits of HCCI engine performance (i.e., stable combustion, high efficiency and low emissions) on natural gas by using blends of natural gas and hydrogen. Early in the project Ricardo provided technical support to GTI as we applied their engine performance simulation program, WAVE, to our HCCI research engine. Modeling support was later provided by Digital Engines, LLC to use their proprietary model to predict peak pressures and temperatures for varying operating parameters included in the Design of Experiments test plan. Digital Engines also provided testing support for the hydrogen and natural gas blends. Prof. David Foster of University of Wisconsin-Madison participated early in the project by providing technical guidance on HCCI engine test plans and modeling requirements. The main purpose of the testing was to quantify the effects of hydrogen addition to natural gas HCCI. Directly comparing straight natural gas with the hydrogen enhanced test points is difficult due to the complexity of HCCI combustion. With the same air flow rate and lambda, the hydrogen enriched fuel mass flow rate is lower than the straight natural gas mass flow rate. However, the energy flow rate is higher for the hydrogen enriched fuel due to hydrogen's significantly greater lower heating value, 120 mJ/kg for hydrogen compared to 45 mJ/kg for natural gas. With these caveats in mind, an

  15. EUV tools: hydrogen gas purification and recovery strategies

    Science.gov (United States)

    Landoni, Cristian; Succi, Marco; Applegarth, Chuck; Riddle Vogt, Sarah

    2015-03-01

    The technological challenges that have been overcome to make extreme ultraviolet lithography (EUV) a reality have been enormous1. This vacuum driven technology poses significant purity challenges for the gases employed for purging and cleaning the scanner EUV chamber and source. Hydrogen, nitrogen, argon and ultra-high purity compressed dry air (UHPCDA) are the most common gases utilized at the scanner and source level. Purity requirements are tighter than for previous technology node tools. In addition, specifically for hydrogen, EUV tool users are facing not only gas purity challenges but also the need for safe disposal of the hydrogen at the tool outlet. Recovery, reuse or recycling strategies could mitigate the disposal process and reduce the overall tool cost of operation. This paper will review the types of purification technologies that are currently available to generate high purity hydrogen suitable for EUV applications. Advantages and disadvantages of each purification technology will be presented. Guidelines on how to select the most appropriate technology for each application and experimental conditions will be presented. A discussion of the most common approaches utilized at the facility level to operate EUV tools along with possible hydrogen recovery strategies will also be reported.

  16. Proposal for a Northeast Asian Hydrogen Highway: From a Natural-gas-based to a Hydrogen-based Society

    International Nuclear Information System (INIS)

    Kazuhiko O Hashi; Masaru Hirata; William C Leighty; D Eng

    2006-01-01

    In Northeast Asia, East Siberia and Sakhalin are rich in natural gas (NG). The environmental protection and energy security of the Northeast Asian region requires constructing an energy infrastructure network that can transport and distribute NG throughout the region in the near term, and renewable-source gaseous hydrogen (GH2) in the long term. We have promoted the construction of an NG pipeline network, the principal component of the energy infrastructure essential to our evolution toward a hydrogen-based society, through the Northeast Asia Natural Gas and Pipeline Forum (NAGPF). Our ultimate goal is a clean and sustainable society based on renewable energy sources, wherein hydrogen is produced from the vast potential of renewable energy in Siberia and China. The hydrogen thus produced would be transmitted through the pipeline network, progressively replacing NG as it is depleted. Over three-quarters of commercially exploitable hydroelectric power (hydro) resources of all Russia is in East Siberia. The areas from Kamchatka through the Kurilskiye Islands (called the Chishima Islands, in Japan) to Sakhalin is a world-class wind energy resource. West China has huge potential for solar energy. (authors)

  17. A fatigue initiation parameter for gas pipe steel submitted to hydrogen absorption

    Energy Technology Data Exchange (ETDEWEB)

    Capelle, J; Gilgert, J; Pluvinage, G [LaBPS - Ecole Nationale d' Ingenieurs de Metz et Universite Paul Verlaine Metz, Ile du Saulcy, 57045 Metz (France)

    2010-01-15

    Fatigue initiation resistance has been determined on API 5L X52 gas pipe steel. Tests have been performed on Roman Tile (RT) specimen and fatigue initiation was detected by acoustic emission. A comparison between specimens electrolytically charged with hydrogen and specimens without hydrogen absorption were made and it has been noted that fatigue initiation time is reduced of about 3 times when hydrogen embrittlement occurs. It has been proposed to use the concept of Notch Stress Intensity Factor as parameter to describe the fatigue initiation process. Due to the fact that hydrogen is localised in area with high hydrostatic pressure, definitions of local effective stress and distance have been modified when hydrogen is absorbed. This modification can be explained by existence of a ductile-brittle transition with hydrogen concentration. The fatigue initiation resistance curve allows that to determine a threshold for large number of cycles of fatigue non initiation. This parameter introduced in a Failure Assessment Diagram (FAD) provides supplementary information about defect nocivity in gas pipes: a non-critical defect can be detected as dormant or not dormant defect i.e., as non propagating defect. (author)

  18. Hydrogen-Enhanced Natural Gas Vehicle Program

    Energy Technology Data Exchange (ETDEWEB)

    Hyde, Dan; Collier, Kirk

    2009-01-22

    The project objective is to demonstrate the viability of HCNG fuel (30 to 50% hydrogen by volume and the remainder natural gas) to reduce emissions from light-duty on-road vehicles with no loss in performance or efficiency. The City of Las Vegas has an interest in alternative fuels and already has an existing hydrogen refueling station. Collier Technologies Inc (CT) supplied the latest design retrofit kits capable of converting nine compressed natural gas (CNG) fueled, light-duty vehicles powered by the Ford 5.4L Triton engine. CT installed the kits on the first two vehicles in Las Vegas, trained personnel at the City of Las Vegas (the City) to perform the additional seven retrofits, and developed materials for allowing other entities to perform these retrofits as well. These vehicles were used in normal service by the City while driver impressions, reliability, fuel efficiency and emissions were documented for a minimum of one year after conversion. This project has shown the efficacy of operating vehicles originally designed to operate on compressed natural gas with HCNG fuel incorporating large quantities of exhaust gas recirculation (EGR). There were no safety issues experienced with these vehicles. The only maintenance issue in the project was some rough idling due to problems with the EGR valve and piping parts. Once the rough idling was corrected no further maintenance issues with these vehicles were experienced. Fuel economy data showed no significant changes after conversion even with the added power provided by the superchargers that were part of the conversions. Driver feedback for the conversions was very favorable. The additional power provided by the HCNG vehicles was greatly appreciated, especially in traffic. The drivability of the HCNG vehicles was considered to be superior by the drivers. Most of the converted vehicles showed zero oxides of nitrogen throughout the life of the project using the State of Nevada emissions station.

  19. Informing hazardous zones for on-board maritime hydrogen liquid and gas systems

    Energy Technology Data Exchange (ETDEWEB)

    Blaylock, Myra L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Pratt, Joseph William [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Bran Anleu, Gabriela A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Proctor, Camron [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2018-01-01

    The significantly higher buoyancy of hydrogen compared to natural gas means that hazardous zones defined in the IGF code may be inaccurate if applied to hydrogen. This could place undue burden on ship design or could lead to situations that are unknowingly unsafe. We present dispersion analyses to examine three vessel case studies: (1) abnormal external vents of full blowdown of a liquid hydrogen tank due to a failed relief device in still air and with crosswind; (2) vents due to naturally-occurring boil-off of liquid within the tank; and (3) a leak from the pipes leading into the fuel cell room. The size of the hydrogen plumes resulting from a blowdown of the tank depend greatly on the wind conditions. It was also found that for normal operations releasing a small amount of "boil- off" gas to regulate the pressure in the tank does not create flammable concentrations.

  20. Radioactive gas and hydrogen removal after a LOCE at the LOFT Facility

    International Nuclear Information System (INIS)

    McCormick-Barger, J.W.; Sumpter, K.C.

    1979-01-01

    The use of a silver-zeolite halogen adsorber placed in series with a hydrogen catalytic recombiner and a cryogenic noble gas adsorber assembly constitutes a waste gas processing system (WGPS) capable of handling hydrogen and fission product gases following a Loss-of-Coolant Experiment (LOCE). This paper describes: the types and quantities of gases expected to be found at the facility after a failed-fuel LOCE; the purpose of the WGPS; and the general configuration and expected decontamination factors associated with the LOFT WGPS

  1. Dynamics of ligand exchange and association processes in solutions of transition 3d-metal fluorides

    International Nuclear Information System (INIS)

    Nazmutdinova, G.A.; Shtyrlin, V.G.; Zakharov, A.V.; Sal'nikov, Yu.I.

    1993-01-01

    By 19 NMR in combination with ESR spectroscopy rate constants and activation parameters of fluoride-ion exchange reactions in solutions of VOF 5 3- and FeF 6 3- complexes were determined. Associative character of the studied reactions of ligand exchange is shown. Dependence of fluoride complex reactivity on the charge, electron structure of the central ion and formation of hydrogen bonds of coordinated F - ions with solvent molecules was demonstrated. Stability constants, rates of formation and dissociation of intercomplex associates in fluoride solutions were ascertained

  2. Performance of a hydrogen/deuterium polarized gas target in a storage ring

    NARCIS (Netherlands)

    van Buuren, L.D.; Szczerba, D.; van den Brand, J.F.J.; Bulten, H.J.; Klous, S.; Mul, F.A.; Poolman, H.R.; Simani, M.C.

    2001-01-01

    The performance of a hydrogen/deuterium polarized gas target in a storage ring is presented. The target setup consisted of an atomic beam source, a cryogenic storage cell and a Breit-Rabi polarimeter. High frequency transition units were constructed to produce vector polarized hydrogen and

  3. Performance Improvement of V-Fe-Cr-Ti Solid State Hydrogen Storage Materials in Impure Hydrogen Gas.

    Science.gov (United States)

    Ulmer, Ulrich; Oertel, Daria; Diemant, Thomas; Bonatto Minella, Christian; Bergfeldt, Thomas; Dittmeyer, Roland; Behm, R Jürgen; Fichtner, Maximilian

    2018-01-17

    Two approaches of engineering surface structures of V-Ti-based solid solution hydrogen storage alloys are presented, which enable improved tolerance toward gaseous oxygen (O 2 ) impurities in hydrogen (H 2 ) gas. Surface modification is achieved through engineering lanthanum (La)- or nickel (Ni)-rich surface layers with enhanced cyclic stability in an H 2 /O 2 mixture. The formation of a Ni-rich surface layer does not improve the cycling stability in H 2 /O 2 mixtures. Mischmetal (Mm, a mixture of La and Ce) agglomerates are observed within the bulk and surface of the alloy when small amounts of this material are added during arc melting synthesis. These agglomerates provide hydrogen-transparent diffusion pathways into the bulk of the V-Ti-Cr-Fe hydrogen storage alloy when the remaining oxidized surface is already nontransparent for hydrogen. Thus, the cycling stability of the alloy is improved in an O 2 -containing hydrogen environment as compared to the same alloy without addition of Mm. The obtained surface-engineered storage material still absorbs hydrogen after 20 cycles in a hydrogen-oxygen mixture, while the original material is already deactivated after 4 cycles.

  4. Radiation damage: special reference to gas filled radiation detectors

    International Nuclear Information System (INIS)

    Gaur, Sudha; Joshi, Pankaj Kumar; Rathore, Shakuntla

    2012-01-01

    Radiation damage is a term associated with ionizing radiation. In gas filled particle detectors, radiation damage to gases plays an important role in the device's ageing, especially in devices exposed to high intensity radiation, e.g. detector for the large hadrons collide. Ionization processes require energy above 10 eV, while splitting covalent bond in molecules and generating free radical require only 3-4 eV. The electrical discharges initiated by the ionization event by the particles result in plasma populated by large amount of free radical. The highly reactive free radical can recombine back to original molecules, or initiate a chain of free radical polymerization reaction with other molecules, yielding compounds with increasing molecular weight. These high molecular weight compounds then precipitate from gases phase, forming conductive or non-conductive deposits on the electrodes an insulating surfaces of the detector and distorting it's response. Gases containing hydrocarbon quenchers, e.g. argon-methane, are typically sensitive to ageing by polymerization; addition of oxygen tends to lower the ageing rates. Trace amount of silicon oils, present form out gassing of silicon elastomers and especially from traces of silicon lubricant tend to decompose and form deposits of silicon crystals on the surfaces. Gases mixture of argon (or xenon) with CO 2 and optimally also with 2-3 % of oxygen are highly tolerant to high radiation fluxes. The oxygen is added as noble gas with CO 2 has too high transparency for high energy photons; ozone formed from the oxygen is a strong absorber of ultra violet photons. Carbon tetra fluoride can be used as a component of the gas for high-rate detectors; the fluorine radical produced during the operation however limit the choice of materials for the chambers and electrodes (e.g. gold electrodes are required, as the fluorine radicals attack metals, forming fluorides). Addition of carbon tetra fluoride can however eliminate the

  5. Utilization of hydrogen gas production for electricity generation in ...

    African Journals Online (AJOL)

    Utilization of hydrogen gas production for electricity generation in fuel cell by Enterobacter aerogenes ADH 43 with many kinds of carbon sources in batch stirred tank reactor. MA Rachman, LD Eniya, Y Liasari, MM Nasef, A Ahmad, H Saidi ...

  6. Probability of foliar injury for Acer sp. based on foliar fluoride concentrations.

    Science.gov (United States)

    McDonough, Andrew M; Dixon, Murray J; Terry, Debbie T; Todd, Aaron K; Luciani, Michael A; Williamson, Michele L; Roszak, Danuta S; Farias, Kim A

    2016-12-01

    Fluoride is considered one of the most phytotoxic elements to plants, and indicative fluoride injury has been associated over a wide range of foliar fluoride concentrations. The aim of this study was to determine the probability of indicative foliar fluoride injury based on Acer sp. foliar fluoride concentrations using a logistic regression model. Foliage from Acer nedundo, Acer saccharinum, Acer saccharum and Acer platanoides was collected along a distance gradient from three separate brick manufacturing facilities in southern Ontario as part of a long-term monitoring programme between 1995 and 2014. Hydrogen fluoride is the major emission source associated with the manufacturing facilities resulting with highly elevated foliar fluoride close to the facilities and decreasing with distance. Consistent with other studies, indicative fluoride injury was observed over a wide range of foliar concentrations (9.9-480.0 μg F -  g -1 ). The logistic regression model was statistically significant for the Acer sp. group, A. negundo and A. saccharinum; consequently, A. negundo being the most sensitive species among the group. In addition, A. saccharum and A. platanoides were not statistically significant within the model. We are unaware of published foliar fluoride values for Acer sp. within Canada, and this research provides policy maker and scientist with probabilities of indicative foliar injury for common urban Acer sp. trees that can help guide decisions about emissions controls. Further research should focus on mechanisms driving indicative fluoride injury over wide ranging foliar fluoride concentrations and help determine foliar fluoride thresholds for damage.

  7. Uranium fluoride chemistry. Part 1. The gas phase reaction of uranium hexafluoride with alcohols

    International Nuclear Information System (INIS)

    Schnautz, N.G.; Venter, P.J.

    1992-01-01

    The reaction between uranium hexafluoride (UF 6 ) and simple alcohols in the gas phase was observed to proceed by way of three possible reaction pathways involving dehydration, deoxygenative fluorination, and ether formation. These reactions can best be explained by assuming that alcohols first react with UF 6 to afford the alkoxy uranium pentafluoride intermediate ROUF 5 , which reacts further to give the dehydration, deoxygenative fluorination, and ether products. In each of the above three reaction pathways, UF 6 is transformed to UOF 4 , which being as reactive toward alcohols as UF 6 , reacts further with the alcohol in question to finally afford the unreactive uranyl fluoride (UO 2 F 2 ). 6 refs., 2 tabs

  8. Evaluation of Technical Feasibility of Homogeneous Charge Compression Ignition (HCCI) Engine Fueled with Hydrogen, Natural Gas, and DME

    Energy Technology Data Exchange (ETDEWEB)

    Pratapas, John; Mather, Daniel; Kozlovsky, Anton

    2013-03-31

    The objective of the proposed project was to confirm the feasibility of using blends of hydrogen and natural gas to improve the performance, efficiency, controllability and emissions of a homogeneous charge compression ignition (HCCI) engine. The project team utilized both engine simulation and laboratory testing to evaluate and optimize how blends of hydrogen and natural gas fuel might improve control of HCCI combustion. GTI utilized a state-of-the art single-cylinder engine test platform for the experimental work in the project. The testing was designed to evaluate the feasibility of extending the limits of HCCI engine performance (i.e., stable combustion, high efficiency and low emissions) on natural gas by using blends of natural gas and hydrogen. Early in the project Ricardo provided technical support to GTI as we applied their engine performance simulation program, WAVE, to our HCCI research engine. Modeling support was later provided by Digital Engines, LLC to use their proprietary model to predict peak pressures and temperatures for varying operating parameters included in the Design of Experiments test plan. Digital Engines also provided testing support for the hydrogen and natural gas blends. Prof. David Foster of University of Wisconsin-Madison participated early in the project by providing technical guidance on HCCI engine test plans and modeling requirements. The main purpose of the testing was to quantify the effects of hydrogen addition to natural gas HCCI. Directly comparing straight natural gas with the hydrogen enhanced test points is difficult due to the complexity of HCCI combustion. With the same air flow rate and lambda, the hydrogen enriched fuel mass flow rate is lower than the straight natural gas mass flow rate. However, the energy flow rate is higher for the hydrogen enriched fuel due to hydrogen’s significantly greater lower heating value, 120 mJ/kg for hydrogen compared to 45 mJ/kg for natural gas. With these caveats in mind, an

  9. Diethylenetriaminium hexafluoridotitanate(IV fluoride

    Directory of Open Access Journals (Sweden)

    J. Lhoste

    2008-11-01

    Full Text Available The title compound, (C6H21N4[TiF6]F, was synthesized by the reaction of TiO2, tris(2-aminoethylamine, HF and ethanol at 463 K in a microwave oven. The crystal structure consists of two crystallographically independent [TiF6]2− anions, two fluoride anions and two triply-protonated tris(2-aminoethylamine cations. The Ti atoms are coordinated by six F atoms within slightly distorted octahedra. The anions and cations are connected by intermolecular N—H...F hydrogen bonds.

  10. Role of sodium hydroxide in the production of hydrogen gas from the hydrothermal gasification of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Onwudili, Jude A.; Williams, Paul T. [Energy and Resources Research Institute, University of Leeds, Leeds, LS2 9JT (United Kingdom)

    2009-07-15

    The role of sodium hydroxide as a promoter of hydrogen gas production during the hydrothermal gasification of glucose and other biomass samples has been investigated. Experiments were carried out in a batch reactor with glucose and also in the presence of the alkali from 200 C, 2 MPa to 450 C, 34 MPa at constant water loading. Without sodium hydroxide, glucose decomposed to produce mainly carbon dioxide, water, char and tar. Furfural, its derivatives and reaction products dominated the ethyl acetate extract of the water (organic fraction) at lower reaction conditions. This indicated that the dehydration of glucose to yield these products was unfavourable to hydrogen gas production. In the presence of sodium hydroxide however, glucose initially decomposed to form mostly alkylated and hydroxylated carbonyl compounds, whose further decomposition yielded hydrogen gas. It was observed that at 350 C, 21.5 MPa, half of the optimum hydrogen gas yield had formed and at 450 C, 34 MPa, more than 80 volume percent of the gaseous effluent was hydrogen gas, while the balance was hydrocarbon gases, mostly methane ({>=}10 volume percent). Other biomass samples were also comparably reacted at the optimum conditions observed for glucose. The rate of hydrogen production for the biomass samples was in the following order; glucose > cellulose, starch, rice straw > potato > rice husk. (author)

  11. Fluoride release from fluoride varnishes under acidic conditions.

    Science.gov (United States)

    Lippert, F

    2014-01-01

    The aim was to investigate the in vitro fluoride release from fluoride varnishes under acidic conditions. Poly(methyl methacrylate) blocks (Perspex, n=3 per group) were painted with 80 ± 5 mg fluoride varnish (n=10) and placed into artificial saliva for 30 min. Then, blocks were placed into either 1% citric acid (pH 2.27) or 0.3% citric acid (pH 3.75) solutions (n=3 per solution and varnish) for 30 min with the solutions being replaced every 5 min. Saliva and acid solutions were analyzed for fluoride content. Data were analyzed using three-way ANOVA (varnish, solution, time). The three-way interaction was significant (p>0.0001). Fluoride release and release patterns varied considerably between varnishes. Fluoride release in saliva varied by a factor of more than 10 between varnishes. Some varnishes (CavityShield, Nupro, ProFluorid, Vanish) showed higher fluoride release in saliva than during the first 5 min of acid exposure, whereas other varnishes (Acclean, Enamel-Pro, MI Varnish, Vella) showed the opposite behavior. There was little difference between acidic solutions. Fluoride release from fluoride varnishes varies considerably and also depends on the dissolution medium. Bearing in mind the limitations of laboratory research, the consumption of acidic drinks after fluoride varnish application should be avoided to optimize the benefit/risk ratio.

  12. The effect of hydrogen enrichment towards the flammability limits of natural gas in conventional combustion

    International Nuclear Information System (INIS)

    Izirwan Izhab; Nur Syuhada Mohd Shokri; Nurul Saadah Sulaiman; Mohd Zulkifli Mohamad Noor; Siti Zubaidah Sulaiman; Rosmawati Naim; Norida Ridzuan, Mohd Masri Razak; Abdul Halim Abdul Razik; Zulkafli Hassan

    2010-01-01

    The use of hydrogenated fuels shows a considerable promise for the applications in gas turbines and internal combustion engines. The aims of this study are to determine the flammability limits of natural gas/ air mixtures and to investigate the effect of hydrogen enrichment on the flammability limits of natural gas/ air mixtures up to 60 vol % of hydrogen/fuel volume ratio at atmospheric pressure and ambient temperature. The experiments were performed in a 20 L closed explosion vessel where the mixtures were ignited by using a spark permanent wire that was placed at the centre of the vessel. The pressure-time variations during explosions of natural gas/ air mixtures in an explosion vessel were recorded. Moreover, the explosion pressure data is used to determine the flammability limits that flame propagation is considered to occur if explosion pressure is greater than 0.1 bar. Therefore, in this study, the results show that the range of flammability limits are from 6 vol % to 15 vol % and by the addition of hydrogen in natural gas proved to extend the initial lower flammability limit of 6 vol % to 2 vol % of methane. (author)

  13. Results of gas exposure experiments for determination of HF concentrations injurious to plants

    Energy Technology Data Exchange (ETDEWEB)

    Guderian, R

    1971-01-01

    Gas exposure experiments were performed under greenhouse conditions to determine the effects of hydrogen fluoride on the growth capacity, yield and quality of plants. Damage to plants was assessed after HF concentrations of 0.85-25 ..mu..g/m/sup 3/. The effects of definite HF quantities on plants are described and relative sensitivities of 17 deciduous trees, 9 evergreens, 24 agricultural garden plants and 17 ornamental plants are presented. 2 references, 7 tables.

  14. Gas--liquid equilibria in mixtures of hydrogen and thianaphthene

    Energy Technology Data Exchange (ETDEWEB)

    Sebastian, H M; Simnick, J J; Lin, H M; Chao, K C

    1978-12-01

    Gas--liquid equilibrium conditions in binary mixtures of hydrogen and thianaphthene were experimentally determined at temperature of 190 to 430/sup 0/C and pressures to 250 atm in a flow apparatus. The same apparatus was also employed to measure the vapor pressure of thianaphthene. Comparisons of the new mixture data with Chao--Seader and Grayson--Streed correlations show that both correlations predict the thianaphthene equilibrium ratios well but are in error by up to about 45 and 35% respectively for K-values of hydrogen. 4 figures, 2 tables.

  15. Hydrogen Gas Sensing Characteristics of Nanostructured NiO Thin Films Synthesized by SILAR Method

    Science.gov (United States)

    Karaduman, Irmak; Çorlu, Tugba; Yıldırım, M. Ali; Ateş, Aytunç; Acar, Selim

    2017-07-01

    Nanostructured NiO thin films have been synthesized by a facile, low-cost successive ionic layer adsorption and reaction (SILAR) method, and the effects of the film thickness on their hydrogen gas sensing properties investigated. The samples were characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD) analysis, and energy-dispersive x-ray analysis. The XRD results revealed that the crystallinity improved with increasing thickness, exhibiting polycrystalline structure. SEM studies showed that all the films covered the glass substrate well. According to optical absorption measurements, the optical bandgap decreased with increasing film thickness. The gas sensing properties of the nanostructured NiO thin films were studied as a function of operating temperature and gas concentration. The samples showed good sensing performance of H2 gas with high response. The maximum response was 75% at operating temperature of 200°C for hydrogen gas concentration of 40 ppm. These results demonstrate that nanostructured NiO thin films synthesized by the SILAR method have potential for application in hydrogen detection.

  16. Experimental Evaluation of SI Engine Operation Supplemented by Hydrogen Rich Gas from a Compact Plasma Boosted Reformer

    International Nuclear Information System (INIS)

    J. B. Green, Jr.; N. Domingo; J. M. E. Storey; R.M. Wagner; J.S. Armfield; L. Bromberg; D. R. Cohn; A. Rabinovich; N. Alexeev

    2000-01-01

    It is well known that hydrogen addition to spark-ignited (SI) engines can reduce exhaust emissions and increase efficiency. Micro plasmatron fuel converters can be used for onboard generation of hydrogen-rich gas by partial oxidation of a wide range of fuels. These plasma-boosted microreformers are compact, rugged, and provide rapid response. With hydrogen supplement to the main fuel, SI engines can run very lean resulting in a large reduction in nitrogen oxides (NO x ) emissions relative to stoichiometric combustion without a catalytic converter. This paper presents experimental results from a microplasmatron fuel converter operating under variable oxygen to carbon ratios. Tests have also been carried out to evaluate the effect of the addition of a microplasmatron fuel converter generated gas in a 1995 2.3-L four-cylinder SI production engine. The tests were performed with and without hydrogen-rich gas produced by the plasma boosted fuel converter with gasoline. A one hundred fold reduction in NO x due to very lean operation was obtained under certain conditions. An advantage of onboard plasma-boosted generation of hydrogen-rich gas is that it is used only when required and can be readily turned on and off. Substantial NO x reduction should also be obtainable by heavy exhaust gas recirculation (EGR) facilitated by use of hydrogen-rich gas with stoichiometric operation

  17. Fluoridated Water

    Science.gov (United States)

    ... Genetics Services Directory Cancer Prevention Overview Research Fluoridated Water On This Page What is fluoride, and where is it found? What is water fluoridation? When did water fluoridation begin in the ...

  18. Coal pyrolysis under synthesis gas, hydrogen and nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Ariunaa, A.; Li Bao-Qing; Li Wen; Purevsuren, B. (and others) [Chinese Academy of Sciences, Taiyuan (China)

    2007-02-15

    Chinese Xundian, Mongolian Shiveeovoo lignites and Khoot oil shale are pyrolyzed under synthesis gas (SG) at temperature range from 400 to 800{sup o}C for lignite and from 300 to 600{sup o}C for oil shale with heating rate of 10{sup o}C/min in a fixed bed reactor. The results were compared with those obtained by pyrolysis under hydrogen and nitrogen. The results showed that unlike pyrolysis at high pressure, there are only slight different in the yields of char and tar among pyrolyses under various gases at room pressure for lignite, while higher liquid yield with lower yields of char and gas was obtained in pyrolysis of oil shale under SG and H{sub 2} than under N{sub 2}. It is found that the pyrite S can be easily removed to partially convert to organic S under various gaseous atmosphere and the total sulfur removal for oil shale is much less than lignite, which might be related to its high ash content. The higher total sulfur removal and less organic S content in the presence of SG in comparison with those under N{sub 2} and even under H{sub 2} in pyrolysis of Xundian lignite might result from the action of CO in SG. However, CO does not show its function in pyrolysis of Khoot oil shale, which might also be related to the high ash content. The results reported show the possibility of using synthesis gas instead of pure hydrogen as the reactive gas for coal hydropyrolysis. 11 refs., 4 figs., 6 tabs.

  19. Effectiveness of oxygen enriched hydrogen-HHO gas addition on DI diesel engine performance, emission and combustion characteristics

    Directory of Open Access Journals (Sweden)

    Premkartikkumar S.R.

    2014-01-01

    Full Text Available Nowadays, more researches focus on protecting the environment. Present investigation concern with the effectiveness of Oxygen Enriched hydrogen- HHO gas addition on performance, emission and combustion characteristics of a DI diesel engine. Here the Oxygen Enriched hydrogen-HHO gas was produced by the process of water electrolysis. When potential difference is applied across the anode and cathode electrodes of the electrolyzer, water is transmuted into Oxygen Enriched hydrogen-HHO gas. The produced gas was aspirated into the cylinder along with intake air at the flow rates of 1 lpm and 3.3 lpm. The results show that when Oxygen Enriched hydrogen-HHO gas was inducted, the brake thermal efficiency of the engine increased by 11.06%, Carbon monoxide decreased by 15.38%, Unburned hydrocarbon decreased by 18.18%, Carbon dioxide increased by 6.06%, however, the NOX emission increased by 11.19%.

  20. Hydrogen Gas as a Fuel in Direct Injection Diesel Engine

    Science.gov (United States)

    Dhanasekaran, Chinnathambi; Mohankumar, Gabriael

    2016-04-01

    Hydrogen is expected to be one of the most important fuels in the near future for solving the problem caused by the greenhouse gases, for protecting environment and saving conventional fuels. In this study, a dual fuel engine of hydrogen and diesel was investigated. Hydrogen was conceded through the intake port, and simultaneously air and diesel was pervaded into the cylinder. Using electronic gas injector and electronic control unit, the injection timing and duration varied. In this investigation, a single cylinder, KIRLOSKAR AV1, DI Diesel engine was used. Hydrogen injection timing was fixed at TDC and injection duration was timed for 30°, 60°, and 90° crank angles. The injection timing of diesel was fixed at 23° BTDC. When hydrogen is mixed with inlet air, emanation of HC, CO and CO2 decreased without any emission (exhaustion) of smoke while increasing the brake thermal efficiency.

  1. Visualization of hydrogen gas evolution during deformation and fracture in SCM 440 steel with different tempering conditions

    International Nuclear Information System (INIS)

    Horikawa, Keitaro; Ando, Nobuaki; Kobayashi, Hidetoshi; Urushihara, Wataru

    2012-01-01

    Highlights: ► We visualize emission sites of hydrogen atoms on the microstructures during deformation. ► Hydrogen atoms are emitted from slip lines and inclusions when deformed. ► We show the sequence of hydrogen gas evolution during deformation. ► Hydrogen evolution amount will increase if the steels with high strength are tested. - Abstract: In the present study, the hydrogen gas evolution behavior was investigated in SCM 440 steel by using a hydrogen microprint technique (HMT) and a testing machine equipped with a quadrupole mass spectrometer (QMS) in a ultrahigh vacuum (UHV) atmosphere. SCM 440 steels prepared by varying the tempering temperature over the range 200–700 °C were evaluated in order to elucidate the relationship between the hydrogen gas evolution and the tempered microstructures in the deformation. Cathodic hydrogen charging was carried out with a current density of 100 A/m 2 for 1 h at room temperature. For comparison, a tensile specimen was prepared without hydrogen charging. The HMT showed that silver particles, which are indicative of the hydrogen emission sites, were present mainly in the matrix as well as on the slip lines after the deformation. It is believed that the silver particles on the slip lines represent the effect of hydrogen transportation due to mobile dislocations. In addition, accumulation of silver particles around non-metallic inclusions such as Al 2 O 3 was also identified. This tendency was observed for different tempering conditions. From the relationship between the stress–strain curves and the hydrogen evolution, determined by using QMS under a UHV atmosphere, it was found that the hydrogen gas evolution behavior varied with the deformation stage.

  2. Stability of MOF-5 in a hydrogen gas environment containing fueling station impurities

    DEFF Research Database (Denmark)

    Ming, Yang; Purewal, Justin; Yang, Jun

    2016-01-01

    , HCl, H2O, CO, CO2, CH4, O2, N2, and He) to pure hydrogen gas. Subsequently, MOF-5 was exposed to these mixtures over hundreds of adsorption/desorption pressure-swing cycles and for extended periods of static exposure. The impact of exposure was assessed by periodically measuring the hydrogen storage...... of these contaminants on MOFs is mostly unknown. In the present study MOF-5 is adopted as a prototypical moisture-sensitive hydrogen storage material. Five “impure” gas mixtures were prepared by introducing low-to-moderate levels (i.e., up to ∼200 times greater than the J2719 limit) of selected contaminants (NH3, H2S...

  3. Carbon dioxide emission in hydrogen production technology from coke oven gas with life cycle approach

    Directory of Open Access Journals (Sweden)

    Burmistrz Piotr

    2016-01-01

    Full Text Available The analysis of Carbon Footprint (CF for technology of hydrogen production from cleaned coke oven gas was performed. On the basis of real data and simulation calculations of the production process of hydrogen from coke gas, emission indicators of carbon dioxide (CF were calculated. These indicators are associated with net production of electricity and thermal energy and direct emission of carbon dioxide throughout a whole product life cycle. Product life cycle includes: coal extraction and its transportation to a coking plant, the process of coking coal, purification and reforming of coke oven gas, carbon capture and storage. The values were related to 1 Mg of coking blend and to 1 Mg of the hydrogen produced. The calculation is based on the configuration of hydrogen production from coke oven gas for coking technology available on a commercial scale that uses a technology of coke dry quenching (CDQ. The calculations were made using ChemCAD v.6.0.2 simulator for a steady state of technological process. The analysis of carbon footprint was conducted in accordance with the Life Cycle Assessment (LCA.

  4. The self limiting effect of hydrogen cluster in gas jet under liquid nitrogen temperature

    International Nuclear Information System (INIS)

    Han Jifeng; Yang Chaowen; Miao Jingwei; Fu Pengtao; Luo Xiaobing; Shi Miangong

    2010-01-01

    The generation of hydrogen clusters in gas jet is tested using the Rayleigh scattering method under liquid nitrogen temperature of 79 K. The self limiting effect of hydrogen cluster is studied and it is found that the cluster formation is greatly affected by the number of expanded molecules. The well designed liquid nitrogen cold trap ensured that the hydrogen cluster would keep maximum size for maximum 15 ms during one gas jet. The scattered light intensity exhibits a power scaling on the backing pressure ranging from 5 to 48 bar with the power value of 4.1.

  5. Potential for greenhouse gas emission reductions using surplus electricity in hydrogen, methane and methanol production via electrolysis

    International Nuclear Information System (INIS)

    Uusitalo, Ville; Väisänen, Sanni; Inkeri, Eero; Soukka, Risto

    2017-01-01

    Highlights: • Greenhouse gas emission reductions using power-to-x processes are studied using life cycle assessment. • Surplus electricity use led to greenhouse gas emission reductions in all studied cases. • Highest reductions can be achieved by using hydrogen to replace fossil based hydrogen. • High reductions are also achieved when fossil transportation fuels are replaced. - Abstract: Using a life cycle perspective, potentials for greenhouse gas emission reductions using various power-to-x processes via electrolysis have been compared. Because of increasing renewable electricity production, occasionally surplus renewable electricity is produced, which leads to situations where the price of electricity approach zero. This surplus electricity can be used in hydrogen, methane and methanol production via electrolysis and other additional processes. Life cycle assessments have been utilized to compare these options in terms of greenhouse gas emission reductions. All of the power-to-x options studied lead to greenhouse gas emission reductions as compared to conventional production processes based on fossil fuels. The highest greenhouse gas emission reductions can be gained when hydrogen from steam reforming is replaced by hydrogen from the power-to-x process. High greenhouse gas emission reductions can also be achieved when power-to-x products are utilized as an energy source for transportation, replacing fossil transportation fuels. A third option with high greenhouse gas emission reduction potential is methane production, storing and electricity conversion in gas engines during peak consumption hours. It is concluded that the power-to-x processes provide a good potential solution for reducing greenhouse gas emissions in various sectors.

  6. Impact of pH on hydrogen oxidizing redox processes in aquifers due to gas intrusions

    Science.gov (United States)

    Metzgen, Adrian; Berta, Marton; Dethlefsen, Frank; Ebert, Markus; Dahmke, Andreas

    2017-04-01

    Hydrogen production from excess energy and its storage can help increasing the efficiency of solar and wind in the energy mix. Therefore, hydrogen needs large-scale intermediate storage independent of the intended later use as hydrogen gas or as reactant to produce methane in the Sabatier process. A possible storage solution is using the geological subsurface such as caverns built in salt deposits or aquifers that are not used for drinking water production. However, underground storage of hydrogen gas potentially leads to accidental gas leakages into near-surface potable aquifers triggering subsequent geochemical processes. These leakages pose potential risks that are currently not sufficiently understood. To close this gap in knowledge, a high-pressure laboratory column system was used to simulate a hydrogen gas intrusion into a shallow aquifer. Water and sediment were gained from a sandy Pleistocene aquifer near Neumünster, Germany. In the first stage of the experiment, 100% hydrogen gas was used to simulate dissolved hydrogen concentrations between 800 and 4000 µM by varying pH2 between 2 and 15 bars. pH values rose to between 7.9 and 10.4, partly due to stripping CO2 from the groundwater used during H2 gas addition. In a second stage, the pH was regulated in a range of 6.7 to 7.9 by using a gas mixture of 99% H2 and 1% CO2 at 5 bars of total gas pressure. Observed processes included hydrogen oxidation, sulfate reduction, acetogenesis, formate production, and methanogenesis, which were independent of the hydrogen concentration. Hydrogen oxidation and sulfate reduction showed zeroth order reaction rates and rate constants (106 to 412 µM/h and 12 to 33 µM/h, respectively) in the pH range between 8 and 10. At pH levels between 7 and 8, both reactions started out faster near the column's inflow but then seemed limited towards the columns outflow, suggesting the dependence of sulfate reduction on the pH-value. Acetogenesis dominated the pH range between 8 and 10

  7. Comparison of hydrogen gas embrittlement of austenitic and ferritic stainless steels

    Science.gov (United States)

    Perng, T. P.; Altstetter, C. J.

    1987-01-01

    Hydrogen-induced slow crack growth (SCG) was compared in austenitic and ferritic stainless steels at 0 to 125 °Cand 11 to 216 kPa of hydrogen gas. No SCG was observed for AISI 310, while AISI 301 was more susceptible to hydrogen embrittlement and had higher cracking velocity than AL 29-4-2 under the same test conditions. The kinetics of crack propagation was modeled in terms of the hydrogen transport in these alloys. This is a function of temperature, microstructure, and stress state in the embrittlement region. The relatively high cracking velocity of AISI 301 was shown to be controlled by the fast transport of hydrogen through the stress-induced α' martensite at the crack tip and low escape rate of hydrogen through the γ phase in the surrounding region. Faster accumulation rates of hydrogen in the embrittlement region were expected for AISI 301, which led to higher cracking velocities. The mechanism of hydrogen-induced SCG was discussed based upon the concept of hydrogen-enhanced plasticity.

  8. Storing Hydrogen, by Enhancing Diamond Powder Properties under Hydrogen Plasma with CaF2 and KF for Use in Fuel Cells

    International Nuclear Information System (INIS)

    Ochoa, Franklyn E. Colmenares

    2006-01-01

    A fuel cell is like a battery that instead of using electricity to recharge itself, it uses hydrogen. In the fuel cell industry, one of the main problems is storing hydrogen in a safe way and extracting it economically. Gaseous hydrogen requires high pressures which could be very dangerous in case of a collision. The success of hydrogen use depends largely on the development of an efficient storage and release method. In an effort to develop a better hydrogen storage system for fuel cells technology this research investigates the use of 99% pure diamond powder for storing hydrogen. Mixing this powder with a calcium fluoride and potassium fluoride compound in its solid form and treating the surface of the powder with hydrogen plasma, modifies the surface of the diamond. After some filtration through distilled water and drying, the modified diamond is treated with hydrogen. We expect hydrogen to be attracted to the diamond powder surface in higher quantities due to the CaF2 and KF treatment. Due to the large surface area of diamond nanopowder and the electronegative terminal bonds of the fluorine particles on the structure's surface, to the method shows promise in storing high densities of hydrogen

  9. Hydrogen sensor

    Science.gov (United States)

    Duan, Yixiang; Jia, Quanxi; Cao, Wenqing

    2010-11-23

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  10. Massive Cerebral Gas Embolism under Discectomy due to Hydrogen Peroxide Irrigation

    Directory of Open Access Journals (Sweden)

    Junjie Zhang

    2015-01-01

    Full Text Available Massive cerebral and spinal gas embolism occurs rarely as a complication of discectomy. We report a 54-year-old female who had undergone a discectomy (L3/4 and L4/5 under epidural anesthesia in a local hospital developed multiple massive gas embolisms. At closure, surgeons irrigated the incision wound with hydrogen peroxide. Soon after the irrigation, the patient suddenly developed tachycardia, hypotension, and rapid oxygen desaturation. Subsequently, patient progressed into unconsciousness and right hemianopsia quadriplegia. Computed tomography (CT scan showed multiple hypointensity spots around the brain due to cerebral gas embolism, which indicated the pneumoencephalos. The likely mechanism was the absorption of hydrogen peroxide into blood. When the amount of oxygen evolved exceeded its maximal blood solubility, venous embolization occurred. Though the patient was treated with supportive treatments and hyperbaric oxygen, she did not get full recovery and was left with severe long-term cerebral injury.

  11. Combustion driven NF3 chemical laser

    International Nuclear Information System (INIS)

    1975-01-01

    Stable, inert, non-corrosive nitrogen trifluoride gas and an inorganic source of hydrogen or deuterium gas are used as reactants in a compact combustion driven chemical laser. Nitrogen trifluoride is introduced into the combustion chamber of a chemical laser together with a hydrogen source selected from hydrogen, hydrazine, ammonia, acetylene, or benzene and the deuterated isotopes thereof and an optional inert diluent gas wherein the nitrogen trifluoride and the hydrogen- or deuterium-source gas hypergolically reacted upon heating to initiation temperature. Dissociated products from the reaction pass into a laser cavity at supersonic velocities where they are reacted with a source gas which is the isotopic opposite of the gas introduced into the combustor and which has been heated by regenerative cooling. Excited molecules of hydrogen fluoride or deuterium fluoride produce laser radiation which leaves the optical resonator cavity transversely to the flow of gases

  12. Chemisorption of uranium hexa-fluoride on sodium fluoride pellets

    Energy Technology Data Exchange (ETDEWEB)

    Kalburgi, A K; Sanyal, A; Puranik, V D; Bhattacharjee, B [Chemical Technology Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    This paper comprises kinetics of chemical reaction or rather chemisorption of uranium hexafluoride gas on sodium fluoride pellets. The chemisorption is essentially irreversible at room temperature, while the process reverses at high temperature above 280 deg C. This chemisorption process was experimentally conducted in static condition at room temperature and its kinetics was studied. In the experiments, practically pure UF{sub 6} was used and the effects of gas pressure and weight of NaF pellets, were studied. In this heterogenous reaction, in which diffusion through ash layer is followed by chemical reaction, the reaction part is instantaneous and is first order with respect to gas concentration. Since the process of chemisorption is not only pure chemical reaction but also gas diffusion through ash layer, the rate constant depreciates with the percentage loading of UF{sub 6} on NaF pellets. The kinetic equation for the above process has been established for a particular size of NaF pellets and pellet porosity. (author). 5 refs., 3 figs., 3 tabs.

  13. The Effects of Added Hydrogen on Noble Gas Discharges Used as Ambient Desorption/Ionization Sources for Mass Spectrometry

    Science.gov (United States)

    Ellis, Wade C.; Lewis, Charlotte R.; Openshaw, Anna P.; Farnsworth, Paul B.

    2016-09-01

    We demonstrate the effectiveness of using hydrogen-doped argon as the support gas for the dielectric barrier discharge (DBD) ambient desorption/ionization (ADI) source in mass spectrometry. Also, we explore the chemistry responsible for the signal enhancement observed when using both hydrogen-doped argon and hydrogen-doped helium. The hydrogen-doped argon was tested for five analytes representing different classes of molecules. Addition of hydrogen to the argon plasma gas enhanced signals for gas-phase analytes and for analytes coated onto glass slides in positive and negative ion mode. The enhancements ranged from factors of 4 to 5 for gas-phase analytes and factors of 2 to 40 for coated slides. There was no significant increase in the background. The limit of detection for caffeine was lowered by a factor of 79 using H2/Ar and 2 using H2/He. Results are shown that help explain the fundamental differences between the pure-gas discharges and those that are hydrogen-doped for both argon and helium. Experiments with different discharge geometries and grounding schemes indicate that observed signal enhancements are strongly dependent on discharge configuration.

  14. Electricity and gas market design to supply the German transport sector with hydrogen

    International Nuclear Information System (INIS)

    Robinius, Martin

    2015-01-01

    The German government has set targets to reduce greenhouse gas emissions by 40% by 2020, 55% by 2030, 70% by 2040 and 80-95% by 2050 compared to 1990 as reference year. As well as meeting other requirements, these targets can be achieved by raising the contribution of renewably-generated power to Germany's gross electricity consumption to 80% by 2050. Based on Germany's potential, intermittent energy sources (IES) such as on- and offshore wind, as well as photovoltaics, are necessary sources that must be utilized in order to achieve these ambitious targets. Because of the intermittency of these sources, there will be times in which surplus power generated could be used for example for the transport sector. During these periods of surplus power, the storage capacity of hydrogen allows for a socalled ''power-to-gas'' concept whereby the surplus power can be used to produce hydrogen and oxygen by means of electrolyzers. The aim of this thesis is to identify and develop a market design that is characterized by high penetration levels of IES, supplemented by the use of hydrogen in the transport sector. Furthermore, the aim was to develop a model in which the electricity and gas sector, including a hydrogen pipeline grid, is represented so as to analyze and validate selected market designs. Therefore, potential electricity and gas markets, as well as the most important potential share and stakeholders of a hydrogen infrastructure, are analyzed. With the model developed in this thesis, an existing energy concept has been developed, analyzed and evaluated. In addition, the distribution of the hydrogen production costs was calculated by employing a Monte Carlo Simulation analysis. The developed energy concept relies on 170 GW onshore and 60 GW offshore wind capacity and these dominate the model. This leads to surplus power, especially in the federal states of Lower Saxony, Schleswig-Holstein and Mecklenburg-Western Pomerania. To supply the

  15. Experimental facilities for research of properties and behaviour of fluoride salts

    International Nuclear Information System (INIS)

    Hosnedl, P.; Jilek, M.; Kroc, V.; Pedal, L.; Valenta, V.; Vodicka, J.

    1999-01-01

    SKODA JS s.r.o. (Czech leading nuclear technology manufacturer) prepared and manufactured experimental loops for research and verification of properties and behaviour of fluoride salts for primary and secondary circuit, construction materials and ADTT systems technological components for the operation in the Nuclear Research Institute Rez plc fluorine chemistry laboratory. This paper presents charts and experimental program for molten fluoride salts experimental loops with natural circulation. Further on, the paper describes extension of the loops for research with forced circulation and next works for steam generator model verification and connection with the loop of Energovyzkum Brno. The loops are designed and constructed to obtain a sufficient amount of experience on ADTT technology. The research and utilisation program covers questions of corrosion and intergranular corrosion of structural materials, research of material properties and welding, research of fluoride fluid properties, measuring of thermo-hydraulic properties of molten salt fluoride fluids, heat transfer and hydraulics, development and tests of some plant components (steam generators, heat exchangers, pumps, valves) and other engineering issues. Two electrolyzers have been manufactured for the research of fuel/coolant fluoride salts mixture purification. One for the production of hydrogen fluoride, and the other for the research of salts purification. (author)

  16. Visualization of hydrogen gas evolution during deformation and fracture in SCM 440 steel with different tempering conditions

    Energy Technology Data Exchange (ETDEWEB)

    Horikawa, Keitaro, E-mail: horikawa@me.es.osaka-u.ac.jp [Department of Mechanical Science and Bioengineering, School of Engineering Science, Osaka University, Toyonaka 560-8531 (Japan); Ando, Nobuaki; Kobayashi, Hidetoshi [Department of Mechanical Science and Bioengineering, School of Engineering Science, Osaka University, Toyonaka 560-8531 (Japan); Urushihara, Wataru [Surface Design and Corrosion Research Section, Materials Research Laboratory, Kobe Steel, Ltd., Kobe 651-2271 (Japan)

    2012-02-01

    Highlights: Black-Right-Pointing-Pointer We visualize emission sites of hydrogen atoms on the microstructures during deformation. Black-Right-Pointing-Pointer Hydrogen atoms are emitted from slip lines and inclusions when deformed. Black-Right-Pointing-Pointer We show the sequence of hydrogen gas evolution during deformation. Black-Right-Pointing-Pointer Hydrogen evolution amount will increase if the steels with high strength are tested. - Abstract: In the present study, the hydrogen gas evolution behavior was investigated in SCM 440 steel by using a hydrogen microprint technique (HMT) and a testing machine equipped with a quadrupole mass spectrometer (QMS) in a ultrahigh vacuum (UHV) atmosphere. SCM 440 steels prepared by varying the tempering temperature over the range 200-700 Degree-Sign C were evaluated in order to elucidate the relationship between the hydrogen gas evolution and the tempered microstructures in the deformation. Cathodic hydrogen charging was carried out with a current density of 100 A/m{sup 2} for 1 h at room temperature. For comparison, a tensile specimen was prepared without hydrogen charging. The HMT showed that silver particles, which are indicative of the hydrogen emission sites, were present mainly in the matrix as well as on the slip lines after the deformation. It is believed that the silver particles on the slip lines represent the effect of hydrogen transportation due to mobile dislocations. In addition, accumulation of silver particles around non-metallic inclusions such as Al{sub 2}O{sub 3} was also identified. This tendency was observed for different tempering conditions. From the relationship between the stress-strain curves and the hydrogen evolution, determined by using QMS under a UHV atmosphere, it was found that the hydrogen gas evolution behavior varied with the deformation stage.

  17. One-dimensional magnetohydrodynamic calculations of a hydrogen-gas puff

    International Nuclear Information System (INIS)

    Maxon, S.; Nielsen, P.D.

    1981-01-01

    A one-dimensional Lagrangian calculation of the implosion of a hydrogen gas puff is presented. At maximum compression, 60% of the mass is located in a density spike .5 mm off the axis with a half width of 40 μm. The temperature on axis reaches 200 eV

  18. Tritiated hydrogen gas storage systems for a fusion plant

    International Nuclear Information System (INIS)

    Bramy, W.; Hircq, B.; Peyrat, M.; Leger, D.

    1992-01-01

    This paper reports that USSI INGENIERIE has carried out a study financed by European Communities Commission concerning the NET/ITER project, on tritium Fuel Management and Storage systems of the International Thermonuclear Experimental Reactor. A processing block diagram for hydrogen isotopes represents all interfaces and possible links between these systems and tritiated gas mixtures flowing through the Fusion plant. Large quantities of hydrogen isotopes (up to several thousand moles of protium, deuterium and tritium) in gaseous form associated with torus fuelling and exhaust pellet injection, and neutral beam injection, must be stored and managed in such a plant

  19. Hydrogen isotope effect through Pd in hydrogen transport pipe

    International Nuclear Information System (INIS)

    Tamaki, Masayoshi

    1992-01-01

    This investigation concerns hydrogen system with hydrogen transport pipes for transportation, purification, isotope separation and storage of hydrogen and its isotopes. A principle of the hydrogen transport pipe (heat pipe having hydrogen transport function) was proposed. It is comprised of the heat pipe and palladium alloy tubes as inlet, outlet, and the separation membrane of hydrogen. The operation was as follows: (1) gas was introduced into the heat pipe through the membrane in the evaporator; (2) the introduced gas was transported toward the condenser by the vapor flow; (3) the transported gas was swept and compressed to the end of the condenser by the vapor pressure; and (4) the compressed gas was exhausted from the heat pipe through the membrane in the condenser. The characteristics of the hydrogen transport pipe were examined for various working conditions. Basic performance concerning transportation, evacuation and compression was experimentally verified. Isotopic dihydrogen gases (H 2 and D 2 ) were used as feed gas for examining the intrinsic performance of the isotope separation by the hydrogen transport pipe. A simulated experiment for hydrogen isotope separation was carried out using a hydrogen-helium gas mixture. The hydrogen transport pipe has a potential for isotope separation and purification of hydrogen, deuterium and tritium in fusion reactor technology. (author)

  20. Fiber optic hydrogen gas sensor utilizing surface plasmon resonance and native defects of zinc oxide by palladium

    International Nuclear Information System (INIS)

    Tabassum, Rana; Gupta, Banshi D

    2016-01-01

    We present an experimental study on a surface plasmon resonance (SPR) based fiber optic hydrogen gas sensor employing a palladium doped zinc oxide nanocomposite (ZnO (1−x) Pd x , 0 ≤ x ≤ 0.85) layer over the silver coated unclad core of the fiber. Palladium doped zinc oxide nanocomposites (ZnO (1−x) Pd x )  are prepared by a chemical route for different composition ratios and their structural, morphological and hydrogen sensing properties are investigated experimentally. The sensing principle involves the absorption of hydrogen gas by ZnO (1−x) Pd x , altering its dielectric function. The change in the dielectric constant is analyzed in terms of the red shift of the resonance wavelength in the visible region of the electromagnetic spectrum. To check the sensing capability of sensing probes fabricated with varying composition ratio (x) of nanocomposite, the SPR curves are recorded typically for 0% H 2 and 4% H 2 in N 2 atmosphere for each fabricated probe. On changing the concentration of hydrogen gas from 0% to 4%, the red shift in the SPR spectrum confirms the change in dielectric constant of ZnO (1−x) Pd x on exposure to hydrogen gas. It is noted that the shift in the SPR spectrum increases monotonically up to a certain fraction of Pd in zinc oxide, beyond which it starts decreasing. SEM images and the photoluminescence (PL) spectra reveal that Pd dopant atoms substitutionally incorporated into the ZnO lattice profoundly affect its defect levels; this is responsible for the optimal composition of ZnO (1−x) Pd x to sense the hydrogen gas. The sensor is highly selective to hydrogen gas and possesses high sensitivity. Since optical fiber sensing technology is employed along with the SPR technique, the present sensor is capable of remote sensing and online monitoring of hydrogen gas. (paper)

  1. Fluoride absorption from the rat urinary bladder: a pH-dependent event

    International Nuclear Information System (INIS)

    Whitford, G.M.; Pashley, D.H.; Reynolds, K.E.

    1977-01-01

    Urinary bladder absorption of stable and radiofluoride was studied as a function of pH in anesthetized rats to further evaluate the influence of pH gradients on fluoride transport. Buffered pH values and stable fluoride concentrations ranged from 1.85 to 7.90 and from 0.012 to 8.81 mM, respectively. [ 14 C]inulin served as a marker for solute concentration changes due to water migration or dilution. The results indicate that bladder fluoride absorption is inversely related to pH over the 1.85 to 5.50 range. Mean, 15-min radiofluoride absorption values of 70 percent at pH 1.85, 37 percent at pH 3.95, and 5 percent at pH 5.50 were observed. These fractional absorption values were not significantly influenced by carrier fluoride concentration, the buffers used, or the presence of urine. Above pH 5.50, pH-independent absorption occurs to a slight extent. The results are consistent with a first-order absorptive process which occurs by the nonionic diffusion of hydrogen fluoride

  2. Energy-momentum spectroscopy of the outervalence 3 {sigma} and 1{pi} states of hydrogen fluoride: a reanalysis

    Energy Technology Data Exchange (ETDEWEB)

    Nicholson, R.; McCarthy, I.E.; Weigold, E.; Brunger, M.J.

    1996-03-01

    We highlight and examine in detail a discrepancy that exists between the results of various single-channel and multiparameter electron momentum spectroscopy (EMS) studies into the outervalence states of hydrogen fluoride (HF). In an attempt to elucidate the nature of this problem and the disagreement that exists between the best available theoretical momentum distributions (MDs), as calculated in the plane-wave-impulse-approximation with wavefunctions at the near-Hartree-Fock limit, and the most accurate experimental MDs, we have adapted a method, originally applied to extract atomic orbital information from Compton profiles to our 3{sigma} and 1{pi} experimental MDs. In addition we have also applied this technique to the 2s and 2p orbitals of neon, which is isoelectronic with HF, with the ramifications of the results of this investigation to HF also being outlined. (authors). 17 refs., 3 tabs., 5 figs.

  3. Mie scattering in heavy-metal fluoride glasses

    International Nuclear Information System (INIS)

    Edgar, A.

    1996-01-01

    Heavy-metal fluoride glasses comprise mixtures of heavy-cation fluorides such as those of zirconium, barium, and lanthanum together with some stabilising fluorides such as AlF 3 . For particular relative proportions, the mixtures form a glass rather than a polycrystalline material when quenched from the melt. The particularly useful features of these glasses are the wide spectral region (∼200nm-8000nm) over which they are transparent, the low minimum attenuation at the centre of the spectral window, and the ease with which optically-active rare-earth ions can be incorporated, leading to potential applications in passive and active fibre optics. The minimal attenuation, which is potentially lower than for silica fibre, is generally limited by wavelength-independent scattering by particle and gas bubble inclusions. We have observed a new wavelength-dependent scattering effect in fluoride glass of the well-known composition ZLABN20. In this paper, we report on work in progress on the optical extinction and scattering spectrum of the fluoride glasses, and discuss the spectra in terms of Mie's scattering theory. The chemical nature of the scattering centres in these nominally 'pure' glasses is at present a puzzle, and relative merits of various possible models will be compared

  4. Fluoride substitution in LiBH4; destabilization and decomposition

    DEFF Research Database (Denmark)

    Richter, Bo; Ravnsbaek, Dorthe B.; Sharma, Manish

    2017-01-01

    Fluoride substitution in LiBH4 is studied by investigation of LiBH4-LiBF4 mixtures (9:1 and 3:1). Decomposition was followed by in situ synchrotron radiation X-ray diffraction (in situ SR-PXD), thermogravimetric analysis and differential scanning calorimetry with gas analysis (TGA/DSC-MS) and in ......Fluoride substitution in LiBH4 is studied by investigation of LiBH4-LiBF4 mixtures (9:1 and 3:1). Decomposition was followed by in situ synchrotron radiation X-ray diffraction (in situ SR-PXD), thermogravimetric analysis and differential scanning calorimetry with gas analysis (TGA...

  5. Gas Phase Fabrication of Pd-Ni Nanoparticle Arrays for Hydrogen Sensor Applications

    Directory of Open Access Journals (Sweden)

    Peng Xing

    2015-01-01

    Full Text Available Pd-Ni nanoparticles have been fabricated by gas aggregation process. The formation of Pd-Ni nano-alloys was confirmed by X-ray photoelectron spectroscopy measurements. By depositing Pd-Ni nanoparticles on the interdigital electrodes, quantum conductance-based hydrogen sensors were fabricated. The Ni content in the nanoparticle showed an obvious effect on the hydrogen response behavior corresponding to the conductance change of the nanoparticle film. Three typical response regions with different conductance-hydrogen pressure correlations were observed. It was found that the α-β phase transition region of palladium hydride moves to significant higher hydrogen pressure with the addition of nickel element, which greatly enhance the hydrogen sensing performance of the nanoparticle film.

  6. Focus on Fluoride and Fluorosis by Studying the Ground Water Quality in some Villages of Nalgonda, Nalgonda District, Andhra Pradesh

    OpenAIRE

    , Ishrath Aish; , B.L.P. Babu; , K. Sreenu

    2011-01-01

    The fluoride content of ground water was determined in eight villages of Shalsher vagu, Nalgonda district, Andhra Pradesh, where it is the only source for drinking water. Various water quality parameters such as Hydrogen potential, Electrical conductivity, Total dissolved solids, Total hardness, Total Alkalies and Fluoride were determined. The results indicated considerable variations among the analysed samples with respect to the above parameters the concentration of Fluoride in groundwater ...

  7. Electrochemical behavior of molten fluoride-water system

    Energy Technology Data Exchange (ETDEWEB)

    Takenaka, Toshihide; Ito, Yasuhiko; Ishikawa, Takayasu; Oishi, Jun

    1984-11-01

    The cathodic behavior of a molten fluoride-water system was investigated by the potential sweep method. LiF-KF-NaF eutectic melt was used as an electrolyte and HF-H/sub 2/O gas mixture with Ar as a carrier was bubbled into it. Gold wire was used as a working electrode. The peak currents due to the reduction of HF and H/sub 2/O were clearly observed. The relations between peak currents and the square roots of the scanning rates were linear, strongly suggesting that the reduction reactions of the HF and H/sub 2/O dissolved in the melt were diffusion controlled. From the linearity of the relations between peak currents and partial pressures of HF and H/sub 2/O in the low partial pressure region, it was concluded that the concentrations of HF and H/sub 2/O in a fluoride melt are proportional to the partial pressure of each gas. The peak current due to the reduction of OH/sup -/ ion could not be observed, though a clear peak current was observed when OH/sup -/ ion was added to the melt and a cathodic scan was applied immediately. This indicates that OH/sup -/ ion is unstable in a fluoride melt under HF-H/sub 2/O atmosphere.

  8. Study on atmospheric hydrogen enrichment by cryopump method and isotope separation by gas chromatography

    International Nuclear Information System (INIS)

    Taniyama, Yuki; Momoshima, Noriyuki

    2001-01-01

    To obtain the information of source of atmospheric hydrogen tritium an analysis of tritium isotopes is thought to be effective. So an atmospheric hydrogen enrichment apparatus and a cryogenic gas chromatographic column were made. Experiments were carried out to study the performance of cryopump to enrich atmospheric hydrogen and the column to separate hydrogen isotopes that obtained by cryopump method. The cryopump was able to process about 1000 1 atmosphere and the column was able to separate hydrogen isotopes with good resolution. (author)

  9. Urinary fluoride excretion after application of fluoride varnish and use of fluoride toothpaste in young children

    DEFF Research Database (Denmark)

    Lockner, Frida; Twetman, Svante; Stecksén-Blicks, Christina

    2017-01-01

    BACKGROUND: The efficacy and safety of combined use of topical fluoride products are essential issues that must be monitored. AIM: To assess urinary excretion of fluoride after application of two different dental varnishes containing 2.26% fluoride in 3- to 4-year-old children and to compare...... the levels with and without parallel use of fluoride toothpaste. DESIGN: Fifteen healthy children were enrolled to a randomized crossover trial that was performed in two parts: Part I with twice-daily tooth brushing with fluoride toothpaste and Part II with twice-daily brushing with a non-fluoride toothpaste....... After a 1-week run-in period, 0.1 mL of the two fluoride varnishes (Duraphat and Profluorid Varnish) was topically applied in a randomized order. Baseline and experimental urine was collected during 6-h periods. The fluoride content was determined with an ion-sensitive electrode. RESULTS...

  10. Improved Hydrogen Gas Getters for TRU Waste Transuranic and Mixed Waste Focus Area - Phase 2 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Stone, Mark Lee

    2002-04-01

    Alpha radiolysis of hydrogenous waste and packaging materials generates hydrogen gas in radioactive storage containers. For that reason, the Nuclear Regulatory Commission (NRC) limits the flammable gas (hydrogen) concentration in the Transuranic Package Transporter-II (TRUPACT-II) containers to 5 vol% of hydrogen in air, which is the lower explosion limit. Consequently, a method is needed to prevent the build up of hydrogen to 5 vol% during the storage and transport of the TRUPACT-II containers (up to 60 days). One promising option is the use of hydrogen getters. These materials scavenge hydrogen from the gas phase and irreversibly bind it in the solid phase. One proven getter is a material called 1,4-bis (phenylethynyl) benzene, or DEB. It has the needed binding rate and capacity, but some of the chemical species that might be present in the containers could interfere with its ability to remove hydrogen. This project is focused upon developing a protective polymeric membrane coating for the DEB getter material, which comes in the form of small, irregularly shaped particles. This report summarizes the experimental results of the second phase of the development of the materials.

  11. Development of technology and equipment for manufacturing fluorides rare-earths via non-aqueous method

    International Nuclear Information System (INIS)

    Chatalov, V.V.; Kozlov, O.I.; Machirev, V.P.; Zvonarev, E.N.

    1998-01-01

    Full text: The works on technology and equipment for rare earths (RE) fluorides are very scarce. Presently RE-fluorides are manufactured by various methods. Conventionally they can be divided into two main groups. The first group comprises methods based on precipitation of fluorides from soluble salts of corresponding metals by fluohydric acid (aqueous methods) with following thermal decomposition of aquatic fluorides obtained until anhydric state is reached. The second group (called dry, gaseous or non-aqueous) comprises methods based on direct fluorizating (by fluorine hydride, fluor or other fluorating agents) have several important advantages compared to the aqueous methods: the fluorides obtained are anhydrous; the operations of fluoride precipitation, washing, decantation, filtration are excluded as well as their drying and calcination. The process of calcination is, as a rule, accompanied by pyrohydrolysis. The products manufactured by precipitation are inferior to those obtained by the non-aqueous technique. The world production practice uses both groups of methods. Nevertheless, the method of gaseous hydrofluorination is preferable. In all non-aqueous processes the initial materials are oxides RE which interact with gaseous fluorine hydride. The initial materials - oxides are obtained by thermal decomposition of carbonates, hydroxides, oxalates and so on. One of the best type of apparatus for thermal decomposition processes is a horizontal ring shaped vibrating apparatus with direct heating. The RE - fluorides is synthesized by way of RE-oxide interacting with hydrogen fluoride at 200-550 deg C in single continuous operation: (RE) 2 O 3 + 6 HF → 2 (RE)F 3 + 3 H 2 0 The apparatus consists of a nickel horizontal two tube screw. Reaction time is varied from 2 to 6 hours; the productivity of reactor is defined by feed screw rotation and initial material bulk density. Hydrogen fluoride was passing the reactor opposite to the solid phase. The degree

  12. Chromatographic measurement of hydrogen isotopic and permanent gas impurities in tritium

    International Nuclear Information System (INIS)

    Warner, D.K.; Kinard, C.; Bohl, D.C.

    1976-01-01

    This paper describes a gas chromatograph that was designed for dedicated analysis of hydrogen isotopic and permanent gas impurities in tritium and tritium-deuterium mixtures. The instrument that was developed substantially improved the accuracy and precision of hydrogen isotopic analysis in the 20 ppM to one mole percent range as compared with other analytical methods. Several unique design features of the instrument were required due to the radiation and isotopic exchange properties of the tritium in the samples; descriptions of these features are presented along with details of the complete chromatographic system. The experimental procedures used to calibrate the detector and statistically evaluate its performance are given, and the sources of analytical error are cited. The limitations of the present system are also discussed

  13. Effects of hydrogen gas on properties of tin-doped indium oxide films deposited by radio frequency magnetron sputtering method

    International Nuclear Information System (INIS)

    Kim, Do-Geun; Lee, Sunghun; Lee, Gun-Hwan; Kwon, Sik-Chol

    2007-01-01

    Tin-doped indium oxide (ITO) films were deposited at ∼ 70 deg. C of substrate temperature by radio frequency magnetron sputtering method using an In 2 O 3 -10% SnO 2 target. The effect of hydrogen gas ratio [H 2 / (H 2 + Ar)] on the electrical, optical and mechanical properties was investigated. With increasing the amount of hydrogen gas, the resistivity of the samples showed the lowest value of 3.5 x 10 -4 Ω.cm at the range of 0.8-1.7% of hydrogen gas ratio, while the resistivity increases over than 2.5% of hydrogen gas ratio. Hall effect measurements explained that carrier concentration and its mobility are strongly related with the resistivity of ITO films. The supplement of hydrogen gas also reduced the residual stress of ITO films up to the stress level of 110 MPa. The surface roughness and the crystallinity of the samples were investigated by using atomic force microscopy and x-ray diffraction, respectively

  14. A pyrolysis/gas chromatographic method for the determination of hydrogen in solid samples

    Science.gov (United States)

    Carr, R. H.; Bustin, R.; Gibson, E. K.

    1987-01-01

    A method is described for the determination of hydrogen in solid samples. The sample is heated under vacuum after which the evolved gases are separated by gas chromatography with a helium ionization detector. The system is calibrated by injecting known amounts of hydrogen, as determined manometrically. The method, which is rapid and reliable, was checked for a variety of lunar soils; the limit of detection is about 10 ng of hydrogen.

  15. Exergy and thermoeconomic evaluation of hydrogen production from natural gas; Avaliacao exergetica e termo-economica da producao de hidrogenio a partir do gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Flavio Eduardo da [PROMON Engenharia Ltda., Sao Paulo, SP (Brazil); Oliveira Junior, Silvio de [Universidade de Sao Paulo (USP), SP (Brazil). Escola Politecnica

    2008-07-01

    Some specific processes are required to obtain pure hydrogen and the most usual one is the natural gas reforming, where natural gas reacts with superheated steam producing H{sub 2}, CO, CO{sub 2} and H{sub 2}O. This paper presents exergy and thermoeconomic analysis of a complete hydrogen production unit of a petroleum refinery. The hydrogen production unit analysed in this paper has to supply 550,000 Nm{sup 3} of hydrogen per day to purify diesel oil. Based on a synthesis plant of the hydrogen production unit, the exergy efficiency of each component and of the overall plant are calculated. The hydrogen production cost is determined by means of a thermoeconomic analysis in which the equality cost partition method is employed, including capital and operational costs, in order to determine the production cost of hydrogen and other products of the plant.(author)

  16. A compressed hydrogen gas storage system with an integrated phase change material

    DEFF Research Database (Denmark)

    Mazzucco, Andrea; Rothuizen, Erasmus Damgaard; Jørgensen, Jens Erik

    2015-01-01

    below the critical temperature of 85 °C, while filling the hydrogen at ambient temperature. Results show that a 10-mm-thick layer of paraffin wax can absorb enough heat to reduce the adiabatic temperature by 20 K when compared to a standard Type IV tank. The heat transfer from the gas to the phase...... change material, mainly occurs after the fueling is completed, resulting in a higher hydrogen peak temperature inside the tank and a lower fuelled mass than a gas-cooled system. Such a mass reduction accounts for 12% with respect to the case of a standard tank system fuelled at -40 °C....

  17. Natural gas usage as a heat source for integrated SMR and thermochemical hydrogen production technologies

    International Nuclear Information System (INIS)

    Jaber, O.; Naterer, G.F.; Dincer, I.

    2010-01-01

    This paper investigates various usages of natural gas (NG) as an energy source for different hydrogen production technologies. A comparison is made between the different methods of hydrogen production, based on the total amount of natural gas needed to produce a specific quantity of hydrogen, carbon dioxide emissions per mole of hydrogen produced, water requirements per mole of hydrogen produced, and a cost sensitivity analysis that takes into account the fuel cost, carbon dioxide capture cost and a carbon tax. The methods examined are the copper-chlorine (Cu-Cl) thermochemical cycle, steam methane reforming (SMR) and a modified sulfur-iodine (S-I) thermochemical cycle. Also, an integrated Cu-Cl/SMR plant is examined to show the unique advantages of modifying existing SMR plants with new hydrogen production technology. The analysis shows that the thermochemical Cu-Cl cycle out-performs the other conventional methods with respect to fuel requirements, carbon dioxide emissions and total cost of production. (author)

  18. Influence of fillers on hydrogen penetration properties and blister fracture of rubber composites for O-ring exposed to high-pressure hydrogen gas

    Energy Technology Data Exchange (ETDEWEB)

    Yamabe, Junichiro; Nishimura, Shin [Department of Mechanical Science Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Research Center for Hydrogen Industrial Use and Storage (HYDROGENIUS), National Institute of Advanced Industrial Science and Technology (AIST), 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan)

    2009-02-15

    Ethylene-propylene rubber (EPDM) and nitrile-butadiene rubber (NBR) composites having carbon black, silica, and no fillers were exposed to hydrogen gas at a maximum pressure of 10 MPa; then, blister tests and the measurement of hydrogen content were conducted. The hydrogen contents of the composites were proportional to the hydrogen pressure, i.e., the behavior of their hydrogen contents follows Henry's law. This implies that hydrogen penetrates into the composite as a hydrogen molecule. The addition of carbon black raised the hydrogen content of the composite, while the addition of silica did not. Based on observations, the blister damages of composites with silica were less pronounced, irrespective of the hydrogen pressures. This may be attributed to their lower hydrogen content and relatively better tensile properties than the others. (author)

  19. Preparation and chemical crystallographic study of new hydrides and hydro-fluorides of ionic character; Preparation et etude cristallochimique de nouveaux hydrures et fluorohydrures a caractere ionique

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyung-Ho

    1988-07-22

    Within the context of a growing interest in the study of reversible hydrides with the perspective of their application in hydrogen storage, this research thesis more particularly addressed the case of ternary hydrides and fluorides, and of hydro-fluorides. The author reports the development of a method of preparation of alkaline hydrides, of alkaline earth hydrides and of europium hydride, and then the elaboration of ternary hydrides. He addresses the preparation of caesium fluorides and of calcium or nickel fluorides, of Europium fluorides, and of ternary fluorides. Then, he addresses the preparation of hydro-fluorides (caesium, calcium, europium fluorides, and caesium and nickel fluorides). The author presents the various experimental techniques: chemical analysis, radio-crystallographic analysis, volumetric mass density measurement, magnetic measurements, ionic conductivity measurements, Moessbauer spectroscopy, and nuclear magnetic resonance. He reports the crystallographic study of some ternary alkaline and alkaline-earth hydrides (KH-MgH{sub 2}, RbH-CaH{sub 2}, CsH-CaH{sub 2}, RbH-MgH{sub 2} and CsH-MgH{sub 2}) and of some hydro-fluorides (CsCaF{sub 2}H, EuF{sub 2}H, CsNiF{sub 2}H) [French] Dans une premiere partie, de nouveaux hydrures ternaires ont ete prepares et caracterises. Les systemes etudies sont AH-MH 2 (A = K, Rb, Cs et M = Mg, Ca). Dans les systemes AH-MgH 2 l'evolution structurale a ete discutee en fonction du caractere iono-covalent de la liaison magnesium-hydrogene. Dans une deuxieme partie, plusieurs nouveaux fluorohydrures ont ete mis en evidence. L'effet de la substitution de l'hydrogene au fluor dans ces phases a ete etudiee en utilisant la RMN, la spectroscopie Moessbauer, la conductivite ionique et les mesures magnetiques.

  20. Study of Catalyst Variation Effect in Glycerol Conversion Process to Hydrogen Gas by Steam Reforming

    Science.gov (United States)

    Widayat; Hartono, R.; Elizabeth, E.; Annisa, A. N.

    2018-04-01

    Along with the economic development, needs of energy being increase too. Hydrogen as alternative energy has many usages. Besides that, hydrogen is one source of energy that is a clean fuel, but process production of hydrogen from natural gas as a raw material has been used for a long time. Therefore, there is need new invention to produce hydrogen from the others raw material. Glycerol, a byproduct of biodiesel production, is a compound which can be used as a raw material for hydrogen production. By using glycerol as a raw material of hydrogen production, we can get added value of glycerol as well as an energy source solution. The process production of hydrogen by steam reforming is a thermochemical process with efficiency 70%. This process needs contribution of catalyst to improve its efficiency and selectivity of the process. In this study will be examined the effect variation of catalyst for glycerol conversion process to hydrogen by steam reforming. The method for catalyst preparation was variation of catalyst impregnation composition, catalyst calcined with difference concentration of hydrochloric acid and calcined with difference hydrochloric acid ratio. After that, all of catalyst which have been prepared, used for steam reforming process for hydrogen production from glycerol as a raw material. From the study, the highest yield of hydrogen gas showed in the process production by natural zeolite catalyst with 1:15 Hydrochloric acid ratio was 42.28%. Hydrogen yield for 2M calcined natural zeolite catalyst was 38.37%, for ZSM-5 catalyst was 15.83%, for 0.5M calcined natural zeolite was 13.09% and for ultrasonic natural zeolite was 11.43%. The lowest yield of hydrogen gas showed in catalyst 2Zn/ZSM-5 with 11.22%. This result showed that hydrogen yield product was affected by catalyst variation because of the catalyst has difference characteristic and difference catalytic activity after the catalyst preparation process.

  1. Development of a new method for hydrogen isotope analysis of trace hydrocarbons in natural gas samples

    Directory of Open Access Journals (Sweden)

    Xibin Wang

    2016-12-01

    Full Text Available A new method had been developed for the analysis of hydrogen isotopic composition of trace hydrocarbons in natural gas samples by using solid phase microextraction (SPME combined with gas chromatography-isotope ratio mass spectrometry (GC/IRMS. In this study, the SPME technique had been initially introduced to achieve the enrichment of trace content of hydrocarbons with low abundance and coupled to GC/IRMS for hydrogen isotopic analysis. The main parameters, including the equilibration time, extraction temperature, and the fiber type, were systematically optimized. The results not only demonstrated that high extraction yield was true but also shows that the hydrogen isotopic fractionation was not observed during the extraction process, when the SPME device fitted with polydimethylsiloxane/divinylbenzene/carbon molecular sieve (PDMS/DVB/CAR fiber. The applications of SPME-GC/IRMS method were evaluated by using natural gas samples collected from different sedimentary basins; the standard deviation (SD was better than 4‰ for reproducible measurements; and also, the hydrogen isotope values from C1 to C9 can be obtained with satisfying repeatability. The SPME-GC/IRMS method fitted with PDMS/DVB/CAR fiber is well suited for the preconcentration of trace hydrocarbons, and provides a reliable hydrogen isotopic analysis for trace hydrocarbons in natural gas samples.

  2. Gas Phase Hydrogenation of Levulinic Acid to gamma-Valerolactone

    NARCIS (Netherlands)

    Bonrath, Werner; Castelijns, Anna Maria Cornelia Francisca; de Vries, Johannes Gerardus; Guit, Rudolf Philippus Maria; Schuetz, Jan; Sereinig, Natascha; Vaessen, Henricus Wilhelmus Leonardus Marie

    The gas phase hydrogenation of levulinic acid to gamma-valerolactone over copper and ruthenium based catalysts in a continuous fixed-bed reactor system was investigated. Among the catalysts a copper oxide based one [50-75 % CuO, 20-25 % SiO2, 1-5 % graphite, 0.1-1 % CuCO3/Cu(OH)(2)] gave

  3. Thermodynamic analyses of hydrogen production from sub-quality natural gas. Part I: Pyrolysis and autothermal pyrolysis

    Science.gov (United States)

    Huang, Cunping; T-Raissi, Ali

    Sub-quality natural gas (SQNG) is defined as natural gas whose composition exceeds pipeline specifications of nitrogen, carbon dioxide (CO 2) and/or hydrogen sulfide (H 2S). Approximately one-third of the U.S. natural gas resource is sub-quality gas [1]. Due to the high cost of removing H 2S from hydrocarbons using current processing technologies, SQNG wells are often capped and the gas remains in the ground. We propose and analyze a two-step hydrogen production scheme using SQNG as feedstock. The first step of the process involves hydrocarbon processing (via steam-methane reformation, autothermal steam-methane reformation, pyrolysis and autothermal pyrolysis) in the presence of H 2S. Our analyses reveal that H 2S existing in SQNG is stable and can be considered as an inert gas. No sulfur dioxide (SO 2) and/or sulfur trioxide (SO 3) is formed from the introduction of oxygen to SQNG. In the second step, after the separation of hydrogen from the main stream, un-reacted H 2S is used to reform the remaining methane, generating more hydrogen and carbon disulfide (CS 2). Thermodynamic analyses on SQNG feedstock containing up to 10% (v/v) H 2S have shown that no H 2S separation is required in this process. The Part I of this paper includes only thermodynamic analyses for SQNG pyrolysis and autothermal pyrolysis.

  4. Radiation-induced crosslinking of poly(vinylidene fluoride)

    International Nuclear Information System (INIS)

    Makuuchi, Keizo

    1977-07-01

    The factors influencing radiation-induced crosslinking efficiency of poly(vinylidene fluoride) (PVdF) have been studied. Results of the basic research on irradiation conditions (dose rate and atmosphere) and initial physical properties of PVdF (structure of molecular chain and molecular mobility of chain segment) showed that crosslinking efficiency is raised in irradiation at high temperature above 50 0 C under vacuum in the presence of an absorbent for the evolved hydrogen fluoride. The crosslinking reaction is also accelerated with irregular molecular structure such as head-to-head bond in main chain. High crosslinking efficiency is obtained by addition of a polyfunctional monomer having good solubility with PVdF. Mechanical properties of PVdF, the strength at high temperature near the melting point in particular, are improved by crosslinking in the presence of a polyfunctional monomer. (auth.)

  5. Proposed replacement and operation of the anhydrous hydrogen fluoride supply and fluidized-bed chemical processing systems at Building 9212, Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-09-01

    The US Department of Energy (DOE) proposes to replace the existing anhydrous hydrogen fluoride (AHF) supply and fluidized-bed reactor systems for the Weapons Grade Highly Enriched Uranium Chemical Recovery and Recycle Facility, Building 9212, which is located within the Y-12 Plant on DOE's Oak Ridge Reservation in Oak Ridge, Tennessee. The proposed replacement system would be based upon modern design criteria and safety analyses. The replacement AHF supply and distribution system equipment would be located on the existing Dock 8/8A at Building 9212. Utilities would be extended to the dock to service the process equipment. The following process equipment modules would be prefabricated for installation at the modified dock: an AHF cylinder enclosure, an AHF supply manifold and vaporizer module, an AHF sump tank and transfer skid, and an AHF supply off-gas scrubber assembly module. The fluidized-bed reactor system would be constructed in an area adjacent to the existing system in Building 9212. The replacement equipment would consist of a new reduction fluidized-bed reactor, a hydrofluorination fluidized-bed reactor, and associated air emission control equipment. The no-action alternative, which is the continued operation of the existing AHF supply and fluidized-bed reactor systems, was also evaluated

  6. Carbon Dioxide-Free Hydrogen Production with Integrated Hydrogen Separation and Storage.

    Science.gov (United States)

    Dürr, Stefan; Müller, Michael; Jorschick, Holger; Helmin, Marta; Bösmann, Andreas; Palkovits, Regina; Wasserscheid, Peter

    2017-01-10

    An integration of CO 2 -free hydrogen generation through methane decomposition coupled with hydrogen/methane separation and chemical hydrogen storage through liquid organic hydrogen carrier (LOHC) systems is demonstrated. A potential, very interesting application is the upgrading of stranded gas, for example, gas from a remote gas field or associated gas from off-shore oil drilling. Stranded gas can be effectively converted in a catalytic process by methane decomposition into solid carbon and a hydrogen/methane mixture that can be directly fed to a hydrogenation unit to load a LOHC with hydrogen. This allows for a straight-forward separation of hydrogen from CH 4 and conversion of hydrogen to a hydrogen-rich LOHC material. Both, the hydrogen-rich LOHC material and the generated carbon on metal can easily be transported to destinations of further industrial use by established transport systems, like ships or trucks. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Toxicity levels to humans during acute exposure to hydrogen fluoride - An update

    International Nuclear Information System (INIS)

    Halton, D.M.

    1995-09-01

    In March 1993, the Atomic Energy Control Board (AECB) commissioned and update of a 1984 review on the acute toxicity of hydrogen fluoride (HF). The study places particular emphasis on the effects of inhalation of gaseous HF and is divided into two main parts: a literature review and a lethal concentration (LC) estimation. The literature review summarizes data under four categories: animal studies, controlled human studies, community exposure, and industrial exposure. Data in these areas were critically reviewed for their relevance to lethal concentrations at LC LO , LC 10 and LC 50 levels that were derived in the 1984 report. In the last ten years, only one relevant animal study has been published. No new controlled human studies were found but a community exposure incident was reported. There were three new industrial/accidental exposures reported since 1984. Evaluation of new data does not change the lethal concentration estimates made in the 1984 report, but does indicate the absence of appropriate models to estimate the lethality of irritant and corrosive gases. In the last 10 years, much literature on the evaluation of major hazards has been published and suggests that such assessments are of growing political, economic and social importance. Numerous articles have been published on the acute toxicity of HF from skin contact and chronic toxicity from repeated airborne exposure. These publications offer important insights into the nature of HF toxicity. Several avenues of investigative research are suggested. (author). 55 refs., 4 tabs

  8. Toxicity levels to humans during acute exposure to hydrogen fluoride - An update

    Energy Technology Data Exchange (ETDEWEB)

    Halton, D M

    1995-09-01

    In March 1993, the Atomic Energy Control Board (AECB) commissioned and update of a 1984 review on the acute toxicity of hydrogen fluoride (HF). The study places particular emphasis on the effects of inhalation of gaseous HF and is divided into two main parts: a literature review and a lethal concentration (LC) estimation. The literature review summarizes data under four categories: animal studies, controlled human studies, community exposure, and industrial exposure. Data in these areas were critically reviewed for their relevance to lethal concentrations at LC{sub LO}, LC{sub 10} and LC{sub 50} levels that were derived in the 1984 report. In the last ten years, only one relevant animal study has been published. No new controlled human studies were found but a community exposure incident was reported. There were three new industrial/accidental exposures reported since 1984. Evaluation of new data does not change the lethal concentration estimates made in the 1984 report, but does indicate the absence of appropriate models to estimate the lethality of irritant and corrosive gases. In the last 10 years, much literature on the evaluation of major hazards has been published and suggests that such assessments are of growing political, economic and social importance. Numerous articles have been published on the acute toxicity of HF from skin contact and chronic toxicity from repeated airborne exposure. These publications offer important insights into the nature of HF toxicity. Several avenues of investigative research are suggested. (author). 55 refs., 4 tabs.

  9. Measurement and interpretation of threshold stress intensity factors for steels in high-pressure hydrogen gas.

    Energy Technology Data Exchange (ETDEWEB)

    Dadfarnia, Mohsen (University of Illinois at Urbana-Champaign, Urbana, IL); Nibur, Kevin A.; San Marchi, Christopher W.; Sofronis, Petros (University of Illinois at Urbana-Champaign, Urbana, IL); Somerday, Brian P.; Foulk, James W., III; Hayden, Gary A. (CP Industries, McKeesport, PA)

    2010-07-01

    Threshold stress intensity factors were measured in high-pressure hydrogen gas for a variety of low alloy ferritic steels using both constant crack opening displacement and rising crack opening displacement procedures. The sustained load cracking procedures are generally consistent with those in ASME Article KD-10 of Section VIII Division 3 of the Boiler and Pressure Vessel Code, which was recently published to guide design of high-pressure hydrogen vessels. Three definitions of threshold were established for the two test methods: K{sub THi}* is the maximum applied stress intensity factor for which no crack extension was observed under constant displacement; K{sub THa} is the stress intensity factor at the arrest position for a crack that extended under constant displacement; and K{sub JH} is the stress intensity factor at the onset of crack extension under rising displacement. The apparent crack initiation threshold under constant displacement, K{sub THi}*, and the crack arrest threshold, K{sub THa}, were both found to be non-conservative due to the hydrogen exposure and crack-tip deformation histories associated with typical procedures for sustained-load cracking tests under constant displacement. In contrast, K{sub JH}, which is measured under concurrent rising displacement and hydrogen gas exposure, provides a more conservative hydrogen-assisted fracture threshold that is relevant to structural components in which sub-critical crack extension is driven by internal hydrogen gas pressure.

  10. The Influence of Hydrogen Gas on the Measures of Efficiency of Diesel Internal Combustion Engine

    Directory of Open Access Journals (Sweden)

    Jurgis Latakas

    2014-12-01

    Full Text Available In this research paper energy and ecological parameters of diesel engine which works under addition of hydrogen (10, 20, 30 l/ min are presented. A survey of research literature has shown that addition of hydrogen gases improve diesel combustion; increase indicated pressure; decrease concentration of carbon dioxide (CO2, hydrocarbons (HC, particles; decrease fuel consumptions. Results of the experiment revealed that hydrogen gas additive decreased pressure in cylinder in kinetic combustion phase. Concentration of CO2 and nitrous oxides (NOx decreased not significantly, HC – increased. Concentration of particles in engine exhaust gases significantly decreased. In case when hydrogen gas as additive was supplied, the fuel consumptions decreased a little. Using AVL BOOST software combustion process analysis was made. It was determined that in order to optimize engine work process under hydrogen additive usage, it is necessary to adjust diesel injection angle.

  11. Applications of ion implantation for modifying the interactions between metals and hydrogen gas

    Science.gov (United States)

    Musket, R. G.

    1989-04-01

    Ion implantations into metals have been shown recently to either reduce or enhance interactions with gaseous hydrogen. Published studies concerned with modifications of these interactions are reviewed and discussed in terms of the mechanisms postulated to explain the observed changes. The interactions are hydrogenation, hydrogen permeation, and hydrogen embrittlement. In particular, the results of the reviewed studies are (a) uranium hydriding suppressed by implantation of oxygen and carbon, (b) hydrogen gettered in iron and nickel using implantation of titanium, (c) hydriding of titanium catalyzed by implanted palladium, (d) tritium permeation of 304L stainless steel reduced using selective oxidation of implanted aluminum, and (e) hydrogen attack of a low-alloy steel accelerated by implantation of helium. These studies revealed ion implantation to be an effective method for modifying the interactions of hydrogen gas with metals.

  12. Population inversion in a recombining hydrogen plasma interacting with a helium gas

    International Nuclear Information System (INIS)

    Oda, Toshiatsu; Furukane, Utaro.

    1984-08-01

    A numerical investigation has shown that the population inversion between the levels with the principal quantum number i=2 and 3 takes place in a recombining hydrogen plasma which is interacting with a cool and dense helium gas on the basis of a collisional- radiative (CR) model. Overpopulation density Δn 32 , which is defined as the difference between the population densities per unit statistical weight of the upper and lower excited levels 3 and 2, is found to be much higher than a threshold level for the laser oscillation in the quasi-steady state when the hydrogen plasma with nsub(e) = 10 13 --10 14 cm -3 interacts with the helium gas with pressure of --50 Torr. (author)

  13. Mitigation of Hydrogen Gas Generation from the Reaction of Water with Uranium Metal in K Basins Sludge

    International Nuclear Information System (INIS)

    Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2010-01-01

    Means to decrease the rate of hydrogen gas generation from the chemical reaction of uranium metal with water were identified by surveying the technical literature. The underlying chemistry and potential side reactions were explored by conducting 61 principal experiments. Several methods achieved significant hydrogen gas generation rate mitigation. Gas-generating side reactions from interactions of organics or sludge constituents with mitigating agents were observed. Further testing is recommended to develop deeper knowledge of the underlying chemistry and to advance the technology aturation level. Uranium metal reacts with water in K Basin sludge to form uranium hydride (UH3), uranium dioxide or uraninite (UO2), and diatomic hydrogen (H2). Mechanistic studies show that hydrogen radicals (H·) and UH3 serve as intermediates in the reaction of uranium metal with water to produce H2 and UO2. Because H2 is flammable, its release into the gas phase above K Basin sludge during sludge storage, processing, immobilization, shipment, and disposal is a concern to the safety of those operations. Findings from the technical literature and from experimental investigations with simple chemical systems (including uranium metal in water), in the presence of individual sludge simulant components, with complete sludge simulants, and with actual K Basin sludge are presented in this report. Based on the literature review and intermediate lab test results, sodium nitrate, sodium nitrite, Nochar Acid Bond N960, disodium hydrogen phosphate, and hexavalent uranium [U(VI)] were tested for their effects in decreasing the rate of hydrogen generation from the reaction of uranium metal with water. Nitrate and nitrite each were effective, decreasing hydrogen generation rates in actual sludge by factors of about 100 to 1000 when used at 0.5 molar (M) concentrations. Higher attenuation factors were achieved in tests with aqueous solutions alone. Nochar N960, a water sorbent, decreased hydrogen

  14. Mitigation of Hydrogen Gas Generation from the Reaction of Water with Uranium Metal in K Basins Sludge

    Energy Technology Data Exchange (ETDEWEB)

    Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2010-01-29

    Means to decrease the rate of hydrogen gas generation from the chemical reaction of uranium metal with water were identified by surveying the technical literature. The underlying chemistry and potential side reactions were explored by conducting 61 principal experiments. Several methods achieved significant hydrogen gas generation rate mitigation. Gas-generating side reactions from interactions of organics or sludge constituents with mitigating agents were observed. Further testing is recommended to develop deeper knowledge of the underlying chemistry and to advance the technology aturation level. Uranium metal reacts with water in K Basin sludge to form uranium hydride (UH3), uranium dioxide or uraninite (UO2), and diatomic hydrogen (H2). Mechanistic studies show that hydrogen radicals (H·) and UH3 serve as intermediates in the reaction of uranium metal with water to produce H2 and UO2. Because H2 is flammable, its release into the gas phase above K Basin sludge during sludge storage, processing, immobilization, shipment, and disposal is a concern to the safety of those operations. Findings from the technical literature and from experimental investigations with simple chemical systems (including uranium metal in water), in the presence of individual sludge simulant components, with complete sludge simulants, and with actual K Basin sludge are presented in this report. Based on the literature review and intermediate lab test results, sodium nitrate, sodium nitrite, Nochar Acid Bond N960, disodium hydrogen phosphate, and hexavalent uranium [U(VI)] were tested for their effects in decreasing the rate of hydrogen generation from the reaction of uranium metal with water. Nitrate and nitrite each were effective, decreasing hydrogen generation rates in actual sludge by factors of about 100 to 1000 when used at 0.5 molar (M) concentrations. Higher attenuation factors were achieved in tests with aqueous solutions alone. Nochar N960, a water sorbent, decreased hydrogen

  15. Hydrate dissociation conditions for gas mixtures containing carbon dioxide, hydrogen, hydrogen sulfide, nitrogen, and hydrocarbons using SAFT

    International Nuclear Information System (INIS)

    Li Xiaosen; Wu Huijie; Li Yigui; Feng Ziping; Tang Liangguang; Fan Shuanshi

    2007-01-01

    A new method, a molecular thermodynamic model based on statistical mechanics, is employed to predict the hydrate dissociation conditions for binary gas mixtures with carbon dioxide, hydrogen, hydrogen sulfide, nitrogen, and hydrocarbons in the presence of aqueous solutions. The statistical associating fluid theory (SAFT) equation of state is employed to characterize the vapor and liquid phases and the statistical model of van der Waals and Platteeuw for the hydrate phase. The predictions of the proposed model were found to be in satisfactory to excellent agreement with the experimental data

  16. Greenhouse gas reduction benefits and costs of a large-scale transition to hydrogen in the USA

    International Nuclear Information System (INIS)

    Dougherty, William; Kartha, Sivan; Lazarus, Michael; Fencl, Amanda; Rajan, Chella; Bailie, Alison; Runkle, Benjamin

    2009-01-01

    Hydrogen is an energy carrier able to be produced from domestic, zero-carbon sources and consumed by zero-pollution devices. A transition to a hydrogen-based economy could therefore potentially respond to climate, air quality, and energy security concerns. In a hydrogen economy, both mobile and stationary energy needs could be met through the reaction of hydrogen (H 2 ) with oxygen (O 2 ). This study applies a full fuel cycle approach to quantify the energy, greenhouse gas emissions (GHGs), and cost implications associated with a large transition to hydrogen in the United States. It explores a national and four metropolitan area transitions in two contrasting policy contexts: a 'business-as-usual' (BAU) context with continued reliance on fossil fuels, and a 'GHG-constrained' context with policies aimed at reducing greenhouse gas emissions. A transition in either policy context faces serious challenges, foremost among them from the highly inertial investments over the past century or so in technology and infrastructure based on petroleum, natural gas, and coal. A hydrogen transition in the USA could contribute to an effective response to climate change by helping to achieve deep reductions in GHG emissions by mid-century across all sectors of the economy; however, these reductions depend on the use of hydrogen to exploit clean, zero-carbon energy supply options. (author)

  17. Greenhouse gas reduction benefits and costs of a large-scale transition to hydrogen in the USA

    Energy Technology Data Exchange (ETDEWEB)

    Dougherty, William; Kartha, Sivan; Lazarus, Michael; Fencl, Amanda [Stockholm Environment Institute - US Center, 11 Curtis Avenue, Somerville, MA 02143 (United States); Rajan, Chella [Indian Institute of Technology Madras, I.I.T. Post Office, Chennai 600 036 (India); Bailie, Alison [The Pembina Institute, 200, 608 - 7th Street, S.W. Calgary, AB (Canada); Runkle, Benjamin [Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720 (United States)

    2009-01-15

    Hydrogen is an energy carrier able to be produced from domestic, zero-carbon sources and consumed by zero-pollution devices. A transition to a hydrogen-based economy could therefore potentially respond to climate, air quality, and energy security concerns. In a hydrogen economy, both mobile and stationary energy needs could be met through the reaction of hydrogen (H{sub 2}) with oxygen (O{sub 2}). This study applies a full fuel cycle approach to quantify the energy, greenhouse gas emissions (GHGs), and cost implications associated with a large transition to hydrogen in the United States. It explores a national and four metropolitan area transitions in two contrasting policy contexts: a 'business-as-usual' (BAU) context with continued reliance on fossil fuels, and a 'GHG-constrained' context with policies aimed at reducing greenhouse gas emissions. A transition in either policy context faces serious challenges, foremost among them from the highly inertial investments over the past century or so in technology and infrastructure based on petroleum, natural gas, and coal. A hydrogen transition in the USA could contribute to an effective response to climate change by helping to achieve deep reductions in GHG emissions by mid-century across all sectors of the economy; however, these reductions depend on the use of hydrogen to exploit clean, zero-carbon energy supply options. (author)

  18. Highly Sensitive and Selective Hydrogen Gas Sensor Using the Mesoporous SnO2 Modified Layers

    Directory of Open Access Journals (Sweden)

    Niuzi Xue

    2017-10-01

    Full Text Available It is important to improve the sensitivities and selectivities of metal oxide semiconductor (MOS gas sensors when they are used to monitor the state of hydrogen in aerospace industry and electronic field. In this paper, the ordered mesoporous SnO2 (m-SnO2 powders were prepared by sol-gel method, and the morphology and structure were characterized by X-ray diffraction analysis (XRD, transmission electron microscope (TEM and Brunauer–Emmett–Teller (BET. The gas sensors were fabricated using m-SnO2 as the modified layers on the surface of commercial SnO2 (c-SnO2 by screen printing technology, and tested for gas sensing towards ethanol, benzene and hydrogen with operating temperatures ranging from 200 °C to 400 °C. Higher sensitivity was achieved by using the modified m-SnO2 layers on the c-SnO2 gas sensor, and it was found that the S(c/m2 sensor exhibited the highest response (Ra/Rg = 22.2 to 1000 ppm hydrogen at 400 °C. In this paper, the mechanism of the sensitivity and selectivity improvement of the gas sensors is also discussed.

  19. Simultaneous removal of Ni(II and fluoride from a real flue gas desulfurization wastewater by electrocoagulation using Fe/C/Al electrode

    Directory of Open Access Journals (Sweden)

    Shinian Liu

    2017-09-01

    Full Text Available Large amounts of anions and heavy metals coexist in flue gas desulfurization (FGD wastewater originating from coal-fired power plants, which cause serious environmental pollution. Electrocoagulation (EC with Fe/C/Al hybrid electrodes was investigated for the separation of fluoride and nickel ions from a FGD wastewater. The study mainly focused on the technology parameters including anode electrode type, time, inter-electrode distance (5–40 mm, current density (1.88–6.25 mA/cm2 and initial pH (4–10. The results showed that favorable nickel and fluoride removal were obtained by increasing the time and current density, but this led to an increase in energy consumption. Eighty-six percent of fluoride and 98% of Ni(II were removed by conducting the Fe/C/Al EC with a current density of 5.00 mA/cm2 and inter-electrode distance of 5 mm at pH 4 for 25 min and energy consumption was 1.33 kWh/m3. Concomitant pollutants also achieved excellent treatment efficiency. The Hg, Mn, Pb, Cd, Cu, SS and chemical oxygen demand were reduced by 90%, 89%, 92%, 88%, 98%, 99.9% and 89%, respectively, which met stringent environmental regulations.

  20. Internal combustion engines fueled by natural gas-hydrogen mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Akansu, S.O.; Kahraman, N. [Erciyes University, Kayseri (Turkey). Engineering Faculty; Dulger, Z. [Kocaeli University (Turkey). Engineering Faculty; Veziroglu, T.N. [University of Miami, Coral Gables, FL (United States). College of Engineering

    2004-11-01

    In this study, a survey of research papers on utilization of natural gas-hydrogen mixtures in internal combustion engines is carried out. In general, HC, CO{sub 2}, and CO emissions decrease with increasing H{sub 2}, but NO{sub x} emissions generally increase. If a catalytic converter is used, NO{sub x} emission values can be decreased to extremely low levels. Consequently, equivalence zero emission vehicles (EZEV) standards may be reached. Efficiency values vary with H{sub 2} amount, spark timing, compression ratio, equivalence ratio, etc. Under certain conditions, efficiency values can be increased. In terms of BSFC, emissions and BTE, a mixture of low hydrogen percentage is suitable for using. (author)

  1. Applications of ion implantation for modifying the interactions between metals and hydrogen gas

    International Nuclear Information System (INIS)

    Musket, R.G.

    1989-01-01

    Ion implantations into metals have been shown recently to either reduce or enhance interactions with gaseous hydrogen. Published studies concerned with modifications of these interactions are reviewed and discussed in terms of the mechanisms postulated to explain the observed changes. The interactions are hydrogenation, hydrogen permeation and hydrogen embrittlement. In particular, the results of the reviewed studies are 1. uranium hydriding suppressed by implantation of oxygen and carbon, 2. hydrogen gettered in iron and nickel using implantation of titanium, 3. hydriding of titanium catalyzed by implanted palladium, 4. tritium permeation of 304L stainless steel reduced using selective oxidation of implanted aluminum, and 5. hydrogen attack of a low-alloy steel accelerated by implantation of helium. These studies revealed ion implantation to be an effective method for modifying the interactions of hydrogen gas with metals. (orig.)

  2. Comparison of thermodynamic and environmental indexes of natural gas, syngas and hydrogen production processes

    International Nuclear Information System (INIS)

    Bargigli, Silvia; Raugei, Marco; Ulgiati, Sergio

    2004-01-01

    The thermodynamic efficiency and the environmental sustainability of selected processes that deliver gaseous energy carriers (natural gas, syngas from coal gasification, and hydrogen from steam reforming of natural gas and alkaline electrolysis) is explored by means of a multi-criteria, multi-scale approach based on four methods: material flow accounting, energy analysis, exergy analysis, and energy synthesis. The average energy and exergy conversion efficiencies of syngas (76% and 75%, respectively) are found to be higher than those for hydrogen (64% and 55%). However, coal-to-syngas conversion generates a significant amount of solid waste, which should be dealt with carefully. In addition, the material intensity is much higher for syngas (e.g. abiotic MI=768 g/g) than for natural gas and hydrogen (21 and 39 g/g, respectively), indicating a higher load on the environment. On the other hand, the energy intensity (transformity) for syngas (5.25x10 4 seJ/J) is shown to be lower than for hydrogen (9.66x10 4 seJ/J), indicating a lower demand for global environmental support. Therefore, material intensities and transformities offer two complementary pieces of information: transformities account for the 'memory' of the environmental resources that were used up in the past for the production of the inputs, whereas MIs are strictly calculated within the time frame of the life cycle of the investigated process. The higher transformity values calculated for pure hydrogen suggest careful and appropriate use of such an energy vector

  3. Impacts of seasonality on hydrogen production using natural gas pressure letdown stations. Paper no. IGEC-1-083

    International Nuclear Information System (INIS)

    Maddaloni, J.; Rowe, A.; Bailey, R.; McDonald, D.

    2005-01-01

    One of the difficulties associated with the development of a hydrogen economy is the creation of a supply infrastructure. A means for distributed hydrogen generation through a process using the exergy in high pressure natural gas streams has been proposed. The system recovers energy via expansion of natural gas through a turbo-expander at existing pressure reduction systems. Generated electric power is then used to drive an electrolyzer and create hydrogen. A model of the process is used to determine production rates for electricity and hydrogen given flow data for a number of pressure letdown sites in BC. Like many traditional renewable energy sources, most letdown stations have strong annual variations in flow conditions. Annual variations in stream flow rate, inlet pressure and inlet temperature can greatly affect hydrogen production rates. In the model, component efficiencies are scaled for operation at part-load, or away from optimum design conditions. Results indicate a significant reduction in predicted hydrogen production rates as compared to installed component name-plate capacity. Operating the system with a 'grid-tie' can increase the capacity factor, but economic viability will depend on local electricity and natural gas prices. (author)

  4. Hydrogen enrichment and separation from synthesis gas by the use of a membrane reactor

    International Nuclear Information System (INIS)

    Sanchez, J.M.; Barreiro, M.M.; Marono, M.

    2011-01-01

    One of the objectives of the CHRISGAS project was to study innovative gas separation and gas upgrading systems that have not been developed sufficiently yet to be tested at a demonstration scale within the time frame of the project, but which show some attractive merits and features for further development. In this framework CIEMAT studied, at bench scale, hydrogen enrichment and separation from syngas by the use of membranes and membrane catalytic reactors. In this paper results about hydrogen separation from synthesis gas by means of selective membranes are presented. Studies dealt with the evaluation of permeation and selectivity to hydrogen of prepared and pre-commercial Pd-based membranes. Whereas prepared membranes turned out to be non-selective, due to discontinuities of the palladium layer, studies conducted with the pre-commercial membrane showed that by means of a membrane reactor it is possible to completely separate hydrogen from the other gas components and produce pure hydrogen as a permeate stream, even in the case of complex reaction system (H 2 /CO/CO 2 /H 2 O) under WGS conditions gas mixtures. The advantages of using a water-gas shift membrane reactor (MR) over a traditional fixed bed reactor (TR) have also been studied. The experimental device included the pre-commercial Pd-based membrane and a commercial high temperature Fe-Cr-based, WGS catalyst, which was packed in the annulus between the membrane and the reactor outer shell. Results show that in the MR concept, removal of H 2 from the reaction side has a positive effect on WGS reaction, reaching higher CO conversion than in a traditional packed bed reactor at a given temperature. On increasing pressure on the reaction side permeation is enhanced and hence carbon monoxide conversion increases. -- Highlights: → H 2 enrichment and separation using a bench-scale membrane reactor MR is studied. → Permeation and selectivity to H 2 of Pd-based membranes was determined. → Complete separation

  5. Lattice-enabled nuclear reactions in the nickel and hydrogen gas system

    International Nuclear Information System (INIS)

    Nagel, David J.

    2015-01-01

    Thousands of lattice-enabled nuclear reaction (LENR) experiments involving electrochemical loading of deuterium into palladium have been conducted and reported in hundreds of papers. But, it appears that the first commercial LENR power generators will employ gas loading of hydrogen onto nickel. This article reviews the scientific base for LENR in the gas-loaded Ni-H system, and some of the tests of pre-commercial prototype generators based on this combination. (author)

  6. Modelling of fast hydrogen permeability of alloys for membrane gas separation

    Science.gov (United States)

    Zaika, Yu. V.; Rodchenkova, N. I.

    2017-05-01

    The method of measuring the specific hydrogen permeability is used to study various alloys that are promising for gas separation installations. The nonlinear boundary value problem of hydrogen permeability complying with the specific features of the experiment and its modifications taking into account the high transfer rate is presented. Substantial difference from the quasi-equilibrium model (Richardson approximation in the assumption of the equilibrium Sieverts' law near the surface) has been discussed. The model is tested on published experimental data on Ta77Nb23 alloy.

  7. Palladium Gate All Around - Hetero Dielectric -Tunnel FET based highly sensitive Hydrogen Gas Sensor

    Science.gov (United States)

    Madan, Jaya; Chaujar, Rishu

    2016-12-01

    The paper presents a novel highly sensitive Hetero-Dielectric-Gate All Around Tunneling FET (HD-GAA-TFET) based Hydrogen Gas Sensor, incorporating the advantages of band to band tunneling (BTBT) mechanism. Here, the Palladium supported silicon dioxide is used as a sensing media and sensing relies on the interaction of hydrogen with Palladium-SiO2-Si. The high surface to volume ratio in the case of cylindrical GAA structure enhances the fortuities for surface reactions between H2 gas and Pd, and thus improves the sensitivity and stability of the sensor. Behaviour of the sensor in presence of hydrogen and at elevated temperatures is discussed. The conduction path of the sensor which is dependent on sensors radius has also been varied for the optimized sensitivity and static performance analysis of the sensor where the proposed design exhibits a superior performance in terms of threshold voltage, subthreshold swing, and band to band tunneling rate. Stability of the sensor with respect to temperature affectability has also been studied, and it is found that the device is reasonably stable and highly sensitive over the bearable temperature range. The successful utilization of HD-GAA-TFET in gas sensors may open a new door for the development of novel nanostructure gas sensing devices.

  8. Highly sensitive work function hydrogen gas sensor based on PdNPs/SiO2/Si structure at room temperature

    Directory of Open Access Journals (Sweden)

    G. Behzadi pour

    Full Text Available In this study, fabrication of highly sensitive PdNPs/SiO2/Si hydrogen gas sensor using experimental and theoretical methods has been investigated. Using chemical method the PdNPs are synthesized and characterized by X-ray diffraction (XRD. The average size of PdNPs is 11 nm. The thickness of the oxide film was 20 nm and the surface of oxide film analyzed using Atomic-force microscopy (AFM. The C-V curve for the PdNPs/SiO2/Si hydrogen gas sensor in 1% hydrogen concentration and at the room temperature has been reported. The response time and recovery time for 1% hydrogen concentration at room temperature were 1.2 s and 10 s respectively. The response (R% for PdNPs/SiO2/Si MOS capacitor hydrogen sensor was 96%. The PdNPs/SiO2/Si MOS capacitor hydrogen sensor showed very fast response and recovery times compared to SWCNTs/PdNPs, graphene/PdNPs, nanorod/PdNPs and nanowire/PdNPs hydrogen gas sensors. Keywords: Sensitive, Oxide film, Capacitive, Resistance

  9. Production of sintered porous metal fluoride pellets

    Science.gov (United States)

    Anderson, L.W.; Stephenson, M.J.

    1973-12-25

    Porous pellets characterized by a moderately reactive crust and a softer core of higher reactivity are produced by forming agglomerates containing a metal fluoride powder and a selected amount ofwater. The metal fluoride is selected to be sinterable and essentially non-reactive with gaseous fluorinating agents. The agglomerates are contacted with a gaseous fluorinating agent under controlled conditions whereby the heat generated by localized reaction of the agent and water is limited to values effccting bonding by localized sintering. Porous pellets composed of cryolite (Na/sub 3/AlF/sub 6/) can be used to selectively remove trace quantities of niobium pentafluoride from a feed gas consisting predominantly of uranium hexafluoride. (Official Gazette)

  10. Numerical estimation of ultrasonic production of hydrogen: Effect of ideal and real gas based models.

    Science.gov (United States)

    Kerboua, Kaouther; Hamdaoui, Oualid

    2018-01-01

    Based on two different assumptions regarding the equation describing the state of the gases within an acoustic cavitation bubble, this paper studies the sonochemical production of hydrogen, through two numerical models treating the evolution of a chemical mechanism within a single bubble saturated with oxygen during an oscillation cycle in water. The first approach is built on an ideal gas model, while the second one is founded on Van der Waals equation, and the main objective was to analyze the effect of the considered state equation on the ultrasonic hydrogen production retrieved by simulation under various operating conditions. The obtained results show that even when the second approach gives higher values of temperature, pressure and total free radicals production, yield of hydrogen does not follow the same trend. When comparing the results released by both models regarding hydrogen production, it was noticed that the ratio of the molar amount of hydrogen is frequency and acoustic amplitude dependent. The use of Van der Waals equation leads to higher quantities of hydrogen under low acoustic amplitude and high frequencies, while employing ideal gas law based model gains the upper hand regarding hydrogen production at low frequencies and high acoustic amplitudes. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Roller kiln with very low fluoride emission. The Ecokiln

    Energy Technology Data Exchange (ETDEWEB)

    Reymer, P.S.; Denissen, A.M. [TNO TPD Materials Research and Technology, Eindhoven (Netherlands)

    2001-09-01

    In most European countries the limit for fluoride emission in ceramic kiln flue gases is set at 5 mg HF/m{sup 3} flue gas. In cooperation with Royal Mosa, Royal Sphinx, Gasunie in the Netherlands and Sacmi, Italy, a roller kiln has been developed which can operate below the fore-mentioned limit. Also, a flue gas cleaning device is not necessary. 4 refs.

  12. Fluoride

    Science.gov (United States)

    Opalescence® ... Fluoride is used to prevent tooth decay. It is taken up by teeth and helps to strengthen ... and block the cavity-forming action of bacteria. Fluoride usually is prescribed for children and adults whose ...

  13. The effect of the partial pressure of H2 gas and atomic hydrogen on diamond films deposited using CH3OH/H2O gas

    International Nuclear Information System (INIS)

    Lee, Kwon-Jai; Koh, Jae-Gui; Shin, Jae-Soo; Kwon, Ki-Hong; Lee, Chang-Hee

    2006-01-01

    Diamond films were deposited on Si(100) substrates by hot filament chemical vapor deposition (HFCVD) with a CH 3 OH/H 2 O gas mixture while changing the gas ratio. The films were analyzed with scanning electron microscopy (SEM), Raman spectroscopy, and optical emission spectroscopy (OES). The diamond films were grown with CH 3 OH being 52 % by volume of the gas mixture. The effect of atomic hydrogen on the film was different from that of the CH 4 /H 2 gas mixture. Analysis with OES during film growth indicated that among the thermally dissociated hydrogen radicals, only H α contributed to the etching of graphite.

  14. Gas-controlled dynamic vacuum insulation with gas gate

    Science.gov (United States)

    Benson, D.K.; Potter, T.F.

    1994-06-07

    Disclosed is a dynamic vacuum insulation comprising sidewalls enclosing an evacuated chamber and gas control means for releasing hydrogen gas into a chamber to increase gas molecule conduction of heat across the chamber and retrieving hydrogen gas from the chamber. The gas control means includes a metal hydride that absorbs and retains hydrogen gas at cooler temperatures and releases hydrogen gas at hotter temperatures; a hydride heating means for selectively heating the metal hydride to temperatures high enough to release hydrogen gas from the metal hydride; and gate means positioned between the metal hydride and the chamber for selectively allowing hydrogen to flow or not to flow between said metal hydride and said chamber. 25 figs.

  15. Effectivity of fluoride treatment on hydrogen and corrosion product generation in temporal implants for different magnesium alloys.

    Science.gov (United States)

    Trinidad, Javier; Arruebarrena, Gurutze; Marco, Iñigo; Hurtado, Iñaki; Sáenz de Argandoña, Eneko

    2013-12-01

    The increasing interest on magnesium alloys relies on their biocompatibility, bioabsorbility and especially on their mechanical properties. Due to these characteristics, magnesium alloys are becoming a promising solution to be used, as temporary implants. However, magnesium alloys must overcome their poor corrosion resistance. This article analyses the corrosion behaviour in phosphate-buffered saline solution of three commercial magnesium alloys (AZ31B, WE43 and ZM21) as well as the influence of fluoride treatment on their corrosion behaviour. It is shown that the corrosion rate of all the alloys is decreased by fluoride treatment. However, fluoride treatment affects each alloy differently.

  16. Erosion of graphite surface exposed to hot supersonic hydrogen gas

    Science.gov (United States)

    Sharma, O. P.

    1972-01-01

    A theoretical model based on laminar boundary layer flow equations was developed to predict the erosion rate of a graphite (AGCarb-101) surface exposed to a hot supersonic stream of hydrogen gas. The supersonic flow in the nozzle outside the boundary layer formed over the surface of the specimen was determined by assuming one-dimensional isentropic conditions. An overall surface reaction rate expression based on experimental studies was used to describe the interaction of hydrogen with graphite. A satisfactory agreement was found between the results of the computation, and the available experimental data. Some shortcomings of the model and further possible improvements are discussed.

  17. Laboratory Studies of Hydrogen Gas Generation Using the Cobalt Chloride Catalyzed Sodium Borohydride-Water Reaction

    Science.gov (United States)

    2015-07-01

    already use hydrogen for weather balloons . Besides cost, hydrogen has other advantages over helium. Hydrogen has more lift than helium, so larger...of water vapor entering the gas stream, and avoid damaging the balloon /aerostat (aerostats typically have an operational temperature range of -50 to...Aerostats: “Gepard” Tethered Aerostats with Mobile Mooring Systems. Available at http://rosaerosystems.com/aero/obj7. Accessed June 4, 2015. 11

  18. Membrane reforming in converting natural gas to hydrogen: Production costs, Part II

    Energy Technology Data Exchange (ETDEWEB)

    Iaquaniello, G; Cosenza, S [Technip-KTI S.p.A., via Castello della Magliana 75, Rome (Italy); Giacobbe, F; Morico, B; Farace, A [Processi Innovativi s.r.l., L' Aquila (Italy)

    2008-11-15

    This paper evaluates the production costs of a hybrid system based on a new membrane reforming MRR concept to convert natural gas to hydrogen and electricity. Membrane reforming with hydrogen-selective, palladium-silver membranes pushes the chemical equilibrium and allows higher methane conversions at lower temperature such as 650 C. The new MRR concept formed of a series of modules is put forward herein. Each module is made up of a reforming step and an external membrane separation unit. The estimates, based on utilities costs of a typical Italian refinery (end of 2006), show that the production costs for the hybrid system are 30% less than conventional tubular steam reforming technology, and 13% less than a gas-fired cogeneration plant coupled with a conventional H{sub 2} plant. (author)

  19. Taurine Ameliorates Renal Oxidative Damage and Thyroid Dysfunction in Rats Chronically Exposed to Fluoride.

    Science.gov (United States)

    Adedara, Isaac A; Ojuade, Temini Jesu D; Olabiyi, Bolanle F; Idris, Umar F; Onibiyo, Esther M; Ajeigbe, Olufunke F; Farombi, Ebenezer O

    2017-02-01

    Excessive exposure to fluoride poses several detrimental effects to human health particularly the kidney which is a major organ involved in its elimination from the body. The influence of taurine on fluoride-induced renal toxicity was investigated in a co-exposure paradigm for 45 days using five groups of eight rats each. Group I rats received normal drinking water alone, group II rats were exposed to sodium fluoride (NaF) in drinking water at 15 mg/L alone, group III received taurine alone at a dose of 200 mg/kg group IV rats were co-administered with NaF and taurine (100 mg/kg), while group V rats were co-administered with NaF and taurine (200 mg/kg). Administration of taurine significantly reversed the fluoride-mediated decrease in absolute weight and organo-somatic index of the kidney in the exposed rats. Taurine significantly prevented fluoride-induced elevation in plasma urea and creatinine levels in the exposed rats. Moreover, taurine restored fluoride-mediated decrease in the circulatory concentrations of triiodothyronine, thyroxine, and the ratio of triiodothyronine to thyroxine. Taurine ameliorated fluoride-mediated decrease in renal antioxidant status by significantly enhancing the antioxidant enzyme activities as well as glutathione level in the exposed rats. Additionally, taurine inhibited fluoride-induced renal oxidative damage by markedly decreasing the hydrogen peroxide and malondialdehyde levels as well as improved the kidney architecture in the treated rats. Collectively, taurine protected against fluoride-induced renal toxicity via enhancement of thyroid gland function, renal antioxidant status, and histology in rats.

  20. Study of cycle-by-cycle variations of a spark ignition engine fueled with natural gas-hydrogen blends

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jinhua; Chen, Hao; Liu, Bing; Huang, Zuohua [State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an 710049 (China)

    2008-09-15

    Cycle-by-cycle variations of a spark ignition engine fueled with natural gas-hydrogen blends with hydrogen volumetric fraction of 0%, 12%, 23%, 30% and 40% were studied. The effect of hydrogen addition on cycle-by-cycle variations of the natural gas engine was analyzed. The results showed that the peak cylinder pressure, the maximum rate of pressure rise and the indicated mean effective pressure increased and their corresponding cycle-by-cycle variations decreased with the increase of hydrogen fraction at lean mixture operation. The interdependency between the combustion parameters and the corresponding crank angle tended to be strongly correlated with the increase of hydrogen fraction under lean mixture operation. Coefficient of variation of the indicated mean effective pressure gave a low level and is slightly influenced by hydrogen addition under the stoichiometric and relatively rich mixture operation while it decreased remarkably with the increase of hydrogen fraction under the lean mixture operation. The excessive air ratio at CoV{sub imep} = 10% extended to the leaner mixture side with the increase of hydrogen fraction and this indicated that the engine lean operating limit could be extended with hydrogen addition. (author)

  1. Interface passivation and trap reduction via hydrogen fluoride for molybdenum disulfide on silicon oxide back-gate transistors

    Science.gov (United States)

    Hu, Yaoqiao; San Yip, Pak; Tang, Chak Wah; Lau, Kei May; Li, Qiang

    2018-04-01

    Layered semiconductor molybdenum disulfide (MoS2) has recently emerged as a promising material for flexible electronic and optoelectronic devices because of its finite bandgap and high degree of gate control. Here, we report a hydrogen fluoride (HF) passivation technique for improving the carrier mobility and interface quality of chemical vapor deposited monolayer MoS2 on a SiO2/Si substrate. After passivation, the fabricated MoS2 back-gate transistors demonstrate a more than double improvement in average electron mobility, a reduced gate hysteresis gap of 3 V, and a low interface trapped charge density of ˜5.8 × 1011 cm-2. The improvements are attributed to the satisfied interface dangling bonds, thus a reduction of interface trap states and trapped charges. Surface x-ray photoelectron spectroscopy analysis and first-principles simulation were performed to verify the HF passivation effect. The results here highlight the necessity of a MoS2/dielectric passivation strategy and provides a viable route for enhancing the performance of MoS2 nano-electronic devices.

  2. Injection of a relativistic electron beam into neutral hydrogen gas

    International Nuclear Information System (INIS)

    de Haan, P.H.; Janssen, G.C.A.M.; Hopman, H.J.; Granneman, E.H.A.

    1982-01-01

    The injection of a relativistic electron beam (0.8 MeV, 6 kA, 150 nsec) into hydrogen gas of 190 Pa pressure results in a plasma with density n/sub e/approx. =10 20 m -3 and temperature kT/sub e/< or approx. =kT/sub i/approx. =3.5 eV. The results of the measurements show good agreement with computations based on a model combining gas ionization and turbulent plasma heating. It is found that a quasistationary state exists in which the energy lost by the beam (about 6% of the total kinetic energy of the beam) is partly used to further ionize and dissociate the gas and for the other part is lost as line radiation

  3. Detection of Hydrogen Sulphide Gas Sensor Based Nanostructured Ba2CrMoO6 Thick Films

    Directory of Open Access Journals (Sweden)

    A. V. Kadu

    2007-11-01

    Full Text Available Nanocrystalline pure and doped Ba2CrMoO6, having an average crystallite size of 40 nm were synthesized by the sol-gel citrate method. Structural and gas-sensing characteristics were performed by using X-ray diffraction (XRD and sensitivity measurements. The gas sensing properties to reducing gases like Hydrogen sulphide (H2S, liquefied petroleum gas (LPG, carbon monoxide (CO and hydrogen gas (H2 were also discussed. The maximum sensitivity was obtained for 5 wt % Ni doped Ba2CrMoO6 at an operating temperature 250oC for H2S gas. Pd incorporation over 5 wt% Ni doped Ba2CrMoO6 improved the sensitivity, selectivity, response time, and reduced the operating temperature from 250 to 200oC of the sensor for H2S gas. This sensor also shows good satiability.

  4. Pulsed chemical laser

    International Nuclear Information System (INIS)

    Jacobson, T.V.; Kimbell, G.H.

    1975-01-01

    A hydrogen fluoride laser capable of operating super radiantly and at atmospheric pressure is described. A transverse electrical discharge is utilized to energize the reaction of a hydrogen donor to provide hydrogen fluoride in a metastable energy state which reverts to a stable state by laser action. A large range of hydrogen and fluorine donors is disclosed. A preferred pair of donors is sulphur hexafluoride and propane. Helium is frequently added to the gas mix to act as a buffer. (U.S.)

  5. Hydrogen system (hydrogen fuels feasibility)

    International Nuclear Information System (INIS)

    Guarna, S.

    1991-07-01

    This feasibility study on the production and use of hydrogen fuels for industry and domestic purposes includes the following aspects: physical and chemical properties of hydrogen; production methods steam reforming of natural gas, hydrolysis of water; liquid and gaseous hydrogen transportation and storage (hydrogen-hydride technology); environmental impacts, safety and economics of hydrogen fuel cells for power generation and hydrogen automotive fuels; relevant international research programs

  6. Other Fluoride Products

    Science.gov (United States)

    ... Private Wells Infant Formula Fluorosis Public Health Service Recommendation Water Operators & Engineers Water Fluoridation Additives Shortages of Fluoridation Additives Drinking Water Pipe Systems CDC-Sponsored Water Fluoridation Training Links to Other ...

  7. Microbial Electrolysis Cells for High Yield Hydrogen Gas Production from Organic Matter

    KAUST Repository

    Logan, Bruce E.; Call, Douglas; Cheng, Shaoan; Hamelers, Hubertus V. M.; Sleutels, Tom H. J. A.; Jeremiasse, Adriaan W.; Rozendal, René A.

    2008-01-01

    production rates. MECs used to make hydrogen gas are similar in design to microbial fuel cells (MFCs) that produce electricity, but there are important differences in architecture and analytical methods used to evaluate performance. We review here

  8. The impact of natural gas/hydrogen mixtures on the performance of end-use equipment : Interchangeability analysis for domestic appliances

    NARCIS (Netherlands)

    de Vries, Harmen; Mokhov, Anatoli V.; Levinsky, Howard B.

    2017-01-01

    The addition of hydrogen derived from renewable power to the natural gas network is being promoted as a viable means of storing excess wind and solar energy. However, the changes in combustion properties of the natural gas upon hydrogen addition can impact the performance of the end-use equipment

  9. Industrial fluoride pollution: chronic fluoride poisoning in Cornwall Island cattle

    Energy Technology Data Exchange (ETDEWEB)

    Krook, L.; Maylin, G.A.

    1979-04-01

    An aluminum plant on the south bank of the St. Lawrence River, southwest of Cornwall Island, Ontario, Canada, has emitted 0.816 metric tons of fluoride daily since 1973. Considerably higher amounts were emitted from 1959 to 1973. The plant was designated as the major source of fluoride emissions impacting on Cornwall Island. Cattle located on this island showed signs of chronic fluoride poisoning. This poisoning was manifested clinically by stunted growth and dental fluorosis to a degree of severe interference with drinking and mastication. This Cornwall Island herds study indicates that the established tolerance level of fluoride for performance of dairy and beef cattle is not valid since the tolerance level was set based on experiments with healthy calves which were exposed to dietary fluoride from 3 to 4 months of age and not on cattle which were chronically exposed to fluoride from conception to death. 56 references.

  10. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: BIOQUELL, INC. CLARIS C HYDROGEN PEROXIDE GAS GENERATOR

    Science.gov (United States)

    The Environmental Technology Verification report discusses the technology and performance of the Clarus C Hydrogen Peroxide Gas Generator, a biological decontamination device manufactured by BIOQUELL, Inc. The unit was tested by evaluating its ability to decontaminate seven types...

  11. The effect of a micro bubble dispersed gas phase on hydrogen isotope transport in liquid metals under nuclear irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Fradera, J., E-mail: jfradera@ubu.es; Cuesta-López, S., E-mail: scuesta@ubu.es

    2013-12-15

    The present work intend to be a first step towards the understanding and quantification of the hydrogen isotope complex phenomena in liquid metals for nuclear technology. Liquid metals under nuclear irradiation in, e.g., breeding blankets of a nuclear fusion reactor would generate tritium which is to be extracted and recirculated as fuel. At the same time that tritium is bred, helium is also generated and may precipitate in the form of nano bubbles. Other liquid metal systems of a nuclear reactor involve hydrogen isotope absorption processes, e.g., tritium extraction system. Hence, hydrogen isotope absorption into gas bubbles modelling and control may have a capital importance regarding design, operation and safety. Here general models for hydrogen isotopes transport in liquid metal and absorption into gas phase, that do not depend on the mass transfer limiting regime, are exposed and implemented in OpenFOAM® CFD tool for 0D–3D simulations. Results for a 0D case show the impact of a He dispersed phase of nano bubbles on hydrogen isotopes inventory at different temperatures as well as the inventory evolution during a He nucleation event. In addition, 1D and 2D axisymmetric cases are exposed showing the effect of a He dispersed gas phase on hydrogen isotope permeation through a lithium lead eutectic alloy and the effect of vortical structures on hydrogen isotope transport at a backward facing step. Exposed results give a valuable insight on current nuclear technology regarding the importance of controlling hydrogen isotope transport and its interactions with nucleation event through gas absorption processes.

  12. Hydrogen Embrittlement

    Science.gov (United States)

    Woods, Stephen; Lee, Jonathan A.

    2016-01-01

    Hydrogen embrittlement (HE) is a process resulting in a decrease in the fracture toughness or ductility of a metal due to the presence of atomic hydrogen. In addition to pure hydrogen gas as a direct source for the absorption of atomic hydrogen, the damaging effect can manifest itself from other hydrogen-containing gas species such as hydrogen sulfide (H2S), hydrogen chloride (HCl), and hydrogen bromide (HBr) environments. It has been known that H2S environment may result in a much more severe condition of embrittlement than pure hydrogen gas (H2) for certain types of alloys at similar conditions of stress and gas pressure. The reduction of fracture loads can occur at levels well below the yield strength of the material. Hydrogen embrittlement is usually manifest in terms of singular sharp cracks, in contrast to the extensive branching observed for stress corrosion cracking. The initial crack openings and the local deformation associated with crack propagation may be so small that they are difficult to detect except in special nondestructive examinations. Cracks due to HE can grow rapidly with little macroscopic evidence of mechanical deformation in materials that are normally quite ductile. This Technical Memorandum presents a comprehensive review of experimental data for the effects of gaseous Hydrogen Environment Embrittlement (HEE) for several types of metallic materials. Common material screening methods are used to rate the hydrogen degradation of mechanical properties that occur while the material is under an applied stress and exposed to gaseous hydrogen as compared to air or helium, under slow strain rates (SSR) testing. Due to the simplicity and accelerated nature of these tests, the results expressed in terms of HEE index are not intended to necessarily represent true hydrogen service environment for long-term exposure, but rather to provide a practical approach for material screening, which is a useful concept to qualitatively evaluate the severity of

  13. System efficiency for two-step metal oxide solar thermochemical hydrogen production – Part 2: Impact of gas heat recuperation and separation temperatures

    KAUST Repository

    Ehrhart, Brian D.

    2016-09-22

    The solar-to-hydrogen (STH) efficiency is calculated for various operating conditions for a two-step metal oxide solar thermochemical hydrogen production cycle using cerium(IV) oxide. An inert sweep gas was considered as the O2 removal method. Gas and solid heat recuperation effectiveness values were varied between 0 and 100% in order to determine the limits of the effect of these parameters. The temperature at which the inert gas is separated from oxygen for an open-loop and recycled system is varied. The hydrogen and water separation temperature was also varied and the effect on STH efficiency quantified. This study shows that gas heat recuperation is critical for high efficiency cycles, especially at conditions that require high steam and inert gas flowrates. A key area for future study is identified to be the development of ceramic heat exchangers for high temperature gas-gas heat exchange. Solid heat recuperation is more important at lower oxidation temperatures that favor temperature-swing redox processing, and the relative impact of this heat recuperation is muted if the heat can be used elsewhere in the system. A high separation temperature for the recycled inert gas has been shown to be beneficial, especially for cases of lower gas heat recuperation and increased inert gas flowrates. A higher water/hydrogen separation temperature is beneficial for most gas heat recuperation effectiveness values, though the overall impact on optimal system efficiency is relatively small for the values considered. © 2016 Hydrogen Energy Publications LLC.

  14. Urinary fluoride excretion in preschool children after intake of fluoridated milk and use of fluoride-containing toothpaste

    DEFF Research Database (Denmark)

    Norman, M; Twetman, S; Hultgren Talvilahti, A

    2017-01-01

    Objective: To assess the urinary fluoride excretion in preschool children after drinking fluoridated milk with 0.185 mg F and 0.375 mg F and to study the impact of use of fluoride toothpaste. Basic research design: Double-blind cross-over study. Participants: Nine healthy children, 2.5-4.5 years...

  15. Aqueous process for recovering sulfur from hydrogen sulfide-bearing gas

    Science.gov (United States)

    Basu, Arunabha

    2015-05-05

    A process for recovering sulfur from a hydrogen sulfide-bearing gas utilizes an aqueous reaction medium, a temperature of about 110-150.degree. C., and a high enough pressure to maintain the aqueous reaction medium in a liquid state. The process reduces material and equipment costs and addresses the environmental disadvantages associated with known processes that rely on high boiling point organic solvents.

  16. Optimization Study of Hydrogen Gas Adsorption on Zig-zag Single-walled Carbon Nanotubes: The Artificial Neural Network Analysis

    Science.gov (United States)

    Nasruddin; Lestari, M.; Supriyadi; Sholahudin

    2018-03-01

    The use of hydrogen gas in fuel cell technology has a huge opportunity to be applied in upcoming vehicle technology. One of the most important problems in fuel cell technology is the hydrogen storage. The adsorption of hydrogen in carbon-based materials attracts a lot of attention because of its reliability. This study investigated the adsorption of hydrogen gas in Single-walled Carbon Nano Tubes (SWCNT) with chilarity of (0, 12), (0, 15), and (0, 18) to find the optimum chilarity. Artificial Neural Networks (ANN) can be used to predict the hydrogen storage capacity at different pressure and temperature conditions appropriately, using simulated series of data. The Artificial Neural Network is modeled as a predictor of the hydrogen adsorption capacity which provides solutions to some deficiencies in molecular dynamics (MD) simulations. In a previous study, ANN configurations have been developed for 77k, 233k, and 298k temperatures in hydrogen gas storage. To prepare this prediction, ANN is modeled to find out the configurations that exist in the set of training and validation of specified data selection, the distance between data, and the number of neurons that produce the smallest error. This configuration is needed to make an accurate artificial neural network. The configuration of neural network was then applied to this research. The neural network analysis results show that the best configuration of artificial neural network in hydrogen storage is at 233K temperature i.e. on SWCNT with chilarity of (0.12).

  17. Commercial application of titania-supported hydrodesulfurization catalysts in the production of hydrogen using full-range FCC off-gas

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shaohu [SINOPEC Wuhan Branch, Qingshan, Wuhan 430082 (China); Shen, Binglong; Qu, Lianglong [Beijing Haishunde Titanium Catalyst Co. Ltd., A-1 North East-Ring Road, Beijing Economic-Technological Development Area, Beijing 100176 (China)

    2004-11-24

    This paper provides an alternative for low-cost feed used for on-purpose hydrogen production. Full-range FCC off-gas was applied to steam-reforming process as feed after treating with hydrogenation and hydrodesulfurization catalysts. Commercial run results were reported with novel TiO{sub 2}-supported Mo-based catalysts, T205A-1 and T205. The processes of catalysts loading, sulfidation, start-up and long-term run were described in details. Long-term run showed that TiO{sub 2}-supported Mo catalysts have good low-temperature hydrogenation activity, excellent HDS activity, and outstanding stability. Use of FCC off-gas as feed for hydrogen production is quite promising and will increase margins for refiners today.

  18. Oral fluoride retention after professional topical application in children with caries activity: comparison between 1.23% fluoride foam and fluoride gel

    Directory of Open Access Journals (Sweden)

    Cecília Claudia Costa Ribeiro

    2008-01-01

    Full Text Available Objective: This study evaluated fluoride retention in the saliva of children with caries activity after topical fluoride application in the form of gel and foam. Methods: A cross-sectional, blind and randomized study, conducted with ten caries-active children aged between 8 and 10 years, in two stage, with a washout interval of two weeks between them. The treatments consisted of: a application of 2mL acidulated phosphate fluoride of the gel type in a mold and b application of 2mL acidulated phosphate fluoride of the foam type in a mold. After the washout, the treatments were inverted. Non-stimulated saliva was collected from the children at the times of 5, 15, 30 and 60 minutes after topical fluoride application. For statistical analysis the Student’s-t test was used, with a level of significance of 5%. Results: Saliva analysis was performed using a fluoride-specific electrode (ISE25F/ Radiometer, Copenhagen, Denmark at the Aquatic Science Center of the Federal University of Marana, which revealed differences after 5 minutes (p=0.0055 and 15 minutes (p=0.0208. The topical application of fluoride in the gel form revealed a higher concentration of fluoride in the saliva. Conclusion: There were differences in the retention of fluoride in the saliva of children with caries activity after the topical application of fluoride gel and the topical application of fluoride foam after 5 and 15 minutes of their application. The topical application of fluoride foam is recommended, on the basis of the lower probability of toxicity during its use.

  19. Hydrogen Gas Recycling for Energy Efficient Ammonia Recovery in Electrochemical Systems

    NARCIS (Netherlands)

    Kuntke, Philipp; Rodríguez Arredondo, Mariana; Widyakristi, Laksminarastri; Heijne, ter Annemiek; Sleutels, Tom H.J.A.; Hamelers, Hubertus V.M.; Buisman, Cees J.N.

    2017-01-01

    Recycling of hydrogen gas (H2) produced at the cathode to the anode in an electrochemical system allows for energy efficient TAN (Total Ammonia Nitrogen) recovery. Using a H2 recycling electrochemical system (HRES) we achieved high TAN transport rates at low energy input. At

  20. Eukaryotic resistance to fluoride toxicity mediated by a widespread family of fluoride export proteins.

    Science.gov (United States)

    Li, Sanshu; Smith, Kathryn D; Davis, Jared H; Gordon, Patricia B; Breaker, Ronald R; Strobel, Scott A

    2013-11-19

    Fluorine is an abundant element and is toxic to organisms from bacteria to humans, but the mechanisms by which eukaryotes resist fluoride toxicity are unknown. The Escherichia coli gene crcB was recently shown to be regulated by a fluoride-responsive riboswitch, implicating it in fluoride response. There are >8,000 crcB homologs across all domains of life, indicating that it has an important role in biology. Here we demonstrate that eukaryotic homologs [renamed FEX (fluoride exporter)] function in fluoride export. FEX KOs in three eukaryotic model organisms, Neurospora crassa, Saccharomyces cerevisiae, and Candida albicans, are highly sensitized to fluoride (>200-fold) but not to other halides. Some of these KO strains are unable to grow in fluoride concentrations found in tap water. Using the radioactive isotope of fluoride, (18)F, we developed an assay to measure the intracellular fluoride concentration and show that the FEX deletion strains accumulate fluoride in excess of the external concentration, providing direct evidence of FEX function in fluoride efflux. In addition, they are more sensitive to lower pH in the presence of fluoride. These results demonstrate that eukaryotic FEX genes encode a previously unrecognized class of fluoride exporter necessary for survival in standard environmental conditions.

  1. Reduced-order modellin for high-pressure transient flow of hydrogen-natural gas mixture

    Science.gov (United States)

    Agaie, Baba G.; Khan, Ilyas; Alshomrani, Ali Saleh; Alqahtani, Aisha M.

    2017-05-01

    In this paper the transient flow of hydrogen compressed-natural gas (HCNG) mixture which is also referred to as hydrogen-natural gas mixture in a pipeline is numerically computed using the reduced-order modelling technique. The study on transient conditions is important because the pipeline flows are normally in the unsteady state due to the sudden opening and closure of control valves, but most of the existing studies only analyse the flow in the steady-state conditions. The mathematical model consists in a set of non-linear conservation forms of partial differential equations. The objective of this paper is to improve the accuracy in the prediction of the HCNG transient flow parameters using the Reduced-Order Modelling (ROM). The ROM technique has been successfully used in single-gas and aerodynamic flow problems, the gas mixture has not been done using the ROM. The study is based on the velocity change created by the operation of the valves upstream and downstream the pipeline. Results on the flow characteristics, namely the pressure, density, celerity and mass flux are based on variations of the mixing ratio and valve reaction and actuation time; the ROM computational time cost advantage are also presented.

  2. Performance and emission characteristics of a turbocharged CNG engine fueled by hydrogen-enriched compressed natural gas with high hydrogen ratio

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Fanhua; Wang, Mingyue; Jiang, Long; Chen, Renzhe; Deng, Jiao; Naeve, Nashay; Zhao, Shuli [State Key Laboratory of Automotive Safety and Energy Tsinghua University, Beijing 100084 (China)

    2010-06-15

    This paper investigates the effect of high hydrogen volumetric ratio of 55% on performance and emission characteristics in a turbocharged lean burn natural gas engine. The experimental data was conducted under various operating conditions including different spark timing, excess air ratio (lambda), and manifold pressure. It is found that the addition of hydrogen at a high volumetric ratio could significantly extend the lean burn limit, improve the engine lean burn ability, decrease burn duration, and yield higher thermal efficiency. The CO, CH{sub 4} emissions were reduced and NO{sub x} emission could be kept an acceptable low level with high hydrogen content under lean burn conditions when ignition timing were optimized. (author)

  3. Integration of Wind Energy, Hydrogen and Natural Gas Pipeline Systems to Meet Community and Transportation Energy Needs: A Parametric Study

    Directory of Open Access Journals (Sweden)

    Shahryar Garmsiri

    2014-04-01

    Full Text Available The potential benefits are examined of the “Power-to-Gas” (P2G scheme to utilize excess wind power capacity by generating hydrogen (or potentially methane for use in the natural gas distribution grid. A parametric analysis is used to determine the feasibility and size of systems producing hydrogen that would be injected into the natural gas grid. Specifically, wind farms located in southwestern Ontario, Canada are considered. Infrastructure requirements, wind farm size, pipeline capacity, geographical dispersion, hydrogen production rate, capital and operating costs are used as performance measures. The model takes into account the potential production rate of hydrogen and the rate that it can be injected into the local gas grid. “Straw man” systems are examined, centered on a wind farm size of 100 MW integrating a 16-MW capacity electrolysis system typically producing 4700 kg of hydrogen per day.

  4. Hydrogen energy systems studies

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.M.; Kreutz, T.G.; Steinbugler, M. [Princeton Univ., NJ (United States)] [and others

    1996-10-01

    In this report the authors describe results from technical and economic assessments carried out during the past year with support from the USDOE Hydrogen R&D Program. (1) Assessment of technologies for small scale production of hydrogen from natural gas. Because of the cost and logistics of transporting and storing hydrogen, it may be preferable to produce hydrogen at the point of use from more readily available energy carriers such as natural gas or electricity. In this task the authors assess near term technologies for producing hydrogen from natural gas at small scale including steam reforming, partial oxidation and autothermal reforming. (2) Case study of developing a hydrogen vehicle refueling infrastructure in Southern California. Many analysts suggest that the first widespread use of hydrogen energy is likely to be in zero emission vehicles in Southern California. Several hundred thousand zero emission automobiles are projected for the Los Angeles Basin alone by 2010, if mandated levels are implemented. Assuming that hydrogen vehicles capture a significant fraction of this market, a large demand for hydrogen fuel could evolve over the next few decades. Refueling a large number of hydrogen vehicles poses significant challenges. In this task the authors assess near term options for producing and delivering gaseous hydrogen transportation fuel to users in Southern California including: (1) hydrogen produced from natural gas in a large, centralized steam reforming plant, and delivered to refueling stations via liquid hydrogen truck or small scale hydrogen gas pipeline, (2) hydrogen produced at the refueling station via small scale steam reforming of natural gas, (3) hydrogen produced via small scale electrolysis at the refueling station, and (4) hydrogen from low cost chemical industry sources (e.g. excess capacity in refineries which have recently upgraded their hydrogen production capacity, etc.).

  5. No Calcium-Fluoride-Like Deposits Detected in Plaque Shortly after a Sodium Fluoride Mouthrinse

    OpenAIRE

    Vogel, G.L.; Tenuta, L.M.A.; Schumacher, G.E.; Chow, L.C.

    2010-01-01

    Plaque ‘calcium-fluoride-like’ (CaF2-like) and fluoride deposits held by biological/bacterial calcium fluoride (Ca-F) bonds appear to be the source of cariostatic concentrations of fluoride in plaque fluid. The aim of this study was to quantify the amounts of plaque fluoride held in these reservoirs after a sodium fluoride rinse. 30 and 60 min after a 228 μg/g fluoride rinse, plaque samples were collected from 11 volunteers. Each sample was homogenized, split into 2 aliquots (aliquots 1 and 2...

  6. Urinary fluoride output in children following the use of a dual-fluoride varnish formulation

    Directory of Open Access Journals (Sweden)

    Kelly Polido Kaneshiro Olympio

    2009-06-01

    Full Text Available OBJECTIVE: This study evaluated the bioavailability of fluoride after topical application of a dual-fluoride varnish commercially available in Brazil, when compared to DuraphatTM. MATERIAL AND METHODS: The urinary fluoride output was evaluated in seven 5-year-old children after application of the fluoride varnishes, in two different phases. In the first phase (I, children received topical application of the fluoride varnish Duofluorid XII (2.92% fluorine, calcium fluoride + 2.71% fluorine, sodium fluoride, FGM TM. After 1-month interval (phase II, the same amount (0.2 mL of the fluoride varnish Duraphat (2.26% fluorine, sodium fluoride, ColgateTM was applied. Before each application all the volunteers brushed their teeth with placebo dentifrice for 7 days. Urinary collections were carried out 24 h prior up to 48 h after the applications. Fluoride intake from the diet was also estimated. Fluoride concentration in diet samples and urine was analyzed with the fluoride ion-specific electrode and a miniature calomel reference electrode coupled to a potentiometer. Data were tested by ANOVA and Tukey's post hoc test (p<0.05. RESULTS: There were significant differences in the urinary fluoride output between phases I and II. The use of Duofluorid XII did not significantly increase the urinary fluoride output, when compared to baseline levels. The application of Duraphat caused a transitory increase in the urinary fluoride output, returning to baseline levels 48 h after its use. CONCLUSIONS: The tested varnish formulation, which has been shown to be effective in in vitro studies, also can be considered safe.

  7. Microbial Electrodialysis Cell for Simultaneous Water Desalination and Hydrogen Gas Production

    KAUST Repository

    Mehanna, Maha

    2010-12-15

    A new approach to water desalination is to use exoelectrogenic bacteria to generate electrical power from the biodegradation of organic matter, moving charged ions from a middle chamber between two membranes in a type of microbial fuel cell called a microbial desalination cell. Desalination efficiency using this approach is limited by the voltage produced by the bacteria. Here we examine an alternative strategy based on boosting the voltage produced by the bacteria to achieve hydrogen gas evolution from the cathode using a three-chambered system we refer to as a microbial electrodialysis cell (MEDC). We examined the use of the MEDC process using two different initial NaCl concentrations of 5 g/L and 20 g/L. Conductivity in the desalination chamber was reduced by up to 68 ± 3% in a single fed-batch cycle, with electrical energy efficiencies reaching 231 ± 59%, and maximum hydrogen production rates of 0.16 ± 0.05 m3 H2/m3 d obtained at an applied voltage of 0.55 V. The advantage of this system compared to a microbial fuel cell approach is that the potentials between the electrodes can be better controlled, and the hydrogen gas that is produced can be used to recover energy to make the desalination process self-sustaining with respect to electrical power requirements. © 2010 American Chemical Society.

  8. Microbial Electrodialysis Cell for Simultaneous Water Desalination and Hydrogen Gas Production

    KAUST Repository

    Mehanna, Maha; Kiely, Patrick D.; Call, Douglas F.; Logan, Bruce. E.

    2010-01-01

    A new approach to water desalination is to use exoelectrogenic bacteria to generate electrical power from the biodegradation of organic matter, moving charged ions from a middle chamber between two membranes in a type of microbial fuel cell called a microbial desalination cell. Desalination efficiency using this approach is limited by the voltage produced by the bacteria. Here we examine an alternative strategy based on boosting the voltage produced by the bacteria to achieve hydrogen gas evolution from the cathode using a three-chambered system we refer to as a microbial electrodialysis cell (MEDC). We examined the use of the MEDC process using two different initial NaCl concentrations of 5 g/L and 20 g/L. Conductivity in the desalination chamber was reduced by up to 68 ± 3% in a single fed-batch cycle, with electrical energy efficiencies reaching 231 ± 59%, and maximum hydrogen production rates of 0.16 ± 0.05 m3 H2/m3 d obtained at an applied voltage of 0.55 V. The advantage of this system compared to a microbial fuel cell approach is that the potentials between the electrodes can be better controlled, and the hydrogen gas that is produced can be used to recover energy to make the desalination process self-sustaining with respect to electrical power requirements. © 2010 American Chemical Society.

  9. Effects of Post-Treatment Hydrogen Gas Inhalation on Uveitis Induced by Endotoxin in Rats.

    Science.gov (United States)

    Yan, Weiming; Chen, Tao; Long, Pan; Zhang, Zhe; Liu, Qian; Wang, Xiaocheng; An, Jing; Zhang, Zuoming

    2018-06-07

    BACKGROUND Molecular hydrogen (H2) has been widely reported to have benefiicial effects in diverse animal models and human disease through reduction of oxidative stress and inflammation. The aim of this study was to investigate whether hydrogen gas could ameliorate endotoxin-induced uveitis (EIU) in rats. MATERIAL AND METHODS Male Sprague-Dawley rats were divided into a normal group, a model group, a nitrogen-oxygen (N-O) group, and a hydrogen-oxygen (H-O) group. EIU was induced in rats of the latter 3 groups by injection of lipopolysaccharide (LPS). After that, rats in the N-O group inhaled a gas mixture of 67% N2 and 33% O2, while those in the H-O group inhaled a gas mixture of 67% H2 and 33% O2. All rats were graded according to the signs of uveitis after electroretinography (ERG) examination. Protein concentration in the aqueous humor (AqH) was measured. Furthermore, hematoxylin-eosin staining and immunostaining of anti-ionized calcium-binding adapter molecule 1 (Iba1) in the iris and ciliary body (ICB) were carried out. RESULTS No statistically significant differences existed in the graded score of uveitis and the b-wave peak time in the Dark-adapted 3.0 ERG among the model, N-O, and H-O groups (P>0.05), while rats of the H-O group showed a lower concentration of AqH protein than that of the model or N-O group (P0.05), while the activation of microglia cells in the H-O group was somewhat reduced (Ptreatment hydrogen gas inhalation did not ameliorate the clinical signs, or reduce the infiltrating cells of EIU. However, it inhibited the elevation of protein in the AqH and reduced the microglia activation.

  10. Ultrafine hydrogen storage powders

    Science.gov (United States)

    Anderson, Iver E.; Ellis, Timothy W.; Pecharsky, Vitalij K.; Ting, Jason; Terpstra, Robert; Bowman, Robert C.; Witham, Charles K.; Fultz, Brent T.; Bugga, Ratnakumar V.

    2000-06-13

    A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

  11. Fluoride Rinses, Gels and Foams

    DEFF Research Database (Denmark)

    Twetman, Svante; Keller, Mette K

    2016-01-01

    AIM: The aim of this conference paper was to systematically review the quality of evidence and summarize the findings of clinical trials published after 2002 using fluoride mouth rinses, fluoride gels or foams for the prevention of dental caries. METHODS: Relevant papers were selected after...... (6 on fluoride mouth rinse, 10 on fluoride gel and 3 on fluoride foam); 6 had a low risk of bias while 2 had a moderate risk. All fluoride measures appeared to be beneficial in preventing crown caries and reversing root caries, but the quality of evidence was graded as low for fluoride mouth rinse......, moderate for fluoride gel and very low for acidulated fluoride foam. No conclusions could be drawn on the cost-effectiveness. CONCLUSIONS: This review, covering the recent decade, has further substantiated the evidence for a caries-preventive effect of fluoride mouth rinse, fluoride gel and foam...

  12. Fluoride Removal from pretreated Photovoltaic Wastewater by Electrocoagulation: An Investigation of The Effect of Operational Parameters

    KAUST Repository

    Drouiche, Nadjib; Aoudj, Saleh; Lounici, Hakim; Drouiche, M.; Ouslimane, Tarik; Ghaffour, Norredine

    2012-01-01

    In this paper, application of electrocoagulation using common iron electrode to a simulated photovoltaic wastewater after precipitation with lime (Ca(OH)2) was investigated. Electrocoagulation process delivers the coagulant in situ as the sacrificial anode corrodes, while the simultaneous evolution of hydrogen at the cathode allows pollutant removal by flotation. Several working parameters, such as initial pH, applied potential and distance between the electrodes, were studied in an attempt to achieve higher fluoride removal efficiency. The optimum conditions for the process were identified as pH = 6, the distance between electrodes = 1 and an applied potential of 30 V. Furthermore fluoride removal is under the direct discharge standards.Results showed high effectivenessof the electrocoagulation method in removing fluoride from aqueous solutions.

  13. Fluoride Removal from pretreated Photovoltaic Wastewater by Electrocoagulation: An Investigation of The Effect of Operational Parameters

    KAUST Repository

    Drouiche, Nadjib

    2012-03-20

    In this paper, application of electrocoagulation using common iron electrode to a simulated photovoltaic wastewater after precipitation with lime (Ca(OH)2) was investigated. Electrocoagulation process delivers the coagulant in situ as the sacrificial anode corrodes, while the simultaneous evolution of hydrogen at the cathode allows pollutant removal by flotation. Several working parameters, such as initial pH, applied potential and distance between the electrodes, were studied in an attempt to achieve higher fluoride removal efficiency. The optimum conditions for the process were identified as pH = 6, the distance between electrodes = 1 and an applied potential of 30 V. Furthermore fluoride removal is under the direct discharge standards.Results showed high effectivenessof the electrocoagulation method in removing fluoride from aqueous solutions.

  14. Hydrogen storage materials discovery via high throughput ball milling and gas sorption.

    Science.gov (United States)

    Li, Bin; Kaye, Steven S; Riley, Conor; Greenberg, Doron; Galang, Daniel; Bailey, Mark S

    2012-06-11

    The lack of a high capacity hydrogen storage material is a major barrier to the implementation of the hydrogen economy. To accelerate discovery of such materials, we have developed a high-throughput workflow for screening of hydrogen storage materials in which candidate materials are synthesized and characterized via highly parallel ball mills and volumetric gas sorption instruments, respectively. The workflow was used to identify mixed imides with significantly enhanced absorption rates relative to Li2Mg(NH)2. The most promising material, 2LiNH2:MgH2 + 5 atom % LiBH4 + 0.5 atom % La, exhibits the best balance of absorption rate, capacity, and cycle-life, absorbing >4 wt % H2 in 1 h at 120 °C after 11 absorption-desorption cycles.

  15. The cariostatic mechanisms of fluoride

    Directory of Open Access Journals (Sweden)

    Kata Rošin-Grget

    2013-11-01

    Full Text Available This article discusses the possible cariostatic mechanisms of the action of fluoride. In the past, fluoride inhibition of caries was ascribed to reduced solubility of enamel due to incorporation of fluoride (F– into the enamel minerals. The present evidence from clinical and laboratory studies suggests that the caries-preventive mode of action of fluoride is mainly topical. There is convincing evidence that fluoride has a major effect on demineralisation and remineralisation of dental hard tissue. The source of this fluoride could either be fluorapatite (formed due to the incorporation of fluoride into enamel or calcium fluoride (CaF2-like precipitates, which are formed on the enamel and in the plaque after application of topical fluoride. Calcium fluoride deposits are protected from rapid dissolution by a phosphate –protein coating of salivary origin. At lower pH, the coating is lost and an increased dissolution rate of calcium fluoride occurs. The CaF2, therefore, act as an efficient source of free fluoride ions during the cariogenic challenge. The current evidence indicates that fluoride has a direct and indirect effect on bacterial cells, although the in vivo implications of this are still not clear. Conclusion. A better understanding of the mechanisms of the action of fluoride is very important for caries prevention and control. The effectiveness of fluoride as a cariostatic agent depends on the availability of free fluoride in plaque during cariogenic challenge, i.e. during acid production. Thus, a constant supply of low levels of fluoride in biofilm/saliva/dental interference is considered the most beneficial in preventing dental caries.

  16. The cariostatic mechanisms of fluoride.

    Science.gov (United States)

    Rošin-Grget, Kata; Peroš, Kristina; Sutej, Ivana; Bašić, Krešimir

    2013-11-01

    This article discusses the possible cariostatic mechanisms of the action of fluoride. In the past, fluoride inhibition of caries was ascribed to reduced solubility of enamel due to incorporation of fluoride (F-) into the enamel minerals. The present evidence from clinical and laboratory studies suggests that the caries-preventive mode of action of fluoride is mainly topical. There is convincing evidence that fluoride has a major effect on demineralisation and remineralisation of dental hard tissue. The source of this fluoride could either be fluorapatite (formed due to the incorporation of fluoride into enamel) or calcium fluoride (CaF2)-like precipitates, which are formed on the enamel and in the plaque after application of topical fluoride. Calcium fluoride deposits are protected from rapid dissolution by a phosphate -protein coating of salivary origin. At lower pH, the coating is lost and an increased dissolution rate of calcium fluoride occurs. The CaF2, therefore, act as an efficient source of free fluoride ions during the cariogenic challenge. The current evidence indicates that fluoride has a direct and indirect effect on bacterial cells, although the in vivo implications of this are still not clear. A better understanding of the mechanisms of the action of fluoride is very important for caries prevention and control. The effectiveness of fluoride as a cariostatic agent depends on the availability of free fluoride in plaque during cariogenic challenge, i.e. during acid production. Thus, a constant supply of low levels of fluoride in biofilm/saliva/dental interference is considered the most beneficial in preventing dental caries. Copyright © 2013 by Academy of Sciences and Arts of Bosnia and Herzegovina.

  17. Enabling nucleophilic substitution reactions of activated alkyl fluorides through hydrogen bonding.

    Science.gov (United States)

    Champagne, Pier Alexandre; Pomarole, Julien; Thérien, Marie-Ève; Benhassine, Yasmine; Beaulieu, Samuel; Legault, Claude Y; Paquin, Jean-François

    2013-05-03

    It was discovered that the presence of water as a cosolvent enables the reaction of activated alkyl fluorides for bimolecular nucleophilic substitution reactions. DFT calculations show that activation proceeds through stabilization of the transition structure by a stronger F···H2O interaction and diminishing C-F bond elongation, and not simple transition state electrostatic stabilization. Overall, the findings put forward a distinct strategy for C-F bond activation through H-bonding.

  18. Law proposal aiming at imposing the domestic consumption tax to the natural gas used for hydrogen generation for petroleum refining purposes

    International Nuclear Information System (INIS)

    2009-04-01

    In France, natural gas benefits from tax exemptions in several situations and in particular when used as raw material for hydrogen generation, which in turn, is used for crude oil refining and fuels generation. However, crude oil is cheaper when it is heavier but more hydrogen, and thus more natural gas, is needed to refine it and more CO 2 is released in the atmosphere. Therefore, refining cheap crude oil increases the refining margins of oil companies but their environmental impact as well. The aim of this law proposal is to impose the domestic consumption tax to natural gas when used in oil refining processes in order to finance the development of the renewable hydrogen industry through the creation of a High Council of Hydrogen Industry. This High Council would be in charge of promoting the development of renewable hydrogen production facilities and distribution circuits, of hydrogen-fueled vehicles, and of fuel cells. (J.S.)

  19. Cerium fluoride nanoparticles protect cells against oxidative stress

    International Nuclear Information System (INIS)

    Shcherbakov, Alexander B.; Zholobak, Nadezhda M.; Baranchikov, Alexander E.; Ryabova, Anastasia V.; Ivanov, Vladimir K.

    2015-01-01

    A novel facile method of non-doped and fluorescent terbium-doped cerium fluoride stable aqueous sols synthesis is proposed. Intense green luminescence of CeF 3 :Tb nanoparticles can be used to visualize these nanoparticles' accumulation in cells using confocal laser scanning microscopy. Cerium fluoride nanoparticles are shown for the first time to protect both organic molecules and living cells from the oxidative action of hydrogen peroxide. Both non-doped and terbium-doped CeF 3 nanoparticles are shown to provide noteworthy protection to cells against the vesicular stomatitis virus. - Highlights: • Facile method of CeF 3 and CeF 3 :Tb stable aqueous sols synthesis is proposed. • Naked CeF 3 nanoparticles are shown to be non-toxic and to protect cells from the action of H 2 O 2 . • CeF 3 and CeF 3 :Tb nanoparticles are shown to protect living cells against the vesicular stomatitis virus

  20. Cerium fluoride nanoparticles protect cells against oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Shcherbakov, Alexander B.; Zholobak, Nadezhda M. [Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Kyiv D0368 (Ukraine); Baranchikov, Alexander E. [Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Moscow 119991 (Russian Federation); Ryabova, Anastasia V. [Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991 (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow 115409 (Russian Federation); Ivanov, Vladimir K., E-mail: van@igic.ras.ru [Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Moscow 119991 (Russian Federation); National Research Tomsk State University, Tomsk 634050 (Russian Federation)

    2015-05-01

    A novel facile method of non-doped and fluorescent terbium-doped cerium fluoride stable aqueous sols synthesis is proposed. Intense green luminescence of CeF{sub 3}:Tb nanoparticles can be used to visualize these nanoparticles' accumulation in cells using confocal laser scanning microscopy. Cerium fluoride nanoparticles are shown for the first time to protect both organic molecules and living cells from the oxidative action of hydrogen peroxide. Both non-doped and terbium-doped CeF{sub 3} nanoparticles are shown to provide noteworthy protection to cells against the vesicular stomatitis virus. - Highlights: • Facile method of CeF{sub 3} and CeF{sub 3}:Tb stable aqueous sols synthesis is proposed. • Naked CeF{sub 3} nanoparticles are shown to be non-toxic and to protect cells from the action of H{sub 2}O{sub 2}. • CeF{sub 3} and CeF{sub 3}:Tb nanoparticles are shown to protect living cells against the vesicular stomatitis virus.

  1. Fluoride and Oral Health.

    Science.gov (United States)

    O'Mullane, D M; Baez, R J; Jones, S; Lennon, M A; Petersen, P E; Rugg-Gunn, A J; Whelton, H; Whitford, G M

    2016-06-01

    The discovery during the first half of the 20th century of the link between natural fluoride, adjusted fluoride levels in drinking water and reduced dental caries prevalence proved to be a stimulus for worldwide on-going research into the role of fluoride in improving oral health. Epidemiological studies of fluoridation programmes have confirmed their safety and their effectiveness in controlling dental caries. Major advances in our knowledge of how fluoride impacts the caries process have led to the development, assessment of effectiveness and promotion of other fluoride vehicles including salt, milk, tablets, toothpaste, gels and varnishes. In 1993, the World Health Organization convened an Expert Committee to provide authoritative information on the role of fluorides in the promotion of oral health throughout the world (WHO TRS 846, 1994). This present publication is a revision of the original 1994 document, again using the expertise of researchers from the extensive fields of knowledge required to successfully implement complex interventions such as the use of fluorides to improve dental and oral health. Financial support for research into the development of these new fluoride strategies has come from many sources including government health departments as well as international and national grant agencies. In addition, the unique role which industry has played in the development, formulation, assessment of effectiveness and promotion of the various fluoride vehicles and strategies is noteworthy. This updated version of 'Fluoride and Oral Health' has adopted an evidence-based approach to its commentary on the different fluoride vehicles and strategies and also to its recommendations. In this regard, full account is taken of the many recent systematic reviews published in peer reviewed literature.

  2. γ-irradiation effect on gas diffusion in polymer films. Part I : Hydrogen diffusion through mylar film

    International Nuclear Information System (INIS)

    Rao, K.A.; Pushpa, K.K.; Iyer, R.M.

    1980-01-01

    γ-irradiation of polymers results in further crosslinking in the polymer or breakdown of the polymer or a combination of both these phenomena depending on the type of polymer, the dose as well as the environment in which irradiation is carried out. The gas diffusion through polymer films is expected to vary depending on these changes. With a view to A evaluate the feasibility of effecting selective diffusion of specific gases and also to correlate the change in diffusion rates with the polymer characteristics these studies have been initiated. Hydrogen diffusion through mylar film γ-irradiated under varying conditions upto a dose of approximately 50 Mrads is reported in this paper. The results indicate negligible change in hydrogen diffusion rates on γ-irradiation. However, γ-irradiation induced crosslinking of acrylic acid on Mylar reduced the hydrogen diffusion rate. The hydrogen diffusion studies may also be useful in finding the glass transition temperature of polymer films as is apparent from the gas diffusion curves. (author)

  3. Fluoride level in saliva after bonding orthodontic brackets with a fluoride containing adhesive

    NARCIS (Netherlands)

    Ogaard, B; Arends, J; Helseth, H; Dijkman, G; vanderKuijl, M

    The fluoride level in saliva is considered an important parameter in caries prevention. Elevation of the salivary fluoride level by a fluoride-releasing orthodontic bonding adhesive would most likely be beneficial in the prevention of enamel caries. In this study, the fluoride level in saliva was

  4. Hydrogen Oxidation on Gas Diffusion Electrodes for Phosphoric Acid Fuel Cells in the Presence of Carbon Monoxide and Oxygen

    DEFF Research Database (Denmark)

    Gang, Xiao; Li, Qingfeng; Hjuler, Hans Aage

    1995-01-01

    Hydrogen oxidation has been studied on a carbon-supported platinum gas diffusion electrode in a phosphoric acidelectrolyte in the presence of carbon monoxide and oxygen in the feed gas. The poisoning effect of carbon monoxide presentin the feed gas was measured in the temperature range from 80...... to 150°C. It was found that throughout the temperaturerange, the potential loss due to the CO poisoning can be reduced to a great extent by the injection of small amounts ofgaseous oxygen into the hydrogen gas containing carbon monoxide. By adding 5 volume percent (v/o) oxygen, an almost...

  5. Radcalc for windows benchmark study: A comparison of software results with Rocky Flats hydrogen gas generation data

    International Nuclear Information System (INIS)

    MCFADDEN, J.G.

    1999-01-01

    Radcalc for Windows Version 2.01 is a user-friendly software program developed by Waste Management Federal Services, Inc., Northwest Operations for the U.S. Department of Energy (McFadden et al. 1998). It is used for transportation and packaging applications in the shipment of radioactive waste materials. Among its applications are the classification of waste per the US. Department of Transportation regulations, the calculation of decay heat and daughter products, and the calculation of the radiolytic production of hydrogen gas. The Radcalc program has been extensively tested and validated (Green et al. 1995, McFadden et al. 1998) by comparison of each Radcalc algorithm to hand calculations. An opportunity to benchmark Radcalc hydrogen gas generation calculations to experimental data arose when the Rocky Flats Environmental Technology Site (RFETS) Residue Stabilization Program collected hydrogen gas generation data to determine compliance with requirements for shipment of waste in the TRUPACT-II (Schierloh 1998). The residue/waste drums tested at RFETS contain contaminated, solid, inorganic materials in polyethylene bags. The contamination is predominantly due to plutonium and americium isotopes. The information provided by Schierloh (1 998) of RFETS includes decay heat, hydrogen gas generation rates, calculated G eff values, and waste material type, making the experimental data ideal for benchmarking Radcalc. The following sections discuss the RFETS data and the Radcalc cases modeled with the data. Results are tabulated and also provided graphically

  6. Hydrogen production from biomass pyrolysis gas via high temperature steam reforming process

    International Nuclear Information System (INIS)

    Wongchang, Thawatchai; Patumsawad, Suthum

    2010-01-01

    Full text: The aim of this work has been undertaken as part of the design of continuous hydrogen production using the high temperature steam reforming process. The steady-state test condition was carried out using syngas from biomass pyrolysis, whilst operating at high temperatures between 600 and 1200 degree Celsius. The main reformer operating parameters (e.g. temperature, resident time and steam to biomass ratio (S/B)) have been examined in order to optimize the performance of the reformer. The operating temperature is a key factor in determining the extent to which hydrogen production is increased at higher temperatures (900 -1200 degree Celsius) whilst maintaining the same as resident time and S/B ratio. The effects of exhaust gas composition on heating value were also investigated. The steam reforming process produced methane (CH 4 ) and ethylene (C 2 H 4 ) between 600 to 800 degree Celsius and enhanced production ethane (C 2 H 6 ) at 700 degree Celsius. However carbon monoxide (CO) emission was slightly increased for higher temperatures all conditions. The results show that the use of biomass pyrolysis gas can produce higher hydrogen production from high temperature steam reforming. In addition the increasing reformer efficiency needs to be optimized for different operating conditions. (author)

  7. Preliminary design analysis of hot gas ducts and a intermediate heat exchanger for the nuclear hydrogen reactor

    International Nuclear Information System (INIS)

    Song, K. N.; Kim, Y. W.

    2008-01-01

    Korea Atomic Energy Research Institute (KAERI) is in the process of carrying out a nuclear hydrogen system by considering the indirect cycle gas cooled reactors that produce heat at temperatures in the order of 950 .deg. C. Primary and secondary hot gas ducts with coaxial double tubes and are key components connecting a reactor pressure vessel and a intermediate heat exchanger for the nuclear hydrogen system. In this study, preliminary design analyses on the hot gas ducts and the intermediate heat exchanger were carried out. These preliminary design activities include a preliminary design on the geometric dimensions, a preliminary strength evaluation, thermal sizing, and an appropriate material selection

  8. Hydrogen from biomass gas steam reforming for low temperature fuel cell: energy and exergy analysis

    Directory of Open Access Journals (Sweden)

    A. Sordi

    2009-03-01

    Full Text Available This work presents a method to analyze hydrogen production by biomass gasification, as well as electric power generation in small scale fuel cells. The proposed methodology is the thermodynamic modeling of a reaction system for the conversion of methane and carbon monoxide (steam reforming, as well as the energy balance of gaseous flow purification in PSA (Pressure Swing Adsorption is used with eight types of gasification gases in this study. The electric power is generated by electrochemical hydrogen conversion in fuel cell type PEMFC (Proton Exchange Membrane Fuel Cell. Energy and exergy analyses are applied to evaluate the performance of the system model. The simulation demonstrates that hydrogen production varies with the operation temperature of the reforming reactor and with the composition of the gas mixture. The maximum H2 mole fraction (0.6-0.64 mol.mol-1 and exergetic efficiency of 91- 92.5% for the reforming reactor are achieved when gas mixtures of higher quality such as: GGAS2, GGAS4 and GGAS5 are used. The use of those gas mixtures for electric power generation results in lower irreversibility and higher exergetic efficiency of 30-30.5%.

  9. 40 CFR 266.107 - Standards to control hydrogen chloride (HCl) and chlorine gas (Cl2) emissions.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Standards to control hydrogen chloride... WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Hazardous Waste Burned in Boilers and Industrial Furnaces § 266.107 Standards to control hydrogen chloride (HCl) and chlorine gas (Cl2) emissions...

  10. Thermodynamic analyses of hydrogen production from sub-quality natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Cunping; T-Raissi, Ali [Florida Solar Energy Center, University of Central Florida, 1679 Clearlake Road, Cocoa, FL 32922-5403 (United States)

    2007-01-01

    Part I of this paper analyzed sub-quality natural gas (SQNG) pyrolysis and autothermal pyrolysis. Production of hydrogen via direct thermolysis of SQNGs produces only 2mol of hydrogen and 1mol of carbon per mole of methane (CH{sub 4}). Steam reforming of SQNG (SRSQNG) could become a more effective approach because the processes produce two more moles of hydrogen via water splitting. A Gibbs reactor unit operation in the AspenPlus(TM) chemical process simulator was employed to accomplish equilibrium calculations for the SQNG+H{sub 2}O and SQNG+H{sub 2}O+O{sub 2} systems. The results indicate that water and oxygen inlet flow rates do not significantly affect the decomposition of hydrogen sulfide (H{sub 2}S) at temperatures lower than 1000{sup o}C. The major co-product of the processes is carbonyl sulfide (COS) while sulfur dimer (S{sub 2}) and carbon disulfide (CS{sub 2}) are minor by-products within this temperature range. At higher temperatures (>1300{sup o}C), CS{sub 2} and S{sub 2} become major co-products. No sulfur dioxide (SO{sub 2}) or sulfur trioxide (SO{sub 3}) is formed during either SRSQNG or autothermal SRSQNG processes, indicating that no environmentally harmful acidic gases are generated. (author)

  11. Analysis of trace levels of impurities and hydrogen isotopes in helium purge gas using gas chromatography for tritium extraction system of an Indian lead lithium ceramic breeder test blanket module.

    Science.gov (United States)

    Devi, V Gayathri; Sircar, Amit; Yadav, Deepak; Parmar, Jayraj

    2018-01-12

    In the fusion fuel cycle, the accurate analysis and understanding of the chemical composition of any gas mixture is of great importance for the efficient design of a tritium extraction and purification system or any tritium handling system. Methods like laser Raman spectroscopy and gas chromatography with thermal conductivity detector have been considered for hydrogen isotopes analyses in fuel cycles. Gas chromatography with a cryogenic separation column has been used for the analysis of hydrogen isotopes gas mixtures in general due to its high reliability and ease of operation. Hydrogen isotopes gas mixture analysis with cryogenic columns has been reported earlier using different column materials for percentage level composition. In the present work, trace levels of hydrogen isotopes (∼100 ppm of H 2 and D 2 ) have been analyzed with a Zeolite 5A and a modified γ-Al 2 O 3 column. Impurities in He gas (∼10 ppm of H 2 , O 2 , and N 2 ) have been analyzed using a Zeolite 13-X column. Gas chromatography with discharge ionization detection has been utilized for this purpose. The results of these experiments suggest that the columns developed were able to separate ppm levels of the desired components with a small response time (<6 min) and good resolution in both cases. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Development of a fermentation-based process for biomass conversion to hydrogen gas

    NARCIS (Netherlands)

    Claassen, P.A.M.; Vrije, de G.J.; Urbaniec, K.; Grabarczyk, R.

    2010-01-01

    The production of hydrogen gas from biomass to meet the foreseen demand arising from the expected introduction of fuel cells is envisaged. Apart from the well-known gasification method, fermentative conversion can also be applied for this purpose. Two options of the latter method, that is,

  13. Tritium assay in hydrogen gas by proportional counter with magnetic tape recording

    International Nuclear Information System (INIS)

    Grabczak, J.

    1982-03-01

    Analytical procedure is discussed concerning routine tritium activity determination in water samples based on hydrogen production from the water sample and radioactivity measurement by gas proportional counting. The method was found to be fully comparable to the widely adopted technique of liquid scintillation counting with electrolytic enrichment

  14. Non-catalytic plasma-arc reforming of natural gas with carbon dioxide as the oxidizing agent for the production of synthesis gas or hydrogen

    OpenAIRE

    Blom, P.W.E.; Basson, G.W.

    2013-01-01

    The world’s energy consumption is increasing constantly due to the growing population of the world. The increasing energy consumption has a negative effect on the fossil fuel reserves of the world. Hydrogen has the potential to provide energy for all our needs by making use of fossil fuel such as natural gas and nuclear-based electricity. Hydrogen can be produced by reforming methane with carbon dioxide as the oxidizing agent. Hydrogen can be produced in a Plasma-arc reforming ...

  15. The separation and recovery of hydrogen from the recycling gas in ammonia production by means of lanthanum-rich mischmetal nickel hydride beds

    International Nuclear Information System (INIS)

    Qidong, W.; Jing, W.; Changpin, C.; Weifang, L.

    1985-01-01

    The separation and recovery of hydrogen by means of a MlNi/sub 5/ (Ml: La-rich mischmetal) beds were studied. The influence of the impurity gas components (O/sub 2/, H/sub 2/O, N/sub 2/, Ar, CH/sub 4/ and NH/sub 3/ etc) on the hydrogen absorption capacity, hydriding and dehydriding kinetics and cycling ageing stability of the beds was investigated for both stagnant gases and continuously flowing gas streams. In small reactors, at first artificially made gas mixtures and finally the actual recycling gas from ammonia production were tested. In the presence of trace ammonia (<100ppm) in recycling gas stream, the efficiency of recovery amounted to 85 - 93% and the purity of the product hydrogen was around 99.9%. When ammonia amounted to 2.5%, the efficiency of recovery decreased to 81 - 86%. The hydrogen absorption capacity of the alloy bed remained unchanged after cycling 50 times, indicating the stability of the alloy satisfactory

  16. Hydrogen Gas Retention and Release from WTP Vessels: Summary of Preliminary Studies

    Energy Technology Data Exchange (ETDEWEB)

    Gauglitz, Phillip A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bontha, Jagannadha R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Daniel, Richard C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mahoney, Lenna A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rassat, Scot D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wells, Beric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bao, Jie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Boeringa, Gregory K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Buchmiller, William C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burns, Carolyn A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chun, Jaehun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Karri, Naveen K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Li, Huidong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tran, Diana N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-07-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) is currently being designed and constructed to pretreat and vitrify a large portion of the waste in the 177 underground waste storage tanks at the Hanford Site. A number of technical issues related to the design of the pretreatment facility (PTF) of the WTP have been identified. These issues must be resolved prior to the U.S. Department of Energy (DOE) Office of River Protection (ORP) reaching a decision to proceed with engineering, procurement, and construction activities for the PTF. One of the issues is Technical Issue T1 - Hydrogen Gas Release from Vessels (hereafter referred to as T1). The focus of T1 is identifying controls for hydrogen release and completing any testing required to close the technical issue. In advance of selecting specific controls for hydrogen gas safety, a number of preliminary technical studies were initiated to support anticipated future testing and to improve the understanding of hydrogen gas generation, retention, and release within PTF vessels. These activities supported the development of a plan defining an overall strategy and approach for addressing T1 and achieving technical endpoints identified for T1. Preliminary studies also supported the development of a test plan for conducting testing and analysis to support closing T1. Both of these plans were developed in advance of selecting specific controls, and in the course of working on T1 it was decided that the testing and analysis identified in the test plan were not immediately needed. However, planning activities and preliminary studies led to significant technical progress in a number of areas. This report summarizes the progress to date from the preliminary technical studies. The technical results in this report should not be used for WTP design or safety and hazards analyses and technical results are marked with the following statement: “Preliminary Technical Results for Planning – Not to be used for WTP Design

  17. Fluoride release, recharge and flexural properties of polymethylmethacrylate containing fluoridated glass fillers.

    Science.gov (United States)

    Al-Bakri, I A; Swain, M V; Naoum, S J; Al-Omari, W M; Martin, E; Ellakwa, A

    2014-06-01

    The purpose of this study was to investigate the effect of fluoridated glass fillers on fluoride release, recharge and the flexural properties of modified polymethylmethacrylate (PMMA). Specimens of PMMA denture base material with various loading of fluoridated glass fillers (0%, 1%, 2.5%, 5% and 10% by weight) were prepared. Flexural properties were evaluated on rectangular specimens (n = 10) aged in deionized water after 24 hours, 1 and 3 months. Disc specimens (n = 10) were aged for 43 days in deionized water and lactic acid (pH 4.0) and fluoride release was measured at numerous intervals. After ageing, specimens were recharged and fluoride re-release was recorded at 1, 3 and 7 days after recharge. Samples containing 2.5%, 5% and 10% glass fillers showed significantly (p glass fillers specimens. All experimental specimens exhibited fluoride release in both media. The flexural strength of specimens decreased in proportion to the percentage filler inclusion with the modulus of elasticity values remaining within ISO Standard 1567. The modified PMMA with fluoridated glass fillers has the ability to release and re-release fluoride ion. Flexural strength decreased as glass filler uploading increased. © 2014 Australian Dental Association.

  18. Fluoride glass fiber optics

    CERN Document Server

    Aggarwal, Ishwar D

    1991-01-01

    Fluoride Glass Fiber Optics reviews the fundamental aspects of fluoride glasses. This book is divided into nine chapters. Chapter 1 discusses the wide range of fluoride glasses with an emphasis on fluorozirconate-based compositions. The structure of simple fluoride systems, such as BaF2 binary glass is elaborated in Chapter 2. The third chapter covers the intrinsic transparency of fluoride glasses from the UV to the IR, with particular emphasis on the multiphonon edge and electronic edge. The next three chapters are devoted to ultra-low loss optical fibers, reviewing methods for purifying and

  19. A simple and colorimetric fluoride receptor and its fluoride-responsive organogel

    Energy Technology Data Exchange (ETDEWEB)

    Yu Xudong, E-mail: 081022009@fudan.edu.cn [College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080 (China); Li Yajuan [College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080 (China); Yin Yaobing; Yu Decai [College of Science, Hebei University of Engineering, 199 South street of Guangming, Handan 056038 (China)

    2012-08-01

    In this paper, a new p-nitrophenylhydrozine-based anion receptor 1 containing cholesterol group had been designed and synthesized. It could selectively recognize fluoride among different anions tested with color changes from pale yellow to red for visual detection. Simultaneously, it could gel in cyclohexane, and the gel was also fluoride-responsive. When treated with TBAF (tetra-n-butylammonium fluoride), the gel could undergo gel-sol transition accompanied by color, morphology and surface changes. The binding mechanism had been investigated by UV-vis and {sup 1}HNMR (proton nuclear magnetic resonance spectra) titrations. From SEM (scanning electron microscope), SAXS (small-angle X-ray scattering), IR (Infrared Spectroscopy) and CA (contact angle) experiments, it was indicated that the addition of F{sup -} could destroy the molecule assembly of host 1 in the gel state, thus resulting in the gel-to-sol transition due to the binding site competition effect. To the best of our knowledge, this was the simplest fluoride-responsive organogel with high selectivity. Highlights: Black-Right-Pointing-Pointer A novel kind receptor for selective recognition of fluoride had been designed. Black-Right-Pointing-Pointer Its organogel was also fluoride-responsive. Black-Right-Pointing-Pointer This is the simplest fluoride-responsive organogel with high selectivity.

  20. Microbial Electrolysis Cells for High Yield Hydrogen Gas Production from Organic Matter

    NARCIS (Netherlands)

    Logan, B.E.; Call, D.; Cheng, S.; Hamelers, H.V.M.; Sleutels, T.H.J.A.; Jeremiasse, A.W.; Rozendal, R.A.

    2008-01-01

    The use of electrochemically active bacteria to break down organic matter, combined with the addition of a small voltage (>0.2 V in practice) in specially designed microbial electrolysis cells (MECs), can result in a high yield of hydrogen gas. While microbial electrolysis was invented only a few

  1. Fluoride metabolism in plants

    Energy Technology Data Exchange (ETDEWEB)

    Peters, R; Shorthouse, M

    1964-04-04

    Grass seedlings exposed to inorganic fluoride solutions do not take up appreciable amounts of fluoride until concentrations of more than 1.0 mM (19 p.p.m.) are used. No formation of organic fluoride has been found, even with exposure to 15.75 mM fluoride, indicating that there is no formation of fluoroacetate or similar compounds. 8 references, 2 tables.

  2. Hydrogen enriched compressed natural gas (HCNG: A futuristic fuel for internal combustion engines

    Directory of Open Access Journals (Sweden)

    Nanthagopal Kasianantham

    2011-01-01

    Full Text Available Air pollution is fast becoming a serious global problem with increasing population and its subsequent demands. This has resulted in increased usage of hydrogen as fuel for internal combustion engines. Hydrogen resources are vast and it is considered as one of the most promising fuel for automotive sector. As the required hydrogen infrastructure and refueling stations are not meeting the demand, widespread introduction of hydrogen vehicles is not possible in the near future. One of the solutions for this hurdle is to blend hydrogen with methane. Such types of blends take benefit of the unique combustion properties of hydrogen and at the same time reduce the demand for pure hydrogen. Enriching natural gas with hydrogen could be a potential alternative to common hydrocarbon fuels for internal combustion engine applications. Many researchers are working on this for the last few years and work is now focused on how to use this kind of fuel to its maximum extent. This technical note is an assessment of HCNG usage in case of internal combustion engines. Several examples and their salient features have been discussed. Finally, overall effects of hydrogen addition on an engine fueled with HCNG under various conditions are illustrated. In addition, the scope and challenges being faced in this area of research are clearly described.

  3. Achievement report on research and development in the Sunshine Project in fiscal 1976. Comprehensive discussion on hydrogen utilizing subsystems and research on peripheral technologies (Research related to hydrogen gas turbines); 1976 nendo suiso riyo subsystem no sogoteki kento to shuhen gijutsu ni kansuru kenkyu. Suiso gas turbine ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-01

    This paper describes development of hydrogen gas turbines from among the comprehensive discussions on hydrogen utilizing subsystems. Hydrogen and oxygen gas turbine cycle has varying optimal conditions of plant efficiency depending on fuel patterns. The regenerative cycle may have the turbine inlet temperature at about 1,000 degrees C. The inlet pressure would be ten and odds atmospheric pressure. It is better to keep the inlet temperature higher in order to obtain high specific power. Reduction of power generation cost in using this plant requires that construction cost be decreased, and the specific power be increased if the plant efficiency (in other words, running cost) is assumed constant. Further development is required on technologies to use higher temperatures and pressures. For that purpose, discussions should be given on material development, structural design, and inspection. Hydrogen gas turbines, which present low pollution depending on combustion methods, have great significance for such social problem as environmental contamination. In terms of economy, since hydrogen gas turbines depend on efficiency and fuel unit cost, the evaluation thereon may vary depending on how well the regenerative gas turbines have been established, in addition to future change in hydrogen price and the technologies to use higher temperatures and pressures. (NEDO)

  4. ELECTROCHEMICAL SEPARATION AND CONCENTRATION OF HYDROGEN SULFIDE FROM GAS MIXTURES

    Science.gov (United States)

    Winnick, Jack; Sather, Norman F.; Huang, Hann S.

    1984-10-30

    A method of removing sulfur oxides of H.sub.2 S from high temperature gas mixtures (150.degree.-1000.degree. C.) is the subject of the present invention. An electrochemical cell is employed. The cell is provided with inert electrodes and an electrolyte which will provide anions compatible with the sulfur containing anions formed at the anode. The electrolyte is also selected to provide inert stable cations at the temperatures encountered. The gas mixture is passed by the cathode where the sulfur gases are converted to SO.sub.4 -- or, in the case of H.sub.2 S, to S--. The anions migrate to the anode where they are converted to a stable gaseous form at much greater concentration levels (>10X). Current flow may be effected by utilizing an external source of electrical energy or by passing a reducing gas such as hydrogen past the anode.

  5. Bottled Water and Fluoride

    Science.gov (United States)

    ... Private Wells Infant Formula Fluorosis Public Health Service Recommendation Water Operators & Engineers Water Fluoridation Additives Shortages of Fluoridation Additives Drinking Water Pipe Systems CDC-Sponsored Water Fluoridation Training Links to Other ...

  6. Pressure of a partially ionized hydrogen gas : numerical results from exact low temperature expansions

    OpenAIRE

    Alastuey , Angel; Ballenegger , Vincent

    2010-01-01

    8 pages; International audience; We consider a partially ionized hydrogen gas at low densities, where it reduces almost to an ideal mixture made with hydrogen atoms in their ground-state, ionized protons and ionized electrons. By performing systematic low-temperature expansions within the physical picture, in which the system is described as a quantum electron-proton plasma interacting via the Coulomb potential, exact formulae for the first five leading corrections to the ideal Saha equation ...

  7. Gas-phase Hydrogenation of Crotonaldehyde Over Nickel-on-Kieselguhr Catalyst Pellets

    International Nuclear Information System (INIS)

    Uraz, C.; Atalay, F.; Atalay, S.

    2001-01-01

    Gas phase catalytic hydrogenation of crotonaldehyde to η-butanol was investigated. A nickel based commercial catalyst produced by Harshaw was used at constant temperatures ranging from 160 to 210deg; at pressures of 1.5, 2 , and 2.5 atm and at different crotonaldehyde to hydrogen feed ratios changing from 0.134 to 0.226. The conversion of crotonaldehyde at different operating conditions were determined and the reaction rates were calculated . The experimental results were fitted to ten langmuir-Hinshelwood/ Eley Rideal type models in addition to a homogeneous kinetics modal and the best modal was identified. The effects of external and internal mass transfer resistances were found to be negligible .(authors) refs 28., 2 figs , 4 tabs

  8. Numerical investigation on the effects of natural gas and hydrogen blends on engine combustion

    Energy Technology Data Exchange (ETDEWEB)

    Morrone, Biagio; Unich, Andrea [Dipartimento di Ingegneria Aerospaziale e Meccanica (DIAM), Seconda Universita degli Studi di Napoli via Roma 29, 81031 Aversa (CE) (Italy)

    2009-05-15

    The use of hydrogen blended with natural gas is a viable alternative to pure fossil fuels because of the expected reduction of the total pollutant emissions and increase of efficiency. These blends offer a valid opportunity for tackling sustainable transportation, in view of the future stringent emission limits for road vehicles. The aim of the present paper is the investigation of the performance of internal combustion engines fuelled by such blends. A numerical investigation on the characteristics of natural gas-hydrogen blends as well as their effect on engine performance is carried out. The activity is focused on the influence of such blends on flame propagation speed. Combustion pattern modelling allows the comparison of engine brake efficiency and power output using different fuels. Results showed that there is an increase in engine efficiency only if Maximum Brake Torque (MBT) spark advance is used for each fuel. Moreover, an economic analysis has been carried out to determine the over cost of hydrogen in such blends, showing percent increments by using these fuels about between 10 and 34%. (author)

  9. Treating landfill gas hydrogen sulphide with mineral wool waste (MWW) and rod mill waste (RMW).

    Science.gov (United States)

    Bergersen, Ove; Haarstad, Ketil

    2014-01-01

    Hydrogen sulphide (H2S) gas is a major odorant at municipal landfills. The gas can be generated from different waste fractions, for example demolition waste containing gypsum based plaster board. The removal of H2S from landfill gas was investigated by filtering it through mineral wool waste products. The flow of gas varied from 0.3 l/min to 3.0 l/min. The gas was typical for landfill gas with a mean H2S concentration of ca. 4500 ppm. The results show that the sulphide gas can effectively be removed by mineral wool waste products. The ratios of the estimated potential for sulphide precipitation were 19:1 for rod mill waste (RMW) and mineral wool waste (MWW). A filter consisting of a mixture of MWW and RMW, with a vertical perforated gas tube through the center of filter material and with a downward gas flow, removed 98% of the sulfide gas over a period of 80 days. A downward gas flow was more efficient in contacting the filter materials. Mineral wool waste products are effective in removing hydrogen sulphide from landfill gas given an adequate contact time and water content in the filter material. Based on the estimated sulphide removal potential of mineral wool and rod mill waste of 14 g/kg and 261 g/kg, and assuming an average sulphide gas concentration of 4500 ppm, the removal capacity in the filter materials has been estimated to last between 11 and 308 days. At the studied location the experimental gas flow was 100 times less than the actual gas flow. We believe that the system described here can be upscaled in order to treat this gas flow. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Hydrogen gas sensing feature of polyaniline/titania (rutile) nanocomposite at environmental conditions

    Science.gov (United States)

    Milani Moghaddam, Hossain; Nasirian, Shahruz

    2014-10-01

    The resistance-based sensors of polyaniline/titania (rutile) nanocomposite (TPNC) were prepared by spin coating technique onto an epoxy glass substrate with Cu-interdigited electrodes to study their hydrogen (H2) gas sensing features. Our findings are that the change of the surface morphology, porosity and wt% of titania in TPNCs have a significant effect on H2 gas sensing of sensors. All of the sensors had a reproducibility response toward 0.8 vol% H2 gas at room temperature, air pressure and 50% relative humidity. A sensor with 40 wt% of titania nanoparticles had better response/recovery time and the response than other sensors. Moreover, H2 gas sensing mechanism of TPNC sensors based contact areas and the correlation of energy levels between PANI chains and the titania grains were studied.

  11. Plasma-neutral gas interaction in a tokamak divertor: effects of hydrogen molecules and plasma recombination

    International Nuclear Information System (INIS)

    Krasheninnikov, S.I.; Pigarov, A.Yu.; Soboleva, T.K.; Sigmar, D.J.

    1997-01-01

    We investigate the influence of hydrogen molecules on plasma recombination using a collisional-radiative model for multispecies hydrogen plasmas and tokamak detached divertor parameters. The rate constant found for molecular activated recombination of a plasma can be as high as 2 x 10 -10 cm 3 /s, confirming our pervious estimates. We investigate the effects of hydrogen molecules and plasma recombination on self-consistent plasma-neutral gas interactions in the recycling region of a tokamak divertor. We treat the plasma flow in a fluid approximation retaining the effects of plasma recombination and employing a Knudsen neutral transport model for a 'gas box' divertor geometry. For the model of plasma-neutral interactions we employ we find: (a) molecular activated recombination is a dominant channel of divertor plasma recombination; and (b) plasma recombination is a key element leading to a decrease in the plasma flux onto the target and substantial plasma pressure drop which are the main features of detached divertor regimes. (orig.)

  12. The impact of hydrogen-bearing gas to change indexes of car engine in operating conditions

    Directory of Open Access Journals (Sweden)

    Korpach A.

    2016-08-01

    Full Text Available Due to lower oil and petroleum products there is a constant problem of the growing use of alternative fuels. One of the most promising is hydrogen, but its use as a self-fuel is rather difficult, but using as the form of supplements has prospects for widespread use in road transport. In order to establish the effectiveness of its use as a hydrogen-containing gas as a product of the electrolysis of the alkaline solution, a series of tests conducted. Tests were carried out on the car ZAZ–1102 "Tavria", which is equipped with an engine MeMZ–245 with carburetor feed system and electrolyser SuperKit 10, which is powered by the vehicle electrical system. At the same time also used electrolytic League–02. The effect on fuel economy additives hydrogen-containing gas to the air charge is determined when the engine is idling. When using additives 1,34 % interest, from the weight of the fuel, fuel efficiency has increased by 1,9 %.

  13. Life Cycle Assessment of Hydrogen Production via Natural Gas Steam Reforming; TOPICAL

    International Nuclear Information System (INIS)

    Spath, P. L.; Mann, M. K.

    2000-01-01

    A life cycle assessment of hydrogen production via natural gas steam reforming was performed to examine the net emissions of greenhouse gases as well as other major environmental consequences. LCA is a systematic analytical method that helps identify and evaluate the environmental impacts of a specific process or competing processes

  14. Gas-chromatographic separation of hydrogen isotopes mixtures on capillary molecular sieve 5 A column at 173 K

    International Nuclear Information System (INIS)

    Bidica, N.; Preda, A.; Stanciu, V.

    2002-01-01

    Analysis of a gas mixture of hydrogen species, is not too easy because the differences in their physical-chemical properties are very small; the most different are their masses, and consequently most common analytical method appear to be the mass-spectrometry. However, the impossibility to distinguish between two ions (atomic or molecular) with the same mass renders this method as unapplicable. Another problem is the decay of tritium with production of 3 He. These disadvantages of mass-spectrometry have made that other analytical methods, like gas chromatography, to be considered and developed. Thus, there are many papers about various chromatographic columns especially prepared for hydrogen species separation but the preparation and treatment of these columns are very difficult to reproduce. Besides these, there are two other main disadvantages: column operating temperature is very low and long retention times for hydrogen species (more than half an hour) are required. However, the gas-chromatography method still remains an appropriate one. The method described in this paper was based on using a capillary molecular sieve 5A column which has been operated for this kind of separation. The retention times were relatively short, about 8-9 minutes. The carrier gas was Ne and the detector - TCD. In the paper chromatograms for various carrier flow rates and various hydrogen isotope mixtures are presented. The results demonstrated a quite good efficiency for H 2 , HD, D 2 and a not very good one for orthoH 2 -paraH 2 . (authors)

  15. Investigation of low-latitude hydrogen emission in terms of a two-component interstellar gas model

    International Nuclear Information System (INIS)

    Baker, P.L.; Burton, W.B.

    1975-01-01

    The high-resolution 21-cm hydrogen line observations at low galactic latitude of Burton and Verschuur have been analyzed to determine the large-scale distribution of galactic hydrogen. The distribution parameters are found by model fitting. Optical depth affects have been computed using a two-component gas model. Analysis shows that a multiphase description of the medium is essential to the interpretation of low-latitude emission observations. Where possible, the number of free parameters in the gas model has been reduced. Calculations were performed for a one-component, uniform spin temperature, gas model in order to show the systematic departures between this model and the data caused by the incorrect treatment of the optical depth effect. In the two-component gas, radiative transfer is treated by a Monte Carlo calculation since the opacity of the gas arises in a randomly distributed, cold, optically thick, low velocity-dispersion, cloud medium. The emission arises in both the cloud medium and a smoothly distributed, optically thin, high velocity-dispersion, intercloud medium. The synthetic profiles computed from the two-component model reproduce both the large-scale trends of the observed emission profiles and the magnitude of the small-scale emission irregularities. The analysis permits the determination of values for []he thickness of the galactic disk between half density points, the total observed neutral hydrogen mass of the Galaxy, and the central number density of the intercloud atoms. In addition, the analysis is sensitive to the size of clouds contributing to the observations. Computations also show that synthetic emission profiles based on the two-component model display both the zero-velocity and high-velocity ridges, indicative of optical thinness on a large scale, in spite of the presence of optically thick gas

  16. Fluoride release and recharge abilities of contemporary fluoride-containing restorative materials and dental adhesives.

    Science.gov (United States)

    Dionysopoulos, Dimitrios; Koliniotou-Koumpia, Eugenia; Helvatzoglou-Antoniades, Maria; Kotsanos, Nikolaos

    2013-01-01

    The aim of this study was to evaluate the fluoride release of five fluoride-releasing restorative materials and three dental adhesives, before and after NaF solution treatment. Five restorative materials (Fuji IX GP, GC Corp.; Ketac N100, 3M ESPE; Dyract Extra, Dentsply; Beautifil II, Shofu Inc.; Wave, SDI) and three dental adhesives (Stae, SDI; Fluorobond II - Shofu Inc.; Prime & Bond NT, Dentsply) were investigated before and after NaF solution treatment. A fluoride ion-selective electrode was to measure fluoride concentrations. During the 86-day period before NaF solution treatment, Fuji IX GP released the highest amount of fluoride among the restorative materials while Prime & Bond NT was the highest among the dental adhesives. After NaF solution treatment, Fuji IX GP again ranked the highest in fluoride release among the restorative materials while Fluorobond II ranked the highest among dental adhesives. It was concluded that the compositions and setting mechanisms of fluoride-containing dental materials influenced their fluoride release and recharge abilities.

  17. Tamarind (Tamarindus indica) fruit shell carbon: A calcium-rich promising adsorbent for fluoride removal from groundwater

    International Nuclear Information System (INIS)

    Sivasankar, V.; Rajkumar, S.; Murugesh, S.; Darchen, A.

    2012-01-01

    Highlights: ► The carbonization of Tamarind fruit shell improved its defluoridation efficiency. ► Calcium carbonate particles were involved in the defluoridation process. ► Adsorbent dose, pH, and fluoride concentration showed significant effects. ► Maximum adsorption of fluoride was achieved at pH 7–8. ► Prepared carbons were efficient in treating three natural waters. - Abstract: Tamarindus indica fruit shells (TIFSs) are naturally calcium rich compounds. They were impregnated with ammonium carbonate and then carbonized, leading to ammonium carbonate activated ACA-TIFS carbon. The resulting materials and carbon arising from virgin fruit shells V-TIFS were characterized and assayed as adsorbent for the removal of fluoride anions from groundwater. The fluoride scavenging ability of TIFS carbons was due to naturally dispersed calcium compounds. X-ray diffraction (XRD) showed that TIFS carbon contained a mixture of calcium oxalate and calcium carbonate. Batch studies on the fluoride removal efficiency of TIFS carbons with respect to contact time, pH, initial fluoride concentration, and co-ion interference were conducted. Applicability of various kinetic models (viz., pseudo-first-order, pseudo-second-order, intra-particle diffusion and Elovich) and sorption isotherms were tested for batch techniques. The fluoride removal capacity of TIFS carbons was found to be 91% and 83% at a pH of 7.05 for V-TIFS and ACA-TIFS carbons, respectively. The practical applicability of TIFS carbons using groundwater samples was approved. The fluoride removal was greater in groundwater without hydrogen carbonate ions than those containing these ions. The characterizations of fluoride unloaded and loaded TIFS carbons were done by SEM and XRD studies.

  18. Atomic and molecular hydrogen gas temperatures in a low-pressure helicon plasma

    Science.gov (United States)

    Samuell, Cameron M.; Corr, Cormac S.

    2015-08-01

    Neutral gas temperatures in hydrogen plasmas are important for experimental and modelling efforts in fusion technology, plasma processing, and surface modification applications. To provide values relevant to these application areas, neutral gas temperatures were measured in a low pressure (radiofrequency helicon discharge using spectroscopic techniques. The atomic and molecular species were not found to be in thermal equilibrium with the atomic temperature being mostly larger then the molecular temperature. In low power operation (measurements near a graphite target demonstrated localised cooling near the sample surface. The temporal evolution of the molecular gas temperature during a high power 1.1 ms plasma pulse was also investigated and found to vary considerably as a function of pressure.

  19. Resistance of HEPA filter separator materials to humid air--hydrogen fluoride--fluorine environments

    International Nuclear Information System (INIS)

    Weber, C.W.; Petit, G.S.; Woodfin, S.B.

    1977-01-01

    The U. S. Energy Research and Development Administration (ERDA) is interested in the development of a high-efficiency particulate air (HEPA) filter that is resistant to such corrosive reagents as hydrogen fluoride (HF) and fluorine (F 2 ) in air environments of normal relative humidity (about 50% RH). Several types of separator materials are used in the fabrication of commercial filters. The basic types of separator materials are asbestos, Kraft paper, plastic, and aluminum. At the request of the ERDA Division of Operational Safety, the different types of separator materials have been evaluated for their resistance to corrosive attack by HF and F 2 . The separator materials were dynamically tested in the 4-stage multiunit tester located in the Oak Ridge Gaseous Diffusion Plant laboratories. This is the system previously used in the evaluation of the Herty Foundation filter paper samples. Concurrent with the testing of filter media for its resistance to HF and F 2 , another component of the completed filter, the separator, was tested. All samples were exposed to a constant air flow (50% RH) of 32 liters/min, at 100 0 F, containing 900 ppM HF and 300 ppM F 2 . Exposure periods varied from 2 to 1000 h; however, the longer exposures were made only on the stronger candidates. Test results show the plastic and aluminum separator materials to be superior to the other types in resistance to HF and F 2 . The asbestos separators disintegrated after a relatively short exposure time; the Kraft paper types were the next weakest. The Clear Plastic S was the best performer of the plastics tested

  20. Hydrogen-Assisted IC Engine Combustion as a Route to Hydrogen Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Andre Boehman; Daniel Haworth

    2008-09-30

    The 'Freedom Car' Initiative announced by the Bush Administration has placed a significant emphasis on development of a hydrogen economy in the United States. While the hydrogen-fueled fuel-cell vehicle that is the focus of the 'Freedom Car' program would rely on electrochemical energy conversion, and despite the large amount of resources being devoted to its objectives, near-term implementation of hydrogen in the transportation sector is not likely to arise from fuel cell cars. Instead, fuel blending and ''hydrogen-assisted'' combustion are more realizable pathways for wide-scale hydrogen utilization within the next ten years. Thus, a large potential avenue for utilization of hydrogen in transportation applications is through blending with natural gas, since there is an existing market for natural-gas vehicles of various classes, and since hydrogen can provide a means of achieving even stricter emissions standards. Another potential avenue is through use of hydrogen to 'assist' diesel combustion to permit alternate combustion strategies that can achieve lower emissions and higher efficiency. This project focused on developing the underlying fundamental information to support technologies that will facilitate the introduction of coal-derived hydrogen into the market. Two paths were envisioned for hydrogen utilization in transportation applications. One is for hydrogen to be mixed with other fuels, specifically natural gas, to enhance performance in existing natural gas-fueled vehicles (e.g., transit buses) and provide a practical and marketable avenue to begin using hydrogen in the field. A second is to use hydrogen to enable alternative combustion modes in existing diesel engines, such as homogeneous charge compression ignition, to permit enhanced efficiency and reduced emissions. Thus, this project on hydrogen-assisted combustion encompassed two major objectives: (1) Optimization of hydrogen-natural gas mixture

  1. No calcium-fluoride-like deposits detected in plaque shortly after a sodium fluoride mouthrinse.

    Science.gov (United States)

    Vogel, G L; Tenuta, L M A; Schumacher, G E; Chow, L C

    2010-01-01

    Plaque 'calcium-fluoride-like' (CaF(2)-like) and fluoride deposits held by biological/bacterial calcium fluoride (Ca-F) bonds appear to be the source of cariostatic concentrations of fluoride in plaque fluid. The aim of this study was to quantify the amounts of plaque fluoride held in these reservoirs after a sodium fluoride rinse. 30 and 60 min after a 228 microg/g fluoride rinse, plaque samples were collected from 11 volunteers. Each sample was homogenized, split into 2 aliquots (aliquots 1 and 2), centrifuged, and the recovered plaque fluid combined and analyzed using microelectrodes. The plaque mass from aliquot 1 was retained. The plaque mass from aliquot 2 was extracted several times with a solution having the same fluoride, calcium and pH as the plaque fluid in order to extract the plaque CaF(2)-like deposits. The total fluoride in both aliquots was then determined. In a second experiment, the extraction completeness was examined by applying the above procedure to in vitro precipitates containing known amounts of CaF(2)-like deposits. Nearly identical fluoride concentrations were found in both plaque aliquots. The extraction of the CaF(2)-like precipitates formed in vitro removed more than 80% of these deposits. The results suggest that either CaF(2)-like deposits were not formed in plaque or, if these deposits had been formed, they were rapidly lost. The inability to form persistent amounts of CaF(2)-like deposits in plaque may account for the relatively rapid loss of plaque fluid fluoride after the use of conventional fluoride dentifrices or rinses. (c) 2010 S. Karger AG, Basel.

  2. Mus musculus bone fluoride concentration as a useful biomarker for risk assessment of skeletal fluorosis in volcanic areas.

    Science.gov (United States)

    Linhares, Diana; Camarinho, Ricardo; Garcia, Patrícia Ventura; Rodrigues, Armindo Dos Santos

    2018-08-01

    Fluoride is often found in elevated concentrations in volcanic areas due to the release of magmatic fluorine as hydrogen fluorine through volcanic degassing. The exposure to high levels of fluoride can affect the processes of bone formation and resorption causing skeletal fluorosis, a pathology that can easily be mistaken for other skeletal diseases. In this study, we aimed to determine if fluoride concentration in the femoral bone of wild populations of the house mouse (Mus musculus) is a good biomarker of exposure to active volcanic environments naturally enriched in fluoride, allowing their use in biomonitoring programs. The fluoride concentration of the whole femoral bone of 9 mice from Furnas (5 males and 4 females) and 33 mice from Rabo de Peixe (16 males and 17 females) was measured by the potentiometric method with a fluoride ion selective electrode. Fluoride in bones was significantly higher in the mice from Furnas when compared with the mice from Rabo de Peixe (616.5 ± 129.3 μg F/g vs. 253.8 ± 10.5 μg F/g). Accumulation rates were also significantly higher in the mice collected in Furnas when compared with Rabo de Peixe individuals (3.84 ± 0.52 μg F/day vs. 1.22 ± 0.06 μg F/day). The results demonstrate a significant association between exposure to fluoride in the active volcanic environment and fluoride content in bone, revealing that bone fluoride concentration is a suitable biomarker of chronic environmental exposure to fluoride. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Preparation of Ti3C2 and Ti2C MXenes by fluoride salts etching and methane adsorptive properties

    Science.gov (United States)

    Liu, Fanfan; Zhou, Aiguo; Chen, Jinfeng; Jia, Jin; Zhou, Weijia; Wang, Libo; Hu, Qianku

    2017-09-01

    Here we reported the preparation of Ti3C2 MXene and Ti2C MXene by etching Ti3AlC2 and Ti2AlC with various fluoride salts in hydrochloric acid (HCl), including lithium fluoride (LiF), sodium fluoride (NaF), potassium fluoride (KF), and ammonium fluoride (NH4F). As-prepared Ti2C was further delaminated by urea, dimethylsulfoxide or ammonium hydroxide. Based on theoretical calculation and XPS results, the type of positive ions (Li+, Na+, K+, or NH4+) in etchant solution affect the surface structure of prepared MXene, which, in turn, affects the methane adsorption properties of MXene. The highest methane adsorption capacity is 8.5 cm3/g for Ti3C2 and 11.6 cm3/g for Ti2C. MXenes made from LiF and NH4F can absorb methane under high pressure and can keep methane under normal pressure, these MXenes may have important application on capturing methane or other hazardous gas molecules. MXenes made from NaF and KF can absorb methane under high pressure and release methane under low pressure. They can have important application in the adsorb storage of nature gas.

  4. Fluoride concentration in urine after silver diamine fluoride application on tooth enamel

    Science.gov (United States)

    Sari, D. L.; Bahar, A.; Gunawan, H. A.; Adiatman, M.; Rahardjo, A.; Maharani, D. A.; Toptanci, I. R.; Yavuz, I.

    2017-08-01

    Silver Diammine Fluoride (SDF), which contains fluoride, is known to inhibit tooth enamel demineralization and increase fluoride concentrations in saliva and urine. The aim of this study is to analyze the fluoride concentration in urine after application of SDF on tooth enamel. Urine from four subjects was collected prior to, 30 minutes after, and two and three hours after the application of SDF, and an ion-selective electrode was used to measure the fluoride concentrations. There was no significant difference between time 1 and time 2, time 1 and time 3, time 1 and time 4, time 2 and 3 (p > 0.05), and there was a significant difference between time 2 and time 4 as well as time 3 and time 4 (p < 0.05). There was a decrease in the concentration of fluoride ions in urine from the baseline to 30 minutes after application, and an increase from baseline to two and three hours after the application of SDF.

  5. Some experiments on cold fusion by deuterium hydrogen gas infusion in titanium metal alloy

    International Nuclear Information System (INIS)

    Mestnik Filho, J.; Geraldo, L.P.; Pugliese, R.; Saxena, R.N.; Morato, S.P.; Fulfaro, R.

    1990-05-01

    New results on cold fusion are reported where three different experimental situations have been tried: a) deuterium gas loaded titanium; b) deuterium gas loaded Ti 0.8 Zr 0.2 CrMn alloy and c) titanium and the Ti 0.8 Zr 0.2 CrMn alloy loaded with a mixture of deuterium and hydrogen gases. With these experiments, new thermodynamical non equilibrium conditions were achieved and the possibility of cold fusion between protons and deuterons was also tested. Three independent neutron detectors and one NaI(Tl) were utilized. Despite some large values reported in the literature for the fusion rate, an upper limit of only 8 x 10 -24 fusions/sper deuterium pair or per deuterium-hydrogen pair was determined within the attained accuracy. (author) [pt

  6. Building and interconnecting hydrogen networks: Insights from the electricity and gas experience in Europe

    International Nuclear Information System (INIS)

    Bento, Nuno

    2008-01-01

    This paper aims to investigate the transition to a new energy system based on hydrogen in the European liberalized framework. After analyzing the literature on the hydrogen infrastructure needs in Europe, we estimate the size and scope of the transition challenge. We take the theoretical framework of network economics to analyze early hydrogen infrastructure needs. Therefore, several concepts are applied to hydrogen economics such as demand club effects, scale economies on large infrastructures, scope economies, and positive socio-economical externalities. Based on the examples of the electricity and natural gas industry formation in Europe, we argue for public intervention in order to create conditions to reach more rapidly the critical size of the network and to prompt network externalities, allowing for the market diffusion of and, thus, an effective transition to the new energy system

  7. Thermal detection mechanism of SiC based hydrogen resistive gas sensors

    Science.gov (United States)

    Fawcett, Timothy J.; Wolan, John T.; Lloyd Spetz, Anita; Reyes, Meralys; Saddow, Stephen E.

    2006-10-01

    Silicon carbide (SiC) resistive hydrogen gas sensors have been fabricated and tested. Planar NiCr contacts were deposited on a thin 3C-SiC epitaxial film grown on thin Si wafers bonded to polycrystalline SiC substrates. At 673K, up to a 51.75±0.04% change in sensor output current and a change in the device temperature of up to 163.1±0.4K were demonstrated in response to 100% H2 in N2. Changes in device temperature are shown to be driven by the transfer of heat from the device to the gas, giving rise to a thermal detection mechanism.

  8. Hydrogen separation process

    Science.gov (United States)

    Mundschau, Michael [Longmont, CO; Xie, Xiaobing [Foster City, CA; Evenson, IV, Carl; Grimmer, Paul [Longmont, CO; Wright, Harold [Longmont, CO

    2011-05-24

    A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to a hydrogen separation membrane system comprising a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to an integrated water gas shift/hydrogen separation membrane system wherein the hydrogen separation membrane system comprises a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for pretreating a membrane, comprising: heating the membrane to a desired operating temperature and desired feed pressure in a flow of inert gas for a sufficient time to cause the membrane to mechanically deform; decreasing the feed pressure to approximately ambient pressure; and optionally, flowing an oxidizing agent across the membrane before, during, or after deformation of the membrane. A method of supporting a hydrogen separation membrane system comprising selecting a hydrogen separation membrane system comprising one or more catalyst outer layers deposited on a hydrogen transport membrane layer and sealing the hydrogen separation membrane system to a porous support.

  9. Water Fluoridation Statistics - Percent of PWS population receiving fluoridated water

    Data.gov (United States)

    U.S. Department of Health & Human Services — 2000-2014. Water Fluoridation Statistics is a biennial report of the percentage and number of people receiving fluoridated water from 2000 through 2014, originally...

  10. Water Fluoridation Statistics - Percent of PWS population receiving fluoridated water

    Data.gov (United States)

    U.S. Department of Health & Human Services — 2000-2014 Water Fluoridation Statistics is a biennial report of the percentage and number of people receiving fluoridated water from 2000 through 2014, originally...

  11. Fluoride releasing and enamel demineralization around orthodontic brackets by fluoride-releasing composite containing nanoparticles.

    Science.gov (United States)

    Melo, Mary A S; Morais, Weslanny A; Passos, Vanara F; Lima, Juliana P M; Rodrigues, Lidiany K A

    2014-05-01

    Fluoride-containing materials have been suggested to control enamel demineralization around orthodontic brackets during the treatment with fixed appliances. The improvement of their properties has been made through innovations, such as the application of nanotechnology by incorporation of nanofillers. This in vitro study evaluated the capacity of fluoride releasing and enamel demineralization inhibition of fluoride-releasing nanofilled cement around orthodontic brackets using an artificial caries biofilm model. Forty bovine enamel discs were selected by evaluating surface microhardness and randomized into four groups (n = 10): non-fluoride-releasing microfilled composite, fluoride-releasing microfilled composite, resin-modified glass ionomer cement (RMGI), and fluoride-releasing nanofilled composite (FN). After brackets bonding in each disc, the specimens were subjected to a cariogenic challenge through a Streptococcus mutans biofilm model. After the experimental period, the biofilm formed around the brackets was collected for fluoride analysis and the mineral loss around the brackets was determined by integrated demineralization via cross-sectional microhardness measurement at 20 and 70 μm from the bracket margin. Additionally, samples of each group were subjected to energy-dispersive X-ray spectroscopy (EDX) analysis examined under a scanning electron microscopy (SEM). ANOVA followed by Tukey test were applied for fluoride concentration and mineral loss data, respectively. At both distances, only RMGI statistically differed from the other groups presenting the lowest demineralization, although there was a trend to a lower demineralization of enamel around brackets in FN group. Similar condition was found to fluoride concentration and EDX/SEM analysis. Under the cariogenic exposure condition of this study, the fluoride-releasing nanofilled material had similar performance to fluoride-releasing microfilled materials. The presence of nanofillers in the fluoride

  12. Treatment of portal venous gas embolism with hyperbaric oxygen after accidental ingestion of hydrogen peroxide: a case report and review of the literature.

    Science.gov (United States)

    Papafragkou, Sotirios; Gasparyan, Anna; Batista, Richard; Scott, Paul

    2012-07-01

    It is well known that hydrogen peroxide ingestion can cause gas embolism. To report a case illustrating that the definitive, most effective treatment for gas embolism is hyperbaric oxygen therapy. We present a case of a woman who presented to the Emergency Department with acute abdominal pain after an accidental ingestion of concentrated hydrogen peroxide. Complete recovery from her symptoms occurred quickly with hyperbaric oxygen therapy. This is a case report of the successful use of hyperbaric oxygen therapy to treat portal venous gas embolism caused by hydrogen peroxide ingestion. Hyperbaric oxygen therapy can be considered for the treatment of symptomatic hydrogen peroxide ingestion. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Robust, Reliable Low Emission Gas Turbine Combustion of High Hydrogen Content Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Wooldridge, Margaret Stacy [Univ. of Michigan, Ann Arbor, MI (United States); Im, Hong Geum [Univ. of Michigan, Ann Arbor, MI (United States)

    2016-12-16

    The effects of high hydrogen content fuels were studied using experimental, computational and theoretical approaches to understand the effects of mixture and state conditions on the ignition behavior of the fuels. A rapid compression facility (RCF) was used to measure the ignition delay time of hydrogen and carbon monoxide mixtures. The data were combined with results of previous studies to develop ignition regime criteria. Analytical theory and direct numerical simulation were used to validate and interpret the RCF ignition data. Based on the integrated information the ignition regime criteria were extended to non-dimensional metrics which enable application of the results to practical gas turbine combustion systems.

  14. Oral fluoride levels 1 h after use of a sodium fluoride rinse: effect of sodium lauryl sulfate.

    Science.gov (United States)

    Vogel, Gerald L; Schumacher, Gary E; Chow, Laurence C; Tenuta, Livia M A

    2015-01-01

    Increasing the concentration of free fluoride in oral fluids is an important goal in the use of topical fluoride agents. Although sodium lauryl sulfate (SLS) is a common dentifrice ingredient, the influence of this ion on plaque fluid and salivary fluid fluoride has not been examined. The purpose of this study was to investigate the effect of SLS on these parameters and to examine the effect of this ion on total (or whole) plaque fluoride, an important source of plaque fluid fluoride after a sufficient interval following fluoride administration, and on total salivary fluoride, a parameter often used as a surrogate measure of salivary fluid fluoride. Ten subjects accumulated plaque for 48 h before rinsing with a 12 mmol/l NaF (228 µg/g F) rinse containing or not containing 0.5% (w/w) SLS. SLS had no statistically significant effect on total plaque and total saliva fluoride but significantly increased salivary fluid and plaque fluid fluoride (by 147 and 205%, respectively). These results suggest that the nonfluoride components of topical agents can be manipulated to improve the fluoride release characteristics from oral fluoride reservoirs and that statistically significant change may be observed in plaque fluid and salivary fluid fluoride concentrations that may not be observed in total plaque and total saliva fluoride concentrations.

  15. The cariostatic mechanisms of fluoride

    OpenAIRE

    Kata Rošin-Grget; Kristina Peroš; Ivana Šutej; Krešimir Bašić

    2013-01-01

    This article discusses the possible cariostatic mechanisms of the action of fluoride. In the past, fluoride inhibition of caries was ascribed to reduced solubility of enamel due to incorporation of fluoride (F–) into the enamel minerals. The present evidence from clinical and laboratory studies suggests that the caries-preventive mode of action of fluoride is mainly topical. There is convincing evidence that fluoride has a major effect on demineralisation and remineralisation of dental hard t...

  16. Research and development program of hydrogen production system with high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Miyamoto, Y.; Shiozawa, S.; Ogawa, M.; Inagaki, Y.; Nishihara, T.; Shimizu, S.

    2000-01-01

    Japan Atomic Energy Research Institute (JAERI) has been developing a hydrogen production system with a high temperature gas-cooled reactor (HTGR). While the HTGR hydrogen production system has the following advantages compared with a fossil-fired hydrogen production system; low operation cost (economical fuel cost), low CO 2 emission and saving of fossil fuel by use of nuclear heat, it requires some items to be solved as follows; cost reduction of facility such as a reactor, coolant circulation system and so on, development of control and safety technologies. As for the control and safety technologies, JAERI plans demonstration test with hydrogen production system by steam reforming of methane coupling to 30 Wt HTGR, named high temperature engineering test reactor (HTTR). Prior to the demonstration test, a 1/30-scale out-of-pile test facility is in construction for safety review and detailed design of the HTTR hydrogen production system. Also, design study will start for reduction of facility cost. Moreover, basic study on hydrogen production process without CO 2 emission is in progress by thermochemical water splitting. (orig.)

  17. An alternate mathematical approach to recover hydrogen with high permeate purity from gas streams of small-medium level oil refineries

    International Nuclear Information System (INIS)

    Ahsan, M.; Hussain, A.

    2013-01-01

    Gas separation processes play a vital role in many industries like hydrogen recovery, air separation, natural gas dehydration. Membrane based gas separation processes offer a great potential for these industrial applications because of their environmental friendliness, energy efficiency and ease of scale up. Mathematical modeling of membrane based gas separation process can help to predict the performance of such separation processes. In this study, a numerical method is proposed by comparing different numerical techniques which are used to solve model equations of co-current flow. Numerical methods such as Bogacki-Shampine method, Dormand-Prince method, Adams-Bashforth-Moulton method, numerical differentiation formulas, modified Rosenbrock formula of order 2, Trapezoidal rule with free interpolant and Trapezoidal rule with backward difference formula of order 2 are used to solve the system of coupled nonlinear differential equations. This approach is used for the first time in a multicomponent membrane based gas separation process. This technique requires least computational time, improved solution stability and has been validated for the separation of hydrogen from multicomponent gas mixture. This numerical technique helps to predict the concentration of hydrogen in reject (retentate) and permeate streams. The simulation results show good agreement with experimental data. (author)

  18. Small molecule fluoride toxicity agonists.

    Science.gov (United States)

    Nelson, James W; Plummer, Mark S; Blount, Kenneth F; Ames, Tyler D; Breaker, Ronald R

    2015-04-23

    Fluoride is a ubiquitous anion that inhibits a wide variety of metabolic processes. Here, we report the identification of a series of compounds that enhance fluoride toxicity in Escherichia coli and Streptococcus mutans. These molecules were isolated by using a high-throughput screen (HTS) for compounds that increase intracellular fluoride levels as determined via a fluoride riboswitch reporter fusion construct. A series of derivatives were synthesized to examine structure-activity relationships, leading to the identification of compounds with improved activity. Thus, we demonstrate that small molecule fluoride toxicity agonists can be identified by HTS from existing chemical libraries by exploiting a natural fluoride riboswitch. In addition, our findings suggest that some molecules might be further optimized to function as binary antibacterial agents when combined with fluoride. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Fluoride varnishes and enamel caries

    NARCIS (Netherlands)

    Bruyn, Hugo de

    1987-01-01

    Topical fluoride applications have the aim of increasing the fluoride uptake in enamel and consequently reducing caries. In the early ‘60s fluoride varnishes were introduced because they had a long contact period with the enamel which resulted in a higher fluoride uptake than from other topical

  20. Data acquisition and quantitative analysis of stable hydrogen isotope in liquid and gas in the liquid phase catalytic exchange process

    International Nuclear Information System (INIS)

    Choi, H. J.; Lee, H. S.; Kim, K. R.; Cheong, H. S.; Ahn, D. H.; Lee, S. H.; Paek, S. W.; Kang, H. S.; Kim, J. G.

    2001-01-01

    A pilot plant for the Liquid Phase Catalytic Exchange process was built and has been operating to test the hydrophobic catalyst developed to remove the tritium generated at the CANDU nuclear power plants. The methods of quantitative analysis of hydrogen stable isotope were compared. Infrared spectroscopy was used for the liquid samples, and gas chromatography with hydrogen carrier gas showed the best result for gas samples. Also, a data acquisition system was developed to record the operation parameters. This record was very useful to investigate the causes of the system trip

  1. Correction factor to determine total hydrogen+deuterium concentration obtained by inert gas fusion-thermal conductivity detection (IGF- TCD) technique

    International Nuclear Information System (INIS)

    Ramakumar, K.L.; Sesha Sayi, Y.; Shankaran, P.S.; Chhapru, G.C; Yadav, C.S.; Venugopal, V.

    2004-01-01

    The limitation of commercially available dedicated equipment based on Inert Gas Fusion- Thermal Conductivity Detection (IGF - TCD) for the determination of hydrogen+deuterium is described. For a given molar concentration, deuterium is underestimated vis a vis hydrogen because of lower thermal conductivity and not considering its molecular weight in calculations. An empirical correction factor based on the differences between the thermal conductivities of hydrogen, deuterium and the carrier gas argon, and the mole fraction of deuterium in the sample has been derived to correct the observed hydrogen+deuterium concentration. The corrected results obtained by IGF - TCD technique have been validated by determining hydrogen and deuterium contents in a few samples using an independent method based on hot vacuum extraction-quadrupole mass spectrometry (HVE-QMS). Knowledge of mole fraction of deuterium (XD) is necessary to effect the correction. The correction becomes insignificant at low X D values (XD < 0.2) as the precision in the IGF measurements is comparable with the extent of correction. (author)

  2. Hydrogen pellet injection device

    International Nuclear Information System (INIS)

    Kanno, Masahiro.

    1992-01-01

    In a hydrogen pellet injection device, a nozzle block having a hydrogen gas supply channel is disposed at the inner side of a main cryogenic housing, and an electric resistor is attached to the block. Further, a nozzle block and a hydrogen gas introduction pipe are attached by way of a thermal insulating spacer. Electric current is supplied to the resistor to positively heat the nozzle block and melt remaining solid hydrogen in the hydrogen gas supply channel. Further, the effect of temperature elevation due to the resistor is prevented from reaching the side of the hydrogen gas introduction pipe by the thermal insulation spacer. That is, the temperature of the nozzle block is directly and positively elevated, to melt the solid hydrogen rapidly. Preparation operation from the injection of the hydrogen pellet to the next injection can be completed in a shorter period of time compared with a conventional case thereby enabling to make the test more efficient. Further, only the temperature of the nozzle block is elevated with no effect of temperature elevation due to the resistor to other components by the thermal insulation flange. (N.H.)

  3. Hydrogen amplification of coke oven gas by reforming of methane in a ceramic membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuwen; Li, Qian; Shen, Peijun; Liu, Yong; Yang, Zhibin; Ding, Weizhong; Lu, Xionggang [School of Material Science and Engineering, Shanghai University, No. 275 Mail Box, 149 Yanchang Road, Shanghai 200072 (China)

    2008-07-15

    To maximize hydrogen production from coke oven gas (COG), partial oxidation of methane in COG was studied thermodynamically and experimentally. Thermodynamic analysis indicates that an optimal hydrogen yield of 1.04-1.10 mole per mole of the consumed COG can be achieved when the initial ratio of O{sub 2} and CH{sub 4} is 0.57-0.46 in a temperature range of 800-900 C, and the corresponding amplification of original hydrogen in COG reaches 1.8-1.9 times. The amplification of original hydrogen was carried out in a BaCo{sub 0.7}Fe{sub 0.2}Nb{sub 0.1}O{sub 3-{delta}} (BCFNO) membrane reactor, and the hydrogen yield in the lab scale was about 80% more than that of original H{sub 2} in model COG. In a large hydrogen content in COG, the ceramic membrane reactors made from perovskite mixed-conducting oxygen-permeable materials must have higher stability to withstand the harsh reduction condition. (author)

  4. Hydrogen safety risk assessment methodology applied to a fluidized bed membrane reactor for autothermal reforming of natural gas

    NARCIS (Netherlands)

    Psara, N.; Van Sint Annaland, M.; Gallucci, F.

    2015-01-01

    The scope of this paper is the development and implementation of a safety risk assessment methodology to highlight hazards potentially prevailing during autothermal reforming of natural gas for hydrogen production in a membrane reactor, as well as to reveal potential accidents related to hydrogen

  5. Groundwater fluoride enrichment in an active rift setting: Central Kenya Rift case study

    Energy Technology Data Exchange (ETDEWEB)

    Olaka, Lydia A., E-mail: lydiaolaka@gmail.com [Department of Geology, University of Nairobi, P.O Box 30197, Nairobi (Kenya); Wilke, Franziska D.H. [Geoforschungs Zentrum, Telegrafenberg, 14473 Potsdam (Germany); Olago, Daniel O.; Odada, Eric O. [Department of Geology, University of Nairobi, P.O Box 30197, Nairobi (Kenya); Mulch, Andreas [Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt (Germany); Institut für Geowissenschaften, Goethe Universität Frankfurt, Altenhöferallee 1, 60438 Frankfurt (Germany); Musolff, Andreas [UFZ-Helmholtz-Centre for Environmental Research, Department of Hydrogeology, Permoserstr. 15, 04318 Leipzig (Germany)

    2016-03-01

    Groundwater is used extensively in the Central Kenya Rift for domestic and agricultural demands. In these active rift settings groundwater can exhibit high fluoride levels. In order to address water security and reduce human exposure to high fluoride in drinking water, knowledge of the source and geochemical processes of enrichment are required. A study was therefore carried out within the Naivasha catchment (Kenya) to understand the genesis, enrichment and seasonal variations of fluoride in the groundwater. Rocks, rain, surface and groundwater sources were sampled for hydrogeochemical and isotopic investigations, the data was statistically and geospatially analyzed. Water sources have variable fluoride concentrations between 0.02–75 mg/L. 73% exceed the health limit (1.5 mg/L) in both dry and wet seasons. F{sup −} concentrations in rivers are lower (0.2–9.2 mg/L) than groundwater (0.09 to 43.6 mg/L) while saline lake waters have the highest concentrations (0.27–75 mg/L). The higher values are confined to elevations below 2000 masl. Oxygen (δ{sup 18}O) and hydrogen (δD) isotopic values range from − 6.2 to + 5.8‰ and − 31.3 to + 33.3‰, respectively, they are also highly variable in the rift floor where they attain maximum values. Fluoride base levels in the precursor vitreous volcanic rocks are higher (between 3750–6000 ppm) in minerals such as cordierite and muscovite while secondary minerals like illite and kaolinite have lower remnant fluoride (< 1000 ppm). Thus, geochemical F{sup −} enrichment in regional groundwater is mainly due to a) rock alteration, i.e. through long residence times and natural discharge and/or enhanced leakages of deep seated geothermal water reservoirs, b) secondary concentration fortification of natural reservoirs through evaporation, through reduced recharge and/or enhanced abstraction and c) through additional enrichment of fluoride after volcanic emissions. The findings are useful to help improve water management

  6. Daily Fluoride Intake from Iranian Green Tea: Evaluation of Various Flavorings on Fluoride Release

    Directory of Open Access Journals (Sweden)

    Afshin Maleki

    2016-01-01

    Full Text Available With increased awareness of the health benefits of the compounds in green tea, especially polyphenols, its consumption is rising. The main purpose of this study is to determine the effect of different additives on the released fluoride into tea liquor and also daily fluoride intake. The concentrations of fluoride, nitrate, sulfate, and chloride were measured in 15 different flavored green teas (Refah-Lahijan. The fluoride and other anion concentrations were measured by ion chromatography method. The data were analyzed with Statistical Package for the Social Sciences version 16.0. The results showed that the minimum and maximum concentrations of fluoride in the green tea infusions were 0.162 mg/L (cinnamon-flavored green tea and 3.29 mg/L (bagged peach-flavored green tea, respectively. The mean concentration of fluoride in the green tea leaves was 52 mg/kg, and approximately 89% of the fluoride was released from the green tea leaves into the infusions after brewing. The fluoride concentrations varied significantly among the examined green teas ( P 0.05. Finally, drinking of the studied green teas cannot make a significant contribution to the daily dietary intake of F for consumers.

  7. Laminar burning velocity and Markstein length of nitrogen diluted natural gas/hydrogen/air mixtures at normal, reduced and elevated pressures

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Haiyan [State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Eng., Xi' an Jiaotong University (China); Institute of High Performance Computing, A-star (Singapore); Ji, Min; Jiao, Qi; Huang, Qian; Huang, Zuohua [State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Eng., Xi' an Jiaotong University (China)

    2009-04-15

    Flame propagation of premixed nitrogen diluted natural gas/hydrogen/air mixtures was studied in a constant volume combustion bomb under various initial pressures. Laminar burning velocities and Markstein lengths were obtained for the diluted stoichiometric fuel/air mixtures with different hydrogen fractions and diluent ratios under various initial pressures. The results showed that both unstretched flame speed and unstretched burning velocity are reduced with the increase in initial pressure (except when the hydrogen fraction is 80%) as well as diluent ratio. The velocity reduction rate due to diluent addition is determined mainly by hydrogen fraction and diluent ratio, and the effect of initial pressure is negligible. Flame stability was studied by analyzing Markstein length. It was found that the increase of initial pressure and hydrogen fraction decreases flame stability and the flame tends to be more stable with the addition of diluent gas. Generally speaking, Markstein length of a fuel with low hydrogen fraction is more sensitive to the change of initial pressure than that of a one with high hydrogen fraction. (author)

  8. Alimentary fluoride intake in preschool children

    Directory of Open Access Journals (Sweden)

    Lencova Erika

    2011-10-01

    Full Text Available Abstract Background The knowledge of background alimentary fluoride intake in preschool children is of utmost importance for introducing optimal and safe caries preventive measures for both individuals and communities. The aim of this study was to assess the daily fluoride intake analyzing duplicate samples of food and beverages. An attempt was made to calculate the daily intake of fluoride from food and swallowed toothpaste. Methods Daily alimentary fluoride intake was measured in a group of 36 children with an average age of 4.75 years and an average weight of 20.69 kg at baseline, by means of a double plate method. This was repeated after six months. Parents recorded their child's diet over 24 hours and collected duplicated portions of food and beverages received by children during this period. Pooled samples of food and beverages were weighed and solid food samples were homogenized. Fluoride was quantitatively extracted from solid food samples by a microdiffusion method using hexadecyldisiloxane and perchloric acid. The content of fluoride extracted from solid food samples, as well as fluoride in beverages, was measured potentiometrically by means of a fluoride ion selective electrode. Results Average daily fluoride intake at baseline was 0.389 (SD 0.054 mg per day. Six months later it was 0.378 (SD 0.084 mg per day which represents 0.020 (SD 0.010 and 0.018 (SD 0.008 mg of fluoride respectively calculated per kg bw/day. When adding the values of unwanted fluoride intake from the toothpaste shown in the literature (0.17-1.21 mg per day the estimate of the total daily intake of fluoride amounted to 0.554-1.594 mg/day and recalculated to the child's body weight to 0.027-0.077 mg/kg bw/day. Conclusions In the children studied, observed daily fluoride intake reached the threshold for safe fluoride intake. When adding the potential fluoride intake from swallowed toothpaste, alimentary intake reached the optimum range for daily fluoride intake

  9. Gas generation from radiolytic attack of TRU-contaminated hydrogenous waste

    International Nuclear Information System (INIS)

    Zerwekh, A.

    1979-06-01

    In 1970, the Waste Management and Transportation Division of the Atomic Energy Commission ordered a segregation of transuranic (TRU)-contaminated solid wastes. Those below a contamination level of 10 nCi/g could still be buried; those above had to be stored retrievably for 20 y. The possibility that alpha-radiolysis of hydrogenous materials might produce toxic, corrosive, and flammable gases in retrievably stored waste prompted an investigation of gas identities and generation rates in the laboratory and field. Typical waste mixtures were synthesized and contaminated for laboratory experiments, and drums of actual TRU-contaminated waste were instrumented for field testing. Several levels of contamination were studied, as well as pressure, temperature, and moisture effects. G (gas) values were determined for various waste matrices, and degradation products were examined

  10. Hydrogen production by high-temperature gas-cooled reactor. Conceptual design of advanced process heat exchangers of the HTTR-IS hydrogen production system

    International Nuclear Information System (INIS)

    Sakaba, Nariaki; Ohashi, Hirofumi; Sato, Hiroyuki; Hara, Teruo; Kato, Ryoma; Kunitomi, Kazuhiko

    2008-01-01

    Nuclear hydrogen production is necessary in an anticipated hydrogen society that demands a massive quantity of hydrogen without economic disadvantage. Japan Atomic Energy Agency (JAEA) has launched the conceptual design study of a hydrogen production system with a near-term plan to connect it to Japan's first high-temperature gas-cooled reactor HTTR. The candidate hydrogen production system is based on the thermochemical water-splitting iodine sulphur (IS) process.The heat of 10 MWth at approximately 900degC, which can be provided by the secondary helium from the intermediate heat exchanger of the HTTR, is the energy input to the hydrogen production system. In this paper, we describe the recent progresses made in the conceptual design of advanced process heat exchangers of the HTTR-IS hydrogen production system. A new concept of sulphuric acid decomposer is proposed. This involves the integration of three separate functions of sulphuric acid decomposer, sulphur trioxide decomposer, and process heat exchanger. A new mixer-settler type of Bunsen reactor is also designed. This integrates three separate functions of Bunsen reactor, phase separator, and pump. The new concepts are expected to result in improved economics through construction and operation cost reductions because the number of process equipment and complicated connections between the equipment has been substantially reduced. (author)

  11. Maximum Potential Hydrogen Gas Retention in the sRF Resin Ion Exchange Column for the LAWPS Process

    Energy Technology Data Exchange (ETDEWEB)

    Gauglitz, Phillip A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wells, Beric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bottenus, Courtney LH [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schonewill, Philip P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2018-01-22

    The Low-Activity Waste Pretreatment System (LAWPS) is being developed to provide treated supernatant liquid from the Hanford tank farms directly to the Low-Activity Waste (LAW) Vitrification Facility at the Hanford Tank Waste Treatment and Immobilization Plant. The design and development of the LAWPS is being conducted by Washington River Protection Solutions, LLC. A key process in LAWPS is the removal of radioactive Cs in ion exchange (IX) columns filled with spherical resorcinol-formaldehyde (sRF) resin. One accident scenario being evaluated is the loss of liquid flow through the sRF resin bed after it has been loaded with radioactive Cs and hydrogen gas is being generated by radiolysis. In normal operations, the generated hydrogen is expected to remain dissolved in the liquid and be continuously removed by liquid flow. For an accident scenario with a loss of flow, hydrogen gas can be retained within the IX column both in the sRF resin and below the bottom screen that supports the resin within the column. The purpose of this report is to summarize calculations that estimate the upper-bound volume of hydrogen gas that can be retained in the column and potentially be released to the headspace of the IX column or to process equipment connected to the IX column and, thus, pose a flammability hazard.

  12. Low-Cost, Fiber-Optic Hydrogen Gas Detector Using Guided-Wave, Surface-Plasmon Resonance in Chemochromic Thin Films

    International Nuclear Information System (INIS)

    Tracy, C.E.; Benson, D.K.; Haberman, D.P.; Hishmeh, G.A.; Ciszek, P.A.

    1998-01-01

    Low-cost, hydrogen-gas-leak detectors are needed for many hydrogen applications, such as hydrogen-fueled vehicles where several detectors may be required in different locations on each vehicle. A fiber-optic leak detector could be inherently safer than conventional detectors, because it would remove all detector electronics from the vicinity of potential leaks. It would also provide freedom from electromagnetic interference, a serious problem in fuel-cell-powered electric vehicles. This paper describes the design of a fiber-optic, surface-plasmon-resonance hydrogen detector, and efforts to make it more sensitive, selective, and durable. Chemochromic materials, such as tungsten oxide and certain Lanthanide hydrides, can reversibly react with hydrogen in air while exhibiting significant changes in their optical properties. Thin films of these materials applied to a sensor at the end of an optical fiber have been used to detect low concentrations of hydrogen gas in air. The coatings include a thin silver layer in which the surface plasmon is generated, a thin film of the chemochromic material, and a catalytic layer of palladium that facilitates the reaction with hydrogen. The film thickness is chosen to produce a guided-surface plasmon wave along the interface between the silver and the chemochromic material. A dichroic beam-splitter separates the reflected spectrum into a portion near the resonance and a portion away from the resonance, and directs these two portions to two separate photodiodes. The electronic ratio of these two signals cancels most of the fiber transmission noise and provides a stable hydrogen signal

  13. Two-dimensional gas chromatography-online hydrogenation for improved characterization of petrochemical samples.

    Science.gov (United States)

    Potgieter, H; Bekker, R; Govender, A; Rohwer, E

    2016-05-06

    The Fischer-Tropsch (FT) process produces a variety of hydrocarbons over a wide carbon number range and during subsequent product workup a large variety of synthetic fuels and chemicals are produced. The complexity of the product slate obtained from this process is well documented and the high temperature FT (HT-FT) process products are spread over gas, oil and water phases. The characterization of these phases is very challenging even when using comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC-TOFMS). Despite the increase in separation power, peak co-elution still occurs when samples containing isomeric compounds are analysed by comprehensive two dimensional GC. The separation of isomeric compounds with the same double bond equivalents is especially difficult since these compounds elute in a similar position on the GC×GC chromatogram and have identical molecular masses and similar fragmentation patterns in their electron ionization (EI) mass spectra. On-line hydrogenation after GC×GC separation is a possible way to distinguish between these isomeric compounds since the number of rings and alkene double bonds can be determined from the mass spectra of the compounds before and after hydrogenation. This paper describes development of a GC×GC method with post column hydrogenation for the determination of the backbone of cyclic/olefinic structures enabling us to differentiate between classes like dienes and cyclic olefins in complex petrochemical streams. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Some problems on materials tests in high temperature hydrogen base gas mixture

    International Nuclear Information System (INIS)

    Shikama, Tatsuo; Tanabe, Tatsuhiko; Fujitsuka, Masakazu; Yoshida, Heitaro; Watanabe, Ryoji

    1980-01-01

    Some problems have been examined on materials tests (creep rupture tests and corrosion tests) in high temperature mixture gas of hydrogen (80%H 2 + 15%CO + 5%CO 2 ) simulating the reducing gas for direct steel making. H 2 , CO, CO 2 and CH 4 in the reducing gas interact with each other at elevated temperature and produce water vapor (H 2 O) and carbon (soot). Carbon deposited on the walls of retorts and the water condensed at pipings of the lower temperature gas outlet causes blocking of gas flow. The gas reactions have been found to be catalyzed by the retort walls, and appropriate selection of the materials for retorts has been found to mitigate the problems caused by water condensation and carbon deposition. Quartz has been recognized to be one of the most promising materials for minimizing the gas reactions. And ceramic coating, namely, BN (born nitride) on the heat resistant superalloy, MO-RE II, has reduced the amounts of water vapor and deposited carbon (sooting) produced by gas reactions and has kept dew points of outlet gas below room temperature. The well known emf (thermo-electromotive force) deterioration of Alumel-Chromel thermocouples in the reducing gases at elevated temperatures has been also found to be prevented by the ceramic (BN) coating. (author)

  15. Comparative evaluation of fluoride release from PRG-composites and compomer on application of topical fluoride: An in-vitro study

    Directory of Open Access Journals (Sweden)

    Dhull K

    2009-03-01

    Full Text Available Aims and Objective: To determine the fluoride release from Giomer and Compomer, using different topical fluoride regimes, and to compare the amount of fluoride release from giomer with that of compomer. Materials and Method: Forty-eight specimens of each giomer and compomer were divided into four treatment groups, namely, control group, fluoridated dentifrice (500 ppm once daily group, fluoridated dentifrice (500 ppm twice daily group, fluoridated dentifrice (500 ppm once daily + fluoridated mouthwash (225 ppm group. Each specimen was suspended in demineralizing solution for six hours and remineralizing solution for 18 hours. Fluoride release was measured in both the demineralizing solution and remineralizing solution daily for seven days. Total daily fluoride release for each specimen was calculated by adding the amount released in the demineralizing solution to that released in remineralizing solution. Results and Conclusion: The fluoride release (ppm was found to be more in Giomer when compared to Compomer. The fluoride released from Giomer and Compomer was significantly greater in the acidic demineralizing solution than in the neutral remineralizing solution. It was found that increasing fluoride exposure significantly increased fluoride release from the giomer and compomer. It was found that the fluoride release from the subgroups of giomer and compomer was in the following order: fluoridated dentifrice twice daily > fluoridated dentifrice once daily + fluoridated mouthwash > fluoridated dentifrice once daily > control group. It was found that the giomer showed a greater fluoride uptake than the compomer.

  16. A dynamic model of a 100 kW micro gas turbine fuelled with natural gas and hydrogen blends and its application in a hybrid energy grid

    International Nuclear Information System (INIS)

    Di Gaeta, Alessandro; Reale, Fabrizio; Chiariello, Fabio; Massoli, Patrizio

    2017-01-01

    The paper deals with the development of a dynamic model of a commercial 100 kW Micro Gas Turbine (MGT) fuelled with mixtures of standard (i.e. natural gas or methane) and alternative fuels (i.e. hydrogen). The model consists of a first-order differential equation (ODE) describing the dominant dynamics of the MGT imposed by its own control system during production electrical power. The differential equation is coupled to a set of nonlinear maps derived numerically from a detailed 0D thermodynamic matching model of the MGT evaluated over a wide range of operating conditions (i.e. mechanical power, fraction of hydrogen and ambient temperature). The efficiency of the electrical machine with power inverter and power absorbed by auxiliary devices is also taken into account. The resulting model is experimentally validated for a sequence of power step responses of the MGT at different ambient conditions and with different fuel mixtures. The model is suited for simulation and control of hybrid energy grids (HEGs) which rely on advanced use of MGT and hydrogen as energy carrier. In this regard, the MGT model is used in the simulation of an HEG based on an appropriate mix of renewable (non-programmable) and non-renewable (programmable) energy sources with hydrogen storage and its reuse in the MGT. Here, the MGT is used as a programmable energy vector for compensating the deficits of renewable energies (such as solar and wind) with respect to user demand, while excess renewable energy is used to produce hydrogen via electrolysis of water. The simulated HEG comprises a solar PhotoVoltaic (PV) plant (300 kW), an MGT (100 kW) fuelled with natural gas and hydrogen blends, a water electrolyzer (WE) system (8 bar, 56 Nm 3 /h), a hydrogen tank (54 m 3 ), and an Energy Management Control System (EMCS). - Highlights: • A dynamic model of a commercial 100 kW MGT fuelled with natural gas and hydrogen blends is developed. • The model reproduces the electrical power generated by

  17. Fluoride retention by kaolin clay

    DEFF Research Database (Denmark)

    Kau, P. M. H.; Smith, D. W.; Binning, Philip John

    1997-01-01

    To evaluate the potential effectiveness of kaolin clay liners in storage of fluoride contaminated waste, an experimental study of the sorption and desorption behaviour of fluoride in kaolin clay was conducted. The degree of fluoride sorption by kaolin was found to depend on solution p......H and available fluoride concentration with equilibrium being achieved within 24 h. A site activation process involving the uptake of fluoride was also observed at the initial stages of sorption. This behaviour was attributed to a layer expansion process of the clay during sorption. The maximum fluoride sorption...... capacity was found to be 18.3 meq/100 g at pH 6 and 8.6 meq/100 g at pH 7. A competitive Langmuir sorption isotherm where sorption is dependant on both pH and fluoride concentration is employed to characterise the experimental sorption and desorption data. The sorption and desorption isotherms revealed...

  18. Inactivation of animal and human prions by hydrogen peroxide gas plasma sterilization.

    Science.gov (United States)

    Rogez-Kreuz, C; Yousfi, R; Soufflet, C; Quadrio, I; Yan, Z-X; Huyot, V; Aubenque, C; Destrez, P; Roth, K; Roberts, C; Favero, M; Clayette, P

    2009-08-01

    Prions cause various transmissible spongiform encephalopathies. They are highly resistant to the chemical and physical decontamination and sterilization procedures routinely used in healthcare facilities. The decontamination procedures recommended for the inactivation of prions are often incompatible with the materials used in medical devices. In this study, we evaluated the use of low-temperature hydrogen peroxide gas plasma sterilization systems and other instrument-processing procedures for inactivating human and animal prions. We provide new data concerning the efficacy of hydrogen peroxide against prions from in vitro or in vivo tests, focusing on the following: the efficiency of hydrogen peroxide sterilization and possible interactions with enzymatic or alkaline detergents, differences in the efficiency of this treatment against different prion strains, and the influence of contaminating lipids. We found that gaseous hydrogen peroxide decreased the infectivity of prions and/or the level of the protease-resistant form of the prion protein on different surface materials. However, the efficiency of this treatment depended strongly on the concentration of hydrogen peroxide and the delivery system used in medical devices, because these effects were more pronounced for the new generation of Sterrad technology. The Sterrad NX sterilizer is 100% efficient (0% transmission and no protease-resistant form of the prion protein signal detected on the surface of the material for the mouse-adapted bovine spongiform encephalopathy 6PB1 strain and a variant Creutzfeldt-Jakob disease strain). Thus, gaseous or vaporized hydrogen peroxide efficiently inactivates prions on the surfaces of medical devices.

  19. PREPARATION AND CHARACTERIZATION OF STRONTIUM FLUORIDE POWDERS ACTIVATED BY NEODYMIUM FLUORIDE

    Directory of Open Access Journals (Sweden)

    S. V. Kuznetsov

    2015-07-01

    Full Text Available Subject of Study. The paper deals with preparation processes of ultradisperse, homogeneous powder Sr1-хNdхF2+х (х= 0.003-0.2, with use of ammonium fluoride as the fluorinating agent taken over 114-120 % from stoichiometry. Method. Nitrate of strontium, neodymium nitrate hexahydrate, with the content equal to 99. 99 % of the basic substance and ammonium fluoride were used as the source of substances. Activated powders of strontium fluoride were obtained by the method of deposition from aqueous solutions by washing the precipitate with a solution of ammonium fluoride, taken over 114 - 120% from stoichiometry. The washed precipitate was centrifuged for 5-7 min, dried in the air at 30-350 C. Heat treatment of the dried precipitate was carried out in two stages: the first stage at the temperature of 200- 2500 C for 0.5-1 hour, the second one at 550- 6000 C for 2-3 hours. X-ray analysis of the synthesized samples was carried out on a Bruker D8 Advance diffractometer, radiation Cu K. The size and shape measuring of the particles of activated strontium fluoride was carried out by means of electron microscope Carl Zeiss NVision 40. The content of neodymium in activated powders of strontium fluoride was determined by the method of spectral emission analysis on the device LEA - S500. Chemical analysis for determination of ammonium ion (NH4+ content in the obtained samples was performed by the method of Kjeldahl. Calculations of lattice parameters, size of coherent scattering regions and the values of micro-deformations were carried out by TOPAS program. Main Results. Preparation processes of ultradisperse, homogeneous powder Sr1-хNdхF2+х (х= 0.003-0.2, with use of ammonium fluoride as the fluorinating agent taken over 114-120 % from stoichiometry, provides obtaining the firm solution Sr1-x-yNdx(NH4yF2+x-y of the cubic fluorite structure. It has been found out that the morphology and size of the resulting product depend on the quantity of

  20. Fluoride analysis

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, C S

    1963-01-01

    The methods and procedures for the detection and estimation of fluoride are varied and numerous. The problems of sampling, contamination, and loss in sampling waters, plant and animal tissues and atmospheres are discussed, along with brief descriptors of methods most commonly used. Techniques for separating fluorides from matrixes are discussed, as well as gravimetric, calorimetric, and spectrophotometric analytical techniques.

  1. Novel Methods of Hydrogen Leak Detection

    International Nuclear Information System (INIS)

    Pushpinder S Puri

    2006-01-01

    For hydrogen to become a consumer fuel for automotive and domestic power generation, safety is paramount. Today's hydrogen systems are built with inherent safety measures and multiple levels of protection. However, human senses, in particular, the sense of smell, is considered the ultimate safeguards against leaks. Since hydrogen is an odorless gas, use of odorants to detect leaks, as is done in case of natural gas, is obvious solution. The odorants required for hydrogen used in fuel cells have a unique requirement which must be met. This is because almost all of the commercial odorants used in gas leak detection contain sulfur which acts as poison for the catalysts used in hydrogen based fuel cells, most specifically for the PEM (polymer electrolyte membrane or proton exchange membrane) fuel cells. A possible solution to this problem is to use non-sulfur containing odorants. Chemical compounds based on mixtures of acrylic acid and nitrogen compounds have been adopted to achieve a sulfur-free odorization of a gas. It is, therefore, desired to have a method and system for hydrogen leak detection using odorant which can incorporate a uniform concentration of odorant in the hydrogen gas, when odorants are mixed in the hydrogen storage or delivery means. It is also desired to develop methods where the odorant is not added to the bulk hydrogen, keeping it free of the odorization additives. A series of novel solutions are proposed which address the issues raised above. These solutions are divided into three categories as follows: 1. Methods incorporating an odorant in the path of hydrogen leak as opposed to adding it to the hydrogen gas. 2. Methods where odorants are generated in-situ by chemical reaction with the leaking hydrogen 3. Methods of dispensing and storing odorants in high pressure hydrogen gas which release odorants to the gas at a uniform and predetermined rates. Use of one or more of the methods described here in conjunction with appropriate engineering

  2. Numerical analysis of performance of steam reformer of methane reforming hydrogen production system connected with high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Yin Huaqiang; Jiang Shengyao; Zhang Youjie

    2007-01-01

    Methane conversion rate and hydrogen output are important performance indexes of the steam reformer. The paper presents numerical analysis of performance of the reformer connected with high-temperature gas-cooled reactor HTR-10. Setting helium inlet flow rate fixed, performance of the reformer was examined with different helium inlet temperature, pressure, different process gas temperature, pressure, flow rate, and different steam to carbon ratio. As the range concerned, helium inlet temperature has remarkable influence on the performance, and helium inlet temperature, process gas temperature and pressure have little influence on the performance, and improving process gas flow rate, methane conversion rate decreases and hydrogen output increases, however improving steam to carbon ratio has reverse influence on the performance. (authors)

  3. Problems of hydrogen - water vapor - inert gas mixture use in heavy liquid metal coolant technology

    International Nuclear Information System (INIS)

    Ul'yanov, V.V.; Martynov, P.N.; Gulevskij, V.A.; Teplyakov, Yu.A.; Fomin, A.S.

    2014-01-01

    The reasons of slag deposit formation in circulation circuits with heavy liquid metal coolants, which can cause reactor core blockage, are considered. To prevent formation of deposits hydrogen purification of coolant and surfaces of circulation circuit is used. It consists in introduction of gaseous mixtures hydrogen - water vapor - rare gas (argon or helium) directly into coolant flow. The principle scheme of hydrogen purification and the processes occurring during it are under consideration. Measures which make it completely impossible to overlap of the flow cross section of reactor core, steam generators, pumps and other equipment by lead oxides in reactor facilities with heavy liquid metal coolants are listed [ru

  4. Story of Fluoridation

    Science.gov (United States)

    ... Home Health Info Health Topics Fluoride Share The Story of Fluoridation It started as an observation, that ... this time using photospectrographic analysis, a more sophisticated technology than that used by McKay. Churchill asked an ...

  5. Solar hydrogen production: renewable hydrogen production by dry fuel reforming

    Science.gov (United States)

    Bakos, Jamie; Miyamoto, Henry K.

    2006-09-01

    SHEC LABS - Solar Hydrogen Energy Corporation constructed a pilot-plant to demonstrate a Dry Fuel Reforming (DFR) system that is heated primarily by sunlight focusing-mirrors. The pilot-plant consists of: 1) a solar mirror array and solar concentrator and shutter system; and 2) two thermo-catalytic reactors to convert Methane, Carbon Dioxide, and Water into Hydrogen. Results from the pilot study show that solar Hydrogen generation is feasible and cost-competitive with traditional Hydrogen production. More than 95% of Hydrogen commercially produced today is by the Steam Methane Reformation (SMR) of natural gas, a process that liberates Carbon Dioxide to the atmosphere. The SMR process provides a net energy loss of 30 to 35% when converting from Methane to Hydrogen. Solar Hydrogen production provides a 14% net energy gain when converting Methane into Hydrogen since the energy used to drive the process is from the sun. The environmental benefits of generating Hydrogen using renewable energy include significant greenhouse gas and criteria air contaminant reductions.

  6. Gas phase hydrogen peroxide production in atmospheric pressure glow discharges operating in He - H2O

    NARCIS (Netherlands)

    Vasko, C.A.; Veldhuizen, van E.M.; Bruggeman, P.J.

    2013-01-01

    The gas phase production of hydrogen peroxide (H2O2) in a RF atmospheric pressure glow discharge with helium and water vapour has been investigated as a function of the gas flow. It is shown that the production of H2O2 is through the recombination of two OH radicals in a three body collision and the

  7. Private Well Water and Fluoride

    Science.gov (United States)

    ... Private Wells Infant Formula Fluorosis Public Health Service Recommendation Water Operators & Engineers Water Fluoridation Additives Shortages of Fluoridation Additives Drinking Water Pipe Systems CDC-Sponsored Water Fluoridation Training Links to Other ...

  8. Novel Methods of Hydrogen Leak Detection

    International Nuclear Information System (INIS)

    Pushpinder S Puri

    2006-01-01

    With the advent of the fuel cell technology and a drive for clean fuel, hydrogen gas is emerging as a leading candidate for the fuel of choice. For hydrogen to become a consumer fuel for automotive and domestic power generation, safety is paramount. It is, therefore, desired to have a method and system for hydrogen leak detection using odorant which can incorporate a uniform concentration of odorant in the hydrogen gas, when odorants are mixed in the hydrogen storage or delivery means. It is also desired to develop methods where the odorant is not added to the bulk hydrogen, keeping it free of the odorization additives. When odorants are not added to the hydrogen gas in the storage or delivery means, methods must be developed to incorporate odorant in the leaking gas so that leaks can be detected by small. Further, when odorants are not added to the stored hydrogen, it may also be desirable to observe leaks by sight by discoloration of the surface of the storage or transportation vessels. A series of novel solutions are proposed which address the issues raised above. These solutions are divided into three categories as follows: 1. Methods incorporating an odorant in the path of hydrogen leak as opposed to adding it to the hydrogen gas. 2. Methods where odorants are generated in-situ by chemical reaction with the leaking hydrogen 3. Methods of dispensing and storing odorants in high pressure hydrogen gas which release odorants to the gas at a uniform and predetermined rates. Use of one or more of the methods described here in conjunction with appropriate engineering solutions will assure the ultimate safety of hydrogen use as a commercial fuel. (authors)

  9. Fluoride in diet

    Science.gov (United States)

    Diet - fluoride ... bones and teeth. Too much fluoride in the diet is very rare. Rarely, infants who get too ... of essential vitamins is to eat a balanced diet that contains a variety of foods from the ...

  10. Sources of carrier F-19 in F-18 fluoride

    Energy Technology Data Exchange (ETDEWEB)

    Link, J. M.; Shoner, S. C.; Krohn, K. A. [University of Washington, Department of Radiology, Molecular Imaging Center, 1959 NE Pacific St., Box 356004, Seattle, WA 98195-6004 (United States)

    2012-12-19

    Fluorine-18 is used for many PET radiopharmaceuticals. Theoretically {sup 18}F should be carrier free and a good candidate for nanochemistry. However, {sup 18}F has 10 to 1000 times more stable fluorine atoms than radioactive atoms. In order to understand the source of carrier fluoride and other ions associated with {sup 18}F radiosynthesis, anion concentrations of different components of {sup 18}F target systems as well as solvents and chemicals used in radiosynthesis were measured. Results: The enriched water used for production of {sup 18}F had low levels of anions. In general, the sources of anions, particularly of fluoride, were the chemical reagents used for synthesis and trace contaminants in tubing, valves and fittings. A major component of contamination was nitrate from irradiation of dissolved nitrogen gas in the target water.

  11. A Study on Methodology of Assessment for Hydrogen Explosion in Hydrogen Production Facility

    International Nuclear Information System (INIS)

    Jung, Gun Hyo

    2007-02-01

    Due to the exhaustion of fossil fuel as energy sources and international situation insecurity for political factor, unstability of world energy market is rising, consequently, a substitute energy development have been required. Among substitute energy to be discussed, producing hydrogen from water by nuclear energy which does not release carbon is a very promising technology. Very high temperature gas cooled reactor is expected to be utilized since the procedure of producing hydrogen requires high temperature over 1000 .deg. C. Hydrogen production facility using very high temperature gas cooled reactor lies in situation of high temperature and corrosion which makes hydrogen release easily. In case of hydrogen release, there lies a danger of explosion. Moreover explosion not only has a bad influence upon facility itself but very high temperature gas cooled reactor which also result in unsafe situation that might cause serious damage. However, from point of thermal-hydraulics view, long distance makes low efficiency result. In this study, therefore, outlines of hydrogen production using nuclear energy is researched. Several methods for analyzing the effects of hydrogen explosion upon high temperature gas cooled reactor are reviewed. Reliability physics model which is appropriate for assessment is used. Using this model, leakage probability, rupture probability and structure failure probability of very high temperature gas cooled reactor is evaluated classified by detonation volume and distance. Also based on standard safety criteria which is a value of 1x10 -6 , the safety distance between very high temperature and hydrogen production facility is calculated. In the future, assessment for characteristic of very high temperature gas cooled reactor, capacity to resist pressure from outside hydrogen explosion and overpressure for large amount of detonation volume in detail is expected to identify more precise distance using reliability physics model in this paper. This

  12. Trapping and detrapping of hydrogen in graphite materials exposed to hydrogen gas

    International Nuclear Information System (INIS)

    Atsumi, Hisao; Iseki, Michio; Shikama, Tatsuo.

    1994-01-01

    Measurements of hydrogen solubility have been performed for several unirradiated and neutron-irradiated graphite (and CFC) samples at temperatures between 973 and 1323 K under a ∼10 kPa hydrogen atmosphere. The hydrogen dissolution process has been studied and it is discussed here. The values of hydrogen solubility vary substantially among the samples up to about a factor of 16. A strong correlation has been observed between the values of hydrogen solubility and the degrees of graphitization determined by X-ray diffraction technique. The relation can be extended even for the neutron irradiated samples. Hydrogen dissolution into graphite can be explained with the trapping of hydrogen at defect sites (e.g. dangling carbon bonds) considering an equilibrium reaction between hydrogen molecules and the trapping sites. The migration of hydrogen in graphite is speculated to result from a sequence of detrapping and retrapping events with high energy activation processes. (author)

  13. On the Adsorption of Some Anionic Collectors on Fluoride Minerals

    DEFF Research Database (Denmark)

    Sørensen, Emil

    1973-01-01

    Test flotations have been carried out in a small apparatus under standardized conditions in order to determine the dependence of the flotation yield on the reagent concentration for certain minerals and anionic collectors. The results suggest that a special adsorption mechanism is operating...... in the case of fluoride minerals, and a theory is presented which involves the joint action of ionic and hydrogen bonds. A precondition is the compatibility of the crystal geometry with the configuration of the polar group of the collector molecules....

  14. Ion Mobility Spectrometry-Mass Spectrometry Coupled with Gas-Phase Hydrogen/Deuterium Exchange for Metabolomics Analyses

    Science.gov (United States)

    Maleki, Hossein; Karanji, Ahmad K.; Majuta, Sandra; Maurer, Megan M.; Valentine, Stephen J.

    2018-02-01

    Ion mobility spectrometry-mass spectrometry (IMS-MS) in combination with gas-phase hydrogen/deuterium exchange (HDX) and collision-induced dissociation (CID) is evaluated as an analytical method for small-molecule standard and mixture characterization. Experiments show that compound ions exhibit unique HDX reactivities that can be used to distinguish different species. Additionally, it is shown that gas-phase HDX kinetics can be exploited to provide even further distinguishing capabilities by using different partial pressures of reagent gas. The relative HDX reactivity of a wide variety of molecules is discussed in light of the various molecular structures. Additionally, hydrogen accessibility scoring (HAS) and HDX kinetics modeling of candidate ( in silico) ion structures is utilized to estimate the relative ion conformer populations giving rise to specific HDX behavior. These data interpretation methods are discussed with a focus on developing predictive tools for HDX behavior. Finally, an example is provided in which ion mobility information is supplemented with HDX reactivity data to aid identification efforts of compounds in a metabolite extract.

  15. Mechanical Properties of Super Duplex Stainless Steel 2507 after Gas Phase Thermal Precharging with Hydrogen

    Science.gov (United States)

    San Marchi, C.; Somerday, B. P.; Zelinski, J.; Tang, X.; Schiroky, G. H.

    2007-11-01

    Thermal precharging of super duplex stainless steel 2507 with 125 wppm hydrogen significantly reduced tensile ductility and fracture toughness. Strain-hardened 2507 exhibited more severe ductility loss compared to the annealed microstructure. The reduction of area (RA) was between 80 and 85 pct for both microstructures in the noncharged condition, while reductions of area were 25 and 46 pct for the strain-hardened and annealed microstructures, respectively, after hydrogen precharging. Similar to the effect of internal hydrogen on tensile ductility, fracture toughness of strain-hardened 2507 was lowered from nearly 300 MPa m1/2 in the noncharged condition to less than 60 MPa m1/2 in the hydrogen-precharged condition. While precharging 2507 with hydrogen results in a considerable reduction in ductility and toughness, the absolute values are similar to high-strength austenitic steels that have been tested under the same conditions, and which are generally considered acceptable for high-pressure hydrogen gas systems. The fracture mode in hydrogen-precharged 2507 involved cleavage cracking of the ferrite phase and ductile fracture along oblique planes in the austenite phase, compared to 100 pct microvoid coalescence in the absence of hydrogen. Predictions from a strain-based micromechanical fracture toughness model were in good agreement with the measured fracture toughness of hydrogen-precharged 2507, implying a governing role of austenite for resistance to hydrogen-assisted fracture.

  16. Performance and emission characteristics of a turbocharged spark-ignition hydrogen-enriched compressed natural gas engine under wide open throttle operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Fanhua; Wang, Mingyue; Jiang, Long; Deng, Jiao; Chen, Renzhe; Naeve, Nashay; Zhao, Shuli [State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084 (China)

    2010-11-15

    This paper investigates the effect of various hydrogen ratios in HCNG (hydrogen-enriched compressed natural gas) fuels on performance and emission characteristics at wide open throttle operating conditions using a turbocharged spark-ignition natural gas engine. The experimental data was taken at hydrogen fractions of 0%, 30% and 55% by volume and was conducted under different excess air ratio ({lambda}) at MBT operating conditions. It is found that under various {lambda}, the addition of hydrogen can significantly reduce CO, CH{sub 4} emissions and the NO{sub x} emission remain at an acceptable level when ignition timing is optimized. Using the same excess air ratio, as more hydrogen is added the power, exhaust temperatures and max cylinder pressure decrease slowly until the mixture's lower heating value remains unchanged with the hydrogen enrichment, then they rise gradually. In addition, the early flame development period and the flame propagation duration are both shorter, and the indicated thermal efficiency and maximum heat release rate both increase with more hydrogen addition. (author)

  17. An experimental investigation of the isochoric heat capacity of superheated steam and mixtures of superheated steam and hydrogen gas

    International Nuclear Information System (INIS)

    Nowak, E.S.; Chan, J.S.

    1975-01-01

    Measurements on the specific heat at constant volume of superheated steam and hydrogen gas mixtures at concentrations varying from 1.6 to 0.8 moles of water vapor per mole of hydrogen gas were made for temperatures ranging from 240 to 400 deg C. It was found that the experimental specific heat values of the mixtures are in good agreement with the ideal mixture values only near the saturation temperature of steam. The difference between the measured and the calculated ideal mixture values is a function of temperature, pressure and composition varying from about 11 to 24% at conditions far removed from the saturation temperature of steam. This indicates the heat of mixing is of significance in the steam-hydrogen system

  18. A selective chemosensor for fluoride ion and its interaction with Calf Thymus DNA.

    Science.gov (United States)

    Ghosh, Soumen; Al Masum, Abdulla; Ganguly, Aniruddha; Islam, Md Maidul; Alam, Md Akhtarul; Guchhait, Nikhil

    2017-05-05

    The amido-Schiff base 1 (N 1 , N 3 -bis (2-nitrobenzylidene)benzene-1,3-dicabohydrazide) containing a CONH group and CHN linkage has been synthesized by the condensation between isophthalic acid dihydrazide and o-nitrobenzaldehyde. This molecule can act as a fluoride ion sensor with high selectivity and sensitivity. Presence of nitro group in the phenyl ring may be responsible for the detection of fluoride ion visually with a dramatic color change from colorless to deep red in aqueous dimethyl sulphoxide solution. This Schiff base can be used as test kit for sensing of fluoride ion in the solid state. Compound 1 can detect fluoride also in commercially available toothpaste. As the compound has adequate solubility in DMSO-water mixture (7:93, v/v) and having some hydrogen bond donor and acceptor centers, we have investigated its nature of binding with Calf Thymus-DNA (CT-DNA) using theoretical molecular modelling and other experimental methods like UV-vis spectroscopy, circular dichroic and thermal melting studies. Thermodynamic parameters have been obtained using the well known Van't Hoff's equation. From both theoretical and experimental findings it has been observed that it can interact effectively with CT-DNA with binding energy -7.55kcal/mol to -7.50kcal/mol. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. The tropospheric processing of acidic gases and hydrogen sulphide in volcanic gas plumes as inferred from field and model investigations

    Directory of Open Access Journals (Sweden)

    A. Aiuppa

    2007-01-01

    Full Text Available Improving the constraints on the atmospheric fate and depletion rates of acidic compounds persistently emitted by non-erupting (quiescent volcanoes is important for quantitatively predicting the environmental impact of volcanic gas plumes. Here, we present new experimental data coupled with modelling studies to investigate the chemical processing of acidic volcanogenic species during tropospheric dispersion. Diffusive tube samplers were deployed at Mount Etna, a very active open-conduit basaltic volcano in eastern Sicily, and Vulcano Island, a closed-conduit quiescent volcano in the Aeolian Islands (northern Sicily. Sulphur dioxide (SO2, hydrogen sulphide (H2S, hydrogen chloride (HCl and hydrogen fluoride (HF concentrations in the volcanic plumes (typically several minutes to a few hours old were repeatedly determined at distances from the summit vents ranging from 0.1 to ~10 km, and under different environmental conditions. At both volcanoes, acidic gas concentrations were found to decrease exponentially with distance from the summit vents (e.g., SO2 decreases from ~10 000 μg/m3at 0.1 km from Etna's vents down to ~7 μg/m3 at ~10 km distance, reflecting the atmospheric dilution of the plume within the acid gas-free background troposphere. Conversely, SO2/HCl, SO2/HF, and SO2/H2S ratios in the plume showed no systematic changes with plume aging, and fit source compositions within analytical error. Assuming that SO2 losses by reaction are small during short-range atmospheric transport within quiescent (ash-free volcanic plumes, our observations suggest that, for these short transport distances, atmospheric reactions for H2S and halogens are also negligible. The one-dimensional model MISTRA was used to simulate quantitatively the evolution of halogen and sulphur compounds in the plume of Mt. Etna. Model predictions support the hypothesis of minor HCl chemical processing during plume transport, at least in cloud-free conditions. Larger

  20. Physiology and toxicity of fluoride

    Directory of Open Access Journals (Sweden)

    Dhar Vineet

    2009-01-01

    Full Text Available Fluoride has been described as an essential element needed for normal development and growth of animals and extremely useful for human beings. Fluoride is abundant in the environment and the main source of fluoride to humans is drinking water. It has been proved to be beneficial in recommended doses, and at the same time its toxicity at higher levels has also been well established. Fluoride gets accumulated in hard tissues of the body and has been know to play an important role in mineralization of bone and teeth. At high levels it has been known to cause dental and skeletal fluorosis. There are suggested effects of very high levels of fluoride on various body organs and genetic material. The purpose of this paper is to review the various aspects of fluoride and its importance in human life.

  1. Physiology and toxicity of fluoride.

    Science.gov (United States)

    Dhar, Vineet; Bhatnagar, Maheep

    2009-01-01

    Fluoride has been described as an essential element needed for normal development and growth of animals and extremely useful for human beings. Fluoride is abundant in the environment and the main source of fluoride to humans is drinking water. It has been proved to be beneficial in recommended doses, and at the same time its toxicity at higher levels has also been well established. Fluoride gets accumulated in hard tissues of the body and has been know to play an important role in mineralization of bone and teeth. At high levels it has been known to cause dental and skeletal fluorosis. There are suggested effects of very high levels of fluoride on various body organs and genetic material. The purpose of this paper is to review the various aspects of fluoride and its importance in human life.

  2. Fluoride barriers in Nb/Pb Josephson junctions

    Science.gov (United States)

    Asano, H.; Tanabe, K.; Michikami, O.; Igarashi, M.; Beasley, M. R.

    1985-03-01

    Josephson tunnel junctions are fabricated using a new class of artificial barriers, metal fluorides (Al fluoride and Zr fluoride). These fluoride barriers are deposited on the surface of a Nb base electrode, which are previously cleaned using a CF4 cleaning process, and covered by a Pb counterelectrode. The junctions with both Al fluoride and Zr fluoride barriers exhibit good tunneling characteristics and have low specific capacitance. In the case of Zr fluoride, it is observed that reasonable resistances are obtained even at thickness greater than 100 A. This phenomenon might be explained by tunneling via localized states in Zr fluoride.

  3. Fluoride exposure and indicators of thyroid functioning in the Canadian population: implications for community water fluoridation.

    Science.gov (United States)

    Barberio, Amanda M; Hosein, F Shaun; Quiñonez, Carlos; McLaren, Lindsay

    2017-10-01

    There are concerns that altered thyroid functioning could be the result of ingesting too much fluoride. Community water fluoridation (CWF) is an important source of fluoride exposure. Our objectives were to examine the association between fluoride exposure and (1) diagnosis of a thyroid condition and (2) indicators of thyroid functioning among a national population-based sample of Canadians. We analysed data from Cycles 2 and 3 of the Canadian Health Measures Survey (CHMS). Logistic regression was used to assess associations between fluoride from urine and tap water samples and the diagnosis of a thyroid condition. Multinomial logistic regression was used to examine the relationship between fluoride exposure and thyroid-stimulating hormone (TSH) level (low/normal/high). Other available variables permitted additional exploratory analyses among the subset of participants for whom we could discern some fluoride exposure from drinking water and/or dental products. There was no evidence of a relationship between fluoride exposure (from urine and tap water) and the diagnosis of a thyroid condition. There was no statistically significant association between fluoride exposure and abnormal (low or high) TSH levels relative to normal TSH levels. Rerunning the models with the sample constrained to the subset of participants for whom we could discern some source(s) of fluoride exposure from drinking water and/or dental products revealed no significant associations. These analyses suggest that, at the population level, fluoride exposure is not associated with impaired thyroid functioning in a time and place where multiple sources of fluoride exposure, including CWF, exist. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  4. The Integration of a Structural Water Gas Shift Catalyst with a Vanadium Alloy Hydrogen Transport Device

    Energy Technology Data Exchange (ETDEWEB)

    Barton, Thomas; Argyle, Morris; Popa, Tiberiu

    2009-06-30

    This project is in response to a requirement for a system that combines water gas shift technology with separation technology for coal derived synthesis gas. The justification of such a system would be improved efficiency for the overall hydrogen production. By removing hydrogen from the synthesis gas stream, the water gas shift equilibrium would force more carbon monoxide to carbon dioxide and maximize the total hydrogen produced. Additional benefit would derive from the reduction in capital cost of plant by the removal of one step in the process by integrating water gas shift with the membrane separation device. The answer turns out to be that the integration of hydrogen separation and water gas shift catalysis is possible and desirable. There are no significant roadblocks to that combination of technologies. The problem becomes one of design and selection of materials to optimize, or at least maximize performance of the two integrated steps. A goal of the project was to investigate the effects of alloying elements on the performance of vanadium membranes with respect to hydrogen flux and fabricability. Vanadium was chosen as a compromise between performance and cost. It is clear that the vanadium alloys for this application can be produced, but the approach is not simple and the results inconsistent. For any future contracts, large single batches of alloy would be obtained and rolled with larger facilities to produce the most consistent thin foils possible. Brazing was identified as a very likely choice for sealing the membranes to structural components. As alloying was beneficial to hydrogen transport, it became important to identify where those alloying elements might be detrimental to brazing. Cataloging positive and negative alloying effects was a significant portion of the initial project work on vanadium alloying. A water gas shift catalyst with ceramic like structural characteristics was the second large goal of the project. Alumina was added as a

  5. Water Fluoridation: A Critical Review of the Physiological Effects of Ingested Fluoride as a Public Health Intervention

    Science.gov (United States)

    2014-01-01

    Fluorine is the world's 13th most abundant element and constitutes 0.08% of the Earth crust. It has the highest electronegativity of all elements. Fluoride is widely distributed in the environment, occurring in the air, soils, rocks, and water. Although fluoride is used industrially in a fluorine compound, the manufacture of ceramics, pesticides, aerosol propellants, refrigerants, glassware, and Teflon cookware, it is a generally unwanted byproduct of aluminium, fertilizer, and iron ore manufacture. The medicinal use of fluorides for the prevention of dental caries began in January 1945 when community water supplies in Grand Rapids, United States, were fluoridated to a level of 1 ppm as a dental caries prevention measure. However, water fluoridation remains a controversial public health measure. This paper reviews the human health effects of fluoride. The authors conclude that available evidence suggests that fluoride has a potential to cause major adverse human health problems, while having only a modest dental caries prevention effect. As part of efforts to reduce hazardous fluoride ingestion, the practice of artificial water fluoridation should be reconsidered globally, while industrial safety measures need to be tightened in order to reduce unethical discharge of fluoride compounds into the environment. Public health approaches for global dental caries reduction that do not involve systemic ingestion of fluoride are urgently needed. PMID:24719570

  6. Trapping and stabilization of hydrogen atoms in intracrystalline voids. Defected calcium fluorides and Y zeolite surfaces

    International Nuclear Information System (INIS)

    Iton, L.E.; Turkevich, J.

    1978-01-01

    Using EPR spectroscopy, it has been established that H. atoms are absorbed from the gas phase when CaF 2 powder is exposed to H 2 gas in which a microwave discharge is sustained, being trapped in sites that provide unusual thermal stability. The disposition of the trapped atoms is determined by the occluded water content of the CaF 2 . For ultrapure CaF 2 , atoms are trapped in interstitial sites having A 0 = 1463 MHz; for increasing water content, two types of trapped H. atoms are discriminated, with preferential trapping in void sites (external to the regular fluorite lattice) that are associated with the H 2 O impurity. Characterization of these ''extra-lattice'' H. (and D.) atoms is presented, and their EPR parameters and behavior are discussed in detail. Failure to effect H.-D. atom exchange with D 2 gas suggests that atoms are not stabilized on the CaF 2 surface. H. atoms are trapped exclusively in ''extra-lattice'' sites when the water-containing CaF 2 is γ irradiated at 77 or 298 K indicating that the scission product atoms do not escape from the precursor void region into the regular lattice. It is concluded that the thermal stability of the ''extra-lattice'' atoms, like that of the interstitial atoms, is determined ultimately by the high activation energy for diffusion of the H. atom through the CaF 2 lattice. For comparison, results obtained from H. atoms trapped in γ-irradiated rare earth ion-exchanged Y zeolites are presented and discussed also; these ''surface'' trapped atoms do not exhibit great thermalstability. Distinctions in the H. atom formation mechanisms between the fluorides and the zeolites were deduced from the accompanying paramagnetic species formed. The intracavity electric fields in the Y zeolites have been estimated from the H. atoms hfsc contractions, and are found to be very high, about 1 V/A

  7. Hydrogen gas sensing feature of polyaniline/titania (rutile) nanocomposite at environmental conditions

    Energy Technology Data Exchange (ETDEWEB)

    Milani Moghaddam, Hossain, E-mail: hossainmilani@yahoo.com [Solid State Physics Department, University of Mazandaran, Babolsar (Iran, Islamic Republic of); Nasirian, Shahruz [Solid State Physics Department, University of Mazandaran, Babolsar (Iran, Islamic Republic of); Basic Sciences Department, Mazandaran University of Science and Technology, Babol (Iran, Islamic Republic of)

    2014-10-30

    Graphical abstract: - Highlights: • Polyaniline/titania (rutile) nanocomposite (TPNC) was synthesized by a chemical oxidative polymerization method. • Surface morphology and titania (rutile) wt% in TPNC sensors were significant factors for H{sub 2} gas sensing. • TPNC sensors could be used for H{sub 2} gas sensing at different R.H. humidity. • TPNC Sensors exhibited considerable sensitive, reversible and repeatable response to H{sub 2} gas at environmental conditions. - Abstract: The resistance-based sensors of polyaniline/titania (rutile) nanocomposite (TPNC) were prepared by spin coating technique onto an epoxy glass substrate with Cu-interdigited electrodes to study their hydrogen (H{sub 2}) gas sensing features. Our findings are that the change of the surface morphology, porosity and wt% of titania in TPNCs have a significant effect on H{sub 2} gas sensing of sensors. All of the sensors had a reproducibility response toward 0.8 vol% H{sub 2} gas at room temperature, air pressure and 50% relative humidity. A sensor with 40 wt% of titania nanoparticles had better response/recovery time and the response than other sensors. Moreover, H{sub 2} gas sensing mechanism of TPNC sensors based contact areas and the correlation of energy levels between PANI chains and the titania grains were studied.

  8. Water-Gas-Shift Membrane Reactor for High-Pressure Hydrogen Production. A comprehensive project report (FY2010 - FY2012)

    Energy Technology Data Exchange (ETDEWEB)

    Klaehn, John [Idaho National Lab. (INL), Idaho Falls, ID (United States); Peterson, Eric [Idaho National Lab. (INL), Idaho Falls, ID (United States); Orme, Christopher [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bhandari, Dhaval [General Electric Global Research, Niskayuna, New York (United States); Miller, Scott [General Electric Global Research, Niskayuna, New York (United States); Ku, Anthony [General Electric Global Research, Niskayuna, New York (United States); Polishchuk, Kimberly [General Electric Global Research, Niskayuna, New York (United States); Narang, Kristi [General Electric Global Research, Niskayuna, New York (United States); Singh, Surinder [General Electric Global Research, Niskayuna, New York (United States); Wei, Wei [General Electric Global Research, Niskayuna, New York (United States); Shisler, Roger [General Electric Global Research, Niskayuna, New York (United States); Wickersham, Paul [General Electric Global Research, Niskayuna, New York (United States); McEvoy, Kevin [General Electric Global Research, Niskayuna, New York (United States); Alberts, William [General Electric Global Research, Niskayuna, New York (United States); Howson, Paul [General Electric Global Research, Niskayuna, New York (United States); Barton, Thomas [Western Research inst., Laramie, WY (United States); Sethi, Vijay [Western Research inst., Laramie, WY (United States)

    2013-01-01

    Idaho National Laboratory (INL), GE Global Research (GEGR), and Western Research Institute (WRI) have successfully produced hydrogen-selective membranes for water-gas-shift (WGS) modules that enable high-pressure hydrogen product streams. Several high performance (HP) polymer membranes were investigated for their gas separation performance under simulated (mixed gas) and actual syngas conditions. To enable optimal module performance, membranes with high hydrogen (H2) selectivity, permeance, and stability under WGS conditions are required. The team determined that the VTEC PI 80-051 and VTEC PI 1388 (polyimide from Richard Blaine International, Inc.) are prime candidates for the H2 gas separations at operating temperatures (~200°C). VTEC PI 80-051 was thoroughly analyzed for its H2 separations under syngas processing conditions using more-complex membrane configurations, such as tube modules and hollow fibers. These membrane formats have demonstrated that the selected VTEC membrane is capable of providing highly selective H2/CO2 separation (α = 7-9) and H2/CO separation (α = 40-80) in humidified syngas streams. In addition, the VTEC polymer membranes are resilient within the syngas environment (WRI coal gasification) at 200°C for over 1000 hours. The information within this report conveys current developments of VTEC PI 80-051 as an effective H2 gas separations membrane for high-temperature syngas streams.

  9. Hydrogen production using plasma processing

    International Nuclear Information System (INIS)

    Wagner, D.; Whidden, T.K.

    2006-01-01

    Plasma processing is a promising method of extracting hydrogen from natural gas while avoiding the greenhouse gas (GHG) production typical of other methods such as steam methane reforming. This presentation describes a plasma discharge process based that, in a single reactor pass, can yield hydrogen concentrations of up to 50 % by volume in the product gas mixture. The process is free of GHG's, does not require catalysts and is easily scalable. Chemical and morphological analyses of the gaseous and solid products of the process by gas-chromatography/mass-spectrometry, microscopic Raman analyses and electron microscopy respectively are reviewed. The direct production of hydrogen-enriched natural gas (HENG) as a fuel for low pollution internal combustion engines and its purification to high-purity hydrogen (99.99%) from the product gas by pressure swing adsorption (PSA) purifier beds are reviewed. The presentation reviews potential commercial applications for the technology

  10. Hydrogen rich gas production by thermocatalytic decomposition of kenaf biomass

    Energy Technology Data Exchange (ETDEWEB)

    Irmak, Sibel; Oeztuerk, ilker [Department of Chemistry, Cukurova University, Arts and Sciences Faculty, Adana 01330 (Turkey)

    2010-06-15

    Kenaf (Hibiscus cannabinus L.), a well known energy crop and an annual herbaceous plant grows very fast with low lodging susceptibility was used as representative lignocellulosic biomass in the present work. Thermocatalytic conversions were performed by aqueous phase reforming (APR) of kenaf hydrolysates and direct gasification of solid biomass of kenaf using 5% Pt on activated carbon as catalyst. Hydrolysates used in APR experiments were prepared by solubilization of kenaf biomass in subcritical water under CO{sub 2} gas pressure. APR of kenaf hydrolysate with low molecular weight polysaccharides in the presence of the reforming catalyst produced more gas compared to the hydrolysate that had high molecular weight polysaccharides. APR experiments of kenaf biomass hydrolysates and glucose, which was used as a simplest biomass model compound, in the presence of catalyst produced various amounts of gas mixtures that consisted of H{sub 2}, CO, CO{sub 2}, CH{sub 4} and C{sub 2}H{sub 6}. The ratios of H{sub 2} to other gases produced were 0.98, 1.50 and 1.35 for 150 C and 250 C subcritical water-treated kenaf hydrolysates and glucose, respectively. These ratios indicated that more the degraded organic content of kenaf hydrolysate the better selectivity for hydrogen production. Although APR of 250 C-kenaf hydrolysate resulted in similar gas content and composition as glucose, the gas volume produced was three times higher in glucose feed. The use of solid kenaf biomass as starting feedstock in APR experiments resulted in less gas production since the activity of catalyst was lowered by solid biomass particles. (author)

  11. Review on fluoride-releasing restorative materials--fluoride release and uptake characteristics, antibacterial activity and influence on caries formation.

    Science.gov (United States)

    Wiegand, Annette; Buchalla, Wolfgang; Attin, Thomas

    2007-03-01

    The purpose of this article was to review the fluoride release and recharge capabilities, and antibacterial properties, of fluoride-releasing dental restoratives, and discuss the current status concerning the prevention or inhibition of caries development and progression. Information from original scientific full papers or reviews listed in PubMed (search term: fluoride release AND (restorative OR glass-ionomer OR compomer OR polyacid-modified composite resin OR composite OR amalgam)), published from 1980 to 2004, was included in the review. Papers dealing with endodontic or orthodontic topics were not taken into consideration. Clinical studies concerning secondary caries development were only included when performed in split-mouth design with an observation period of at least three years. Fluoride-containing dental materials show clear differences in the fluoride release and uptake characteristics. Short- and long-term fluoride releases from restoratives are related to their matrices, setting mechanisms and fluoride content and depend on several environmental conditions. Fluoride-releasing materials may act as a fluoride reservoir and may increase the fluoride level in saliva, plaque and dental hard tissues. However, clinical studies exhibited conflicting data as to whether or not these materials significantly prevent or inhibit secondary caries and affect the growth of caries-associated bacteria compared to non-fluoridated restoratives. Fluoride release and uptake characteristics depend on the matrices, fillers and fluoride content as well as on the setting mechanisms and environmental conditions of the restoratives. Fluoride-releasing materials, predominantly glass-ionomers and compomers, did show cariostatic properties and may affect bacterial metabolism under simulated cariogenic conditions in vitro. However, it is not proven by prospective clinical studies whether the incidence of secondary caries can be significantly reduced by the fluoride release of

  12. Silver diamine fluoride: a caries "silver-fluoride bullet".

    Science.gov (United States)

    Rosenblatt, A; Stamford, T C M; Niederman, R

    2009-02-01

    The antimicrobial use of silver compounds pivots on the 100-year-old application of silver nitrate, silver foil, and silver sutures for the prevention and treatment of ocular, surgical, and dental infections. Ag(+) kills pathogenic organisms at concentrations of linings, water purification systems, hospital gowns, and caries prevention. To distill the current best evidence relative to caries, this systematic review asked: Will silver diamine fluoride (SDF) more effectively prevent caries than fluoride varnish? A five-database search, reference review, and hand search identified 99 human clinical trials in three languages published between 1966 and 2006. Dual review for controlled clinical trials with the patient as the unit of observation, and excluding cross-sectional, animal, in vitro studies, and opinions, identified 2 studies meeting the inclusion criteria. The trials indicated that SDF's lowest prevented fractions for caries arrest and caries prevention were 96.1% and 70.3%, respectively. In contrast, fluoride varnish's highest prevented fractions for caries arrest and caries prevention were 21.3% and 55.7%, respectively. Similarly, SDF's highest numbers needed to treat for caries arrest and caries prevention were 0.8 (95% CI=0.5-1.0) and 0.9 (95% CI=0.4-1.1), respectively. For fluoride varnish, the lowest numbers needed to treat for caries arrest and prevention were 3.7 (95% CI=3.4-3.9) and 1.1 (95% CI=0.7-1.4), respectively. Adverse events were monitored, with no significant differences between control and experimental groups. These promising results suggest that SDF is more effective than fluoride varnish, and may be a valuable caries-preventive intervention. As well, the availability of a safe, effective, efficient, and equitable caries-preventive agent appears to meet the criteria of both the WHO Millennium Goals and the US Institute of Medicine's criteria for 21st century medical care.

  13. SISGR - Hydrogen Caged in Carbon-Exploration of Novel Carbon-Hydrogen Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Lueking, Angela [Pennsylvania State Univ., State College, PA (United States); Badding, John [Pennsylvania State Univ., State College, PA (United States); Crespi, Vinent [Pennsylvania State Univ., State College, PA (United States)

    2015-12-01

    Hydrogen trapped in a carbon cage, captured through repulsive interactions, is a novel concept in hydrogen storage. Trapping hydrogen via repulsive interactions borrows an idea from macroscale hydrogen storage (i.e. compressed gas storage tanks) and reapplies these concepts on the nanoscale in specially designed molecular containers. Under extreme conditions of pressure, hydrogen solubility in carbon materials is expected to increase and carbon is expected to restructure to minimize volume via a mixed sp2/sp3 hydrogenated state. Thermodynamics dictate that pre-formed C-H structures will rearrange with increased pressure, yet the final carbon-hydrogen interactions may be dependent upon the mechanism by which hydrogen is introduced. Gas “trapping” is meant to denote gas present in a solid in a high density, adsorbed-like state, when the external pressure is much less than that necessary to provide a comparable fluid density. Trapping thus denotes a kinetically metastable state rather than thermodynamic equilibrium. This project probed mechanochemical means to polymerize select hydrocarbons in the presence of gases, in an attempt to form localized carbon cages that trap gases via repulsive interactions. Aromatic, polyaromatic, and hydroaromatic molecules expected to undergo cyclo-addition reactions were polymerized at high (~GPa) pressures to form extended hydrogenated amorphous carbon networks. Notably, aromatics with a pre-existing internal free volume (such as Triptycene) appeared to retain an internal porosity upon application of pressure. However, a high photoluminescence background after polymerization precluded in situ identification of trapped gases. No spectroscopic evidence was found after depressurization that would be indicative of pockets of trapped gases in a localized high-pressure environment. Control studies suggested this measurement may be insensitive to gases at low pressure. Similarly, no spectral fingerprint was found for gas-imbued spherical

  14. A heat exchanger between forced flow helium gas at 14 to 18 K and liquid hydrogen at 20 K circulated by natural convection

    International Nuclear Information System (INIS)

    Green, M.A.; Ishimoto, S.; Lau, W.; Yang, S.

    2003-01-01

    The Muon Ionization Cooling Experiment (MICE) has three 350-mm long liquid hydrogen absorbers to reduce the momentum of 200 MeV muons in all directions. The muons are then re-accelerated in the longitudinal direction by 200 MHz RF cavities. The result is cooled muons with a reduced emittance. The energy from the muons is taken up by the liquid hydrogen in the absorber. The hydrogen in the MICE absorbers is cooled by natural convection to the walls of the absorber that are in turn cooled by helium gas that enters at 14 K. This report describes the MICE liquid hydrogen absorber and the heat exchanger between the liquid hydrogen and the helium gas that flows through passages in the absorber wall

  15. Effects of nitrogen and hydrogen in argon shielding gas on bead profile, delta-ferrite and nitrogen contents of the pulsed GTAW welds of AISI 316L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Viyanit, Ekkarut [National Metal and Materials Technology Center (MTEC), Pathaumthani (Thailand). Failure Analysis and Surface Technology Lab; Hartung, Fritz; Lothongkum, Gobboon [Chulalongkom University, Bangkok (Thailand). Dept. of Metallurgical Engineering,; Phakpeetinan, Panyasak; Chianpairot, Amnuysak

    2016-08-01

    The general effects of 1, 2, 3 and 4 vol.-% nitrogen and 1, 5 and 10 vol.-% hydrogen in argon shielding gas on weld bead profile (depth/width ratio: D/W) and the δ-ferrite content of AISI 316L pulsed GTAW welds were investigated. The limits for imperfections for the quality levels of welds were based on ISO 5817 B. The plates with a thickness of 6 mm were welded at the flat position and the bead on plate. Increasing hydrogen content in argon shielding gas increases the D/W ratio. Excessive hydrogen addition to argon shielding gas will result in incompletely filled groove and excessive penetration of weld. Increasing welding speed decreases the weld-metal volume and the D/W ratios. Nitrogen addition to argon shielding gas has no effect on the D/W ratio. The addition of a mixture of nitrogen and hydrogen to argon shielding gas on the D/W ratio does not show any interaction between them. An effect on the D/W ratio can be exclusively observed as a function of hydrogen content. Increasing hydrogen content in argon shielding gas increases the δ-ferrite content of weld metal. Increasing either nitrogen content in shielding gas or welding speed decreases the δ-ferrite content of weld metal. The nitrogen addition increases the weld metal nitrogen content, however, the hydrogen addition leads to a decrease of weld metal nitrogen content.

  16. FLUORIDE TOXICITY – A HARSH REALITY

    OpenAIRE

    Bandlapalli Pavani; Mandava Ragini; David Banji; Otilia J F Banji; N Gouri Pratusha

    2011-01-01

    There are many incidents of fluoride toxicity whether it is acute or chronic. Fluoride toxicity is an environmental hazard which arises from the upper layers of geological crust and is dissolved in water. Prolonged drinking of such water causes chronic fluoride toxicity. Use of fluoride containing compounds for various purposes such as dental products, metal, glass, refrigerator and chemical industries act as a source of fluoride poisoning and increase the risk of toxicity. This review reflec...

  17. Fluoride in groundwater: toxicological exposure and remedies.

    Science.gov (United States)

    Jha, S K; Singh, R K; Damodaran, T; Mishra, V K; Sharma, D K; Rai, Deepak

    2013-01-01

    Fluoride is a chemical element that is found most frequently in groundwater and has become one of the most important toxicological environmental hazards globally. The occurrence of fluoride in groundwater is due to weathering and leaching of fluoride-bearing minerals from rocks and sediments. Fluoride when ingested in small quantities (dental health by reducing dental caries, whereas higher concentrations (>1.5 mg/L) may cause fluorosis. It is estimated that about 200 million people, from among 25 nations the world over, may suffer from fluorosis and the causes have been ascribed to fluoride contamination in groundwater including India. High fluoride occurrence in groundwaters is expected from sodium bicarbonate-type water, which is calcium deficient. The alkalinity of water also helps in mobilizing fluoride from fluorite (CaF2). Fluoride exposure in humans is related to (1) fluoride concentration in drinking water, (2) duration of consumption, and (3) climate of the area. In hotter climates where water consumption is greater, exposure doses of fluoride need to be modified based on mean fluoride intake. Various cost-effective and simple procedures for water defluoridation techniques are already known, but the benefits of such techniques have not reached the rural affected population due to limitations. Therefore, there is a need to develop workable strategies to provide fluoride-safe drinking water to rural communities. The study investigated the geochemistry and occurrence of fluoride and its contamination in groundwater, human exposure, various adverse health effects, and possible remedial measures from fluoride toxicity effects.

  18. Simulating and Optimizing Hydrogen Production by Low-pressure Autothermal Reforming of Natural Gas using Non-dominated Sorting Genetic Algorithm-II

    OpenAIRE

    Azarhoosh, M. J.; Ale Ebrahim, H.; Pourtarah, S. H.

    2016-01-01

    Conventional hydrogen production plants consist of natural gas steam reforming to CO+3H2 on Ni catalysts in a furnace, water-gas shift reaction for converting CO into CO2 and CO2 absorption. A new alternative method for highly endothermic steam reforming is autothermal reforming (steam reforming with air input to the reactor) without the need for external heating. In this study, hydrogen production by autothermal reforming for fuel cells (base case) was simulated based on a heterogeneous and ...

  19. Gas-Phase Reaction Pathways and Rate Coefficients for the Dichlorosilane-Hydrogen and Trichlorosilane-Hydrogen Systems

    Science.gov (United States)

    Dateo, Christopher E.; Walch, Stephen P.

    2002-01-01

    As part of NASA Ames Research Center's Integrated Process Team on Device/Process Modeling and Nanotechnology our goal is to create/contribute to a gas-phase chemical database for use in modeling microelectronics devices. In particular, we use ab initio methods to determine chemical reaction pathways and to evaluate reaction rate coefficients. Our initial studies concern reactions involved in the dichlorosilane-hydrogen (SiCl2H2--H2) and trichlorosilane-hydrogen (SiCl2H-H2) systems. Reactant, saddle point (transition state), and product geometries and their vibrational harmonic frequencies are determined using the complete-active-space self-consistent-field (CASSCF) electronic structure method with the correlation consistent polarized valence double-zeta basis set (cc-pVDZ). Reaction pathways are constructed by following the imaginary frequency mode of the saddle point to both the reactant and product. Accurate energetics are determined using the singles and doubles coupled-cluster method that includes a perturbational estimate of the effects of connected triple excitations (CCSD(T)) extrapolated to the complete basis set limit. Using the data from the electronic structure calculations, reaction rate coefficients are obtained using conventional and variational transition state and RRKM theories.

  20. Silicon surface damage caused by reactive ion etching in fluorocarbon gas mixtures containing hydrogen

    International Nuclear Information System (INIS)

    Norstroem, H.; Blom, H.; Ostling, M.; Nylandsted Larsen, A.; Keinonen, J.; Berg, S.

    1991-01-01

    For selective etching of SiO 2 on silicon, gases or gas mixtures containing hydrogen are often used. Hydrogen from the glow discharge promotes the formation of a thin film polymer layer responsible for the selectivity of the etching process. The reactive ion etch (RIE) process is known to create damage in the silicon substrate. The influence of hydrogen on the damage and deactivation of dopants is investigated in the present work. The distribution of hydrogen in silicon, after different etching and annealing conditions have been studied. The influence of the RIE process on the charge carrier concentration in silicon has been investigated. Various analytical techniques like contact resistivity measurements, four point probe measurements, and Hall measurements have been used to determine the influence of the RIE process on the electrical properties of processed silicon wafers. The hydrogen profile in as-etched and post annealed wafers was determined by the 1 H( 15 N,αγ) 12 C nuclear reaction. The depth of the deactivated surface layer is discussed in terms of the impinging hydrogen ion energy, i.e., the possibility of H + ions to pick up an energy equal to the peak-to-peak voltage of the rf signal

  1. Chemical treatment of ammonium fluoride solution in uranium reconversion plant

    International Nuclear Information System (INIS)

    Carvalho Frajndlich, E.U. de.

    1992-01-01

    A chemical procedure is described for the treatment of the filtrate, produced from the transformation of uranium hexafluoride (U F 6 ) into ammonium uranyl carbonate (AUC). This filtrate is an intermediate product in the U F 6 to uranium dioxide (U O 2 ) reconversion process. The described procedure recovers uranium as ammonium peroxide fluoro uranate (APOFU) by precipitation with hydrogen peroxide (H 2 O 2 ), and as later step, its calcium fluoride (CaF 2 ) co-precipitation. The recovered uranium is recycled to the AUC production plant. (author)

  2. The effect of fluoride on the scavenging of organophosphates by human butyrylcholinesterase in buffer solutions and human plasma

    International Nuclear Information System (INIS)

    Ashani, Yacov; Segev, Omri; Balan, Ayala

    2004-01-01

    Fluoride ion is a reversible inhibitor of human butyrylcholinesterase (HuBChE) that is a viable drug candidate against organophosphates (OPs) toxicity. Since large numbers of communities in many countries are occasionally exposed to relatively high amount of fluoride, its effect on the kinetics of inhibition of HuBChE by OPs was investigated. In saline phosphate, pH 7.4, fluoride in the lower millimolar range significantly slowed the inhibition of HuBChE by paraoxon, DFP, echothiophate, soman, sarin, and VX. The kinetics of the inhibition was found consistent with the formation of a reversible fluoride-HuBChE complex that is at least 25-fold less active towards phosphorylation or phosphonylation than the free enzyme. Heat inactivation experiments indicate that the binding of fluoride to HuBChE probably involves enhanced cross-domain interaction via hydrogen bonds formation that may decrease enzyme activity. In spite of distinct structural differences among the OP used, the dissociation constants of the fluoride-HuBChE reversible complex varied over a narrow range (K F , 0.31-0.70 mM); however, K F in human plasma increased to 2.75-3.40 mM. 19 F-NMR spectroscopy revealed that fluoride ion is complexed to plasma components, an observation that explains in part the apparent increase in K F . Results suggest that an estimate of the relative decrease in the rate of OPs sequestration in presence of fluoride can be obtained from the fraction of the free HuBChE (1 + [F]/K F ) -1 . Considering K F values in human plasma, it is concluded that the scavenging efficacy of OPs by HuBChE is not compromised by the normal concentration range of circulating fluoride ions

  3. Study of Hydrogen Pumping through Condensed Argon in Cryogenic pump

    International Nuclear Information System (INIS)

    Jadeja, K A; Bhatt, S B

    2012-01-01

    In ultra high vacuum (UHV) range, hydrogen is a dominant residual gas in vacuum chamber. Hydrogen, being light gas, pumping of hydrogen in this vacuum range is limited with widely used UHV pumps, viz. turbo molecular pump and cryogenic pump. Pre condensed argon layers in cryogenic pump create porous structure on the surface of the pump, which traps hydrogen gas at a temperature less than 20° K. Additional argon gas injection in the cryogenic pump, at lowest temperature, generates multiple layers of condensed argon as a porous frost with 10 to 100 A° diameters pores, which increase the pumping capacity of hydrogen gas. This pumping mechanism of hydrogen is more effective, to pump more hydrogen gas in UHV range applicable in accelerator, space simulation etc. and where hydrogen is used as fuel gas like tokamak. For this experiment, the cryogenic pump with a closed loop refrigerator using helium gas is used to produce the minimum cryogenic temperature as ∼ 14° K. In this paper, effect of cryosorption of hydrogen is presented with different levels of argon gas and hydrogen gas in cryogenic pump chamber.

  4. Equilibrium curve determination of HF adsorption by activated carbon

    International Nuclear Information System (INIS)

    Bahrami, H.; Safdari, S. J.; Mousavian, S. M. A.

    2010-01-01

    One of the byproducts of uranium enrichment industry is hydrogen fluoride gas. Due to the toxicity and corrosivity of the molecule, it has adverse effects on the environment and the process. Therefore, it must be removed by adsorption towers. The activated carbon is one of the proposed sorbent for the adsorption. Hydrogen fluoride adsorption equilibrium curve gives important information for designing the adsorption towers. In this article, the hydrogen fluoride adsorption and adsorption factors were determined experimentally, and four different types of carbon have been used. The operating pressure in all tests was less than 30 mbar. Comparison between the obtained experimental equilibrium curves shows that the first, second and fourth types of activated carbon are suitable for the adsorption of hydrogen fluoride. The experimental data were fitted using mathematical models of Langmuir, Freundlich, Toth and Henry. The results show that Toth mathematical model is more suitable than other models. Also, the absolute error were predicted by the model of Toth for the first, second and fourth types of the activated carbon were 12.9, 16.5 and 34 percent, respectively.

  5. Hydrogen distribution in a containment with a high-velocity hydrogen-steam source

    International Nuclear Information System (INIS)

    Bloom, G.R.; Muhlestein, L.D.; Postma, A.K.; Claybrook, S.W.

    1982-09-01

    Hydrogen mixing and distribution tests are reported for a modeled high velocity hydrogen-steam release from a postulated small pipe break or release from a pressurizer relief tank rupture disk into the lower compartment of an Ice Condenser Plant. The tests, which in most cases used helium as a simulant for hydrogen, demonstrated that the lower compartment gas was well mixed for both hydrogen release conditions used. The gas concentration differences between any spatial locations were less than 3 volume percent during the hydrogen/steam release period and were reduced to less than 0.5 volume percent within 20 minutes after termination of the hydrogen source. The high velocity hydrogen/steam jet provided the dominant mixing mechanism; however, natural convection and forced air recirculation played important roles in providing a well mixed atmosphere following termination of the hydrogen source. 5 figures, 4 tables

  6. Highly stable hydrogenated gallium-doped zinc oxide thin films grown by DC magnetron sputtering using H2/Ar gas

    International Nuclear Information System (INIS)

    Takeda, Satoshi; Fukawa, Makoto

    2004-01-01

    The effects of water partial pressure (P H 2 O ) on electrical and optical properties of Ga-doped ZnO films grown by DC magnetron sputtering were investigated. With increasing P H 2 O , the resistivity (ρ) of the films grown in pure Ar gas (Ar-films) significantly increased due to the decrease in both free carrier density and Hall mobility. The transmittance in the wavelength region of 300-400 nm for the films also increased with increasing P H 2 O . However, no significant P H 2 O dependence of the electrical and optical properties was observed for the films grown in H 2 /Ar gas mixture (H 2 /Ar-films). Secondary ion mass spectrometry (SIMS) and X-ray diffraction (XRD) analysis revealed that hydrogen concentration in the Ar-films increased with increasing P H 2 O and grain size of the films decreases with increasing the hydrogen concentration. These results indicate that the origin of the incorporated hydrogen is attributed to the residual water vapor in the coating chamber, and that the variation of ρ and transmittance along with P H 2 O of the films resulted from the change in the grain size. On the contrary, the hydrogen concentration in H 2 /Ar-films was almost constant irrespective of P H 2 O and the degree of change in the grain size of the films versus P H 2 O was much smaller than that of Ar-films. These facts indicate that the hydrogen primarily comes from H 2 gas and the adsorption species due to H 2 gas preferentially adsorb to the growing film surface over residual water vapor. Consequently, the effects of P H 2 O on the crystal growth are reduced

  7. Hydrogen production by Cyanobacteria

    Directory of Open Access Journals (Sweden)

    Chaudhuri Surabhi

    2005-12-01

    Full Text Available Abstract The limited fossil fuel prompts the prospecting of various unconventional energy sources to take over the traditional fossil fuel energy source. In this respect the use of hydrogen gas is an attractive alternate source. Attributed by its numerous advantages including those of environmentally clean, efficiency and renew ability, hydrogen gas is considered to be one of the most desired alternate. Cyanobacteria are highly promising microorganism for hydrogen production. In comparison to the traditional ways of hydrogen production (chemical, photoelectrical, Cyanobacterial hydrogen production is commercially viable. This review highlights the basic biology of cynobacterial hydrogen production, strains involved, large-scale hydrogen production and its future prospects. While integrating the existing knowledge and technology, much future improvement and progress is to be done before hydrogen is accepted as a commercial primary energy source.

  8. Reaction of Hydrogen Chloride Gas with Sodium Carbonate and Its Deep Removal in a Fixed-Bed Reactor

    Czech Academy of Sciences Publication Activity Database

    Hartman, Miloslav; Svoboda, Karel; Pohořelý, Michael; Šyc, Michal; Chen, Po-Ch.

    2014-01-01

    Roč. 53, č. 49 (2014), s. 19145-19158 ISSN 0888-5885 R&D Projects: GA ČR GC14-09692J Grant - others:NSC(TW) 102WBS0300011 Institutional support: RVO:67985858 Keywords : hot fuel gas purification * hydrogen chloride gas * active sodium carbonate Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.587, year: 2014

  9. Development of a facility for the recovery of high-purity hydrogen from coke oven gas by pressure swing adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, M; Saida, K; Uenoyama, K; Sugishita, M; Imokawa, K

    1985-01-01

    This paper reports 1) a pressure swing adsorption (PSA) system comprising three towers, each packed with three different adsorbents; and 2) studies of the application of this system to the recovery of high-purity hydrogen from coke oven gas. Running the adsorption plant at 35 C and 9.5 kg/cm/sup 2/ gives optimum operating stability and economy. In addition, an optimum time cycle for the three-tower system has been developed. Gas from the PSA equipment proper still contains traces of oxygen. This is removed in a further tower packed with Pd catalyst. The ultimate recovery of hydrogen is closely related to its concentration in the raw coke oven gas and to the degree of purity attained. 3 references.

  10. Purification process of uranium hexafluoride containing traces of plutonium fluoride and/or neptunium fluoride

    International Nuclear Information System (INIS)

    Aubert, J.; Bethuel, L.; Carles, M.

    1983-01-01

    In this process impure uranium hexafluoride is contacted with a metallic fluoride chosen in the group containing lead fluoride PbF 2 , uranium fluorides UFsub(4+x) (0 3 at a temperature such as plutonium and/or neptunium are reduced and pure uranium hexafluoride is recovered. Application is made to uranium hexafluoride purification in spent fuel reprocessing [fr

  11. Atomic hydrogen determination in medium-pressure microwave discharge hydrogen plasmas via emission actinometry

    International Nuclear Information System (INIS)

    Geng Zicai; Xu Yong; Yang Xuefeng; Wang Weiguo; Zhu Aimin

    2005-01-01

    Atomic hydrogen plays an important role in the chemical vapour deposition of functional materials, plasma etching and new approaches to the chemical synthesis of hydrogen-containing compounds. This work reports experimental determinations of atomic hydrogen in microwave discharge hydrogen plasmas formed from the TM 01 microwave mode in an ASTeX-type reactor, via optical emission spectroscopy using Ar as an actinometer. The relative intensities of the H atom Balmer lines and Ar-750.4 nm emissions as functions of input power and gas pressure have been investigated. At an input microwave power density of 13.5 W cm -3 , the approximate hydrogen dissociation fractions calculated from electron-impact excitation and quenching cross sections in the literature, decreased from ∼0.08 to ∼0.03 as the gas pressure was increased from 5 to 25 Torr. The influences of the above cross sections, and the electron and gas temperatures of the plasmas on the determination of the hydrogen dissociation fraction data have been discussed

  12. Shock-wave proton acceleration from a hydrogen gas jet

    Science.gov (United States)

    Cook, Nathan; Pogorelsky, Igor; Polyanskiy, Mikhail; Babzien, Marcus; Tresca, Olivier; Maharjan, Chakra; Shkolnikov, Peter; Yakimenko, Vitaly

    2013-04-01

    Typical laser acceleration experiments probe the interaction of intense linearly-polarized solid state laser pulses with dense metal targets. This interaction generates strong electric fields via Transverse Normal Sheath Acceleration and can accelerate protons to high peak energies but with a large thermal spectrum. Recently, the advancement of high pressure amplified CO2 laser technology has allowed for the creation of intense (10^16 Wcm^2) pulses at λ˜10 μm. These pulses may interact with reproducible, high rep. rate gas jet targets and still produce plasmas of critical density (nc˜10^19 cm-3), leading to the transference of laser energy via radiation pressure. This acceleration mode has the advantage of producing narrow energy spectra while scaling well with pulse intensity. We observe the interaction of an intense CO2 laser pulse with an overdense hydrogen gas jet. Using two pulse optical probing in conjunction with interferometry, we are able to obtain density profiles of the plasma. Proton energy spectra are obtained using a magnetic spectrometer and scintillating screen.

  13. Status and integration of the gas generation studies performed for the Hydrogen Safety Program

    International Nuclear Information System (INIS)

    Pederson, L.R.; Strachan, D.M.

    1993-02-01

    Waste in Tank 241-SY-101 on the Hanford Site generates and periodically releases hydrogen, nitrous oxide, and nitrogen gases. Studies have been conducted at several laboratories to determine the chemical mechanisms for the gas generation and release. Results from these studies are presented and integrated in an attempt to describe current understanding of the physical properties of the waste and the mechanisms of gas generation and retention. Existing tank data are consistent with the interpretation that gases are uniformly generated in the tank, released continuously from the convecting layer, and stored in the nonconvecting layer. Tank temperature measurements suggest that the waste consists of ''gobs'' of material that reach neutral buoyancy at different times. The activation energy of the rate limiting step of the gas generating process was calculated to be about 7 kJ/mol but measured in the laboratory at 80 to 100 kJ/mol. Based on observed temperature changes in the tank the activation energy is probably not higher than about 20 kJ/mol. Several simulated waste compositions have been devised for use in laboratory studies in the place of actual waste from Tank 241-SY-101. Data from these studies can be used to predict how the actual waste might behave when heated or diluted. Density evaluations do not confirm that heating waste at the bottom of the tank would induce circulation within the waste; however, heating may release gas bubbles by dissolving the solids to which the bubbles adhere. Gas generation studies on simulated wastes indicated that nitrous oxide and hydrogen yields are not particularly coupled. Solubility studies of nitrous oxide, the most soluble of the principal gaseous products, indicate it is unlikely that dissolved gases contribute substantially to the quantity of gas released during periodic events

  14. Durable regenerable sorbent pellets for removal of hydrogen sulfide coal gas

    Science.gov (United States)

    Siriwardane, Ranjani V.

    1999-01-01

    Pellets for removing hydrogen sulfide from a coal gasification stream at an elevated temperature are prepared in durable form, usable over repeated cycles of absorption and regeneration. The pellets include a material reactive with hydrogen sulfide, in particular zinc oxide, a binder, and an inert material, in particular calcium sulfate (drierite), having a particle size substantially larger than other components of the pellets. A second inert material and a promoter may also be included. Preparation of the pellets may be carried out by dry, solid-state mixing of components, moistening the mixture, and agglomerating it into pellets, followed by drying and calcining. Pellet size is selected, depending on the type of reaction bed for which the pellets are intended. The use of inert material with a large particle size provides a stable pellet structure with increased porosity, enabling effective gas contact and prolonged mechanical durability.

  15. Physiology and toxicity of fluoride

    OpenAIRE

    Dhar Vineet; Bhatnagar Maheep

    2009-01-01

    Fluoride has been described as an essential element needed for normal development and growth of animals and extremely useful for human beings. Fluoride is abundant in the environment and the main source of fluoride to humans is drinking water. It has been proved to be beneficial in recommended doses, and at the same time its toxicity at higher levels has also been well established. Fluoride gets accumulated in hard tissues of the body and has been know to play an important role in mineralizat...

  16. The hydrogen generated as a gas and storage in Zircaloy during water quenching

    International Nuclear Information System (INIS)

    Garcia, Eduardo A.

    1999-01-01

    A simple one-dimensional diffusion model has been developed for the complex process of Zircaloy oxidation during water quenching, calculating the hydrogen liberated as a gas and the hydrogen stored in the metal. The model was developed on the basis of small-scale separate-effects quench experiments performed at Forschungszentrum Karlsruhe. The new oxide surface and the new metallic surface produced by cracking of the oxide during quenching are calculated for each experiment performed at 1200 , 1400 and 1600 C degrees using as-received Zircaloy-4 (no pre oxidation) and with Zircaloy specimens pre oxidised to give oxide thicknesses of 100μm and 300μm. The results are relevant to accident management in light water reactors. (author)

  17. Development status on hydrogen production technology using high-temperature gas-cooled reactor at JAEA, Japan

    International Nuclear Information System (INIS)

    Shiozawa, Shusaku; Ogawa, Masuro; Hino, Ryutaro

    2006-01-01

    The high-temperature gas-cooled reactor (HTGR), which is graphite-moderated and helium-cooled, is attractive due to its unique capability of producing high temperature helium gas and its fully inherent reactor safety. In particular, hydrogen production using the nuclear heat from HTGR (up to 900 deg. C) offers one of the most promising technological solutions to curb the rising level of CO 2 emission and resulting risk of climate change. The interests in HTGR as an advanced nuclear power source for the next generation reactor, therefore, continue to rise. This is represented by the Japanese HTTR (High-Temperature Engineering Test Reactor) Project and the Chinese HTR-10 Project, followed by the international Generation IV development program, US nuclear hydrogen initiative program, EU innovative HTR technology development program, etc. To enhance nuclear energy application to heat process industries, the Japan Atomic Energy Agency (JAEA) has continued extensive efforts for development of hydrogen production system using the nuclear heat from HTGR in the framework of the HTTR Project. The HTTR Project has the objectives of establishing both HTGR technology and heat utilization technology. Using the HTTR constructed at the Oarai Research and Development Center of JAEA, reactor performance and safety demonstration tests have been conducted as planned. The reactor outlet temperature of 950 deg. C was successfully achieved in April 2004. For hydrogen production as heat utilization technology, R and D on thermo-chemical water splitting by the 'Iodine-Sulfur process' (IS process) has been conducted step by step. Proof of the basic IS process was made in 1997 on a lab-scale of hydrogen production of 1 L/h. In 2004, one-week continuous operation of the IS process was successfully demonstrated using a bench-scale apparatus with hydrogen production rate of 31 L/h. Further test using a pilot scale facility with greater hydrogen production rate of 10 - 30 m 3 /h is planned as

  18. Development of a Hydrogen Gas Sensor Using a Double Saw Resonator System at Room Temperature

    Directory of Open Access Journals (Sweden)

    Zainab Yunusa

    2015-02-01

    Full Text Available A double SAW resonator system was developed as a novel method for gas sensing applications. The proposed system was investigated for hydrogen sensing. Commercial Surface Acoustic Wave (SAW resonators with resonance frequencies of 433.92 MHz and 433.42 MHz were employed in the double SAW resonator system configuration. The advantages of using this configuration include its ability for remote measurements, and insensitivity to vibrations and other external disturbances. The sensitive layer is composed of functionalized multiwalled carbon nanotubes and polyaniline nanofibers which were deposited on pre-patterned platinum metal electrodes fabricated on a piezoelectric substrate. This was mounted into the DSAWR circuit and connected in parallel. The sensor response was measured as the difference between the resonance frequencies of the SAW resonators, which is a measure of the gas concentration. The sensor showed good response towards hydrogen with a minimum detection limit of 1%.

  19. The Effect of Calcium Pre-Rinse on Salivary Fluoride After 900 ppm Fluoride Mouthwash: A Randomized Clinical Trial

    Directory of Open Access Journals (Sweden)

    Nahid Ramazani

    2013-01-01

    Full Text Available Objective: Calcium fluoride deposit during fluoride application. Uptake and retention of fluoride by saliva depends generally on the concentration of calcium. In this study, the ef-fect of calcium pre-rinse on salivary fluoride concentration after a 900 ppm fluoride mouthwash was investigated.Materials and Methods: This cross-over double-blind randomized clinical trial was con-ducted in a girls' dormitory in Zahedan University of Medical Sciences, southeast Iran. In this study, 42 female dental students were chosen using simple randomization. During the first phase, 21 subjects (group A used fluoride rinse (F regimen and the remaining (group B used calcium pre-rinse followed immediately by fluoride rinse (Ca + F regi-men. In the second phase, participants rinsed using the mouthwashes not previously used. Prior to each phase prophylaxis was performed and no fluoridated product was used dur-ing a two-week interval between the phases. Salivary samples were taken immediately be-fore (baseline, 1 and 12 hours after rinsing. The salivary fluoride concentration was de-termined using fluoride sensitive electrode. Repeated measures ANOVA was used for sta-tistical analysis and the significance level was set at P<0.05.Results: There was significant difference between fluoride concentrations at different time points (P< 0.001. Significant differences were observed when the different time points of two regimens were examined. In contrast to this, the baseline before using F regimen and the baseline before using Ca + F regimen did not show any significance (P= 0.070.Conclusion: Pre-rinsing with calcium before fluoride is recommended because of signifi-cant increases in salivary fluoride concentration.

  20. Fluoride resistance in Streptococcus mutans

    NARCIS (Netherlands)

    Liao, Ying

    2017-01-01

    Fluoride has been used as the most effective anti-caries agent for over five decades. It functions not only on the dental hard tissues, but also as an antimicrobial agent. It is known that oral bacteria are able to develop resistance to fluoride, which may affect the effectiveness of fluoride in

  1. Molecular mechanisms of fluoride toxicity.

    Science.gov (United States)

    Barbier, Olivier; Arreola-Mendoza, Laura; Del Razo, Luz María

    2010-11-05

    Halfway through the twentieth century, fluoride piqued the interest of toxicologists due to its deleterious effects at high concentrations in human populations suffering from fluorosis and in in vivo experimental models. Until the 1990s, the toxicity of fluoride was largely ignored due to its "good reputation" for preventing caries via topical application and in dental toothpastes. However, in the last decade, interest in its undesirable effects has resurfaced due to the awareness that this element interacts with cellular systems even at low doses. In recent years, several investigations demonstrated that fluoride can induce oxidative stress and modulate intracellular redox homeostasis, lipid peroxidation and protein carbonyl content, as well as alter gene expression and cause apoptosis. Genes modulated by fluoride include those related to the stress response, metabolic enzymes, the cell cycle, cell-cell communications and signal transduction. The primary purpose of this review is to examine recent findings from our group and others that focus on the molecular mechanisms of the action of inorganic fluoride in several cellular processes with respect to potential physiological and toxicological implications. This review presents an overview of the current research on the molecular aspects of fluoride exposure with emphasis on biological targets and their possible mechanisms of involvement in fluoride cytotoxicity. The goal of this review is to enhance understanding of the mechanisms by which fluoride affects cells, with an emphasis on tissue-specific events in humans. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  2. Acid demineralization susceptibility of dental enamel submitted to different bleaching techniques and fluoridation regimens.

    Science.gov (United States)

    Salomão, Dlf; Santos, Dm; Nogueira, Rd; Palma-Dibb, Rg; Geraldo-Martins, Vr

    2014-01-01

    The aim of the current study was to assess the acid demineralization susceptibility of bleached dental enamel submitted to different fluoride regimens. One hundred bovine enamel blocks (6×6×3 mm) were randomly divided into 10 groups (n=10). Groups 1 and 2 received no bleaching. Groups 3 to 6 were submitted to an at-home bleaching technique using 6% hydrogen peroxide (HP; G3 and G4) or 10% carbamide peroxide (CP; G5 and G6). Groups 7 to 10 were submitted to an in-office bleaching technique using 35% HP (G7 and G8) or 35% CP (G9 and G10). During bleaching, a daily fluoridation regimen of 0.05% sodium fluoride (NaF) solution was performed on groups 3, 5, 7, and 9, while weekly fluoridation with a 2% NaF gel was performed on groups 4, 6, 8, and 10. The samples in groups 2 to 10 were pH cycled for 14 consecutive days. The samples from all groups were then assessed by cross-sectional Knoop microhardness at different depths from the outer enamel surface. The average Knoop hardness numbers (KHNs) were compared using one-way analysis of variance and Tukey tests (α=0.05). The comparison between groups 1 and 2 showed that the demineralization method was effective. The comparison among groups 2 to 6 showed the same susceptibility to acid demineralization, regardless of the fluoridation method used. However, the samples from groups 8 and 10 showed more susceptibility to acid demineralization when compared with group 2 (penamel to acid demineralization. However, the use of 35% HP and 35% CP must be associated with a daily fluoridation regimen, otherwise the in-office bleaching makes the bleached enamel more susceptible to acid demineralization.

  3. A Robust Fiber Bragg Grating Hydrogen Gas Sensor Using Platinum-Supported Silica Catalyst Film

    Directory of Open Access Journals (Sweden)

    Marina Kurohiji

    2018-01-01

    Full Text Available A robust fiber Bragg grating (FBG hydrogen gas sensor for reliable multipoint-leakage monitoring has been developed. The sensing mechanism is based on shifts of center wavelength of the reflection spectra due to temperature change caused by catalytic combustion heat. The sensitive film which consists of platinum-supported silica (Pt/SiO2 catalyst film was obtained using sol-gel method. The precursor solution was composed of hexachloroplatinic acid and commercially available silica precursor solution. The atom ratio of Si : Pt was fixed at 13 : 1. A small amount of this solution was dropped on the substrate and dried at room temperature. After that, the film was calcined at 500°C in air. These procedures were repeated and therefore thick hydrogen-sensitive films were obtained. The catalytic film obtained by 20-time coating on quartz glass substrate showed a temperature change 75 K upon exposure to 3 vol.% H2. For realizing robust sensor device, this catalytic film was deposited and FBG portion was directly fixed on titanium substrate. The sensor device showed good performances enough to detect hydrogen gas in the concentration range below lower explosion limit at room temperature. The enhancement of the sensitivity was attributed to not only catalytic combustion heat but also related thermal strain.

  4. Fluoride-releasing restorative materials and secondary caries.

    Science.gov (United States)

    Hicks, John; Garcia-Godoy, Franklin; Donly, Kevin; Flaitz, Catherine

    2003-03-01

    Secondary caries is responsible for 60 percent of all replacement restorations in the typical dental practice. Risk factors for secondary caries are similar to those for primary caries development. Unfortunately, it is not possible to accurately predict which patients are at risk for restoration failure. During the past several decades, fluoride-releasing dental materials have become a part of the dentist's armamentarium. Considerable fluoride is released during the setting reaction and for periods up to eight years following restoration placement. This released fluoride is readily taken up by the cavosurface tooth structure, as well as the enamel and root surfaces adjacent to the restoration. Resistance against caries along the cavosurface and the adjacent smooth surface has been shown in both in vitro and in vivo studies. Fluoride-releasing dental materials provide for improved resistance against primary and secondary caries in coronal and root surfaces. Plaque and salivary fluoride levels are elevated to a level that facilitates remineralization. In addition, the fluoride released to dental plaque adversely affects the growth of lactobacilli and mutans streptococci by interference with bacterial enzyme systems. Fluoride recharging of these dental materials is readily achieved with fluoridated toothpastes, fluoride mouthrinses, and other sources of topical fluoride. This allows fluoride-releasing dental materials to act as intraoral fluoride reservoirs. The improvement in the properties of dental materials with the ability to release fluoride has improved dramatically in the past decade, and it is anticipated that in the near future the vast majority of restorative procedures will employ fluoride-releasing dental materials as bonding agents, cavity liners, luting agents, adhesives for orthodontic brackets, and definitive restoratives.

  5. Evaluation of genotoxicity of liquid effluents from gas washing systems by means of bioassay Trad-MCN

    International Nuclear Information System (INIS)

    Machado, Alessandra Carla Fattori Ergesse; Alves, Edenise Segala

    2007-01-01

    In the gas washing systems the gaseous emissions from a facility are forced through an absorbing liquid preventing pollutants to be dispersed into the atmosphere. In the Centro Tecnologico da Marinha em Sao Paulo/Centro Experimental Aramar (CEA), the gas washing are used to control the emissions from the uranium enrichment facilities. Uranium. fluoride, ammonia and hydrogen fluoride are the main contaminants, all heavily toxic. Biological assays, using plants or other living organisms, have been used to assess genotoxic agents in the environment. Among the bioassays using plants, the Trad-MCN has been used extensively, as it allows the evaluation of liquid or gaseous contaminants. The species Tradescantia pallida (Rose) was exposed in a dynamic system to liquid effluents from CEA. A positive control was the exposure to formaldehyde 10% in water, known as a very toxic solution, and the negative control was the exposure to filtered air. The protocol established by Ma (1983) for hybrid clones and validated for the T. pallida by Guimaraes (2003) was used to perform the Trad-MCN assays. Only preparations containing early tetrads were scored. In that context, the present study objectifies to evaluate, by the Trad-MCN bioassay, the genotoxicity of the solution from the gas washing and, also, evaluate the efficiency of that system. The results obtained show that the T. pallida is a sensitive bioindicator for the pollutants tested and can be useful for in vitro environmental monitoring under controlled conditions. (author)

  6. Evaluation of genotoxicity of liquid effluents from gas washing systems by means of bioassay Trad-MCN

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Alessandra Carla Fattori Ergesse [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), SP (Brazil). Div. de Monitoracao Ambiental], E-mail: alessandra@ctmsp.mar.mil.br; Alves, Edenise Segala [Instituto de Botanica de Sao Paulo, SP (Brazil). Secao de Anatomia], E-mail: ealves@ibot.sp.gov.br

    2007-07-01

    In the gas washing systems the gaseous emissions from a facility are forced through an absorbing liquid preventing pollutants to be dispersed into the atmosphere. In the Centro Tecnologico da Marinha em Sao Paulo/Centro Experimental Aramar (CEA), the gas washing are used to control the emissions from the uranium enrichment facilities. Uranium. fluoride, ammonia and hydrogen fluoride are the main contaminants, all heavily toxic. Biological assays, using plants or other living organisms, have been used to assess genotoxic agents in the environment. Among the bioassays using plants, the Trad-MCN has been used extensively, as it allows the evaluation of liquid or gaseous contaminants. The species Tradescantia pallida (Rose) was exposed in a dynamic system to liquid effluents from CEA. A positive control was the exposure to formaldehyde 10% in water, known as a very toxic solution, and the negative control was the exposure to filtered air. The protocol established by Ma (1983) for hybrid clones and validated for the T. pallida by Guimaraes (2003) was used to perform the Trad-MCN assays. Only preparations containing early tetrads were scored. In that context, the present study objectifies to evaluate, by the Trad-MCN bioassay, the genotoxicity of the solution from the gas washing and, also, evaluate the efficiency of that system. The results obtained show that the T. pallida is a sensitive bioindicator for the pollutants tested and can be useful for in vitro environmental monitoring under controlled conditions. (author)

  7. Radcalc: A computer program to calculate the radiolytic production of hydrogen gas from radioactive wastes in packages

    International Nuclear Information System (INIS)

    Green, J.R.; Schwarz, R.A.; Hillesland, K.E.; Roetman, V.E.; Field, J.G.

    1995-11-01

    Radcalc for Windows' is a menu-driven Microsoft2 Windows-compatible computer code that calculates the radiolytic production of hydrogen gas in high- and low-level radioactive waste. In addition, the code also determines US Department of Transportation (DOT) transportation classifications, calculates the activities of parent and daughter isotopes for a specified period of time, calculates decay heat, and calculates pressure buildup from the production of hydrogen gas in a given package geometry. Radcalc for Windows was developed by Packaging Engineering, Transportation and Packaging, Westinghouse Hanford Company, Richland, Washington, for the US Department of Energy (DOE). It is available from Packaging Engineering and is issued with a user's manual and a technical manual. The code has been verified and validated

  8. Action mechanism of hydrogen gas on deposition of HfC coating using HfCl{sub 4}-CH{sub 4}-H{sub 2}-Ar system

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yalei, E-mail: yaleipm@csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083 (China); School of Metallurgy and Environment, Central South University, Changsha, 410083 (China); Li, Zehao [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083 (China); Xiong, Xiang, E-mail: xiongx@csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083 (China); Li, Xiaobin [School of Metallurgy and Environment, Central South University, Changsha, 410083 (China); Chen, Zhaoke; Sun, Wei [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083 (China)

    2016-12-30

    Highlights: • HfC coatings were deposited on C/C composites by LPCVD using HfCl4-CH4-H2-Ar system. • Action mechanism of H2 on structure and growth behavior of HfC coating was studied. • Increased H2 concentration leads to transformation in growth mechanism of coating. - Abstract: Hafnium carbide coatings were deposited on carbon/carbon composites by low pressure chemical vapor deposition using HfCl{sub 4}-CH{sub 4}-H{sub 2}-Ar system. The microstructure, mechanical and ablation resistance performance of HfC coatings deposited with various H{sub 2} concentrations were investigated. The effect of hydrogen gas on the deposition of HfC coating was also discussed. Results show that all of the deposited coatings are composed of single cubic HfC phase, the hydrogen gas acted as a crucial role in determining the preferred orientation, microstructure and growth behavior of HfC coatings. During the deposition process, the gas phase supersaturation of the reaction species can be controlled by adjusting the hydrogen gas concentration. When deposited with low hydrogen gas concentration, the coating growth was dominated by the nucleation of HfC, which results in the particle-stacked structure of HfC coating. Otherwise, the coating growth was dominated by the crystal growth at high hydrogen gas concentration, which leads to the column-arranged structure of HfC coating. Under the ablation environment, the coating C2 exhibits better configurational stability and ablation resistance. The coating structure has a significant influence on the mechanical and ablation resistance properties of HfC coating.

  9. Hydrogen Peroxide and Ozone Formation in Hybrid Gas-Liquid Electrical Discharge Reactors

    Czech Academy of Sciences Publication Activity Database

    Lukeš, Petr; Appleton, A. T.; Locke, B. R.

    2004-01-01

    Roč. 40, č. 1 (2004), s. 60-67 ISSN 0093-9994. [IEEE Industry Applications Society Annual Meeting 2002/37th./. Pittsburgh, Pennsylvania , 13.10.2002-18.10.2002] R&D Projects: GA ČR GA202/02/1026; GA MŠk ME 472 Grant - others:NSF(US) INT0086351 Keywords : hydrogen peroxide, ozone, corona discharge, water treatment, hybrid reactor Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.987, year: 2004

  10. Process for Generation of Hydrogen Gas from Various Feedstocks Using Thermophilic Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Ooteghem Van, Suellen

    2005-09-13

    A method for producing hydrogen gas is provided comprising selecting a bacteria from the Order Thermotogales, subjecting the bacteria to a feedstock and to a suitable growth environment having an oxygen concentration below the oxygen concentration of water in equilibrium with air; and maintaining the environment at a predetermined pH and at a temperature of at least approximately 45 degrees C. for a time sufficient to allow the bacteria to metabolize the feedstock.

  11. A comprehensive review of microbial electrolysis cells (MEC reactor designs and configurations for sustainable hydrogen gas production

    Directory of Open Access Journals (Sweden)

    Abudukeremu Kadier

    2016-03-01

    Full Text Available Hydrogen gas has tremendous potential as an environmentally acceptable energy carrier for vehicles. A cutting edge technology called a microbial electrolysis cell (MEC can achieve sustainable and clean hydrogen production from a wide range of renewable biomass and wastewaters. Enhancing the hydrogen production rate and lowering the energy input are the main challenges of MEC technology. MEC reactor design is one of the crucial factors which directly influence on hydrogen and current production rate in MECs. The rector design is also a key factor to up-scaling. Traditional MEC designs incorporated membranes, but it was recently shown that membrane-free designs can lead to both high hydrogen recoveries and production rates. Since then multiple studies have developed reactors that operate without membranes. This review provides a brief overview of recent advances in research on scalable MEC reactor design and configurations.

  12. Composition and method for hydrogen storage

    Science.gov (United States)

    Mao, Wendy L. (Inventor); Mao, Ho-Kwang (Inventor)

    2004-01-01

    A method for hydrogen storage includes providing water and hydrogen gas to a containment volume, reducing the temperature of the water and hydrogen gas to form a hydrogen clathrate at a first cryogenic temperature and a first pressure and maintaining the hydrogen clathrate at second cryogenic temperature within a temperature range of up to 250 K to effect hydrogen storage. The low-pressure hydrogen hydrate includes H.sub.2 O molecules, H.sub.2 molecules and a unit cell including polyhedron cages of hydrogen-bonded frameworks of the H.sub.2 O molecules built around the H.sub.2 molecules.

  13. Crystal structure of a dinuclear CoII complex with bridging fluoride ligands: di-μ-fluorido-bis{tris[(6-methylpyridin-2-ylmethyl]amine}dicobalt(II bis(tetrafluoridoborate

    Directory of Open Access Journals (Sweden)

    Masataka Inomata

    2014-11-01

    Full Text Available Reaction of Co(BF42·6H2O with tris[(6-methylpyridin-2-ylmethyl]amiine in methanol results in a fluoride abstraction from BF4−, yielding the unexpected title compound, [Co2F2(C21H24N42](BF42. The complex cation consists of two inversion-related [Co(C21H24N4]2+ moieties bridged by a pair of fluoride ligands. The CoII cation is six-coordinated in a distorted octahedral geometry and forms a +II high-spin state. In the crystal, the complex cation and the BF4− anion are connected by C—H...F hydrogen bonds, forming a three-dimensional network. An intramolecular C—H...F hydrogen bond is also observed.

  14. A problem in gravimetric method for the determination of rare earth elements as oxide after the fluoride separation

    International Nuclear Information System (INIS)

    Takada, Kunio

    1979-01-01

    For the gravimetric determination of lanthanum, it was precipitated as fluoride and converted to oxide by igniting (ca. 930 0 C) in a town gas flame. However, the oxidation of lanthanum fluoride by ignition was incomplete, the major part of the precipitate being converted to oxyfluoride (LaOF) and a mixture of oxide and oxyfluoride resulted. Therefore, analytical results were generally (5 -- 7)% higher than theoretically expected. The lanthanum fluoride became converted into the oxide by repeating ignition (ca. 1070 0 C) three times, each for (30 -- 40)min. However, the weight was lower than that of the corresponding sesquioxide, La 2 O 3 . Except for ytterbium and lutetium, gravimetric results as oxides for the other rare earth elements (Y, Pr, Nd, Sm, Eu and Gd) were higher than theoretical values. Therefore, the precipitation of the rare earth elements as fluoride and the subsequent determination as oxide by ignition of the fluoride could not be recommended as the gravimetric method for the rare earths. In order to obtain accurate results for major to minor amounts of the rare earth elements, an EDTA titration at pH 6 should be used after the dissolution of fluoride in acid, if the fluoride precipitation separation is involved. (author)

  15. Fluoride uptake into the developing enamel and dentine of sheep incisors following daily ingestion of fluoridated milk or water

    International Nuclear Information System (INIS)

    Cuttress, T.W.; Suckling, G.W.; Gao, J.; Coote, G.E.

    1996-01-01

    The caries preventive action of fluoride is common knowledge, although some of the mechanisms involved remain equivocal. At present, raised local levels of fluoride at, or in, the surface of tooth enamel is the most commonly accepted explanation of the anti-cariogenic action of fluoride. However, fluoride incorporated as fluorapatite into the tooth during its formation remains a possible alternative or complementary anti-cariogenic mechanism. If so, regular ingestion of fluoride during tooth formation is beneficial. Although use of fluoridated water is the preferred method in public health programmes, access to suitable potable water is required, and often this in not feasible. Fresh, preserved, or dried cow's milk products are widely used as nutritional and dietary items in most populations, particularly for young children. Milk is a practical, controllable means for regular delivery of fluoride. Processing of milk is commonly centralised and uses standardised conditions, allowing easy supplementation of fluoride for distribution to communities. The purpose of this study was to resolve the question of availability of fluoride ingested in milk compared with fluoride ingested in water by measuring fluoride deposition in the developing permanent incisors of young sheep. Incisors were analysed using a proton microprobe. (author). 18 refs., 1 tabs., 3 figs

  16. Consideration on developing of leaked inflammable gas detection system for HTGR hydrogen production system

    International Nuclear Information System (INIS)

    Nishihara, Tetsuo; Nakamura, Masashi

    1999-09-01

    One of most important safety design issues for High Temperature Gas-cooled Reactor (HTGR) - Hydrogen Production System (HTGR-HPS) is to ensure reactor safety against fire and explosion at the hydrogen production plant. The inflammable gas mixture in the HTGR-HPS does not use oxygen in any condition and are kept in high pressure in the normal operation. The piping system and/or heat transfer tubes which have the potential possibility of combustible materials ingress into the Reactor Building (R/B) due to the failure are designed to prevent the failure against any events. Then, it is not necessary to consider their self-combustion in vessels nor leakage in the R/B. The only one case which we must consider is the ex-building fire or explosion caused by their leakage from piping or vessel. And it is important to mitigate their effects by means of early detection of gas leakage. We investigated our domestic standards on gas detection, applications of gas detectors, their detection principles, performance, sensitivity, reliability, their technical trends, and so on. We proposed three gas detection systems which may be applied in HTGR-HPS. The first one is the universal solid sensor system; it may be applied when there is no necessity to request their safety credits. The second is the combination of the improved solid sensor system and enhanced beam detector system; it may be applied when it is necessary to request their safety credit. And the third is the combination of the universal solid sensor system and the existing beam detector system; it may be applied when the plant owner request higher detector sensitivity than usual, from the view point of public acceptance, though there is not necessity to request their safety credits. To reduce the plant cost by refusing of safety credits to the gas leakage detection system, we proposed that the equipment required to isolate from others should be installed in the inertrized compartments. (author)

  17. Hydrogen in energy transition

    International Nuclear Information System (INIS)

    2016-02-01

    This publication proposes a rather brief overview of challenges related to the use of hydrogen as an energy vector in the fields of transports and of energy storage to valorise renewable energies. Processes (steam reforming of natural gas or bio-gas, alkaline or membrane electrolysis, biological production), installation types (centralised or decentralised), raw materials and/or energy (natural gas, water, bio-gas, electricity, light), and their respective industrial maturity are indicated. The role of hydrogen to de-carbonate different types of transports is described (complementary energy for internal combustion as well as electrical vehicles) as well as its role in the valorisation and integration of renewable energies. The main challenges faced by the hydrogen sector are identified and discussed, and actions undertaken by the ADEME are indicated

  18. Preparation and Characterization of a Cross-linked Matrimid/Polyvinylidene Fluoride Composite Membrane for H2/N2 Separation

    Directory of Open Access Journals (Sweden)

    Mahmood Esmaeilipur

    2017-01-01

    Full Text Available A double layer composite membrane was fabricated by matrimid 5218 as a selective layer on polyvinylidene fluoride (PVDF, a porous asymmetric membrane, as a sublayer. The effect of chemical cross-linking of Matrimid 5218 by ethylenediamine (EDA was investigated on gas transport properties of the corresponding membrane. The permeability levels of hydrogen (H2 and nitrogen (N2 were measured through the fabricated composite membranes at 25°C under pressure range of 2-8 bar. Scanning electron microscopy (SEM was used for morphological observations of the composite membranes. The Matrimid membranes before and after cross-linking modification were characterized by the Fourier transform infrared (FTIR spectroscopy, X-ray diffraction (XRD and density measurement. The FTIR results showed the conversion of imide functional groups into amide through the crosslinking reaction in Matrimid. The XRD results demonstrated a reduction in d-spacing between the polymer chains through cross-linking reaction. Measuring the density of each membrane's partial selective layer and calculating the corresponding fractional free volume revealed an increase in the density and reduced free volumes in Matrimid through the cross-linking reaction. Moreover, by increasing the EDA concentration, the gas permeability in each membrane decreased significantly for nitrogen compared to hydrogen which could be related to lower gas diffusivity through chain packing due to cross-linking of the polymer. The H2/N2 selectivity at 2 bar increased through the cross-linking modification from 56.5 for the pure Matrimid to 79.4 for the composite membrane containing 12 wt% EDA. The effect of pressure on gas permeability through the composite membranes was investigated and the results found to be in agreement with the behavior of less soluble gases in the glassy polymers. Moreover, the H2/N2 selectivity decreased first at low EDA content (0-4 wt%, before reaching a constant value at 8 wt% EDA and

  19. An Overview of Natural Gas Conversion Technologies for Co-Production of Hydrogen and Value-Added Solid Carbon Products

    Energy Technology Data Exchange (ETDEWEB)

    Dagle, Robert A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dagle, Vanessa [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bearden, Mark D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Holladay, Jamelyn D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Krause, Theodore R. [Argonne National Lab. (ANL), Argonne, IL (United States); Ahmed, Shabbir [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-11-16

    This report was prepared in response to the U.S. Department of Energy Fuel Cell Technologies Office Congressional Appropriation language to support research on carbon-free production of hydrogen using new chemical processes that utilize natural gas to produce solid carbon and hydrogen. The U.S. produces 9-10 million tons of hydrogen annually with more than 95% of the hydrogen produced by steam-methane reforming (SMR) of natural gas. SMR is attractive because of its high hydrogen yield; but it also converts the carbon to carbon dioxide. Non-oxidative thermal decomposition of methane to carbon and hydrogen is an alternative to SMR and produces CO2-free hydrogen. The produced carbon can be sold as a co-product, thus providing economic credit that reduces the delivered net cost of hydrogen. The combination of producing hydrogen with potentially valuable carbon byproducts has market value in that this allows greater flexibility to match the market prices of hydrogen and carbon. That is, the higher value product can subsidize the other in pricing decisions. In this report we highlight the relevant technologies reported in the literature—primarily thermochemical and plasma conversion processes—and recent research progress and commercial activities. Longstanding technical challenges include the high energetic requirements (e.g., high temperatures and/or electricity requirements) necessary for methane activation and, for some catalytic processes, the separation of solid carbon product from the spent catalyst. We assess current and new carbon product markets that could be served given technological advances, and we discuss technical barriers and potential areas of research to address these needs. We provide preliminary economic analysis for these processes and compare to other emerging (e.g., electrolysis) and conventional (e.g., SMR) processes for hydrogen production. The overarching conclusion of this study is that the cost of hydrogen can be potentially

  20. Influence of the method of fluoride administration on toxicity and fluoride concentrations in Japanese quail

    Science.gov (United States)

    Fleming, W.J.; Schuler, C.A.

    1988-01-01

    Young Japanese quail (Coturnix japonica) were administered NaF for 16 d either in their diet or by esophageal intubation. Based on the total fluoride ion (Emg F-) intake over the l6-d experimental period, fluoride administered by intubation was at least six times more toxic than that fed in the diet. Dietary concentrations of 1,000 ppm F- (Emg F- for 16 d = approx. 144) produced no mortality, whereas intubated doses produced 73% or greater mortality in all groups administered 54 mg F- /kg/d or more (Emg F- for 16 d _ approx. 23 mg). GraphIc companson of the regression of log F- ppm in femurs/mg F- intake showed that fluoride levels in the femurs of quail administered fluoride by intubation were higher than in those administered fluoride in the diet.