WorldWideScience

Sample records for hydrogen embrittlement behavior

  1. Hydrogen embrittlement and galvanic corrosion of titanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Soh, Jeong Ryong; Jeong, Y. H.; Choi, B. K.; Baek, J. H.; Hwang, D. Y.; Choi, B. S.; Lee, D. J

    2000-06-01

    The material properties including the fracture behavior of titanium alloys used as a steam generator tube in SMART can be degraded de to the hydrogen embrittlement and the galvanic corrosion occurring as a result of other materials in contact with titanium alloys in a conducting corrosive environment. In this report the general concepts and trends of hydrogen embrittlement are qualitatively described to adequately understand and expect the fracture behavior from hydrogen within the bulk of materials and under hydrogen containing environments because hydrogen embrittlement may be very complicated process. And the characteristics of galvanic corrosion closely related to hydrogen embrittlement is qualitatively based on wimple electrochemical theory.

  2. Hydrogen embrittlement and galvanic corrosion of titanium alloys

    International Nuclear Information System (INIS)

    Soh, Jeong Ryong; Jeong, Y. H.; Choi, B. K.; Baek, J. H.; Hwang, D. Y.; Choi, B. S.; Lee, D. J.

    2000-06-01

    The material properties including the fracture behavior of titanium alloys used as a steam generator tube in SMART can be degraded de to the hydrogen embrittlement and the galvanic corrosion occurring as a result of other materials in contact with titanium alloys in a conducting corrosive environment. In this report the general concepts and trends of hydrogen embrittlement are qualitatively described to adequately understand and expect the fracture behavior from hydrogen within the bulk of materials and under hydrogen containing environments because hydrogen embrittlement may be very complicated process. And the characteristics of galvanic corrosion closely related to hydrogen embrittlement is qualitatively based on wimple electrochemical theory

  3. Hydrogen Embrittlement

    Science.gov (United States)

    Woods, Stephen; Lee, Jonathan A.

    2016-01-01

    Hydrogen embrittlement (HE) is a process resulting in a decrease in the fracture toughness or ductility of a metal due to the presence of atomic hydrogen. In addition to pure hydrogen gas as a direct source for the absorption of atomic hydrogen, the damaging effect can manifest itself from other hydrogen-containing gas species such as hydrogen sulfide (H2S), hydrogen chloride (HCl), and hydrogen bromide (HBr) environments. It has been known that H2S environment may result in a much more severe condition of embrittlement than pure hydrogen gas (H2) for certain types of alloys at similar conditions of stress and gas pressure. The reduction of fracture loads can occur at levels well below the yield strength of the material. Hydrogen embrittlement is usually manifest in terms of singular sharp cracks, in contrast to the extensive branching observed for stress corrosion cracking. The initial crack openings and the local deformation associated with crack propagation may be so small that they are difficult to detect except in special nondestructive examinations. Cracks due to HE can grow rapidly with little macroscopic evidence of mechanical deformation in materials that are normally quite ductile. This Technical Memorandum presents a comprehensive review of experimental data for the effects of gaseous Hydrogen Environment Embrittlement (HEE) for several types of metallic materials. Common material screening methods are used to rate the hydrogen degradation of mechanical properties that occur while the material is under an applied stress and exposed to gaseous hydrogen as compared to air or helium, under slow strain rates (SSR) testing. Due to the simplicity and accelerated nature of these tests, the results expressed in terms of HEE index are not intended to necessarily represent true hydrogen service environment for long-term exposure, but rather to provide a practical approach for material screening, which is a useful concept to qualitatively evaluate the severity of

  4. Hydrogen Embrittlement Mechanism in Fatigue Behavior of Austenitic and Martensitic Stainless Steels

    Directory of Open Access Journals (Sweden)

    Sven Brück

    2018-05-01

    Full Text Available In the present study, the influence of hydrogen on the fatigue behavior of the high strength martensitic stainless steel X3CrNiMo13-4 and the metastable austenitic stainless steels X2Crni19-11 with various nickel contents was examined in the low and high cycle fatigue regime. The focus of the investigations were the changes in the mechanisms of short crack propagation. Experiments in laboratory air with uncharged and precharged specimen and uncharged specimen in pressurized hydrogen were carried out. The aim of the ongoing investigation was to determine and quantitatively describe the predominant processes of hydrogen embrittlement and their influence on the short fatigue crack morphology and crack growth rate. In addition, simulations were carried out on the short fatigue crack growth, in order to develop a detailed insight into the hydrogen embrittlement mechanisms relevant for cyclic loading conditions. It was found that a lower nickel content and a higher martensite content of the samples led to a higher susceptibility to hydrogen embrittlement. In addition, crack propagation and crack path could be simulated well with the simulation model.

  5. Hydrogen embrittlement of steels: study and prevention

    International Nuclear Information System (INIS)

    Brass, A.M.; Chene, J.; Coudreuse, L.

    2000-01-01

    Hydrogen embrittlement of steels is one of the important reason of rupture of pieces in the industry (nuclear, of petroleum..). Indeed, there are a lot of situations which can lead to the phenomenon of hydrogen embrittlement: introduction of hydrogen in the material during the elaboration or during transformation or implementation processes (heat treatments, welding); use of steels when hydrogen or hydrogenated gaseous mixtures are present; hydrogen produced by electrolytic reactions (surface treatments, cathodic protection). The hydrogen embrittlement can appear in different forms which depend of a lot of parameters: material (state, composition, microstructure..); surrounding medium (gas, aqueous medium, temperature..); condition of mechanical solicitation (static, dynamic, cyclic..). The industrial phenomena which appear during cases of hydrogen embrittlement are more particularly described here. Several methods of steels studies are proposed as well as some possible ways for the prevention of hydrogen embrittlement risks. (O.M.)

  6. Hydrogen embrittlement due to hydrogen-inclusion interactions

    International Nuclear Information System (INIS)

    Yu, H.Y.; Li, J.C.M.

    1976-01-01

    Plastic flow around inclusions creates elastic misfit which attracts hydrogen towards the regions of positive dilatation. Upon decohesion of the inclusion-matrix interface, the excess hydrogen escapes into the void and can produce sufficient pressure to cause void growth by plastic deformation. This mechanism of hydrogen embrittlement can be used to understand the increase of ductility with temperature, the decrease of ductility with hydrogen content, and the increase of ductility with the ultimate strength of the matrix. An examination of the effect of the shape of spheroid inclusion reveals that rods are more susceptible to hydrogen embrittlement than disks. The size of the inclusion is unimportant while the volume fraction of inclusions plays the usual role

  7. Effect of trapping and temperature on the hydrogen embrittlement susceptibility of alloy 718

    Energy Technology Data Exchange (ETDEWEB)

    Galliano, Florian; Andrieu, Eric; Blanc, Christine; Cloue, Jean-Marc; Connetable, Damien; Odemer, Gregory, E-mail: gregory.odemer@ensiacet.fr

    2014-08-12

    Ni-based alloy 718 is widely used to manufacture structural components in the aeronautic and nuclear industries. Numerous studies have shown that alloy 718 may be sensitive to hydrogen embrittlement. In the present study, the susceptibilities of three distinct metallurgical states of alloy 718 to hydrogen embrittlement were investigated to identify both the effect of hydrogen trapping on hydrogen embrittlement and the role of temperature in the hydrogen-trapping mechanism. Cathodic charging in a molten salt bath was used to saturate the different hydrogen traps of each metallurgical state. Tensile tests at different temperatures and different strain rates were carried out to study the effect of hydrogen on mechanical properties and failure modes, in combination with hydrogen content measurements. The results demonstrated that Ni-based superalloy 718 was strongly susceptible to hydrogen embrittlement between 25 °C and 300 °C, and highlighted the dominant roles played by the hydrogen solubility and the hydrogen trapping on mechanical behavior and fracture modes.

  8. Multiscale Modeling of Hydrogen Embrittlement for Multiphase Material

    KAUST Repository

    Al-Jabr, Khalid A.

    2014-01-01

    Hydrogen Embrittlement (HE) is a very common failure mechanism induced crack propagation in materials that are utilized in oil and gas industry structural components and equipment. Considering the prediction of HE behavior, which is suggested

  9. Proposal of guideline for bonding to prevention of hydrogen embrittlement at Ta/Zr bond interface. Hydrogen embrittlement in SUS304ULC/Ta/Zr explosive bonded joint

    International Nuclear Information System (INIS)

    Saida, Kazuyoshi; Fujimoto, Tetsuya; Nishimoto, Kazutoshi

    2010-01-01

    The occurrence condition of hydrogen embrittlement cracking at Ta/Zr bond interface was investigated with respect to the hydrogen content and applied stress in order to propose a guideline for the explosive bonding procedure to prevention of hydrogen embrittlement. Hydrogen charging test was conducted for SUS304ULC/Ta/Zr explosive bonded joints applied the different flexural strains. A hydrogen embrittlement crack occurred in the Zr substrate at Ta/Zr bond interface after hydrogen charging, and it was initiated at shorter charging times when the augmented strain was increased. The occurrence condition of hydrogen embrittlement cracking at Ta/Zr bond interface was shifted to lower stress and hydrogen content with an increase in the amount of explosive during bonding. It was suggested that hydrogen embrittlement in Ta/Zr explosive bonded joint could be inhibited by reducing the initial hydrogen content in Ta substrate less than approx. 5 ppm. (author)

  10. Hydrogen environment embrittlement

    International Nuclear Information System (INIS)

    Donovan, J.A.

    1975-01-01

    Exposure of many metals to gaseous hydrogen causes losses in elongation, reduction of area, and fracture toughness, and causes increases in slow crack growth rate or fatigue life compared with values obtained in air or vacuum. Hydrogen pressure, temperature, and purity significantly influence deleterious effects. The strength and structural characteristics of the metal influence the degradation of its properties by hydrogen. Several theories have been proposed to explain the loss of properties in hydrogen, but none has gained wide acceptance. The embrittlement mechanism and the role of diffusion are, therefore, open questions and need more quantitative experimental data both to test the proposed theories and to allow the development of realistic preventive measures. (U.S.)

  11. Dependence of hydrogen-induced lattice defects and hydrogen embrittlement of cold-drawn pearlitic steels on hydrogen trap state, temperature, strain rate and hydrogen content

    International Nuclear Information System (INIS)

    Doshida, Tomoki; Takai, Kenichi

    2014-01-01

    The effects of the hydrogen state, temperature, strain rate and hydrogen content on hydrogen embrittlement susceptibility and hydrogen-induced lattice defects were evaluated for cold-drawn pearlitic steel that absorbed hydrogen in two trapping states. Firstly, tensile tests were carried out under various conditions to evaluate hydrogen embrittlement susceptibility. The results showed that peak 2 hydrogen, desorbed at temperatures above 200 °C as determined by thermal desorption analysis (TDA), had no significant effect on hydrogen embrittlement susceptibility. In contrast, hydrogen embrittlement susceptibility increased in the presence of peak 1 hydrogen, desorbed from room temperature to 200 °C as determined by TDA, at temperatures higher than −30 °C, at lower strain rates and with higher hydrogen content. Next, the same effects on hydrogen-induced lattice defects were also evaluated by TDA using hydrogen as a probe. Peak 2 hydrogen showed no significant effect on either hydrogen-induced lattice defects or hydrogen embrittlement susceptibility. It was found that hydrogen-induced lattice defects formed under the conditions where hydrogen embrittlement susceptibility increased. This relationship indicates that hydrogen embrittlement susceptibility was higher under the conditions where the formation of hydrogen-induced lattice defects tended to be enhanced. Since hydrogen-induced lattice defects formed by the interaction between hydrogen and strain were annihilated by annealing at a temperature of 200 °C, they were presumably vacancies or vacancy clusters. One of the common atomic-level changes that occur in cold-drawn pearlitic steel showing higher hydrogen embrittlement susceptibility is the formation of vacancies and vacancy clusters

  12. Nanocrystalline Steels’ Resistance to Hydrogen Embrittlement

    Directory of Open Access Journals (Sweden)

    Skołek E.

    2015-04-01

    Full Text Available The aim of this study is to determine the susceptibility to hydrogen embrittlement in X37CrMoV5-1 steel with two different microstructures: a nanocrystalline carbide-free bainite and tempered martensite. The nanobainitic structure was obtained by austempering at the bainitic transformation zone. It was found, that after hydrogen charging, both kinds of microstructure exhibit increased yield strength and strong decrease in ductility. It has been however shown that the resistance to hydrogen embrittlement of X37CrMoV5-1 steel with nanobainitic structure is higher as compared to the tempered martensite. After hydrogen charging the ductility of austempered steel is slightly higher than in case of quenched and tempered (Q&T steel. This effect was interpreted as a result of phase composition formed after different heat treatments.

  13. Hydrogen embrittlement susceptibility of laser-hardened 4140 steel

    Energy Technology Data Exchange (ETDEWEB)

    Tsay, L.W.; Lin, Z.W. [Nat. Taiwan Ocean Univ., Keelung (Taiwan). Inst. of Mater. Eng.; Shiue, R.K. [Institute of Materials Sciences and Engineering, National Dong Hwa University, Hualien, Taiwan (Taiwan); Chen, C. [Institute of Materials Sciences and Engineering, National Taiwan University, Taipei, Taiwan (Taiwan)

    2000-10-15

    Slow strain rate tensile (SSRT) tests were performed to investigate the susceptibility to hydrogen embrittlement of laser-hardened AISI 4140 specimens in air, gaseous hydrogen and saturated H{sub 2}S solution. Experimental results indicated that round bar specimens with two parallel hardened bands on opposite sides along the loading axis (i.e. the PH specimens), exhibited a huge reduction in tensile ductility for all test environments. While circular-hardened (CH) specimens with 1 mm hardened depth and 6 mm wide within the gauge length were resistant to gaseous hydrogen embrittlement. However, fully hardened CH specimens became susceptible to hydrogen embrittlement for testing in air at a lower strain rate. The strength of CH specimens increased with decreasing the depth of hardened zones in a saturated H{sub 2}S solution. The premature failure of hardened zones in a susceptible environment caused the formation of brittle intergranular fracture and the decrease in tensile ductility. (orig.)

  14. Multiscale modelling and experimentation of hydrogen embrittlement in aerospace materials

    Science.gov (United States)

    Jothi, Sathiskumar

    Pulse plated nickel and nickel based superalloys have been used extensively in the Ariane 5 space launcher engines. Large structural Ariane 5 space launcher engine components such as combustion chambers with complex microstructures have usually been manufactured using electrodeposited nickel with advanced pulse plating techniques with smaller parts made of nickel based superalloys joined or welded to the structure to fabricate Ariane 5 space launcher engines. One of the major challenges in manufacturing these space launcher components using newly developed materials is a fundamental understanding of how different materials and microstructures react with hydrogen during welding which can lead to hydrogen induced cracking. The main objective of this research has been to examine and interpret the effects of microstructure on hydrogen diffusion and hydrogen embrittlement in (i) nickel based superalloy 718, (ii) established and (iii) newly developed grades of pulse plated nickel used in the Ariane 5 space launcher engine combustion chamber. Also, the effect of microstructures on hydrogen induced hot and cold cracking and weldability of three different grades of pulse plated nickel were investigated. Multiscale modelling and experimental methods have been used throughout. The effect of microstructure on hydrogen embrittlement was explored using an original multiscale numerical model (exploiting synthetic and real microstructures) and a wide range of material characterization techniques including scanning electron microscopy, 2D and 3D electron back scattering diffraction, in-situ and ex-situ hydrogen charged slow strain rate tests, thermal spectroscopy analysis and the Varestraint weldability test. This research shows that combined multiscale modelling and experimentation is required for a fundamental understanding of microstructural effects in hydrogen embrittlement in these materials. Methods to control the susceptibility to hydrogen induced hot and cold cracking and

  15. Present status of the disk pressure tests for hydrogen embrittlement

    International Nuclear Information System (INIS)

    Fidelle, J.P.

    1985-05-01

    The Disk Pressure Tests (DPT) have been developed considerably theoretically and experimentally for Internal Hydrogen Embrittlement (IHE) e.g. Co, Ti, U alloys, for Environment Embrittlement due to H 2 , hydrogenated media such as water vapor, alcohol, machining fluids or liquid NH 3 . The range has been expanded considerably for pressure up to 300 MPa and temperature (-160 0 C to 1000 0 C). Very low strain rate -longer than a month- tests have been able to evidence embrittlement of FFC alloys where H diffusivity is low. Conversely for very oxidation - sensitive metals (e.g. Nb and Ta) effects may appear only at somewhat high rates. The relationship between dynamic (increasing stress) tests, static (delayed failure) and low-cycle fatigue tests has been determined. In a number of instances, including SCC, other techniques and even fracture mechanics have been compared to the DPT and proved at best equivalent and several times, less sensitive than a well conducted DPT. At extreme they could not reproduce the field service phenomenon whereas the DPT did and could also be applied satisfactorily to low yield stress materials. The main rupture aspects have been analyzed mechanically and organized in a rational and comprehensive chart based on 12,000 + tests over 150 + materials in different conditions. From the tests on a large number of metal systems, a theory of HE has been derived which accounts for the behavior of metals and alloys either embrittled and or hydrited. Finally comparison of HGE tests and service behavior of a large variety of materials and industrial equipments has made possible to specify acceptance criteria for industrial service

  16. Hydrogen embrittlement of titanium tested with fracture mechanics specimens

    International Nuclear Information System (INIS)

    Aho-Mantila, I.; Rahko, P.

    1990-11-01

    Titanium is one of the possible canister materials for spent nuclear fuel. The aim of this study is to determine whether the hydrogen embrittlement of titanium could be a possible deterioration mechanism of titanium canisters. This experimental study was preceded by a literature review and an experimental study on crack nucleation. Tests in this study were carried out with hydrogen charged fracture mechanics specimens. The studied hydrogen contents were as received, 100 ppm, 200 ppm, 500 ppm and 700 ppm and the types of the studied titanium were ASTM Grades 2 and 12. Test methods were slow tensile test (0.027 mm/h) and fatigue test (stress ratio 0.7 or 0.8 and frequency 5 Hz). According to the literature titanium may be embrittled by hydrogen at slow strain rates and cracking may occur under sustained load. In this study no evidence of hydrogen embrittlement was noticed in slow strain rate tension with bulk hydrogen contents up to 700 ppm. The fatigue tests of titanium Grades 2 and 12 containing 700 ppm hydrogen showed even slower crack growth compared to the as received condition. Very high hydrogen contents well in eccess of 700 ppm on the surface of titanium can, however, facilitate surface crack nucleation and crack growth, as shown in the previous study

  17. Hydrogen gas embrittlement of stainless steels mainly austenitic steels. Volumes 1 and 2

    International Nuclear Information System (INIS)

    Azou, P.

    1988-01-01

    Steel behavior in regard to hydrogen is examined especially austenitic steels. Gamma steels are studied particularly the series 300 with various stabilities and gamma steels with improved elasticity limit for intermetallic phase precipitation and nitrogen additions. A two-phase structure γ + α' is also studied. All the samples are tested for mechanical behavior in gaseous hydrogen. Influence of metallurgical effects and of testing conditions on hydrogen embrittlement are evidenced. Microstructure resulting from mechanical or heat treatments, dislocation motion during plastic deformation and influence of deformation rate are studied in detail [fr

  18. Multiscale Modeling of Hydrogen Embrittlement for Multiphase Material

    KAUST Repository

    Al-Jabr, Khalid A.

    2014-05-01

    Hydrogen Embrittlement (HE) is a very common failure mechanism induced crack propagation in materials that are utilized in oil and gas industry structural components and equipment. Considering the prediction of HE behavior, which is suggested in this study, is one technique of monitoring HE of equipment in service. Therefore, multi-scale constitutive models that account for the failure in polycrystalline Body Centered Cubic (BCC) materials due to hydrogen embrittlement are developed. The polycrystalline material is modeled as two-phase materials consisting of a grain interior (GI) phase and a grain boundary (GB) phase. In the first part of this work, the hydrogen concentration in the GI (Cgi) and the GB (Cgb) as well as the hydrogen distribution in each phase, were calculated and modeled by using kinetic regime-A and C, respectively. In the second part of this work, this dissertation captures the adverse effects of hydrogen concentration, in each phase, in micro/meso and macro-scale models on the mechanical behavior of steel; e.g. tensile strength and critical porosity. The models predict the damage mechanisms and the reduction in the ultimate strength profile of a notched, round bar under tension for different hydrogen concentrations as observed in the experimental data available in the literature for steels. Moreover, the study outcomes are supported by the experimental data of the Fractography and HE indices investigation. In addition to the aforementioned continuum model, this work employs the Molecular Dynamics (MD) simulations to provide information regarding bond formulation and breaking. The MD analyses are conducted for both single grain and polycrystalline BCC iron with different amounts of hydrogen and different size of nano-voids. The simulations show that the hydrogen atoms could form the transmission in materials configuration from BCC to FCC (Face Centered Cubic) and HCP (Hexagonal Close Packed). They also suggest the preferred sites of hydrogen for

  19. Comparison of hydrogen gas embrittlement of austenitic and ferritic stainless steels

    Science.gov (United States)

    Perng, T. P.; Altstetter, C. J.

    1987-01-01

    Hydrogen-induced slow crack growth (SCG) was compared in austenitic and ferritic stainless steels at 0 to 125 °Cand 11 to 216 kPa of hydrogen gas. No SCG was observed for AISI 310, while AISI 301 was more susceptible to hydrogen embrittlement and had higher cracking velocity than AL 29-4-2 under the same test conditions. The kinetics of crack propagation was modeled in terms of the hydrogen transport in these alloys. This is a function of temperature, microstructure, and stress state in the embrittlement region. The relatively high cracking velocity of AISI 301 was shown to be controlled by the fast transport of hydrogen through the stress-induced α' martensite at the crack tip and low escape rate of hydrogen through the γ phase in the surrounding region. Faster accumulation rates of hydrogen in the embrittlement region were expected for AISI 301, which led to higher cracking velocities. The mechanism of hydrogen-induced SCG was discussed based upon the concept of hydrogen-enhanced plasticity.

  20. Precipitation hardening and hydrogen embrittlement of aluminum ...

    Indian Academy of Sciences (India)

    Hydrogen susceptibility of alloy AA7020 was evaluated by slow strain-rate tensile ... high pressures because of the embrittling effect of hydrogen. ... The higher the total Zn + Mg content,. ∗ .... dislocations, leading to a local softening of the slip plane, and thus to ... A Vickers hardness testing machine was used to measure the.

  1. Vanadium alloy membranes for high hydrogen permeability and suppressed hydrogen embrittlement

    International Nuclear Information System (INIS)

    Kim, Kwang Hee; Park, Hyeon Cheol; Lee, Jaeho; Cho, Eunseog; Lee, Sang Mock

    2013-01-01

    The structural properties and hydrogen permeation characteristics of ternary vanadium–iron–aluminum (V–Fe–Al) alloy were investigated. To achieve not only high hydrogen permeability but also strong resistance to hydrogen embrittlement, the alloy composition was modulated to show high hydrogen diffusivity but reduced hydrogen solubility. We demonstrated that matching the lattice constant to the value of pure V by co-alloying lattice-contracting and lattice-expanding elements was quite effective in maintaining high hydrogen diffusivity of pure V

  2. Hydrogen embrittlement of Zr-2.5Nb PT with temperature

    International Nuclear Information System (INIS)

    Oh, Dong Joon; Ahn, Sang Bok; Kim, Young Suk

    2003-01-01

    The aim of this study is to investigate the effect of hydrogen embrittlement of Zr-2.5Nb CANDU pressure tube. The tests were performed at three hydrogen contents for transverse tensile and CCT specimens while the test temperatures were changed (RT to 300 .deg. C). The specimens were directly machined from the tube retaining original curvature using electric discharge machine. Both the transverse tensile and the fracture toughness tests showed the hydrogen embrittlement clearly at RT but this phenomenon was disappeared while the test temperature arrived over 250 .deg. C

  3. Embrittlement of nickel-, cobalt-, and iron-base superalloys by exposure to hydrogen

    Science.gov (United States)

    Gray, H. R.

    1975-01-01

    Five nickel-base alloys (Inconel 718, Udimet 700, Rene 41, Hastelloy X, and TD-NiCr), one cobalt-base alloy (L-605), and an iron-base alloy (A-286) were exposed in hydrogen at 0.1 MN/sq m (15 psi) at several temperatures in the range from 430 to 980 C for as long as 1000 hours. These alloys were embrittled to varying degrees by such exposures in hydrogen. Embrittlement was found to be: (1) sensitive to strain rate, (2) reversible, (3) caused by large concentrations of absorbed hydrogen, and (4) not associated with any detectable microstructural changes in the alloys. These observations are consistent with a mechanism of internal reversible hydrogen embrittlement.

  4. Role of twinning and transformation in hydrogen embrittlement of austenitic stainless steels

    International Nuclear Information System (INIS)

    Caskey, G.R. Jr.

    1977-01-01

    Internal hydrogen embrittlement may be viewed as an extreme form of environmental embrittlement that arises following prolonged exposure to a source of hydrogen. Smooth bar tensile specimens of three stainless steels saturated with deuterium (approximately 200 mol D 2 /m 3 ) were pulled to failure in air at 200 to 400 0 K or in liquid nitrogen at 78 0 K. In Type 304L stainless steel and Tenelon ductility losses are a maximum around 200 to 273 0 K; Type 310 stainless steel is not embrittled at this hydrogen concentration. A distinct change in fracture mode accompanies hydrogen embrittlement, with fracture proceeding along coherent boundaries of pre-existing annealing twins. This fracture path is observed in Tenelon at 78 0 K even when hydrogen is absent. There is also a change in fracture appearance in specimens with no prior exposure to hydrogen if they are pulled to failure in high-pressure hydrogen. The fracture path is not identifiable, however. Magnetic response measurements and changes in the stress-strain curves show that hydrogen suppresses formation of strain-induced α'-martensite at 198 0 K in both Type 304L stainless steel and Tenelon, but there is little effect in Type 304L stainless at 273 0 K

  5. BEHAVIOR OF THERMAL SPRAY COATINGS AGAINST HYDROGEN ATTACK

    OpenAIRE

    Vargas, Fabio; Latorre, Guillermo; Uribe, Iván

    2003-01-01

    The behavior of nickel and chrome alloys applied as thermal spray coatings to be used as protection against embrittlement by hydrogen is studied. Coatings were applied on a carbon steel substrate, under conditions that allow obtain different crystalline structures and porosity levels, in order to determine the effect of these variables on the hydrogen permeation kinetics and as a protection means against embrittlement caused this element. In order to establish behaviors as barriers and protec...

  6. Fatigue crack growth behavior in niobium-hydrogen alloys

    International Nuclear Information System (INIS)

    Lin, M.C.C.; Salama, K.

    1997-01-01

    Near-threshold fatigue crack growth behavior has been investigated in niobium-hydrogen alloys. Compact tension specimens (CTS) with three hydrogen conditions are used: hydrogen-free, hydrogen in solid solution, and hydride alloy. The specimens are fatigued at a temperature of 296 K and load ratios of 0.05, 0.4, and 0.75. The results at load ratios of 0.05 and 0.4 show that the threshold stress intensity range (ΔK th ) decreases as hydrogen is added to niobium. It reaches a minimum at the critical hydrogen concentration (C cr ), where maximum embrittlement occurs. The critical hydrogen concentration is approximately equal to the solubility limit of hydrogen in niobium. As the hydrogen concentration exceeds C cr , ΔK th increases slowly as more hydrogen is added to the specimen. At load ratio 0.75, ΔK th decreases continuously as the hydrogen concentration is increased. The results provide evidence that two mechanisms are responsible for fatigue crack growth behavior in niobium-hydrogen alloys. First, embrittlement is retarded by hydride transformation--induced and plasticity-induced crack closures. Second, embrittlement is enhanced by the presence of hydrogen and hydride

  7. Effect of hydrogen and oxygen content on the embrittlement of Zr alloys

    International Nuclear Information System (INIS)

    Griger, A.; Hozer, Z.; Matus, L.; Vasaros, L.; Horvath, M.

    2001-01-01

    An experimental study is carried out in the KFKI Atomic Energy Research Institute in order to clear up the role of oxidation and hydrogen uptake in the embrittlement process. Russian E110 type Zr1%Nb and Zircaloy-4 claddings are used as test materials. The differences between the properties of two alloys are examined. The sample preparation covered the following cases: oxidation in Ar+O 2 atmosphere; hydrogen uptake of as received and pre-oxidised samples (in Ar+O 2 atmosphere); oxidation in steam. The oxidation in Ar+O 2 and the subsequent hydrogen uptake procedure make possible the production of samples with well-characterized hydrogen and oxygen content. Corrosion treated ring samples of 8 mm height are examined in ring compression tests. The force-deformation curves are recorded and the crushing force and deformation are determined. The relative deformation is used for the characterisation of embrittlement level. The results of experiments provide detailed information about the effect of hydrogen and oxygen content on the embrittlement of zirconium alloys. The conclusions are: 1) hydrogen seems to play a more important role in the embrittlement of zirconium alloys than oxygen; 2) the Zircaloy-4 alloy becomes brittle at lower hydrogen content than the Zr1%Nb; 3) under steam oxidation conditions the Zr1%Nb alloy takes up much more hydrogen and becomes more brittle than the Zircaloy-4

  8. The Role of Hydrogen-Enhanced Strain-Induced Lattice Defects on Hydrogen Embrittlement Susceptibility of X80 Pipeline Steel

    Science.gov (United States)

    Hattori, M.; Suzuki, H.; Seko, Y.; Takai, K.

    2017-08-01

    Studies to date have not completely determined the factors influencing hydrogen embrittlement of ferrite/bainite X80 pipeline steel. Hydrogen embrittlement susceptibility was evaluated based on fracture strain in tensile testing. We conducted a thermal desorption analysis to measure the amount of tracer hydrogen corresponding to that of lattice defects. Hydrogen embrittlement susceptibility and the amount of tracer hydrogen significantly increased with decreasing crosshead speed. Additionally, a significant increase in the formation of hydrogen-enhanced strain-induced lattice defects was observed immediately before the final fracture. In contrast to hydrogen-free specimens, the fracture surface of the hydrogen-charged specimens exhibited shallower dimples without nuclei, such as secondary phase particles. These findings indicate that the presence of hydrogen enhanced the formation of lattice defects, particularly just prior to the occurrence of final fracture. This in turn enhanced the formation of shallower dimples, thereby potentially causing premature fracture of X80 pipeline steel at lower crosshead speeds.

  9. Status and task of the study on the hydrogen embrittlement of zirconium alloys

    International Nuclear Information System (INIS)

    Nagase, Fumihisa; Furuta, Teruo; Seino, Shun; Komatsu, Kazushi.

    1995-08-01

    As the burnup of the LWR fuel is extended, waterside corrosion and hydrogen pickup increase in the Zircaloy cladding. Hydrogen embrittlement of Zircaloy is one of the main factors which may limit the life of the fuel rod. This report presents a review on the hydrogen embrittlement of zirconium and its alloys including the irradiated materials. Research tasks for the reduction of ductility in the high burnup fuel cladding are also discussed. Many fundamental investigations have been performed on the hydrogen embrittlement of zirconium alloys. However, the embrittlement mechanism of the high burnup fuel cladding is complicated. Especially, a coupled effect of hydrides and radiation defects are expected to be pronounced with neutron dose increase. In order to evaluate the reduction of ductility of the higher burnup fuel cladding properly, it is necessary to investigate the coupled effect of these two factors by systematic examinations. (author) 64 refs

  10. Al and Si Influences on Hydrogen Embrittlement of Carbide-Free Bainitic Steel

    Directory of Open Access Journals (Sweden)

    Yanguo Li

    2013-01-01

    Full Text Available A first-principle method based on the density functional theory was applied to investigate the Al and Si influences on the hydrogen embrittlement of carbide-free bainitic steel. The hydrogen preference site, binding energy, diffusion behaviour, and electronic structure were calculated. The results showed that hydrogen preferred to be at the tetrahedral site. The binding energy of the cell with Si was the highest and it was decreased to be the worst by adding hydrogen. The diffusion barrier of hydrogen in the cell containing Al was the highest, so it was difficult for hydrogen to diffuse. Thus, hydrogen embrittlement can be reduced by Al rather than Si.

  11. A Study on the Small Punch Test for Fracture Strength Evaluation of CANDU Pressure Tube Embrittled by Hydrogen

    International Nuclear Information System (INIS)

    Nho, Seung Hwan; Ong, Jang Woo; Yu, Hyo Sun; Chung, Se Hi

    1996-01-01

    The purpose of this study is to investigate the usefulness of small punch(SP) test using miniaturized specimens as a method for fracture strength evaluation of CANDU pressure tube embrittled by hydrogen. According to the test results, the fracture strength evaluation as a function of hydrogen concentration at -196 .deg. C was much better than that at room temperature, as the difference of SP fracture energy(Esp) with hydrogen concentration was more significant at -196 .deg. C than at room temperature for the hydrogen concentration up to 300ppm-H. It was also observed that the peak of average AE energy, the cumulative average AE energy and the cumulative average AE energy per equivalent fracture, strain increased with the increase of hydrogen concentration. From the results of load-displacement behaviors, Esp behaviors, macro- and micro-SEM fractographs and AE test it has been concluded that the SP test method using miniaturized specimen(10mmx10mmx0.5mm) will be a useful test method to evaluate the fracture strength for CANDU pressure tube embrittled by hydrogen

  12. Effect of heat treatments on the hydrogen embrittlement ...

    Indian Academy of Sciences (India)

    pipe steel in as received (controlled rolled), normalized, and quenched and tempered conditions. The resistance to hydrogen embrittlement was found in the order of controlled rolled > quenched and tempered > normalized. The fracture mode ...

  13. Hydrogen embrittlement considerations in niobium-base alloys for application in the ITER divertor

    International Nuclear Information System (INIS)

    Peterson, D.T.; Hull, A.B.; Loomis, B.A.

    1991-01-01

    The ITER divertor will be subjected to hydrogen from aqueous corrosion by the coolant and by transfer from the plasma. Global hydrogen concentrations are one factor in assessing hydrogen embrittlement but local concentrations affected by source fluxes and thermotransport in thermal gradients are more important considerations. Global hydrogen concentrations is some corrosion- tested alloys will be presented and interpreted. The degradation of mechanical properties of Nb-base alloys due to hydrogen is a complex function of temperature, hydrogen concentration, stresses and alloy composition. The known tendencies for embrittlement and hydride formation in Nb alloys are reviewed

  14. Fractography of hydrogen-embrittled iron-chromium-nickel alloys

    International Nuclear Information System (INIS)

    Caskey, G.R. Jr.

    1980-01-01

    Tensile specimens of iron-chromium-nickel base alloys were broken in either a hydrogen environment or in air following thermal charging with hydrogen. Fracture surfaces were examined by scanning electron microscopy. Fracture morphology of hydrogen-embrittled specimens was characterized by: changed dimple size, twin-boundary parting, transgranular cleavage, and intergranular separation. The nature and extent of the fracture mode changes induced by hydrogen varied systematically with alloy composition and test temperature. Initial microstructure developed during deformation processing and heat treating had a secondary influence on fracture mode

  15. Decrease in Hydrogen Embrittlement Susceptibility of 10B21 Screws by Bake Aging

    Directory of Open Access Journals (Sweden)

    Kuan-Jen Chen

    2016-08-01

    Full Text Available The effects of baking on the mechanical properties and fracture characteristics of low-carbon boron (10B21 steel screws were investigated. Fracture torque tests and hydrogen content analysis were performed on baked screws to evaluate hydrogen embrittlement (HE susceptibility. The diffusible hydrogen content within 10B21 steel dominated the fracture behavior of the screws. The fracture torque of 10B21 screws baked for a long duration was affected by released hydrogen. Secondary ion mass spectroscopy (SIMS result showed that hydrogen content decreased with increasing baking duration, and thus the HE susceptibility of 10B21 screws improved. Diffusible hydrogen promoted crack propagation in high-stress region. The HE of 10B21 screws can be prevented by long-duration baking.

  16. Role of vanadium carbide traps in reducing the hydrogen embrittlement susceptibility of high strength alloy steels. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, G.L.; Duquette, D.J.

    1998-08-01

    High strength alloy steels typically used for gun steel were investigated to determine their susceptibility to hydrogen embrittlement. Although AISI grade 4340 was quite susceptible to hydrogen embrittlement, ASTM A723 steel, which has identical mechanical properties but slightly different chemistries, was not susceptible to hydrogen embrittlement when exposed to the same conditions. The degree of embrittlement was determined by conducting notched tensile testing on uncharged and cathodically charged specimens. Chemical composition was modified to isolate the effect of alloying elements on hydrogen embrittlement susceptibility. Two steels-Modified A723 (C increased from 0.32% to 0.40%) and Modified 4340 (V increased from 0 to O.12%) were tested. X-ray diffraction identified the presence of vanadium carbide, V{sub 4}C{sub 3}, in A-23 steels, and subsequent hydrogen extraction studies evaluated the trapping effect of vanadium carbide. Based on these tests, it was determined that adding vanadium carbide to 4340 significantly decreased hydrogen embrittlement susceptibility because vanadium carbide traps ties up diffusible hydrogen. The effectiveness of these traps is examined and discussed in this paper.

  17. Low temperature hydrogen embrittlement of niobium. II. Microscopic observations

    International Nuclear Information System (INIS)

    Grossbeck, M.L.; Birnbaum, H.K.

    1977-01-01

    The detailed, microscopic processes which occur during the hydrogen embrittlement of pure Nb are examined using in situ SEM crack propagation studies, SEM fractography, electron diffraction and ion probe methods. These results show that the fracture process occurs in a stress induced NbH hydride phase which forms in front of the propagating crack. The experimental results are in good agreement with the stress induced hydride embrittlement mechanism which is discussed. The thermodynamics of precipitation of hydrides under external stress is discussed and calculations are presented for the stress effects on the α-β solvus temperatures. These are related to the embrittlement process and evidence is presented to support the calculated stress effects on the solvus temperature

  18. Experimental study on the resistance to hydrogen embrittlement of NIFS-V4Cr4Ti alloy

    International Nuclear Information System (INIS)

    Chen Jiming; Xu Zengyu; Den Ying; Muroga, T.

    2002-01-01

    SWIP (Southwestern Institute of Physics) has joined an international collaboration on the hydrogen embrittlement resistance evaluation of the vanadium alloy. This paper presents some experiments on the tensile properties and Charpy impact properties of the NIFS-V4Cr4Ti alloy with high-level hydrogen concentration. The experiment results show different properties against hydrogen embrittlement in static tension and impact load. The critical hydrogen concentration required to embrittle the alloy was about 215 - 310 mg·kg -1 on static tension load, but less than 130 mg·kg -1 on impact loading

  19. Hydrogen embrittlement and stress corrosion cracking in metals

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Suk; Cheong, Yong Mu; Im, Kyung Soo

    2004-10-15

    The objective of this report is to elucidate the mechanism for hydrogen embrittlement (HE) and stress corrosion cracking (SCC) in metals. To this end, we investigate the common features between delayed hydride cracking (DHC) in zirconium alloys and HE in metals with no precipitation of hydrides including Fe base alloys, Nickel base alloys, Cu alloys and Al alloys. Surprisingly, as with the crack growth pattern for the DHC in zirconium alloy, the metals mentioned above show a discontinuous crack growth, striation lines and a strong dependence of yield strength when exposed to hydrogen internally and externally. This study, for the first time, analyzes the driving force for the HE in metals in viewpoints of Kim's DHC model that a driving force for the DHC in zirconium alloys is a supersaturated hydrogen concentration coming from a hysteresis of the terminal solid solubility of hydrogen, not by the stress gradient, As with the crack growing only along the hydride habit plane during the DHC in zirconium alloys, the metals exposed to hydrogen seem to have the crack growing by invoking the dislocation slip along the preferential planes as a result of some interactions of the dislocations with hydrogen. Therefore, it seems that the hydrogen plays a role in inducing the slip only on the preferential planes so as to cause a strain localization at the crack tip. Sulfur in metals is detrimental in causing a intergranular cracking due to a segregation of the hydrogens at the grain boundaries. In contrast, boron in excess of 500 ppm added to the Ni3Al intermetallic compound is found to be beneficial in suppressing the HE even though further details of the mechanism for the roles of boron and sulfur are required. Carbon, carbides precipitating semi-continuously along the grain boundaries and the CSL (coherent site lattice) boundaries is found to suppress the intergranular stress corrosion cracking (IGSCC) in Alloy 600. The higher the volume fraction of twin boundaries, the

  20. Hydrogen embrittlement and stress corrosion cracking in metals

    International Nuclear Information System (INIS)

    Kim, Young Suk; Cheong, Yong Mu; Im, Kyung Soo

    2004-10-01

    The objective of this report is to elucidate the mechanism for hydrogen embrittlement (HE) and stress corrosion cracking (SCC) in metals. To this end, we investigate the common features between delayed hydride cracking (DHC) in zirconium alloys and HE in metals with no precipitation of hydrides including Fe base alloys, Nickel base alloys, Cu alloys and Al alloys. Surprisingly, as with the crack growth pattern for the DHC in zirconium alloy, the metals mentioned above show a discontinuous crack growth, striation lines and a strong dependence of yield strength when exposed to hydrogen internally and externally. This study, for the first time, analyzes the driving force for the HE in metals in viewpoints of Kim's DHC model that a driving force for the DHC in zirconium alloys is a supersaturated hydrogen concentration coming from a hysteresis of the terminal solid solubility of hydrogen, not by the stress gradient, As with the crack growing only along the hydride habit plane during the DHC in zirconium alloys, the metals exposed to hydrogen seem to have the crack growing by invoking the dislocation slip along the preferential planes as a result of some interactions of the dislocations with hydrogen. Therefore, it seems that the hydrogen plays a role in inducing the slip only on the preferential planes so as to cause a strain localization at the crack tip. Sulfur in metals is detrimental in causing a intergranular cracking due to a segregation of the hydrogens at the grain boundaries. In contrast, boron in excess of 500 ppm added to the Ni3Al intermetallic compound is found to be beneficial in suppressing the HE even though further details of the mechanism for the roles of boron and sulfur are required. Carbon, carbides precipitating semi-continuously along the grain boundaries and the CSL (coherent site lattice) boundaries is found to suppress the intergranular stress corrosion cracking (IGSCC) in Alloy 600. The higher the volume fraction of twin boundaries, the more

  1. Stress corrosion cracking and hydrogen embrittlement of an Al-Zn-Mg-Cu alloy

    International Nuclear Information System (INIS)

    Song, R.G.; Dietzel, W.; Zhang, B.J.; Liu, W.J.; Tseng, M.K.; Atrens, A.

    2004-01-01

    The age hardening, stress corrosion cracking (SCC) and hydrogen embrittlement (HE) of an Al-Zn-Mg-Cu 7175 alloy were investigated experimentally. There were two peak-aged states during ageing. For ageing at 413 K, the strength of the second peak-aged state was slightly higher than that of the first one, whereas the SCC susceptibility was lower, indicating that it is possible to heat treat 7175 to high strength and simultaneously to have high SCC resistance. The SCC susceptibility increased with increasing Mg segregation at the grain boundaries. Hydrogen embrittlement (HE) increased with increased hydrogen charging and decreased with increasing ageing time for the same hydrogen charging conditions. Computer simulations were carried out of (a) the Mg grain boundary segregation using the embedded atom method and (b) the effect of Mg and H segregation on the grain boundary strength using a quasi-chemical approach. The simulations showed that (a) Mg grain boundary segregation in Al-Zn-Mg-Cu alloys is spontaneous, (b) Mg segregation decreases the grain boundary strength, and (c) H embrittles the grain boundary more seriously than does Mg. Therefore, the SCC mechanism of Al-Zn-Mg-Cu alloys is attributed to the combination of HE and Mg segregation induced grain boundary embrittlement

  2. Influence of sulfur, phosphorus, and antimony segregation on the intergranular hydrogen embrittlement of nickel

    International Nuclear Information System (INIS)

    Bruemmer, S.M.; Baer, D.R.; Jones, R.H.; Thomas, M.T.

    1983-01-01

    The effectiveness of sulfur, phosphorus, and antimony in promoting the intergranular embrittlement of nickel was investigated using straining electrode tests in 1N H 2 SO 4 at cathodic potentials. Sulfur was found to be the critical grain boundary segregant due to its large enrichment at grain boundaries (10 4 to 10 5 times the bulk content) and the direct relationship between sulfur coverage and hydrogeninduced intergranular failure. Phosphorus was shown to be significantly less effective than sulfur or antimony in inducing the intergranular hydrogen embrittlement of nickel. The addition of phosphoru to nickel reduced the tendency for intergranular fracture and improved ductility because phosphoru segregated strongly to grain interfaces and limited sulfur enrichment. The hydrogen embrittling potency of antimony was also less than that of sulfur while its segregation propensity was considerably less. It was found that the effectiveness of segregated phosphorus and antimony in prompting inter granular embrittlement vs that of sulfur could be expressed in terms of an equivalent grain boundary sulfur coverage. The relative hydrogen embrittling potencies of sulfur, phosphorus, and antimony are discussed in reference to general mechanisms for the effect of impurity segregation on hydrogeninduced intergranular fracture

  3. Evaluation of the current status of hydrogen embrittlement and stress-corrosion cracking in steels

    Energy Technology Data Exchange (ETDEWEB)

    Moody, N.R.

    1981-12-01

    A review of recent studies on hydrogen embrittlement and stress-corrosion cracking in steels shows there are several critical areas where data is either ambiguous, contradictory, or non-existent. A relationship exists between impurity segregation and hydrogen embrittlement effects but it is not known if the impurities sensitize a preferred crack path for hydrogen-induced failure or if impurity and hydrogen effects are additive. Furthermore, grain boundary impurities may enhance susceptibility through interactions with some environments. Some studies show that an increase in grain size increases susceptibility; at least one study shows an opposite effect. Recent work also shows that fracture initiates at different locations for external and internal hydrogen environments. How this influences susceptibility is unknown.

  4. Effect of hydrogen on the behavior of metals II - Hydrogen embrittlement of titanium alloy TV13CA - effect of oxygen - comparison with non-alloyed titanium

    International Nuclear Information System (INIS)

    Arditty, Jean-Pierre

    1973-01-01

    The effect of oxygen on the hydrogen embrittlement of non-alloyed titanium and the metastable β titanium alloy, TV13 CA, was studied during dynamic mechanical tests, the concentrations considered varying from 1000 to 5000 ppm (oxygen) and from 0 to 5000 ppm (hydrogen) respectively. TV13 CA alloy has a very high solubility for hydrogen. The establishment of a temperature range and a rate of deformation region in which the embrittlement of the alloy is maximum leads to the conclusion that an embrittlement mechanism occurs involving the dragging and accumulation of hydrogen by dislocations. This is the case for all annealings effected in the medium temperature range, which, by favoring the re-establishment of the stable two-phase α + β state of the alloy, produce hardening. The same is true for oxygen which, in addition to hardening the alloy by the solid solution effect, tends to increase its instability and, in consequence, favors the decomposition of the β phase. Nevertheless oxygen concentrations of up to 1500 ppm contribute to increasing the mechanical resistance without catastrophically reducing the deformation capacity. In the case of non-alloyed titanium, the hardening effect also leads to an increase in E 0.2p c and R, and to a reduction in the deformation capacity. Nevertheless, hydrogen is only very slightly soluble at room temperature and a distribution of the hydride phase linked to the thermal history of the sample predominates. Thus a fine acicular structure obtained from the β phase by quenching, enables an alloy having a good mechanical resistance to be conserved even when large quantities of hydrogen are present; the deformation capacity remains small. On the other hand, when the hydride phase separates the metallic phase into large grains, a very small elongation leads to a breakdown in mechanical resistance. (author) [fr

  5. Diagnostic experimental results on the hydrogen embrittlement of austenitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Gavriljuk, V.G.; Shivanyuk, V.N.; Foct, J

    2003-03-14

    Three main available hypotheses of hydrogen embrittlement are analysed in relation to austenitic steels based on the studies of the hydrogen effect on the interatomic bonds, phase transformations and microplastic behaviour. It is shown that hydrogen increases the concentration of free electrons, i.e. enhances the metallic character of atomic interactions, although such a decrease in the interatomic bonding cannot be a reason for brittleness and rather assists an increased plasticity. The hypothesis of the critical role of the hydrogen-induced {epsilon} martensite was tested in the experiment with the hydrogen-charged Si-containing austenitic steel. Both the fraction of the {epsilon} martensite and resistance to hydrogen embrittlement were increased due to Si alloying, which is at variance with the pseudo-hydride hypothesis. The hydrogen-caused early start of the microplastic deformation and an increased mobility of dislocations, which are usually not observed in the common mechanical tests, are revealed by the measurements of the strain-dependent internal friction, which is consistent with the hypothesis of the hydrogen-enhanced localised plasticity. An influence of alloying elements on the enthalpy E{sub H} of hydrogen migration in austenitic steels is studied using the temperature-dependent internal friction and a correlation is found between the values of E{sub H} and hydrogen-caused decrease in plasticity. A mechanism for the transition from the hydrogen-caused microplasticity to the apparent macrobrittle fracture is proposed based on the similarity of the fracture of hydrogenated austenitic steels to that of high nitrogen steels.

  6. Hydrogen embrittlement property of a 1700-MPa-class ultrahigh-strength tempered martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Li Songjie; Zhang Boping [School of Materials Science and Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Hidian Zone, Beijing 100083 (China); Akiyama, Eiji; Yuuji, Kimura; Tsuzaki, Kaneaki [Structural Metals Center, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Uno, Nobuyoshi, E-mail: AKIYAMA.Eiji@nims.go.j [Nippon Steel and Sumikin Metal Products Co, Ltd, SA Bldg., 17-12 Kiba 2-chome, Koto-ku, Tokyo (Japan)

    2010-04-15

    The hydrogen embrittlement property of a prototype 1700-MPa-class ultrahigh-strength steel (NIMS17) containing hydrogen traps was evaluated using a slow strain rate test (SSRT) after cathodic hydrogen precharging, cyclic corrosion test (CCT) and atmospheric exposure. The hydrogen content in a fractured specimen was measured after SSRT by thermal desorption spectroscopy (TDS). The relationship between fracture stress and hydrogen content for the hydrogen-precharged specimens showed that the fracture stress of NIMS17 steel was higher, at a given hydrogen content, than that of conventional AISI 4135 steels with tensile strengths of 1300 and 1500 MPa. This suggests better resistance of NIMS17 steel to hydrogen embrittlement. However, hydrogen uptake to NIMS17 steel under CCT and atmospheric exposure decreased the fracture stress. This is because of the stronger hydrogen uptake to the steel containing hydrogen traps than to the AISI 4135 steels. Although NIMS17 steel has a higher strength level than AISI 4135 steel with a tensile strength of 1500 MPa, the decrease in fracture stress is similar between these steels.

  7. Hydrogen embrittlement property of a 1700-MPa-class ultrahigh-strength tempered martensitic steel

    Directory of Open Access Journals (Sweden)

    Songjie Li, Eiji Akiyama, Kimura Yuuji, Kaneaki Tsuzaki, Nobuyoshi Uno and Boping Zhang

    2010-01-01

    Full Text Available The hydrogen embrittlement property of a prototype 1700-MPa-class ultrahigh-strength steel (NIMS17 containing hydrogen traps was evaluated using a slow strain rate test (SSRT after cathodic hydrogen precharging, cyclic corrosion test (CCT and atmospheric exposure. The hydrogen content in a fractured specimen was measured after SSRT by thermal desorption spectroscopy (TDS. The relationship between fracture stress and hydrogen content for the hydrogen-precharged specimens showed that the fracture stress of NIMS17 steel was higher, at a given hydrogen content, than that of conventional AISI 4135 steels with tensile strengths of 1300 and 1500 MPa. This suggests better resistance of NIMS17 steel to hydrogen embrittlement. However, hydrogen uptake to NIMS17 steel under CCT and atmospheric exposure decreased the fracture stress. This is because of the stronger hydrogen uptake to the steel containing hydrogen traps than to the AISI 4135 steels. Although NIMS17 steel has a higher strength level than AISI 4135 steel with a tensile strength of 1500 MPa, the decrease in fracture stress is similar between these steels.

  8. Hydrogen embrittlement property of a 1700-MPa-class ultrahigh-strength tempered martensitic steel

    International Nuclear Information System (INIS)

    Li Songjie; Zhang Boping; Akiyama, Eiji; Yuuji, Kimura; Tsuzaki, Kaneaki; Uno, Nobuyoshi

    2010-01-01

    The hydrogen embrittlement property of a prototype 1700-MPa-class ultrahigh-strength steel (NIMS17) containing hydrogen traps was evaluated using a slow strain rate test (SSRT) after cathodic hydrogen precharging, cyclic corrosion test (CCT) and atmospheric exposure. The hydrogen content in a fractured specimen was measured after SSRT by thermal desorption spectroscopy (TDS). The relationship between fracture stress and hydrogen content for the hydrogen-precharged specimens showed that the fracture stress of NIMS17 steel was higher, at a given hydrogen content, than that of conventional AISI 4135 steels with tensile strengths of 1300 and 1500 MPa. This suggests better resistance of NIMS17 steel to hydrogen embrittlement. However, hydrogen uptake to NIMS17 steel under CCT and atmospheric exposure decreased the fracture stress. This is because of the stronger hydrogen uptake to the steel containing hydrogen traps than to the AISI 4135 steels. Although NIMS17 steel has a higher strength level than AISI 4135 steel with a tensile strength of 1500 MPa, the decrease in fracture stress is similar between these steels.

  9. Hydrogen embrittlement of ASTM A 203 D nuclear structural steel

    International Nuclear Information System (INIS)

    Chakravartty, J.K.; Prasad, G.E.; Sinha, T.K.; Asundi, M.K.

    1986-01-01

    The influence of hydrogen on the mechanical properties of ASTM A 203 D nuclear structural steel has been studied by tension, bend and delayed-failure tests at room temperature. While the tension tests of hydrogen charged unnotched specimens reveal no change in ultimate strength and ductility, the effect of hydrogen is manifested in notched specimens (tensile and bend) as a decrease in ultimate strength (maximum load in bend test) and ductility; the effect increases with increasing hydrogen content. It is observed that for a given hydrogen concentration, the decrease in bend ductility is remarkably large compared to that in tensile ductility. Hydrogen charging does not cause any delayed-failure upto 200 h under an applied tensile stress, 0.85 times the notch tensile strength. However delayed failure occurs in hydrogen charged bend samples in less than 10 h under an applied bending load of about 0.80 times of the uncharged maximum load. Fractographs of hydrogen charged unnotched specimens show ductile dimple fracture, while those of notched tension and bend specimens under hydrogen-charged conditions show a mixture of ductile dimple and quasi-cleavage cracking. The proportion of quasi-cleavage cracking increases with increasing hydrogen content and this fracture mode is more predominant in bend specimens. The changes in tensile properties and fracture modes can reasonably be explained by existing theories of hydrogen embrittlement. An attempt is made to explain the significant difference in the embrittlement susceptibility of bend and tensile specimens in the light of difference in triaxiality and plastic zone size near the notch tip. (orig.)

  10. Study on the hydrogen embrittlement and corrosion of stainless steels used as NI/MHX battery containers

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, H.J.; Chan, S.L.I. [National Taiwan University, Taipei (China); Chen, S.Y. [Chung Shan Institute of Science and Technology, Lung-Tan (China)

    1998-07-01

    Stainless steels are used as the containers for Nickel-metal hydride (Ni/MHx) batteries. In this work stainless steel 304, 304L, 316, 316L, 17-4PH and 430 were selected to study their relative susceptibility to hydrogen embrittlement and alkaline corrosion under battery environments. Comparisons were made by immersion test under different hydrogen pressure over the electrolyte, U-bend tests and slow strain rate tensile test with cathodic H{sub 2} charging. The results showed that high strength 17-4PH suffered severe corrosion after long time immersion in the electrolyte solution and were sensitive to hydrogen embrittlement after hydrogen charging. Ferritic 430 performed better than 17-4PH during immersion test but lost its ductility after hydrogen charging. All the austenitic steels (304, 304L, 316, 316L) were found to be suitable as the materials for Ni/MHx battery container, and the present tests can not discriminate their relative resistance to the corrosion and hydrogen embrittlement in the electrolyte. 5 refs.

  11. Hydrogen embrittlement of the 22 Cr5 Ni austeno-ferritic stainless steel. Role of the microstructure

    International Nuclear Information System (INIS)

    Iacoviello, Francesco

    1997-01-01

    Austenitic-ferritic stainless steels are characterised by very good mechanical properties and by a high corrosion resistance, especially to stress-corrosion and to pitting. However, their duplex structure shows a sensitivity to hydrogen embrittlement. Among duplex stainless steels, the 22 Cr 5 Ni grade has gradually became the most used. In this work the tensile properties and the resistance to fatigue crack propagation of 22 Cr5 Ni duplex stainless steel have been analysed, with and without hydrogen charging, after it had been treated at temperatures ranging between 200-1050 deg. C for varying times. The heat treatment times and temperatures were chosen to characterise completely the effects of the different intermetallic and the carbide and nitride phases and to compare these results with those from the tensile tests and those in the literature. A technique for obtaining the hydrogen diffusion coefficient in the steel was optimised and was shown to be alternative to the permeation technique. Thermal analysis was used to determine the activation energy of the hydrogen traps in the steel. From the results the following conclusions were established: - Grain boundaries and dislocations have very little influence on the process of hydrogen diffusion. - The quantity of hydrogen absorbed depends in that any type of precipitate decrease the absorption. This decrease was probably due to changes in the diffusivity and solubility of hydrogen caused by the precipitation. - The charging with hydrogen caused a large decrease in ε m pc for the steel for all heat treatments temperature, except 1050 deg. C. At this temperature the effect was much less as the dislocation density was very low and the precipitates were now in solution. - Hydrogen charging of the steel did not affect the YS and the decrease in UTS produced depended on the microstructure. Use of the embrittlement index 'F' showed that spinodal decomposition and precipitation of G phase decrease hydrogen embrittlement

  12. Hydrogen Embrittlement Mechanism in Fatigue Behaviour of Austenitic and Martensitic Stainless Steels

    Directory of Open Access Journals (Sweden)

    Brück Sven

    2018-01-01

    Full Text Available In the present study, the influence of hydrogen on the fatigue behaviour of the high strength martensitic stainless steel X3CrNiMo13-4 and the metastable austenitic stainless steels X2Crni19-11 with various nickel contents was examined in the low and high cycle fatigue regime. The focus of the investigations was the changes in the mechanisms of short crack propagation. The aim of the ongoing investigation is to determine and quantitatively describe the predominant processes of hydrogen embrittlement and their influence on the short fatigue crack morphology and crack growth rate. In addition, simulations were carried out on the short fatigue crack growth, in order to develop a detailed insight into the hydrogen embrittlement mechanisms relevant for cyclic loading conditions.

  13. Gaseous hydrogen embrittlement of an API X80 ferrito-pearlitic steel; Fragilisation par l'hydrogene gazeux d'un acier ferrito-perlitique de grade API X80

    Energy Technology Data Exchange (ETDEWEB)

    Moro, I.

    2009-11-15

    This work deals with hydrogen embrittlement, at ambient temperature and under a high pressure gaseous way, of an API X80 high elasticity limit steel used for pipelines construction, and with the understanding of the associated physical mechanisms of the embrittlement. At first has been described a bibliographic study of the adsorption, absorption, diffusion, transport and trapping of hydrogen in the steels. Then has been carried out an experimental and numerical study concerning the implantation in the finite element code CASTEM3M of a hydrogen diffusion model coupled to mechanical fields. The hydrogen influence on the mechanical characteristics of the X80 steel, of a ferrito-pearlitic microstructure has been studied with tensile tests under 300 bar of hydrogen and at ambient temperature. The sensitivity of the X80 steel to hydrogen embrittlement has been analyzed by tensile tests at different deformation velocities and under different hydrogen pressures on axisymmetrical notched test specimens. These studies show that the effect of the hydrogen embrittlement vary effectively with the experimental conditions. Moreover, correlated with the results of the tests simulations, it has been shown too that in these experimental conditions and for that steel, the hydrogen embrittlement is induced by three different hydrogen populations: the hydrogen trapped at the ferrite/perlite interfaces, the hydrogen adsorbed on surface and the reticular hydrogen trapped in the material volume. At last, the tensile and rupture tests of specimens, during which atmosphere changes have been carried out, have shown a strong reversibility of the hydrogen embrittlement, associated with its initiation as soon as hydrogen is introduced in the atmosphere. At last, three hydrogen mechanisms, depending of the different hydrogen populations are presented and discussed. (O.M.)

  14. Empirical Method to Estimate Hydrogen Embrittlement of Metals as a Function of Hydrogen Gas Pressure at Constant Temperature

    Science.gov (United States)

    Lee, Jonathan A.

    2010-01-01

    High pressure Hydrogen (H) gas has been known to have a deleterious effect on the mechanical properties of certain metals, particularly, the notched tensile strength, fracture toughness and ductility. The ratio of these properties in Hydrogen as compared to Helium or Air is called the Hydrogen Environment Embrittlement (HEE) Index, which is a useful method to classify the severity of H embrittlement and to aid in the material screening and selection for safety usage H gas environment. A comprehensive world-wide database compilation, in the past 50 years, has shown that the HEE index is mostly collected at two conveniently high H pressure points of 5 ksi and 10 ksi near room temperature. Since H embrittlement is directly related to pressure, the lack of HEE index at other pressure points has posed a technical problem for the designers to select appropriate materials at a specific H pressure for various applications in aerospace, alternate and renewable energy sectors for an emerging hydrogen economy. Based on the Power-Law mathematical relationship, an empirical method to accurately predict the HEE index, as a function of H pressure at constant temperature, is presented with a brief review on Sievert's law for gas-metal absorption.

  15. Embrittlement of the alloy U 7.5 Nb 2.5 Zr by gaseous oxygen and hydrogen

    International Nuclear Information System (INIS)

    Lepoutre, D.; Nomine, A.M.; Miannay, D.

    1981-04-01

    Embrittlement of the alloy uranium 7.5 niobium 2.5 zirconium in gaseous oxygen and hydrogen versus stress intensity, temperature and pressure is studied using rupture mechanics. Cracking speed is determined. In oxygen, only cracks are produced and embrittlement is due to oxidation. In hydrogen at high pressure an hydride is formed and at low pressure cracks are produced but the mechanism is not identified [fr

  16. Hydrogen embrittlement of titanium and its alloys - a literature review

    International Nuclear Information System (INIS)

    Aho-Mantila, I.; Haemaelaeinen, H.

    1986-05-01

    Hydrogen embrittlement data of titanium and its alloys is reviewed. Especially the results obtained in spent nuclear fuel repository conditions with commercially pure titanium and TiCode-12 alloy are examined. The results show that the mechanical properties of titanium are not much affected by hydrogen when tested by smooth specimens. Much greater effects can be expected with notched fracture mechanics specimens. However, only limeted data is available. Hydrogen distribution in titanium is affected by stress, alloy composition and temperature gradients. In order to model the hydrogen-induced crack growth in titanium much more mechanistic work is needed especially to understand the behaviour of hydrogen in crack tip stress field. (author)

  17. Internal hydrogen embrittlement of gamma-stabilized uranium alloys

    International Nuclear Information System (INIS)

    Powell, G.L.; Koger, J.W.; Bennett, R.K.; Williamson, A.L.; Hemperly, V.C.

    1976-01-01

    Relationships between the tensile ductility and fracture characteristics of as-quenched, gamma-stabilized uranium alloys (uranium--10 wt percent molybdenum, uranium--8.5 wt percent niobium, uranium--10 wt percent niobium, and uranium--7.5 wt percent niobium--2.5 wt percent zirconium), the hydrogen content of the tensile specimens, and the hydrogen gas pressure during the annealing at 850 0 C of the tensile test blanks prior to quenching were established. For these alloys, the tensile ductility decreases only slightly with increasing hydrogen content up to a critical hydrogen concentration above which the tensile ductility drops to nearly zero. The only alloy not displaying this sharp drop in tensile ductility was U--7.5 Nb--2.5 Zr, probably because sufficiently high hydrogen contents could not be achieved under our experimental arrangements. The critical hydrogen content for ductility loss increased with increasing hydrogen solubility in the alloy. Fracture surfaces produced by internal hydrogen embrittlement do not resemble those produced by stress corrosion cracking (SCC) in aqueous environments containing chloride ions. 8 figs

  18. The effects of composition on the environmental embrittlement of Fe{sub 3}Al alloys

    Energy Technology Data Exchange (ETDEWEB)

    Alven, D.A.; Stoloff, N.S. [Rensselaer Polytechnic Inst., Troy, NY (United States)

    1997-12-01

    This paper reviews recent research on embrittlement of iron aluminides at room temperature brought about by exposure to moisture or hydrogen. The tensile and fatigue crack growth behavior of several Fe-28Al-5Cr alloys with small additions of Zr and C are described. It will be shown that fatigue crack growth behavior is dependent on composition, environment, humidity level, and frequency. Environments studied include vacuum, oxygen, hydrogen gas, and moist air. All cases of embrittlement are ultimately traceable to the interaction of hydrogen with the crack tip.

  19. Effect of pre-strain on susceptibility of Indian Reduced Activation Ferritic Martensitic Steel to hydrogen embrittlement

    International Nuclear Information System (INIS)

    Sonak, Sagar; Tiwari, Abhishek; Jain, Uttam; Keskar, Nachiket; Kumar, Sanjay; Singh, Ram N.; Dey, Gautam K.

    2015-01-01

    The role of pre-strain on hydrogen embrittlement susceptibility of Indian Reduced Activation Ferritic Martensitic Steel was investigated using constant nominal strain-rate tension test. The samples were pre-strained to different levels of plastic strain and their mechanical behavior and mode of fracture under the influence of hydrogen was studied. The effect of plastic pre-strain in the range of 0.5–2% on the ductility of the samples was prominent. Compared to samples without any pre-straining, effect of hydrogen was more pronounced on pre-strained samples. Prior deformation reduced the material ductility under the influence of hydrogen. Up to 35% reduction in the total strain was observed under the influence of hydrogen in pre-strained samples. Hydrogen charging resulted in increased occurrence of brittle zones on the fracture surface. Hydrogen Enhanced Decohesion (HEDE) was found to be the dominant mechanism of fracture.

  20. Hydrogen embrittlement of high strength steel electroplated with zincâ  cobalt allo

    OpenAIRE

    Hillier, Elizabeth M. K.; Robinson, M. J.

    2004-01-01

    Slow strain rate tests were performed on quenched and tempered AISI 4340 steel to measure the extent of hydrogen embrittlement caused by electroplating with zincâ  cobalt alloys. The effects of bath composition and pH were studied and compared with results for electrodeposited cadmium and zincâ  10%nickel. It was found that zincâ  1%cobalt alloy coatings caused serious hydrogen embrittlement (EI 0.63); almost as severe as that of cadmium (EI 0.78). Baking cadmium plate...

  1. Effect of Microstructure and Alloy Chemistry on Hydrogen Embrittlement of Precipitation-Hardened Ni-Based Alloys

    Science.gov (United States)

    Obasi, G. C.; Zhang, Z.; Sampath, D.; Morana, Roberto; Akid, R.; Preuss, M.

    2018-04-01

    The sensitivity to hydrogen embrittlement (HE) has been studied in respect of precipitation size distributions in two nickel-based superalloys: Alloy 718 (UNS N07718) and Alloy 945X (UNS N09946). Quantitative microstructure analysis was carried out by the combination of scanning and transmission electron microscopy and energy dispersive x-ray spectroscopy (EDS). While Alloy 718 is mainly strengthened by γ″, and therefore readily forms intergranular δ phase, Alloy 945X has been designed to avoid δ formation by reducing Nb levels providing high strength through a combination of γ' and γ″. Slow strain rate tensile tests were carried out for different microstructural conditions in air and after cathodic hydrogen (H) charging. HE sensitivity was determined based on loss of elongation due to the H uptake in comparison to elongation to failure in air. Results showed that both alloys exhibited an elevated sensitivity to HE. Fracture surfaces of the H precharged material showed quasi-cleavage and transgranular cracks in the H-affected region, while ductile failure was observed toward the center of the sample. The crack origins observed on the H precharged samples exhibited quasi-cleavage with slip traces at high magnification. The sensitivity is slightly reduced for Alloy 718, by coarsening γ″ and reducing the overall strength of the alloy. However, on further coarsening of γ″, which promotes continuous decoration of grain boundaries with δ phase, the embrittlement index rose again indicating a change of hydrogen embrittlement mechanism from hydrogen-enhanced local plasticity (HELP) to hydrogen-enhanced decohesion embrittlement (HEDE). In contrast, Alloy 945X displayed a strong correlation between strength, based on precipitation size and embrittlement index, due to the absence of any significant formation of δ phase for the investigated microstructures. For the given test parameters, Alloy 945X did not display any reduced sensitivity to HE compared with

  2. Blistering and hydride embrittlement

    International Nuclear Information System (INIS)

    Louthan, M.R. Jr.

    1975-01-01

    The effects of hydrogen on the mechanical properties of metals have been categorized into several groups. Two of the groups, hydrogen blistering and hydride embrittlement, are reasonably well understood, and problems relating to their occurrence may be avoided if that understanding is used as a basis for selecting alloys for hydrogen service. Blistering and hydride embrittlement are described along with several techniques of materials selection and used to minimize their adverse effects. (U.S.)

  3. Prediction of long term crevice corrosion and hydrogen embrittlement behavior of ASTM grade-12 titanium

    International Nuclear Information System (INIS)

    Ahn, T.M.; Jain, H.

    1984-01-01

    Crevice corrosion and hydrogen embrittlement are potential failure modes of Grade-12 titanium high-level nuclear waste containers emplaced in rock salt repositories. A method is presented to estimate the environment domains for which immunity to these failure modes will exist for periods of hundreds of years. The estimation is based on the identification and quantification of mechanisms involved. Macroscopic concentration cell formation is responsible for crevice corrosion. The cell formation is accompanied by oxygen depletion, potential drop, anion accumulation and acidification inside the crevice. This process is quantified by simple mass balance equations which show that the immunity domain is a function of the time the container is exposed to the corrosion environment. Strain induced hydride formation is responsible for hydrogen assisted crack initiation. A simple model for slow crack growth is developed using data on growth rates measured at various temperatures. The parameters obtained in the model are used to estimate the threshold stress intensity and hydrogen solubility limit in the alloy at infinite container service time. This value gives a crack size below which container failure will not occur for a given applied stress and hydrogen concentration, and a hydrogen concentration limit at a given stress intensity. 37 references, 5 figures, 4 tables

  4. Preventing the embrittling by hydrogen when galvanizing high-grade steel

    Energy Technology Data Exchange (ETDEWEB)

    Paatsch, W.

    1987-09-01

    Galvanic precipitation of a double layer consisting of a dull nickel layer overlaid with a brilliant zinc layer on low-alloyed high-strength steel grades leads to the forming of zinc-nickel alloy layers during the subsequent heat treatment. According to traction tests carried out on high-strength steel grades, as well as to hydrogen permeability tests, this process prevents embrittling by hydrogen which might be caused by galvanic process sequences - and creates a diffusion block at the same time. The alloy layers have an excellent corrosion resistance and temperature stability.

  5. Effect of the 718 alloy metallurgical status on hydrogen embrittlement; Effet de l'etat metallurgique de l'alliage 718 sur la fragilisation par l'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    Galvano, F.; Andrieu, E.; Blanc, Ch.; Odemer, G.; Ter-Ovanessian, B.; Cocheteau, N.; Holstein, A.; Reboul, Ch. [Universite de Toulouse, CIRIMAT, UPS/CNRS/INPT, 31 - Toulouse (France); Clouez, J.M. [AREVA NP 69 - Lyon (France)

    2010-03-15

    The Inconel 718 is a nickel superalloy which is widely used in the nuclear industry, but is sensitive to hydrogen embrittlement induced by corrosion and stress corrosion cracking phenomena, and by the presence of dissolved hydrogen in pressurized water reactor environments. As this alloy is hardened by precipitation of different intermetallic phases, it appeared that the presence of these precipitates has a strong influence on the hydrogen embrittlement. The authors report the study of the nature and effect of the different traps (intermetallic phases, carbides or their interfaces) on the hydrogen embrittlement susceptibility of the 718 alloy, and more particularly on the observed failure modes. Experiments are performed on tensile samples in which hydrogen content can be measured. The type and grain size of the observed microstructures are given with respect with the thermal treatment, as well as the mechanical properties with or without hydrogen loading

  6. Hydrogen embrittlement of metals. A bibliography with abstracts. Search period covered: 1964--August 1975

    International Nuclear Information System (INIS)

    Smith, M.F.

    1975-10-01

    The research covers the hydrogen embrittlement of both ferrous and nonferrous metals and alloys and includes nuclear technology, aircraft metallurgy, mechanical properties, testing, electroplating, fatigue, corrosion and fracture. Contains 230 abstracts

  7. A Study on the VHCF Fatigue Behaviors of Hydrogen Attacked Inconel 718 Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Chang-Min [Kyungpook National Univ., DMI Senior Fellow, Daegu (Korea, Republic of); Nahm, Seung-Hoon [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of); Kim, Jun-Hyong; Pyun, Young-Sik [Sun Moon Univ., Chunan (Korea, Republic of)

    2016-07-15

    This study is to investigate the influence of hydrogen attack and UNSM on fatigue behaviors of the Inconel 718 alloy. The decrease of the fatigue life between the untreated and the hydrogen attacked material is 10-20%. The fatigue lives of hydrogen attacked specimen decreased without a fatigue limit, similar to those of nonferrous materials. Due to hydrogen embrittlement, about 80% of the surface cracks were smaller than the average grain size of 13 μm. Many small surface cracks caused by the embrittling effect of hydrogen attack were initiated at the grain boundaries and surface scratches. Cracks were irregularly distributed, grew, and then coalesced through tearing, leading to a reduction of fatigue life. Results revealed that the fatigue lives of UNSM-treated specimens were longer than those of the untreated specimens.

  8. Multiscale modelling of hydrogen embrittlement in zirconium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Majevadia, Jassel; Wenman, Mark; Balint, Daniel; Sutton, Adrian [Imperial College London (United Kingdom); Nazarov, Roman [MPIE, Dusseldorf (Germany)

    2013-07-01

    Delayed Hydride Cracking (DHC) is a commonly occurring embrittlement phenomenon in zirconium alloy fuel cladding within Pressurized Water Reactors (PWRs). DHC is caused by the accumulation of hydrogen atoms taken up by the metal, and the formation of brittle hydrides in the vicinity of crack tips. The rate of crack growth is limited by the rate of hydrogen diffusion to the crack, which can be modelled by solving a stress driven diffusion equation that incorporates the elastic interaction between defects. This of interest in the present work. The elastic interaction is calculated by combining defect forces determined through Density Functional Theory (DFT) simulations, and an exact solution for the anisotropic elastic field of an edge dislocation in Zr. making it possible to determine the interaction energy without the need to simulate directly a hydrogen atom in the presence of a crack or dislocation, which is computationally prohibitive with DFT. The result of the elastic interaction energy calculations can be utilised to determine the segregation of hydrogen to a crack tip for varying crack tip geometries, and in the presence of other crystal defects. This is done by implementing a diffusion equation for hydrogen within a discrete dislocation dynamics simulation. In the present work a model has been developed to demonstrate the effect of a single dislocation on hydrogen diffusion to create a Cottrell atmosphere.

  9. Effect of Low-Temperature Sensitization on Hydrogen Embrittlement of 301 Stainless Steel

    OpenAIRE

    Chieh Yu; Ren-Kae Shiue; Chun Chen; Leu-Wen Tsay

    2017-01-01

    The effect of metastable austenite on the hydrogen embrittlement (HE) of cold-rolled (30% reduction in thickness) 301 stainless steel (SS) was investigated. Cold-rolled (CR) specimens were hydrogen-charged in an autoclave at 300 or 450 °C under a pressure of 10 MPa for 160 h before tensile tests. Both ordinary and notched tensile tests were performed in air to measure the tensile properties of the non-charged and charged specimens. The results indicated that cold rolling caused the transforma...

  10. Hydrogen embrittlement of austenitic stainless steels revealed by deformation microstructures and strain-induced creation of vacancies

    International Nuclear Information System (INIS)

    Hatano, M.; Fujinami, M.; Arai, K.; Fujii, H.; Nagumo, M.

    2014-01-01

    Hydrogen embrittlement of austenitic stainless steels has been examined with respect to deformation microstructures and lattice defects created during plastic deformation. Two types of austenitic stainless steels, SUS 304 and SUS 316L, uniformly hydrogen-precharged to 30 mass ppm in a high-pressure hydrogen environment, are subjected to tensile straining at room temperature. A substantial reduction of tensile ductility appears in hydrogen-charged SUS 304 and the onset of fracture is likely due to plastic instability. Fractographic features show involvement of plasticity throughout the crack path, implying the degradation of the austenitic phase. Electron backscatter diffraction analyses revealed prominent strain localization enhanced by hydrogen in SUS 304. Deformation microstructures of hydrogen-charged SUS 304 were characterized by the formation of high densities of fine stacking faults and ε-martensite, while tangled dislocations prevailed in SUS 316L. Positron lifetime measurements have revealed for the first time hydrogen-enhanced creation of strain-induced vacancies rather than dislocations in the austenitic phase and more clustering of vacancies in SUS 304 than in SUS 316L. Embrittlement and its mechanism are ascribed to the decrease in stacking fault energies resulting in strain localization and hydrogen-enhanced creation of strain-induced vacancies, leading to premature fracture in a similar way to that proposed for ferritic steels

  11. Hydrogen effect on the fatigue behavior of LBM Inconel 718

    Directory of Open Access Journals (Sweden)

    Puydebois Simon

    2018-01-01

    Full Text Available For several years, Inconel 718 made by Laser Beam Melting (LBM has been used for components of the Ariane propulsion systems manufactured by ArianeGroup. In the aerospace field, many components of space engines are used under hydrogen environment. The risk of hydrogen embrittlement (HE can be therefore a first order problem. Consequently, to improve the HE sensitivity of LBM Inconel 718, a systematic approach needs to be developed to characterize the microstructure at different scales and its interaction with hydrogen. This study addresses the impact of gaseous hydrogen on the material mechanical behavior under fatigue loadings. In a first step, the low cycle fatigue behavior under 300 bar of hydrogen gas has been evaluated with specimen loaded at a constant load ratio of R=0.1 and a frequency of 0.5 Hz. A reduction in the cycle number of fracture is shown. This reduction of fatigue life is a consequence of the impact of hydrogen damage processes. The impact of hydrogen is evaluated at the stages of crack initiation, crack propagation. These results are discussed in relation with the hydrogen embrittlement mechanisms and particularly in terms of hydrogen / plasticity interactions. To achieve this, the fracture surface morphology was first examined using scanning electron microscopy and second samples near the fracture surface were extracted using Focused-Ion Beam machining from regions containing striation. The main result observed is a reduction of the size of dislocation organization in relation with a decrease of the striation distance.

  12. Mechanical behavior of NiTi arc wires under pseudoelastic cycling and cathodically hydrogen charging

    Science.gov (United States)

    Sarraj, R.; Hassine, T.; Gamaoun, F.

    2018-01-01

    NiTi wires are mainly used to design orthodontic devices. However, they may be susceptible to a delayed fracture while they are submitted to cyclic loading with the presence of hydrogen in the oral cavity. Hydrogen may cause the embrittlement of the structure, leading to lower ductility and to a change in transformation behavior. The aim of the present study is to predict the NiTi behavior under cyclic loading with hydrogen charging. One the one hand, samples are submitted to superelastic cyclic loading, which results in investigating their performance degradations. On the other hand, after hydrogen charging, cyclic tensile aging tests are carried out on NiTi orthodontic wires at room temperature in the air. During cyclic loading, we notice that the critical stress for the martensite transformation evolves, the residual strain is accumulated in the structure and the hysteresis loop changes. Thus, via this work, we can assume that the embrittlement is due to the diffusion of hydrogen and the generation of dislocations after aging. The evolution of mechanical properties of specimens becomes more significant with hydrogen charging rather than without it.

  13. A cohesive zone model to simulate the hydrogen embrittlement effect on a high-strength steel

    Directory of Open Access Journals (Sweden)

    G. Gobbi

    2016-01-01

    Full Text Available The present work aims to model the fracture mechanical behavior of a high-strength low carbon steel, AISI 4130 operating in hydrogen contaminated environment. The study deals with the development of 2D finite element cohesive zone model (CZM reproducing a toughness test. Along the symmetry plane over the crack path of a C(T specimen a zero thickness layer of cohesive elements are implemented in order to simulate the crack propagation. The main feature of this kind of model is the definition of a traction-separation law (TSL that reproduces the constitutive response of the material inside to the cohesive elements. Starting from a TSL calibrated on hydrogen non-contaminated material, the embrittlement effect is simulated by reducing the cohesive energy according to the total hydrogen content including the lattice sites (NILS and the trapped amount. In this perspective, the proposed model consists of three steps of simulations. First step evaluates the hydrostatic pressure. It drives the initial hydrogen concentration assigned in the second step, a mass diffusion analysis, defining in this way the contribution of hydrogen moving across the interstitial lattice sites. The final stress analysis, allows getting the total hydrogen content, including the trapped amount, and evaluating the new crack initiation and propagation due to the hydrogen presence. The model is implemented in both plane strain and plane stress configurations; results are compared in the discussion. From the analyses, it resulted that hydrogen is located only into lattice sites and not in traps, and that the considered steel experiences a high hydrogen susceptibility. By the proposed procedure, the developed numerical model seems a reliable and quick tool able to estimate the mechanical behavior of steels in presence of hydrogen.

  14. The risk of hydrogen embrittlement in high-strength prestressing steels under cathodic protection

    Energy Technology Data Exchange (ETDEWEB)

    Isecke, B.; Mietz, J. (Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany))

    1993-01-01

    High strength prestressing steels in prestressed concrete structures are protected against corrosion due to passivation resulting from the high alkalinity of the concrete. If depassivation of the prestressing steel occurs due to the ingress of chlorides the corrosion risk can be minimized by application of cathodic protection with impressed current. The risk of hydrogen embrittlement of the prestressing steel is especially pronounced if overprotection is applied due to hydrogen evolution in the cathodic reaction. The present work considers this risk by hydrogen activity measurements under practical conditions and application of different levels of cathodic protection potentials. Information on threshold potentials in prestressed concrete structures is provided, too. (orig.).

  15. Alloys having improved resistance to hydrogen embrittlement

    International Nuclear Information System (INIS)

    Kane, R.D.; Greer, J.B.; Jacobs, D.F.; Berkowitz, B.J.

    1983-01-01

    The invention involves a process of improving the hydrogen embrittlement resistance of a cold-worked high yield strength nickel/cobalt base alloy containing chromium, and molybdenum and/or tungsten and having individual elemental impurity concentrations as measured by Auger spectroscopy at the crystallographic boundaries of up to about 1 Atomic percent. These elemental impurities are capable of becoming active and mobile at a temperature less than the recrystallization temperature of the alloy. The process involves heat treating the alloy at a temperature above 1300 degrees F but below the temperature of recrystallization for a time of from 1/4 to 100 hours. This is sufficient to effect a reduction in the level of the elemental impurities at the crystallographic boundaries to the range of less than 0.5 Atomic percent without causing an appreciable decrease in yield strength

  16. Hydrogen embrittlement corrosion failure of water wall tubes in large power station boilers

    International Nuclear Information System (INIS)

    Mathur, P.K.

    1981-01-01

    In the present paper, causes and mechanism of hydrogen embrittlement failure of water wall tubes in high pressure boilers have been discussed. A low pH boiler water environment, produced as a result of condenser leakage or some other type of system contamination and presence of internal metal oxide deposits, which permit boiler water solids to concentrate during the process of steam generation, have been ascribed to accelerate the formation of local corrosion cells conducive for acid attack resulting in hydrogen damage failure of water wall tubes. (author)

  17. The effect of hydrogen on the multiaxial stress-strain behavior of titanium tubing

    International Nuclear Information System (INIS)

    Lentz, C.W.; Hecker, S.S.; Koss, D.A.; Stout, M.G.

    1983-01-01

    The influence of internal hydrogen on the multiaxial stress-strain behavior of commercially pure titanium has been studied. Thin-walled specimens containing either 20 or 1070 ppm hydrogen were tested at constant stress ratios in combined tension and internal pressure. Hydrogen lowers the yield strength but has no significant effect on strain hardening behavior at strains epsilon greater than or equal to 0.02. Thus, hydrogen embrittlement under plain strain or equibiaxial loading is not a consequence of changes of flow behavior. The yielding behavior is described well by Hill's quadratic yield criterion. As measured mechanically and pole figure analysis, the plastic anisotropy changes with deformation in a manner which depends on stress state. A strain dependent, texture-induced strengthening effect in equibiaxial tension an enhanced strain hardening rate

  18. Metallic materials for the hydrogen energy industry and main gas pipelines: complex physical problems of aging, embrittlement, and failure

    International Nuclear Information System (INIS)

    Nechaev, Yu S

    2008-01-01

    The possibilities of effective solutions of relevant technological problems are considered based on the analysis of fundamental physical aspects, elucidation of the micromechanisms and interrelations of aging and hydrogen embrittlement of materials in the hydrogen industry and gas-main industries. The adverse effects these mechanisms and processes have on the service properties and technological lifetime of materials are analyzed. The concomitant fundamental process of formation of carbohydride-like and other nanosegregation structures at dislocations (with the segregation capacity 1 to 1.5 orders of magnitude greater than in the widely used Cottrell 'atmosphere' model) and grain boundaries is discussed, as is the way in which these structures affect technological processes (aging, hydrogen embrittlement, stress corrosion damage, and failure) and the physicomechanical properties of the metallic materials (including the technological lifetimes of pipeline steels). (reviews of topical problems)

  19. Solubility of hydrogen in metals and its effect of pore-formation and embrittlement. Ph.D. Thesis

    Science.gov (United States)

    Shahani, H. R.

    1984-01-01

    The effect of alloying elements on hydrogen solubility were determined by evaluating solubility equations and interaction coefficients. The solubility of dry hydrogen at one atmosphere was investigated in liquid aluminum, Al-Ti, Al-Si, Al-Fe, liquid gold, Au-Cu, and Au-Pd. The design of rapid heating and high pressure casting furnaces used in meta foam experiments is discussed as well as the mechanism of precipitation of pores in melts, and the effect of hydrogen on the shrinkage porosity of Al-Cu and Al-Si alloys. Hydrogen embrittlement in iron base alloys is also examined.

  20. Standard Test Method for Mechanical Hydrogen Embrittlement Evaluation of Plating/Coating Processes and Service Environments

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method describes mechanical test methods and defines acceptance criteria for coating and plating processes that can cause hydrogen embrittlement in steels. Subsequent exposure to chemicals encountered in service environments, such as fluids, cleaning treatments or maintenance chemicals that come in contact with the plated/coated or bare surface of the steel, can also be evaluated. 1.2 This test method is not intended to measure the relative susceptibility of different steels. The relative susceptibility of different materials to hydrogen embrittlement may be determined in accordance with Test Method F1459 and Test Method F1624. 1.3 This test method specifies the use of air melted AISI E4340 steel per SAE AMS-S-5000 (formerly MIL-S-5000) heat treated to 260 – 280 ksi (pounds per square inch x 1000) as the baseline. This combination of alloy and heat treat level has been used for many years and a large database has been accumulated in the aerospace industry on its specific response to exposure...

  1. Present status of the disk pressure tests for hydrogen embrittlements

    International Nuclear Information System (INIS)

    Fidelle, J.P.

    1988-01-01

    The Disk Pressure Tests (DPT) have been developed considerably. Theoretically: a finite elements mechanical analysis shows the build up of a triaxial stress state already at the beginning of the test, which, with other reasons accounts for the very high sensitivity. Experimentally: for Internal Hydrogen Embrittlement (IHE) e.g. Co, Ti, U alloys, for environment embrittlement due to H 2 hydrogenated media such as water vapor, alcohol, machining fluids or liquid NH 3 . The range has been expanded considerably: up to 300 MPa and up to 1000 0 C. Very low strain rate - longer than a month - tests have been able to evidence HGE; of FCC alloys where H diffusivity is low for very oxidation -sensitive metals such as Nb and Ta, effects may appear only at somewhat high rates. The relationship between dynamic tests, static and low-cycle fatigue tests has been determined. In a number of instances, including SCC, other techniques and even fracture mechanics have been compared to the DPT and proved at best equivalent and several times, less sensitive than a well conducted DPT. At extreme they could not reproduce the field service phenomenon whereas the DPT did and could also be applied satisfactorily to low yield stress materials. The main rupture aspects have been analysed mechanically and organized in a rational and comprehensive chart based on 12,000 + tests over 15O + materials in different conditions. Comparison of HGE tests and service behaviour of a large variety of materials and industrial equipments has made possible to specify acceptance criteria for industrial service, which, provided the shape of the stress strain curves is not significantly affected, can be expanded to IHE, HE by other fluids than H 2 , 36 refs

  2. Ultra-High Efficiency / Low Hydrogen Embrittlement Nanostructured Zn-Based Electrodeposits as Environmentally Benign Cd-Replacement Coatings for High Strength Steel Fasteners

    Science.gov (United States)

    2011-04-01

    sample production for the testing of hydrogen re-embrittlement ( HRE ) (a.k.a. in-service embrittlement); (4) further optimization of plating conditions...Ni range. This could help explain the HRE performance as a nickel concentration of 15wt.% had an OCP close to that of Cd and steel, which would...ZnNi plating, including superior corrosion protection and improved HRE performance as a result of the dense fine grained microstructure. Furthermore

  3. On physics of the hydrogen plasticization and embrittlement of metallic materials, relevance to the safety and standards' problems

    International Nuclear Information System (INIS)

    Yury S Nechaev; Georgy A Filippov; T Nejat Veziroglu

    2006-01-01

    In the present contribution, some related fundamental problems of revealing micro mechanisms of hydrogen plasticization, superplasticity, embrittlement, cracking, blistering and delayed fracture of some technologically important industrial metallic materials are formulated. The ways are considered of these problems' solution and optimizing the technological processes and materials, particularly in the hydrogen and gas-petroleum industries, some aircraft, aerospace and automobile systems. The results are related to the safety and standardization problems of metallic materials, and to the problem of their compatibility with hydrogen. (authors)

  4. Lifetime embrittlement of reactor core materials

    International Nuclear Information System (INIS)

    Kreyns, P.H..; Bourgeois, W.F.; Charpentier, P.L.; Kammenzind, B.F.; Franklin, D.G.; White, C.J.

    1994-08-01

    Over a core lifetime, the reactor materials Zircaloy-2, Zircaloy-4, and hafnium may become embrittled due to the absorption of corrosion- generated hydrogen and to neutron irradiation damage. Results are presented on the effects of fast fluence on the fracture toughness of wrought Zircaloy-2, Zircaloy-4, and hafnium; Zircaloy-4 to hafnium butt welds; and hydrogen precharged beta treated and weld metal Zircaloy-4 for fluences up to a maximum of approximately 150 x 10 24 n/M 2 (> 1 Mev). While Zircaloy-4 did not exhibit a decrement in K IC due to irradiation, hafnium and butt welds between hafnium and Zircaloy-4 are susceptible to embrittlement with irradiation. The embrittlement can be attributed to irradiation strengthening, which promotes cleavage fracture in hafnium and hafnium-Zircaloy welds, and, in part, to the lower chemical potential of hydrogen in Zircaloy-4 compared to hafnium, which causes hydrogen, over time, to drift from the hafnium end toward the Zircaloy-4 end and to precipitate at the interface between the weld and base-metal interface. Neutron radiation apparently affects the fracture toughness of Zircaloy-2, Zircaloy-4, and hafnium in different ways. Possible explanations for these differences are suggested. It was found that Zircaloy-4 is preferred over Zircaloy-2 in hafnium-to- Zircaloy butt-weld applications due to its absence of a radiation- induced reduction in K IC plus its lower hydrogen absorption characteristics compared with Zircaloy-2

  5. Investigation of moisture-induced embrittlement of iron aluminides. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Alven, D.A.; Stoloff, N.S. [Rensselaer Polytechnic Inst., Troy, NY (United States). Materials Engineering Dept.

    1997-06-05

    Iron-aluminum alloys with 28 at.% Al and 5 at.% Cr were shown to be susceptible to hydrogen embrittlement by exposure to both gaseous hydrogen and water vapor. This study examined the effect of the addition of zirconium and carbon on the moisture-induced hydrogen embrittlement of an Fe{sub 3}Al,Cr alloy through the evaluation of tensile properties and fatigue crack growth resistance in hydrogen gas and moisture-bearing air. Susceptibility to embrittlement was found to vary with the zirconium content while the carbon addition was found to only affect the fracture toughness. Inherent fatigue crack growth resistance and fracture toughness, as measured in an inert environment, was found to increase with the addition of 0.5 at.% Zr. The combined addition of 0.5 at.% Zr and carbon only increased the fracture toughness. The addition of 1 at.% Zr and carbon was found to have no effect on the crack growth rate when compared to the base alloy. Susceptibility to embrittlement in moisture-bearing environments was found to decrease with the addition of 0.5 at.% Zr. In gaseous hydrogen, the threshold value of the Zr-containing alloys was found to increase above that found in the inert environment while the crack growth resistance was much lower. By varying the frequency of fatigue loading, it was shown that the corrosion fatigue component of the fatigue crack growth rate in an embrittling environment displays a frequency dependence. Hydrogen transport in iron aluminides was shown to occur primarily by a dislocation-assisted transport mechanism. This mechanism, in conjunction with fractography, indicates that the zirconium-containing precipitates act as traps for the hydrogen that is carried along by the dislocations through the lattice.

  6. Effects of surface condition on aqueous corrosion and environmental embrittlement of iron aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Perrin, R.L.; Buchanan, R.A. [Univ. of Tennessee, Knoxville, TN (United States)

    1996-08-01

    Effects of retained high-temperature surface oxides, produced during thermomechanical processing and/or heat treatment, on the aqueous-corrosion and environmental-embrittlement characteristics of Fe{sub 3}Al-based iron aluminides (FA-84, FA-129 and FAL-Mo), a FeAl-based iron aluminide (FA-385), and a disordered low-aluminum Fe-Al alloy (FAPY) were evaluated. All tests were conducted at room temperature in a mild acid-chloride solution. In cyclic-anodic-polarization testing for aqueous-corrosion behavior, the surface conditions examined were: as-received (i.e., with the retained high-temperature oxides), mechanically cleaned and chemically cleaned. For all materials, the polarization tests showed the critical pitting potentials to be significantly lower in the as-received condition than in the mechanically-cleaned and chemically-cleaned conditions. These results indicate detrimental effects of the retained high-temperature oxides in terms of increased susceptibilities to localized corrosion. In 200-hour U-bend stress-corrosion-cracking tests for environmental-embrittlement behavior, conducted at open-circuit corrosion potentials and at a hydrogen-charging potential of {minus}1500 mV (SHE), the above materials (except FA-385) were examined with retained oxides and with mechanically cleaned surfaces. At the open-circuit corrosion potentials, none of the materials in either surface condition underwent cracking. At the hydrogen-charging potential, none of the materials with retained oxides underwent cracking, but FA-84, FA-129 and FAL-Mo in the mechanically cleaned condition did undergo cracking. These results suggest beneficial effects of the retained high-temperature oxides in terms of increased resistance to environmental hydrogen embrittlement.

  7. Effects of metallurgical variables on hydrgen embrittlement in types 316, 321, and 347 stainless steels

    International Nuclear Information System (INIS)

    Rozenak, P.; Eliezer, D.

    1984-01-01

    Hydrogen embrittlement of 316, 321 and 347 types austenitic stainless steels has been studied by charging thin tensile specimens with hydrogen through cathodic polarization. Throughout this study we have compared solution annealed samples having various prior austenitic grain-size with samples given the additional sensitization treatment. The results show that refined grains improves the resistance to hydrogen cracking regardless of the failure mode. The sensitized specimens were predominantly intergranular, while the annealed specimens show massive regions of microvoid coalescence producing ductile rupture. 347 type stainless steel is much more susceptible to hydrogen embrittlement than 321 type steel, and 316 type is the most resistant to hydrogen embrittlement. the practical implication of the experimental conclusions are discussed

  8. Effect of post weld heat treatments on the resistance to the hydrogen embrittlement of soft martensitic stainless steel

    International Nuclear Information System (INIS)

    Hazarabedian, Alfredo; Ovejero Garcia, Jose; Bilmes, P.; Llorente, C.

    2003-01-01

    The effect of external hydrogen on the tensile properties of an all weld sample of a soft martensitic stainless steel was studied. The material was tested in the as weld condition and after tempered conditions modifying the austenite content, and changing the quantity, type and distribution of precipitates. Hydrogen was introduced by cathodic charge or by immersion in an acid brine saturated whit 1 atm hydrogen sulphide, during the mechanical test. The as weld condition showed a good resistance in the hydrogen sulphide, were the tempered samples were embrittled. Under cathodic charge, all samples were susceptible to hydrogen damage. The embritting mechanisms were the same in both environments. When the austenite content, was below 10% the crack path is on the primary austenite grain boundary. At higher austenite content, the crack is transgranular. (author)

  9. Environmental embrittlement of intermetallic compounds in Fe-Al alloys

    Institute of Scientific and Technical Information of China (English)

    张建民; 张瑞林; S.H.YU; 余瑞璜

    1996-01-01

    First,it is proposed that hydrogen atoms occupy the interstitial sites in Fe3Al and FeAl.Then the environmental embrittlement of intermetallic compounds in Fe-Al alloys is studied in the light of calculated valence electron structures and bond energy of Fe3Al and FeAl containing hydrogen atoms.From the analyses it is found that the states of metal atoms will change,in which more lattice electrons will become covalent electrons to bond with hydrogen atoms when the atomic hydrogen diffuses into the intermetallic compounds in Fe-Al alloys,which will result in the decrease of local metallicity in Fe3Al and FeAl.Meanwhile,it is found that the crystal will easily cleave since solute hydrogen bonds with metal atoms and severely anisotropic bonds form.As a conclusion,these factors result in the environmental embrittlement of Fe3Al and FeAl.

  10. Cladding embrittlement during postulated loss-of-coolant accidents.

    Energy Technology Data Exchange (ETDEWEB)

    Billone, M.; Yan, Y.; Burtseva, T.; Daum, R.; Nuclear Engineering Division

    2008-07-31

    The effect of fuel burnup on the embrittlement of various cladding alloys was examined with laboratory tests conducted under conditions relevant to loss-of-coolant accidents (LOCAs). The cladding materials tested were Zircaloy-4, Zircaloy-2, ZIRLO, M5, and E110. Tests were performed with specimens sectioned from as-fabricated cladding, from prehydrided (surrogate for high-burnup) cladding, and from high-burnup fuel rods which had been irradiated in commercial reactors. The tests were designed to determine for each cladding material the ductile-to-brittle transition as a function of steam oxidation temperature, weight gain due to oxidation, hydrogen content, pre-transient cladding thickness, and pre-transient corrosion-layer thickness. For short, defueled cladding specimens oxidized at 1000-1200 C, ring compression tests were performed to determine post-quench ductility at {le} 135 C. The effect of breakaway oxidation on embrittlement was also examined for short specimens oxidized at 800-1000 C. Among other findings, embrittlement was found to be sensitive to fabrication processes--especially surface finish--but insensitive to alloy constituents for these dilute zirconium alloys used as cladding materials. It was also demonstrated that burnup effects on embrittlement are largely due to hydrogen that is absorbed in the cladding during normal operation. Some tests were also performed with longer, fueled-and-pressurized cladding segments subjected to LOCA-relevant heating and cooling rates. Recommendations are given for types of tests that would identify LOCA conditions under which embrittlement would occur.

  11. Role of hydrogen embrittlement in intergranular stress corrosion cracking of sensitized Type 304 stainless steel

    International Nuclear Information System (INIS)

    Ruther, W.E.; Kassner, T.F.; Nichols, F.A.

    1985-06-01

    Fixed-load Mode I/Mode III comparative tests have been conducted on lightly sensitized (EPR = 2 C/cm 2 ) Type 304 SS specimens in 289 0 C oxygenated water with other impurity additives. Substantial susceptibility to IGSCC was shown in Mode I but no conclusive evidence for SCC was found in Mode III. These results are consistent with a hydrogen embrittlement mechanism of crack advance, but electrochemical measurements seem to accord better with a slip-dissolution mechanism. Further studies are needed to clarify the operative mechanism(s)

  12. Hydrogen embrittlement, revisited by in situ electrochemical nanoindentation

    Energy Technology Data Exchange (ETDEWEB)

    Barnoush, Afrooz

    2007-07-01

    The fine scale mechanical probing capability of NI-AFM was used to examine hydrogen interaction with plasticity. To realize this, an electrochemical three electrode setup was incorporated into the NI-AFM. The developed ECNI-AFM is capable of performing nanoindentation as well as imaging surfaces inside electrolytes. The developed ECNI-AFM setup was used to examine the effect of cathodically charged hydrogen on dislocation nucleation in pure metals and alloys. It was shown that hydrogen reduces the pop-in load in all of the tested materials except Cu. The reduced pop-in load can be interpreted as the HELP mechanism. Classical dislocation theory was used to model the homogeneous dislocation nucleation and it was shown that H reduces the activation energy for dislocation nucleation in H sensitive metals which are not undergoing a phase transformation. The activation energy for dislocation nucleation is related to the material specific parameters; shear modulus {mu}, dislocation core radius {rho} and in the case of partial dislocation nucleation, stacking fault energy {gamma}. These material properties can be influenced by H resulting in a reduced activation energy for dislocation nucleation. The universality of cohesion in bulk metals relates the reduction of the shear modulus to the reduction of the cohesion, meaning HEDE mechanism. The increase in the core radius of a dislocation due to H is a direct evidence of decrease in dislocation line energy and H segregation on the dislocation line. In the case of partial dislocations, the H can segregate on to the stacking fault ribbon and decrease {gamma}. This inhibits the cross slip process and enhances the slip planarity. Thus, HELP and HEDE are the two sides of a coin resulting in H embrittlement. However depending on the experimental approach utilized to probe the H effect, either HELP or HEDE can be observed. In this study, however, by utilizing a proper experimental approach, it was possible to resolve the

  13. Computer simulation of hydrogen diffusion and hydride precipitation at Ta/Zr bond interface. Hydrogen embrittlement in SUS304ULC/Ta/Zr explosive bonded joint

    International Nuclear Information System (INIS)

    Saida, Kazuyoshi; Fujimoto, Tetsuya; Nishimoto, Kazutoshi

    2010-01-01

    The concentration of hydrogen and precipitation of zirconium hydrides in Ta/Zr explosive bonded joint were analysed by computer simulation. Numerical model of hydride precipitation under hydrogen diffusion was simplified by the alternate model coupled the macroscopic hydrogen diffusion with the microscopic hydride precipitation. Effects of the initial hydrogen content in Ta, working degree of Zr and post-bond heat treatment on the hydrogen diffusion and hydride precipitation were investigated. Hydrogen was rapidly diffused from Ta substrate into Zr after explosive bonding and temporarily concentrated at Ta/Zr bond interface. Zirconium hydrides were precipitated and grew at Ta/Zr bond interface, and the precipitation zone of hydrides was enlarged with the lapse of time. The precipitation of zirconium hydrides was promoted when the initial hydrogen content in Ta and working degree of Zr were increased. The concentration of hydrogen and precipitation of hydrides at the bond interface were reduced and diminished by post-bond heat treatment at 373 K. It was deduced that hydrogen embrittlement in Ta/Zr explosive bonded joint was caused by the precipitation of zirconium hydrides and concentration of hydrogen at Ta/Zr bond interface during the diffusion of hydrogen containing in Ta substrate. (author)

  14. Effect of Low-Temperature Sensitization on Hydrogen Embrittlement of 301 Stainless Steel

    Directory of Open Access Journals (Sweden)

    Chieh Yu

    2017-02-01

    Full Text Available The effect of metastable austenite on the hydrogen embrittlement (HE of cold-rolled (30% reduction in thickness 301 stainless steel (SS was investigated. Cold-rolled (CR specimens were hydrogen-charged in an autoclave at 300 or 450 °C under a pressure of 10 MPa for 160 h before tensile tests. Both ordinary and notched tensile tests were performed in air to measure the tensile properties of the non-charged and charged specimens. The results indicated that cold rolling caused the transformation of austenite into α′ and ε-martensite in the 301 SS. Aging at 450 °C enhanced the precipitation of M23C6 carbides, G, and σ phases in the cold-rolled specimen. In addition, the formation of α′ martensite and M23C6 carbides along the grain boundaries increased the HE susceptibility and low-temperature sensitization of the 450 °C-aged 301 SS. In contrast, the grain boundary α′-martensite and M23C6 carbides were not observed in the as-rolled and 300 °C-aged specimens.

  15. Role of hydrogen embrittlement in intergranular stress corrosion cracking of sensitized Type 304 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Ruther, W.E.; Kassner, T.F.; Nichols, F.A.

    1985-06-01

    Fixed-load Mode I/Mode III comparative tests have been conducted on lightly sensitized (EPR = 2 C/cm/sup 2/) Type 304 SS specimens in 289/sup 0/C oxygenated water with other impurity additives. Substantial susceptibility to IGSCC was shown in Mode I but no conclusive evidence for SCC was found in Mode III. These results are consistent with a hydrogen embrittlement mechanism of crack advance, but electrochemical measurements seem to accord better with a slip-dissolution mechanism. Further studies are needed to clarify the operative mechanism(s).

  16. An assessment of the risk of embrittlement of a steel container by hydrogen picked up on the ocean bed

    International Nuclear Information System (INIS)

    Hardie, D.

    1985-09-01

    A realistic assessment of the likelihood of embrittlement of a plain carbon steel container for nuclear waste has been made by estimating the hydrogen levels that might be expected to develop in the steel as a consequence of the slow corrosion of the container and the possible effect that such a hydrogen concentration would have on its mechanical behaviour. By consideration of various possible models for the generation of hydrogen and its subsequent uptake into the steel or dissemination in the environment, it is concluded that the most pessimistic assessment of the concentration of hydrogen that could build up in the container walls during 1000 years burial would not significantly affect the resistance to failure of even relatively high strength steels. (author)

  17. A study of hydrogen effects on fracture behavior of radioactive waste storage tanks. Final report, October 1992-September 1994

    International Nuclear Information System (INIS)

    Murty, K.L.; Elleman, T.S.

    1994-01-01

    The processing of high-level radioactive wastes now stored at Hanford and Savannah River Laboratories will continue over many years and it will be necessary for some of the liquids to remain in the tanks until well into the next century. Continued tank integrity is therefore an issue of prime importance and it will be necessary to understand any processes which could lead to tank failure. Hydrogen embrittlement resulting from absorption of radiolytic hydrogen could alter tank fracture behavior and be an issue in evaluating the effect of stresses on the tanks from rapid chemical oxidation-reduction reactions. The intense radiation fields in some of the tanks could be a factor in increasing the hydrogen permeation rates through protective oxide films on the alloy surface and be an additional factor in contributing to embrittlement. The project was initiated in October 1992 for a two year period to evaluate hydrogen uptake in low carbon steels that are representative of storage tanks. Steel specimens were exposed to high gamma radiation fields to generate radiolytic hydrogen and to potentially alter the protective surface films to increase hydrogen uptake. Direct measurements of hydrogen uptake were made using tritium as a tracer and fracture studies were undertaken to determine any alloy embrittlement. The rates of hydrogen uptake were noted to be extremely low in the experimental steels. Gamma radiation did not reveal any significant changes in the mechanical and fracture characteristics following exposures as long as a month. It is highly desirable to investigate further the tritium diffusion under stress in a cracked body where stress-assisted diffusion is expected to enhance these rates. More importantly, since welds are the weakest locations in the steel structures, the mechanical and fracture tests should be performed on welds exposed to tritium with and without stressed crack-fronts

  18. The influence of second-phase dispersion on environmental embrittlement of Ni3(Si,Ti) alloys

    International Nuclear Information System (INIS)

    Takasugi, T.; Hanada, S.

    1999-01-01

    Some quaternary Ni 3 (Si,Ti) alloyed with transition elements V, Nb, Zr and Hf was prepared beyond their maximum solubility limits to investigate the effect of second-phase dispersion on moisture-induced embrittlement. V-added Ni 3 (Si,Ti) alloy contained ductile fcc-type Ni solid solution as the second-phase, while Nb-, Zr- and Hf-added Ni 3 (Si,Ti) alloys contained hard dispersion compounds as the second-phase. V- and Nb-added Ni 3 (Si,Ti) alloys did not display reduced tensile elongation in air, indicating that their second phases have the effect of suppressing the moisture-induced embrittlement. Possible mechanisms for the beneficial effect by the second phase on the moisture-induced embrittlement of V- and Nb-added Ni 3 (Si,Ti) alloys are discussed in association with hydrogen behavior and deformation property in the constituent phases or at matrix/second-phase interface

  19. Role of copper and aluminum additions on the hydrogen embrittlement susceptibility of austenitic Fe-Mn-C TWIP steels

    International Nuclear Information System (INIS)

    Dieudonne, T.; Chene, J.; Marchetti, L.; Wery, M.; Allely, C.; Cugy, P.; Scott, C.P.

    2014-01-01

    The role of alloying elements on the hydrogen embrittlement (HE) susceptibility of a Fe-18Mn-0.6C alloy was investigated by in situ tensile tests and characterized by the ductility loss associated with intergranular fracture. Under cathodic polarization an improvement of HE resistance is related to the SFE increase with Cu or Al additions reducing the stress-strain and H localization at grain boundaries, which prevents H-induced intergranular cracking. At rest potential, beneficial effects of Cu and Al are related to their influence on hydrogen absorption during the corrosion process. However, residual phosphorus strongly reduces the beneficial effect of aluminum. (authors)

  20. Hydrogen solubility and permeability of Nb-W-Mo alloy membrane

    International Nuclear Information System (INIS)

    Awakura, Y.; Nambu, T.; Matsumoto, Y.; Yukawa, H.

    2011-01-01

    Research highlights: → The concept for alloy design of Nb-based hydrogen permeable membrane has been applied to Nb-W-Mo ternary alloy in order to improve further the resistance to hydrogen embrittlement and hydrogen permeability. → The alloying effects of Mo on the hydriding properties of Nb-W alloy have been elucidated. → The addition of Mo and/or W into niobium improves the resistance to hydrogen embrittlement by reducing the dissolved hydrogen concentration in the alloy. → Nb-W-Mo alloy possesses excellent hydrogen permeability together with strong resistance to hydrogen embrittlement. - Abstract: The alloying effects of molybdenum on the hydrogen solubility, the resistance to hydrogen embrittlement and the hydrogen permeability are investigated for Nb-W-Mo system. It is found that the hydrogen solubility decreases by the addition of molybdenum into Nb-W alloy. As a result, the resistance to hydrogen embrittlement improves by reducing the hydrogen concentration in the alloy. It is demonstrated that Nb-5 mol%W-5 mol%Mo alloy possesses excellent hydrogen permeability without showing any hydrogen embrittlement when used under appropriate hydrogen permeation conditions, i.e., temperature and hydrogen pressures.

  1. Hydrogen in metals

    CSIR Research Space (South Africa)

    Carter, TJ

    2001-04-01

    Full Text Available .J. Cartera,*, L.A. Cornishb aAdvanced Engineering & Testing Services, MATTEK, CSIR, Private Bag X28, Auckland Park 2006, South Africa bSchool of Process and Materials Engineering, University of the Witwatersrand, Private Bag 3, P.O. WITS 2050, South Africa... are contrasted, and an unusual case study of hydrogen embrittlement of an alloy steel is presented. 7 2001 Published by Elsevier Science Ltd. Keywords: Hydrogen; Hydrogen-assisted cracking; Hydrogen damage; Hydrogen embrittlement 1. Introduction Hydrogen suC128...

  2. Modeling of irradiation embrittlement and annealing/recovery in pressure vessel steels

    International Nuclear Information System (INIS)

    Lott, R.G.; Freyer, P.D.

    1996-01-01

    The results of reactor pressure vessel (RPV) annealing studies are interpreted in light of the current understanding of radiation embrittlement phenomena in RPV steels. An extensive RPV irradiation embrittlement and annealing database has been compiled and the data reveal that the majority of annealing studies completed to date have employed test reactor irradiated weldments. Although test reactor and power reactor irradiations result in similar embrittlement trends, subtle differences between these two damage states can become important in the interpretation of annealing results. Microstructural studies of irradiated steels suggest that there are several different irradiation-induced microstructural features that contribute to embrittlement. The amount of annealing recovery and the post-anneal re-embrittlement behavior of a steel are determined by the annealing response of these microstructural defects. The active embrittlement mechanisms are determined largely by the irradiation temperature and the material composition. Interpretation and thorough understanding of annealing results require a model that considers the underlying physical mechanisms of embrittlement. This paper presents a framework for the construction of a physically based mechanistic model of irradiation embrittlement and annealing behavior

  3. STRUCTURAL INTERACTIONS OF HYDROGEN WITH BULK AMORPHOUS MICROSTRUCTURES IN METALLIC SYSTEMS UNDERSTANDING THE ROLE OF PARTIAL CRYSTALLINITY ON PERMEATION AND EMBRITTLEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, Kyle; Fox, Elise; Korinko, Paul; Adams, Thad

    2010-05-10

    The development of metallic glasses in bulk form has led to a resurgence of interest into the utilization of these materials for a variety of applications. A potentially exciting application for these bulk metallic glass (BMG) materials is their use as composite membranes to replace high cost Pd/Pd-alloy membranes for enhanced gas separation processes. One of the major drawbacks to the industrial use of Pd/Pd-alloy membranes is that during cycling above and below a critical temperature an irreversible change takes place in the palladium lattice structure which can result in significant damage to the membrane. Furthermore, the cost associated with Pd-based membranes is a potential detractor for their continued use and BMG alloys offer a potentially attractive alternative. Several BMG alloys have been shown to possess high permeation rates, comparable to those measured for pure Pd metal. In addition, high strength and toughness when either in-situ or ex-situ second phase dispersoids are present. Both of these properties, high permeation and high strength/toughness, potentially make these materials attractive for gas separation membranes that could resist hydrogen 'embrittlement'. However, a fundamental understanding of the relationship between partially crystalline 'structure'/devitrification and permeation/embrittlement in these BMG materials is required in order to determine the operating window for separation membranes and provide additional input to the material synthesis community for improved alloy design. This project aims to fill the knowledge gap regarding the impact of crystallization on the permeation properties of metallic glass materials. The objectives of this study are to (i) determine the crystallization behavior in different gas environments of Fe and Zr based commercially available bulk metallic glass and (ii) quantify the effects of partial crystallinity on the hydrogen permeation properties of these metallic glass membranes.

  4. Crevice corrosion and hydrogen embrittlement of grades-2 and -12 titanium under Canadian nuclear waste vault conditions

    International Nuclear Information System (INIS)

    Ikeda, B.M.; Bailey, M.G.; Clarke, C.F.; Shoesmith, D.W.

    1990-01-01

    Results on the corrosion of titanium grades 2 and 12 under the saline conditions anticipated in Canadian nuclear waste vaults are presented. The experimental approach included short-term electrochemical experiments to determine corrosion mechanisms, the susceptibility of titanium to crevice corrosion under a variety of conditions, and the extent of hydrogen uptake under controlled conditions; medium-term corrosion tests lasting a few weeks to a few months; and long-term immersion tests to provide rates for uniform corrosion, crevice corrosion, and hydrogen pickup. Results indicated that propagation, not initiation, is important in establishing susceptibility to crevice corrosion. Increasing the iron content of Ti-2 to 0.13 weight percent prevents crevice corrosion by causing repassivation. Crevice corrosion initiates on Ti-12, but repassivation is rapid. The supply of oxidant is essential to maintain crevice propagation. Hydrogen embrittlement is unlikely unless oxide film breakdown occurs. Film breakdown occurs under crevice conditions, and hydrogen pickup is to be expected. Film breakdown could occur if the strain or creep rate is fast enough to compete with repassivation reactions, a highly unlikely situation

  5. Study of susceptibility to hydrogen embrittlement of welded joints of large WWER reactor vessels at different temperatures

    International Nuclear Information System (INIS)

    Mazel', R.E.; Kuznetsova, T.P.; Grinenko, V.G.; Sapronova, M.N.

    1977-01-01

    The effect is studied of hydrogen and a coolant of WWER on the susceptibility to brittle fracture of welded joints from steels 15Kh2MFA and 15Kh2NMFA obtained by automatic submerged arc welding with the use of the welding materials of different purity. The effect of hydrogen (concentration range 0.5-7.5 cm 3 /100 g, testing temperatures 20, 70 and 325 deg C) and the coolant (pressures up to 120 atm, temperatures 20-350 deg C) have been estimated by the fracture work during static bending tests. It is shown that the purification of the welding materials enhances the fracture properties by about a factor of 2. Hydrogenation results in a sharp drop (by about a factor of 3) of the fracture work. The increased testing temperature (up to 325 deg C) is accompanied by disappearance of the effect of hydrogen embrittlement, which is explained by an increase in the diffusion mobility of atomic hydrogen. Under the action of the coolant the fracture work shows a two-fold decrease, while the pressure being increased up to 100 atm leads to greater fracture work decrease

  6. Alloy and composition dependence of hydrogen embrittlement susceptibility in high-strength steel fasteners

    Science.gov (United States)

    Brahimi, S. V.; Yue, S.; Sriraman, K. R.

    2017-06-01

    High-strength steel fasteners characterized by tensile strengths above 1100 MPa are often used in critical applications where a failure can have catastrophic consequences. Preventing hydrogen embrittlement (HE) failure is a fundamental concern implicating the entire fastener supply chain. Research is typically conducted under idealized conditions that cannot be translated into know-how prescribed in fastener industry standards and practices. Additionally, inconsistencies and even contradictions in fastener industry standards have led to much confusion and many preventable or misdiagnosed fastener failures. HE susceptibility is a function of the material condition, which is comprehensively described by the metallurgical and mechanical properties. Material strength has a first-order effect on HE susceptibility, which increases significantly above 1200 MPa and is characterized by a ductile-brittle transition. For a given concentration of hydrogen and at equal strength, the critical strength above which the ductile-brittle transition begins can vary due to second-order effects of chemistry, tempering temperature and sub-microstructure. Additionally, non-homogeneity of the metallurgical structure resulting from poorly controlled heat treatment, impurities and non-metallic inclusions can increase HE susceptibility of steel in ways that are measurable but unpredictable. Below 1200 MPa, non-conforming quality is often the root cause of real-life failures. This article is part of the themed issue 'The challenges of hydrogen and metals'.

  7. Notch and hydrogen effects on sensitized 21-6-9 stainless steel

    International Nuclear Information System (INIS)

    Caskey, C.R. Jr.

    1979-01-01

    Type 21-6-9 stainless steel alloy is slightly notch sensitive in the solution annealed condition, a behavior that is aggravated by sensitization anneal at 920 0 K. The lower toughness of the sensitized alloy is a measure of microstructural embrittlement associated with carbide precipitation in grain boundaries. The tendency toward grain boundary fracture in the sensitized alloy is accentuated by stress concentration at the notch. Also, there is an increase in notch sensitivity when the alloy is tested in a high pressure (69 MPa) hydrogen environment, due to susceptibility of the grain boundaries to hydrogen embrittlement

  8. Driving force of PCMI failure under reactivity initiated accident conditions and influence of hydrogen embrittlement on failure limit

    International Nuclear Information System (INIS)

    Tomiyasu, Kunihiko; Sugiyama, Tomoyuki; Nakamura, Takehiko; Fuketa, Toyoshi

    2005-09-01

    In order to clarify the driving force of PCMI (Pellet/Cladding Mechanical Interaction) failure on high burnup fuels and to investigate the influence of hydrogen embrittlement on failure limit under RIA (Reactivity Initiated Accident) conditions, RIA-simulation experiments were performed on fresh fuel rods in the NSRR (Nuclear Safety Research Reactor). The driving force of PCMI was restricted only to thermal expansion of pellet by using fresh UO 2 pellets. Fresh claddings were pre-hydrided to simulate hydrogen absorption of high burnup fuel rods. In seven experiments out of fourteen, test rods resulted in PCMI failure, which has been observed in the NSRR tests on high burnup PWR fuels, in terms of the transient behavior and the fracture configuration. This indicates that the driving force of PCMI failure is sufficiently explained with thermal expansion of pellet and a contribution of fission gas on it is small. A large number of incipient cracks were generated in the outer surface of the cladding even on non-failed fuel rods, and they stopped at the boundary between hydride rim, which was a hydride layer localized in the periphery of the cladding, and metallic layer. It suggests that the integrity of the metallic layer except for the hydride rim has particular importance for failure limit. Fuel enthalpy at failure correlates with the thickness of hydride rim, and tends to decrease with thicker hydride layer. (author)

  9. Influence of cold deformation and annealing on hydrogen embrittlement of cold hardening bainitic steel for high strength bolts

    Energy Technology Data Exchange (ETDEWEB)

    Hui, Weijun, E-mail: wjhui@bjtu.edu.cn [School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Zhang, Yongjian; Zhao, Xiaoli; Shao, Chengwei [School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Wang, Kaizhong; Sun, Wei; Yu, Tongren [Technical Center, Maanshan Iron & Steel Co., Ltd., Maanshan 243002, Anhui (China)

    2016-04-26

    The influence of cold drawing and annealing on hydrogen embrittlement (HE) of newly developed cold hardening bainitic steel was investigated by using slow strain rate testing (SSRT) and thermal desorption spectrometry (TDS), for ensuring safety performance of 10.9 class high strength bolts made of this kind of steel against HE under service environments. Hydrogen was introduced into the specimen by electrochemical charging. TDS analysis shows that the hydrogen-charged cold drawn specimen exhibits an additional low-temperature hydrogen desorption peak besides the original high-temperature desorption peak of the as-rolled specimen, causing remarkable increase of absorbed hydrogen content. It is found that cold drawing significantly enhances the susceptibility to HE, which is mainly attributed to remarkable increase of diffusible hydrogen absorption, the occurrence of strain-induced martensite as well as the increase of strength level. Annealing after cold deformation is an effective way to improve HE resistance and this improvement strongly depends on annealing temperature, i.e. HE susceptibility decreases slightly with increasing annealing temperature up to 200 °C and then decreases significantly with further increasing annealing temperature. This phenomenon is explained by the release of hydrogen, the recovery of cold worked microstructure and the decrease of strength with increasing annealing temperature.

  10. Radiation embrittlement behavior of fine-grained molybdenum alloy with 0.2 wt%TiC addition

    Energy Technology Data Exchange (ETDEWEB)

    Kitsunai, Y. [Tohoku University (Japan); Kurishita, H. [International Research Center for Nuclear Materials Science, Institute for Materials research (IMR), Tohoku University, Oarai, Ibaraki 311-1313 (Japan)]. E-mail: kurishi@imr.tohoku.ac.jp; Kuwabara, T. [Tohoku University (Japan); Narui, M. [International Research Center for Nuclear Materials Science, Institute for Materials research (IMR), Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Hasegawa, M. [International Research Center for Nuclear Materials Science, Institute for Materials research (IMR), Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Takida, T. [A.L.M.T. TECH Inc., 2 Iwasekoshi-machi, Toyama 931-8543 (Japan); Takebe, K. [A.L.M.T. TECH Inc., 2 Iwasekoshi-machi, Toyama 931-8543 (Japan)

    2005-11-15

    In order to elucidate the effects of pre-irradiation microstructures and irradiation conditions on radiation embrittlement and radiation-induced ductilization (RIDU), fine-grained Mo-0.2 wt%TiC specimens with high and low reduction rates in plastic working, which are designated as MTC-02H and MTC-02L, respectively, were prepared by powder metallurgical methods. The specimens were neutron irradiated to 0.1-0.15 dpa with controlled 1-cycle and 4-cycle heating between 573 and 773 K, and 473 and 673 K, respectively, in JMTR. Vickers microhardness and three-point bending impact tests and TEM microstructural examinations were made. The degree of radiation embrittlement, assessed by DBTT shift due to irradiation, was strongly dependent on the reduction rate and cycle number. The 4-cycle irradiation suppressed the radiation embrittlement compared with the 1-cycle irradiation, and the suppression was much more significant in MTC-02L than in MTC-02H. The observed behavior is discussed in connection with RIDU and microstructural evolution caused by the 4-cycle irradiation.

  11. Determination of the gaseous hydrogen ductile-brittle transition in copper-nickel alloys

    Science.gov (United States)

    Parr, R. A.; Johnston, M. H.; Davis, J. H.; Oh, T. K.

    1985-01-01

    A series of copper-nickel alloys were fabricated, notched tensile specimens machined for each alloy, and the specimens tested in 34.5 MPa hydrogen and in air. A notched tensile ratio was determined for each alloy and the hydrogen environment embrittlement (HEE) determined for the alloys of 47.7 weight percent nickel to 73.5 weight percent nickel. Stacking fault probability and stacking fault energies were determined for each alloy using the x ray diffraction line shift and line profiles technique. Hydrogen environment embrittlement was determined to be influenced by stacking fault energies; however, the correlation is believed to be indirect and only partially responsible for the HEE behavior of these alloys.

  12. Gaseous oxygen and hydrogen embrittlements of the uranium-10 weight % molybdenum alloy

    International Nuclear Information System (INIS)

    Corcos, Jean.

    1979-07-01

    The stress corrosion of an Uranium-10 weight % Molybdenum alloy in high purity gaseous oxygen and hydrogen was studied. Tests were performed with fracture-mechanic specimens, fatigue precracked and carried out in tension with a constant sustained load. The experimental procedure enabled to determine the S.C. morphology during the test, and its kinetics. Tests in gaseous oxygen were performed with p02=0.15 MPa from 0 0 C to 100 0 C, and at 20 0 C for p02=0.15, 0.15.10 -2 and 0.15.10 -4 MPa. Two kinetic laws are proposed. Cracking is transgranular with a quasi-clivage type, and occurs on the (1 1 1) planes of the matrix. Tests in gaseous hydrogen were performed with pH2=0.15 MPa from - 50 0 C to + 135 0 C; for all the tests, even those under no exterior load, there is a failure by S.C. and macroscopic hydruration occurs. We propose a kinetic law, which may display that the hydruration phenomenon rules the S.C. propagation. We have performed the identification of the hydride, as well as the study of the precipitation. These phenomena don't occur with pH2=0.15.10 -2 MPa. The embrittlement is thought to be due to a formation-failure cycle of an hydride precipitate at the crack tip [fr

  13. Oxidation-induced embrittlement and structural changes of Zircaloy-4 tubing in steam at 700-1000 deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Ali, A E; Huessein, A G; El-Sayed, A A; El Banna, O A [Atomic Energy Authority, Cairo (Egypt); El Raghy, S M [Cairo Univ. (Egypt). Faculty of Engineering

    1997-02-01

    The oxidation-induced embrittlement and structural changes of Zircaloy-4 (KWU-Type) tubing was investigated under light water reactors (LWR) Loss-of-Coolant. Accident conditions (LOCA) in temperature range 700-1000 deg. C. The effect of hydrogen addition to steam was also investigated in the temperature range 800-1000 deg. C. The oxidation-induced embrittlement was found to be a function of both temperature and time. Fractography investigation of oxidized tubing showed a typical brittle fracture in the stabilized-alpha zone. The microhardness measurements revealed that the alpha-Zr is harder than that near the mid-wall position. The oxidation-induced embrittlement at 900 deg. C was found to be higher than at 1000 deg. C. The results also indicated that the addition of 5% by volume hydrogen to steam resulted in an increase in the degree of embrittlement. (author). 22 refs, 9 figs, 3 tabs.

  14. Correlation between Fatigue Crack Growth Behavior and Fracture Surface Roughness on Cold-Rolled Austenitic Stainless Steels in Gaseous Hydrogen

    Directory of Open Access Journals (Sweden)

    Tai-Cheng Chen

    2018-03-01

    Full Text Available Austenitic stainless steels are often considered candidate materials for use in hydrogen-containing environments because of their low hydrogen embrittlement susceptibility. In this study, the fatigue crack growth behavior of the solution-annealed and cold-rolled 301, 304L, and 310S austenitic stainless steels was characterized in 0.2 MPa gaseous hydrogen to evaluate the hydrogen-assisted fatigue crack growth and correlate the fatigue crack growth rates with the fracture feature or fracture surface roughness. Regardless of the testing conditions, higher fracture surface roughness could be obtained in a higher stress intensity factor (∆K range and for the counterpart cold-rolled specimen in hydrogen. The accelerated fatigue crack growth of 301 and 304L in hydrogen was accompanied by high fracture surface roughness and was associated with strain-induced martensitic transformation in the plastic zone ahead of the fatigue crack tip.

  15. Characterization of hydrogenation behavior on Mo-modified Zr-Nb alloys as nuclear fuel cladding materials

    International Nuclear Information System (INIS)

    Yang, H.L.; Shibukawa, S.; Abe, H.; Satoh, Y.; Matsukawa, Y.; Kido, T.

    2014-01-01

    The effects of Mo in Zr-Nb alloys are investigated in terms of their mechanical properties associated with microstructure, as well as their behavior under hydrogen environment. Zr-Nb-Mo alloys were fabricated by arc melting and subsequently cold rolling and annealing below the eutectoid temperature. Hydrogen was absorbed in a furnace under argon and hydrogen gas flow environment at high temperature. X-Ray diffraction, electron backscatter diffraction, and tensile test were jointly utilized to carry out detailed microstructural characterization and mechanical properties. Results showed that fcc-δ-ZrH 1.66 was formed in all hydrogen-absorbed alloys, and the amount of hydride enhanced with increasing of hydrogen content. In addition, it was clear that δ-ZrH 1.66 was precipitated both in grain boundary and interior, and preferential precipitation was observed on the habit planes of (0001) and {101-bar7}. Moreover, the strengthening effect by Mo addition was observed. The ductility loss by hydrogen absorption was found from fracture surface observation. Large area cleavage facets were found in Mo-free specimen, and less cleavage facets was observed in Mo-containing specimen, showing an appropriate addition of Mo can increase the tolerance to hydrogen embrittlement. (author)

  16. Hydrogen embrittlement: the game changing factor in the applicability of nickel alloys in oilfield technology

    Science.gov (United States)

    Sarmiento Klapper, Helmuth; Klöwer, Jutta; Gosheva, Olesya

    2017-06-01

    Precipitation hardenable (PH) nickel (Ni) alloys are often the most reliable engineering materials for demanding oilfield upstream and subsea applications especially in deep sour wells. Despite their superior corrosion resistance and mechanical properties over a broad range of temperatures, the applicability of PH Ni alloys has been questioned due to their susceptibility to hydrogen embrittlement (HE), as confirmed in documented failures of components in upstream applications. While extensive work has been done in recent years to develop testing methodologies for benchmarking PH Ni alloys in terms of their HE susceptibility, limited scientific research has been conducted to achieve improved foundational knowledge about the role of microstructural particularities in these alloys on their mechanical behaviour in environments promoting hydrogen uptake. Precipitates such as the γ', γ'' and δ-phase are well known for defining the mechanical and chemical properties of these alloys. To elucidate the effect of precipitates in the microstructure of the oil-patch PH Ni alloy 718 on its HE susceptibility, slow strain rate tests under continuous hydrogen charging were conducted on material after several different age-hardening treatments. By correlating the obtained results with those from the microstructural and fractographic characterization, it was concluded that HE susceptibility of oil-patch alloy 718 is strongly influenced by the amount and size of precipitates such as the γ' and γ'' as well as the δ-phase rather than by the strength level only. In addition, several HE mechanisms including hydrogen-enhanced decohesion and hydrogen-enhanced local plasticity were observed taking place on oil-patch alloy 718, depending upon the characteristics of these phases when present in the microstructure. This article is part of the themed issue 'The challenges of hydrogen and metals'.

  17. Effect of high-temperature water and hydrogen on the fracture behavior of a low-alloy reactor pressure vessel steel

    International Nuclear Information System (INIS)

    Roychowdhury, S.; Seifert, H.-P.; Spätig, P.; Que, Z.

    2016-01-01

    Structural integrity of reactor pressure vessels (RPV) is critical for safety and lifetime. Possible degradation of fracture resistance of RPV steel due to exposure to coolant and hydrogen is a concern. In this study tensile and elastic-plastic fracture mechanics (EPFM) tests in air (hydrogen pre-charged) and EFPM tests in hydrogenated/oxygenated high-temperature water (HTW) was done, using a low-alloy RPV steel. 2–5 wppm hydrogen caused embrittlement in air tensile tests at room temperature (25 °C) and at 288 °C, effects being more significant at 25 °C and in simulated weld coarse grain heat affected zone material. Embrittlement at 288 °C is strain rate dependent and is due to localized plastic deformation. Hydrogen pre-charging/HTW exposure did not deteriorate the fracture resistance at 288 °C in base metal, for investigated loading rate range. Clear change in fracture morphology and deformation structures was observed, similar to that after air tests with hydrogen. - Highlights: • Hydrogen content, microstructure of LAS, and strain rate affects tensile properties at 288 °C. • Strength affects hydrogen embrittlement susceptibility to a greater extent than grain size. • Hydrogen in LAS leads to strain localization and restricts cross-slip at 288 °C. • Possible hydrogen pickup due to exposure to 288 °C water alters fracture surface appearance without affecting fracture toughness in bainitic base material. • Simulated weld heat affected zone microstructure shows unstable crack propagation in 288 °C water.

  18. Effect of high-temperature water and hydrogen on the fracture behavior of a low-alloy reactor pressure vessel steel

    Energy Technology Data Exchange (ETDEWEB)

    Roychowdhury, S., E-mail: sroy27@gmail.com [Paul Scherrer Institut, Nuclear Energy and Safety Research Department, Laboratory for Nuclear Materials, 5232 Villigen, PSI (Switzerland); Materials Processing & Corrosion Engineering Division, Mod-Lab, D-Block, Bhabha Atomic Research Centre, Mumbai 400085 (India); Seifert, H.-P.; Spätig, P.; Que, Z. [Paul Scherrer Institut, Nuclear Energy and Safety Research Department, Laboratory for Nuclear Materials, 5232 Villigen, PSI (Switzerland)

    2016-09-15

    Structural integrity of reactor pressure vessels (RPV) is critical for safety and lifetime. Possible degradation of fracture resistance of RPV steel due to exposure to coolant and hydrogen is a concern. In this study tensile and elastic-plastic fracture mechanics (EPFM) tests in air (hydrogen pre-charged) and EFPM tests in hydrogenated/oxygenated high-temperature water (HTW) was done, using a low-alloy RPV steel. 2–5 wppm hydrogen caused embrittlement in air tensile tests at room temperature (25 °C) and at 288 °C, effects being more significant at 25 °C and in simulated weld coarse grain heat affected zone material. Embrittlement at 288 °C is strain rate dependent and is due to localized plastic deformation. Hydrogen pre-charging/HTW exposure did not deteriorate the fracture resistance at 288 °C in base metal, for investigated loading rate range. Clear change in fracture morphology and deformation structures was observed, similar to that after air tests with hydrogen. - Highlights: • Hydrogen content, microstructure of LAS, and strain rate affects tensile properties at 288 °C. • Strength affects hydrogen embrittlement susceptibility to a greater extent than grain size. • Hydrogen in LAS leads to strain localization and restricts cross-slip at 288 °C. • Possible hydrogen pickup due to exposure to 288 °C water alters fracture surface appearance without affecting fracture toughness in bainitic base material. • Simulated weld heat affected zone microstructure shows unstable crack propagation in 288 °C water.

  19. Influence of precipitation behavior on mechanical properties and hydrogen induced cracking during tempering of hot-rolled API steel for tubing

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Joonoh, E-mail: mjo99@kims.re.kr [Ferrous Alloy Department, Advanced Metallic Materials Division, Korea Institute of Materials Science, 797 Changwondae-ro, Seongsan-gu, Changwon, Gyeongnam 642-831 (Korea, Republic of); Choi, Jongmin; Han, Seong-Kyung; Huh, Sungyul; Kim, Seong-Ju [Sheet Products Design Team, Technical Research Center, Hyundai Steel Company, 1480 Bukbusaneop-ro, Dangjin, Chungnam 343-823 (Korea, Republic of); Lee, Chang-Hoon; Lee, Tae-Ho [Ferrous Alloy Department, Advanced Metallic Materials Division, Korea Institute of Materials Science, 797 Changwondae-ro, Seongsan-gu, Changwon, Gyeongnam 642-831 (Korea, Republic of)

    2016-01-15

    Precipitation behavior and its effect on hydrogen embrittlement during tempering process of hot-rolled API steel designed with 0.4 wt% Cr and 0.25 wt% Mo were investigated. The base steel was normalized and then tempered at 650 °C for up to 60 min. The precipitation behavior of the examined steel was explored using transmission electron microscopy (TEM) analysis, and it was found that the precipitation sequence during tempering at 650 °C were as follows: MX+M{sub 3}C→MX→MX+M{sub 7}C{sub 3}+M{sub 23}C{sub 6}. The change of particle fraction was measured by electrolytic extraction technique. At the early stage of tempering, the particle fraction greatly decreased due to dissolution of M{sub 3}C particle, and increased after 10 min by the precipitation of M{sub 7}C{sub 3} and M{sub 23}C{sub 6} particles. The particle fraction showed a peak at 30 min tempering and decreased again due to the dissolution of M{sub 7}C{sub 3} particle. Vickers hardness tests of base steel and tempered samples were carried out, and then the hardness was changed by accompanying with the change of particle fraction. The sensitivity of hydrogen embrittlement was evaluated through hydrogen induced cracking (HIC) tests, and the results clearly proved that HIC resistance of tempered samples was better than that of base steel due to the formation of tempered martensite, and then the HIC resistance changed depending on the precipitation behavior during tempering, i.e., the precipitation of coarse M{sub 23}C{sub 6} and M{sub 7}C{sub 3} particles deteriorated the HIC resistance.

  20. Influence of precipitation behavior on mechanical properties and hydrogen induced cracking during tempering of hot-rolled API steel for tubing

    International Nuclear Information System (INIS)

    Moon, Joonoh; Choi, Jongmin; Han, Seong-Kyung; Huh, Sungyul; Kim, Seong-Ju; Lee, Chang-Hoon; Lee, Tae-Ho

    2016-01-01

    Precipitation behavior and its effect on hydrogen embrittlement during tempering process of hot-rolled API steel designed with 0.4 wt% Cr and 0.25 wt% Mo were investigated. The base steel was normalized and then tempered at 650 °C for up to 60 min. The precipitation behavior of the examined steel was explored using transmission electron microscopy (TEM) analysis, and it was found that the precipitation sequence during tempering at 650 °C were as follows: MX+M_3C→MX→MX+M_7C_3+M_2_3C_6. The change of particle fraction was measured by electrolytic extraction technique. At the early stage of tempering, the particle fraction greatly decreased due to dissolution of M_3C particle, and increased after 10 min by the precipitation of M_7C_3 and M_2_3C_6 particles. The particle fraction showed a peak at 30 min tempering and decreased again due to the dissolution of M_7C_3 particle. Vickers hardness tests of base steel and tempered samples were carried out, and then the hardness was changed by accompanying with the change of particle fraction. The sensitivity of hydrogen embrittlement was evaluated through hydrogen induced cracking (HIC) tests, and the results clearly proved that HIC resistance of tempered samples was better than that of base steel due to the formation of tempered martensite, and then the HIC resistance changed depending on the precipitation behavior during tempering, i.e., the precipitation of coarse M_2_3C_6 and M_7C_3 particles deteriorated the HIC resistance.

  1. Hydrogen assisted cracking and CO2 corrosion behaviors of low-alloy steel with high strength used for armor layer of flexible pipe

    Science.gov (United States)

    Liu, Zhenguang; Gao, Xiuhua; Du, Linxiu; Li, Jianping; Zhou, Xiaowei; Wang, Xiaonan; Wang, Yuxin; Liu, Chuan; Xu, Guoxiang; Misra, R. D. K.

    2018-05-01

    In this study, hydrogen induced cracking (HIC), sulfide stress corrosion cracking (SSCC) and hydrogen embrittlement (HE) were carried out to study hydrogen assisted cracking behavior (HIC, SSCC and HE) of high strength pipeline steel used for armor layer of flexible pipe in ocean. The CO2 corrosion behavior of designed steel with high strength was studied by using immersion experiment. The experimental results demonstrate that the corrosion resistance of designed steel with tempered martensite to HIC, SSCC and HE is excellent according to specific standards, which contributes to the low concentration of dislocation and vacancies previously formed in cold rolling process. The corrosion mechanism of hydrogen induced cracking of designed steel, which involves in producing process, microstructure and cracking behavior, is proposed. The designed steel with tempered martensite shows excellent corrosion resistance to CO2 corrosion. Cr-rich compound was first formed on the coupon surface exposed to CO2-saturated brine condition and chlorine, one of the corrosion ions in solution, was rich in the inner layer of corrosion products.

  2. Industrial implications of hydrogen

    International Nuclear Information System (INIS)

    Pressouyre, G.M.

    1982-01-01

    Two major industrial implications of hydrogen are examined: problems related to the effect of hydrogen on materials properties (hydrogen embrittlement), and problems related to the use and production of hydrogen as a future energy vector [fr

  3. Irreversible traps, their influence on the embrittlement of high strength steel

    International Nuclear Information System (INIS)

    Mariano, I; Mansilla, G

    2012-01-01

    Hydrogen (H) can be trapped in lattice defects such as vacancies, dislocations, grain boundaries and interfaces between the matrix and precipitates. The effect on the mechanical properties depends on factors inherent in materials such as the activation energy of irreversible traps (H trapped in Network Places) and its sensitivity to embrittlement. Differential scanning calorimetry (DSC) allows the study of those processes in which enthalpy variation occurs. The purpose is to record the difference in enthalpy change that occurs in the sample as a function of temperature or time. This work represents a study of H embrittlement of high strength steel resulfurized

  4. Approach for estimating post-annual reirradiation embrittlement of reactor vessel steels

    International Nuclear Information System (INIS)

    Server, W.L.; Taboada, A.

    1985-01-01

    Thermal annealing of a commercial nuclear reactor pressure vessel is a possible solution for extending lifetime in situations where excessive radiation embrittlement has taken place or when the original design life is approached. Two difficult facets of thermal annealing are the degree of toughness recovery after annealing and the post-anneal reirradiation embrittlement behavior. These aspects of annealing are evaluated in this paper by using simple models and translation of the initial irradiation damage curve either vertically or laterally at the point of residual shift after annealing. Results using this methodology are compared to limited actual weld metal measurements of annealing behavior. A forthcoming ASTM Guide on in-place annealing uses this methodology to assess annealing recovery and re-embrittlement response

  5. Rupture mechanics of metallic alloys for hydrogen transport

    International Nuclear Information System (INIS)

    Moro, I.; Briottet, L.; Lemoine, P.; Andrieu, E.; Blanc, C.

    2007-01-01

    With the aim to establish a cheap hydrogen distribution system, the transport by pipelines is a solution particularly interesting. Among the high limit of elasticity steels, the X80 has been chosen for hydrogen transport. Its chemical composition and microstructure are given. Important microstructural changes have been revealed in the sheet thickness: the microstructure is thinner and richer in perlite in surface than in bulk. In parallel to this microstructural evolution, a microhardness gradient has been observed: the material microhardness is stronger in surface than in bulk of the sheet. The use of this material for hydrogen transport requires to study its resistance to hydrogen embrittlement. The main aim of this work is to develop an easy rupture mechanics test allowing to qualify the studied material in a gaseous hydrogen environment, to determine the sensitivity of the studied material to the hydrogen embrittlement and to better understand the mechanisms of the hydrogen embrittlement for ferritic materials. Two experimental tests have been used for: the first one is a traction machine coupled to an autoclave; the second one allows to carry out disk rupture tests. The toughness of the material in a gaseous hydrogen environment has thus been determined. The resistance of the material to hydrogen embrittlement has been characterized and by simulation, it has been possible to identify the areas with a strong concentration in hydrogen. The second aim of this work is to study the influence of the steel microstructure on the hydrogen position in the material and on the resistance of the material to the hydrogen embrittlement. The preferential trapping sites on the material not mechanically loaded have at first been identified, as well as the hydrogen position on the different phases and at the ferrite/cementite interface. The interaction between the mechanical loads, the position and the trapping of the hydrogen have been studied then. At last, has been

  6. Role of hydrogen in stress corrosion cracking

    International Nuclear Information System (INIS)

    Mehta, M.L.

    1981-01-01

    Electrochemical basis for differentiation between hydrogen embrittlement and active path corrosion or anodic dissolution crack growth mechanisms is examined. The consequences of recently demonstrated acidification in crack tip region irrespective of electrochemical conditions at the bulk surface of the sample are that the hydrogen can evolve within the crack and may be involved in the cracking process. There are basically three aspects of hydrogen involvement in stress corrosion cracking. In dissolution models crack propagation is assumed to be caused by anodic dissolution on the crack tip sustained by cathodic reduction of hydrogen from electrolyte within the crack. In hydrogen induced structural transformation models it is postulated that hydrogen is absorbed locally at the crack tip producing structural changes which facilitate crack propagation. In hydrogen embrittlement models hydrogen is absorbed by stressed metal from proton reduction from the electrolyte within the crack and there is interaction between lattice and hydrogen resulting in embrittlement of material at crack tip facilitating crack propagation. In the present paper, the role of hydrogen in stress corrosion crack growth in high strength steels, austenitic stainless steels, titanium alloys and high strength aluminium alloys is discussed. (author)

  7. Rupture mechanics of metallic alloys for hydrogen transport; Mecanique de la rupture des alliages metalliques pour le transport de l'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    Moro, I.; Briottet, L.; Lemoine, P. [CEA Grenoble (DRT/LITEN/DTH/LEV), 38 (France); Andrieu, E.; Blanc, C. [Centre Interuniversitaire de Recherche et d' Ingenierie des Materiaux (ENSIACET/CIRIMAT), 31 - Toulouse (France)

    2007-07-01

    With the aim to establish a cheap hydrogen distribution system, the transport by pipelines is a solution particularly interesting. Among the high limit of elasticity steels, the X80 has been chosen for hydrogen transport. Its chemical composition and microstructure are given. Important microstructural changes have been revealed in the sheet thickness: the microstructure is thinner and richer in perlite in surface than in bulk. In parallel to this microstructural evolution, a microhardness gradient has been observed: the material microhardness is stronger in surface than in bulk of the sheet. The use of this material for hydrogen transport requires to study its resistance to hydrogen embrittlement. The main aim of this work is to develop an easy rupture mechanics test allowing to qualify the studied material in a gaseous hydrogen environment, to determine the sensitivity of the studied material to the hydrogen embrittlement and to better understand the mechanisms of the hydrogen embrittlement for ferritic materials. Two experimental tests have been used for: the first one is a traction machine coupled to an autoclave; the second one allows to carry out disk rupture tests. The toughness of the material in a gaseous hydrogen environment has thus been determined. The resistance of the material to hydrogen embrittlement has been characterized and by simulation, it has been possible to identify the areas with a strong concentration in hydrogen. The second aim of this work is to study the influence of the steel microstructure on the hydrogen position in the material and on the resistance of the material to the hydrogen embrittlement. The preferential trapping sites on the material not mechanically loaded have at first been identified, as well as the hydrogen position on the different phases and at the ferrite/cementite interface. The interaction between the mechanical loads, the position and the trapping of the hydrogen have been studied then. At last, has been

  8. Mecanical Properties Degradation by Hydrogen Embrittlement

    International Nuclear Information System (INIS)

    Bertolino, G; Meyer, G; Perez Ipina J

    2001-01-01

    The presence of hydrogen-rich media during nuclear plant operation motivates the study of the zirconium alloys degradation of their mechanical properties influenced by hydrogen content and temperature.In this work we study samples with a microstructure of equiaxial grains resulted from hot-rolled, and with different homogeneous hydrogen content obtained by electrochemical charge and a thermal treatment.The influence of hydrogen content and temperature was analyzed from the results of fracture-mechanical tests on CT (compact test) probes using the J-criteria

  9. Embrittlement by hydrogen in zircaloy-4

    International Nuclear Information System (INIS)

    Almendariz M, M.C.

    1981-01-01

    The brittleness study of zircaloy-4 (nuclear quality) by hydrogen in the lattice was carried out with the purpose to watch the alterations at mechanic properties and fracture appearance for different thermal treatments. We used a statistical experimental method to watch both alterations. Fracture toughness property was evaluated in a semiquantitative way, and this property was calculated by integral J method but at a modified version, this modification lies in the area calculation under the curve of load versus head displacement plot; we used Instron machine to evaluate it. Three points bending proof was carried out in accordance with the device that specify A.S.T.M. standards. The samples were treated with hydrogen by means of catodic charged method and subsequently mechanic proof was realized. We used statistical analysis to get information of experimental results, and the watched general behaviour was a great disminution of the fracture toughness (in relation to not treated hydrogen sample), always that the hydrogen is present in the lattice, likewise we did watch that hydrogen does not influence at fracture appearance change, further there is a threshold hydrogen concentration at wich it starts to brittle and prior not influence it. We did conclude of results analysis that the fracture toughness is reduced by hydrogen and threshold concentration is subject to thermal treatment. Experimental results can be considered as semiquantitatives, but they gave us an explicit idea of hydrogen effect in zircaloy-4. (author)

  10. Metal induced embrittlement. Annual report, [March 1, 1987--February 29, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Hoagland, R.G.

    1988-11-01

    This program is investigating the causes of embrittlement that occur in certain solid metals when exposed to liquid metals. The degree of embrittlement varies enormously among different solid/liquid pairs as witness, for example, the modest loss of load carrying, ability induced in carbon steels by Pb or the profound embrittlment of aluminum (particularly high strength) alloys by Hg and Ga. The structure of this study involves two types of activities: an experimental fracture mechanics study of the behavior of certain solid metals in liquid metals, and a theoretical study on an atomic scale of the crack tip deformation and extension behavior by means of atomistic simulation. This research, which began March 1, 1987, has completed its 20 month. A brief synopsis is given of performance in each of the areas of activity during the past year.

  11. Effect of retained austenite stability and morphology on the hydrogen embrittlement susceptibility in quenching and partitioning treated steels

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xu [State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhang, Ke [School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093 (China); Li, Wei, E-mail: weilee@sjtu.edu.cn [State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Jin, Xuejun, E-mail: jin@sjtu.edu.cn [Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2016-03-21

    The effect of retained austenite (RA) stability and morphology on the hydrogen embrittlement (HE) susceptibility were investigated in a high strength steel subjected to three different heat treatments, i.e., the intercritical annealing quenching and partitioning (IAQP), quenching and partitioning (QP) and quenching and tempering (QT). IAQP treatment results in the coexistence of blocky and filmy morphologies and both QP and QT treatments lead to only filmy RA. No martensitic transformation occurs in QT steel during deformation, while the QP and IAQP undergo the transformation with the same extent. It is shown that the HE susceptibility increases in the following order: QT, QP and IAQP. Despite of the highest strength level and the highest hydrogen diffusion rate, the QT steel is relative immune to HE, suggesting that the metastable RA which transforms to martensite during deformation is detrimental to the HE resistance. The improved resistance to HE by QP treatment compared with IAQP steel is mainly attributed to the morphology effect of RA. Massive hydrogen-induced cracking (HIC) cracks are found to initiate in the blocky RA of IAQP steel, while only isolate voids are observed in QP steel. It is thus deduced that filmy RA is less susceptible to HE than the blocky RA.

  12. The influence of hydrogen on the fatigue life of metallic leaf spring components in a vacuum environment

    NARCIS (Netherlands)

    Kouters, M.H.M.; Slot, H.M.; Zwieten, W. van; Veer, J. van der

    2014-01-01

    Hydrogen is used as a process gas in vacuum environments for semiconductor manufacturing equipment. If hydrogen dissolves in metallic components during operation it can result in hydrogen embrittlement. In order to assess if hydrogen embrittlement occurs in such a vacuum environment a special

  13. Effect of hydrogen on aluminium and aluminium alloys: A review

    DEFF Research Database (Denmark)

    Ambat, Rajan; Dwarakadasa, E.S.

    1996-01-01

    Susceptibility of aluminium and its alloys towards hydrogen embrittlement has been well established. Still a lot of confusion exists on the question of transport of hydrogen and its possible role in stress corrosion cracking. This paper reviews some of the fundamental properties of hydrogen...... in aluminium and its alloys and its effect on mechanical properties. The importance of hydrogen embrittlement over anodic dissolution to explain the stress corrosion cracking mechanism of these alloys is also examined in considerable detail. The various experimental findings concerning the link between...

  14. Radiation embrittlement of metals and alloys

    International Nuclear Information System (INIS)

    Wechsler, M.S.

    1975-01-01

    Three types of radiation embrittlement are identified: (1) radiation embrittlement in nominally ductile metals, (2) radiation embrittlement in metals that undergo a ductile-brittle transition, and (3) high-temperature grain boundary embrittlement. This paper deals with type (1) and, more briefly, type (2) radiation embrittlement. Radiation embrittlement in nominally ductile metals is characterized by the premature onset of plastic instability, which causes a sharp decrease in the macroscopic plastic strain that the material can sustain before necking (uniform strain) and breaking (fracture strain). Dislocation channeling seems to be largely responsible and experimental results are reviewed. The origin of dislocation channeling is discussed. Irradiated metals that exhibit a ductile-brittle transition show an increase in the transition temperature but the nature of the transition (shear to cleavage fracture) does not appear to be greatly altered. A key factor is the temperature dependence of yielding and how it is affected upon irradiation. Impurities exert an influence on the stability of radiation-produced defect clusters and thus can alter the amount of radiation embrittlement experienced upon irradiation at somewhat elevated temperatures. In general, radiation embrittlement appears to stem mostly from changes in plastic properties (particularly in the trend toward more dynamic and inhomogeneous plastic deformation) rather than from changes in the inherent fracture process. 63 references, 10 figures

  15. Hydrogen embrittlement in power plant steels

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    cause of blistering is well-known, handling and finishing techniques have been developed to minimize this form of damage. Vacuum melting and degassing minimize the quantity of hydrogen in the steels. Acid pickling and other such processes that may introduce hydrogen are avoided when practical, and possible moisture ...

  16. Calculation of hydrogen and oxygen uptake in fuel rod cladding during severe accidents using the integral diffusion method -- Preliminary design report

    International Nuclear Information System (INIS)

    Siefken, L.J.

    1999-01-01

    Preliminary designs are described for models of hydrogen and oxygen uptake in fuel rod cladding during severe accidents. Calculation of the uptake involves the modeling of seven processes: (1) diffusion of oxygen from the bulk gas into the boundary layer at the external cladding surface, (2) diffusion from the boundary layer into the oxide layer, (3) diffusion from the inner surface of the oxide layer into the metallic part of the cladding, (4) uptake of hydrogen in the event that the cladding oxide layer is dissolved in a steam-starved region, (5) embrittlement of cladding due to hydrogen uptake, (6) cracking of cladding during quenching due to its embrittlement and (7) release of hydrogen from the cladding after cracking of the cladding. An integral diffusion method is described for calculating the diffusion processes in the cladding. Experimental results are presented that show a rapid uptake of hydrogen in the event of dissolution of the oxide layer and a rapid release of hydrogen in the event of cracking of the oxide layer. These experimental results are used as a basis for calculating the rate of hydrogen uptake and the rate of hydrogen release. The uptake of hydrogen is limited to the equilibrium solubility calculated by applying Sievert's law. The uptake of hydrogen is an exothermic reaction that accelerates the heatup of a fuel rod. An embrittlement criteria is described that accounts for hydrogen and oxygen concentration and the extent of oxidation. A design is described for implementing the models for hydrogen and oxygen uptake and cladding embrittlement into the programming framework of the SCDAP/RELAP5 code. A test matrix is described for assessing the impact of the proposed models on the calculated behavior of fuel rods in severe accident conditions. This report is a revision and reissue of the report entitled; ''Preliminary Design Report for Modeling of Hydrogen Uptake in Fuel Rod Cladding During Severe Accidents.''

  17. Suitability of Tophet C-Alloy 52/Kovar components to hydrogen environments

    International Nuclear Information System (INIS)

    Gebhart, J.M.; Kelly, M.D.

    1976-01-01

    The suitability of Tophet C-Alloy 52/Kovar weldments to hydrogen embrittlement were investigated because of their potential as candidate materials in fabrication of minaturized initiators for pyrotechnics. Cathodic charged samples were statically loaded for extended periods of time resulting in no load failures and in ductile fracture surfaces indicating resistance to hydrogen embrittlement. 20 figures

  18. Hydrogen in titanium alloys

    International Nuclear Information System (INIS)

    Wille, G.W.; Davis, J.W.

    1981-04-01

    The titanium alloys that offer properties worthy of consideration for fusion reactors are Ti-6Al-4V, Ti-6Al-2Sn-4Zr-2Mo-Si (Ti-6242S) and Ti-5Al-6Sn-2Zr-1Mo-Si (Ti-5621S). The Ti-6242S and Ti-5621S are being considered because of their high creep resistance at elevated temperatures of 500 0 C. Also, irradiation tests on these alloys have shown irradiation creep properties comparable to 20% cold worked 316 stainless steel. These alloys would be susceptible to slow strain rate embrittlement if sufficient hydrogen concentrations are obtained. Concentrations greater than 250 to 500 wppm hydrogen and temperatures lower than 100 to 150 0 C are approximate threshold conditions for detrimental effects on tensile properties. Indications are that at the elevated temperature - low hydrogen pressure conditions of the reactors, there would be negligible hydrogen embrittlement

  19. Thermal embrittlement of reactor vessel steels

    International Nuclear Information System (INIS)

    Corwin, W.R.; Nanstad, R.K.; Alexander, D.J.; Stoller, R.E.; Wang, J.A.; Odette, G.R.

    1995-01-01

    As a result of observations of possible thermal embrittlement from recent studies with welds removed from retired steam generators of the Palisades Nuclear Plant (PNP), an assessment was made of thermal aging of reactor pressure vessel (RPV) steels under nominal reactor operating conditions. Discussions are presented on (1) data from the literature regarding relatively low-temperature thermal embrittlement of RPV steels; (2)relevant data from the US power reactor-embrittlement data base (PR-EDB); and (3)potential mechanisms of thermal embrittlement in low-alloy steels

  20. Changes in mechanical properties following cyclic prestressing of martensitic steel containing vanadium carbide in presence of nondiffusible hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, Mao; Doshida, Tomoki [Graduate School of Science and Technology, Sophia University, Tokyo 102-8554 (Japan); Takai, Kenichi, E-mail: takai@me.sophia.ac.jp [Department of Engineering and Applied Science, Sophia University, Tokyo 102-8554 (Japan)

    2016-09-30

    Changes in the states of nondiffusible hydrogen and mechanical properties after cyclic prestressing in the presence of only nondiffusible hydrogen were examined for martensitic steel containing vanadium carbide. The relationship between the change in the state of nondiffusible hydrogen and mechanical properties was also investigated. The hydrogen desorption profile in the high-temperature range decreased and that in the low-temperature range increased with increasing stress amplitude during cyclic prestressing in the presence of only nondiffusible hydrogen. Thus, the application of cyclic prestressing changed the state of hydrogen from a stable to an unstable one because of vacancies and their clusters. Hydrogen embrittlement susceptibility after cyclic prestressing increased with increasing stress amplitude and number of prestressing cycles in the presence of only nondiffusible hydrogen. This relationship indicates that hydrogen embrittlement susceptibility increased with the increasing amount of hydrogen detrapped from trap sites of nondiffusible hydrogen during cyclic prestressing. These results revealed that nondiffusible hydrogen easily detrapped from vanadium carbide due to the application of cyclic prestress and probably interacted with vacancies and their clusters, thus increasing hydrogen embrittlement susceptibility. The change of nondiffusible hydrogen to diffusible hydrogen and accumulation of vacancies and their clusters during cyclic prestressing are concluded to be the dominant factors in hydrogen embrittlement after the application of cyclic prestress.

  1. Hardening Embrittlement and Non-Hardening Embrittlement of Welding-Heat-Affected Zones in a Cr-Mo Low Alloy Steel

    Directory of Open Access Journals (Sweden)

    Yu Zhao

    2018-06-01

    Full Text Available The embrittlement of heat affected zones (HAZs resulting from the welding of a P-doped 2.25Cr-1Mo steel was studied by the analysis of the fracture appearance transition temperatures (FATTs of the HAZs simulated under a heat input of 45 kJ/cm with different peak temperatures. The FATTs of the HAZs both with and without tempering increased with the rise of the peak temperature. However, the FATTs were apparently lower for the tempered HAZs. For the as-welded (untempered HAZs, the FATTs were mainly affected by residual stress, martensite/austenite (M/A islands, and bainite morphology. The observed embrittlement is a hardening embrittlement. On the other hand, the FATTs of the tempered HAZs were mainly affected by phosphorus grain boundary segregation, thereby causing a non-hardening embrittlement. The results demonstrate that the hardening embrittlement of the as-welded HAZs was more severe than the non-hardening embrittlement of the tempered HAZs. Consequently, a post-weld heat treatment should be carried out if possible so as to eliminate the hardening embrittlement.

  2. Role of tempering temperature on the hydrogen diffusion in a 34CrMo4 martensitic steel and the related embrittlement

    International Nuclear Information System (INIS)

    Moli-Sanchez, L.

    2012-01-01

    The evaluation of the Hydrogen embrittlement (HE) of high strength steels remains a major issue for the development of hydrogen (H) applications for the energy. A better understanding of the phenomena involved in the HE (role of the environment, the H-microstructure and H-plasticity interactions) is crucial in the 'H economy'. The aim of this study is to characterize the H behaviour in tempered martensitic steels (34CrMo 4 ). A particular interest was put on the determination of the microstructural defects (dislocations, interfaces, precipitates...) that control the H absorption, diffusion, desorption and trapping and the related HE sensibility. The combined use of electrochemical permeation technique and H isotopic tracers (deuterium and tritium) (TDS, SIMS and β-counting) allowed the characterization of the H behaviour in the microstructures. The kinetics of H absorption/desorption, related with trapping phenomena on microstructural defects, give access to the density of trapping sites and the occupancy ratio associated to each defects population. The comparison of mechanical tests (pre-hydrogenated and in situ hydrogenated tests) evidenced the major role of diffusible H in the HE mechanisms thanks to the H-plasticity interactions that promote the H segregation at some microstructural defects. A detailed analysis of the results allows to suggest some recommendations concerning the type of microstructure (dislocations densities, precipitates coherency...) to be favoured during the elaboration processes or heat treatments of martensitic steels in order to increase their HE resistance. (author) [fr

  3. Influence of pre-hydriding on embrittlement of E110 alloy under LOCA conditions

    International Nuclear Information System (INIS)

    VNIINM, Moscow (Russian Federation))" data-affiliation=" (SC VNIINM, Moscow (Russian Federation))" >Fedotov, P.; VNIINM, Moscow (Russian Federation))" data-affiliation=" (SC VNIINM, Moscow (Russian Federation))" >Kuznetsov, V.; VNIINM, Moscow (Russian Federation))" data-affiliation=" (SC VNIINM, Moscow (Russian Federation))" >Nechaeva, O.; VNIINM, Moscow (Russian Federation))" data-affiliation=" (SC VNIINM, Moscow (Russian Federation))" >Novikov, V.; VNIINM, Moscow (Russian Federation))" data-affiliation=" (SC VNIINM, Moscow (Russian Federation))" >Salatov, A.; Ignatiev, D.; Mokrushin, A.; Soldatkin, D.; Urusov, A.

    2015-01-01

    The researches presented in this paper were carried out in the framework of TVS-K project developed by JSC “TVEL”. The data on the corrosion and residual ductility of unirradiated and pre-hydrided E110 alloy under LACA conditions at temperature range from 1100 to 1200°C are presented. The hydrogen concentration was varied from 30 (as-received) to 600 wppm. The initial concentration of hydrogen has no effect on the oxidation kinetics, while the oxidation kinetics are parabolic and the breakaway oxidation is not observed. Oxide films on surfaces of claddings are black and shining. There are no cracks, visual spots and peelings. The residual ductility of oxidised samples decrease with hydrogen concentration rise. The residual ductility of claddings oxidized at 1100 °C, generally higher than the same of the claddings oxidized at 1200 °C. E110 alloy has a good residual ductility in comparison to Zry-4, ZIRLO, M5. Joint analysis of the test results allowed us to formulate embrittlement criteria of the E110 alloy under LOCA conditions. This embrittlement criterion is preliminary, because the experimental data base must to be enlarged by results of tests with claddings of another geometry and quench experiments. (author)

  4. Study of the electrochemical behavior of the niobium in relation to the hydrogen cyclical charge and uncharge; Estudo do comportamento eletroquimico do niobio em relacao ao carregamento e descarregamento ciclicos de hidrogenio

    Energy Technology Data Exchange (ETDEWEB)

    Silva, A.G.S.G. da; Ponte, H.A.; Pashchuk, A. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Centro Politecnico. Lab. de Eletroquimica de Superficie e Corrosao (LESK)], e-mail: aleksantos@hotmail.com

    2006-07-01

    One of the greatest problems found in the oil industry is the control of the deterioration at the steels structures of the units that compose the process petroleum refine. This deterioration is related the mechanisms involving processes of hydrogen embrittlement. The work had as objective to study the electrochemical behavior of the niobium (Nb) with relation to the charging and uncharging of hydrogen, to evaluate the potential to use of the Nb in the construction of electrochemical hydrogen probes. For this study techniques of cronopotenciometry and potential of open circuit (OCP) for the pure Nb submitted the different hydrogen charging conditions had been used. The gotten partial results indicate the viability to use of the niobium as hydrogen probe, however, it is necessary one better understanding of the mechanisms of hydrogen interaction with the niobium. (author)

  5. Effects of Internal and External Hydrogen on Inconel 718

    Science.gov (United States)

    Walter, R. J.; Frandsen, J. D.

    1999-01-01

    Internal hydrogen embrittlement (IHE) and hydrogen environment embrittlement (HEE) tensile and bend crack growth tests were performed on Inconel 718. For the IHE tests, the specimens were precharged to approximately 90 ppm hydrogen by exposure to 34.5 MPa H2 at 650 C. The HEE tests were performed in 34.5 MPa H2. Parameters evaluated were test temperature, strain rate for smooth and notch specimen geometries. The strain rate effect was very significant at ambient temperature for both IHE and HEE and decreased with increasing temperatures. For IHE, the strain rate effect was neglible at 260'C, and for HEE the strain rate effect was neglible at 400 C. At low temperatures, IHE was more severe than HEE, and at high temperatures HEE was more severe than IHE with a cross over temperature about 350 C. At 350 C, the equilibrium hydrogen concentration in Inconel 718 is about 50% lower than the hydrogen content of the precharged IHE specimens. Dislocation hydrogen sweeping of surface absorbed hydrogen was the likely transport mechanism for increasing the hydrogen concentration in the HEE tests sufficiently to produce the same degree of embrittlement as that of the more highly hydrogen charged IHE specimens. The main IHE fracture characteristic was formation of large, brittle flat facets, which decreased with increasing test temperature. The IHE fracture matrix surrounding the large facets ranged between brittle fine faceted to microvoid ductility depending upon strain rate, specimen geometry as well as temperature. The HEE fractures were characteristically fine featured, transgranular and brittle with a significant portion forming a "saw tooth" crystallographic pattern. Both IHE and HEE fractures were predominantly along the {1 1 1) slip and twin boundaries. With respect to embrittlement mechanism, it was postulated that dislocation hydrogen sweeping and hydrogen enhanced localized plasticity were active in HEE and IHE for concentrating hydrogen along (1 1 1) slip and twin

  6. Hydrogen induced surface effects on the mechanical properties of type 304 stainless steel

    International Nuclear Information System (INIS)

    Silva, T.C.V. da; Pascual, R.; Miranda, P.E.V. de.

    1983-01-01

    The possibilities of modifying the mechanical properties of type 304 stainless steel by cathodic hydrogen charging were studied. The situations analysed included hydrogen embrittlement itself in tensile tests of hydrogen containing samples and the effects of delayed cracks in fatigue tests of hydrogenated and outgassed samples. SEM and TEM observations were also performed. It was found that hydrogen induced surface delayed cracks appear in great quantity during outgassing (of the order of several millions in a square centimeter). Hydrogen embrittlement was responsible for drastic losses in ductility in tension, while surface cracks severely reduced fatigue life. (author) [pt

  7. Hydrogen storage container

    Science.gov (United States)

    Wang, Jy-An John; Feng, Zhili; Zhang, Wei

    2017-02-07

    An apparatus and system is described for storing high-pressure fluids such as hydrogen. An inner tank and pre-stressed concrete pressure vessel share the structural and/or pressure load on the inner tank. The system and apparatus provide a high performance and low cost container while mitigating hydrogen embrittlement of the metal tank. System is useful for distributing hydrogen to a power grid or to a vehicle refueling station.

  8. The effect of pearlite on the hydrogen-induced ductility loss in ductile cast irons

    Science.gov (United States)

    Matsuo, T.

    2017-05-01

    Hydrogen energy systems, such as a hydrogen fuel cell vehicle and a hydrogen station, are rapidly developing to solve global environmental problems and resource problems. The available structural materials used for hydrogen equipments have been limited to only a few relatively expensive metallic materials that are tolerant for hydrogen embrittlement. Therefore, for the realization of a hydrogen society, it is important to expand the range of materials available for hydrogen equipment and thereby to enable the use of inexpensive common materials. Therefore, ductile cast iron was, in this study, focused as a structural material that could contribute to cost reduction of hydrogen equipment, because it is a low-cost material having good mechanical property comparable to carbon steels in addition to good castability and machinability. The strength and ductility of common ductile cast irons with a ferritic-pearlitic matrix can be controlled by the volume fraction of pearlitic phase. In the case of carbon steels, the susceptibility to hydrogen embrittlement increases with increase in the pearlite fraction. Toward the development of ferritic-pearlitic ductile cast iron with reasonable strength for hydrogen equipment, it is necessary to figure out the effect of pearlite on the hydrogen embrittlement of this cast iron. In this study, the tensile tests were conducted using hydrogen-precharged specimens of three kinds of ferritic-pearlitic ductile cast irons, JIS-FCD400, JIS-FCD450 and JIS-FCD700. Based on the results, the role of pearlite in characterizing the hydrogen embrittlement of ductile cast iron was discussed.

  9. The corrosion rate and the hydrogen absorption behavior of titanium under reducing condition-III. Research document

    International Nuclear Information System (INIS)

    Suzuki, H.; Taniguchi, N.; Kawakami, S.

    2005-03-01

    Titanium is one of the candidate materials for overpacks as a high corrosion resistance metal. At the initial stage of repository, oxidizing condition will be given around the overpack because oxygen will be brought from the ground. The oxygen will be consumed by the reaction with impurities in buffer material or corrosion of overpack, and reducing condition will be achieved around the overpack. With the changing of redox condition, the water reduction becomes to dominate the cathodic reaction accompanying hydrogen generation. Crevice corrosion and hydrogen embrittlement are main causes of the damage of long term integrity of titanium overpack. However, it is not known about the corrosion resistance and hydrogen absorption behavior of titanium under reduction condition. In this study, the completely sealed ampoule test and the immersion test of titanium in aqueous solution and bentonite was carried out. In order to obtain reliable data about the hydrogen generation rate and the ratio of hydrogen absorption in titanium. From the result of 3 years immersion tests, corrosion rate of titanium were estimated to be in the order of 10 -2 ∼10 -1 μm/y in the aqueous solution, and 10 -3 ∼10 -2 μm/y in bentonite. This value is almost the same as the last report. Almost all the hydrogen generated by corrosion was absorbed in titanium in the immersion tests in completely sealed ampoule. In the examination that changed each parameter, it was suggested that the amount of the hydrogen absorption become 2∼3 times in 1M HCO 3- and pH13. (author)

  10. Determination of diffusible and total hydrogen concentration in coated and uncoated steel

    Energy Technology Data Exchange (ETDEWEB)

    Mabho, Nonhlangabezo

    2010-09-23

    The new trend in the steel industry demands thin, flexible, high strength steels with low internal embrittlement. It is a well known fact that the atomic hydrogen which is picked up during production, fabrication and service embrittles the steel. This has led to an extensive research towards the improvement of the quality of metallic materials by focusing on total and diffusible hydrogen concentrations which are responsible for hydrogen embrittlement. Since the internal embrittlement cannot be foreseen, the concentrations of diffusible hydrogen work as indicators while the total hydrogen characterizes the absorbed quantities and quality of that particular product. To meet these requirements, the analytical chemistry methods which include the already existing carrier gas melt (fusion) extraction methods that use infrared and thermal conductivity for total hydrogen detection were applied. The newly constructed carrier gas thermal desorption mass spectroscopy was applied to monitor the diffusible concentration at specific temperatures and desorption rates of hydrogen which will contribute towards the quality of materials during service. The TDMS method also involved the characterization of the energy quantity (activation energy) required by hydrogen to be removed from traps of which irreversible traps are preferred because they enhance the stability of the product by inhibiting the mobility of hydrogen which is detrimental to the metallic structures. The instrumentation for TDMS is quite simple, compact, costs less and applicable to routine analysis. To determine total and diffusible hydrogen, the influence of the following processes: chemical and mechanical zinc coating removal, sample cleaning with organic solvents, conditions for hydrogen absorption by electrolytic hydrogen charging, conditions of hydrogen desorption by storing the sample at room temperature, solid CO{sub 2} and at temperatures of the drier was analysed. The contribution of steel alloys towards

  11. Development of small punch tests for ductile-brittle transition temperature measurement of temper embrittled Ni-Cr steels

    International Nuclear Information System (INIS)

    Baik, J.M.; Kameda, J.; Buck, O.

    1983-01-01

    Small punch tests were developed to determine the ductile-brittle transition temperature of nickel-chromium (Ni-Cr) steels having various degrees of temper embrittlement and various microstructures. It was found that the small punch test clearly shows the ductile-brittle transition behavior of the temper-embrittled steels. The measured values were compared with those obtained from Charpy impact and uniaxial tensile tests. The effects of punch tip shape, a notch, and the strain rate on the ductile-brittle transition behavior were examined. It was found that the combined use of a notch, high strain rates, and a small punch tip strongly affects the ductile-brittle transition behavior. Considerable variations in the data were observed when the small punch tests were performed on coarse-grained steels. Several factors controlling embrittlement measurements of steels are discussed in terms of brittle fracture mechanisms

  12. Hydrogen effect on embrittlement of iron and steel

    International Nuclear Information System (INIS)

    Shved, M.M.

    1981-01-01

    Some existing hypothesis brittleness of metals are considered. The following explanation of reversible hydrogen brittleness is suggested: hydrogen presence in iron and steel brings about the increase in the critical shear stress and the yield stress at all stages of plastic deformation (hydrogen, blocking dislocations hinders plastic shears) and the decrease of rupture strength. Decreasing forces of interatomic interaction of the surface layer some scores interatomic distances thick, hydrogen decreases the resistance of normal stresses to its effect. Thus, whatever mechanism brings about the formation of the first cracks in the metal in the presence of absorbed hydrogen, they appear at lower outside applied stresses. In the framework of the model suggested one can explain experimentally observed changes of mechanical properties of iron and steel under hydrogen effect

  13. Power reactor embrittlement data base

    International Nuclear Information System (INIS)

    Kam, F.B.K.; Stallmann, F.W.; Wang, J.A.

    1989-01-01

    Regulatory and research evaluations of embrittlement prediction models and of vessel integrity under load can be greatly expedited by the use of a well-designed, computerized embrittlement data base. The Power Reactor Embrittlement Data Base (PR-EDB) is a comprehensive collection of data from surveillance reports and other published reports of commercial nuclear reactors. The uses of the data base require that as many different data as available are collected from as many sources as possible with complete references and that subsets of relevant data can be easily retrieved and processed. The objectives of this NRC-sponsored program are the following: to compile and to verify the quality of the PR-EDB; to provide user-friendly software to access and process the data; to explore or confirm embrittlement prediction models; and to interact with standards organizations to provide the technical bases for voluntary consensus standards that can be used in regulatory guides, standard review plans, and codes. 9 figs

  14. Hydride embrittlement in zircaloy components

    Energy Technology Data Exchange (ETDEWEB)

    Lobo, Raquel M.; Andrade, Arnaldo H.P.; Castagnet, Mariano, E-mail: rmlobo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Zirconium alloys are used in nuclear reactor cores under high-temperature water environment. During service, hydrogen is generated by corrosion processes, and it is readily absorbed by these materials. When hydrogen concentration exceeds the terminal solid solubility, the excess hydrogen precipitates as zirconium hydride (ZrH{sub 2}) platelets or needles. Zirconium alloys components can fail by hydride cracking if they contain large flaws and are highly stressed. Zirconium alloys are susceptible to a mechanism for crack initiation and propagation termed delayed hydride cracking (DHC). The presence of brittle hydrides, with a K{sub Ic} fracture toughness of only a few MPa{radical}m, results in a severe loss in ductility and toughness when platelet normal is oriented parallel to the applied stress. In plate or tubing, hydrides tend to form perpendicular to the thickness direction due to the texture developed during fabrication. Hydrides in this orientation do not generally cause structural problems because applied stresses in the through-thickness direction are very low. However, the high mobility of hydrogen in a zirconium lattice enables redistribution of hydrides normal to the applied stress direction, which can result in localized embrittlement. When a platelet reaches a critical length it ruptures. If the tensile stress is sufficiently great, crack initiation starts at some of these hydrides. Crack propagation occurs by repeating the same process at the crack tip. Delayed hydride cracking can degrade the structural integrity of zirconium alloys during reactor service. The paper focuses on the fracture mechanics and fractographic aspects of hydride material. (author)

  15. An overview of advanced high-strength nickel-base alloys for LWR applications

    International Nuclear Information System (INIS)

    Prybylowski, J.; Ballinger, R.G.

    1989-01-01

    This paper reviews our current understanding of the behavior of high strength nickel base alloys used in light water reactor (LWR) applications. Emphasis is placed on understanding the fundamental mechanisms controlling crack propagation in these environments. To provide a foundation for this survey, general mechanisms of stress corrosion cracking and hydrogen embrittlement are first reviewed. The behavior of high strength nickel base alloys in LWR environments, as well as in other relevant environments is then reviewed. Suggested mechanisms of crack propagation are discussed. Alternate alloys and microstructural modifications that may result in improved behavior are presented. It is now clear that, at temperatures near 100C, alloy X-750, the predominant high strength nickel base alloy used today in LWR applications, is susceptible to hydrogen embrittlement. A review of published data from hydrogen embrittlement studies of nickel base superalloys during electrolytic charging and in hydrogen sulfide/brine solutions suggests that other nickel base superalloys are available possessing resistance to hydrogen embrittlement superior to that of alloy X-750. Available results of tests in gaseous hydrogen suggest that reduced grain boundary precipitation and a fine distribution of intragranular precipitates that act as irreversible hydrogen traps is the optimum microstructure for hydrogen embrittlement resistance. 42 refs., 2 figs., 5 tabs

  16. Visualization of hydrogen in steels by secondary ion mass spectrometry

    International Nuclear Information System (INIS)

    Takai, Kenichi

    2000-01-01

    Secondary ion mass spectrometry (SIMS) enables us to visualize hydrogen trapping sites in steels. Information about the hydrogen trapping sites in high-strength steels by SIMS is very important to discuss environmental embrittlement mechanism for developing steels with a high resistance to the environmental embrittlement. Secondary ion image analysis by SIMS has made possible to visualize the hydrogen and deuterium trapping sites in the steels. Hydrogen in tempered martensite steels containing Ca tends to accumulate on inclusions, at grain boundaries, and in segregation bands. Visualization of hydrogen desorption process by secondary ion image analysis confirms that the bonding between the inclusions and the hydrogen is strong. Cold-drawn pearlite steels trap hydrogen along cold-drawing direction. Pearlite phase absorbs the hydrogen more than ferrite phase does. This article introduces the principle of SIMS, its feature, analysis method, and results of hydrogen visualization in steels. (author)

  17. Embrittlement data base, version 1

    International Nuclear Information System (INIS)

    Wang, J.A.

    1997-08-01

    The aging and degradation of light-water-reactor (LWR) pressure vessels is of particular concern because of their relevance to plant integrity and the magnitude of the expected irradiation embrittlement. The radiation embrittlement of reactor pressure vessel (RPV) materials depends on many different factors such as flux, fluence, fluence spectrum, irradiation temperature, and preirradiation material history and chemical compositions. These factors must be considered to reliably predict pressure vessel embrittlement and to ensure the safe operation of the reactor. Based on embrittlement predictions, decisions must be made concerning operating parameters and issues such as low-leakage-fuel management, possible life extension, and the need for annealing the pressure vessel. Large amounts of data from surveillance capsules and test reactor experiments, comprising many different materials and different irradiation conditions, are needed to develop generally applicable damage prediction models that can be used for industry standards and regulatory guides. Version 1 of the Embrittlement Data Base (EDB) is such a comprehensive collection of data resulting from merging version 2 of the Power Reactor Embrittlement Data Base (PR-EDB). Fracture toughness data were also integrated into Version 1 of the EDB. For power reactor data, the current EDB lists the 1,029 Charpy transition-temperature shift data points, which include 321 from plates, 125 from forgoings, 115 from correlation monitor materials, 246 from welds, and 222 from heat-affected-zone (HAZ) materials that were irradiated in 271 capsules from 101 commercial power reactors. For test reactor data, information is available for 1,308 different irradiated sets (352 from plates, 186 from forgoings, 303 from correlation monitor materials, 396 from welds and 71 from HAZs) and 268 different irradiated plus annealed data sets

  18. The Effect of Hydrogen on the Mechanical Properties of Cast Irons and ADI with Various Carbon Equivalent and Graphite Morphology

    International Nuclear Information System (INIS)

    Cho, Yong Gi; Lee, Kyung Sub

    1989-01-01

    The effect of hydrogen on the mechanical properties of cast irons, flake, CV graphite cast iron ductile iron and ADI have been investigated. The effects of various carbon equivalent, graphite morphology and matrix have been analyzed to determine the predominant factor which influences on the hydrogen embrittlement. The effect of various carbon equivalent on the embrittlement was little in the similar graphite morphology. The embrittlement of ferrite matrix changed by heat treatment was less than that of pearlite matrix. In the case of ADI, the tendency of hydrogen embrittlement of lower bainite matrix was less remarkable than that of upper banite matrix. As the result of hydrogen charging, the tendency of interface decohesion between matrix-graphite was increased in flake G.C.I., and the trend from ductile fracture mode to brittle fracture mode was observed in CV G.C.I and ductile iron. Lower bainite in ADI showed the ductile fracture mode. Hydrogen solubility of lower bainite was higher than that of upper bainite

  19. Heavy-Section Steel Irradiation Program: Embrittlement issues

    International Nuclear Information System (INIS)

    Corwin, W.R.

    1991-01-01

    Maintaining the integrity of the reactor pressure vessel (RPV) in a light-water-cooled nuclear power plant is crucial in preventing and controlling severe accidents and the potential for major contamination releases. It is imperative to understand and predict the capabilities and limitations of its integrity. It is particularly vital to fully understand the degree of irradiation-induced degradation of the RPV's fracture resistance which occurs during service, since without that radiation damage it is virtually impossible to postulate a realistic scenario which would result in RPV failure. The Heavy-Section Steel Irradiation (HSSI) Program has been established by the US Nuclear Regulatory Commission (USNRC) to provide a thorough, quantitative assessment of the effects of neutron irradiation on the material behavior, and in particular the fracture toughness properties, of typical pressure vessel steels as they relate to light-water reactor pressure-vessel integrity. Results from HSSI studies provide information needed to aid in resolving major regulatory issues facing the USNRC which involve RPV irradiation embrittlement such as pressurized-thermal shock, operating pressure-temperature limits, low-temperature overpressurization, and the specialized problems associated with low upper-shelf (LUS) welds. Taken together the results of these studies also provide guidance and bases for evaluating both the aging behavior and the potential for plant life extension of light-water RPVs. The principal materials examined within the HSSI program are high-copper welds since their postirradiation properties are most frequently limiting in the continued safe operation of commercial RPVs. Embrittlement modeling studies have shown that the time or dose required for the point defect concentrations, which ultimately contribute to irradiation embrittlement, to reach their steady state values can be comparable to the component lifetime or to the duration of an irradiation experiment

  20. Investigation of Laser Peening Effects on Hydrogen Charged Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Zaleski, Tania M. [San Jose State Univ., CA (United States)

    2008-10-30

    Hydrogen-rich environments such as fuel cell reactors can exhibit damage caused by hydrogen permeation in the form of corrosion cracking by lowering tensile strength and decreasing material ductility. Coatings and liners have been investigated, but there were few shot-peening or laser peening studies referenced in the literature with respect to preventing hydrogen embrittlement. The surface compressive residual stress induced by laser peening had shown success in preventing stress corrosion cracking (SCC) for stainless steels in power plants. The question arose if the residual stresses induced by laser peening could delay the effects of hydrogen in a material. This study investigated the effect of laser peening on hydrogen penetration into metal alloys. Three areas were studied: laser peening, hydrogenation, and hydrogen detection. This study demonstrated that laser peening does not reduce the hydrogen permeation into a stainless steel surface nor does it prevent hydrogen embrittlement. The effect of laser peening to reduce hydrogen-assisted fatigue was unclear.

  1. Atomistic calculations of hydrogen interactions with Ni3Al grain boundaries and Ni/Ni3Al interfaces

    International Nuclear Information System (INIS)

    Baskes, M.I.; Angelo, J.E.; Moody, N.R.

    1995-01-01

    Embedded Atom Method (EAM) potentials have been developed for the Ni/Al/H system. The potentials have been fit to numerous properties of this system. For example, these potentials represent the structural and elastic properties of bulk Ni, Al, Ni 3 Al, and NiAl quite well. In addition the potentials describe the solution and migration behavior of hydrogen in both nickel and aluminum. A number of calculations using these potentials have been performed. It is found that hydrogen strongly prefers sites in Ni 3 Al that are surrounded by 6 Ni atoms. Calculations of the trapping of hydrogen to a number of grain boundaries in Ni 3 Al have been performed as a function of hydrogen chemical potential at room temperature. The failure of these bicrystals under tensile stress has been examined and will be compared to the failure of pure Ni 3 Al boundaries. Boundaries containing a preponderance of nickel are severely weakened by hydrogen. In order to investigate the potential embrittlement of γ/γ' alloys, trapping of hydrogen to a spherical Ni 3 Al precipate in nickel as a function of chemical potential at room temperature has been calculated. It appears that the boundary is not a strong trap for hydrogen, hence embrittlement in these alloys is not primarily due to interactions of hydrogen with the γ/γ interface

  2. Hydrogen charging, hydrogen content analysis and metallographic examination of hydride in zirconium alloys

    International Nuclear Information System (INIS)

    Singh, R.N.; Kishore, R.; Mukherjee, S.; Roychowdhury, S.; Srivastava, D.; Sinha, T.K.; De, P.K.; Banerjee, S.; Gopalan, B.; Kameswaran, R.; Sheelvantra, Smita S.

    2003-12-01

    Gaseous and electrolytic hydrogen charging techniques for introducing controlled amount of hydrogen in zirconium alloy is described. Zr-1wt%Nb fuel tube, zircaloy-2 pressure tube and Zr-2.5Nb pressure tube samples were charged with up to 1000 ppm of hydrogen by weight using one of the aforementioned methods. These hydrogen charged Zr-alloy samples were analyzed for estimating the total hydrogen content using inert gas fusion technique. Influence of sample surface preparation on the estimated hydrogen content is also discussed. In zirconium alloys, hydrogen in excess of the terminal solid solubility precipitates out as brittle hydride phase, which acquire platelet shaped morphology due to its accommodation in the matrix and can make the host matrix brittle. The F N number, which represents susceptibility of Zr-alloy tubes to hydride embrittlement was measured from the metallographs. The volume fraction of the hydride phase, platelet size, distribution, interplatelet spacing and orientation were examined metallographically using samples sliced along the radial-axial and radial-circumferential plane of the tubes. It was observed that hydride platelet length increases with increase in hydrogen content. Considering the metallographs generated by Materials Science Division as standard, metallographs prepared by the IAEA round robin participants for different hydrogen concentration was compared. It is felt that hydride micrographs can be used to estimate not only that approximate hydrogen concentration of the sample but also its size, distribution and orientation which significantly affect the susceptibility to hydride embrittlement of these alloys. (author)

  3. Mechanisms of defect complex formation and environmental-assisted fracture behavior of iron aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, B.R.; Muratov, L.S.; Kang, B.S.J.; Li, K.Z. [West Virginia Univ., Morgantown, WV (United States)

    1997-12-01

    Iron aluminide has excellent corrosion resistance in high-temperature oxidizing-sulfidizing environments; however, there are problems at room and medium temperature with hydrogen embrittlement as related to exposure to moisture. In this research, a coordinated computational modeling/experimental study of mechanisms related to environmental-assisted fracture behavior of selected iron aluminides is being undertaken. The modeling and the experimental work will connect at the level of coordinated understanding of the mechanisms for hydrogen penetration and for loss of strength and susceptibility to fracture. The focus of the modeling component at this point is on the challenging question of accurately predicting the iron vacancy formation energy in Fe{sub 3}A{ell} and the subsequent tendency, if present, for vacancy clustering. The authors have successfully performed, on an ab initio basis, the first calculation of the vacancy formation energy in Fe{sub 3}A{ell}. These calculations include lattice relaxation effects which are quite large. This has significant implications for vacancy clustering effects with consequences to be explored for hydrogen diffusion. The experimental work at this stage has focused on the relationship of the choice and concentration of additives to the improvement of resistance to hydrogen embrittlement and hence to the fracture behavior. For this reason, comparative crack growth tests of FA-186, FA-187, and FA-189 iron aluminides (all with basic composition of Fe-28A{ell}-5Cr, at % with micro-alloying additives of Zr, C or B) under, air, oxygen, or water environment have been performed. These tests showed that the alloys are susceptible to room temperature hydrogen embrittlement in both B2 and DO{sub 3} conditions. Test results indicated that FA-187, and FA-189 are intrinsically more brittle than FA-186.

  4. Specificity in liquid metal induced embrittlement

    CSIR Research Space (South Africa)

    Fernandes, PJL

    1996-12-01

    Full Text Available One of the most intriguing features of liquid metal induced embrittlement (LMIE) is the observation that some liquid metal-solid metal couples are susceptible to embrittlement, while others appear to be immune. This is referred to as the specificity...

  5. Review of recent studies on neutron irradiation embrittlement in light water reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Sudo, Akira; Miyazono, Shohachiro

    1983-06-01

    Recent studies in foreign countries (USA, France, FRG and UK) on neutron irradiation embrittlement have been reviewed. These studies are classified into four areas, such as 1) effect of chemical composition on irradiation embrittlement sensitivity, 2) postirradiation heat treatment for embrittlement relief, 3) fracture toughness evaluation of irradiated materials based on fracture mechanics analysis, and 4) effect of irradiation on fatigue crack propagation behavior. The first area mainly includes the studies related to the effects of copper, phosphorus impurities and nickel alloying and synergistic effect of these components, and furthermore, evaluation of Regulatory Guide 1.99 Rev.l. Studies in the second area show the effects of annealing condition (temperature and time) and metallugical condition on embrittlement relief, and evaluation of periodic annealing in the period of irradiation as a promising method for embrittlement control. Studies in the third area show the correlation between fracture toughness and Cv notch ductility changes with neutron irradiation, and J-R curves of irradiated materials based on the elasto-plastic fracture mechanics. In the forth area, most of studies are investigated in air condition but a few studies in reactor-grade water at high temperature and pressure. (author)

  6. Part of the hydrogen in the intergranular crack by stress corrosion in primary circuit for the 600 and 690 nickel base alloys; Role de l'hydrogene dans le mecanisme de fissuration intergranulaire par corrosion sous contrainte en milieu primaire des alliages base nickel 600 et 690

    Energy Technology Data Exchange (ETDEWEB)

    Odemer, G.; Coudurier, A.; Jambon, F.; Chene, J. [CEA Saclay, Dept. de Physico-Chimie (DPC/SCCME/LECA), 91 - Gif sur Yvette (France); Odemer, G.; Coudurier, A.; Chene, J. [Evry Univ., UMR 8587 CNRS / CEA, LAMBE, 91 (France)

    2007-07-01

    The aim of this study is, in a first part, to characterize the hydrogen embrittlement sensitivity of the 600 and 690 based alloys in order to better understand the hydrogen role in the stress corrosion mechanism which appears in theses alloys in the primary circuit of the PWR type reactors. The authors studies how the hydrogen embrittlement is resulting from an interaction between the hydrogen and the plastic deformation. (A.L.B.)

  7. Evaluation of the intrinsic and extrinsic fracture behavior of iron aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, B.R.; Kang, B.S. [West Virginia Univ., Morgantown, WV (United States)

    1998-07-27

    Iron aluminides have excellent corrosion resistance in high-temperature oxidizing-sulfidizing environments; however, there are problems at room and medium temperatures with hydrogen embrittlement as related to exposure to moisture. In this research, a coordinated computational modeling/experimental study of mechanisms related to environmental-assisted fracture behavior of selected iron aluminides has been undertaken. The modeling and the experimental work connect at the level of coordinated understanding of the mechanisms for hydrogen penetration and for loss of strength and susceptibility to fracture. The focus of the modeling component has been on the challenging question of accurately predicting the iron vacancy formation energy in Fe{sub 3}Al and the subsequent tendency, if present, for vacancy clustering. The authors have successfully performed, on an ab initio basis, the first calculation of the vacancy formation energy in Fe{sub 3}Al. These calculations include lattice relaxation effects which are quite large for one of the two types of iron sites. This has significant implications for vacancy clustering effects with consequences for hydrogen diffusion. Indeed, the ab-initio-based estimate of the divacancy binding energy indicates a likely tendency toward such clustering for iron vacancies on the sites with large lattice relaxation. The experimental work has focused on the relationship of the choice and concentration of additives to the improvement of resistance to hydrogen embrittlement and hence to the fracture behavior.

  8. Effects of microstructures on hydrogen induced cracking of electrochemically hydrogenated double notched tensile sample of 4340 steel

    Energy Technology Data Exchange (ETDEWEB)

    Sk, Mobbassar Hassan, E-mail: Skmobba@qu.edu.qa [Center for Advanced Materials, Qatar University, Doha (Qatar); Overfelt, Ruel A. [Materials Research and Education Center, Materials Engineer, Auburn University, Auburn, AL (United States); Abdullah, Aboubakr M. [Center for Advanced Materials, Qatar University, Doha (Qatar)

    2016-04-06

    Quantitative fractographic characteristics of 4340 steel is demonstrated for a grain size range of 10−100 µm and hardness range of 41–52 HRC. Double-notched tensile samples were electrochemically charged in-situ with hydrogen in 0.5 m H{sub 2}SO{sub 4}+5 mg/l As{sub 2}O{sub 3} solution for 0–40 min charging time. Hydrogen induced fracture initiations were analyzed by novel metallographic investigation of the “unbroken” notch while the overall fractographic behaviors were examined by the scanning electron microscopic imaging of the fracture surfaces of the actually broken notch. Effect of hydrogen was predominantly manifested as intergranular fracture for the harder samples and quasi-cleavage fracture for the softer counterparts. 10–40 µm samples showed the maximum intensity of the hydrogen induced fracture features (intergranular and/or quasi-cleavage) close to the notch which gradually reduced with increasing distance from the notch. The largest grained samples (100 µm) however showed brittle behavior even in absence of hydrogen with similar intensity of percent fracture features at all distance from the notch, while presence of hydrogen intensified the overall percent brittle fractures with their intensities being highest close to the notch. Finally, the brittle fracture characteristics of the hydrogen embrittled samples were shown to be distinguishably different from that of the liquid nitrogen treated samples of same grain sizes and hardnesses.

  9. Low Temperature Irradiation Embrittlement of Reactor Pressure Vessel Steels

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-08-01

    The embrittlement trend curve development project for HFIR reactor pressure vessel (RPV) steels was carried out with three major tasks. Which are (1) data collection to match that used in HFIR steel embrittlement trend published in 1994 Journal Nuclear Material by Remec et. al, (2) new embrittlement data of A212B steel that are not included in earlier HFIR RPV trend curve, and (3) the adjustment of nil-ductility-transition temperature (NDTT) shift data with the consideration of the irradiation temperature effect. An updated HFIR RPV steel embrittlement trend curve was developed, as described below. NDTT( C) = 23.85 log(x) + 203.3 log (x) + 434.7, with 2- uncertainty of 34.6 C, where parameter x is referred to total dpa. The developed update HFIR RPV embrittlement trend curve has higher embrittlement rate compared to that of the trend curve developed in 1994.

  10. Part of the hydrogen in the intergranular crack by stress corrosion in primary circuit for the 600 and 690 nickel base alloys

    International Nuclear Information System (INIS)

    Odemer, G.; Coudurier, A.; Jambon, F.; Chene, J.; Odemer, G.; Coudurier, A.; Chene, J.

    2007-01-01

    The aim of this study is, in a first part, to characterize the hydrogen embrittlement sensitivity of the 600 and 690 based alloys in order to better understand the hydrogen role in the stress corrosion mechanism which appears in theses alloys in the primary circuit of the PWR type reactors. The authors studies how the hydrogen embrittlement is resulting from an interaction between the hydrogen and the plastic deformation. (A.L.B.)

  11. Effects of hydrogen on carbon steels at the Multi-Function Waste Tank Facility

    International Nuclear Information System (INIS)

    Carlos, W.C.

    1995-01-01

    Concern has been expressed that hydrogen produced by corrosion, radiolysis, and decomposition of the waste could cause embrittlement of the carbon steel waste tanks at Hanford. The concern centers on the supposition that the hydrogen evolved in many of the existing tanks might penetrate the steel wall of the tank and cause embrittlement that might lead to catastrophic failure. This document reviews literature on the effects of hydrogen on the carbon steel proposed for use in the Multi-Function Waste Tank Facility for the time periods before and during construction as well as for the operational life of the tanks. The document draws several conclusions about these effects. Molecular hydrogen is not a concern because it is not capable of entering the steel tank wall. Nascent hydrogen produced by corrosion reactions will not embrittle the steel because the mild steel used in tank construction is not hard enough to be susceptible to hydrogen stress cracking and the corrosion product hydrogen is not produced at a rate sufficient to cause either loss in tensile ductility or blistering. If the steel intended for use in the tanks is produced to current technology, fabricated in accordance with good construction practice, postweld heat treated, and operated within the operating limits defined, hydrogen will not adversely affect the carbon steel tanks during their 50-year design life. 26 refs

  12. THE IMPACT OF PARTIAL CRYSTALLIZATION ON THE PERMEATION PROPERTIES BULK AMORPHOUS GLASS HYDROGEN SEPARATION MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, K; Paul Korinko, P; Thad Adams, T; Elise Fox, E; Arthur Jurgensen, A

    2008-11-25

    It is recognized that hydrogen separation membranes are a key component of the emerging hydrogen economy. A potentially exciting material for membrane separations are bulk metallic glass materials due to their low cost, high elastic toughness and resistance to hydrogen 'embrittlement' as compared to crystalline Pd-based membrane systems. However, at elevated temperatures and extended operation times structural changes including partial crystallinity may appear in these amorphous metallic systems. A systematic evaluation of the impact of partial crystallinity/devitrification on the diffusion and solubility behavior in multi-component Metallic Glass materials would provide great insight into the potential of these materials for hydrogen applications. This study will report on the development of time and temperature crystallization mapping and their use for interpretation of 'in-situ' hydrogen permeation at elevated temperatures.

  13. Liquid and Solid Metal Embrittlement.

    Science.gov (United States)

    1981-09-05

    example, embrittlement of AISI 4140 steel begins at T/T, - 0.75 for cadmium, and 0.85 for lead and tin environments (2). In a few cases, e.g. zinc...has recently proposed, however, that liquid zinc can penetrate to very near the tip of a sharp crack in 4140 steel, based upon both direct observation...long could be detected, was observed in delayed failure experi- ments on unnotched 4140 steel, in the quenched and tempered condi- tion, embrittled by

  14. The influences of impurity content, tensile strength, and grain size on in-service temper embrittlement of CrMoV steels

    International Nuclear Information System (INIS)

    Cheruvu, N.S.; Seth, B.B.

    1989-01-01

    The influences of impurity levels, grain size, and tensile strength on in-service temper embrittlement of CrMoV steels have been investigated. The samples for this study were taken from steam turbine CrMoV rotors which had operated for 15 to 26 years. The effects of grain size and tensile strength on embrittlement susceptibility were separated by evaluating the embrittlement behavior of two rotor forgings made from the same ingot after an extended step-cooling treatment. Among the residual elements in the steels, only P produces a significant embrittlement. The variation of P and tensile strength has no effect on in-service temper embrittlement susceptibility, as measured by the shift in fracture appearance transition temperature (FATT). However, the prior austenite grain size plays a major role in service embrittlement. The fine grain steels with a grain size of ASTM No. 9 or higher are virtually immune to in-service embrittlement. In steels having duplex grain sizes, embrittlement susceptibility is controlled by the size of coarser grains. For a given steel chemistry, the coarse grain steel is more susceptible to in-service embrittlement, and a decrease in ASTM grain size number from 4 to 0/1 increases the shift in FATT by 61 degrees C (10/10 degrees F). It is demonstrated that long-term service embrittlement can be simulated, except in very coarse grain steels, by using the extended step-cooling treatment. The results of step-cooling studies show that the coarse grain rotor steels take longer time during service to reach a fully embrittled state than the fine grain rotor steels

  15. U.S. NRC Embrittlement Data Base (EDB)

    International Nuclear Information System (INIS)

    Pace, J.V.; Rosseel, T.M.; Wang, J.A.

    1999-01-01

    Large amounts of data obtained from surveillance capsules and test reactor experiments are needed, comprising many different materials and different irradiation conditions, to develop generally applicable damage prediction models that can be used for industry standards and regulatory guides. Version 1 of the Embrittlement Data Base (EDB) [I] is such a comprehensive collection of such data resulting from the merging of the Power Reactor Embrittlement Data Base (PR-EDB) [2] and the Test Reactor Embrittlement Data Base (TR-EDB) [3]. Fracture toughness data were also integrated into Version 1 of the EDB. The EDB data files are in dBASE format and can be accessed with a personal computer using the DOS or WINDOWS operating system. A utility program has been written to investigate radiation embrittlement using this data base. The utility program is used to retrieve and select specific data, manipulate data, display data to the screen or printer, and to tit and plot Charpy impact data

  16. Radiation embrittlement of PWR vessel supports

    International Nuclear Information System (INIS)

    Cheverton, R.D.; Robinson, G.C.; Pennell, W.E.; Nanstad, R.K.

    1989-01-01

    Several studies pertaining to radiation damage of PWR vessel supports were conducted between 1978 and 1987. During this period, apparently there was no reason to believe that low-temperature (<100 degree C) MTR embrittlement data were not appropriate for evaluating embrittlement of PWR vessel supports. However, late in 1986, data from the High Flux Isotope Reactor (HFIR) vessel surveillance program indicated that the embrittlement rates of the several HFIR vessel materials (A212-B, A350-LF3, A105-II) were substantially greater than anticipated on the basis of MTR data. Further evaluation of the HFIR data suggested that a fluence-rate effect was responsible for the apparent discrepancy, and shortly thereafter it became apparent that this rate effect was applicable to the evaluation of LWR vessel supports. As a result, the Nuclear Regulatory Commission (NRC) requested that the Oak Ridge National Laboratory (ORNL) evaluate the impact of the apparent embrittlement rate effect on the integrity of light-water-reactor (LWR) vessel supports. The purpose of the study was to provide an indication of whether the integrity of reactor vessel supports is likely to be challenged by radiation-induced embrittlement. The scope of the evaluation included correlation of the HFIR data for application to the evaluation of LWR vessel supports; a survey and cursory evaluation of all US LWR vessel support designs, selection of two plants for specific-plant evaluation, and a specific-plant evaluation of both plants to determine critical flaw sizes for their vessel supports. 19 refs., 8 figs., 2 tabs

  17. Role of hydrogen in stress corrosion cracking

    International Nuclear Information System (INIS)

    Louthan, M.R. Jr.

    1975-01-01

    Hydrogen embrittlement has been postulated as a cause of stress corrosion cracking in numerous alloy systems. Such an interrelationship is useful in design considerations because it permits the designer and working engineer to relate the literature from both fields to a potential environmental compatibility problem. The role of hydrogen in stress corrosion of high strength steels is described along with techniques for minimizing the susceptibility to hydrogen stress cracking. (U.S.)

  18. Irradiation embrittlement mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Torronen, K; Pelli, R; Planman, T; Valo, M [Technical Research Centre of Finland, Jyvaeskylae (Finland). Combustion and Thermal Engineering Lab.

    1994-12-31

    Mitigation methods for reducing the irradiation damage on pressure vessel materials are reviewed: load leakage loading schemes are commonly used in PWRs to mitigate reactor pressure vessel embrittlement; dummy assemblies have been applied in WWER 440-type and in some old western power plants, when exceptional fast embrittlement has been encountered; shielding of the pressure vessel has been developed, but is not in common use; pre-stressing the pressure vessel has been proposed for preventing PTS failures, but its applicability is not yet demonstrated. The large number of successful annealing treatments performed in WWER 440 type reactors as well as research on the effects of annealing treatments suggest applications for western PWRs. The emergency core cooling systems have been modified in WWER 440-type reactors in connection with other mitigation measures. (authors). 37 refs., 18 figs., 2 tabs.

  19. Irradiation embrittlement mitigation

    International Nuclear Information System (INIS)

    Torronen, K.; Pelli, R.; Planman, T.; Valo, M.

    1993-01-01

    Mitigation methods for reducing the irradiation damage on pressure vessel materials are reviewed: load leakage loading schemes are commonly used in PWRs to mitigate reactor pressure vessel embrittlement; dummy assemblies have been applied in WWER 440-type and in some old western power plants, when exceptional fast embrittlement has been encountered; shielding of the pressure vessel has been developed, but is not in common use; pre-stressing the pressure vessel has been proposed for preventing PTS failures, but its applicability is not yet demonstrated. The large number of successful annealing treatments performed in WWER 440 type reactors as well as research on the effects of annealing treatments suggest applications for western PWRs. The emergency core cooling systems have been modified in WWER 440-type reactors in connection with other mitigation measures. (authors). 37 refs., 18 figs., 2 tabs

  20. Hydrogen damage in metals, particularly in steels

    International Nuclear Information System (INIS)

    Funes, A.J.

    1982-03-01

    Hydrogen damage examples of practical interest for the engineer are presented, showing the scope of the problem and its importance in relation to technological development, particularly of CANDU reactor and of heavy water production plants. The fundamental triangle of the hydrogen embrittlement is established as follows: presence of hydrogen in the crystalline network, structure susceptible of damage, and effort. The initial collection of examples is classified in function of the observed effects. For the consideration of the causes of said effects three models of hydrogen interaction with the crystalline network are described, indicating their scopes and limitations. Then the use of the models is explained, both in order to obtain practical information (evaluation tests, acceptance and rejection criteria) and for the validation and improvement of the models themselves (study methods). Solutions for attenuating the hydrogen embrittlement and a programme of studies and tests are proposed to be carried out by the National Atomic Energy Commission. Among the latter, the local development of a microimpression method to detect the evaluation of absorbed hydrogen, comparable with the autoradiography of high resolution, and a mechanical test yielding results on fragility comparable with those obtained through the test of standard disks, are described. (M.E.L.) [es

  1. Hydrogen embrittlement of thermomechanically treated 18Ni Maraging steel

    International Nuclear Information System (INIS)

    Munford, J.W.; Rack, H.J.; Kass, W.J.

    1977-01-01

    The influence of thermomechanical treatments on susceptibility to cracking in 100 percent relative humidity air and low pressure (93.3 KPa) gaseous hydrogen has been investigated for 18Ni (350 ksi) Maraging steel. Two thermomechanical treatments were studied, ausforming and marforming and compared with the standard solution treated and aged material. Although little difference exists for the strength and toughness values between these treatments, a two to five-fold increase in the stress intensity threshold for cracking was found for both the ausformed and marformed material. A dramatic difference in cracking kinetics was also apparent as shown by the failure times at comparable stress intensities. Fractographic analysis showed that the primary fracture mode was 100 percent intergranular for the solution treated and aged samples while the ausform and marform failures were predominately quasi-cleavage or intergranular depending on orientation. Finally, permeation and diffusion measurements were conducted on the above materials and these results are correlated with the environmental cracking behavior

  2. Hydrogen embrittlement of thermomechanically treated 18Ni Maraging steel

    Energy Technology Data Exchange (ETDEWEB)

    Munford, J.W.; Rack, H.J.; Kass, W.J.

    1977-01-01

    The influence of thermomechanical treatments on susceptibility to cracking in 100 percent relative humidity air and low pressure (93.3 KPa) gaseous hydrogen has been investigated for 18Ni (350 ksi) Maraging steel. Two thermomechanical treatments were studied, ausforming and marforming and compared with the standard solution treated and aged material. Although little difference exists for the strength and toughness values between these treatments, a two to five-fold increase in the stress intensity threshold for cracking was found for both the ausformed and marformed material. A dramatic difference in cracking kinetics was also apparent as shown by the failure times at comparable stress intensities. Fractographic analysis showed that the primary fracture mode was 100 percent intergranular for the solution treated and aged samples while the ausform and marform failures were predominately quasi-cleavage or intergranular depending on orientation. Finally, permeation and diffusion measurements were conducted on the above materials and these results are correlated with the environmental cracking behavior.

  3. Radiation embrittlement of WWER-1000 reactor vessel steels

    International Nuclear Information System (INIS)

    Nikolaeva, A.V.; Nikolaev, Yu.A.; Kevorkyan, Yu.R.

    2001-01-01

    Results obtained on the blank samples of materials of the WWER-1000 vessels irradiated by low density neutron flux are discussed. Chemical composition of the materials is characterized by the low content of the impurities (copper and phosphorus) and high content of nickel. Dependence of the radiation embrittlement of the WWER-1000 vessel materials on metallurgic variables and damage dose is treated. The research showed that nickel largely enhanced the radiation embrittlement. New dependences for determination of the radiation embrittlement real rate of the WWER-1000 vessel materials and its conservative estimation were developed [ru

  4. Modeling irradiation embrittlement in reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Odette, G.R.

    1998-01-01

    As a result of the popularity of the Agencies report 'Neutron Irradiation Embrittlement of Reactor Pressure Vessel Steels' of 1975, it was decided that another report on this broad subject would be of use. In this report, background and contemporary views on specially identified areas of the subject are considered as self-contained chapters, written by experts. In chapter 10, numerical modeling of irradiation embrittlement in reactor vessel steels are introduced. Physically-based models are developed and their role in advancing the state-of-the-art of predicting irradiation embrittlement of RPV steels is stressed

  5. The effects of low fugacity hydrogen in duplex- and beta-annealed Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Tal-Gutelmacher, E.; Eliezer, D.; Eylon, D.

    2004-01-01

    Due to its excellent combination of a high strength/weight ratio and good corrosion behavior, Ti-6Al-4V alloys are ranked among the most important advanced materials for a variety of aerospace, chemical engineering, biomaterials, marine and commercial applications. However, in many of these technological applications, this alloy is exposed to environments which can act as sources of hydrogen, and severe problems may arise based on its susceptibility to hydrogen embrittlement. Even small hydrogen concentrations might lead to failure. Consequently, a comprehensive knowledge of hydrogen-trapping interactions is necessary to better understand the trapping mechanisms, the types of the trap sites, the trapped hydrogen content, in order to determine the safe service conditions of this alloy in the aerospace industry. The objective of this paper is to investigate the role of microstructure on hydrogen absorption/desorption behavior in Ti-6Al-4V alloy, with specific emphasis on the nature of the interaction between microstructural traps and hydrogen atoms. The effect of low fugacity hydrogen on the microstructure is studied using X-ray diffraction (XRD), and electron microscopy (SEM and TEM), while the absorption and desorption characteristics are determined by means of a hydrogen determinator and thermal desorption spectroscopy (TDS), respectively. The role of microstructure on hydrogen absorption and desorption behavior is discussed in detail

  6. Investigation of hydrogen bubbles behavior in tungsten by high-flux hydrogen implantation

    Science.gov (United States)

    Zhao, Jiangtao; Meng, Xuan; Guan, Xingcai; Wang, Qiang; Fang, Kaihong; Xu, Xiaohui; Lu, Yongkai; Gao, Jun; Liu, Zhenlin; Wang, Tieshan

    2018-05-01

    Hydrogen isotopes retention and bubbles formation are critical issues for tungsten as plasma-facing material in future fusion reactors. In this work, the formation and growing up behavior of hydrogen bubbles in tungsten were investigated experimentally. The planar TEM samples were implanted by 6.0keV hydrogens to a fluence of 3.38 ×1018 H ṡ cm-2 at room temperature, and well-defined hydrogen bubbles were observed by TEM. It was demonstrated that hydrogen bubbles formed when exposed to a fluence of 1.5 ×1018 H ṡ cm-2 , and the hydrogen bubbles grew up with the implantation fluence. In addition, the bubbles' size appeared larger with higher beam flux until saturated at a certain flux, even though the total fluence was kept the same. Finally, in order to understand the thermal annealing effect on the bubbles behavior, hydrogen-implanted samples were annealed at 400, 600, 800, and 1000 °C for 3 h. It was obvious that hydrogen bubbles' morphology changed at temperatures higher than 800 °C.

  7. Evaluation of hydrogen trapping mechanisms during performance of different hydrogen fugacity in a lean duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Silverstein, R., E-mail: barrav@post.bgu.ac.il [Department of Material Science and Engineering, Ben-Gurion University of the Negev, Beer-Sheva (Israel); Eliezer, D. [Department of Material Science and Engineering, Ben-Gurion University of the Negev, Beer-Sheva (Israel); Glam, B.; Eliezer, S.; Moreno, D. [Soreq Nuclear Research Center, Yavne, 81800 (Israel)

    2015-11-05

    Hydrogen trapping behavior in a lean duplex stainless steel (LDS) is studied by means of thermal desorption spectrometry (TDS). The susceptibility of a metal to hydrogen embrittlement is directly related to the trap characteristics: source or sink (reversible or irreversible, respectively). Since trapping affects the metal's diffusivity, it has a major influence on the hydrogen assisted cracking (HAC) phenomenon. It is known from previously published works that the susceptibility will depend on the competition between reversible and irreversible traps; meaning a direct relation to the hydrogen's initial state in the steel. In this research the trapping mechanism of LDS, exposed to different hydrogen charging environments, is analyzed by means of TDS. The TDS analysis was supported and confirmed by means of X-ray diffraction (XRD), hydrogen quantitative measurements and microstructural observations. It was found that gaseous charging (which produces lower hydrogen fugacity) creates ∼22% higher activation energy for hydrogen trapping compared with cathodic charging (which produces higher hydrogen fugacity). These results are due to the different effects on the hydrogen behavior in LDS which causes a major difference in the hydrogen contents and different hydrogen assisted phase transitions. The highest activation energy value in the cathodic charged sample was ascribed to the dominant phase transformation of γ → γ{sup ∗}, whereas in the gaseous charged sample it was ascribed to the dominant formation of intermetallic compound, sigma (σ). The relation between hydrogen distribution in LDS and hydrogen trapping mechanism is discussed in details. - Highlights: • The relation between hydrogen distribution and trapping in LDS is discussed. • Hydrogen's initial state in LDS causes different microstructural changes. • Gaseous charged LDS creates higher trapping energy compared to cathodic charged LDS. • The dominant phase transformation in

  8. The Synergetic Effects of Hydrogen and Oxygen on the Strength and Ductility of Vanadium Alloys

    Institute of Scientific and Technical Information of China (English)

    Chen Jiming(谌继明); Xu Ying(徐颖); Deng Ying(邓颖); Yang Ling(杨霖); Qiu Shaoyu(邱绍宇)

    2003-01-01

    A V4Ti alloy and several V4Cr4Ti alloys with different oxygen contents were studied on their tensile properties with the effect of hydrogen concentrations. The ductility of the alloys showed a successive decrease in a varied rate with an increased hydrogen concentration, while the ultimate tensile strength remained unchanged or even decreased for the high oxygen content alloy in spite of the occurrence of hardening in the low oxygen content alloy. Oxygen in the alloy causes grain boundary weakening, increasing the possibility of intergranular fractures and thus enhancing the hydrogen embrittlement. V4Ti showed a higher resistance to the hydrogen embrittlement as compared to the V4Cr4Ti alloys on a similar oxygen content level.

  9. Hydrogen pressure dependence of the fracture mode transition in nickel

    International Nuclear Information System (INIS)

    Jones, R.H.; Baer, D.R.; Bruemmer, S.M.; Thomas, M.T.

    1983-01-01

    A relationship between fracture mode, grain boundary composition, and hydrogen pressure has been determined for nickel straining electrode samples tested at cathodic potentials. This relationship can be expressed as C /SUB S/ α P /SUP -n/ /SUB H2/ where C /SUB S/ is the critical grain boundary sulfur concentration corresponding to 50% transgranular and 50% intergranular fracture and P /SUB H2/ is the hydrogen pressure. The value of n was found to be between 0.34 and 0.9. This expression was derived by relating C /SUB S/ to the hydrogen overpotential with the Nernst equation. At a cathodic test potential of -0.3 V (SCE), C /SUB S/ was equal to 0.20 monolayers of sulfur and at higher cathodic potentials or higher hydrogen pressures, C /SUB S/ decreased such that at -0.72 V (SCE) C /SUB S/ was equal to 0.045 monolayers of sulfur. The inverse hydrogen pressure dependence observed with cathodic hydrogen is similar to that for the hydrogen permeation rate or a critical hydrogen concentration derived by Gerberich et al. for gaseous hydrogen. This similarity between gaseous and cathodic hydrogen suggests that grain boundary impurities contribute to the hydrogen embrittlement process without altering the embrittlement process although this result does not indicate whether decohesion or plasticity dependent processes are responsible for the combined sulfur-hydrogen effect on the intergranular fracture of nickel

  10. Hydrogenation and high temperature oxidation of Zirconium claddings

    International Nuclear Information System (INIS)

    Novotny, T.; Perez-Feró, E.; Horváth, M.

    2015-01-01

    In the last few years a new series of experiments started for supporting the new LOCA criteria, considering the proposals of US NRC. The effects which can cause the embrittlement of VVER fuel claddings were reviewed and evaluated in the framework of the project. The purpose of the work was to determine how the fuel cladding’s hydrogen uptake under normal operating conditions, effect the behavior of the cladding under LOCA conditions. As a first step a gas system equipment with gas valves and pressure gauge was built, in which the zirconium alloy can absorb hydrogen under controlled conditions. In this apparatus E110 (produced by electrolytic method, currently used at Paks NPP) and E110G (produced by a new technology) alloys were hydrogenated to predetermined hydrogen contents. According the results of ring compression tests the E110G alloys lose their ductility above 3200 ppm hydrogen content. This limit can be applied to determine the ductile-brittle transition of the nuclear fuel claddings. After the hydrogenation, high temperature oxidation experiments were carried out on the E110G and E110 samples at 1000 °C and 1200 °C. 16 pieces of E110G and 8 samples of E110 with 300 ppm and 600 ppm hydrogen content were tested. The oxidation of the specimens was performed in steam, under isothermal conditions. Based on the ring compression tests load-displacement curves were recorded. The main objective of the compression tests was to determine the ductile-brittle transition. These results were compared to the results of our previous experiments where the samples did not contain hydrogen. The original claddings showed more ductile behavior than the samples with hydrogen content. The higher hydrogen content resulted in a more brittle mechanical behavior. However no significant difference was observed in the oxidation kinetics of the same cladding types with different hydrogen content. The experiments showed that the normal operating hydrogen uptake of the fuel claddings

  11. Updated embrittlement trend curve for reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Kirk, M.; Santos, C.; Eason, E.; Wright, J.; Odette, G.R.

    2003-01-01

    The reactor pressure vessels of commercial nuclear power plants are subject to embrittlement due to exposure to high energy neutrons from the core. Irradiation embrittlement of RPV belt-line materials is currently evaluated using US Regulatory Guide 1.99 Revision 2 (RG 1.99 Rev 2), which presents methods for estimating the Charpy transition temperature shift (ΔT30) at 30 ft-lb (41 J) and the drop in Charpy upper shelf energy (ΔUSE). A more recent embrittlement model, based on a broader database and more recent research results, is presented in NUREG/CR-6551. The objective of this paper is to describe the most recent update to the embrittlement model in NUREG/CR-6551, based upon additional data and increased understanding of embrittlement mechanisms. The updated ΔT30 and USE models include fluence, copper, nickel, phosphorous content, and product form; the ΔT30 model also includes coolant temperature, irradiation time (or flux), and a long-time term. The models were developed using multi-variable surface fitting techniques, understanding of the ΔT30 mechanisms, and engineering judgment. The updated ΔT30 model reduces scatter significantly relative to RG 1.99 Rev 2 on the currently available database for plates, forgings, and welds. This updated embrittlement trend curve will form the basis of revision 3 to Regulatory Guide 1.99. (author)

  12. The Test Reactor Embrittlement Data Base (TR-EDB)

    International Nuclear Information System (INIS)

    Stallmann, F.W.; Kam, F.B.K.; Wang, J.A.

    1993-01-01

    The Test Reactor Embrittlement Data Base (TR-EDB) is part of an ongoing program to collect test data from materials irradiations to aid in the research and evaluation of embrittlement prediction models that are used to assure the safety of pressure vessels in power reactors. This program is being funded by the US Nuclear Regulatory Commission (NRC) and has resulted in the publication of the Power Reactor Embrittlement Data Base (PR-EDB) whose second version is currently being released. The TR-EDB is a compatible collection of data from experiments in materials test reactors. These data contain information that is not obtainable from surveillance results, especially, about the effects of annealing after irradiation. Other information that is only available from test reactors is the influence of fluence rates and irradiation temperatures on radiation embrittlement. The first version of the TR-EDB will be released in fall of 1993 and contains published results from laboratories in many countries. Data collection will continue and further updates will be published

  13. Irradiation embrittlement of pressure vessel steels

    International Nuclear Information System (INIS)

    Brumovsky, M.; Vacek, M.

    1975-01-01

    A Standard Research Programme on Irradiation Embrittlement of Pressure Vessel Steels was approved by the Coordinating Meeting on the 12th May 1972 at the Working Group on Engineering Aspects of Irradiation Embrittlement of Pressure Vessel Steels. This Working Group was set up by the International Atomic Energy Agency in Vienna. Seven countries with their research institutes agreed on doing irradiation experiments according to the approved programme on steel A533 B from the U.S. HSST Programme. The Czechoslovak contribution covering tensile and impact testing of non-irradiated steel and steel irradiated at 280degC to 1.3 x 10 23 n/m 2 (E above 1 MeV) is presented in this report. As an additional part the same set of experiments was carried out on two additional steels - A 542 and A 543, made in SKODA Works for comparison of their irradiation embrittlement and hardening with A533 B steel. (author)

  14. The modelling of irradiation embrittlement in submerged-arc welds

    International Nuclear Information System (INIS)

    Bolton, C.J.; Buswell, J.T.; Jones, R.B.; Moskovic, R.; Priest, R.H.

    1996-01-01

    Until very recently, the irradiation embrittlement behavior of submerged-arc welds has been interpreted in terms of two mechanisms, namely a matrix damage component and an additional component due to the irradiation-enhanced production of copper-rich precipitates. However, some of the weld specimens from a recent accelerated re-irradiation experiment have shown high Charpy shifts which exceeded the values expected from the measured shift in yield stress. Microstructural examination has revealed the occurrence of intergranular fracture (IGF) in these specimens, accompanied by grain boundary segregation of phosphorus. Theoretical models were developed to predict the parametric dependence of irradiation-enhanced phosphorus segregation on experimental variables. Using these parametric forms, along with the concept of a critical level of segregation for the onset of IGF instead of cleavage, a three mechanism trend curve has been developed. The form of this trend curve, taking into account IGF as well as matrix and copper embrittlement, is thus mechanistically based. The constants in the equation, however, are obtained by a statistical fit to the actual Charpy shift database

  15. The liquid metal embrittlement of iron and ferritic steels in sodium

    International Nuclear Information System (INIS)

    Hilditch, J.P.; Hurley, J.R.; Tice, D.R.; Skeldon, P.

    1995-01-01

    The liquid metal embrittlement of iron and A508 III, 21/4Cr-1Mo and 15Mo3 steels in sodium at 200-400 o C has been studied, using dynamic straining at 10 -6 s -1 , in order to investigate the roles of microstructure and composition. The steels comprised bainitic, martensitic, tempered martensitic and ferritic/pearlitic microstructures. All materials were embrittled by sodium, the embrittlement being associated generally with quasicleavage on fracture surfaces. Intergranular cracking was also found with martensitic and ferritic/pearlitic microstructures. The susceptibility to embrittlement was greater in higher strength materials and at higher temperatures. The embrittlement was similar to that encountered previously in 9Cr steel, which depends upon the presence of non-metallic impurities in the sodium. (author)

  16. Embrittlement and life prediction of aged duplex stainless steel

    International Nuclear Information System (INIS)

    Kuwano, Hisashi

    1996-01-01

    The stainless steel, for which the durability for long term in high temperature corrosive environment is demanded, is a complex plural alloy. Cr heightens the oxidation resistance, Ni improves the ductility and impact characteristics, Si improves the fluidity of the melted alloy and heightens the resistance to stress corrosion cracking, and Mo suppresses the pitting due to chlorine ions. These alloy elements are in the state of nonequilibrium solid solution in Fe base at practical temperature, and cause aging phenomena such as segregation, concentration abnormality and precipitation during the use for long term. The characteristics of stainless steel deteriorate due to this. Two-phase stainless cast steel, the example of the embrittlement of the material for an actual machine, the accelerated test of embrittlement, the activation energy for embrittlement, and as the mechanism of aging embrittlement, the spinodal decomposition of ferrite, the precipitation of G phase and the precipitation of carbides and nitrides are described. Also in the welded parts of austenitic stainless steel, delta-ferrite is formed during cooling, therefore, the condition is nearly same as two-phase stainless steel, and the embrittlement due to long term aging occurs. (K.I.)

  17. Hydrogen terminal solubility in Zircaloy-4

    International Nuclear Information System (INIS)

    Vizcaino, Pablo; Banchik, Abrahan D.

    1999-01-01

    Terminal solubility temperature of hydrogen in zirconium and its alloys is an important parameter because hydrides precipitation embrittled these materials making them susceptible to the phenomenon known as retarded hydrogen cracking. This work continues the study presented in the 25 AATN Meeting. Within this framework, a study focused on determining these curves in recrystallized Zircaloy-4, using scanning differential calorimetric technique. Terminal solubility curves for Zircaloy-4 were constructed within a concentration range from 40 to 640 ppm in hydrogen weight and comparisons with results obtained by other authors were made. (author)

  18. New elements to understand hydrogen diffusion and trapping mechanisms in quenched and tempered HSLA martensitic steels

    International Nuclear Information System (INIS)

    Frappart, S.

    2011-01-01

    Hydrogen Embrittlement is a complex phenomenon responsible of metal degradation. It mainly depends on the material (chemical composition, heat treatment), the environment or the mechanical state. The main goal of this study is to give new elements to understand hydrogen diffusion and trapping mechanisms in High Strength Low Alloy martensitic steels used in the field of 'Oil and Gas' applications and nuclear industry. In this way, the purpose is to identify hydrogen trapping sites related to microstructural features as a basis for a better knowledge concerning hydrogen embrittlement. Thus, accurate electrochemical permeation set-up (with or without a mechanical state) were developed as well as a procedure to thoroughly analyze experimental data. An original approach on how to interpret electrochemical permeation results has been therefore performed. Afterward, the effect of different critical parameters has been assessed i.e. the membrane thickness, the surface state of the detection side as well as the microstructure and the mechanical state. The relationship between physical parameters associated to diffusion and trapping with the microstructure evolution will give rise to a first thought 'toward the embrittlement'

  19. Susceptibility of 2 1/4 Cr-1Mo steel to liquid metal induced embrittlement by lithium-lead solutions

    International Nuclear Information System (INIS)

    Eberhard, B.A.; Edwards, G.R.

    1984-08-01

    An investigation has been conducted on the liquid metal induced embrittlement susceptibility of 2 1/4Cr-1Mo steel exposed to lithium and 1a/o lead-lithium at temperatures between 190 0 C and 525 0 C. This research was part of an ongoing effort to evaluate the compatibility of liquid lithium solutions with potential fusion reactor containment materials. Of particular interest was the microstructure present in a weld heat-affected zone, a microstructure known to be highly susceptible to corrosive attack by liquid lead-lithium solutions. Embrittlement susceptibility was determined by conducting tension tests on 2 1/4Cr-1Mo steel exposed to an inert environment as well as to a lead-lithium liquid and observing the change in tensile behavior. The 2 1/4Cr-1Mo steel was also given a base plate heat treatment to observe its embrittlement susceptibility to 1a/o lead-lithium. The base plate microstructure was severely embrittled at temperatures less than 500 0 C. Tempering the base plate was effective in restoring adequate ductility to the steel

  20. Controlling hydrogen behavior in light water reactors

    International Nuclear Information System (INIS)

    Cullingford, H.S.; Edeskuty, F.J.

    1981-01-01

    In the aftermath of the incident at Three Mile Island Unit 2 (TMI-2), a new and different treatment of the Light Water Reactor (LWR) risks is needed for public safety because of the specific events involving hydrogen generation, transport, and behavior following the core damage. Hydrogen behavior in closed environments such as the TMI-2 containment building is a complex phenomenon that is not fully understood. Hence, an engineering approach is presented for prevention of loss of life, equipment, and environment in case of a large hydrogen generation in an LWR. A six-level defense strategy is described that minimizes the possibility of ignition of released hydrogen gas and otherwise mitigates the consequences of hydrogen release. Guidance is given to reactor manufacturers, utility companies, regulatory agencies, and research organizations committed to reducing risk factors and insuring safety of life, equipment, and environment

  1. Power Reactor Embrittlement Data Base

    International Nuclear Information System (INIS)

    Kam, F.B.K.; Stallmann, F.W.; Wang, J.A.

    1990-01-01

    Regulatory and research evaluations of embrittlement prediction models and of vessel integrity under load can be greatly expedited by the use of a well designed, computerized embrittlement data base. The Power Reactor Embrittlement Data Base (PR-EDB) is a comprehensive collection of data from surveillance reports and other published reports of commercial nuclear reactors. The uses of the data base require that as many different data as available are collected from as many sources as possible with complete references and that subsets of relevant data can be easily retrieved and processed. The objectives of this NRC-sponsored program are the following: (1) to compile and to verify the quality of the PR-EDB; (2) to provide user-friendly software to access and process the data; (3) to explore or confirm embrittlement prediction models; and (4) to interact with standards organizations to provide the technical bases for voluntary consensus standards that can be used in regulatory guides, standard review plans, and codes. To achieve these goals, the data base architecture was designed after much discussion and planning with prospective users, namely, material scientists and members of the research staff. The current compilation of the PR-EDB (Version 1) contains results from surveillance capsule reports of 78 reactors with 381 data points for 110 different irradiated base materials and 161 data points for 79 different welds. Results from heat-affected zone materials are also listed. The time and effort required to process and evaluate different types of data in the PR-EDB have been drastically reduced from previous data bases. The Electric Power Research Institute (EPRI), reactor vendors, and utilities are in the process of providing back-up quality assurance checks of PR-EDB and will be supplementing the data base with additional data and documentation

  2. Hydrogen pressure dependence of the fracture mode transition in nickel

    International Nuclear Information System (INIS)

    Jones, R.H.; Baer, D.R.; Bruemmer, S.M.; Thomas, M.T.

    1983-01-01

    A relationship between fracture mode, grain boundary composition, and hydrogen pressure has been determined for nickel straining electrode samples tested at cathodic potentials. This relationship can be expressed as C /SUB s/ α P /SUP -n/ /SUB H2/ where C /SUB s/ is the critical grain boundary sulfur concentration corresponding to 50 pct transgranular and 50 pct intergranular fracture and P /SUB H2/ is the hydrogen pressure. The value of n was found to be between 0.34 and 0.9. This expression was derived by relating C /SUB s/ to th hydrogen overpotential with the Nernst equation. At a cathodic test potential of -0.3 V (SCE). C /SUB s/ was equal to 0.20 monolayers of sulfur and at higher cathodic potentials or higher hydrogen pressures, C /SUB s/ decreased such that at -0.72 V (SCE) C /SUB s/ was equal to 0.045 monolayers of sulfur. The inverse hydrogen pressure dependence observed with cathodic hydrogen is similar to that for the hydrogen permeation rate or a critical hydrogen concentration derived by Gerberich et al. for gaseous hydrogen. This similarity between gaseous and cathodic hydrogen suggests that grain boundary impurities contribute to the hydrogen embrittlement process without altering the embrittlement process although this result does not indicate whether decohesion or plasticity dependent processes are responsible for the combined sulfur-hydrogen effect on the intergranular fracture of nickel

  3. Non-destructive evaluation of thermal aging embrittlement of duplex stainless steels

    International Nuclear Information System (INIS)

    Yi, Y.S.; Tomobe, T.; Watanabe, Y.; Shoji, T.

    1993-01-01

    The non-destructive evaluation procedure for detecting thermal aging embrittlement of cast duplex stainless steels has been investigated. As a novel measurement technique for the thermal aging embrittlement, an electrochemical method was used and anodic polarization behaviors were measured on new, service exposed, and laboratory aged materials and then were compared with the results of the mechanical tests and microstructural changes. During the polarization experiments performed in potassium hydroxide solution (KOH), M 23 C 6 carbides on phase boundary were preferentially dissolved, which was comfirmed by the SEM after polarization measurements. The preferential dissolution of M 23 C 6 carbides were obtained. Also, the non-destructive measurement and evaluation method of spinodal decomposition, which has been known as the primary mechanism of embrittlement inferrite phase, was reviewed. When the materials, where spinodal decomposition occurred, were polarized in an acetic acid solution (CH 3 COOH), larger critical anodic current densities were observed than those observed on new materials, and these results were consistent with the result of the microhardness measurement. Concerning these polarization results, a critical electric charge, which was required for stable passive films in passive metals, was defined and the relationship between the microstructural changes and this charge amount was reviewed under various polarization conditions in order to verify the polarization mechanism of the spinodally decomposed ferrite phase

  4. Mechanisms of liquid-metal embrittlement

    International Nuclear Information System (INIS)

    Popovich, V.V.

    1979-01-01

    The mechanism of the embrittlement of metals and alloys during deformation in contact with liquid metals are discussed. With 20Kh13 steel in a Pb-Sn melt and polycrystalline Al in the presence of various mercury solutions a.s examples, considered are the three main processes - adsorption, corrosion (dissolution), formation of new phases which cause the disintegration of materials under the action of liquid-metallic media. Presented are data on plastic ductile and strength properties of the above materials in the presence of liquid-metallic media. A model is described that takes into account the effect of the medium upon the plastic deformation and the part the medium plays in liquid-metallic embrittlement

  5. Structural effects of hydrogen action in the low alloy Mn-Ni-Mo (A508.3) steel

    International Nuclear Information System (INIS)

    Sozanska, M.; Maciejny, A.; Sojka, J.; Hyspecka, L.; Galland, J.

    1999-01-01

    The presented paper deals with the study of hydrogen embrittlement of A508.3 steel used in nuclear industry. The effects in hydrogen are investigated by means of tensile testes on hydrogen charged specimens. The degree of degradation of mechanical properties is the first and the most important criterion of susceptibility to hydrogen embrittlement. The second criterion represents changes in failure micro mechanisms provoked by presence of hydrogen in microstructure or in the surface fracture. For this steel, hydrogen provoked special defects called 'fish eyes' on surface fractures after tensile tests. 'Fish eyes' nucleated on course spherical non-metallic inclusions. Inclusions were identified in most cases as a complex oxides containing variable quantities namely Al, Mg, Si, and Ca, the outer shell being formed by (Ca, Mn)S. Special attention was given to the detailed metallographic analysis by means of light and scanning electron microscopy, including the methods of image analysis, local chemical analysis, quantitative metallography quantitative fractography. Metallographic methods are explained by nonmetallic inclusion morphology. Inclusions were evaluated by means of image analysis and the results obtained have shown inclusion content and their geometric characteristics. Fractographic methods are used in quantitative characteristic of different types of fracture surfaces (ductile, quasicleavage and 'fish eyes') and parameters of 'fish eyes' (their number per unit of fracture area, diameter, surface, shape). All results obtained in this way can be used to describe more precisely the specific mechanism of hydrogen embrittlement in A508.3 steel. (author)

  6. Estimation of embrittlement damage risk at neutron embrittled vessel constructions

    International Nuclear Information System (INIS)

    Staevski, K.; Madzharov, D.; Detistov, P.; Petrova, T.

    1998-01-01

    In this work a methodology based on Damage mechanics criteria is proposed. This methodology serves for probability assessment of the brittle damage risk for the neutron embrittled vessel elements. The developed methodology is realised in RISK code and has been verified on the base of tough reliability of the pressure vessel, 'Kozloduy' NPP Unit 2. This investigation has been carried out at the given parameters of the possible defects on the vessel's weld 4 taking into account requirements of the western and Russian standards. The obtained values for ductile to brittle transition temperatures, defining the equipment life-time in the presence of maximal defect, are in good consistence with the experimentally determined ones. The analyses of results show that the pressure vessel of 'Kozloduy' NPP Unit 2 has got a high level of reliability from brittle damage risk point of view and that the western standards give more conservative evaluation. On the bases of the results a conclusion is made that the developed methodology enables analysing the influence of possible defects in the neutron embrittled elements on their to reliability and their remained life-time

  7. Role of multiaxial stress state in the hydrogen-assisted rolling-contact fatigue in bearings for wind turbines

    Directory of Open Access Journals (Sweden)

    J. Toribio

    2015-07-01

    Full Text Available Offshore wind turbines often involve important engineering challenges such as the improvement of hydrogen embrittlement resistance of the turbine bearings. These elements frequently suffer the so-called phenomenon of hydrogen-assisted rolling-contact fatigue (HA-RCF as a consequence of the synergic action of the surrounding harsh environment (the lubricant supplying hydrogen to the material and the cyclic multiaxial stress state caused by in-service mechanical loading. Thus the complex phenomenon could be classified as hydrogen-assisted rolling-contact multiaxial fatigue (HA-RC-MF. This paper analyses, from the mechanical and the chemical points of view, the so-called ball-on-rod test, widely used to evaluate the hydrogen embrittlement susceptibility of turbine bearings. Both the stress-strain states and the steady-state hydrogen concentration distribution are studied, so that a better elucidation can be obtained of the potential fracture places where the hydrogen could be more harmful and, consequently, where the turbine bearings could fail during their life in service.

  8. Embrittlement of zircaloy cladding due to oxygen uptake (CBRTTL)

    International Nuclear Information System (INIS)

    Reymann, G.A.

    1979-02-01

    A model for embrittlement of zircaloy due to oxygen uptake at high temperatures is described. The model defines limits for oxygen content and temperature which, if exceeded, give rise to zircaloy cladding which is sufficiently embrittled to cause failure either on quenching or normal handling following a transient. A significant feature of this model is that the onset of embrittlement is dependent on the cooling rate. A distinction is made between slow and fast cooling, with the boundary at 100 K/s. The material property correlations and computer subcodes described in MATPRO are developed for use in Light Water Reactor (LWR) codes

  9. TR-EDB: Test Reactor Embrittlement Data Base, Version 1

    Energy Technology Data Exchange (ETDEWEB)

    Stallmann, F.W.; Wang, J.A.; Kam, F.B.K. [Oak Ridge National Lab., TN (United States)

    1994-01-01

    The Test Reactor Embrittlement Data Base (TR-EDB) is a collection of results from irradiation in materials test reactors. It complements the Power Reactor Embrittlement Data Base (PR-EDB), whose data are restricted to the results from the analysis of surveillance capsules in commercial power reactors. The rationale behind their restriction was the assumption that the results of test reactor experiments may not be applicable to power reactors and could, therefore, be challenged if such data were included. For this very reason the embrittlement predictions in the Reg. Guide 1.99, Rev. 2, were based exclusively on power reactor data. However, test reactor experiments are able to cover a much wider range of materials and irradiation conditions that are needed to explore more fully a variety of models for the prediction of irradiation embrittlement. These data are also needed for the study of effects of annealing for life extension of reactor pressure vessels that are difficult to obtain from surveillance capsule results.

  10. TR-EDB: Test Reactor Embrittlement Data Base, Version 1

    International Nuclear Information System (INIS)

    Stallmann, F.W.; Wang, J.A.; Kam, F.B.K.

    1994-01-01

    The Test Reactor Embrittlement Data Base (TR-EDB) is a collection of results from irradiation in materials test reactors. It complements the Power Reactor Embrittlement Data Base (PR-EDB), whose data are restricted to the results from the analysis of surveillance capsules in commercial power reactors. The rationale behind their restriction was the assumption that the results of test reactor experiments may not be applicable to power reactors and could, therefore, be challenged if such data were included. For this very reason the embrittlement predictions in the Reg. Guide 1.99, Rev. 2, were based exclusively on power reactor data. However, test reactor experiments are able to cover a much wider range of materials and irradiation conditions that are needed to explore more fully a variety of models for the prediction of irradiation embrittlement. These data are also needed for the study of effects of annealing for life extension of reactor pressure vessels that are difficult to obtain from surveillance capsule results

  11. Simulation of He embrittlement at grain boundaries in bcc transition metals

    Energy Technology Data Exchange (ETDEWEB)

    Suzudo, Tomoaki, E-mail: suzudo.tomoaki@jaea.go.jp; Yamaguchi, Masatake

    2015-10-15

    To investigate what atomic properties largely determine vulnerability to He embrittlement at grain boundaries (GB) of bcc metals, we introduce a computational model composed of first principles density functional theory and a He segregation rate theory model. Predictive calculations of He embrittlement at the first wall of the future DEMO fusion concept reactor indicate that variation in the He embrittlement originated not only from He production rate related to neutron irradiation, but also from the He segregation energy at the GB that has a systematic trend in the periodic table. - Highlights: • We modeled He grain boundary (GB) segregation of bcc transition metals using first-principles-based rate theory. • We established the quantitative relation between He embrittlement and He segregation using GB cohesive energy. • He embrittlement was strongly dependent on He segregation energy at the GB that has a systematic trend in the periodic table.

  12. Simulation of He embrittlement at grain boundaries in bcc transition metals

    International Nuclear Information System (INIS)

    Suzudo, Tomoaki; Yamaguchi, Masatake

    2015-01-01

    To investigate what atomic properties largely determine vulnerability to He embrittlement at grain boundaries (GB) of bcc metals, we introduce a computational model composed of first principles density functional theory and a He segregation rate theory model. Predictive calculations of He embrittlement at the first wall of the future DEMO fusion concept reactor indicate that variation in the He embrittlement originated not only from He production rate related to neutron irradiation, but also from the He segregation energy at the GB that has a systematic trend in the periodic table. - Highlights: • We modeled He grain boundary (GB) segregation of bcc transition metals using first-principles-based rate theory. • We established the quantitative relation between He embrittlement and He segregation using GB cohesive energy. • He embrittlement was strongly dependent on He segregation energy at the GB that has a systematic trend in the periodic table.

  13. Reverse mechanical after effect during hydrogenation of zone refined iron

    Energy Technology Data Exchange (ETDEWEB)

    Spivak, L.V.; Skryabina, N.E.; Kurmaeva, L.D.; Smirnov, L.V. (Permskij Gosudarstvennyj Univ. (USSR); AN SSSR, Sverdlovsk. Inst. Fiziki Metallov)

    1984-12-01

    The relationship between the process of hydrogenation and the reverse mechanical after effect (RMA) microplastic deformation in the zone refined iron has been studied. Metallographic investigations and mechanical testing of the samples hydrogenated under torsional strain have been performed. It is shown that in the zone refined iron the formation of voids responsible for irreversible hydrogen embrittlement does not occur, but the hydrogen-initiated RMA strain is conserved, i. e. the RMA effects are independent of the presence of discontinuities.

  14. Reactor pressure vessel embrittlement: Insights from neural network modelling

    Science.gov (United States)

    Mathew, J.; Parfitt, D.; Wilford, K.; Riddle, N.; Alamaniotis, M.; Chroneos, A.; Fitzpatrick, M. E.

    2018-04-01

    Irradiation embrittlement of steel pressure vessels is an important consideration for the operation of current and future light water nuclear reactors. In this study we employ an ensemble of artificial neural networks in order to provide predictions of the embrittlement using two literature datasets, one based on US surveillance data and the second from the IVAR experiment. We use these networks to examine trends with input variables and to assess various literature models including compositional effects and the role of flux and temperature. Overall, the networks agree with the existing literature models and we comment on their more general use in predicting irradiation embrittlement.

  15. Intrinsic ductility and environmental embrittlement of binary Ni3Al

    International Nuclear Information System (INIS)

    George, E.P.; Liu, C.T.; Pope, D.P.

    1993-01-01

    Polycrystalline, B-free Ni 3 Al (23.4 at.% Al), produced by cold working and recrystallizing a single crystal, exhibits room temperature tensile ductilities of 3-5% in air and 13-16% in oxygen. These ductilities are considerably higher than anything previously reported, and demonstrate that the 'intrinsic' ductility of Ni 3 Al is much higher than previously thought. They also show that the moisture present in ordinary ambient air can severely embrittle Ni 3 Al (ductility decreasing from a high of 16% in oxygen to a low of 3% in air). Fracture is predominantly intergranular in both air and oxygen. This indicates that, while moisture can further embrittle the GBs in Ni 3 Al, they persist as weak links even in the absence of environmental embrittlement. However, they are not 'intrinsically brittle' as once thought, since they can withstand relatively large plastic deformations prior to fracture. Because B essentially eliminates environmental embrittlement in Ni 3 Al - and environmental embrittlement is a major cause of poor ductility in B-free Ni 3 Al - it is concluded that a significant portion of the so-called B effect must be related to suppression of moisture-induced environmental embrittlement. However, since B-doped Ni 3 Al fractures transgranularly, whereas B-free Ni 3 Al fractures predominantly intergranularly, B must have the added effect that it strengthens the GBs. A comparison with the earlier work on Zr-doped Ni 3 Al shows that Zr improves the ductility of Ni 3 Al, both in air and (and even more dramatically) in oxygen. While the exact mechanism of this ductility improvement is not clear at present, Zr appears to have more of an effect on (enhancing) GB strength than on (suppressing) environmental embrittlement

  16. High Fluency Low Flux Embrittlement Models of LWR Reactor Pressure Vessel Embrittlement and a Supporting Database from the UCSB ATR-2 Irradiation Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Odette, G. Robert [Univ. of California, Santa Barbara, CA (United States)

    2017-01-24

    Reactor pressure vessel embrittlement may limit the lifetime of light water reactors (LWR). Embrittlement is primarily caused by formation of nano-scale precipitates, which cause hardening and a subsequent increase in the ductile-to-brittle transition temperature of the steel. While the effect of Cu has historically been the largest research focus of RPV embrittlement, there is increasing evidence that Mn, Ni and Si are likely to have a large effect at higher fluence, where Mn-Ni-Si precipitates can form, even in the absence of Cu. Therefore, extending RPV lifetimes will require a thorough understanding of both precipitation and embrittlement at higher fluences than have ever been observed in a power reactor. To address this issue, test reactors that irradiate materials at higher neutron fluxes than power reactors are used. These experiments at high neutron flux can reach extended life neutron fluences in only months or several years. The drawback of these test irradiations is that they add additional complexity to interpreting the data, as the irradiation flux also plays a role into both precipitate formation and irradiation hardening and embrittlement. This report focuses on developing a database of both microstructure and mechanical property data to better understand the effect of flux. In addition, a previously developed model that enables the comparison of data taken over a range of neutron flux is discussed.

  17. Relationship between thermal embrittlement and hydrogen cracking in 18Ni(250) maraging steel

    International Nuclear Information System (INIS)

    Rack, H.J.

    1974-01-01

    The role of grain boundary precipitate structure on the stress corrosion susceptibility of 18Ni(250) maraging steel was examined. Varying solution treatment procedures were used to achieve either a precipitate-free grain boundary or one containing a high density of Ti(C,N) particles. The introduction of these treatments, although drastically affecting the monotonic fracture toughness, did not significantly alter the stress corrosion threshold in 100 percent relative humidity. These results are shown to be consistent with the previous suggestion that, under open circuit conditions, hydrogen-assisted cracking controls the environmental crack growth behavior of 18Ni maraging steels. (U.S.)

  18. Hydrogen behavior in light-water reactors

    International Nuclear Information System (INIS)

    Berman, M.; Cummings, J.C.

    1984-01-01

    The Three Mile Island accident resulted in the generation of an estimated 150 to 600 kg of hydrogen, some of which burned inside the containment building, causing a transient pressure rise of roughly 200 kPa (2 atm). With this accident as the immediate impetus and the improved safety of reactors as the long-term goal, the nuclear industry and the Nuclear Regulatory Commission initiated research programs to study hydrogen behavior and control during accidents at nuclear plants. Several fundamental questions and issues arise when the hydrogen problem for light-water-reactor plants is examined. These relate to four aspects of the problem: hydrogen production; hydrogen transport, release, and mixing; hydrogen combustion; and prevention or mitigation of hydrogen combustion. Although much has been accomplished, some unknowns and uncertainties still remain, for example, the rate of hydrogen production during a degraded-core or molten-core accident, the rate of hydrogen mixing, the effect of geometrical structures and scale on combustion, flame speeds, combustion completeness, and mitigation-scheme effectiveness. This article discusses the nature and extent of the hydrogen problem, the progress that has been made, and the important unresolved questions

  19. Re-examining reactor vessel embrittlement at Chooz A

    International Nuclear Information System (INIS)

    Guilleret, J.-C.

    1988-01-01

    The Chooz A PWR experienced an extended shutdown in 1987/88 following indications that the reactor vessel was embrittling more rapidly than expected. Discrepancies between the expected rate and estimates of the actual rate were not easily explained. The huge body of work done since then to establish safety margins and support restart of the plant should provide a model for the owners of other older PWRs grappling with the embrittlement issue. (author)

  20. Diffusion of hydrogen into and through γ-iron by density functional theory

    Science.gov (United States)

    Chohan, Urslaan K.; Koehler, Sven P. K.; Jimenez-Melero, Enrique

    2018-06-01

    This study is concerned with the early stages of hydrogen embrittlement on an atomistic scale. We employed density functional theory to investigate hydrogen diffusion through the (100), (110) and (111) surfaces of γ-Fe. The preferred adsorption sites and respective energies for hydrogen adsorption were established for each plane, as well as a minimum energy pathway for diffusion. The H atoms adsorb on the (100), (110) and (111) surfaces with energies of ∼4.06 eV, ∼3.92 eV and ∼4.05 eV, respectively. The barriers for bulk-like diffusion for the (100), (110) and (111) surfaces are ∼0.6 eV, ∼0.5 eV and ∼0.7 eV, respectively. We compared these calculated barriers with previously obtained experimental data in an Arrhenius plot, which indicates good agreement between experimentally measured and theoretically predicted activation energies. Texturing austenitic steels such that the (111) surfaces of grains are preferentially exposed at the cleavage planes may be a possibility to reduce hydrogen embrittlement.

  1. Power Reactor Embrittlement Data Base

    International Nuclear Information System (INIS)

    Kam, F.B.K.; Stallmann, F.W.; Wang, J.A.

    1990-01-01

    Regulatory and research evaluations of embrittlement predication models and of pressure vessel integrity can be greatly expedited by the use of a well-designed, computerized data base. The Power Reactor Embrittlement Data Base (PR-EDB) is such a comprehensive collection of data for US commercial nuclear reactors. The Nuclear Regulatory Commission (NRC) has provided financial support, and the Electric Power Research Institute (EPRI) has provided technical assistance in the quality assurance (QA) of the data to establish an industry-wide data base that will be maintained and updated on a long-term basis. Successful applications of the data base to several of NRC's evaluations have received favorable response and support for its continuation. The future direction of the data base has been designed to include the test reactor and other types of data of interest to the regulators and the researchers. 1 ref

  2. PR-EDB: Power Reactor Embrittlement Database Version 3

    International Nuclear Information System (INIS)

    Wang, Jy-An John; Subramani, Ranjit

    2008-01-01

    The aging and degradation of light-water reactor pressure vessels is of particular concern because of their relevance to plant integrity and the magnitude of the expected irradiation embrittlement. The radiation embrittlement of reactor pressure vessel materials depends on many factors, such as neutron fluence, flux, and energy spectrum, irradiation temperature, and preirradiation material history and chemical compositions. These factors must be considered to reliably predict pressure vessel embrittlement and to ensure the safe operation of the reactor. Large amounts of data from surveillance capsules are needed to develop a generally applicable damage prediction model that can be used for industry standards and regulatory guides. Furthermore, the investigations of regulatory issues such as vessel integrity over plant life, vessel failure, and sufficiency of current codes, Standard Review Plans (SRPs), and Guides for license renewal can be greatly expedited by the use of a well-designed computerized database. The Power Reactor Embrittlement Database (PR-EDB) is such a comprehensive collection of data for U.S. designed commercial nuclear reactors. The current version of the PR-EDB lists the test results of 104 heat-affected-zone (HAZ) materials, 115 weld materials, and 141 base materials, including 103 plates, 35 forgings, and 3 correlation monitor materials that were irradiated in 321 capsules from 106 commercial power reactors. The data files are given in dBASE format and can be accessed with any personal computer using the Windows operating system. 'User-friendly' utility programs have been written to investigate radiation embrittlement using this database. Utility programs allow the user to retrieve, select and manipulate specific data, display data to the screen or printer, and fit and plot Charpy impact data. The PR-EDB Version 3.0 upgrades Version 2.0. The package was developed based on the Microsoft .NET framework technology and uses Microsoft Access for

  3. PR-EDB: Power Reactor Embrittlement Database - Version 3

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [ORNL; Subramani, Ranjit [ORNL

    2008-03-01

    The aging and degradation of light-water reactor pressure vessels is of particular concern because of their relevance to plant integrity and the magnitude of the expected irradiation embrittlement. The radiation embrittlement of reactor pressure vessel materials depends on many factors, such as neutron fluence, flux, and energy spectrum, irradiation temperature, and preirradiation material history and chemical compositions. These factors must be considered to reliably predict pressure vessel embrittlement and to ensure the safe operation of the reactor. Large amounts of data from surveillance capsules are needed to develop a generally applicable damage prediction model that can be used for industry standards and regulatory guides. Furthermore, the investigations of regulatory issues such as vessel integrity over plant life, vessel failure, and sufficiency of current codes, Standard Review Plans (SRPs), and Guides for license renewal can be greatly expedited by the use of a well-designed computerized database. The Power Reactor Embrittlement Database (PR-EDB) is such a comprehensive collection of data for U.S. designed commercial nuclear reactors. The current version of the PR-EDB lists the test results of 104 heat-affected-zone (HAZ) materials, 115 weld materials, and 141 base materials, including 103 plates, 35 forgings, and 3 correlation monitor materials that were irradiated in 321 capsules from 106 commercial power reactors. The data files are given in dBASE format and can be accessed with any personal computer using the Windows operating system. "User-friendly" utility programs have been written to investigate radiation embrittlement using this database. Utility programs allow the user to retrieve, select and manipulate specific data, display data to the screen or printer, and fit and plot Charpy impact data. The PR-EDB Version 3.0 upgrades Version 2.0. The package was developed based on the Microsoft .NET framework technology and uses Microsoft Access for

  4. Advance of investigation of irradiation embrittlement mechanism of nuclear reactor pressure vessel steels. History and future of irradiation embrittlement researches

    International Nuclear Information System (INIS)

    Ishino, Shiori

    2007-01-01

    The nuclear reactor pressure vessel is the most important component of LWR plants required to be safe. This paper describes contents of the title consisting of four chapters. The first chapter states the general theory of irradiation effects, irradiation embrittlement and decreasing of toughness, and some kinds of pressure vessel steels. The second chapter explains history of irradiation embrittlement investigations and the advance of research methods for experiments and calculation. The third chapter contains information of inner structure of irradiated materials and development of prediction equations, recent information of embrittlement mechanism and mechanism guided prediction method, USA model and Central Research Institute of Electric Power Industry (CRIEPI) model. The fourth chapter states recent problems from viewpoints of experimental and analytical approaches. Comparison of standards of LWR pressure vessel steels between Japan and USA, relation between the density of number of cluster and the copper content, effect of flux on clustering of copper atoms, and CRIEPI's way of approaching the prediction method are illustrated. (S.Y.)

  5. An internal-friction study of reactor-pressure-vessel steel embrittlement

    International Nuclear Information System (INIS)

    Ouytsel, K. van; Fabry, A.; Batist, R. de; Schaller, R.

    1997-01-01

    Within an enhanced commercial surveillance strategy, the nuclear-research institute SCK.CEN in Mol, Belgium is investigating, by means of internal friction, the microstructural processes responsible for embrittlement of pressure-vessel steels. The experiments were carried out using a torsion pendulum at the Ecole Polytechnique Federale de Lausanne in Switzerland. Amplitude-independent internal-friction experiments teach us that neutron irradiation induces defects which interact with mobile dislocations. Thermal ageing of JRQ and Doel-IV steel does not cause major embrittlement effects. Amplitude-dependent internal-friction experiments allow us to determine a critical amplitude which corresponds to the yield stress of the material as obtained from static tensile tests. The results also correspond to a three-component model for the yield strength taking into account both hardening and non-hardening embrittlement. Investigations of Doel-I-II weld material in different conditions reveal that embrittlement due to irradiation or thermal ageing can be interpreted in terms of a fine interplay between long- and short-range phenomena. (author)

  6. Hydrogen behavior in ice condenser containments

    Energy Technology Data Exchange (ETDEWEB)

    Lundstroem, P.; Hongisto, O. [Power Plant Lab., Helsinki (Finland); Theofanous, T.G. [Univ. of California, Santa Barbara, CA (United States)] [and others

    1995-09-01

    A new hydrogen management strategy is being developed for the Loviisa ice condenser containment. The strategy relies on containment-wide natural circulations that develop, once the ice condenser doors are forced open, to effectively produce a well-mixed behavior, and a correspondingly slow rise in hydrogen concentration. Levels can then be kept low by a distributed catalytic recombiner system, and (perhaps) an igniter system as a backup, while the associated energy releases can be effectively dissipated in the ice bed. Verification and fine-tuning of the approach is carried out experimentally in the VICTORIA facility and by associated scaling/modelling studies. VICTORIA represents an 1/15th scale model of the Loviisa containment, hydrogen is simulated by helium, and local concentration measurements are obtained by a newly developed instrument specifically for this purpose, called SPARTA. This paper is focused on experimental results from several key experiments that provide a first delineation of key behaviors.

  7. Grain boundary embrittlement and cohesion enhancement in copper

    Energy Technology Data Exchange (ETDEWEB)

    Paxton, Anthony; Lozovoi, Alexander [Atomistic Simulation Centre, Queen' s University Belfast, BT7 1NN (United Kingdom); Schweinfest, Rainer [Science+Computing ag, Hagellocher Weg 71-5, 720270 T ubingen (Germany); Finnis, Michael [Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom)

    2008-07-01

    There has been a long standing debate surrounding the mechanism of grain boundary embrittlement and cohesion enhancement in metals. Embrittlement can lead to catastrophic failure such as happened in the Hinkley Point disaster, or indeed in the case of the Titanic. This kind of embrittlement is caused by segregation of low solubility impurities to grain boundaries. While the accepted wisdom is that this is a phenomenon driven by electronic or chemical factors, using language such as charge transfer and electronegativity difference; we believe that in copper, at least, both cohesion enhancement and reduction are caused by a simple size effect. We have developed a theory that allows us to separate unambiguously, if not uniquely, chemical and structural factors. We have studied a large number of solutes in copper using first principles atomistic simulation to support this argument, and the results of these calculations are presented here.

  8. Compatibility between vandium-base alloys and flowing lithium: Partitioning of hydrogen at elevated temperatures

    International Nuclear Information System (INIS)

    Hull, A.B.; Chopra, O.K.; Loomis, B.; Smith, D.

    1989-12-01

    A major concern in fusion reactor design is possible hydrogen-isotope-induced embrittlement of structural alloys in the neutron environment expected in these reactors. Hydrogen fractionation occurs between lithium and various refractory metals according to a temperature-dependent distribution coefficient, K H , that is defined as the ration of the hydrogen concentration in the metallic specimen to that in the liquid lithium. In the present work, K H was determined for pure vanadium and several binary and ternary alloys, and the commercial Vanstar 7. Hydrogen distribution studies were performed in an austenitic steel forced-circulation lithium loop. Equilibrium concentrations of hydrogen in vanadium-base alloys exposed to flowing lithium at temperatures of 350 to 550 degree C were measured by inert gas fusion techniques and residual gas analysis. Thermodynamic calculations are consistent with the effect of chromium and titanium in the alloys on the resultant hydrogen fractionation. Experimental and calculated results indicate that K H values are very low; i.e., the hydrogen concentrations in the lithium-equilibrated vanadium-base alloy specimens are about two orders of magnitude lower than those in the lithium. Because of this low distribution coefficient, embrittlement of vanadium alloys by hydrogen in lithium would not be expected. 15 refs., 5 figs., 4 tabs

  9. Hydrogen pickup and redistribution in alpha-annealed Zircaloy-4

    International Nuclear Information System (INIS)

    Kammenzind, B.F.; Franklin, D.G.; Duffin, W.J.; Peters, H.R.

    1996-01-01

    Zircaloy-4, which is widely used as a core structural material in Pressurized-Water Reactors (PWR), picks up hydrogen during service. Hydrogen solubility in Zircaloy-4 is low and hydrides precipitate after the Zircaloy-4 matrix becomes supersaturated with hydrogen. These hydrides embrittle the Zircaloy-4. To study hydrogen pickup and concentration, a postirradiation nondestructive radiographic technique for measuring hydrogen concentration was developed and qualified. Experiments on hydrogen pickup were conducted in the Advanced Test Reactor (ATR). Ex-reactor tests were conducted to determine the conditions for which hydrogen would dissolve, migrate, and precipitate. Finally, a phenomenological model for hydrogen diffusion was indexed to the data. This presentation describes the equipment and the model, presents the results of experiments, and compares the model predictions to experimental results

  10. Effect of microplastic strain on hydrogen behaviour in steel and resistance to hydrogen embrittlement

    Energy Technology Data Exchange (ETDEWEB)

    Gribanova, L.I.; Sarrak, V.I.; Filippov, G.A.; Shlyafirner, A.M. (Tsentral' nyj Nauchno-Issledovatel' skij Inst. Chernoj Metallurgii, Moscow (USSR))

    1981-01-01

    A connection between the tendency to delayed fracture and resistance to microplastic deformation is studied in the presence of hydrogen on smooth samples of the 40Kh steel. Tests for delayed fracture have been carried out at the ''Instron'' machine. Two critical levels of strains during delayed fracture in the hydridation process are found out (sigmasub(cr1)=0.3sigmasub(0.2) and sigmasub(cr2)=0.5sigmasub(0.2)). At stresses below the sigmasub(cr1) hydrogen does not influence on the resistance to microplastic deformation of steel and does not cause delayed fracture. Propagation of cracks arising from defects occurring as a result of mutual effect of hydrogen and elastic stresses runs in the stress range from sigmasub(cr1) up to sigmasub(cr2). At stresses higher than sigmasub(cr2) the crack propagates from defects existing in the moment of hydridation process beginning.

  11. Hydrogen Assisted Cracking of High Strength Steel Welds

    Science.gov (United States)

    1988-05-01

    differs in general from the previous models in that hydrogen is assumed , to enhance local plasticity rather than truly embrittle the lattice. 5) Formation...measured. - The salient caracteristics of the IIW test include: - A 10mm X 15mm X 30mm specimen machined from mild steel with a sur- . .. face ground...hydrogen so %4. -. ,*. that a crack can grow under a lower applied stress. This theory has been criticized on the basis that the small but finite plastic

  12. Different approaches to estimation of reactor pressure vessel material embrittlement

    Directory of Open Access Journals (Sweden)

    V. M. Revka

    2013-03-01

    Full Text Available The surveillance test data for the nuclear power plant which is under operation in Ukraine have been used to estimate WWER-1000 reactor pressure vessel (RPV material embrittlement. The beltline materials (base and weld metal were characterized using Charpy impact and fracture toughness test methods. The fracture toughness test data were analyzed according to the standard ASTM 1921-05. The pre-cracked Charpy specimens were tested to estimate a shift of reference temperature T0 due to neutron irradiation. The maximum shift of reference temperature T0 is 84 °C. A radiation embrittlement rate AF for the RPV material was estimated using fracture toughness test data. In addition the AF factor based on the Charpy curve shift (ΔTF has been evaluated. A comparison of the AF values estimated according to different approaches has shown there is a good agreement between the radiation shift of Charpy impact and fracture toughness curves for weld metal with high nickel content (1,88 % wt. Therefore Charpy impact test data can be successfully applied to estimate the fracture toughness curve shift and therefore embrittlement rate. Furthermore it was revealed that radiation embrittlement rate for weld metal is higher than predicted by a design relationship. The enhanced embrittlement is most probably related to simultaneously high nickel and high manganese content in weld metal.

  13. Influence of a cyclic load on the embrittlement kinetics of alloys by the example of the 475 C embrittlement of duplex steel and the dynamic embrittlement of a nickel base alloy; Einfluss einer zyklischen Belastung auf die Versproedungskinetik von Legierungen am Beispiel der 475 C-Versproedung von Duplexstahl und der dynamischen Versproedung einer Nickelbasislegierung

    Energy Technology Data Exchange (ETDEWEB)

    Wackermann, Ken

    2015-07-07

    The objective of this study was to investigate the dependence of high temperature embrittlement mechanisms on high temperature fatigue and vice versa. As model embrittlement mechanisms the 475 C Embrittlement of ferritic austenitic duplex stainless steel (1.4462) and the Dynamic Embrittlement of nickel-based superalloys (IN718) were selected. The 475 C Embrittlement is a thermally activated decomposition of the ferritic phase which hardens the material. In contrast to this a cyclic plastic deformation weakens the steel by a deformation-induced dissolution of the decomposition. Fatigue tests with different frequencies, loading amplitudes at room temperature and at 475 C with Duplex Stainless Steel in different states of embrittlement show that the ongoing 475 C Embrittlement and the deformation-induced dissolution are competing mechanisms. It depends on the frequency, the loading amplitude and the temperature which mechanism is dominant. Applying the model of the yield stress distribution function to the hysteresis branches of the fatigue tests allows an analysis of the fatigue behaviour of each phase individually. This analysis shows that the global fatigue behaviour for the test conditions applied in this study is mainly controlled by the ferritic phase. According to the existing understanding of Dynamic Embrittlement it is an oxygen grain boundary diffusion arising by tensile stress at elevated temperatures with the result of a fast intercrystalline crack propagation. In reference tests under vacuum conditions without oxygen grain boundary diffusion, a slow transcrystalline fracture appears. To analyse the Dynamic Embrittlement, the crack propagation was tested at 650 C with different frequencies and superimposed hold times in the fatigue cycle at maximum stress. The results shows that the existing model of Dynamic Embrittlement needs to be adapted to the effects of cyclic plastic deformation. In hold times, the oxygen grain boundary diffusion in front of the

  14. Fatigue behavior of niobium--hydrogen alloys

    International Nuclear Information System (INIS)

    Chung, D.W.; Stoloff, N.S.

    1978-01-01

    The effects of hydrogen on room temperature fatigue behavior of niobium were investigated under both high frequency stress control and low frequency strain control conditions, in air. Hydrogen markedly improved the fatigue life in high frequency tests, while low frequency tests resulted in decreased fatigue life with increasing hydrogen content. Notches in hydrogen-charged alloys reduced high cycle life significantly but had little effect on low cycle tests. Fracture surfaces of annealed niobium mainly exhibited striations, with numerous cracks originating at troughs of striated bands in both stress and strain control tests. The fracture mode for alloys with hydrogen in solution was mixed, with striations interspersed with cleavage facets at high frequencies but generally cleavage steps at low frequencies. For the hydrided alloys, distinctive steps of mixed ductile-brittle appearance were revealed under high frequency conditions, but large cleavage facets only were observed for low frequency tests. The results are discussed in terms of the effects of hydrogen on the cyclic strain hardening rate, as well as on fatigue strength and ductility of niobium

  15. Reactor pressure vessel embrittlement of NPP borssele: Design lifetime and lifetime extension

    International Nuclear Information System (INIS)

    Blom, F.J.

    2007-01-01

    Embrittlement of the reactor pressure vessel of the Borssele nuclear power plant has been investigated taking account of the design lifetime of 40 years and considering 20 years subsequent lifetime extension. The paper presents the current licensing status based on considerations of material test data and of US nuclear regulatory standards. Embrittlement status is also evaluated against German and French nuclear safety standards. Results from previous fracture toughness and Charpy tests are investigated by means of the Master curve toughness transition approach. Finally, state of the art insights are investigated by means of literature research. Regarding the embrittlement status of the reactor pressure vessel of Borssele nuclear power plant it is concluded that there is a profound basis for the current license up to the original end of the design life in 2013. The embrittlement temperature changes only slightly with respect to the acceptance criterion adopted postulating further operation up to 2033. Continued safe operation and further lifetime extension are therefore not restricted by reactor pressure vessel embrittlement

  16. Fabrication characteristics and hydrogenation behavior of hydrogen storage alloys for sealed Ni-MH batteries

    Science.gov (United States)

    Kim, Ho-Sung; Kim, Jeon Min; Kim, Tae-Won; Oh, Ik-Hyun; Choi, Jeon; Park, Choong Nyeon

    2008-08-01

    Hydrogen storage alloys based on LmNi4.2Co0.2Mn0.3Al0.3 were fabricated to study the equilibrium hydrogen pressure and electrochemical performance. The surface morphology and structure of the alloys were analyzed by SEM and XRD, and then the hydrogenation behaviors of all alloys were evaluated by PCT and electrochemical half-cell. We studied the hydrogenation behavior of the Lm-based alloy with changes in composition elements such as Mn, Al, and Co and investigated the optimal design for Lm-based alloy in a sealed battery system. As a result of studying the hydrogenation characterization of alloys with the substitution elements, hydrogen storage alloys such as LmNi3.75Co0.15Mn0.5Al0.3 and LmNi3.5Co0.5Mn0.5Al0.5 were obtained to correspond with the characteristics of a sealed battery with a higher capacity, long life cycle, lower internal pressure, and lower battery cost. The capacity preservation rate of LmNi3.5Co0.5Mn0.5Al0.5 was greatly improved to 92.7% (255 mAh/g) at 60 cycles, indicating a low equilibrium hydrogen pressure of 0.03 atm in PCT devices.

  17. Hydrogen-related challenges for the steelmaker: the search for proper testing

    Science.gov (United States)

    Thiessen, R. G.

    2017-06-01

    The modern steelmaker of advanced high-strength steels has always been challenged with the conflicting targets of increased strength while maintaining or improving ductility. These new steels help the transportation sector, including the automotive sector, to achieve the goals of increased passenger safety and reduced emissions. With increasing tensile strengths, certain steels exhibit an increased sensitivity towards hydrogen embrittlement (HE). The ability to characterize the material's sensitivity in an as-delivered condition has been developed and accepted (SEP1970), but the complexity of the stress states that can induce an embrittlement together with the wide range of applications for high-strength steels make the development of a standardized test for HE under in-service conditions extremely challenging. Some proposals for evaluating the material's sensitivity give an advantage to materials with a low starting ductility. Despite this, newly developed materials can have a higher original elongation with only a moderate reduction in elongation due to hydrogen. This work presents a characterization of new materials and their sensitivity towards HE. This article is part of the themed issue 'The challenges of hydrogen and metals'.

  18. Models for embrittlement recovery due to annealing of reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Eason, E.D.; Wright, J.E.; Nelson, E.E.; Odette, G.R.; Mader, E.V.

    1995-05-01

    The reactor pressure vessel (RPV) surrounding the core of a commercial nuclear power plant is subject to embrittlement due to exposure to high energy neutrons. The effects of irradiation embrittlement can be reduced by thermal annealing at temperatures higher than the normal operating conditions. However, a means of quantitatively assessing the effectiveness of annealing for embrittlement recovery is needed. The objective of this work was to analyze the pertinent data on this issue and develop quantitative models for estimating the recovery in 30 ft-lb (41 J) Charpy transition temperature and Charpy upper shelf energy due to annealing. Data were gathered from the Test Reactor Embrittlement Data Base and from various annealing reports. An analysis data base was developed, reviewed for completeness and accuracy, and documented as part of this work. Independent variables considered in the analysis included material chemistries, annealing time and temperature, irradiation time and temperature, fluence, and flux. To identify important variables and functional forms for predicting embrittlement recovery, advanced statistical techniques, including pattern recognition and transformation analysis, were applied together with current understanding of the mechanisms governing embrittlement and recovery. Models were calibrated using multivariable surface-fitting techniques. Several iterations of model calibration, evaluation with respect to mechanistic and statistical considerations, and comparison with the trends in hardness data produced correlation models for estimating Charpy upper shelf energy and transition temperature after irradiation and annealing. This work provides a clear demonstration that (1) microhardness recovery is generally a very good surrogate for shift recovery, and (2) there is a high level of consistency between the observed annealing trends and fundamental models of embrittlement and recovery processes

  19. Study on prediction model of irradiation embrittlement for reactor pressure vessel steel

    International Nuclear Information System (INIS)

    Wang Rongshan; Xu Chaoliang; Huang Ping; Liu Xiangbing; Ren Ai; Chen Jun; Li Chengliang

    2014-01-01

    The study on prediction model of irradiation embrittlement for reactor pres- sure vessel (RPV) steel is an important method for long term operation. According to the deep analysis of the previous prediction models developed worldwide, the drawbacks of these models were given and a new irradiation embrittlement prediction model PMIE-2012 was developed. A corresponding reliability assessment was carried out by irradiation surveillance data. The assessment results show that the PMIE-2012 have a high reliability and accuracy on irradiation embrittlement prediction. (authors)

  20. A study on hazard types occurring in hydrogen facilities

    International Nuclear Information System (INIS)

    Cho, Nam Chul; Jae, Moo Sung; Eon, Yang Joon

    2004-01-01

    Hydrogen has ideal characteristics as an energy carrier. Hydrogen can be used as a clean fuel in a variety of energy end-use sectors including the conversion to electricity. After combustion, it produces only water. Therefore, the concept of hydrogen energy system has attracted much interest worldwide. But hydrogen has a defect that the explosion risk is high to an inflammable gas of a colorless, tasteless and odorless. Therefore, to use the hydrogen to the source of energy, hydrogen accident sequences and causes analysis must be needed. For this, hazard types occurring in hydrogen facilities have been considered through the case of domestic and foreign hydrogen accident in this study and hazard types to be considered are ignition, leaks, hydrogen dispersion, fire an explosion, storage vessel failure, vent and exhaust system, purging, condensation of air, hydrogen embrittlement, physiological hazard, and collisions during transportation

  1. The low-temperature aging embrittlement in a 2205 duplex stainless steel

    International Nuclear Information System (INIS)

    Weng, K.L.; Chen, H.R.; Yang, J.R.

    2004-01-01

    The effect of isothermal treatment (at temperatures ranging between 400 and 500 deg. C) on the embrittlement of a 2205 duplex stainless steel (with 45 ferrite-55 austenite, vol.%) has been investigated. The impact toughness and hardness of the aged specimens were measured, while the corresponding fractography was studied. The results show that the steel is susceptible to severe embrittlement when exposed at 475 deg. C; this aging embrittlement is analogous with that of the ferritic stainless steels, which is ascribed to the degenerated ferrite phase. High-resolution transmission electron microscopy reveals that an isotropic spinodal decomposition occurred during aging at 475 deg. C in the steel studied; the original δ-ferrite decomposed into a nanometer-scaled modulated structure with a complex interconnected network, which contained an iron-rich BCC phase (α) and a chromium-enriched BCC phase (α'). It is suggested that the locking of dislocations in the modulated structure leads to the severe embrittlement

  2. Reactor pressure vessel embrittlement management through EPRI-Developed material property databases

    International Nuclear Information System (INIS)

    Rosinski, S.T.; Server, W.L.; Griesbach, T.J.

    1997-01-01

    Uncertainties and variability in U.S. reactor pressure vessel (RPV) material properties have caused the U.S. Nuclear Regulatory Commission (NRC) to request information from all nuclear utilities in order to assess the impact of these data scatter and uncertainties on compliance with existing regulatory criteria. Resolving the vessel material uncertainty issues requires compiling all available data into a single integrated database to develop a better understanding of irradiated material property behavior. EPRI has developed two comprehensive databases for utility implementation to compile and evaluate available material property and surveillance data. RPVDATA is a comprehensive reactor vessel materials database and data management program that combines data from many different sources into one common database. Searches of the data can be easily performed to identify plants with similar materials, sort through measured test results, compare the ''best-estimates'' for reported chemistries with licensing basis values, quantify variability in measured weld qualification and test data, identify relevant surveillance results for characterizing embrittlement trends, and resolve uncertainties in vessel material properties. PREP4 has been developed to assist utilities in evaluating existing unirradiated and irradiated data for plant surveillance materials; PREP4 evaluations can be used to assess the accuracy of new trend curve predictions. In addition, searches of the data can be easily performed to identify available Charpy shift and upper shelf data, review surveillance material chemistry and fabrication information, review general capsule irradiation information, and identify applicable source reference information. In support of utility evaluations to consider thermal annealing as a viable embrittlement management option, EPRI is also developing a database to evaluate material response to thermal annealing. Efforts are underway to develop an irradiation

  3. Agglomeration Versus Localization Of Hydrogen In BCC Fe Vacancies

    International Nuclear Information System (INIS)

    Simonetti, S.; Juan, A.; Brizuela, G.; Simonetti, S.

    2006-01-01

    Severe embrittlement can be produced in many metals by small amounts of hydrogen. The interactions of hydrogen with lattice imperfections are important and often dominant in determining the influence of this impurity on the properties of solids. The interaction between four-hydrogen atoms and a BCC Fe structure having a vacancy has been studied using a cluster model and a semiempirical method. For a study of sequential absorption, the hydrogen atoms were positioned in their energy minima configurations, near to the tetrahedral sites neighbouring the vacancy. VH 2 and VH 3 complexes are energetically the most stables in BCC Fe. The studies about the stability of the hydrogen agglomeration gave as a result that the accumulation is unfavourable in complex vacancy-hydrogen with more than three atoms of hydrogen. (authors)

  4. Development of neutron irradiation embrittlement correlation of reactor pressure vessel materials of light water reactors

    International Nuclear Information System (INIS)

    Soneda, Naoki; Dohi, Kenji; Nomoto, Akiyoshi; Nishida, Kenji; Ishino, Shiori

    2007-01-01

    A large amount of surveillance data of the RPV embrittlement of the Japanese light water reactors have been compiled since the current Japanese embrittlement correlation has been issued in 1991. Understanding on the mechanisms of the embrittlement has also been greatly improved based on both experimental and theoretical studies. CRIEPI and the Japanese electric power utilities have started research project to develop a new embrittlement correlation method, where extensive study of the microstructural analyses of the surveillance specimens irradiated in the Japanese commercial reactors has been conducted. The new findings obtained from the experimental study are that the formation of solute-atom clusters with little or no copper is responsible for the embrittlement in low-copper materials, and that the flux effect exists especially in high-copper materials and this is supported by the difference in the microstructure of the high-copper materials irradiated at different fluxes. Based on these new findings, a new embrittlement correlation method is formulated using rate equations. The new methods has higher prediction capability than the current Japanese embrittlement correlation in terms of smaller standard deviation as well as smaller mean value of the prediction error. (author)

  5. Cathodic hydrogen charging of zinc

    International Nuclear Information System (INIS)

    Panagopoulos, C.N.; Georgiou, E.P.; Chaliampalias, D.

    2014-01-01

    Highlights: •Incorporation of hydrogen into zinc and formation of zinc hydrides. •Investigation of surface residual stresses due to hydrogen diffusion. •Effect of hydrogen diffusion and hydride formation on mechanical properties of Zn. •Hydrogen embrittlement phenomena in zinc. -- Abstract: The effect of cathodic hydrogen charging on the structural and mechanical characteristics of zinc was investigated. Hardening of the surface layers of zinc, due to hydrogen incorporation and possible formation of ZnH 2 , was observed. In addition, the residual stresses brought about by the incorporation of hydrogen atoms into the metallic matrix, were calculated by analyzing the obtained X-ray diffraction patterns. Tensile testing of the as-received and hydrogen charged specimens revealed that the ductility of zinc decreased significantly with increasing hydrogen charging time, for a constant value of charging current density, and with increasing charging current density, for a constant value of charging time. However, the ultimate tensile strength of this material was slightly affected by the hydrogen charging procedure. The cathodically charged zinc exhibited brittle transgranular fracture at the surface layers and ductile intergranular fracture at the deeper layers of the material

  6. Neutron irradiation embrittlement of reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Steele, L.E.

    1975-01-01

    The reliability of nuclear power plants depends on the proper functioning of complex components over the whole life on the plant. Particular concern for reliability is directed to the primary pressure boundary. This report focuses on the portion of the primary system exposed to and significantly affected by neutron radiation. Experimental evidence from research programmes and from reactor surveillance programmes has indicated radiation embrittlement of a magnitude sufficient to raise doubts about reactor pressure vessel integrity. The crucial nature of the primary vessel function heightens the need to be alert to this problem, to which, fortunately, there are positive aspects: for example, steels have been developed which are relatively immune to radiation embrittlement. Further, awareness of such embrittlement has led to designs which can accomodate this factor. The nature of nuclear reactors, of the steels used in their construction, and of the procedures for interpreting embrittlement and minimizing the effects are reviewed with reference to the reactors that are expected to play a major role in electric power production from now to about the turn of the century. The report is intended as a manual or guidebook; the aim has been to make each chapter or major sub-division sufficiently comprehensive and self-contained for it to be understood and read independently of the rest of the book. At the same time, it is hoped that the whole is unified enough to make a complete reading useful and interesting to the several classes of reader that are involved with only specific aspects of the topic

  7. Survey of irradiation embrittlement effects on the mechanical properties of alloyed steels

    International Nuclear Information System (INIS)

    Gillemot, F.

    1992-01-01

    In the everyday engineering practice the neutron irradiation embrittlement of the PWR wall materials is measured by empirical methods like Charpy impact testing. New developments in fracture mechanics are given better material characteristics. The use of Absorbed Specific Fracture Energy Measured on tensile bars is a promising way to solve the problem. On the other hand the IAEA runs coordinated research program to correlate the chemical analysis with the rate of the neutron embrittlement. Better understanding of the physics of neutron embrittlement should help the life time management of the PWR vessels

  8. Correlation methodology for predicting in-service irradiation embrittlement of reactor pressure vessels

    International Nuclear Information System (INIS)

    Odette, G.R.

    1980-01-01

    Irradiation embrittlement of reactor pressure steels is the consequence of altered microstructure due to both irradiation and time-at-temperature. Relatively poor characterisation of the initial microstructure and chemistry, and inaccurate dosimetry and temperature control, as well as failure properly to correlate these variables, have all contributed to a very large scatter in the experimental embrittlement data base. This has made improvement of the basic understanding of embrittlement very difficult. Therefore, it is necessary to develop a more realistic approach to utilising the data base. This is discussed, and proposals are made. (author)

  9. Investigations of low-temperature neutron embrittlement of ferritic steels

    International Nuclear Information System (INIS)

    Farrell, K.; Mahmood, S.T.; Stoller, R.E.; Mansur, L.K.

    1992-01-01

    Investigations were made into reasons for accelerated embrittlement of surveillance specimens of ferritic steels irradiated at 50C at the High Flux Isotope Reactor (HFIR) pressure vessel. Major suspects for the precocious embrittlement were a highly thermalized neutron spectrum,a low displacement rate, and the impurities boron and copper. None of these were found guilty. A dosimetry measurement shows that the spectrum at a major surveillance site is not thermalized. A new model of matrix hardening due to point defect clusters indicates little effect of displacement rate at low irradiation temperature. Boron levels are measured at 1 wt ppM or less, inadequate for embrittlement. Copper at 0.3 wt % and nickel at 0.7 wt % are shown to promote radiation strengthening in iron binary alloys irradiated at 50 to 60C, but no dependence on copper and nickel was found in steels with 0.05 to 0.22% Cu and 0.07 to 3.3% Ni. It is argued that copper impurity is not responsible for the accelerated embrittlement of the HFIR surveillance specimens. The dosimetry experiment has revealed the possibility that the fast fluence for the surveillance specimens may be underestimated because the stainless steel monitors in the surveillance packages do not record an unexpected component of neutrons in the spectrum at energies just below their measurement thresholds of 2 to 3 MeV

  10. Embrittling effects of residual elements on steels

    International Nuclear Information System (INIS)

    Brear, J.M.; King, B.L.

    1979-01-01

    In a review of work related to reheat cracking in nuclear pressure vessel steels, Dhooge et al referred to work of the authors on the relative embrittling parameter for SA533B steels. The poor agreement when these parameters were applied to creep ductility data for SA508 class 2 lead the reviewers to conclude that the relative importance of impurity elements is a function of base alloy composition. The authors briefly describe some of their more recent work which demonstrates that when various mechanical, and other, effects are taken into consideration, the relative effects of the principal residual elements are similar, despite differing base compositions, and that the embrittling parameters derived correlate well with the data for SA Class 2 steel. (U.K.)

  11. Determination of hydrogen in metals and alloys

    International Nuclear Information System (INIS)

    Sayi, Y.S.; Ramanjaneyulu, P.S.; Ramakumar, K.L.

    2008-01-01

    Hydrogen will be invariably present in all materials. Its presence in excess is harmful and sometimes calamitous. Hydrogen embrittlement can occur quite readily in most high strength materials, irrespective of their composition or structure. It is therefore essential to maintain low levels of hydrogen. To know the amount of hydrogen present in the materials, it is essential to determine it with high degree of precision and accuracy. It is required to give the uncertainty associated with the measurement to increase the confidence on measurements. Several methodologies are available for the determination of hydrogen. It its isotope, deuterium, also co-exists it becomes all the more difficult to determine these individually. Hot vacuum extraction cum quadrupole mass spectrometry (HVE-QMS) developed in our laboratory to determine hydrogen and deuterium is routinely employed for the determination of hydrogen and deuterium in metals and alloys. The present paper deals in detail about our experiences with HVE-QMS and estimation of uncertainty associated in this methodology. (author)

  12. A study of hydrogen cracking in metals by the acoustoelasticity method

    Science.gov (United States)

    Alekseeva, E. L.; Belyaev, A. K.; Pasmanik, L. A.; Polyanskiy, A. M.; Polyanskiy, V. A.; Tretiakov, D. A.; Yakovlev, Yu. A.

    2017-12-01

    The results of the study of acoustic anisotropy distribution in samples with preliminary hydrogenation during the standard HIC test are presented in the article. It is shown experimentally that there is a monotonic relationship between the hydrogenation time and the average acoustic anisotropy. This result allows us to apply the method of acoustoelasticity to the technical diagnostics of structures, parts and units of machines for hydrogen embrittlement and hydrogen cracking. In contrast, the results of direct measurements of the hydrogen concentration in samples depend on many factors, such as the holding time of the sample after extraction from the electrolyte. This uncertainty does not allow one to establish clear correlations between the measured concentrations of hydrogen and the presence of hydrogen-induced microcracks.

  13. A study on hydrogen adsorption behaviors of open-tip carbon nanocones

    International Nuclear Information System (INIS)

    Liao Mingliang

    2012-01-01

    Hydrogen adsorption behaviors of single-walled open-tip (tip-truncated) carbon nanocones (CNCs) with apex angles of 19.2° at temperatures of 77 and 300 K were investigated by the molecular dynamics simulations. Four nanomaterials (including three CNCs with different dimensions and a reference CNT) were analyzed to examine the hydrogen adsorption behaviors and influences of cone sharpness on the behaviors of the CNCs. Physisorption of hydrogen molecules could be observed from the distribution pattern of the hydrogen molecules adsorbed on the nanomaterials. Because of the cone geometry effect, the open-tip CNCs could have larger storage weight percentage and less desorption of hydrogen molecules (caused by the temperature growth) on their outer surfaces, as compared with those of the reference CNT. The hydrogen molecules inside the CNCs and the reference CNT, however, were noted to have similar desorption behaviors owing to the confinement effects from the structures of the nanomaterials. In addition, the sharper CNC could have higher storage weight percentage but the cone sharpness does not have evident enhancement in the average adsorption energy of the CNC. Combination of confinement and repulsion effects existing near the tip region of the CNC would be responsible for the non-enhancement feature.

  14. Severe embrittlement of neutron irradiated austenitic steels arising from high void swelling

    Energy Technology Data Exchange (ETDEWEB)

    Neustroev, V.S. [FSUE ' SSC RF Research Institute of Atomic Reactors' , Dimitrovgrad (Russian Federation)], E-mail: neustroev@niiar.ru; Garner, F.A. [Pacific Northwest National Laboratory, Richland, WA (United States)

    2009-04-30

    Data are presented from BOR-60 irradiations showing that significant radiation-induced swelling causes severe embrittlement in austenitic stainless steels, reducing the service life of structural components and introducing limitations on low temperature handling especially. It is shown that the degradation is actually a form of quasi-embrittlement arising from intense flow localization with high levels of localized ductility involving micropore coalescence and void-to-void cracking. Voids initially serve as hardening components whose effect is overwhelmed by the void-induced reduction in shear and Young's moduli at high swelling levels. Thus the alloy appears to soften even as the ductility plunges toward zero on a macroscopic level although a large amount of deformation occurs microscopically at the failure site. Thus the failure is better characterized as 'quasi-embrittlement' which is a suppression of uniform deformation. This case should be differentiated from that of real embrittlement which involves the complete suppression of the material's capability for plastic deformation.

  15. Damage process of high purity tungsten coatings by hydrogen beam heat loads

    International Nuclear Information System (INIS)

    Tamura, S.; Tokunaga, K.; Yoshida, N.; Taniguchi, M.; Ezato, K.; Sato, K.; Suzuki, S.; Akiba, M.; Tsunekawa, Y.; Okumiya, M.

    2005-01-01

    To investigate the synergistic effects of heat load and hydrogen irradiation, cyclic heat load tests with a hydrogen beam and a comparable electron beam were performed for high purity CVD-tungsten coatings. Surface modification was examined as a function of the peak temperature by changing the heat flux. Scanning Electron Microscopy analysis showed that the surface damage caused by the hydrogen beam was more severe than that by the electron beam. In the hydrogen beam case, cracking at the surface occurred at all peak temperatures examined from 300 deg. C to 1600 deg. C. These results indicate that the injected hydrogen induces embrittlement for the CVD-tungsten coating

  16. Surface atomic relaxation and magnetism on hydrogen-adsorbed Fe(110) surfaces from first principles

    Science.gov (United States)

    Chohan, Urslaan K.; Jimenez-Melero, Enrique; Koehler, Sven P. K.

    2016-11-01

    We have computed adsorption energies, vibrational frequencies, surface relaxation and buckling for hydrogen adsorbed on a body-centred-cubic Fe(110) surface as a function of the degree of H coverage. This adsorption system is important in a variety of technological processes such as the hydrogen embrittlement in ferritic steels, which motivated this work, and the Haber-Bosch process. We employed spin-polarised density functional theory to optimise geometries of a six-layer Fe slab, followed by frozen mode finite displacement phonon calculations to compute Fe-H vibrational frequencies. We have found that the quasi-threefold (3f) site is the most stable adsorption site, with adsorption energies of ∼3.0 eV/H for all coverages studied. The long-bridge (lb) site, which is close in energy to the 3f site, is actually a transition state leading to the stable 3f site. The calculated harmonic vibrational frequencies collectively span from 730 to 1220 cm-1, for a range of coverages. The increased first-to-second layer spacing in the presence of adsorbed hydrogen, and the pronounced buckling observed in the Fe surface layer, may facilitate the diffusion of hydrogen atoms into the bulk, and therefore impact the early stages of hydrogen embrittlement in steels.

  17. Flux effect on neutron irradiation embrittlement of reactor pressure vessel steels irradiated to high fluences

    International Nuclear Information System (INIS)

    Soneda, N.; Dohi, K.; Nishida, K.; Nomoto, A.; Iwasaki, M.; Tsuno, S.; Akiyama, T.; Watanabe, S.; Ohta, T.

    2011-01-01

    Neutron irradiation embrittlement of reactor pressure vessel (RPV) steels is of great concern for the long term operation of light water reactors. In particular, the embrittlement of the RPV steels of pressurized water reactors (PWRs) at very high fluences beyond 6*10 19 n/cm 2 , E > 1 MeV, needs to be understood in more depth because materials irradiated in material test reactors (MTRs) to such high fluences show larger shifts than predicted by current embrittlement correlation equations available worldwide. The primary difference between the irradiation conditions of MTRs and surveillance capsules is the neutron flux. The neutron flux of MTR is typically more than one order of magnitude higher than that of surveillance capsule, but it is not necessarily clear if this difference in neutron flux causes difference in mechanical properties of RPV. In this paper, we perform direct comparison, in terms of mechanical property and microstructure, between the materials irradiated in surveillance capsules and MTRs to clarify the effect of flux at very high fluences and fluxes. We irradiate the archive materials of some of the commercial reactors in Japan in the MTR, LVR-15, of NRI Rez, Czech Republic. Charpy impact test results of the MTR-irradiated materials are compared with the data from surveillance tests. The comparison of the results of microstructural analyses by means of atom probe tomography is also described to demonstrate the similarity / differences in surveillance and MTR-irradiated materials in terms of solute atom behavior. It appears that high Cu material irradiated in a MTR presents larger shifts than those of surveillance data, while low Cu materials present similar embrittlement. The microstructural changes caused by MTR irradiation and surveillance irradiation are clearly different

  18. Mercury embrittlement of Cu-Al alloys under cyclic loading

    Science.gov (United States)

    Regan, T. M.; Stoloff, N. S.

    1977-01-01

    The effect of mercury on the room temperature, high cycle fatigue properties of three alloys: Cu-5.5 pct Al, Cu-7.3 pct Al, and Cu-6.3 pct Al-2.5 pct Fe has been determined. Severe embrittlement under cyclic loading in mercury is associated with rapid crack propagation in the presence of the liquid metal. A pronounced grain size effect is noted under mercury, while fatigue properties in air are insensitive to grain size. The fatigue results are discussed in relation to theories of adsorption-induced liquid metal embrittlement.

  19. Hydrogen in oxygen-free, phosphorus-doped copper-Charging techniques, hydrogen contents and modelling of hydrogen diffusion and depth profile

    International Nuclear Information System (INIS)

    Martinsson, Aasa; Sandstroem, Rolf; Lilja, Christina

    2013-01-01

    In Sweden spent nuclear fuel is planned to be disposed of by encapsulating in cast iron inserts protected by a copper shell. The copper can be exposed to hydrogen released during corrosion processes in the inserts. If the hydrogen is taken up by the copper, it could lead to hydrogen embrittlement. Specimens from oxygen-free copper have been hydrogen charged using two different methods. The purpose was to investigate how hydrogen could be introduced into copper in a controlled way. The thermal charging method resulted in a reduction of the initial hydrogen content. After electrochemical charging of cylindrical specimens, the measured hydrogen content was 2.6 wt. ppm which should compared with 0.6 wt. ppm before charging. The retained hydrogen after two weeks was reduced by nearly 40%. Recently the paper 'Hydrogen depth profile in phosphorus-doped, oxygen-free copper after cathodic charging' (Martinsson and Sandstrom, 2012) has been published. The paper describes experimental results for bulk specimens as well as presenting a model. Almost all the hydrogen is found to be located less than 100 μm from the surface. This model is used to interpret the experimental results on foils in the present report. Since the model is fully based on fundamental equations, it can be used to analyse what happens in new situations. In this report the effect of the charging intensity, the grain size, the critical nucleus size for hydrogen bubble formation as well as the charging time are analysed

  20. Hydrogen in oxygen-free, phosphorus-doped copper - Charging techniques, hydrogen contents and modelling of hydrogen diffusion and depth profile

    Energy Technology Data Exchange (ETDEWEB)

    Martinsson, Aasa [Swerea KIMAB, Kista (Sweden); Sandstroem, Rolf [Swerea KIMAB, Kista (Sweden); Div. of Materials Science and Engineering, KTH Royal Institute of Technology, Stockholm (Sweden); Lilja, Christina [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2013-01-15

    In Sweden spent nuclear fuel is planned to be disposed of by encapsulating in cast iron inserts protected by a copper shell. The copper can be exposed to hydrogen released during corrosion processes in the inserts. If the hydrogen is taken up by the copper, it could lead to hydrogen embrittlement. Specimens from oxygen-free copper have been hydrogen charged using two different methods. The purpose was to investigate how hydrogen could be introduced into copper in a controlled way. The thermal charging method resulted in a reduction of the initial hydrogen content. After electrochemical charging of cylindrical specimens, the measured hydrogen content was 2.6 wt. ppm which should compared with 0.6 wt. ppm before charging. The retained hydrogen after two weeks was reduced by nearly 40%. Recently the paper 'Hydrogen depth profile in phosphorus-doped, oxygen-free copper after cathodic charging' (Martinsson and Sandstrom, 2012) has been published. The paper describes experimental results for bulk specimens as well as presenting a model. Almost all the hydrogen is found to be located less than 100 {mu}m from the surface. This model is used to interpret the experimental results on foils in the present report. Since the model is fully based on fundamental equations, it can be used to analyse what happens in new situations. In this report the effect of the charging intensity, the grain size, the critical nucleus size for hydrogen bubble formation as well as the charging time are analysed.

  1. Irradiation embrittlement of reactor pressure vessel steels: Considerations for thermal annealing

    International Nuclear Information System (INIS)

    Burke, M.G.; Freyer, P.D.; Mager, T.R.

    1993-01-01

    In this paper, an overview of the irradiation embrittlement phenomenon is presented from a structure-properties viewpoint. Effects of irradiation conditions on embrittlement are first reviewed: irradiation temperature, fluence, flux, and steel or alloy composition. Then, the techniques for identifying/characterizing the irradiation-induced microstructural features are described: TEM/STEM (electron microscopy), small angle neutron scattering, atom probe field-ion microscopy, positron annihilation lifetime spectroscopy. Mechanisms of hardening and embrittlement generally consist of a ''precipitation-type'' and a ''damage-type'' component and the potential of annealing treatments for restoring the most of the original pressure vessel material toughness is examined; its conditions and mechanisms involved are discussed. Feasibility and economic evaluation of annealing costs is also carried out. 90 refs., 4 figs

  2. Irradiation embrittlement of reactor pressure vessel steels: Considerations for thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Burke, M G; Freyer, P D; Mager, T R

    1994-12-31

    In this paper, an overview of the irradiation embrittlement phenomenon is presented from a structure-properties viewpoint. Effects of irradiation conditions on embrittlement are first reviewed: irradiation temperature, fluence, flux, and steel or alloy composition. Then, the techniques for identifying/characterizing the irradiation-induced microstructural features are described: TEM/STEM (electron microscopy), small angle neutron scattering, atom probe field-ion microscopy, positron annihilation lifetime spectroscopy. Mechanisms of hardening and embrittlement generally consist of a ``precipitation-type`` and a ``damage-type`` component and the potential of annealing treatments for restoring the most of the original pressure vessel material toughness is examined; its conditions and mechanisms involved are discussed. Feasibility and economic evaluation of annealing costs is also carried out. 90 refs., 4 figs.

  3. Evaluation of local stress and local hydrogen concentration at grain boundary using three-dimensional polycrystalline model

    International Nuclear Information System (INIS)

    Ebihara, Ken-ichi; Itakura, Mitsuhiro; Yamaguchi, Masatake; Kaburaki, Hideo; Suzudo, Tomoaki

    2010-01-01

    The decohesion model in which hydrogen segregating at grain boundaries reduces cohesive energy is considered to explain hydrogen embrittlement. Although there are several experimental and theoretical supports of this model, its total process is still unclear. In order to understand hydrogen embrittlement in terms of the decohesion model, therefore, it is necessary to evaluate stress and hydrogen concentration at grain boundaries under experimental conditions and to verify the grain boundary decohesion process. Under this consideration, we evaluated the stress and the hydrogen concentration at grain boundaries in the three-dimensional polycrystalline model which was generated by the random Voronoi tessellation. The crystallographic anisotropy was given to each grain. As the boundary conditions of the calculations, data extracted from the results calculated in the notched round-bar specimen model under the tensile test condition in which fracture of the steel specimen is observed was given to the polycrystalline model. As a result, it was found that the evaluated stress does not reach the fracture stress which was estimated under the condition of the evaluated hydrogen concentration by first principles calculations. Therefore, it was considered that the initiation of grain boundary fracture needs other factors except the stress concentration due to the crystallographic anisotropy. (author)

  4. Influence of hydrogen and temperature on the mechanical behaviour in an austenitic stainless steel

    International Nuclear Information System (INIS)

    Lamani, Emil; Jouinot, Patrice

    2003-01-01

    The mechanical behaviour of an austenitic stainless steel has been studied in this work, by means of two techniques: disk pressure embrittlement test (French standard NF E 29-723) and special biaxial tensile test. Specimens for both techniques are embedded disks, loaded by a continuously increasing gas pressure until rupture. Tests have been performed at various temperatures, between 18 o C and 655 o C, with loading speeds from 0.06 to 7 MPa/min. Their main results have been recorded as relationships between gas pressure and specimen deflection until its burst or cracking. Other observations (fracture, microstructure, etc.) are performed to assess the structural evolution with the temperature. The influence of hydrogen is evaluated by the comparison of the rupture parameters of specimens tested similarly under helium and hydrogen. The embrittlement index, E.I is determined as the ratio of the rupture pressures under helium and hydrogen taking into account also the effects of the loading speed and the gas purity. It has been noticed that the mechanical behaviour of the steel is strongly influenced by the apparition of a second phase in the austenitic structure: the deformation induced martensite, α, which presence is identified by microscopic observations and X-ray diffraction. At room temperature, the steel presents a relatively high sensitivity to the hydrogen embrittlement (2.20 ≤ E.I ≤ 2.40), while, with the temperature increasing, together with the reduction of the martensitic transformation, it was observed a rapid diminution of this sensitivity. Obtained results allow to define the performance of this steel for thin walls applications, as it is the case of expansions bellows in the chemical industry. (Original)

  5. Irradiation embrittlement of reactor vessel steels

    International Nuclear Information System (INIS)

    Bros, J.

    2000-01-01

    From the historical decision of closing the Yankee Rowe NPP because of the uncertainties on the level of reactor pressure vessel neutron embrittlement, this paper reviews the technical-scientist bases of the degradation phenomena, and refers to the evolution of reactor pressure vessel radiation surveillance programs. (Author)

  6. Helium embrittlement model and program plan for weldability of ITER materials

    International Nuclear Information System (INIS)

    Louthan, M.R. Jr.; Kanne, W.R. Jr.; Tosten, M.H.; Rankin, D.T.; Cross, B.J.

    1997-02-01

    This report presents a refined model of how helium embrittles irradiated stainless steel during welding. The model was developed based on experimental observations drawn from experience at the Savannah River Site and from an extensive literature search. The model shows how helium content, stress, and temperature interact to produce embrittlement. The model takes into account defect structure, time, and gradients in stress, temperature and composition. The report also proposes an experimental program based on the refined helium embrittlement model. A parametric study of the effect of initial defect density on the resulting helium bubble distribution and weldability of tritium aged material is proposed to demonstrate the roll that defects play in embrittlement. This study should include samples charged using vastly different aging times to obtain equivalent helium contents. Additionally, studies to establish the minimal sample thickness and size are needed for extrapolation to real structural materials. The results of these studies should provide a technical basis for the use of tritium aged materials to predict the weldability of irradiated structures. Use of tritium charged and aged material would provide a cost effective approach to developing weld repair techniques for ITER components

  7. Gathering of material on regulations and specifications in nuclear engineering, concerning materials calculation and testing in consideration of the safety requirements of the licensing and supervisory procedures (constructional materials and components of nuclear power plants). 6. technical report

    International Nuclear Information System (INIS)

    Richter, J.

    1981-11-01

    The present paper deals with the solubility and diffusion of hydrogen in iron, the influence of lattice defects on the solubility and diffusion of hydrogen and the influence of hydrogen on the mateial and fracture behavior. In addition hydrogen-induced crack propagation in liquid phases as well as hydrogen embrittlement of welded joints are discussed. (RW) [de

  8. Radiation hardening and embrittlement of some refractory metals and alloys

    International Nuclear Information System (INIS)

    Fabritsiev, S.; Pokrovskyb

    2007-01-01

    Tungsten is proposed for application in the ITER divertor and limiter as plasma facing material. The tungsten operation temperature in the ITER divertor is relatively high. Hence, the ductile properties of tungsten will be controlled by the low temperature radiation embrittlement. The mechanism of radiation hardening and embrittlement under neutron irradiation at low temperature is well studied for FCC metals, in particular for copper. At the same time, low-temperature radiation hardening of BCC materials, in particular for refractory metals, is less studied. This study presents the results of investigation into radiation hardening and embrittlement of pure metals: W, Mo and Nb, and W-Re and Ta-4W alloys. The materials were in the annealed conditions. The specimens were irradiated in the SM-2 reactor to doses of 10 -4 -10 -1 dpa at 80 C and then tested for tension at 80 C. The study of the stress-strain curves of unirradiated specimens revealed a yield drop for W, Mo, Nb, Ta-4W, W-Re. After the yield drop some metals (Mo,Nb) retain their capability for strain hardening and demonstrate a high elongation (20-50%). Radiation hardening is maximum in Mo (∝400MPa) and minimum in Nb (∝100 MPa). In this case the dependence slope for Nb is similar to that for pure copper irradiated in SM-2 under the same conditions. Ii and Ta-4W have a higher slope. Measurement of electrical resistivity of irradiated specimens showed that for all materials it is increased monotonously with an increase in the irradiation dose. A minimum gain in electrical resistivity with a dose was observed for Nb (∝3% at 0.1 dpa). As for Mo it was essentially higher, i.e. ∝ 30%. The gain was maximum for W-Re alloy. Comparison of radiation hardening dose dependencies obtained in this study with the data for FCC metals (Cu) showed that in spite of the quantitative difference the qualitative behavior of these two classes of metals is similar. (orig.)

  9. Role of hydrogen in the intergranular cracking mechanism by stress corrosion in primary medium of nickel based alloys 600 and 690

    International Nuclear Information System (INIS)

    Odemer, G.; Coudurier, A.; Jambon, F.; Chene, J.; Odemer, G.; Coudurier, A.; Chene, J.

    2007-01-01

    The aim of this work is to characterize the sensitivity to hydrogen embrittlement of alloys 600 and 690 in order to better understand the eventual role of hydrogen in the stress corrosion mechanism which affects these alloys when they are exposed in PWR primary medium. (O.M.)

  10. Buoyant Unstable Behavior of Initially Spherical Lean Hydrogen-Air Premixed Flames

    Directory of Open Access Journals (Sweden)

    Zuo-Yu Sun

    2014-07-01

    Full Text Available Buoyant unstable behavior in initially spherical lean hydrogen-air premixed flames within a center-ignited combustion vessel have been studied experimentally under a wide range of pressures (including reduced, normal, and elevated pressures. The experimental observations show that the flame front of lean hydrogen-air premixed flames will not give rise to the phenomenon of cellular instability when the equivalence ratio has been reduced to a certain value, which is totally different from the traditional understanding of the instability characteristics of lean hydrogen premixed flames. Accompanied by the smoothened flame front, the propagation mode of lean hydrogen premixed flames transitions from initially spherical outwardly towards upwardly when the flames expand to certain sizes. To quantitatively investigate such buoyant instability behaviors, two parameters, “float rate (ψ” and “critical flame radius (Rcr”, have been proposed in the present article. The quantitative results demonstrate that the influences of initial pressure (Pint on buoyant unstable behaviors are different. Based on the effects of variation of density difference and stretch rate on the flame front, the mechanism of such buoyant unstable behaviors has been explained by the competition between the stretch force and the results of gravity and buoyancy, and lean hydrogen premixed flames will display buoyant unstable behavior when the stretch effects on the flame front are weaker than the effects of gravity and buoyancy.

  11. An internal friction peak caused by hydrogen in maraging steel

    International Nuclear Information System (INIS)

    Usui, Makoto; Asano, Shigeru

    1996-01-01

    Internal friction in hydrogen-charged iron and steel has so far been studied by a large number of investigators. For pure iron, a well-defined peak of internal friction has been observed under the cold-worked and hydrogen-charged conditions. This is called the hydrogen cold-work peak, or the Snoek-Koester relaxation, which originates from the hydrogen-dislocation interaction. In the present study, a high-strength maraging steel (Fe-18Ni-9Co-5Mo) was chosen as another high-alloy steel which is known to be very susceptible to hydrogen embrittlement. The purpose of this paper is to show a new internal friction peak caused by hydrogen in the maraging steel and to compare it with those found in stainless steels which have so far been studied as typical engineering high-alloy materials

  12. Microstructure and embrittlement of VVER 440 reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Hennion, A.

    1999-03-01

    27 VVER 440 pressurised water reactors operate in former Soviet Union and in Eastern Europe. The pressure vessel, is made of Cr-Mo-V steel. It contains a circumferential arc weld in front of the nuclear core. This weld undergoes a high neutron flux and contains large amounts of copper and phosphorus, elements well known for their embrittlement potency under irradiation. The embrittlement kinetic of the steel is accelerated, reducing the lifetime of the reactor. In order to get informations on the microstructure and mechanical properties of these steels, base metals, HAZ, and weld metals have been characterized. The high amount of phosphorus in weld metals promotes the reverse temper embrittlement that occurs during post-weld heat treatment. The radiation damage structure has been identified by small angle neutron scattering, atomic probe, and transmission electron microscopy. Nanometer-sized clusters of solute atoms, rich in copper with almost the same characteristics as in western pressure vessels steels, and an evolution of the size distribution of vanadium carbides, which are present on dislocation structure, are observed. These defects disappear during post-irradiation tempering. As in western steels, the embrittlement is due to both hardening and reduction of interphase cohesion. The radiation damage specificity of VVER steels arises from their high amount of phosphorus and from their significant density of fine vanadium carbides. (author)

  13. Crystal Plasticity Model of Reactor Pressure Vessel Embrittlement in GRIZZLY

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Pritam [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Biner, Suleyman Bulent [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Zhang, Yongfeng [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Spencer, Benjamin Whiting [Idaho National Laboratory (INL), Idaho Falls, ID (United States)

    2015-07-01

    The integrity of reactor pressure vessels (RPVs) is of utmost importance to ensure safe operation of nuclear reactors under extended lifetime. Microstructure-scale models at various length and time scales, coupled concurrently or through homogenization methods, can play a crucial role in understanding and quantifying irradiation-induced defect production, growth and their influence on mechanical behavior of RPV steels. A multi-scale approach, involving atomistic, meso- and engineering-scale models, is currently being pursued within the GRIZZLY project to understand and quantify irradiation-induced embrittlement of RPV steels. Within this framework, a dislocation-density based crystal plasticity model has been developed in GRIZZLY that captures the effect of irradiation-induced defects on the flow stress behavior and is presented in this report. The present formulation accounts for the interaction between self-interstitial loops and matrix dislocations. The model predictions have been validated with experiments and dislocation dynamics simulation.

  14. Crystal Plasticity Model of Reactor Pressure Vessel Embrittlement in GRIZZLY

    International Nuclear Information System (INIS)

    Chakraborty, Pritam; Biner, Suleyman Bulent; Zhang, Yongfeng; Spencer, Benjamin Whiting

    2015-01-01

    The integrity of reactor pressure vessels (RPVs) is of utmost importance to ensure safe operation of nuclear reactors under extended lifetime. Microstructure-scale models at various length and time scales, coupled concurrently or through homogenization methods, can play a crucial role in understanding and quantifying irradiation-induced defect production, growth and their influence on mechanical behavior of RPV steels. A multi-scale approach, involving atomistic, meso- and engineering-scale models, is currently being pursued within the GRIZZLY project to understand and quantify irradiation-induced embrittlement of RPV steels. Within this framework, a dislocation-density based crystal plasticity model has been developed in GRIZZLY that captures the effect of irradiation-induced defects on the flow stress behavior and is presented in this report. The present formulation accounts for the interaction between self-interstitial loops and matrix dislocations. The model predictions have been validated with experiments and dislocation dynamics simulation.

  15. Standard Test Method for Electronic Measurement for Hydrogen Embrittlement From Cadmium-Electroplating Processes

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1996-01-01

    1.1 This test method covers an electronic hydrogen detection instrument procedure for measurement of plating permeability to hydrogen. This method measures a variable related to hydrogen absorbed by steel during plating and to the hydrogen permeability of the plate during post plate baking. A specific application of this method is controlling cadmium-plating processes in which the plate porosity relative to hydrogen is critical, such as cadmium on high-strength steel. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific hazard statement, see Section 8. 1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.

  16. Cadmium Alternatives for High-Strength Steel

    Science.gov (United States)

    2011-09-22

    Re-Embrittlement/Stress Corrosion Cracking Test Plan Test plan for the evaluation of in-service Hydrogen Re-Embrittlement ( HRE )/ Stress...Fatigue -- 3.6.1 Hydrogen Embrittlement -- Pass Pass Pass Pass 3.6.2 Hydrogen Re-Embrittlement ( HRE ) (in reagent water) -- Fail (but > IVD-Al

  17. Power reactor embrittlement data base (PR-EDB): Uses in evaluating radiation embrittlement of reactor vessels

    International Nuclear Information System (INIS)

    Kam, F.B.K.; Stallmann, F.W.; Wang, J.A.

    1992-01-01

    Investigations of regulatory issues such as vessel integrity over plant life, vessel failure, and sufficiency of current Codes, Standard Review Plans (SRPs), and Guides for license renewal can be greatly expedited by the use of a well-designed, computerized data base. Also, such a data is essential for the evaluation of embrittlement prediction models by researchers. The Power Reactor Embrittlement Data Base (PR-EDB) is such a comprehensive collection of data for US commercial nuclear reactors. The current compilation contains data from 92 reactors and consists of 175 data points for weld materials (79 different welds) and 395 data points for base materials (110 different base materials). The different types of data that are implemented or planned for this data base are discussed. ''User-friendly'' utility programs have been written to investigate a list of problems using this data base. The utility programs are also used to add and upgrade data, retrieve and select specific data, manipulate data, display data to the screen or printer, and to fit and plot Charpy impact data. The results of several studies investigated are presented in this paper

  18. Fatigue of DIN 1.4914 martensitic stainless steel in a hydrogen environment

    Science.gov (United States)

    Shakib, J. I.; Ullmaier, H.; Little, E. A.; Faulkner, R. G.; Schmilz, W.; Chung, T. E.

    1994-09-01

    Fatigue tests at room temperature in vacuum, air and hydrogen have been carried out on specimens of DIN 1.4914 martensitic stainless steel in load-controlled, push-pull type experiments. Fatigue lifetimes in hydrogen are significantly lower than in both vacuum and air and the degradation is enhanced by lowering the test frequency or introducing hold times into the tension half-cycle. Fractographic examinations reveal hydrogen embrittlement effects in the form of internal cracking between fatigue striations together with surface modifications, particularly at low stress amplitudes. It is suggested that gaseous hydrogen can influence both fatigue crack initiation and propagation events in martensitic steels.

  19. Long-term embrittlement of cast duplex stainless steels in LWR systems

    International Nuclear Information System (INIS)

    Chopra, O.K.; Chung, H.M.

    1990-08-01

    This progress report summarizes work performed by Argonne National Laboratory on long-term embrittlement of cast duplex stainless steels in LWR systems during the six months from April to September 1988. Characteristics of the primary mechanism of aging embrittlement (i.e., spinodal decomposition of ferrite) and synergistic effects of alloying and impurity elements that influence the kinetics of the primary mechanism are discussed. Several secondary metallurgical processes of embrittlement, strongly dependent on the C, N, Ni, Mo, and Si content of various heats, are identified. Information on kinetics and data on impact properties are analyzed and correlated with microstructural characteristics to provide a unified method of extrapolating accelerated-aging data to reactor operating conditions. Fracture toughness data are presented for several heats of cast stainless steel aged at temperatures between 320 and 450 degrees C for times up to 10,000 h. Mechanical property data are analyzed to develop the procedure and correlations or predicting the kinetics and extent of embrittlement of reactor components from known material parameters. The method and examples of estimating the impact strength and fracture toughness of cast components during reactor service are described. The lower-bound values of impact strength and fracture toughness for cast stainless steels at LWR operating temperatures are defined. 42 refs., 14 figs., 6 tabs

  20. Embrittlement of the nuclear icebreaker Lenin reactor pressure vessel materials reconstruction

    International Nuclear Information System (INIS)

    Krasikov, E.A.; Nikolaenko, V.A.

    2008-01-01

    Paper deals with the results of the efforts to examine the radiation damage of the Lenin nuclear-powered ice-breaker decommissioned reactor pressure vessel on the basis of which one has determined the peculiar features of the metal radiation embrittlement. Under 10 10 -10 11 s -1 cm -2 low density neutron flux irradiation one notes the most intensive embrittlement of the metal. Then, as the noxious element content in the metal matrix grows smaller the embrittlement reduces up to the change of sign as to the normal curve plotted at the neutron flux density exceeding 10 13 s -1 cm -2 . One assumes that as a result of the low density neutron flux irradiation the reactor pressure vessel edge spaces at some operation stages may be damaged more severely in contrast to these near the reactor core. The neutron irradiation density is the factor affecting the reactor vessel material embrittlement, that is why, it is important to study the damage mechanism of the materials of the power reactor vessels under design characterized by the low radiation load. The mentioned is important, as well, to evaluate the efficiency of the efforts undertaken to mitigate the effect of the neutron radiation on the reactor vessel [ru

  1. Guidelines for prediction of irradiation embrittlement of operating WWER-440 reactor pressure vessels

    International Nuclear Information System (INIS)

    2005-06-01

    This TECDOC has been developed under an International Atomic Energy Agency Coordinated Research Project (CRP) entitled Evaluation of Radiation Damage of WWER Reactor Pressure Vessels (RPV) using Database on RPV Materials to develop the guidelines for prediction of radiation damage to WWER-440 PRVs. The WWER-440 RPV was designed by OKB Gidropress, Russian Federation, the general designer. Prediction of irradiation embrittlement of RPV materials is usually done in accordance with relevant codes and standards that are based on the large amounts of information from surveillance and research programmes. The existing Russian code (standard for strength calculations of components and piping in NPPs - PNAE G 7-002-86) for the WWER RPV irradiation embrittlement assessment was approved more than twenty years ago and based mostly on the experimental data obtained in research reactors with accelerated irradiation. Nevertheless, it is still in use and generally consistent with new data. The present publication presents the analyses using all available data required for more precise prediction of radiation embrittlement of WWER-440 RPV materials. Based on the fact that it contains a large amount of data from surveillance programmes as well as research programmes, the IAEA International Database on RPV Materials (IDRPVM) is used for the detailed analysis of irradiation embrittlement of WWER RPV materials. Using IDRPVM, the guideline is developed for assessment of irradiation embrittlement of RPV ferritic materials as a result of degradation during operation. Two approaches, i.e. transition temperatures based on Charpy impact notch toughness, as well as based on static fracture toughness tests, are used in RPV integrity evaluation. The objectives of the TECDOC are the analysis of irradiation embrittlement data for WWER- 440 RPV materials using IDRPVM database, evaluation of predictive formulae depending on chemical composition of the material, neutron fluence, flux, and

  2. Thermal annealing of an embrittled reactor pressure vessel

    International Nuclear Information System (INIS)

    Mager, T.R.; Dragunov, Y.G.; Leitz, C.

    1998-01-01

    As a result of the popularity of the Agencies report 'Neutron Irradiation Embrittlement of Reactor Pressure Vessel Steels' of 1975, it was decided that another report on this broad subject would be of use. In this report, background and contemporary views on specially identified areas of the subject are considered as self-contained chapters, written by experts. Chapter 11 deals with thermal annealing of an embrittled reactor pressure vessel. Anneal procedures for vessels from both the US and the former USSR are mentioned schematically, wet anneals at lower temperature and dry anneals above RPV design temperatures are investigated. It is shown that heat treatment is a means of recovering mechanical properties which were degraded by neutron radiation exposure, thus assuring reactor pressure vessel compliance with regulatory requirements

  3. Study of the influence of liquid sodium on the mechanical behavior of T91 steel in liquid sodium

    International Nuclear Information System (INIS)

    Hemery, S.

    2013-01-01

    We studied the sensitivity of T91 steel to embrittlement by liquid sodium. An experimental procedure was set up to proceed to mechanical testing in sodium under an inert atmosphere. The introduction of a liquid sodium pre-exposure step prior to mechanical testing enabled the study of both the wettability of T91 by sodium and the structure of the sodium steel/interface as a function of the exposure parameters. The mechanical properties of T91 steel are significantly reduced in liquid sodium provided the wetting conditions are good. The use of varying oxygen and hydrogen concentrations suggests that oxygen plays a major role in enhancing the wettability of T91. The sensitivity of the embrittlement to strain rate and temperature was characterized. These results showed the existence of a ductile to brittle transition depending on both parameters. Its characterization suggests that a diffusion step is the limiting rate phenomenon of this embrittlement case. TEM and EBSD analysis of arrested cracks enabled us to establish that the fracture mode is inter-lath or intergranular. This characteristic is coherent with the crack path commonly reported in liquid metal embrittlement. A similar procedure was applied to the unalloyed XC10 steel. The results show a behavior which is similar to the one of T91 steel and suggest a common mechanism for liquid sodium embrittlement of body centered cubic steels. Moreover, they confirm that the ductile to brittle transition seems associated with a limited crack propagation rate. The propagation is thermally activated with activation energy of about 50 kJ/mol. Finally, it was shown that 304L austenitic steel is sensitive to liquid sodium embrittlement as well. Some fracture surfaces testify of an intergranular fracture mode, but some questions still remain about the crack path. (author) [fr

  4. Diamond and Diamond-Like Materials as Hydrogen Isotope Barriers

    International Nuclear Information System (INIS)

    Foreman, L.R.; Barbero, R.S.; Carroll, D.W.; Archuleta, T.; Baker, J.; Devlin, D.; Duke, J.; Loemier, D.; Trukla, M.

    1999-01-01

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The purpose of this project was to develop diamond and diamond-like thin-films as hydrogen isotope permeation barriers. Hydrogen embrittlement limits the life of boost systems which otherwise might be increased to 25 years with a successful non-reactive barrier. Applications in tritium processing such as bottle filling processes, tritium recovery processes, and target filling processes could benefit from an effective barrier. Diamond-like films used for low permeability shells for ICF and HEDP targets were also investigated. Unacceptable high permeabilities for hydrogen were obtained for plasma-CVD diamond-like-carbon films

  5. Microstructural characterization of hydrogen induced cracking in TRIP-assisted steel by EBSD

    Energy Technology Data Exchange (ETDEWEB)

    Laureys, A., E-mail: Aurelie.Laureys@UGent.be [Department of Materials Science and Engineering, Ghent University (UGent), Technologiepark 903, B-9052 Ghent (Belgium); Depover, T. [Department of Materials Science and Engineering, Ghent University (UGent), Technologiepark 903, B-9052 Ghent (Belgium); Petrov, R. [Department of Materials Science and Engineering, Ghent University (UGent), Technologiepark 903, B-9052 Ghent (Belgium); Department of Materials Science and Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft (Netherlands); Verbeken, K. [Department of Materials Science and Engineering, Ghent University (UGent), Technologiepark 903, B-9052 Ghent (Belgium)

    2016-02-15

    The present work evaluates hydrogen induced cracking by performing an elaborate EBSD (Electron BackScatter Diffraction) study in a steel with transformation induced plasticity (TRIP-assisted steel). This type of steel exhibits a multiphase microstructure which undergoes a deformation induced phase transformation. Additionally, each microstructural constituent displays a different behavior in the presence of hydrogen. The aim of this study is to obtain a better understanding on the mechanisms governing hydrogen induced crack initiation and propagation in the hydrogen saturated multiphase structure. Tensile tests on notched samples combined with in-situ electrochemical hydrogen charging were conducted. The tests were interrupted at stresses just after reaching the tensile strength, i.e. before macroscopic failure of the material. This allowed to study hydrogen induced crack initiation and propagation by SEM (Scanning Electron Microscopy) and EBSD. A correlation was found between the presence of martensite, which is known to be very susceptible to hydrogen embrittlement, and the initiation of hydrogen induced cracks. Initiation seems to occur mostly by martensite decohesion. High strain regions surrounding the hydrogen induced crack tips indicate that further crack propagation may have occurred by the HELP (hydrogen-enhanced localized plasticity) mechanism. Small hydrogen induced cracks located nearby the notch are typically S-shaped and crack propagation was dominantly transgranularly. The second stage of crack propagation consists of stepwise cracking by coalescence of small hydrogen induced cracks. - Highlights: • Hydrogen induced cracking in TRIP-assisted steel is evaluated by EBSD. • Tensile tests were conducted on notched hydrogen saturated samples. • Crack initiation occurs by a H-Enhanced Interface DEcohesion (HEIDE) mechanism. • Crack propagation involves growth and coalescence of small cracks. • Propagation is governed by the characteristics of

  6. Microstructural characterization of hydrogen induced cracking in TRIP-assisted steel by EBSD

    International Nuclear Information System (INIS)

    Laureys, A.; Depover, T.; Petrov, R.; Verbeken, K.

    2016-01-01

    The present work evaluates hydrogen induced cracking by performing an elaborate EBSD (Electron BackScatter Diffraction) study in a steel with transformation induced plasticity (TRIP-assisted steel). This type of steel exhibits a multiphase microstructure which undergoes a deformation induced phase transformation. Additionally, each microstructural constituent displays a different behavior in the presence of hydrogen. The aim of this study is to obtain a better understanding on the mechanisms governing hydrogen induced crack initiation and propagation in the hydrogen saturated multiphase structure. Tensile tests on notched samples combined with in-situ electrochemical hydrogen charging were conducted. The tests were interrupted at stresses just after reaching the tensile strength, i.e. before macroscopic failure of the material. This allowed to study hydrogen induced crack initiation and propagation by SEM (Scanning Electron Microscopy) and EBSD. A correlation was found between the presence of martensite, which is known to be very susceptible to hydrogen embrittlement, and the initiation of hydrogen induced cracks. Initiation seems to occur mostly by martensite decohesion. High strain regions surrounding the hydrogen induced crack tips indicate that further crack propagation may have occurred by the HELP (hydrogen-enhanced localized plasticity) mechanism. Small hydrogen induced cracks located nearby the notch are typically S-shaped and crack propagation was dominantly transgranularly. The second stage of crack propagation consists of stepwise cracking by coalescence of small hydrogen induced cracks. - Highlights: • Hydrogen induced cracking in TRIP-assisted steel is evaluated by EBSD. • Tensile tests were conducted on notched hydrogen saturated samples. • Crack initiation occurs by a H-Enhanced Interface DEcohesion (HEIDE) mechanism. • Crack propagation involves growth and coalescence of small cracks. • Propagation is governed by the characteristics of

  7. Creep behavior of 8Cr2WVTa martensitic steel designed for fusion DEMO reactor. An assessment on helium embrittlement resistance

    International Nuclear Information System (INIS)

    Yamamoto, Norikazu; Murase, Yoshiharu; Nagakawa, Johsei; Shiba, Kiyoyuki

    2001-01-01

    Mechanical response against transmutational helium production, alternatively susceptibility to helium embrittlement, in a nuclear fusion reactor was examined on 8Cr2WVTa martensitic steel, a prominent structural candidate for advanced fusion systems. In order to simulate DEMO (demonstrative) reactor environments, helium was implanted into the material at 823 K with concentrations up to 1000 appmHe utilizing an α-beam from a cyclotron. Creep rupture properties were subsequently determined at the same temperature and were compared with those of the material without helium. It has been proved that helium caused no meaningful deterioration in terms of both the creep lifetime and rupture elongation. Furthermore, failure occurred completely in a transgranular and ductile manner even after high concentration helium introduction and there was no symptom of grain boundary decohesion which very often arises in helium bearing materials. These facts would mirror preferable resistance of this steel toward helium embrittlement. (author)

  8. Recrystallization and embrittlement of sintered tungsten

    International Nuclear Information System (INIS)

    Bega, N.D.; Babak, A.V.; Uskov, E.I.

    1982-01-01

    The recrystallization of sintered tungsten with a cellular structure of deformation is studied as related to its embrittlement. It is stated that in case of preliminary recrystallization the sintered tungsten crack resistance does not depend on the testing temperature. The tungsten crack resistance is shown to lower with an increase of the structure tendency to primary recrystallization [ru

  9. Molecular dynamics simulation of effect of hydrogen atoms on crack propagation behavior of α-Fe

    Energy Technology Data Exchange (ETDEWEB)

    Song, H.Y., E-mail: gsfshy@sohu.com; Zhang, L.; Xiao, M.X.

    2016-12-16

    The effect of the hydrogen concentration and hydrogen distribution on the mechanical properties of α-Fe with a pre-existing unilateral crack under tensile loading is investigated by molecular dynamics simulation. The results reveal that the models present good ductility when the front region of crack tip has high local hydrogen concentration. The peak stress of α-Fe decreases with increasing hydrogen concentration. The studies also indicate that for the samples with hydrogen atoms, the crack propagation behavior is independent of the model size and boundaries. In addition, the crack propagation behavior is significantly influenced by the distribution of hydrogen atoms. - Highlights: • The distribution of hydrogen plays a critical role in the crack propagation. • The peak stress decrease with the hydrogen concentration increasing. • The crack deformation behavior is disclosed and analyzed.

  10. Embrittlement recovery due to annealing of reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Eason, E.D.; Wright, J.E.; Nelson, E.E.; Odette, G.R.; Mader, E.V.

    1998-01-01

    The irradiation embrittlement of nuclear reactor pressure vessels (RPV) can be reduced by thermal annealing at temperatures higher than the normal operating conditions. The objective of this work was to analyze the pertinent data and develop quantitative models for estimating the recovery in 41 J (30 ft-lb) Charpy transition temperature (TT) and Charpy upper shelf energy (USE) due to annealing. An analysis data base was developed, reviewed for completeness and accuracy, and documented as part of this work. Models were developed based on a combination of statistical techniques, including pattern recognition and transformation analysis, and the current understanding of the mechanisms governing embrittlement and recovery. The quality of models fitted in this project was evaluated by considering both the Charpy annealing data used for fitting and a surrogate hardness data base. This work demonstrates that microhardness recovery is a good surrogate for shift recovery and that there is a high level of consistency between the observed annealing trends and fundamental models of embrittlement and recovery processes. (orig.)

  11. Overview of French activities on neutron radiation embrittlement of pressure vessel steel

    Energy Technology Data Exchange (ETDEWEB)

    Brillaud, C [Electricite de France (EDF), 37 - Tours (France); Keroulas, F de [Electricite de France (EDF), 93 - Saint-Denis (France); Pichon, C [Electricite de France (EDF), 69 - Villeurbanne (France); Teissier, A [Electricite de France (EDF), 92 - Courbevoie (France). Service Etudes et Projets Thermiques et Nucleaires

    1994-12-31

    This paper describes recent developments in France`s pressure vessel surveillance program, particularly aimed at assessing the irradiation-caused embrittlement of EDF`s PWRs. The first part presents surveillance program results for base metal, weld metal and heat-affected zones for 74 capsules removed from 34 units. Fluence ranges from 0.3.10{sup 19} n.cm{sup -2} to 5.5.10{sup 19} n.cm{sup -2}. The second part considers research and development activities in this area: these include the metallurgical structure effects of segregated bands on mechanical properties and the embrittlement rate under irradiation, as well as the effect of irradiation parameters such as flux and neutron spectrum on irradiation embrittlement, and more especially to obtain the best damage assessment. (authors). 14 refs., 5 figs., 1 tab.

  12. Oak Ridge National Laboratory Embrittlement Data Base (EDB) and Dosimetry Evaluation (DE) program

    International Nuclear Information System (INIS)

    Pace, J.V. III; Remec, I.; Wang, J.A.; White, J.E.

    1996-01-01

    The objective of this program is to develop, maintain, and upgrade computerized data bases, calculational procedures, and standards relating to reactor pressure vessel fluence spectra determinations and embrittlement assessments. As part of this program, the information from radiation embrittlement research on nuclear reactor pressure vessel steels and from power reactor surveillance reports is maintained in a data base published on a periodic basis. The Embrittlement Data Base (EDB) effort consists of verifying the quality of the EDB, providing user-friendly software to access and process the data, and exploring and assessing embrittlement prediction models. The Dosimetry Evaluation effort consists of maintaining and upgrading validated neutron and gamma radiation transport procedures, maintaining cross-section libraries with the latest evaluated nuclear data, and maintaining and updating validated dosimetry procedures and data bases. The information available from this program provides data for assisting the Office of Nuclear Reactor Regulation, with support from the Office of Nuclear Regulatory Research, to effectively monitor current procedures and data bases used by vendors, utilities, and service laboratories in the pressure vessel irradiation surveillance program

  13. Evaluation of temper embrittlement of martensitic and ferritic-martensitic steels by acoustic emission

    International Nuclear Information System (INIS)

    Lu, Yusho; Takahashi, Hideaki; Shoji, Tetsuo

    1987-01-01

    Martensitic (HT-9) and ferritic-martensitic steels (9Cr-2Mo) are considered as fusion first wall materials. In this investigation in order to understand the sensitivity of temper embrittlement in these steels under actual service condition, fracture toughness testing was made by use of acoustic emission technique. The temper embrittlement was characterized in terms of fracture toughness. The fracture toughness of these steels under 500 deg C, 100 hrs, and 1000 hrs heat treatment was decreased and their changes in micro-fracture process have been observed. The fracture toughness changes by temper embrittlement was discussed by the characteristic of AE, AE spectrum analysis and fractographic investigation. The relation between micro-fracture processes and AE has been clarified. (author)

  14. Surface effects induced by cathodic hydrogenation in type AISI 304 stainless steel

    International Nuclear Information System (INIS)

    Silva, T.C.V.

    1984-08-01

    Cathodic hydrogen charging of type AISI 304 stainless steel modified its austenitic structure, giving rise to the formation of two new martensitic phases and the appearance of cracks, in most cases delayed. As electrolyte a 1 N H 2 S O 4 solution containing As 2 O 3 was employed. The cathodic hydrogenation was carries out at room temperature. The transformed phases were identified with black and white and coloured metallographic techniques, as well as by X-ray diffraction. The effect of cathodic hydrogenation in samples uniaxially tensile tested with constant nominal strain rate was investigated. It was concluded that the number of cracks per unit surface area changes with hydrogenation conditions and that hydrogen should be present for the embrittlement to occur. (author)

  15. A study on the irradiation embrittlement and recovery characteristics of light water reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Chi, Se Hwan; Hong, Jun Hwa; Lee, Bong Sang; Oh, Jong Myung; Song, Sook Hyang; Milan, Brumovsky

    1999-03-01

    The neutron irradiation embrittlement phenomenon of light water RPV steels greatly affects the life span for safe operation of a reactor. Reliable evaluation and prediction of the embrittlement of RPV steels, especially of aged reactors, are of importance to the safe operation of a reactor. In addition, the thermal recovery of embrittled RPV has been recognized as an option for life extension. This study aimed to tracer/refine available technologies for embrittlement characterization and prediction, to prepare relevant materials for several domestic RPV steels of the embrittlement and recovery, and to find out possible remedy for steel property betterment. Small specimen test techniques, magnetic measurement techniques, and the Meechan and Brinkmann's recovery curve analysis method were examined/applied as the evaluation techniques. Results revealed a high irradiation sensitivity in YG 3 RPV steel. Further extended study may be urgently needed. Both the small specimen test technique for the direct determination of fracture toughness, and the magnetic measurement technique for embrittlement evaluation appeared to be continued for the technical improvement and data base preparation. Manufacturing process relevant to the heat treatment appeared to be improved in lowering the irradiation sensitivity of the steel. Further study is needed especially in applying the present techniques to the new structural materials under new irradiation environment of advanced reactors. (author)

  16. High temperature embrittlement of metals by helium

    International Nuclear Information System (INIS)

    Schroeder, H.

    1983-01-01

    The present knowledge of the influence of helium on the high temperature mechanical properties of metals to be used as structural materials in fast fission and in future fusion reactors is reviewed. A wealth of experimental data has been obtained by many different experimental techniques, on many different alloys, and on different properties. This review is mostly concentrated on the behaviour of austenitic alloys -especially austenitic stainless steels, for which the data base is by far the largest - and gives only a few examples of special bcc alloys. The effect of the helium embrittlement on the different properties - tensile, fatigue and, with special emphasis, creep - is demonstrated by representative results. A comparison between data obtained from in-pile (-beam) experiments and from post-irradiation (-implantation) experiments, respectively, is presented. Theoretical models to describe the observed phenomena are briefly outlined and some suggestions are made for future work to resolve uncertainties and differences between our experimental knowledge and theoretical understanding of high temperature helium embrittlement. (author)

  17. Applications of ion implantation for modifying the interactions between metals and hydrogen gas

    Science.gov (United States)

    Musket, R. G.

    1989-04-01

    Ion implantations into metals have been shown recently to either reduce or enhance interactions with gaseous hydrogen. Published studies concerned with modifications of these interactions are reviewed and discussed in terms of the mechanisms postulated to explain the observed changes. The interactions are hydrogenation, hydrogen permeation, and hydrogen embrittlement. In particular, the results of the reviewed studies are (a) uranium hydriding suppressed by implantation of oxygen and carbon, (b) hydrogen gettered in iron and nickel using implantation of titanium, (c) hydriding of titanium catalyzed by implanted palladium, (d) tritium permeation of 304L stainless steel reduced using selective oxidation of implanted aluminum, and (e) hydrogen attack of a low-alloy steel accelerated by implantation of helium. These studies revealed ion implantation to be an effective method for modifying the interactions of hydrogen gas with metals.

  18. In situ NMR studies of hydrogen storage kinetics and molecular diffusion in clathrate hydrate at elevated hydrogen pressures

    Energy Technology Data Exchange (ETDEWEB)

    Okuchi, T. [Okayama Univ., Misasa, Tottori (Japan); Moudrakovski, I.L.; Ripmeester, J.A. [National Research Council of Canada, Ottawa, ON (Canada). Steacie Inst. for Molecular Sciences

    2008-07-01

    The challenge of storing high-density hydrogen into compact host media was investigated. The conventional storage scheme where an aqueous solution is frozen with hydrogen gas is too slow for practical use in a hydrogen-based society. Therefore, the authors developed a faster method whereby hydrogen was stored into gas hydrates. The hydrogen gas was directly charged into hydrogen-free, crystalline hydrate powders with partly empty lattices. The storage kinetics and hydrogen diffusion into the hydrate was observed in situ by nuclear magnetic resonance (NMR) in a pressurized tube cell. At pressures up to 20 MPa, the storage was complete within 80 minutes, as observed by growth of stored-hydrogen peak into the hydrate. Hydrogen diffusion within the crystalline hydrate media is the rate-determining step of current storage scheme. Therefore, the authors measured the diffusion coefficient of hydrogen molecules using the pulsed field gradient NMR method. The results show that the stored hydrogen is very mobile at temperatures down to 250 K. As such, the powdered hydrate media should work well even in cold environments. Compared with more prevailing hydrogen storage media such as metal hydrides, clathrate hydrates have the advantage of being free from hydrogen embrittlement, more chemically durable, more environmentally sound, and economically affordable. It was concluded that the powdered clathrate hydrate is suitable as a hydrogen storage media. 22 refs., 4 figs.

  19. Preparation of platinum-decorated porous graphite nanofibers, and their hydrogen storage behaviors.

    Science.gov (United States)

    Kim, Byung-Joo; Lee, Young-Seak; Park, Soo-Jin

    2008-02-15

    In this work, the hydrogen storage behaviors of porous graphite nanofibers (GNFs) decorated by Pt nanoparticles were investigated. The Pt nanoparticles were introduced onto the GNF surfaces using a well-known chemical reduction method. We investigated the hydrogen storage capacity of the Pt-doped GNFs for the platinum content range of 1.3-7.5 mass%. The microstructure of the Pt/porous GNFs was characterized by X-ray diffraction and transmission electron microscopy. The hydrogen storage behaviors of the Pt/GNFs were studied using a PCT apparatus at 298 K and 10 MPa. It was found that amount of hydrogen stored increased with increasing Pt content to 3.4 mass%, and then decreased. This result indicates that the hydrogen storage capacity of porous carbons is based on both their metal content and dispersion rate.

  20. Fiscal 1976 Sunshine Project research report. Interim report (hydrogen energy); 1976 nendo chukan hokokushoshu. Suiso energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-11-01

    This report summarizes the Sunshine Project research interim reports on hydrogen energy of every organizations. The report includes research items, laboratories, institutes and enterprises concerned, research targets, research plans, and progress conditions. The research items are as follows. (1) Hydrogen production technology (electrolysis, high- temperature high-pressure water electrolysis, 4 kinds of thermochemical techniques, direct thermolysis). (2) Hydrogen transport and storage technology (2 kinds of solidification techniques). (3) Hydrogen use technology (combustion technology, fuel cell, solid electrolyte fuel cell, fuel cell power system, hydrogen fuel engine). (4) Hydrogen safety measures technology (disaster preventive technology for gaseous and liquid hydrogen, preventing materials from embrittlement due to hydrogen, hydrogen refining, transport and storage systems, their safety technology). (5) Hydrogen energy system (hydrogen energy system, hydrogen use subsystems, peripheral technologies). (NEDO)

  1. Effect of hydrogen on the microstructure, mechanical properties and phase transformations in austenitic steels

    International Nuclear Information System (INIS)

    Li, Y.Y.; Xing, Z.S.

    1989-01-01

    Effect of high-pressure hydrogen charging on the microstructure, mechanical properties and phase transformations in austenitic steels has been investigated and discussed. The results show that the strength and impact toughness of the steels increase slightly and that the ductility decreases after hydrogen charging. The existence of δ-ferrite deteriorates the resistance to hydrogen embrittlement (HE) of the steels. The occurrence of carbide in the steel resulted from aging reduces the ductility of the steel and makes the steel sensitive to HE. The existence of sufficient hydrogen promotes the ε-martensitic transformation and suppresses the α'-martensitic transformation. The permeabilities and diffusivities of hydrogen in the steels have also been determined. (orig.)

  2. Preliminary tension effect on low-cycle fatigue of 40Kh13 steel in gaseous hydrogen

    International Nuclear Information System (INIS)

    Romaniv, A.N.

    1984-01-01

    Comparative bending tests of specimens deformed by tension at 65, 18 and 30% in hydrogen and vacuum were accomplished to reveal the effect of preliminary tension on low-cycle fatigue strength of 40Kh13 martensitic steel. It was found that small amounts of preliminary strains induced a considerable decrease in low-cycle durability in vacuum and hydrogen which was connected with developing defects arising at the early stages of plastic deformation. A rather high degree of preliminary tension promoted steel homogenization, hydrogen embrittlement decrease and service behaviour improvement

  3. Ni/boride interfaces and environmental embrittlement in Ni-based superalloys: A first-principles study

    International Nuclear Information System (INIS)

    Sanyal, Suchismita; Waghmare, Umesh V.; Hanlon, Timothy; Hall, Ernest L.

    2011-01-01

    Highlights: ► Fracture strengths of Ni/boride interfaces through first-principles calculations. ► Fracture strengths of Ni/boride interfaces are higher than Ni/Ni 3 Al and NiΣ5 grain boundaries. ► Ni/boride interfaces have higher resistance to O-embrittlement than Ni/Ni 3 Al and NiΣ5 grain boundaries. ► CrMo-borides are more effective than Cr-borides in resisting O-embrittlement. ► Electronegativity differences between alloying elements correlate with fracture strengths. - Abstract: Motivated by the vital role played by boride precipitates in Ni-based superalloys in improving mechanical properties such as creep rupture strength, fatigue crack growth rates and improved resistance towards environmental embrittlement , we estimate fracture strength of Ni/boride interfaces through determination of their work of separation using first-principles simulations. We find that the fracture strength of Ni/boride interfaces is higher than that of other commonly occurring interfaces in Ni-alloys, such as Ni Σ-5 grain boundaries and coherent Ni/Ni 3 Al interfaces, and is less susceptible to oxygen-induced embrittlement. Our calculations show how the presence of Mo in Ni/M 5 B 3 (M = Cr, Mo) interfaces leads to additional reduction in oxygen-induced embrittlement. Through Electron-Localization-Function based analyses, we identify the electronic origins of effects of alloying elements on fracture strengths of these interfaces and observe that chemical interactions stemming from electronegativity differences between different atomic species are responsible for the trends in calculated strengths. Our findings should be useful towards designing Ni-based alloys with higher interfacial strengths and reduced oxygen-induced embrittlement.

  4. Effect of the hydrogen concentration on the ductility of Zry-4

    International Nuclear Information System (INIS)

    Domizzi, G.; Ovejero Garcia, J.

    1996-01-01

    After many years in service, zirconium alloys employed in nuclear reactors may reach high contents of hydride particles, exceeding the hydrogen solid solubility at the service temperature. The brittle character of zirconium hydride promotes the alloy embrittlement. In order to predict the critical hydrogen concentration which causes a ductile-brittle transition in a Zry-4 foil, 0.02mm thick, tensile test specimens were hydride by gaseous charging. To obtain uniform hydride distribution the specimens were electroplated with a film of copper prior to gaseous charge. In absence of oxide film, the foils retained its ductility up to high hydrogen concentration (950 Og/g). The critical hydrogen concentration was attained at 2900-3100 Og/g. (author). 4 refs., 2 figs., 1 tab

  5. Charles J. McMahon Interfacial Segregation and Embrittlement Symposium

    National Research Council Canada - National Science Library

    Vitek, Vaclav

    2003-01-01

    .... McMahon Interfacial Segregation and Embrittlement Symposium: Grain Boundary Segregation and Fracture in Steels was sponsored by ASM International, Materials Science Critical Technology Sector, Structural Materials Division, Materials Processing...

  6. Fracture behavior of nickel-based alloys in water

    Energy Technology Data Exchange (ETDEWEB)

    Mills, W.J.; Brown, C.M.

    1999-08-01

    The cracking resistance of Alloy 600, Alloy 690 and their welds, EN82H and EN52, was characterized by conducting J{sub IC} tests in air and hydrogenated water. All test materials displayed excellent toughness in air and high temperature water, but Alloy 690 and the two welds were severely embrittled in low temperature water. In 54 C water with 150 cc H{sub 2}/kg H{sub 2}O, J{sub IC} values were typically 70% to 95% lower than their air counterparts. The toughness degradation was associated with a fracture mechanism transition from microvoid coalescence to intergranular fracture. Comparison of the cracking response in water with that for hydrogen-precharged specimens tested in air demonstrated that susceptibility to low temperature cracking is due to hydrogen embrittlement of grain boundaries. The effects of water temperature, hydrogen content and loading rate on low temperature crack propagation were studied. In addition, testing of specimens containing natural weld defects and as-machined notches was performed to determine if low temperature cracking can initiate at these features. Unlike the other materials, Alloy 600 is not susceptible to low temperature cracking as the toughness in 54 C water remained high and a microvoid coalescence mechanism was operative in both air and water.

  7. A study on the irradiation embrittlement and recovery characteristics of light water reactor pressure vessel steels

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Se Hwan; Hong, Jun Hwa; Lee, Bong Sang; Oh, Jong Myung; Song, Sook Hyang; Milan, Brumovsky [NRI Czech (Czech Republic)

    1999-03-01

    The neutron irradiation embrittlement phenomenon of light water RPV steels greatly affects the life span for safe operation of a reactor. Reliable evaluation and prediction of the embrittlement of RPV steels, especially of aged reactors, are of importance to the safe operation of a reactor. In addition, the thermal recovery of embrittled RPV has been recognized as an option for life extension. This study aimed to tracer/refine available technologies for embrittlement characterization and prediction, to prepare relevant materials for several domestic RPV steels of the embrittlement and recovery, and to find out possible remedy for steel property betterment. Small specimen test techniques, magnetic measurement techniques, and the Meechan and Brinkmann's recovery curve analysis method were examined/applied as the evaluation techniques. Results revealed a high irradiation sensitivity in YG 3 RPV steel. Further extended study may be urgently needed. Both the small specimen test technique for the direct determination of fracture toughness, and the magnetic measurement technique for embrittlement evaluation appeared to be continued for the technical improvement and data base preparation. Manufacturing process relevant to the heat treatment appeared to be improved in lowering the irradiation sensitivity of the steel. Further study is needed especially in applying the present techniques to the new structural materials under new irradiation environment of advanced reactors. (author)

  8. Surveillance of irradiation embrittlement of nuclear reactor pressure vessels

    International Nuclear Information System (INIS)

    Najzer, M.

    1982-01-01

    Surveillance of irradiation embrittlement of nuclear reactor pressure vessels is briefly discussed. The experimental techniques and computer programs available for this work at the J. Stefan Institute are described. (author)

  9. Effect of microstructure on the susceptibility of a 533 steel to temper embrittlement

    International Nuclear Information System (INIS)

    Raoul, S.; Marini, B.; Pineau, A.

    1998-01-01

    In ferritic steels, brittle fracture usually occurs at low temperature by cleavage. However the segregation of impurities (P, As, Sn etc..) along prior γ grain boundaries can change the brittle fracture mode from transgranular to intergranular. In quenched and tempered steels, this segregation is associated with what is called the temper-embrittlement phenomenon. The main objective of the present study is to investigate the influence of the as-quenched microstructure (lower bainite or martensite) on the susceptibility of a low alloy steel (A533 cl.1) to temper-embrittlement. Dilatometric tests were performed to determine the continous-cooling-transformation (CCT) diagram of the material and to measure the critical cooling rate (V c ) for a martensitic quench. Then subsized Charpy V-notched specimens were given various cooling rates from the austenitization temperature to obtain a wide range of as-quenched microstructures, including martensite and bainite. These specimens were subsequently given a heat treatment to develop temper embrittlement and tested to measure the V-notch fracture toughness at -50 C. The fracture surfaces were examined by SEM. It is shown that martensitic microstructures are more susceptible to intergranular embrittlement than bainitic microstructures. These observed microstructural influences are briefly discussed. (orig.)

  10. On the tempered martensite embrittlement in AISI 4140 low alloy steel

    Energy Technology Data Exchange (ETDEWEB)

    Darwish, F.A. (Dept. of Materials Science and Metallurgy, Catholic Univ., Rio de Janeiro, RJ (Brazil)); Pereira, L.C.; Gatts, C. (Dept. of Metallurgy and Materials Engineering, Federal Univ., Rio de Janeiro, RJ (Brazil)); Graca, M.L. (Materials Div., Technical Aerospace Center, Sao Jose dos Campos, SP (Brazil))

    1991-02-01

    In the present investigation the Auger electron spectroscopy (AES) technique was used to determine local carbon and phosphorus concentrations on the fracture surfaces of as-quenched and quenched-and-tempered (at 350deg C) AISI 4140 steel specimens austenitized at low and high temperatures. The AES results were rationalized to conclude that, although carbide growth as well as phosphorus segregation are expected to contribute to tempered martensite embrittlement, carbide precipitation on prior austenite grain boundaries during tempering is seen to be the microstructural change directly responsible for the occurrence of the referred embrittlement phenomenon. (orig.).

  11. Embrittlement of irradiated ferritic/martensitic steels in the absence of irradiation hardening

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R.L. [Oak Ridge Noational Laboratory, TN (United States); Shiba, K. [Japan Atomic Energy Agency, Tokai-mura, Naga-gun, Ibaraki-ken (Japan); Sokolov, M. [Oak Ridge National Laboratory, Materials Science and Technology Div., TN (United States)

    2007-07-01

    Full text of publication follows: Neutron irradiation of 9-12% Cr ferritic/martensitic steels below 425-450 deg. C produces microstructural defects that cause an increase in yield stress and ultimate tensile strength. This irradiation hardening causes embrittlement, which is observed in Charpy impact and toughness tests as an increase in ductile-brittle transition temperature (DBTT). Based on observations that show little change in strength in these steels irradiated above 425-450 deg. C, the general conclusion has been that no embrittlement occurs above this irradiation-hardening temperature regime. In a recent study of F82H steel irradiated at 300, 380, and 500 deg. C, irradiation hardening-an increase in yield stress-was observed in tensile specimens irradiated at the two lower temperatures, but no change was observed for the specimens irradiated at 500 deg. C. As expected, an increase in DBTT occurred for the Charpy specimens irradiated at 300 and 380 deg. C. However, there was an unexpected increase in the DBTT of the specimens irradiated at 500 deg. C. The observed embrittlement was attributed to the irradiation-accelerated precipitation of Laves phase. This conclusion was based on results from a detailed thermal aging study of F82H, in which tensile and Charpy specimens were aged at 500, 550, 600, and 650 deg. C to 30,000 h. These studies indicated that there was a decrease in yield stress at the two highest temperatures and essentially no change at the two lowest temperatures. Despite the strength decrease or no change, the DBTT increased for Charpy specimens irradiated at all four temperatures. Precipitates were extracted from thermally aged specimens, and the amount of precipitate was correlated with the increase in transition temperature. Laves phase was identified in the extracted precipitates by X-ray diffraction. Earlier studies on conventional elevated-temperature steels also showed embrittlement effects above the irradiation-hardening temperature

  12. Hydrogen-rich saline attenuates anxiety-like behaviors in morphine-withdrawn mice.

    Science.gov (United States)

    Wen, Di; Zhao, Peng; Hui, Rongji; Wang, Jian; Shen, Qianchao; Gong, Miao; Guo, Hongyan; Cong, Bin; Ma, Chunling

    2017-05-15

    Hydrogen therapy is a new medical approach for a wide range of diseases. The effects of hydrogen on central nervous system-related diseases have recently become increasingly appreciated, but little is known about whether hydrogen affects the morphine withdrawal process. This study aims to investigate the potential effects of hydrogen-rich saline (HRS) administration on naloxone-precipitated withdrawal symptoms and morphine withdrawal-induced anxiety-like behaviors. Mice received gradually increasing doses (25-100 mg/kg, i.p.) of morphine over 3 days. In the naloxone-precipitated withdrawal procedure, the mice were treated with three HRS (20 μg/kg, i.p.) injections, and naloxone (1 mg/kg, i.p.) was given 30 min after HRS administration. Body weight, jumping behavior and wet-dog shakes were immediately assessed. In the spontaneous withdrawal procedure, the mice were treated with HRS (20 μg/kg, i.p.) every 8-h. Mice underwent naloxone-precipitated or spontaneous withdrawal were tested for anxiety-like behaviors in the elevated plus-maze (EPM) and light/dark box (L/D box) paradigm, respectively. In addition, the levels of plasma corticosterone were measured. We found that HRS administration significantly reduced body weight loss, jumping behavior and wet-dog shakes in mice underwent naloxone-precipitated withdrawal, and attenuated anxiety-like behaviors in the EPM and L/D box tests after naloxone-precipitated withdrawal or a 2-day spontaneous withdrawal period. Hypo-activity or motor impairment after HRS administration was not observed in the locomotion tests. Furthermore, HRS administration significantly decreased the levels of corticosterone in morphine-withdrawn mice. These are the first findings to indicate that hydrogen might ameliorate withdrawal symptoms and exert an anxiolytic-like effect in morphine-withdrawal mice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Novel hydrogen decrepitation behaviors of (La, Ce)-Fe-B strips

    Science.gov (United States)

    Jin, Jiaying; Bai, Guohua; Zhang, Yujing; Peng, Baixing; Liu, Yongsheng; Ma, Tianyu; Yan, Mi

    2018-05-01

    La and Ce substitution for Nd in the 2:14:1-type sintered magnet is of commercial interest to reduce the material cost and to balance the utilization of rare earth (RE) sources. As hydrogen decrepitation (HD) is widely utilized to prepare the magnetic powders during magnets fabrication, incorporating La and Ce into the Nd-Fe-B permanent magnets, however, may exert complex influences on the decrepitation behavior. In the present work, through a comparative study of the HD behaviors between the (La, Ce)-Fe-B strips and the conventional Nd-Fe-B ones, we find that similar to the Nd-Fe-B system, increasing hydrogen pressures from 2.5 to 5.5 MPa do not break the 2:14:1 tetragonal structure of (La, Ce)-Fe-B strips. The enhanced hydrogen absorption behaviors are observed with increasing pressure, which are still inferior to that of the Nd-Fe-B strips. This should be ascribed to the higher oxygen affinity of La and Ce than that of Nd, leading to the decreased amount of active RE-rich phase and limited hydrogen diffusion channel. As a result, the hydrogen absorption of 2:14:1 matrix phase is significantly suppressed, dramatically weakening the exothermic effect. This finding suggests that La and Ce with stable 2:14:1 tetragonal structure upon HD process are promising alternatives for Nd, despite that more precise oxygen control is necessary for the microstructure modification and magnetic performance enhancement of (La, Ce)-Fe-B sintered magnets.

  14. To the problem of structural materials serviceability in nitrogen-hydrogen-containing environments

    International Nuclear Information System (INIS)

    Bichuya, A.L.

    1982-01-01

    The analysis of the factors which affect high-temperature serviceability of structural materials in nitrogen-hydrogen-containing environments, in particular in ammonia, has been carried out on the basis of the published and own experimental data. It is shown that the observed reduction of serviceability of structural materials, under the effect of high temperatures and nitrogen-hydrogen-containing environments, can occur as a result of corrosion failure connected with nitriding, and also hydrogen embrittlement appearing as a result of the penetration of hydrogen formed during adsorbed gaseous phase dissociation on the metal being deformed. The suggested scheme of high-temperature metal fracture under the effect of nitrogen-hydrogen-containing environments, that in contrast to the previous ones includes the factor of hydrogen ebrittlement, allows to give a real estimation of structional materials serviceability under product service conditions

  15. Transient hydrogen diffusion analyses coupled with crack-tip plasticity under cyclic loading

    International Nuclear Information System (INIS)

    Kotake, Hirokazu; Matsumoto, Ryosuke; Taketomi, Shinya; Miyazaki, Noriyuki

    2008-01-01

    The effect of hydrogen on the material strengths of metals is known as the hydrogen embrittlement, which affects the structural integrity of a hydrogen energy system. In the present paper, we developed a computer program for a transient hydrogen diffusion-elastoplastic coupling analysis by combining an in-house finite element program with a general purpose finite element computer program to analyze hydrogen diffusion. In this program, we use a hypothesis that the hydrogen absorbed in the metal affects the yield stress of the metal. In the present paper, we discuss the effects of the cyclic loading on the hydrogen concentration near the crack tip. An important finding we obtained here is the fact that the hydrogen concentration near the crack tip greatly depends on the loading frequency. This result indicates that the fatigue lives of the components in a hydrogen system depend not only on the number of loading cycles but also on the loading frequency

  16. Influence of aggressive media on the mechanical behavior of the uranium--0.20 wt % vanadium alloy the role of hydrogen embrittlement

    International Nuclear Information System (INIS)

    Arnould-Laurent, R.

    The tests comprised tensile tests under constant load or up to the fracture point using cylindrical or flat, trapezoidal test pieces, tests in which disks were ruptured under gaseous pressure, and tenacity tests. The alloy was found to be sensitive to: (1) intrinsic brittleness (I.B.) due to dissolved residual hydrogen from the preparation stage. This manifested itself mainly by cracking at an elongation threshold of about 3 percent. (2) Cracking due to stress corrosion (S.C.C.) in the true sense, which is made possible under certain conditions by an imperfect passivation of the metal surface. The process is initiated either by the appearance of microcracks which appear at the surface, or by corrosion pits. (3) Generalized corrosion accelerated by the stress (S.A.C.), whose microscopic appearance is similar to that observed with corrosion under gaseous hydrogen. Below pH 2 there is no stress corrosion. Stress rupture tests in moist air at 80 and 100 0 C measure I.B. + S.C.C. under high stress, giving rise to short lifetimes. I.B. + S.C.C. + S.A.C., with S.A.C. predominant, occurs under lower stresses that give long lifetimes. Stress rupture tests measure at 20 and 60 0 C I.B. + S.C.C. with I.B. predominant. Under high stresses (short lifetimes) the magnitude of the S.C.C. component increases as the temperature increases. The most serious effects are those of S.A.C. at 80 and 100 0 C, and of I.B. at all temperatures. The way this alloy behaves can only be changed by an effective reduction in the quantity of residual hydrogen present, or by coatings that will in no case allow the ingress of hydrogen. 62 fig, 82 references, 15 tables

  17. Applications of ion implantation for modifying the interactions between metals and hydrogen gas

    International Nuclear Information System (INIS)

    Musket, R.G.

    1989-01-01

    Ion implantations into metals have been shown recently to either reduce or enhance interactions with gaseous hydrogen. Published studies concerned with modifications of these interactions are reviewed and discussed in terms of the mechanisms postulated to explain the observed changes. The interactions are hydrogenation, hydrogen permeation and hydrogen embrittlement. In particular, the results of the reviewed studies are 1. uranium hydriding suppressed by implantation of oxygen and carbon, 2. hydrogen gettered in iron and nickel using implantation of titanium, 3. hydriding of titanium catalyzed by implanted palladium, 4. tritium permeation of 304L stainless steel reduced using selective oxidation of implanted aluminum, and 5. hydrogen attack of a low-alloy steel accelerated by implantation of helium. These studies revealed ion implantation to be an effective method for modifying the interactions of hydrogen gas with metals. (orig.)

  18. The annealing behavior of hydrogen implanted into Al-Si alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ogura, Masahiko; Yamaji, Norisuke; Imai, Makoto; Itoh, Akio; Imanishi, Nobutsugu [Kyoto Univ. (Japan). Faculty of Engineering

    1997-03-01

    We have studied effects of not only defects but also an added elements on trap-sites of hydrogen in metals. For the purpose, we observed depth profiles and thermal behaviors of hydrogen implanted into Al-1.5at.%Si alloy samples in an implantation-temperature range of liquid nitrogen temperature (LNT) to 373K at different doses. The results were compared with those for pure aluminum samples. It was found that hydrogen is trapped as molecules in grain boundaries of Al/Si. (author)

  19. Low temperature thermal ageing embrittlement of austenitic stainless steel welds and its electrochemical assessment

    International Nuclear Information System (INIS)

    Chandra, K.; Kain, Vivekanand; Raja, V.S.; Tewari, R.; Dey, G.K.

    2012-01-01

    Highlights: ► Embrittlement study of austenitic stainless steel welds after ageing up to 20,000 h. ► Spinodal decomposition and G-phase precipitation in ferrite at 400 °C. ► Spinodal decomposition of ferrite at 335 and 365 °C. ► Large decrease in corrosion resistance due to G-phase precipitation. ► Good correlation between electrochemical properties and the degree of embrittlement. - Abstract: The low temperature thermal ageing embrittlement of austenitic stainless steel welds is investigated after ageing up to 20,000 h at 335, 365 and 400 °C. Spinodal decomposition and G-phase precipitation after thermal ageing were identified by transmission electron microscopy. Ageing led to increase in hardness of the ferrite phase while there was no change in the hardness of austenite. The degree of embrittlement was evaluated by non-destructive methods, e.g., double-loop and single-loop electrochemical potentiokinetic reactivation tests. A good correlation was obtained between the electrochemical properties and hardening of the ferrite phase of the aged materials.

  20. Surface hardening of Ti-6Al-4V alloy by hydrogenation

    International Nuclear Information System (INIS)

    Wu, T.I.; Wu, J.K.

    1991-01-01

    Thermochemical processing is an advanced method to enhance the fabricability and mechanical properties of titanium alloys. In this process hydrogen is added to the titanium alloy as a temporary alloying element. Hydrogen addition lowers the β transus temperature of titanium alloy and stabilizes the β phase. The increased amount of β phase in hydrogen-modified titanium alloys reduces the grain growth rate during eutectoid β → α + hydride reaction. Hydrogen was added to the titanium alloy by holding it at a relatively high temperature in a hydrogen gaseous environment in previous studies. Pattinato reported that Ti-6Al-4V alloy can react with hydrogen gas at ambient temperature and cause a serious hydrogen embrittlement problem. The hydrogen must be removed to a low allowable concentration in a vacuum system after the hydrogenation process. The present study utilized an electrochemical technique to dissolve hydrogen into titanium alloy to replace the hydrogen environment in thermochemical processing. In this paper microstructures and hardnesses of this new processed Ti-6Al-4V alloy are reported

  1. On the problem of safe usage of 12MKh steel at elevated temperatures and high hydrogen pressures

    International Nuclear Information System (INIS)

    Archakov, Yu.I.; Teslya, B.M.

    1982-01-01

    The behaviour of the 12MKh steel in hydrogen at pressures of 4-100 MPa and temperatures of 450-600 deg C has been investigated to study the regularities of hydrogen corrosion process. The samples are held in hydrogen under all-round compression in autoclaves with subsequent determination of mechanical properties, carbon content and microstructure. Dependencies of time to begining of intensive embrittlement under given conditions are found. The empiric equation for the calculation of time to beginning of hydrogen corrosion is derived, the safe usage of the 12MKh steel at different temperatures and pressures are determined

  2. On hydrogen-induced plastic flow localization during void growth and coalescence

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, D.C.; Sofronis, P. [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street, Urbana, IL 61801 (United States); Dodds, R.H. Jr. [Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, Urbana, IL 61801 (United States)

    2007-11-15

    Hydrogen-enhanced localized plasticity (HELP) is recognized as a viable mechanism of hydrogen embrittlement. A possible way by which the HELP mechanism can bring about macroscopic material failure is through hydrogen-induced accelerated void growth and coalescence. Assuming a periodic array of spherical voids loaded axisymmetrically, we investigate the hydrogen effect on the occurrence of plastic flow localization upon void growth and its dependence on macroscopic stress triaxiality. Under a macroscopic stress triaxiality equal to 1 and prior to void coalescence, the finite element calculation results obtained with material data relevant to A533B steel indicate that a hydrogen-induced localized shear band forms at an angle of about 45 {sup circle} from the axis of symmetry. At triaxiality equal to 3, void coalescence takes place by accelerated hydrogen-induced localization of plasticity mainly in the ligament between the voids. Lastly, we discuss the numerical results within the context of experimental observations on void growth and coalescence in the presence of hydrogen. (author)

  3. Current limitations of trend curve analysis for the prediction of reactor PV embrittlement

    International Nuclear Information System (INIS)

    Gold, R.; McElroy, W.N.

    1986-02-01

    In operating light water reactor (LWR) commercial power plants, neutron radiation induces embrittlement of the pressure vessel (PV) and its support structures. As a consequence, LWR-PV integrity is a primary safety consideration. LWR-PV integrity is a significant economic consideration since the PV and its support structures are nonreplaceable power plant components and embrittlement of these components can therefore limit the effective operating lifetime of the plant

  4. Study of intergranular embrittlement in Fe-12Mn alloys

    International Nuclear Information System (INIS)

    Lee, H.J.

    1982-06-01

    A high resolution scanning Auger microscopic study has been performed on the intergranular fracture surfaces of Fe-12Mn steels in the as-austenitized condition. Fracture mode below the ductile-brittle transition temperature was intergranular whenever the alloy was quenched from the austenite field. The intergranular fracture surface failed to reveal any consistent segregation of P, S, As, O, or N. The occasional appearance of S or O on the fracture surface was found to be due to a low density precipitation of MnS and MnO 2 along the prior austenite boundaries. An AES study with Ar + ion-sputtering showed no evidence of manganese enrichment along the prior austenite boundaries, but a slight segregation of carbon which does not appear to be implicated in the tendency toward intergranular fracture. Addition of 0.002% B with a 1000 0 C/1h/WQ treatment yielded a high Charpy impact energy at liquid nitrogen temperature, preventing the intergranular fracture. High resolution AES studies showed that 3 at. % B on the prior austenite grain boundaries is most effective in increasing the grain boundary cohesive strength in an Fe-12Mn alloy. Trace additions of Mg, Zr, or V had negligible effects on the intergranular embrittlement. A 450 0 C temper of the boron-modified alloys was found to cause tempered martensite embrittlement, leading to intergranular fracture. The embrittling treatment of the Fe-12Mn alloys with and without boron additions raised the ductile-brittle transition by 150 0 C. This tempered martensite embrittlement was found to be due to the Mn enrichment of the fracture surface to 32 at. % Mn in the boron-modified alloy and 38 at. % Mn in the unmodified alloy. The Mn-enriched region along the prior austenite grain boundaries upon further tempering is believed to cause nucleation of austenite and to change the chemistry of the intergranular fracture surfaces. 61 figures

  5. Hydrogen in metals

    International Nuclear Information System (INIS)

    1986-01-01

    The report briefly describes the results of the single projects promoted by the German Council of Research (DFG). The subjects deal with diffusion, effusion, permeation and solubility of hydrogen in metals. They are interesting for many disciplines: metallurgy, physical metallurgy, metal physics, materials testing, welding engineering, chemistry, nuclear physics and solid-state physics. The research projects deal with the following interrelated subjects: solubility of H 2 in steel and effects on embrittlement, influence of H 2 on the fatigue strength of steel as well as the effect of H 2 on welded joints. The studies in solid-state research can be divided into methodological and physico-chemical studies. The methodological studies mainly comprise investigations on the analytical determination of H 2 by means of nuclear-physical reactions (e.g. the 15 N method) and the application of the Moessbauer spectroscopy. Physico-chemical problems are mainly dealt with in studies on interfacial reactions in connection with the absorption of hydrogen and on the diffusion of H 2 in different alloy systems. The properties of materials used for hydrogen storage were the subject of several research projects. 20 contributions were separately recorded for the data bank 'Energy'. (MM) [de

  6. Effect of microstructure on the susceptibility of a 533 steel to temper embrittlement

    Energy Technology Data Exchange (ETDEWEB)

    Raoul, S.; Marini, B. [CEA Centre d`Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). Service de Recherches Metallurgiques Appliquees; Pineau, A. [CNRS, Evry (France). Centre de Materiaux

    1998-11-01

    In ferritic steels, brittle fracture usually occurs at low temperature by cleavage. However the segregation of impurities (P, As, Sn etc..) along prior {gamma} grain boundaries can change the brittle fracture mode from transgranular to intergranular. In quenched and tempered steels, this segregation is associated with what is called the temper-embrittlement phenomenon. The main objective of the present study is to investigate the influence of the as-quenched microstructure (lower bainite or martensite) on the susceptibility of a low alloy steel (A533 cl.1) to temper-embrittlement. Dilatometric tests were performed to determine the continous-cooling-transformation (CCT) diagram of the material and to measure the critical cooling rate (V{sub c}) for a martensitic quench. Then subsized Charpy V-notched specimens were given various cooling rates from the austenitization temperature to obtain a wide range of as-quenched microstructures, including martensite and bainite. These specimens were subsequently given a heat treatment to develop temper embrittlement and tested to measure the V-notch fracture toughness at -50 C. The fracture surfaces were examined by SEM. It is shown that martensitic microstructures are more susceptible to intergranular embrittlement than bainitic microstructures. These observed microstructural influences are briefly discussed. (orig.) 11 refs.

  7. Hydrogen storage behaviors of platinum-supported multi-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Park, Soo-Jin; Lee, Seul-Yi [Department of Chemistry, Inha University, 253 Nam-gu, Incheon 402-751 (Korea, Republic of)

    2010-12-15

    In this work, the hydrogen storage behaviors of multi-walled carbon nanotubes (MWNTs) loaded by crystalline platinum (Pt) particles were studied. The microstructure of the Pt/MWNTs was characterized by X-ray diffraction and transmission electron microscopy. The pore structure and total pore volumes of the Pt/MWNTs were analyzed by N{sub 2}/77 K adsorption isotherms. The hydrogen storage capacity of the Pt/MWNTs was evaluated at 298 K and 100 bar. From the experimental results, it was found that Pt particles were homogeneously distributed on the MWNT surfaces. The amount of hydrogen storage capacity increased in proportion to the Pt content, with Pt-5/MWNTs exhibiting the largest hydrogen storage capacity. The superior amount of hydrogen storage was linked to an increase in the number of active sites and the optimum-controlled micropore volume for hydrogen adsorption due to the well-dispersed Pt particles. Therefore, it can be concluded that Pt particles play an important role in hydrogen storage characteristics due to the hydrogen spillover effect. (author)

  8. The mutual effects of hydrogen and microstructure on hardness and impact energy of SMA welds in X65 steel

    Energy Technology Data Exchange (ETDEWEB)

    Latifi, V. Amin; Miresmaeili, Reza, E-mail: miresmaeili@modares.ac.ir; Abdollah-Zadeh, Amir

    2017-01-02

    Micro-alloy steels are broadly used in gas and petroleum transportation industries. However, application of these steels in pipelines is challenged by hydrogen embrittlement due to presence of hydrogen sulfide in the medium. The present work deals with the interaction of hydrogen with plasticity of X65 steel. Two weld joints produced by common E7010-G and E7018 electrodes via shielded metal arc welding (SMAW) method were also investigated. It was revealed in microhardness test that direct charge of hydrogen to the surface did not lead to meaningful variations due to lamination as well as surface and sub-surface porosities. In fact, the effect of hydrogen on material plasticity was influenced by lamination and porosities. On the other hand, indirect charge on the tested surface led to increase in hardness by 12%, 9% and 6% in base metal as well as in weld metals obtained from E7010-G and E7018 electrodes, respectively. Therefore, hydrogen atoms affected plasticity of X65 steel more harshly than that of weld metals; thus, the base metal is more sensitive to hydrogen embrittlement. Due to high strain rate, impact test does not provide sufficient time for hydrogen diffusion through notch during the test. No observation of any variations in impact energies of charged samples may hence be explained by uniform hydrogen concentration throughout the samples. The base steel was seen to be much more sensitive to hydrogen defects rather than weld metals of both electrodes due to possessing pearlite/ferrite interfaces. According to hydrogen concentration studies, E710-G weld metal had more hydrogen diffusivity than X65 steel and E7018 weld metal by four time and 25%, respectively. This was due to acicular ferritic microstructure of E710-G weld metal and its dislocation tangles that provided many reversible traps for hydrogen.

  9. Surface atomic relaxation and magnetism on hydrogen-adsorbed Fe(110) surfaces from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Chohan, Urslaan K.; Jimenez-Melero, Enrique [School of Materials, The University of Manchester, Manchester M13 9PL (United Kingdom); Dalton Cumbrian Facility, The University of Manchester, Moor Row CA24 3HA (United Kingdom); Koehler, Sven P.K., E-mail: sven.koehler@manchester.ac.uk [Dalton Cumbrian Facility, The University of Manchester, Moor Row CA24 3HA (United Kingdom); School of Chemistry, The University of Manchester, Manchester M13 9PL (United Kingdom); Photon Science Institute, The University of Manchester, Manchester M13 9PL (United Kingdom)

    2016-11-30

    Highlights: • Potential energy surfaces for H diffusion on Fe(110) calculated. • Full vibrational analysis of surface modes performed. • Vibrational analysis establishes lb site as a transition state to the 3f site. • Pronounced buckling observed in the Fe surface layer. - Abstract: We have computed adsorption energies, vibrational frequencies, surface relaxation and buckling for hydrogen adsorbed on a body-centred-cubic Fe(110) surface as a function of the degree of H coverage. This adsorption system is important in a variety of technological processes such as the hydrogen embrittlement in ferritic steels, which motivated this work, and the Haber–Bosch process. We employed spin-polarised density functional theory to optimise geometries of a six-layer Fe slab, followed by frozen mode finite displacement phonon calculations to compute Fe–H vibrational frequencies. We have found that the quasi-threefold (3f) site is the most stable adsorption site, with adsorption energies of ∼3.0 eV/H for all coverages studied. The long-bridge (lb) site, which is close in energy to the 3f site, is actually a transition state leading to the stable 3f site. The calculated harmonic vibrational frequencies collectively span from 730 to 1220 cm{sup −1}, for a range of coverages. The increased first-to-second layer spacing in the presence of adsorbed hydrogen, and the pronounced buckling observed in the Fe surface layer, may facilitate the diffusion of hydrogen atoms into the bulk, and therefore impact the early stages of hydrogen embrittlement in steels.

  10. Behavior and failure of fresh, hydrided and irradiated Zircaloy-4 fuel claddings under RIA conditions

    International Nuclear Information System (INIS)

    Le Saux, M.

    2008-01-01

    The purpose of this study is to characterize and simulate the mechanical behaviour and failure of fresh, hydrided and irradiated (in pressurized water reactors) cold-worked stress relieved Zircaloy-4 fuel claddings under reactivity initiated accident conditions. A model is proposed to describe the anisotropic viscoplastic mechanical behavior of the material as a function of temperature (from 20 C up to 1100 C), strain rate (from 3.10 -4 s -1 up to 5 s -1 ), fluence (from 0 up to 1026 n.m -2 ) and irradiation conditions. Axial tensile, hoop tensile, expansion due to compression and hoop plane strain tensile tests are performed at 25 C, 350 C and 480 C in order to analyse the anisotropic plastic and failure properties of the non-irradiated material hydrided up to 1200 ppm. Material strength and strain hardening depend on temperature and hydrogen in solid solution and precipitated hydride contents. Plastic anisotropy is not significantly modified by hydrogen. The material is embrittled by hydrides at room temperature. The plastic strain that leads to hydride cracking decreases with increasing hydrogen content. The material ductility, which increases with increasing temperature, is not deteriorated by hydrogen at 350 C and 480 C. Macroscopic fracture modes and damage mechanisms depend on specimen geometry, temperature and hydrogen content. A Gurson type model is finally proposed to describe both the anisotropic viscoplastic behavior and the ductile fracture of the material as a function of temperature and hydrogen content. (author) [fr

  11. Experimental study of combustion behavior during continuous hydrogen injection with an operating igniter

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Zhe, E-mail: zhe.liang@cnl.ca; Clouthier, Tony; Thomas, Bryan

    2016-03-15

    Highlights: • Combustion during continuous hydrogen release. • Periodical slow burning with a low release rate or weak turbulence. • Fast global burning with stratified hydrogen or strong turbulence. • Initiation of standing flame. - Abstract: Deliberate hydrogen ignition systems have been widely installed in many water cooled nuclear power plants to mitigate hydrogen risk in a loss-of-coolant accident. Experimental studies were performed at a large scale facility to simulate a post-accident containment scenario, where hydrogen is released into a volume (not closed) with an energized igniter. The test chamber had a volume of 60 m{sup 3}. The test parameters included hydrogen injection mass flow rate, injection elevation, igniter elevation, and level of turbulence in the chamber. Several dynamic combustion behaviors were observed. Under certain conditions, slow burning occurred periodically or locally without significant pressurization, and the hydrogen concentration could be maintained near the lean hydrogen flammability limit or a steady hydrogen distribution profile could be formed with a maximum hydrogen concentration less than 9 vol.%. Under other conditions, a global fast burn or a burn moving along the hydrogen dispersion pathway was observed and was followed by an immediate initiation of a standing flame. The study provided a better understanding of the dynamic combustion behavior induced by a deliberate igniter during a continuous hydrogen release. The data can be used for validation of combustion models used for hydrogen safety analysis.

  12. Development of assessment technology for hydrogen burn and fission product behavior in containment

    International Nuclear Information System (INIS)

    Kim, S. B.; Kim, J. T.; Ha, K. S.; Hong, S. W.; Song, Y. M.; Park, J. H.; Cho, Y. R.; Kang, H. S.

    2012-04-01

    Analysis tools for hydrogen burn was established to resolve the hydrogen issues in containment. To validate CFX commercial CFD(computational fluid dynamics) code, the hydrogen combustion experiments such as FLAME and ENACEFF for reactor containment were analyzed. And OpenFOAM hydrogen combustion code was developed and validated. Experiments for the flame propagation characteristics in IRWST and the run-up-distance for DDT(Deflagration to detonation transition) were performed and analytical model was evaluated to evaluation of the performance of hydrogen mitigation system, that is, PAR(Passive auto-catalistic re-combiner) To improvement of the fission product modelling in containment, separate analysis module for Iodine behavior and its application tool of K-IODIP (Korea IODIne Package) were developed. PHEBUS FPT-3 analysis was performed to validate MELCOR code. And also the characteristics of fission product behaviors in Future Reactors(GEN-IV) were compared

  13. Hydrogen permeation behavior through F82H at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, S.; Katayama, K.; Shimozori, M.; Fukada, S. [Interdisciplinary Graduate School of Engineering Science, Kyushu University, Kyushu (Japan); Ushida, H. [Energy Science and Engineering, Faculty of Engineering, Kyushu University, Kyushu (Japan); Nishikawa, M. [Malaysia-Japan International Institute of Technology, UTM, Kuala Lumpur (Malaysia)

    2015-03-15

    F82H is a primary candidate of structural material and coolant pipe material in a blanket of a fusion reactor. Understanding tritium permeation behavior through F82H is important. In a normal operation of a fusion reactor, the temperature of F82H will be controlled below 550 C. degrees because it is considered that F82H can be used up to 30,000 hours at 550 C. degrees. However, it is necessary to assume the situation where F82H is heated over 550 C. degrees in a severe accident. In this study, hydrogen permeation behavior through F82H was investigated in the temperature range from 500 to 800 C. degrees. In some cases, water vapor was added in a sample gas to investigate an effect of water vapor on hydrogen permeation. The permeability of hydrogen in the temperature range from 500 to 700 C. degrees agreed well with the permeability reported by E. Serra et al. The degradation of the permeability by water vapor was not observed. After the hydrogen permeation reached in a steady state at 700 C. degrees, the F82H sample was heated to 800 C. degrees. The permeability of hydrogen through F82H sample which was once heated up to 800 C. degrees was lower than that of the original one. (authors)

  14. Japan's New Sunshine Project. 1998 Annual summary of hydrogen energy R and D

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    Summarized herein are the reports on R and D efforts on hydrogen energy, as part of the FY 1998 New Sunshine Project. For production of hydrogen, characteristics related to transport number were investigated for steam electrolysis at high temperature, in which a sintered ceramic powder was used as the electrolyte and the cell was equipped with platinum electrodes. For utilization of hydrogen, energy conversion techniques were investigated using hydrogen occluding alloys for testing methods for alloy microstructures and hydrogenation characteristics, and preparation of and performance testing methods for the cathodes charged with the aid of hydrogen gas. For analysis/assessment for development of hydrogen-related techniques, the investigated items included water electrolysis with solid polymer electrolytes, hydrogen transport techniques using metal hydrides, hydrogen storing techniques using metal hydrides, hydrogen engines, and techniques for preventing hydrogen embrittlement. Analysis/assessment for development of hydrogen turbines was also investigated as one of the 12 R and D themes reported herein. (NEDO)

  15. Fracture toughness prediction for RPV Steels with various degree of embrittlement

    International Nuclear Information System (INIS)

    Margolin, B.; Gulenko, A.; Shvetsova, V.

    2003-01-01

    In the present report, predictions of the temperature dependence of cleavage fracture toughness are performed on the basis of the Master Curve approach and a probabilistic model named now the Prometey model. These predictions are performed for reactor pressure vessel steels in different states, the initial (as-produced), irradiated state with moderate degree of embrittlement and in the highly embrittled state. Calculations of the K IC (T) curves may be performed with both approaches on the basis of fracture toughness test results from pre-cracked Charpy specimens at some (one) temperature. The calculated curves are compared with test results. It is shown that the K IC (T) curves for the initial state calculated with the Master Curve approach and the probabilistic model show good agreement. At the same time, for highly embrittled RPV steel, the K IC (T) curve predicted with the Master Curve approach is not an adequate fit to the experimental data, whereas the agreement of the test results and the K IC (T) curve calculated with the probabilistic model is good. An analysis is performed for a possible variation of the K IC (T) curve shape and the scatter in K IC results. (author)

  16. Zinc-induced embrittlement in nickel-base superalloys by simulation and experiment

    Science.gov (United States)

    Otis, Richard; Waje, Mahesh; Lindwall, Greta; Jefferson, Tiffany; Lange, Jeremy; Liu, Zi-Kui

    2017-09-01

    The high cost of Re has driven interest in processes for recovering Re from scrap superalloy parts. In this work thermodynamic modelling is used to study Zn-induced embrittlement of a superalloy and to direct experiments. Treating superalloy powder with Zn vapour reduces the average particle size after milling from approximately ?m to 0.5-10 ?m, vs. ?m for untreated powder. Simulations predict the required treatment time to increase with temperature. Agreement between predictions and experiments suggests that an embrittling liquid forms in less than an hour of Zn vapour treatment between 950-1000 ?C and partial pressures of Zn between 14-34 kPa (2-5 psi).

  17. Influence of helium embrittlement on post-irradiation creep rupture behaviour of austenitic and martensitic stainless steels

    International Nuclear Information System (INIS)

    Wassilew, C.

    1982-01-01

    The author has investigated the influence of helium embrittlement on the creep rupture properties of the austenitic stainless steels 1.4970 and 1.4962 and the martensitic stainless steel 1.4914 after irradiation in the BR-2 reactor in Mol, Belgium. The results show that austenitic steels react much more strongly to the embrittlement effect of the helium than do martensitic steels. The causes of the lower embrittlement tendency of the martensitic than of both austenitic stainless steels were analysed carefully. A new embrittlement model was developed on the basis of data derived from the creep rupture experiments, and reinforced by a simple metallographic investigation of the fracture zone and its immediate environment. This model pays specific attention to the role of the twin planes as the most efficient area of increased vacancy production, and takes into account the ability of the twin boundaries to transport these vacancies with reduced energy and low loss into the high-angle grain boundaries. (author)

  18. Behavior of implanted hydrogen in ferritic/martensitic steels under irradiation

    Science.gov (United States)

    Wan, F.; Takahashi, H.; Ohnuki, S.; Nagasaki, R.

    1988-07-01

    The aim of this study was to clarify the behavior of hydrogen under irradiation in ferritic/martensitic stainless steel Fe-10Cr-2Mo-1Ni. Hydrogen was implanted into the specimens by ion accelerator or chemical cathodic charging method, followed by electron irradiation in a HVEM at temperatures from room temperature to 773 K. Streaks in the electron diffraction patterns were observed only during electron irradiation at 623-723 K. From these results it is suggested that the occurrence of the streak pattern is due to the formation of radiation-induced complexes of Ni or Cr with hydrogen along directions.

  19. Review of thermodinamic and mechanical properties of hydrogen-transition metal systems

    International Nuclear Information System (INIS)

    Mathias, H.; Katz, Y.

    1978-04-01

    A large body of fundamental and empirical knowledge has been acquired during many years of research concerning the interactions between hydrogen and metals, the location of hydrogen in metal structures, its mobility in metals and its influence on mechanical properties of metals. Much progress has been made in the understanding of related phenomena, and various theories have been proposed, but considerable disagreement still exist about basic mechanisms involved. The growing interest in these subjects and their important role in science and technology are well documented by many reviews and symposia. A general survey of these topics with reference to experimental results and theories related to thermodynamic and mechanical properties of hydrogen-transition metal systems, such as H-Pd, H-Ti, H-Fe etc. is given in the present review. Special emphasis is given to hydrogen embrittlement of metals

  20. Initial assessment of the mechanisms and significance of low-temperature embrittlement of cast stainless steels in LWR systems

    International Nuclear Information System (INIS)

    Chopra, O.K.; Sather, A.

    1990-08-01

    This report summarizes work performed by Argonne National Laboratory on long-term embrittlement of cast duplex stainless steels in LWR systems. Metallurgical characterization and mechanical property data from Charpy-impact, tensile, and J-R curve tests are presented for several experimental and commercial heats, as well as for reactor-aged CF-3, CF-8, and CF-8M cast stainless steels. The effects of material variables on the embrittlement of cast stainless steels are evaluated. Chemical composition and ferrite morphology strongly affect the extent and kinetics of embrittlement. In general, the low-carbon CF-3 stainless steels are the most resistant and the molybdenum-containing high-carbon CF-8M stainless steels are most susceptible to embrittlement. The microstructural and mechanical-property data are analyzed to establish the mechanisms of embrittlement. The procedure and correlations for predicting the impact strength and fracture toughness of cast components during reactor service are described. The lower bound values of impact strength and fracture toughness for low-temperature-aged cast stainless steel are defined. 39 refs., 56 figs., 8 tabs

  1. Long-term aging embrittlement of cast duplex stainless steels in LWR systems

    International Nuclear Information System (INIS)

    Chopra, O.K.; Chung, H.M.

    1991-01-01

    The primary objectives of this program are to investigate the significance of in-service embrittlement of cast duplex stainless steels in light water reactor (LWR) systems and to evaluate possible remedies for the embrittlement problem in existing and future plants. The scope of the investigation includes three goals: (1) develop a methodology and correlations for predicting the toughness loss suffered by cast stainless steel components during normal and extended life of LWRs, (2) validate the simulation of in-reactor degradation by accelerated aging, and (3) establish the effects of key compositional and metallurgical variables on the kinetics and extent of embrittlement. The emphasis during the current year was on developing a procedure and correlations for predicting fracture toughness J-R curves of aged cast stainless steels from known material information. The present analysis has focused on developing correlations for the fracture properties in terms of material information that can be determined from the certified material test record (CMTR) and on ensuring that the correlations are adequately conservative for structurally weak materials

  2. Hydrogen energy technology development conference. From production of hydrogen to application of utilization technologies and metal hydrides, and examples; Suiso energy gijutsu kaihatsu kaigi. Suiso no seizo kara riyo gijutsu kinzoku suisokabutsu no oyo to jirei

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1984-02-14

    The hydrogen energy technology development conference was held on February 14 to 17, 1984 in Tokyo. For hydrogen energy systems and production of hydrogen from water, 6 papers were presented for, e.g., the future of hydrogen energy, current state and future of hydrogen production processes, and current state of thermochemical hydrogen technology development. For hydrogen production, 6 papers were presented for, e.g., production of hydrogen from steel mill gas, coal and methanol. For metal hydrides and their applications, 6 papers were presented for, e.g., current state of development of hydrogen-occluding alloy materials, analysis of heat transfer in metal hydride layers modified with an organic compound and its simulation, and development of a large-size hydrogen storage system for industrial purposes. For hydrogen utilization technologies, 8 papers were presented for, e.g., combustion technologies, engines incorporating metal hydrides, safety of metal hydrides, hydrogen embrittlement of system materials, development trends of phosphate type fuel cells, and alkali and other low-temperature type fuel cells. (NEDO)

  3. Status of reactor pressure vessel embrittlement study in Japan

    International Nuclear Information System (INIS)

    Sasajima, H.

    1997-01-01

    Since the construction of Japanese first commercial nuclear power plant in 1966, 52 nuclear power plants have been commissioned in Japan to commercial operation. Japanese first nuclear power plant has now been service for 30 years and the aging of nuclear power plants is steadily progressing in general. Under these circumstances, the Japan Power Engineering and Inspection Corporation (JAPEIC) is executing, under consignment by the Ministry of International Trade and Industry (MITI), the development and verification test programs for plant integrity evaluation technology by which nuclear power plant aging can be appropriately handled. This paper shows the outline of study dealing with embrittlement of RPV caused by neutron irradiation, as one of the activity of JAPEIC. The embrittlement of RPV caused by neutron irradiation is manifested as a shift of transition temperature and as a reduction in Upper Shelf Energy (USE). In JAPEIC, the study dealing with a shift of transition temperature was conducted in the ''Reactor Pressure Vessel Pressurized Thermal Shock Test Project (the PTS Project)'', and the study dealing with a reduction in USE has been conducted in the ''Nuclear Power Plant Life Management Technology (the PLIM Project)''. And the reconstitution technology of surveillance test specimen has been conducted in PLIM Project as one of the measures to improve monitoring above material characteristic changes. The integrity evaluation under the Pressurized Thermal Shock (PTS) events including the effect of neutron irradiation embrittlement was initiated in 1983 FY as the PTS Project and was completed in the 1991 FY. The study verified that plant integrity could be assured at not only the end of design life, but also an extended service life even when the severest PTS events were postulated. The PLIM Project, designed to develop and verify the integrity evaluation technology dealing with reduction of USE by neutron irradiation, was started in the 1996 FY as a 10

  4. States and transport of hydrogen in the corrosion process of an AZ91 magnesium alloy in aqueous solution

    International Nuclear Information System (INIS)

    Chen Jian; Wang Jianqiu; Han Enhou; Dong Junhua; Ke Wei

    2008-01-01

    Mott-Schottky measurement and secondary ion mass spectroscopy (SIMS) were used to investigate the states and transport of hydrogen during the corrosion behavior of an AZ91 magnesium alloy in 0.1 M sodium sulfate solution. The results showed that when samples were immersed or charged in solution, hydrogen atoms diffused into the film and reacted with vacancy to cause the increases of the carrier concentration (excess electron or hole carrier) and diffusion rate of hydrogen. Some hydrogen atoms diffused to interior of matrix and enriched in β phase while others resorted in the corrosive film. With the increase of immersion or charging time, magnesium hydride would be brittle fractured when the inner stress caused by hydrogen pressure and expansion stress of formation of magnesium hydride was above the fracture strength, which provided the direct experimental evidence of the hydrogen embrittlement (HE) mechanism of magnesium and its alloys. After immersion in solution, the transfer of excess electrons to the interfaces of corrosion film and solution would destroy the charge equilibrium in the film and stimulate the adsorption of SO 4 2- , which resulted in the initiation of localized corrosion; after cathodic charging and then immersion, the enrichment of hydrogen atoms at interior of corrosion film would combine into hydrogen gas to form high pressure and result in the rupture of corrosion film, and localized corrosion initiated and developed at surface. Therefore, localized corrosion nucleated earlier on the charged samples than on the uncharged samples. Hydrogen invasion accelerated the corrosion of matrix

  5. Embrittlement of the Shippingport reactor shield tank

    International Nuclear Information System (INIS)

    Chopra, O.K.; Shack, W.J.

    1989-01-01

    Surveillance specimens from the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory showed an unexpectedly high degree of embrittlement relative to the data obtained on similar materials in Materials Testing Reactors (MTRs). The results suggest a possible negative flux effect and raise the issue of embrittlement of the pressure vessel support structures of commercial light water reactors. To help resolve this issues, a program was initiated to characterize the irradiation embrittlement of the neutron shield tank (NST) from the decommissioned Shippingport reactor. The Shippingport NST operated at 55 degree C (130 degree F) and was fabricated from A212 Grade B steel, similar to the vessel material in HFIR. The inner wall of the NST was exposed to a total maximum fluence of ∼ 6 x 10 17 n/cm 2 (E > 1 MeV) over a life of 9.25 effective full power years. This corresponds to a fast flux of 2.1 x 10 9 n/cm 2 x s and is comparable to the conditions for the HFIR surveillance specimens. The results indicate that irradiation increases the 15 ft x lb Charpy transition temperature (CTT) by ∼25 degree C (45 degree F) and decreases the upper shelf energy. The shift in CTT is not as severe as that observed in the HFIR surveillance specimens and is consistent with that expected from the MTR data base. However, the actual value of CTT is high, and the toughness at service temperature is low, even when compared with the HFIR data. The increase in yield stress is ∼50 MPa, which is comparable to the HFIR data. The results also indicate a lower impact strength and higher transition temperature for the TL orientation than that for the LT orientation. Some effects of the location across the thickness of the wall are also observed for the LT specimens; CTT is slightly greater for the specimens from the inner region of the wall

  6. Nanoscale microstructure effects on hydrogen behavior in rapidly solidified aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tashlykova-Bushkevich, Iya I. [Belarusian State University of Informatics and Radioelectronics, Minsk (Belarus)

    2015-12-31

    The present work summarizes recent progress in the investigation of nanoscale microstructure effects on hydrogen behavior in rapidly solidified aluminum alloys foils produced at exceptionally high cooling rates. We focus here on the potential of modification of hydrogen desorption kinetics in respect to weak and strong trapping sites that could serve as hydrogen sinks in Al materials. It is shown that it is important to elucidate the surface microstructure of the Al alloy foils at the submicrometer scale because rapidly solidified microstructural features affect hydrogen trapping at nanostructured defects. We discuss the profound influence of solute atoms on hydrogen−lattice defect interactions in the alloys. with emphasis on role of vacancies in hydrogen evolution; both rapidly solidified pure Al and conventionally processed aluminum samples are considered.

  7. Hydrogen storage behavior of ZrCo1-xNix alloys

    International Nuclear Information System (INIS)

    Jat, Ram Avtar; Parida, S.C.; Agarwal, Renu; Kulkarni, S.G.

    2012-01-01

    Intermetallic compound ZrCo is proposed as a candidate material for storage, supply and recovery of hydrogen isotopes in International Thermonuclear Experimental Reactor (ITER) Storage and Delivery System (SDS). However, it has been reported that upon repeated hydriding-dehydriding cycles, ZrCo undergoes disproportionation as per the reaction; 2ZrCo + H 2 ↔ ZrH 2 + ZrCO 2 . This results in reduction in hydrogen storage capacity of ZrCo, which is not a desirable property for SDS. Konishi et al. reported that the disproportionation reaction can be suppressed by decreasing the desorption temperature. It is anticipated that suitable ternary alloying of ZrCo can elevated the hydrogen equilibrium pressure and hence decrease the desorption temperature for supply of 100 kPa of hydrogen. In this study, we have investigated the effect of Ni content on the hydrogenation behavior of ZrCo 1-x Ni x alloys

  8. Hydrogen retention behavior of beryllides as advanced neutron multipliers

    Directory of Open Access Journals (Sweden)

    Y. Fujii

    2016-12-01

    Full Text Available Beryllium intermetallic compounds (beryllides are the most promising candidate materials for use as advanced neutron multipliers in future fusion reactors because of their low swelling and high stability at high temperatures. Recently, beryllium–titanium beryllide pebbles such as Be12Ti have been successfully fabricated using a novel granulation process. In this study, the fundamental aspects of the behavior of hydrogen isotopes in Be12Ti pebbles were investigated via thermal desorption spectroscopy and transmission electron microscopy. In addition, atomistic calculations using first principles electronic-structure methods were applied to determine the solution energy of hydrogen in Be12Ti. The results showed simpler and weaker hydrogen-trapping efficiency for Be12Ti than for pure Be.

  9. Hydrogen embrittlement and hydrogen induced stress corrosion cracking of high alloyed austenitic materials; Wasserstoffversproedung und wasserstoffinduzierte Spannungsrisskorrosion hochlegierter austenitischer Werkstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Mummert, K; Uhlemann, M; Engelmann, H J [Institut fuer Festkoerper- und Werkstofforschung Dresden e.V. (Germany)

    1998-11-01

    The susceptiblity of high alloyed austenitic steels and nickel base alloys to hydrogen-induced cracking is particularly determined by 1. the distribution of hydrogen in the material, and 2. the microstructural deformation behaviour, which last process is determined by the effects of hydrogen with respect to the formation of dislocations and the stacking fault energy. The hydrogen has an influence on the process of slip localization in slip bands, which in turn affects the microstructural deformation behaviour. Slip localization increases with growing Ni contents of the alloys and clearly reduces the ductility of the Ni-base alloy. Although there is a local hydrogen source involved in stress corrosion cracking, emanating from the corrosion process at the cathode, crack growth is observed only in those cases when the hydrogen concentration in a small zone ahead of the crack tip reaches a critical value with respect to the stress conditions. Probability of onset of this process gets lower with growing Ni content of the alloy, due to increasing diffusion velocity of the hydrogen in the austenitic lattice. This is why particularly austenitic steels with low Ni contents are susceptible to transcrystalline stress corrosion cracking. In this case, the microstructural deformation process at the crack tip is also influenced by analogous processes, as could be observed in hydrogen-loaded specimens. (orig./CB) [Deutsch] Die Empfindlichkeit von hochlegierten austentischen Staehlen und Nickelbasislegierungen gegen wasserstoffinduziertes Risswachstum wird im wesentlichen bestimmt durch 1. die Verteilung von Wasserstoff im Werkstoff und 2. das mikrostrukturelle Verformungsverhalten. Das mikrostrukturelle Deformationsverhalten ist wiederum durch den Einfluss von Wasserstoff auf die Versetzungsbildung und die Stapelfehlerenergie charakterisiert. Das mikrostrukturelle Verformungsverhalten wird durch wasserstoffbeeinflusste Gleitlokalisierung in Gleitbaendern bestimmt. Diese nimmt mit

  10. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The critical hydrogen concentration for hydrogen embrittlement in iron aluminide, Fe3Al has been estimated (0.42 wppm). The estimated critical hydrogen content has been correlated to structural aspects of the decohesion mechanism of hydrogen embrittlement.

  11. NATO Advanced Study Institute on Hydrogen in Disordered and Amorphous Solids

    CERN Document Server

    Bowman, Robert

    1986-01-01

    This is the second volume in the NATO ASI series dealing with the topic of hydrogen in solids. The first (V. B76, Metal Hydrides) appeared five years ago and focussed primarily on crystalline phases of hydrided metallic systems. In the intervening period, the amorphous solid state has become an area of intense research activity, encompassing both metallic and non-metallic, e.g. semiconducting, systems. At the same time the problem of storage of hydrogen, which motivated the first ASI, continues to be important. In the case of metallic systems, there were early indications that metallic glasses and disordered alloys may be more corrosion resistant, less susceptible to embrittlement by hydrogen and have a higher hydrogen mobility than ordered metals or intermetallics. All of these properties are desirable for hydrogen storage. Subsequent research has shown that thermodynamic instability is a severe problem in many amorphous metal hydrides. The present ASI has provided an appropriate forum to focus on these issu...

  12. Fiscal 1975 Sunshine Project research report. General research on hydrogen energy subsystems and their peripheral technologies (Research on hydrogen combustion technology); 1975 nendo suiso nensho gijutsu ni kansuru kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-03-01

    This research mainly aims at establishment of various conditions necessary for using hydrogen fuel. The research includes (1) properties of hydrogen-methane mixture gas, and the proposal to future R and D, (2) extraction of various problems in practical use of home or industrial combustors, and evaluation of existing technologies, (3) the environmental impact of hydrogen fuel and its reduction measures, and (4) estimation of energy structures in cities and placing of hydrogen fuel in 2000. Detailed study items are as follows. In (1), general and proper combustion characteristics of and combustion technology for hydrogen- methane mixture system. In (2), problems for every use of various gas equipment, application of various gas equipment to hydrogen, peripheral technologies, conversion from natural gas, problems of heating furnaces and hydrogen burners, combustion safety/control equipment for various combustors, water content recovery combustion system, hydrogen embrittlement, and sealing. In (3), NO{sub x} generation in hydrogen combustion and its reduction measures. In (4), problems in introduction of a hydrogen-electric power energy system to an assumed model city in 2000. (NEDO)

  13. PR-EDB: Power Reactor Embrittlement Data Base, version 1: Program description

    International Nuclear Information System (INIS)

    Stallmann, F.W.; Kam, F.B.K.; Taylor, B.J.

    1990-06-01

    Data concerning radiation embrittlement of pressure vessel steels in commercial power reactors have been collected form available surveillance reports. The purpose of this NRC-sponsored program is to provide the technical bases for voluntary consensus standards, regulatory guides, standard review plans, and codes. The data can also be used for the exploration and verification of embrittlement prediction models. The data files are given in dBASE 3 Plus format and can be accessed with any personal computer using the DOS operating system. Menu-driven software is provided for easy access to the data including curve fitting and plotting facilities. This software has drastically reduced the time and effort for data processing and evaluation compared to previous data bases. The current compilation of the Power Reactor Embrittlement Data base (PR-EDB, version 1) contains results from surveillance capsule reports of 78 reactors with 381 data points from 110 different irradiated base materials (plates and forgings) and 161 data points from 79 different welds. Results from heat-affected-zone materials are also listed. Electric Power Research Institute (EPRI), reactor vendors, and utilities are in the process of providing back-up quality assurance checks of the PR-EDB and will be supplementing the data base with additional data and documentation. 2 figs., 28 tabs

  14. Application of magnetomechanical hysteresis modeling to magnetic techniques for monitoring neutron embrittlement and biaxial stress

    International Nuclear Information System (INIS)

    Sablik, M.J.; Kwun, H.; Rollwitz, W.L.; Cadena, D.

    1992-01-01

    The objective is to investigate experimentally and theoretically the effects of neutron embrittlement and biaxial stress on magnetic properties in steels, using various magnetic measurement techniques. Interaction between experiment and modeling should suggest efficient magnetic measurement procedures for determining neutron embrittlement biaxial stress. This should ultimately assist in safety monitoring of nuclear power plants and of gas and oil pipelines. In the first six months of this first year study, magnetic measurements were made on steel surveillance specimens from the Indian Point 2 and D.C. Cook 2 reactors. The specimens previously had been characterized by Charpy tests after specified neutron fluences. Measurements now included: (1) hysteresis loop measurement of coercive force, permeability and remanence, (2) Barkhausen noise amplitude; and (3) higher order nonlinear harmonic analysis of a 1 Hz magnetic excitation. Very good correlation of magnetic parameters with fluence and embrittlement was found for specimens from the Indian Point 2 reactor. The D.C. Cook 2 specimens, however showed poor correlation. Possible contributing factors to this are: (1) metallurgical differences between D.C. Cook 2 and Indian Point 2 specimens; (2) statistical variations in embrittlement parameters for individual samples away from the stated men values; and (3) conversion of the D.C. Cook 2 reactor to a low leakage core configuration in the middle of the period of surveillance. Modeling using a magnetomechanical hysteresis model has begun. The modeling will first focus on why Barkhausen noise and nonlinear harmonic amplitudes appear to be better indicators of embrittlement than the hysteresis loop parameters

  15. Hydrogen Absorption Induced Slow Crack Growth in Austenitic Stainless Steels for Petrochemical Pressure Vessel Industries

    Directory of Open Access Journals (Sweden)

    Ronnie Rusli

    2011-05-01

    Full Text Available Type 304Land type 309 austenitic stainless steels were tested either by exposed to gaseous hydrogen or undergoing polarized cathodic charging. Slow crack growth by straining was observed in type 304L, and the formation of α‘ martensite was indicated to be precursor for such cracking. Gross plastic deformation was observed at the tip of the notch, and a single crack grew slowly from this region in a direction approximately perpendicular to the tensile axis. Martensite formation is not a necessary condition for hydrogen embrittlement in the austenitic phase.

  16. Radiation embrittlement of WWER 440 pressure vessel steel and of some improved steels by western producers

    International Nuclear Information System (INIS)

    Koutsky, J.; Vacek, M.; Stoces, B.; Pav, T.; Otruba, J.; Novosad, P.; Brumovsky, M.

    1982-01-01

    The resistance was studied of Cr-Mo-V type steel 15Kh2MFA to radiation embrittlement at an irradiation temperature of around 288 degC. Studied was the steel used for the manufacture of the pressure vessel of the Paks nuclear reactor in Hungary. The obtained results of radiation embrittlement and hardening of steel 15Kh2MFA were compared with similar values of Mn-Ni-Mo type steels A 533-B and A 508 manufactured by leading western manufacturers within the international research programme coordinated by the IAEA. It was found that the resistance of steel 15Kh2MFA to radiation embrittlement is comparable with steels A 533-B and A 508 by western manufacturers. (author)

  17. Effects of 1000 C oxide surfaces on room temperature aqueous corrosion and environmental embrittlement of iron aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Buchanan, R.A.; Perrin, R.L. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Materials Science and Engineering

    1997-12-01

    Results of electrochemical aqueous-corrosion studies at room temperature indicate that retained in-service-type high-temperature surface oxides (1000 C in air for 24 hours) on FA-129, FAL and FAL-Mo iron aluminides cause major reductions in pitting corrosion resistance in a mild acid-chloride solution designed to simulate aggressive atmospheric corrosion. Removal of the oxides by mechanical grinding restores the corrosion resistance. In a more aggressive sodium tetrathionate solution, designed to simulate an aqueous environment contaminated by sulfur-bearing combustion products, only active corrosion occurs for both the 1000 C oxide and mechanically cleaned surfaces at FAL. Results of slow-strain-rate stress-corrosion-cracking tests on FA-129, FAL and FAL-Mo at free-corrosion and hydrogen-charging potentials in the mild acid chloride solution indicate somewhat higher ductilities (on the order of 50%) for the 1000 C oxides retard the penetration of hydrogen into the metal substrates and, consequently, are beneficial in terms of improving resistance to environmental embrittlement. In the aggressive sodium tetrathionate solution, no differences are observed in the ductilities produced by the 1000 C oxide and mechanically cleaned surfaces for FAL.

  18. Recommendations on X80 steel for the design of hydrogen gas transmission pipelines

    International Nuclear Information System (INIS)

    Briottet, L.; Batisse, R.; De Dinechin, G.; Langlois, P.; Thiers, L.

    2012-01-01

    By limiting the pipes thickness necessary to sustain high pressure, high-strength steels could prove economically relevant for transmitting large gas quantities in pipelines on long distance. Up to now, the existing hydrogen pipelines have used lower-strength steels to avoid any hydrogen embrittlement. The CATHY-GDF project, funded by the French National Agency for Research, explored the ability of an industrial X80 grade for the transmission of pressurized hydrogen gas in large diameter pipelines. This project has developed experimental facilities to test the material under hydrogen gas pressure. Indeed, tensile, toughness, crack propagation and disc rupture tests have been performed. From these results, the effect of hydrogen pressure on the size of some critical defects has been analyzed allowing proposing some recommendations on the design of X80 pipe for hydrogen transport. Cost of Hydrogen transport could be several times higher than natural gas one for a given energy amount. Moreover, building hydrogen pipeline using high grade steels could induce a 10 to 40% cost benefit instead of using low grade steels, despite their lower hydrogen susceptibility. (authors)

  19. Statistical analysis using the Bayesian nonparametric method for irradiation embrittlement of reactor pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Takamizawa, Hisashi, E-mail: takamizawa.hisashi@jaea.go.jp; Itoh, Hiroto, E-mail: ito.hiroto@jaea.go.jp; Nishiyama, Yutaka, E-mail: nishiyama.yutaka93@jaea.go.jp

    2016-10-15

    In order to understand neutron irradiation embrittlement in high fluence regions, statistical analysis using the Bayesian nonparametric (BNP) method was performed for the Japanese surveillance and material test reactor irradiation database. The BNP method is essentially expressed as an infinite summation of normal distributions, with input data being subdivided into clusters with identical statistical parameters, such as mean and standard deviation, for each cluster to estimate shifts in ductile-to-brittle transition temperature (DBTT). The clusters typically depend on chemical compositions, irradiation conditions, and the irradiation embrittlement. Specific variables contributing to the irradiation embrittlement include the content of Cu, Ni, P, Si, and Mn in the pressure vessel steels, neutron flux, neutron fluence, and irradiation temperatures. It was found that the measured shifts of DBTT correlated well with the calculated ones. Data associated with the same materials were subdivided into the same clusters even if neutron fluences were increased.

  20. Cooperation modes of the radiation embrittlement

    International Nuclear Information System (INIS)

    Voevodin, V.N.; Laptev, I.N.; Neklyudov, I.M.; Ozhigov, L.S.; Bryk, V.V.; Parkhomenko, A.A.

    2012-01-01

    According to the results of experimental and theoretical studies of the structures and properties of irradiated deformed materials with different crystalline structure, the effect of irradiation on mechanisms of radiation embrittlement on all structure levels (from atomic to macrolevel) has been shown. The effects of structural localization, collectivization, long range effects, rotation modes development are described. It was shown that these effects are closely interrelated; they characterized the deformed irradiation material as open dissipative system subjected to the laws of such scientific approach as synergetic.

  1. Stress corrosion mechanisms of alloy-600 polycrystals and monocrystals in primary water: effect of hydrogen

    International Nuclear Information System (INIS)

    Foct, F.

    1999-01-01

    The aim of this study is to identify the mechanisms involved in Alloy 600 primary water stress corrosion cracking. Therefore, this work is mainly focussed on the two following points. The first one is to understand the influence of hydrogen on SCC of industrial Alloy 600 and the second one is to study the crack initiation and propagation on polycrystals and single crystals. A cathodic potential applied during slow strain rate tests does not affect crack initiation but increases the slow crack growth rate by a factor 2 to 5. Cathodic polarisation, cold work and 25 cm 3 STP/kg hydrogen content increase the slow CGR so that the K ISCC (and therefore fast CGR) is reached. The influence of hydrogenated primary water has been studied for the first time on Alloy 600 single crystals. Cracks cannot initiate on tensile specimens but they can propagate on pre-cracked specimens. Transgranular cracks present a precise crystallographic aspect which is similar to that of 316 alloy in MgCl 2 solutions. Moreover, the following results improve the description of the cracking conditions. Firstly, the higher the hydrogen partial pressure, the lower the Alloy 600 passivation current transients. Since this result is not correlated with the effect of hydrogen on SCC, cracking is not caused by a direct effect of dissolved hydrogen on dissolution. Secondly, hydrogen embrittlement of Alloy 600 disappears at temperatures above 200 deg.C. Thirdly, grain boundary sliding (GBS) does not directly act on SCC but shows the mechanical weakness of grain boundaries. Regarding the proposed models for Alloy 600 SCC, it is possible to draw the following conclusions. Internal oxidation or absorbed hydrogen effects are the most probable mechanisms for initiation. Dissolution, internal oxidation and global hydrogen embrittlement models cannot explain crack propagation. On the other hand, the Corrosion Enhanced Plasticity Model gives a good description of the SCC propagation. (author)

  2. NATO International Symposium on the Electronic Structure and Properties of Hydrogen in Metals

    CERN Document Server

    Satterthwaite, C

    1983-01-01

    Hydrogen is the smallest impurity atom that can be implanted in a metallic host. Its small mass and strong interaction with the host electrons and nuclei are responsible for many anomalous and interesting solid state effects. In addition, hydrogen in metals gives rise to a number of technological problems such as hydrogen embrittlement, hydrogen storage, radiation hardening, first wall problems associated with nuclear fusion reactors, and degradation of the fuel cladding in fission reactors. Both the fundamental effects and applied problems have stimulated a great deal of inter­ est in the study of metal hydrogen systems in recent years. This is evident from a growing list of publications as well as several international conferences held in this field during the past decade. It is clear that a fundamental understanding of these problems re­ quires a firm knowledge of the basic interactions between hydrogen, host metal atoms, intrinsic lattice defects and electrons. This understanding is made particularly di...

  3. Hydrogen-induced high damping of bulk metallic glasses

    International Nuclear Information System (INIS)

    Hasegawa, M.

    2009-01-01

    There are two important topics concerned with the recent researches on the damping materials of hydrogenated metallic glasses (HMGs). One is the mechanism of the high hydrogen-induced internal friction of HMGs. The other is the materials processing of 'bulk' HMGs for engineering. This article describes the summary of our recent studies on these topics. The first one is closely related to the local structure of the metallic glasses. Therefore, our recent results on the intermediate-range local structure of the simple two Zr-based metallic glasses are described, which has been clarified by the Voronoi analysis using the experimental data of the neutron diffraction measurements. The hydrogen-induced internal friction of HMGs is also discussed on the basis of these recent results of the local structure of the metallic glasses. In terms of the second topic, the first successful preparation of heavily hydrogenated Zr-based bulk HMG rods without hydrogen-induced surface embrittlement is described. They are prepared by a powder-compact-melting and liquid-casting process using Zr-Al-Ni-Cu metallic glass and ZrH 2 powders as the starting materials. It has been found that they have high damping properties.

  4. Hydrogen absorption of titanium for nuclear waste container in non-oxidizing condition

    International Nuclear Information System (INIS)

    Tomari, H.; Masugata, T.; Shimogori, K.; Nishimura, T.; Wada, R.; Honda, A.; Taniguchi, N.

    1999-10-01

    Effects of bentonite clay, applied potential, pH, of solution and cathodic polarization time on hydrogen absorption into titanium, which is one of the candidate materials of overpack for high-level radioactive waste container, have been investigated in artificial underground water. Considering the result at various test time and assuming the hydrogen absorption is ruled by the parabolic law, the amount of hydrogen after 1000 years exposure calculated to about 17ppm, which will be absorbed at the applied potential if -0.51 vs. SHE corresponds to equilibrium potential of hydrogen. It seems the assumption of the parabolic law and the test period are proper, because the linear relations were obtained between the amount of absorbed hydrogen and the logarithm of the averaged cathodic current and between the slopes of the lines and a square root of the test time. Titanium seems to have a life over 1000 years in deep underground repository according to assumption that about 500ppm absorbed hydrogen is critical for hydrogen embrittlement of titanium. (author)

  5. Introduction to hydrogen in alloys

    International Nuclear Information System (INIS)

    Westlake, D.G.

    1980-01-01

    Substitutional alloys, both those that form hydrides and those that do not, are discussed, but with more emphasis on the former than the latter. This overview includes the following closely related subjects: (1) the significant effects of substitutional solutes on the pressure-composition-temperature (PCT) equilibria of metal-hydrogen systems, (2) the changes in thermodynamic properties resulting from differences in atom size and from modifications of electronic structure, (3) attractive and repulsive interactions between H and solute atoms and the effects of such interactions on the pressure dependent solubility for H, (4) H trapping in alloys of Group V metals and its effect on the terminal solubility for H (TSH), (5) some other mechanisms invoked to explain the enhancement (due to alloying) of the (TSH) in Group V metals, and (6) H-impurity complexes in alloys of the metals Ni, Co, and Fe. Some results showing that an enhanced TSH may ameliorate the resistance of a metal to hydrogen embrittlement are presented

  6. Effect of hydrogen on the corrosion behavior of the Mg–xZn alloys

    Directory of Open Access Journals (Sweden)

    Yingwei Song

    2014-09-01

    Full Text Available Hydrogen evolution reaction is inevitable during the corrosion of Mg alloys. The effect of hydrogen on the corrosion behavior of the Mg–2Zn and Mg–5Zn alloys is investigated by charging hydrogen treatment. The surface morphologies of the samples after charging hydrogen were observed using a scanning electron microscopy (SEM and the corrosion resistance was evaluated by polarization curves. It is found that there are oxide films formed on the surface of the charged hydrogen samples. The low hydrogen evolution rate is helpful to improve the corrosion resistance of Mg alloys, while the high hydrogen evolution rate can increases the defects in the films and further deteriorates their protection ability. Also, the charging hydrogen effect is greatly associated with the microstructure of Mg substrate.

  7. Modeling of hydrogen induced cold cracking in a ferritic steel

    International Nuclear Information System (INIS)

    Chen, Qianqiang

    2015-01-01

    This thesis is aimed at studying the hydrogen induced cold cracking (HICC) in the heated affected zone (HAZ) of weldments and at proposing a criterion to predict this phenomenon. HICC is attributable to three factors: i) a susceptible microstructure; ii) hydrogen concentration; and iii) a critical stress. To this end, first tensile tests on smooth specimens charged with hydrogen were performed to investigate hydrogen embrittlement of martensite. According to these results, a ductile-brittle damage model is proposed in order to establish a HICC criterion. In order to validate this criterion, we performed the modified Tekken tests. The Tekken test was chosen because one can control the welding parameters in order to induce cold cracking. The modified Tekken tests have then been modeled using a fully coupled thermo-metallo-mechanical-diffusion model using the finite element method. This model allows to compute martensite's portion, residual stress level and hydrogen concentration in the HAZ. By applying the HICC criterion to these tests, cold cracking phenomenon has been correctly predicted. (author)

  8. Hydrogen as a New Alloying Element in Metals

    International Nuclear Information System (INIS)

    Shapovalov, Vladimir

    1999-01-01

    Hydrogen was regarded as a harmful impurity in many alloys and particularly in steels where it gives rise to a specific type of embrittlement and forms various discontinuities like flakes and blowholes. For this reason, the researcher efforts were mainly focused on eliminating hydrogen's negative impacts and explaining its uncommonly high diffusivity in condensed phases. Meanwhile, positive characteristics of hydrogen as an alloying element remained unknown for quite a long time. Initial reports in this field did not appear before the early 1970s. Data on new phase diagrams are given for metal-hydrogen systems where the metal may or may not form hydrides. Various kinds of hydrogen impact on structure formation in solidification, melting and solid-solid transformations are covered. Special attention is given to the most popular alloys based on iron, aluminum, copper, nickel, magnesium and titanium. Detailed is what is called gas-eutectic reaction resulting in a special type of gas-solid structure named gasarite. Properties and applications of gasars - gasaritic porous materials - are dealt with. Various versions of solid-state alloying with hydrogen are discussed that change physical properties and fabrication characteristics of metals. Details are given on a unique phenomenon of anomalous spontaneous deformation due to combination of hydrogen environment and polymorphic transformation. All currently known versions of alloying with hydrogen are categorized for both hydride-forming and non-hydrid forming metals

  9. Hydrogen behavior in a large-dry pressurized water reactor containment building during a severe accident

    International Nuclear Information System (INIS)

    Hsu Wensheng; Chen Hungpei; Hung Zhenyu; Lin Huichen

    2014-01-01

    Following severe accidents in nuclear power plants, large quantities of hydrogen may be generated after core degradation. If the hydrogen is transported from the reactor vessel into the containment building, an explosion might occur, which might threaten the integrity of the building; this can ultimately cause the release of radioactive materials. During the Fukushima Daiichi nuclear accident in 2011, the primary containment structures remained intact but contaminated fragments broke off the secondary containment structures, which disrupted mitigation activities and triggered subsequent explosions. Therefore, the ability to predict the behavior of hydrogen after severe accidents may facilitate the development of effective nuclear reactor accident management procedures. The present study investigated the behavior of hydrogen in a large-dry pressurized water reactor (PWR). The amount of hydrogen produced was calculated using the Modular Accident Analysis Program. The hydrogen transport behavior and the effect of the explosion on the PWR containment building were simulated using the Flame Acceleration Simulator. The simulation results showed that the average hydrogen volume fraction is approximately 7% in the containment building and that the average temperature is 330 K. The maximum predicted pressure load after ignition is 2.55 bar, which does not endanger the structural integrity of the containment building. The results of this investigation indicate that the hydrogen mitigation system should be arranged on both the upper and lower parts of the containment building to reduce the impact of an explosion. (author)

  10. Transition temperature of embrittlement of steel 11 474.1 welded joint

    International Nuclear Information System (INIS)

    Petrikova, A.; Cocher, M.

    1987-01-01

    The results are presented of tests of notch toughness in dependence on temperature for steel 11 474.1 used for the manufacture of steam separators, in the area of a joint welded using an automatic submerged-arc welding machine with pre-heating at 200 to 250 degC. After welding, the welded joints were annealed for reduced stress for 160 minutes at a temperature of 600 to 650 degC and left to cool off in the furnace. The obtained results show that: (1) critical embrittlement temperature for the welded joint and the given welding technology ranges within -20 and -13 degC; (2) critical embrittlement temperature following heat ageing is shifted to positive temperature values; (3) pressure tests of the steam separator jacket made of steel 11 474.1 may in the process of production be carried out at a minimal wall temperature of 17 degC; (4) in case a pressure test has to be made after the equipment has been in operation for a certain period of time the test will probably have to be made at temperatures higher than 20 degC; (5) further tests will have to be made at temperatures higher than 20 degC in order to determine critical embrittlement temperatures after ageing. (J.B.). 7 figs., 2 tabs., 5 refs

  11. Lessons Learned From Developing Reactor Pressure Vessel Steel Embrittlement Database

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [ORNL

    2010-08-01

    Materials behaviors caused by neutron irradiation under fission and/or fusion environments can be little understood without practical examination. Easily accessible material information system with large material database using effective computers is necessary for design of nuclear materials and analyses or simulations of the phenomena. The developed Embrittlement Data Base (EDB) at ORNL is this comprehensive collection of data. EDB database contains power reactor pressure vessel surveillance data, the material test reactor data, foreign reactor data (through bilateral agreements authorized by NRC), and the fracture toughness data. The lessons learned from building EDB program and the associated database management activity regarding Material Database Design Methodology, Architecture and the Embedded QA Protocol are described in this report. The development of IAEA International Database on Reactor Pressure Vessel Materials (IDRPVM) and the comparison of EDB database and IAEA IDRPVM database are provided in the report. The recommended database QA protocol and database infrastructure are also stated in the report.

  12. Reduction of helium embrittlement in stainless steel by finely dispersed TiC precipitates

    International Nuclear Information System (INIS)

    Kesternich, W.; Rothaut, J.

    1982-01-01

    The He embrittlement effects in two candidate stainless steels for first wall of fusion reactors were studied in creep tests at 700 0 C simulating the He production by He implantation. Creep rupture life before He implantation and reduction of rupture life due to He were superior by orders of magnitude in 1.4970 steel after pertinent pretreatment compared to 316 steel. The high strength and the low He embrittlement result from a fine dispersion of TiC precipitates in the grain interiors. From microstructural investigations a mechanism explaining the high sink efficiency of TiC for He atom accumulation is suggested. (orig.)

  13. Evaluation on thermal aging embrittlement of cast stainless steel components in domestic PWRs

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Bong Sang; Hwa, Hong Jun; Chi, Se Hwan; Ryu, Woo Seog; Kuk, Il Hyun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-06-01

    This report reviewed the R and D states of thermal aging embrittlement of cast stainless steel components in PWRs. Cast stainless steel is being widely used in PWRs including primary piping. This material shows the reduction of fracture toughness during operating life due to high temperature. Micromechanisms and kinetics are summarized to improve the materials properties. The reduction of toughness due to thermal embrittlement in domestic reactors are predicted based on each chemical composition until the end of plant life time. Substantial degradation was predicted in some components during plant life time. (Author) 26 refs., 19 figs., 11 tabs.

  14. Study and prediction model on low temperature aging embrittlement in duplex stainless steels

    International Nuclear Information System (INIS)

    Sanchez, L.; Gutierrez-Solana, F.

    1997-01-01

    Within the framework of a general study on low temperature (280-400 degree centigree) aging embrittlement in duplex stainless steels, a relationship has been obtained between aging, measured from ferrite hardness evolution, and bulk materials embrittlement, determined from fracture toughness and fracture impact tests. The existing correlation between the increase in ferrite hardness and its percentage presence in the fracture path supports this relationship and results in the development of a prediction design model which provides the fracture resistance curves, for any aging level, based on the chemical composition and the steel's properties in an unaged state. (Author)

  15. A wide-range embrittlement trend curve for western RPV steels

    International Nuclear Information System (INIS)

    Kirk, M.T.

    2011-01-01

    Embrittlement trend curves (ETCs) are used to estimate neutron irradiation embrittlement as a function of both exposure (fluence, flux, temperature, ...) and composition variables. ETCs provide information needed to assess the structural integrity of operating nuclear reactors, and to determine their suitability for continued safe operation. Past efforts on ETC development in the United States have used data drawn from domestic licensees. While this approach has addressed past needs well, future needs such as power up-rates, license extensions to 60 years and beyond, and the use of low copper materials in new reactors produce future operating conditions for the US reactor fleet that may differ from past experience, suggesting that data from sources other than licensee surveillance programs may be needed. In this paper we draw together embrittlement data expressed in terms of ΔT41J and ΔYS from a wide variety of data sources as a first step in examining future embrittlement trends. We develop a 'wide range' ETC based on a collection of over 2500 data. We assess how well this ETC models the whole database, as well as significant data subsets. Comparisons presented herein indicate that a single algebraic model, denoted WR-C(5), represents reasonably well both the trends evident in the data overall as well as trends exhibited by four special data subsets. The WR-C(5) model indicates the existence of trends in high fluence data (Φ > 2-3*10 19 n/cm 2 , E > 1 MeV) that are not as apparent in the US surveillance data due to the limited quantity of ΔT30 data measured at high fluence in this dataset. Additionally, WR-C(5) models well the trends in both test and power reactor data despite the fact it has not term to account for flux. It is suggested that one appropriate use of the WR-C(5) trend curve may include the design irradiation studies to validate or refute the findings presented herein. Additionally, WR-C(5) could be used, along with other information (e.g., other

  16. DETERMINATION OF HYDROGEN DESORBED THROUGH THERMAL CALORIMETRY IN A HIGH STRENGTH STEEL

    Directory of Open Access Journals (Sweden)

    Carolina A. Asmus

    2014-03-01

    Full Text Available The following study aims to quantify the release activation energy (Ea of hydrogen (H from lattice sites, reversible or irreversible, where the H can be trapped. Moreover, enthalpy changes associated with the main hydrogen (H trapping sites can be analyzed by means of differential scanning calorimetry (DSC. In this technique, the peak temperature measurement is determined at two different heating rates, 3ºC/min y 5ºC/min, from ambient temperature to 500°C. In order to simulate severe conditions of hydrogen income into resulfurized high strength steel, electrolytic permeation tests were performed on test tubes suitable for fatigue tests. Sometimes during charging, H promoters were aggregated to electrolytic solution. Subsequently, the test tubes were subjected to flow cycle fatigue tests. Finally, irreversible trap which anchor more strongly H atoms are MnS inclusions. Its role on hydrogen embrittlement during fatigue tests is conclusive.

  17. Effect of p-type multi-walled carbon nanotubes for improving hydrogen storage behaviors

    International Nuclear Information System (INIS)

    Lee, Seul-Yi; Yop Rhee, Kyong; Nahm, Seung-Hoon; Park, Soo-Jin

    2014-01-01

    In this study, the hydrogen storage behaviors of p-type multi-walled carbon nanotubes (MWNTs) were investigated through the surface modification of MWNTs by immersing them in sulfuric acid (H 2 SO 4 ) and hydrogen peroxide (H 2 O 2 ) at various ratios. The presence of acceptor-functional groups on the p-type MWNT surfaces was confirmed by X-ray photoelectron spectroscopy. Measurement of the zeta-potential determined the surface charge transfer and dispersion of the p-type MWMTs, and the hydrogen storage capacity was evaluated at 77 K and 1 bar. From the results obtained, it was found that acceptor-functional groups were introduced onto the MWNT surfaces, and the dispersion of MWNTs could be improved depending on the acid-mixed treatment conditions. The hydrogen storage was increased by acid-mixed treatments of up to 0.36 wt% in the p-type MWNTs, compared with 0.18 wt% in the As-received MWNTs. Consequently, the hydrogen storage capacities were greatly influenced by the acceptor-functional groups of p-type MWNT surfaces, resulting in increased electron acceptor–donor interaction at the interfaces. - Graphical abstract: Hydrogen storage behaviors of the p-type MWNTs with the acid-mixed treatments are described. Display Omitted Display Omitted

  18. High temperature service embrittlement of EUROFER´97 steel

    Czech Academy of Sciences Publication Activity Database

    Stratil, Luděk; Hadraba, Hynek; Dlouhý, Ivo

    2010-01-01

    Roč. 1, č. 2 (2010), s. 142-145 ISSN 1335-1532. [Fraktografia 2009. Stará Lesná, 08.11.2009-11.11.2009] R&D Projects: GA ČR GA106/08/1397; GA AV ČR 1QS200410502 Institutional research plan: CEZ:AV0Z20410507 Keywords : Eurofer´97 * isothermal ageing * embrittlement * impact properties Subject RIV: JL - Materials Fatigue, Friction Mechanics

  19. Low temperature radiation embrittlement for reactor vessel steels

    International Nuclear Information System (INIS)

    Ginding, I.A.; Chirkina, L.A.

    1978-01-01

    General conceptions of cold brittleness of bcc metals are in a review. Considered are experimental data and theoretical representations about the effect of irradiation conditions, chemical composition, phase and structural constitutions, grain size, mechanical and thermomechanical treatments on low-temperature irradiation embrittlement of reactor vessel steels. Presented are the methods for increasing radiation stability of metals (carbon and Cr-Mo steels) used in manufacturing reactor vessels

  20. Transportation of hydrogen in pipelines: interaction of NDE and material requirements

    International Nuclear Information System (INIS)

    Thompson, R.B.; Thompson, A.W.; Thompson, D.O.

    1976-01-01

    The role of nondestructive evaluation (NDE) of materials used in H pipelines and storage facilities is examined. NDE techniques are available which detect critical flaws in today's natural gas lines, and which should have some success in hydrogen lines made of resistant materials. However, the critical flaws in a hydrogen line which is built of a steel whose toughness is significantly reduced in hydrogen, or which contains low-toughness defects such as weld hard spots, would be extremely difficult to detect with today's instrumentation. That instrumentation is designed to test efficiently long lengths of line with minimum disruption of service. Technology is available that would be capable of the more detailed inspection required for the smaller defects. However, the equipment might be expensive and time-consuming to operate, and these costs must be included in the overall assessment of a system using existing lines without embrittlement protection. In addition, it is evident that strong motivation exists to construct new facilities from steels with improved resistance to hydrogen

  1. Microstructural design of PCA austenitic stainless steel for improved resistance to helium embrittlement under HFIR irradiation

    International Nuclear Information System (INIS)

    Maziasz, P.J.; Braski, D.N.

    1983-01-01

    Several variants of Prime Candidate Alloy (PCA) with different preirradiation thermal-mechanical treatments were irradiated in HFIR and were evaluated for embrittlement resistance via disk-bend tensile testing. Comparison tests were made on two heats of 20%-cold-worked type 316 stainless steel. None of the alloys were brittle after irradiation at 300 to 400 0 C to approx. 44 dpa and helium levels of 3000 to approx.3600 at. ppm. However, all were quite brittle after similar exposure at 600 0 C. Embrittlement varied with alloy and pretreatment for irradiation to 44 dpa at 500 0 C and to 22 dpa at 600 0 C. Better relative embrittlement resistance among PCA variants was found in alloys which contained prior grain boundary MC carbide particles that remained stable under irradiation

  2. Comparison of embrittlement trend curves to high fluence surveillance results

    International Nuclear Information System (INIS)

    Bogaert, A.S.; Gerard, R.; Chaouadi, R.

    2011-01-01

    In the regulatory justification of the integrity of the reactor pressure vessels (RPV) for long term operation, use is made of predictive formulas (also called trend curves) to evaluate the RPV embrittlement (expressed in terms of RTNDT shifts) in function of fluence, chemical composition and in some cases temperature, neutron flux or product form. It has been shown recently that some of the existing or proposed trend curves tend to underpredict high dose embrittlement. Due to the scarcity of representative surveillance data at high dose, some test reactor results were used in these evaluations and raise the issue of representativeness of the accelerated test reactor irradiations (dose rate effects). In Belgium the surveillance capsules withdrawal schedule was modified in the nineties in order to obtain results corresponding to 60 years of operation or more with the initial surveillance program. Some of these results are already available and offer a good opportunity to test the validity of the predictive formulas at high dose. In addition, advanced surveillance methods are used in Belgium like the Master Curve, increased tensile tests, and microstructural investigations. These techniques made it possible to show the conservatism of the regulatory approach and to demonstrate increased margins, especially for the first generation units. In this paper the surveillance results are compared to different predictive formulas, as well as to an engineering hardening model developed at SCK.CEN. Generally accepted property-to-property correlations are critically revisited. Conclusions are made on the reliability and applicability of the embrittlement trend curves. (authors)

  3. Effect of hydrogen on transformation characteristics and deformation behavior in a Ti-Ni shape memory alloy

    International Nuclear Information System (INIS)

    Hoshiya, Taiji; Ando, Hiroei; Den, Shoji; Katsuta, Hiroshi.

    1992-01-01

    Transformation characteristics and deformation behavior of hydrogenated Ti-50.5 at% Ni alloys, which were occluded in a low pressure range of hydrogen between 1.1 and 78.5 kPa, have been studied by electrical resistivity measurement, tensile test, X-ray diffraction analysis and microstructural observation. M S temperature of the Ti-Ni alloys decreased with an increase in hydrogen content. This corresponds to the stabilization of the parent phase during cooling, which was confirmed by X-ray diffraction: The suppression effect of hydrogen takes place on the martensitic transformation. Critical stress for slip deformation of hydrogenated Ti-Ni alloys changed with hydrogen content and thus hydrogen had a major influence on deformation behavior of those alloys. With hydrogen contents above 0.032 mol%, hardening was distinguished from softening which was pronounced in the contents from 0 to 0.032 mol% H. Hydrides were formed in hydrogen contents over 1.9 mol%. The hydride formation results in the reorientation in variants of the R phase and increase in the lattice strains of the parent phase. (author)

  4. Nondestructive characterization of embrittlement in reactor pressure vessel steels -- A feasibility study

    International Nuclear Information System (INIS)

    McHenry, H.I.; Alers, G.A.

    1998-01-01

    The Nuclear Regulatory Commission recently initiated a study by NIST to assess the feasibility of using physical-property measurements for evaluating radiation embrittlement in reactor pressure vessel (RPV) steels. Ultrasonic and magnetic measurements provide the most promising approaches for nondestructive characterization of RPV steels because elastic waves and magnetic fields can sense the microstructural changes that embrittle materials. The microstructural changes of particular interest are copper precipitation hardening, which is the likely cause of radiation embrittlement in RPV steels, and the loss of dislocation mobility that is an attribute of the ductile-to-brittle transition. Measurements were made on a 1% copper steel, ASTM grade A710, in the annealed, peak-aged and overaged conditions, and on an RPV steel, ASTM grade A533B. Nonlinear ultrasonic and micromagnetic techniques were the most promising measures of precipitation hardening. Ultrasonic velocity measurements and the magnetic properties associated with hysteresis-loop measurements were not particularly sensitive to either precipitation hardening or the ductile-to-brittle transition. Measurements of internal friction using trapped ultrasonic resonance modes detected energy losses due to the motion of pinned dislocations; however, the ultrasonic attenuation associated with these measurements was small compared to the attenuation caused by beam spreading that would occur in conventional ultrasonic testing of RPVs

  5. Quantitative evaluation of rejuvenators to restore embrittlement temperatures in oxidized asphalt mixtures using acoustic emission

    Science.gov (United States)

    Sun, Zhe; Farace, Nicholas; Arnold, Jacob; Behnia, Behzad; Buttlar, William G.; Reis, Henrique

    2015-03-01

    Towards developing a method capable to assess the efficiency of rejuvenators to restore embrittlement temperatures of oxidized asphalt binders towards their original, i.e., unaged values, three gyratory compacted specimens were manufactured with mixtures oven-aged for 36 hours at 135 °C. In addition, one gyratory compacted specimen manufactured using a short-term oven-aged mixture for two hours at 155 °C was used for control to simulate aging during plant production. Each of these four gyratory compacted specimens was then cut into two cylindrical specimen 5 cm thick for a total of six 36-hour oven-aged specimens and two short term aging specimens. Two specimens aged for 36 hours and the two short-term specimens were then tested using an acoustic emission approach to obtain base acoustic emission response of short-term and severely-aged specimens. The remaining four specimens oven-aged for 36 hours were then treated by spreading their top surface with rejuvenator in the amount of 10% of the binder by weight. These four specimens were then tested using the same acoustic emission approach after two, four, six, and eight weeks of dwell time. It was observed that the embrittlement temperatures of the short-term aged and severely oven-aged specimens were -25 °C and - 15 °C, respectively. It was also observed that after four weeks of dwell time, the rejuvenator-treated samples had recuperated the original embrittlement temperatures. In addition, it was also observed that the rejuvenator kept acting upon the binder after four weeks of dwell time; at eight weeks of dwell time, the specimens had an embrittlement temperature about one grade cooler than the embrittlement temperature corresponding to the short-term aged specimen.

  6. Neutron embrittlement of the Kozloduy NPP unit 1 reactor

    International Nuclear Information System (INIS)

    Vodenicharov, S.; Kamenova, Tz.

    1996-01-01

    Activities made in the period 1989-1996 according to the Program for metal state monitoring of the Kozloduy NPP Unit 1 are described. Data on P and Cu content in the welded joint 4 are reported. Determination is made by wet chemical analysis of shavings taken out from the inner side of the wall, direct spectral analysis of the vessel itself and spectroscopy of the inner and outer side of 6 templates. The results obtained from 4 different study teams showed a good agreement. The real average P content is 0.046% and tends to diminish in depth. Microstructural investigation does not show any expressed inter-crystalline mechanism of brittle failure at low temperatures. The data on real P and Cu content, as well as the experimental values of the initial critical temperature of embrittlement (Tk o ), the residual part of temperature shift (Tk r ) and the re-embrittlement temperature after annealing at 475 o (Tk) allow to predict the change in Tk o of the joint 4 during the next refueling cycles. The measured low value of Tk after 18-th refueling cycle is considerably lower than that forecasted by lateral re-embrittlement law. This means that the forecasting of Tk for the next cycles is made with big enough conservatisms, and that a second annealing of the vessel until 26-th cycle is not necessary. So according to the most conservative estimate, the Unit 1 can operate safely until the end of the 26-th refueling cycle. It is also concluded, that in terms of radiation degradation of the vessel metal the operation life time of the Unit 1 can reach and exceed the designed one. 2 tab., 7 ref

  7. Investigation of helium-induced embrittlement

    International Nuclear Information System (INIS)

    Sabelova, V.; Slugen, V.; Krsjak, V.

    2014-01-01

    In this work, the hardness of Fe-9%(wt.) Cr binary alloy implanted by helium ions up to 1000 nm was investigated. The implantations were performed using linear accelerator at temperatures below 80 grad C. Isochronal annealing up to 700 grad C with the step of 100 grad C was applied on the helium implanted samples in order to investigate helium induced embrittlement of material. Obtained results were compared with theoretical calculations of dpa profiles. Due to the results, the nano-hardness technique results to be an appropriate approach to the hardness determination of thin layers of implanted alloys. Both, experimental and theoretical calculation techniques (SRIM) show significant correlation of measured results of induced defects. (authors)

  8. Hydrogen isotope storage behavior of Zr1-xTixCo alloys

    International Nuclear Information System (INIS)

    Jat, Ram Avtar; Pati, Subhasis; Parida, S.C.; Agarwal, Renu; Mukerjee, S.K.

    2016-01-01

    Tritium storage properties similar to uranium make ZrCo as a suitable candidate material for storage, supply and recovery of hydrogen isotopes in various tritium facilities. Beside non-radioactive, nonpyrophoric at room temperature and higher storage capacity (H/f.u. up to 3, f.u. = ZrCo), it has been reported that upon repeated hydriding-dehydriding cycles, ZrCo undergoes dis-proportionation as per the reaction; ZrCo + H 2 ↔ ZrH 2 + ZrCo 2 . The present study is aimed to investigate the effect of Ti content on the hydrogen storage behavior of Zr 1-x Ti x Co alloys and the hydrogen isotope effect

  9. Hydrogen Induced Cracking of Drip Shield

    Energy Technology Data Exchange (ETDEWEB)

    G. De

    2003-02-24

    One potential failure mechanism for titanium and its alloys under repository conditions is via the absorption of atomic hydrogen in the metal crystal lattice. The resulting decreased ductility and fracture toughness may lead to brittle mechanical fracture called hydrogen-induced cracking (HIC) or hydrogen embrittlement. For the current design of the engineered barrier without backfill, HIC may be a problem since the titanium drip shield can be galvanically coupled to rock bolts (or wire mesh), which may fall onto the drip shield, thereby creating conditions for hydrogen production by electrochemical reaction. The purpose of this scientific analysis and modeling activity is to evaluate whether the drip shield will fail by HIC or not under repository conditions within 10,000 years of emplacement. This Analysis and Model Report (AMR) addresses features, events, and processes related to hydrogen induced cracking of the drip shield. REV 00 of this AMR served as a feed to ''Waste Package Degradation Process Model Report'' and was developed in accordance with the activity section ''Hydrogen Induced Cracking of Drip Shield'' of the development plan entitled ''Analysis and Model Reports to Support Waste Package PMR'' (CRWMS M&O 1999a). This AMR, prepared according to ''Technical Work Plan for: Waste Package Materials Data Analyses and Modeling'' (BSC 2002), is to feed the License Application.

  10. Oxide characterization and hydrogen behaviors of Zr-based alloys

    International Nuclear Information System (INIS)

    Kim, Y. S.; Kim, D. J.; Kwon, S. H.; Lee, H. S.; Oh, S. J.; Yim, B. J.; Son, S. B.; Yun, S. P.

    2006-03-01

    The work scope and contents of the research are as follows : basic properties of zirconium alloys, hydrogen pick-up mechanism of zirconium alloy, effects of hydride on the corrosion behaviors of zirconium alloys, estimation on stress of oxide layer in the zirconium alloy, microstructure and characteristic of oxide in pre-hydrided zirconium alloys

  11. Recent progress of hydrogen isotope behavior studies for neutron or heavy ion damaged W

    International Nuclear Information System (INIS)

    Oya, Yasuhisa; Hatano, Yuji; Shimada, Masashi; Buchenauer, Dean; Kolasinski, Robert; Merrill, Brad; Kondo, Sosuke; Hinoki, Tatsuya; Alimov, Vladimir Kh.

    2016-01-01

    Highlights: • This paper reviews recent results pertaining to hydrogen isotope behavior in neutron and heavy ion damaged W. • Accumulation of damage in W creates stable trapping sites for hydrogen isotopes, thereby changing the observed desorption behavior. • The distribution of defects throughout the sample also changes the shape of TDS spectrum. • Experimental results show that production of Re by nuclear reaction of W with neutrons reduces the density of trapping sites, though no remarkable retention enhancement is observed. - Abstract: This paper reviews recent results pertaining to hydrogen isotope behavior in neutron and heavy ion damaged W. Accumulation of damage in W creates stable trapping sites for hydrogen isotopes, thereby changing the observed desorption behavior. In particular, the desorption temperature shifts higher as the defect concentration increases. In addition, the distribution of defects throughout the sample also changes the shape of TDS spectrum. Even if low energy traps were distributed in the bulk region, the D diffusion toward the surface requires additional time for trapping/detrapping during surface-to-bulk transport, contributing to a shift of desorption peaks toward higher temperatures. It can be said that both of distribution of damage (e.g. hydrogen isotope trapping sites) and their stabilities would have a large impact on desorption. In addition, transmutation effects should be also considered for an actual fusion environment. Experimental results show that production of Re by nuclear reaction of W with neutrons reduces the density of trapping sites, though no remarkable retention enhancement is observed.

  12. Recent progress of hydrogen isotope behavior studies for neutron or heavy ion damaged W

    Energy Technology Data Exchange (ETDEWEB)

    Oya, Yasuhisa, E-mail: syoya@ipc.shizuoka.ac.jp [Shizuoka University, 836 Ohya, Suruga-ku Shizuoka 422-8529 (Japan); Hatano, Yuji [University of Toyama, 3190 Gofuku, Toyama 939-8555 (Japan); Shimada, Masashi [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Buchenauer, Dean; Kolasinski, Robert [Sandia National Laboratories, Livermore, CA 94551 (United States); Merrill, Brad [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Kondo, Sosuke; Hinoki, Tatsuya [Kyoto University, Gokasho, Uji 611-0011 (Japan); Alimov, Vladimir Kh. [University of Toyama, 3190 Gofuku, Toyama 939-8555 (Japan)

    2016-12-15

    Highlights: • This paper reviews recent results pertaining to hydrogen isotope behavior in neutron and heavy ion damaged W. • Accumulation of damage in W creates stable trapping sites for hydrogen isotopes, thereby changing the observed desorption behavior. • The distribution of defects throughout the sample also changes the shape of TDS spectrum. • Experimental results show that production of Re by nuclear reaction of W with neutrons reduces the density of trapping sites, though no remarkable retention enhancement is observed. - Abstract: This paper reviews recent results pertaining to hydrogen isotope behavior in neutron and heavy ion damaged W. Accumulation of damage in W creates stable trapping sites for hydrogen isotopes, thereby changing the observed desorption behavior. In particular, the desorption temperature shifts higher as the defect concentration increases. In addition, the distribution of defects throughout the sample also changes the shape of TDS spectrum. Even if low energy traps were distributed in the bulk region, the D diffusion toward the surface requires additional time for trapping/detrapping during surface-to-bulk transport, contributing to a shift of desorption peaks toward higher temperatures. It can be said that both of distribution of damage (e.g. hydrogen isotope trapping sites) and their stabilities would have a large impact on desorption. In addition, transmutation effects should be also considered for an actual fusion environment. Experimental results show that production of Re by nuclear reaction of W with neutrons reduces the density of trapping sites, though no remarkable retention enhancement is observed.

  13. Enhancement of Hydrogen Storage Behavior of Complex Hydrides via Bimetallic Nanocatalysts Doping

    Directory of Open Access Journals (Sweden)

    Prakash C. Sharma

    2012-10-01

    Full Text Available Pristine complex quaternary hydride (LiBH4/2LiNH2 and its destabilized counterpart (LiBH4/2LiNH2/nanoMgH2 have recently shown promising reversible hydrogen storage capacity under moderate operating conditions. The destabilization of complex hydride via nanocrystalline MgH2 apparently lowers the thermodynamic heat values and thus enhances the reversible hydrogen storage behavior at moderate temperatures. However, the kinetics of these materials is rather low and needs to be improved for on-board vehicular applications. Nanocatalyst additives such as nano Ni, nano Fe, nano Co, nano Mn and nano Cu at low concentrations on the complex hydride host structures have demonstrated a reduction in the decomposition temperature and overall increase in the hydrogen desorption reaction rates. Bi-metallic nanocatalysts such as the combination of nano Fe and nano Ni have shown further pronounced kinetics enhancement in comparison to their individual counterparts. Additionally, the vital advantage of using bi-metallic nanocatalysts is to enable the synergistic effects and characteristics of the two transitional nanometal species on the host hydride matrix for the optimized hydrogen storage behavior.

  14. Significance of rate of work hardening in tempered martensite embrittlement

    International Nuclear Information System (INIS)

    Pietikainen, J.

    1995-01-01

    The main explanations for tempered martensite embrittlement are based on the effects of impurities and cementite precipitation on the prior austenite grain boundaries. There are some studies where the rate of work hardening is proposed as a potential reason for the brittleness. One steel was studied by means of a specially developed precision torsional testing device. The test steel had a high Si and Ni content so ε carbide and Fe 3 C appear in quite different tempering temperature ranges. The M S temperature is low enough so that self tempering does not occur. With the testing device it was possible to obtain the true stress - true strain curves to very high deformations. The minimum toughness was always associated with the minimum of rate of work hardening. The change of deformed steel volume before the loss of mechanical stability is proposed as at least one reason for tempered martensite embrittlement. The reasons for the minimum of the rate of work hardening are considered. (orig.)

  15. High-temperature helium embrittlement (T>=0,45Tsub(M)) of metals

    International Nuclear Information System (INIS)

    Batfalsky, P.

    1984-06-01

    High temperature helium embrittlement, swelling and irradiation creep are the main technical problem of fusion reactor materials. The expected helium production will be very high. The helium produced by (n,α)-processes precipitates into helium bubbles because its solubility in solid metals is very low. Under continuous helium production at high temperature and stress the helium bubbles grow and lead to intergranular early failure. Solution annealed foil specimens of austenitic stainless steel AISI 316 were implanted with α-particles: 1. during creep tests at 1023 K (''in-beam'' test) 2. before the creep tests at high temperature (1023 K). The creep tests have been performed within large ranges of test parameter, e.g. applied stress, temperature, helium implantation rate and helium concentration. After the creep tests the microstructure was investigated using scanning (SEM) and transmission (TEM) electron microscopy. All the helium implanted specimens showed high temperature helium embrittlement, i.e. reduction of rupture time tsub(R) and ductility epsilonsub(R) and evidence of intergranular brittle fracture. The ''in-beam'' creep tests showed greater reduction of rupture time tsub(R) and ductility than the preimplanted creep tests. The comparison of this experimentally obtained data with various theoretical models of high temperature helium embrittlement showed that within the investigated parameter ranges the mechanism controlling the life time of the samples is probably the gas driven stable growth of the helium bubbles within the grain boundaries. (orig.)

  16. Embrittlement of MISSE 5 Polymers After 13 Months of Space Exposure

    Science.gov (United States)

    Guo, Aobo; Yi, Grace T.; Ashmead, Claire C.; Mitchell, Gianna G.; deGroh, Kim K.

    2012-01-01

    Understanding space environment induced degradation of spacecraft materials is essential when designing durable and stable spacecraft components. As a result of space radiation, debris impacts, atomic oxygen interaction, and thermal cycling, the outer surfaces of space materials degrade when exposed to low Earth orbit (LEO). The objective of this study was to measure the embrittlement of 37 thin film polymers after LEO space exposure. The polymers were flown aboard the International Space Station and exposed to the LEO space environment as part of the Materials International Space Station Experiment 5 (MISSE 5). The samples were flown in a nadir-facing position for 13 months and were exposed to thermal cycling along with low doses of atomic oxygen, direct solar radiation and omnidirectional charged particle radiation. The samples were analyzed for space-induced embrittlement using a bend-test procedure in which the strain necessary to induce surface cracking was determined. Bend-testing was conducted using successively smaller mandrels to apply a surface strain to samples placed on a semi-suspended pliable platform. A pristine sample was also tested for each flight sample. Eighteen of the 37 flight samples experienced some degree of surface cracking during bend-testing, while none of the pristine samples experienced any degree of cracking. The results indicate that 49 percent of the MISSE 5 thin film polymers became embrittled in the space environment even though they were exposed to low doses (approx.2.75 krad (Si) dose through 127 mm Kapton) of ionizing radiation.

  17. Effect of the bainitic and martensitic microstructures on the hardening and embrittlement under neutron irradiation of a reactor pressure vessel steel

    Energy Technology Data Exchange (ETDEWEB)

    Marini, B., E-mail: bernard.marini@cea.fr [Commissariat à l' Energie Atomique et aux Energies Alternatives, DEN/DANS/DMN/SRMA, F-91191 Gif-sur Yvette (France); Averty, X. [Commissariat à l' Energie Atomique et aux Energies Alternatives, DEN/DANS/DMN/SEMI (now DEN/DANS/DM2S/SEMT), F-91191 Gif-sur Yvette (France); Wident, P.; Forget, P.; Barcelo, F. [Commissariat à l' Energie Atomique et aux Energies Alternatives, DEN/DANS/DMN/SRMA, F-91191 Gif-sur Yvette (France)

    2015-10-15

    The hardening and the embrittlement under neutron irradiation of an A508 type RPV steel considering three different microstructures (bainite, bainite-martensite and martensite)have been investigated These microstructures were obtained by quenching after autenitization at 1100 °C. The irradiation induced hardening appears to depend on microstructure and is correlated to the yield stress before irradiation. The irradiation induced embrittlement shows a more complex dependence. Martensite bearing microstructures are more sensitive to non hardening embrittlement than pure bainite. This enhanced sensitivity is associated with the development of intergranular brittle facture after irradiation; the pure martensite being more affected than the bainite-martensite. It is of interest to note that this mixed microstructure appears to be more embrittled than the pure bainitic or martensitic phases in terms of temperature transition shift. This behaviour which could emerge from the synergy of the embrittlement mechanisms of the two phases needs further investigations. However, the role of microstructure on brittle intergranular fracture development appears to be qualitatively similar under neutron irradiation and thermal ageing.

  18. Evaluation of the Intrinsic and Extrinsic Fracture Behavior of Iron Aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, B.R.

    2001-01-11

    In this paper, we first present the status of our computational modeling study of the thermal expansion coefficient of Fe/Al over a wide range of temperature and evaluate its dependence on selected additives. This will be accomplished by applying an isobaric Monte Carlo technique. The required total energy of the sample will be computed by using a tight-binding (TB) method that allows us to significantly increase the size of the computational data base without reducing the accuracy of the calculations. The parameters of the TB Hamiltonian are fitted to reproduce the band structure obtained by our quantum mechanical full-potential LMTO calculations. The combination of the three methods mentioned above creates an effective approach to the computation of the physical properties of the transition-metal aluminides and it can be extended to alloys with more than two components. At present, we are using a simplified approach for a first-round of results; and as a test of the simplified approach, have obtained excellent agreement with experiment for aluminum. Our previous experimental results showed that, because of their smaller grain size, FA-187 and FA-189 are extrinsically more susceptible to environmental embrittlement than FA-186 under low strain loading condition. To further investigate the grain boundary size effect as related to the susceptibility of hydrogen embrittlement, we conducted comparative finite element modeling simulations of initial intergranular fracture of two iron aluminides (FA186 and FA189) due to hydrogen embrittlement. Sequentially coupled stress and mass diffusion analyses are carried out to determine crack-tip stress state and the extent of hydrogen diffusion at the crack tip region, and a proper failure criteria is then adopted to simulate the intergranular fracture. Good qualitative agreement between the modeling predictions and experimental results is observed.

  19. Comprehensive Understanding of Ductility Loss Mechanisms in Various Steels with External and Internal Hydrogen

    Science.gov (United States)

    Takakuwa, Osamu; Yamabe, Junichiro; Matsunaga, Hisao; Furuya, Yoshiyuki; Matsuoka, Saburo

    2017-11-01

    Hydrogen-induced ductility loss and related fracture morphologies are comprehensively discussed in consideration of the hydrogen distribution in a specimen with external and internal hydrogen by using 300-series austenitic stainless steels (Types 304, 316, 316L), high-strength austenitic stainless steels (HP160, XM-19), precipitation-hardened iron-based super alloy (A286), low-alloy Cr-Mo steel (JIS-SCM435), and low-carbon steel (JIS-SM490B). External hydrogen is realized by a non-charged specimen tested in high-pressure gaseous hydrogen, and internal hydrogen is realized by a hydrogen-charged specimen tested in air or inert gas. Fracture morphologies obtained by slow-strain-rate tensile tests (SSRT) of the materials with external or internal hydrogen could be comprehensively categorized into five types: hydrogen-induced successive crack growth, ordinary void formation, small-sized void formation related to the void sheet, large-sized void formation, and facet formation. The mechanisms of hydrogen embrittlement are broadly classified into hydrogen-enhanced decohesion (HEDE) and hydrogen-enhanced localized plasticity (HELP). In the HEDE model, hydrogen weakens interatomic bonds, whereas in the HELP model, hydrogen enhances localized slip deformations. Although various fracture morphologies are produced by external or internal hydrogen, these morphologies can be explained by the HELP model rather than by the HEDE model.

  20. The pipeline fracture behavior and pressure assessment under HIC (Hydrogen induced cracking) environment

    Energy Technology Data Exchange (ETDEWEB)

    Shaohua, Dong [China National Petroleum Corporation (CNPC), Beijing (China); Lianwei, Wang [University of Science and Technology Beijing (USTB), Beijing (China)

    2009-07-01

    As Hydrogen's transmit and diffuse, after gestating for a while, the density of hydrogen around crack tip of pipeline will get to the critical density, and the pipeline material will descend, make critical stress factor, the reason of pipeline Hydrogen Induced Cracking is Hydrogen's transmit and diffuse. The stress factor of Hydrogen Induced Cracking under surroundings-condition of stress is the key that estimate material's rupture behavior. The paper study the relationship among hydrogen concentrate, crack tip stress, stain field, hydrogen diffusion and inner pressure for crack tip process zone, then determined the length of HIC (hydrogen induced cracking) process zone. Based on the theory of propagation which reason micro-crack making core, dislocation model is produced for fracture criteria of HIC, the influence between material and environments under the HIC is analyzed, step by step pipeline maximum load pressure and threshold of J-integrity ( J{sub ISCC} ) is calculated, which is very significant for pipeline safety operation. (author)

  1. Modelling of discrete TDS-spectrum of hydrogen desorption

    Science.gov (United States)

    Rodchenkova, Natalia I.; Zaika, Yury V.

    2015-12-01

    High concentration of hydrogen in metal leads to hydrogen embrittlement. One of the methods to evaluate the hydrogen content is the method of thermal desorption spectroscopy (TDS). As the sample is heated under vacuumization, atomic hydrogen diffuses inside the bulk and is desorbed from the surface in the molecular form. The extraction curve (measured by a mass-spectrometric analyzer) is recorded. In experiments with monotonous external heating it is observed that background hydrogen fluxes from the extractor walls and fluxes from the sample cannot be reliably distinguished. Thus, the extraction curve is doubtful. Therefore, in this case experimenters use discrete TDS-spectrum: the sample is removed from the analytical part of the device for the specified time interval, and external temperature is then increased stepwise. The paper is devoted to the mathematical modelling and simulation of experimental studies. In the corresponding boundary-value problem with nonlinear dynamic boundary conditions physical- chemical processes in the bulk and on the surface are taken into account: heating of the sample, diffusion in the bulk, hydrogen capture by defects, penetration from the bulk to the surface and desorption. The model aimed to analyze the dynamics of hydrogen concentrations without preliminary artificial sample saturation. Numerical modelling allows to choose the point on the extraction curve that corresponds to the initial quantity of the surface hydrogen, to estimate the values of the activation energies of diffusion, desorption, parameters of reversible capture and hydride phase decomposition.

  2. Modelling of discrete TDS-spectrum of hydrogen desorption

    International Nuclear Information System (INIS)

    Rodchenkova, Natalia I; Zaika, Yury V

    2015-01-01

    High concentration of hydrogen in metal leads to hydrogen embrittlement. One of the methods to evaluate the hydrogen content is the method of thermal desorption spectroscopy (TDS). As the sample is heated under vacuumization, atomic hydrogen diffuses inside the bulk and is desorbed from the surface in the molecular form. The extraction curve (measured by a mass-spectrometric analyzer) is recorded. In experiments with monotonous external heating it is observed that background hydrogen fluxes from the extractor walls and fluxes from the sample cannot be reliably distinguished. Thus, the extraction curve is doubtful. Therefore, in this case experimenters use discrete TDS-spectrum: the sample is removed from the analytical part of the device for the specified time interval, and external temperature is then increased stepwise. The paper is devoted to the mathematical modelling and simulation of experimental studies. In the corresponding boundary-value problem with nonlinear dynamic boundary conditions physical- chemical processes in the bulk and on the surface are taken into account: heating of the sample, diffusion in the bulk, hydrogen capture by defects, penetration from the bulk to the surface and desorption. The model aimed to analyze the dynamics of hydrogen concentrations without preliminary artificial sample saturation. Numerical modelling allows to choose the point on the extraction curve that corresponds to the initial quantity of the surface hydrogen, to estimate the values of the activation energies of diffusion, desorption, parameters of reversible capture and hydride phase decomposition. (paper)

  3. Effect of metallurgical variables on environmental fracture of steels

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, I M; Thompson, A W

    1976-12-01

    The susceptibility of iron alloys, in particular, steels, to hydrogen embrittlement is examined. It is demonstrated by a review of available data on metallurgically well-characterized alloys that the nature and extent of hydrogen susceptibility are sensitive and often predictable functions of such metallurgical variables as composition, grain size, texture, microstructure, and thermal treatment. Specifically, solutes such as carbon and manganese are shown to be capable of leading to a degradation of performance in hydrogen, whereas silicon and titanium are often beneficial additions. Microstructures at equivalent strength levels are ranked in order of susceptibility; generally, a refined substructure gives the best results. The role of heat treatment in controlling the hydrogen-induced crack path and its relationship to thermal embrittlement phenomena are stressed. Finally, possible hydrogen embrittlement mechanisms are assessed in terms of the critical roles of metallurgical variables in the embrittlement.

  4. Effects of the Microstructure on Segregation behavior of Ni-Cr-Mo High Strength Low Alloy RPV Steel

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Gyu; Wee, Dang Moon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kim, Min Chul; Lee, Bong Sang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    SA508 Gr.4N Ni-Cr-Mo low alloy steel has an improved fracture toughness and strength, compared to commercial Mn-Mo-Ni low alloy RPV steel SA508 Gr.3. Higher strength and fracture toughness of low alloy steels could be achieved by adding Ni and Cr. So there are several researches on SA508 Gr.4N low alloy steel for a RPV application. The operation temperature and time of a reactor pressure vessel is more than 300 .deg. C and over 40 years. Therefore, in order to apply the SA508 Gr.4N low alloy steel for a reactor pressure vessel, it requires a resistance of thermal embrittlement in the high temperature range including temper embrittlement resistance. S. Raoul reported that the susceptibility to temper embrittlement was increasing a function of the cooling rate in SA533 steel, which suggests the martensitic microstructures resulting from increased cooling rates are more susceptible to temper embrittlement. However, this result has not been proved yet. So the comparison of temper embrittlement behavior was made between martensitic microstructure and bainitic microstructure with a viewpoint of boundary features in SA508 Gr.4N, which have mixture of tempered bainite/martensite. In this study, we have compared temper embrittlement behaviors of SA508 Gr.4N low alloy steel with changing volume fraction of martensite. The mechanical properties of these low alloy steels) were evaluated after a long-term heat treatment(450 .deg. C, 2000hr. Then, the images of the segregated boundaries were observed and segregation behavior was analyzed by AES. In order to compare the misorientation distributions of model alloys, grain boundary structures were measured with EBSD

  5. Design and use of the Embrittlement Data Base (EDB)

    International Nuclear Information System (INIS)

    Stallmann, F.W.

    1987-01-01

    The architecture of the Embrittlement Data Base (EDB) is described. This data base contains a comprehensive collection of experimental data related to irradiations of reactor pressure vessel steels in surveillance capsules and test reactors. Software is being developed for easy retrieval and analysis of the data. Data and software will be made available to interested parties on a cooperative basis

  6. SCK-CEN Contribution to the IAEA Round Robin Exercise on WWER-440 RPV Weld Metal Irradiation Embrittlement, annealing and Re-Embrittlement. Second Progress Report

    International Nuclear Information System (INIS)

    Van Walle, E.; Chaouadi, R.; Scibetta, M.; Lucon, E.; Weber, M.

    1999-07-01

    The report gives the actual status of the contribution of the Belgian Nuclear Research Centre SCK-CEN to the IAEA Round Robin Exercise on WWER-440 RPV Weld Material Irradiation, Annealing and Re-Embrittlement. Results from the reference testing of unirradiated material as well as the results of the CHIVAS-7 experiment are discussed

  7. Determination of hydrogen solubility in Fe-Mn-C melts

    Energy Technology Data Exchange (ETDEWEB)

    Lob, Alexander; Senk, Dieter [Institute of Ferrous Metallurgy (IEHK), RWTH Aachen University (Germany); Hallstedt, Bengt [Materials Chemistry (MCh), RWTH Aachen University (Germany)

    2011-02-15

    High manganese steels are supposed to be sensitive to hydrogen embrittlement. This can be explained by increased hydrogen solubility in comparison to unalloyed steels. To minimise hydrogen pick up during melting operations, it is necessary to know accurately the hydrogen solubility as function of hydrogen partial pressure, temperature and Mn content. In this work in situ measurements of hydrogen content at 12, 18 and 23 wt.% Mn (and 0.6 wt.% C) using the Hydris {sup registered} system are compared to pin-tube measurements. Below about 7 ppm [H] both methods gave the same results and above 7 ppm [H] the in situ measurement showed slightly higher hydrogen contents because some hydrogen is lost during quenching with the pin-tube method. The measured solubilities were compared with thermodynamic calculations. Using dilute solution theory with data developed for alloyed Fe-based melts with up to 10 wt.% Mn gives reasonable results except that the hydrogen solubility is slightly underestimated for the presently investigated Mn contents. This could be compensated by using an interaction parameter of e{sup Mn}{sub H}=-0.004 instead of e{sup Mn}{sub H}=-0.0012. A Calphad type extrapolation from the binary Fe-H, Mn-H and Fe-Mn systems gave results very close to the experimental ones. This work is a contribution from the collaborative research centre SFB 761 ''Steel - ab initio''. (Copyright copyright 2011 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Role of hydrogen on the incipient crack tip deformation behavior in α-Fe: An atomistic perspective

    Science.gov (United States)

    Adlakha, I.; Solanki, K. N.

    2018-01-01

    A crack tip in α-Fe presents a preferential trap site for hydrogen, and sufficient concentration of hydrogen can change the incipient crack tip deformation response, causing a transition from a ductile to a brittle failure mechanism for inherently ductile alloys. In this work, the effect of hydrogen segregation around the crack tip on deformation in α-Fe was examined using atomistic simulations and the continuum based Rice-Thompson criterion for various modes of fracture (I, II, and III). The presence of a hydrogen rich region ahead of the crack tip was found to cause a decrease in the critical stress intensity factor required for incipient deformation for various crack orientations and modes of fracture examined here. Furthermore, the triaxial stress state ahead of the crack tip was found to play a crucial role in determining the effect of hydrogen on the deformation behavior. Overall, the segregation of hydrogen atoms around the crack tip enhanced both dislocation emission and cleavage behavior suggesting that hydrogen has a dual role during the deformation in α-Fe.

  9. R and D Developments. Research Programs on Irradiation Embrittlement of Reactor Vessel Steels

    International Nuclear Information System (INIS)

    Gomez Briceno, D.; Lapena, J.; Serrano, M.; Perosanz, F.

    2000-01-01

    Irradiation embrittlement of pressure vessel steels is a degradation mechanism time dependent that can lead to operational restrictions with adverse effects in the efficiency and life of a plant. For the last year, several research programs have been devoted to study thye evaluation of neutronic radiation effect on mechanical properties of pressure vessel steels. However, at the present, there is a growing interest on the development of new methodologies to optimize the surveillance program information, and the understanding of the irradiation damage mechanism. This paper give an overview of international research programs, and on the R+D activities carried out by the Structural Materials Project on irradiation embrittlement on pressure vessel steels. (Author)

  10. Positron annihilation in hydrogenated and electron-irradiated titanium alloys

    International Nuclear Information System (INIS)

    Mukashev, K.M.; Zaikin, Yu.A.

    2002-01-01

    that material properties were not completely recovered, probably due to residual point defects of radiation origin. It is obvious that the temperature of 600 deg. C was not sufficient for hydrogen extraction from titanium. These results are confirmed by data of previous studies where niobium and nickel hydrogenated after electron irradiation were studied. These data show that the shift in the recovery start exceeded 130 deg. C. Thus, interaction of vacancy-type defects with previously introduced hydrogen surrounding causes alterations in the efficient size of positron localization centers and shifts the first recovery stage to the region of higher temperature values. Generally, the results of this study demonstrate a significant role of hydrogen in alterations of the electron structure of damaged materials. They show the increasing hydrogen interaction with materials in presence of structural imperfections of deformational and radiation origin. Both hydrogen behavior in irradiated titanium alloys and the observed alterations in positron annihilation characteristics cannot be described in frames of a simple model based on the concept of proton interaction with a vacancy. Variety of radiation defects, such as complexes of point defects, dislocations, cracks, etc., should be taken into account. Application of positron annihilation methods provides important information on hydrogen interaction with lattice imperfections that can be a useful approach to the problem of hydrogen embrittlement of structural materials in the fields of ionizing radiation

  11. Investigation of Liquid Metal Embrittlement of Materials for use in Fusion Reactors

    Science.gov (United States)

    Kennedy, Daniel; Jaworski, Michael

    2014-10-01

    Liquid metals can provide a continually replenished material for the first wall and extraction blankets of fusion reactors. However, research has shown that solid metal surfaces will experience embrittlement when exposed to liquid metals under stress. Therefore, it is important to understand the changes in structural strength of the solid metal materials and test different surface treatments that can limit embrittlement. Research was conducted to design and build an apparatus for exposing solid metal samples to liquid metal under high stress and temperature. The apparatus design, results of tensile testing, and surface imaging of fractured samples will be presented. This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internships Program (SULI).

  12. An holistic approach to the problem of reactor ageing. [Pressure vessel embrittlement

    Energy Technology Data Exchange (ETDEWEB)

    Phythian, W.; McElroy, R.; Druce, S.; Kovan, D. (AEA Reactor Services, Harwell (United Kingdom))

    1992-12-01

    Understanding the process of ageing in reactors is essential to extending their lives beyond original design. To present a sound case -particularly regarding the level of embrittlement in reactor vessels due to radiation damage - an integrated approach using advanced assessment tools is needed. The techniques developed for the purpose involve, on the microscopic level, advanced neutron dosimetry and high resolution measurement techniques (eg advanced electron beam techniques and small angle neutron scattering) with which an analysis can be done of the radiation damage and the microstructural state of the steel test procedures (tensile, fracture toughness and Charpy impact) on standard and sub-sized specimens, the extent of radiation degradation can be characterised. finally, it is possible to predict how the degradation will evolve using physically-based models of embrittlement. (Author).

  13. Estimation of RPV material embrittlement for Ukrainian NPP based on surveillance test data

    International Nuclear Information System (INIS)

    Revka, V.; Chyrko, L.; Chaikovsky, Yu.; Gulchuk, Yu.

    2012-01-01

    The WWER-1000 RPV material embrittlement has been evaluated using the surveillance test data for the nuclear power plant which is under operation in Ukraine. The RPV materials after the neutron (E > 0,5 MeV) irradiation up to fluence of 22,9.10 22 m -2 have been studied. Fracture toughness tests were performed using pre-cracked Charpy specimens for the beltline materials (base and weld metal). The maximum shift of T 0 reference temperature is equal to 44 o C. A radiation embrittlement rate, A F , for the RPV materials was estimated using the standard and reconstituted specimens. A comparison of the A F values has shown a good agreement between the specimen sets before and after reconstitution both for base and weld metal. Furthermore it has been revealed there is no nickel effect for the studied materials. In spite of the high nickel content the radiation embrittlement rate for weld metal is not higher than for base metal with low nickel content. Fracture toughness analysis has shown the Master curve shape describes well a temperature dependence of K Jc values. However a higher scatter of K Jc values is observed in comparison to 95 % tolerance bounds. (author)

  14. The behavior of hydrogen in metals

    International Nuclear Information System (INIS)

    Hirabayashi, Makoto

    1975-01-01

    Explanation is made on the equilibrium diagrams of metal-hydrogen systems and the state of hydrogen in metals. Some metals perform exothermic reaction with hydrogen, and the others endothermic reaction. The former form stable hydrides and solid solutions over a wide range of composition. Hydrogen atoms in fcc and bcc metals are present at the interstitial positions of tetrahedron lattice and octahedron lattice. For example, hydrogen atoms in palladium are present at the intersititial positions of octahedron. When the ratio of the composition of hydrogen and palladium is 1:1, the structure becomes NaCl type. Hydrogen atoms in niobium and vanadium and present interstitially in tetrahedron lattice. Metal hydrides with high hydrogen concentration are becoming important recently as the containers of hydrogen. Hydrogen atoms diffuse in metals quite easily. The activation energy of the diffusion of hydrogen atoms in Nb and V is about 2-3 kcal/g.atom. The diffusion coefficient is about 10 -5 cm 2 /sec in alpha phase at room temperature. The number of jumps of a hydrogen atom between neighboring lattice sites is 10 11 --10 12 times per second. This datum is almost the same as that of liquid metals. Discussion is also made on the electronic state of hydrogen in metals. (Fukutomi, T.)

  15. Analysis of transient permeation behavior of hydrogen isotope caused by abrupt temperature change of first wall and blanket wall material

    International Nuclear Information System (INIS)

    Yamawaki, Michio; Tanaka, Satoru; Kiyoshi, Tsukasa

    1989-01-01

    To obtain further information on the transient permeation behavior of hydrogen isotopes as caused by an abrupt temperature change, numerical calculations were carried out for two typical metals, nickel and vanadium. Deuterium permeation through nickel is analyzed as a typical case of bulk-diffusion-limited permeation. Its transient behavior changed dramatically according to the specimen thickness. The transient behavior, in general, is separated into two parts, initial and latter period behaviors. Conditions which cause such a separation were evaluated. Evaluation of the hydrogen diffusivity and solubility by an analysis of transient curves of hydrogen permeation was carried out. The transient behavior of simultaneous gas- and ion-driven hydrogen permeation through vanadium was also analyzed. Overshooting of the hydrogen permeation rate appears with an abrupt temperature increase. Increasing the impinging ion flux causes the overshooting peak to become sharper, and also reduces the change of the steady-state permeation rate to be attained after the temperature change compared with the initial value. (orig.)

  16. The flow effect in the irradiation embrittlement in pressure vessel steels of nuclear power plants

    International Nuclear Information System (INIS)

    Kempf, Rodolfo A.; Cativa Tolosa, Sebastian; Fortis, Ana M.

    2009-01-01

    This paper deals with the advances in the study of the mechanical behavior of the Reactor Pressure Vessel steels under accelerate irradiations. The objective is to study the effect of lead factors on the interpretation of the mechanisms that induced the embrittlement of the RPV, like those of the reactors Atucha II and CAREM. It is described a device designed to irradiate Charpy specimens with V notch of SA-508 type 3 steel at power reactor temperature, installed in the RA-1 reactor. It is presented also an automatic digital image processing technique for partitioning Charpy fracture surface into regions with a clear physical meaning and appropriate for the work in hot cells. The aim is to obtain the fracture behavior of irradiated specimens with different lead factors in the range of high fluencies and to know the dependence with the composition of the alloy and with the diffusion of other alloy elements. (author)

  17. The long range migration of hydrogen through Zircaloy in response to tensile and compressive stress gradients

    International Nuclear Information System (INIS)

    Kammenzind, B.F.; Berquist, B.M.; Bajaj, R.; Kreyns, P.H.; Franklin, D.G.

    1998-01-01

    Zircaloy-4, which is used widely as a core structural material in pressurized water reactors (PWRs), picks up hydrogen during service. Hydrogen solubility in Zircaloy-4 is low and zirconium hydride phases precipitate after the Zircaloy-4 lattice becomes supersaturated with hydrogen. These hydrides embrittle the Zircaloy-4, degrading its mechanical performance as a structural material. Because hydrogen can move rapidly through the Zircaloy-4 lattice, the potential exists for large concentrations of hydride to accumulate in local regions of a Zircaloy component remote from its point of entry into the component. Much has been reported in the literature regarding the long range migration of hydrogen through Zircaloy under concentration gradients and temperature gradients. Relatively little has been reported, however, regarding the long range migration of hydrogen under stress gradients. This paper presents experimental results regarding the long range migration of hydrogen through Zircaloy in response to both tensile and compressive stress gradients. The importance of this driving force for hydrogen migration relative to concentration and thermal gradients is discussed

  18. Fatigue Crack Growth Behavior of Austempered AISI 4140 Steel with Dissolved Hydrogen

    Directory of Open Access Journals (Sweden)

    Varun Ramasagara Nagarajan

    2017-11-01

    Full Text Available The focus of this investigation was to examine the influence of dissolved hydrogen on the fatigue crack growth behavior of an austempered low-alloy AISI 4140 steel. The investigation also examined the influence of dissolved hydrogen on the fatigue threshold in this material. The material was tested in two conditions, as-received (cold rolled and annealed and austempered (austenitized at 882 °C for 1 h and austempered at 332 °C for 1 h. The microstructure of the annealed specimens consisted of a mix of ferrite and fine pearlite; the microstructure of the austempered specimens was lower bainite. Tensile and Compact Tension specimens were prepared. To examine the influence of dissolved hydrogen, two subsets of the CT specimens were charged with hydrogen for three different time periods between 150 and 250 h. All of the CT samples were then subjected to fatigue crack growth tests in the threshold and linear regions at room temperature. The test results indicate that austempering resulted in significant improvement in the yield and tensile strength as well as the fracture toughness of the material. The test results also show that, in the absence of dissolved hydrogen, the crack growth rate in the threshold and linear regions was lower in austempered samples compared to the as-received (annealed samples. The fatigue threshold was also slightly greater in the austempered samples. In presence of dissolved hydrogen, the crack growth rate was dependent upon the ∆K value. In the low ∆K region (<30 MPa√m, the presence of dissolved hydrogen caused the crack growth rate to be higher in the austempered samples as compared to annealed samples. Above this value, the crack growth rate was increasingly greater in the annealed specimens when compared to the austempered specimens in presence of dissolved hydrogen. It is concluded that austempering of 4140 steel appears to provide a processing route by which the strength, hardness, and fracture toughness of

  19. Effect of the oxidation front penetration on in-clad hydrogen migration

    Science.gov (United States)

    Feria, F.; Herranz, L. E.

    2018-03-01

    In LWR fuel claddings the embrittlement due to hydrogen precipitates (i.e., hydrides) is a degrading mechanism that concerns in nuclear safety, particularly in dry storage. A relevant factor is the radial distribution of the hydrogen absorbed, especially the hydride rim formed. Thus, a reliable assessment of fuel performance should account for hydrogen migration. Based on the current state of modelling of hydrogen dynamics in the cladding, a 1D radial model has been derived and coupled with the FRAPCON code. The model includes the effect of the oxidation front progression on in-clad hydrogen migration, based on experimental observations found (i.e., dissolution/diffusion/re-precipitation of the hydrogen in the matrix ahead of the oxidation front). A remarkable quantitative impact of this new contribution has been shown by analyzing the hydrogen profile across the cladding of several high burnup fuel scenarios (>60 GW d/tU); other potential contributions like thermodiffusion and diffusion in the hydride phase hardly make any difference. Comparisons against PIE measurements allow concluding that the model accuracy notably increases when the effect of the oxidation front is accounted for in the hydride rim formation. In spite of the promising results, further validation would be needed.

  20. Modification of the grain boundary microstructure of the austenitic PCA stainless steel to improve helium embrittlement resistance

    International Nuclear Information System (INIS)

    Maziasz, P.J.; Braski, D.N.

    1986-01-01

    Grain boundary MC precipitation was produced by a modified thermal-mechanical pretreatment in 25% cold worked (CW) austenitic prime candidate alloy (PCA) stainless steel prior to HFIR irradiation. Postirradiation tensile results and fracture analysis showed that the modified material (B3) resisted helium embrittlement better than either solution annealed (SA) or 25% CW PCA irradiated at 500 to 600 0 C to approx.21 dpa and 1370 at. ppM He. PCA SA and 25% CW were not embrittled at 300 to 400 0 C. Grain boundary MC survives in PCA-B3 during HFIR irradiation at 500 0 C but dissolves at 600 0 C; it does not form in either SA or 25% CW PCA during similar irradiation. The grain boundary MC appears to play an important role in the helium embrittlement resistance of PCA-B3

  1. Summary of the FY 1988 Sunshine Project results. Hydrogen energy; 1988 nendo sunshine keikaku seika hokokusho gaiyoshu. Suiso energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-04-01

    Outlined herein are the results of researches on hydrogen energy as part of the FY 1988 Sunshine Project results. Researches on the techniques for producing hydrogen by electrolysis of water using a polymer electrolyte include development of power-supplying materials for electrolysis at high current density, and basic studies on the electrolysis using an OH ion conducting type polymer electrolyte. Researches on the techniques for producing hydrogen by electrolysis with hot steam include development of the materials, techniques for processing these materials, and electrolysis performance tests. Researches on the techniques for transporting hydrogen by metal hydrides include development of hydrogen-occluding alloys of high bulk density, and techniques for evaluating characteristics of metal hydrides. Researches on the techniques for storing hydrogen include those on alloy molding/processing techniques, hydrogen-storing metallic materials, and new hydrogen-storing materials. Researches on the techniques for utilizing hydrogen include those on energy conversion techniques using hydrogen-occluding alloys, and hydrogen-fueled motors. Researches on the techniques for safety-related measures include those on prevention of embrittlement of the system materials by hydrogen. (NEDO)

  2. Summary of the FY 1989 Sunshine Project results. Hydrogen energy; 1989 nendo sunshine keikaku seika hokokusho gaiyoshu. Suiso energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-04-01

    Outlined herein are the results of researches on hydrogen energy as part of the FY 1989 Sunshine Project results. Researches on the techniques for producing hydrogen by electrolysis of water using a polymer electrolyte include those on the SPE electrolysis at high temperature and current density, and basic studies on the electrolysis using an OH ion conducting type polymer electrolyte. Researches on the techniques for producing hydrogen by electrolysis with hot steam include development of the materials, techniques for processing these materials, and electrolysis performance tests. Researches on the techniques for transporting hydrogen by metal hydrides include development of hydrogen-occluding alloys of high bulk density, and techniques for evaluating characteristics of metal hydrides. Researches on the techniques for storing hydrogen include those on hydrogen-storing metallic materials, alloy molding/processing techniques, and new hydrogen-storing materials. Researches on the techniques for utilizing hydrogen include those on energy conversion techniques using hydrogen-occluding alloys, and hydrogen-fueled motors. Researches on the techniques for safety-related measures include those on prevention of embrittlement of the system materials by hydrogen. (NEDO)

  3. Embrittlement phenomenon of Ag core MP35N cable as lead conductor in medical device.

    Science.gov (United States)

    Wang, Ling; Li, Bernie; Zhang, Haitao

    2013-02-01

    Ag core MP35N (Ag/MP35N) wire has been used in lead electric conductor wires in the medical device industry for many years. Recently it was noticed that the combination of silver and MP35N restricts its wire drawing process. The annealing temperature in Ag/MP35N has to be lower than the melting temperature of pure Ag (960 °C), which cannot fully anneal MP35N. The lower annealing temperature results in a highly cold worked MP35N, which significantly reduces Ag/MP35N ductility. The embrittlement phenomenon of Ag/MP35N cable was observed in tension and bending deformation. The effect of the embrittlement on the wire flex fatigue life was evaluated using a newly developed flex fatigue testing method. The Ag/MP35N cable fatigue results was analyzed with a Coffin-Manson approach and compared to the MP35N cable fatigue results. The root causes of the Ag/Mp35N embrittlement phenomenon are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Japan sunshine project 1987 annual summary of Hydrogen energy R and D

    Science.gov (United States)

    1988-04-01

    This paper presents the findings of the researches on hydrogen energy in sunshine project in FY87. A duration test of the electrolyte membrane of solid polymer fabricated by bonding Pt and Ir catalyst layers was made for seven months to produce hydrogen by the electrolysis of water. The result indicates that the electrolysis will be able to be made at high current density. The sensitivity to stress corrosion cracking of stainless steel for electrolysis of water was evaluated. Since a thin film of stabilized zirconia fabricated by sintering at a temperature of 1500 C or higher is dense and conductive, it is a promising solid electrolyte. Since an inert phase to hydrogen is developed in a high-density metallic alloy for hydrogen storage produced by sintering and partially melting Mg7Zn3-Ni, it must be improved. A heating module of hydrogenated material monolithically coated on copper tube was investigated. The application of metallic alloy for hydrogen storage to the hydrogen electrode is studied. A hydrogen-fueled prime mover system circulating an inert gas is being developed. Since the low alloy steel part is extremely embrittled by heating, the intergranular face of coarse crystal affected by the cycle of welding heat is a problem.

  5. A fatigue initiation parameter for gas pipe steel submitted to hydrogen absorption

    Energy Technology Data Exchange (ETDEWEB)

    Capelle, J; Gilgert, J; Pluvinage, G [LaBPS - Ecole Nationale d' Ingenieurs de Metz et Universite Paul Verlaine Metz, Ile du Saulcy, 57045 Metz (France)

    2010-01-15

    Fatigue initiation resistance has been determined on API 5L X52 gas pipe steel. Tests have been performed on Roman Tile (RT) specimen and fatigue initiation was detected by acoustic emission. A comparison between specimens electrolytically charged with hydrogen and specimens without hydrogen absorption were made and it has been noted that fatigue initiation time is reduced of about 3 times when hydrogen embrittlement occurs. It has been proposed to use the concept of Notch Stress Intensity Factor as parameter to describe the fatigue initiation process. Due to the fact that hydrogen is localised in area with high hydrostatic pressure, definitions of local effective stress and distance have been modified when hydrogen is absorbed. This modification can be explained by existence of a ductile-brittle transition with hydrogen concentration. The fatigue initiation resistance curve allows that to determine a threshold for large number of cycles of fatigue non initiation. This parameter introduced in a Failure Assessment Diagram (FAD) provides supplementary information about defect nocivity in gas pipes: a non-critical defect can be detected as dormant or not dormant defect i.e., as non propagating defect. (author)

  6. Studies on displacement behavior between hydrogen and deuterium in hydride column

    International Nuclear Information System (INIS)

    Lu Guangda; Li Gan; Jiang Guoqiang

    2001-01-01

    A series displacement experiments between hydrogen and deuterium in ZrCo, LaNi 5 , LaNi 4.7 Al 0.3 and Pd hydride column had been conducted at room temperature about. Results indicate that displacement characteristics related to factors such as temperature, gas flow rate, ratio surface area of solid phase and hydrogen isotope separation factor of the metal-hydrogen system. The palladium hydride have the best displacement characteristics, and LaNi 5 , LaNi 4.7 Al 0.3 and ZrCo are in the next places. Theoretical study reveals that the rule of the exchange reaction of hydrogen isotopes in gas-solid interface determines the displacement behavior and the displacing efficiency depends on exchange rate. The ideal stage mode could be used to describe the displacement breakthrough curve. The height equivalent to theoretical place (HETP) indicates the displacing effects. Also, the separation factor has a serious influence to HETP under the same condition

  7. Reactor pressure vessel embrittlement

    International Nuclear Information System (INIS)

    1992-07-01

    Within the framework of the IAEA extrabudgetary programme on the Safety of WWER-440/230 NPPs, a list of safety issues requiring broad studies of generic interest have been agreed upon by an Advisory Group who met in Vienna in September 1990. The list was later revised in the light of the programme findings. The information on the status of the issues, and on the amount of work already completed and under way in the various countries, needs to be compiled. Moreover, an evaluation of what further work is required to resolve each one of the issues is also necessary. In view of this, the IAEA has started the preparation of a series of status reports on the various issues. This report on the generic safety issue ''Reactor Pressure Vessel Embrittlement'' presents a comprehensive survey of technical information available in the field and identifies those aspects which require further investigation. 39 refs, 21 figs, 4 tabs

  8. Investigation for GOTHIC-3D prediction capability for the local hydrogen behavior analysis in the NPP containment

    International Nuclear Information System (INIS)

    Lee, Un-jang; Park, Goon-cherl

    2002-01-01

    Under a severe accident condition, hydrogen can be generated mainly from the reaction of zirconium cladding with hot steam and flammable hydrogen/air/steam mixtures can be formed. Thus hydrogen analysis is needed for a variety of reasons in the containment building; to predict the global containment response against the threat potential by hydrogen; to address certain safety issues such as the safety feature survivability due to global burning or explosion of hydrogen; or for designing and positioning of the hydrogen controller. In this study an analytical tool was used to predict the local hydrogen behavior in a small compartment and its analytical capability was examined through verification tests, which have been performed in SNU hydrogen mixing facilities. The analytical tool that was employed is the code GOTHIC which is a 3D three-fields (vapor, liquid and droplets) code specially developed for the containment analysis, and has the additional capability of modeling a number of different gases as well as air. The comparison between experimental and analytical tests results showed that the GOTHIC code is not applicable for the analysis of local hydrogen behavior in the highly transient condition and/or in small size compartment. (authors)

  9. A review of formulas for predicting irradiation embrittlement of reactors vessel materials

    International Nuclear Information System (INIS)

    Petrequin, P.

    1995-01-01

    Formulas developed in different countries for predicting irradiation embrittlement of reactors vessel materials are presented. Results of predictions were compared with different data sets, from surveillance programmes or studies in test reactors, with different residual elements contents. Figs

  10. Numerical Study on Hydrogen Flow Behavior in Two Compartments with Different Connecting Pipes

    Directory of Open Access Journals (Sweden)

    HanChen Liu

    2017-01-01

    Full Text Available Hydrogen accumulation in the containment compartments under severe accidents would result in high concentration, which could lead to hydrogen deflagration or detonation. Therefore, getting detailed hydrogen flow and distribution is a key issue to arrange hydrogen removal equipment in the containment compartments. In this study, hydrogen flow behavior in local compartments has been investigated in two horizontal compartments. The analysis model is built by 3-dimensional CFD code in Cartesian coordinates based on the connection structure of the Advanced Pressurized Water Reactor (PWR compartments. It consists of two cylindrical vessels, representing the Steam Generator compartment (SG and Core Makeup Tank compartment (CMT. With standard k-ε turbulence model, the effects of the connecting pipe size and location on hydrogen concentration distribution are investigated. Results show that increasing the diameter of connection pipe (IP which is located at 800 mm from 150 mm to 300 mm facilitates hydrogen flow between compartments. Decreasing the length of IP which is located at 800 mm from 1000 mm to 500 mm can also facilitate hydrogen flow between compartments. Lower IP is in favor of hydrogen mixing with air in non-source compartment. Higher IP is helpful for hydrogen flow to the non-source term compartment from source term compartment.

  11. Sulfide stress corrosion study of a super martensitic stainless steel in H2S sour environments: Metallic sulfides formation and hydrogen embrittlement

    Science.gov (United States)

    Monnot, Martin; Nogueira, Ricardo P.; Roche, Virginie; Berthomé, Grégory; Chauveau, Eric; Estevez, Rafael; Mantel, Marc

    2017-02-01

    Thanks to their high corrosion resistance, super martensitic stainless steels are commonly used in the oil and gas industry, particularly in sour environments. Some grades are however susceptible to undergo hydrogen and mechanically-assisted corrosion processes in the presence of H2S, depending on the pH. The martensitic stainless steel EN 1.4418 grade exhibits a clear protective passive behavior with no sulfide stress corrosion cracking when exposed to sour environments of pH ≥ 4, but undergoes a steep decrease in its corrosion resistance at lower pH conditions. The present paper investigated this abrupt loss of corrosion resistance with electrochemical measurements as well as different physicochemical characterization techniques. Results indicated that below pH 4.0 the metal surface is covered by a thick (ca 40 μm) porous and defect-full sulfide-rich corrosion products layer shown to be straightforwardly related to the onset of hydrogen and sulfide mechanically-assisted corrosion phenomena.

  12. Effect of aluminium concentration and boron dopant on environmental embrittlement in FeAl aluminides

    International Nuclear Information System (INIS)

    Liu, C.T.; George, E.P.

    1991-01-01

    This paper reports on the room-temperature tensile properties of FeAl aluminides determined as functions of aluminum concentration (35 to 43 at. % Al), test environment, and surface (oil) coating. The two lower aluminum alloys containing 35 and 36.5% Al are prone to severe environmental embrittlement, while the two higher aluminum alloys with 40 and 43% Al are much less sensitive to change in test environment and surface coating. The reason for the different behavior is that the grain boundaries are intrinsically weak in the higher aluminum alloys, and these weak boundaries dominate the low ductility and brittle fracture behavior of the 40 and 43% Al alloys. When boron is added to the 40% Al alloy as a grain-boundary strengthener, the environmental effect becomes prominent. In this case, the tensile ductility of the boron-doped alloy, just like that of the lower aluminum alloys, can be dramatically improved by control of test environment (e.g. dry oxygen vs air). Strong segregation of boron to the grain boundaries, with a segregation factor of 43, was revealed by Auger analyses

  13. On the formation and nature of quasi-cleavage fracture surfaces in hydrogen embrittled steels

    Energy Technology Data Exchange (ETDEWEB)

    Martin, May L.; Fenske, Jamey A.; Liu, Grace S.; Sofronis, Petros [University of Illinois, Dept. of Materials Science and Engineering, 1304 W. Green St., Urbana, IL 61801 (United States); Robertson, Ian M., E-mail: ianr@illinois.edu [University of Illinois, Dept. of Materials Science and Engineering, 1304 W. Green St., Urbana, IL 61801 (United States)

    2011-02-15

    Quasi-cleavage, a common feature of hydrogen-induced fracture surfaces, is generally taken as being cleavage-like but not along a known cleavage plane. Despite the frequency with which this surface is observed, the relationship to the underlying microstructure remains unknown. Through a combination of topographical reconstruction of secondary electron microscope fractographs and a transmission electron microscopy study of the microstructure from site-specific locations, it will be shown that the features on quasi-cleavage surfaces are ridges that can be correlated with sub-surface intense and highly localized deformation bands. It will be demonstrated that the fracture surface arises from the growth and coalescence of voids that initiate at and extend along slip band intersections. This mechanism and process is fully consistent with hydrogen enhancing and localizing plastic processes.

  14. Tensile properties of ADI material in water and gaseous environments

    Energy Technology Data Exchange (ETDEWEB)

    Rajnovic, Dragan, E-mail: draganr@uns.ac.rs [Faculty of Technical Sciences, University of Novi Sad, Trg D. Obradovića 6, 21000 Novi Sad (Serbia); Balos, Sebastian; Sidjanin, Leposava [Faculty of Technical Sciences, University of Novi Sad, Trg D. Obradovića 6, 21000 Novi Sad (Serbia); Eric Cekic, Olivera [Innovation Centre, Faculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, 11120 Belgrade (Serbia); Grbovic Novakovic, Jasmina [Vinca Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11000 Belgrade (Serbia)

    2015-03-15

    Austempered ductile iron (ADI) is an advanced type of heat treated ductile iron, having comparable mechanical properties as forged steels. However, it was found that in contact with water the mechanical properties of austempered ductile irons decrease, especially their ductility. Despite considerable scientific attention, the cause of this phenomenon remains unclear. Some authors suggested that hydrogen or small atom chemisorption causes the weakening of the surface atomic bonds. To get additional reliable data of that phenomenon, in this paper, two different types of austempered ductile irons were tensile tested in various environments, such as: argon, helium, hydrogen gas and water. It was found that only the hydrogen gas and water gave a statistically significant decrease in mechanical properties, i.e. cause embrittlement. Furthermore, the fracture surface analysis revealed that the morphology of the embrittled zone near the specimen surface shares similarities to the fatigue micro-containing striation-like lines, which indicates that the morphology of the brittle zone may be caused by cyclic local-chemisorption, micro-embrittlement and local-fracture. - Highlights: • In contact with water and other liquids the ADI suddenly exhibits embrittlement. • The embrittlement is more pronounced in water than in the gaseous hydrogen. • The hydrogen chemisorption into ADI surface causes the formation of a brittle zone. • The ADI austempered at lower temperatures (300 °C) is more resistant to embrittlement.

  15. Recent evaluation of 'wet' thermal annealing to resolve reactor pressure vessel embrittlement

    International Nuclear Information System (INIS)

    Server, W.L.; Biemiller, E.C.

    1993-01-01

    Prior to the decision to close the Yankee Rowe plant in 1992, a great deal of effort was expended in trying to resolve the degree of neutron embrittlement that the reactor pressure vessel had experienced after 30 years of operation. One mitigative measure that was examined in detail was the possibility of performing a relatively low temperature thermal anneal (at approximately 650 deg. F) to partially restore the original design level of mechanical properties of the reactor pressure vessel beltline region which were lost due to the neutron radiation exposure. This low temperature anneal was to involve heating of the primary coolant water using pump heat in a similar manner as that used to anneal the Belgian BR-3 reactor pressure vessel in the early 1980s. This 'wet' anneal was successful in recovering mechanical properties for the BR-3 vessel, but the extent of the recovery, as well as the rate of re-embrittlement after the anneal, were issues that were difficult to quantify since the exact reactor pressure vessel steels were not available for experimental verification. For the case of Yankee Rowe, material was available from past surveillance programs for at least one of the materials in the vessel, as well as materials obtained from various sources which could act as bounding surrogates. An irradiation /annealing/reirradiation program was developed to better quantify the degree of recovery and re-embrittlement for these materials, but this program was halted before significant test results were obtained. Prior to the initiation of the testing program, a review of past annealing data was performed and the data were scrutinized for direct relevance to the annealing response of the Yankee Rowe vessel. This paper discusses the results derived from this review. The results from the critical review of the past annealing data indicated that a 'wet' anneal of the Yankee Rowe vessel may have been successful in reducing the degree of embrittlement to the point that the

  16. Rapid Diffusion and Nanosegregation of Hydrogen in Magnesium Alloys from Exposure to Water.

    Science.gov (United States)

    Brady, Michael P; Ievlev, Anton V; Fayek, Mostafa; Leonard, Donovan N; Frith, Matthew G; Meyer, Harry M; Ramirez-Cuesta, Anibal J; Daemen, Luke L; Cheng, Yongqiang; Guo, Wei; Poplawsky, Jonathan D; Ovchinnikova, Olga S; Thomson, Jeffrey; Anovitz, Lawrence M; Rother, Gernot; Shin, Dongwon; Song, Guang-Ling; Davis, Bruce

    2017-11-01

    Hydrogen gas is formed when Mg corrodes in water; however, the manner and extent to which the hydrogen may also enter the Mg metal is poorly understood. Such knowledge is critical as stress corrosion cracking (SCC)/embrittlement phenomena limit many otherwise promising structural and functional uses of Mg. Here, we report via D 2 O/D isotopic tracer and H 2 O exposures with characterization by secondary ion mass spectrometry, inelastic neutron scattering vibrational spectrometry, electron microscopy, and atom probe tomography techniques direct evidence that hydrogen rapidly penetrated tens of micrometers into Mg metal after only 4 h of exposure to water at room temperature. Further, technologically important microalloying additions of mechanical properties of Mg significantly increased the extent of hydrogen ingress, whereas Al additions in the 2-3 wt % range did not. Segregation of hydrogen species was observed at regions of high Mg/Zr/Nd nanoprecipitate density and at Mg(Zr) metastable solid solution microstructural features. We also report evidence that this ingressed hydrogen was unexpectedly present in the alloy as nanoconfined, molecular H 2 . These new insights provide a basis for strategies to design Mg alloys to resist SCC in aqueous environments as well as potentially impact functional uses such as hydrogen storage where increased hydrogen uptake is desired.

  17. Research on the surface chemical behavior of uranium metal in hydrogen atmosphere by XPS

    International Nuclear Information System (INIS)

    Fu Xiaoguo; Wang Xiaolin; Yu Yong; Zhao Zhengping

    2001-01-01

    The surface chemical behavior clean uranium metal in hydrogen atmosphere at 100 and 200 degree C is studied by X-ray photoelectron spectroscopy (XPS), respectively. It leads to hydriding reaction when the hydrogen exposure is 12.0 Pa·s, and the U4f 7/2 binding energy of UH 3 is found to be 378.7 eV. The higher temperature (200 degree C) is beneficial to UH 3 formation at the same hydrogen exposures. XPS elemental depth profiles indicate that the distribution of uranium surface layer is UO 2 , UH 3 and U after exposure to 174.2 Pa·s hydrogen

  18. Solubility of hydrogen in water in a broad temperature and pressure range

    International Nuclear Information System (INIS)

    Baranenko, V.I.; Kirov, V.S.

    1989-01-01

    In the coolant of water-water reactors, as a result of radiolytic decomposition of water and chemical additives (hydrazine and ammonia) and saturation of the make-up water of the first loop with free hydrogen in order to suppress radiolysis, 30-60 ml/kg of hydrogen is present in normal conditions. On being released from the water, it is free to accumulate in micropores of the metals, resulting in hydrogen embrittlement; gas accumulates in stagnant zones, with deterioration in heat transfer in the first loop and corresponding difficulty in the use of the reactor and the whole reactor loop. To determine the amount of free hydrogen and hydrogen dissolved in water in different elements of the first loop, it is necessary to know the limiting solubility of hydrogen in water at different temperatures and pressures, and also to have the corresponding theoretical dependences. The experimental data on the solubility of hydrogen in water are nonsystematic and do not cover the parameter ranges of modern nuclear power plants (P = 10-30 MPa, T = 260-370C). Therefore, the aim of the present work is to establish a well-founded method of calculating the limiting solubility of hydrogen in water and, on this basis, to compile tables of the limiting solubility of hydrogen in water at pressures 0.1-50 MPa and temperatures 0-370C

  19. Regulatory aspects of radiation embrittlement of reactor vessel steels

    International Nuclear Information System (INIS)

    Randall, P.N.

    1979-01-01

    One purpose of this conference, is to re-examine the conventional wisdom about neutron radiation embrittlement and the methods used to counteract embrittlement in reactor vessels. Perhaps, there have been sufficient advances in fracture mechanics, core physics, dosimetry, and physical metallurgy to permit a forward step in the quantitative treatment of the subject. Certainly this would be consistent with the position of the U.S. Nuclear Regulatory Commission (the NRC) in general. ''There has been a continued evolution toward increased specificity.'' This statement appeared in the response prepared by the staff to a request from the Commission to explain how the staff decides to apply a new requirement and to whom, i.e., to back-fit or forward-fit-only or whatever. Pressure for increased specificity, i.e., for fleshing out general design criteria, comes from ''technical surprises'' in the form of operating experiences or from research information, and from attempts to improve our confidence in the safety of plants, especially new plants. Our goal is to have anticipated and evaluated all possible modes of failure with sufficient quantitativeness that the probability of failure can be estimated with some accuracy. Failing this, regulators demand large margins of safety to cover our ignorance

  20. Influence of Microstructure on the Fatigue Crack Growth of A516 in Hydrogen

    Science.gov (United States)

    Wachob, Harry F.; Nelson, Howard G.

    1980-01-01

    Some day hydrogen may be used as a viable energy storage and transport medium within the United States. Hydrogen gas may be used to dilute and extend our present methane supply as a blend or may even be used in its pure elemental form as a primary fuel. Independent of the methods of production, storage, and distribution, the interaction of hydrogen with its containment material will play an integral role in the success of a hydrogen energy program. Presently, the selection of hydrogen containment materials can be made such that the material will remain reasonably free from environmental degradation; however, costly alloying additions are required. Unfortunately, high alloy steels are economically prohibitive when large-scale hydrogen energy storage, transmission, and conversion systems are desired. Therefore, in order to implement such hydrogen energy systems in the future, existing low-cost materials must be improved via mechanical, thermal, or thermo-mechanical processing methods or new low-cost materials which are compatible with hydrogen must be developed. Originally, low strength, low alloy steels at room temperature were thought to be immune to hydrogen gas embrittlement, since no sustained load crack growth is observed. However, results of Clark in HY8O and Nelson in SAE 1020 have shown that the fatigue crack growth rate can be greatly accelerated in the presence of hydrogen gas. In recent results reported by Louthan and Mucci, the smooth bar fatigue life of an A1068 pipeline steel was reduced up to a factor of ten when the tests were performed in a 13.8 MPa hydrogen environment. These results suggest that the selection of material for structures designed to operate in hydrogen under cyclic loads must include consideration of hydrogen/metal fatigue interaction. Although the hydrogen/metal fatigue interaction can be severe in low strength low alloy steels, the degree of degradation may be altered by the underlying ferrous microstructure. At present, no

  1. Fluctuations of electrical and mechanical properties of diamond induced by interstitial hydrogen

    Science.gov (United States)

    Zhuang, Chun-Qiang; Liu, Lei

    2015-01-01

    While experimental evidence demonstrates that the presence of hydrogen (H) impurities in diamond films plays a significant role in determining their physical properties, the small radius of the H atom makes detecting such impurities quite a challenging task. In the present work, first-principles calculations were employed to provide an insight into the effects of the interstitial hydrogen on the electrical and mechanical properties of diamond crystals at the atomic level. The migrated pathways of the interstitial hydrogen are dictated by energetic considerations. Some new electronic states are formed near the Fermi level. The interstitial hydrogen markedly narrows the bandgap of the diamond and weakens the diamond crystal. The obvious decrement of the critical strain clearly implies the presence of an H-induced embrittlement effect. Project supported by the Project of Construction of Innovative Teams and Teacher Career Development for Universities and Colleges under Beijing Municipality, China (Grant No. IDHT20140504), the National Natural Science Foundation of China (Grant No. 51402009), and the Foundation for Young Scholars of Beijing University of Technology, China.

  2. Comparison of the segregation behavior between tempered martensite and tempered bainite in Ni-Cr-Mo high strength low alloy RPV steel

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Gyu; Kim, Min Chul; Kim, Hyung Jun; Lee, Bong Sang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    SA508 Gr.4N Ni-Cr-Mo low alloy steel has an superior fracture toughness and strength, compared to commercial Mn-Mo-Ni low alloy RPV steel SA508 Gr.3. Higher strength and fracture toughness of low alloy steels could be obtained by adding Ni and Cr. So several were performed on researches on SA508 Gr.4N low alloy steel for a RPV application. The operation temperature and term of a reactor pressure vessel is more than 300 .deg. C and over 40 years. Therefore, in order to apply the SA508 Gr.4N low alloy steel for a reactor pressure vessel, the resistance of thermal embrittlement in the high temperature range including temper embrittlement is required. S. Raoul reported that the susceptibility to temper embrittlement was increasing a function of the cooling rate in SA533 steel, which suggests the martensitic microstructures resulting from increased cooling rates are more susceptible to temper embrittlement. However, this result has not been proved yet. So the comparison of temper embrittlement behavior was made between martensitic microstructure and bainitic microstructure with a viewpoint of boundary features in SA508 Gr.4N, which have mixture of tempered bainite/martensite. We have compared temper embrittlement behaviors of SA508 Gr.4N low alloy steel with changing volume fraction of martensite. The mechanical properties of these low alloy steels were evaluated after a long-term heat treatment. Then, the the segregated boundaries were observed and segregation behavior was analyzed by AES. In order to compare the misorientation distributions of model alloys, grain boundary structures were measured with EBSD

  3. Bifurcation behavior during the hydrogen production in two compatible configurations of a novel circulating fluidized bed membrane reformer

    International Nuclear Information System (INIS)

    Chen, Z.; Elnashaie, S.S.

    2004-01-01

    'Full text:' Multiplicity of steady states (Static Bifurcation Behavior, SBB) in a novel Circulating Fluidized Bed (CFB) membrane reformer for the efficient production of hydrogen by steam reforming of heptane (model component of heavy hydrocarbons and renewable bio-oils) is investigated. The present paper highlights the practical implications of this phenomenon on the behavior of this novel reformer with special focusing on hydrogen production. Two configurations are considered and compared. One is with the catalyst regeneration before the gas-solid separation and the other one is with the catalyst regeneration after the gas-solid separation. Multiplicity of the steady states prevails over a number of design and operating parameters with important impact on the reformer performance. The basis of process evaluation is focused on the net hydrogen production. The dependence of the behavior of this autothermal CFB is shown to be quite complex and defy the simple logic of non-autothermal processes. The unit can be a very efficient hydrogen producer provided its bifurcation behavior is well understood and correctly exploited. (author)

  4. Dissolution of alpha-prime precipitates in thermally embrittled S2205-duplex steels during reversion-heat treatment

    Directory of Open Access Journals (Sweden)

    V. Shamanth

    2015-01-01

    Full Text Available Duplex stainless steels offer an attractive combination of strength, corrosion resistance and cost. In annealed condition duplex steels will be in thermodynamically metastable condition but when they are subjected to intermediate homologous temperature of ∼475 °C and below significant embrittlement occurs, which is one of the key material degradation properties that limits its upper service temperature in many applications. Hence the present study is aimed to study the effect of reversion heat treatment and its time on mechanical properties of the thermally embrittled steel. The results showed that 60 min reversion heat treated samples were able to recover the mechanical properties which were very close to annealed properties because when the embrittled samples were reversion heat treated at an elevated temperature of 550 °C which is above the (α + α′ miscibility gap, the ferritic phase was homogenized again. In other words, Fe-rich α and Cr-rich α′ prime precipitates which were formed during ageing become thermodynamically unstable and dissolve inside the ferritic phase.

  5. Accelerated aging embrittlement of cast duplex stainless steel: Activation energy for extrapolation

    International Nuclear Information System (INIS)

    Chung, H.M.; Chopra, O.K.

    1989-05-01

    Cast duplex stainless steels, used extensively in LWR systems for primary pressure boundary components such as primary coolant pipes, valves, and pumps, are susceptible to thermal aging embrittlement at reactor operating or higher temperatures. Since a realistic aging embrittlement for end-of-life or life-extension conditions (i.e., 32--50 yr of aging at 280--320 degree C) cannot be produced, it is customary to simulate the metallurgical structure by accelerated aging at ∼400 degree C. Over the past several years, extensive data on accelerated aging have been reported from a number of laboratories. The most important information from these studies is the activation energy, namely, the temperature dependence of the aging kinetics between 280 and 400 degree C, which is used to extrapolate the aging characteristics to reactor operating conditions. The activation energies (in the range of 18--50 kcal/mole) are, in general, sensitive to material grade, chemical composition, and fabrication process, and a few empirical correlations, obtained as a function of bulk chemical composition, have been reported. In this paper, a mechanistic understanding of the activation energy is described on the basis of the results of microstructural characterization of various heats of CF-3, -8, and -8M grades that were used in aging studies at different laboratories. The primary mechanism of aging embrittlement at temperatures between 280 and 400 degree C is the spinodal decomposition of the ferrite phase, and M 23 C 6 carbide precipitation on the ferrite/austenite boundaries is the secondary mechanism for high-carbon CF-8 grade. 20 refs., 10 figs., 3 tabs

  6. Japan's New Sunshine Project. 1998 annual summary of hydrogen energy R and D; New sunshine keikaku 1998 nendo seika hokokusho gaiyoshu. Suiso energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-04-01

    Summarized herein are the reports on R and D efforts on hydrogen energy, as part of the FY 1998 New Sunshine Project. For production of hydrogen, characteristics related to transport number were investigated for steam electrolysis at high temperature, in which a sintered ceramic powder was used as the electrolyte and the cell was equipped with platinum electrodes. For utilization of hydrogen, energy conversion techniques were investigated using hydrogen occluding alloys for testing methods for alloy microstructures and hydrogenation characteristics, and preparation of and performance testing methods for the cathodes charged with the aid of hydrogen gas. For analysis/assessment for development of hydrogen-related techniques, the investigated items included water electrolysis with solid polymer electrolytes, hydrogen transport techniques using metal hydrides, hydrogen storing techniques using metal hydrides, hydrogen engines, and techniques for preventing hydrogen embrittlement. Analysis/assessment for development of hydrogen turbines was also investigated as one of the 12 R and D themes reported herein. (NEDO)

  7. Standard Test Method for Measurement of Hydrogen Embrittlement Threshold in Steel by the Incremental Step Loading Technique

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This test method establishes a procedure to measure the susceptibility of steel to a time-delayed failure such as that caused by hydrogen. It does so by measuring the threshold for the onset of subcritical crack growth using standard fracture mechanics specimens, irregular-shaped specimens such as notched round bars, or actual product such as fasteners (2) (threaded or unthreaded) springs or components as identified in SAE J78, J81, and J1237. 1.2 This test method is used to evaluate quantitatively: 1.2.1 The relative susceptibility of steels of different composition or a steel with different heat treatments; 1.2.2 The effect of residual hydrogen in the steel as a result of processing, such as melting, thermal mechanical working, surface treatments, coatings, and electroplating; 1.2.3 The effect of hydrogen introduced into the steel caused by external environmental sources of hydrogen, such as fluids and cleaners maintenance chemicals, petrochemical products, and galvanic coupling in an aqueous enviro...

  8. Near-surface modifications for improved crack tolerant behavior of high strength alloys: trends and prospects

    International Nuclear Information System (INIS)

    Hettche, L.R.; Rath, B.B.

    1982-01-01

    The purpose of this chapter is to examine the potential of surface modifications in improving the crack tolerant behavior of high strength alloys. Provides a critique of two of the most promising and versatile techniques: ion implantation and laser beam surface processing. Discusses crack tolerant properties; engineering characterization; publication trends and Department of Defense interests; and emergent surface modification techniques. Finds that the efficiency with which high strength alloys can be incorporated into a structure or component is dependent on the following crack tolerant properties: fracture toughness, fatigue resistance, sustained loading cracking resistance, fretting fatigue resistance, and hydrogen embrittlement resistance. Concludes that ion implantation and laser surface processing coupled with other advanced metallurgical procedures and fracture mechanic analyses provide the means to optimize both the bulk and surface controlled crack tolerant properties

  9. Origin of intergranular embrittlement of Al alloys induced by Na and Ca segregation: Grain boundary weakening

    International Nuclear Information System (INIS)

    Lu Guanghong; Zhang Ying; Deng Shenghua; Wang Tianmin; Kohyama, Masanori; Yamamoto, Ryoichi; Liu Feng; Horikawa, Keitaro; Kanno, Motohiro

    2006-01-01

    Using a first-principles computational tensile test, we show that the ideal tensile strength of an Al grain boundary (GB) is reduced with both Na and Ca GB segregation. We demonstrate that the fracture occurs in the GB interface, dominated by the break of the interfacial bonds. Experimentally, we further show that the presence of Na or Ca impurity, which causes intergranular fracture, reduces the ultimate tensile strength when embrittlement occurs. These results suggest that the Na/Ca-induced intergranular embrittlement of an Al alloy originates mainly from the GB weakening due to the Na/Ca segregation

  10. Thermal desorption spectroscopy for investigating hydrogen isotope behavior in materials

    International Nuclear Information System (INIS)

    Xia Tirui; Yang Hongguang; Zhan Qin; Han Zhibo; He Changshui

    2012-01-01

    The behavior of hydrogen isotope generated in fusion reactor materials is the key issue for safety and economic operation of fusion reactors and becomes an interesting field. In order to investigate the mechanism of hydrogen isotope such as diffusion, release and retention, a high-sensitivity thermal desorption spectroscopy (TDS) in combination with a quadruple mass spectrometer (QMS) was developed. A major technical breakthrough in ultrahigh vacuum (UHV), low hydrogen background, linear heating and sensitivity calibration of TDS system was made. UHV of l × 10 -7 Pa and low hydrogen background of l × 10 -9 Pa were obtained by combining turbo molecule pump and sputter ion pump. Specimens can be linearly heated up to 1173 K at the rate of 1 to 50 K/min under the MCGS PID software. Sensitivity calibration of the TDS system was accomplished using a special deuterium leak in the detector mode of QMS second electron multiplier. The desorption sensitivity coefficient and the minimum detection limit of deuterium desorption rate are 6.22 × l0 24 s -l · and l.24 × l0 -10 s -1 , respectively. The measurement was also routinely conducted on a specimen of standard, deuterium-containing Zr-4 alloy maintained in the laboratory, so as to validate the TDS method. (authors)

  11. Collection of summaries of Sunshine Program achievement reports for fiscal 1981. Hydrogen energy; 1981 nendo sunshine keikaku seika hokokusho gaiyoshu. Suuiso energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-04-01

    The collection includes research on hydrogen production through the electrolysis of water using an acid-type solid polymer electrolyte, electrolysis of water using an alkali-type solid polymer electrolyte, thermochemical method using an iodine-based cycle, thermochemical method using a bromine-based cycle, thermochemical method using a mixed cycle, high-temperature direct thermolysis, and the utilization of solar radiation. Furthermore, it includes a study of materials to build a iodine-based cycle apparatus. In a research on the transportation and storage of hydrogen, technologies of hydrogen transportation and storage using metallic hydrides are taken up. In a research on the application of hydrogen, technologies of hydrogen combustion and hydrogen-fueled engines are discussed. In a research on hydrogen safety measures, technologies for the prevention of hydrogen explosion disasters and of hydrogen embrittlement of materials in use with hydrogen are studied. In addition, a study is conducted of a hydrogen energy total system, and research and development is carried out of a plant that produces hydrogen by means of the high-temperature high-pressure electrolysis of water. (NEDO)

  12. Control of Hydrogen Embrittlement in High Strength Steel Using Special Designed Welding Wire

    Science.gov (United States)

    2016-03-01

    microstructure 4. A low near ambient temperature is reached. • All four factor must be simultaneously present 3 Mitigating HIC and Improving Weld Fatigue...Performance Through Weld Residual Stress Control UNCLASIFIED:DISTRIBUTION A. Approved for public release: distribution unlimited. Click to edit Master...title style 4 • Welding of Armor Steels favors all these conditions for HIC • Hydrogen Present in Sufficient Degree – Derived from moisture in the

  13. Effect of the hydrogen concentration on the ductility of Zry-4; Efecto de la concentracion de hidrogeno sobre la ductilidad de Zry-4

    Energy Technology Data Exchange (ETDEWEB)

    Domizzi, G; Ovejero Garcia, J [Comision Nacional de Energia Atomica, San Martin (Argentina). Unidad de Actividad Materiales

    1997-12-31

    After many years in service, zirconium alloys employed in nuclear reactors may reach high contents of hydride particles, exceeding the hydrogen solid solubility at the service temperature. The brittle character of zirconium hydride promotes the alloy embrittlement. In order to predict the critical hydrogen concentration which causes a ductile-brittle transition in a Zry-4 foil, 0.02mm thick, tensile test specimens were hydride by gaseous charging. To obtain uniform hydride distribution the specimens were electroplated with a film of copper prior to gaseous charge. In absence of oxide film, the foils retained its ductility up to high hydrogen concentration (950 Og/g). The critical hydrogen concentration was attained at 2900-3100 Og/g. (author). 4 refs., 2 figs., 1 tab.

  14. Effect of chemical treatments on hydrogen storage behaviors of multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Lee, Seul-Yi; Park, Soo-Jin

    2010-01-01

    In this work, the hydrogen storage behaviors of chemically treated multi-walled carbon nanotubes (MWNTs) were investigated. The surface properties of the functionalized MWNTs were confirmed by Fourier transfer infrared spectroscopy, X-ray diffraction, the Boehm titration method, and zeta-potential measurements. The hydrogen storage capacity of the MWNTs was evaluated at 298 K and 100 bar. In the experimental results, it was found that the chemical treatments introduced functional groups onto the MWNT surfaces. The amount of hydrogen storage was enhanced, by acidic surface treatment, to 0.42 wt.% in the acidic-treated MWNTs compared with 0.26 wt.% in the as-received MWNTs. Meanwhile, the basic surface treatment actually reduced the hydrogen storage capacity, to 0.24 wt.% in the basic-treated MWNTs sample. Consequently, it could be concluded that hydrogen storage is greatly influenced by the acidic characteristics of MWNT surfaces, resulting in enhanced electron acceptor-donor interaction at interfaces.

  15. A possible explanation for the contradictory results of hydrogen effects on macroscopic deformation

    International Nuclear Information System (INIS)

    Miresmaeili, Reza; Liu, Lijun; Kanayama, Hiroshi

    2012-01-01

    Despite extensive research, there have been many controversies on whether hydrogen hardens or softens iron and steels. Conventional application of hydrogen-enhanced localized plasticity (HELP) theory – including a decrease in the local flow stress in the presence of hydrogen – results in an expansion in the plastic zone ahead of a blunting crack tip rather than the localization of plastic deformation. Therefore, we propose a model to interpret the criterion for the application of local softening concept. According to our physical model, called pinning-softening model, the hydrogen-induced softening merely occurs in the large shear stress regions, e.g. in the vicinity of the crack tip. The remote areas from the stress raisers do not satisfy the critical condition of slip; as such, hydrogen-induced hardening occurs. Our model not only explains the contradictory results of hydrogen effects on the macroscopic deformation, but also gives more insight into the mechanistic understanding of hydrogen embrittlement phenomenon. Highlights: ► A model to interpret the criterion for the application of hydrogen-induced softening. ► Hydrogen-induced softening at the crack tip and hardening at the remote regions. ► Shear stresses and hydrogen contents-important factors on transition from hardening to softening. ► In BCC iron, as the hydrogen concentration increases, the local flow stress decreases. ► In 316L, depending on the hydrogen contents, we observe both softening and hardening.

  16. Structural sensitivity of cyclic crack resistance of rotor steel in gaseous hydrogen

    International Nuclear Information System (INIS)

    Romaniv, O.N.; Nikiforchin, G.N.; Kozak, L.Yu.

    1984-01-01

    Comparative evaluation of cyclic crack resistance of hardened rotor set steel 35KhN3MFA in different cstructural states during tesis in agea geseous hydrogen, in the air and in vacuum, has been mde made. It is shown, that structural sensitivity of near-threshold crack resistance of the studied rotor steel in gaseous hydrogen is to a high extent determined by the closing and morphology of fatigue crack. The decrease in crack closing (CC) observed during tests in hydrogen in low-strenght and crack branching in high-strength steels results in the fact, that in contrast to well-known notions on a higher sensitivity to hydrogen embrittlement of high-strenght alloys the negative effect of hydrogen on the near-threshold cyclic crack resistance is manifested only in steel in low-strenght state. The considered regularities in crack growth in low-alloyed steel under the effect of gaseous hydrogen are just only for high-frequency loading. In all probability in the case of fatigue crack growth (GCG) at low frequencies of loading not only the medium activity, but also the role o, closing and crack geometty in the kinetics of fatigue fracture, the clarifying of which requires further studieds, will change

  17. Current understanding of the effects of enviromental and irradiation variables on RPV embrittlement

    International Nuclear Information System (INIS)

    Odette, G.R.; Lucas, G.E.; Wirth, B.; Liu, C.L.

    1997-01-01

    Radiation enhanced diffusion at RPV operating temperatures around 290 degrees C leads to the formation of various ultrafine scale hardening phases, including copper-rich and copper-catalyzed manganese-nickel rich precipitates. In addition, defect cluster or cluster-solute complexes, manifesting a range of thermal stability, develop under irradiation. These features contribute directly to hardening which in turn is related to embrittlement, manifested as shifts in Charpy V-notch transition temperature. Models based on the thermodynamics, kinetics and micromechanics of the embrittlement processes have been developed; these are broadly consistent with experiment and rationalize the highly synergistic effects of most important irradiation (temperature, flux, fluence) and metallurgical (copper, nickel, manganese, phosphorous and heat treatment) variables on both irradiation hardening and recovery during post-irradiation annealing. A number of open questions remain which can be addressed with a hierarchy of new theoretical and experimental tools

  18. TAREG 2.01/00 Project, ''Validation of neutron embrittlement for VVER 1000 and 440/213 RPVs, with emphasis on integrity assessment''

    International Nuclear Information System (INIS)

    Ahlstrand, R.; Margolin, B.; Kostylev, V.; Yurchenko, E.; Akbashev, I.; Piminov, V.; Nikolaev, Y.; Koshkin, V.; Kharshenko, V.; Chyrko, L.; Bukhanov, V.; Comsa, O.

    2012-01-01

    The irradiation embrittlement and integrity of the VVER reactors has been an important issue in many EC supported TACIS and PHARE projects since 1990. In the EC annual program 2000 two TACIS projects (TAREG 2.01/00 and 2.01/03) were approved on the issue in order to improve the neutron irradiation embrittlement databases, elaborate new trend curves for the embrittlement and to assess the integrity of the RPVs (Reactor Pressure Vessel) by analysing PTS transients (Pressurized Thermal Shock) for some selected Russian and Ukrainian VVER 1000 and 440/213 NPPs. In this paper the TAREG 2.01/00 project is briefly described with some details from the twin project 2.01/03, which served as a materials testing project, providing inputs for the 1st project. As a result of the project new trend curves for neutron irradiation embrittlement were elaborated, based on upgraded and more reliable surveillance results databases. The PTS study shows that the integrity of the selected VVER RPVs can be ensured to the end of RPV design life. (author)

  19. Multiscale Modeling of Grain Boundary Segregation and Embrittlement in Tungsten for Mechanistic Design of Alloys for Coal Fired Plants

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Jian; Tomar, Vikas; Zhou, Naixie; Lee, Hongsuk

    2013-06-30

    Based on a recent discovery of premelting-like grain boundary segregation in refractory metals occurring at high temperatures and/or high alloying levels, this project investigated grain boundary segregation and embrittlement in tungsten (W) based alloys. Specifically, new interfacial thermodynamic models have been developed and quantified to predict high-temperature grain boundary segregation in the W-Ni binary alloy and W-Ni-Fe, W-Ni-Ti, W-Ni-Co, W-Ni-Cr, W-Ni-Zr and W-Ni-Nb ternary alloys. The thermodynamic modeling results have been experimentally validated for selected systems. Furthermore, multiscale modeling has been conducted at continuum, atomistic and quantum-mechanical levels to link grain boundary segregation with embrittlement. In summary, this 3-year project has successfully developed a theoretical framework in combination with a multiscale modeling strategy for predicting grain boundary segregation and embrittlement in W based alloys.

  20. Internal hydrogen-induced subcritical crack growth in austenitic stainless steels

    Science.gov (United States)

    Huang, J. H.; Altstetter, C. J.

    1991-11-01

    The effects of small amounts of dissolved hydrogen on crack propagation were determined for two austenitic stainless steel alloys, AISI 301 and 310S. In order to have a uniform distribution of hydrogen in the alloys, they were cathodically charged at high temperature in a molten salt electrolyte. Sustained load tests were performed on fatigue precracked specimens in air at 0 ‡C, 25 ‡C, and 50 ‡C with hydrogen contents up to 41 wt ppm. The electrical potential drop method with optical calibration was used to continuously monitor the crack position. Log crack velocity vs stress intensity curves had definite thresholds for subcritical crack growth (SCG), but stage II was not always clearly delineated. In the unstable austenitic steel, AISI 301, the threshold stress intensity decreased with increasing hydrogen content or increasing temperature, but beyond about 10 wt ppm, it became insensitive to hydrogen concentration. At higher concentrations, stage II became less distinct. In the stable stainless steel, subcritical crack growth was observed only for a specimen containing 41 wt ppm hydrogen. Fractographic features were correlated with stress intensity, hydrogen content, and temperature. The fracture mode changed with temperature and hydrogen content. For unstable austenitic steel, low temperature and high hydrogen content favored intergranular fracture while microvoid coalescence dominated at a low hydrogen content. The interpretation of these phenomena is based on the tendency for stress-induced phase transformation, the different hydrogen diffusivity and solubility in ferrite and austenite, and outgassing from the crack tip. After comparing the embrittlement due to internal hydrogen with that in external hydrogen, it is concluded that the critical hydrogen distribution for the onset of subcritical crack growth is reached at a location that is very near the crack tip.

  1. Oxidation behavior analysis of cladding during severe accidents with combined codes for Qinshan Phase II Nuclear Power Plant

    International Nuclear Information System (INIS)

    Shi, Xingwei; Cao, Xinrong; Liu, Zhengzhi

    2013-01-01

    Highlights: • A new verified oxidation model of cladding has been added in Severe Accident Program (SAP). • A coupled analysis method utilizing RELAP5 and SAP codes has been developed and applied to analyze a SA caused by LBLOCA. • Analysis of cladding oxidation under a SA for Qinshan Phase II Nuclear Power Plant (QSP-II NPP) has been performed by SAP. • Estimation of the production of hydrogen has been achieved by coupled codes. - Abstract: Core behavior at a high temperature is extremely complicated during transition from Design Basic Accident (DBA) to the severe accident (SA) in Light Water Reactors (LWRs). The progression of core damage is strongly affected by the behavior of fuel cladding (oxidation, embrittlement and burst). A Severe Accident Program (SAP) is developed to simulate the process of fuel cladding oxidation, rupture and relocation of core debris based on the oxidation models of cladding, candling of melted material and mechanical slumping of core components. Relying on the thermal–hydraulic boundary parameters calculated by RELAP5 code, analysis of a SA caused by the large break loss-of-coolant accident (LBLOCA) without mitigating measures for Qinshan Phase II Nuclear Power Plant (QSP-II NPP) was performed by SAP for finding the key sequences of accidents, estimating the amount of hydrogen generation and oxidation behavior of the cladding

  2. Fiscal 1974-1975 Sunshine Project research report. Hydrogen energy research results (National laboratories and institutes); 1974, 1975 nendo suiso energy kenkyu seika hokokushu. Kokuritsu shiken kenkyusho kankei

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-10-01

    This report summarizes the 21 research results on hydrogen energy promoted by 3 national laboratories and 2 national institutes. (1) Tokyo National Industrial Research Institute (TNIRI): Ca-I system, Mn system, S system and hybrid cycles, and water decomposition reaction by CO as thermochemical hydrogen production technique. (2) Osaka National Industrial Research Institute (ONIRI): Fe system, Cu system and ammonia system cycles, and high-temperature high-pressure water electrolysis. (3) Electrotechnical Laboratory: high- temperature direct thermolysis hydrogen production technique. (4) TNIRI: Mg-base and transition metal-base hydrogen solidification technique. (5) ONIRI: Ti-base and rare metal- base hydrogen solidification technique. (6) Mechanical Engineering Laboratory: hydrogen-fuel engines. (7) Electrotechnical Laboratory and ONIRI: fuel cell. (8) TNIRI: disaster preventive technology for gaseous and liquid hydrogen. (9) Chugoku National Industrial Research Institute: preventing materials from embrittlement due to hydrogen. (10) Electrotechnical Laboratory: hydrogen energy system. (NEDO)

  3. Hydrogen permeation modification of 4140 steel by ion nitriding with pulsed plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Bruzzoni, P.; Ortiz, M. [Comision Nacional de Energia Atomica, Buenos Aires (Argentina); Bruehl, S.P.; Gomez, B.J.A.; Feugeas, J.N. [Inst. de Fisica Rosario (UNR-CONICET), Rosario (Argentina); Nosei, L. [Inst. de Mecanica Aplicada y Estructuras (UNR), Rosario (Argentina)

    1998-11-10

    It is widely known that the hydrogen in steel produces embrittlement. This effect may cause the failure of the elements (confining walls, mechanical parts, etc.) whose surfaces are in contact with this gas or with processes in which hydrogen is continuously generated. In this work it is shown that the ion nitriding of the surface of AISI 4140 is a good mechanism to act as a barrier against hydrogen permeation in its bulk. The ion nitriding was performed using a square wave DC glow discharge. The development of a compound layer of iron nitrides was observed as the cause of the hydrogen permeation reduction. For equal duration of treatment, thicker compound layers were developed in higher discharge/post-discharge ratios in the square wave of the applied voltage onto the sample (cathode), with a greater reduction of hydrogen permeation coefficient as a consequence. Nevertheless, the permeation was not reduced to zero in any of the treatment conditions used. The results of the analysis of the permeation tests and the image of the photomicrographs showed that the existence of cracks, fractures, failures, etc. in the compound layer (pre-existing in the AISI 4140 steel) could be the cause of the residual hydrogen permeation. This can be attributed to the movement of the hydrogen through these defects diffusing through the original {alpha}-Fe phase of the non-treated steel. (orig.) 11 refs.

  4. Results from Project on Enhancement of Aging Management and Maintenance in Nuclear Power Plants - Irradiation Embrittlement of RPV Steels -

    International Nuclear Information System (INIS)

    Abe, Hiroaki; Onizawa, Kunio; Katsuyama, Jinya; Murakami, Kenta; Iwai, Takeo; Iwata, Tadao; Katano, Yoshio; Sekimura, Naoto; Nagai, Yasuyoshi; Toyama, Takeshi; Tamura, Satoshi

    2012-01-01

    As one of the NISA Project on Enhancement of Aging Management and Maintenance in Nuclear Power Plants, we have performed research on the irradiation embrittlement of reactor pressure vessel (RPV) steels, especially focusing on irradiation embrittlement on heat affected zone (HAZ) and on applications of ion beams to deduce fundamental insights irradiation-induced embrittlement. The results obtained from the project are summarized as follows. In order to obtain the technical basis to judge the necessity of surveillance specimens from HAZ, the neutron irradiation program was performed at JRR-3, JAEA. The samples were carefully designed based on the insights from finite element analysis, metallography, 3D atom probe and positron annihilation methods, and were fabricated so as to simulate both heat treatment history and microstructure for typical HAZ from as-fabricated RPV steels which also have variation of impurity levels. The fracture toughness of the unirradiated HAZ specimens was equivalent to or better than that of base metals. Irradiation embrittlement and hardening were roughly identical to those of base metals, while some of the fine-grained HAZ microstructure was susceptible to it. The probabilistic fracture mechanics analysis was applied to the structural integrity assessment taking into account the heterogeneous microstructure as well as susceptibility for irradiation embrittlement of each HAZ microstructure under the variation of welding parameter and PTS condition. It was shown that crack propagation at the fine-grained HAZ, but the discontinuous distribution of the microstructure retards the further propagation. For the precise correlation of irradiation embrittlement of RPV steels for the long term operations, accumulations of high-dose data are required. Ion beam irradiation is one of the solutions for the regime and for mechanism-based descriptions. Another interest of ours was to describe irradiation hardening and embrittlement in terms of

  5. Practical illustration of the traditional vers. alternative LOCA embrittlement criteria

    International Nuclear Information System (INIS)

    Vrtilkova, V.; Novotny, L.; Hamouz, V.; Doucha, R.; Tinka, I.; Macek, J.; Lahovsky, F.

    2005-01-01

    Evaluation of LOCA time behaviour is usually based on traditional embrittlement criterion, represented by the equivalent cladding reacted (ECR) limit 17 % (18 %) at the peak cladding temperature below 1204 0 C (1200 0 C). From different existing correlations for evaluation the ECR, the correlations of Baker-Just, Cathcart and VNIINM (Bibilashvili) are discussed here. Results, obtained by these correlations, are illustrated for typical and atypical LOCA courses analysed for the WWER 440 plant. An approach to assess these correlations from the viewpoint of violation of the observed criterion is presented. This approach is based on determination of the temperature vers. time of exposition, when the criterion limit is reached. Reasons leading to necessity of alternative criterion proposal are summarised. This criterion for LOCA events evaluation, including corresponding correlation, is proposed on the basis of the long-term experimental research of cladding materials at UJP Praha. The computational results, obtained according to this alternative criterion, are illustrated for the same courses of LOCA events as for traditional criteria and traditional correlations. Proposed criterion is also confronted with the other discussed criteria in accordance with mentioned approach presented in this paper. The characteristic experimental results and key findings are summarised. They substantiate and support the proposed alternative criterion. An advantage of the criterion is its independence on ECR, on hydrogen and oxygen content and on oxidation history, and its applicability to current Zr-based alloy cladding materials as well. This applicability is kept while preserving the simplicity of the criterion using. (author)

  6. Collection of outlines of achievement reports for fiscal 1976 on Sunshine Program. Hydrogen energy; 1976 nendo sunshine keikakaku seika hokokusho gaiyoshu. Suiso energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-04-01

    Twenty studies are outlined, which are: Hydrogen production technology using electrolysis (Osaka National Research Institute); Hydrogen production technology using high-temperature/high-pressure electrolysis (Showa Denko K.K., and 1 other); Hydrogen production technologies using thermochemical method (4 articles - Osaka National Research Institute; Tokyo National Research Institute; Hitachi, Ltd.; Mitsubishi Heavy Industries, Ltd.); Water decomposition by thermochemical and photochemical hybrid cycle (Yokohama National University); Hydrogen production technology using direct thermolysis (Electrotechnical Laboratory); Hydrogen solidification technology (2 articles - Osaka National Research Institute; Tokyo National Research Institute); Combustion technology (Osaka National Research Institute); Materials for fuel cells (Osaka National Research Institute); Manufacture of fuel cells (Electrotechnical Laboratory); Systematization of fuel cells (Electrotechnical Laboratory); Hydrogen-fueled engine (Mechanical Engineering Laboratory); Disaster prevention technologies for gaseous and liquid hydrogen, etc. (Tokyo National Research Institute); Prevention of embrittlement of materials used with hydrogen (Chugoku National Research Institute); Refining, transportation, and storage systems, and safety techniques for hydrogen (Industrial Research Institute); Hydrogen energy total system (Electrotechnical Laboratory); Comprehensive examination of hydrogen-using subsystems and peripheral technologies (Electrochemical Society of Japan, and 6 others). (NEDO)

  7. Revisiting the Hydrogen Storage Behavior of the Na-O-H System

    Directory of Open Access Journals (Sweden)

    Jianfeng Mao

    2015-04-01

    Full Text Available Solid-state reactions between sodium hydride and sodium hydroxide are unusual among hydride-hydroxide systems since hydrogen can be stored reversibly. In order to understand the relationship between hydrogen uptake/release properties and phase/structure evolution, the dehydrogenation and hydrogenation behavior of the Na-O-H system has been investigated in detail both ex- and in-situ. Simultaneous thermogravimetric-differential thermal analysis coupled to mass spectrometry (TG-DTA-MS experiments of NaH-NaOH composites reveal two principal features: Firstly, an H2 desorption event occurring between 240 and 380 °C and secondly an additional endothermic process at around 170 °C with no associated weight change. In-situ high-resolution synchrotron powder X-ray diffraction showed that NaOH appears to form a solid solution with NaH yielding a new cubic complex hydride phase below 200 °C. The Na-H-OH phase persists up to the maximum temperature of the in-situ diffraction experiment shortly before dehydrogenation occurs. The present work suggests that not only is the inter-phase synergic interaction of protic hydrogen (in NaOH and hydridic hydrogen (in NaH important in the dehydrogenation mechanism, but that also an intra-phase Hδ+… Hδ– interaction may be a crucial step in the desorption process.

  8. A novel self-embrittling strippable coating for radioactive decontamination based on silicone modified styrene-acrylic emulsion

    Science.gov (United States)

    Wang, Jing; Wang, Jianhui; Zheng, Li; Li, Jian; Cui, Can; Lv, Linmei

    2017-03-01

    Silicone modified styrene-acrylic emulsion and butyl acrylate were used as a main film-forming agent and an additive respectively to synthesize a self-embrittling strippable coating. The doping mass-ratio of butyl acrylate was adjusted at 0, 5%, 10%, 15%, 20%, and the results indicated the optimized doping ratio was 10%. Ca(OH)2 was used to promote the coating film self-embrittling at a moderate doping mass-ratio of 20%. The synthesized coating’s coefficients of α and β decontamination on concrete, marble, glass and stainless steel surfaces were both greater than 85%, which indicated the synthesized coating is a promising cleaner for radioactive decontamination.

  9. Calculational results for radiation embrittlement of WWER pressure vessel at the Kozloduy NPP

    Energy Technology Data Exchange (ETDEWEB)

    Apostolov, T; Ilieva, K; Petrova, T [Bylgarska Akademiya na Naukite, Sofia (Bulgaria). Inst. za Yadrena Izsledvaniya i Yadrena Energetika

    1996-12-31

    Determination of radiation impact on metal state in the case of WWER-440/230 is made only by calculation methods since a special sample-witness (SW) incorporation had not been implemented. In WWER-1000 reactors such SW are foreseen but their spots are high above the active core. This is why in both reactors the appliance of a calculational procedure for radiation embrittlement determination is compulsory. The authors propose such a procedure accounting for the change in critical temperature of neutron brittleness by the neutron fluence. The neutron fluence and the shift of critical embrittlement temperature have been calculated for the maximum overloaded location and for the weld metal of the Kozloduy-5 and Kozloduy-6 reactors (WWER-1000). The shift of critical temperature in weld 4 of the Units 1-4 (WWER-440) is plotted versus work cycles and compared to experimental values. 4 figs., 5 tabs.

  10. Fabrication of poly(methyl methacrylate)-block-poly(methacrylic acid) diblock copolymer as a self-embrittling strippable coating for radioactive decontamination

    International Nuclear Information System (INIS)

    Liu Renlong; Zhang Huiyan; Li Yintao; Zhou Yuanlin; Zhang Quanping; Zheng Jian; Wang Shanqiang

    2016-01-01

    The poly(methyl methacrylate)-block-poly(methacrylic acid) diblock copolymer with different monomer compositions was synthesized via reversible addition-fragmentation chain transfer polymerization. Meanwhile, a novel self-embrittling strippable coating was prepared using the diblock copolymers, which is proposed to be used as radioactive decontamination agents without manual operation. Furthermore, the decontamination efficiencies of self-embrittling strippable coatings for radioactive contamination on glass, marble, and stainless steel surfaces were studied. (author)

  11. Assessment of predictive models for the failure of titanium and ferrous alloys due to hydrogen effects. Report for the period of June 16 to September 15, 1981

    International Nuclear Information System (INIS)

    Archbold, T.F.; Bower, R.B.; Polonis, D.H.

    1982-04-01

    The 1977 version of the Simpson-Puls-Dutton model appears to be the most amenable with respect to utilizing known or readily estimated quantities. The Pardee-Paton model requires extensive calculations involving estimated quantities. Recent observations by Koike and Suzuki on vanadium support the general assumption that crack growth in hydride forming metals is determined by the rate of hydride formation, and their hydrogen atmosphere-displacive transformation model is of potential interest in explaining hydrogen embrittlement in ferrous alloys as well as hydride formers. The discontinuous nature of cracking due to hydrogen embrittlement appears to depend very strongly on localized stress intensities, thereby pointing to the role of microstructure in influencing crack initiation, fracture mode and crack path. The initiation of hydrogen induced failures over relatively short periods of time can be characterized with fair reliability using measurements of the threshold stress intensity. The experimental conditions for determining K/sub Th/ and ΔK/sub Th/ are designed to ensure plane strain conditions in most cases. Plane strain test conditions may be viewed as a conservative basis for predicting delayed failure. The physical configuration of nuclear waste canisters may involve elastic/plastic conditions rather than a state of plane strain, especially with thin-walled vessels. Under these conditions, alternative predictive tests may be considered, including COD and R-curve methods. The double cantilever beam technique employed by Boyer and Spurr on titanium alloys offers advantages for examining hydrogen induced delayed failure over long periods of time. 88 references

  12. Collection of summaries of Sunshine Program achievement reports for fiscal 1982. Hydrogen energy; 1982 nendo sunshine keikaku seika hokokusho gaiyoshu. Suiso energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-04-01

    The collection includes achievements of research relating to hydrogen energy. In the research on hydrogen production by electrolysis, electrolysis of water using an acid-type solid polymer electrolyte and electrolysis of water using an alkali-type solid polymer electrolyte are taken up. In the research on hydrogen production by thermochemical methods, studies are conducted on the iodine-based cycle, the bromine-based cycle, materials for devices for the iodine-based cycle, and the mixed cycle. Hydrogen production using high-temperature direct thermolysis and solar radiation is also studied. In the research on hydrogen transportation and storage, use of metallic hydrides in these processes are taken up. In the research on the application of hydrogen, techniques of hydrogen combustion and hydrogen-fueled engines are discussed. In the research on hydrogen safety measures, technologies for the prevention of hydrogen explosions and of hydrogen embrittlement of materials in use with hydrogen are studied. In addition, a study is conducted of a hydrogen energy total system, and research and development is carried out for a plant that produces hydrogen by high-temperature high-pressure electrolysis of water. (NEDO)

  13. Effects of temperature and strain rate on the tensile behaviors of SIMP steel in static lead bismuth eutectic

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jian, E-mail: jliu12b@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 (China); University of Chinese Academy of Sciences, Beijing, 100049 (China); Yan, Wei [Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 (China); Sha, Wei [School of Planning, Architecture and Civil Engineering, Queen' s University Belfast, Belfast, BT9 5AG (United Kingdom); Wang, Wei; Shan, Yiyin [Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 (China); Yang, Ke, E-mail: kyang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 (China)

    2016-05-15

    In order to assess the susceptibility of candidate structural materials to liquid metal embrittlement, this work investigated the tensile behaviors of ferritic-martensitic steel in static lead bismuth eutectic (LBE). The tensile tests were carried out in static lead bismuth eutectic under different temperatures and strain rates. Pronounced liquid metal embrittlement phenomenon is observed between 200 °C and 450 °C. Total elongation is reduced greatly due to the liquid metal embrittlement in LBE environment. The range of ductility trough is larger under slow strain rate tensile (SSRT) test. - Highlights: • The tensile behaviors of SIMP steel in LBE are investigated for the first time. • The SIMP is susceptible to LME at different strain rates and temperatures. • The total elongation is reduced greatly. • The ductility trough is wider under SSRT. • The tensile specimens rupture in brittle manner without obvious necking.

  14. Effects of temperature and strain rate on the tensile behaviors of SIMP steel in static lead bismuth eutectic

    International Nuclear Information System (INIS)

    Liu, Jian; Yan, Wei; Sha, Wei; Wang, Wei; Shan, Yiyin; Yang, Ke

    2016-01-01

    In order to assess the susceptibility of candidate structural materials to liquid metal embrittlement, this work investigated the tensile behaviors of ferritic-martensitic steel in static lead bismuth eutectic (LBE). The tensile tests were carried out in static lead bismuth eutectic under different temperatures and strain rates. Pronounced liquid metal embrittlement phenomenon is observed between 200 °C and 450 °C. Total elongation is reduced greatly due to the liquid metal embrittlement in LBE environment. The range of ductility trough is larger under slow strain rate tensile (SSRT) test. - Highlights: • The tensile behaviors of SIMP steel in LBE are investigated for the first time. • The SIMP is susceptible to LME at different strain rates and temperatures. • The total elongation is reduced greatly. • The ductility trough is wider under SSRT. • The tensile specimens rupture in brittle manner without obvious necking.

  15. Further application of the cleavage fracture stress model for estimating the T{sub 0} of highly embrittled ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Sreenivasan, P.R.

    2016-02-15

    The semi-empirical cleavage fracture stress model (CFS), based on the microscopic cleavage fracture stress, s{sub f}, for estimating the ASTM E1921 reference temperature (T{sub 0}) of ferritic steels from instrumented impact testing of unprecracked Charpy V-notch specimens is further confirmed by test results for additional steels, including steels highly embrittled by thermal aging or irradiation. In addition to the ferrite-pearlite, bainitic or tempered martensitic steels (which was examined earlier), acicular or polygonal ferrite, precipitation-strengthened or additional simulated heat affected zone steels are also evaluated. The upper limit for the applicability of the present CFS model seems to be T{sub 41J} ∝160 to 170 C or T{sub 0} or T{sub Qcfs} (T{sub 0} estimate from the present CFS model) ∝100 to 120 C. This is not a clear-cut boundary, but indicative of an area of caution where generation and evaluation of further data are required. However, the present work demonstrates the applicability of the present CFS model even to substantially embrittled steels. The earlier doubts expressed about T{sub Qcfs} becoming unduly non-conservative for highly embrittled steels has not been fully substantiated and partly arises from the necessity of modifications in the T{sub 0} evaluation itself at high degrees of embrittlement suggested in the literature.

  16. Influence of TiC precipitation in austenitic stainless steel on strength, ductility and helium embrittlement

    International Nuclear Information System (INIS)

    Kesternich, W.; Matta, M.K.; Rothaut, J.

    1984-01-01

    Creep experiments were performed on 1.4970 (German DIN standard) and 316 (AISI standard) type austenitic steels after various thermomechanical pretreatments and after α-implantation. The microstructure introduced by the pretreatments was characterized by transmission electron microscopy and the behaviour of strength and ductility is correlated to the dislocation and precipitate distributions. He embrittlement can be suppressed in these simulation experiments when dispersive TiC precipitate distributions are produced by the proper pretreatments or are allowed to form during creep testing. It is shown that adequate pretreatment results in a significantly superior behaviour of the 1.4970 steel as compared to the 316 type steel in all three investigated properties, i.e. strength, ductility and resistance to He embrittlement. (orig.)

  17. Meso-microstructural computational simulation of the hydrogen permeation test to calculate intergranular, grain boundary and effective diffusivities

    Energy Technology Data Exchange (ETDEWEB)

    Jothi, S., E-mail: s.jothi@swansea.ac.uk [College of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP (United Kingdom); Winzer, N. [Fraunhofer Institute for Mechanics of Materials IWM, Wöhlerstraße 11, 79108 Freiburg (Germany); Croft, T.N.; Brown, S.G.R. [College of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP (United Kingdom)

    2015-10-05

    Highlights: • Characterized polycrystalline nickel microstructure using EBSD analysis. • Development meso-microstructural model based on real microstructure. • Calculated effective diffusivity using experimental electrochemical permeation test. • Calculated intergranular diffusivity of hydrogen using computational FE simulation. • Validated the calculated computation simulation results with experimental results. - Abstract: Hydrogen induced intergranular embrittlement has been identified as a cause of failure of aerospace components such as combustion chambers made from electrodeposited polycrystalline nickel. Accurate computational analysis of this process requires knowledge of the differential in hydrogen transport in the intergranular and intragranular regions. The effective diffusion coefficient of hydrogen may be measured experimentally, though experimental measurement of the intergranular grain boundary diffusion coefficient of hydrogen requires significant effort. Therefore an approach to calculate the intergranular GB hydrogen diffusivity using finite element analysis was developed. The effective diffusivity of hydrogen in polycrystalline nickel was measured using electrochemical permeation tests. Data from electron backscatter diffraction measurements were used to construct microstructural representative volume elements including details of grain size and shape and volume fraction of grains and grain boundaries. A Python optimization code has been developed for the ABAQUS environment to calculate the unknown grain boundary diffusivity.

  18. MELCOR simulation of steam condensation effect on hydrogen behavior in THAI HM-2 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seongnyeon; Lee, Jung-Jae; Cho, Yong-Jin [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Kim, Sung Joong [Hanyang University, Seoul (Korea, Republic of)

    2015-10-15

    In this study, MELCOR simulation was carried out for THAI HM-2 experiment of OECD. As a results, stratification of hydrogen cloud was reasonably captured in MELCOR simulation. Furthermore, the pressure from simulation results in cases where mass transfer coefficient of MELCOR condensation model was modified was good agreement with the experimental results. Containment Filtered Ventilation System (CFVS) has been introduced as facility to prevent containment failure during severe accident. However, possibility of hydrogen risk has been issued due to inflow of hydrogen, condensation and removal of steam and complicated inner structure in CFVS. Preferentially benchmark work for THAI HM-2 experiment of OECD was decided to validate the methodology before detailed assessment of hydrogen risk in CFVS. The objectives of THAI HM-2 experiment were evaluation of hydrogen behavior, verification of numerical analysis tools and so on. In this paper, therefore, MELCOR simulation was carried out in comparison with the experiment results. Additionally, steam condensation effect was considered for detailed simulation. Hydrogen concentration from MELCOR results was underestimated in comparison to the experimental results.

  19. Consequence evaluation of radiation embrittlement of Trojan reactor pressure vessel supports

    International Nuclear Information System (INIS)

    Lu, S.C.; Sommer, S.C.; Johnson, G.L.; Lambert, H.E.

    1990-10-01

    This report describes a consequence evaluation to address safety concerns raised by the radiation embrittlement of the reactor pressure vessel (RPV) supports for the Trojan nuclear power plant. The study comprises a structural evaluation and an effects evaluation and assumes that all four reactor vessel supports have completely lost the load carrying capability. By demonstrating that the ASME code requirements governing Level D service limits are satisfied, the structural evaluation concludes that the Trojan reactor coolant loop (RCL) piping is capable of transferring loads to the steam generator (SG) supports and the reactor coolant pump (RCP) supports. A subsequent design margins to accommodate additional loads transferred to them through the RCL piping. The effects evaluation, employing a systems analysis approach, investigates initiating events and the reliability of the engineered safeguard systems as the RPV is subject to movements caused by the RPV support failure. The evaluation identifies a number of areas of additional safety concerns, but further investigation of the above safety concerns, however, concludes that a hypothetical failure of the Trojan RPV supports due to radiation embrittlement will not result in consequences of significant safety concerns

  20. Assessment of the French and US embrittlement trend curves applied to RPV materials irradiated in the BR2 materials test reactor

    International Nuclear Information System (INIS)

    Chaouadi, R.; Gerard, R.; Boagaerts, A.S.

    2011-01-01

    The irradiation embrittlement of reactor pressure vessels (RPVs) in monitored through the surveillance programs associated with predictive formulas, the so-called embrittlement trend curves. These formulas are generally empirically derived and contain the major embrittlement-inducing elements such as copper, nickel and phosphorus. There are a number of such trend curves used in various regulatory guides used in the US, France, Germany, Russia and Japan. These trend curves are often supported by surveillance data and regularly assessed in view of updated surveillance databases. With the recent worldwide move towards life extension of existing reactors above their initially-scheduled lifetime of 40 years, adequate and accurate modeling of irradiation embrittlement becomes a concern for long term operation. The aim of this work is to assess the performance of the embrittlement trend curves used in a regulatory perspective. The work presented here is limited to US and French trend curves because the reactor pressure vessels of the Belgian nuclear power plants are either Westinghouse or Framatome design. The chemical composition of the Belgian RPVs being very close to the one of the French 900 MW units, the French trend curve is used except for the Doel 1-2 units for which these curves are not applicable due to the higher copper content of the welds. In this case, the U.S. trend curves are used. The aim of this work is to evaluate the performance of the embrittlement trend curves used in a regulatory perspective to represent the experimental data obtained in the BR2 reactor. In particular, the French (FIM, FIS) and the US (Reg. Guide 1.99 Rev. 2, ASTM E900-02, EWO and EONY) formulas are of prime interest. The results obtained clearly show that the French trend curves tend to over-estimate the actual irradiation hardening while the US curves under-estimate it. Within the long term operation perspective, both over- and under-estimating are undesirable and therefore the

  1. The influence of composition on environmental embrittlement of iron aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Alven, D.A.; Stoloff, N.S. [Rensselaer Polytechnic Institute, Troy, NY (United States)

    1996-08-01

    The effects of water vapor in air and hydrogen gas on the tensile and fatigue crack growth behavior of Fe{sub 3}Al alloys has been studied at room temperature. Fe-28a%Al-5a%Cr alloys to which either Zr alone or Zr and C have been added have been tested in controlled humidity air environments as well as in 1.3 atm hydrogen or oxygen gas and in vacuum. As with other Fe{sub 3}Al alloys, oxygen produces the lowest crack growth rates as well as the highest critical stress intensities and tensile ductility in each of the alloys tested. However, while Zr lowers crack growth rates in the Paris regime, there is no apparent beneficial effect on crack growth thresholds. Hydrogen gas also produces unusual results. While crack growth rates are very high in hydrogen in the Paris regime for all alloys, hydrogen only lowers the crack growth threshold relative to air in ternary Fe-28Al-5Cr; it does not lower the threshold in the Zr-containing alloys. Fracture path tends to be transgranular in all alloys and environments. The results will be discussed in the light of possible effects of Zr on oxide formation.

  2. Evaluation of liquid metal embrittlement of SS304 by Cd and Cd-Al solutions

    International Nuclear Information System (INIS)

    Thomas, J.K.; Iyer, N.C.; Begley, J.A.

    1992-01-01

    The susceptibility of stainless steel 304 to liquid metal embrittlement (LME) by cadmium (Cd) and cadmium-aluminum (Cd-Al) solutions was examined as part of a failure evaluation for SS304-clad cadmium reactor safety rods which had been exposed to elevated temperatures. The active, or cadmium (Cd) bearing, portion of the safety rod consists of a 0.756 in. diameter aluminum allow (Al-6061) core, a 0.05 in. thick Cd layer, and a 0.042 in. thick Type 304 stainless steel cladding. The safety rod thermal tests were conducted as part of a program to define the response of reactor core components to a hypothetical LOCA for the Savannah River Site (SRS) production reactor. LME was considered as a potential failure mechanism based on the nature of the failure and susceptibility of austenitic stainless steels to embrittlement by other liquid metals

  3. Stress corrosion cracking of titanium alloys

    Science.gov (United States)

    May, R. C.; Beck, F. H.; Fontana, M. G.

    1971-01-01

    Experiments were conducted to study (1) the basic electrochemical behavior of titanium in acid chloride solutions and (2) the response of the metal to dynamic straining in the same evironment. The aim of this group of experiments was to simulate, as nearly as possible, the actual conditions which exist at the tip of a crack. One of the foremost theories proposed to explain the propagation of stress corrosion cracks is a hydrogen embrittlement theory involving the precipitation of embrittling titanium hydrides inside the metal near the crack tip. An initial survey of the basic electrochemical literature indicated that surface hydrides play a critical role in the electrochemistry of titanium in acid solutions. A comprehensive analysis of the effect of surface films, particularly hydrides, on the electrochemical behavior of titanium in these solution is presented.

  4. Liquid Zn assisted embrittlement of advanced high strength steels with different microstructures

    Science.gov (United States)

    Jung, Geunsu; Woo, In Soo; Suh, Dong Woo; Kim, Sung-Joon

    2016-03-01

    In the present study, liquid metal embrittlement (LME) phenomenon during high temperature deformation was investigated for 3 grades of Zn-coated high strength automotive steel sheets consisting of different phases. Hot tensile tests were conducted for each alloy to compare their LME sensitivities at temperature ranges between 600 and 900 °C with different strain rates. The results suggest that Zn embrittles all the Fe-alloy system regardless of constituent phases of the steel. As hot tensile temperature and strain rate increase, LME sensitivity increases in every alloy. Furthermore, it is observed that the critical strain, which is experimentally thought to be 0.4% of strain at temperatures over 700 °C, is needed for LME to occur. It is observed via TEM work that Zn diffuses along grain boundaries of the substrate alloy when the specimen is strained at high temperatures. When the specimen is exposed to the strain more than 0.4% at over 700 °C, the segregation level of Zn at grain boundaries seems to become critical, leading to occurrence of LME cracks.

  5. The irradiation embrittlement of two pressure vessel steels -Contribution of local approach

    Energy Technology Data Exchange (ETDEWEB)

    Soulat, P; Marini, B [CEA Centre d` Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). Service de Recherches Metallurgiques Appliquees; Miannay, D; Horowitz, H [CEA Centre d` Etudes de Fontenay-aux-Roses, 92 (France). Inst. de Protection et de Surete Nucleaire; Schill, R [CEA Centre d` Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. de Mecanique et de Technologie

    1994-12-31

    Within the IAEA Coordinated Research Programme on ``Optimizing the Reactor Pressure Vessel Surveillance Programmes and their Analyses``, the French participation has been focused on the contribution of the local approach to the determination of the sensitivity to radiation embrittlement of two different pressure vessel steels: a low sensitive French forging steel (FFA) and a high sensitive ``monitor`` Japanese plate steel (JRQ) were irradiated to a fluence of 3.10{sup 19} n/cm{sup 2} at 290 C. The irradiation embrittlement of the two steels measured by the shift of Charpy V transition curves is in good agreement with the estimated shifts given by theoretical prediction. The fracture toughness properties were examined at low temperature with brittle fracture, and at service temperature (290 C), with ductile tearing. The values of K{sub 1C} or K{sub JC} for the brittle fracture and J{sub 1C} for the ductile fracture are compared to predictions established using the local approach of cleavage fracture (Weibull analysis) and the critical rate of void growth respectively. 8 refs., 14 figs., 10 tabs.

  6. Use of nuclear reactions and ion channeling techniques for depth profiling hydrogen isotopes in solids

    International Nuclear Information System (INIS)

    Appleton, B.R.

    1979-01-01

    Hydrogen has always played a preeminent role in materials science because it so readily alters the physical and chemical properties of materials. However, it is often difficult to determine its role because it is one of the most elusive constituents to detect. More recently hydrogen detection has become necessary in numerous energy-related fields. In fusion energy one must understand plasma particle (hydrogen isotope) recycling, trapping and reemission, as well as the effects of hydrogen on the materials properties of first wall structures in plasma devices (i.e., hydrogen embrittlement, sputtering, blistering, etc.). In geology the presence of hydrogen in various forms alters the mechanical properties of many minerals in the earth's crust and enters directly into studies of tectonic processes. Evaluation of hydrogen in moon rocks increases our understanding of solar wind activity. In solar energy, hydrogen plays an important role in amorphous silicon used in fabricating solar cells. Detection of hydrogen is clearly important in the fossil fuel area. Many of the conventional elemental analysis techniques are not directly applicable to hydrogen determination and others can only detect hydrogen when it is in combination with other elements (i.e., H 2 O, OH, etc.). In this paper we discuss the use of ion beam techniques for obtaining quantitative depth information on hydrogen in materials and discuss the application of these techniques to several problems important in some of the areas mentioned

  7. Hydrogen storage behaviors of Ni-doped graphene Oxide/MIL-101 hybrid composites.

    Science.gov (United States)

    Lee, Seul-Yi; Park, Soo-Jin

    2013-01-01

    In this work, Ni-doped graphene oxide/MIL-101 hybrid composites (Ni--GO/MIL) were prepared to investigate their hydrogen storage behaviors. Ni--GO/MIL was synthesized by adding Ni--GO in situ during the synthesis of MIL-101 using a hydrothermal process, which was conducted by conventional convection heating with Cr(III) ion as a metal center and telephthalic acid as organic ligands. The crystalline structures and morphologies were measured by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The specific surface area and micropore volume were investigated by N2/77 K adsorption isotherms using the Brunauer-Emmett-Teller (BET) method and Dubinin-Radushkevic (D-R) equation, respectively. The hydrogen storage capacity was investigated by BEL-HP at 77 K and 1 bar. The obtained results show that Ni--GO/MIL presents new directions for achieving novel hybrid materials with higher hydrogen storage capacity.

  8. Effect of ternary solute interaction on interfacial segregation and grain boundary embrittlement

    Czech Academy of Sciences Publication Activity Database

    Lejček, Pavel

    2013-01-01

    Roč. 48, č. 14 (2013), 4965-4972 ISSN 0022-2461 R&D Projects: GA MŠk(CZ) LM2011026; GA ČR GAP108/12/0144 Institutional research plan: CEZ:AV0Z10100520 Keywords : interfacial segregation * intergranular embrittlement * solute interaction * modeling * thermodynamics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.305, year: 2013

  9. Effects of molybdenum dithiocarbamate and zinc dialkyl dithiophosphate additives on tribological behaviors of hydrogenated diamond-like carbon coatings

    International Nuclear Information System (INIS)

    Yue, Wen; Liu, Chunyue; Fu, Zhiqiang; Wang, Chengbiao; Huang, Haipeng; Liu, Jiajun

    2014-01-01

    Highlights: • For MoDTC, DLC coating showed better anti-friction and worse anti-wear behaviors. • The improved anti-friction property was due to graphitization and MoS 2 . • Formation of MoO x resulted in a high wear volume. • For ZDDP, DLC coating showed the best anti-wear and the worst anti-friction behaviors. • Absence of friction reducing product and graphitized layer resulted in a higher friction. - Abstract: The tribological behaviors of hydrogenated diamond-like carbon (DLC) coatings under varied load conditions lubricated with polyalpha olefin (PAO), molybdenum dithiocarbamate (MoDTC) and zinc dialkyl dithiophosphate (ZDDP) additives were investigated in this paper. Hydrogenated DLC coatings were synthesized through the decomposition of acetylene by the ion source. The tribological performances were measured on a SRV tribometer. The morphologies and chemical structures of the DLC coatings were investigated by the scanning electron microscope (SEM), Raman spectrometer (Raman) and X-ray photoelectron spectroscope (XPS). It was shown that the low friction and high wear were achieved on the hydrogenated DLC coating under MoDTC lubrication, while low wear was found on the hydrogenated DLC coating lubricated by ZDDP. The primary reason was attributed to different tribofilms formed on the contact area and the formation of graphitic layer. Both factors working together leaded to quite different tribological behaviors

  10. Conversion of a gasoline internal combustion engine to operate on hydrogen fuel

    International Nuclear Information System (INIS)

    Bates, M.; Dincer, I.

    2009-01-01

    This study deals with the conversion of a gasoline spark ignition internal combustion engine to operate on hydrogen fuel while producing similar power, economy and reliability as gasoline. The conversion engine will have the fuel system redesigned and ignition and fuel timing changed. Engine construction material is of great importance due to the low ignition energy of hydrogen, making aluminum a desirable material in the intake manifold and combustion chamber. The engine selected to convert is a 3400 SFI dual over head cam General Motors engine. Hydrogen reacts with metals causing hydrogen embrittlement which leads to failure due to cracking. There are standards published by American Society of Mechanical Engineers (ASME) to avoid such a problem. Tuning of the hydrogen engine proved to be challenging due to the basic tuning tools of a gasoline engine such as a wide band oxygen sensor that could not measure the 34:1 fuel air mixture needed for the hydrogen engine. Once the conversion was complete the engine was tested on a chassis dynamometer to compare the hydrogen horsepower and torque produced to that of a gasoline engine. Results showed that the engine is not operating correctly. The engine is not getting the proper amount of fuel needed for complete combustion when operated in a loaded state over 3000 rpm. The problem was found to be the use of the stock injector driver that could not deliver enough power for the proper operation of the larger CM4980 injectors. (author)

  11. Hydrogen trapping energy levels and hydrogen diffusion at high and low strain rates (~10{sup 5} s{sup −1} and 10{sup −7} s{sup −1}) in lean duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Silverstein, R., E-mail: barrav@post.bgu.ac.il; Eliezer, D.

    2016-09-30

    Duplex stainless steels (DSS) alloys are high strength steels combined with ductility and excellent resistance to stress corrosion cracking, which makes them attractive for the pressure vessels or underwater pipelines industries. Hydrogen embrittlement (HE) is caused by the action of hydrogen in combination with residual or applied stress and can lead to the mechanical degradation of a material. Dynamic and quasi-static experiments were conducted at room temperature and strain rates of 10{sup 5} s{sup −1} and 10{sup −7} s{sup −1} on gas-phase hydrogen charged DSS. Hydrogen trapping in the various defects and its effect on the mechanical properties are discussed in details. A linear model of Lee and Lee was applied to calculate the trap activation energies. It was found that lower strain rates (~10{sup −7} s{sup −1}) will create less deep hydrogen trapping energies values; ~40% lower than in non-loaded sample. In addition, higher dynamic pressure will create higher trapping energy sites for hydrogen. Based on our experimental studies we developed an analytical model for hydrogen trapping. We have found that the strain rate has a direct influence on both hydrogen diffusion and hydrogen potential trapping sites. During deformation processes created at low strain rates (~10{sup −7} s{sup −1}) hydrogen has enough time to migrate with dislocations from deeper potential trapping sites to lower potential trapping sites.

  12. High temperature cathodic charging of hydrogen in zirconium alloys and iron and nickel base alloys

    International Nuclear Information System (INIS)

    John, J.T.; De, P.K.; Gadiyar, H.S.

    1990-01-01

    These investigations lead to the development of a new technique for charging hydrogen into metals and alloys. In this technique a mixture of sulfates and bisulfates of sodium and potassium is kept saturated with water at 250-300degC in an open pyrex glass beaker and electrolysed using platinum anode and the material to be charged as the cathode. Most of the studies were carried out on Zr alloys. It is shown that because of the high hydrogen flux available at the surface and the high diffusivity of hydrogen in metals at these temperatures the materials pick up hydrogen faster and more uniformly than the conventional electrolytic charging at room temperature and high temperature autoclaving in LiOH solutions. Chemical analysis, metallographic examination and XRD studies confirm this. This technique has been used to charge hydrogen into many iron and nickel base austentic alloys, which are very resistant to hydrogen pick up and to H-embrittlement. Since this involved a novel method of electrolysing water, the hydrogen/deuterium isotopic ratio has been studied. At this temperatures the D/H ratio in the evolved hydrogen gas was found to be closer to the value in the liquid water, which means a smaller separation factor. This confirm the earlier observation that separation factor decreases with increase of temperature. (author). 16 refs., 21 fi gs., 6 tabs

  13. Hydrogen absorption mechanisms and hydrogen interactions - defects: implications to stress corrosion of nickel based alloys in pressurized water reactors primary water

    International Nuclear Information System (INIS)

    Jambon, F.

    2012-01-01

    Since the late 1960's, a special form of stress corrosion cracking (SCC) has been identified for Alloy 600 exposed to pressurized water reactors (PWR) primary water: intergranular cracks develop during the alloy exposure, leading, progressively, to the complete ruin of the structure, and to its replacement. The main goal of this study is therefore to evaluate in which proportions the hydrogen absorbed by the alloy during its exposure to the primary medium can be responsible for SCC crack initiation and propagation. This study is aimed at better understanding of the hydrogen absorption mechanism when a metallic surface is exposed to a passivating PWR primary medium. A second objective is to characterize the interactions of the absorbed hydrogen with the structural defects of the alloy (dislocations, vacancies...) and evaluate to what extent these interactions can have an embrittling effect in relation with SCC phenomenon. Alloy 600-like single-crystals were exposed to a simulated PWR medium where the hydrogen atoms of water or of the pressuring hydrogen gas were isotopically substituted with deuterium, used as a tracer. Secondary ion mass spectrometry depth-profiling of deuterium was performed to characterize the deuterium absorption and localization in the passivated alloy. The results show that the hydrogen absorption during the exposure of the alloy to primary water is associated with the water molecules dissociation during the oxide film build-up. In an other series of experiments, structural defects were created in recrystallized samples, and finely characterized by positron annihilation spectroscopy and transmission electron microscopy, before or after the introduction of cathodic hydrogen. These analyses exhibited a strong hydrogen/defects interaction, evidenced by their structural reorganization under hydrogenation (coalescence, migrations). However, thermal desorption spectroscopy analyses indicated that these interactions are transitory, and dependent on

  14. In-situ investigation of hydrogen evolution behavior in vanadium redox flow batteries

    International Nuclear Information System (INIS)

    Wei, L.; Zhao, T.S.; Xu, Q.; Zhou, X.L.; Zhang, Z.H.

    2017-01-01

    Highlights: • An in-situ method to investigate hydrogen evolution in VRFBs is developed. • The rate of hydrogen evolution during battery operation is quantified. • The gas evolution behaviors in the charge process of VRFBs are observed. - Abstract: In this work, we conceived and fabricated a three-electrode electrochemical cell and transparent vanadium redox flow battery to in-situ investigate the hydrogen evolution reaction during battery operation. Experimental results show that operating temperature has a strong influence on the HER rate. In particular, compared with V"3"+ reduction reaction, HER is more sensitive to temperature variation. It is also found that, contrary to the conventional wisdom that side reactions occur at the late stage of the charge process, H_2 evolves at a relatively low SOC. About 0.26 and 1.94 mL H_2 were collected at an early (SOC lower than 20%) and end of the charge process, respectively, suggesting that attention to the hydrogen formation at the negative electrode in the early charge process should also be paid to during long-term battery operations. Moreover, the produced hydrogen gas at the negative side prefers to form macroscopically observable bubbles onto the electrode surface, covering the active sites for vanadium redox reactions, while oxygen evolution (including CO_2 production) at the positive side corrodes electrode surface and introduces certain oxygen-containing functional groups.

  15. Stress-Corrosion Cracking of Metallic Materials. Part III. Hydrogen Entry and Embrittlement in Steel

    Science.gov (United States)

    1975-04-01

    work of Kerns (36)] 29 22 Crack Velocity vs. Stress Intensity for AISI 4340 Steel (Martensitic and Bainitic Structures) in 314 NaCl Solution (pit = 6.0...magnitude greater for 4340 steel with a tempered martensite structure than for the lower bainite structure. Figure 22 shows crack velocity as a function of...applied stress intensity for martensitic and bainitic steels . The dif- ference was attributed to more effective trapping of hydrogen at coher- ently

  16. Effect of solute interaction on interfacial and grain boundary embrittlement in binary alloys

    Czech Academy of Sciences Publication Activity Database

    Lejček, Pavel

    2013-01-01

    Roč. 48, č. 6 (2013), 2574-2580 ISSN 0022-2461 R&D Projects: GA ČR GAP108/12/0144 Institutional research plan: CEZ:AV0Z10100520 Keywords : interfacial segregation * grain boundary embrittlement * binary interaction * modeling * thermodynamics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.305, year: 2013

  17. Hydrogen assisted stress-cracking behaviour of electron beam welded supermartensitic stainless steel weldments

    International Nuclear Information System (INIS)

    Bala Srinivasan, P.; Sharkawy, S.W.; Dietzel, W.

    2004-01-01

    Supermartensitic stainless steel (SMSS) grades are gaining popularity as an alternate material to duplex and super duplex stainless steels for applications in oil and gas industries. The weldability of these steels, though reported to be better when compared to conventional martensitic stainless steels, so far has been addressed with duplex stainless steel electrodes/fillers. This work addresses the stress-cracking behaviour of weldments of a high-grade supermartensitic stainless steel (11% Cr, 6.5% Ni and 2% Mo) in the presence of hydrogen. Welds were produced with matching consumables, using electron beam welding (EBW) process. Weldments were subjected to slow strain rate tests in 0.1 M NaOH solution, with introduction of hydrogen into the specimens by means of potentiostatic cathodic polarisation at a potential of -1200 mV versus Ag/AgCl electrode. Reference tests were performed in air for comparison, and the results suggest that both the SMSS base material and the EB weld metal are susceptible to embrittlement under the conditions of hydrogen charging

  18. A literature review and inventory of the effects of environment on the fatigue behavior of metals

    Science.gov (United States)

    Hudson, C. M.; Seward, S. K.

    1976-01-01

    The current state of knowledge of the effects of gas environments (at atmospheric pressure and below) on the fatigue behavior of metals is reviewed. Among the topics considered are the mechanisms proposed to explain the differences observed in the fatigue behavior of vacuum- and air-tested specimens, the effects of environment on the surface topography of fatigue cycled specimens, the effect of environment on the various phases of the fatigue phenomenon, the effect of prolonged exposure to vacuum on fatigue life, the variation of fatigue life with decreasing gas pressure, and gas evolution during fatigue cycling. Analysis of the findings of this review indicates that hydrogen embrittlement is primarily responsible for decreased fatigue resistance in humid environments, and that dislocations move more easily during tests in vacuum than during test in air. It was found that fatigue cracks generally initiated and propagated more rapidly in air than in vacuum. Prolonged exposure to vacuum does not adversely affect fatigue resistance. The variation of fatigue life with decreasing gas pressure is sometimes stepped and sometimes continuous.

  19. Effects of strain rate, stress condition and environment on iodine embrittlement of Ziracloy-2

    International Nuclear Information System (INIS)

    Une, K.

    1979-01-01

    Iodine stress corrosion cracking (SCC) susceptibility of Zircaloy became higher with decreasing strain rate. Critical strain rate, below which high SCC severity was observed, substantially depended on Zircaloy stress condition. This strain rate (7 x 10 -3 min -1 ) under plane strain condition was about 3.5 times as fast as that (2 x 10 -3 min -1 ) under uniaxial condition. The maximum iodine embrittlement in Zircaloy was found in stress ratio α (axial/tangential stress) range of 0.5 to 0.7. No embrittlement occurred at α = infinity because of its texture effect. The SCC fracture stresses were about 39 kg/mm 2 for unirradiated and stress-relieved material, and about 34 kg/mm 2 for recrystallized material, whose ratios to yield strength of each material were 0.8 and 1.2. Impurity gases of oxygen and moisture in the iodine had the effects of reducing Zircaloy SCC susceptibility. Stress-relieved material was more sensitive to environmental impurities than recrystallized material

  20. Low-temperature embrittlement and fracture of metals with different crystal lattices – Dislocation mechanisms

    Directory of Open Access Journals (Sweden)

    V.M. Chernov

    2016-12-01

    Full Text Available The state of a low-temperature embrittlement (cold brittleness and dislocation mechanisms for formation of the temperature of a ductile-brittle transition and brittle fracture of metals (mono- and polycrystals with various crystal lattices (BCC, FCC, HCP are considered. The conditions for their formation connected with a stress-deformed state and strength (low temperature yield strength as well as the fracture breaking stress and mobility of dislocations in the top of a crack of the fractured metal are determined. These conditions can be met for BCC and some HCP metals in the initial state (without irradiation and after a low-temperature damaging (neutron irradiation. These conditions are not met for FCC and many HCP metals. In the process of the damaging (neutron irradiation such conditions are not met also and the state of low-temperature embrittlement of metals is absent (suppressed due to arising various radiation dynamic processes, which increase the mobility of dislocations and worsen the strength characteristics.