WorldWideScience

Sample records for hydrogen chemistry hwc

  1. Study of deposited crud composition on fuel surfaces in the environment of hydrogen water chemistry (HWC) of a Boiling Water Reactor at Chinshan Nuclear Power Plant

    International Nuclear Information System (INIS)

    Tsai, Tsuey-Lin; Lin, Tzung-Yi; Su, Te-Yen; Wen, Tung-Jen; Men, Lee-Chung

    2012-09-01

    This paper aimed at the characterization of metallic composition and surface analysis on the crud of fuel rods for unit-1 of BWR-4 at Nuclear Power Plant. The inductively coupled plasma- atomic emission spectroscopy (ICPAES) and the gamma spectrometry were carried out to analyze the corrosion product distributions and to determine the elemental compositions along the fuel rod under conditions of hydrogen water chemistry (HWC) switched from normal water chemistry (NWC) of reactor coolant in this study. Most of the crud consisted of the flakes and irregular shapes via SEM morphology. The loosely adherent oxide layer was mostly composed of hematite (α- Fe 2 O 3 ) with amorphous iron oxides by XRD results. The average deposited amounts of crud was the order of 0.5 mg/cm 2 , indicating that the fuel surface of this plant under HWC environment appeared to be one with the lower crud deposition in terms of low iron level of feedwater. It also showed no significant difference in comparison with NWC condition. (authors)

  2. Hydrogen water chemistry for boiling water reactors

    International Nuclear Information System (INIS)

    Cowan, R.L.; Cowan, R.L.; Kass, J.N.; Law, R.J.

    1985-01-01

    Hydrogen Water Chemistry (HWC) is now a practical countermeasure for intergranular stress corrosion cracking (IGSCC) susceptibility of reactor structural materials in Boiling Water Reactors (BWRs). The concept, which involves adding hydrogen to the feedwater to suppress the formation of oxidizing species in the reactor, has been extensively studied in both the laboratory and in several operating plants. The Dresden-2 Unit of Commonwealth Edison Company has completed operation for one full 18-month fuel cycle under HWC conditions. The specifications, procedures, equipment, instrumentation and surveillance programs needed for commercial application of the technology are available now. This paper provides a review of the benefits to be obtained, the side affects, and the special operational considerations needed for commercial implementation of HWC. Technological and management ''Lessons Learned'' from work conducted to date are also described

  3. Update on materials performance and electrochemistry in hydrogen water chemistry at Dresden-2 BWR

    International Nuclear Information System (INIS)

    Indig, M.E.; Weber, J.E.; Davis, R.B.; Gordon, B.M.

    1985-01-01

    Previous studies performed in 1982 indicated that if sufficient hydrogen was injected into the Dresden-2 BWR, IGSCC of sensitized austenitic stainless steel was mitigated. The present series of experiments were aimed at verification of the above finding, determining how much time off hydrogen water chemistry (HWC) could be tolerated and how HWC affected pre-existing cracks

  4. Measurement of in-core and recirculation system response to hydrogen water chemistry at Nine Mile Point 1

    International Nuclear Information System (INIS)

    Head, R.A.; Indig, M.E.; Andresen, P.L.

    1991-03-01

    The value of hydrogen water chemistry (HWC) as a mitigation technique for out-of-core piping systems susceptible to intergranular stress corrosion cracking (IGSCC) is well established. However, certain reactor internal components exposed to high levels of radiation are susceptible to a cracking mechanism referred to as irradiation assisted stress corrosion cracking (IASCC). Some of the components potentially affected by IASCC include the top guide, SRM/IRM housings, the core shroud, and control blades. Fortunately, laboratory data indicate that IASCC can be controlled by altering the coolant environment. Hot cell tests performed at GE's Vallecitos Nuclear Center (VNC) on highly irradiated material produced a fracture surface with 99% IGSCC under normal BWR water chemistry. However, under HWC conditions, only ductile failure occurred. With this background, a program was established to determine the chemistry and oxidizing potential of the core bypass coolant at Nine Mile Point-1 (NMP-1) under normal and HWC conditions. The objective of the program was to assess whether HWC could sufficiently modify the core bypass environment to mitigate IASCC. Results showed that with the addition of hydrogen to the feedwater, core bypass dissolved oxygen decreased very rapidly, compared to the recirculation water, indicating very efficient recombination of hydrogen and oxygen in the non-boiling core bypass region. Since low concentrations of dissolved oxygen have been shown to eliminate IASCC, these results are encouraging. 8 figs., 1 tab

  5. Application of hydrogen water chemistry to moderate corrosive circumstances around the reactor pressure vessel bottom of boiling water reactors

    International Nuclear Information System (INIS)

    Shunsuke Uchida; Eishi Ibe; Katsumi Ohsumi

    1994-01-01

    Application of hydrogen water chemistry to moderate corrosive circumstances is a promising approach to preserve structural integrities of major components and structures in the primary cooling system of BWRs. The benefits of HWC application are usually accompanied by several disadvantages. After evaluating merits and demerits of HWC application, it is concluded that optimal amounts of hydrogen injected into the feed water can moderate corrosive circumstances, in the region to be preserved, without serious disadvantages. (authors). 1 fig., 4 refs

  6. Hydrogen water chemistry for BWRs: A status report on the EPRI development program

    International Nuclear Information System (INIS)

    Jones, R.L.; Nelson, J.L.

    1990-01-01

    Many BWRs have experienced extensive intergranular stress corrosion cracking (IGSCC) in their austenitic stainless steel coolant system piping, resulting in serious adverse impacts on plant capacity factors, O and M costs, and personnel radiation exposures. A major research program to provide remedies for BWR pipe cracking was co-funded by EPRI, GE, and the BWR Owners Group for IGSCC Research between 1979 and 1988. Results from this program show that the likelihood of IGSCC depends on reactor water chemistry (particularly on the concentrations of ionic impurities and oxidizing radiolysis products) as well as on material condition and the level of tensile stress. Tests have demonstrated that the concentration of oxidizing radiolysis products in the recirculating water of a BWR can be reduced substantially by injecting hydrogen into the feedwater. Recent plant data show that the use of hydrogen injection can reduce the rate of IGSCC to insignificant levels if the concentration of ionic impurities in the reactor water is kept sufficiently low. This approach to the control of BWR pipe cracking is called hydrogen water chemistry (HWC). This paper presents a review of the results of EPRI's HWC development program from 1980 to the present. In addition, plans for additional work to investigate the feasibility of adapting HWC to protect the BWR vessel and major internal components from potential stress corrosion cracking problems are summarized. (orig.)

  7. Variation of the Effectiveness of Hydrogen Water Chemistry in a Boiling Water Reactor during Startup Operations

    International Nuclear Information System (INIS)

    Yeh, Tsung-Kuang; Wang, Mei-Ya

    2012-09-01

    For mitigating intergranular stress corrosion cracking (IGSCC) in an operating boiling water reactor (BWR), the technology of hydrogen water chemistry (HWC) aiming at coolant chemistry improvement has been adopted worldwide. However, the hydrogen injection system employed in this technology was designed to operate only at power levels greater than 30% of the rated power or at coolant temperatures of greater than 450 deg. F. This system is usually in an idle and standby mode during a startup operation. The coolant in a BWR during a cold shutdown normally contains a relatively high level of dissolved oxygen from intrusion of atmospheric air. Accordingly, the structural materials in the primary coolant circuit (PCC) of a BWR could be exposed to a strongly oxidizing environment for a short period of time during a subsequent startup operation. At some plants, the feasibility of hydrogen water chemistry during startup operations has been studied, and its effectiveness on suppressing SCC initiation was evaluated. It is technically difficult to directly procure water chemistry data at various locations of an operating reactor. Accordingly, the impact of startup operation on water chemistry in the PCC of a BWR operating under normal water chemistry (NWC) or HWC can only be theoretically evaluated through computer modelling. In this study, a well-developed computer code DEMACE was used to investigate the variations in redox species concentration and in electrochemical corrosion potential (ECP) of components in the PCC of a domestic BWR during startup operations in the presence of HWC. Simulations were carried out for [H2] FW s ranging from 0.0 to 2.0 parts per million (ppm) and for power levels ranging from 2.5% to 11.3% during startup operations. Our analyses indicated that for power levels with steam generation in the core, a higher power level would tend to promote a more oxidizing coolant environment for the structural components and therefore lead to less HWC

  8. Variation of the effectiveness of hydrogen water chemistry in a boiling water reactor during power coastdown operations

    International Nuclear Information System (INIS)

    Yeh Tsungkuang; Wang Meiya; Chu, Charles F.; Chang Ching

    2009-01-01

    A theoretical model was adapted to evaluate the impact of power coastdown on the water chemistry of a commercial boiling water reactor (BWR) in this work. In principle, the power density of a nuclear reactor upon a power level decrease would immediately be lowered, followed by water chemistry variations due to reduced radiolysis of water and extended coolant residence times in the core and near-core regions. It is currently a common practice for a commercial BWR to adopt hydrogen water chemistry (HWC) for corrosion mitigation. The optimal feedwater hydrogen concentration may be different after a power coastdown is implemented in a BWR. A computer code DEMACE was used in the current study to investigate the impact of various power coastdown levels on major radiolytic species concentrations and electrochemical corrosion potential (ECP) behavior of components in the primary coolant circuit of a domestic reactor operating under either normal water chemistry or HWC. Our analyses indicated that under a rated core flow rate the chemical species concentrations and the ECP did not vary monotonously with decreases in reactor power level at a fixed feedwater hydrogen concentration. In particular, ECP variations basically followed the patterns of hydrogen peroxide in the select regions and exhibited high values at power level of 90% for Reactor X. (author)

  9. Application of hydrogen water chemistry to moderate corrosive circumstances around the reactor pressure vessel bottom of boiling water reactors

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Ibe, Eishi; Nakata, Kiyatomo; Fuse, Motomasa; Ohsumi, Katsumi; Takashima, Yoshie

    1995-01-01

    Many efforts to preserve the structural integrity of major piping, components, and structures in a boiling water reactor (BWR) primary cooling system have been directed toward avoiding intergranular stress corrosion cracking (IGSCC). Application of hydrogen water chemistry (HWC) to moderate corrosive circumstances is a promising approach to preserve the structural integrity during extended lifetimes of BWRs. The benefits of HWC application are (a) avoiding the occurrence of IGSCC on structural materials around the bottom of the crack growth rate, even if microcracks are present on the structural materials. Several disadvantage caused by HWC are evaluated to develop suitable countermeasures prior to HWC application. The advantages and disadvantages of HWC are quantitatively evaluated base on both BWR plant data and laboratory data shown in unclassified publications. Their trade-offs are discussed, and suitable applications of HWC are described. It is concluded that an optimal amount of Hydrogen injected into the feedwater can moderate corrosive circumstances, in the region to be preserved, without serious disadvantages. The conclusions have been drawn by combining experimental and theoretical results. Experiments in BWR plants -- e.g., direct measurements of electrochemical corrosion potential and crack growth rate at the RPV bottom -- are planned that would collect data to support the theoretical considerations

  10. Crack propagation in stainless steel AISI 304L in Hydrogen Chemistry conditions (HWC)

    International Nuclear Information System (INIS)

    Diaz S, A.; Fuentes C, P.; Merino C, F.; Castano M, V.

    2006-01-01

    Velocities of crack growth in samples type CT pre cracking of stainless steel AISI 304l solder and sensitized thermally its were obtained by the Rising Displacement method or of growing displacement. It was used a recirculation circuit that simulates the operation conditions of a BWR type reactor (temperature of 280 C and a pressure of 8 MPa) with the chemistry modified by the addition of hydrogen with and without the addition of impurities of a powerful oxidizer like the Cu + ion. In each essay stayed a displacement velocity was constant of 1x10 -9 m/s, making a continuous pursuit of the advance of the crack by the electric potential drop technique. Contrary to the idea of mitigation of the crack propagation velocity by effect of the addition of the hydrogen in the system, the values of the growth velocities obtained by this methodology went similar to the opposing ones under normal operation conditions. To the finish of the rehearsal one carries out the fractographic analysis of the propagation surfaces, which showed cracks growth in trans and intergranular way, evidencing the complexity of the regulator mechanisms of the IGSCC like in mitigation conditions as the alternative Hydrogen Chemistry. (Author)

  11. BWR hydrogen addition for IGSCC

    International Nuclear Information System (INIS)

    Anderson, D.S.

    1985-01-01

    Mitigation of intergranular stress corrosion cracking (IGSCC) in austenitic stainless steel piping and other components exposed to the primary coolant in boiling water reactors has become a major industry challenge. Hydrogen water chemistry (HWC) has become a very popular recommended method of slowing the propagation of IGSCC and is a desirable alternative to material replacement. Although HWC is a reasonable solution for controlling IGSCC, it is not without significant drawbacks for some plants. Carolina Power and Light's (CP and L's) Brunswick Unit 2 is one of these plants where the use of HWC for the mitigation of IGSCC could have a major impact on the current operating philosophy

  12. A review of boiling water reactor water chemistry: Science, technology, and performance

    International Nuclear Information System (INIS)

    Fox, M.J.

    1989-02-01

    Boiling water reactor (BWR) water chemistry (science, technology, and performance) has been reviewed with an emphasis on the relationships between BWR water quality and corrosion fuel performance, and radiation buildup. A comparison of Nuclear Regulatory Commission (NRC) Regulatory Guide 1.56, the Boiling Water Reactor Owners Group (BWROG) Water Chemistry Guidelines, and Plant Technical Specifications showed that the BWROG Guidelines are more stringent than the NRC Regulatory Guide, which is almost identical to Plant Technical Specifications. Plant performance with respect to BWR water chemistry has shown dramatic improvements in recent years. Up until 1979 BWRs experienced an average of 3.0 water chemistry incidents per reactor-year. Since 1979 the water chemistry technical specifications have been violated an average of only 0.2 times per reactor-year, with the most recent data from 1986-1987 showing only 0.05 violations per reactor-year. The data clearly demonstrate the industry-wide commitment to improving water quality in BWRs. In addition to improving water quality, domestic BWRs are beginning to switch to hydrogen water chemistry (HWC), a remedy for intergranular stress corrosion cracking. Three domestic BWRs are presently operating on HWC, and fourteen more have either performed HWC mini tests or are in various stages of HWC implementation. This report includes a detailed review of HWC science and technology as well as areas in which further research on BWR chemistry may be needed. 43 refs., 30 figs., 8 tabs

  13. BWR chromium chemistry

    International Nuclear Information System (INIS)

    Baston, V.F.; Indig, M.E.; Skarpelos, J.M.

    1992-10-01

    This report addresses the concern about higher total specific conductivity in the reactor recirculation loop water due to the chromate ion. This concern is particularly high at plants where all other ionic species have been reduced through careful attention to makeup and condensate polisher operations. An EPRI Chromate Workshop was held in November 1990 to consider the issues raised by observed levels of chromate ion (generally 5 to 50 ppB). While BWRs on normal water chemistry were the only ones observing chromate, even plants on hydrogen water chemistry (HWC) observe sharp spikes of conductivity due to chromate whenever the hydrogen supply was interrupted after a reasonably long HWC operational period. The consensus of the workshop attendees was that chromate was not a concern as an agent causing pipe cracking compared to the more common species such as chloride and sulfate. However, the data are somewhat ambiguous for levels of chromate above 50 ppB. Adjustments to the weighing factors for the various ionic species in the industry chemistry performance index are suggested to allow for the known relative higher aggressiveness of other species relative to that of chromate

  14. Propagation of crevices in stainless steel AISI304L in conditions of hydrogen chemistry (HWC)

    International Nuclear Information System (INIS)

    Diaz S, A.; Fuentes C, P.; Merino C, F.; Castano M, V.

    2006-01-01

    Crevice growth velocities in samples of AISI 304L stainless steel thermally welded and sensitized were obtained by the Rising displacement method or of growing displacement. It was used a recirculation circuit in where the operation conditions of a BWR type reactor were simulated (temperature of 288 C and a pressure of 8 MPa) with the chemistry modified by the addition of hydrogen with and without the addition of impurities of a powerful oxidizer like the Cu ++ ion. CT pre cracked specimens were used and each rehearsal stayed to one constant displacement velocity of 1 x 10 -9 m/s (3.6 μm/hr), making a continuous pursuit of the advance of the crack by the electric potential drop technique. To the end of the rehearsal it was carried out the fractographic analysis of the propagation surfaces. The values of the growth velocities obtained by this methodology went similar to the opposing ones under normal conditions of operation; while the fractographic analysis show the cracks propagation in trans and intergranular ways, evidencing the complexity of the regulator mechanisms of the one IGSCC even under controlled ambient conditions or with mitigation methodologies like the alternative hydrogen chemistry. (Author)

  15. BWR water chemistry impurity studies

    International Nuclear Information System (INIS)

    Ljungberg, L.G.; Korhonen, S.; Renstroem, K.; Hofling, C.G.; Rebensdorff, B.

    1990-03-01

    Laboratory studies were made on the effect of water impurities on environmental cracking in simulated BWR water of stainless steel, low alloy steel and nickel-base alloys. Constant elongation rate tensile (CERT) tests were run in simulated normal water chemistry (NWC), hydrogen water chemistry (HWC), or start-up environment. Sulfate, chloride and copper with chloride added to the water at levels of a fraction of a ppM were found to be extremely deleterious to all kinds of materials except Type 316 NG. Other detrimental impurities were fluoride, silica and some organic acids, although acetic acid was beneficial. Nitrate and carbon dioxide were fairly inoccuous. Corrosion fatigue and constant load tests on compact tension specimens were run in simulated normal BWR water chemistry (NWC) or hydrogen water chemistry (HWC), without impurities or with added sulfate or carbon dioxide. For sensitized Type 304 SS in NWC, 0.1 ppM sulfate increased crack propagation rates in constant load tests by up to a factor of 100, and in fatigue tests up to a factor of 10. Also, cracking in Type 316 nuclear grade SS and Alloy 600 was enhanced, but to a smaller degree. Carbon dioxide was less detrimental than sulfate. 3 figs., 4 tabs

  16. Development of tools for optimization of HWC

    International Nuclear Information System (INIS)

    Wikmark, Gunnar; Lundgren, Klas; Wijkstroem, Hjalmar; Pein, Katarina; Ullberg, Mats

    2004-06-01

    An ECP model for the Swedish Boiling Water Reactors (BWRs) was developed in a previous project sponsored by the Swedish Nuclear Power Inspectorate. The present work is an extension of that effort. The model work has been extended in three ways. Some potential problem areas of the ECP sub-model have been treated in full detail. A comprehensive calibration data set has been assembled from plant data and from laboratory and in-plant experiments. The model has been fitted to the calibration data set and the model parameters adjusted. The work on the ECP sub-model has demonstrated that the generalised Butler Volmer equation, as previously used, adequately describes the electrochemistry. Thus, there is no need to treat the system surface oxides as semiconductors or to take double layer effects into account. The existence of a pseudo potential for the reaction of oxygen on stainless steel is confirmed. The concentration dependence and temperature dependence of the exchange current densities are still unclear. An experimental investigation of these is therefore desirable. An interesting alternative to a conventional experimental set-up is to combine modelling with simpler and more easily controlled experiments. In addition to a calibration data set, the survey of plant data has also led to an improved understanding of the necessary parameters of an ECP model. Thus, variations of the H 2 injection rate at constant reactor power level and constant recirculation flow rate were traced to variations of the relative power level of the fuel elements in the core periphery. The power level in the core periphery determines the dose rate in the down comer and controls the recombination reaction that is fundamental to Hydrogen Water Chemistry (HWC). To accurately model ECP as a function of hydrogen injection rate and other plant parameters, the relative power level of the core periphery is a necessary model parameter that has to be regularly updated from core management codes

  17. Crack propagation in stainless steel AISI 304L in Hydrogen Chemistry conditions (HWC); Propagacion de Grietas en Acero Inoxidable AISI 304L en Condiciones de Quimica de Hidrogeno (HWC)

    Energy Technology Data Exchange (ETDEWEB)

    Diaz S, A.; Fuentes C, P.; Merino C, F. [ININ, Carretera Mexico -Toluca s/n, La Marquesa, Ocoyoacac, Mexico (Mexico); Castano M, V. [Instituto de Fisica Aplicada, UNAM, Km 15.5 Carretera Queretaro-San Luis Potosi, Juriquilla, Queretaro (Mexico)]. e-mail: ads@nuclear.inin.mx

    2006-07-01

    Velocities of crack growth in samples type CT pre cracking of stainless steel AISI 304l solder and sensitized thermally its were obtained by the Rising Displacement method or of growing displacement. It was used a recirculation circuit that simulates the operation conditions of a BWR type reactor (temperature of 280 C and a pressure of 8 MPa) with the chemistry modified by the addition of hydrogen with and without the addition of impurities of a powerful oxidizer like the Cu{sup +} ion. In each essay stayed a displacement velocity was constant of 1x10{sup -9} m/s, making a continuous pursuit of the advance of the crack by the electric potential drop technique. Contrary to the idea of mitigation of the crack propagation velocity by effect of the addition of the hydrogen in the system, the values of the growth velocities obtained by this methodology went similar to the opposing ones under normal operation conditions. To the finish of the rehearsal one carries out the fractographic analysis of the propagation surfaces, which showed cracks growth in trans and intergranular way, evidencing the complexity of the regulator mechanisms of the IGSCC like in mitigation conditions as the alternative Hydrogen Chemistry. (Author)

  18. Comparison of the corrosion potential for stainless steel measured in-plant and in laboratory during BWR normal water chemistry conditions

    International Nuclear Information System (INIS)

    Molander, A.; Pein, K.; Tarkpea, P.; Takagi, Junichi; Karlberg, G.; Gott, K.

    1998-01-01

    To obtain reliable crack growth rate date for stainless steel in BWR environments careful laboratory simulation of the environmental conditions is necessary. In the plant the BWR normal water chemistry environment contains hydrogen peroxide, oxygen and hydrogen. However, in crack growth rate experiments in laboratories, the environment is normally simulated by adding 200 ppb oxygen to the high temperature water. Thus, as hydrogen peroxide is a more powerful oxidant than oxygen, it is to be expected that a lower corrosion potential will be measured in the laboratory than in the plant. To resolve this issue this work has been performed. In-plant and laboratory measurements have often been performed with somewhat different equipment, due to the special requirements concerning in-plant measurements. In this work such differences have been avoided and two identical sets of equipment for electrochemical measurements were built and used for measurements in-plant in a Swedish BWR and in high purity water in the laboratory. The host plant was Barsebaeck 1. Corrosion potential monitoring in-plant was performed under both NWC (Normal Water Chemistry) and HWC (Hydrogen Water Chemistry) conditions. This paper is, however, focused on NWC conditions. This is due to the fact, that the total crack growth obtained during a reactor cycle, can be determined by NWC conditions, even for plants running with HWC due to periodic stops in the hydrogen addition for turbine inspections or failure of the dosage or hydrogen production equipment. Thus, crack growth data for NWC is of great importance both for BWRs operating with HWC and NWC. Measurements in-plant and in the laboratory were performed during additions of oxygen and hydrogen peroxide to the autoclave systems. The corrosion potentials were compared for various conditions in the autoclaves, as well as versus in-plant in-pipe corrosion potentials. (J.P.N.)

  19. Environmental mitigation for SCC initiation of BWR core internals by hydrogen injection during start-up

    International Nuclear Information System (INIS)

    Dozaki, K.; Abe, A.; Nagata, N.; Takiguchi, H.

    2004-01-01

    Hydrogen injection into the reactor water has been applied to many BWR power stations. Since hydrogen injected accelerates recombination of oxidant generated by water radiolysis, oxidant concentration, such as dissolved oxygen concentration in reactor water can be reduced. As the result of the reduction of oxidant concentration, Electrochemical Corrosion Potential (ECP) at the surface of structural material can be lowered. Lowered ECP moderates Stress Corrosion Cracking (SCC) sensitivity of structural materials, such as stainless steels. As usual, hydrogen injection system begins to work after the plant start-up is finished, when the condition of normal operation is established. Accordingly, Hydrogen Water Chemistry (HWC) does not cover all the period of plant operation. As far as SCC crack growth is considered, loss of HWC during plant start-up does not result in significant crack growth, because of duration of plant start-up is much shorter than that of plant normal operation, when HWC condition is being satisfied. However, the reactor water environment and load conditions during a plant start-up may contribute to the initiation of SCC. It is estimated that the core internals are subjected to the strain rate that may cause susceptibility to SCC initiation during start-up. Dissolved oxygen (DO) and hydrogen peroxide (H 2 O 2 ) has a peak, and ECP is in high levels during start-up. Therefore it is beneficial to perform hydrogen injection during start-up as well in order to suppress SCC initiation. We call it HWC During Start-up (HDS) here. (orig.)

  20. Technical Basis for Water Chemistry Control of IGSCC in Boiling Water Reactors

    Science.gov (United States)

    Gordon, Barry; Garcia, Susan

    Boiling water reactors (BWRs) operate with very high purity water. However, even the utilization of near theoretical conductivity water cannot prevent intergranular stress corrosion cracking (IGSCC) of sensitized stainless steel, wrought nickel alloys and nickel weld metals under oxygenated conditions. IGSCC can be further accelerated by the presence of certain impurities dissolved in the coolant. The goal of this paper is to present the technical basis for controlling various impurities under both oxygenated, i.e., normal water chemistry (NWC) and deoxygenated, i.e., hydrogen water chemistry (HWC) conditions for mitigation of IGSCC. More specifically, the effects of typical BWR ionic impurities (e.g., sulfate, chloride, nitrate, borate, phosphate, etc.) on IGSCC propensities in both NWC and HWC environments will be discussed. The technical basis for zinc addition to the BWR coolant will also provided along with an in-plant example of the most severe water chemistry transient to date.

  1. Propagation of crevices in stainless steel AISI304L in conditions of hydrogen chemistry (HWC); Propagacion de grietas en acero inoxidable AISI304L en condiciones de quimica de hidrogeno (HWC)

    Energy Technology Data Exchange (ETDEWEB)

    Diaz S, A.; Fuentes C, P.; Merino C, F. [ININ, 52750 Ocoyoacac, Estado de Mexico (Mexico); Castano M, V. [IFA-UNAM, Juriquilla, Queretaro (Mexico)]. e-mail: ads@nuclear.inin.mx

    2006-07-01

    Crevice growth velocities in samples of AISI 304L stainless steel thermally welded and sensitized were obtained by the Rising displacement method or of growing displacement. It was used a recirculation circuit in where the operation conditions of a BWR type reactor were simulated (temperature of 288 C and a pressure of 8 MPa) with the chemistry modified by the addition of hydrogen with and without the addition of impurities of a powerful oxidizer like the Cu{sup ++} ion. CT pre cracked specimens were used and each rehearsal stayed to one constant displacement velocity of 1 x 10{sup -9} m/s (3.6 {mu}m/hr), making a continuous pursuit of the advance of the crack by the electric potential drop technique. To the end of the rehearsal it was carried out the fractographic analysis of the propagation surfaces. The values of the growth velocities obtained by this methodology went similar to the opposing ones under normal conditions of operation; while the fractographic analysis show the cracks propagation in trans and intergranular ways, evidencing the complexity of the regulator mechanisms of the one IGSCC even under controlled ambient conditions or with mitigation methodologies like the alternative hydrogen chemistry. (Author)

  2. Predicted effect of power uprating on the water chemistry of commercial boiling water reactors

    International Nuclear Information System (INIS)

    Yeh, Tsung-Kuang; Wang, Mei-Ya; Chu, Charles F.; Chang Ching

    2009-01-01

    The approach of power uprating has been adopted by operators of light water reactors in the past few decades in order to increase the power generation efficiency of nuclear reactors. The power uprate strategy is apparently applicable to the three nuclear reactors in Taiwan as well. When choosing among the three types of power uprating, measurement uncertainty, stretch power uprating, and extended power uprating, a deliberate and thorough evaluation is required before a final decision and an optimal selection can be made. One practical way of increasing the reactor power is to deliberately adjust the fuel loading pattern and the control rod pattern and thus to avoid replacing the primary coolant pump with a new one of larger capacity. The power density of the reactor will increase with increasing power, but the mass flow rate in the primary coolant circuit (PCC) of a light water reactor will slightly increase (usually by less than 5 %) or even remain unchanged. Accordingly, an uprated power would induce higher neutron and gamma photon dose rates in the reactor coolant but have a minor or no effect on the mass flow rate of the primary coolant. The radiolysis product concentrations and the electrochemical corrosion potential (ECP) values differ largely in the PCC of a boiling water reactor (BWR). It is very difficult to measure the water chemistry data directly at various locations of an actual reactor. Thus the impact of power uprating on the water chemistry of a BWR operating under hydrogen water chemistry (HWC) can only be theoretically evaluated through computer modelling. In this study, the DEMACE computer code was modified to investigate the impact of power uprating on the water chemistry under a fixed mass flow rate in the primary coolant circuit of a BWR/6 type plant. Simulations were carried out for hydrogen concentrations in feedwater ranging from 0.0 to 2.0 mg . kg -1 and for power levels ranging from 100 % to 120 %. The responses of water chemistry and ECP

  3. Hydrogen peroxide and radiation water chemistry of boiling water reactors

    International Nuclear Information System (INIS)

    Ibe, E.; Watanabe, A.; Endo, M.; Takahashi, M.; Karasawa, H.

    1991-01-01

    G-values and rate constants at elevated temperature are reviewed and updated for computer simulation of water radiolysis in BWRs. Quantitative relationship between g-values of H 2 and OH was found out to govern numerically the radiolytic environment in the BWR primary system. Thermal decomposition of hydrogen peroxide was measured in stagnant water in a quartz cell and the rate constant was determined at 2.4 x 10 -7 s -1 with the activation energy of 53.3 kJ/mol. Behaviors of hydrogen peroxide under HWC simulated with updated variables were consistent with plant observation at Forsmark 1 and 2. The most likely decomposition scheme of hydrogen peroxide at surface was identified as H 2 O 2 → H + HO 2 . Based on the surface decomposition process, actual level of hydrogen peroxide was estimated at 200-400 ppb under NWC condition from measured at BWR sampling stations. The estimation was consistent with the numerical simulation of BWR water radiolysis with updated variables. (author)

  4. Early hydrogen water chemistry in the boiling water reactor: industry-first demonstration

    International Nuclear Information System (INIS)

    Garcia, Susan E.; Odell, Andrew D.; Giannelli, Joseph F.

    2012-09-01

    ). Like all other U.S, BWRs, Peach Bottom 3 uses a mechanical vacuum pump (MVP) to draw initial condenser vacuum up to approximately 5% power and its operation is restricted to <4% H 2 in the gas/vapor stream. Accordingly, acceptance criteria established for the EHWC demonstration were RWCU Inlet H 2 / (Tot. Oxidant) Molar Ratio ≥2 and MVP %H 2 <4% (gas + vapor). Temporary equipment was installed for the EHWC demonstration to inject hydrogen gas into the reactor recirculation system through an existing sample line and into the feedwater system through a pressure sensing line during the startup evolution. Hydrogen was supplied from compressed gas cylinders in the reactor building and the existing hydrogen water chemistry (HWC) supply station in the turbine building. Temporary equipment was also used to admit air into the MVP suction stream to dilute injected H 2 gas and special equipment was designed and installed to monitor the %H 2 in the MVP discharge stream. Pt and Ag/AgCl electrodes were available in the mitigation monitoring system (MMS) to monitor ECP and extensive plant thermal-hydraulic and chemistry data were collected during the EHWC startup. The Peach Bottom 3 EHWC demonstration was performed safely without impacting the plant startup evolution. The EHWC acceptance criteria were met at low hydrogen injection rates. The results provide the basis for BWRs that have applied noble metals to design an EHWC process to mitigate IGSCC during plant start-ups effectively and safely while the MVP is in service. Plans for implementing EHWC across the Exelon BWR fleet are discussed. (authors)

  5. Photo-Electrochemical Effect of Zinc Addition on the Electrochemical Corrosion Potentials of Stainless Steels and Nickel Alloys in High Temperature Water

    International Nuclear Information System (INIS)

    Lee, Yi-Ching; Fong, Clinton; Fang-Chu, Charles; Chang, Ching

    2012-09-01

    Hydrogen water chemistry (HWC) is one of the main mitigating methods for stress corrosion cracking problem of reactor core stainless steel and nickel based alloy components. Zinc is added to minimize the radiation increase associated with HWC. However, the subsequently formed zinc-containing surface oxides may exhibit p-type semiconducting characteristics. Upon the irradiation of Cherenkov and Gamma ray in the reactor core, the ECP of stainless steels and nickel based alloys may shift in the anodic direction, possibly offsetting the beneficial effect of HWC. This study will evaluate the photo-electrochemical effect of Zinc Water Chemistry on SS304 stainless steel and Alloy 182 nickel based weld metal under simulated irradiated BWR water environments with UV illumination. The experimental results reveal that Alloy 182 nickel-based alloy generally possesses n-type semiconductor characteristics in both oxidizing NWC and reducing HWC conditions with zinc addition. Upon UV irradiation, the ECP of Alloy 182 will shift in the cathodic direction. In most conditions, SS304 will also exhibit n-type semiconducting properties. Only under hydrogen water chemistry, a weak p-type property may emerge. Only a slight upward shift in the anodic direction is detected when SS304 is illuminated with UV light. The potential influence of p-type semiconductor of zinc containing surface oxides is weak and the mitigation effect of HWC on the stress corrosion cracking is not adversely affected. (authors)

  6. EPRI BWR Water Chemistry Guidelines Revision

    International Nuclear Information System (INIS)

    Garcia, Susan E.; Giannelli, Joseph F.

    2014-01-01

    BWRVIP-190: BWR Water Chemistry Guidelines – 2008 Revision has been revised. The revision committee consisted of U.S. and non-U.S. utilities (members of the BWR Vessel and Internals Protection (BWRVIP) Mitigation Committee), reactor system manufacturers, fuel suppliers, and EPRI and industry experts. The revised document, BWRVIP-190 Revision 1, was completely reformatted into two volumes, with a simplified presentation of water chemistry control, diagnostic and good practice parameters in Volume 1 and the technical bases in Volume 2, to facilitate use. The revision was developed in parallel and in coordination with preparation of the Fuel Reliability Guidelines Revision 1: BWR Fuel Cladding Crud and Corrosion. Guidance is included for plants operating under normal water chemistry (NWC), moderate hydrogen water chemistry (HWC-M), and noble metal application (GE-Hitachi NobleChem™) plus hydrogen injection. Volume 1 includes significant changes to BWR feedwater and reactor water chemistry control parameters to provide increased assurance of intergranular stress corrosion cracking (IGSCC) mitigation of reactor materials and fuel reliability during all plant conditions, including cold shutdown (≤200°F (93°C)), startup/hot standby (>200°F (93°C) and ≤ 10%) and power operation (>10% power). Action Level values for chloride and sulfate have been tightened to minimize environmentally assisted cracking (EAC) of all wetted surfaces, including those not protected by hydrogen injection, with or without noble metals. Chemistry control guidance has been enhanced to minimize shutdown radiation fields by clarifying targets for depleted zinc oxide (DZO) injection while meeting requirements for fuel reliability. Improved tabular presentations of parameter values explicitly indicate levels at which actions are to be taken and required sampling frequencies. Volume 2 provides the technical bases for BWR water chemistry control for control of EAC, flow accelerated corrosion

  7. In situ measurement of corrosion of type 316L stainless steel in 553 K pure water via the electrical resistance of a thin wire

    International Nuclear Information System (INIS)

    Ishida, Kazushige; Lister, Derek

    2012-01-01

    A system for the in situ monitoring of corrosion depth via electrical resistance measurements was applied to study the corrosion rate of type 316L stainless steel at 553 K in pure water. Corrosion depth was measured using a 50 μm diameter wire probe mounted axially in the tube. Measurements were in good agreement with literature data for both the hydrogen water chemistry (HWC) condition and the normal water chemistry (NWC) condition. Oxide film analyses by scanning electron microscopy and laser Raman spectroscopy on the wire probe and the tube showed no effects from shape of the test specimens or the application of electric current. Corrosion kinetics was evaluated by fitting equations to the measurements. Data for the HWC condition could be fitted by a two-step logarithmic-parabolic law. A single-step logarithmic law fitted data for the NWC condition. Changes in corrosion rate by the water chemistry changes were readily detected with the technique. Corrosion depth change could be observed for the water chemistry change from the NWC condition to the HWC condition with electrochemical corrosion potential (ECP) of -0.56 V vs. standard hydrogen electrode, which is lower than the ECP that the phase of iron oxide changes from α-Fe 2 O 3 to Fe 3 O 4 . (author)

  8. The 2HWC HAWC Observatory Gamma-Ray Catalog

    Energy Technology Data Exchange (ETDEWEB)

    Abeysekara, A. U.; Barber, A. S. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT (United States); Albert, A. [Physics Division, Los Alamos National Laboratory, Los Alamos, NM (United States); Alfaro, R.; Becerril, A.; Belmont-Moreno, E. [Instituto de Física, Universidad Nacional Autónoma de México, Mexico City (Mexico); Alvarez, C.; Arceo, R.; Caballero-Mora, K. S. [Universidad Autónoma de Chiapas, Tuxtla Gutiérrez, Chiapas (Mexico); Álvarez, J. D.; Arteaga-Velázquez, J. C. [Universidad Michoacana de San Nicolás de Hidalgo, Morelia (Mexico); Solares, H. A. Ayala; Brisbois, C. [Department of Physics, Michigan Technological University, Houghton, MI (United States); Baughman, B.; Berley, D. [Department of Physics, University of Maryland, College Park, MD (United States); Bautista-Elivar, N. [Universidad Politecnica de Pachuca, Pachuca, Hidalgo (Mexico); Gonzalez, J. Becerra [NASA Goddard Space Flight Center, Greenbelt, MD (United States); BenZvi, S. Y. [Department of Physics and Astronomy, University of Rochester, Rochester, NY (United States); Bernal, A. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Mexico City (Mexico); Braun, J., E-mail: riviere@umdgrb.umd.edu [Department of Physics, University of Wisconsin-Madison, Madison, WI (United States); and others

    2017-07-01

    We present the first catalog of TeV gamma-ray sources realized with data from the newly completed High Altitude Water Cherenkov Observatory (HAWC). It is the most sensitive wide field-of-view TeV telescope currently in operation, with a one-year survey sensitivity of ∼5%–10% of the flux of the Crab Nebula. With an instantaneous field of view >1.5 sr and >90% duty cycle, it continuously surveys and monitors the sky for gamma-ray energies between hundreds of GeV and tens of TeV. HAWC is located in Mexico, at a latitude of 19° N, and was completed in 2015 March. Here, we present the 2HWC catalog, which is the result of the first source search performed with the complete HAWC detector. Realized with 507 days of data, it represents the most sensitive TeV survey to date for such a large fraction of the sky. A total of 39 sources were detected, with an expected number of false detections of 0.5 due to background fluctuation. Out of these sources, 19 are new sources that are not associated with previously known TeV sources (association criteria: <0.°5 away). The source list, including the position measurement, spectrum measurement, and uncertainties, is reported, then each source is briefly discussed. Of the 2HWC associated sources, 10 are reported in TeVCat as PWN or SNR: 2 as blazars and the remaining eight as unidentified.

  9. Liquefaction chemistry and kinetics: Hydrogen utilization studies

    Energy Technology Data Exchange (ETDEWEB)

    Rothenberger, K.S.; Warzinski, R.P.; Cugini, A.V. [Pittsburgh Energy Technology Center, PA (United States)] [and others

    1995-12-31

    The objectives of this project are to investigate the chemistry and kinetics that occur in the initial stages of coal liquefaction and to determine the effects of hydrogen pressure, catalyst activity, and solvent type on the quantity and quality of the products produced. The project comprises three tasks: (1) preconversion chemistry and kinetics, (2) hydrogen utilization studies, and (3) assessment of kinetic models for liquefaction. The hydrogen utilization studies work will be the main topic of this report. However, the other tasks are briefly described.

  10. Advancement in reactor coolant chemistry management programs and related technology development in Taiwan

    International Nuclear Information System (INIS)

    Huang, C.S.; Lin, Chien C.

    2000-01-01

    Taiwan Power Company (TPC) has three nuclear power plants in operation with a total capacity of 51 GWe, contributing about 30% of electricity generation in Taiwan. The first two plants, Chinshan (CSNPP) and Kuosheng (KSNPP), are boiling water reactor plants, and the third one, Maanshan (MASNPP), is a pressurized water reactor plant. Each plant has two identical reactors. As many nuclear power plant operators worldwide, TPC is committed to operate the plants efficiently, economically, and safely. TPC has developed and implemented several chemistry improvement programs in recent years to improve the coolant chemistry in order to ( l ) protect structure materials from corrosion, (2) reduce radiation exposures to workers and (3) reduce radwaste production and radiation release to the environment. This paper describes TPC's experience in some water chemistry management, radwaste reduction and radiation exposure control programs. Future programs under planning, including implementation of hydrogen water chemistry (HWC) in BWRs, installation of condensate pre-filters, and development of on-line water chemistry monitoring system, are also be briefly discussed. In addition, some material related research and development programs will also be presented. (author)

  11. Hydrogen Bond Basicity Prediction for Medicinal Chemistry Design.

    Science.gov (United States)

    Kenny, Peter W; Montanari, Carlos A; Prokopczyk, Igor M; Ribeiro, Jean F R; Sartori, Geraldo Rodrigues

    2016-05-12

    Hydrogen bonding is discussed in the context of medicinal chemistry design. Minimized molecular electrostatic potential (Vmin) is shown to be an effective predictor of hydrogen bond basicity (pKBHX), and predictive models are presented for a number of hydrogen bond acceptor types relevant to medicinal chemistry. The problems posed by the presence of nonequivalent hydrogen bond acceptor sites in molecular structures are addressed by using nonlinear regression to fit measured pKBHX to calculated Vmin. Predictions are made for hydrogen bond basicity of fluorine in situations where relevant experimental measurements are not available. It is shown how predicted pKBHX can be used to provide insight into the nature of bioisosterism and to profile heterocycles. Examples of pKBHX prediction for molecular structures with multiple, nonequivalent hydrogen bond acceptors are presented.

  12. BWR Water Chemistry Guidelines: 1993 Revision, Normal and hydrogen water chemistry

    International Nuclear Information System (INIS)

    Karlberg, G.; Goddard, C.; Fitzpatrick, S.

    1994-02-01

    The goal of water chemistry control is to extend the operating life of the reactor and rector coolant system, balance-of-plant components, and turbines while simultaneously controlling costs to safeguard the continued economic viability of the nuclear power generation investment. To further this goal an industry committee of chemistry personnel prepared guidelines to identify the benefits, risks, and costs associated with water chemistry in BWRs and to provide a template for an optimized water chemistry program. This document replaces the BWR Normal Water Chemistry Guidelines - 1986 Revision and the BWR Hydrogen Water Chemistry Guidelines -- 1987 Revision. It expands on the previous guidelines documents by covering the economic implications of BWR water chemistry control

  13. U.S. experience with hydrogen water chemistry in boiling water reactors

    International Nuclear Information System (INIS)

    Cowan, R.L.; Head, R.A.; Indig, M.E.; Ruiz, C.P.; Simpson, J.L.

    1988-01-01

    Hydrogen water chemistry in boiling water reactors is currently being adopted by many utilities in the U.S., with eleven units having completed preimplementation test programs, four units operating permanently with hydrogen water chemistry, and six other units in the process of installing permanent equipment. Intergranular stress corrosion cracking protection is required for the recirculation piping system and other regions of the BWR systems. The present paper explores progress in predicting and monitoring hydrogen water chemistry response in these areas. Testing has shown that impurities can play an important role in hydrogen water chemistry. Evaluation of their effects are also performed. Both computer modeling and in plant measurements show that each plant will respond uniquely to feedwater hydrogen addition. Thus, each plant has its own unique hydrogen requirement for recirculation system protecion. Furthermore, the modeling, and plant measurements show that different regions of the BWR respond differently to hydrogen injection. Thus, to insure protection of components other than the recirculation systems may require more (or less) hydrogen demand than indicated by the recirculation system measurements. In addition, impurities such as copper can play a significant role in establishing hydrogen demand. (Nogami, K.)

  14. Study of CNT growth using nanocatalyst Ag precursor by HWC-VHF-PECVD

    International Nuclear Information System (INIS)

    Eliyana, Ajeng; Rosikin, Ahmad; Winata, Toto

    2015-01-01

    The study of CNT growth has been done by using silver (Ag) nanocatalyst as a guide precursor on corning glass 7059 substrate. The silver catalyst was prepared by the evaporation method by varying deposition time for 50, 25, and 14 seconds. The silver films were then annealed at temperature of 400°C for 4 hours. From Scanning Electron Microscope (SEM) and Energy Dispersive X-ray Spectroscopy (EDX) results the grain sizes are 65 nm, 57 nm, and 33 nm, and also the atomic compositions are 6,06%, 4,52%, and 3,73% for 14, 25 and 50 seconds samples, respectively. The 33 nm samples were then used for CNT growth by using Hot Wire Cell (HWC) – Very High Frequency (VHF) – Plasma Enhanced Chemical Vapor Deposition (PECVD) at 275 ° C deposition temperature and pressure of 300 mTorr. The rf power was varied from 8 to 20 watts, with deposition time for 60 minutes. The methane (CH4) 99.999% was used as Carbon sources. Hydrogen gas (H2) was used to etch the oxide layer formed during the pre-deposition process. The diameter and length for the CNT are 125 nm and 1.650 to 2.989 nm respectively

  15. Study of CNT growth using nanocatalyst Ag precursor by HWC-VHF-PECVD

    Energy Technology Data Exchange (ETDEWEB)

    Eliyana, Ajeng; Rosikin, Ahmad; Winata, Toto, E-mail: toto@fi.itb.ac.id [Physics of Electronics Material Research Division, Physics Programme, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, West Java (Indonesia)

    2015-04-16

    The study of CNT growth has been done by using silver (Ag) nanocatalyst as a guide precursor on corning glass 7059 substrate. The silver catalyst was prepared by the evaporation method by varying deposition time for 50, 25, and 14 seconds. The silver films were then annealed at temperature of 400°C for 4 hours. From Scanning Electron Microscope (SEM) and Energy Dispersive X-ray Spectroscopy (EDX) results the grain sizes are 65 nm, 57 nm, and 33 nm, and also the atomic compositions are 6,06%, 4,52%, and 3,73% for 14, 25 and 50 seconds samples, respectively. The 33 nm samples were then used for CNT growth by using Hot Wire Cell (HWC) – Very High Frequency (VHF) – Plasma Enhanced Chemical Vapor Deposition (PECVD) at 275 ° C deposition temperature and pressure of 300 mTorr. The rf power was varied from 8 to 20 watts, with deposition time for 60 minutes. The methane (CH4) 99.999% was used as Carbon sources. Hydrogen gas (H2) was used to etch the oxide layer formed during the pre-deposition process. The diameter and length for the CNT are 125 nm and 1.650 to 2.989 nm respectively.

  16. Approach to mitigate intergranular stress corrosion cracking and dose rate reduction rate by water chemistry control in Tokai-2

    International Nuclear Information System (INIS)

    Hisamune, Kenji

    2015-01-01

    The Japan Atomic Power Company (JAPC) had been working on material replacement and measures to mitigate stress in order to maintain the integrity of the structural material of Tokai-Daini nuclear power plant (Tokai-2, BWR, 1,100 MWe; commercial operation started on November 28, 1978). In addition, as Stress Corrosion Cracking (SCC) environmental mitigation measures, we have been reducing the sulfate ion concentration in the reactor water by improving the regeneration method of the ion exchange resin at condensate purification system. Furthermore, in conducting the SCC environmental mitigation measures by applying hydrogen water chemistry (HWC) and HWC during start-up (HDS), we have been reducing the oxidizing agent concentration in the reactor water. On the other hand, as a plant that has not installed condensate filters, we have been working on feed water iron concentration reduction measures in Tokai-2 as part of the dose reduction measures. Therefore, we have improved condensate demineralizer's ion exchange resin and the ion exchange resin cleaning method using the ARCS (Advanced Resin Cleaning System) in order to improve the iron removal performance of condensate demineralizer. This document reports the improvement effect of the SCC environmental mitigation measures and the dose reduction measures by water chemistry management at Tokai-2. In addition, the dose reduction effect of the recently applied zinc injection, and the Electrochemical Corrosion Potential (ECP) monitoring plan under the On-Line Noble Chemical Addition (OLNC™) to be implemented later shall be introduced. (author)

  17. Process chemistry related to hydrogen isotopes

    International Nuclear Information System (INIS)

    Iwasaki, Matae; Ogata, Yukio

    1991-01-01

    Hydrogen isotopes, that is, protium, deuterium and tritium, are all related deeply to energy in engineering region. Deuterium and tritium exist usually as water in extremely thin state. Accordingly, the improvement of the technology for separating these isotopes is a large engineering subject. Further, tritium is radioactive and its half-life period is 12.26 years, therefore, it is desirable to fix it in more stable form besides its confinement in the handling system. As the chemical forms of hydrogen, the molecular hydrogen with highest reactivity, metal hydride, carbon-hydrogen-halogen system compounds, various inorganic hydrides, most stable water and hydroxides are enumerated. The grasping of the behavior from reaction to stable state of these hydrogen compounds and the related materials is the base of process chemistry. The reaction of exchanging isotopes between water and hydrogen on solid catalyzers, the decomposition of ethane halide containing hydrogen, the behavior of water and hydroxides in silicates are reported. The isotope exchange between water and hydrogen is expected to be developed as the process of separating and concentrating hydrogen isotopes. (K.I.) 103 refs

  18. The CH/π hydrogen bond: Implication in chemistry

    Science.gov (United States)

    Nishio, M.

    2012-06-01

    The CH/π hydrogen bond is the weakest extreme of hydrogen bonds that occurs between a soft acid CH and a soft base π-system. Implication in chemistry of the CH/π hydrogen bond includes issues of conformation, crystal packing, and specificity in host/guest complexes. The result obtained by analyzing the Cambridge Structural Database is reviewed. The peculiar axial preference of isopropyl group in α-phellandrene and folded conformation of levopimaric acid have been explained in terms of the CH/π hydrogen bond, by high-level ab initio MO calculations. Implication of the CH/π hydrogen bond in structural biology is also discussed, briefly.

  19. Theory of Hydrogen Storage: A New Strategy within Organometallic Chemistry

    Science.gov (United States)

    Zhao, Yufeng

    2006-03-01

    As one of the most vigorous fields in modern chemistry, organometallic chemistry has made vast contributions to a broad variety of technological fields including catalysis, light emitters, molecular devices, liquid crystals, and even superconductivity. Here we show that organometallic chemistry in nanoscale could be the frontier in hydrogen storage. Our study is based on the notion that the 3d transition metal (TM) atoms are superb absorbers for H storage, as their empty d orbital can bind dihydrogen ligands (elongated but non-dissociated H2) with high capacity at nearly ideal binding energy for reversible hydrogen storage. By embedding the TM atoms into a carbon-based nanostructures, high H capacity can be maintained. This presentation contains four parts. First, by comparing the conventional hydrogen storage media, e.g., metal hydrides and carbon-based materials, the general principles for designing hydrogen storage materials are outlined. Second, organometallic buckyballs are studied to demonstrate the novel strategy. The amount of H2 adsorbed on a Sc-coated fullerene, C48B12 [ScH]12, could approach 9 wt%, with binding energies of 30-40 kJ/mol. Third, the method is applied to the transition-metal carbide nanoparticles that have been synthesized experimentally. The similar non-dissociative H2 binding is revealed in our calculation, thereby demonstrating the resilience of the overall mechanism. Moreover, a novel self-catalysis process is identified. In the fourth part, transition-metal functionalization of highly porous carbon-based materials is discussed heuristically to foresee macroscopic media for hydrogen storage. Finally follows the summary and discussion of the remaining challenges to practical hydrogen storage. Work in collaboration with A. C. Dillon, Y.-H. Kim, M. Heben & S. B. Zhang and supported by the U.S. DOE/EERE under contract No. DE-AC36-99GO10337.

  20. How Do Organic Chemistry Students Understand and Apply Hydrogen Bonding?

    Science.gov (United States)

    Henderleiter, J.; Smart, R.; Anderson, J.; Elian, O.

    2001-08-01

    Students completing a year-long organic chemistry sequence were interviewed to assess how they understood, explained, and applied knowledge of hydrogen bonding to the physical behavior of molecules. Students were asked to define hydrogen bonding and explain situations in which hydrogen bonding could occur. They were asked to predict and explain how hydrogen bonding influences boiling point, the solubility of molecules, and NMR and IR spectra. Results suggest that although students may be able to give appropriate definitions of hydrogen bonding and may recognize when this phenomenon can occur, significant numbers cannot apply their knowledge of hydrogen bonding to physical properties of molecules or to the interpretation of spectral data. Some possess misconceptions concerning boiling points and the ability of molecules to induce hydrogen bonding. Instructional strategies must be adjusted to address these issues.

  1. Solar chemistry / hydrogen - Summary report on the research programme 2002; Forschungsprogramm Solarchemie / Wasserstoff

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This summary report for the Swiss Federal Office of Energy (SFOE) on the solar chemistry / hydrogen research programme presents an overview of work done in these fields in Switzerland in 2002. It includes an overview of work done on 12 research and development projects and 9 pilot and demonstration projects. The volume is completed with a selection of 13 annual reports on particular topics, including transformation and storage of energy by photo-chemical, photo-electrochemical and photovoltaic means, generation of hydrogen using water splitting, solar production of zinc and calcium, catalytic synthesis, redox processes for the production of hydrogen and compressed air as a means of storing energy. Also covered are the topics of how solar chemistry can help reduce CO{sub 2} emissions and the management of the International Energy Agency's hydrogen annex 14. Further reports look at the destabilisation of metal hydride compounds, materials for sustainable energy technologies and diffusion barriers for high-pressure hydrogen tanks.

  2. The basic chemistry and photochemistry behind hydrogen peroxide tooth whitening

    NARCIS (Netherlands)

    Young, N.D.; Fairley, P.D.; Mohan, V.; Jumeaux, C.

    2013-01-01

    Tooth whitening using hydrogen peroxide gel formulation is a complexprocess which involves both chemistry and physics, and there is still some controversy about the efficiency of whitening processes, particularly with respect to the roles of temperature and irradiation with light. In this work we

  3. Final Report: Main Group Element Chemistry in Service of Hydrogen Storage and Activation

    Energy Technology Data Exchange (ETDEWEB)

    David A. Dixon; Anthony J. Arduengo, III

    2010-09-30

    Replacing combustion of carbon-based fuels with alternative energy sources that have minimal environmental impact is one of the grand scientific and technological challenges of the early 21st century. Not only is it critical to capture energy from new, renewable sources, it is also necessary to store the captured energy efficiently and effectively for use at the point of service when and where it is needed, which may not be collocated with the collection site. There are many potential storage media but we focus on the storage of energy in chemical bonds. It is more efficient to store energy on a per weight basis in chemical bonds. This is because it is hard to pack electrons into small volumes with low weight without the use of chemical bonds. The focus of the project was the development of new chemistries to enable DOE to meet its technical objectives for hydrogen storage using chemical hydrogen storage systems. We provided computational chemistry support in terms of thermodynamics, kinetics, and properties prediction in support of the experimental efforts of the DOE Center of Excellence for Chemical Hydrogen Storage. The goal of the Center is to store energy in chemical bonds involving hydrogen atoms. Once the hydrogen is stored in a set of X-H/Y-H bonds, the hydrogen has to be easily released and the depleted fuel regenerated very efficiently. This differs substantially from our current use of fossil fuel energy sources where the reactant is converted to energy plus CO2 (coal) or CO2 and H2O (gasoline, natural gas), which are released into the atmosphere. In future energy storage scenarios, the spent fuel will be captured and the energy storage medium regenerated. This places substantial additional constraints on the chemistry. The goal of the computational chemistry work was to reduce the time to design new materials and develop materials that meet the 2010 and 2015 DOE objectives in terms of weight percent, volume, release time, and regeneration ability. This

  4. Main Group Element Chemistry in Service of Hydrogen Storage and Activation. Final report

    International Nuclear Information System (INIS)

    Dixon, David A.; Arduengo, Anthony J. III

    2010-01-01

    Replacing combustion of carbon-based fuels with alternative energy sources that have minimal environmental impact is one of the grand scientific and technological challenges of the early 21st century. Not only is it critical to capture energy from new, renewable sources, it is also necessary to store the captured energy efficiently and effectively for use at the point of service when and where it is needed, which may not be collocated with the collection site. There are many potential storage media but we focus on the storage of energy in chemical bonds. It is more efficient to store energy on a per weight basis in chemical bonds. This is because it is hard to pack electrons into small volumes with low weight without the use of chemical bonds. The focus of the project was the development of new chemistries to enable DOE to meet its technical objectives for hydrogen storage using chemical hydrogen storage systems. We provided computational chemistry support in terms of thermodynamics, kinetics, and properties prediction in support of the experimental efforts of the DOE Center of Excellence for Chemical Hydrogen Storage. The goal of the Center is to store energy in chemical bonds involving hydrogen atoms. Once the hydrogen is stored in a set of X-H/Y-H bonds, the hydrogen has to be easily released and the depleted fuel regenerated very efficiently. This differs substantially from our current use of fossil fuel energy sources where the reactant is converted to energy plus CO 2 (coal) or CO 2 and H 2 O (gasoline, natural gas), which are released into the atmosphere. In future energy storage scenarios, the spent fuel will be captured and the energy storage medium regenerated. This places substantial additional constraints on the chemistry. The goal of the computational chemistry work was to reduce the time to design new materials and develop materials that meet the 2010 and 2015 DOE objectives in terms of weight percent, volume, release time, and regeneration ability

  5. Control of radiation fields in BWRs after noble metal chemical addition

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, R.L.; Wood, C.J. [EPRI, Palo Alto, CA (United States)

    2002-07-01

    Hydrogen water chemistry (HWC) was developed to mitigate the intergranular stress corrosion cracking (IGSCC) that can occur in the welded piping and internal components of boiling water reactors (BWRs). HWC is practiced by adding hydrogen gas to the feedwater to reduce the electrochemical corrosion potential (ECP) of the component to be protected to below -0.230 V(SHE). Unfortunately, only a few BWR owners implemented HWC for internals component IGSCC protection because of the factor of 4 to 5 increase in operating dose rates that accompanies its use. Noble metal chemical addition (NMCA) was developed to address this shortcoming. NMCA is a process in which Pt and Rh chemicals are added to a shutdown Boiling Water Reactor while the reactor water temperature is maintained in the range of 120 C to 150 C for 48 hours. During that time, a target concentration of Pt and Rh is maintained in the reactor water. At the end of the 48 hour period the plant then either goes back to power or enters into a refueling outage. The end result of the NMCA process is a uniform deposit of Pt and Rh metal at very low concentrations, on the order of 0.5 to 1.0 mg/cm{sup 2}, on the reactor wetted surfaces. During subsequent operation, when a small amount of hydrogen is added to the feedwater (less than 0.4 ppm), very low ECPs will be developed on the wetted catalytic surfaces, on the order of -0.500 V(SHE), and intergranular stress corrosion cracking (IGSCC) of components will be mitigated. Since NMCA with hydrogen changes the surface chemistry and not the bulk chemistry, there is little or no increase in operating dose rate. See References 1 through 5 for a more complete discussion of HWC and NMCA fundamentals. To date, 26 BWRs worldwide have applied NMCA. As operating plants have completed their first full operating cycle after NMCA application, it has become apparent that NMCA can have a significant impact on shutdown dose rates, as can be seen in Table 1. (The shut down dose rates

  6. Inorganic Chemistry in Hydrogen Storage and Biomass Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Thorn, David [Los Alamos National Laboratory

    2012-06-13

    Making or breaking C-H, B-H, C-C bonds has been at the core of catalysis for many years. Making or breaking these bonds to store or recover energy presents us with fresh challenges, including how to catalyze these transformations in molecular systems that are 'tuned' to minimize energy loss and in molecular and material systems present in biomass. This talk will discuss some challenging transformations in chemical hydrogen storage, and some aspects of the inorganic chemistry we are studying in the development of catalysts for biomass utilization.

  7. Modeling the electrochemistry of the primary circuits of light water reactors

    International Nuclear Information System (INIS)

    Bertuch, A.; Macdonald, D.D.; Pang, J.; Kriksunov, L.; Arioka, K.

    1994-01-01

    To model the corrosion behaviors of the heat transport circuits of light water reactors, a mixed potential model (NTM) has been developed and applied to both boiling water reactors (BWRs) and pressurized water reactors (PWRs). Using the data generated by the GE/UKEA-Harwell radiolysis model, electrochemical potentials (ECPs) have been calculated for the heat transport circuits of eight BWRs operating under hydrogen water chemistry (HWC). By modeling the corrosion behaviors of these reactors, the effectiveness of HWC at limiting IGSCC and IASCC can be determined. For simulating PWR primary circuits, a chemical-radiolysis model (developed by the authors) was used to generate input parameters for the MPM. Corrosion potentials of Type 304 and 316 SSs in PWR primary environments were calculated using the NTM and were found to be in good agreement with the corrosion potentials measured in the laboratory for simulated PWR primary environments

  8. Pressure-induced chemistry in a nitrogen-hydrogen host-guest structure

    Science.gov (United States)

    Spaulding, Dylan K.; Weck, Gunnar; Loubeyre, Paul; Datchi, Fréderic; Dumas, Paul; Hanfland, Michael

    2014-12-01

    New topochemistry in simple molecular systems can be explored at high pressure. Here we examine the binary nitrogen/hydrogen system using Raman spectroscopy, synchrotron X-ray diffraction, synchrotron infrared microspectroscopy and visual observation. We find a eutectic-type binary phase diagram with two stable high-pressure van der Waals compounds, which we identify as (N2)6(H2)7 and N2(H2)2. The former represents a new type of van der Waals host-guest compound in which hydrogen molecules are contained within channels in a nitrogen lattice. This compound shows evidence for a gradual, pressure-induced change in bonding from van der Waals to ionic interactions near 50 GPa, forming an amorphous dinitrogen network containing ionized ammonia in a room-temperature analogue of the Haber-Bosch process. Hydrazine is recovered on decompression. The nitrogen-hydrogen system demonstrates the potential for new pressure-driven chemistry in high-pressure structures and the promise of tailoring molecular interactions for materials synthesis.

  9. Deaerating operation during startup periods in Japanese BWRs

    International Nuclear Information System (INIS)

    Maeda, K.

    2002-01-01

    The IGSCC has been mitigated by application of effective countermeasures on water chemistry environment. Hydrogen water chemistry (HWC) has been implemented to reduce the reactor water dissolved oxygen concentration and electrochemical corrosion potential (ECP) during plant operation to reduced crack growth rate of in sensitized stainless steel. But the HWC has not been implemented during startup periods. The crack growth rate of sensitized stainless steel will increase obviously during startup period by increasing in temperature under high dissolved oxygen conditions [1]. The deaerating operation has been applied routinely in Japanese BWRs to reduce reactor water dissolved oxygen quickly and easily before plant startup [2,3]. The main condenser is vacuumed up before start in the deaerating operation. The reactor is connected with the main condenser by opening the main steam bypass valves or the main steam drain valves. The deaerating operation is started with keeping the reactor water temperature about 70 to 90 degrees centigrade. The deaerating operation will come to an end when the reactor water dissolved concentration will decrease below 200 ppb. This paper shows the procedure and actual results of deaerating operation. (authors)

  10. Laboratory and modeling studies in search of the critical hydrogen concentration

    International Nuclear Information System (INIS)

    Bartels, David; Wu, Weiqiang; Kanjana, Kotchaphan; Sims, Howard; Henshaw, Jim

    2012-09-01

    The great success of hydrogen water chemistry (HWC) for primary coolant in nuclear power plants is due to the prevention of net radiolysis and to maintenance of the corrosion potential below -230 mV (SHE) where the rate of stress corrosion cracking is minimized. The critical hydrogen concentration or CHC has been defined as that concentration of excess H 2 in primary coolant water, which prevents net water radiolysis via the chain reaction OH + H 2 ↔H 2 O + H (1, -1) H + H 2 O 2 → H 2 O + OH (2) The principle oxidizing free radical (OH) is thus converted into a reducing radical (H), oxidation products are reduced back to water, and the net result is no chemical change. A set of benchmark experiments at the U2 reactor in Chalk River have been reported in an extensive AECL report, which indicate that the CHC in this reactor is ca. 25 micro-molar. Using the review of yields and reaction rates set forth in another recent AECL report, the Chalk River experiments have been modelled in work at NNL, Harwell. The model was not able to successfully reproduce the experimental CHC, or the steady-state H 2 concentrations (SSH2) in the absence of excess hydrogen. A sensitivity analysis of the entire model was carried out. Essentially three important variables have been found to dominate the result. Reaction rate (1) is overwhelmingly important in determining how much H 2 is needed to accomplish the chain back-reaction. Almost with equal importance, the back reaction (-1) needs to be considered at 300 deg. C, but there is some uncertainty of its magnitude. Finally, the relative yields of radicals and molecular products (i.e. H 2 , H 2 O 2 ) in particular H 2 :OH from the radiolysis are critical. Laboratory studies of hydrogenated water radiation chemistry have been carried out with a van de Graaff electron accelerator at Notre Dame Radiation Laboratory. Modelling of the hydrogen produced as a function of the hydrogen input, suggests that the reaction rate (-1) is ca. two

  11. The basic chemistry and photochemistry behind hydrogen peroxide tooth whitening

    OpenAIRE

    Young, N.D.; Fairley, P.D.; Mohan, V.; Jumeaux, C.

    2013-01-01

    Tooth whitening using hydrogen peroxide gel formulation is a complexprocess which involves both chemistry and physics, and there is still some controversy about the efficiency of whitening processes, particularly with respect to the roles of temperature and irradiation with light. In this work we avoid the complications of the physics bystudying the basic interactions between whitening agents and stainmolecules in simple solutions. We demonstrate that blue light irradiation has a clear and la...

  12. Thermodynamics and kinetics of graphene chemistry: a graphene hydrogenation prototype study.

    Science.gov (United States)

    Pham, Buu Q; Gordon, Mark S

    2016-12-07

    The thermodynamic and kinetic controls of graphene chemistry are studied computationally using a graphene hydrogenation reaction and polyaromatic hydrocarbons to represent the graphene surface. Hydrogen atoms are concertedly chemisorped onto the surface of graphene models of different shapes (i.e., all-zigzag, all-armchair, zigzag-armchair mixed edges) and sizes (i.e., from 16-42 carbon atoms). The second-order Z-averaged perturbation theory (ZAPT2) method combined with Pople double and triple zeta basis sets are used for all calculations. It is found that both the net enthalpy change and the barrier height of graphene hydrogenation at graphene edges are lower than at their interior surfaces. While the thermodynamic product distribution is mainly determined by the remaining π-islands of functionalized graphenes (Phys. Chem. Chem. Phys., 2013, 15, 3725-3735), the kinetics of the reaction is primarily correlated with the localization of the electrostatic potential of the graphene surface.

  13. BWR zinc addition Sourcebook

    International Nuclear Information System (INIS)

    Garcia, Susan E.; Giannelli, Joseph F.; Jarvis, Alfred J.

    2014-01-01

    Boiling Water Reactors (BWRs) have been injecting zinc into the primary coolant via the reactor feedwater system for over 25 years for the purpose of controlling primary system radiation fields. The BWR zinc injection process has evolved since the initial application at the Hope Creek Nuclear Station in 1986. Key transitions were from the original natural zinc oxide (NZO) to depleted zinc oxide (DZO), and from active zinc injection of a powdered zinc oxide slurry (pumped systems) to passive injection systems (zinc pellet beds). Zinc addition has continued through various chemistry regimes changes, from normal water chemistry (NWC) to hydrogen water chemistry (HWC) and HWC with noble metals (NobleChem™) for mitigation of intergranular stress corrosion cracking (IGSCC) of reactor internals and primary system piping. While past reports published by the Electric Power Research Institute (EPRI) document specific industry experience related to these topics, the Zinc Sourcebook was prepared to consolidate all of the experience gained over the past 25 years. The Zinc Sourcebook will benefit experienced BWR Chemistry, Operations, Radiation Protection and Engineering personnel as well as new people entering the nuclear power industry. While all North American BWRs implement feedwater zinc injection, a number of other BWRs do not inject zinc. This Sourcebook will also be a valuable resource to plants considering the benefits of zinc addition process implementation, and to gain insights on industry experience related to zinc process control and best practices. This paper presents some of the highlights from the Sourcebook. (author)

  14. Photoelectrochemical Hydrogen Production Using New Combinatorial Chemistry Derived Materials

    Energy Technology Data Exchange (ETDEWEB)

    Jaramillo, Thomas F.; Baeck, Sung-Hyeon; Kleiman-Shwarsctein, Alan; Stucky, Galen D. (PI); McFarland, Eric W. (PI)

    2004-10-25

    Solar photoelectrochemical water-splitting has long been viewed as one of the “holy grails” of chemistry because of its potential impact as a clean, renewable method of fuel production. Several known photocatalytic semiconductors can be used; however, the fundamental mechanisms of the process remain poorly understood and no known material has the required properties for cost effective hydrogen production. In order to investigate morphological and compositional variations in metal oxides as they relate to opto-electrochemical properties, we have employed a combinatorial methodology using automated, high-throughput, electrochemical synthesis and screening together with conventional solid-state methods. This report discusses a number of novel, high-throughput instruments developed during this project for the expeditious discovery of improved materials for photoelectrochemical hydrogen production. Also described within this report are results from a variety of materials (primarily tungsten oxide, zinc oxide, molybdenum oxide, copper oxide and titanium dioxide) whose properties were modified and improved by either layering, inter-mixing, or doping with one or more transition metals. Furthermore, the morphologies of certain materials were also modified through the use of structure directing agents (SDA) during synthesis to create mesostructures (features 2-50 nm) that increased surface area and improved rates of hydrogen production.

  15. Developing and Implementing a Simple, Affordable Hydrogen Fuel Cell Laboratory in Introductory Chemistry

    Science.gov (United States)

    Klara, Kristina; Hou, Ning; Lawman, Allison; Wu, Liheng; Morrill, Drew; Tente, Alfred; Wang, Li-Qiong

    2014-01-01

    A simple, affordable hydrogen proton exchange membrane (PEM) fuel cell laboratory was developed through a collaborative effort between faculty and undergraduate students at Brown University. It has been incorporated into the introductory chemistry curriculum and successfully implemented in a class of over 500 students per academic year for over 3…

  16. Investigation of coupling between chemistry and discharge dynamics in radio frequency hydrogen plasmas in the Torr regime

    International Nuclear Information System (INIS)

    Kalache, B; Novikova, T; Morral, A Fontcuberta i; Cabarrocas, P Roca i; Morscheidt, W; Hassouni, K

    2004-01-01

    We present the results of a study of a capacitively coupled hydrogen discharge by means of a one-dimensional numerical fluid model and experiments. The model includes a detailed description of the gas-phase chemistry taking into account the production of H - ions by dissociative attachment of H 2 vibrational levels. The population of these levels is described by a Boltzmann vibrational distribution function characterized by a vibrational temperature T V . The effect of the dissociative-attachment reaction on the discharge dynamics was investigated by varying the vibrational temperature, which was used as a model input parameter. Increasing the vibrational temperature from 1000 to 6000 K affects both the chemistry and the dynamics of the electrical discharge. Because of dissociative attachment, the H - ion density increases by seven orders of magnitude and the H - ion density to electron density ratio varies from 10 -7 to 6, while the positive ion density increases slightly. As a consequence, the atomic hydrogen density increases by a factor of three, and the sheath voltage drops from 95 to 75 V. Therefore, clear evidence of a strong coupling between chemistry and electrical dynamics through the production of H - ions is demonstrated. Moreover, satisfactory agreement between computed and measured values of atomic hydrogen and H - ion densities gives further support to the requirement of a detailed description of the hydrogen vibrational kinetics for capacitively coupled radio frequency discharge models in the Torr regime

  17. Modelling perspectives on radiation chemistry in BWR reactor core

    International Nuclear Information System (INIS)

    Ibe, Eishi

    1991-01-01

    Development of a full-system boiling water reactor core model started in 1982. The model included a two-region reactor core, one with and one without boiling. Key design parameters consider variable dose rates in a three-layer liquid downcomer. Dose rates in the core and downcomer include both generation and recombination reactions of species. Agreement is good between calculations and experimental data of oxygen concentration as a function of hydrogen concentration for different bubble sizes. Oxygen concentration is reduced in the reactor pressure vessel (RPV) by increasing bubble size. The multilayer model follows the oxygen data better than a single-layered model at high concentrations of hydrogen. Key reactions are reduced to five radiolysis reactions and four decomposition reactions for hydrogen peroxide. Calculations by the DOT 3 code showed dose rates from neutrons and gamma rays in various parts of the core. Concentrations of oxygen, hydrogen peroxide, and hydrogen were calculated by the model as a function of time from core inlet. Similar calculations for NWC and HWC were made as a function of height from core inlet both in the boiling channel an the bypass channel. Finally the model was applied to calculate the oxygen plus half the hydrogen peroxide concentrations as a function of hydrogen concentration to compare with data from five plants. Power density distribution with core height was given for an early stage and an end stage of a cycle. Increases of dose rates in the turbine for seven plants were shown as a function of increased hydrogen concentration in the reactor water

  18. DOE programs in fire and materials

    International Nuclear Information System (INIS)

    Skocypec, R.D.; Peterson, C.W.

    1996-01-01

    Diverse laboratory experiments and a review of the most recent dose rate data from operating plants have identified key factors responsible for the increase in shutdown radiation fields at a number of BWRs following implementation of HWC. This information suggests strategies to minimize radiation field increases under HWC and to avoid possible problems during chemical decontamination. The results from corrosion release and activity deposition laboratory experiments, performed under NWC, HWC, and cycling conditions, and the chemistry and structure of films that form under cycling conditions were compiled and reviewed. Operating plant experience under HWC, including the on-line gamma spectroscopy measurements performed at Hope Creek, was also studied. The radiation buildup measurements at Monticello, Brunswick-2, and Duane Arnold were also considered. The focus was to identify those areas that provided a general consensus about the factors responsible for activity buildup under HWC. Once this task was accomplished, the information was used to identity procedures that plant operators could utilize to mitigate undesirable effects

  19. Characterization of the electrochemical behavior of coating by steel welding 308l and in presence of noble metals deposits; Caracterizacion del comportamiento electroquimico de recubrimiento por soldadura de acero 308L y en presencia de depositos de metales nobles

    Energy Technology Data Exchange (ETDEWEB)

    Piedras, P.; Arganis J, C. R., E-mail: pedro.piedras@hotmail.es [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-10-15

    In this work the oxide deposits and noble metals deposit were characterized (Ag and Pt) on a coating of stainless steel 308l that were deposited by the shield metal arc welding (SMAW) on steel A36 by means of scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction. The extrapolation of Tafel technique was also used to obtain the corrosion potential (Ec) for the pre-rusty steel and for the samples with deposits of Pt and Ag under conditions of hydrogen water chemistry (HWC), demonstrating that this parameter diminishes with the presence of this deposits. (Author)

  20. Characterization of the electrochemical behavior of coating by steel welding 308l and in presence of noble metals deposits

    International Nuclear Information System (INIS)

    Piedras, P.; Arganis J, C. R.

    2014-10-01

    In this work the oxide deposits and noble metals deposit were characterized (Ag and Pt) on a coating of stainless steel 308l that were deposited by the shield metal arc welding (SMAW) on steel A36 by means of scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction. The extrapolation of Tafel technique was also used to obtain the corrosion potential (Ec) for the pre-rusty steel and for the samples with deposits of Pt and Ag under conditions of hydrogen water chemistry (HWC), demonstrating that this parameter diminishes with the presence of this deposits. (Author)

  1. Optimum Water Chemistry in radiation field buildup control

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chien, C. [Vallecitos Nuclear Center, Pleasanton, CA (United States)

    1995-03-01

    Nuclear utilities continue to face the challenGE of reducing exposure of plant maintenance personnel. GE Nuclear Energy has developed the concept of Optimum Water Chemistry (OWC) to reduce the radiation field buildup and minimize the radioactive waste production. It is believed that reduction of radioactive sources and improvement of the water chemistry quality should significantly reduce both the radiation exposure and radwaste production. The most important source of radioactivity is cobalt and replacement of cobalt containing alloy in the core region as well as in the entire primary system is considered the first priority to achieve the goal of low exposure and minimized waste production. A plant specific computerized cobalt transport model has been developed to evaluate various options in a BWR system under specific conditions. Reduction of iron input and maintaining low ionic impurities in the coolant have been identified as two major tasks for operators. Addition of depleted zinc is a proven technique to reduce Co-60 in reactor water and on out-of-core piping surfaces. The effect of HWC on Co-60 transport in the primary system will also be discussed.

  2. Ammonia chemistry at SMART

    International Nuclear Information System (INIS)

    Na, J. W.; Seong, G. W.; Lee, E. H.; Kim, W. C.; Choi, B. S.; Kim, J. P.; Lee, D. J.

    1999-01-01

    Ammonia is used as the pH control agent of primary water at SMART (System-integrated Modular Advanced ReacTor). Some of this ammonia is decomposed to hydrogen and nitrogen by radiation in the reactor core. The produced hydrogen gas is used for the removal of dissolved oxygen in the coolant. Some of nitrogen gas in pressurizer is dissolved into the primary water. Because ammonia, hydrogen and nitrogen which is produced by ammonia radiolysis are exist in the coolant at SMART, ammonia chemistry at SMART is different with lithium-boron chemistry at commercial PWR. In this study, the pH characteristics of ammonia and the solubility characteristics of hydrogen and nytrogen were analyzed for the management of primary water chemistry at SMART

  3. Characterization of noble metals deposits and oxides in conditions of BWR reactors

    International Nuclear Information System (INIS)

    Arganis J, C.R.; Aguilar T, J.A.; Contreras R, A.

    2008-01-01

    The oxides deposited on steel 304l under normal chemistry conditions (NWC) and hydrogen chemistry (HWC) with presence of Zn, being that the first ones present hexagonal oxides of Hematite and the second bipyramidal crystals possibly Magnetite with traces of Zn. Deposits of Pt on the oxidized surfaces under NWC conditions were obtained, being glasses from 2 to 4 μm and Pt-Rh deposits were obtained on the oxidized surfaces in presence of Zn, by its size its were not possible to observe them by scanning electron microscopy. The kinetics of the surfaces of Hematite and of the deposits of Pt it was measured by means of the Tafel extrapolation technique, being proven the catalytic effect of the Pt, even in sizes of 11 μm. (Author)

  4. The influence of the water chemistry regime of the third circuit on the corrosion hydrogen burden to the secondary sodium circuit in the steam generator model of BN-800 reactor

    International Nuclear Information System (INIS)

    Smykov, V.B.; Ermolaev, N.P.; Kolesnik, A.I.; Egorov, V.A.; Shevchenko, N.N.

    1994-01-01

    An experimental program was conducted to determine the influence of water chemistry on the corrosion hydrogen burden from the III circuit to the secondary sodium in sodium-heated rig of OTSG of NPP BN-800. Combined water chemistry has given the best passivative effect on steam-generating surfaces and smallest hydrogen burden to secondary sodium during start-up. Common hydrogen increasing in secondary sodium was less then 0.2 ppm. In case of AVT water chemistry (NH 3 +N 2 H 4 ) in III side of OTSG-rig the hydrogen level in secondary sodium was 1.0-1.2 ppm. It means that during first start-up at NPP BN-800 the common hydrogen level in secondary sodium may reaches 0.80-0.85 ppm. 4 figs.; 4 tabs

  5. Use of a PhET Interactive Simulation in General Chemistry Laboratory: Models of the Hydrogen Atom

    Science.gov (United States)

    Clark, Ted M.; Chamberlain, Julia M.

    2014-01-01

    An activity supporting the PhET interactive simulation, Models of the Hydrogen Atom, has been designed and used in the laboratory portion of a general chemistry course. This article describes the framework used to successfully accomplish implementation on a large scale. The activity guides students through a comparison and analysis of the six…

  6. XVIII Mendeleev congress on general and applied chemistry. Summaries of reports in five volumes. Volume 5. IV Russian-French symposium Supramolecular systems in chemistry and biology. II Russian-Indian symposium on organic chemistry. International symposium on present-day radiochemistry Radiochemistry: progress and prospects. International symposium Green chemistry, stable evolution and social responsibility of chemists. Symposium Nucleophilic hydrogen substitution in aromatic systems and related reactions

    International Nuclear Information System (INIS)

    2007-01-01

    The 5 volume of the XVIII Mendeleev congress on general and applied chemistry includes summaries of reports on the subjects of sypramolecular systems in chemistry and biology, organic chemistry, modern radiochemistry, green chemistry - development and social responsibility of chemists, nucleophilic hydrogen substitution in aromatic systems and related chemical reactions [ru

  7. Decontamination flange film characterization for a boiling water reactor under hydrogen water chemistry

    International Nuclear Information System (INIS)

    Baston, V.F.; Garbauskas, M.F.; Bozeman, J.

    1996-01-01

    Stainless steel artifacts removed from a boiling water reactor class 4 plant that operated under hydrogen water chemistry and experienced a difficult decontamination were submitted for oxide film characterization. The results reported for the corrosion film composition and structure are consistent with existing theoretical concepts for stainless steel corrosion, spinel structure site preferences (octahedral or tetrahedral) for transition metal ions, and potential-pH diagrams. The observed zinc effects on film stability and lower cobalt incorporation are also consistent with these theoretical concepts

  8. Measurement of percent hydrogen in the mechanical vacuum pump gas stream during BWR startup

    International Nuclear Information System (INIS)

    Garcia, Susan E.; Odell, Andrew D.; Giannelli, Joseph F.

    2012-09-01

    All U.S BWRs use a Mechanical Vacuum Pump (MVP) to establish condenser vacuum during start-ups, normally from the initial heat-up to the point where sufficient reactor steam pressure and flow is available to place the Steam Jet Air Ejector (SJAE) and off-gas treatment system in service. MVP operation is restricted to <5% power and gas stream concentrations of <4% H 2 , the lower flammability limit (LFL) for hydrogen/air mixtures. For a particular plant startup prior to hydrogen injection for hydrogen water chemistry (HWC), the MVP %H 2 would depend on the air in-leakage rate, the H 2 gas generation rate from radiolysis and the gas/steam transport rate from the reactor vessel to the main condenser. The radiolysis rate at low power, which is not precisely known and has not been modeled for the BWR, is normally assumed to increase in proportion to thermal power. Two thirds of the radiolytic gas by volume would be H 2 and one third O 2 . The MVP is not equipped with %H 2 sampling and measurement capability, and many MVP systems include no flow measurement. No U.S plant or literature data on MVP %H 2 were found. The industry-first Early Hydrogen Water Chemistry (EHWC) demonstration at the Peach Bottom 3 nuclear power plant involved hydrogen gas injection into the reactor vessel during startup while the MVP was in service. To support the EHWC project, it was necessary to collect baseline MVP %H 2 data during a startup without hydrogen injection and to monitor MVP %H 2 during the startup with EHWC. The MVP system had no normal sample point, but included test taps in the suction and discharge piping. A sampling method and apparatus was invented (EPRI patent pending), designed, built and applied to obtain %H 2 measurements in the MVP gas stream. The apparatus allowed a gas sample stream to be taken from either the suction (vacuum) or discharge side of the MVP. The gas sample stream was preconditioned to remove moisture (the MVP uses water as a liquid compressant), flowed to

  9. Cobalt deposition studies in the primary circuit under BWR conditions (Phase 1 and 2)

    International Nuclear Information System (INIS)

    Bennett, Peter

    1996-04-01

    This report presents the results from the first 2 phases of an experiment performed to investigate the effects of water chemistry on cobalt transport and deposition in the primary circuit under BWR conditions. Two high pressure water loops have been used to compare the incorporation of cobalt into the oxide films on coupons of various LWR primary circuit constructional materials, with several pretreatments, under Hydrogen Water Chemistry (HWC) and Normal Water Chemistry (NWC) conditions. Cobalt-60 deposition rates onto samples that had been pre-oxidised in air were lower than on samples that had been exposed previously in a water loop or had untreated surfaces. In NWC, oxide layers were thicker, normalised Co-60 deposition rates were higher and Co-60 activities per unit volume of oxide were greater. Some evidence has been produced to support the conclusions of other workers that a chromium-rich outer oxide layer is responsible for enhanced cobalt incorporation. (author)

  10. C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN

    Energy Technology Data Exchange (ETDEWEB)

    Gerald P. Huffman

    2004-09-30

    The Consortium for Fossil Fuel Science (CFFS) is a research consortium with participants from the University of Kentucky, University of Pittsburgh, West Virginia University, University of Utah, and Auburn University. The CFFS is conducting a research program to develop C1 chemistry technology for the production of clean transportation fuel from resources such as coal and natural gas, which are more plentiful domestically than petroleum. The processes under development will convert feedstocks containing one carbon atom per molecular unit into ultra clean liquid transportation fuels (gasoline, diesel, and jet fuel) and hydrogen, which many believe will be the transportation fuel of the future. Feedstocks include synthesis gas, a mixture of carbon monoxide and hydrogen produced by coal gasification, coalbed methane, light products produced by Fischer-Tropsch (FT) synthesis, methanol, and natural gas.

  11. The predicted effectiveness of noble metal treatment at the Chinshan boiling water reactor

    International Nuclear Information System (INIS)

    Yeh Tsungkuang; Chu Fang; Chang Ching; Huang Chiashen

    2000-01-01

    The technique of noble metal treatment (NMT) available in a form of noble metal cooling (NMC) or noble metal chemical addition (NMCA), was introduced to enhance effectiveness of hydrogen water chemistry. Since it is technically difficult to gain access to an entire primary heat transport circuit (PHTC) of a BWR and monitor variation on electrochemical corrosion potential (ECP), a question whether the NMC technology is indeed effective for lowering the ECP of every location in a BWR is not still well understood at the moment. Then, computer modeling is so far the best tool to help investigate effectiveness of the NMT along PHCT of the BWR. Here was discussed on how the computer model was calibrated by using measured chemistry data obtained from No. 2 unit (BWR) in the Kuosheng Plant. The effect of noble metal treatment coupled with hydrogen water chemistry has been quantitatively molded, on a base of two different sets of ECD enhancement data. It was predicted that No. 1 unit in the Chinshan could be protected by noble metal treatment with lower [H 2 ] FW . In the case of competitive enhancing factors for the ECDs of oxygen reduction, hydrogen peroxide reduction, and hydrogen oxidation reactions, HWC had always to be present for noble metal treatment to be effective for protecting a reactor. Otherwise, according to a model calculation based upon the results from Kim's work, the ECP might instead be increased due to the enhanced reduction reaction rate of oxygen and hydrogen peroxide, especially in the near core regions. (G.K.)

  12. Chemistry - Toward efficient hydrogen production at surfaces

    DEFF Research Database (Denmark)

    Nørskov, Jens Kehlet; Christensen, Claus H.

    2006-01-01

    Calculations are providing a molecular picture of hydrogen production on catalytic surfaces and within enzymes, knowledge that may guide the design of new, more efficient catalysts for the hydrogen economy.......Calculations are providing a molecular picture of hydrogen production on catalytic surfaces and within enzymes, knowledge that may guide the design of new, more efficient catalysts for the hydrogen economy....

  13. Application of damage function analysis to reactor coolant circuits

    International Nuclear Information System (INIS)

    MacDonald, D.D.

    2002-01-01

    The application of deterministic models for simulating stress corrosion cracking phenomena in Boiling Water Reactor primary coolant circuits is described. The first generation code, DAMAGE-PREDICTOR, has been used to model the radiolysis of the coolant, to estimate the electrochemical corrosion potential (ECP), and to calculate the crack growth rate (CGR) at fixed state points during reactor operation in about a dozen plants worldwide. This code has been validated in ''double-blind'' comparisons between the calculated and measured hydrogen concentration, oxygen concentration, and ECP in the recirculation system of the Leibstadt BWR in Switzerland, as well as through less formal comparisons with data from other plants. Second generation codes have now been developed, including REMAIN for simulating BWRs with internal coolant pumps and the ALERT series for modeling reactors with external pumps. One of this series, ALERT, yields the integrated damage function (IDF), which is the crack length versus time, on a component-by-component basis for a specified future operating scenario. This code therefore allows one to explore proposed future operating protocols, with the objective of identifying those that are most cost-effective and which minimizes the risk of failure of components in the coolant circuit by stress corrosion cracking. The application of this code is illustrated by exploring the benefits of partial hydrogen water chemistry (HWC) for an actual reactor, in which hydrogen is added to the feedwater over only limited periods during operation. The simulations show that the benefits, in terms of reduction in the IDFs for various components, are sensitive to when HWC was initiated in the plant life and to the length of time over which it is applied. (author)

  14. Application of damage function analysis to reactor coolant circuits

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, D.D. [Center for Electrochemical Science and Technology, Pennsylvania State Univ., University Park, PA (United States)

    2002-07-01

    The application of deterministic models for simulating stress corrosion cracking phenomena in Boiling Water Reactor primary coolant circuits is described. The first generation code, DAMAGE-PREDICTOR, has been used to model the radiolysis of the coolant, to estimate the electrochemical corrosion potential (ECP), and to calculate the crack growth rate (CGR) at fixed state points during reactor operation in about a dozen plants worldwide. This code has been validated in ''double-blind'' comparisons between the calculated and measured hydrogen concentration, oxygen concentration, and ECP in the recirculation system of the Leibstadt BWR in Switzerland, as well as through less formal comparisons with data from other plants. Second generation codes have now been developed, including REMAIN for simulating BWRs with internal coolant pumps and the ALERT series for modeling reactors with external pumps. One of this series, ALERT, yields the integrated damage function (IDF), which is the crack length versus time, on a component-by-component basis for a specified future operating scenario. This code therefore allows one to explore proposed future operating protocols, with the objective of identifying those that are most cost-effective and which minimizes the risk of failure of components in the coolant circuit by stress corrosion cracking. The application of this code is illustrated by exploring the benefits of partial hydrogen water chemistry (HWC) for an actual reactor, in which hydrogen is added to the feedwater over only limited periods during operation. The simulations show that the benefits, in terms of reduction in the IDFs for various components, are sensitive to when HWC was initiated in the plant life and to the length of time over which it is applied. (author)

  15. Atomic scale study of the chemistry of oxygen, hydrogen and water at SiC surfaces

    International Nuclear Information System (INIS)

    Amy, Fabrice

    2007-01-01

    Understanding the achievable degree of homogeneity and the effect of surface structure on semiconductor surface chemistry is both academically challenging and of great practical interest to enable fabrication of future generations of devices. In that respect, silicon terminated SiC surfaces such as the cubic 3C-SiC(1 0 0) 3 x 2 and the hexagonal 6H-SiC(0 0 0 1) 3 x 3 are of special interest since they give a unique opportunity to investigate the role of surface morphology on oxygen or hydrogen incorporation into the surface. In contrast to silicon, the subsurface structure plays a major role in the reactivity, leading to unexpected consequences such as the initial oxidation starting several atomic planes below the top surface or the surface metallization by atomic hydrogen. (review article)

  16. Advances in BWR water chemistry

    International Nuclear Information System (INIS)

    Garcia, Susan E.; Giannelli, Joseph F.; Jarvis, Mary L.

    2012-09-01

    This paper reviews recent advances in Boiling Water Reactor (BWR) water chemistry control with examples of plant experiences at U.S. designed BWRs. Water chemistry advances provide some of the most effective methods for mitigating materials degradation, reducing fuel performance concerns and lowering radiation fields. Mitigation of stress corrosion cracking (SCC) of materials remains a high priority and improved techniques that have been demonstrated in BWRs will be reviewed, specifically hydrogen injection combined with noble metal chemical addition (NMCA) and the newer on-line noble metal application process (OLNC). Hydrogen injection performance, an important part of SCC mitigation, will also be reviewed for the BWR fleet, highlighting system improvements that have enabled earlier injection of hydrogen including the potential for hydrogen injection during plant startup. Water chemistry has been significantly improved by the application of pre-filtration and optimized use of ion exchange resins in the CP (condensate polishing) and reactor water cleanup (RWCU) systems. EPRI has monitored and supported water treatment improvements to meet water chemistry goals as outlined in the EPRI BWR Water Chemistry Guidelines, particularly those for SCC mitigation of reactor internals and piping, minimization of fuel risk due to corrosion and crud deposits and chemistry control for radiation field reduction. In recent years, a significant reduction has occurred in feedwater corrosion product input, particularly iron. A large percentage of plants are now reporting <0.1 ppb feedwater iron. The impacts to plant operation and chemistry of lower feedwater iron will be explored. Depleted zinc addition is widely practiced across the fleet and the enhanced focus on radiation reduction continues to emphasize the importance of controlling radiation source term. In addition, shutdown chemistry control is necessary to avoid excessive release of activated corrosion products from fuel

  17. Multi-level computational chemistry study on hydrogen recombination catalyst of off-gas treatment system

    International Nuclear Information System (INIS)

    Hatakeyama, Nozomu; Ise, Mariko; Inaba, Kenji

    2011-01-01

    In order to reveal the deactivation mechanism of the hydrogen recombination catalyst of off-gas treatment system, we investigate by using multi-level computational chemistry simulation methods. The recombiner apparatus is modeled by the numerical mesh system in the axial coordinates, and unsteady, advection and reaction rate equations are solved by using a finite difference method. The chemical reactions are formulated to represent adsorption-desorption of hydrogen and oxygen on Pt catalyst, and time developments of the coverage factors of Pt are solved numerically. The computational simulations successfully reproduce the very similar behaviors observed by experiments, such as increasing of the inversion rates of H 2 to H 2 O, the temperatures distributions along the flow direction, dependencies of experimental condition, and so on. Thus Pt poisoning is considered to cause the deactivation of the hydrogen recombination catalyst. To clarify the poisoning mechanism, the molecular level simulation is applied to the system of Pt on boehmite attacked by a cyclic siloxane which has been detected by experiments and considered as one of poisoning spices. The simulation shows ring-opening reaction of the cyclic siloxane on Pt, then attachment of two ends of the chain-like siloxane to Pt and boehmite, respectively, and that finally the recombination reaction is prevented. This may be the first study to find out the detailed dynamical mechanism of hydrogen recombination catalyst poisoning with cyclic siloxane. (author)

  18. Study of oxide film formed in a pre cracked CT specimen of AISI 304L during a rising displacement test in 288 C water

    International Nuclear Information System (INIS)

    Diaz S, A.; Castano M, V.

    2007-01-01

    A study of oxide film formed inside pre cracked CT specimens during a rising displacement test in high temperature water (288 C) was performed in this study, The environmental conditions used during the experiments were similar to these found in Boiling Water Reactors (BWR): Normal Water Condition (NWC - 200 ppb O 2 ) and Hydrogen Water Chemistry (HWC - 125 ppb H2). The oxide films formed were analyzed by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). In both cases the oxide film consisted of two layers identified as magnetite. In the case of HWC the results agree with previous reports that mention magnetite as a stable phase in reducing conditions. However the stable phase in oxidant conditions is hematite and this work shows the presence of magnetite crystals in the narrow crack of CT specimens in spite of the oxidant environmental condition. This situation confirms that inside the pre-cracked CT specimens the environmental conditions were different from the oxidant bulk, and probably a poor oxygen access and stagnant conditions within the narrow crack promoted a localized reducing environment that permitted the magnetite formation. Is evident that the crack growth studies should consider the conditions inside crack because they are significantly different. (Author)

  19. A Rechargeable Hydrogen Battery.

    Science.gov (United States)

    Christudas Dargily, Neethu; Thimmappa, Ravikumar; Manzoor Bhat, Zahid; Devendrachari, Mruthunjayachari Chattanahalli; Kottaichamy, Alagar Raja; Gautam, Manu; Shafi, Shahid Pottachola; Thotiyl, Musthafa Ottakam

    2018-04-27

    We utilize proton-coupled electron transfer in hydrogen storage molecules to unlock a rechargeable battery chemistry based on the cleanest chemical energy carrier molecule, hydrogen. Electrochemical, spectroscopic, and spectroelectrochemical analyses evidence the participation of protons during charge-discharge chemistry and extended cycling. In an era of anthropogenic global climate change and paramount pollution, a battery concept based on a virtually nonpolluting energy carrier molecule demonstrates distinct progress in the sustainable energy landscape.

  20. Economic analysis of the hydrogen production by means of the thermo-chemistry process iodine-sulfur with nuclear energy

    International Nuclear Information System (INIS)

    Solorzano S, C.; Francois L, J. L.

    2011-11-01

    In this work an economic study was realized about a centralized plant of hydrogen production that works by means of a thermo-chemistry cycle of sulfur-iodine and uses heat coming from a nuclear power plant of IV generation, with base in the software -Hydrogen Economic Evaluation Programme- obtained through the IAEA. The sustainable technology that is glimpsed next for the generation of hydrogen is to great scale and based on processes of high temperature coupled to nuclear power plants, being the most important the cycle S-I and the electrolysis to high temperature, for what objective references are presented that can serve as base for the taking of decisions for its introduction in Mexico. After detailing the economic models that uses the software for the calculation of the even cost of hydrogen production and the characteristics, so much of the nuclear plant constituted by fourth generation reactors, as of the plant of hydrogen production, is proposed a -base- case, obtaining a preliminary even cost of hydrogen production with this process; subsequently different cases are studied starting from which are carried out sensibility analysis in several parameters that could rebound in this cost, taking into account that these reactors are still in design and planning stages. (Author)

  1. Verification of zinc injection applicability to Japanese BWRs

    International Nuclear Information System (INIS)

    Hosokawa, H.; Uetake, N.; Ishida, K.; Nakamura, M.; Mochizuki, K.; Nagata, T.; Ogawa, N.; Baba, T.; Ono, S.; Ishigure, K.

    2002-01-01

    The verification test program on zinc injection applicability to Japanese BWRs was started in 1997. Laboratory tests using high temperature water loops under BWR reactor water conditions are in progress. This paper is an interim report on results obtained so far. Co-58 and Zn-65 were simultaneously used in the Co radioactivity buildup test to evaluate zinc injection suppression effects towards cobalt deposition on pre-oxidized stainless steel. The following results were obtained. The Co deposition was suppressed effectively by Zn injection, even when there was a pre-oxide film. For the test piping that had the pre-oxide film formed under the NWC (normal water chemistry) condition, when soaked under the HWC (hydrogen water chemistry) condition a large amount of Co-58 was taken into a small part of the inner layer. The distribution ratio of Co-58 in the inner layer and outer layer of the oxide film was almost the same for both the pre-oxidized test piping and the non pre-oxidized test piping under the HWC condition. Zn injection decreased the Co concentration in the inner layer of the oxide film under all conditions. The effect of gamma ray irradiation on the incorporation of Co into the oxide film is small. Gamma ray irradiation influenced the Co incorporation behavior complexly. The change of the Co amount incorporated into the non-pre-filmed specimen were small relatively, but the incorporation into the pre-filmed specimen promotes distinctly. Zn addition effectively suppresses the Co incorporation even gamma ray irradiation. (authors)

  2. Infrared and Raman spectroscopy and quantum chemistry calculation studies of C-H...O hydrogen bondings and thermal behavior of biodegradable polyhydroxyalkanoate

    Czech Academy of Sciences Publication Activity Database

    Sato, H.; Dybal, Jiří; Murakami, R.; Noda, I.; Ozaki, Y.

    744-747, - (2005), s. 35-46 ISSN 0022-2860 R&D Projects: GA AV ČR IAA4050208 Keywords : infrared and Raman spectroscopy * quantum chemical calculation * C-H...O hydrogen bonding Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.440, year: 2005

  3. Water chemistry regimes for VVER-440 units: water chemistry influence on fuel cladding behaviour

    International Nuclear Information System (INIS)

    Zmitko, M.

    1999-01-01

    In this lecture next problems of water chemistry influence on fuel cladding behaviour for VVER-440 units are presented: primary coolant technologies; water chemistry specification and control; fuel integrity considerations; zirconium alloys cladding corrosion (corrosion versus burn-up; water chemistry effect; crud deposition; hydrogen absorption; axial offset anomaly); alternatives for the primary coolant regimes

  4. Technical basis for hydrogen-water chemistry: Laboratory studies of water chemistry effects on SCC [stress-corrosion-cracking

    International Nuclear Information System (INIS)

    Kassner, T.F.; Ruther, W.E.; Soppet, W.K.

    1986-10-01

    The influence of different impurities, viz., oxyacids and several chloride salts, on the stress-corrosion-cracking (SCC) of sensitized Type 304 stainless steel (SS) was investigated in constant-extension-rate-tensile (CERT) tests in 289 0 C water at a low dissolved-oxygen concentration ( 0 C in low-oxygen environments with and without sulfate at low concentrations. In these experiments, the crack growth behavior of the materials was correlated with the type and concentration of the impurities and the electrochemical potentials of Type 304 SS and platinum electrodes in the simulated hydrogen-water chemistry environments. The information suggests that better characterization of water quality, through measurement of the concentrations of individual species (SO 4 2- , NO 3 - , Cu 2+ , etc.) coupled with measurements of the corrosion and redox potentials at high temperatures will provide a viable means to monitor and ultimately improve the performance of BWR system materials

  5. Para-hydrogen raman laser and its application to laser induced chemistry

    International Nuclear Information System (INIS)

    Tashiro, Hideo

    1988-01-01

    The report outlines the mechanism of the para-hydrogen Raman laser as a infrared light source, and its application to laser induced chemistry. The Stoke's wave number after a Raman shift is equal to the difference between the wave number of the CO 2 laser used for excitation and the rotation Raman wave number of the hydrogen molecule. A Raman laser can serve as an infrared source. CO 2 laser oscillation beam in the range of 9∼11 micrometers is selected and the frequency of infrared beam is varied by changing the wave number of the CO 2 laser beam. A problem with the Raman laser is that the Raman scatterring gain is small due to a large wavelength. In developing equipment, a special mechanism is required to solve this problem. A Raman laser comprises a CO 2 laser for excitation and multi-pulse Raman cells. The combination of a TEA oscillator and amplifiers gives CO 2 pulses with a peak power of about several tens of MW. Many heavy metal compounds including fluorides, carbonyl compounds and other organic compounds, absorb light with wavelengths in the same range as those of the Raman laser. Such compounds can be dissociated directly by applying Raman laser beams. The laser will be helpful for separation of isotopes, etc. (Nogami, K.)

  6. Quantum chemistry

    CERN Document Server

    Lowe, John P

    1993-01-01

    Praised for its appealing writing style and clear pedagogy, Lowe's Quantum Chemistry is now available in its Second Edition as a text for senior undergraduate- and graduate-level chemistry students. The book assumes little mathematical or physical sophistication and emphasizes an understanding of the techniques and results of quantum chemistry, thus enabling students to comprehend much of the current chemical literature in which quantum chemical methods or concepts are used as tools. The book begins with a six-chapter introduction of standard one-dimensional systems, the hydrogen atom,

  7. Development of BWR components SCC mitigation method by the TiO{sub 2} treating technique

    Energy Technology Data Exchange (ETDEWEB)

    Takamori, K.; Suzuki, J.; Suzuki, S.; Miyazaki, A. [Tokyo Electric Power Co., Tokohama-city (Japan); Okamura, M.; Osato, T.; Ichikawa, N. [Toshiba Corp., Kawasaki-city (Japan); Urata, H.; Takagi, J. [Toshiba Corp., Yokohama-city (Japan)

    2007-07-01

    Stress Corrosion Cracking (SCC) susceptibility of Boiling Water Reactor (BWR) materials is mitigated by reduction of the electrochemical corrosion potential (ECP). In the reactor there is a photo-excitation reaction between TiO{sub 2} and ultraviolet Cherenkov radiation. The TiO{sub 2} treatment technique plans to mitigate SCC by reducing the ECP without hydrogen addition. We conducted the demonstration tests of the TiO{sub 2} treatment technique in a test reactor and in BWR plant piping systems. The test results showed that the ECP of TiO{sub 2} treated type 316L stainless steel and the Ni based alloy 600 were reduced to -350 mV vs. the standard hydrogen electrode (SHE) in the reactor system in normal water chemistry (NWC). In the no Cherenkov radiation area, the ECP of the TiO{sub 2} treated stainless steel still decreased as the dissolved hydrogen concentration in feed water up to 0.3 ppm. (a condition that will be referred as 'low HWC.') (author)

  8. Conference 'Chemistry of hydrides' Proceedings

    International Nuclear Information System (INIS)

    1991-07-01

    This collection of thesis of conference of Chemistry hydrides presents the results of investigations concerning of base questions of chemistry of nonorganic hydrides, including synthesis questions, studying of physical and chemical properties, thermodynamics, analytical chemistry, investigation of structure, equilibriums in the systems of metal-hydrogen, behaviour of nonorganic hydrides in non-water mediums and applying investigations in the chemistry area and technology of nonorganic hydrides

  9. Hydrogen sulfide waste treatment by microwave plasma-chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Harkness, J.B.L.; Doctor, R.D.

    1994-03-01

    A waste-treatment process that recovers both hydrogen and sulfur from industrial acid-gas waste streams is being developed to replace the Claus technology, which recovers only sulfur. The proposed process is derived from research reported in the Soviet technical literature and uses microwave (or radio-frequency) energy to initiate plasma-chemical reactions that dissociate hydrogen sulfide into elemental hydrogen and sulfur. This process has several advantages over the current Claus-plus-tail-gas-cleanup technology, which burns the hydrogen to water. The primary advantage of the proposal process is its potential for recovering and recycling hydrogen more cheaply than the direct production of hydrogen. Since unconverted hydrogen sulfide is recycled to the plasma reactor, the plasma-chemical process has the potential for sulfur recoveries in excess of 99% without the additional complexity of the tail-gas-cleanup processes associated with the Claus technology. There may also be some environmental advantages to the plasma-chemical process, because the process purge stream would primarily be the carbon dioxide and water contained in the acid-gas waste stream. Laboratory experiments with pure hydrogen sulfide have demonstrated the ability of the process to operate at or above atmospheric pressure with an acceptable hydrogen sulfide dissociation energy. Experiments with a wide range of acid-gas compositions have demonstrated that carbon dioxide and water are compatible with the plasma-chemical dissociation process and that they do not appear to create new waste-treatment problems. However, carbon dioxide does have negative impacts on the overall process. First, it decreases the hydrogen production, and second, it increases the hydrogen sulfide dissociation energy.

  10. Importance of the Hydrogen Isocyanide Isomer in Modeling Hydrogen Cyanide Oxidation in Combustion

    DEFF Research Database (Denmark)

    Glarborg, Peter; Marshall, Paul

    2017-01-01

    Hydrogen isocyanide (HNC) has been proposed as an important intermediate in oxidation of hydrogen cyanide (HCN) in combustion, but details of its chemistry are still in discussion. At higher temperatures, HCN and HNC equilibrate rapidly, and being more reactive than HCN, HNC offers a fast alterna...... HNCO is the major consumption path for HCN. Under lean conditions, HNC is shown to be less important than indicated by the early work by Lin and co-workers, but it acts to accelerate HCN oxidation and promotes the formation of HNCO.......Hydrogen isocyanide (HNC) has been proposed as an important intermediate in oxidation of hydrogen cyanide (HCN) in combustion, but details of its chemistry are still in discussion. At higher temperatures, HCN and HNC equilibrate rapidly, and being more reactive than HCN, HNC offers a fast...

  11. Materials behavior in alternate (hydrogen) water chemistry in the Ringhals-1 boiling water reactor

    International Nuclear Information System (INIS)

    Ljungberg, L.G.; Cubicciotti, D.; Trolle, M.

    1986-01-01

    In-plant studies on the intergranular stress corrosion cracking (IGSCC) of sensitized austenitic stainless steel (SS) have been performed at the Swedish Ringhals-1 boiling water reactor (BWR). The studies have covered the present [full-temperature (normal)] water chemistry (PWC) and the alternate (primary) water chemistry (AWC) with hydrogen addition. The test techniques applied were constant extension rate testing (CERT) and electrochemical potential (ECP) measurements. The program was covered by extensive environment monitoring. The results verify earlier laboratory studies which show that sensitized austenitic SS is susceptible to IGSCC in PWC, but not in AWC. Other pressure-bearing BWR construction materials are not adversely affected by AWC. The boundary conditions in Ringhals-1 have been established for an AWC, which is defined as an environment that does not produce IGSCC in sensitized SS. The results are compared with a similar program at Dresden-2, and the points of agreement and discordance in the results are discussed. The relevance of ECP measurements for the control of AWC is discussed

  12. C1 Chemistry for the Production of Ultra-Clean Liquid Transportation Fuels and Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Gerald P. Huffman

    2005-03-31

    Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of liquid transportation fuel and hydrogen from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, the Air Force Research Laboratory, the U.S. Army National Automotive Center (Tank & Automotive Command--TACOM), and Tier Associates provides guidance on the practicality of the research. The current report presents results obtained in this research program during the six months of the subject contract from October 1, 2002 through March 31, 2003. The results are presented in thirteen detailed reports on research projects headed by various faculty members at each of the five CFFS Universities. Additionally, an Executive Summary has been prepared that summarizes the principal results of all of these projects during the six-month reporting period.

  13. Electrochemical corrosion potential and noise measurement in high temperature water

    International Nuclear Information System (INIS)

    Fong, Clinton; Chen, Yaw-Ming; Chu, Fang; Huang, Chia-Shen

    2000-01-01

    Hydrogen water chemistry (HWC) is one of the most important methods in boiling water reactor(BWR) system to mitigate and prevent stress corrosion cracking (SCC) problems of stainless steel components. Currently, the effectiveness of HWC in each BWR is mainly evaluated by the measurement of electrochemical corrosion potentials (ECP) and on-line monitoring of SCC behaviors of stainless steels. The objective of this work was to evaluate the characteristics and performance of commercially available high temperature reference electrodes. In addition, SCC monitoring technique based on electrochemical noise analysis (ECN) was also tested to examine its crack detection capability. The experimental work on electrochemical corrosion potential (ECP) measurements reveals that high temperature external Ag/AgCl reference electrode of highly dilute KCl electrolyte can adequately function in both NWC and HWC environments. The high dilution external Ag/AgCl electrode can work in conjunction with internal Ag/AgCl reference electrode, and Pt electrode to ensure the ECP measurement reliability. In simulated BWR environment, the electrochemical noise tests of SCC were carried out with both actively and passively loaded specimens of type 304 stainless steel with various electrode arrangements. From the coupling current and corrosion potential behaviors of the passive loading tests during immersion test, it is difficult to interpret the general state of stress corrosion cracking based on the analytical results of overall current and potential variations, local pulse patterns, statistical characteristics, or power spectral density of electrochemical noise signals. However, more positive SCC indication was observed in the power spectral density analysis. For aqueous environments of high solution impedance, successful application of electrochemical noise technique for SCC monitoring may require further improvement in specimen designs and analytical methods to enhance detection sensitivity

  14. Light Water Reactor Sustainability Program BWR High-Fluence Material Project: Assessment of the Role of High-Fluence on the Efficiency of HWC Mitigation on SCC Crack Growth Rates

    Energy Technology Data Exchange (ETDEWEB)

    Sebastien Teysseyre

    2014-04-01

    As nuclear power plants age, the increasing neutron fluence experienced by stainless steels components affects the materials resistance to stress corrosion cracking and fracture toughness. The purpose of this report is to identify any new issues that are expected to rise as boiling water reactor power plants reach the end of their initial life and to propose a path forward to study such issues. It has been identified that the efficiency of hydrogen water chemistry mitigation technology may decrease as fluence increases for high-stress intensity factors. This report summarizes the data available to support this hypothesis and describes a program plan to determine the efficiency of hydrogen water chemistry as a function of the stress intensity factor applied and fluence. This program plan includes acquisition of irradiated materials, generation of material via irradiation in a test reactor, and description of the test plan. This plan offers three approaches, each with an estimated timetable and budget.

  15. C1 Chemistry for the Production of Ultra-Clean Liquid Transportation Fuels and Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Gerald P. Huffman

    2006-03-30

    Professors and graduate students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of liquid transportation fuel and hydrogen from domestically plentiful resources such as coal, coalbed methane, and hydrocarbon gases and liquids produced from coal. An Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, the Air Force Research Laboratory, the U.S. Army National Automotive Center, and Tier Associates provides guidance on the practicality of the research. The current report summarizes the results obtained in this program during the period October 1, 2002 through March 31, 2006. The results are presented in detailed reports on 16 research projects headed by professors at each of the five CFFS Universities and an Executive Summary. Some of the highlights from these results are: (1) Small ({approx}1%) additions of acetylene or other alkynes to the Fischer-Tropsch (F-T) reaction increases its yield, causes chain initiation, and promotes oxygenate formation. (2) The addition of Mo to Fe-Cu-K/AC F-T catalysts improves catalyst lifetime and activity. (3) The use of gas phase deposition to place highly dispersed metal catalysts on silica or ceria aerogels offers promise for both the F-T and the water-gas shift WGS reactions. (4) Improved activity and selectivity are exhibited by Co F-T catalysts in supercritical hexane. (5) Binary Fe

  16. Organic chemistry in the atmosphere. [laboratory modeling of Titan atmosphere

    Science.gov (United States)

    Sagan, C.

    1974-01-01

    The existence of an at least moderately complex organic chemistry on Titan is stipulated based on clear evidence of methane, and at least presumptive evidence of hydrogen in its atmosphere. The ratio of methane to hydrogen is the highest of any atmosphere in the solar system. Irradiation of hydrogen/methane mixtures produces aromatic and aliphatic hydrocarbons. A very reasonable hypothesis assumes that the red cloud cover of Titan is made of organic chemicals. Two-carbon hydrocarbons experimentally produced from irradiated mixtures of methane, ammonia, water, and hydrogen bear out the possible organic chemistry of the Titanian environment.

  17. Chemistry in water reactors

    International Nuclear Information System (INIS)

    Hermansson, H.P.; Norring, K.

    1994-01-01

    The international conference Chemistry in Water Reactors was arranged in Nice 24-27/04/1994 by the French Nuclear Energy Society. Examples of technical program areas were primary chemistry, operational experience, fundamental studies and new technology. Furthermore there were sessions about radiation field build-up, hydrogen chemistry, electro-chemistry, condensate polishing, decontamination and chemical cleaning. The conference gave the impression that there are some areas that are going to be more important than others during the next few years to come. Cladding integrity: Professor Ishigure from Japan emphasized that cladding integrity is a subject of great concern, especially with respect to waterside corrosion, deposition and release of crud. Chemistry control: The control of the iron/nickel concentration quotient seems to be not as important as previously considered. The future operation of a nuclear power plant is going to require a better control of the water chemistry than achievable today. One example of this is solubility control via regulation in BWR. Trends in USA: means an increasing use of hydrogen, minimization of SCC/IASCC, minimization of radiation fields by thorough chemistry control, guarding fuel integrity by minimization of cladding corrosion and minimization of flow assisted corrosion. Stellite replacement: The search for replacement materials will continue. Secondary side crevice chemistry: Modeling and practical studies are required to increase knowledge about the crevice chemistry and how it develops under plant operation conditions. Inhibitors: Inhibitors for IGSCC and IGA as well for the primary- (zinc) as for the secondary side (Ti) should be studied. The effects and mode of operation of the inhibitors should be documented. Chemical cleaning: of heat transfer surfaces will be an important subject. Prophylactic cleaning at regular intervals could be one mode of operation

  18. Hydrogenated graphenes by birch reduction: influence of electron and proton sources on hydrogenation efficiency, magnetism, and electrochemistry

    Czech Academy of Sciences Publication Activity Database

    Eng, A.Y.S.; Sofer, Z.; Huber, Š.; Bouša, D.; Maryško, Miroslav; Pumera, M.

    2015-01-01

    Roč. 21, č. 7 (2015), 16828-16838 ISSN 0947-6539 Institutional support: RVO:68378271 Keywords : hydrogenated graphenes * birch reduction * magnetism * electrochemistry * hydrogenation efficiency Subject RIV: CA - Inorganic Chemistry Impact factor: 5.771, year: 2015

  19. Chemistry Notes

    Science.gov (United States)

    School Science Review, 1972

    1972-01-01

    Short articles on the kinetics of the hydrogen peroxide-iodide ion reaction, simulation of fluidization catalysis, the use of Newman projection diagrams to represent steric relationships in organic chemistry, the use of synthetic substrates for proteolytic enzyme reactions, and two simple clock reactions"--hydrolysis of halogenoalkanes and…

  20. Presidential Green Chemistry Challenge: 2007 Greener Reaction Conditions Award

    Science.gov (United States)

    Presidential Green Chemistry Challenge 2007 award winner, Headwaters Technology Innovation, developed a metal nanocatalyst to synthesize hydrogen peroxide directly from hydrogen and oxygen, eliminating hazardous chemicals.

  1. Pretreatment of lignocellulosic biomass using Fenton chemistry

    Science.gov (United States)

    Pretreatment is a necessary step in “biomass to biofuel conversion” due to the recalcitrant nature of lignocellulosic biomass. White-rot fungi utilize peroxidases and hydrogen peroxide (in vivo Fenton chemistry) to degrade lignin. In an attempt to mimic this process, solution phase Fenton chemistry ...

  2. General chemistry

    International Nuclear Information System (INIS)

    Kwon, Yeong Sik; Lee, Dong Seop; Ryu, Haung Ryong; Jang, Cheol Hyeon; Choi, Bong Jong; Choi, Sang Won

    1993-07-01

    The book concentrates on the latest general chemistry, which is divided int twenty-three chapters. It deals with basic conception and stoichiometry, nature of gas, structure of atoms, quantum mechanics, symbol and structure of an electron of ion and molecule, chemical thermodynamics, nature of solid, change of state and liquid, properties of solution, chemical equilibrium, solution and acid-base, equilibrium of aqueous solution, electrochemistry, chemical reaction speed, molecule spectroscopy, hydrogen, oxygen and water, metallic atom; 1A, IIA, IIIA, carbon and atom IVA, nonmetal atom and an inert gas, transition metals, lanthanons, and actinoids, nuclear properties and radioactivity, biochemistry and environment chemistry.

  3. Hydrogen energy for beginners

    CERN Document Server

    2013-01-01

    This book highlights the outstanding role of hydrogen in energy processes, where it is the most functional element due to its unique peculiarities that are highlighted and emphasized in the book. The first half of the book covers the great natural hydrogen processes in biology, chemistry, and physics, showing that hydrogen is a trend that can unite all natural sciences. The second half of the book is devoted to the technological hydrogen processes that are under research and development with the aim to create the infrastructure for hydrogen energetics. The book describes the main features of hydrogen that make it inalienable player in processes such as fusion, photosynthesis, and metabolism. It also covers the methods of hydrogen production and storage, highlighting at the same time the exclusive importance of nanotechnologies in those processes.

  4. Hydrogen peroxide coordination to cobalt(II) facilitated by second-sphere hydrogen bonding

    Czech Academy of Sciences Publication Activity Database

    Wallen, C.M.; Palatinus, Lukáš; Bacsa, J.; Scarborough, C.C.

    2016-01-01

    Roč. 55, č. 39 (2016), s. 11902-11906 ISSN 0044-8249 Institutional support: RVO:68378271 Keywords : cobalt * hydrogen bonds * peroxides * peroxido ligands * second-sphere interactions Subject RIV: CC - Organic Chemistry

  5. Gas-grain chemistry in cold interstellar cloud cores with a microscopic Monte Carlo approach to surface chemistry

    Science.gov (United States)

    Chang, Q.; Cuppen, H. M.; Herbst, E.

    2007-07-01

    Aims:We have recently developed a microscopic Monte Carlo approach to study surface chemistry on interstellar grains and the morphology of ice mantles. The method is designed to eliminate the problems inherent in the rate-equation formalism to surface chemistry. Here we report the first use of this method in a chemical model of cold interstellar cloud cores that includes both gas-phase and surface chemistry. The surface chemical network consists of a small number of diffusive reactions that can produce molecular oxygen, water, carbon dioxide, formaldehyde, methanol and assorted radicals. Methods: The simulation is started by running a gas-phase model including accretion onto grains but no surface chemistry or evaporation. The starting surface consists of either flat or rough olivine. We introduce the surface chemistry of the three species H, O and CO in an iterative manner using our stochastic technique. Under the conditions of the simulation, only atomic hydrogen can evaporate to a significant extent. Although it has little effect on other gas-phase species, the evaporation of atomic hydrogen changes its gas-phase abundance, which in turn changes the flux of atomic hydrogen onto grains. The effect on the surface chemistry is treated until convergence occurs. We neglect all non-thermal desorptive processes. Results: We determine the mantle abundances of assorted molecules as a function of time through 2 × 105 yr. Our method also allows determination of the abundance of each molecule in specific monolayers. The mantle results can be compared with observations of water, carbon dioxide, carbon monoxide, and methanol ices in the sources W33A and Elias 16. Other than a slight underproduction of mantle CO, our results are in very good agreement with observations.

  6. Primary water chemistry for NPP with VVER-TOI

    International Nuclear Information System (INIS)

    Susakin, S.N.; Brykov, S.I.; Zadonsky, N.V.; Bystrova, O.S.

    2012-09-01

    Nowadays within the framework of development of the nuclear power industry in Russia the VVER-TOI reactor is under designing (Standard optimized design). The given design provides for improvement of operation safety level, of technical-economic, operational and load-follow characteristics, and for the raise of competitive capacity of reactor plant and NPP as a whole. In VVER-TOI reactor plant design the primary water chemistry has been improved considering operation experience of VVER reactor plants and a possibility of RP operation under load-follow modes from the viewpoint of meeting the following requirements: - suppression of generation of oxidizing radiolytic products under power operation; - assurance of corrosion resistance of structural materials of equipment and pipelines throughout the NPP design service life; - minimization of deposits on surfaces of the reactor core fuel rods and on heat exchange surface of steam generators; - minimization of accumulation of activated corrosion products; - minimization of the amount of radioactive processing waste. In meeting these requirements an important role is devoted to suppression of generation of oxidizing radiolytic products owing to accumulation of hydrogen in the primary coolant. At NPP with VVER-1000 reactor the ammonia-potassium water chemistry is used wherein the hydrogen accumulation is provided at the expense of ammonia proportioning. Usage of ammonia leads to generation of additional amount of radioactive processing waste and to increased irregularity of maintaining the water chemistry under the daily load-follow modes. In VVER TOI design the primary water chemistry is improved by replacing the proportioning of ammonia with the proportioning of gaseous hydrogen. Different process schemes were considered that provide for a possibility of hydrogen accumulation and maintaining owing to direct proportioning of gaseous hydrogen. The obtained results showed that transition to the potassium water chemistry

  7. Redox Chemistry of Molybdenum Trioxide for Ultrafast Hydrogen-Ion Storage.

    Science.gov (United States)

    Wang, Xianfu; Xie, Yiming; Tang, Kai; Wang, Chao; Yan, Chenglin

    2018-05-11

    Hydrogen ions are ideal charge carriers for rechargeable batteries due to their small ionic radius and wide availability. However, little attention has been paid to hydrogen-ion storage devices because they generally deliver relatively low Coulombic efficiency as a result of the hydrogen evolution reaction that occurs in an aqueous electrolyte. Herein, we successfully demonstrate that hydrogen ions can be electrochemically stored in an inorganic molybdenum trioxide (MoO 3 ) electrode with high Coulombic efficiency and stability. The as-obtained electrode exhibits ultrafast hydrogen-ion storage properties with a specific capacity of 88 mA hg -1 at an ultrahigh rate of 100 C. The redox reaction mechanism of the MoO 3 electrode in the hydrogen-ion cell was investigated in detail. The results reveal a conversion reaction of the MoO 3 electrode into H 0.88 MoO 3 during the first hydrogen-ion insertion process and reversible intercalation/deintercalation of hydrogen ions between H 0.88 MoO 3 and H 0.12 MoO 3 during the following cycles. This study reveals new opportunities for the development of high-power energy storage devices with lightweight elements. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Chemistry Division annual progress report for period ending July 31, 1981

    International Nuclear Information System (INIS)

    1982-01-01

    Research is reported on: chemistry of coal liquefaction, aqueous chemistry at high temperatures, geosciences, high-temperature chemistry and thermodynamics of structural materials, chemistry of TRU elements and compounds, separations chemistry, electrochemistry, nuclear waste chemistry, chemical physics, theoretical chemistry, inorganic chemistry of hydrogen cycles, molten salt systems, and enhanced oil recovery. Separate abstracts were prepared for the sections dealing with coal liquefaction, TRU elements and compounds, separations, nuclear wastes, and enhanced oil recovery

  9. Chemistry Division annual progress report for period ending July 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    Research is reported on: chemistry of coal liquefaction, aqueous chemistry at high temperatures, geosciences, high-temperature chemistry and thermodynamics of structural materials, chemistry of TRU elements and compounds, separations chemistry, electrochemistry, nuclear waste chemistry, chemical physics, theoretical chemistry, inorganic chemistry of hydrogen cycles, molten salt systems, and enhanced oil recovery. Separate abstracts were prepared for the sections dealing with coal liquefaction, TRU elements and compounds, separations, nuclear wastes, and enhanced oil recovery. (DLC)

  10. Carbene Chemistry. I. Stereochemical Integrity at C Alpha in Ketone Tosylhydrazones. II. Hydrogen Migration in 2-Carbena-6,6-Dimethylnorbornane.

    Science.gov (United States)

    1978-02-01

    H20, 10% Na2 CO3 , H20, and dried over MqSO 4 . Yields were typically ca. 75%. "! 33 CARBENE CHEMISTRY PART II. HYDROGEN MIGRATION IN 2-CARBENA-6,6...any a delocaliza- tion. Thus if one assumes a single product determining intermediate, carbene 54 is classical in the usual sense of the word. It has...placed in a refrigerator. The crystalline product was re- crystallized from methanol-O-d/D20 yielding purified tosylhydrazone with mp 156-1580. 58

  11. Hydrogen Bonding With a Hydrogen Bond: The CH4•••H2O Dimer ...

    Indian Academy of Sciences (India)

    X-H•••C hydrogen bonds in n-alkane-HX (X = F, OH) complexes are stronger than C-H•••X hydrogen bonds. R Parajuli* and E Arunan**. *Department of Physics, Amrit Campus, Tribhuvan University, Kathmandu, Nepal. **Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bengaluru 560012, India.

  12. Measurement and Characterization of Hydrogen-Deuterium Exchange Chemistry Using Relaxation Dispersion NMR Spectroscopy.

    Science.gov (United States)

    Khirich, Gennady; Holliday, Michael J; Lin, Jasper C; Nandy, Aditya

    2018-03-01

    One-dimensional heteronuclear relaxation dispersion NMR spectroscopy at 13 C natural abundance successfully characterized the dynamics of the hydrogen-deuterium exchange reaction occurring at the N ε position in l-arginine by monitoring C δ in varying amounts of D 2 O. A small equilibrium isotope effect was observed and quantified, corresponding to ΔG = -0.14 kcal mol -1 . A bimolecular rate constant of k D = 5.1 × 10 9 s -1 M -1 was determined from the pH*-dependence of k ex (where pH* is the direct electrode reading of pH in 10% D 2 O and k ex is the nuclear spin exchange rate constant), consistent with diffusion-controlled kinetics. The measurement of ΔG serves to bridge the millisecond time scale lifetimes of the detectable positively charged arginine species with the nanosecond time scale lifetime of the nonobservable low-populated neutral arginine intermediate species, thus allowing for characterization of the equilibrium lifetimes of the various arginine species in solution as a function of fractional solvent deuterium content. Despite the system being in fast exchange on the chemical shift time scale, the magnitude of the secondary isotope shift due to the exchange reaction at N ε was accurately measured to be 0.12 ppm directly from curve-fitting D 2 O-dependent dispersion data collected at a single static field strength. These results indicate that relaxation dispersion NMR spectroscopy is a robust and general method for studying base-catalyzed hydrogen-deuterium exchange chemistry at equilibrium.

  13. Progress report, Chemistry and Materials Division, October 1 to December 31, 1975

    International Nuclear Information System (INIS)

    1976-01-01

    Interim research results are reported in solid state science (ion penetration, electron microscopy, radiation damage and metal physics, nuclear methods of analysis), general chemistry (analytical chemistry, hydrogen-water exchange, radioactivity measurements, electrochemistry), physical chemistry (radiation and isotope chemistry), materials science (surface chemistry and metal physics), and university research (deuterium exchange and zirconium alloy properties). (E.C.B.)

  14. Design Features of the SMART Water Chemistry

    International Nuclear Information System (INIS)

    Byung Seon Choi; Seong Hoon Kim; Juhyeon Yoon; Doo Jeong Lee; Yoon Yeong Bae; Sung Kyun Zee

    2004-01-01

    The design features for the primary water chemistry for the SMART are introduced from the viewpoint of the system characteristics and the chemical design concept. The most essential differences in water chemistry between the commercially operating PWRs and SMART are characterized by the presence of boron in the water and the operating mode of the purification system. SMART is a soluble boron free reactor, and the ammonia is used as a pH reagent. The material for SMART steam generator is also different from the standard material of the commercially operating PWRs: titanium alloy for the steam generator tubes. In SMART hydrogen gas which suppresses a generation of oxidizing species by the radiolysis processes in the reactors is not added to the primary coolant, but is normally generated from the radiolysis of the ammonia as the coolant passes through the core. Ammonia is added once per shift because SMART reactor has no letdown and charging system during power operation. Because of these competing processes, the concentrations of hydrogen, nitrogen and ammonia in the primary coolant are in equilibrium, which depend on the decomposition and/or combination rate of the ammonia. The level of permissible oxygen concentration in the primary coolant can be ensured by both suppression of the water radiolysis through maintaining a high enough hydrogen concentration in the primary coolant and by a restriction of the oxygen ingress into the primary coolant with the makeup water. The ammonia chemistry in SMART reactor eliminates the need for hydrogen injection for the control of the dissolved oxygen in the primary coolant because of spontaneous generation of hydrogen and nitrogen produced by the reaction of the ammonia decomposition. (authors)

  15. Presidential Green Chemistry Challenge: 2007 Academic Award

    Science.gov (United States)

    Presidential Green Chemistry Challenge 2007 award winner, Professor Michael J. Krische, developed selective C-C bond-forming hydrogenation without organometallic reagents, eliminating hazardous reagents and hazardous waste.

  16. Progress report, Chemistry and Materials Division, April 1 to June 30, 1978

    International Nuclear Information System (INIS)

    1978-07-01

    Provisional research results are reported in the general areas of ion beam-radiation interactions with metals, radiation chemistry, hydrogen isotope exchange, analytical chemistry, and zirconium alloy properties. (E.C.B.)

  17. Progress report, Chemistry and Materials Division, April 1 to June 30, 1977

    International Nuclear Information System (INIS)

    1977-07-01

    Research results are reported in such areas as ion penetration, electron microscopy, metal physics and radiation damage, nuclear methods of analysis, fuel analysis, and general analytical chemistry, electrochemistry, radiation chemistry, hydrogen-deuterium exchange, and surface chemistry of nuclear materials like zirconium base alloys. (E.C.B.)

  18. Progress report, Chemistry and Materials Division, October 1 to December 31, 1977

    International Nuclear Information System (INIS)

    1978-01-01

    Research results are reported on the interaction of ion beams with solids, radiation chemistry, hydrogen isotope exchange, surface science, analytical chemistry, and properties of zirconium and its alloys. (E.C.B.)

  19. A Simple and Accurate Network for Hydrogen and Carbon Chemistry in the Interstellar Medium

    Science.gov (United States)

    Gong, Munan; Ostriker, Eve C.; Wolfire, Mark G.

    2017-07-01

    Chemistry plays an important role in the interstellar medium (ISM), regulating the heating and cooling of the gas and determining abundances of molecular species that trace gas properties in observations. Although solving the time-dependent equations is necessary for accurate abundances and temperature in the dynamic ISM, a full chemical network is too computationally expensive to incorporate into numerical simulations. In this paper, we propose a new simplified chemical network for hydrogen and carbon chemistry in the atomic and molecular ISM. We compare results from our chemical network in detail with results from a full photodissociation region (PDR) code, and also with the Nelson & Langer (NL99) network previously adopted in the simulation literature. We show that our chemical network gives similar results to the PDR code in the equilibrium abundances of all species over a wide range of densities, temperature, and metallicities, whereas the NL99 network shows significant disagreement. Applying our network to 1D models, we find that the CO-dominated regime delimits the coldest gas and that the corresponding temperature tracks the cosmic-ray ionization rate in molecular clouds. We provide a simple fit for the locus of CO-dominated regions as a function of gas density and column. We also compare with observations of diffuse and translucent clouds. We find that the CO, {{CH}}x, and {{OH}}x abundances are consistent with equilibrium predictions for densities n=100{--}1000 {{cm}}-3, but the predicted equilibrium C abundance is higher than that seen in observations, signaling the potential importance of non-equilibrium/dynamical effects.

  20. An evaluation of selection criteria on primary water chemistry parameters for SMART

    International Nuclear Information System (INIS)

    Choi, B. S.; Kim, S. H.; Yun, J. H.; Bae, Y. Y.; Gee, S. G.

    2003-01-01

    The selection criteria on the primary water chemistry of SMART by comparing the chemical design features with those of the current operating PWRs is analyzed. The most essential differences in water chemistry between the PWRs and SMART reactor is characterized by the presence of boron in water. SMART is boron free reactor, and the ammonia is used as a pH reagent. In SMART reactor hydrogen gas is not added to the primary coolant, but is normally generated from the radiolysis of ammonia of the coolant passes through the core. Ammonia is added once per shift because SMART reactor has no letdown and charging system during power operation. Because of these competing processes, the concentrations of hydrogen, nitrogen and ammonia in the primary coolant are steady state concentrations, which depend on the decomposition/combination rate of ammonia. Ammonia chemistry in SMART reactor has many advantages in that no hydrogen gas injection is needed to control the dissolved oxygen in primary coolant because of spontaneous generation of hydrogen and nitrogen produced by the reaction of ammonia decomposition

  1. Dose rate reduction method for NMCA applied BWR plants

    International Nuclear Information System (INIS)

    Nagase, Makoto; Aizawa, Motohiro; Ito, Tsuyoshi; Hosokawa, Hideyuki; Varela, Juan; Caine, Thomas

    2012-09-01

    BRAC (BWR Radiation Assessment and Control) dose rate is used as an indicator of the incorporation of activated corrosion by products into BWR recirculation piping, which is known to be a significant contributor to dose rate received by workers during refueling outages. In order to reduce radiation exposure of the workers during the outage, it is desirable to keep BRAC dose rates as low as possible. After HWC was adopted to reduce IGSCC, a BRAC dose rate increase was observed in many plants. As a countermeasure to these rapid dose rate increases under HWC conditions, Zn injection was widely adopted in United States and Europe resulting in a reduction of BRAC dose rates. However, BRAC dose rates in several plants remain high, prompting the industry to continue to investigate methods to achieve further reductions. In recent years a large portion of the BWR fleet has adopted NMCA (NobleChem TM ) to enhance the hydrogen injection effect to suppress SCC. After NMCA, especially OLNC (On-Line NobleChem TM ), BRAC dose rates were observed to decrease. In some OLNC applied BWR plants this reduction was observed year after year to reach a new reduced equilibrium level. This dose rate reduction trends suggest the potential dose reduction might be obtained by the combination of Pt and Zn injection. So, laboratory experiments and in-plant tests were carried out to evaluate the effect of Pt and Zn on Co-60 deposition behaviour. Firstly, laboratory experiments were conducted to study the effect of noble metal deposition on Co deposition on stainless steel surfaces. Polished type 316 stainless steel coupons were prepared and some of them were OLNC treated in the test loop before the Co deposition test. Water chemistry conditions to simulate HWC were as follows: Dissolved oxygen, hydrogen and hydrogen peroxide were below 5 ppb, 100 ppb and 0 ppb (no addition), respectively. Zn was injected to target a concentration of 5 ppb. The test was conducted up to 1500 hours at 553 K. Test

  2. Progress report, Chemistry and Materials Division, 1 April to 30 June, 1979

    International Nuclear Information System (INIS)

    1979-07-01

    Research results are reported by groups investigating ion penetration, nuclear methods of analysis, accelerator operation, general analytical chemistry, radoactivity measurement, deuterium analysis, electrochemistry, mass spectrometry and fuel analysis, radiation chemistry and laser photochemistry, hydrogen-water exchange, isotope chemistry, surface chemistry, and electron microscopy. Work in an associated laboratory at the University of Toronto on isotopic changes in reaction rates is reported. (L.L.)

  3. Nanodiamond for hydrogen storage: temperature-dependent hydrogenation and charge-induced dehydrogenation.

    Science.gov (United States)

    Lai, Lin; Barnard, Amanda S

    2012-02-21

    Carbon-based hydrogen storage materials are one of hottest research topics in materials science. Although the majority of studies focus on highly porous loosely bound systems, these systems have various limitations including use at elevated temperature. Here we propose, based on computer simulations, that diamond nanoparticles may provide a new promising high temperature candidate with a moderate storage capacity, but good potential for recyclability. The hydrogenation of nanodiamonds is found to be easily achieved, in agreement with experiments, though we find the stability of hydrogenation is dependent on the morphology of nanodiamonds and surrounding environment. Hydrogenation is thermodynamically favourable even at high temperature in pure hydrogen, ammonia, and methane gas reservoirs, whereas water vapour can help to reduce the energy barrier for desorption. The greatest challenge in using this material is the breaking of the strong covalent C-H bonds, and we have identified that the spontaneous release of atomic hydrogen may be achieved through charging of hydrogenated nanodiamonds. If the degree of induced charge is properly controlled, the integrity of the host nanodiamond is maintained, which indicates that an efficient and recyclable approach for hydrogen release may be possible. This journal is © The Royal Society of Chemistry 2012

  4. Presidential Green Chemistry Challenge: 1999 Academic Award

    Science.gov (United States)

    Presidential Green Chemistry Challenge 1999 award winner, Professor Terry Collins, developed a series of TAML oxidant activators that work with hydrogen peroxide to replace chlorine bleaches for paper making and laundry.

  5. Nanoengineered Carbon Scaffolds for Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, A. D.; Hudson, J. L.; Fan, H.; Booker, R.; Simpson, L. J.; O' Neill, K. J.; Parilla, P. A.; Heben, M. J.; Pasquali, M.; Kittrell, C.; Tour, J. M.

    2009-01-01

    Single-walled carbon nanotube (SWCNT) fibers were engineered to become a scaffold for the storage of hydrogen. Carbon nanotube fibers were swollen in oleum (fuming sulfuric acid), and organic spacer groups were covalently linked between the nanotubes using diazonium functionalization chemistry to provide 3-dimensional (3-D) frameworks for the adsorption of hydrogen molecules. These 3-D nanoengineered fibers physisorb twice as much hydrogen per unit surface area as do typical macroporous carbon materials. These fiber-based systems can have high density, and combined with the outstanding thermal conductivity of carbon nanotubes, this points a way toward solving the volumetric and heat-transfer constraints that limit some other hydrogen-storage supports.

  6. Effect of Water Chemistry Variations on Corrosion of Zr-Alloys for BWR Applications

    International Nuclear Information System (INIS)

    Kim, Young-Jin; Yang- Lin, Pi; Lutz, Dan; Kucuk, Aylin; Cheng, Bo

    2012-09-01

    Two reference water chemistry conditions (60 ppb Zn and 60 μg/cm 2 Pt/Rh with either 500 ppb O 2 and 500 ppb H 2 O 2 , or 150 ppb H 2 ) were chosen for testing at 300 deg. C in refreshed autoclaves. For each reference water chemistry, the potential effects due to three chemical impurities of interest to BWRs (33 ppm Na, 10 ppm Li, and 10 ppm EHC fluid) were evaluated. Zircaloy-2 and GNF-Ziron (a Zr-based alloy with higher Fe additions than Zircaloy-2) cladding tubes were tested and the effects of tubing process variation and pre-filming were investigated. Tested channel materials included Zircaloy-2, Zircaloy-4, GNF-Ziron and NSF (a Zr-based alloy with Sn, Nb and Fe additions). The corrosion weight gain and hydrogen absorption were measured up to 12 months of exposure for a given water chemistry condition. Tests under 150 ppb H 2 based water chemistry, with or without chemical impurities, generally resulted in greater amounts of corrosion after 12 month exposure compared with 500 ppb O 2 and 500 ppb H 2 O 2 based water chemistries. Of the added chemical impurities, only 33 ppm Na addition produced slightly increased corrosion. Under various test conditions, the presence of a thin pre-film resulted in some initial corrosion benefits, but the benefits were no longer evident after 12 months exposure; however, slight hydrogen benefits remained. For GNF-Ziron cladding, hydrogen absorption was generally lower compared with similarly processed Zircaloy-2 under 150 ppb H 2 based water chemistry, when corrosion was generally higher. Of the channel material tested, NSF developed the lowest level of hydrogen absorption, particularly under 150 ppb H 2 based water chemistries. (authors)

  7. Continuous high-temperature surveillance instrumentation for Dresden-2 hydrogen water chemistry program

    International Nuclear Information System (INIS)

    Fleming, M.F.; Mitchell, R.A.; Nelson, J.L.

    1987-01-01

    The objective of this program (under EPRI Contract RP1930-11) is to install and operate a high-temperature surveillance instrumentation system capable of monitoring the length of cracks in boiling water reactor (BWR) piping during plant operation. The ability to measure crack growth in BWR power plant piping welds is important to rapidly identify the effectiveness of repairs (such as the Hydrogen Water Chemistry Program). The feasibility of a system capable of continuous ultrasonic instrumentation at 600 0 F (288 0 C) was successfully demonstrated at the Dresden-2 suction line known as N1B. This intergranular stress corrosion cracking (IGSCC) surveillance instrumentation is sound in principal, because it survived on N1B for a time period of more than nine months from April 1985 to January 1986 (the last time data were recorded). The redesigned low-profile transducer system used for this system operated successfully for the same nine-month time period. This low profile transducer fits in the two-inch space normally occupied by insulation. As a result of poor routing of the coaxial cables running from the low-profile transducer to the electrical feed-throughs between the drywell and containment, these cables melted. Other instrument cables nearby were not damaged

  8. A Chemistry Lesson at Three Mile Island.

    Science.gov (United States)

    Mammano, Nicholas J.

    1980-01-01

    Details the procedures used in utilizing the hydrogen bubble incident at Three Mile Island to relate these basic chemical principles to nuclear chemistry: gas laws, Le Chatelier's principle and equilibrium, and stoichiometry. (CS)

  9. The potential impact of hydrogen energy use on the atmosphere

    Science.gov (United States)

    van Ruijven, B. J.; Lamarque, J. F.; van Vuuren, D. P.; Kram, T.; Eerens, H.

    2009-04-01

    Energy models show very different trajectories for future energy systems (partly as function of future climate policy). One possible option is a transition towards a hydrogen-based energy system. The potential impact of such hydrogen economy on atmospheric emissions is highly uncertain. On the one hand, application of hydrogen in clean fuel cells reduces emissions of local air pollutants, like SOx and NOx. On the other hand, emissions of hydrogen from system leakages are expected to change the atmospheric concentrations and behaviour (see also Price et al., 2007; Sanderson et al., 2003; Schultz et al., 2003; Tromp et al., 2003). The uncertainty arises from several sources: the expected use of hydrogen, the intensity of leakages and emissions, and the atmospheric chemical behaviour of hydrogen. Existing studies to the potential impacts of a hydrogen economy on the atmosphere mostly use hydrogen emission scenarios that are based on simple assumptions. This research combines two different modelling efforts to explore the range of impacts of hydrogen on atmospheric chemistry. First, the potential role of hydrogen in the global energy system and the related emissions of hydrogen and other air pollutants are derived from the global energy system simulation model TIMER (van Vuuren, 2007). A set of dedicated scenarios on hydrogen technology development explores the most pessimistic and optimistic cases for hydrogen deployment (van Ruijven et al., 2008; van Ruijven et al., 2007). These scenarios are combined with different assumptions on hydrogen emission factors. Second, the emissions from the TIMER model are linked to the NCAR atmospheric model (Lamarque et al., 2005; Lamarque et al., 2008), in order to determine the impacts on atmospheric chemistry. By combining an energy system model and an atmospheric model, we are able to consistently explore the boundaries of both hydrogen use, emissions and impacts on atmospheric chemistry. References: Lamarque, J.-F., Kiehl, J. T

  10. Progress report, Chemistry and Materials Division, April 1 to June 30, 1976

    International Nuclear Information System (INIS)

    1976-07-01

    Preliminary results are reported on research covering such topics as ion penetration, electron microscopy, radiation damage and metal physics, nuclear methods of analysis, analytical chemistry, hydrogen-deuterium exchange, radiation chemistry, and corrosion (primarily of zirconium alloys). (E.C.B.)

  11. Research in radiation chemistry

    International Nuclear Information System (INIS)

    Silverman, J.

    1974-01-01

    In the survey the author discusses phenomena which are unique to radiation chemistry, as well as those in which radiation chemistry research plays a principal role. Works in this field such as spur phenomena and effects of scavengers in the radiolysis of water and liquid alkane, intraspur effects in styrene and polymerization of styrene at high dose rates are presented. The problem of the missing hydrogen atoms in irradiated alkanes needs answer and sensitization of crosslinking reactions may involve some unique aspects of radiation chemistry. Pairwise trapping of radicals in irradiated n-hydrocarbons have been observed in ESP-spectra. A well defined spectrum of radical pairs when the crystals of n-eicosane is irradiated and observed at 77 deg K. The nature of the spectrum, its changes with temperature and the effect of LET is discussed in the paper. (M.S.)

  12. Carbohydrates in Supramolecular Chemistry.

    Science.gov (United States)

    Delbianco, Martina; Bharate, Priya; Varela-Aramburu, Silvia; Seeberger, Peter H

    2016-02-24

    Carbohydrates are involved in a variety of biological processes. The ability of sugars to form a large number of hydrogen bonds has made them important components for supramolecular chemistry. We discuss recent advances in the use of carbohydrates in supramolecular chemistry and reveal that carbohydrates are useful building blocks for the stabilization of complex architectures. Systems are presented according to the scaffold that supports the glyco-conjugate: organic macrocycles, dendrimers, nanomaterials, and polymers are considered. Glyco-conjugates can form host-guest complexes, and can self-assemble by using carbohydrate-carbohydrate interactions and other weak interactions such as π-π interactions. Finally, complex supramolecular architectures based on carbohydrate-protein interactions are discussed.

  13. Chemistry and climate change

    International Nuclear Information System (INIS)

    Bernier, Jean-Claude; Brasseur, Guy; Brechet, Yves; Candel, Sebastien; Cazenave, Anny; Courtillot, Vincent; Fontecave, Marc; Garnier, Emmanuel; Goebel, Philippe; Legrand, Jack; Legrand, Michel; Le Treut, Herve; Mauberger, Pascal; Dinh-Audouin, Minh-Thu; Olivier, Daniele; Rigny, Paul; Bigot, Bernard

    2016-01-01

    In its first part, this collective publication addresses the decennial and centuries-old variations of climate: perspectives and implications of climate change for the 21. century, questions remaining about the understanding of climate change from its sources to its modelling, extreme climate variations and societies during the last millennium. The contributions of the second part outline how chemistry is a tool to study climate change: ice chemistry as an archive of our past environment, observations and predictions on sea level rise, relationship between atmosphere chemistry and climate. The third set of contributions discusses the transformation of the energy system for a cleaner atmosphere and the management of the climate risk: the chemical processing of CO_2, actions of chemical companies to support the struggle against climate change, relationship between barrel price and renewable energies, relationship between grid complexity and green energy. The last part outlines the role chemistry can have to be able to do without fossil fuels: chemistry in front of challenges of transformation of the energy system, the use of micro-algae, the use of hydrogen as a vector of energy transition

  14. An Overview of the EPRI PWR Primary Chemistry Program

    International Nuclear Information System (INIS)

    Perkins, David; Fruzzetti, Keith; Haas, Carey; Wells, Dan

    2012-09-01

    Primary chemistry controls continue to evolve, impacting long term equipment reliability goals, optimized core designs, and radiation dose management practices. Chemistry initiatives include increased primary system pH (T) , zinc injection, and optimization of primary system hydrogen concentration. Nevertheless, utilities are faced with ever changing challenges as fuel vendors continue to optimize core power densities coupled with longer operating cycles and material replacement efforts. These challenges must be collaboratively addressed by the plant chemists, engineers, and operators. Operational chemistry has changed dramatically over the years with increased primary pH (T) programs requiring some utilities to operate with up to 6 ppm lithium or slightly higher. Coupled with primary pH (T) program optimization, are ongoing EPRI research efforts attempting to develop an optimized hydrogen control program balancing material issues associated with primary water stress corrosion cracking (PWSCC) crack growth rate against fuel concerns associated with increased hydrogen concentrations. One of the most significant primary chemistry changes that effectively balances the demands of materials, fuels, chemistry and dose management strategies is zinc injection into the primary coolant. Since 1994 when Farley initiated zinc injection, zinc injection has been successfully injected at over 70 pressurized water reactors world-wide. Combining operational chemistry with shutdown chemistry controls provides the plant chemist with a technically based and balanced approach to fuel and material integrity as well as dose management strategies. Shutdown chemistry has continually evolved since the 1970's when the chemist was primarily concerned with fission products. Now the chemist must manage corrosion product release, and support Outage Management and Radiation Protection through the performance of a controlled shutdown. In part, this change was driven as plant materials evolved

  15. Chemistry and propulsion; Chimie et propulsions

    Energy Technology Data Exchange (ETDEWEB)

    Potier, P [Maison de la Chimie, 75 - Paris (France); Davenas, A [societe Nationale des Poudres et des Explosifs - SNPE (France); Berman, M [Air Force Office of Scientific Research, Arlington, VA (United States); and others

    2002-07-01

    During the colloquium on chemistry and propulsion, held in march 2002, ten papers have been presented. The proceedings are brought in this document: ramjet, scram-jet and Pulse Detonation Engine; researches and applications on energetic materials and propulsion; advances in poly-nitrogen chemistry; evolution of space propulsion; environmental and technological stakes of aeronautic propulsion; ramjet engines and pulse detonation engines, automobiles thermal engines for 2015, high temperature fuel cells for the propulsion domain, the hydrogen and the fuel cells in the future transports. (A.L.B.)

  16. Progress report chemistry and materials division 1984 January 1 - June 30

    International Nuclear Information System (INIS)

    1984-08-01

    During the first half of 1984 work in the Chemistry and Materials Division of Chalk River Nuclear Laboratories concentrated on studies of ion penetration phenomena, surface phenomena, radiation damage, radiochemical analysis, recycle fuel analysis, gamma spectrometry, mass spectrometry of fuels and moderators, analysis of hydrogen in zirconium alloys, burnup analysis, radiolysis, hydrogen isotope separation, hydrogen adsorption, zirconium corrosion, and metal physics studies of zirconium

  17. Boron-nitrogen based hydrides and reactive composites for hydrogen storage

    DEFF Research Database (Denmark)

    Jepsen, Lars H.; Ley, Morten B.; Lee, Young-Su

    2014-01-01

    Hydrogen forms chemical compounds with most other elements and forms a variety of different chemical bonds. This fascinating chemistry of hydrogen has continuously provided new materials and composites with new prospects for rational design and the tailoring of properties. This review highlights...... a range of new boron and nitrogen based hydrides and illustrates how hydrogen release and uptake properties can be improved. © 2014 Elsevier Ltd....

  18. Effects of ion concentration on the hydrogen bonded structure of ...

    Indian Academy of Sciences (India)

    WINTEC

    Effects of ion concentration on the hydrogen bonded structure of water in the vicinity of ions in aqueous NaCl solutions. A NAG. 1. , D CHAKRABORTY and A CHANDRA*. Department of Chemistry, Indian Institute of Technology, Kanpur 208 016. 1. Present address: Department of Chemistry and Chemical Engineering,.

  19. Novel Hydrogen Compounds from a Potassium Carbonate Electrolytic Cell

    International Nuclear Information System (INIS)

    Mills, Randell L.

    2000-01-01

    Novel compounds containing hydrogen in new hydride and polymeric states that demonstrate novel hydrogen chemistry have been isolated following the electrolysis of a K 2 CO 3 electrolyte with the production of excess energy. Inorganic hydride clusters K[KH KHCO 3 ] n + and hydrogen polymer ions such as OH 23 + and H 16 - were identified by time-of-flight secondary ion mass spectroscopy. The presence of compounds containing new states of hydrogen was confirmed by X-ray photoelectron spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, and proton nuclear magnetic resonance spectroscopy

  20. Hydrogen economy and polymer membranes

    Czech Academy of Sciences Publication Activity Database

    Pientka, Zbyněk; Schauer, Jan

    2010-01-01

    Roč. 295, č. 1 (2010), s. 23-29 ISSN 1022-1360 R&D Projects: GA ČR GA104/09/1165; GA ČR GA203/08/0465 Institutional research plan: CEZ:AV0Z40500505 Keywords : foams * gas permeation * hydrogen Subject RIV: CD - Macromolecular Chemistry

  1. Performance of Oak Seedlings Grown under Different Oust® XP Regimes

    Directory of Open Access Journals (Sweden)

    Andrew Self

    2014-06-01

    Full Text Available Herbaceous weed control (HWC is prescribed for growing season control of vegetative competition in hardwood afforestation attempts on former agricultural areas. Without HWC, planted seedlings often exhibit poor growth and survival. While currently employed HWC methods are proven, there is a substantial void in research comparing HWC treatments spanning multiple years. A total of 4,320 bare-root seedlings of three oak species were planted on three Mississippi sites. All sites were of comparable soils and received above average precipitation for the majority of the three-year study. Eight combinations of HWC and mechanical site preparation were utilized at each site, with 480 seedlings planted in each of the nine blocks, and a total of 1,440 seedlings per species planted across all sites. Treatments were installed on 3.1 m centers, with mechanical treatments as follows: control, subsoiling, bedding, and combination plowing. HWC treatments included one and two-year applications of Oust® XP. Treatments were applied over seedlings post-planting in 1.5 m bands, at a rate of 140.1 g product/hectare. Excepting one species, HWC dependent height or groundline diameter differences were not detected among mechanical treatments, species, HWC regime, or combinations thereof. No survival differences were observed among site preparation treatments or species. However, analysis detected a growing season/HWC treatment interaction for seedling survival.

  2. Green chemistry: to rethink chemistry for tomorrow's world. Press briefing of 20 January 2015

    International Nuclear Information System (INIS)

    Legrand, Francois

    2015-01-01

    This document discusses various issues related to the development of the green chemistry sector, and mentions and presents activities performed by the CEA in this respect. A first part outlines how green chemistry is an answer to stakes for a sustainable development. The second part addresses metal recycling: recovery of silver from photovoltaic cells, avoiding tensions related to rare earth supply. The third part discusses how to replace dangerous or costly compounds (chromium in aircraft paintings, platinum in fuel cells, ruthenium in photovoltaic cells, rare earth in magnetic wire). The fourth part addresses how to transform wastes into useful products (production of formamides, of aromatic compounds, and of methanol, respectively from waste recycling, natural lignin, and CO_2). The fifth part presents new concepts for chemical synthesis: chemistry under ultrasounds, production of hydrogen from water. The sixth part presents contributions of life sciences to green chemistry: reduction of carbon dioxide emissions, bioremediation (biology for soil rehabilitation), production of molecules of interest by using micro algae, enzymes or bacteria. The last part discusses issues which outline that chemistry is at the heart of challenges for a sustainable nuclear in terms of materials, for a closed fuel cycle, in terms of fuel cycle processes, of installation sanitation and dismantling. Appendices formulate 5 societal challenges for green chemistry, and 12 background principles of green chemistry

  3. Surface Chemistry and Spectroscopy of Chromium in Inorganic Oxides

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Wachs, I.E.; Schoonheydt, R.A.

    1996-01-01

    Focuses on the surface chemistry and spectroscopy of chromium in inorganic oxides. Characterization of the molecular structures of chromium; Mechanics of hydrogenation-dehydrogenation reactions; Mobility and reactivity on oxidic surfaces.

  4. NRC Information No. 89-44: Hydrogen storage on the roof of the control room

    International Nuclear Information System (INIS)

    Rossi, C.E.

    1992-01-01

    During the Region V Chemistry Team Inspection at the Trojan Nuclear Plant the week of April 17, 1989, the inspectors identified a potential safety problem concerning the location of the hydrogen storage facility. Hydrogen is used on pressurized water reactor (PWR) plants for (1) providing a cover gas in the volume control tank, and (2) for cooling the main turbine generator. At boiling water reactor (BWR) plants, hydrogen is also used for cooling the main turbine generator and for injection into the feed system for plants which have implemented hydrogen water chemistry. The Trojan hydrogen storage facility is located on the control room roof which is 30-inch-thick reinforced concrete. The Trojan plant hydrogen facility does not meet guidelines from the standpoint of (1) the separation distance needed between a hydrogen pipe break and the control room ventilation intake to prevent buildup of a flammable or explosive gas mixture inside the control room, and (2) the separation distance needed to prevent damage to safety-related structures resulting from the explosion of an 8,000-scf hydrogen tank

  5. Use of Heterogenized Metal Complexes in Hydrogenation Reactions: Comparison of Hydrogenation and CTH Reactions.

    Czech Academy of Sciences Publication Activity Database

    Bata, P.; Zsigmond, A.; Gyémánt, M.; Czeglédi, A.; Klusoň, Petr

    2015-01-01

    Roč. 41, č. 12 (2015), s. 9281-9294 ISSN 0922-6168. [Pannonian Symposium on Catalysis /12./. Castle Trest, 16.09.2014-20.09.2014] Institutional support: RVO:67985858 Keywords : catalytic transfer hydrogenation * iron-phthalocyanine catalyst * chemoselectivity Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.833, year: 2015

  6. Mobile Phone Use and Human-Wildlife Conflict in Northern Tanzania

    Science.gov (United States)

    Lewis, Ashley L.; Baird, Timothy D.; Sorice, Michael G.

    2016-07-01

    Throughout the developing world, mobile phones are spreading rapidly into rural areas where subsistence livelihoods, biodiversity conservation, and human-wildlife conflict (HWC) are each common. Despite this trend, little is known about the relationship between mobile phones and HWC in conservation landscapes. This paper examines this relationship within ethnically Maasai communities in northern Tanzania on the border of Tarangire National Park. Mixed qualitative and quantitative methods of data collection and analysis are used to (1) describe how Maasai agro-pastoralists use phones to manage human-wildlife interactions; and (2) assess the relationship between phone use and measures of HWC, controlling for other factors. The findings indicate that households use phones to reduce the number and severity of HWC events and that the relationship between phones and HWC varies according to the type of HWC.

  7. Presidential Green Chemistry Challenge: 1998 Greener Synthetic Pathways Award

    Science.gov (United States)

    Presidential Green Chemistry Challenge 1998 award winner, Flexsys America, developed nucleophilic aromatic substitution for hydrogen to eliminate waste from a common reaction and to produce 4-ADPA, a high-volume chemical.

  8. Hydrogen-oxygen fuel cells

    Czech Academy of Sciences Publication Activity Database

    Vondrák, Jiří; Klápště, Břetislav; Velická, Jana; Sedlaříková, M.; Černý, R.

    2003-01-01

    Roč. 8, č. 1 (2003), s. 44-47 ISSN 1432-8488 R&D Projects: GA ČR GA203/02/0983; GA AV ČR IAA4032002 Institutional research plan: CEZ:AV0Z4032918 Keywords : electrocatalysis * hydrogen electrode Ionex membrane * membrane fuel cell Subject RIV: CA - Inorganic Chemistry Impact factor: 1.195, year: 2003

  9. Effect of water purity on intergranular stress corrosion cracking of stainless steel and nickel alloys in BWRs

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, B. [Structural Integrity Associates (United States); Garcia, S. [Electric Power Research Institute (United States)

    2011-07-01

    Boiling water reactors (BWRs) operate with very high purity water. While even the utilization of a very low conductivity water (e.g., 0.06 {mu}S/cm) coolant cannot prevent intergranular stress corrosion cracking (IGSCC) of sensitized stainless steel and nickel alloys under oxygenated conditions, the presence of certain impurities in the coolant can dramatically increase the probability of this most insidious form of corrosion. The goal of this paper is to present the effect of effect of only a few ionic impurities plus zinc on the IGSCC propensities of BWR stainless steel piping and reactor internals under both oxygenated, i.e., normal water chemistry (NWC) and deoxygenated, i.e., hydrogen water chemistry (HWC) conditions. More specifically, of the numerous impurities identified in the BWR coolant (e.g., lithium, sodium, potassium, silica, borate, chromate, phosphate, sulphate, chloride, nitrate, cuprous, cupric, ferrous, etc.) only strong acid anions sulfate and chloride that are stable in the highly reducing crack tip environment rather than the bulk water conductivity will be discussed in detail. Nitrate will be briefly discussed as representing a species that is not thermodynamically stable in the crack while the effects of zinc is discussed as a deliberate additive to the BWR environment. (authors)

  10. Oxygen from Hydrogen Peroxide. A Safe Molar Volume-Molar Mass Experiment.

    Science.gov (United States)

    Bedenbaugh, John H.; And Others

    1988-01-01

    Describes a molar volume-molar mass experiment for use in general chemistry laboratories. Gives background technical information, procedures for the titration of aqueous hydrogen peroxide with standard potassium permanganate and catalytic decomposition of hydrogen peroxide to produce oxygen, and a discussion of the results obtained in three…

  11. Kinetics of Dicyclopentadiene Hydrogenation Using PD/C Catalyst

    Czech Academy of Sciences Publication Activity Database

    Skála, D.; Hanika, Jiří

    2003-01-01

    Roč. 45, 3-4 (2003), s. 105-108 ISSN 1335-3055 Institutional research plan: CEZ:AV0Z4072921 Keywords : hydrogenation * dicyclopentadiene * kinetics Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  12. The oxidation of hydrogen cyanide and related chemistry

    DEFF Research Database (Denmark)

    Dagaut, Philippe; Glarborg, Peter; Alzueta, Maria U.

    2008-01-01

    For modeling the formation of nitrogen oxides in combustion via both the prompt-NO and the fuel-NO mechanisms, as well as for modeling the reduction of nitrogen oxides via reburning, a good knowledge of the kinetics of oxidation of hydrogen cyanide (HCN) is required. The formation routes to HCN a...

  13. C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN

    Energy Technology Data Exchange (ETDEWEB)

    Gerald P. Huffman

    2003-09-30

    The Consortium for Fossil Fuel Science (CFFS) is a research consortium with participants from the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University. The CFFS is conducting a research program to develop C1 chemistry technology for the production of clean transportation fuel from resources such as coal and natural gas, which are more plentiful domestically than petroleum. The processes under development will convert feedstocks containing one carbon atom per molecular unit into ultra clean liquid transportation fuels (gasoline, diesel, and jet fuel) and hydrogen, which many believe will be the transportation fuel of the future. These feedstocks include synthesis gas, a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. Some highlights of the results obtained during the first year of the current research contract are summarized as: (1) Terminal alkynes are an effective chain initiator for Fischer-Tropsch (FT) reactions, producing normal paraffins with C numbers {ge} to that of the added alkyne. (2) Significant improvement in the product distribution towards heavier hydrocarbons (C{sub 5} to C{sub 19}) was achieved in supercritical fluid (SCF) FT reactions compared to that of gas-phase reactions. (3) Xerogel and aerogel silica supported cobalt catalysts were successfully employed for FT synthesis. Selectivity for diesel range products increased with increasing Co content. (4) Silicoaluminophosphate (SAPO) molecular sieve catalysts have been developed for methanol to olefin conversion, producing value-added products such as ethylene and propylene. (5) Hybrid Pt-promoted tungstated and sulfated zirconia catalysts are very effective in cracking n-C{sub 36} to jet and diesel fuel; these catalysts will be tested for cracking of FT wax. (6) Methane, ethane, and propane are readily decomposed to pure

  14. Presidential Green Chemistry Challenge: 2010 Greener Synthetic Pathways Award

    Science.gov (United States)

    Presidential Green Chemistry Challenge 2010 award winners, Dow and BASF, jointly developed a route to make propylene oxide from hydrogen peroxide that eliminates almost all waste and greatly reduces water and energy use.

  15. Investigating Hydrogen Bonding in Phenol Using Infrared Spectroscopy and Computational Chemistry

    Science.gov (United States)

    Fedor, Anna M.; Toda, Megan J.

    2014-01-01

    The hydrogen bonding of phenol can be used as an introductory model for biological systems because of its structural similarities to tyrosine, a para-substituted phenol that is an amino acid essential to the synthesis of proteins. Phenol is able to form hydrogen bonds readily in solution, which makes it a suitable model for biological…

  16. Presidential Green Chemistry Challenge: 2003 Greener Synthetic Pathways Award

    Science.gov (United States)

    Presidential Green Chemistry Challenge 2003 winner, Sud-Chemie, developed a synthesis for solid oxide catalysts used to make hydrogen and clean fuels. The process creates little wastewater, no nitrates, and no or little NOx.

  17. Feasibility Study of Hydrogen Production from Existing Nuclear Power Plants Using Alkaline Electrolysis

    International Nuclear Information System (INIS)

    Swalla, Dana R.

    2008-01-01

    The mid-range industrial market currently consumes 4.2 million metric tons of hydrogen per year and has an annual growth rate of 15% industries in this range require between 100 and 1000 kilograms of hydrogen per day and comprise a wide range of operations such as food hydrogenation, electronic chip fabrication, metals processing and nuclear reactor chemistry modulation

  18. Improper, Blue-Shifting Hydrogen Bond

    Czech Academy of Sciences Publication Activity Database

    Hobza, Pavel; Havlas, Zdeněk

    2002-01-01

    Roč. 108, - (2002), s. 325-334 ISSN 1432-881X R&D Projects: GA MŠk LN00A032 Institutional research plan: CEZ:AV0Z4055905; CEZ:AV0Z4040901 Keywords : improper, blue-shifting hydrogen bond * properties * nature Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.421, year: 2002

  19. On the chemistry of the lightest exotic atoms

    International Nuclear Information System (INIS)

    Horvath, D.

    1980-01-01

    The chemical aspects of formation of three hydrogen-like exotic atoms, positronium, muonium and pionic hydrogen are discussed. For positronium two formation mechanisms, the Ore model with hot-atom reactions, and the spur reaction model are set against experimental observations in solutions. The use of pionic hydrogen atoms in obtaining information on the bond properties of hydrogen is illustrated by recent experiments performed in JINR. The use of negative pions in chemistry is demonstrated by electronic structure investigations performed in Dubna. The probability W that in a chemical system containing bound hydrogen atoms a stopped negative pion is captured by a proton reflects the bond properties of hydrogen. Recent results haVe shown that the hydrogen bond formation in liquid water and the coordination of water molecules in aquacomplexes lead to significant decreases in probability W for water. A comparison of the chemical uses of the exotic atoms shows that positronium and muonium inform us on intermolecular level probing a small environment of a few molecules while the pionic hydrogen atoms deliver information on the chemical bond of hydrogen, i.e. on intramolecular level

  20. Investigating trends in human-wildlife conflict: is conflict escalation real or imagined?

    Directory of Open Access Journals (Sweden)

    Shaurabh Anand

    2017-06-01

    Full Text Available Human–wildlife conflict (HWC has a history that is as old as human civilization; yet currently the phenomenon poses a serious environmental challenge for human society. Both due to their bio-geographical and social characteristics, developing regions of the world such as South and Southeast Asia are particularly vulnerable to this problem. Although the popular perception is that HWC intensity has escalated over the past few decades, there is little published literature to support this view. We argue that insights into the historical trajectories of HWC are important to comprehend past trends and set up future priorities. As a case study, we review conflict literature from India to analyze trends in HWC in the country over the past four decades. Our analysis reveals that there has been a consistent increase in the number of HWC publications, and that nearly 90% of the country is currently afflicted by HWC. A total of 88 species belonging to nine taxonomic groups are involved in HWC. Yet, research has been limited to select species and geographical locations. We discuss potential causes for this bias and set out research directions for efficient management of this issue.

  1. Importance of nuclear power for chemistry

    International Nuclear Information System (INIS)

    Kolotyrkin, J.

    1982-01-01

    Examples are given of the use of ionizing radiations in nuclear chemistry, in radiation cross-linking of polymers. The possibilities are also indicated of applications in the disinfection of wastes, in fertilizer production and packaging, in the production of cellulose and hydrogen. The implementation of the said technologies depends on the solution of a number organizational problems. (J.B.)

  2. Recent advances in study of uranium surface chemistry in China

    International Nuclear Information System (INIS)

    Luo, Lizhu; Lai, Xinchun; Wang, Xiaolin

    2014-01-01

    Uranium is very important in nuclear energy industry; however, uranium and its alloys corrode seriously in various atmospheres because of their chemical reactivities. In China, continuous investigations focused on surface chemistry have been carried out for a thorough understanding of uranium in order to provide technical support for its engineering applications. Oxidation kinetics of uranium and its alloys in oxidizing atmospheres are in good agreement with those in the literature. In addition to the traditional techniques, non-traditional methods have been applied for oxidation kinetics of uranium, and it has been verified that spectroscopic ellipsometry and X-ray diffraction are effective and nondestructive tools for in situ kinetic studies. The inhibition efficiency of oxidizing gas impurities on uranium hydrogenation is found to follow the order CO 2 > CO > O 2 , and the broadening of XPS shoulders with temperature in depth profile of hydrogenated uranium surface is discussed, which is not mentioned in the literature. Significant progress on surface chemistry of alloyed uranium (U-Nb and U-Ti) in hydrogen atmosphere is reported, and it is revealed that the hydrating nucleation and subsequent growth of alloyed uranium are closely connected with the surface states, underlying metal matrix, and it is microstructure-dependent. In this review, the recent advances in uranium surface chemistry in China, published so far mostly in Chinese language, are briefly summarized. Suggestions for further study are made. (orig.)

  3. Strong Coupling between Nanofluidic Transport and Interfacial Chemistry: How Defect Reactivity Controls Liquid-Solid Friction through Hydrogen Bonding.

    Science.gov (United States)

    Joly, Laurent; Tocci, Gabriele; Merabia, Samy; Michaelides, Angelos

    2016-04-07

    Defects are inevitably present in nanofluidic systems, yet the role they play in nanofluidic transport remains poorly understood. Here, we report ab initio molecular dynamics (AIMD) simulations of the friction of liquid water on defective graphene and boron nitride sheets. We show that water dissociates at certain defects and that these "reactive" defects lead to much larger friction than the "nonreactive" defects at which water molecules remain intact. Furthermore, we find that friction is extremely sensitive to the chemical structure of reactive defects and to the number of hydrogen bonds they can partake in with the liquid. Finally, we discuss how the insight obtained from AIMD can be used to quantify the influence of defects on friction in nanofluidic devices for water treatment and sustainable energy harvesting. Overall, we provide new insight into the role of interfacial chemistry on nanofluidic transport in real, defective systems.

  4. Polarization-induced sigma-holes and hydrogen bonding

    Czech Academy of Sciences Publication Activity Database

    Hennemann, M.; Murray, J. S.; Politzer, P.; Riley, Kevin Eugene; Clark, T.

    2012-01-01

    Roč. 18, č. 6 (2012), s. 2461-2469 ISSN 1610-2940 Institutional research plan: CEZ:AV0Z40550506 Keywords : hydrogen bond * sigma-hole * polarization * field effect * ab initio calculation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.984, year: 2012

  5. Chemistry and cosmology.

    Science.gov (United States)

    Black, John H

    2006-01-01

    The simplest elements, hydrogen and helium, offer a remarkably rich chemistry, which has controlled crucial features of the early evolution of the universe. Theoretical models of the origin of structure (stars, galaxies, clusters of galaxies, etc.) now incorporate this chemistry in some detail. In addition to the origin of structure, cosmologists are concerned with observational tests of competing world models. Primordial chemistry may give rise to some of the earliest departures from thermodynamic equilibrium in the universe. These effects may be observable as broad-band spectroscopic distortions of the cosmic background radiation, which otherwise exhibits a nearly perfect blackbody spectrum. The chemical history of the expanding universe is followed through a detailed calculation of the evolution of the abundances of H, H+, H-, H2, H2+, H3+, and other minor species. It is shown that continuous absorption by the small concentration of H- can produce a distortion in the cosmic background spectrum with a maximum at a frequency near nu/c = 9 cm-1 (wavelength 1.1 mm). The predicted effect lies only a factor of 5 below current limits. Its detection would provide an important test of our understanding of the recombination epoch of the universe.

  6. Kinetics of Platinum-Catalyzed Decomposition of Hydrogen Peroxide

    Science.gov (United States)

    Vetter, Tiffany A.; Colombo, D. Philip, Jr.

    2003-07-01

    CIBA Vision Corporation markets a contact lens cleaning system that consists of an AOSEPT disinfectant solution and an AOSEPT lens cup. The disinfectant is a buffered 3.0% m/v hydrogen peroxide solution and the cup includes a platinum-coated AOSEPT disc. The hydrogen peroxide disinfects by killing bacteria, fungi, and viruses found on the contact lenses. Because the concentration of hydrogen peroxide needed to disinfect is irritating to eyes, the hydrogen peroxide needs to be neutralized, or decomposed, before the contact lenses can be used again. A general chemistry experiment is described where the kinetics of the catalyzed decomposition of the hydrogen peroxide are studied by measuring the amount of oxygen generated as a function of time. The order of the reaction with respect to the hydrogen peroxide, the rate constant, and the energy of activation are determined. The integrated rate law is used to determine the time required to decompose the hydrogen peroxide to a concentration that is safe for eyes.

  7. NOBLE METAL CHEMISTRY AND HYDROGEN GENERATION DURING SIMULATED DWPF MELTER FEED PREPARATION

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D

    2008-06-25

    Simulations of the Defense Waste Processing Facility (DWPF) Chemical Processing Cell vessels were performed with the primary purpose of producing melter feeds for the beaded frit program plus obtaining samples of simulated slurries containing high concentrations of noble metals for off-site analytical studies for the hydrogen program. Eight pairs of 22-L simulations were performed of the Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles. These sixteen simulations did not contain mercury. Six pairs were trimmed with a single noble metal (Ag, Pd, Rh, or Ru). One pair had all four noble metals, and one pair had no noble metals. One supporting 4-L simulation was completed with Ru and Hg. Several other 4-L supporting tests with mercury have not yet been performed. This report covers the calculations performed on SRNL analytical and process data related to the noble metals and hydrogen generation. It was originally envisioned as a supporting document for the off-site analytical studies. Significant new findings were made, and many previous hypotheses and findings were given additional support as summarized below. The timing of hydrogen generation events was reproduced very well within each of the eight pairs of runs, e.g. the onset of hydrogen, peak in hydrogen, etc. occurred at nearly identical times. Peak generation rates and total SRAT masses of CO{sub 2} and oxides of nitrogen were reproduced well. Comparable measures for hydrogen were reproduced with more variability, but still reasonably well. The extent of the reproducibility of the results validates the conclusions that were drawn from the data.

  8. Improved hydrogen monitoring helps control corrosion

    International Nuclear Information System (INIS)

    Strauss, S.D.

    1985-01-01

    Hydrogen analyzers have long been used for corrosion monitoring in both fossil-fired boilers and nuclear steam generators. The most recent stimulus for hydrogen monitoring has been provided by cracking of recirculation piping in water reactors. This paper examines the Hydran 202N, which represents an adaption of one instrument that has been used to monitor the degradation of transformer oils and fiberoptic cables. The sensing probe consists of a flow-through cell, an isolating membrane, and a miniature hydrogen/air fuel cell. The use of Hydran 202N at several fossil-fired and nuclear plants is described and the fossilplant application related to the effectiveness of water-chemistry control for a 400 psig oil-fired boiler is examined at a refinery

  9. A Meta-Analysis of Human–Wildlife Conflict: South African and Global Perspectives

    Directory of Open Access Journals (Sweden)

    Nimmi Seoraj-Pillai

    2016-12-01

    Full Text Available Human–wildlife conflict (HWC, due to competition for shared natural resources between people and wildlife, influences food security of people and the well-being of people and animals. HWC is a major concern in developing countries, affecting people of different socio-economic classes. We conducted a meta-analysis of the occurrence of published scientific reports on HWC globally and South Africa particularly, to identify vulnerable human communities and their farming practices in developing and developed countries, and vulnerable wildlife guilds. We accessed Institute for Scientific Information publications from 1994 to 2015. Local communities (people living contiguous with protected natural areas and commercial farmers jointly experienced the highest HWC incidences compared to subsistence farmers, possibly due to reporting bias for commercial farmers. Rural people in Africa and Asia experienced conflict with a diversity of mammals, confirming our expectation that developing countries could potentially experience regular encounters with wildlife. South Africa had more HWC cases than developed countries (e.g., in Australia and North America, yet the dichotomy between first world and third world economies in South Africa provides a regional exemplar of global patterns in HWC. Globally, HWC involved mainly mammals and birds, with carnivores and primates as the most high-scale conflict species and thus were a severely persecuted group. Our foundational research provides the first global assessment of HWC and showed that people in developing countries are vulnerable to HWC, perhaps related to reduced protection of livestock and crops against a larger guild of problem mammals. We suggest that a wider range of literature, including governmental and non-governmental publications, be surveyed to contribute to further research in this area of study.

  10. Is Hydrogen Cyanide a Marker of Burkholderia cepacia Complex?

    Czech Academy of Sciences Publication Activity Database

    Gilchrist, F. J.; Sims, H.; Alcock, A.; Jones, A.M.; Bright-Thomas, R. J.; Smith, D.; Španěl, Patrik; Webb, A. K.; Lenney, W.

    2013-01-01

    Roč. 51, č. 11 (2013), s. 3849-3851 ISSN 0095-1137 Institutional support: RVO:61388955 Keywords : acetone * alcohol * hydrogen cyanide Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.232, year: 2013

  11. Modeling of SCC initiation and propagation mechanisms in BWR environments

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmeister, Hans, E-mail: Hans.Hoffmeister@hsu-hh.de [Institute for Failure Analysis and Failure Prevention ISSV e.V., c/o Helmut Schmidt University of the Federal Armed Forces, D-22039 Hamburg (Germany); Klein, Oliver [Institute for Failure Analysis and Failure Prevention ISSV e.V., c/o Helmut Schmidt University of the Federal Armed Forces, D-22039 Hamburg (Germany)

    2011-12-15

    increasing global stresses. In accordance with respective experimental literature data it is shown that decreasing chloride and increasing pH levels of the primary bulk water at 288 Degree-Sign C reduce the total crack propagation rates including anodic path corrosion as well as hydrogen cracking. It is also demonstrated that crack propagation rates can be significantly suppressed by hydrogen water chemistry (HWC) that leads to reduction of bulk surface corrosion potentials. As a conclusion the extended SSC-model for nickel supplies quantitative insight into the frequently controversially discussed high temperature SCC mechanisms of a basic alloying element of BWR components.

  12. Radiation chemistry of alternative fuel oxygenates - substituted ethers

    International Nuclear Information System (INIS)

    Mezyk, S. P.; Cooper, W. J.; Bartels, D. M.; Tobien, T.; O'Shea, K. E.

    1999-01-01

    The electron beam process, an advanced oxidation and reduction technology, is based in the field of radiation chemistry. Fundamental to the development of treatment processes is an understanding of the underlying chemistry. The authors have previously evaluated the bimolecular rate constants for the reactions of methyl tert-butyl ether (MTBE) and with this study have extended their studies to include ethyl tert-butyl ether (ETBE), di-isopropyl ether (DIPE) and tert-amyl methyl ether (TAME) with the hydroxyl radical, hydrogen atom and solvated electron using pulse radiolysis. For all of the oxygenates the reaction with the hydroxyl radical appears to be of primary interest in the destruction of the compounds in water. The rates with the solvated electron are limiting values as the rates appear to be relatively low. The hydrogen atom rate constants are relatively low, coupled with the low yield in radiolysis, they concluded that these are of little significance in the destruction of the alternative fuel oxygenates (and MTBE)

  13. A long symmetric N· · ·H· · ·N hydrogen bond inbis(4-aminopyridinium)(1+) azide(1−): redetermination from the original data

    Czech Academy of Sciences Publication Activity Database

    Fábry, Jan

    2017-01-01

    Roč. 73, č. 9 (2017), s. 1344-1347 ISSN 2056-9890 R&D Projects: GA ČR(CZ) GA15-12653S Institutional support: RVO:68378271 Keywords : hydrogen bonding * symmetric hydrogen bonds * primary amine group Subject RIV: CC - Organic Chemistry OBOR OECD: Organic chemistry

  14. Reaction between Hydrogen Sulfide and Limestone Calcines

    Czech Academy of Sciences Publication Activity Database

    Hartman, Miloslav; Svoboda, Karel; Trnka, Otakar; Čermák, Jiří

    2002-01-01

    Roč. 41, č. 10 (2002), s. 2392-2398 ISSN 0888-5885 R&D Projects: GA AV ČR IAA4072711; GA AV ČR IAA4072801 Keywords : hydrogen sulfide * limestone calcines * desulfurization Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.247, year: 2002

  15. The chemistry of cycloheptatriene. Part XVI : Sigmatropic shifts of hydrogen in methylcycloheptatriene

    NARCIS (Netherlands)

    Borg, ter A.P.; Kloosterziel, H.

    1969-01-01

    Upon heating 7-methylcycloheptatriene, the 3-, 1- and 2-isomers are successively formed by 1-5 shifts of hydrogen. The rate consts. at 140 Deg were detd. Photochem. 1-7 shifts of hydrogen are also reported: the 1-isomer yields preferentially the 7-isomer and little of the 2-isomer, while the

  16. Young consumers' considerations of healthy working conditions in purchasing decisions: a qualitative examination.

    Science.gov (United States)

    Dixon, Shane M; Nordvall, Anna-Carin; Cukier, Wendy; Neumann, W Patrick

    2017-05-01

    Research has suggested that products manufactured under healthy work conditions (HWC) may provide a marketing advantage to companies. This paper explores young consumers' considerations of HWC in purchasing decisions using data from qualitative interviews with a sample of 21 university students. The results suggest that interviewees frequently considered the working conditions of those who produced the products they purchased. Participants reported a willingness to pay 17.5% more on a $100 product if it were produced under HWC compared to not. Their ability and willingness to act on this issue was, however, hampered by  a lack of credible information about working conditions in production, the limited availability of HWC goods and a presumed higher price of HWC goods. While caution should be applied when generalising from this targetable market segment to a general population, these results provide actionable direction for companies interested in using a HWC brand image to gain a strategic sales advantage. Practitioner Summary: This interview study shows that young consumers are interested in, and willing to pay a premium for, goods made under healthy working conditions (HWC). Reported barriers to acting on this impulse include a lack of credible information on working conditions. Ergonomics can help provide a strategic marketing advantage for companies.

  17. Uses of neutron scattering in supramolecular chemistry

    International Nuclear Information System (INIS)

    Lindoy, L.F.

    1998-01-01

    Full text: A major thrust in recent chemical research has been the development of supramolecular chemistry 1 - broadly the chemistry of large multicomponent molecular assemblies in which the component structural units are held together by either covalent linkages or by a variety of weaker (non-covalent) interactions that include hydrogen bonding, dipole stacking, π-stacking, van der Waals q forces and favourable hydrophobic interactions. Much of the activity in the area has been motivated by the known behaviour of biological molecules (such as enzymes). Thus molecular assemblies are ubiquitous in natural systems but, with a limited number of exceptions, have only recently been the subject of increasing investigation by chemists. A feature of much of this recent work has been its focus on molecular design for achieving complementarity between single molecule hosts and guests. The use of single crystal neutron diffraction coupled with molecular modelling and a range of other techniques to investigate the nature of individual supramolecular systems will be discussed. By way of example, in one such study the supramolecular array formed by co-crystallisation of 1,2- diaminoethane and benzoic acid has been investigated; the system self-assembles into an unusual layered structure composed of two-dimensional hydrogen bonded networks sandwiched between layers of edge-to-face stacked aromatic systems. The number of hydrogen-bond donors and acceptors is balanced in this structure

  18. How green are the hydrogen production processes?

    International Nuclear Information System (INIS)

    Miele, Ph.; Demirci, U.B.

    2010-01-01

    Molecular hydrogen is recognised as being one of the most promising fuels alternate to fossil fuels. Unfortunately it only exists combined with other elements like e.g. oxygen in the case of water and therefore has to be produced. Today various methods for producing molecular hydrogen are being investigated. Besides its energy potential, molecular hydrogen is regarded as being a green energy carrier because it can be produced from renewable sources and its combustion/oxidation generates water. However as it has to be produced its greenness merits a deeper discussion especially stressing on its production routes. The goal of the present article is to discuss the relative greenness of the various hydrogen production processes on the basis of the twelve principles of green chemistry. It is mainly showed that the combination 'renewable raw materials, biological or electrochemical methods, and renewable energies (e.g. solar or wind)' undeniably makes the hydrogen production green. (authors)

  19. Design concept for α-hydrogen-substituted nitroxides.

    Science.gov (United States)

    Amar, Michal; Bar, Sukanta; Iron, Mark A; Toledo, Hila; Tumanskii, Boris; Shimon, Linda J W; Botoshansky, Mark; Fridman, Natalia; Szpilman, Alex M

    2015-02-06

    Stable nitroxides (nitroxyl radicals) have many essential and unique applications in chemistry, biology and medicine. However, the factors influencing their stability are still under investigation, and this hinders the design and development of new nitroxides. Nitroxides with tertiary alkyl groups are generally stable but obviously highly encumbered. In contrast, α-hydrogen-substituted nitroxides are generally inherently unstable and rapidly decompose. Herein, a novel, concept for the design of stable cyclic α-hydrogen nitroxides is described, and a proof-of-concept in the form of the facile synthesis and characterization of two diverse series of stable α-hydrogen nitroxides is presented. The stability of these unique α-hydrogen nitroxides is attributed to a combination of steric and stereoelectronic effects by which disproportionation is kinetically precluded. These stabilizing effects are achieved by the use of a nitroxide co-planar substituent in the γ-position of the backbone of the nitroxide. This premise is supported by a computational study, which provides insight into the disproportionation pathways of α-hydrogen nitroxides.

  20. Recent advances in study of uranium surface chemistry in China

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Lizhu; Lai, Xinchun [Science and Technology on Surface Physics and Chemistry Laboratory, Sichuan (China); Wang, Xiaolin [China Academy of Engineering Physics, Sichuan (China)

    2014-04-01

    Uranium is very important in nuclear energy industry; however, uranium and its alloys corrode seriously in various atmospheres because of their chemical reactivities. In China, continuous investigations focused on surface chemistry have been carried out for a thorough understanding of uranium in order to provide technical support for its engineering applications. Oxidation kinetics of uranium and its alloys in oxidizing atmospheres are in good agreement with those in the literature. In addition to the traditional techniques, non-traditional methods have been applied for oxidation kinetics of uranium, and it has been verified that spectroscopic ellipsometry and X-ray diffraction are effective and nondestructive tools for in situ kinetic studies. The inhibition efficiency of oxidizing gas impurities on uranium hydrogenation is found to follow the order CO{sub 2} > CO > O{sub 2}, and the broadening of XPS shoulders with temperature in depth profile of hydrogenated uranium surface is discussed, which is not mentioned in the literature. Significant progress on surface chemistry of alloyed uranium (U-Nb and U-Ti) in hydrogen atmosphere is reported, and it is revealed that the hydrating nucleation and subsequent growth of alloyed uranium are closely connected with the surface states, underlying metal matrix, and it is microstructure-dependent. In this review, the recent advances in uranium surface chemistry in China, published so far mostly in Chinese language, are briefly summarized. Suggestions for further study are made. (orig.)

  1. Thymol Hydrogenation in Bench Scale Trickle Bed Reactor

    Czech Academy of Sciences Publication Activity Database

    Dudas, J.; Hanika, Jiří; Lepuru, J.; Barkhuysen, M.

    2005-01-01

    Roč. 19, č. 3 (2005), s. 255-262 ISSN 0352-9568 Institutional research plan: CEZ:AV0Z40720504 Keywords : thymol hydrogenation * trickle bed reactor * gas-liquid-solid reaction Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 0.632, year: 2005

  2. Interstellar chemistry.

    Science.gov (United States)

    Klemperer, William

    2006-08-15

    In the past half century, radioastronomy has changed our perception and understanding of the universe. In this issue of PNAS, the molecular chemistry directly observed within the galaxy is discussed. For the most part, the description of the molecular transformations requires specific kinetic schemes rather than chemical thermodynamics. Ionization of the very abundant molecular hydrogen and atomic helium followed by their secondary reactions is discussed. The rich variety of organic species observed is a challenge for complete understanding. The role and nature of reactions involving grain surfaces as well as new spectroscopic observations of interstellar and circumstellar regions are topics presented in this special feature.

  3. Hydrazine and hydrogen coinjection to mitigate stress corrosion cracking of structural materials in boiling water reactors (7). Effects of bulk water chemistry on ECP distribution inside a crack

    International Nuclear Information System (INIS)

    Wada, Yoichi; Ishida, Kazushige; Tachibana, Masahiko; Aizawa, Motohiro; Fuse, Motomasa

    2007-01-01

    Water chemistry in a simulated crack (crack) has been studied to understand the mechanisms of stress corrosion cracking in a boiling water reactor environment. Electrochemical corrosion potential (ECP) in a crack made in an austenite type 304 stainless steel specimen was measured. The ECP distribution along the simulated crack was strongly affected by bulk water chemistry and bulk flow. When oxygen concentration was high in the bulk water, the potential difference between the crack tip and the outside of the crack (ΔE), which must be one motive force for crack growth, was about 0.3V under a stagnant condition. When oxygen was removed from the bulk water, ECP inside and outside the crack became low and uniform and ΔE became small. The outside ECP was also lowered by depositing platinum on the steel specimen surface and adding stoichiometrically excess hydrogen to oxygen to lower ΔE. This was effective only when bulk water did not flow. Under the bulk water flow condition, water-borne oxygen caused an increase in ECP on the untreated surface inside the crack. This also caused a large ΔE. The ΔE effect was confirmed by crack growth rate measurements with a catalyst-treated specimen. Therefore, lowering the bulk oxidant concentration by such measures as hydrazine hydrogen coinjection, which is currently under development, is important for suppressing the crack growth. (author)

  4. Searching for magnetism in hydrogenated graphene: Using highly hydrogenated graphene prepared via birch reduction of graphite oxides

    Czech Academy of Sciences Publication Activity Database

    Eng, A.Y.S.; Poh, H. L.; Šaněk, F.; Maryško, Miroslav; Matějková, Stanislava; Šofer, Z.; Pumera, M.

    2013-01-01

    Roč. 7, č. 7 (2013), s. 5930-5939 ISSN 1936-0851 R&D Projects: GA ČR GA13-20507S Institutional support: RVO:68378271 ; RVO:61388963 Keywords : hydrogenated graphene * graphane * graphite oxide * ferromagnetism Subject RIV: BM - Solid Matter Physics ; Magnetism; CF - Physical ; Theoretical Chemistry (UOCHB-X) Impact factor: 12.033, year: 2013

  5. Do-It-Yourself: 3D Models of Hydrogenic Orbitals through 3D Printing

    Science.gov (United States)

    Griffith, Kaitlyn M.; de Cataldo, Riccardo; Fogarty, Keir H.

    2016-01-01

    Introductory chemistry students often have difficulty visualizing the 3-dimensional shapes of the hydrogenic electron orbitals without the aid of physical 3D models. Unfortunately, commercially available models can be quite expensive. 3D printing offers a solution for producing models of hydrogenic orbitals. 3D printing technology is widely…

  6. Solid Aluminum Borohydrides for Prospective Hydrogen Storage.

    Science.gov (United States)

    Dovgaliuk, Iurii; Safin, Damir A; Tumanov, Nikolay A; Morelle, Fabrice; Moulai, Adel; Černý, Radovan; Łodziana, Zbigniew; Devillers, Michel; Filinchuk, Yaroslav

    2017-12-08

    Metal borohydrides are intensively researched as high-capacity hydrogen storage materials. Aluminum is a cheap, light, and abundant element and Al 3+ can serve as a template for reversible dehydrogenation. However, Al(BH 4 ) 3 , containing 16.9 wt % of hydrogen, has a low boiling point, is explosive on air and has poor storage stability. A new family of mixed-cation borohydrides M[Al(BH 4 ) 4 ], which are all solid under ambient conditions, show diverse thermal decomposition behaviors: Al(BH 4 ) 3 is released for M=Li + or Na + , whereas heavier derivatives evolve hydrogen and diborane. NH 4 [Al(BH 4 ) 4 ], containing both protic and hydridic hydrogen, has the lowest decomposition temperature of 35 °C and yields Al(BH 4 ) 3 ⋅NHBH and hydrogen. The decomposition temperatures, correlated with the cations' ionic potential, show that M[Al(BH 4 ) 4 ] species are in the most practical stability window. This family of solids, with convenient and versatile properties, puts aluminum borohydride chemistry in the mainstream of hydrogen storage research, for example, for the development of reactive hydride composites with increased hydrogen content. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Hydrogen bond dynamics in bulk alcohols

    International Nuclear Information System (INIS)

    Shinokita, Keisuke; Cunha, Ana V.; Jansen, Thomas L. C.; Pshenichnikov, Maxim S.

    2015-01-01

    Hydrogen-bonded liquids play a significant role in numerous chemical and biological phenomena. In the past decade, impressive developments in multidimensional vibrational spectroscopy and combined molecular dynamics–quantum mechanical simulation have established many intriguing features of hydrogen bond dynamics in one of the fundamental solvents in nature, water. The next class of a hydrogen-bonded liquid—alcohols—has attracted much less attention. This is surprising given such important differences between water and alcohols as the imbalance between the number of hydrogen bonds, each molecule can accept (two) and donate (one) and the very presence of the hydrophobic group in alcohols. Here, we use polarization-resolved pump-probe and 2D infrared spectroscopy supported by extensive theoretical modeling to investigate hydrogen bond dynamics in methanol, ethanol, and isopropanol employing the OH stretching mode as a reporter. The sub-ps dynamics in alcohols are similar to those in water as they are determined by similar librational and hydrogen-bond stretch motions. However, lower density of hydrogen bond acceptors and donors in alcohols leads to the appearance of slow diffusion-controlled hydrogen bond exchange dynamics, which are essentially absent in water. We anticipate that the findings herein would have a potential impact on fundamental chemistry and biology as many processes in nature involve the interplay of hydrophobic and hydrophilic groups

  8. Hydrogen bond dynamics in bulk alcohols.

    Science.gov (United States)

    Shinokita, Keisuke; Cunha, Ana V; Jansen, Thomas L C; Pshenichnikov, Maxim S

    2015-06-07

    Hydrogen-bonded liquids play a significant role in numerous chemical and biological phenomena. In the past decade, impressive developments in multidimensional vibrational spectroscopy and combined molecular dynamics-quantum mechanical simulation have established many intriguing features of hydrogen bond dynamics in one of the fundamental solvents in nature, water. The next class of a hydrogen-bonded liquid--alcohols--has attracted much less attention. This is surprising given such important differences between water and alcohols as the imbalance between the number of hydrogen bonds, each molecule can accept (two) and donate (one) and the very presence of the hydrophobic group in alcohols. Here, we use polarization-resolved pump-probe and 2D infrared spectroscopy supported by extensive theoretical modeling to investigate hydrogen bond dynamics in methanol, ethanol, and isopropanol employing the OH stretching mode as a reporter. The sub-ps dynamics in alcohols are similar to those in water as they are determined by similar librational and hydrogen-bond stretch motions. However, lower density of hydrogen bond acceptors and donors in alcohols leads to the appearance of slow diffusion-controlled hydrogen bond exchange dynamics, which are essentially absent in water. We anticipate that the findings herein would have a potential impact on fundamental chemistry and biology as many processes in nature involve the interplay of hydrophobic and hydrophilic groups.

  9. Improving chemistry performance in CANDU plants

    International Nuclear Information System (INIS)

    Turner, C.; Guzonas, D.

    2010-01-01

    There is a strong interplay between coolant chemistry and materials selection in any nuclear power plant system. To achieve the design life of reactor components it is necessary to monitor and control relevant chemistry parameters, such as ionic conductivity, pH, concentrations of dissolved ions and redox species (e.g., hydrogen, hydrazine, oxygen) and the concentrations of suspended corrosion products. Chemistry specifications are set to achieve a balance between the sometimes conflicting requirements to minimize corrosion and radiological dose and to minimize operating and maintenance costs over the lifetime of the plant. For the past decade, Atomic Energy of Canada Limited (AECL) has taken a rigorous and disciplined approach to reviewing and updating all aspects of chemistry control in the CANDU® nuclear power plant (NPP). This approach has included proactively reviewing chemistry operating experience from existing CANDU® and other water-cooled NPPs worldwide to identify and address emerging issues, updating all of our chemistry control documentation to ensure that each chemistry parameter is linked to a specific requirement (e.g., reduce activity transport, monitor for condenser leak) and incorporating the latest results from our Research and Development (R and D) programs to ensure that all chemistry specifications are supported by a sound rationale. The results of this review and update have been incorporated into updated chemistry specifications and, in some cases, modified operating procedures for new and existing plants. In addition, recommendations have been made for design modifications to improve chemistry control in new build plants, especially during periods of shutdown and startup when chemistry control has traditionally been more challenging. Chemistry control in new-build CANDU® plants will rely increasingly on the use of on-line instrumentation interfaced directly to AECL's state-of-the-art chemistry monitoring, diagnostics and analysis

  10. Ammonia chemistry in a flameless jet

    Energy Technology Data Exchange (ETDEWEB)

    Zieba, Mariusz; Schuster, Anja; Scheffknecht, Guenter [Institute of Process Engineering and Power Plant Technology, University of Stuttgart, Pfaffenwaldring 23, D-70569 Stuttgart (Germany); Brink, Anders; Hupa, Mikko [Process Chemistry Centre, Aabo Akademi University, Biskopsgatan 8, 20500 Aabo (Finland)

    2009-10-15

    In this paper, the nitrogen chemistry in an ammonia (NH{sub 3}) doped flameless jet is investigated using a kinetic reactor network model. The reactor network model is used to explain the main differences in ammonia chemistry for methane (CH{sub 4})-containing fuels and methane-free fuels. The chemical pathways of nitrogen oxides (NO{sub x}) formation and destruction are identified using rate-of-production analysis. The results show that in the case of natural gas, ammonia reacts relatively late at fuel lean condition leading to high NO{sub x} emissions. In the pre-ignition zone, the ammonia chemistry is blocked due to the absence of free radicals which are consumed by methane-methyl radical (CH{sub 3}) conversion. In the case of methane-free gas, the ammonia reacted very rapidly and complete decomposition was reached in the fuel rich region of the jet. In this case the necessary radicals for the ammonia conversion are generated from hydrogen (H{sub 2}) oxidation. (author)

  11. Reactions of oxygen and hydrogen with liquid sodium - a critical survey

    International Nuclear Information System (INIS)

    Ullmann, H.

    1982-01-01

    The fundamentals of solvation chemistry are presented with appropriate components formulated. Methods of investigation and kinetics of the reactions are described. The hydrogen equilibrium pressure and saturation solubilities are described. The chemical equilibrium between O and H in solution is presented with detailed tabulation of the saturation solutions of oxygen, hydrogen and hydroxide in liquid sodium. Agreements and differences with the literature are presented

  12. Superficial and electrochemical study of stainless steel 304l with an inhibitory protective coating (TiO{sub 2} and ZrO{sub 2}); Estudio superficial y electroquimico de acero inoxidable 304L con una capa protectora inhibidora (TiO{sub 2} y ZrO{sub 2})

    Energy Technology Data Exchange (ETDEWEB)

    Davila N, M. L.; Contreras R, A.; Arganis J, C. R., E-mail: aida.contreras@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-10-15

    The degradation mechanisms in the boiling water reactors (BWR) have been an alert focus for owners, especially the cracking by stress corrosion cracking (SCC), therefore different techniques have been studied to inhibit this problem inside which is the water injection of hydrogen feeding (HWC, Hydrogen Water Chemistry), together with the noble metals injection (NMCA, Nobel Metal Chemical Addition) and the ceramic materials injection that form an inhibitory protective coating (Ipc). In this work the Ipc was simulated, for which were carried out hydro-thermals deposits starting from suspensions of 1000 ppm of zirconium oxide in its crystalline phase baddeleyite and titanium oxides in its anatase and rutile phases, on test tubes of stainless steel 304l previously rusty under simulated conditions of pressure and temperature of a BWR (288 C and 8 MPa). The superficial characterization was realized by scanning electron microscopy, energy-dispersive of X-ray and X-ray diffraction. The capacity to mitigate the corrosion was studied with the electrochemical technique of Tafel polarization (288 C and 8 MPa). The steel presents the formation of two oxide coatings formed by magnetite and hematite. The baddeleyite presents a deposit more thick and homogeneous it also presents the most negative electrochemical potential of corrosion, what indicates that it has the bigger capacity to mitigate the SCC. (Author)

  13. Superficial and electrochemical study of stainless steel 304l with an inhibitory protective coating (TiO2 and ZrO2)

    International Nuclear Information System (INIS)

    Davila N, M. L.; Contreras R, A.; Arganis J, C. R.

    2014-10-01

    The degradation mechanisms in the boiling water reactors (BWR) have been an alert focus for owners, especially the cracking by stress corrosion cracking (SCC), therefore different techniques have been studied to inhibit this problem inside which is the water injection of hydrogen feeding (HWC, Hydrogen Water Chemistry), together with the noble metals injection (NMCA, Nobel Metal Chemical Addition) and the ceramic materials injection that form an inhibitory protective coating (Ipc). In this work the Ipc was simulated, for which were carried out hydro-thermals deposits starting from suspensions of 1000 ppm of zirconium oxide in its crystalline phase baddeleyite and titanium oxides in its anatase and rutile phases, on test tubes of stainless steel 304l previously rusty under simulated conditions of pressure and temperature of a BWR (288 C and 8 MPa). The superficial characterization was realized by scanning electron microscopy, energy-dispersive of X-ray and X-ray diffraction. The capacity to mitigate the corrosion was studied with the electrochemical technique of Tafel polarization (288 C and 8 MPa). The steel presents the formation of two oxide coatings formed by magnetite and hematite. The baddeleyite presents a deposit more thick and homogeneous it also presents the most negative electrochemical potential of corrosion, what indicates that it has the bigger capacity to mitigate the SCC. (Author)

  14. Defining the hydrogen bond: An account (IUPAC Technical Report)

    Czech Academy of Sciences Publication Activity Database

    Arunan, E.; Desiraju, G. R.; Klein, R. A.; Sadlej, J.; Scheiner, S.; Alkorta, I.; Clary, D. C.; Crabtree, R. H.; Dannenberg, J. J.; Hobza, Pavel; Kjaergaard, H. G.; Legon, A. C.; Mennucci, B.; Nesbitt, D. J.

    2011-01-01

    Roč. 83, č. 8 (2011), s. 1619-1636 ISSN 0033-4545 Institutional research plan: CEZ:AV0Z40550506 Keywords : bonding * electrostatic interactions * hydrogen bonding * molecular interactions Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.789, year: 2011

  15. Liquid phase oxidation chemistry in continuous-flow microreactors.

    Science.gov (United States)

    Gemoets, Hannes P L; Su, Yuanhai; Shang, Minjing; Hessel, Volker; Luque, Rafael; Noël, Timothy

    2016-01-07

    Continuous-flow liquid phase oxidation chemistry in microreactors receives a lot of attention as the reactor provides enhanced heat and mass transfer characteristics, safe use of hazardous oxidants, high interfacial areas, and scale-up potential. In this review, an up-to-date overview of both technological and chemical aspects of liquid phase oxidation chemistry in continuous-flow microreactors is given. A description of mass and heat transfer phenomena is provided and fundamental principles are deduced which can be used to make a judicious choice for a suitable reactor. In addition, the safety aspects of continuous-flow technology are discussed. Next, oxidation chemistry in flow is discussed, including the use of oxygen, hydrogen peroxide, ozone and other oxidants in flow. Finally, the scale-up potential for continuous-flow reactors is described.

  16. Studies about interaction of hydrogen isotopes with metals and intermetallic compounds

    International Nuclear Information System (INIS)

    Vasut, F.; Anisoara, P.; Zamfirache, M.

    2003-01-01

    Hydrogen is a non-toxic but highly inflammable gas. Compared to other inflammable gases, its range of inflammability in air is much broader (4-74.5%) but it also vaporizes much more easily. Handling of hydrogen in form of hydrides enhances safety. The interaction of hydrogen with metals and intermetallic compounds is a major field within physical chemistry. Using hydride-forming metals and intermetallic compounds, for example, recovery, purification and storage of heavy isotopes in tritium containing system can solve many problems arising in the nuclear-fuel cycle. The paper presents the thermodynamics and the kinetics between hydrogen and metal or intermetallic compounds. (author)

  17. Hydrogen in metals

    International Nuclear Information System (INIS)

    1986-01-01

    The report briefly describes the results of the single projects promoted by the German Council of Research (DFG). The subjects deal with diffusion, effusion, permeation and solubility of hydrogen in metals. They are interesting for many disciplines: metallurgy, physical metallurgy, metal physics, materials testing, welding engineering, chemistry, nuclear physics and solid-state physics. The research projects deal with the following interrelated subjects: solubility of H 2 in steel and effects on embrittlement, influence of H 2 on the fatigue strength of steel as well as the effect of H 2 on welded joints. The studies in solid-state research can be divided into methodological and physico-chemical studies. The methodological studies mainly comprise investigations on the analytical determination of H 2 by means of nuclear-physical reactions (e.g. the 15 N method) and the application of the Moessbauer spectroscopy. Physico-chemical problems are mainly dealt with in studies on interfacial reactions in connection with the absorption of hydrogen and on the diffusion of H 2 in different alloy systems. The properties of materials used for hydrogen storage were the subject of several research projects. 20 contributions were separately recorded for the data bank 'Energy'. (MM) [de

  18. Boron-Based Hydrogen Storage: Ternary Borides and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    Vajo, John J. [HRL Laboratories, LLC, Malibu, CA (United States)

    2016-04-28

    DOE continues to seek reversible solid-state hydrogen materials with hydrogen densities of ≥11 wt% and ≥80 g/L that can deliver hydrogen and be recharged at moderate temperatures (≤100 °C) and pressures (≤100 bar) enabling incorporation into hydrogen storage systems suitable for transportation applications. Boron-based hydrogen storage materials have the potential to meet the density requirements given boron’s low atomic weight, high chemical valance, and versatile chemistry. However, the rates of hydrogen exchange in boron-based compounds are thus far much too slow for practical applications. Although contributing to the high hydrogen densities, the high valance of boron also leads to slow rates of hydrogen exchange due to extensive boron-boron atom rearrangements during hydrogen cycling. This rearrangement often leads to multiple solid phases occurring over hydrogen release and recharge cycles. These phases must nucleate and react with each other across solid-solid phase boundaries leading to energy barriers that slow the rates of hydrogen exchange. This project sought to overcome the slow rates of hydrogen exchange in boron-based hydrogen storage materials by minimizing the number of solid phases and the boron atom rearrangement over a hydrogen release and recharge cycle. Two novel approaches were explored: 1) developing matched pairs of ternary borides and mixed-metal borohydrides that could exchange hydrogen with only one hydrogenated phase (the mixed-metal borohydride) and only one dehydrogenated phase (the ternary boride); and 2) developing boranes that could release hydrogen by being lithiated using lithium hydride with no boron-boron atom rearrangement.

  19. Hydrogen-Bromine Flow Battery: Hydrogen Bromine Flow Batteries for Grid Scale Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-10-01

    GRIDS Project: LBNL is designing a flow battery for grid storage that relies on a hydrogen-bromine chemistry which could be more efficient, last longer and cost less than today’s lead-acid batteries. Flow batteries are fundamentally different from traditional lead-acid batteries because the chemical reactants that provide their energy are stored in external tanks instead of inside the battery. A flow battery can provide more energy because all that is required to increase its storage capacity is to increase the size of the external tanks. The hydrogen-bromine reactants used by LBNL in its flow battery are inexpensive, long lasting, and provide power quickly. The cost of the design could be well below $100 per kilowatt hour, which would rival conventional grid-scale battery technologies.

  20. A detailed chemistry model for transient hydrogen and carbon monoxide catalytic recombination on parallel flat Pt surfaces implemented in an integral code

    International Nuclear Information System (INIS)

    Jimenez, Miguel A.; Martin-Valdepenas, Juan M.; Martin-Fuertes, Francisco; Fernandez, Jose A.

    2007-01-01

    A detailed chemistry model has been adapted and developed for surface chemistry, heat and mass transfer between H 2 /CO/air/steam/CO 2 mixtures and vertical parallel Pt-coated surfaces. This model is based onto a simplified Deutschmann reaction scheme for methane surface combustion and the analysis by Elenbaas for buoyancy-induced heat transfer between parallel plates. Mass transfer is treated by the heat and mass transfer analogy. The proposed model is able to simulate the H 2 /CO recombination phenomena characteristic of parallel-plate Passive Autocatalytic Recombiners (PARs), which have been proposed and implemented as a promising hydrogen-control strategy in the safety of nuclear power stations or other industries. The transient model is able to approach the warm-up phase of the PAR and its shut-down as well as the dynamic changes within the surrounding atmosphere. The model has been implemented within the MELCOR code and assessed against results of the Battelle Model Containment tests of the Zx series. Results show accurate predictions and a better performance than traditional methods in integral codes, i.e. empirical correlations, which are also much case-specific. Influence of CO present in the mixture on the PAR performance is also addressed in this paper

  1. Experimental studies of lithium-based surface chemistry for fusion plasma-facing materials applications

    International Nuclear Information System (INIS)

    Allain, J.P.; Rokusek, D.L.; Harilal, S.S.; Nieto-Perez, M.; Skinner, C.H.; Kugel, H.W.; Heim, B.; Kaita, R.; Majeski, R.

    2009-01-01

    Lithium has enhanced the operational performance of fusion devices such as: TFTR, CDX-U, FTU, T-11 M, and NSTX. Lithium in the solid and liquid state has been studied extensively in laboratory experiments including its erosion and hydrogen-retaining properties. Reductions in physical sputtering up to 40-60% have been measured for deuterated solid and liquid lithium surfaces. Computational modeling indicates that up to a 1:1 deuterium volumetric retention in lithium is possible. This paper presents the results of systematic in situ laboratory experimental studies on the surface chemistry evolution of ATJ graphite under lithium deposition. Results are compared to post-mortem analysis of similar lithium surface coatings on graphite exposed to deuterium discharge plasmas in NSTX. Lithium coatings on plasma-facing components in NSTX have shown substantial reduction of hydrogenic recycling. Questions remain on the role lithium surface chemistry on a graphite substrate has on particle sputtering (physical and chemical) as well as hydrogen isotope recycling. This is particularly due to the lack of in situ measurements of plasma-surface interactions in tokamaks such as NSTX. Results suggest that the lithium bonding state on ATJ graphite is lithium peroxide and with sufficient exposure to ambient air conditions, lithium carbonate is generated. Correlation between both results is used to assess the role of lithium chemistry on the state of lithium bonding and implications on hydrogen pumping and lithium sputtering. In addition, reduction of factors between 10 and 30 reduction in physical sputtering from lithiated graphite compared to pure lithium or carbon is also measured.

  2. Economic analysis of the hydrogen production by means of the thermo-chemistry process iodine-sulfur with nuclear energy; Analisis economico de la produccion de hidrogeno mediante el proceso termoquimico yodo-azufre con energia nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Solorzano S, C.; Francois L, J. L., E-mail: cuausos@comunidad.unam.mx [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Paseo Cuauhnahuac No. 8532, Col. Progreso, 62550 Jiutepec, Morelos (Mexico)

    2011-11-15

    In this work an economic study was realized about a centralized plant of hydrogen production that works by means of a thermo-chemistry cycle of sulfur-iodine and uses heat coming from a nuclear power plant of IV generation, with base in the software -Hydrogen Economic Evaluation Programme- obtained through the IAEA. The sustainable technology that is glimpsed next for the generation of hydrogen is to great scale and based on processes of high temperature coupled to nuclear power plants, being the most important the cycle S-I and the electrolysis to high temperature, for what objective references are presented that can serve as base for the taking of decisions for its introduction in Mexico. After detailing the economic models that uses the software for the calculation of the even cost of hydrogen production and the characteristics, so much of the nuclear plant constituted by fourth generation reactors, as of the plant of hydrogen production, is proposed a -base- case, obtaining a preliminary even cost of hydrogen production with this process; subsequently different cases are studied starting from which are carried out sensibility analysis in several parameters that could rebound in this cost, taking into account that these reactors are still in design and planning stages. (Author)

  3. Asymmetric Transfer Hydrogenation of 1-Aryl-3,4-Dihydroisoquinolines Using a Cp*Ir(TsDPEN) Complex

    Czech Academy of Sciences Publication Activity Database

    Václavíková Vilhanová, B.; Budinská, Alena; Václavík, Jiří; Matoušek, V.; Kuzma, M.; Červený, L.

    2017-01-01

    Roč. 2017, č. 34 (2017), s. 5131-5134 ISSN 1434-193X Institutional support: RVO:61388963 Keywords : 1-aryl-3,4-dihydroisoquinolines * asymmetric synthesis * hydrogenation * iridium * phosphoric acid Subject RIV: CC - Organic Chemistry OBOR OECD: Organic chemistry Impact factor: 2.834, year: 2016

  4. Primordial chemistry: an overview

    International Nuclear Information System (INIS)

    Signore, Monique; Puy, Denis

    1999-01-01

    In the standard Big Bang model, the light elements in the cosmos -hydrogen and helium but also deuterium and lithium- were created in the very early Universe. The main problem is to connect what we can actually observe to day with the standard Big Bang nucleosynthesis predictions essentially because of uncertainties in modeling their evolution since the Big Bang. After a brief review of the primordial nucleosynthesis -predictions and observations of the primordial abundances- we present the preliminary studies of the primordial chemistry: molecular formation and evolution in the early Universe

  5. Oxide/water interfaces: how the surface chemistry modifies interfacial water properties

    International Nuclear Information System (INIS)

    Gaigeot, Marie-Pierre; Sprik, Michiel; Sulpizi, Marialore

    2012-01-01

    The organization of water at the interface with silica and alumina oxides is analysed using density functional theory-based molecular dynamics simulation (DFT-MD). The interfacial hydrogen bonding is investigated in detail and related to the chemistry of the oxide surfaces by computing the surface charge density and acidity. We find that water molecules hydrogen-bonded to the surface have different orientations depending on the strength of the hydrogen bonds and use this observation to explain the features in the surface vibrational spectra measured by sum frequency generation spectroscopy. In particular, ‘ice-like’ and ‘liquid-like’ features in these spectra are interpreted as the result of hydrogen bonds of different strengths between surface silanols/aluminols and water. (paper)

  6. Sodium tetra-hydro-borate as energy/hydrogen carrier, its history

    International Nuclear Information System (INIS)

    Demirci, U.B.; Miele, Ph.

    2009-01-01

    Sodium tetra-hydro-borate NaBH 4 is considered as being a promising energy/hydrogen carrier. NaBH 4 is not a new compound. It has been discovered in 1940's by Prof. H.C. Brown, Nobel Laureate in Chemistry in 1979. NaBH 4 has thus a history and this history distinguishes the NaBH 4 utilisation as hydrogen carrier from that as energy carrier. In fact, the history of NaBH 4 (for both utilizations) can be divided into three periods, each period being characterised by specific societal challenges. Whereas during the first period the challenges were military and political, the challenges in the third period (i.e. at present) are energetic, environmental, civilian, social and political. The second period was rather calm for NaBH 4 even if it was intensively used as a reducing agent in organic chemistry. (authors)

  7. Photoswitchable Intramolecular Hydrogen Bonds in 5-Phenylazopyrimidines Revealed By In Situ Irradiation NMR Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Procházková, Eliška; Čechová, Lucie; Kind, J.; Janeba, Zlatko; Thiele, C. M.; Dračínský, Martin

    2018-01-01

    Roč. 24, č. 2 (2018), s. 492-498 ISSN 0947-6539 R&D Projects: GA ČR GA15-11223S Institutional support: RVO:61388963 Keywords : azopyrimidines * heterocycles * hydrogen bonds * NMR spectroscopy * UV/Vis in situ irradiation Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 5.317, year: 2016

  8. Hydrogen storage in graphite nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Park, C.; Tan, C.D.; Hidalgo, R.; Baker, R.T.K.; Rodriguez, N.M. [Northeastern Univ., Boston, MA (United States). Chemistry Dept.

    1998-08-01

    Graphite nanofibers (GNF) are a type of material that is produced by the decomposition of carbon containing gases over metal catalyst particles at temperatures around 600 C. These molecularly engineered structures consist of graphene sheets perfectly arranged in a parallel, perpendicular or at angle orientation with respect to the fiber axis. The most important feature of the material is that only edges are exposed. Such an arrangement imparts the material with unique properties for gas adsorption because the evenly separated layers constitute the most ordered set of nanopores that can accommodate an adsorbate in the most efficient manner. In addition, the non-rigid pore walls can also expand so as to accommodate hydrogen in a multilayer conformation. Of the many varieties of structures that can be produced the authors have discovered that when gram quantities of a selected number of GNF are exposed to hydrogen at pressures of {approximately} 2,000 psi, they are capable of adsorbing and storing up to 40 wt% of hydrogen. It is believed that a strong interaction is established between hydrogen and the delocalized p-electrons present in the graphite layers and therefore a new type of chemistry is occurring within these confined structures.

  9. The status and immediate problems of the chemistry of transition metal hydrides

    International Nuclear Information System (INIS)

    Meikheeva, V.I.

    1978-01-01

    The state of the art and perspectives of the chemistry transition metal hydrides are reviewed, the hydrides being essentially compounds with interstitial hydrogen in the crystal lattice of the metals. The possibilities of hydrogenation of transition metals are considered along with that of compounds of rare earth elements with metals of the iron family. It is shown that the products of hydrogenation of many alloys are unstable and disintegrate forming simpler hydrides. The phase diagram of La-Ni-H system resembles the isotherm of a ternary metal system with the difference that no continuous series of solid solutions is formed. Most hydrogenation products across LaHsub(2-3)-NiH are X-ray amorphous. The nature of hydrogen in hydrides is discussed along with the possibilities of synthesis of new hydrides of transition metals

  10. Functionalization of Hydrogenated Chemical Vapour Deposition-Grown Graphene by On-Surface Chemical Reactions

    Czech Academy of Sciences Publication Activity Database

    Drogowska, Karolina; Kovaříček, Petr; Kalbáč, Martin

    2017-01-01

    Roč. 23, č. 17 (2017), s. 4073-4078 ISSN 0947-6539 R&D Projects: GA MŠk LL1301; GA MŠk(CZ) LM2015073 Grant - others:AVČR PPPLZ(CZ) L200401551 Institutional support: RVO:61388955 Keywords : functionalization * graphene * hydrogen ation * Raman spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 5.317, year: 2016

  11. Functionalization of Hydrogenated Chemical Vapour Deposition-Grown Graphene by On-Surface Chemical Reactions

    Czech Academy of Sciences Publication Activity Database

    Drogowska, Karolina; Kovaříček, Petr; Kalbáč, Martin

    2017-01-01

    Roč. 23, č. 17 (2017), s. 4073-4078 ISSN 0947-6539 R&D Projects: GA MŠk LL1301; GA MŠk(CZ) LM2015073 Grant - others:AVČR PPPLZ(CZ) L200401551 Institutional support: RVO:61388955 Keywords : functionalization * graphene * hydrogenation * Raman spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 5.317, year: 2016

  12. Early hydrogen water chemistry project review, improvement opportunities and conceptural design options at Exelon boiling water reactors

    International Nuclear Information System (INIS)

    Garcia, Susan E.; Odell, Andrew D.; Giannelli, Joseph F.

    2012-09-01

    Intergranular Stress Corrosion Cracking (IGSCC) and its impacts have been a major concern to the BWR fleet since the mid-70's. Several alternative strategies have been employed to reduce the negative impacts, however, the newest being Early Hydrogen Water Chemistry (EHWC). The Electric Power Research Institute (EPRI) and the BWRVIP (Vessel Internals Project) has strongly supported the development of EHWC, including laboratory testing and a demonstration program that was performed at Peach Bottom Atomic Power Station in October 2011. This paper will review the impacts of a 'Special Test Program' on a BWR plant including: Project management findings; technical reviews and documents required to support such a demonstration program; temporary equipment design, installation and testing; keeping the demonstration progressing along with the plant return from a refuel outage; and lessons learned that can be applied to EHWC implementation during future start-ups. Details will be compared between various Exelon BWRs in support of conceptual designs for EHWC systems and operation. Some comparisons on operational impacts will be provided between various types of BWR plants with differing 'Balance of Plant' designs. (authors)

  13. Primary water chemistry of VVERs-operating experience

    International Nuclear Information System (INIS)

    Kysela, Jan; Zmitko, Milan; Petrecky, Igor

    1998-01-01

    VVER units are operated in mixed boron-potassium-ammonia water chemistry. Several modifications of the water chemistry, differing in boron-potassium co-ordination and in the way how hydrogen concentration is produced and maintain in the coolant, is used. From the operational experience point of view VVER units do not show any significant problems connected with the primary coolant chemistry. The latest results indicate that dose rate levels are slowly returning to the former ones. An improvement of the radiation situation observed last two years is supported by the surface activity measurements. However, the final conclusion on the radiation situation can be made only after evaluation of the several following cycles. Further investigation is also needed to clarify a possible effect of modified water chemistry and shut-down chemistry on radioactivity build-up and dose rate level at Dukovany units. Structure materials composition has a significant effect on radiation situation in the units. It concerns mainly of cobalt content in SG material. There is no clear evidence of possible effect of the SG shut-down regimes on the radiation situation in the units even if the dose rate and surface activity data show wide spread for the individual reactor loops. (S.Y.)

  14. Hydrogen Outgassing from Lithium Hydride

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, L N; Schildbach, M A; Smith, R A; Balazs1, B; McLean II, W

    2006-04-20

    Lithium hydride is a nuclear material with a great affinity for moisture. As a result of exposure to water vapor during machining, transportation, storage and assembly, a corrosion layer (oxide and/or hydroxide) always forms on the surface of lithium hydride resulting in the release of hydrogen gas. Thermodynamically, lithium hydride, lithium oxide and lithium hydroxide are all stable. However, lithium hydroxides formed near the lithium hydride substrate (interface hydroxide) and near the sample/vacuum interface (surface hydroxide) are much less thermally stable than their bulk counterpart. In a dry environment, the interface/surface hydroxides slowly degenerate over many years/decades at room temperature into lithium oxide, releasing water vapor and ultimately hydrogen gas through reaction of the water vapor with the lithium hydride substrate. This outgassing can potentially cause metal hydriding and/or compatibility issues elsewhere in the device. In this chapter, the morphology and the chemistry of the corrosion layer grown on lithium hydride (and in some cases, its isotopic cousin, lithium deuteride) as a result of exposure to moisture are investigated. The hydrogen outgassing processes associated with the formation and subsequent degeneration of this corrosion layer are described. Experimental techniques to measure the hydrogen outgassing kinetics from lithium hydride and methods employing the measured kinetics to predict hydrogen outgassing as a function of time and temperature are presented. Finally, practical procedures to mitigate the problem of hydrogen outgassing from lithium hydride are discussed.

  15. Functionalization of Hydrogenated Chemical Vapour Deposition-Grown Graphene by On-Surface Chemical Reactions

    Czech Academy of Sciences Publication Activity Database

    Drogowska, Karolina; Kovaříček, Petr; Kalbáč, Martin

    2017-01-01

    Roč. 23, č. 17 (2017), s. 4022-4022 ISSN 1521-3765 Institutional support: RVO:61388955 Keywords : Chemical vapor deposition * Hydrogenation * Graphene Subject RIV: CF - Physical ; Theoretical Chemistry

  16. Electrochemical titration of hydrogen adsorbed on supported platinum catalysts

    Czech Academy of Sciences Publication Activity Database

    Paseka, Ivo

    2007-01-01

    Roč. 329, - (2007), s. 161-163 ISSN 0926-860X R&D Projects: GA ČR GA104/03/0409 Institutional research plan: CEZ:AV0Z40320502 Keywords : platinum * hydrogen adsorption * specific surface area Subject RIV: CA - Inorganic Chemistry Impact factor: 3.166, year: 2007

  17. Mapping the force field of a hydrogen-bonded assembly

    Science.gov (United States)

    Sweetman, A. M.; Jarvis, S. P.; Sang, Hongqian; Lekkas, I.; Rahe, P.; Wang, Yu; Wang, Jianbo; Champness, N. R.; Kantorovich, L.; Moriarty, P.

    2014-05-01

    Hydrogen bonding underpins the properties of a vast array of systems spanning a wide variety of scientific fields. From the elegance of base pair interactions in DNA to the symmetry of extended supramolecular assemblies, hydrogen bonds play an essential role in directing intermolecular forces. Yet fundamental aspects of the hydrogen bond continue to be vigorously debated. Here we use dynamic force microscopy (DFM) to quantitatively map the tip-sample force field for naphthalene tetracarboxylic diimide molecules hydrogen-bonded in two-dimensional assemblies. A comparison of experimental images and force spectra with their simulated counterparts shows that intermolecular contrast arises from repulsive tip-sample interactions whose interpretation can be aided via an examination of charge density depletion across the molecular system. Interpreting DFM images of hydrogen-bonded systems therefore necessitates detailed consideration of the coupled tip-molecule system: analyses based on intermolecular charge density in the absence of the tip fail to capture the essential physical chemistry underpinning the imaging mechanism.

  18. Hydrogen ion input to the Hubbard Brook Experimental Forest, New Hampshire, during the last decade

    Science.gov (United States)

    Gene E. Likens; F. Herbert Bormann; John S. Eaton; Robert S. Pierce; Noye M. Johnson

    1976-01-01

    Being downwind of eastern and midwestern industrial centers, the Hubbard Brook Experimental Forest offers a prime location to monitor long-term trends in atmospheric chemistry. Continuous measurements of precipitation chemistry during the last 10 years provide a measure of recent changes in precipitation inputs of hydrogen ion. The weighted average pH of precipitation...

  19. Closed-cell polymeric foam for hydrogen separation and storage

    Czech Academy of Sciences Publication Activity Database

    Pientka, Zbyněk; Pokorný, P.; Bélafi-Bakó, K.

    2007-01-01

    Roč. 304, 1-2 (2007), s. 82-87 ISSN 0376-7388 R&D Projects: GA ČR GA203/06/1207 Institutional research plan: CEZ:AV0Z40500505 Keywords : polymeric foam * gas separation * hydrogen storage Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.432, year: 2007

  20. Superficial characterization and zircaloy-2 electrochemistry with hydrothermal deposit of platinum; Caracterizacion superficial y electroquimica de zircaloy-2 con deposito hidrotermal de platino

    Energy Technology Data Exchange (ETDEWEB)

    Contreras R, A.; Arganis J, C. R.; Medina A, A. L. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Gris C, M. M., E-mail: aida.contreras@inin.gob.mx [Comision Federal de Electricidad, Central Nucleoelectrica Laguna Verde, Carretera Cardel-Nautla Km 42.5, Alto Lucero, Veracruz (Mexico)

    2011-11-15

    The combustible elements of the boiling water nuclear reactors (BWR) are formed by zircaloy-2 tubes that contain in their interior UO{sub 2} pellets. With the objective of mitigating the speed of crack growth by IGSCC to a minimum negative impact on the BWR operation, General Electric developed the noble metals chemical addition (NMCA), in where noble metals particles as Pt, Pd, and Rh, are deposited on the surface of the metal to catalyze the recombination of H{sub 2} and O{sub 2}. Hydrogen is also injected to have it in excess and to favor this recombination (HWC) and zinc to reduce dose. In this work was oxidized zircaloy-2 low similar conditions to the HWC, platinum was deposited starting from a solution of Na{sub 2}Pt(OH){sub 6} with 30 ppm of Pt, in refined samples and without polishing, they were characterized by scanning electron microscopy, energy dispersed spectroscopy, XPS and electrochemistry, by means of Tafel curves and cyclical polarization. On the zircaloy surface was found a ZrO{sub 2} layer that remains under the different study conditions. Under HWC conditions is the oxides formation, possibly complex oxides of zirconium, iron and tin. After the platinum deposit these oxides decrease forming the sub-oxides: Zr{sub 2}O, Zr O, Zr{sub 2}O{sub 3}. The Tafel curves indicates the reduction of the oxygen of the sample with platinum and the cyclical polarization curves show that the reactions that happen on the zircaloy electrodes are not dur to located corrosion. (Author)

  1. Proceedings of DAE-BRNS national workshop on materials chemistry: functional materials

    International Nuclear Information System (INIS)

    2011-12-01

    Design and development of materials with tailored properties assumes great significance in our everyday life and are crucial to modern technologies. Chemistry has had a tremendous Convener role in developing several need based materials by integrating multiple functionalities. The year 2011, being recognised as the International Year of Chemistry by the UNESCO, assumes further significance for material chemists. In view of the renowned interest in advanced functional materials, the Society for Materials Chemistry, India together with Chemistry Division, BARC has taken an initiative to organise this National Workshop on Materials Chemistry (NWMC-2011) under the theme 'Functional Materials (FUN-MAT)'. NWMC- 2011 aims to provide a forum for young researchers to interact with experts involved in synthesis, processing and applications of various advanced functional materials. In particular, recent developments and future prospects of magnetic, electronic and optical materials, glasses, ceramics, soft materials, materials for sensors, materials for hydrogen production and storage etc. will be addressed in this workshop. Papers relevant to INIS are indexed separately

  2. Gendered risk perceptions associated with human-wildlife conflict: implications for participatory conservation.

    Science.gov (United States)

    Gore, Meredith L; Kahler, Jessica S

    2012-01-01

    This research aims to foster discourse about the extent to which gender is important to consider within the context of participatory approaches for biological conservation. Our objectives are to: (1) gender-disaggregate data about stakeholders' risk perceptions associated with human-wildlife conflict (HWC) in a participatory conservation context, and (2) highlight insights from characterizing gendered similarities and differences in the way people think about HWC-related risks. Two communal conservancies in Caprivi, Namibia served as case study sites. We analyzed data from focus groups (n = 2) to create gendered concept maps about risks to wildlife and livelihoods and any associations of those risks with HWC, and semi-structured interviews (n = 76; men = 38, women = 38) to measure explicit risk attitudes associated with HWC. Concept maps indicated some divergent perceptions in how groups characterized risks to wildlife and livelihoods; however, not only were identified risks to wildlife (e.g., pollution, hunting) dissimilar in some instances, descriptions of risks varied as well. Study groups reported similar risk perceptions associated with HWC with the exception of worry associated with HWC effects on local livelihoods. Gendered differences in risk perceptions may signal different priorities or incentives to participate in efforts to resolve HWC-related risks. Thus, although shared goals and interests may seem to be an obvious reason for cooperative wildlife management, it is not always obvious that management goals are shared. Opportunity exists to move beyond thinking about gender as an explanatory variable for understanding how different groups think about participating in conservation activities.

  3. Gendered risk perceptions associated with human-wildlife conflict: implications for participatory conservation.

    Directory of Open Access Journals (Sweden)

    Meredith L Gore

    Full Text Available This research aims to foster discourse about the extent to which gender is important to consider within the context of participatory approaches for biological conservation. Our objectives are to: (1 gender-disaggregate data about stakeholders' risk perceptions associated with human-wildlife conflict (HWC in a participatory conservation context, and (2 highlight insights from characterizing gendered similarities and differences in the way people think about HWC-related risks. Two communal conservancies in Caprivi, Namibia served as case study sites. We analyzed data from focus groups (n = 2 to create gendered concept maps about risks to wildlife and livelihoods and any associations of those risks with HWC, and semi-structured interviews (n = 76; men = 38, women = 38 to measure explicit risk attitudes associated with HWC. Concept maps indicated some divergent perceptions in how groups characterized risks to wildlife and livelihoods; however, not only were identified risks to wildlife (e.g., pollution, hunting dissimilar in some instances, descriptions of risks varied as well. Study groups reported similar risk perceptions associated with HWC with the exception of worry associated with HWC effects on local livelihoods. Gendered differences in risk perceptions may signal different priorities or incentives to participate in efforts to resolve HWC-related risks. Thus, although shared goals and interests may seem to be an obvious reason for cooperative wildlife management, it is not always obvious that management goals are shared. Opportunity exists to move beyond thinking about gender as an explanatory variable for understanding how different groups think about participating in conservation activities.

  4. Hydrogen assisted diesel combustion

    Energy Technology Data Exchange (ETDEWEB)

    Lilik, Gregory K.; Boehman, Andre L. [The EMS Energy Institute, The Pennsylvania State University, University Park, PA 16802 (United States); Zhang, Hedan; Haworth, Daniel C. [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Herreros, Jose Martin [Escuela Tecnica Superior de Ingenieros Industriales, Universidad de Castilla La-Mancha, Avda. Camilo Jose Cela s/n, 13071 Ciudad Real (Spain)

    2010-05-15

    Hydrogen assisted diesel combustion was investigated on a DDC/VM Motori 2.5L, 4-cylinder, turbocharged, common rail, direct injection light-duty diesel engine, with a focus on exhaust emissions. Hydrogen was substituted for diesel fuel on an energy basis of 0%, 2.5%, 5%, 7.5%, 10% and 15% by aspiration of hydrogen into the engine's intake air. Four speed and load conditions were investigated (1800 rpm at 25% and 75% of maximum output and 3600 rpm at 25% and 75% of maximum output). A significant retarding of injection timing by the engine's electronic control unit (ECU) was observed during the increased aspiration of hydrogen. The retarding of injection timing resulted in significant NO{sub X} emission reductions, however, the same emission reductions were achieved without aspirated hydrogen by manually retarding the injection timing. Subsequently, hydrogen assisted diesel combustion was examined, with the pilot and main injection timings locked, to study the effects caused directly by hydrogen addition. Hydrogen assisted diesel combustion resulted in a modest increase of NO{sub X} emissions and a shift in NO/NO{sub 2} ratio in which NO emissions decreased and NO{sub 2} emissions increased, with NO{sub 2} becoming the dominant NO{sub X} component in some combustion modes. Computational fluid dynamics analysis (CFD) of the hydrogen assisted diesel combustion process captured this trend and reproduced the experimentally observed trends of hydrogen's effect on the composition of NO{sub X} for some operating conditions. A model that explicitly accounts for turbulence-chemistry interactions using a transported probability density function (PDF) method was better able to reproduce the experimental trends, compared to a model that ignores the influence of turbulent fluctuations on mean chemical production rates, although the importance of the fluctuations is not as strong as has been reported in some other recent modeling studies. The CFD results confirm

  5. Prototypic corium oxidation and hydrogen release during the Fuel-Coolant Interaction

    Czech Academy of Sciences Publication Activity Database

    Tyrpekl, J.; Piluso, P.; Bakardjieva, Snejana; Nižňanský, D.; Rehspringer, J.L.; Bezdička, Petr; Dugne, O.

    2015-01-01

    Roč. 75, JAN (2015), s. 210-218 ISSN 0306-4549 Institutional support: RVO:61388980 Keywords : Corium * Fuel -Coolant Interaction * Hydrogen release * Material effect * Nuclear reactor severe accident Subject RIV: CA - Inorganic Chemistry Impact factor: 1.174, year: 2015

  6. Organic chemistry and biology of the interstellar medium

    Science.gov (United States)

    Sagan, C.

    1973-01-01

    Interstellar organic chemistry is discussed as the field of study emerging from the discovery of microwave lines of formaldehyde and of hydrogen cyanide in the interstellar medium. The reliability of molecular identifications and comparisons of interstellar and cometary compounds are considered, along with the degradational origin of simple organics. It is pointed out that the contribution of interstellar organic chemistry to problems in biology is not substantive but analogical. The interstellar medium reveals the operation of chemical processes which, on earth and perhaps on vast numbers of planets throughout the universe, led to the origin of life, but the actual molecules of the interstellar medium are unlikely to play any significant biological role.

  7. Cracks propagation by stress corrosion cracking in conditions of Boiling Water Reactor (BWR)

    International Nuclear Information System (INIS)

    Fuentes C, P.

    2003-01-01

    This work presents the results of the assays carried out in the Laboratory of Hot Cells of the National Institute of Nuclear Research (ININ) to a type test tube Compact Tension (CT), built in steel austenitic stainless type 304L, simulating those conditions those that it operates a Boiling Water Reactor (BWR), at temperature 288 C and pressure of 8 MPa, to determine the speed to which the cracks spread in this material that is of the one that different components of a reactor are made, among those that it highlights the reactor core vessel. The application of the Hydrogen Chemistry of the Water is presented (HWC) that is one alternative to diminish the corrosion effect low stress in the component, this is gets controlling the quantity of oxygen and of hydrogen as well as the conductivity of the water. The rehearsal is made following the principles of the Mechanics of Elastic Lineal Fracture (LEFM) that considers a crack of defined size with little plastic deformation in the tip of this; the measurement of crack advance is continued with the technique of potential drop of direct current of alternating signal, this is contained inside the standard Astm E-647 (Method of Test Standard for the Measurement of Speed of Growth of Crack by fatigue) that is the one that indicates us as carrying out this test. The specifications that should complete the test tubes that are rehearsed as for their dimensions, it forms, finish and determination of mechanical properties (tenacity to the fracture mainly) they are contained inside the norm Astm E-399, the one which it is also based on the principles of the fracture mechanics. The obtained results were part of a database to be compared with those of other rehearsals under different conditions, Normal Chemistry of the Water (NWC) and it dilutes with high content of O 2 ; to determine the conditions that slow more the phenomena of stress corrosion cracking, as well as the effectiveness of the used chemistry and of the method of

  8. Hydrogen-hydrocarbon turbulent non-premixed flame structure

    Energy Technology Data Exchange (ETDEWEB)

    Tabet, F. [ANSYS-Benelux, 4 Avenue Pasteur, B-1300 Wavre (Belgium); Sarh, B.; Goekalp, I. [Institut de Combustion, Aerothermique, Reactivite et Environnement (ICARE), Centre National de la Recherche Scientifique (CNRS), 1 C avenue de la recherche scientifique, Orleans 45071 Cedex 2 (France)

    2009-06-15

    In this study, the structure of turbulent non-premixed CH{sub 4}-H{sub 2}/air flames is analyzed with a special emphasis on mixing and air entrainment. The amount of H{sub 2} in the fuel mixture varies under constant volumetric fuel flow. Mixing is described by mixture fraction and its variance while air entrainment is characterized by the ratio of gas mass flow to fuel mass flow at the inlet section. The flow field and the chemistry are coupled by the flamelet assumption. Mixture fraction and its variance are transported by the computational fluid dynamics (CFD) code. The slow chemistry aspect of NO{sub x} is handled by solving an additional transport equation with a source term derived from flamelet library. The results obtained show an improvement of mixing with hydrogen addition leading to a strong consumption of CH{sub 4} and a high air entrainment into the centerline region. As a global effect of this, the composite fuels burn faster and thereby reduce the residence time which ultimately shortens the flame length and thickness. On the other hand, hydrogen is found to increase NO{sub x} level. (author)

  9. Diverse roles of hydrogen in rhenium carbonyl chemistry: hydrides, dihydrogen complexes, and a formyl derivative.

    Science.gov (United States)

    Li, Nan; Xie, Yaoming; King, R Bruce; Schaefer, Henry F

    2010-11-04

    Rhenium carbonyl hydride chemistry dates back to the 1959 synthesis of HRe(CO)₅ by Hieber and Braun. The binuclear H₂Re₂(CO)₈ was subsequently synthesized as a stable compound with a central Re₂(μ-H)₂ unit analogous to the B₂(μ-H)₂ unit in diborane. The complete series of HRe(CO)(n) (n = 5, 4, 3) and H₂Re₂(CO)(n) (n = 9, 8, 7, 6) derivatives have now been investigated by density functional theory. In contrast to the corresponding manganese derivatives, all of the triplet rhenium structures are found to lie at relatively high energies compared with the corresponding singlet structures consistent with the higher ligand field splitting of rhenium relative to manganese. The lowest energy HRe(CO)₅ structure is the expected octahedral structure. Low-energy structures for HRe(CO)(n) (n = 4, 3) are singlet structures derived from the octahedral HRe(CO)₅ structure by removal of one or two carbonyl groups. For H₂Re₂(CO)₉ a structure HRe₂(CO)₉(μ-H), with one terminal and one bridging hydrogen atom, lies within 3 kcal/mol of the structure Re₂(CO)₉(η²-H₂), similar to that of Re₂(CO)₁₀. For H₂Re₂(CO)(n) (n = 8, 7, 6) the only low-energy structures are doubly bridged singlet Re₂(μ-H)₂(CO)(n) structures. Higher energy dihydrogen complex structures are also found.

  10. Experimental interstellar organic chemistry: Preliminary findings

    Science.gov (United States)

    Khare, B. N.; Sagan, C.

    1971-01-01

    In a simulation of interstellar organic chemistry in dense interstellar clouds or on grain surfaces, formaldehyde, water vapor, ammonia and ethane are deposited on a quartz cold finger and ultraviolet-irradiated in high vacuum at 77K. The HCHO photolytic pathway which produces an aldehyde radical and a superthermal hydrogen atom initiates solid phase chain reactions leading to a range of new compounds, including methanol, ethanol, acetaldehyde, acetonitrile, acetone, methyl formate, and possibly formic acid. Higher nitriles are anticipated. Genetic relations among these interstellar organic molecules (e.g., the Cannizzaro and Tischenko reactions) must exist. Some of them, rather than being synthesized from smaller molecules, may be degradation products of larger organic molecules, such as hexamethylene tetramine, which are candidate consitituents of the interstellar grains. The experiments reported here may also be relevant to cometary chemistry.

  11. Recent results from the chemistry of recoiling carbon and silicon atoms: The interplay between hot atom chemistry and gas kinetics

    International Nuclear Information System (INIS)

    Gaspar, P.P.; Garmestani, K.; Ferrieri, R.A.; Wolf, A.P.

    1990-01-01

    Recent results from the chemistry of recoiling carbon and silicon atoms illustrate the power of an experimental approach to the solution of complex mechanistic problems that combines the study of the reactions of recoiling atoms with conventional gas kinetic techniques. Included will be the reactions of 11 C atoms with anisole, addressing the question whether an aromatic pi-electron system can compete as a reactive site with carbon-hydrogen bonds

  12. Dynamics of Molecular Hydrogen in Hypersaline Microbial Mars

    Science.gov (United States)

    Hoehler, Tori M.; Bebout, Brad M.; Visscher, Pieter T.; DesMarais, David J.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    generated in mats could have represented a very important new source of electrons and energy - but one that could not be harnessed without substantial adaptation to the highly variable chemistry of the mat surface. In addition, the emergent chemistry of anaerobic communities is often highly dependent on ambient hydrogen concentrations, so that incorporation of these communities into photosynthetic mats could have significantly affected the composition and flux of reduced "biosignature' gases to the environment.

  13. The chemistry of nonaqueous solvents v.4 solution phenomena and aprotic solvents

    CERN Document Server

    Lagowski, J J

    1976-01-01

    The Chemistry of Nonaqueous Solvents, Volume IV: Solution Phenomena and Aprotic Solvents focuses on the chemistry of nonaqueous solvents, with emphasis on solution phenomena and aprotic solvents such as tetramethylurea, inorganic acid chlorides, cyclic carbonates, and sulfolane. This book is organized into seven chapters and begins with an overview of the theory of electrical conductivity and elementary experimental considerations, along with some of the interesting research on nonaqueous solvents. It then turns to a discussion on hydrogen bonding phenomena in nonaqueous systems as probed

  14. Radical Rearrangement Chemistry in Ultraviolet Photodissociation of Iodotyrosine Systems: Insights from Metastable Dissociation, Infrared Ion Spectroscopy, and Reaction Pathway Calculations.

    Science.gov (United States)

    Ranka, Karnamohit; Zhao, Ning; Yu, Long; Stanton, John F; Polfer, Nicolas C

    2018-05-29

    We report on the ultraviolet photodissociation (UVPD) chemistry of protonated tyrosine, iodotyrosine, and diiodotyrosine. Distonic loss of the iodine creates a high-energy radical at the aromatic ring that engages in hydrogen/proton rearrangement chemistry. Based on UVPD kinetics measurements, the appearance of this radical is coincident with the UV irradiation pulse (8 ns). Conversely, sequential UVPD product ions exhibit metastable decay on ca. 100 ns timescales. Infrared ion spectroscopy is capable of confirming putative structures of the rearrangement products as proton transfers from the imine and β-carbon hydrogens. Potential energy surfaces for the various reaction pathways indicate that the rearrangement chemistry is highly complex, compatible with a cascade of rearrangements, and that there is no preferred rearrangement pathway even in small molecular systems like these. Graphical Abstract.

  15. Accessing Specific Peptide Recognition by Combinatorial Chemistry

    DEFF Research Database (Denmark)

    Li, Ming

    Molecular recognition is at the basis of all processes for life, and plays a central role in many biological processes, such as protein folding, the structural organization of cells and organelles, signal transduction, and the immune response. Hence, my PhD project is entitled “Accessing Specific...... Peptide Recognition by Combinatorial Chemistry”. Molecular recognition is a specific interaction between two or more molecules through noncovalent bonding, such as hydrogen bonding, metal coordination, van der Waals forces, π−π, hydrophobic, or electrostatic interactions. The association involves kinetic....... Combinatorial chemistry was invented in 1980s based on observation of functional aspects of the adaptive immune system. It was employed for drug development and optimization in conjunction with high-throughput synthesis and screening. (chapter 2) Combinatorial chemistry is able to rapidly produce many thousands...

  16. Surface chemistry of a hydrogenated mesoporous p-type silicon

    Energy Technology Data Exchange (ETDEWEB)

    Media, El-Mahdi, E-mail: belhadidz@tahoo.fr; Outemzabet, Ratiba, E-mail: oratiba@hotmail.com

    2017-02-15

    Highlights: • Due to its large specific surface porous silicon is used as substrate for drug therapy and biosensors. • We highlight the evidency of the contribution of the hydrides (SiHx) in the formation of the porous silicon. • The responsible species in the porous silicon formation are identified and quantified at different conditions. • By some chemical treatments we show that silicon surface can be turn from hydrophobic to hydrophilic. - Abstract: The finality of this work is devoted to the grafting of organic molecules on hydrogen passivated mesoporous silicon surfaces. The study would aid in the development for the formation of organic monolayers on silicon surface to be exploited for different applications such as the realisation of biosensors and medical devices. The basic material is silicon which has been first investigated by FTIR at atomistic plane during the anodic forward and backward polarization (i.e. “go” and “return”). For this study, we applied a numerical program based on least squares method to infrared absorbance spectra obtained by an in situ attenuated total reflection on p-type silicon in diluted HF electrolyte. Our numerical treatment is based on the fitting of the different bands of IR absorbance into Gaussians corresponding to the different modes of vibration of molecular groups such as siloxanes and hydrides. An adjustment of these absorbance bands is done systematically. The areas under the fitted bands permit one to follow the intensity of the different modes of vibration that exist during the anodic forward and backward polarization in order to compare the reversibility of the phenomenon of the anodic dissolution of silicon. It permits also to follow the evolution between the hydrogen silicon termination at forward and backward scanning applied potential. Finally a comparison between the states of the initial and final surface was carried out. We confirm the presence of clearly four and three distinct vibration modes

  17. Hydrogen Bonds and Life in the Universe

    Directory of Open Access Journals (Sweden)

    Giovanni Vladilo

    2018-01-01

    Full Text Available The scientific community is allocating more and more resources to space missions and astronomical observations dedicated to the search for life beyond Earth. This experimental endeavor needs to be backed by a theoretical framework aimed at defining universal criteria for the existence of life. With this aim in mind, we have explored which chemical and physical properties should be expected for life possibly different from the terrestrial one, but similarly sustained by genetic and catalytic molecules. We show that functional molecules performing genetic and catalytic tasks must feature a hierarchy of chemical interactions operating in distinct energy bands. Of all known chemical bonds and forces, only hydrogen bonds are able to mediate the directional interactions of lower energy that are needed for the operation of genetic and catalytic tasks. For this reason and because of the unique quantum properties of hydrogen bonding, the functional molecules involved in life processes are predicted to have extensive hydrogen-bonding capabilities. A molecular medium generating a hydrogen-bond network is probably essential to support the activity of the functional molecules. These hydrogen-bond requirements constrain the viability of hypothetical biochemistries alternative to the terrestrial one, provide thermal limits to life molecular processes, and offer a conceptual framework to define a transition from a “covalent-bond stage” to a “hydrogen-bond stage” in prebiotic chemistry.

  18. Hydrogen Bonds and Life in the Universe

    Science.gov (United States)

    2018-01-01

    The scientific community is allocating more and more resources to space missions and astronomical observations dedicated to the search for life beyond Earth. This experimental endeavor needs to be backed by a theoretical framework aimed at defining universal criteria for the existence of life. With this aim in mind, we have explored which chemical and physical properties should be expected for life possibly different from the terrestrial one, but similarly sustained by genetic and catalytic molecules. We show that functional molecules performing genetic and catalytic tasks must feature a hierarchy of chemical interactions operating in distinct energy bands. Of all known chemical bonds and forces, only hydrogen bonds are able to mediate the directional interactions of lower energy that are needed for the operation of genetic and catalytic tasks. For this reason and because of the unique quantum properties of hydrogen bonding, the functional molecules involved in life processes are predicted to have extensive hydrogen-bonding capabilities. A molecular medium generating a hydrogen-bond network is probably essential to support the activity of the functional molecules. These hydrogen-bond requirements constrain the viability of hypothetical biochemistries alternative to the terrestrial one, provide thermal limits to life molecular processes, and offer a conceptual framework to define a transition from a “covalent-bond stage” to a “hydrogen-bond stage” in prebiotic chemistry. PMID:29301382

  19. Hydrogen Bonds and Life in the Universe.

    Science.gov (United States)

    Vladilo, Giovanni; Hassanali, Ali

    2018-01-03

    The scientific community is allocating more and more resources to space missions and astronomical observations dedicated to the search for life beyond Earth. This experimental endeavor needs to be backed by a theoretical framework aimed at defining universal criteria for the existence of life. With this aim in mind, we have explored which chemical and physical properties should be expected for life possibly different from the terrestrial one, but similarly sustained by genetic and catalytic molecules. We show that functional molecules performing genetic and catalytic tasks must feature a hierarchy of chemical interactions operating in distinct energy bands. Of all known chemical bonds and forces, only hydrogen bonds are able to mediate the directional interactions of lower energy that are needed for the operation of genetic and catalytic tasks. For this reason and because of the unique quantum properties of hydrogen bonding, the functional molecules involved in life processes are predicted to have extensive hydrogen-bonding capabilities. A molecular medium generating a hydrogen-bond network is probably essential to support the activity of the functional molecules. These hydrogen-bond requirements constrain the viability of hypothetical biochemistries alternative to the terrestrial one, provide thermal limits to life molecular processes, and offer a conceptual framework to define a transition from a "covalent-bond stage" to a "hydrogen-bond stage" in prebiotic chemistry.

  20. Template Synthesis, Crystal Structure, and Magnetic Properties of a Dinuclear Copper(II) Complex with Cooperative Hydrogen Bonding

    International Nuclear Information System (INIS)

    Kang, Shin Geol; Nam, Kwang Hee; Min, Kil Sik; Lee, Uk

    2011-01-01

    The dinuclear complex with cooperative hydrogen bonds can be prepared by the metal-directed reaction of Eq. This work shows that the coordinated hydroxyl group trans to the secondary amino group is deprotonated more readily than that trans to the tertiary amino group and acts as the hydrogen-bond accepter. The lattice water molecules in act as bridges between the two mononuclear units through hydrogen bonds. The complex is quite stable as the dimeric form even in various polar solvents. The complex exhibits a weak antiferromagnetic interaction between the metal ions in spite of relatively long Cu···Cu distance. This strongly supports the suggestion that the antiferromagnetic behavior is closely related to the cooperative hydrogen bonds. The design and synthesis of polynuclear transition metal complexes have received much attention because of their potential applications in various fields, such as catalysis, supramolecular chemistry, and materials chemistry. Until now, various types of dinuclear copper(II) complexes have been prepared and investigated. Some dinuclear copper(II) complexes resulting from cooperative hydrogen bonding, such as containing two N_2O_2 donor sets, are also reported

  1. Catalytic activation of molecular hydrogen in alkyne hydrogenation reactions by lanthanide metal vapor reaction products

    International Nuclear Information System (INIS)

    Evans, W.J.; Bloom, I.; Engerer, S.C.

    1983-01-01

    A rotary metal vapor was used in the synthesis of Lu, Er, Nd, Sm, Yb, and La alkyne, diene, and phosphine complexes. A typical catalytic hydrogenation experiment is described. The lanthanide metal vapor product is dissolved in tetrahydrofuran or toluene and placed in a pressure reaction vessel 3-hexyne (or another substrate) is added, the chamber attached to a high vacuum line, cooled to -196 0 C, evacuated, warmed to ambient temperature and hydrogen is added. The solution is stirred magnetically while the pressure in monitored. The reaction products were analyzed by gas chromatography. Rates and products of various systems are listed. This preliminary survey indicates that catalytic reaction chemistry is available to these metals in a wide range of coordination environments. Attempts to characterize these compounds are hampered by their paramagnetic nature and their tendency to polymerize

  2. Actinide/crown ether chemistry

    International Nuclear Information System (INIS)

    Benning, M.M.

    1988-01-01

    A structural survey of actinide/crown ether compounds was conducted in order to investigate the solid state chemistry of these complexes. Several parameters - the metal size, crown type, counterion, solvent systems and reaction and crystallization conditions - were varied to correlate their importance in complexation. Under atmospheric conditions, two types of complexes were isolated, those containing only hydrogen-bonded crown interactions and instances where the crown interacts directly with the metal center. In both cases, water seems to play a very important role. When coordinated to the metal, water molecules exhibit the necessary donor properties required for the formation of hydrogen-bonded contacts. The water molecules also provide fierce competition with the crown ethers for metal-binding sites and in most cases prohibit the formation of complexes in which direct metal-ligand association exists. The results of this study indicate that direct interaction between the metal atoms and the crown ethers, in the presence of water, can only occur with polyether conformations which limit the steric replusions within the metal coordination sphere

  3. Competing Intramolecular vs. Intermolecular Hydrogen Bonds in Solution

    Directory of Open Access Journals (Sweden)

    Peter I. Nagy

    2014-10-01

    Full Text Available A hydrogen bond for a local-minimum-energy structure can be identified according to the definition of the International Union of Pure and Applied Chemistry (IUPAC recommendation 2011 or by finding a special bond critical point on the density map of the structure in the framework of the atoms-in-molecules theory. Nonetheless, a given structural conformation may be simply favored by electrostatic interactions. The present review surveys the in-solution competition of the conformations with intramolecular vs. intermolecular hydrogen bonds for different types of small organic molecules. In their most stable gas-phase structure, an intramolecular hydrogen bond is possible. In a protic solution, the intramolecular hydrogen bond may disrupt in favor of two solute-solvent intermolecular hydrogen bonds. The balance of the increased internal energy and the stabilizing effect of the solute-solvent interactions regulates the new conformer composition in the liquid phase. The review additionally considers the solvent effects on the stability of simple dimeric systems as revealed from molecular dynamics simulations or on the basis of the calculated potential of mean force curves. Finally, studies of the solvent effects on the type of the intermolecular hydrogen bond (neutral or ionic in acid-base complexes have been surveyed.

  4. IS process for thermochemical hydrogen production

    International Nuclear Information System (INIS)

    Onuki, Kaoru; Nakajima, Hayato; Ioka, Ikuo; Futakawa, Masatoshi; Shimizu, Saburo

    1994-11-01

    The state-of-the-art of thermochemical hydrogen production by IS process is reviewed including experimental data obtained at JAERI on the chemistry of the Bunsen reaction step and on the corrosion resistance of the structural materials. The present status of laboratory scale demonstration at JAERI is also included. The study on the chemistry of the chemical reactions and the products separations has identified feasible methods to function the process. The flowsheeting studies revealed a process thermal efficiency higher than 40% is achievable under efficient process conditions. The corrosion resistance of commercially available structural materials have been clarified under various process conditions. The basic scheme of the process has been realized in a laboratory scale apparatus. R and D requirements to proceed to the engineering demonstration coupled with HTTR are briefly discussed. (author)

  5. What Is a Hydrogen Bond? Resonance Covalency in the Supramolecular Domain

    Science.gov (United States)

    Weinhold, Frank; Klein, Roger A.

    2014-01-01

    We address the broader conceptual and pedagogical implications of recent recommendations of the International Union of Pure and Applied Chemistry (IUPAC) concerning the re-definition of hydrogen bonding, drawing upon the recommended IUPAC statistical methodology of mutually correlated experimental and theoretical descriptors to operationally…

  6. Hydrogen Tunneling in Enzymes and Biomimetic Models

    Energy Technology Data Exchange (ETDEWEB)

    Layfield, Joshua P.; Hammes-Schiffer, Sharon

    2014-04-09

    Hydrogen transfer reactions play an important role throughout chemistry and biology. In general, hydrogen transfer reactions encompass proton and hydride transfer, which are associated with the transfer of a positively or negatively charged species, respectively, and proton-coupled electron transfer (PCET), which corresponds to the net transfer of one electron and one proton in the simplest case. Such PCET reactions can occur by either a sequential mechanism, in which the proton or electron transfers first, or a concerted mechanism, in which the electron and proton transfer in a single kinetic step with no stable intermediate. Furthermore, concerted PCET reactions can be subdivided into hydrogen atom transfer (HAT), which corresponds to the transfer of an electron and proton between the same donor and acceptor (i.e., the transfer of a predominantly neutral species), and electron-proton transfer (EPT), which corresponds to the transfer of an electron and proton between different donors and acceptors, possibly even in different directions. In all of these types of hydrogen transfer reactions, hydrogen tunneling could potentially play a significant role. The biomimetic portion was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences.

  7. Design, Scale up and Safe Piloting of Thymol Hydrogenation and Menthol Racemisation

    Czech Academy of Sciences Publication Activity Database

    Dudas, J.; Hanika, Jiří

    2009-01-01

    Roč. 87, č. 1 (2009), s. 83-90 ISSN 0263-8762 Institutional research plan: CEZ:AV0Z40720504 Keywords : thymol hydrogenation * menthol racemisation * trickle-bed reactor Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.223, year: 2009

  8. Water chemistry: cause and control of corrosion degradation in nuclear power plants

    International Nuclear Information System (INIS)

    Kain, Vivekanand

    2008-01-01

    The corrosion degradation of a material is directly determined by the water chemistry, material (composition, fabrication procedure and microstructure) and by the stress/strain in the material under operating conditions. Water chemistry plays an important role in both uniform corrosion and localized forms of corrosion of materials. Once we understand how water chemistry is contributing to corrosion of a material, it is logical to modify/change that water chemistry to control the corrosion degradation. In nuclear power plants, different water chemistries have been used in different components/systems. This paper will cover the origin of corrosion degradation in the Primary Heat Transport system of different reactor types, Steam Generator tubing, secondary circuit pipelines, service water pipelines and auxiliary systems and establish the role of water chemistry in causing corrosion degradation. The history of changes in water chemistry adopted in these systems to control corrosion degradation is also described. It is shown by examples that there is an obvious limitation in changing water chemistry to control corrosion degradation and in those cases, a change of material or change of the state of stresses/fabrication procedure becomes necessary. The role of water chemistry as a causative factor and also as a controlling parameter on particular types of corrosion degradation e.g. stress corrosion cracking, flow accelerated corrosion, pitting, crevice corrosion is illustrated. It will be shown that increase in dissolved oxygen content (due to radiolysis in nuclear reactors) is sufficient to make even the de-mineralized water to cause stress corrosion cracking in Boiling Water Reactors. Hydrogen Water Chemistry (by hydrogen injection) to control dissolved oxygen is shown to control the stress corrosion cracking. However, it is not possible to control dissolved oxygen at all parts of the Boiling Water Reactors. Therefore, a further refinement in terms of noble metal

  9. Steel corrosion products solubility under conditions simulating various water chemistry parameters in power plants

    International Nuclear Information System (INIS)

    Slobodov, A.A.; Kritskij, V.G.; Zarembo, V.I.; Puchkov, L.V.

    1988-01-01

    To simulate construction material corrosion product mass transfer model in power plant circuits calculation of iron oxide and hydroxide solubility, depending on water chemistry parameters: temperature, pH-value, content of dissolved in water hydrogen and oxygen, is carried out

  10. Chemistry and radiochemistry strategies supported by FA3-EPRTM and UK-EPRTM auxiliary systems: performances and control

    International Nuclear Information System (INIS)

    Tigeras, Arancha; Fourment, Pierre; Elgallaf; Anas; Chupin, Antoine; Fauvel, Nicola

    2012-09-01

    The design and the operation of auxiliary systems play an essential role in: - the preservation of the primary circuit integrity, - the prevention of hydrogen risk, - the control of the boron concentration and radioactivity, - the application of pH and zinc programmes. While the source term generation mainly depends on the primary circuit material and primary coolant chemistry conditioning, the source term spreading is directly linked to the auxiliary systems treatment and performances. Indeed, the auxiliary systems regulate the boron, hydrogen, lithium and zinc injection as well as the countermeasures to ensure the reactivity control and the hazardous H 2 /O 2 mixture prevention. The main principles governing the chemistry and radiochemistry in the auxiliary systems are based on the application of: - Design features for hydrogen and boron management. - Criteria for selecting the appropriate material of each system considering the functional requirements and the source term build up reduction. - Measures for minimizing the activity deposition on the surfaces of components and pipings. - Adequate and reliable systems of purification for reducing the accumulation of liquid/gas radioactivity and impurities in the circuits and for optimizing the waste production. - Chemistry program for limiting the material corrosion of auxiliary systems and preventing the source term transfer to the core. - Appropriate sampling locations and equipment to monitor the chemistry and radiochemistry parameters. This paper describes the operation of the main auxiliary systems of FLAMANVILLE3-EPR TM and UK-EPR- TM participating in the chemistry/radiochemistry management such as Chemical and Volume Control System (CVCS), Reactor Borated Water Make-up System (RBWMS), Coolant Treatment System (CTS), Gaseous Waste Processing System (GWPS), Fuel Pool Purification System (PTR [FPPS/FPCS]) also. The performances requested to these systems and the chemistry programs applied to them are discussed

  11. Nano-design of quantum dot-based photocatalysts for hydrogen generation using advanced surface molecular chemistry

    KAUST Repository

    Yu, Weili; Noureldine, Dalal; Isimjan, Tayirjan T.; Lin, Bin; Del Gobbo, Silvano; Abulikemu, Mutalifu; Hedhili, Mohamed N.; Anjum, Dalaver H.; Takanabe, Kazuhiro

    2015-01-01

    Efficient photocatalytic hydrogen generation in a suspension system requires a sophisticated nano-device that combines a photon absorber with effective redox catalysts. This study demonstrates an innovative molecular linking strategy for fabricating photocatalytic materials that allow effective charge separation of excited carriers, followed by efficient hydrogen evolution. The method for the sequential replacement of ligands with appropriate molecules developed in this study tethers both quantum dots (QDs), as photosensitizers, and metal nanoparticles, as hydrogen evolution catalysts, to TiO2 surfaces in a controlled manner at the nano-level. Combining hydrophobic and hydrophilic interactions on the surface, CdSe-ZnS core-shell QDs and an Au-Pt alloy were attached to TiO2 without overlapping during the synthesis. The resultant nano-photocatalysts achieved substantially high-performance visible-light-driven photocatalysis for hydrogen evolution. All syntheses were conducted at room temperature and in ambient air, providing a promising route for fabricating visible-light-responsive photocatalysts.

  12. BWR fuel performance under advanced water chemistry conditions – a delicate journey towards zero fuel failures – a review

    International Nuclear Information System (INIS)

    Hettiarachchi, S.

    2015-01-01

    Boiling Water Reactors (BWRs) have undergone a variety of chemistry evolutions over the past few decades as a result of the need to control stress corrosion cracking of reactor internals, radiation fields and personnel exposure. Some of the advanced chemistry changes include hydrogen addition, zinc addition, iron reduction using better filtration technologies, and more recently noble metal chemical addition to many of the modern day operating BWRs. These water chemistry evolutions have resulted in changes in the crud distribution on fuel cladding material, Co-60 levels and the Rod oxide thickness (ROXI) measurements using the conventional eddy current techniques. A limited number of Post-Irradiation Examinations (PIE) of fuel rods that exhibited elevated oxide thickness using eddy current techniques showed that the actual oxide thickness by metallography is much lower. The difference in these observations is attributed to the changing magnetic properties of the crud affecting the rod oxide thickness measurement by the eddy current technique. This paper will review and summarize the BWR fuel cladding performance under these advanced and improved water chemistry conditions and how these changes have affected the goal to reach zero fuel failures. The paper will also provide a brief summary of some of the results of hot cell PIE, results of crud composition evaluation, crud spallation, oxide thickness measurements, hydrogen content in the cladding and some fuel failure observations. (author) Key Words: Boiling Water Reactor, Fuel Performance, Hydrogen Addition, Zinc Addition, Noble Metal Chemical Addition, Zero Leakers

  13. Effect of water flow rate and water chemistry on corrosion environment in reactor pressure vessel bottom of BWRs

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, Nagayoshi; Hemmi, Yukio; Takagi, Junichi; Urata, Hidehiro [Toshiba Corp., Kawasaki, Kanagawa (Japan)

    1999-07-01

    To evaluate the corrosion environment at the bottom of the reactor pressure vessel in a BWR and the effect of hydrogen water chemistry on the corrosion of materials in the region, measurements of the corrosion potential of Type-304 stainless steel and nickel base alloy were made in a laboratory test loop. The effect of water chemistry on the corrosion potential of nickel base alloy is found to be similar to the effect on Type-304 stainless steel. Flow analysis and precise evaluations of the corrosion potential of materials in the bottom region were implemented. Corrosion potentials throughout the region were evaluated from the flow analysis results. At the jet pump outlet and shroud support leg, a rather large amount of hydrogen had to be added to reduce the potential. Conversely, a small amount of hydrogen was enough in the case of the stub tube of the control rod drive guide tubing and the ICM housings located in the center of the bottom region. (author)

  14. Effect of water flow rate and water chemistry on corrosion environment in reactor pressure vessel bottom of BWRs

    International Nuclear Information System (INIS)

    Ichikawa, Nagayoshi; Hemmi, Yukio; Takagi, Junichi; Urata, Hidehiro

    1999-01-01

    To evaluate the corrosion environment at the bottom of the reactor pressure vessel in a BWR and the effect of hydrogen water chemistry on the corrosion of materials in the region, measurements of the corrosion potential of Type-304 stainless steel and nickel base alloy were made in a laboratory test loop. The effect of water chemistry on the corrosion potential of nickel base alloy is found to be similar to the effect on Type-304 stainless steel. Flow analysis and precise evaluations of the corrosion potential of materials in the bottom region were implemented. Corrosion potentials throughout the region were evaluated from the flow analysis results. At the jet pump outlet and shroud support leg, a rather large amount of hydrogen had to be added to reduce the potential. Conversely, a small amount of hydrogen was enough in the case of the stub tube of the control rod drive guide tubing and the ICM housings located in the center of the bottom region. (author)

  15. Theory of molecular hydrogen sorption for hydrogen storage

    Science.gov (United States)

    Zhang, Shengbai

    2011-03-01

    Molecular hydrogen (H2) sorption has the advantage of fast kinetics and high reversibility. However, the binding strength is often too weak to be operative at near room temperatures. Research into such hydrogen sorption materials has branched into the study of pure van der Waals (vdW) physisorption and that of weak chemisorption (known to exist in the so-called Kubas complexes). In either case, however, theoretical tools to describe such weak interactions are underdeveloped with error bars that often exceed the strength of the interaction itself. We have used quantum-chemistry (QC) based approaches to benchmark the various available DFT methods for four classes of weak chemisorption systems [Sun et al., Phys. Rev. B 82, 073401 (2010)]. These involve complexes containing Li, Ca, Sc, and Ti with increased strength of H2 binding from predominantly vdW to mostly Kubas-like. The study reveals that most of the DFT functionals within the generalized gradient approximation underestimate the binding energy, oppose to overestimating it. The functionals that are easy to use yet yielding results reasonably close to those of accurate QC are the PBE and PW91. I will also discuss the effort of implementing vdW interaction into the currently available density functional methods [Sun, J. Chem. Phys. 129, 154102 (2008)]. The rationale is that while the true vdW is an electron-electron correlation, a DFT plus classical dispersion approach may be too simple and unnecessary within the DFT. A local pseudopotential approach has been developed to account for the core part of the polarizability of the elements. Applications to a number of benchmark systems yield good agreement with QC calculations. The application of this method and the QC methods to vdW hydrogen binding will also be discussed. Work supported by DOE/BES and DOE/EERE Hydrogen Sorption Center of Excellence under RPI subcontracts No. J30546/J90336.

  16. Shutdown Chemistry Process Development for PWR Primary System

    Energy Technology Data Exchange (ETDEWEB)

    Sung, K.B. [Korea Electric Power Research Institute, Taejeon (Korea, Republic of)

    1997-12-31

    This study report presents the shutdown chemistry of PWR primary system to reduce and remove the radioactive corrosion products which were deposited on the nuclear fuel rods surface and the outside of core like steam generator channel head, RCS pipings etc. The major research results are the follows ; the deposition radioactive mechanism of corrosion products, the radiochemical composition, the condition of coolant chemistry to promote the dissolution of radioactive cobalt and nickel ferrite, the control method of dissolved hydrogen concentration in the coolant by the mechanical and chemical methods. The another part of study is to investigate the removal characteristics of corrosion product ions and particles by the demineralization system to suggest the method which the system could be operate effectively in shut-down purification period. (author). 19 refs., 25 figs., 48 tabs.

  17. Final results of the FY'78 chemistry and materials science research program review

    International Nuclear Information System (INIS)

    Frazer, J.W.

    1977-01-01

    18 projects which were selected to be sponsored by ''Chemistry Research Program'' are summarized. These include: lasers for chemical analysis; multi-element analysis systems; spectroscopic analysis of surface passivation; non-aqueous titrimetry; materials damage prediction for fiber composites; safe high energy explosives; single photon absorption reaction chemistry; reaction in shock waves; cryogenic heavy hydrogen technology; acoustic emission; metallic alloy glasses; basic study of toughness in steel; static equation-of-state at 100 GPa; transuranium element research; nuclear structure research; neutron capture gamma measurements; x-ray fluorescence analysis; and pyrochemical investigation

  18. Selected scientific articles. (Investigations in the field of hydrides chemistry and mineral raw materials processing)

    International Nuclear Information System (INIS)

    Mirsaidov, U.M.

    2013-01-01

    Articles, included in the present book are covering period 1977-2013 y. The main scientific articles in the field of power-consuming substances, mineral raw-materials and wastes reprocessing, including uranium industry wastes are collected. Scientific works on hydrogen chemistry which carried out basically bu U.M. Mirsaidov without co-authors are considered. These works are on aluminium hydrides and borohydrides lanthanides. Besides, author's popular-science articles on research carried out by Academy of Sciences during the period when he was the President of Academy of Sciences of the Republic of Tajikistan (1995-2005) are included. Mineral raw materials and wastes reprocessing results are given as well. The book is intended for engineer and technical staff, those working in the field of hydrogen chemistry, hydrometallurgy workers, engineering chemists as well as for PhD, post graduate students and students of appropriate profiles.

  19. Stream chemistry responses to four range management strategies in eastern Oregon.

    Science.gov (United States)

    A.R. Tiedemann; D.A. Higgins; T.M. Quigley; H.R. Sanderson

    1989-01-01

    Responses of stream chemistry parameters, nitrate-N (NO3-N), phosphate (PO4), calcium (Ca), magnesium (Mg), potassium (K), sodium (Na), and hydrogen ion activity (pH) were measured on 13 wildland watersheds managed at four different grazing strategies. Range management strategies tested were (A) no grazing, (B) grazing without control of livestock distribution (8.2 ha/...

  20. Turbulence-chemistry interactions in reacting flows

    Energy Technology Data Exchange (ETDEWEB)

    Barlow, R.S.; Carter, C.D. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    Interactions between turbulence and chemistry in nonpremixed flames are investigated through multiscalar measurements. Simultaneous point measurements of major species, NO, OH, temperature, and mixture fraction are obtained by combining spontaneous Raman scattering, Rayleigh scattering, and laser-induced fluorescence (LIF). NO and OH fluorescence signals are converted to quantitative concentrations by applying shot-to-shot corrections for local variations of the Boltzmann fraction and collisional quenching rate. These measurements of instantaneous thermochemical states in turbulent flames provide insights into the fundamental nature of turbulence-chemistry interactions. The measurements also constitute a unique data base for evaluation and refinement of turbulent combustion models. Experimental work during the past year has focused on three areas: (1) investigation of the effects of differential molecular diffusion in turbulent combustion: (2) experiments on the effects of Halon CF{sub 3}Br, a fire retardant, on the structure of turbulent flames of CH{sub 4} and CO/H{sub 2}/N{sub 2}; and (3) experiments on NO formation in turbulent hydrogen jet flames.

  1. A microfabricated nickel-hydrogen battery using thick film printing techniques

    Science.gov (United States)

    Tam, Waiping G.; Wainright, Jesse S.

    To utilize the distinctive cycle life and safety characteristics of the nickel-hydrogen chemistry while eliminating the high pressure limitations of conventional nickel-hydrogen cells, a microfabricated nickel-hydrogen battery using a low-pressure metal hydride for hydrogen storage is being developed for powering micro-electromechanical systems (MEMS) devices and for biomedical applications where the battery would be implanted within the body. Thick film printing techniques which are simple and low cost were used to fabricate this battery. Inks were developed for each of the different battery components, including the electrodes, current collectors and separator. SEM images on these printed components showed the desired characteristics for each. Positive electrode cycling tests were performed on the printed positive electrodes while cyclic voltammetry was used to characterize the printed negative electrodes. Consistent charge and discharge performance was observed during positive electrode cycling. Full cells with printed positive and negative assemblies were assembled and tested.

  2. A microfabricated nickel-hydrogen battery using thick film printing techniques

    Energy Technology Data Exchange (ETDEWEB)

    Tam, Waiping G.; Wainright, Jesse S. [Department of Chemical Engineering, Case Western Reserve University, Cleveland, OH 44106 (United States)

    2007-02-25

    To utilize the distinctive cycle life and safety characteristics of the nickel-hydrogen chemistry while eliminating the high pressure limitations of conventional nickel-hydrogen cells, a microfabricated nickel-hydrogen battery using a low-pressure metal hydride for hydrogen storage is being developed for powering micro-electromechanical systems (MEMS) devices and for biomedical applications where the battery would be implanted within the body. Thick film printing techniques which are simple and low cost were used to fabricate this battery. Inks were developed for each of the different battery components, including the electrodes, current collectors and separator. SEM images on these printed components showed the desired characteristics for each. Positive electrode cycling tests were performed on the printed positive electrodes while cyclic voltammetry was used to characterize the printed negative electrodes. Consistent charge and discharge performance was observed during positive electrode cycling. Full cells with printed positive and negative assemblies were assembled and tested. (author)

  3. Hydrogen storage properties of Na-Li-Mg-Al-H complex hydrides

    International Nuclear Information System (INIS)

    Tang Xia; Opalka, Susanne M.; Laube, Bruce L.; Wu Fengjung; Strickler, Jamie R.; Anton, Donald L.

    2007-01-01

    Lightweight complex hydrides have attracted attention for their high storage hydrogen capacity. NaAlH 4 has been widely studied as a hydrogen storage material for its favorable reversible operating temperature and pressure range for automotive fuel cell applications. The increased understanding of NaAlH 4 has led to an expanded search for high capacity materials in mixed alkali and akali/alkaline earth alanates. In this study, promising candidates in the Na-Li-Mg-Al-H system were evaluated using a combination of experimental chemistry, atomic modeling, and thermodynamic modeling. New materials were synthesized using solid state and solution based processing methods. Their hydrogen storage properties were measured experimentally, and the test results were compared with theoretical modeling assessments

  4. Chemistry and the iron - only hydrogenase

    International Nuclear Information System (INIS)

    Tard, C.; Razavet, M.; Liu, X.; Ibrahim, S.; Pickett, Ch.

    2005-01-01

    Complete text of publication follows: Chemistry related to the hydrogenases is developing very rapidly and providing some informative insights into how the biological systems might function. Although still very much at a blue skies stage, there is some prospect for the design of artificial assemblies, materials and devices with technological application for hydrogen production/uptake provided robust system can be designed with low over potentials for hydrogen/proton interconversion (1). The iron-only hydrogenase possesses a peculiar di-iron unit coordinated by CO and CN, ligands which are normally associated with poisoning biological function. This sub-site unit is attached to a [4Fe4S] cubane center to form the catalytic site of the hydrogenase which is known as the 'H-cluster'. The synthesis of artificial sub-sites will first be described together with how their structures, spectroscopy and reactivity provides some key insights into the natural system viz. unprecedented bridging carbonyl and Fe(I) motifs in biology (2-4). How we have approached putting together the entire iron-sulfur framework of the H-cluster will then be described together with its electron-transfer and electrocatalytic properties (4). Finally, I will describe some early work on how we are beginning to incorporate structural motifs of the active-site into conducting polymer matrices, how they function as (albeit poor) electrocatalysts for hydrogen evolution, and where we see the way ahead. (1)The Chemistry and the Hydrogenases. D.J. Evans and C.J. Pickett, Chem. Soc. Rev., 32, 268-275, 2003; (2)Electron-Transfer at a Di-thiolate-Bridged Di-Iron Assembly; Electrocatalytic Hydrogen Evolution. S.J. Borg, T. Behrsing and S.P. Best, M. Ravazet, X. Liu and C.J. Pickett, J Amer. Chem. Soc., 2004, 126, 509-533; (3) Dissecting the intimate mechanism of cyanation of [Fe2S3] complexes related to the active site of all-iron hydrogenases by DFT analysis of energetics, transition states, intermediates and

  5. Kinetics of hydrogen adsorption on MgH{sub 2}/CNT composite

    Energy Technology Data Exchange (ETDEWEB)

    Rather, Sami ullah, E-mail: rathersami@gmail.com; Taimoor, Aqeel Ahmad; Muhammad, Ayyaz; Alhamed, Yahia Abobakor; Zaman, Sharif Fakhruz; Ali, Arshid Mahmood

    2016-05-15

    Highlights: • Hydrogen adsorption comparisons of commercial, milled, and MgH{sub 2} composite. • Hydrogen adsorption capacity and kinetics improves tremendously by CNT embedding. • Unsteady state modeling and simulation of adsorption kinetics. - Abstract: Magnesium hydride (MgH{sub 2})–carbon nanotubes (CNT) composite has been prepared by high-energy ball milling method and their experimental and kinetic hydrogen adsorption studies was assessed. Hydrogen adsorption studies were performed by Sievert’s volumetric apparatus and kinetic evaluation was conducted by surface chemistry and Langmuir–Hinshelwood–Hougen–Watson (LHHW) type mode. Powder X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) were performed. Hydrogen adsorption capacity of commercial MgH{sub 2}, milled MgH{sub 2}, and MgH{sub 2}/CNT composite are found to be 0.04, 0.057, and 0.059 g (H{sub 2})/g (MgH{sub 2}) at 673 K and hydrogen pressure of 4.6 MPa. Addition of 5 wt% of CNTs to MgH{sub 2} proved to be very critical to enhance hydrogen adsorption as well as to improve its kinetics. It was observed that hydrogen adsorption is not in quasi-state equilibrium and is modeled using kinetic rate laws.

  6. Chemistry and evolution of Titan's atmosphere

    International Nuclear Information System (INIS)

    Strobel, D.F.

    1982-01-01

    The chemistry and evolution of Titan's atmosphere is reviewed in the light of the scientific findings from the Voyager mission. It is argued that the present N 2 atmosphere may be Titan's initial atmosphere rather than photochemically derived from an original NH 3 atmosphere. The escape rate of hydrogen from Titan is controlled by photochemical production from hydrocarbons. CH 4 is irreversibly converted to less hydrogen rich hydrocarbons, which over geologic time accumulate on the surface to a layer thickness of approximately 0.5 km. Magnetospheric electrons interacting with Titan's exosphere may dissociate enough N 2 into hot, escaping N atoms to remove approximately 0.2 of Titan's present atmosphere over geologic time. The energy dissipation of magnetospheric electrons exceeds solar e.u.v. energy deposition in Titan's atmosphere by an order of magnitude and is the principal driver of nitrogen photochemistry. The environmental conditions in Titan's upper atmosphere are favorable to building up complex molecules, particularly in the north polar cap region. (author)

  7. Flip-flop motion of circular hydrogen bond array in thiacalix[4]arene

    Czech Academy of Sciences Publication Activity Database

    Lang, J.; Vágnerová, K.; Czernek, Jiří; Lhoták, P.

    2006-01-01

    Roč. 18, č. 4 (2006), s. 371-381 ISSN 1061-0278 R&D Projects: GA AV ČR KJB4050311 Institutional research plan: CEZ:AV0Z40500505 Keywords : flip-flop motion * hydrogen bond * enthalpy Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.861, year: 2006

  8. Shutdown chemistry optimization at Maanshan NPP

    International Nuclear Information System (INIS)

    Sun Yuanlung; Chuang Benjamin; Su Kouhwa; Kao Jueiting

    2009-01-01

    At Maanshan PWRs, a significant piping radiation buildup caused by crud burst from fuel surface in the beginning of RFO used to be blamed as a contribution to high personal exposures during outage. Therefore, several modifications on shutdown chemistry procedures such as, early lithium removal, rapid boration, dissolved hydrogen removal, extended RCP operation, and maintaining maximum let down flow, have been consecutively conducted since no.1RFO-16, 2006. The important operational and chemical parameters of modified shutdown chemistry procedures adopted in no.2 RFO-17, 2008 and superiority in low reading (2 mSv/hr) from let down heat exchangers area radiation monitor over 11mSv/hr of no.1 RFO-16 at the same area will be addressed in this paper. At the end of no.2 RFO-17, low personal exposures of 765 man-mSv (TLD)verified the absence of crud burst during shutdown chemistry process and broke records of Maanshan NPP as well. Even with a new job on PZR pre-emptive dissimilar weld overlay which exhausting 17.37% of total 797 man-mSv(TLD) in the latest no.1 RFO-18, 659 man-mSv (TLD) made another record low in the history of Maanshan. (author)

  9. Numerical Simulation of Hydrogen Air Supersonic Coaxial Jet

    Science.gov (United States)

    Dharavath, Malsur; Manna, Pulinbehari; Chakraborty, Debasis

    2017-10-01

    In the present study, the turbulent structure of coaxial supersonic H2-air jet is explored numerically by solving three dimensional RANS equations along with two equation k-ɛ turbulence model. Grid independence of the solution is demonstrated by estimating the error distribution using Grid Convergence Index. Distributions of flow parameters in different planes are analyzed to explain the mixing and combustion characteristics of high speed coaxial jets. The flow field is seen mostly diffusive in nature and hydrogen diffusion is confined to core region of the jet. Both single step laminar finite rate chemistry and turbulent reacting calculation employing EDM combustion model are performed to find the effect of turbulence-chemistry interaction in the flow field. Laminar reaction predicts higher H2 mol fraction compared to turbulent reaction because of lower reaction rate caused by turbulence chemistry interaction. Profiles of major species and temperature match well with experimental data at different axial locations; although, the computed profiles show a narrower shape in the far field region. These results demonstrate that standard two equation class turbulence model with single step kinetics based turbulence chemistry interaction can describe H2-air reaction adequately in high speed flows.

  10. Intracellular Chemistry: Integrating Molecular Inorganic Catalysts with Living Systems.

    Science.gov (United States)

    Ngo, Anh H; Bose, Sohini; Do, Loi H

    2018-03-23

    This concept article focuses on the rapid growth of intracellular chemistry dedicated to the integration of small-molecule metal catalysts with living cells and organisms. Although biological systems contain a plethora of biomolecules that can deactivate inorganic species, researchers have shown that small-molecule metal catalysts could be engineered to operate in heterogeneous aqueous environments. Synthetic intracellular reactions have recently been reported for olefin hydrogenation, hydrolysis/oxidative cleavage, azide-alkyne cycloaddition, allylcarbamate cleavage, C-C bond cross coupling, and transfer hydrogenation. Other promising targets for new biocompatible reaction discovery will also be discussed, with a special emphasis on how such innovations could lead to the development of novel technologies and chemical tools. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Iron Phthalocyanine as New Efficient Catalyst for Catalytic Transfer Hydrogenation of Simple Aldehydes and Ketones

    Czech Academy of Sciences Publication Activity Database

    Bata, P.; Notheisz, F.; Klusoň, Petr; Zsigmond, A.

    2015-01-01

    Roč. 29, JAN 2015 (2015), s. 45-49 ISSN 0268-2605 Institutional support: RVO:67985858 Keywords : heterogenized complexes * catalytic transfer hydrogenation * reusable catalyst Subject RIV: CC - Organic Chemistry Impact factor: 2.452, year: 2015

  12. Basic radiation chemistry for the ionising energy treatment of food

    International Nuclear Information System (INIS)

    Moore, P.W.

    1985-01-01

    Before we can understand the chemistry involved in the irradiation of complex substances such as food we need to have some appreciation of the reactions involved and the products formed when ionising energy interacts with the simple substances such as water and dilute solutions. Reactions involving hydrated electrons, hydrogen atoms and hydroxyl radicals are examined and methods for minimising radiolytic effects in foods are discussed

  13. Reactions of Hydrogen Sulfide with Singly and Doubly Tucked-in Titanocenes

    Czech Academy of Sciences Publication Activity Database

    Pinkas, Jiří; Císařová, I.; Horáček, Michal; Kubišta, Jiří; Mach, Karel

    2011-01-01

    Roč. 30, č. 5 (2011), s. 1034-1045 ISSN 0276-7333 R&D Projects: GA AV ČR IAA400400708; GA MŠk(CZ) LC06070 Institutional research plan: CEZ:AV0Z40400503 Keywords : hydrogen sulphide * titanocene * chemical structure Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.963, year: 2011

  14. Environmental-assisted fatigue in austenitic stainless steels under light water reactor conditions

    International Nuclear Information System (INIS)

    Seifert, H.P.; Ritter, S.; Spaetig, P.

    2015-01-01

    The environmental-assisted fatigue (EAF) initiation and subsequent short crack growth behaviour of different austenitic stainless steels were characterised under simulated BWR/HWC and primary PWR conditions by cyclic fatigue tests with sharply notched fracture mechanics specimens. After a brief summary overview on the previous PSI observations, an update with new and preliminary results about the effect of pH, dissolved hydrogen, load ratio/mean stress, long static load hold times and load sequences is given in this paper. At low electrochemical corrosion potentials (ECP), the physical EAF initiation life moderately decreases with increasing dissolved hydrogen content and decreasing pH. Both parameters have little effect on the subsequent short EAF crack growth within the investigated range. Notch strain amplitude thresholds for environmental effects on physical EAF crack initiation decrease with increasing load ratio and mean stress. At small notch strain amplitudes, the effect of mean stress is more pronounced in BWR/HWC environment than in air and predicted by typical fatigue life mean stress corrections. Under certain loading conditions, long static load hold times result in an increase of the physical EAF initiation life, which saturates for very long hold times. On the other hand, little effect of hold times on subsequent stationary short EAF crack growth rates is observed. The physical EAF initiation life under load sequence loading in high-temperature water may be moderately shorter or significantly longer than predicted by a linear damage accumulation rule and corresponding constant load amplitude tests depending on the load history. (authors)

  15. The political ecology of human-wildlife conflict: Producing wilderness, insecurity, and displacement in the Limpopo National Park

    Directory of Open Access Journals (Sweden)

    Francis Massé

    2016-01-01

    Full Text Available Like conservation-induced displacement, human-wildlife conflict (HWC has potentially negative implications for communities in and around protected areas. While the ways in which displacement emerges from the creation of 'wilderness' conservation landscapes are well documented, how the production of 'wilderness' articulates with intensifications in HWC remains under examined both empirically and conceptually. Using a political-ecological approach, I analyse increases of HWC in Mozambique's Limpopo National Park (LNP and the subsequent losses of fields and livestock, as well as forms of physical displacement suffered by resident communities. While intensifications of encounters between wildlife on the one hand and people and livestock on the other result in part from increases in wildlife populations, I argue that HWC and the ways in which it constitutes and contributes to various forms of displacement results more centrally from changing relations between wildlife and people and the power and authority to manage conflict between them. Both of these contributing factors, moreover, are the consequence of practices that aim to transform the LNP into a wilderness landscape of conservation and tourism. HWC and its negative impacts are thus not natural phenomena, but are the result of political decisions to create a particular type of conservation landscape.

  16. Seventh BES [Basic Energy Sciences] catalysis and surface chemistry research conference

    International Nuclear Information System (INIS)

    1990-03-01

    Research programs on catalysis and surface chemistry are presented. A total of fifty-seven topics are included. Areas of research include heterogeneous catalysis; catalysis in hydrogenation, desulfurization, gasification, and redox reactions; studies of surface properties and surface active sites; catalyst supports; chemical activation, deactivation; selectivity, chemical preparation; molecular structure studies; sorption and dissociation. Individual projects are processed separately for the data bases

  17. Seventh BES (Basic Energy Sciences) catalysis and surface chemistry research conference

    Energy Technology Data Exchange (ETDEWEB)

    1990-03-01

    Research programs on catalysis and surface chemistry are presented. A total of fifty-seven topics are included. Areas of research include heterogeneous catalysis; catalysis in hydrogenation, desulfurization, gasification, and redox reactions; studies of surface properties and surface active sites; catalyst supports; chemical activation, deactivation; selectivity, chemical preparation; molecular structure studies; sorption and dissociation. Individual projects are processed separately for the data bases. (CBS)

  18. Hydrogen storage via polyhydride complexes

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, C.M.; Zidan, R.A. [Univ. of Hawaii, Honolulu, HI (United States)

    1998-08-01

    The reversible dehydrogenation of NaAlH{sub 4} is catalyzed in toluene slurries of the NaAlH{sub 4} containing the pincer complex, IrH{sub 4} {l_brace}C{sub 6}H{sub 3}-2,6-(CH{sub 2}PBu{sup t}{sub 2}){sub 2}{r_brace}. The rates of the pincer complex catalyzed dehydrogenation are about five times greater those previously found for NaAlH{sub 4} that was doped with titanium through a wet chemistry method. Homogenization of NaAlH{sub 4} with 2 mole % Ti(OBu{sup n}){sub 4} under an atmosphere of argon produces a novel titanium containing material. TPD measurements show that the dehydrogenation of this material occurs about 30 C lower than that previously found for wet titanium doped NaAlH{sub 4}. In further contrast to wet doped NaAlH{sub 4}, the dehydrogenation kinetics and hydrogen capacity of the novel material are undiminished over several dehydriding/hydriding cycles. Rehydrogenation of the titanium doped material occurs readily at 170 C under 150 atm of hydrogen. TPD measurements show that about 80% of the original hydrogen content (4.2 wt%) can be restored under these conditions.

  19. Complex Metal Hydrides for Hydrogen, Thermal and Electrochemical Energy Storage

    DEFF Research Database (Denmark)

    Moller, Kasper T.; Sheppard, Drew; Ravnsbaek, Dorthe B.

    2017-01-01

    Hydrogen has a very diverse chemistry and reacts with most other elements to form compounds, which have fascinating structures, compositions and properties. Complex metal hydrides are a rapidly expanding class of materials, approaching multi-functionality, in particular within the energy storage...... inspiration to solve the great challenge of our time: efficient conversion and large-scale storage of renewable energy....... field. This review illustrates that complex metal hydrides may store hydrogen in the solid state, act as novel battery materials, both as electrolytes and electrode materials, or store solar heat in a more efficient manner as compared to traditional heat storage materials. Furthermore, it is highlighted...

  20. QED Tests and Search for New Physics in Molecular Hydrogen

    Science.gov (United States)

    Salumbides, E. J.; Niu, M. L.; Dickenson, G. D.; Eikema, K. S. E.; Komasa, J.; Pachucki, K.; Ubachs, W.

    2013-06-01

    The hydrogen molecule has been the benchmark system for quantum chemistry, and may provide a test ground for new physics. We present our high-resolution spectroscopic studies on the X ^1Σ^+_g electronic ground state rotational series and fundamenal vibrational tones in molecular hydrogen. In combination with recent accurate ab initio calculations, we demonstrate systematic tests of quantum electrodynamical (QED) effects in molecules. Moreover, the precise comparison between theory and experiment can provide stringent constraints on possible new interactions that extend beyond the Standard Model. E. J. Salumbides, G. D. Dickenson, T. I. Ivanov and W. Ubachs, Phys. Rev. Lett. 107, 043005 (2011).

  1. Concentration of atomic hydrogen in a dielectric barrier discharge measured by two-photon absorption fluorescence

    Science.gov (United States)

    Dvořák, P.; Talába, M.; Obrusník, A.; Kratzer, J.; Dědina, J.

    2017-08-01

    Two-photon absorption laser-induced fluorescence (TALIF) was utilized for measuring the concentration of atomic hydrogen in a volume dielectric barrier discharge (DBD) ignited in mixtures of Ar, H2 and O2 at atmospheric pressure. The method was calibrated by TALIF of krypton diluted in argon at atmospheric pressure, proving that three-body collisions had a negligible effect on quenching of excited krypton atoms. The diagnostic study was complemented with a 3D numerical model of the gas flow and a zero-dimensional model of the chemistry in order to better understand the reaction kinetics and identify the key pathways leading to the production and destruction of atomic hydrogen. It was determined that the density of atomic hydrogen in Ar-H2 mixtures was in the order of 1021 m-3 and decreased when oxygen was added into the gas mixture. Spatially resolved measurements and simulations revealed a sharply bordered region with low atomic hydrogen concentration when oxygen was added to the gas mixture. At substoichiometric oxygen/hydrogen ratios, this H-poor region is confined to an area close to the gas inlet and it is shown that the size of this region is not only influenced by the chemistry but also by the gas flow patterns. Experimentally, it was observed that a decrease in H2 concentration in the feeding Ar-H2 mixture led to an increase in H production in the DBD.

  2. Magnetic Fe@g??C3N4: A Photoactive Catalyst for the Hydrogenation of Alkenes and Alkynes

    Science.gov (United States)

    A photoactive catalyst, Fe@g-C3N4, has been developed for the hydrogenation of alkenes and alkynes using hydrazine hydrate as a source of hydrogen. The magnetically separable Fe@g-C3N4 eliminates the use of high pressure hydrogenation, and the reaction can be accomplished using visible light without the need for external sources of energy.This dataset is associated with the following publication:Baig, N., S. Verma, R. Varma , and M. Nadagouda. Magnetic Fe@g-C3N4: A Photoactive Catalyst for the Hydrogenation of Alkenes and Alkynes. ACS Sustainable Chemistry & Engineering. American Chemical Society, Washington, DC, USA, 4(3): 1661-1664, (2016).

  3. Direct electrochemistry of horseradish peroxidase immobilized on electrografted 4-ethynylphenyl film via click chemistry

    International Nuclear Information System (INIS)

    Ran Qin; Peng Ru; Liang Cong; Ye Siqiu; Xian Yuezhong; Zhang Wenjing; Jin Litong

    2011-01-01

    Graphical abstract: Hydrogen peroxide biosensor was developed based on electrochemically assisted aryldiazonium salt chemistry and click chemistry. Highlights: → A simple, versatile two-step approach, which is based on electrochemically assisted aryldiazonium salt chemistry and Cu(I)-catalyzed azide alkyne cycloaddition (CuAAC) reaction has been developed for covalent redox proteins immobilization and biosensing for the first time. In this work, azido group modified HRP was covalently grafted on 4-ethylnylphenyl diazonium compound via CuAAC reaction and a novel electrochemical hydrogen peroxide biosensor was successfully fabricated. - Abstract: In this paper, a simple two-step approach for redox protein immobilization was introduced. Firstly, alkynyl-terminated film was formed on electrode surface by electrochemical reduction of 4-ethylnylphenyl (4-EP) diazonium compound. Then, horseradish peroxidase (HRP) modified with azido group was covalently immobilized onto the electrografted film via click reaction. Reflection absorption infrared (RAIR) spectroscopy and electrochemical methods were used to characterize the modification process. The results indicate that HRP retains its native structure and shows fast direct electron transfer. Moreover, the immobilized HRP shows excellent electrocatalytic reduction activity toward H 2 O 2 with a linear range of 5.0 x 10 -6 to 9.3 x 10 -4 mol L -1 .

  4. Direct electrochemistry of horseradish peroxidase immobilized on electrografted 4-ethynylphenyl film via click chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Ran Qin; Peng Ru; Liang Cong; Ye Siqiu [Department of Chemistry, East China Normal University, Shanghai 200062 (China); Xian Yuezhong, E-mail: yzxian@chem.ecnu.edu.cn [Department of Chemistry, East China Normal University, Shanghai 200062 (China); Zhang Wenjing; Jin Litong [Department of Chemistry, East China Normal University, Shanghai 200062 (China)

    2011-07-04

    Graphical abstract: Hydrogen peroxide biosensor was developed based on electrochemically assisted aryldiazonium salt chemistry and click chemistry. Highlights: > A simple, versatile two-step approach, which is based on electrochemically assisted aryldiazonium salt chemistry and Cu(I)-catalyzed azide alkyne cycloaddition (CuAAC) reaction has been developed for covalent redox proteins immobilization and biosensing for the first time. In this work, azido group modified HRP was covalently grafted on 4-ethylnylphenyl diazonium compound via CuAAC reaction and a novel electrochemical hydrogen peroxide biosensor was successfully fabricated. - Abstract: In this paper, a simple two-step approach for redox protein immobilization was introduced. Firstly, alkynyl-terminated film was formed on electrode surface by electrochemical reduction of 4-ethylnylphenyl (4-EP) diazonium compound. Then, horseradish peroxidase (HRP) modified with azido group was covalently immobilized onto the electrografted film via click reaction. Reflection absorption infrared (RAIR) spectroscopy and electrochemical methods were used to characterize the modification process. The results indicate that HRP retains its native structure and shows fast direct electron transfer. Moreover, the immobilized HRP shows excellent electrocatalytic reduction activity toward H{sub 2}O{sub 2} with a linear range of 5.0 x 10{sup -6} to 9.3 x 10{sup -4} mol L{sup -1}.

  5. Progress on first-principles-based materials design for hydrogen storage.

    Science.gov (United States)

    Park, Noejung; Choi, Keunsu; Hwang, Jeongwoon; Kim, Dong Wook; Kim, Dong Ok; Ihm, Jisoon

    2012-12-04

    This article briefly summarizes the research activities in the field of hydrogen storage in sorbent materials and reports our recent works and future directions for the design of such materials. Distinct features of sorption-based hydrogen storage methods are described compared with metal hydrides and complex chemical hydrides. We classify the studies of hydrogen sorbent materials in terms of two key technical issues: (i) constructing stable framework structures with high porosity, and (ii) increasing the binding affinity of hydrogen molecules to surfaces beyond the usual van der Waals interaction. The recent development of reticular chemistry is summarized as a means for addressing the first issue. Theoretical studies focus mainly on the second issue and can be grouped into three classes according to the underlying interaction mechanism: electrostatic interactions based on alkaline cations, Kubas interactions with open transition metals, and orbital interactions involving Ca and other nontransitional metals. Hierarchical computational methods to enable the theoretical predictions are explained, from ab initio studies to molecular dynamics simulations using force field parameters. We also discuss the actual delivery amount of stored hydrogen, which depends on the charging and discharging conditions. The usefulness and practical significance of the hydrogen spillover mechanism in increasing the storage capacity are presented as well.

  6. A designer's view of hydrogen mitigation (invited paper)

    International Nuclear Information System (INIS)

    Meneley, D.A.

    1997-01-01

    It is commonplace today to design nuclear power plants to control and manage the potential effects of hydrogen evolution following accidents. Hydrogen management has two purposes - to protect the containment structure itself against structural failure following rapid deflagration of hydrogen, and to protect systems inside containment against local damage due to hydrogen combustion. Post-accident hydrogen control has become one of the normal elements of the design basis for containment and, through environmental requirements for internal components, on several NSSS systems. The term ''design basis'' is used here in the sense of inclusion in the design requirements of any system. National practices vary but, from a designers's point of view any event for which processes or equipment must be provided to meet specific performance requirements becomes part of the design basis of the plant, even if the postulated event is not formally a ''design basis accident''. The most difficult aspect of hydrogen mitigation design, from the designer's point of view, is the uncertainty as to whether recombination, especially if done via ignition, will improve or degrade systems' safety. This uncertainty generates several questions of release location, timing, reliability, chemistry, location of ignitors and/or recombiners as well as the question of their proper location in relation to sources and atmosphere circulation patterns. In general terms these uncertainties create a ''fuzzy'' design problem the worst kind of problem given the atmosphere of rigid regulation

  7. Practical Aspects and Mechanism of Asymmetric Hydrogenation with Chiral Half-Sandwich Complexes

    Czech Academy of Sciences Publication Activity Database

    Václavík, J.; Šot, P.; Vilhanová, B.; Pecháček, J.; Kuzma, Marek; Kačer, P.

    2013-01-01

    Roč. 18, č. 6 (2013), s. 6804-6828 ISSN 1420-3049 R&D Projects: GA ČR GA104/09/1497; GA ČR GAP106/12/1276 Institutional support: RVO:61388971 Keywords : asymmetric hydrogenation * ruthenium * reaction conditions Subject RIV: CC - Organic Chemistry Impact factor: 2.095, year: 2013

  8. Hydrogen Production via Synthetic Gas by Biomass/Oil Partial Oxidation

    Czech Academy of Sciences Publication Activity Database

    Hanika, Jiří; Lederer, J.; Tukač, V.; Veselý, Václav; Kováč, D.

    176-177, - (2011), s. 286-290 ISSN 1385-8947. [International Conference on Chemical Reactors CHEMREACTOR-19 /19./. Vienna, 05.09.2010-09.09.2010] R&D Projects: GA MPO 2A-2TP1/024 Institutional research plan: CEZ:AV0Z40720504 Keywords : hydrogen * biomass * partial oxidation Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.461, year: 2011

  9. Passivation of hexagonal SiC surfaces by hydrogen termination

    International Nuclear Information System (INIS)

    Seyller, Thomas

    2004-01-01

    Surface hydrogenation is a well established technique in silicon technology. It is easily accomplished by wet-chemical procedures and results in clean and unreconstructed surfaces, which are extremely low in charged surface states and stable against oxidation in air, thus constituting an ideal surface preparation. As a consequence, methods for hydrogenation have been sought for preparing silicon carbide (SiC) surfaces with similar well defined properties. It was soon recognized, however, that due to different surface chemistry new ground had to be broken in order to find a method leading to the desired monatomic hydrogen saturation. In this paper the results of H passivation of SiC surfaces by high-temperature hydrogen annealing will be discussed, thereby placing emphasis on chemical, structural and electronic properties of the resulting surfaces. In addition to their unique properties, hydrogenated hexagonal SiC {0001} surfaces offer the interesting possibility of gaining insight into the formation of silicon- and carbon-rich reconstructions as well. This is due to the fact that to date hydrogenation is the only method providing oxygen-free surfaces with a C to Si ratio of 1:1. Last but not least, the electronic properties of hydrogen-free SiC {0001} surfaces will be alluded to. SiC {0001} surfaces are the only known semiconductor surfaces that can be prepared in their unreconstructed (1 x 1) state with one dangling bond per unit cell by photon induced hydrogen desorption. These surfaces give indications of a Mott-Hubbard surface band structure

  10. Probing the Surface of Platinum during the Hydrogen Evolution Reaction in Alkaline Electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Stoerzinger, Kelsey A. [Physical; Favaro, Marco [Advanced; Joint; Chemical; Ross, Philip N. [Materials; Yano, Junko [Joint; Molecular; Liu, Zhi [State; Division; Hussain, Zahid [Advanced; Crumlin, Ethan J. [Advanced; Joint Center

    2017-11-02

    Understanding the surface chemistry of electrocatalysts in operando can bring insight into the reaction mechanism, and ultimately the design of more efficient materials for sustainable energy storage and conversion. Recent progress in synchrotron based X-ray spectroscopies for in operando characterization allows us to probe the solid/liquid interface directly while applying an external potential, applied here to the model system of Pt in alkaline electrolyte for the hydrogen evolution reaction (HER). We employ ambient pressure X-ray photoelectron spectroscopy (AP-XPS) to identify the oxidation and reduction of Pt-oxides and hydroxides on the surface as a function of applied potential, and further assess the potential for hydrogen adsorption and absorption (hydride formation) during and after the HER. This new window into the surface chemistry of Pt in alkaline brings insight into the nature of the rate limiting step, the extent of H ad/absorption and it’s persistence at more anodic potentials.

  11. Hydrogen Tunneling in Enzymes and Biomimetic Models

    Energy Technology Data Exchange (ETDEWEB)

    Layfield, Joshua P.; Hammes-Schiffer, Sharon

    2013-12-20

    Hydrogen transfer reactions play an important role throughout chemistry and biology. In general, hydrogen transfer reactions encompass proton and hydride transfer, which are associated with the transfer of a positively or negatively charged species, respectively, and proton-coupled electron transfer (PCET), which corresponds to the net transfer of one electron and one proton in the simplest case. Such PCET reactions can occur by either a sequential mechanism, in which the proton or electron transfers first, or a concerted mechanism, in which the electron and proton transfer in a single kinetic step with no stable intermediate. Furthermore, concerted PCET reactions can be subdivided into hydrogen atom transfer (HAT), which corresponds to the transfer of an electron and proton between the same donor and acceptor (i.e., the transfer of a predominantly neutral species), and electron-proton transfer (EPT), which corresponds to the transfer of an electron and proton between different donors and acceptors, possibly even in different directions. In all of these types of hydrogen transfer reactions, hydrogen tunneling could potentially play a signficant role. The theoretical development portion of this Review was supported by the National Science Foundation under CHE-10-57875. The biological portion of this Review was funded by NIH Grant No. GM056207. The biomimetic portion was supported as part of the Center for Molecular Electro-catalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.

  12. Eletrodo de hidrogênio: o que há nos livros didáticos além de E¸ = 0? The hydrogen electrode: what is there in the textbooks beyond E¸ = 0?

    Directory of Open Access Journals (Sweden)

    Wanda de Oliveira

    2009-01-01

    Full Text Available The results of an exercise on electrochemistry for General Chemistry students are presented. The difficulty encountered by students in predicting the shift in the potential of the hydrogen electrode under non-standard conditions prompted a search in textbooks on how the subject is developed. Besides several instances of inconsistencies in defining the standard state, such as including the temperature in the definition, a number of incorrect depictions of the hydrogen electrode were discovered. Of the 28 General Chemistry books, 16 Physical Chemistry books and 24 Internet pages, 30, 20 and 46%, respectively, showed devices that would not work in practice.

  13. Theoretical investigations into the blue-shifting hydrogen bond in benzene complexes

    Czech Academy of Sciences Publication Activity Database

    Špirko, Vladimír; Hobza, Pavel

    2006-01-01

    Roč. 7, č. 3 (2006), s. 640-643 ISSN 1439-4235 R&D Projects: GA ČR(CZ) GA203/05/0009; GA MŠk(CZ) LC512 Institutional research plan: CEZ:AV0Z40550506 Keywords : blue-shifting hydrogen bond * benzene complexes * London dispersion Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.449, year: 2006

  14. Effect of hydrogen on hydrogen-methane turbulent non-premixed flame under MILD condition

    Energy Technology Data Exchange (ETDEWEB)

    Mardani, Amir; Tabejamaat, Sadegh [Department of Aerospace engineering, Amirkabir university of technology (Tehran polytechnic), Hafez Ave., PO. Box: 15875-4413, Tehran (Iran)

    2010-10-15

    Energy crises and the preservation of the global environment are placed man in a dilemma. To deal with these problems, finding new sources of fuel and developing efficient and environmentally friendly energy utilization technologies are essential. Hydrogen containing fuels and combustion under condition of the moderate or intense low-oxygen dilution (MILD) are good choices to replace the traditional ones. In this numerical study, the turbulent non-premixed CH{sub 4}+H{sub 2} jet flame issuing into a hot and diluted co-flow air is considered to emulate the combustion of hydrogen containing fuels under MILD conditions. This flame is related to the experimental condition of Dally et al. [Proc. Combust. Inst. 29 (2002) 1147-1154]. In general, the modelling is carried out using the EDC model, to describe turbulence-chemistry interaction, and the DRM-22 reduced mechanism and the GRI2.11 full mechanism to represent the chemical reactions of H{sub 2}/methane jet flame. The effect of hydrogen content of fuel on flame structure for two co-flow oxygen levels is studied by considering three fuel mixtures, 5%H{sub 2}+95%CH{sub 4}, 10%H{sub 2}+90%CH{sub 4} and 20% H{sub 2}+80%CH{sub 4}(by mass). In this study, distribution of species concentrations, mixture fraction, strain rate, flame entrainment, turbulent kinetic energy decay and temperature are investigated. Results show that the hydrogen addition to methane leads to improve mixing, increase in turbulent kinetic energy decay along the flame axis, increase in flame entrainment, higher reaction intensities and increase in mixture ignitability and rate of heat release. (author)

  15. Living with wildlife and associated conflicts in northern Gonarezhou National Park, southeast Zimbabwe

    NARCIS (Netherlands)

    Gandiwa, E.; Gandiwa, P.; Muboko, N.

    2012-01-01

    Human-wildlife conflicts (HWC) are a common phenomenon world-wide, particularly in areas where humans and wild animal’s requirements overlap. In this study we focused on the nature of HWC in an area occurring within the northern Gonarezhou National Park (GNP), Zimbabwe. We collected data using focus

  16. The chemistry of the liquid alkali metals

    International Nuclear Information System (INIS)

    Addison, C.C.

    1984-01-01

    A study of liquid alkali metals. It encourages comparison with molecular solvents in chapter covering the nature and reactivity of dissolved species, solvation, solubility and electrical conductivity of solutions. It demonstrates lab techniques unique to liquid alkali metals. It discusses large-scale applications from storage batteries to sodium-cooled reactors and future fusion reactors, and associated technological problems. Contents: Some Basic Physical and Chemical Properties; Manipulation of the Liquids; The Chemistry of Purification Methods; Species Formed by Dissolved Elements; Solubilities and Analytical Methods; Alkali Metal Mixtures; Solvation in Liquid Metal; Reactions Between Liquid Alkali Metals and Water; Reactions of Nitrogen with Lithium and the Group II Metals in Liquid Sodium; The Formation, Dissociation and Stability of Heteronuclear Polyatomic Anions; Reactions of the Liquid Alkali Metals and Their Alloys with Simple Alipatic Hydrocarbons; Reactions of the Liquid Alkali Metals with Some Halogen Compounds; Hydrogen, Oxygen and Carbon Meters; Surface Chemistry and Wetting; Corrosion of Transition Metals by the Liquid Alkali Metals; Modern Applications of the Liquid Alkali Metals

  17. A survey of upwind methods for flows with equilibrium and non-equilibrium chemistry and thermodynamics

    Science.gov (United States)

    Grossman, B.; Garrett, J.; Cinnella, P.

    1989-01-01

    Several versions of flux-vector split and flux-difference split algorithms were compared with regard to general applicability and complexity. Test computations were performed using curve-fit equilibrium air chemistry for an M = 5 high-temperature inviscid flow over a wedge, and an M = 24.5 inviscid flow over a blunt cylinder for test computations; for these cases, little difference in accuracy was found among the versions of the same flux-split algorithm. For flows with nonequilibrium chemistry, the effects of the thermodynamic model on the development of flux-vector split and flux-difference split algorithms were investigated using an equilibrium model, a general nonequilibrium model, and a simplified model based on vibrational relaxation. Several numerical examples are presented, including nonequilibrium air chemistry in a high-temperature shock tube and nonequilibrium hydrogen-air chemistry in a supersonic diffuser.

  18. Understanding the role of representations of human-leopard conflict in Mumbai through media-content analysis.

    Science.gov (United States)

    Bhatia, Saloni; Athreya, Vidya; Grenyer, Richard; MacDonald, David W

    2013-06-01

    Attempts to minimize the effects of human-wildlife conflict (HWC) on conservation goals require an understanding of the mechanisms by which such conflicts are caused and sustained. This necessitates looking beyond the natural sciences to the human dimensions of wildlife management. Public dissemination of information regarding HWC occurs largely through the mass media. We conducted a content analysis of print media articles on human-leopard conflict in Mumbai, India. We sought to understand the framing of HWC and the changes in media coverage over a 10-year period (2001-2011) during which a large number of attacks on people prior to 2005 were followed by a program of trapping and relocation. After 2005, when there was a decrease in the level of conflict, the tone of English-language media reports changed. The perpetrator framing was over 5 times more likely before 2005, whereas a neutral framing was twice as likely after 2005. English-language and non-English-language print media differed significantly in their framing of HWC and in the kinds of solutions advocated. Our results also suggest the print mass media in Mumbai could be an influential conduit for content that diminishes HWC. These media outlets seem attentive to human-leopard conflict, capable of correcting erroneous perceptions and facilitating mitigation and effective management. We believe better contact and mutual understanding between conservation professionals and the mass media could be an important component of managing HWC. We further suggest that in such interactions conservation professionals need to be aware of cultural and linguistic differences in reporting within the country. © 2013 Society for Conservation Biology.

  19. A study on the tolerance level of farmers toward human-wildlife conflict in the forest buffer zones of Tamil Nadu.

    Science.gov (United States)

    Senthilkumar, K; Mathialagan, P; Manivannan, C; Jayathangaraj, M G; Gomathinayagam, S

    2016-07-01

    The aim of this work was to study the tolerance level of farmers toward different human-wildlife conflict (HWC) situations. This study was conducted in 24 villages of nine blocks from Kancheepuram, Coimbatore, Erode, and Krishnagiri districts of Tamil Nadu by personally interviewing 240 farmers affected with four different HWC situations such as human-elephant conflict (HEC), human-wild pig conflict (HPC), human-gaur conflict (HGC), and human-monkey conflict (HMC). A scale developed for this purpose was used to find out the tolerance level of the farmers. In general, the majority (61.70%) of the farmers had medium level of tolerance toward HWC, whereas 25.40% and 12.90% belonged to a high and low category, respectively. The mean tolerance level of the farmer's encountering HMC is low (8.77) among the other three wild animal conflicts. In tackling HWC, the majority (55.00%) of the HEC farmers drove the elephant once it entered into their farmland. In the HPC, more than three-fourths of the respondents drove away the wild pig once they were found in farmlands. With regard to the HMC, a less number of them (1.70%) drove the monkey away if monkeys were spotted in their village. With regard to HGC, 95.00% of the respondents frightened the gaurs if their family members were threatened by gaurs. The present study suggests that that majority of the farmers had medium level of tolerance toward HWC. The tolerance level of the HMC farmers was lower than other three HWC affected farmers. This study emphasizes the need for necessary training to tackle the problem in an effective manner for wild animal conservation.

  20. A theoretical perspective of the nature of hydrogen-bond types - the atoms in molecules approach

    Czech Academy of Sciences Publication Activity Database

    Pandiyan, B. V.; Kolandaivel, P.; Deepa, Palanisamy

    2014-01-01

    Roč. 112, č. 12 (2014), s. 1609-1623 ISSN 0026-8976 Institutional support: RVO:61388963 Keywords : hydrogen bond * proton affinity * deprotanation enthalpy * atoms in molecules * chemical shift Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.720, year: 2014

  1. Inorganic chemistry of earliest sediments

    International Nuclear Information System (INIS)

    Ochiai, E.I.

    1983-01-01

    A number of inorganic elements are now known to be essential to organisms. Chemical evolutionary processes involving carbon, hydrogen, nitrogen and oxygen have been studied intensively and extensively, but the other essential elements have been rather neglected in the studies of chemical and biological evolution. This article attempts to assess the significance of inorganic chemistry in chemical and biological evolutionary processes on the earth. Emphasis is placed on the catalytic effects of inorganic elements and compounds, and also on possible studies on the earliest sediments, especially banded iron formation and stratabound copper from the inorganic point of view in the hope of shedding some light on the evolution of the environment and the biological effects on it. (orig./WL)

  2. Nano-ferrites for water splitting: Unprecedented high photocatalytic hydrogen production under visible light

    KAUST Repository

    Mangrulkar, Priti A.; Polshettiwar, Vivek; Labhsetwar, Nitin K.; Varma, Rajender S.; Rayalu, Sadhana Suresh

    2012-01-01

    In the present investigation, hydrogen production via water splitting by nano-ferrites was studied using ethanol as the sacrificial donor and Pt as co-catalyst. Nano-ferrite is emerging as a promising photocatalyst with a hydrogen evolution rate of 8.275 μmol h -1 and a hydrogen yield of 8275 μmol h -1 g -1 under visible light compared to 0.0046 μmol h -1 for commercial iron oxide (tested under similar experimental conditions). Nano-ferrites were tested in three different photoreactor configurations. The rate of hydrogen evolution by nano-ferrite was significantly influenced by the photoreactor configuration. Altering the reactor configuration led to sevenfold (59.55 μmol h -1) increase in the hydrogen evolution rate. Nano-ferrites have shown remarkable stability in hydrogen production up to 30 h and the cumulative hydrogen evolution rate was observed to be 98.79 μmol h -1. The hydrogen yield was seen to be influenced by several factors like photocatalyst dose, illumination intensity, irradiation time, sacrificial donor and presence of co-catalyst. These were then investigated in detail. It was evident from the experimental data that nano-ferrites under optimized reaction conditions and photoreactor configuration could lead to remarkable hydrogen evolution activity under visible light. Temperature had a significant role in enhancing the hydrogen yield. © 2012 The Royal Society of Chemistry.

  3. Thermal Decomposition of Sodium Hydrogen Carbonate and Textural Features of Its Calcines

    Czech Academy of Sciences Publication Activity Database

    Hartman, Miloslav; Svoboda, Karel; Pohořelý, Michael; Šyc, Michal

    2013-01-01

    Roč. 52, č. 31 (2013), s. 10619-10626 ISSN 0888-5885 R&D Projects: GA MŠk(CZ) 7C11009 Grant - others:RFCS(XE) RFCR-CT-2010-00009 Institutional support: RVO:67985858 Keywords : thermal decomposition * sodium hydrogen carbonate * sodium bicarbonate Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.235, year: 2013

  4. The nature of hydrogen bonding in R-2(2)(8) crystal motifs - a computational exploration

    Czech Academy of Sciences Publication Activity Database

    Deepa, Palanisamy; Solomon, R. V.; Vedha, S. A.; Kolandaivel, P.; Venuvanalingam, P.

    2014-01-01

    Roč. 112, č. 24 (2014), s. 3195-3205 ISSN 0026-8976 Institutional support: RVO:61388963 Keywords : NCI plot * hydrogen bonds * R-2(2)(8) motif * organic crystals * NBO * QTAIM analysis Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.720, year: 2014

  5. The chemistry of cycloheptatriene, part XIV : Hydrogen shifts in (4-Dimethylaminophenyl)cycloheptatrienes

    NARCIS (Netherlands)

    Borg, ter A.P.; Kloosterziel, H.; Westphal, Y.L.

    1967-01-01

    When the 7-isomer of the title compound is heated, the successive formation of the 3-, 1-, and 2-isomers by thermal 1–5 shifts of hydrogen is observed. Irradiation of the 3-isomer yields the 2-isomer. The rate constants for the various shifts are 1.7 ± 0.4 times larger than the corresponding

  6. Solid State NMR Characterization of Complex Metal Hydrides systems for Hydrogen Storage Applications

    Directory of Open Access Journals (Sweden)

    Son-Jong Hwang

    2011-12-01

    Full Text Available Solid state NMR is widely applied in studies of solid state chemistries for hydrogen storage reactions. Use of 11B MAS NMR in studies of metal borohydrides (BH4 is mainly focused, revisiting the issue of dodecaborane formation and observation of 11B{1H} Nuclear Overhauser Effect.

  7. Correlated linear response calculations of the C6 dispersion coefficients of hydrogen halides

    Czech Academy of Sciences Publication Activity Database

    Sauer, S. P. A.; Paidarová, Ivana

    2007-01-01

    Roč. 3, 2-4 (2007), s. 399-421 ISSN 1574-0404 R&D Projects: GA AV ČR IAA401870702 Institutional research plan: CEZ:AV0Z40400503 Keywords : hydrogen halides * C6 dospersion coefficients * van der Waals coefficients * polarizability at imaginary frequences * SOPPA Subject RIV: CF - Physical ; Theoretical Chemistry

  8. Hydrogen rearrangement to and from radical z fragments in electron capture dissociation of peptides

    DEFF Research Database (Denmark)

    Savitski, Mikhail M; Kjeldsen, Frank; Nielsen, Michael L

    2007-01-01

    Hydrogen rearrangement is an important process in radical chemistry. A high degree of H. rearrangement to and from z. ionic fragments (combined occurrence frequency 47% compared with that of z.) is confirmed in analysis of 15,000 tandem mass spectra of tryptic peptides obtained with electron...

  9. Termodynamic Stability of Hydrogen-Bonded Systems in Polar and Nonpolar Environments

    Czech Academy of Sciences Publication Activity Database

    Pašalič, H.; Aquino, A. J. A.; Tunega, D.; Haberhauer, G.; Gerzabek, M. H.; Georg, H. C.; Moraes, T. F.; Coutinho, K.; Canuto, S.; Lischka, Hans

    2010-01-01

    Roč. 31, č. 10 (2010), s. 2046-2055 ISSN 0192-8651 R&D Projects: GA MŠk LC512 Institutional research plan: CEZ:AV0Z40550506 Keywords : hydrogen- bond ed systems * complexation in solution * thermodynamic properties * explicit and implicit solvation models * molecular dynamics and Monte Carlo simulations Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.050, year: 2010

  10. Cracks propagation by stress corrosion cracking in conditions of Boiling Water Reactor (BWR); Propagacion de grietas por corrosion bajo esfuerzo en condiciones de reactor de agua hirviente (BWR)

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes C, P

    2003-07-01

    This work presents the results of the assays carried out in the Laboratory of Hot Cells of the National Institute of Nuclear Research (ININ) to a type test tube Compact Tension (CT), built in steel austenitic stainless type 304L, simulating those conditions those that it operates a Boiling Water Reactor (BWR), at temperature 288 C and pressure of 8 MPa, to determine the speed to which the cracks spread in this material that is of the one that different components of a reactor are made, among those that it highlights the reactor core vessel. The application of the Hydrogen Chemistry of the Water is presented (HWC) that is one alternative to diminish the corrosion effect low stress in the component, this is gets controlling the quantity of oxygen and of hydrogen as well as the conductivity of the water. The rehearsal is made following the principles of the Mechanics of Elastic Lineal Fracture (LEFM) that considers a crack of defined size with little plastic deformation in the tip of this; the measurement of crack advance is continued with the technique of potential drop of direct current of alternating signal, this is contained inside the standard Astm E-647 (Method of Test Standard for the Measurement of Speed of Growth of Crack by fatigue) that is the one that indicates us as carrying out this test. The specifications that should complete the test tubes that are rehearsed as for their dimensions, it forms, finish and determination of mechanical properties (tenacity to the fracture mainly) they are contained inside the norm Astm E-399, the one which it is also based on the principles of the fracture mechanics. The obtained results were part of a database to be compared with those of other rehearsals under different conditions, Normal Chemistry of the Water (NWC) and it dilutes with high content of O{sub 2}; to determine the conditions that slow more the phenomena of stress corrosion cracking, as well as the effectiveness of the used chemistry and of the method of

  11. ICE CHEMISTRY IN STARLESS MOLECULAR CORES

    Energy Technology Data Exchange (ETDEWEB)

    Kalvans, J., E-mail: juris.kalvans@venta.lv [Engineering Research Institute “Ventspils International Radio Astronomy Center” of Ventspils University College, Inzenieru 101, Ventspils, LV-3601 (Latvia)

    2015-06-20

    Starless molecular cores are natural laboratories for interstellar molecular chemistry research. The chemistry of ices in such objects was investigated with a three-phase (gas, surface, and mantle) model. We considered the center part of five starless cores, with their physical conditions derived from observations. The ice chemistry of oxygen, nitrogen, sulfur, and complex organic molecules (COMs) was analyzed. We found that an ice-depth dimension, measured, e.g., in monolayers, is essential for modeling of chemistry in interstellar ices. Particularly, the H{sub 2}O:CO:CO{sub 2}:N{sub 2}:NH{sub 3} ice abundance ratio regulates the production and destruction of minor species. It is suggested that photodesorption during the core-collapse period is responsible for the high abundance of interstellar H{sub 2}O{sub 2} and O{sub 2}H and other species synthesized on the surface. The calculated abundances of COMs in ice were compared to observed gas-phase values. Smaller activation barriers for CO and H{sub 2}CO hydrogenation may help explain the production of a number of COMs. The observed abundance of methyl formate HCOOCH{sub 3} could be reproduced with a 1 kyr, 20 K temperature spike. Possible desorption mechanisms, relevant for COMs, are gas turbulence (ice exposure to interstellar photons) or a weak shock within the cloud core (grain collisions). To reproduce the observed COM abundances with the present 0D model, 1%–10% of ice mass needs to be sublimated. We estimate that the lifetime for starless cores likely does not exceed 1 Myr. Taurus cores are likely to be younger than their counterparts in most other clouds.

  12. Catalytic Hydrogenation and Hydrodeoxygenation of Furfural over Pt(111): A Model System for the Rational Design and Operation of Practical Biomass Conversion Catalysts.

    Science.gov (United States)

    Taylor, Martin J; Jiang, Li; Reichert, Joachim; Papageorgiou, Anthoula C; Beaumont, Simon K; Wilson, Karen; Lee, Adam F; Barth, Johannes V; Kyriakou, Georgios

    2017-04-20

    Furfural is a key bioderived platform chemical whose reactivity under hydrogen atmospheres affords diverse chemical intermediates. Here, temperature-programmed reaction spectrometry and complementary scanning tunneling microscopy (STM) are employed to investigate furfural adsorption and reactivity over a Pt(111) model catalyst. Furfural decarbonylation to furan is highly sensitive to reaction conditions, in particular, surface crowding and associated changes in the adsorption geometry: furfural adopts a planar geometry on clean Pt(111) at low coverage, tilting at higher coverage to form a densely packed furfural adlayer. This switch in adsorption geometry strongly influences product selectivity. STM reveals the formation of hydrogen-bonded networks for planar furfural, which favor decarbonylation on clean Pt(111) and hydrogenolysis in the presence of coadsorbed hydrogen. Preadsorbed hydrogen promotes furfural hydrogenation to furfuryl alcohol and its subsequent hydrogenolysis to methyl furan, while suppressing residual surface carbon. Furfural chemistry over Pt is markedly different from that over Pd, with weaker adsorption over the former affording a simpler product distribution than the latter; Pd catalyzes a wider range of chemistry, including ring-opening to form propene. Insight into the role of molecular orientation in controlling product selectivity will guide the design and operation of more selective and stable Pt catalysts for furfural hydrogenation.

  13. Catalysis as an important tool of green chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Beletskaya, Irina P [Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow (Russian Federation); Kustov, Leonid M [N.D.Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow (Russian Federation)

    2010-08-12

    Published data of the last decade demonstrating the significant achievements in the catalytic synthesis of organic compounds are analyzed from the green chemistry standpoint. It is demonstrated that the use of new catalysts (including nano-sized ones) and solvents (water, ionic liquids, fluorinated derivatives), microwave processes, superctitical and two-phase media, and heterogenized metal complex catalytic systems should be distinguished among the most promising approaches to such processes. The main applications of metal complex systems are considered, in particular, hydrogenation, partial oxidation and cross-coupling reactions, in particular, enantioselective reactions.

  14. Catalysis as an important tool of green chemistry

    International Nuclear Information System (INIS)

    Beletskaya, Irina P; Kustov, Leonid M

    2010-01-01

    Published data of the last decade demonstrating the significant achievements in the catalytic synthesis of organic compounds are analyzed from the green chemistry standpoint. It is demonstrated that the use of new catalysts (including nano-sized ones) and solvents (water, ionic liquids, fluorinated derivatives), microwave processes, superctitical and two-phase media, and heterogenized metal complex catalytic systems should be distinguished among the most promising approaches to such processes. The main applications of metal complex systems are considered, in particular, hydrogenation, partial oxidation and cross-coupling reactions, in particular, enantioselective reactions.

  15. Mechanical measurement of hydrogen bonded host-guest systems under non-equilibrium, near-physiological conditions.

    Science.gov (United States)

    Naranjo, Teresa; Cerrón, Fernando; Nieto-Ortega, Belén; Latorre, Alfonso; Somoza, Álvaro; Ibarra, Borja; Pérez, Emilio M

    2017-09-01

    Decades after the birth of supramolecular chemistry, there are many techniques to measure noncovalent interactions, such as hydrogen bonding, under equilibrium conditions. As ensembles of molecules rapidly lose coherence, we cannot extrapolate bulk data to single-molecule events under non-equilibrium conditions, more relevant to the dynamics of biological systems. We present a new method that exploits the high force resolution of optical tweezers to measure at the single molecule level the mechanical strength of a hydrogen bonded host-guest pair out of equilibrium and under near-physiological conditions. We utilize a DNA reporter to unambiguously isolate single binding events. The Hamilton receptor-cyanuric acid host-guest system is used as a test bed. The force required to dissociate the host-guest system is ∼17 pN and increases with the pulling rate as expected for a system under non-equilibrium conditions. Blocking one of the hydrogen bonding sites results in a significant decrease of the force-to-break by 1-2 pN, pointing out the ability of the method to resolve subtle changes in the mechanical strength of the binding due to the individual H-bonding components. We believe the method will prove to be a versatile tool to address important questions in supramolecular chemistry.

  16. Partially Hydrogenated Graphene Materials Exhibit High Electrocatalytic Activities Related to Unintentional Doping with Metallic Impurities

    Czech Academy of Sciences Publication Activity Database

    Jankovský, O.; Libánská, A.; Bouša, D.; Sedmidubský, D.; Matějková, Stanislava; Sofer, Z.

    2016-01-01

    Roč. 22, č. 25 (2016), s. 8627-8634 ISSN 0947-6539 R&D Projects: GA ČR(CZ) GA15-09001S Institutional support: RVO:61388963 Keywords : electrocatalysis * electrochemistry * graphene * hydrogenation * sensing Subject RIV: CA - Inorganic Chemistry Impact factor: 5.317, year: 2016

  17. A Method to Identify Best Available Technologies (BAT) for Hydrogenation Reactors in the Pharmaceutical Industry

    Czech Academy of Sciences Publication Activity Database

    Le Doan, T.V.; Stavárek, Petr; de Bellefon, C.

    2012-01-01

    Roč. 2, č. 3 (2012), s. 77-82 ISSN 2062-249X Grant - others:IMPULSE(XE) FP6-NMP2-CT-2005-011816 Institutional support: RVO:67985858 Keywords : hydrogenation * pharmaceuticals * methodology Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 4.091, year: 2012

  18. Green, Enzymatic Syntheses of Divanillin and Diapocynin for the Organic, Biochemistry, or Advanced General Chemistry Laboratory

    Science.gov (United States)

    Nishimura, Rachel T.; Giammanco, Chiara H.; Vosburg, David A.

    2010-01-01

    Environmentally benign chemistry is an increasingly important topic both in the classroom and the laboratory. In this experiment, students synthesize divanillin from vanillin or diapocynin from apocynin, using horseradish peroxidase and hydrogen peroxide in water. The dimerized products form rapidly at ambient temperature and are isolated by…

  19. Hard graphitelike hydrogenated amorphous carbon grown at high rates by a remote plasma

    DEFF Research Database (Denmark)

    Singh, Shailendra Vikram; Zaharia, T.; Creatore, M.

    2010-01-01

    Hydrogenated amorphous carbon (a-C:H) deposited from an Ar-C 2H2 expanding thermal plasma chemical vapor deposition (ETP-CVD) is reported. The downstream plasma region of an ETP is characterized by a low electron temperature (∼0.3 eV), which leads to an ion driven chemistry and negligible physical...

  20. Chemistry

    International Nuclear Information System (INIS)

    Ferris, L.M.

    1975-01-01

    Research and development activities dealing with the chemical problems related to design and ultimate operation of molten-salt reactor systems are described. An experimental test stand was constructed to expose metallurgical test specimens to Te 2 vapor at defined temperatures and deposition rates. To better define the chemistry of fluoroborate coolant, several aspects are being investigated. The behavior of hydroxy and oxy compounds in molten NaBF 4 is being investigated to define reactions and compounds that may be involved in corrosion and/or could be involved in methods for trapping tritium. Two corrosion products of Hastelloy N, Na 3 CrF 6 and Na 5 Cr 3 F 14 , were identified from fluoroborate systems. The evaluation of fluoroborate and alternate coolants continued. Research on the behavior of hydrogen and its isotopes is summarized. The solubilities of hydrogen, deuterium, and helium in Li 2 BeF 4 are very low. The sorption of tritium on graphite was found to be significant (a few milligrams of tritium per kilogram of graphite), possibly providing a means of sequestering a portion of the tritium produced. Development of analytical methods continued with emphasis on voltammetric and spectrophotometric techniques for the in-line analysis of corrosion products such as Fe 2+ and Cr 3+ and the determination of the U 3+ /U 4+ ratio in MSBR fuel salt. Similar studies were conducted with the NaBF 4 --NaF coolant salt. Information developed during the previous operation of the CSTF has been assessed and used to formulate plans for evaluation of in-line analytical methods in future CSTF operations. Electroanalytical and spectrophotometric research suggests that an electroactive protonic species is present in molten NaBF 4 --NaF, and that this species rapidly equilibrates with a volatile proton-containing species. Data obtained from the CSTF indicated that tritium was concentrated in the volatile species. (JGB)

  1. A study on the tolerance level of farmers toward human-wildlife conflict in the forest buffer zones of Tamil Nadu

    Science.gov (United States)

    Senthilkumar, K.; Mathialagan, P.; Manivannan, C.; Jayathangaraj, M. G.; Gomathinayagam, S.

    2016-01-01

    Aim: The aim of this work was to study the tolerance level of farmers toward different human-wildlife conflict (HWC) situations. Materials and Methods: This study was conducted in 24 villages of nine blocks from Kancheepuram, Coimbatore, Erode, and Krishnagiri districts of Tamil Nadu by personally interviewing 240 farmers affected with four different HWC situations such as human-elephant conflict (HEC), human-wild pig conflict (HPC), human-gaur conflict (HGC), and human-monkey conflict (HMC). A scale developed for this purpose was used to find out the tolerance level of the farmers. Results: In general, the majority (61.70%) of the farmers had medium level of tolerance toward HWC, whereas 25.40% and 12.90% belonged to a high and low category, respectively. The mean tolerance level of the farmer’s encountering HMC is low (8.77) among the other three wild animal conflicts. In tackling HWC, the majority (55.00%) of the HEC farmers drove the elephant once it entered into their farmland. In the HPC, more than three-fourths of the respondents drove away the wild pig once they were found in farmlands. With regard to the HMC, a less number of them (1.70%) drove the monkey away if monkeys were spotted in their village. With regard to HGC, 95.00% of the respondents frightened the gaurs if their family members were threatened by gaurs. Conclusion: The present study suggests that that majority of the farmers had medium level of tolerance toward HWC. The tolerance level of the HMC farmers was lower than other three HWC affected farmers. This study emphasizes the need for necessary training to tackle the problem in an effective manner for wild animal conservation. PMID:27536037

  2. F/Cl + C2H2 reactions: Are the addition and hydrogen abstraction direct processes?

    International Nuclear Information System (INIS)

    Li Jilai; Geng Caiyun; Huang Xuri; Zhan Jinhui; Sun Chiachung

    2006-01-01

    The reactions of atomic radical F and Cl with acetylene have been studied theoretically using ab initio quantum chemistry methods and transition state theory. The doublet potential energy surfaces were calculated at the CCSD(T)/aug-cc-pVDZ//CCSD/6-31G(d,p), CCSD(T)/aug-cc-pVDZ//UMP2/6-311++G(d,p) and compound method Gaussian-3 levels. Two reaction mechanisms including the addition-elimination and the hydrogen abstraction reaction mechanisms are considered. In the addition-elimination reactions, the halogen atoms approach C 2 H 2 , perpendicular to the C≡C triple bond, forming the pre-reactive complex C1 at the reaction entrance. C1 transforms to intermediate isomer I1 via transition state TSC1/1 with a negative/small barrier for C 2 H 2 F/C 2 H 2 Cl system, which can proceed by further eliminating H atom endothermally. While the hydrogen abstraction reactions also involve C1 for the fluorine atom abstraction of hydrogen, yet the hydrogen abstraction by chlorine atom first forms a collinear hydrogen-bonded complex C2. The other reaction pathways on the doublet PES are less competitive due to thermodynamical or kinetic factors. According to our results, the presence of pre-reactive complexes indicates that the simple hydrogen abstraction and addition in the halogen atoms reaction with unsaturated hydrocarbon should be more complex. Furthermore, based on the analysis of the kinetics of all channels through which the addition and abstraction reactions proceed, we expect that the actual feasibility of the reaction channels may depend on the reaction conditions in the experiment. The present study may be helpful for probing the mechanisms of the title reactions and understanding the halogen chemistry

  3. A study on the tolerance level of farmers toward human-wildlife conflict in the forest buffer zones of Tamil Nadu

    Directory of Open Access Journals (Sweden)

    K. Senthilkumar

    2016-07-01

    Full Text Available Aim: The aim of this work was to study the tolerance level of farmers toward different human-wildlife conflict (HWC situations. Materials and Methods: This study was conducted in 24 villages of nine blocks from Kancheepuram, Coimbatore, Erode, and Krishnagiri districts of Tamil Nadu by personally interviewing 240 farmers affected with four different HWC situations such as human-elephant conflict (HEC, human-wild pig conflict (HPC, human-gaur conflict (HGC, and human-monkey conflict (HMC. A scale developed for this purpose was used to find out the tolerance level of the farmers. Results: In general, the majority (61.70% of the farmers had medium level of tolerance toward HWC, whereas 25.40% and 12.90% belonged to a high and low category, respectively. The mean tolerance level of the farmer’s encountering HMC is low (8.77 among the other three wild animal conflicts. In tackling HWC, the majority (55.00% of the HEC farmers drove the elephant once it entered into their farmland. In the HPC, more than three-fourths of the respondents drove away the wild pig once they were found in farmlands. With regard to the HMC, a less number of them (1.70% drove the monkey away if monkeys were spotted in their village. With regard to HGC, 95.00% of the respondents frightened the gaurs if their family members were threatened by gaurs. Conclusion: The present study suggests that that majority of the farmers had medium level of tolerance toward HWC. The tolerance level of the HMC farmers was lower than other three HWC affected farmers. This study emphasizes the need for necessary training to tackle the problem in an effective manner for wild animal conservation.

  4. Cellular burning in lean premixed turbulent hydrogen-air flames: Coupling experimental and computational analysis at the laboratory scale

    International Nuclear Information System (INIS)

    Day, M S; Bell, J B; Beckner, V E; Lijewski, M J; Cheng, R K; Tachibana, S

    2009-01-01

    One strategy for reducing US dependence on petroleum is to develop new combustion technologies for burning the fuel-lean mixtures of hydrogen or hydrogen-rich syngas fuels obtained from the gasification of coal and biomass. Fuel-flexible combustion systems based on lean premixed combustion have the potential for dramatically reducing pollutant emissions in transportation systems, heat and stationary power generation. However, lean premixed flames are highly susceptible to fluid-dynamical combustion instabilities making robust and reliable systems difficult to design. Low swirl burners are emerging as an important technology for meeting design requirements in terms of both reliability and emissions for next generation combustion devices. In this paper, we present simulations of a lean, premixed hydrogen flame stabilized on a laboratory-scale low swirl burner. The simulations use detailed chemistry and transport without incorporating explicit models for turbulence or turbulence/chemistry interaction. Here we discuss the overall structure of the flame and compare with experimental data. We also use the simulation data to elucidate the characteristics of the turbulent flame interaction and how this impacts the analysis of experimental measurements.

  5. Hydrogen peroxide in the marine boundary layer over the South Atlantic during the OOMPH cruise in March 2007

    Science.gov (United States)

    Fischer, H.; Pozzer, A.; Schmitt, T.; Jöckel, P.; Klippel, T.; Taraborrelli, D.; Lelieveld, J.

    2015-06-01

    In the OOMPH (Ocean Organics Modifying Particles in both Hemispheres) project a ship measurement cruise took place in the late austral summer from 01 to 23 March 2007. The French research vessel Marion Dufresne sailed from Punta Arenas, Chile (70.85° W, 53.12° S), to Réunion island (55.36° E, 21.06° S) across the South Atlantic Ocean. In situ measurements of hydrogen peroxide, methylhydroperoxide and ozone were performed and are compared to simulations with the atmospheric chemistry global circulation model EMAC (ECHAM/MESSy Atmospheric Chemistry). The model generally reproduces the measured trace gas levels, but it underestimates hydrogen peroxide mixing ratios at high wind speeds, indicating too-strong dry deposition to the ocean surface. An interesting feature during the cruise is a strong increase of hydrogen peroxide, methylhydroperoxide and ozone shortly after midnight off the west coast of Africa due to an increase in the boundary layer height, leading to downward transport from the free troposphere, which is qualitatively reproduced by the model.

  6. Chemistry of radio-frequency source of negative hydrogen ions; Chemia radio-frekvencneho zdroja negativnych ionov vodika

    Energy Technology Data Exchange (ETDEWEB)

    Skoviera, J.; Cernusak, I. [Univerzita Komenskeho, Prirodovedecka fakulta, Katedra fyzikalnej a teoretickej chemie, 84215 Bratislava (Slovakia)

    2013-04-16

    International Thermonuclear Experimental Reactor (ITER) is a prototype of nuclear fusion reactor Tokamak currently build in Cadarache. It will use as one of primary plasma heating components a radiofrequency driven negative ion source of deuterium. The purpose of cesium evaporated in the part of this ion source is to react with free electrons which can incidentally destroy generated hydrogen ions and are co-extracted with the hydrogen beam. Goal of this work is to investigate majority of processes which might have impact on hydrogen anion in either formative or destructive way associated with cesium. Generally the caesium dynamics is very complex in such sources and the interplay of the individual contributions and their control to establish optimum caesium coverage of the plasma grid is still an open issue. (authors)

  7. Effect of Microstructure and Alloy Chemistry on Hydrogen Embrittlement of Precipitation-Hardened Ni-Based Alloys

    Science.gov (United States)

    Obasi, G. C.; Zhang, Z.; Sampath, D.; Morana, Roberto; Akid, R.; Preuss, M.

    2018-04-01

    The sensitivity to hydrogen embrittlement (HE) has been studied in respect of precipitation size distributions in two nickel-based superalloys: Alloy 718 (UNS N07718) and Alloy 945X (UNS N09946). Quantitative microstructure analysis was carried out by the combination of scanning and transmission electron microscopy and energy dispersive x-ray spectroscopy (EDS). While Alloy 718 is mainly strengthened by γ″, and therefore readily forms intergranular δ phase, Alloy 945X has been designed to avoid δ formation by reducing Nb levels providing high strength through a combination of γ' and γ″. Slow strain rate tensile tests were carried out for different microstructural conditions in air and after cathodic hydrogen (H) charging. HE sensitivity was determined based on loss of elongation due to the H uptake in comparison to elongation to failure in air. Results showed that both alloys exhibited an elevated sensitivity to HE. Fracture surfaces of the H precharged material showed quasi-cleavage and transgranular cracks in the H-affected region, while ductile failure was observed toward the center of the sample. The crack origins observed on the H precharged samples exhibited quasi-cleavage with slip traces at high magnification. The sensitivity is slightly reduced for Alloy 718, by coarsening γ″ and reducing the overall strength of the alloy. However, on further coarsening of γ″, which promotes continuous decoration of grain boundaries with δ phase, the embrittlement index rose again indicating a change of hydrogen embrittlement mechanism from hydrogen-enhanced local plasticity (HELP) to hydrogen-enhanced decohesion embrittlement (HEDE). In contrast, Alloy 945X displayed a strong correlation between strength, based on precipitation size and embrittlement index, due to the absence of any significant formation of δ phase for the investigated microstructures. For the given test parameters, Alloy 945X did not display any reduced sensitivity to HE compared with

  8. A combinatorial chemistry approach to the investigation of cerium oxide and plutonium oxide reactions with small molecules

    Science.gov (United States)

    Brady, John T.; Warner, Benjamin P.; Bridgewater, Jon S.; Havrilla, George J.; Morris, David E.; Buscher, C. Thomas

    2000-07-01

    We are currently investigating the potential chemistry of the 3013 Standard waste storage containers. These containers are filled with waste that is a mixture of inorganic salts and plutonium oxide that has been calcined to remove water and other volatiles. There has been concern about possible pressure buildup due to the formation of hydrogen or other gases. We are utilizing a combinatorial chemistry approach to investigate a range of possible reactions that may occur in the containers with various concentrations of metal oxides and inorganic salts.

  9. Third Chemistry Conference on Recent Trends in Chemistry

    International Nuclear Information System (INIS)

    Saeed, M.M.; Wheed, S.

    2011-01-01

    The third chemistry conference 2011 on recent trends in chemistry was held from October 17-19, 2001 at Islamabad, Pakistan. More than 65 papers and oral presentation. The scope of the conference was wide open and provides and opportunity for participation of broad spectrum of chemists. This forum provided a platform for the dissemination of the latest research followed by discussion pertaining to new trends in chemistry. This con fence covered different aspects of subjects including analytical chemistry, environmental chemistry, polymer chemistry, industrial chemistry, biochemistry and nano chemistry etc. (A.B.)

  10. Efficient production and economics of the clean fuel hydrogen. Paper no. IGEC-1-Keynote-Elnashaie

    International Nuclear Information System (INIS)

    Elnashaie, S.

    2005-01-01

    This paper/plenary lecture to this green energy conference briefly discusses six main issues: 1) The future of hydrogen economy; 2) Thermo-chemistry of hydrogen production for different techniques of autothermic operation using different feedstocks; 3) Improvement of the hydrogen yield and minimization of reformer size through combining fast fluidization with hydrogen and oxygen membranes together with CO 2 sequestration; 4) Efficient production of hydrogen using novel Autothermal Circulating Fluidized Bed Membrane Reformer (ACFBMR); 5) Economics of hydrogen production; and, 6) Novel gasification process for hydrogen production from biomass. It is shown that hydrogen economy is not a Myth as some people advocate, and that with well-directed research it will represent a bright future for humanity utilizing such a clean, everlasting fuel, which is also free of deadly conflicts for the control of energy sources. It is shown that autothermic production of hydrogen using novel reformers configurations and wide range of feedstocks is a very promising route towards achieving a successful hydrogen economy. A novel process for the production of hydrogen from different renewable biomass sources is presented and discussed. The process combines the principles of pyrolysis with the simultaneous use of catalyst, membranes and CO 2 sequestration to produce pure hydrogen directly from the unit. Some of the novel processes presented are essential components of modern bio-refineries. (author)

  11. Chemistry control challenges in a supercritical water-cooled reactor

    International Nuclear Information System (INIS)

    Guzonas, David; Tremaine, Peter; Jay-Gerin, Jean-Paul

    2009-01-01

    The long-term viability of a supercritical water-cooled reactor (SCWR) will depend on the ability of designers to predict and control water chemistry to minimize corrosion and the transport of corrosion products and radionuclides. Meeting this goal requires an enhanced understanding of water chemistry as the temperature and pressure are raised beyond the critical point. A key aspect of SCWR water chemistry control will be mitigation of the effects of water radiolysis; preliminary studies suggest markedly different behavior than that predicted from simple extrapolations from conventional water-cooled reactor behavior. The commonly used strategy of adding excess hydrogen at concentrations sufficient to suppress the net radiolytic production of primary oxidizing species may not be effective in an SCWR. The behavior of low concentrations of impurities such as transition metal corrosion products, chemistry control agents, anions introduced via make-up water or from ion-exchange resins, and radionuclides (e.g., 60 Co) needs to be understood. The formation of neutral complexes increases with temperature, and can become important under near-critical and supercritical conditions; the most important region is from 300-450 C, where the properties of water change dramatically, and solvent compressibility effects exert a huge influence on solvation. The potential for increased transport and deposition of corrosion products (active and inactive), leading to (a) increased deposition on fuel cladding surfaces, and (b) increased out-of-core radiation fields and worker dose, must be assessed. There are also significant challenges associated with chemistry sampling and monitoring in an SCWR. The typical methods used in current reactor designs (grab samples, on-line monitors at the end of a cooled, depressurized sample line) will be inadequate, and in-situ measurements of key parameters will be required. This paper describes current Canadian activities in SCWR chemistry and chemistry

  12. Influence of nitrogen ion implantation on hydrogen permeation in an extra mild steel

    International Nuclear Information System (INIS)

    Brass, A.M.; Chene, J.; Pivin, J.C.

    1989-01-01

    This paper presents the first results on the effect of nitrogen implantation on hydrogen permeation in steels. Nitrogen can modify superficially the steel's chemistry and/or microstructure depending on the fluence and thereby affect the processes of hydrogen diffusion and trapping. The implantations were performed on low carbon steel specimens with different nominal doses (1% to 10% and 33% nitrogen in a superficial layer of approximately 100 to 120 nm). The corresponding microstructures were characterized and permeation tests were conducted at room temperature in a double electrolytic cell. The nitrogen implanted layers on iron affects the electrochemical behaviour of the surface and the permeation in the material. This effect depends on the nitrogen concentration in the layer and on the corresponding microstructure. A continuous Fe 2 N layer acts as an efficient barrier to hydrogen entry and permeation when the layer is located on the entry face of the permeation membrane. This effect is stronger when the implanted layer is on the downstream face of the membrane. The low permeability values are mainly attributed to a lower hydrogen solubility in the implanted layer, whereas hydrogen trapping on defects and nitride precipitates delay hydrogen penetration. (author)

  13. Potential alteration of precipitation chemistry by epiphytic lichens

    Energy Technology Data Exchange (ETDEWEB)

    Lang, G E; Reiners, W A; Heier, R K

    1976-01-01

    Epiphytic lichen growth is abundant on the boles and branches of balsam fir trees at high elevations in New Hampshire. These lichens absorb elements needed for growth from solutions flowing over their surfaces and from direct impaction of water droplets. This study describes how epiphytic lichens and fir needles altered the chemistry of simulated rain water solutions under laboratory conditions. Experiments showed: 1) lichens absorbed ammonium and nitrate from solution; the rate of uptake increased with increasing temperature of the solution, 2) lichens lost calcium, magnesium, and hydrogen to the solution, 3) lichen thalli also initially lost potassium, but in time, net movement was reversed back into the thallus, 4) cation movement increased with increasing temperature, and 5) fir needles responded in a manner similar to that of the lichens, but the amount of change was much less. From these results it seems that epiphytic lichens have potential ecological importance in altering the chemistry of throughfall and stemflow.

  14. Inhibition of hydrogen oxidation by HBr and Br2

    DEFF Research Database (Denmark)

    Dixon-Lewis, Graham; Marshall, Paul; Ruscic, Branko

    2012-01-01

    O. Ab initio calculations were used to obtain rate coefficients for selected reactions of HBr and HOBr, and the hydrogen/bromine/oxygen reaction mechanism was updated. The resulting model was validated against selected experimental data from the literature and used to analyze the effect of HBr and Br2......The high-temperature bromine chemistry was updated and the inhibition mechanisms involving HBr and Br2 were re-examined. The thermochemistry of the bromine species was obtained using the Active Thermochemical Tables (ATcT) approach, resulting in improved data for, among others, Br, HBr, HOBr and Br...... on laminar, premixed hydrogen flames. Our work shows that hydrogen bromide and molecular bromine act differently as inhibitors in flames. For HBr, the reaction HBr+H⇌H2+Br (R2) is rapidly equilibrated, depleting HBr in favor of atomic Br, which is the major bromine species throughout the reaction zone...

  15. Mechanistic Studies at the Interface Between Organometallic Chemistry and Homogeneous Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Charles P

    2012-11-14

    Mechanistic Studies at the Interface Between Organometallic Chemistry and Homogeneous Catalysis Charles P. Casey, Principal Investigator Department of Chemistry, University of Wisconsin - Madison, Madison, Wisconsin 53706 Phone 608-262-0584 FAX: 608-262-7144 Email: casey@chem.wisc.edu http://www.chem.wisc.edu/main/people/faculty/casey.html Executive Summary. Our goal was to learn the intimate mechanistic details of reactions involved in homogeneous catalysis and to use the insight we gain to develop new and improved catalysts. Our work centered on the hydrogenation of polar functional groups such as aldehydes and ketones and on hydroformylation. Specifically, we concentrated on catalysts capable of simultaneously transferring hydride from a metal center and a proton from an acidic oxygen or nitrogen center to an aldehyde or ketone. An economical iron based catalyst was developed and patented. Better understanding of fundamental organometallic reactions and catalytic processes enabled design of energy and material efficient chemical processes. Our work contributed to the development of catalysts for the selective and mild hydrogenation of ketones and aldehydes; this will provide a modern green alternative to reductions by LiAlH4 and NaBH4, which require extensive work-up procedures and produce waste streams. (C5R4OH)Ru(CO)2H Hydrogenation Catalysts. Youval Shvo described a remarkable catalytic system in which the key intermediate (C5R4OH)Ru(CO)2H (1) has an electronically coupled acidic OH unit and a hydridic RuH unit. Our efforts centered on understanding and improving upon this important catalyst for reduction of aldehydes and ketones. Our mechanistic studies established that the reduction of aldehydes by 1 to produce alcohols and a diruthenium bridging hydride species occurs much more rapidly than regeneration of the ruthenium hydride from the diruthenium bridging hydride species. Our mechanistic studies require simultaneous transfer of hydride from ruthenium to

  16. Constitutional dynamic chemistry: bridge from supramolecular chemistry to adaptive chemistry.

    Science.gov (United States)

    Lehn, Jean-Marie

    2012-01-01

    Supramolecular chemistry aims at implementing highly complex chemical systems from molecular components held together by non-covalent intermolecular forces and effecting molecular recognition, catalysis and transport processes. A further step consists in the investigation of chemical systems undergoing self-organization, i.e. systems capable of spontaneously generating well-defined functional supramolecular architectures by self-assembly from their components, thus behaving as programmed chemical systems. Supramolecular chemistry is intrinsically a dynamic chemistry in view of the lability of the interactions connecting the molecular components of a supramolecular entity and the resulting ability of supramolecular species to exchange their constituents. The same holds for molecular chemistry when the molecular entity contains covalent bonds that may form and break reversibility, so as to allow a continuous change in constitution by reorganization and exchange of building blocks. These features define a Constitutional Dynamic Chemistry (CDC) on both the molecular and supramolecular levels.CDC introduces a paradigm shift with respect to constitutionally static chemistry. The latter relies on design for the generation of a target entity, whereas CDC takes advantage of dynamic diversity to allow variation and selection. The implementation of selection in chemistry introduces a fundamental change in outlook. Whereas self-organization by design strives to achieve full control over the output molecular or supramolecular entity by explicit programming, self-organization with selection operates on dynamic constitutional diversity in response to either internal or external factors to achieve adaptation.The merging of the features: -information and programmability, -dynamics and reversibility, -constitution and structural diversity, points to the emergence of adaptive and evolutive chemistry, towards a chemistry of complex matter.

  17. Determination of diffusible and total hydrogen concentration in coated and uncoated steel

    Energy Technology Data Exchange (ETDEWEB)

    Mabho, Nonhlangabezo

    2010-09-23

    The new trend in the steel industry demands thin, flexible, high strength steels with low internal embrittlement. It is a well known fact that the atomic hydrogen which is picked up during production, fabrication and service embrittles the steel. This has led to an extensive research towards the improvement of the quality of metallic materials by focusing on total and diffusible hydrogen concentrations which are responsible for hydrogen embrittlement. Since the internal embrittlement cannot be foreseen, the concentrations of diffusible hydrogen work as indicators while the total hydrogen characterizes the absorbed quantities and quality of that particular product. To meet these requirements, the analytical chemistry methods which include the already existing carrier gas melt (fusion) extraction methods that use infrared and thermal conductivity for total hydrogen detection were applied. The newly constructed carrier gas thermal desorption mass spectroscopy was applied to monitor the diffusible concentration at specific temperatures and desorption rates of hydrogen which will contribute towards the quality of materials during service. The TDMS method also involved the characterization of the energy quantity (activation energy) required by hydrogen to be removed from traps of which irreversible traps are preferred because they enhance the stability of the product by inhibiting the mobility of hydrogen which is detrimental to the metallic structures. The instrumentation for TDMS is quite simple, compact, costs less and applicable to routine analysis. To determine total and diffusible hydrogen, the influence of the following processes: chemical and mechanical zinc coating removal, sample cleaning with organic solvents, conditions for hydrogen absorption by electrolytic hydrogen charging, conditions of hydrogen desorption by storing the sample at room temperature, solid CO{sub 2} and at temperatures of the drier was analysed. The contribution of steel alloys towards

  18. Application of polymeric foams for separation, storage and absorption of hydrogen

    Czech Academy of Sciences Publication Activity Database

    Pientka, Zbyněk; Nemestóthy, N.; Bélafi-Bakó, K.

    2009-01-01

    Roč. 241, 1-3 (2009), s. 106-110 ISSN 0011-9164. [Membrane Science and Technology Conference of Visegrad Countries PERMEA 2007 /3./. Siofok, 02.09.2007-06.09.2007] R&D Projects: GA ČR GA203/06/1207 Institutional research plan: CEZ:AV0Z40500505 Keywords : gas separation * hydrogen * polymeric foam Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.034, year: 2009

  19. Water chemistry in boiling water reactors - A Leibstadt-specific overview

    International Nuclear Information System (INIS)

    Sarott, F.-A.

    2005-01-01

    The boiling water reactor (BWR) consists of two main water circuits: the water-steam cycle and the main cooling water system. In the introduction, the goals and tasks of the BWR plant chemistry are described. The most important objectives are the prevention of system degradation by corrosion and the minimisation of radiation fields. Then a short description of the BWR operation principle, including the water steam cycle, the transport of various impurities by the steam, removing impurities from the condensate, the reactor water clean-up system, the balance of plant and the main cooling water system, is given. Subsequently, the focus is set on the water-steam cycle chemistry. In order to fulfil the somewhat contradictory requirements, the chemical parameters must be well balanced. This is achieved by the water chemistry control method called 'normal water chemistry'. Other additional methods are used for the solution to different problems. The 'zinc addition method' is applied to reduce high radiation levels around the recirculation loops. The 'hydrogen water chemistry method' and the 'noble metal chemical addition method' are used to protect the reactor core components and piping made of stainless steel against stress corrosion cracking. This phenomenon has been observed for about 40 years and is partly due to the strong oxidising conditions in the BWR water. Both mitigation methods are used by the majority of the BWR plants all over the world (including the two Swiss NPPs Muehleberg and Leibstadt). (author)

  20. Hydrogen system (hydrogen fuels feasibility)

    International Nuclear Information System (INIS)

    Guarna, S.

    1991-07-01

    This feasibility study on the production and use of hydrogen fuels for industry and domestic purposes includes the following aspects: physical and chemical properties of hydrogen; production methods steam reforming of natural gas, hydrolysis of water; liquid and gaseous hydrogen transportation and storage (hydrogen-hydride technology); environmental impacts, safety and economics of hydrogen fuel cells for power generation and hydrogen automotive fuels; relevant international research programs

  1. Radiation chemistry

    International Nuclear Information System (INIS)

    Rodgers, F.; Rodgers, M.A.

    1987-01-01

    The contents of this book include: Interaction of ionizing radiation with matter; Primary products in radiation chemistry; Theoretical aspects of radiation chemistry; Theories of the solvated electron; The radiation chemistry of gases; Radiation chemistry of colloidal aggregates; Radiation chemistry of the alkali halides; Radiation chemistry of polymers; Radiation chemistry of biopolymers; Radiation processing and sterilization; and Compound index

  2. Road maps on research and development plans for water chemistry of nuclear power systems

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Katsumura, Yosuke; Fuse, Motomasa; Takamori, Kenro; Tsuchiuchi, Yoshihiro; Maeda, Noriyoshi

    2008-01-01

    Water chemistry of nuclear power plants has played an important role in reduction of personnel doses, structural materials and fuel integrity assurance, and reduction of radioactive wastes production. Further contributions are requested for advanced utilization of the LWR, advanced fuels and aging management of plants. Since water chemistry has an effect on all structure and materials immersed and at the same time affected by them, the optimum control not sticking to specific issues and covering the whole plant is required for these requests. Taking account of roles and activities of the industry, governmental institutes and academia, road maps on research and development plans for water chemistry were compiled into identified eleven items with targets and counter measures taken, such as common basic technologies, dose reduction, SCC mitigation, fuel cans corrosion/hydrogen absorption mitigation, condition based maintenance and flow accelerated corrosion mitigation. (T. Tanaka)

  3. Hydrogen Cyanide In Protoplanetary Disks

    Science.gov (United States)

    Walker, Ashley L.; Oberg, Karin; Cleeves, L. Ilsedore

    2018-01-01

    The chemistry behind star and planet formation is extremely complex and important in the formation of habitable planets. Life requires molecules containing carbon, oxygen, and importantly, nitrogen. Hydrogen cyanide, or HCN, one of the main interstellar nitrogen carriers, is extremely dangerous here on Earth. However, it could be used as a vital tool for tracking the chemistry of potentially habitable planets. As we get closer to identifying other habitable planets, we must understand the beginnings of how those planets are formed in the early protoplanetary disk. This project investigates HCN chemistry in different locations in the disk, and what this might mean for forming planets at different distances from the star. HCN is a chemically diverse molecule. It is connected to the formation for other more complex molecules and is commonly used as a nitrogen tracer. Using computational chemical models we look at how the HCN abundance changes at different locations. We use realistic and physically motivated conditions for the gas in the protoplanetary disk: temperature, density, and radiation (UV flux). We analyze the reaction network, formation, and destruction of HCN molecules in the disk environment. The disk environment informs us about stability of habitable planets that are created based on HCN molecules. We reviewed and compared the difference in the molecules with a variety of locations in the disk and ultimately giving us a better understanding on how we view protoplanetary disks.

  4. Mixed protonic-electronic conductors for hydrogen separation membranes

    Science.gov (United States)

    Song, Sun-Ju

    2003-10-01

    The chemical functionality of mixed protonic-electronic conductors arises out of the nature of the defect structure controlled by thermodynamic defect equilibria of the materials, and results in the ability to transport charged species. This dissertation is to develop a fundamental understanding of defect chemistry and transport properties of mixed protonic-electronic conducting perovskites for hydrogen separation membranes. Furthermore, it was aimed to develop the algorithm to predict how these properties affect the permeability in chemical potential gradients. From this objective, first of all, the appropriate equations governing proton incorporation into perovskite oxides were suggested and the computer simulation of defect concentrations across a membrane oxide under various conditions were performed. Electrical properties of p-type electronic defects at oxidizing conditions and n-type electrical properties of SrCe 0.95Eu0.05O3-delta at reducing atmospheres were studied. Defect equilibrium diagrams as a function of PO2 , PH2O ) produced from the Brouwer method were verified by computational simulation and electrical conductivity measurements. The chemical diffusion of hydrogen through oxide membranes was described within the framework of Wagner's chemical diffusion theory and it was solved without any simplifying assumptions on functional dependence of partial conductivity due to the successful numerical modeling of partial conductivities as a function of both hydrogen and oxygen partial pressures. Finally the hydrogen permeability of Eu and Sm doped SrCeO3-delta was studied as a function of temperature, hydrogen partial pressure gradient, and water vapor pressure gradient. The dopant dependence of hydrogen permeability was explained in terms of the difference in ionization energy and ionic radius of dopant.

  5. Investigating the flow dynamics and chemistry of an expanding thermal plasma through CH(A-X) emission spectra

    NARCIS (Netherlands)

    Hansen, T. A. R.; Colsters, P. G. J.; M. C. M. van de Sanden,; Engeln, R.

    2011-01-01

    The gas flow in a linear plasma reactor and the plasma chemistry during hydrogenated amorphous carbon and graphite etching are investigated via time and spatially resolved measurements of the ion density and CH emission. A convolution of the ion and hydrocarbon density shows the importance of charge

  6. Effect of pressure on high Karlovitz number lean turbulent premixed hydrogen-enriched methane-air flames using LES

    Science.gov (United States)

    Cicoria, David; Chan, C. K.

    2017-07-01

    Large eddy simulation (LES) is employed to investigate the effect of pressure on lean CH4-H2-air turbulent premixed flames at high Karlovitz number for mixtures up to 60% of hydrogen in volume. The subfilter combustion term representing the interaction between turbulence and chemistry is modelled using the PaSR model, along with complex chemistry using a skeletal mechanism based on GRI-MECH3.0. The influence of pressure at high turbulence levels is studied by means of the local flame structure, and the assessment of species formation inside the flame. Results show that the ratio of turbulent flame thickness to laminar flame thickness δt/δu increases faster with pressure, and increases with the fraction of hydrogen in the mixture, leading to higher ratio of turbulent to laminar flame speed. The flame displays smaller structures and higher degree of wrinkling at higher pressure. Final species of CO2 and H2O formation is almost independent of pressure. For intermediate species CO and OH, an increase in pressure at constant volume fraction of hydrogen β leads to a decrease of emission of these species.

  7. Water at surfaces with tunable surface chemistries

    Science.gov (United States)

    Sanders, Stephanie E.; Vanselous, Heather; Petersen, Poul B.

    2018-03-01

    Aqueous interfaces are ubiquitous in natural environments, spanning atmospheric, geological, oceanographic, and biological systems, as well as in technical applications, such as fuel cells and membrane filtration. Where liquid water terminates at a surface, an interfacial region is formed, which exhibits distinct properties from the bulk aqueous phase. The unique properties of water are governed by the hydrogen-bonded network. The chemical and physical properties of the surface dictate the boundary conditions of the bulk hydrogen-bonded network and thus the interfacial properties of the water and any molecules in that region. Understanding the properties of interfacial water requires systematically characterizing the structure and dynamics of interfacial water as a function of the surface chemistry. In this review, we focus on the use of experimental surface-specific spectroscopic methods to understand the properties of interfacial water as a function of surface chemistry. Investigations of the air-water interface, as well as efforts in tuning the properties of the air-water interface by adding solutes or surfactants, are briefly discussed. Buried aqueous interfaces can be accessed with careful selection of spectroscopic technique and sample configuration, further expanding the range of chemical environments that can be probed, including solid inorganic materials, polymers, and water immiscible liquids. Solid substrates can be finely tuned by functionalization with self-assembled monolayers, polymers, or biomolecules. These variables provide a platform for systematically tuning the chemical nature of the interface and examining the resulting water structure. Finally, time-resolved methods to probe the dynamics of interfacial water are briefly summarized before discussing the current status and future directions in studying the structure and dynamics of interfacial water.

  8. Enantioselective hydrogenation of cyclic imines catalysed by Noyori-Ikariya half-sandwich complexes and their analogues

    Czech Academy of Sciences Publication Activity Database

    Vilhanová, B.; Václavík, Jiří; Šot, P.; Pecháček, J.; Zápal, J.; Pažout, R.; Maixner, J.; Kuzma, M.; Kačer, P.

    2016-01-01

    Roč. 52, č. 2 (2016), s. 362-365 ISSN 1359-7345 Institutional support: RVO:61388963 Keywords : asymmetric transfer hydrogenation * ruthenium catalysts * aromatic ketones Subject RIV: CC - Organic Chemistry Impact factor: 6.319, year: 2016 http://pubs.rsc.org/en/content/articlepdf/2016/cc/c5cc06712j

  9. Mitigation of Hydrogen Gas Generation from the Reaction of Water with Uranium Metal in K Basins Sludge

    International Nuclear Information System (INIS)

    Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2010-01-01

    Means to decrease the rate of hydrogen gas generation from the chemical reaction of uranium metal with water were identified by surveying the technical literature. The underlying chemistry and potential side reactions were explored by conducting 61 principal experiments. Several methods achieved significant hydrogen gas generation rate mitigation. Gas-generating side reactions from interactions of organics or sludge constituents with mitigating agents were observed. Further testing is recommended to develop deeper knowledge of the underlying chemistry and to advance the technology aturation level. Uranium metal reacts with water in K Basin sludge to form uranium hydride (UH3), uranium dioxide or uraninite (UO2), and diatomic hydrogen (H2). Mechanistic studies show that hydrogen radicals (H·) and UH3 serve as intermediates in the reaction of uranium metal with water to produce H2 and UO2. Because H2 is flammable, its release into the gas phase above K Basin sludge during sludge storage, processing, immobilization, shipment, and disposal is a concern to the safety of those operations. Findings from the technical literature and from experimental investigations with simple chemical systems (including uranium metal in water), in the presence of individual sludge simulant components, with complete sludge simulants, and with actual K Basin sludge are presented in this report. Based on the literature review and intermediate lab test results, sodium nitrate, sodium nitrite, Nochar Acid Bond N960, disodium hydrogen phosphate, and hexavalent uranium [U(VI)] were tested for their effects in decreasing the rate of hydrogen generation from the reaction of uranium metal with water. Nitrate and nitrite each were effective, decreasing hydrogen generation rates in actual sludge by factors of about 100 to 1000 when used at 0.5 molar (M) concentrations. Higher attenuation factors were achieved in tests with aqueous solutions alone. Nochar N960, a water sorbent, decreased hydrogen

  10. Mitigation of Hydrogen Gas Generation from the Reaction of Water with Uranium Metal in K Basins Sludge

    Energy Technology Data Exchange (ETDEWEB)

    Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2010-01-29

    Means to decrease the rate of hydrogen gas generation from the chemical reaction of uranium metal with water were identified by surveying the technical literature. The underlying chemistry and potential side reactions were explored by conducting 61 principal experiments. Several methods achieved significant hydrogen gas generation rate mitigation. Gas-generating side reactions from interactions of organics or sludge constituents with mitigating agents were observed. Further testing is recommended to develop deeper knowledge of the underlying chemistry and to advance the technology aturation level. Uranium metal reacts with water in K Basin sludge to form uranium hydride (UH3), uranium dioxide or uraninite (UO2), and diatomic hydrogen (H2). Mechanistic studies show that hydrogen radicals (H·) and UH3 serve as intermediates in the reaction of uranium metal with water to produce H2 and UO2. Because H2 is flammable, its release into the gas phase above K Basin sludge during sludge storage, processing, immobilization, shipment, and disposal is a concern to the safety of those operations. Findings from the technical literature and from experimental investigations with simple chemical systems (including uranium metal in water), in the presence of individual sludge simulant components, with complete sludge simulants, and with actual K Basin sludge are presented in this report. Based on the literature review and intermediate lab test results, sodium nitrate, sodium nitrite, Nochar Acid Bond N960, disodium hydrogen phosphate, and hexavalent uranium [U(VI)] were tested for their effects in decreasing the rate of hydrogen generation from the reaction of uranium metal with water. Nitrate and nitrite each were effective, decreasing hydrogen generation rates in actual sludge by factors of about 100 to 1000 when used at 0.5 molar (M) concentrations. Higher attenuation factors were achieved in tests with aqueous solutions alone. Nochar N960, a water sorbent, decreased hydrogen

  11. Application of computational chemistry methods to obtain thermodynamic data for hydrogen production from liquefied petroleum gas

    Directory of Open Access Journals (Sweden)

    J. A. Sousa

    2013-03-01

    Full Text Available The objective of this study was to estimate thermodynamic data, such as standard enthalpy, entropy and Gibbs free energy changes of reaction and, consequently, chemical equilibrium constants, for a reaction system describing the hydrogen production from Liquefied Petroleum Gas (LPG. The acquisition of those properties was made using computational chemistry methods and the results were compared with experimental data reported in the literature. The reaction system of steam reforming of LPG was reported as a set of seven independent reactions involving the chemical species n-C4H10, C3H8, C2H6, C2H4, CH4, CO2, CO, H2O, H2 and solid carbon. Six computational approaches were used: Density Functional Theory (DFT employing Becke's three parameter hybrid exchange functional, and the Lee-Yang-Parr correlation functional (B3LYP using the 6-31G++(d,p basis set and the composite methods CBS-QB3, Gaussian-1 (G1, Gaussian-2 (G2, Gaussian-3 (G3 and Gaussian-4 (G4. Mole fractions of the system components were also determined between 873.15 and 1173.15 K, at 1 atm and a feed with a stoichiometric amount of water. Results showed that the hybrid functional B3LYP/6-31G++(d,p, G3 and G4 theories were the most appropriated methods to predict the properties of interest. Gaussian-3 and Gaussian-4 theories are expected to be good thermodynamic data predictors and the known efficient prediction of vibrational frequencies by B3LYP is probably the source of the good agreement found in this study. This last methodology is of special interest since it presents low computational cost, which is important when more complex molecular systems are considered.

  12. Theoretical chemistry periodicities in chemistry and biology

    CERN Document Server

    Eyring, Henry

    1978-01-01

    Theoretical Chemistry: Periodicities in Chemistry and Biology, Volume 4 covers the aspects of theoretical chemistry. The book discusses the stably rotating patterns of reaction and diffusion; the chemistry of inorganic systems exhibiting nonmonotonic behavior; and population cycles. The text also describes the mathematical modeling of excitable media in neurobiology and chemistry; oscillating enzyme reactions; and oscillatory properties and excitability of the heart cell membrane. Selected topics from the theory of physico-chemical instabilities are also encompassed. Chemists, mechanical engin

  13. The influence of chemistry on severe accident phenomena in integral tests

    International Nuclear Information System (INIS)

    Hobbins, R.R.; Osetek, D.J.; Hagrman, D.L.

    1988-01-01

    The influence of chemical processes on severe accident phenomena in integral tests is reviewed and recommendations for areas of additional work are made. The results reviewed include those from tests conducted in the in-pile facilities at ACRR, PBF, and TREAT and the TMI-2 accident. Progress has been made in understanding the influence of chemistry on important severe accident phenomena such as core melt progression, hydrogen generation, aerosol generation and transport, and fission product release and transport (including revaporization). An example is the chemistry of volatile fission products, especially iodine and tellurium. Areas where understanding is inadequate are also apparent, such as chemical interactions between fission product vapors and aerosols. Influential chemical processes reviewed include oxidation by steam and interactions among control, structural, fuel, fission product, and aerosol materials

  14. Progress report, Chemistry and Materials Division 1 July - 30 September, 1981

    International Nuclear Information System (INIS)

    1981-11-01

    The work of the division in the areas of solid state physics, chemistry and materials science over the quarter is described. The solid state science branch has worked on crystal defect formation after ion beam irradiation. Laser isotope separation methods have produced visible amounts of water enriched 2000-fold in deuterium. Work has been done on hydrogen isotope exchange in H 2 -methanol mixtures. Nitrogen impurities in Xe-133 can be determined down to the microgram level. A new apparatus for the determination of hydrogen in zirconium has been assembled. Coatings of stainless steels on zircaloy fuel cladding continue to offer protection against oxidation. Agreement has been obtained between computer-simulated and observed electron microscope images of irradiated titanium. Cold-worked zirconium has been studied under helium ion bombardment

  15. Extending atomistic scale chemistry to mesoscale model of condensed-phase deflagration

    Science.gov (United States)

    Joshi, Kaushik; Chaudhuri, Santanu

    2017-01-01

    Predictive simulations connecting chemistry that follow the shock or thermal initiation of energetic materials to subsequent deflagration or detonation events is currently outside the realm of possibilities. Molecular dynamics and first-principles based dynamics have made progress in understanding reactions in picosecond to nanosecond time scale. Results from thermal ignition of different phases of RDX show a complex reaction network and emergence of a deterministic behavior for critical temperature before ignition and hot spot growth rates. The kinetics observed is dependent on the hot spot temperature, system size and thermal conductivity. For cases where ignition is observed, the incubation period is dominated by intermolecular and intramolecular hydrogen transfer reactions. The gradual temperature and pressure increase in the incubation period is accompanied by accumulation of heavier polyradicals. The challenge of connecting such chemistry in mesoscale simulations remain in reducing the complexity of chemistry. The hot spot growth kinetics in RDX grains and interfaces is an important challenge for reactive simulations aiming to fill in the gaps in our knowledge in the nanoseconds to microseconds time scale. The results discussed indicate that the mesoscale chemistry may include large polyradical molecules in dense reactive mix reaching an instability point at certain temperatures and pressures.

  16. Role of the sulfonamide moiety of Ru(II) half-sandwich complexes in the asymmetric transfer hydrogenation of 3,4-dihydroisoquinolines

    Czech Academy of Sciences Publication Activity Database

    Matuška, O.; Zápal, J.; Hrdličková, R.; Mikoška, M.; Pecháček, J.; Vilhanová, B.; Václavík, Jiří; Kuzma, M.; Kačer, P.

    2016-01-01

    Roč. 118, č. 1 (2016), s. 215-222 ISSN 1878-5190 Institutional support: RVO:61388963 Keywords : ruthenium * asymmetric transfer hydrogenation * dihydroisoquinolines * sulfonamide Subject RIV: CC - Organic Chemistry Impact factor: 1.264, year: 2016

  17. Complex chemistry

    International Nuclear Information System (INIS)

    Kim, Bong Gon; Kim, Jae Sang; Kim, Jin Eun; Lee, Boo Yeon

    2006-06-01

    This book introduces complex chemistry with ten chapters, which include development of complex chemistry on history coordination theory and Warner's coordination theory and new development of complex chemistry, nomenclature on complex with conception and define, chemical formula on coordination compound, symbol of stereochemistry, stereo structure and isomerism, electron structure and bond theory on complex, structure of complex like NMR and XAFS, balance and reaction on solution, an organo-metallic chemistry, biology inorganic chemistry, material chemistry of complex, design of complex and calculation chemistry.

  18. Nitric-glycolic flowsheet testing for maximum hydrogen generation rate

    Energy Technology Data Exchange (ETDEWEB)

    Martino, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, J. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Williams, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site is developing for implementation a flowsheet with a new reductant to replace formic acid. Glycolic acid has been tested over the past several years and found to effectively replace the function of formic acid in the DWPF chemical process. The nitric-glycolic flowsheet reduces mercury, significantly lowers the chemical generation of hydrogen and ammonia, allows purge reduction in the Sludge Receipt and Adjustment Tank (SRAT), stabilizes the pH and chemistry in the SRAT and the Slurry Mix Evaporator (SME), allows for effective adjustment of the SRAT/SME rheology, and is favorable with respect to melter flammability. The objective of this work was to perform DWPF Chemical Process Cell (CPC) testing at conditions that would bound the catalytic hydrogen production for the nitric-glycolic flowsheet.

  19. The effect of water chemistry on a change in the composition of gas phase in the steam-water path of a supercritical-pressure boiler

    Science.gov (United States)

    Belyakov, I. I.; Belokonova, A. F.

    2010-07-01

    We present the results from an experimental research work on studying the behavior of the gas phase in the path of a supercritical-pressure boiler during its operation with different water chemistries, including all-volatile (hydrazine-ammonia), complexone, neutral oxygenated, and combined oxygenated-ammonia chemistries. It is shown that the minimal content of hydrogen in steam is achieved if feedwater is treated with oxygen.

  20. Corrosion Behavior and Oxide Properties of Zr-Nb-Cu and Zr-Nb-Sn Alloy in High Dissolved Hydrogen Primary Water Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yun Ju; Kim, Tae Ho; Kim, Ji Hyun [UNIST, Ulsan (Korea, Republic of)

    2016-05-15

    The water-metal interface is regarded as rate-controlling site governing the rapid oxidation transition in high burn-up fuel. And the zirconium oxide is made in water-metal interface and its structure and phase do an important role in terms of oxide properties. During oxidation process, the protective tetragonal oxide layer develops at the interface due to accumulated high stress during oxide growth, and it turns into non-protective monoclinic oxide with increasing oxide thickness, thus decreasing the stress. It has been reported that Nb addition was proven to be very beneficial for increasing the corrosion resistance of the zirconium alloys. From a more recent study, Cu addition in Nb containing Zirconium alloy was reported to be effective for increasing corrosion resistance in water containing B and Li. According to the previous research conducted, Zr-Nb-Cu shows better corrosion resistance than Zircaloy-4. The dissolved hydrogen (DH) concentration is the key issue of primary water chemistry, and the effect of DH concentration on the corrosion rate of nickel based alloy has been researched. However, the effect of DH on the zirconium alloy corrosion mechanism was not fully investigated. In this study, the weight gain measurement, FIB-SEM analysis, and Raman spectroscopic measurement were conducted to investigate the effects of dissolved hydrogen concentration and the chemical composition on the corrosion resistance and oxide phase of Zr-Nb-Cu alloy and Zr-Nb-Sn alloy after oxidizing in a primary water environment for 20 d. The corrosion rate of Zr-Nb-Cu alloy is slow, when it is compared to Zr-Nb-Sn alloy. In SEM images, the oxide thickness of Zr-Nb-Cu alloy is measured to be around 1.06 μm it of Zr-Nb-Sn alloy is measured to be 1.15 μm. It is because of the Segregation made by Sn solute element when Sn solute element oxidized. And according to ex situ Raman spectra, Zr-Nb-Cu alloy oxide has more tetragonal zirconium oxide fraction than Zr-Nb-Sn alloy oxide.

  1. Role and chemistry of catalyst in hydrogen based heavy water plants (Paper No. 6.2)

    International Nuclear Information System (INIS)

    Pradhan, D.G.

    1992-01-01

    The chemistry of homogeneous catalyst particularly of KNH 2 in ammonia, based on which a number of plants are operating, is discussed. considering its importance and complexity. (author). 10 refs., 5 figs

  2. Selective turn-on fluorescent probes for imaging hydrogen sulfide in living cells.

    Science.gov (United States)

    Montoya, Leticia A; Pluth, Michael D

    2012-05-16

    Hydrogen sulfide (H(2)S) is an important biological messenger but few biologically-compatible methods are available for its detection. Here we report two bright fluorescent probes that are selective for H(2)S over cysteine, glutathione and other reactive sulfur, nitrogen, and oxygen species. Both probes are demonstrated to detect H(2)S in live cells. This journal is © The Royal Society of Chemistry 2012

  3. Potential application of palladium nanoparticles as selective recyclable hydrogenation catalysts

    International Nuclear Information System (INIS)

    Mukherjee, DebKumar

    2008-01-01

    The search for more efficient catalytic systems that might combine the advantages of both homogeneous (catalyst modulation) and heterogeneous (catalyst recycling) catalysis is one of the most exciting challenges of modern chemistry. More recently with the advances of nanochemistry, it has been possible to prepare soluble analogues of heterogeneous catalysts. These nanoparticles are generally stabilized against aggregation into larger particles by electrostatic or steric protection. Herein we demonstrate the use of room temperature ionic liquid for the stabilization of palladium nanoparticles that are recyclable catalysts for the hydrogenation of carbon-carbon double bonds and application of these catalysts to the selective hydrogenation of internal or terminal C=C bonds in unsaturated primary alcohols. The particles suspended in room temperature ionic liquid show no metal aggregation or loss of catalytic activity even on prolonged use

  4. Adaptation of a load-inject valve for a flow injection chemiluminescence system enabling dual-reagent injection enhances understanding of environmental Fenton chemistry

    International Nuclear Information System (INIS)

    Jones, Matthew R.; Nightingale, Philp D.; Turner, Suzanne M.; Liss, Peter S.

    2013-01-01

    Graphical abstract: -- Highlights: •Measurement of multiple components of Fenton chemistry; Fe(II) and H 2 O 2 . •Rapid, quasi-simultaneous analysis enables calculation of environmental kinetics. •Low, nano to pico-molar detection limits with dual analyte analysis. •Able to measure complex matrix samples – organically enriched seawater. •Low cost system with appreciable sensitivity compared to single analyte analysis. -- Abstract: Environmental Fenton chemistry has been poorly constrained within the marine environment at a multi-component level. A simple, unique, reconfiguration of a flow-injection analytical system combined with luminol chemiluminescence allows quasi-simultaneously the measurement, using a single load-inject valve and a single photon multiplier tube, of reduced iron, Fe(II), and hydrogen peroxide. The system enables rapid, every 22 s, measurements with good accuracy at environmentally relevant concentrations, less than 5% relative standard deviations on both a 5 nM Fe(II) standard and a 60 nM hydrogen peroxide standard. Limits of detection were as low as 40 pM Fe(II) and 100 pM hydrogen peroxide. The system showed excellent capability by measuring from within an organic rich seawater the photochemically induced production of Fe(II) and hydrogen peroxide and their subsequent cycling and Fenton like interactions

  5. Methyl group dynamics in paracetamol and acetanilide: probing the static properties of intermolecular hydrogen bonds formed by peptide groups

    Science.gov (United States)

    Johnson, M. R.; Prager, M.; Grimm, H.; Neumann, M. A.; Kearley, G. J.; Wilson, C. C.

    1999-06-01

    Measurements of tunnelling and librational excitations for the methyl group in paracetamol and tunnelling excitations for the methyl group in acetanilide are reported. In both cases, results are compared with molecular mechanics calculations, based on the measured low temperature crystal structures, which follow an established recipe. Agreement between calculated and measured methyl group observables is not as good as expected and this is attributed to the presence of comprehensive hydrogen bond networks formed by the peptide groups. Good agreement is obtained with a periodic quantum chemistry calculation which uses density functional methods, these calculations confirming the validity of the one-dimensional rotational model used and the crystal structures. A correction to the Coulomb contribution to the rotational potential in the established recipe using semi-emipircal quantum chemistry methods, which accommodates the modified charge distribution due to the hydrogen bonds, is investigated.

  6. The importance of radiochemistry and indicator methods for the chemistry of traces

    International Nuclear Information System (INIS)

    Benes, P.; Majer, V.

    1980-01-01

    Sensitivity is compared for common chemical methods with respect to nonradioactive materials and methods for determining trace amounts of radioactive substances. The concept of trace amounts is explained and some other notions and terms are discussed from the point of view of chemistry and radiochemistry. The problem of radiation effect is briefly assessed on a sample of material containing trace amounts of a radionuclide and the isotopic effect problem in hydrogen is treated. (M.S.)

  7. Crack initiation behavior of neutron irradiated model and commercial stainless steels in high temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson, Kale J., E-mail: kalejs@umich.edu; Was, Gary S.

    2014-01-15

    Highlights: • Environmental constant extension rate tensile tests were performed on neutron irradiated steel. • Percentage of intergranular cracking quantified the cracking susceptibility. • Cracking susceptibility varied with test environment, solute addition, and cold work. • No singular microstructural change could explain increases in cracking susceptibility with irradiation dose. • The increment of yield strength due to irradiation correlated well with cracking susceptibility. -- Abstract: The objective of this study was to isolate key factors affecting the irradiation-assisted stress corrosion cracking (IASCC) susceptibility of eleven neutron-irradiated austenitic stainless steel alloys. Four commercial purity and seven high purity stainless steels were fabricated with specific changes in composition and microstructure, and irradiated in a fast reactor spectrum at 320 °C to doses between 4.4 and 47.5 dpa. Constant extension rate tensile (CERT) tests were performed in normal water chemistry (NWC), hydrogen water chemistry (HWC), or primary water (PW) environments to isolate the effects of environment, elemental solute addition, alloy purity, alloy heat, alloy type, cold work, and irradiation dose. The irradiated alloys showed a wide variation in IASCC susceptibility, as measured by the relative changes in mechanical properties and crack morphology. Cracking susceptibility measured by %IG was enhanced in oxidizing environments, although testing in the lowest potential environment caused an increase in surface crack density. Alloys containing solute addition of Ni or Ni + Cr exhibited no IASCC. Susceptibility was reduced in materials cold worked prior to irradiation, and increased with increasing irradiation dose. Irradiation-induced hardening was accounted for by the dislocation loop microstructure, however no relation between crack initiation and radiation hardening was found.

  8. The hydrogen; L'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The hydrogen as an energy system represents nowadays a main challenge (in a scientific, economical and environmental point of view). The physical and chemical characteristics of hydrogen are at first given. Then, the challenges of an hydrogen economy are explained. The different possibilities of hydrogen production are described as well as the distribution systems and the different possibilities of hydrogen storage. Several fuel cells are at last presented: PEMFC, DMFC and SOFC. (O.M.)

  9. Concerted Use of Slab and Cluster Models in an ab initio Study of Hydrogen Desorption from the Si(100) Surface

    Czech Academy of Sciences Publication Activity Database

    Steckel, J. A.; Phung, T.; Jordan, K. D.; Nachtigall, Petr

    2001-01-01

    Roč. 105, č. 18 (2001), s. 4031-4038 ISSN 1089-5647 Institutional research plan: CEZ:AV0Z4040901 Keywords : silicon * surface * hydrogen Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.379, year: 2001

  10. Role of polyaniline morphology in Pd particles dispersion. Hydrogenation of alkynes in the presence of Pd-polyaniline catalysts

    Czech Academy of Sciences Publication Activity Database

    Kosydar, R.; Goral, M.; Drelinkiewicz, A.; Stejskal, Jaroslav

    2013-01-01

    Roč. 67, č. 8 (2013), s. 1087-1095 ISSN 0366-6352 R&D Projects: GA ČR(CZ) GA13-00270S Institutional support: RVO:61389013 Keywords : polyaniline * palladium * hydrogenation Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.193, year: 2013

  11. Boiling-Water Reactor internals aging degradation study

    International Nuclear Information System (INIS)

    Luk, K.H.

    1993-09-01

    This report documents the results of an aging assessment study for boiling water reactor (BWR) internals. Major stressors for BWR internals are related to unsteady hydrodynamic forces generated by the primary coolant flow in the reactor vessel. Welding and cold-working, dissolved oxygen and impurities in the coolant, applied loads and exposures to fast neutron fluxes are other important stressors. Based on results of a component failure information survey, stress corrosion cracking (SCC) and fatigue are identified as the two major aging-related degradation mechanisms for BWR internals. Significant reported failures include SCC in jet-pump holddown beams, in-core neutron flux monitor dry tubes and core spray spargers. Fatigue failures were detected in feedwater spargers. The implementation of a plant Hydrogen Water Chemistry (HWC) program is considered as a promising method for controlling SCC problems in BWR. More operating data are needed to evaluate its effectiveness for internal components. Long-term fast neutron irradiation effects and high-cycle fatigue in a corrosive environment are uncertainty factors in the aging assessment process. BWR internals are examined by visual inspections and the method is access limited. The presence of a large water gap and an absence of ex-core neutron flux monitors may handicap the use of advanced inspection methods, such as neutron noise vibration measurements, for BWR

  12. Modelling of plume chemistry of high flying aircraft with H2 combustion engines

    International Nuclear Information System (INIS)

    Weibring, G.; Zellner, R.

    1993-01-01

    Emissions from hydrogen fueled aircraft engines include large concentrations of radicals such as NO, OH, O and H. We describe the result of modelling studies in which the evolution of the radical chemistry in an expanding and cooling plume for three different mixing velocities is evaluated. The simulations were made for hydrogen combustion engines at an altitude of 26 km. For the fastest mixing conditions, the radical concentrations decrease only because of dilution with the ambient air, since the time for chemical reaction is too short. With lower mixing velocities, however, larger chemical conversions were determined. For the slowest mixing conditions the unburned hydrogen is converted into water. As a consequence the radicals O and OH increase considerably around 1400 K. The only exception being NO, for which no chemical change during the expansion is found. The concentrations of the reservoir molecules like H 2 O 2 , N 2 O 5 or HNO 3 have been calculated to remain relatively small. (orig.)

  13. The use of carbon adsorbents for the removal of perfluoroalkyl acids from potable reuse systems.

    Science.gov (United States)

    Inyang, Mandu; Dickenson, Eric R V

    2017-10-01

    Bench- and pilot-scale sorption tests were used to probe the performance of several biochars at removing perfluoroalkyl acids (PFAA) from field waters, compared to granular activated carbon (GAC). Screening tests using organic matter-free water resulted in hardwood (HWC) (K d  = 41 L g -1 ) and pinewood (PWC) (K d  = 49 L g -1 ) biochars having the highest perfluorooctanoic acid (PFOA) removal performance that was comparable to bituminous coal GAC (K d  = 41 L g -1 ). PWC and HWC had a stronger affinity for PFOA sorbed in Lake Mead surface water (K F  = 11 mg (1-n) L n g -1 ) containing a lower (2 mg L -1 ) dissolved organic carbon (DOC) concentration than in a tertiary-filtered wastewater (K F  = 8 mg (1-n) L n g -1 ) with DOC of 4.9 mg L -1 . A pilot-scale study was performed using three parallel adsorbers (GAC, anthracite, and HWC biochar) treating the same tertiary-filtered wastewater. Compared to HWC, and anthracite, GAC was the most effective in mitigating perfluoropentanoic acid (PFPnA), perfluorohexanoic acid (PHxA), PFOA, perfluorooctane sulfonic acid (PFOS), and DOC (45-67% removed at 4354 bed volumes) followed by HWC, and then anthracite. Based on bench- and pilot-scale results, shorter-chain PFAA [perfluorobutanoic acid (PFBA), PFPnA, or PFHxA] were more difficult to remove with both biochar and GAC than the longer-chain, PFOS and PFOA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Synthesis and visible light photocatalytic activity of nanocrystalline PrFeO3 perovskite for hydrogen generation in ethanol-water system

    Czech Academy of Sciences Publication Activity Database

    Tijare, S.N.; Bakardjieva, Snejana; Šubrt, Jan; Joshi, M.V.; Rayalu, S.S.; Hishita, S.; Labhsetwar, N.

    2014-01-01

    Roč. 126, č. 2 (2014), s. 517-525 ISSN 0974-3626 Institutional support: RVO:61388980 Keywords : Perovskite * PrFeO3 * photocatalyst * water-splitting * hydrogen Subject RIV: CA - Inorganic Chemistry Impact factor: 1.191, year: 2014

  15. Role of vanadium carbide traps in reducing the hydrogen embrittlement susceptibility of high strength alloy steels. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, G.L.; Duquette, D.J.

    1998-08-01

    High strength alloy steels typically used for gun steel were investigated to determine their susceptibility to hydrogen embrittlement. Although AISI grade 4340 was quite susceptible to hydrogen embrittlement, ASTM A723 steel, which has identical mechanical properties but slightly different chemistries, was not susceptible to hydrogen embrittlement when exposed to the same conditions. The degree of embrittlement was determined by conducting notched tensile testing on uncharged and cathodically charged specimens. Chemical composition was modified to isolate the effect of alloying elements on hydrogen embrittlement susceptibility. Two steels-Modified A723 (C increased from 0.32% to 0.40%) and Modified 4340 (V increased from 0 to O.12%) were tested. X-ray diffraction identified the presence of vanadium carbide, V{sub 4}C{sub 3}, in A-23 steels, and subsequent hydrogen extraction studies evaluated the trapping effect of vanadium carbide. Based on these tests, it was determined that adding vanadium carbide to 4340 significantly decreased hydrogen embrittlement susceptibility because vanadium carbide traps ties up diffusible hydrogen. The effectiveness of these traps is examined and discussed in this paper.

  16. Combined theoretical and FTIR spectroscopic studies on hydrogen adsorption on the zeolites Na-FER and K-FER

    Czech Academy of Sciences Publication Activity Database

    Areán, C. O.; Palomino, G. T.; Garrone, E.; Nachtigallová, Dana; Nachtigall, Petr

    2006-01-01

    Roč. 110, č. 1 (2006), s. 395-402 ISSN 1520-6106 R&D Projects: GA MŠk(CZ) LC512 Institutional research plan: CEZ:AV0Z40550506 Keywords : adsorption * hydrogen storage * spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.115, year: 2006

  17. Advanced studies in chemistry control with morpholine

    International Nuclear Information System (INIS)

    Riddle, J.M.

    1992-07-01

    Prior studies at Beaver Valley Unit 1 and at Prairie Island found that the substitution of morpholine for ammonia reduced corrosion and iron transport in the feedtrain of pressurized water reactors. The benefits of using morpholine encouraged other utilities to consider morpholine water chemistry. Calvert Cliffs Unit 1 was the first domestic PWR with deep-bed condensate polishers to use morpholine water chemistry. Typically a bed is operated in the hydrogen cycle for eight to ten days, followed by an additional 25 days in the morpholine cycle. Morpholine reduced feedwater iron levels by 28 percent. With morpholine treatment at Calvert Cliffs Unit 1, corrosion product transport in feedwater was reduced by a factor of 1.3 -- 1.4. Morpholine treatment at higher levels at Prairie Island Unit 2 provided a factor of 2.3 reduction in feedwater iron transport, in agreement with data from Electricity de France. EdF data show that the factor increases as the pH for ammonia chemistry is reduced from 9.5. When possible, the factors were compared at a pH of 9.2 for morpholine at room temperature. Aqueous solutions of morpholine thermally decompose at increasing rates with temperature above about 288 degree C (550 degree F). Oxygen and several metal oxides appear to increase the rate of decomposition to a small extent. Acetate, formate, and various amines, including ammonia, are the principal decomposition products

  18. Effect of Surface Chemistry on the Fluorescence of Detonation Nanodiamonds.

    Science.gov (United States)

    Reineck, Philipp; Lau, Desmond W M; Wilson, Emma R; Fox, Kate; Field, Matthew R; Deeleepojananan, Cholaphan; Mochalin, Vadym N; Gibson, Brant C

    2017-11-28

    Detonation nanodiamonds (DNDs) have unique physical and chemical properties that make them invaluable in many applications. However, DNDs are generally assumed to show weak fluorescence, if any, unless chemically modified with organic molecules. We demonstrate that detonation nanodiamonds exhibit significant and excitation-wavelength-dependent fluorescence from the visible to the near-infrared spectral region above 800 nm, even without the engraftment of organic molecules to their surfaces. We show that this fluorescence depends on the surface functionality of the DND particles. The investigated functionalized DNDs, produced from the same purified DND as well as the as-received polyfunctional starting material, are hydrogen, hydroxyl, carboxyl, ethylenediamine, and octadecylamine-terminated. All DNDs are investigated in solution and on a silicon wafer substrate and compared to fluorescent high-pressure high-temperature nanodiamonds. The brightest fluorescence is observed from octadecylamine-functionalized particles and is more than 100 times brighter than the least fluorescent particles, carboxylated DNDs. The majority of photons emitted by all particle types likely originates from non-diamond carbon. However, we locally find bright and photostable fluorescence from nitrogen-vacancy centers in diamond in hydrogenated, hydroxylated, and carboxylated detonation nanodiamonds. Our results contribute to understanding the effects of surface chemistry on the fluorescence of DNDs and enable the exploration of the fluorescent properties of DNDs for applications in theranostics as nontoxic fluorescent labels, sensors, nanoscale tracers, and many others where chemically stable and brightly fluorescent nanoparticles with tailorable surface chemistry are needed.

  19. Hydrogen generation from deliquescence of ammonia borane using Ni-Co/r-GO catalyst

    Science.gov (United States)

    Chou, Chang-Chen; Chen, Bing-Hung

    2015-10-01

    Hydrogen generation from the catalyzed deliquescence/hydrolysis of ammonia borane (AB) using the Ni-Co catalyst supported on the graphene oxide (Ni-Co/r-GO catalyst) under the conditions of limited water supply was studied with the molar feed ratio of water to ammonia borane (denoted as H2O/AB) at 2.02, 3.97 and 5.93, respectively. The conversion efficiency of ammonia borane to hydrogen was estimated both from the cumulative volume of the hydrogen gas generated and the conversion of boron chemistry in the hydrolysates analyzed by the solid-state 11B NMR. The conversion efficiency of ammonia borane could reach nearly 100% under excess water dosage, that is, H2O/AB = 3.97 and 5.93. Notably, the hydrogen storage capacity could reach as high as 6.5 wt.% in the case with H2O/AB = 2.02. The hydrolysates of ammonia borane in the presence of Ni-Co/r-GO catalyst were mainly the mixture of boric acid and metaborate according to XRD, FT-IR and solid-state 11B NMR analyses.

  20. History of Chemistry in the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)

    Science.gov (United States)

    Kirk, Kenneth L.; Jacobson, Kenneth A.

    2015-01-01

    The origins of the Laboratory of Bioorganic Chemistry, NIDDK, NIH can be traced to events that occurred in the early 20th century. From its beginning to the present, as the laboratory evolved through several organizational changes, many important historical contributions to organic chemistry and biochemistry were made. For example, its early precursor, the Division of Chemistry of the Hygienic Laboratory, was assigned the responsibility of safeguarding public health by analyzing environmental and other chemical risks. This review will trace important developments from the early twentieth century to the present. The topics covered in this review include a historical synopsis, early work on receptors, carbohydrates, heterocycles and nucleotides, with specific emphasis on frog skin alkaloids, the NIH shift (a transfer of an aromatic hydrogen atom to a neighboring ring position during ring hydroxylation, important in the biochemical processing of aromatic substrates), the methionine-specific cleavage of proteins using cyanogen bromide (used commercially and in peptide research) as well as other fundamental contributions. Ongoing research in medicinal chemistry, natural products, biochemistry, vaccines and pharmacology, some leading to clinical applications, will be discussed. PMID:26412957

  1. NMR Determination of Hydrogen Bond Thermodynamics in a Simple Diamide: A Physical Chemistry Experiment

    Science.gov (United States)

    Morton, Janine G.; Joe, Candice L.; Stolla, Massiel C.; Koshland, Sophia R.; Londergan, Casey H.; Schofield, Mark H.

    2015-01-01

    Variable temperature NMR spectroscopy is used to determine the ?H° and ?S° of hydrogen bond formation in a simple diamide. In this two- or three-day experiment, students synthesize N,N'-dimethylmalonamide, dimethylsuccinamide, dimethylglutaramide, or dimethyladipamide from methylamine and the corresponding diester (typically in 50% recrystallized…

  2. Use of nuclear magnetic resonance of hydrogen in the characterization of saturated hydrocarbonic chains

    International Nuclear Information System (INIS)

    Costa Neto, A.; Soares, V.L.P.; Costa Neto, C.

    1979-01-01

    Alkanes and cycloalkanes are characterized by a methyl-methylene-methine groups proportion, the percentual absorption in prefixed regions and the pattern of the spectrum of nuclear magnetic resonance of hydrogen. The GPI is calculated from the contribution of the areas corresponding to prefixed regions of the hydrogen magnetic resonance spectra (60 Mc). These regions are (for the saturated hydrocarbons): 0,5-1,05ppm (X), 1,05ppm (Y) and 1,50-2,00ppm (Z). The validity of the index was verified for the homologous series of linear hydrocarbons and methyl-, dimethyl-, ethyl-, cyclopentyl- and cyclohexyl-branched hydrocarbons. Its application to shale oil chemistry (xistoquimica) is discussed. (author) [pt

  3. Specificities of micro-reactors for hydrogen production and purification

    Energy Technology Data Exchange (ETDEWEB)

    Mirodatos, C.; Dupont, N.; Germani, G.; Veen, A. C. ven; Schuurman, Y.

    2005-07-01

    Sustainable chemistry and exploitation of energy sources for the next decades requires considerable progress in process intensification. A development of new tools and equipments meeting the objectives of high efficiency, improved safety, compactness and low implementation costs is therefore subject of intensive research effort. Among the various scenarios tested in R and D, micro-structured reactors appear as a highly promising technology 1 and perspectives of mass production are already announced by technology providers 2. These reactors are based on assembly/stacking of micro structured plates or fibres. Due to their high heat and/or mass transfer, low pressure drop and good phase contacting, they sound particularly adapted to the large domain of hydrogen production by fuel reforming and purification. This presentation aims at outlining the state of the art, the advantages and drawbacks of using micro-structured reactors to intensify hydrogen production and purification. Two case studies will illustrate this approach: i) comparison between fixed bed and micro-structured reactor for the reforming of methanol into hydrogen and carbon oxides and ii) use of those devices in kinetic studies on the WGS reaction. (Author)

  4. Interconnection of reactive oxygen species chemistry across the interfaces of atmospheric, environmental, and biological processes.

    Science.gov (United States)

    Anglada, Josep M; Martins-Costa, Marilia; Francisco, Joseph S; Ruiz-López, Manuel F

    2015-03-17

    Oxidation reactions are ubiquitous and play key roles in the chemistry of the atmosphere, in water treatment processes, and in aerobic organisms. Ozone (O3), hydrogen peroxide (H2O2), hydrogen polyoxides (H2Ox, x > 2), associated hydroxyl and hydroperoxyl radicals (HOx = OH and HO2), and superoxide and ozonide anions (O2(-) and O3(-), respectively) are the primary oxidants in these systems. They are commonly classified as reactive oxygen species (ROS). Atmospheric chemistry is driven by a complex system of chain reactions of species, including nitrogen oxides, hydroxyl and hydroperoxide radicals, alkoxy and peroxy radicals, and ozone. HOx radicals contribute to keeping air clean, but in polluted areas, the ozone concentration increases and creates a negative impact on plants and animals. Indeed, ozone concentration is used to assess air quality worldwide. Clouds have a direct effect on the chemical composition of the atmosphere. On one hand, cloud droplets absorb many trace atmospheric gases, which can be scavenged by rain and fog. On the other hand, ionic species can form in this medium, which makes the chemistry of the atmosphere richer and more complex. Furthermore, recent studies have suggested that air-cloud interfaces might have a significant impact on the overall chemistry of the troposphere. Despite the large differences in molecular composition, concentration, and thermodynamic conditions among atmospheric, environmental, and biological systems, the underlying chemistry involving ROS has many similarities. In this Account, we examine ROS and discuss the chemical characteristics common to all of these systems. In water treatment, ROS are key components of an important subset of advanced oxidation processes. Ozonation, peroxone chemistry, and Fenton reactions play important roles in generating sufficient amounts of hydroxyl radicals to purify wastewater. Biochemical processes within living organisms also involve ROS. These species can come from pollutants in

  5. Solar-Driven Hydrogen Peroxide Production Using Polymer-Supported Carbon Dots as Heterogeneous Catalyst

    Science.gov (United States)

    Gogoi, Satyabrat; Karak, Niranjan

    2017-10-01

    Safe, sustainable, and green production of hydrogen peroxide is an exciting proposition due to the role of hydrogen peroxide as a green oxidant and energy carrier for fuel cells. The current work reports the development of carbon dot-impregnated waterborne hyperbranched polyurethane as a heterogeneous photo-catalyst for solar-driven production of hydrogen peroxide. The results reveal that the carbon dots possess a suitable band-gap of 2.98 eV, which facilitates effective splitting of both water and ethanol under solar irradiation. Inclusion of the carbon dots within the eco-friendly polymeric material ensures their catalytic activity and also provides a facile route for easy catalyst separation, especially from a solubilizing medium. The overall process was performed in accordance with the principles of green chemistry using bio-based precursors and aqueous medium. This work highlights the potential of carbon dots as an effective photo-catalyst.

  6. Accelerating spirocyclic polyketide synthesis using flow chemistry.

    Science.gov (United States)

    Newton, Sean; Carter, Catherine F; Pearson, Colin M; de C Alves, Leandro; Lange, Heiko; Thansandote, Praew; Ley, Steven V

    2014-05-05

    Over the past decade, the integration of synthetic chemistry with flow processing has resulted in a powerful platform for molecular assembly that is making an impact throughout the chemical community. Herein, we demonstrate the extension of these tools to encompass complex natural product synthesis. We have developed a number of novel flow-through processes for reactions commonly encountered in natural product synthesis programs to achieve the first total synthesis of spirodienal A and the preparation of spirangien A methyl ester. Highlights of the synthetic route include an iridium-catalyzed hydrogenation, iterative Roush crotylations, gold-catalyzed spiroketalization and a late-stage cis-selective reduction. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Solid solutions of hydrogen uranyl phosphate and hydrogen uranyl arsenate. A family of luminescent, lamellar hosts

    International Nuclear Information System (INIS)

    Dorhout, P.K.; Rosenthal, G.L.; Ellis, A.B.

    1988-01-01

    Hydrogen uranyl phosphate, HUO 2 PO 4 x 4H 2 O (HUP), and hydrogen uranyl arsenate, HUO 2 AsO 4 x 4H 2 O (HUAs), form solid solutions of composition HUO 2 (PO 4 ) 1-x (AsO 4 )x (HUPAs), representing a family of lamellar, luminescent solids that can serve as hosts for intercalation chemistry. The solids are prepared by aqueous precipitation reactions from uranyl nitrate and mixtures of phosphoric and arsenic acids; thermogravimetric analysis indicates that the phases are tetrahydrates, like HUP and HUAs. Powder x-ray diffraction data reveal the HUPAs solids to be single phases whose lattice constants increase with X, in rough accord with Vegard's law Spectral shifts observed for the HUPAs samples. Emission from the solids is efficient (quantum yields of ∼ 0.2) and long-lived (lifetimes of ∼ 150 μs), although the measured values are uniformly smaller than those of HUP and HUAs; unimolecular radiative and nonradiative rate constants for excited-state decay of ∼ 1500 and 5000 s -1 , respectively, have been calculated for the compounds. 18 refs., 5 figs., 2 tabs

  8. Solvent extraction of microamounts of strontium and barium into nitrobenzene using hydrogen dicarbollylcobaltate in the presence of polyethylene glycol PEG 600

    Czech Academy of Sciences Publication Activity Database

    Makrlík, E.; Vaňura, P.; Sedláková, Zdeňka

    2009-01-01

    Roč. 280, č. 3 (2009), s. 607-611 ISSN 0236-5731 Institutional research plan: CEZ:AV0Z40500505 Keywords : strontium * barium * hydrogen dicarbollylcobaltate Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.631, year: 2009

  9. Data on snow chemistry of the Cascade-Sierra Nevada Mountains

    Science.gov (United States)

    Laird, L.B.; Taylor, Howard E.; Lombard, R.E.

    1986-01-01

    Snow chemistry data were measured for solutes found in snow core samples collected from the Cascade-Sierra Nevada Mountains from late February to mid-March 1983. The data are part of a study to assess geographic variations in atmospheric deposition in Washington, Oregon, and California. The constituents and properties include pH and concentrations of hydrogen ion, calcium, magnesium, sodium, potassium, chloride, sulfate, nitrate, fluoride, phosphate, ammonium, iron, aluminum, manganese, copper, cadmium, lead, and dissolved organic carbon. Concentrations of arsenic and bromide were below the detection limit. (USGS)

  10. Effects of shutdown chemistry on steam generator radiation levels at Point Beach Unit 2. Interim report

    International Nuclear Information System (INIS)

    Kormuth, J.W.

    1982-05-01

    A refueling shutdown chemistry test was conducted at a PWR, Point Beach Unit 2. The objective was to yield reactor coolant chemistry data during the cooldown/shutdown process which might establish a relationship between shutdown chemistry and its effects on steam generator radiation fields. Of particular concern were the effects of the presence of hydrogen in the coolant as contrasted to an oxygenated coolant. Analysis of reactor coolant samples showed a rapid soluble release (spike) in Co-58, Co-60, and nickel caused by oxygenation of the coolant. The measurement of radioisotope specific activities indicates that the material undergoing dissolution during the shutdown originated from different sources which had varying histories of activation. The test program developed no data which would support theories that oxygenation of the coolant while the steam generators are full of water contributes to increased steam generator radiation levels

  11. Manhattan Project Technical Series The Chemistry of Uranium (I) Chapters 1-10

    International Nuclear Information System (INIS)

    Rabinowitch, E. I.; Katz, J. J.

    1946-01-01

    This constitutes Chapters 1 through 10. inclusive, of The Survey Volume on Uranium Chemistry prepared for the Manhattan Project Technical Series. Chapters are titled: Nuclear Properties of Uranium; Properties of the Uranium Atom; Uranium in Nature; Extraction of Uranium from Ores and Preparation of Uranium Metal; Physical Properties of Uranium Metal; Chemical Properties of Uranium Metal; Intermetallic Compounds and Alloy systems of Uranium; the Uranium-Hydrogen System; Uranium Borides, Carbides, and Silicides; Uranium Nitrides, Phosphides, Arsenides, and Antimonides.

  12. Metal hydride hydrogen compression: recent advances and future prospects

    Science.gov (United States)

    Yartys, Volodymyr A.; Lototskyy, Mykhaylo; Linkov, Vladimir; Grant, David; Stuart, Alastair; Eriksen, Jon; Denys, Roman; Bowman, Robert C.

    2016-04-01

    Metal hydride (MH) thermal sorption compression is one of the more important applications of the MHs. The present paper reviews recent advances in the field based on the analysis of the fundamental principles of this technology. The performances when boosting hydrogen pressure, along with two- and three-step compression units, are analyzed. The paper includes also a theoretical modelling of a two-stage compressor aimed at describing the performance of the experimentally studied systems, their optimization and design of more advanced MH compressors. Business developments in the field are reviewed for the Norwegian company HYSTORSYS AS and the South African Institute for Advanced Materials Chemistry. Finally, future prospects are outlined presenting the role of the MH compression in the overall development of the hydrogen-driven energy systems. The work is based on the analysis of the development of the technology in Europe, USA and South Africa.

  13. Identification of Di(oxymethylene)glycol in the Raman Spectrum of Formaldehyde Aqueous Solutions by ab lnitio Molecular Dynamics Simulations and Quantum Chemistry Calculations

    Czech Academy of Sciences Publication Activity Database

    Delcroix, Pauline; Pagliai, M.; Cardini, G.; Bégué, D.; Hanoune, B.

    2015-01-01

    Roč. 119, č. 38 (2015), s. 9785-9793 ISSN 1089-5639 Institutional support: RVO:61388963 Keywords : hydrogen bond dynamics * chemical equilibria * liquid water Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.883, year: 2015

  14. FTIR spectroscopic and computational studies on hydrogen adsorption on the zeolite Li-FER

    Czech Academy of Sciences Publication Activity Database

    Nachtigall, Petr; Garrone, E.; Palomino, G. T.; Delgado, M. R.; Nachtigallová, Dana; Areán, C. O.

    2006-01-01

    Roč. 8, č. 19 (2006), s. 2286-2292 ISSN 1463-9076 R&D Projects: GA MŠk(CZ) LC512; GA ČR(CZ) GA203/06/0324 Grant - others:UIB(ES) MAT-2005-05350; MIUR(IT) FISR2004 Institutional research plan: CEZ:AV0Z40550506 Keywords : adsorption * hydrogen storage * spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.892, year: 2006

  15. Hydrogen-bonding versus .pi.-.pi. stacking in the design of organic semiconductors: from dyes to oligomers

    Czech Academy of Sciences Publication Activity Database

    Gospodinova, Natalia; Tomšík, Elena

    2015-01-01

    Roč. 43, April (2015), s. 33-47 ISSN 0079-6700 R&D Projects: GA ČR(CZ) GA13-00270S; GA ČR GPP108/11/P763 Institutional support: RVO:61389013 Keywords : organic semiconductors * hydrogen bonds * nematic liquid crystals Subject RIV: CD - Macromolecular Chemistry Impact factor: 27.184, year: 2015

  16. Progress report: Chemistry and Materials Division, 1982 January 1 to March 31

    International Nuclear Information System (INIS)

    1982-06-01

    Solid state studies in this period included observations of annealing of irradiation damage in Ni-In and Al-Sn alloys. Extensive experiments on the radiation chemistry of nitrogen-oxygen mixtures have been completed enabling comparisons to be made with calculations based on physical data. The program MAKSIMA-CHEMIST has been used to calculate the effects of variables such as concentration of dissolved gases on the accuracy of water calorimeters. Work in laser photochemistry continued with measurement of the infrared spectra of methylamine with and without deuterium substituted for the amino-hydrogens. Spectroscopic data for chemical species involved in laser isotope separation processes are being taken by laser magnetic resonance spectroscopy Improvements in detection of anions separated on columns of styrenedivinylbenzene with hydrophobic modifiers have been achieved by use of conductivity detection in place of ultraviolet absorption. The accuracy of the inert gas fusion method for measuring hydrogen in zirconium was verified. Research on zirconium alloys continued with work on gaseous hydrogen cracking, metal vapor embrittlement, nodular corrosion, and irradiation with helium ions at elevated temperatures

  17. Chemistry and physics

    International Nuclear Information System (INIS)

    Broerse, J.J.; Barendsen, G.W.; Kal, H.B.; Kogel, A.J. van der

    1983-01-01

    This book contains the extended abstracts of the contributions of the poster workshop sessions on chemistry and physics of the 7th international congress of radiation research. They cover the following main topics: primary processes in radiation physics and chemistry, general chemistry in radiation chemistry, DNA and model systems in radiation chemistry, molecules of biological interest in radiation chemistry, techniques in radiation chemistry, hot atom chemistry. refs.; figs.; tabs

  18. τ - hydrogen phosphate of zirconia in sodium salt form and some of its properties

    International Nuclear Information System (INIS)

    Fernandez V, S.M.; Ordonez R, E.

    2004-01-01

    It is reported the obtaining and characterization in the sodium salt form of the τ-hydrogen phosphate of zirconium in sodium form, this compound it was synthesized, for a new technique developed in the laboratory of Dept. of Chemistry of the ININ. The characterization was carried out for XRD, IR, Sem and EDS the thermal gravimetric analysis is also reported. (Author)

  19. Chemical aspects of hydrogen ingress in zirconium and zircaloy pressure tubes: ageing management of Indian PHWR coolant channels - determination of hydrogen and deuterium

    International Nuclear Information System (INIS)

    Sayi, Y.S.; Shankaran, P.S.; Yadav, C.S.; Ramanjaneyulu, P.S.; Venugopal, V.; Ramakumar, K.L.; Chhapru, G.C.; Prasad, R.; Jain, H.C.; Sood, D.D.

    2009-02-01

    Pressurized heavy water reactors (PHWRs) use zirconium and zirconium based alloys as clad and coolant tubes since its beginning. The first ever zircaloy-2 pressure tube failure occurred in 1983 at Ontario Hydro's Pickering Unit 2 in Canada which necessitated a thorough examination of causes of such failure. The failure was attributed to massive hydriding at the failed spot of pressure tube. Continuous usage of zirconium alloys could result in their hydrogen and deuterium pick-up leading to hydrogen/ deuterium embrittlement. The life of the zircaloy coolant channels is dictated by hydrogen/deuterium content and hence ageing management of the pressure tubes is essential for ensuring their trouble-free usage. It is desirable to have a sound knowledge on the chemical aspects of zirconium and zirconium based alloys metallurgy, the mechanistic principles of hydrogen ingress into the pressure tubes during in reactor service, and identifying suitable analytical methodologies for precise and accurate determination of hydrogen in wafer thin sliver samples carved out from insides of pressure tubes without causing any structural damage so that it can continue to remain in service. This is desirable so that the ageing management does not result in cost-escalation. This report is divided in to three main parts. The first part deals with the chemical aspects of zirconium and zirconium based alloy metallurgy, the mechanism of hydrogen pick-up and hydride formation in zirconium matrix. The second part describes various methodologies and their limitations, available for hydrogen/deuterium determination. The third part deals in detail, about the extensive investigations carried out at Radioanalytical Chemistry Division (RACD) in Radiochemistry and Isotope Group for establishing an indigenously developed hot vacuum extraction system in combination with quadrupole mass spectrometry for precise determination of hydrogen and deuterium in wafer thin sliver sample of zircaloy. The

  20. Thermodynamic Possibilities and Constraints of Pure Hydrogen Production by a Chromium, Nickel and Manganese-Based Chemical Looping Process at Lower Temperatures

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Karel; Siewiorek, A.; Baxter, D.; Rogut, J.; Punčochář, Miroslav

    2007-01-01

    Roč. 61, č. 2 (2007), s. 110-120 ISSN 0366-6352 Institutional research plan: CEZ:AV0Z40720504 Keywords : chromium * thermodynamics * hydrogen Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 0.367, year: 2007

  1. In situ hydrogenation of molybdenum oxide nanowires for enhanced supercapacitors

    KAUST Repository

    Shakir, Imran

    2014-01-01

    In situ hydrogenation of orthorhombic molybdenum trioxide (α-MoO 3) nanowires has been achieved on a large scale by introducing alcohol during the hydrothermal synthesis for electrochemical energy storage supercapacitor devices. The hydrogenated molybdenum trioxide (H xMoO3) nanowires yield a specific capacitance of 168 F g-1 at 0.5 A g-1 and maintain 108 F g-1 at 10 A g-1, which is 36-fold higher than the capacitance obtained from pristine MoO3 nanowires at the same conditions. The electrochemical devices made with HxMoO3 nanowires exhibit excellent cycling stability by retaining 97% of their capacitance after 3000 cycles due to an enhanced electronic conductivity and increased density of hydroxyl groups on the surface of the MoO3 nanowires. This journal is © The Royal Society of Chemistry.

  2. Numerical comparison of hydrogen-air reaction mechanisms for unsteady shockinduced combustion applications

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, P. Pradeep; Kim, Kui Soon; Oh, Se Jong; Choi, Jeong Yeol [Pusan National University, Busan (Korea, Republic of)

    2015-03-15

    An unsteady shock-induced combustion (SIC) is characterized by the regularly oscillating combustion phenomenon behind the shock wave supported by the blunt projectile flying around the speed of Chapman-Jouguet detonation wave. The SIC is the coupling phenomenon between the hypersonic flow and the chemical kinetics, but the effects of chemical kinetics have been rarely reported. We compared hydrogen-air reaction mechanisms for the shock-induced combustion to demonstrate the importance of considering the reaction mechanisms for such complex flows. Seven hydrogen-air reaction mechanisms were considered, those available publically and used in other researches. As a first step in the comparison of the hydrogen combustion, ignition delay time of hydrogen-oxygen mixtures was compared at various initial conditions. Laminar premixed flame speed was also compared with available experimental data and at high pressure conditions. In addition, half-reaction length of ZND (Zeldovich-Neumann-Doering) detonation structure accounts for the length scale in SIC phenomena. Oscillation frequency of the SIC is compared by running the time-accurate 3rd-order Navier-Stokes CFD code fully coupled with the detailed chemistry by using four levels of grid resolutions.

  3. Numerical comparison of hydrogen-air reaction mechanisms for unsteady shockinduced combustion applications

    International Nuclear Information System (INIS)

    Kumar, P. Pradeep; Kim, Kui Soon; Oh, Se Jong; Choi, Jeong Yeol

    2015-01-01

    An unsteady shock-induced combustion (SIC) is characterized by the regularly oscillating combustion phenomenon behind the shock wave supported by the blunt projectile flying around the speed of Chapman-Jouguet detonation wave. The SIC is the coupling phenomenon between the hypersonic flow and the chemical kinetics, but the effects of chemical kinetics have been rarely reported. We compared hydrogen-air reaction mechanisms for the shock-induced combustion to demonstrate the importance of considering the reaction mechanisms for such complex flows. Seven hydrogen-air reaction mechanisms were considered, those available publically and used in other researches. As a first step in the comparison of the hydrogen combustion, ignition delay time of hydrogen-oxygen mixtures was compared at various initial conditions. Laminar premixed flame speed was also compared with available experimental data and at high pressure conditions. In addition, half-reaction length of ZND (Zeldovich-Neumann-Doering) detonation structure accounts for the length scale in SIC phenomena. Oscillation frequency of the SIC is compared by running the time-accurate 3rd-order Navier-Stokes CFD code fully coupled with the detailed chemistry by using four levels of grid resolutions.

  4. Self-Sustained Oscillations of Temperature and Conversion in a Packed Bed Microreactor during 2-Methylpropene (Isobutene) Hydrogenation

    Czech Academy of Sciences Publication Activity Database

    Stavárek, Petr; Vajglová, Zuzana; Křišťál, Jiří; Jiřičný, Vladimír; Kolena, J.

    2015-01-01

    Roč. 256, NOV 1 (2015), s. 250-260 ISSN 0920-5861. [InternationalCongress of Chemical and Process Engineering CHISA 2014 /21./. Prague, 23.08.2014-27.08.2014] Institutional support: RVO:67985858 Keywords : hydrogenation * microreactor * oscillation Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 4.312, year: 2015

  5. From hot atom chemistry to epithermal chemistry

    International Nuclear Information System (INIS)

    Roessler, K.

    2004-01-01

    The rise and fall of hot atom chemistry (HAC) over the years from 1934 to 2004 is reviewed. Several applications are discussed, in particular to astrophysics and the interaction of energetic ions and atoms in space. Epithermal chemistry (ETC) is proposed to substitute the old name, since it better fits the energy range as well as the non-thermal and non-equilibrium character of the reactions. ETC also avoids the strong connexion of HAC to nuclear chemistry and stands for the opening of the field to physical chemistry and astrophysics. (orig.)

  6. Hydrogen energy

    International Nuclear Information System (INIS)

    2005-03-01

    This book consists of seven chapters, which deals with hydrogen energy with discover and using of hydrogen, Korean plan for hydrogen economy and background, manufacturing technique on hydrogen like classification and hydrogen manufacture by water splitting, hydrogen storage technique with need and method, hydrogen using technique like fuel cell, hydrogen engine, international trend on involving hydrogen economy, technical current for infrastructure such as hydrogen station and price, regulation, standard, prospect and education for hydrogen safety and system. It has an appendix on related organization with hydrogen and fuel cell.

  7. Mathematical Chemistry

    OpenAIRE

    Trinajstić, Nenad; Gutman, Ivan

    2002-01-01

    A brief description is given of the historical development of mathematics and chemistry. A path leading to the meeting of these two sciences is described. An attempt is made to define mathematical chemistry, and journals containing the term mathematical chemistry in their titles are noted. In conclusion, the statement is made that although chemistry is an experimental science aimed at preparing new compounds and materials, mathematics is very useful in chemistry, among other things, to produc...

  8. ZIF-8 immobilized nickel nanoparticles: highly effective catalysts for hydrogen generation from hydrolysis of ammonia borane.

    Science.gov (United States)

    Li, Pei-Zhou; Aranishi, Kengo; Xu, Qiang

    2012-03-28

    Highly dispersed Ni nanoparticles have been successfully immobilized by the zeolitic metal-organic framework ZIF-8 via sequential deposition-reduction methods, which show high catalytic activity and long durability for hydrogen generation from hydrolysis of aqueous ammonia borane (NH(3)BH(3)) at room temperature. This journal is © The Royal Society of Chemistry 2012

  9. A high-throughput microtiter plate based method for the determination of peracetic acid and hydrogen peroxide.

    Science.gov (United States)

    Putt, Karson S; Pugh, Randall B

    2013-01-01

    Peracetic acid is gaining usage in numerous industries who have found a myriad of uses for its antimicrobial activity. However, rapid high throughput quantitation methods for peracetic acid and hydrogen peroxide are lacking. Herein, we describe the development of a high-throughput microtiter plate based assay based upon the well known and trusted titration chemical reactions. The adaptation of these titration chemistries to rapid plate based absorbance methods for the sequential determination of hydrogen peroxide specifically and the total amount of peroxides present in solution are described. The results of these methods were compared to those of a standard titration and found to be in good agreement. Additionally, the utility of the developed method is demonstrated through the generation of degradation curves of both peracetic acid and hydrogen peroxide in a mixed solution.

  10. Influence of radiolytic products on the chemistry of uranium VI in brines

    International Nuclear Information System (INIS)

    Lucchini, J-F.; Reed, D.T.; Borkowski, M.; Rafalski, A.; Conca, J.

    2004-01-01

    In the near field of a salt repository of nuclear waste, ionizing radiations can strongly affect the chemistry of concentrated saline solutions. Radiolysis can locally modify the redox conditions, speciation, solubility and mobility of the actinide compounds. In the case of uranium VI, radiolytic products can not only reduce U(VI), but also react with uranium species. The net effect on the speciation of uranyl depends on the relative kinetics of the reactions and the buildup of molecular products in brine solutions. The most important molecular products in brines are expected to be hypochlorite ion, hypochlorous acid and hydrogen peroxide. Although U(VI) is expected not to be significantly affected by radiolysis, the combined effects of the major molecular radiolytic products on the chemistry of U(VI) in brines have not been experimentally established previously. (authors)

  11. Getting the chemistry right: protonation, tautomers and the importance of H atoms in biological chemistry.

    Science.gov (United States)

    Bax, Ben; Chung, Chun Wa; Edge, Colin

    2017-02-01

    There are more H atoms than any other type of atom in an X-ray crystal structure of a protein-ligand complex, but as H atoms only have one electron they diffract X-rays weakly and are `hard to see'. The positions of many H atoms can be inferred by our chemical knowledge, and such H atoms can be added with confidence in `riding positions'. For some chemical groups, however, there is more ambiguity over the possible hydrogen placements, for example hydroxyls and groups that can exist in multiple protonation states or tautomeric forms. This ambiguity is far from rare, since about 25% of drugs have more than one tautomeric form. This paper focuses on the most common, `prototropic', tautomers, which are isomers that readily interconvert by the exchange of an H atom accompanied by the switch of a single and an adjacent double bond. Hydrogen-exchange rates and different protonation states of compounds (e.g. buffers) are also briefly discussed. The difference in heavy (non-H) atom positions between two tautomers can be small, and careful refinement of all possible tautomers may single out the likely bound ligand tautomer. Experimental methods to determine H-atom positions, such as neutron crystallography, are often technically challenging. Therefore, chemical knowledge and computational approaches are frequently used in conjugation with experimental data to deduce the bound tautomer state. Proton movement is a key feature of many enzymatic reactions, so understanding the orchestration of hydrogen/proton motion is of critical importance to biological chemistry. For example, structural studies have suggested that, just as a chemist may use heat, some enzymes use directional movement to protonate specific O atoms on phosphates to catalyse phosphotransferase reactions. To inhibit `wriggly' enzymes that use movement to effect catalysis, it may be advantageous to have inhibitors that can maintain favourable contacts by adopting different tautomers as the enzyme `wriggles'.

  12. Late transition metal m-or chemistry and D6 metal complex photoeliminations

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, Paul [Univ. of Missouri, Columbia, MO (United States)

    2015-07-31

    With the goal of understanding and controlling photoreductive elimination reactions from d6 transition metal complexes as part of a solar energy storage cycle we have investigated the photochemistry of Pt(IV) bromo, chloro, hydroxo, and hydroperoxo complexes. Photoreductive elimination reactions occur for all of these complexes and appear to involve initial Pt-Br, Pt-Cl, or Pt-O bond fission. In the case of Pt-OH bond fission, the subsequent chemistry can be controlled through hydrogen bonding to the hydroxo group.

  13. Electrochemical Hydrogen Oxidation in Toluene/LiCB11Me12: H2 as a Surrogate for Lithium Metal?

    Czech Academy of Sciences Publication Activity Database

    Pospíšil, Lubomír; Kaleta, Jiří; Michl, Josef

    2016-01-01

    Roč. 3, č. 2 (2016), s. 332-336 ISSN 2196-0216 R&D Projects: GA ČR GA13-19213S Institutional support: RVO:61388955 ; RVO:61388963 Keywords : electrochemistry * hydrogen * lithium Subject RIV: CG - Electrochemistry; CF - Physical ; Theoretical Chemistry (UOCHB-X) Impact factor: 4.136, year: 2016

  14. Explanation of asymmetric dynamics of human water consumption in arid regions: prospect theory versus expected utility theory

    Science.gov (United States)

    Tian, F.; Lu, Y.

    2017-12-01

    Based on socioeconomic and hydrological data in three arid inland basins and error analysis, the dynamics of human water consumption (HWC) are analyzed to be asymmetric, i.e., HWC increase rapidly in wet periods while maintain or decrease slightly in dry periods. Besides the qualitative analysis that in wet periods great water availability inspires HWC to grow fast but the now expanded economy is managed to sustain by over-exploitation in dry periods, two quantitative models are established and tested, based on expected utility theory (EUT) and prospect theory (PT) respectively. EUT states that humans make decisions based on the total expected utility, namely the sum of utility function multiplied by probability of each result, while PT states that the utility function is defined over gains and losses separately, and probability should be replaced by probability weighting function.

  15. General Astrophysics with the HabEx Workhorse Camera

    Science.gov (United States)

    Stern, Daniel; Clarke, John; Gaudi, B. Scott; Kiessling, Alina; Krause, Oliver; Martin, Stefan; Scowen, Paul; Somerville, Rachel; HabEx STDT

    2018-01-01

    The Habitable Exoplanet Imaging Mission (HabEx) concept has been designed to enable an extensive suite of science, broadly put under the rubric of General Astrophysics, in addition to its exoplanet direct imaging science. General astrophysics directly addresses multiple NASA programmatic branches, and HabEx will enable investigations ranging from cosmology, to galaxy evolution, to stellar population studies, to exoplanet transit spectroscopy, to Solar System studies. This poster briefly describes one of the two primary HabEx General Astrophysics instruments, the HabEx Workhorse Camera (HWC). HWC will be a dual-detector UV-to-near-IR imager and multi-object grism spectrometer with a microshutter array and a moderate (3' x 3') field-of-view. We detail some of the key science we expect HWC to undertake, emphasizing unique capabilities enabled by a large-aperture, highly stable space-borne platform at these wavelengths.

  16. Thermodynamic Cycle and CFD Analyses for Hydrogen Fueled Air-breathing Pulse Detonation Engines

    Science.gov (United States)

    Povinelli, Louis A.; Yungster, Shaye

    2002-01-01

    This paper presents the results of a thermodynamic cycle analysis of a pulse detonation engine (PDE) using a hydrogen-air mixture at static conditions. The cycle performance results, namely the specific thrust, fuel consumption and impulse are compared to a single cycle CFD analysis for a detonation tube which considers finite rate chemistry. The differences in the impulse values were indicative of the additional performance potential attainable in a PDE.

  17. Click chemistry for the conservation of cellular structures and fluorescent proteins: ClickOx.

    Science.gov (United States)

    Löschberger, Anna; Niehörster, Thomas; Sauer, Markus

    2014-05-01

    Reactive oxygen species (ROS), including hydrogen peroxide, are known to cause structural damage not only in living, but also in fixed, cells. Copper-catalyzed azide-alkyne cycloaddition (click chemistry) is known to produce ROS. Therefore, fluorescence imaging of cellular structures, such as the actin cytoskeleton, remains challenging when combined with click chemistry protocols. In addition, the production of ROS substantially weakens the fluorescence signal of fluorescent proteins. This led us to develop ClickOx, which is a new click chemistry protocol for improved conservation of the actin structure and better conservation of the fluorescence signal of green fluorescent protein (GFP)-fusion proteins. Herein we demonstrate that efficient oxygen removal by addition of an enzymatic oxygen scavenger system (ClickOx) considerably reduces ROS-associated damage during labeling of nascent DNA with ATTO 488 azide by Cu(I)-catalyzed click chemistry. Standard confocal and super-resolution fluorescence images of phalloidin-labeled actin filaments and GFP/yellow fluorescent protein-labeled cells verify the conservation of the cytoskeleton microstructure and fluorescence intensity, respectively. Thus, ClickOx can be used advantageously for structure preservation in conventional and most notably in super-resolution microscopy methods. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. A comparison of atmospheric composition using the Carbon Bond and Regional Atmospheric Chemistry Mechanisms

    Directory of Open Access Journals (Sweden)

    G. Sarwar

    2013-10-01

    Full Text Available We incorporate the recently developed Regional Atmospheric Chemistry Mechanism (version 2, RACM2 into the Community Multiscale Air Quality modeling system for comparison with the existing 2005 Carbon Bond mechanism with updated toluene chemistry (CB05TU. Compared to CB05TU, RACM2 enhances the domain-wide monthly mean hydroxyl radical concentrations by 46% and nitric acid by 26%. However, it reduces hydrogen peroxide by 2%, peroxyacetic acid by 94%, methyl hydrogen peroxide by 19%, peroxyacetyl nitrate by 40%, and organic nitrate by 41%. RACM2 enhances ozone compared to CB05TU at all ambient levels. Although it exhibited greater overestimates at lower observed concentrations, it displayed an improved performance at higher observed concentrations. The RACM2 ozone predictions are also supported by increased ozone production efficiency that agrees better with observations. Compared to CB05TU, RACM2 enhances the domain-wide monthly mean sulfate by 10%, nitrate by 6%, ammonium by 10%, anthropogenic secondary organic aerosols by 42%, biogenic secondary organic aerosols by 5%, and in-cloud secondary organic aerosols by 7%. Increased inorganic and organic aerosols with RACM2 agree better with observed data. Any air pollution control strategies developed using the two mechanisms do not differ appreciably.

  19. Indirect measurement of the cooperative hydrogen bonding of polymers using NMR quadrupole relaxation and PFG methods

    Czech Academy of Sciences Publication Activity Database

    Kříž, Jaroslav; Dybal, Jiří

    2008-01-01

    Roč. 265, č. 1 (2008), s. 225-232 ISSN 1022-1360. [European Symposium on Polymer Spectroscopy /17./. Seggauberg Leibnitz, 09.9.2007-12.09.2007] R&D Projects: GA AV ČR IAA400500604 Institutional research plan: CEZ:AV0Z40500505 Keywords : cooperative bonding * hydrogen bond * NMR * poly(4-vinylphenol) Subject RIV: CD - Macromolecular Chemistry

  20. Dynamics of circular hydrogen bond array in calix[4]arene in a nonpolar solvent: A nuclear magnetic resonance study

    Czech Academy of Sciences Publication Activity Database

    Lang, J.; Deckerová, V.; Czernek, Jiří; Lhoták, P.

    2005-01-01

    Roč. 122, - (2005), 044506/1-044506/11 ISSN 0021-9606 R&D Projects: GA AV ČR KJB4050311 Institutional research plan: CEZ:AV0Z40500505 Keywords : hydrogen bonds * organic compounds * spin-spin relaxation Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.138, year: 2005

  1. Intensification of the Use of Ionic Liquids as Efficient Reaction Co-Solvents in Asymmetric Hydrogenations

    Czech Academy of Sciences Publication Activity Database

    Černá, I.; Klusoň, Petr; Bendová, Magdalena; Floriš, Tomáš; Pelantová, Helena; Pekárek, T.

    2011-01-01

    Roč. 50, č. 3 (2011), s. 264-272 ISSN 0255-2701 R&D Projects: GA AV ČR KAN400720701; GA AV ČR IAA400720710 Institutional research plan: CEZ:AV0Z40720504; CEZ:AV0Z50200510 Keywords : Ionic liquids * asymmetric hydrogenations * BmimPF6 Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.924, year: 2011

  2. Introduction to chemistry of crystalline zeolites and its applications

    International Nuclear Information System (INIS)

    Lobo Cabezas, Raul Francisco

    2006-01-01

    Establishes the zeolites as the most important group of solid acids and its relation to the contemporaneous chemical industry. It describes that zeolites are used in the following applications: refineries, chemicals/petrochemicals, environmental chemistry, separation of gas, adsorbent ia and ionic exchange in water purification in mineral processes, medicine and agricultural industry. Zeolites are defined as crystalline aluminium silicates with a compound structure of interconnected tetrahedrons. It mentions the key components in zeolites structure. It focuses that structural basic unity of the zeolite is the tetrahedron and compound structural unities are: cells and columns. Besides, it describes that pore system defines a lot of all its properties; but chemical composition affects them. Composition and properties of zeolites are established: adsorption, molecular sieves, acidity, selectivity, transition state in the hydrocarbon's chemistry. It concludes that the newer application of zeolite is in oxidations: Titanium-Silicate-1; production of propylene's oxide using peroxide of hydrogen as oxidizing. The catalysis is an active area of research, and the most popular areas are related to chemicals and the environment [es

  3. Industrial chemistry engineering

    International Nuclear Information System (INIS)

    1993-01-01

    This book on industrial chemistry engineering is divided in two parts. The first part deals with industrial chemistry, inorganic industrial chemistry, organic industrial chemistry, analytical chemistry and practical questions. The last parts explain the chemical industry, a unit parts and thermodynamics in chemical industry and reference. It reveals the test subjects for the industrial chemistry engineering with a written examination and practical skill.

  4. Bane of Hydrogen-Bond Formation on the Photoinduced Charge-Transfer Process in Donor–Acceptor Systems

    KAUST Repository

    Alsam, Amani Abdu

    2017-03-14

    Controlling the ultrafast dynamical process of photoinduced charge transfer at donor acceptor interfaces remains a major challenge for physical chemistry and solar cell communities. The process is complicated by the involvement of other complex dynamical processes, including hydrogen bond formation, energy transfer, and solvation dynamics occurring on similar time scales. In this study, we explore the remarkable impact of hydrogen-bond formation on the interfacial charge transfer between a negatively charged electron donating anionic porphyrin and a positively charged electron accepting pi-conjugated polymer, as a model system in solvents with different polarities and capabilities for hydiogen bonding using femtosecond transient absorption spectroscopy. Unlike the conventional understanding of the key role of hydrogen bonding in promoting the charge-transfer process, our steadystate and time-resolved results reveal that the intervening hydrogen-bonding environment and, consequently, the probable longer spacing between the donor and acceptor molecules significantly hinders the charge-transfer process between them. These results show that site-specific hydrogen bonding and geometric considerations between donor and acceptor can be exploited to control both the charge-transfer dynamics and its efficiency not only at donor acceptor interfaces but also in complex biological systems.

  5. Advanced chemistry management system to optimize BWR chemistry control

    International Nuclear Information System (INIS)

    Maeda, K.; Nagasawa, K.

    2002-01-01

    BWR plant chemistry control has close relationships among nuclear safety, component reliability, radiation field management and fuel integrity. Advanced technology is required to improve chemistry control [1,3,6,7,10,11]. Toshiba has developed TACMAN (Toshiba Advanced Chemistry Management system) to support BWR chemistry control. The TACMAN has been developed as response to utilities' years of requirements to keep plant operation safety, reliability and cost benefit. The advanced technology built into the TACMAN allows utilities to make efficient chemistry control and to keep cost benefit. TACMAN is currently being used in response to the needs for tools those plant chemists and engineers could use to optimize and identify plant chemistry conditions continuously. If an incipient condition or anomaly is detected at early stage, root causes evaluation and immediate countermeasures can be provided. Especially, the expert system brings numerous and competitive advantages not only to improve plant chemistry reliability but also to standardize and systematize know-how, empirical knowledge and technologies in BWR chemistry This paper shows detail functions of TACMAN and practical results to evaluate actual plant. (authors)

  6. Measurement of dissolved hydrogen and hydrogen gas transfer in a hydrogen-producing reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shizas, I.; Bagley, D.M. [Toronto Univ., ON (Canada). Dept. of Civil Engineering

    2004-07-01

    This paper presents a simple method to measure dissolved hydrogen concentrations in the laboratory using standard equipment and a series of hydrogen gas transfer tests. The method was validated by measuring hydrogen gas transfer parameters for an anaerobic reactor system that was purged with 10 per cent carbon dioxide and 90 per cent nitrogen using a coarse bubble diffuser stone. Liquid samples from the reactor were injected into vials and hydrogen was allowed to partition between the liquid and gaseous phases. The concentration of dissolved hydrogen was determined by comparing the headspace injections onto a gas chromatograph and a standard curve. The detection limit was 1.0 x 10{sup -5} mol/L of dissolved hydrogen. The gas transfer rate for hydrogen in basal medium and anaerobic digester sludge was used to validate the method. Results were compared with gas transfer models. In addition to monitoring dissolved hydrogen in reactor systems, this method can help improve hydrogen production potential. 1 ref., 4 figs.

  7. Annual report of the Osaka Laboratory for Radiation Chemistry, Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    1982-12-01

    This report describes research activities of Osaka Laboratory for Radiation Chemistry, JAERI during one year period from April 1, 1981 through March 31, 1982. The latest report, for 1981, is JAERI-M 9856. Detailed descriptions of the activities are presented in the following subjects: studies on reactions of carbon monoxide, hydrogen and methane; polymerization under the irradiation of high dose rate electron beams; modification of polymers, degradation, cross-linking, and grafting. (author)

  8. Current organic chemistry

    National Research Council Canada - National Science Library

    1997-01-01

    Provides in depth reviews on current progress in the fields of asymmetric synthesis, organometallic chemistry, bioorganic chemistry, heterocyclic chemistry, natural product chemistry, and analytical...

  9. Aquatic Chemistry

    International Nuclear Information System (INIS)

    Kim, Dong Yeun; Kim, Oh Sik; Kim, Chang Guk; Park, Cheong Gil; Lee, Gwi Hyeon; Lee, Cheol Hui

    1987-07-01

    This book deals aquatic chemistry, which treats water and environment, chemical kinetics, chemical balance like dynamical characteristic, and thermodynamics, acid-base chemistry such as summary, definition, kinetics, and PH design for mixture of acid-base chemistry, complex chemistry with definition, and kinetics, precipitation and dissolution on summary, kinetics of precipitation and dissolution, and balance design oxidation and resolution with summary, balance of oxidation and resolution.

  10. Combinatorial chemistry

    DEFF Research Database (Denmark)

    Nielsen, John

    1994-01-01

    An overview of combinatorial chemistry is presented. Combinatorial chemistry, sometimes referred to as `irrational drug design,' involves the generation of molecular diversity. The resulting chemical library is then screened for biologically active compounds.......An overview of combinatorial chemistry is presented. Combinatorial chemistry, sometimes referred to as `irrational drug design,' involves the generation of molecular diversity. The resulting chemical library is then screened for biologically active compounds....

  11. Annual report of the Osaka Laboratory for Radiation Chemistry, Japan Atomic Energy Research Institute, (9)

    International Nuclear Information System (INIS)

    1976-09-01

    This report describes research activities of Osaka Laboratory for Radiation Chemistry, JAERI during one year period from April 1, 1975 through March 31, 1976. The latest report, for 1975, is JAERI-M 6260. Detailed descriptions of the activities are presented in the following subjects: studies on reactions of carbon monoxide and hydrogen; polymerization under the irradiation of high dose rate electron beams; modification of polymers, degradation, cross-linking, and drafting. (auth.)

  12. Forensic Chemistry

    Science.gov (United States)

    Bell, Suzanne

    2009-07-01

    Forensic chemistry is unique among chemical sciences in that its research, practice, and presentation must meet the needs of both the scientific and the legal communities. As such, forensic chemistry research is applied and derivative by nature and design, and it emphasizes metrology (the science of measurement) and validation. Forensic chemistry has moved away from its analytical roots and is incorporating a broader spectrum of chemical sciences. Existing forensic practices are being revisited as the purview of forensic chemistry extends outward from drug analysis and toxicology into such diverse areas as combustion chemistry, materials science, and pattern evidence.

  13. Chemistry-nuclear chemistry division. Progress report, October 1979-September 1980

    International Nuclear Information System (INIS)

    Ryan, R.R.

    1981-05-01

    This report presents the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, element migration and fixation, inorganic chemistry, isotope separation and analysis, atomic and molecular collisions, molecular spectroscopy, muonic x rays, nuclear cosmochemistry, nuclear structure and reactions, radiochemical separations, theoretical chemistry, and unclassified weapons research

  14. Chemistry-nuclear chemistry division. Progress report, October 1979-September 1980

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, R.R. (comp.)

    1981-05-01

    This report presents the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, element migration and fixation, inorganic chemistry, isotope separation and analysis, atomic and molecular collisions, molecular spectroscopy, muonic x rays, nuclear cosmochemistry, nuclear structure and reactions, radiochemical separations, theoretical chemistry, and unclassified weapons research.

  15. Annual report of the Osaka Laboratory for Radiation Chemistry, Japan Atomic Energy Research Institute (No. 8)

    International Nuclear Information System (INIS)

    1975-10-01

    This report describes research activities in Osaka Laboratory for Radiation Chemistry, JAERI during the one year period from April 1, 1974 through March 31, 1975. The major research field covers the following subjects: studies related to reactions of carbon monoxide and hydrogen; polymerization studies under the irradiation of high dose rate electron beams; modification of polymers; fundamental studies on polymerization, degradation, crosslinking, and grafting. (auth.)

  16. Effects of post-stress hydrogen annealing on MOS oxides after 60Co irradiation or Fowler-Nordheim injection

    International Nuclear Information System (INIS)

    Saks, N.S.; Stahlbush, R.E.; Mrstik, B.J.; Rendell, R.W.; Klein, R.B.

    1993-01-01

    Changes in interface trap density D it have been determined in MOSFETs as a function of time during hydrogen annealing at 295K. Large increases in D it are observed during H 2 annealing in MOSFETs previously stressed by either 60 Co irradiation or Fowler-Nordheim electron injection. The annealing behavior is very similar for both types of stress, which suggests that the D it creation mechanism involves similar chemistry for hydrogen reactions. Studies of the time dependence of D it creation as a function of MOSFET gate length show that the time dependence is limited primarily by lateral diffusion of molecular hydrogen (H 2 ) through the gate oxide. An activation energy of 0.57 eV, which is consistent with H 2 diffusion, is obtained from the temperature dependence

  17. The Brazilian medicinal chemistry from 1998 to 2008 in the Journal of Medicinal Chemistry, Bioorganic and Medicinal Chemistry, Bioorganic and Medicinal Chemistry Letters and European Journal of Medicinal Chemistry [A química medicinal brasileira de 1998 a 2008 nos periódicos Journal of Medicinal Chemistry, Bioorganic and Medicinal Chemistry, Bioorganic and Medicinal Chemistry Letters e European Journal of Medicinal Chemistry

    OpenAIRE

    Bárbara Vasconcellos da Silva; Renato Saldanha Bastos; Angelo da Cunha Pinto

    2009-01-01

    In this article we present the Brazilian publications, the research groups involved, the contributions per states and the main diseases studied from 1998 to 2008 in the following periodicals: Journal of Medicinal Chemistry, Bioorganic and Medicinal Chemistry, Bioorganic and Medicinal Chemistry Letters and European Journal of Medicinal Chemistry.

  18. Interaction of hydrogen and oxygen with bulk defects and surfaces of metals

    International Nuclear Information System (INIS)

    Besenbacher, F.

    1994-05-01

    The thesis deals with the interaction of hydrogen with defects in metals and the interaction of hydrogen and oxygen with metal surfaces studied by ion-beam techniques and scanning tunneling microscopy (STM), respectively. The first part of the thesis discusses the interaction of hydrogen with simple defects in transition metals. The trap-binding enthalpies and the lattice location of hydrogen trapped to vacancies have been determined, and an extremely simple and versatile picture of the hydrogen-metal interaction has evolved, in which the trap strength is mainly determined by the local electron density. Any dilution of the lattice will lead to a trap, vacancies and voids being the strongest trap. It is found that hydrogen trapped to vacancies in fcc metals is quantum-mechanically delocalized, and the excitation energies for the hydrogen in the vacancy potential are a few MeV only. The interaction of hydrogen with metal surfaces is studied by the transmission channeling (TC) technique. It is found that hydrogen chemisorbs in the highest-coordinated sites on the surfaces, and that there is a direct relationship between the hydrogen-metal bond length and the coordination number for the hydrogen. In the final part of the thesis the dynamics of the chemisorption process for oxygen and hydrogen on metal surfaces is studied by STM, a fascinating and powerful technique for exploring the atomic-scale realm of surfaces. It is found that there is a strong coupling between the chemisorption process and the distortion of the metal surface. The adsorbates induce a surface reconstruction, i.e. metal-metal bond breaks and metal-adsorbate bounds form. Whereas hydrogen interacts weakly with the metals and induces reconstructions where only nnn metals bonds are broken, oxygen interacts strongly with the metal, and the driving force for the O-induced reconstructions appears to be the formation of low-coordinated metal-O rows, formed by breaking of nn metal bonds. Finally it is shown

  19. Reaction of O+, CO+, and CH+ ions with atomic hydrogen

    International Nuclear Information System (INIS)

    Federer, W.; Villinger, H.; Howorka, F.; Lindinger, W.; Tosis, P.; Bassi, D.; Ferguson, E.

    1984-01-01

    Rate coefficients for reactions of the ions O + , CO + , and CH + with atomic hydrogen have been measured for the first time at 300 K. This provides basic data for the ion chemistry of planetary atmospheres, cometary atmospheres, and interstellar molecular clouds. The O + +H measurement supports quantal calculations of this reaction. The CO + +H reaction provides an example of partial spin nonconservation in a charge-transfer reaction occurring in a deep potential well. Reactions of the same ions with H 2 that have been measured elsewhere are also reported

  20. Advancing a new evidence-based professional in health care: job task analysis for health and wellness coaches.

    Science.gov (United States)

    Wolever, Ruth Q; Jordan, Meg; Lawson, Karen; Moore, Margaret

    2016-06-27

    The pressing need to manage burgeoning chronic disease has led to the emergence of job roles such as health and wellness coaches (HWCs). As use of this title has increased dramatically, so has the need to ensure consistency, quality and safety for health and wellness coaching (HWC) provided in both practice and research. Clear and uniform role definitions and competencies are required to ensure appropriate scope of practice, to allow best practices to emerge, and to support the implementation of well-designed, large scale studies to accumulate a rigorous evidence base. Since the nascent field is replete with heterogeneity in terms of role delineations and competencies, a collaborative volunteer non-profit organization, the National Consortium for Credentialing Health and Wellness Coaches (NCCHWC), has been built over the past six years to support professionalization of the field. In 2014, a professionally led Job Task Analysis (JTA) was conducted with 15 carefully selected subject matter experts (SMEs) with diverse education and professional backgrounds who were practicing HWC in a wide variety of settings. After establishing a thorough list of specific tasks employed during HWC, the expert panel discussed the knowledge and skills necessary to competently perform the tasks. Subsequently, a large validation survey assessed the relative importance and frequency of each identified job task in conducting HWC. The JTA identified 21 job tasks as essential to HWC. In the subsequent validation survey, 4026 practicing health and wellness coaches were invited to rate each of the 21 job tasks in terms of their importance and frequency. A response rate of 25.6 % provided a diverse sample (n = 1031) in terms of background, and represented a wide variety of training programs from academia, industry, the private sector and associations. Per best practices, the subset of practicing HWCs (n = 885) provided importance and frequency ratings to be used to calculate task and

  1. A high-throughput microtiter plate based method for the determination of peracetic acid and hydrogen peroxide.

    Directory of Open Access Journals (Sweden)

    Karson S Putt

    Full Text Available Peracetic acid is gaining usage in numerous industries who have found a myriad of uses for its antimicrobial activity. However, rapid high throughput quantitation methods for peracetic acid and hydrogen peroxide are lacking. Herein, we describe the development of a high-throughput microtiter plate based assay based upon the well known and trusted titration chemical reactions. The adaptation of these titration chemistries to rapid plate based absorbance methods for the sequential determination of hydrogen peroxide specifically and the total amount of peroxides present in solution are described. The results of these methods were compared to those of a standard titration and found to be in good agreement. Additionally, the utility of the developed method is demonstrated through the generation of degradation curves of both peracetic acid and hydrogen peroxide in a mixed solution.

  2. Bad chemistry

    OpenAIRE

    Petsko, Gregory A

    2004-01-01

    General chemistry courses haven't changed significantly in forty years. Because most basic chemistry students are premedical students, medical schools have enormous influence and could help us start all over again to create undergraduate chemistry education that works.

  3. Dependence of hydrogen-induced lattice defects and hydrogen embrittlement of cold-drawn pearlitic steels on hydrogen trap state, temperature, strain rate and hydrogen content

    International Nuclear Information System (INIS)

    Doshida, Tomoki; Takai, Kenichi

    2014-01-01

    The effects of the hydrogen state, temperature, strain rate and hydrogen content on hydrogen embrittlement susceptibility and hydrogen-induced lattice defects were evaluated for cold-drawn pearlitic steel that absorbed hydrogen in two trapping states. Firstly, tensile tests were carried out under various conditions to evaluate hydrogen embrittlement susceptibility. The results showed that peak 2 hydrogen, desorbed at temperatures above 200 °C as determined by thermal desorption analysis (TDA), had no significant effect on hydrogen embrittlement susceptibility. In contrast, hydrogen embrittlement susceptibility increased in the presence of peak 1 hydrogen, desorbed from room temperature to 200 °C as determined by TDA, at temperatures higher than −30 °C, at lower strain rates and with higher hydrogen content. Next, the same effects on hydrogen-induced lattice defects were also evaluated by TDA using hydrogen as a probe. Peak 2 hydrogen showed no significant effect on either hydrogen-induced lattice defects or hydrogen embrittlement susceptibility. It was found that hydrogen-induced lattice defects formed under the conditions where hydrogen embrittlement susceptibility increased. This relationship indicates that hydrogen embrittlement susceptibility was higher under the conditions where the formation of hydrogen-induced lattice defects tended to be enhanced. Since hydrogen-induced lattice defects formed by the interaction between hydrogen and strain were annihilated by annealing at a temperature of 200 °C, they were presumably vacancies or vacancy clusters. One of the common atomic-level changes that occur in cold-drawn pearlitic steel showing higher hydrogen embrittlement susceptibility is the formation of vacancies and vacancy clusters

  4. Positronium chemistry

    CERN Document Server

    Green, James

    1964-01-01

    Positronium Chemistry focuses on the methodologies, reactions, processes, and transformations involved in positronium chemistry. The publication first offers information on positrons and positronium and experimental methods, including mesonic atoms, angular correlation measurements, annihilation spectra, and statistical errors in delayed coincidence measurements. The text then ponders on positrons in gases and solids. The manuscript takes a look at the theoretical chemistry of positronium and positronium chemistry in gases. Topics include quenching, annihilation spectrum, delayed coincidence

  5. Reaction of Hydrogen Chloride Gas with Sodium Carbonate and Its Deep Removal in a Fixed-Bed Reactor

    Czech Academy of Sciences Publication Activity Database

    Hartman, Miloslav; Svoboda, Karel; Pohořelý, Michael; Šyc, Michal; Chen, Po-Ch.

    2014-01-01

    Roč. 53, č. 49 (2014), s. 19145-19158 ISSN 0888-5885 R&D Projects: GA ČR GC14-09692J Grant - others:NSC(TW) 102WBS0300011 Institutional support: RVO:67985858 Keywords : hot fuel gas purification * hydrogen chloride gas * active sodium carbonate Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.587, year: 2014

  6. Hydrogen sensor

    Science.gov (United States)

    Duan, Yixiang; Jia, Quanxi; Cao, Wenqing

    2010-11-23

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  7. Exploring the effects of spatial autocorrelation when identifying key drivers of wildlife crop-raiding.

    Science.gov (United States)

    Songhurst, Anna; Coulson, Tim

    2014-03-01

    Few universal trends in spatial patterns of wildlife crop-raiding have been found. Variations in wildlife ecology and movements, and human spatial use have been identified as causes of this apparent unpredictability. However, varying spatial patterns of spatial autocorrelation (SA) in human-wildlife conflict (HWC) data could also contribute. We explicitly explore the effects of SA on wildlife crop-raiding data in order to facilitate the design of future HWC studies. We conducted a comparative survey of raided and nonraided fields to determine key drivers of crop-raiding. Data were subsampled at different spatial scales to select independent raiding data points. The model derived from all data was fitted to subsample data sets. Model parameters from these models were compared to determine the effect of SA. Most methods used to account for SA in data attempt to correct for the change in P-values; yet, by subsampling data at broader spatial scales, we identified changes in regression estimates. We consequently advocate reporting both model parameters across a range of spatial scales to help biological interpretation. Patterns of SA vary spatially in our crop-raiding data. Spatial distribution of fields should therefore be considered when choosing the spatial scale for analyses of HWC studies. Robust key drivers of elephant crop-raiding included raiding history of a field and distance of field to a main elephant pathway. Understanding spatial patterns and determining reliable socio-ecological drivers of wildlife crop-raiding is paramount for designing mitigation and land-use planning strategies to reduce HWC. Spatial patterns of HWC are complex, determined by multiple factors acting at more than one scale; therefore, studies need to be designed with an understanding of the effects of SA. Our methods are accessible to a variety of practitioners to assess the effects of SA, thereby improving the reliability of conservation management actions.

  8. Non-thermally activated chemistry

    International Nuclear Information System (INIS)

    Stiller, W.

    1987-01-01

    The subject is covered under the following headings: state-of-the art of non-thermally activated chemical processes; basic phenomena in non-thermal chemistry including mechanochemistry, photochemistry, laser chemistry, electrochemistry, photo-electro chemistry, high-field chemistry, magneto chemistry, plasma chemistry, radiation chemistry, hot-atom chemistry, and positronium and muonium chemistry; elementary processes in non-thermal chemistry including nuclear chemistry, interactions of electromagnetic radiations, electrons and heavy particles with matter, ionic elementary processes, elementary processes with excited species, radicalic elementary processes, and energy-induced elementary processes on surfaces and interfaces; and comparative considerations. An appendix with historical data and a subject index is given. 44 figs., 41 tabs., and 544 refs

  9. Radiation chemistry of water at low dose rates with emphasis on the energy balance

    International Nuclear Information System (INIS)

    Fletcher, J.W.

    1982-09-01

    There has been considerable interest in absorbed dose water calorimetry. In order to accurately relate the temperature change to the absorbed dose, the energy balance of the overall chemistry of the system must be known. The radiolytic products and their yields are affected by dose rate, dose and added solutes. The yields of the radiolytic products have been calculated using a computer program developed at Atomic Energy of Canada. The chemical energy balance was determined as a function of dose for various dose rates and initial concentrations of hydrogen (H 2 ), oxygen (O 2 ), and hydrogen peroxide (H 2 O 2 ). In solutions containing H 2 O 2 or O 2 and H 2 the chemical reactions were exothermic; in other cases they were endothermic. Approach to equilibrium and equilbrium conditions are discussed

  10. Microscopic characterization of pretransition oxide formed on Zr–Nb–Sn alloy under various Zn and dissolved hydrogen concentrations

    Directory of Open Access Journals (Sweden)

    Sungyu Kim

    2018-04-01

    Full Text Available Microstructure of oxide formed on Zr–Nb–Sn tube sample was intensively examined by scanning transmission electron microscopy after exposure to simulated primary water chemistry conditions of various concentrations of Zn (0 or 30 ppb and dissolved hydrogen (H2 (30 or 50 cc/kg for various durations without applying desirable heat flux. Microstructural analysis indicated that there was no noticeable change in the microstructure of the oxide corresponding to water chemistry changes within the test duration of 100 days (pretransition stage and no significant difference in the overall thickness of the oxide layer. Equiaxed grains with nano-size pores along the grain boundaries and microcracks were dominant near the water/oxide interface, regardless of water chemistry conditions. As the metal/oxide interface was approached, the number of pores tended to decrease. However, there was no significant effect of H2 concentration between 30 cc/kg and 50 cc/kg on the corrosion of the oxide after free immersion in water at 360°C. The adsorption of Zn on the cladding surface was observed by X-ray photoelectron spectroscopy and detected as ZnO on the outer oxide surface. From the perspective of OH− ion diffusion and porosity formation, the absence of noticeable effects was discussed further. Keywords: Dissolved Hydrogen Effect, Porosity, Pretransition Oxide, Transmission Electron Microscopy (TEM, Zirconium Alloys

  11. Hail hydrogen

    International Nuclear Information System (INIS)

    Hairston, D.

    1996-01-01

    After years of being scorned and maligned, hydrogen is finding favor in environmental and process applications. There is enormous demand for the industrial gas from petroleum refiners, who need in creasing amounts of hydrogen to remove sulfur and other contaminants from crude oil. In pulp and paper mills, hydrogen is turning up as hydrogen peroxide, displacing bleaching agents based on chlorine. Now, new technologies for making hydrogen have the industry abuzz. With better capabilities of being generated onsite at higher purity levels, recycled and reused, hydrogen is being prepped for a range of applications, from waste reduction to purification of Nylon 6 and hydrogenation of specialty chemicals. The paper discusses the strong market demand for hydrogen, easier routes being developed for hydrogen production, and the use of hydrogen in the future

  12. The Effects of Added Hydrogen on Noble Gas Discharges Used as Ambient Desorption/Ionization Sources for Mass Spectrometry

    Science.gov (United States)

    Ellis, Wade C.; Lewis, Charlotte R.; Openshaw, Anna P.; Farnsworth, Paul B.

    2016-09-01

    We demonstrate the effectiveness of using hydrogen-doped argon as the support gas for the dielectric barrier discharge (DBD) ambient desorption/ionization (ADI) source in mass spectrometry. Also, we explore the chemistry responsible for the signal enhancement observed when using both hydrogen-doped argon and hydrogen-doped helium. The hydrogen-doped argon was tested for five analytes representing different classes of molecules. Addition of hydrogen to the argon plasma gas enhanced signals for gas-phase analytes and for analytes coated onto glass slides in positive and negative ion mode. The enhancements ranged from factors of 4 to 5 for gas-phase analytes and factors of 2 to 40 for coated slides. There was no significant increase in the background. The limit of detection for caffeine was lowered by a factor of 79 using H2/Ar and 2 using H2/He. Results are shown that help explain the fundamental differences between the pure-gas discharges and those that are hydrogen-doped for both argon and helium. Experiments with different discharge geometries and grounding schemes indicate that observed signal enhancements are strongly dependent on discharge configuration.

  13. Green chemistry: A tool in Pharmaceutical Chemistry

    OpenAIRE

    Smita Talaviya; Falguni Majumdar

    2012-01-01

    Green chemistry expresses an area of research developing from scientific discoveries about pollution awareness and it utilizes a set of principles that reduces or eliminates the use or generation of hazardous substances in all steps of particular synthesis or process. Chemists and medicinal scientists can greatly reduce the risk to human health and the environment by following all the valuable principles of green chemistry. The most simple and direct way to apply green chemistry in pharmaceut...

  14. Achievement report on research and development in the Sunshine Project in fiscal 1977. Hydrogen energy; 1977 nendo seika hokokusho gaiyoshu. Suiso energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-04-01

    This paper summarizes achievements in the Sunshine Project related to hydrogen energy in fiscal 1977. In the electrolytic process in hydrogen manufacturing technologies, new composite materials are developed in relation with membranes and electrodes as the high temperature and pressure water decomposition method. A bench-scale water decomposition tank using organic polymer ion exchange membranes is fabricated on a trial basis and tested for studying solid electrolyte decomposition method. In hydrogen manufacturing technologies using thermo-chemical process, discussions are being given on cycles of iron systems, iodine systems and hybrid systems (mixture of thermo and photo chemistry and electrochemistry). For hydrogen transporting and storing technologies, metal hydrides most suitable for hydrogen storage are developed, and storage systems are studied. In hydrogen combustion, elucidation is made on fundamental conditions for mixed and single combustion technologies suitable for prevention of reverse ignition and suppression of NOx generation. Studies are also being made on fuel cells using aqueous solution and solid electrolytes. Studies on hydrogen fueled engines are also described. In hydrogen safety assuring technologies, discussions are being given on prevention of explosion disasters, prevention of embrittlement of materials due to hydrogen and criteria for safety assuring technologies. Descriptions are given also on studies on total hydrogen energy systems and hydrogen fueled automobiles. (NEDO)

  15. Does fluoride disrupt hydrogen bond network in cationic lipid bilayer? Time-dependent fluorescence shift of Laurdan and molecular dynamics simulations

    Czech Academy of Sciences Publication Activity Database

    Pokorná, Šárka; Jurkiewicz, Piotr; Vazdar, M.; Cwiklik, Lukasz; Jungwirth, Pavel; Hof, Martin

    2014-01-01

    Roč. 141, č. 22 (2014), 22D516 ISSN 0021-9606 R&D Projects: GA ČR GBP208/12/G016 Institutional support: RVO:61388955 ; RVO:61388963 Keywords : fluorescence sfifts * Cationic lipids * Hydrogen bond networks Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.952, year: 2014

  16. Annual report of the Osaka Laboratory for Radiation Chemistry Japan Atomic Energy Research Institute, (13)

    International Nuclear Information System (INIS)

    1980-11-01

    This report describes research activities of Osaka Laboratory for Radiation Chemistry, JAERI during one year period from April 1, 1979 through March 31, 1980. The latest report, for 1979, is JAERI-M 8569. Detailed descriptions of the activities are presented in the following subjects: studies on reactions of carbon monoxide, hydrogen and methane; polymerization under the irradiation of high dose rate electron beams; modification of polymers, degradation, cross-linking, and grafting. (author)

  17. Annual report of the Osaka Laboratory for Radiation Chemistry, Japan Atomic Energy Research Institute, 14

    International Nuclear Information System (INIS)

    1981-12-01

    This report describes research activities of Osaka Laboratory for Radiation Chemistry, JAERI during one year period from April 1, 1980 through March 31, 1981. The latest report, for 1980, is JAERI-M 9214. Detailed descriptions of the activities are presented in the following subjects: studies on reactions of carbon monoxide, hydrogen and methane; polymerization under the irradiation of high dose rate electron beams; modification of polymers, degradation, cross-linking, and grafting. (author)

  18. Hydrogen isotope fractionation in methane plasma

    Science.gov (United States)

    Robert, François; Derenne, Sylvie; Lombardi, Guillaume; Hassouni, Khaled; Michau, Armelle; Reinhardt, Peter; Duhamel, Rémi; Gonzalez, Adriana; Biron, Kasia

    2017-01-01

    The hydrogen isotope ratio (D/H) is commonly used to reconstruct the chemical processes at the origin of water and organic compounds in the early solar system. On the one hand, the large enrichments in deuterium of the insoluble organic matter (IOM) isolated from the carbonaceous meteorites are interpreted as a heritage of the interstellar medium or resulting from ion-molecule reactions taking place in the diffuse part of the protosolar nebula. On the other hand, the molecular structure of this IOM suggests that organic radicals have played a central role in a gas-phase organosynthesis. So as to reproduce this type of chemistry between organic radicals, experiments based on a microwave plasma of CH4 have been performed. They yielded a black organic residue in which ion microprobe analyses revealed hydrogen isotopic anomalies at a submicrometric spatial resolution. They likely reflect differences in the D/H ratios between the various CHx radicals whose polymerization is at the origin of the IOM. These isotopic heterogeneities, usually referred to as hot and cold spots, are commensurable with those observed in meteorite IOM. As a consequence, the appearance of organic radicals in the ionized regions of the disk surrounding the Sun during its formation may have triggered the formation of organic compounds.

  19. REFLECTIVE APPROACH IN TEACHING PRE-DEGREE CHEMISTRY

    Directory of Open Access Journals (Sweden)

    B. Venkateswara RAO

    2009-04-01

    Full Text Available The study is a component of a larger investigation that focuses on exemplary practice in chemistry education. This case study involves an investigation of a chemistry teacher in two years intermediate education in Vijayawada, Andhra Pradesh, India. The study utilized an interpretive methodology in which the questions emerged from intensive observations of chemistry lessons in classes taught by a teacher. The principal finding was that a teacher focused on teaching for understanding. Once teacher tended to emphasize whole-class activities while the other times he utilized more small-group and individualized activities. The teacher was successful in his goal of teaching for understanding because he was effective classroom manager and he had strong science content knowledge that enabled him to focus on instructional strategies that facilitated student understanding. He asked appropriate questions, responded to student questions, and used effective cognitive monitoring strategies. The teacher was able to teach effectively because he had adequate content knowledge and pedagogical content knowledge. Researcher adopted the method of action research to class room teaching where a classroom event triggers the process of reflection followed by critical analysis of the event which leads to change and subsequent reflection to observe that change and so on. He has taken two different texts to teach students. Out of two texts, one is explaining the metallurgy of Magnesium. In that case, he was successful as a teacher when he adopted comparative method of teaching metallurgy of Magnesium rather than the traditional method of teaching. The other one is explaining the properties of Hydrogen peroxide. In this case he was successful as a teacher by adopting discussion, interaction and discussion method.

  20. An ideal teaching program of nuclear chemistry in the undergraduate chemistry curriculum

    International Nuclear Information System (INIS)

    Uenak, T.

    2009-01-01

    It is well known that several reports on the common educational problems of nuclear chemistry have been prepared by certain groups of experts from time to time. According to very important statements in these reports, nuclear chemistry and related courses generally do not take sufficient importance in undergraduate chemistry curricula and it was generally proposed that nuclear chemistry and related courses should be introduced into undergraduate chemistry curricula at universities worldwide. Starting from these statements, an ideal program in an undergraduate chemistry curriculum was proposed to be introduced into the undergraduate chemistry program at the Department of Chemistry, Ege University, in Izmir, Turkey during the regular updating of the chemistry curriculum. Thus, it has been believed that this Department of Chemistry has recently gained an ideal teaching program in the field of nuclear chemistry and its applications in scientific, industrial, and medical sectors. In this contribution, the details of this program will be discussed. (author)

  1. Excess Adsorption Isotherms of Hydrogen on Activated Carbons from Agricultural Waste Materials.

    Czech Academy of Sciences Publication Activity Database

    Soukup, Karel; Hejtmánek, Vladimír; Cruz, G.J.F.; Jandová, Věra; Šolcová, Olga

    2017-01-01

    Roč. 40, č. 5 (2017), s. 900-906 ISSN 0930-7516. [International Congress of Chemical and Process Engineering CHISA 2016 and the 19th Conference PRES 2016 /22./. Prague, 27.08.2016-31.08.2016] R&D Projects: GA ČR GA15-14228S Grant - others:NUT(PE) 0722-2014/UNT-R Institutional support: RVO:67985858 Keywords : activated carbon * hydrogen * excess adsorption Subject RIV: CI - Industrial Chemistry, Chemical Engineering OBOR OECD: Chemical process engineering Impact factor: 2.051, year: 2016

  2. A systematic structural study of halogen bonding versus hydrogen bonding within competitive supramolecular systems

    Directory of Open Access Journals (Sweden)

    Christer B. Aakeröy

    2015-09-01

    Full Text Available As halogen bonds gain prevalence in supramolecular synthesis and materials chemistry, it has become necessary to examine more closely how such interactions compete with or complement hydrogen bonds whenever both are present within the same system. As hydrogen and halogen bonds have several fundamental features in common, it is often difficult to predict which will be the primary interaction in a supramolecular system, especially as they have comparable strength and geometric requirements. To address this challenge, a series of molecules containing both hydrogen- and halogen-bond donors were co-crystallized with various monotopic, ditopic symmetric and ditopic asymmetric acceptor molecules. The outcome of each reaction was examined using IR spectroscopy and, whenever possible, single-crystal X-ray diffraction. 24 crystal structures were obtained and subsequently analyzed, and the synthon preferences of the competing hydrogen- and halogen-bond donors were rationalized against a background of calculated molecular electrostatic potential values. It has been shown that readily accessible electrostatic potentials can offer useful practical guidelines for predicting the most likely primary synthons in these co-crystals as long as the potential differences are weighted appropriately.

  3. Annual report of the Osaka Laboratory for Radiation Chemistry, Japan Atomic Energy Research Institute, (no. 11)

    International Nuclear Information System (INIS)

    1978-10-01

    This report describes research activities of Osaka Laboratory for Radiation Chemistry, JAERI during one year period from April 1, 1977 through March 31, 1978. The latest report, for 1977, is JAERI-M 7355. Detailed descriptions of the activities are presented in the following subjects: studies on reactions of carbon monoxide and hydrogen; polymerization under the irradiation of high dose rate electron beams; modification of polymers, degradation, cross-linking, and grafting. (author)

  4. Annual report of the Osaka Laboratory for Radiation Chemistry Japan Atomic Energy Research Institute, No. 10

    International Nuclear Information System (INIS)

    1977-10-01

    This report describes research activities of Osaka Laboratory for Radiation Chemistry, JAERI during one year period from April 1, 1976 through March 31, 1977. The latest report, for 1976, is JAERI-M 6702. Detailed descriptions of the activities are presented in the following subjects: studies on reactions of carbon monoxide and hydrogen; polymerization under the irradiation of high dose rate electron beams; modification of polymers, degradation, cross-linking, and grafting. (auth.)

  5. Effect of fullerenol surface chemistry on nanoparticle binding-induced protein misfolding

    Science.gov (United States)

    Radic, Slaven; Nedumpully-Govindan, Praveen; Chen, Ran; Salonen, Emppu; Brown, Jared M.; Ke, Pu Chun; Ding, Feng

    2014-06-01

    Fullerene and its derivatives with different surface chemistry have great potential in biomedical applications. Accordingly, it is important to delineate the impact of these carbon-based nanoparticles on protein structure, dynamics, and subsequently function. Here, we focused on the effect of hydroxylation -- a common strategy for solubilizing and functionalizing fullerene -- on protein-nanoparticle interactions using a model protein, ubiquitin. We applied a set of complementary computational modeling methods, including docking and molecular dynamics simulations with both explicit and implicit solvent, to illustrate the impact of hydroxylated fullerenes on the structure and dynamics of ubiquitin. We found that all derivatives bound to the model protein. Specifically, the more hydrophilic nanoparticles with a higher number of hydroxyl groups bound to the surface of the protein via hydrogen bonds, which stabilized the protein without inducing large conformational changes in the protein structure. In contrast, fullerene derivatives with a smaller number of hydroxyl groups buried their hydrophobic surface inside the protein, thereby causing protein denaturation. Overall, our results revealed a distinct role of surface chemistry on nanoparticle-protein binding and binding-induced protein misfolding.Fullerene and its derivatives with different surface chemistry have great potential in biomedical applications. Accordingly, it is important to delineate the impact of these carbon-based nanoparticles on protein structure, dynamics, and subsequently function. Here, we focused on the effect of hydroxylation -- a common strategy for solubilizing and functionalizing fullerene -- on protein-nanoparticle interactions using a model protein, ubiquitin. We applied a set of complementary computational modeling methods, including docking and molecular dynamics simulations with both explicit and implicit solvent, to illustrate the impact of hydroxylated fullerenes on the structure and

  6. Molecular and ionic hydrogen bond formation in fluorous solvents.

    Science.gov (United States)

    O'Neal, Kristi L; Weber, Stephen G

    2009-01-08

    There are only a few studies of noncovalent association in fluorous solvents and even fewer that are quantitative. A full understanding, particularly of stoichiometry and binding strength of noncovalent interactions in fluorous solvents could be very useful in improved molecular-receptor-based extractions, advancements in sensor technologies, crystal engineering, and supramolecular chemistry. This work investigates hydrogen bonding between heterocyclic bases and a perfluoropolyether with a terminal carboxylic acid group (Krytox 157FSH (1)), chiefly in FC-72 (a mixture of perfluorohexanes). In particular, we were interested in whether or not proton transfer occurs, and if so, under what conditions in H-bonded complexes. Continuous variations experiments show that in FC-72 weaker bases (pyrazine, pyrimidine, and quinazoline) form 1:1 complexes with 1, whereas stronger bases (quinoline, pyridine, and isoquinoline) form 1:3 complexes. Ultraviolet and infrared spectral signatures reveal that the 1:1 complexes are molecular (B.HA) whereas the 1:3 complexes are ionic (BH+.A-HAHA). Infrared spectra of 1:3 ionic complexes are discussed in detail. Literature and experimental data on complexes between N-heterocyclic bases and carboxylic acids in a range of solvents are compiled to compare solvent effects on proton transfer. Polar solvents support ionic hydrogen bonds at a 1:1 mol ratio. In nonpolar organic solvents, ionic hydrogen bonds are only observed in complexes with 1:2 (base/acid) stoichiometries. In fluorous solvents, a larger excess of acid, 1:3, is necessary to facilitate proton transfer in hydrogen bonds between carboxylic acids and the bases studied.

  7. One-step reduced kinetics for lean hydrogen-air deflagration

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Galisteo, D.; Sanchez, A.L. [Area de Mecanica de Fluidos, Univ. Carlos III de Madrid, Leganes 28911 (Spain); Linan, A. [ETSI Aeronauticos, Pl. Cardenal Cisneros 3, Madrid 28040 (Spain); Williams, F.A. [Dept. of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093-0411 (United States)

    2009-05-15

    A short mechanism consisting of seven elementary reactions, of which only three are reversible, is shown to provide good predictions of hydrogen-air lean-flame burning velocities. This mechanism is further simplified by noting that over a range of conditions of practical interest, near the lean flammability limit all reaction intermediaries have small concentrations in the important thin reaction zone that controls the hydrogen-air laminar burning velocity and therefore follow a steady state approximation, while the main species react according to the global irreversible reaction 2H{sub 2} + O{sub 2} {yields} 2H{sub 2}O. An explicit expression for the non-Arrhenius rate of this one-step overall reaction for hydrogen oxidation is derived from the seven-step detailed mechanism, for application near the flammability limit. The one-step results are used to calculate flammability limits and burning velocities of planar deflagrations. Furthermore, implications concerning radical profiles in the deflagration and reasons for the success of the approximations are clarified. It is also demonstrated that adding only two irreversible direct recombination steps to the seven-step mechanism accurately reproduces burning velocities of the full detailed mechanism for all equivalence ratios at normal atmospheric conditions and that an eight-step detailed mechanism, constructed from the seven-step mechanism by adding to it the fourth reversible shuffle reaction, improves predictions of O and OH profiles. The new reduced-chemistry descriptions can be useful for both analytical and computational studies of lean hydrogen-air flames, decreasing required computation times. (author)

  8. A novel non-sequential hydrogen-pulsed deep reactive ion etching of silicon

    International Nuclear Information System (INIS)

    Gharooni, M; Mohajerzadeh, A; Sandoughsaz, A; Khanof, S; Mohajerzadeh, S; Asl-Soleimani, E

    2013-01-01

    A non-sequential pulsed-mode deep reactive ion etching of silicon is reported that employs continuous etching and passivation based on SF 6 and H 2 gases. The passivation layer, as an important step for deep vertical etching of silicon, is feasible by hydrogen pulses in proper time-slots. By adjusting the etching parameters such as plasma power, H 2 and SF 6 flows and hydrogen pulse timing, the process can be controlled for minimum underetch and high etch-rate at the same time. High-aspect-ratio features can be realized with low-density plasma power and by controlling the reaction chemistry. The so-called reactive ion etching lag has been minimized by operating the reactor at higher pressures. X-ray photoelectron spectroscopy and scanning electron microscopy have been used to study the formation of the passivation layer and the passivation mechanism. (paper)

  9. Influence of temperature, hydrogen and boric acid concentration on IGSCC susceptibility of unsensitized 316 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Arioka, Koji [Inst. of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2002-09-01

    IGSCC susceptibility of unsensitized 316SS under PWR primary water was studied as a function of solution temperature, dissolved hydrogen, and boric acid concentration by SSRT test using specimens with cold deformed hump. IGSCC growth rate was dependent on temperature and the obtained activation energy was 21.6K cal/mol. Regarding the influence of dissolved hydrogen, there was a simple monotonic increase in crack growth rate with the increasing hydrogen concentration within the PWR primary water chemistry specifications. Also, there was a remarkable difference in IGSCC susceptibility with regard to the effect to boric acid concentration. Within the tested concentration, the IGSCC susceptibility under high concentrated boric acid solution (2300ppm B) was inhibited in comparison with that under 500ppm B. These temperature and dissolved hydrogen dependencies of IGSCC susceptibility were similar to the literature on published data on irradiated 316SS. Although further study is required to clarify the mechanism, however the similarity of the dependencies suggests that the rate-limited IGSCC process of un-irradiated 316SS is related to that of IASCC. (author)

  10. Hydrogen molecules and hydrogen-related defects in crystalline silicon

    Science.gov (United States)

    Fukata, N.; Sasaki, S.; Murakami, K.; Ishioka, K.; Nakamura, K. G.; Kitajima, M.; Fujimura, S.; Kikuchi, J.; Haneda, H.

    1997-09-01

    We have found that hydrogen exists in molecular form in crystalline silicon treated with hydrogen atoms in the downstream of a hydrogen plasma. The vibrational Raman line of hydrogen molecules is observed at 4158 cm-1 for silicon samples hydrogenated between 180 and 500 °C. The assignment of the Raman line is confirmed by its isotope shift to 2990 cm-1 for silicon treated with deuterium atoms. The Raman intensity has a maximum for hydrogenation at 400 °C. The vibrational Raman line of the hydrogen molecules is broad and asymmetric. It consists of at least two components, possibly arising from hydrogen molecules in different occupation sites in crystalline silicon. The rotational Raman line of hydrogen molecules is observed at 590 cm-1. The Raman band of Si-H stretching is observed for hydrogenation temperatures between 100 and 500 °C and the intensity has a maximum for hydrogenation at 250 °C.

  11. Chemistry-Nuclear Chemistry Division. Progress report, October 1980-September 1981

    International Nuclear Information System (INIS)

    Ryan, R.R.

    1982-05-01

    This report describes major progress in the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory during FY 1981. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, medical radioisotopes research, element migration and fixation, nuclear waste isolation research, inorganic and structural chemistry, isotope separation, analysis and applications, the newly established Nuclear Magnetic Resonance Center, atomic and molecular collisions, molecular spectroscopy, nuclear cosmochemistry, nuclear structure and reactions, pion charge exchange, radiochemical separations, theoretical chemistry, and unclassified weapons research

  12. Chemistry-Nuclear Chemistry Division. Progress report, October 1980-September 1981

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, R.R. (comp.)

    1982-05-01

    This report describes major progress in the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory during FY 1981. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, medical radioisotopes research, element migration and fixation, nuclear waste isolation research, inorganic and structural chemistry, isotope separation, analysis and applications, the newly established Nuclear Magnetic Resonance Center, atomic and molecular collisions, molecular spectroscopy, nuclear cosmochemistry, nuclear structure and reactions, pion charge exchange, radiochemical separations, theoretical chemistry, and unclassified weapons research.

  13. Hydrogen concentration control utilizing a hydrogen permeable membrane

    International Nuclear Information System (INIS)

    Keating, S.J. Jr.

    1976-01-01

    The concentration of hydrogen in a fluid mixture is controlled to a desired concentration by flowing the fluid through one chamber of a diffusion cell separated into two chambers by a hydrogen permeable membrane. A gradient of hydrogen partial pressure is maintained across the membrane to cause diffusion of hydrogen through the membrane to maintain the concentration of hydrogen in the fluid mixture at the predetermined level. The invention has particular utility for the purpose of injecting into and/or separating hydrogen from the reactor coolant of a nuclear reactor system

  14. Fundamentals of nuclear chemistry

    International Nuclear Information System (INIS)

    Majer, V.

    1982-01-01

    The author of the book has had 25 years of experience at the Nuclear Chemistry of Prague Technical University. In consequence, the book is intended as a basic textbook for students of this field. Its main objectives are an easily understandable presentation of the complex subject and in spite of the uncertainty which still characterizes the definition and subjects of nuclear chemistry - a systematic classification and logical structure. Contents: 1. Introduction (history and definition); 2. General nuclear chemistry (physical fundamentals, hot atom chemistry, interaction of nuclear radiation with matter, radioactive elements, isotope effects, isotope exchange, chemistry of radioactive trace elements); 3. Methods of nuclear chemistry of nuclear chemistry (radiochemical methods, activation, separation and enrichment chemistry); 4. Preparative nuclear chemistry (isotope production, labelled compounds); 5. Analytival nuclear chemistry; 6. Applied nuclear chemistry (isotope applications in general physical and analytical chemistry). The book is supplemented by an annex with tables, a name catalogue and a subject index which will facilitate access to important information. (RB) [de

  15. Scientific Information Analysis of Chemistry Dissertations Using Thesaurus of Chemistry

    Directory of Open Access Journals (Sweden)

    Taghi Rajabi

    2017-09-01

    Full Text Available : Concept maps of chemistry can be obtained from thesaurus of chemistry. Analysis of information in the field of chemistry is done at graduate level, based on comparing and analyzing chemistry dissertations by using these maps. Therefore, the use of thesaurus for analyzing scientific information is recommended. Major advantage of using this method, is that it is possible to obtain a detailed map of all academic researches across all branches of science. The researches analysis results in chemical science can play a key role in developing strategic research policies, educational programming, linking universities to industries and postgraduate educational programming. This paper will first introduce the concept maps of chemistry. Then, emerging patterns from the concept maps of chemistry will be used to analyze the trend in the academic dissertations in chemistry, using the data collected and stored in our database at Iranian Research Institute for Information Science and Technology (IranDoc over the past 10 years (1998-2009.

  16. Acid-base chemistry of frustrated water at protein interfaces.

    Science.gov (United States)

    Fernández, Ariel

    2016-01-01

    Water molecules at a protein interface are often frustrated in hydrogen-bonding opportunities due to subnanoscale confinement. As shown, this condition makes them behave as a general base that may titrate side-chain ammonium and guanidinium cations. Frustration-based chemistry is captured by a quantum mechanical treatment of proton transference and shown to remove same-charge uncompensated anticontacts at the interface found in the crystallographic record and in other spectroscopic information on the aqueous interface. Such observations are untenable within classical arguments, as hydronium is a stronger acid than ammonium or guanidinium. Frustration enables a directed Grotthuss mechanism for proton transference stabilizing same-charge anticontacts. © 2015 Federation of European Biochemical Societies.

  17. Session 4: The influence of elementary heterogeneous reforming chemistry within solid-oxide fuel cell anodes

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, H.; Kee, R.J. [Engineering Division, Colorado School of Mines, Golden, CO (United States); Janardhanan, V.M.; Deutschmann, O. [Karlsruhe Univ., Institute for Chemical Technology (Germany); Goodwin, D.G. [Engineering and Applied Science., California Inst. of Technology, Pasadena, CA (United States); Sullivan, N.P. [ITN Energy Systems, Littleton, CO (United States)

    2004-07-01

    In the work presented a computational model is developed that represents the coupled effects of fluid flow in fuel channels, porous media transport and chemistry in the anode, and electrochemistry associated with the membrane-electrode assembly. An important objective is to explore the role of heterogeneous chemistry within the anode. In addition to cell electrical performance the chemistry model predicts important behaviors like catalyst-fouling deposit formation (i.e., coking). The model is applied to investigate alternative fuel-cell operating conditions, including varying fuel flow rates, adding air to the fuel stream, and recirculating exhaust gases. Results include assessments of performance metrics like fuel utilization, cell efficiency, power density, and catalyst coking. The model shows that 'direct electrochemical oxidation' of hydrocarbon fuels in solid-oxide fuel cells can be explained by a process that involves reforming the fuel to H{sub 2}, with hydrogen being the only species responsible for charge exchange. The model can be applied to investigate alternative design and operating conditions, seeking to improve the overall performance. (O.M.)

  18. Molecular hydrogen: An abundant energy source for bacterial activity in nuclear waste repositories

    International Nuclear Information System (INIS)

    Libert, M.; Bildstein, O.; Esnault, L.; Jullien, M.; Sellier, R.

    2011-01-01

    A thorough understanding of the energy sources used by microbial systems in the deep terrestrial subsurface is essential since the extreme conditions for life in deep biospheres may serve as a model for possible life in a nuclear waste repository. In this respect, H 2 is known as one of the most energetic substrates for deep terrestrial subsurface environments. This hydrogen is produced from abiotic and biotic processes but its concentration in natural systems is usually maintained at very low levels due to hydrogen-consuming bacteria. A significant amount of H 2 gas will be produced within deep nuclear waste repositories, essentially from the corrosion of metallic components. This will consequently improve the conditions for microbial activity in this specific environment. This paper discusses different study cases with experimental results to illustrate the fact that microorganisms are able to use hydrogen for redox processes (reduction of O 2 , NO 3- , Fe III) in several waste disposal conditions. Consequences of microbial activity include: alteration of groundwater chemistry and shift in geochemical equilibria, gas production or consumption, bio-corrosion, and potential modifications of confinement properties. In order to quantify the impact of hydrogen bacteria, the next step will be to determine the kinetic rate of the reactions in realistic conditions. (authors)

  19. Molecular hydrogen: An abundant energy source for bacterial activity in nuclear waste repositories

    Science.gov (United States)

    Libert, M.; Bildstein, O.; Esnault, L.; Jullien, M.; Sellier, R.

    A thorough understanding of the energy sources used by microbial systems in the deep terrestrial subsurface is essential since the extreme conditions for life in deep biospheres may serve as a model for possible life in a nuclear waste repository. In this respect, H 2 is known as one of the most energetic substrates for deep terrestrial subsurface environments. This hydrogen is produced from abiotic and biotic processes but its concentration in natural systems is usually maintained at very low levels due to hydrogen-consuming bacteria. A significant amount of H 2 gas will be produced within deep nuclear waste repositories, essentially from the corrosion of metallic components. This will consequently improve the conditions for microbial activity in this specific environment. This paper discusses different study cases with experimental results to illustrate the fact that microorganisms are able to use hydrogen for redox processes (reduction of O 2, NO3-, Fe III) in several waste disposal conditions. Consequences of microbial activity include: alteration of groundwater chemistry and shift in geochemical equilibria, gas production or consumption, biocorrosion, and potential modifications of confinement properties. In order to quantify the impact of hydrogen bacteria, the next step will be to determine the kinetic rate of the reactions in realistic conditions.

  20. Achievement report on research and development in the Sunshine Project in fiscal 1977. Research and development of water decomposition using mixture cycles composed by thermo-chemistry, photo-chemistry and electrochemistry; 1977 nendo netsukagaku, hikari kagaku, denki kagaku konsei cycle ni yoru suibunkai no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-03-01

    Discussions are being made on manufacture of hydrogen and oxygen from water decomposition using mixture cycles composed by thermo-chemistry, photo-chemistry and electrochemistry using ferrous sulfate and iodine. Photo-chemical reaction produces Fe(OH)SO{sub 4} and HI, but due to difficulty of isolating Fe(OH)SO{sub 4}, photo-chemical reaction that can obtain the compound as Fe{sub 2}(SO{sub 4}){sub 3} was introduced. A method was introduced that can perform HI isolation simultaneously while performing reaction to reduce Fe{sup 3+} and turn it into Fe{sup 2+} (generating oxygen) by means of electrolysing the liquid after the former reaction. The electrolytic process decomposes HI into hydrogen and iodine (discussions on thermo-chemical decomposition is also continued). Since the photo-chemical reaction can cause reverse reaction, discussions were given on the reaction process in order to suppress the reverse reaction and enhance the conversion efficiency. This paper describes the achievements during fiscal 1977. A quantification method was elucidated on individual iodine components so that it can be used for computerized control (measurement of absorbance of I{sub 3}{sup -}) . An electrolytic tank was discussed that decomposes and isolates photo-chemical reaction products before the reverse reaction occurs. Heat diffusion method was also discussed that isolates hydrogen from HI decomposition products. (NEDO)

  1. Safety aspects of water chemistry in light water reactors

    International Nuclear Information System (INIS)

    1988-12-01

    The goals of the water chemistry control programmes are to maximize operational safety and the availability and operating life of primary system components, to maximize fuel integrity, and to control radiation buildup. To achieve these goals an effective corporate policy should be developed and implemented. Essential management responsibilities are: Recognizing of the long-term benefits of avoiding or minimizing: a) system corrosion; b) fuel failure; and c) radiation buildup. The following control or diagnostic parameters are suitable performance indicators: for PWR primary coolant circuits: pH of reactor water (by operating temperature); Concentration of chlorides in reactor water; Hydrogen (or oxygen) in reactor water. For PWR secondary coolant circuits: pH in feedwater; Cation productivity in steam generator blowdown; Iron concentration in feedwater; Oxygen concentration in condensate. And BWR coolant circuits: Conductivity of reactor water; Concentration of chlorides in reactor water; Iron concentration in feedwater; Copper concentration in feedwater. The present document represents a review of the developments in some Member States on how to implement a reasonable water chemistry programme and how to assess its effectiveness through numerical indicators. 12 figs, 20 tabs

  2. Hydrogen safety

    International Nuclear Information System (INIS)

    Frazier, W.R.

    1991-01-01

    The NASA experience with hydrogen began in the 1950s when the National Advisory Committee on Aeronautics (NACA) research on rocket fuels was inherited by the newly formed National Aeronautics and Space Administration (NASA). Initial emphasis on the use of hydrogen as a fuel for high-altitude probes, satellites, and aircraft limited the available data on hydrogen hazards to small quantities of hydrogen. NASA began to use hydrogen as the principal liquid propellant for launch vehicles and quickly determined the need for hydrogen safety documentation to support design and operational requirements. The resulting NASA approach to hydrogen safety requires a joint effort by design and safety engineering to address hydrogen hazards and develop procedures for safe operation of equipment and facilities. NASA also determined the need for rigorous training and certification programs for personnel involved with hydrogen use. NASA's current use of hydrogen is mainly for large heavy-lift vehicle propulsion, which necessitates storage of large quantities for fueling space shots and for testing. Future use will involve new applications such as thermal imaging

  3. Hydrogen isotope effect through Pd in hydrogen transport pipe

    International Nuclear Information System (INIS)

    Tamaki, Masayoshi

    1992-01-01

    This investigation concerns hydrogen system with hydrogen transport pipes for transportation, purification, isotope separation and storage of hydrogen and its isotopes. A principle of the hydrogen transport pipe (heat pipe having hydrogen transport function) was proposed. It is comprised of the heat pipe and palladium alloy tubes as inlet, outlet, and the separation membrane of hydrogen. The operation was as follows: (1) gas was introduced into the heat pipe through the membrane in the evaporator; (2) the introduced gas was transported toward the condenser by the vapor flow; (3) the transported gas was swept and compressed to the end of the condenser by the vapor pressure; and (4) the compressed gas was exhausted from the heat pipe through the membrane in the condenser. The characteristics of the hydrogen transport pipe were examined for various working conditions. Basic performance concerning transportation, evacuation and compression was experimentally verified. Isotopic dihydrogen gases (H 2 and D 2 ) were used as feed gas for examining the intrinsic performance of the isotope separation by the hydrogen transport pipe. A simulated experiment for hydrogen isotope separation was carried out using a hydrogen-helium gas mixture. The hydrogen transport pipe has a potential for isotope separation and purification of hydrogen, deuterium and tritium in fusion reactor technology. (author)

  4. Favoring the unfavored: Selective electrochemical nitrogen fixation using a reticular chemistry approach.

    Science.gov (United States)

    Lee, Hiang Kwee; Koh, Charlynn Sher Lin; Lee, Yih Hong; Liu, Chong; Phang, In Yee; Han, Xuemei; Tsung, Chia-Kuang; Ling, Xing Yi

    2018-03-01

    Electrochemical nitrogen-to-ammonia fixation is emerging as a sustainable strategy to tackle the hydrogen- and energy-intensive operations by Haber-Bosch process for ammonia production. However, current electrochemical nitrogen reduction reaction (NRR) progress is impeded by overwhelming competition from the hydrogen evolution reaction (HER) across all traditional NRR catalysts and the requirement for elevated temperature/pressure. We achieve both excellent NRR selectivity (~90%) and a significant boost to Faradic efficiency by 10 percentage points even at ambient operations by coating a superhydrophobic metal-organic framework (MOF) layer over the NRR electrocatalyst. Our reticular chemistry approach exploits MOF's water-repelling and molecular-concentrating effects to overcome HER-imposed bottlenecks, uncovering the unprecedented electrochemical features of NRR critical for future theoretical studies. By favoring the originally unfavored NRR, we envisage our electrocatalytic design as a starting point for high-performance nitrogen-to-ammonia electroconversion directly from water vapor-abundant air to address increasing global demand of ammonia in (bio)chemical and energy industries.

  5. Exploration of fluorine chemistry at the multidisciplinary interface of chemistry and biology.

    Science.gov (United States)

    Ojima, Iwao

    2013-07-05

    Over the last three decades, my engagement in "fluorine chemistry" has evolved substantially because of the multidisciplinary nature of the research programs. I began my research career as a synthetic chemist in organometallic chemistry and homogeneous catalysis directed toward organic synthesis. Then, I was brought into a very unique world of "fluorine chemistry" in the end of 1970s. I started exploring the interface of fluorine chemistry and transition metal homogeneous catalysis first, which was followed by amino acids, peptides, and peptidomimetics for medicinal chemistry. Since then, I have been exploring the interfaces of fluorine chemistry and multidisciplinary fields of research involving medicinal chemistry, chemical biology, cancer biology, and molecular imaging. This perspective intends to cover my fruitful endeavor in the exploration of fluorine chemistry at the multidisciplinary interface of chemistry and biology in a chronological order to show the evolution of my research interest and strategy.

  6. Nuclear chemistry

    International Nuclear Information System (INIS)

    Vertes, A.; Kiss, I.

    1987-01-01

    This book is an introduction to the application of nuclear science in modern chemistry. The first group of chapters discuss the basic phenomena and concepts of nuclear physics with emphasis on their relation to chemical problems, including the main properties and the composition of atomic nuclei, nuclear reactions, radioactive decay and interactions of radiation with matter. These chapters provide the basis for understanding the following chapters which encompass the wide scope of nuclear chemistry. The methods of the investigation of chemical structure based on the interaction of nuclear radiation with matter including positronium chemistry and other exotic atoms is elaborated in particular detail. Separate chapters are devoted to the use of radioactive tracers, the chemical consequences of nuclear processes (i.e. hot atom chemistry), radiation chemistry, isotope effects and their applications, and the operation of nuclear reactors

  7. Nuclear chemistry

    International Nuclear Information System (INIS)

    Vertes, A.; Kiss, I.

    1987-01-01

    This book is an introduction to the application of nuclear science in modern chemistry. The first group of chapters discuss the basic phenomena and concepts of nuclear physics with emphasis on their relation to chemical problems, including the main properties and the composition of atomic nuclei, nuclear reactions, radioactive decay and interactions of radiation with matter. These chapters provide the basis for understanding the following chapters which encompass the wide scope of nuclear chemistry. The methods of the investigation of chemical structure based on the interaction of nuclear radiation with matter including positronium chemistry and other exotic atoms is elaborated in particular detail. Separate chapters are devoted to the use of radioactive tracers, the chemical consequences of nuclear processes (i.e. hot atom chemistry), radiation chemistry, isotope effects and their applications, and the operation of nuclear reactors. (Auth.)

  8. Broad Spectrum Photoelectrochemical Diodes for Solar Hydrogen Generation

    Energy Technology Data Exchange (ETDEWEB)

    Grimes, Craig A.

    2014-11-26

    Under program auspices we have investigated material chemistries suitable for the solar generation of hydrogen by water photoelectrolysis. We have built upon, and extended, our knowledge base on the synthesis and application of TiO2 nanotube arrays, a material architecture that appears ideal for water photoelectrolysis. To date we have optimized, refined, and greatly extended synthesis techniques suitable for achieving highly ordered TiO2 nanotube arrays of given length, wall thickness, pore diameter, and tube-to-tube spacing for use in water photoelectrolysis. We have built upon this knowledge based to achieve visible light responsive, photocorrosion stable n-type and p-type ternary oxide nanotube arrays for use in photoelectrochemical diodes.

  9. Annual report of the Osaka Laboratory for Radiation Chemistry, Japan Atomic Energy Research Institute, No. 12

    International Nuclear Information System (INIS)

    1979-11-01

    This report describes research activities of Osaka Laboratory for Radiation Chemistry, JAERI during one year period from April 1, 1978 through March 31, 1979. The latest report, for 1978, is JAERI-M 7949. Detailed descriptions of the activities are presented in the following subjects: studies on reactions of carbon monoxide, hydrogen and methane; polymerization under the irradiation of high dose rate electron beams; modification of polymers, degradation, cross-linking, and grafting. (author)

  10. Glove box adaptation of oxygen, nitrogen and hydrogen determinator

    International Nuclear Information System (INIS)

    Ramanjaneyulu, P.S.; Phanindra Kumar, M.; Kulkarni, A.S.; Revathi, R.; Saxena, M.K.; Tomar, B.S.

    2017-01-01

    Radioanalytical Chemistry Division (RACD) is involved in chemical quality assurance (CQA) of various nuclear fuels and materials related to various DAE projects including FBTR and PFBR. Determination of oxygen, nitrogen and hydrogen in these fuels is one of the important steps in the CQA of material. For this purpose, O, N and H determinator was indigenously designed, fabricated and commissioned with the help of M/s Chromatography and Instruments Company Ltd., Vadodara, India. The present article describes about glove box adaptation of this instrument and various safety features incorporated in the glove box and instrument at Lab. C-25, RACD, as per the recommendations of the plant level safety committee

  11. Dynamics of premixed hydrogen/air flames in mesoscale channels

    Energy Technology Data Exchange (ETDEWEB)

    Pizza, Gianmarco [Paul Scherrer Institute, Combustion Research, CH-5232, Villigen PSI (Switzerland); Aerothermochemistry and Combustion Systems Laboratory, Swiss Federal Institute of Technology, CH-8092, Zurich (Switzerland); Frouzakis, Christos E.; Boulouchos, Konstantinos [Aerothermochemistry and Combustion Systems Laboratory, Swiss Federal Institute of Technology, CH-8092, Zurich (Switzerland); Mantzaras, John [Paul Scherrer Institute, Combustion Research, CH-5232, Villigen PSI (Switzerland); Tomboulides, Ananias G. [Department of Engineering and Management of Energy Resources, University of Western Macedonia, 50100 Kozani (Greece)

    2008-10-15

    Direct numerical simulation with detailed chemistry and transport is used to study the stabilization and dynamics of lean ({phi}=0.5) premixed hydrogen/air atmospheric pressure flames in mesoscale planar channels. Channel heights of h=2, 4, and 7 mm, and inflow velocities in the range 0.3{<=}U{sub IN}{<=}1100cm/ s are investigated. Six different burning modes are identified: mild combustion, ignition/extinction, closed steady symmetric flames, open steady symmetric flames, oscillating and, finally, asymmetric flames. Chaotic behavior of cellular flame structures is observed for certain values of U{sub IN}. Stability maps delineating the regions of the different flame types are finally constructed. (author)

  12. A SIFT Study of the Reactions of H3O+, NO+ and O2+ with Hydrogen Peroxide and Peroxyacetic Acid

    Czech Academy of Sciences Publication Activity Database

    Španěl, Patrik; Diskin, A. M.; Wang, T.; Smith, D.

    2003-01-01

    Roč. 228, - (2003), s. 269-283 ISSN 1387-3806 R&D Projects: GA ČR GA202/03/0827; GA ČR GA203/02/0737 Institutional research plan: CEZ:AV0Z4040901 Keywords : SIFT * hydrogen peroxide * peroxyacetic acid Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.361, year: 2003

  13. Interactions of the (R) Ru-BINAP Catalytic Complex with an Inorganic Matrix in Stereoselective Hydrogenation of Methylacetoacetate – Kinetic, XPS and DRIFT Studies.

    Czech Academy of Sciences Publication Activity Database

    Klusoň, Petr; Krystyník, Pavel; Dytrych, Pavel; Bártek, L.

    2016-01-01

    Roč. 119, č. 2 (2016), s. 393-413 ISSN 1878-5190 R&D Projects: GA ČR GA15-14228S Institutional support: RVO:67985858 Keywords : (R)-Ru-BINAP complex * stereoselective hydrogenation * montmorillonite Subject RIV: CC - Organic Chemistry Impact factor: 1.264, year: 2016

  14. Analytical Chemistry as Methodology in Modern Pure and Applied Chemistry

    OpenAIRE

    Honjo, Takaharu

    2001-01-01

    Analytical chemistry is an indispensable methodology in pure and applied chemistry, which is often compared to a foundation stone of architecture. In the home page of jsac, it is said that analytical chemistry is a learning of basic science, which treats the development of method in order to get usefull chemical information of materials by means of detection, separation, and characterization. Analytical chemistry has recently developed into analytical sciences, which treats not only analysis ...

  15. Fundamentals of nuclear chemistry

    International Nuclear Information System (INIS)

    Majer, K.

    1982-01-01

    The textbook is a Czech-to-German translation of the second revised edition and covers the subject under the headings: general nuclear chemistry, methods of nuclear chemistry, preparative nuclear chemistry, analytical nuclear chemistry, and applied chemistry. The book is especially directed to students

  16. Surface chemistry essentials

    CERN Document Server

    Birdi, K S

    2013-01-01

    Surface chemistry plays an important role in everyday life, as the basis for many phenomena as well as technological applications. Common examples range from soap bubbles, foam, and raindrops to cosmetics, paint, adhesives, and pharmaceuticals. Additional areas that rely on surface chemistry include modern nanotechnology, medical diagnostics, and drug delivery. There is extensive literature on this subject, but most chemistry books only devote one or two chapters to it. Surface Chemistry Essentials fills a need for a reference that brings together the fundamental aspects of surface chemistry w

  17. Substrate-mediated enhanced activity of Ru nanoparticles in catalytic hydrogenation of benzene

    KAUST Repository

    Liu, Xin

    2012-01-01

    The impact of carbon substrate-Ru nanoparticle interactions on benzene and hydrogen adsorption that is directly related to the performance in catalytic hydrogenation of benzene has been investigated by first-principles based calculations. The stability of Ru 13 nanoparticles is enhanced by the defective graphene substrate due to the hybridization between the dsp states of the Ru 13 particle with the sp 2 dangling bonds at the defect sites. The local curvature formed at the interface will also raise the Ru atomic diffusion barrier, and prohibit the particle sintering. The strong interfacial interaction results in the shift of averaged d-band center of the deposited Ru nanoparticle, from -1.41 eV for a freestanding Ru 13 particle, to -1.17 eV for the Ru/Graphene composites, and to -1.54 eV on mesocellular foam carbon. Accordingly, the adsorption energies of benzene are increased from -2.53 eV for the Ru/mesocellular foam carbon composites, to -2.62 eV on freestanding Ru 13 particles, to -2.74 eV on Ru/graphene composites. A similar change in hydrogen adsorption is also observed, and all these can be correlated to the shift of the d-band center of the nanoparticle. Thus, Ru nanoparticles graphene composites are expected to exhibit both high stability and superior catalytic performance in hydrogenation of arenes. © 2012 The Royal Society of Chemistry.

  18. Hydrogen content in titanium and a titanium–zirconium alloy after acid etching

    Energy Technology Data Exchange (ETDEWEB)

    Frank, Matthias J.; Walter, Martin S. [Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, P.O. Box 1109, Blindern, NO-0317 Oslo (Norway); Institute of Medical and Polymer Engineering, Chair of Medical Engineering, Technische Universität München, Boltzmannstrasse 15, 85748 Garching (Germany); Lyngstadaas, S. Petter [Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, P.O. Box 1109, Blindern, NO-0317 Oslo (Norway); Wintermantel, Erich [Institute of Medical and Polymer Engineering, Chair of Medical Engineering, Technische Universität München, Boltzmannstrasse 15, 85748 Garching (Germany); Haugen, Håvard J., E-mail: h.j.haugen@odont.uio.no [Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, P.O. Box 1109, Blindern, NO-0317 Oslo (Norway)

    2013-04-01

    Dental implant alloys made from titanium and zirconium are known for their high mechanical strength, fracture toughness and corrosion resistance in comparison with commercially pure titanium. The aim of the study was to investigate possible differences in the surface chemistry and/or surface topography of titanium and titanium–zirconium surfaces after sand blasting and acid etching. The two surfaces were compared by X-ray photoelectron spectroscopy, secondary ion mass spectroscopy, scanning electron microscopy and profilometry. The 1.9 times greater surface hydrogen concentration of titanium zirconium compared to titanium was found to be the major difference between the two materials. Zirconium appeared to enhance hydride formation on titanium alloys when etched in acid. Surface topography revealed significant differences on the micro and nanoscale. Surface roughness was increased significantly (p < 0.01) on the titanium–zirconium alloy. High-resolution images showed nanostructures only present on titanium zirconium. - Highlights: ► TiZr alloy showed increased hydrogen levels over Ti. ► The alloying element Zr appeared to catalyze hydrogen absorption in Ti. ► Surface roughness was significantly increased for the TiZr alloy over Ti. ► TiZr alloy revealed nanostructures not observed for Ti.

  19. Structure and Hydrogen Bonding of 2-aminopyridine·(H2O)n (n=1,2) Studied by Infrared Ion Depletion Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Wu, R.; Nachtigall, Petr; Brutschy, B.

    2004-01-01

    Roč. 6, č. 3 (2004), s. 515-521 ISSN 1463-9076 R&D Projects: GA MŠk LN00A032 Institutional research plan: CEZ:AV0Z4040901 Keywords : hydrogen bonding * electronic and vibrational spectra * spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.076, year: 2004

  20. Crystal structures and vibrational spectra of biuret co-crystals with cyanuric and glutaric acids, discussion of hydrogen bonding involving carbonyl groups

    Czech Academy of Sciences Publication Activity Database

    Matulková, I.; Mathauserová, J.; Císařová, I.; Němec, I.; Fábry, Jan

    2016-01-01

    Roč. 231, č. 5 (2016), s. 291-300 ISSN 2194-4946 R&D Projects: GA ČR GA14-05506S Institutional support: RVO:68378271 Keywords : biuret * crystal structure analysis * hydrogen bonding * vibrational spectroscopy * X-ray diffraction Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.179, year: 2016