WorldWideScience

Sample records for hydrogen chemistry hwc

  1. Crack propagation in stainless steel AISI 304L in Hydrogen Chemistry conditions (HWC)

    International Nuclear Information System (INIS)

    Diaz S, A.; Fuentes C, P.; Merino C, F.; Castano M, V.

    2006-01-01

    Velocities of crack growth in samples type CT pre cracking of stainless steel AISI 304l solder and sensitized thermally its were obtained by the Rising Displacement method or of growing displacement. It was used a recirculation circuit that simulates the operation conditions of a BWR type reactor (temperature of 280 C and a pressure of 8 MPa) with the chemistry modified by the addition of hydrogen with and without the addition of impurities of a powerful oxidizer like the Cu + ion. In each essay stayed a displacement velocity was constant of 1x10 -9 m/s, making a continuous pursuit of the advance of the crack by the electric potential drop technique. Contrary to the idea of mitigation of the crack propagation velocity by effect of the addition of the hydrogen in the system, the values of the growth velocities obtained by this methodology went similar to the opposing ones under normal operation conditions. To the finish of the rehearsal one carries out the fractographic analysis of the propagation surfaces, which showed cracks growth in trans and intergranular way, evidencing the complexity of the regulator mechanisms of the IGSCC like in mitigation conditions as the alternative Hydrogen Chemistry. (Author)

  2. Propagation of crevices in stainless steel AISI304L in conditions of hydrogen chemistry (HWC)

    International Nuclear Information System (INIS)

    Diaz S, A.; Fuentes C, P.; Merino C, F.; Castano M, V.

    2006-01-01

    Crevice growth velocities in samples of AISI 304L stainless steel thermally welded and sensitized were obtained by the Rising displacement method or of growing displacement. It was used a recirculation circuit in where the operation conditions of a BWR type reactor were simulated (temperature of 288 C and a pressure of 8 MPa) with the chemistry modified by the addition of hydrogen with and without the addition of impurities of a powerful oxidizer like the Cu ++ ion. CT pre cracked specimens were used and each rehearsal stayed to one constant displacement velocity of 1 x 10 -9 m/s (3.6 μm/hr), making a continuous pursuit of the advance of the crack by the electric potential drop technique. To the end of the rehearsal it was carried out the fractographic analysis of the propagation surfaces. The values of the growth velocities obtained by this methodology went similar to the opposing ones under normal conditions of operation; while the fractographic analysis show the cracks propagation in trans and intergranular ways, evidencing the complexity of the regulator mechanisms of the one IGSCC even under controlled ambient conditions or with mitigation methodologies like the alternative hydrogen chemistry. (Author)

  3. Study of deposited crud composition on fuel surfaces in the environment of hydrogen water chemistry (HWC) of a Boiling Water Reactor at Chinshan Nuclear Power Plant

    International Nuclear Information System (INIS)

    Tsai, Tsuey-Lin; Lin, Tzung-Yi; Su, Te-Yen; Wen, Tung-Jen; Men, Lee-Chung

    2012-09-01

    This paper aimed at the characterization of metallic composition and surface analysis on the crud of fuel rods for unit-1 of BWR-4 at Nuclear Power Plant. The inductively coupled plasma- atomic emission spectroscopy (ICPAES) and the gamma spectrometry were carried out to analyze the corrosion product distributions and to determine the elemental compositions along the fuel rod under conditions of hydrogen water chemistry (HWC) switched from normal water chemistry (NWC) of reactor coolant in this study. Most of the crud consisted of the flakes and irregular shapes via SEM morphology. The loosely adherent oxide layer was mostly composed of hematite (α- Fe 2 O 3 ) with amorphous iron oxides by XRD results. The average deposited amounts of crud was the order of 0.5 mg/cm 2 , indicating that the fuel surface of this plant under HWC environment appeared to be one with the lower crud deposition in terms of low iron level of feedwater. It also showed no significant difference in comparison with NWC condition. (authors)

  4. Crack propagation in stainless steel AISI 304L in Hydrogen Chemistry conditions (HWC); Propagacion de Grietas en Acero Inoxidable AISI 304L en Condiciones de Quimica de Hidrogeno (HWC)

    Energy Technology Data Exchange (ETDEWEB)

    Diaz S, A.; Fuentes C, P.; Merino C, F. [ININ, Carretera Mexico -Toluca s/n, La Marquesa, Ocoyoacac, Mexico (Mexico); Castano M, V. [Instituto de Fisica Aplicada, UNAM, Km 15.5 Carretera Queretaro-San Luis Potosi, Juriquilla, Queretaro (Mexico)]. e-mail: ads@nuclear.inin.mx

    2006-07-01

    Velocities of crack growth in samples type CT pre cracking of stainless steel AISI 304l solder and sensitized thermally its were obtained by the Rising Displacement method or of growing displacement. It was used a recirculation circuit that simulates the operation conditions of a BWR type reactor (temperature of 280 C and a pressure of 8 MPa) with the chemistry modified by the addition of hydrogen with and without the addition of impurities of a powerful oxidizer like the Cu{sup +} ion. In each essay stayed a displacement velocity was constant of 1x10{sup -9} m/s, making a continuous pursuit of the advance of the crack by the electric potential drop technique. Contrary to the idea of mitigation of the crack propagation velocity by effect of the addition of the hydrogen in the system, the values of the growth velocities obtained by this methodology went similar to the opposing ones under normal operation conditions. To the finish of the rehearsal one carries out the fractographic analysis of the propagation surfaces, which showed cracks growth in trans and intergranular way, evidencing the complexity of the regulator mechanisms of the IGSCC like in mitigation conditions as the alternative Hydrogen Chemistry. (Author)

  5. Propagation of crevices in stainless steel AISI304L in conditions of hydrogen chemistry (HWC); Propagacion de grietas en acero inoxidable AISI304L en condiciones de quimica de hidrogeno (HWC)

    Energy Technology Data Exchange (ETDEWEB)

    Diaz S, A.; Fuentes C, P.; Merino C, F. [ININ, 52750 Ocoyoacac, Estado de Mexico (Mexico); Castano M, V. [IFA-UNAM, Juriquilla, Queretaro (Mexico)]. e-mail: ads@nuclear.inin.mx

    2006-07-01

    Crevice growth velocities in samples of AISI 304L stainless steel thermally welded and sensitized were obtained by the Rising displacement method or of growing displacement. It was used a recirculation circuit in where the operation conditions of a BWR type reactor were simulated (temperature of 288 C and a pressure of 8 MPa) with the chemistry modified by the addition of hydrogen with and without the addition of impurities of a powerful oxidizer like the Cu{sup ++} ion. CT pre cracked specimens were used and each rehearsal stayed to one constant displacement velocity of 1 x 10{sup -9} m/s (3.6 {mu}m/hr), making a continuous pursuit of the advance of the crack by the electric potential drop technique. To the end of the rehearsal it was carried out the fractographic analysis of the propagation surfaces. The values of the growth velocities obtained by this methodology went similar to the opposing ones under normal conditions of operation; while the fractographic analysis show the cracks propagation in trans and intergranular ways, evidencing the complexity of the regulator mechanisms of the one IGSCC even under controlled ambient conditions or with mitigation methodologies like the alternative hydrogen chemistry. (Author)

  6. Update on materials performance and electrochemistry in hydrogen water chemistry at Dresden-2 BWR

    International Nuclear Information System (INIS)

    Indig, M.E.; Weber, J.E.; Davis, R.B.; Gordon, B.M.

    1985-01-01

    Previous studies performed in 1982 indicated that if sufficient hydrogen was injected into the Dresden-2 BWR, IGSCC of sensitized austenitic stainless steel was mitigated. The present series of experiments were aimed at verification of the above finding, determining how much time off hydrogen water chemistry (HWC) could be tolerated and how HWC affected pre-existing cracks

  7. Hydrogen water chemistry for boiling water reactors

    International Nuclear Information System (INIS)

    Cowan, R.L.; Cowan, R.L.; Kass, J.N.; Law, R.J.

    1985-01-01

    Hydrogen Water Chemistry (HWC) is now a practical countermeasure for intergranular stress corrosion cracking (IGSCC) susceptibility of reactor structural materials in Boiling Water Reactors (BWRs). The concept, which involves adding hydrogen to the feedwater to suppress the formation of oxidizing species in the reactor, has been extensively studied in both the laboratory and in several operating plants. The Dresden-2 Unit of Commonwealth Edison Company has completed operation for one full 18-month fuel cycle under HWC conditions. The specifications, procedures, equipment, instrumentation and surveillance programs needed for commercial application of the technology are available now. This paper provides a review of the benefits to be obtained, the side affects, and the special operational considerations needed for commercial implementation of HWC. Technological and management ''Lessons Learned'' from work conducted to date are also described

  8. Application of hydrogen water chemistry to moderate corrosive circumstances around the reactor pressure vessel bottom of boiling water reactors

    International Nuclear Information System (INIS)

    Shunsuke Uchida; Eishi Ibe; Katsumi Ohsumi

    1994-01-01

    Application of hydrogen water chemistry to moderate corrosive circumstances is a promising approach to preserve structural integrities of major components and structures in the primary cooling system of BWRs. The benefits of HWC application are usually accompanied by several disadvantages. After evaluating merits and demerits of HWC application, it is concluded that optimal amounts of hydrogen injected into the feed water can moderate corrosive circumstances, in the region to be preserved, without serious disadvantages. (authors). 1 fig., 4 refs

  9. Application of hydrogen water chemistry to moderate corrosive circumstances around the reactor pressure vessel bottom of boiling water reactors

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Ibe, Eishi; Nakata, Kiyatomo; Fuse, Motomasa; Ohsumi, Katsumi; Takashima, Yoshie

    1995-01-01

    Many efforts to preserve the structural integrity of major piping, components, and structures in a boiling water reactor (BWR) primary cooling system have been directed toward avoiding intergranular stress corrosion cracking (IGSCC). Application of hydrogen water chemistry (HWC) to moderate corrosive circumstances is a promising approach to preserve the structural integrity during extended lifetimes of BWRs. The benefits of HWC application are (a) avoiding the occurrence of IGSCC on structural materials around the bottom of the crack growth rate, even if microcracks are present on the structural materials. Several disadvantage caused by HWC are evaluated to develop suitable countermeasures prior to HWC application. The advantages and disadvantages of HWC are quantitatively evaluated base on both BWR plant data and laboratory data shown in unclassified publications. Their trade-offs are discussed, and suitable applications of HWC are described. It is concluded that an optimal amount of Hydrogen injected into the feedwater can moderate corrosive circumstances, in the region to be preserved, without serious disadvantages. The conclusions have been drawn by combining experimental and theoretical results. Experiments in BWR plants -- e.g., direct measurements of electrochemical corrosion potential and crack growth rate at the RPV bottom -- are planned that would collect data to support the theoretical considerations

  10. Measurement of in-core and recirculation system response to hydrogen water chemistry at Nine Mile Point 1

    International Nuclear Information System (INIS)

    Head, R.A.; Indig, M.E.; Andresen, P.L.

    1991-03-01

    The value of hydrogen water chemistry (HWC) as a mitigation technique for out-of-core piping systems susceptible to intergranular stress corrosion cracking (IGSCC) is well established. However, certain reactor internal components exposed to high levels of radiation are susceptible to a cracking mechanism referred to as irradiation assisted stress corrosion cracking (IASCC). Some of the components potentially affected by IASCC include the top guide, SRM/IRM housings, the core shroud, and control blades. Fortunately, laboratory data indicate that IASCC can be controlled by altering the coolant environment. Hot cell tests performed at GE's Vallecitos Nuclear Center (VNC) on highly irradiated material produced a fracture surface with 99% IGSCC under normal BWR water chemistry. However, under HWC conditions, only ductile failure occurred. With this background, a program was established to determine the chemistry and oxidizing potential of the core bypass coolant at Nine Mile Point-1 (NMP-1) under normal and HWC conditions. The objective of the program was to assess whether HWC could sufficiently modify the core bypass environment to mitigate IASCC. Results showed that with the addition of hydrogen to the feedwater, core bypass dissolved oxygen decreased very rapidly, compared to the recirculation water, indicating very efficient recombination of hydrogen and oxygen in the non-boiling core bypass region. Since low concentrations of dissolved oxygen have been shown to eliminate IASCC, these results are encouraging. 8 figs., 1 tab

  11. Variation of the Effectiveness of Hydrogen Water Chemistry in a Boiling Water Reactor during Startup Operations

    International Nuclear Information System (INIS)

    Yeh, Tsung-Kuang; Wang, Mei-Ya

    2012-09-01

    For mitigating intergranular stress corrosion cracking (IGSCC) in an operating boiling water reactor (BWR), the technology of hydrogen water chemistry (HWC) aiming at coolant chemistry improvement has been adopted worldwide. However, the hydrogen injection system employed in this technology was designed to operate only at power levels greater than 30% of the rated power or at coolant temperatures of greater than 450 deg. F. This system is usually in an idle and standby mode during a startup operation. The coolant in a BWR during a cold shutdown normally contains a relatively high level of dissolved oxygen from intrusion of atmospheric air. Accordingly, the structural materials in the primary coolant circuit (PCC) of a BWR could be exposed to a strongly oxidizing environment for a short period of time during a subsequent startup operation. At some plants, the feasibility of hydrogen water chemistry during startup operations has been studied, and its effectiveness on suppressing SCC initiation was evaluated. It is technically difficult to directly procure water chemistry data at various locations of an operating reactor. Accordingly, the impact of startup operation on water chemistry in the PCC of a BWR operating under normal water chemistry (NWC) or HWC can only be theoretically evaluated through computer modelling. In this study, a well-developed computer code DEMACE was used to investigate the variations in redox species concentration and in electrochemical corrosion potential (ECP) of components in the PCC of a domestic BWR during startup operations in the presence of HWC. Simulations were carried out for [H2] FW s ranging from 0.0 to 2.0 parts per million (ppm) and for power levels ranging from 2.5% to 11.3% during startup operations. Our analyses indicated that for power levels with steam generation in the core, a higher power level would tend to promote a more oxidizing coolant environment for the structural components and therefore lead to less HWC

  12. Development of tools for optimization of HWC

    International Nuclear Information System (INIS)

    Wikmark, Gunnar; Lundgren, Klas; Wijkstroem, Hjalmar; Pein, Katarina; Ullberg, Mats

    2004-06-01

    An ECP model for the Swedish Boiling Water Reactors (BWRs) was developed in a previous project sponsored by the Swedish Nuclear Power Inspectorate. The present work is an extension of that effort. The model work has been extended in three ways. Some potential problem areas of the ECP sub-model have been treated in full detail. A comprehensive calibration data set has been assembled from plant data and from laboratory and in-plant experiments. The model has been fitted to the calibration data set and the model parameters adjusted. The work on the ECP sub-model has demonstrated that the generalised Butler Volmer equation, as previously used, adequately describes the electrochemistry. Thus, there is no need to treat the system surface oxides as semiconductors or to take double layer effects into account. The existence of a pseudo potential for the reaction of oxygen on stainless steel is confirmed. The concentration dependence and temperature dependence of the exchange current densities are still unclear. An experimental investigation of these is therefore desirable. An interesting alternative to a conventional experimental set-up is to combine modelling with simpler and more easily controlled experiments. In addition to a calibration data set, the survey of plant data has also led to an improved understanding of the necessary parameters of an ECP model. Thus, variations of the H 2 injection rate at constant reactor power level and constant recirculation flow rate were traced to variations of the relative power level of the fuel elements in the core periphery. The power level in the core periphery determines the dose rate in the down comer and controls the recombination reaction that is fundamental to Hydrogen Water Chemistry (HWC). To accurately model ECP as a function of hydrogen injection rate and other plant parameters, the relative power level of the core periphery is a necessary model parameter that has to be regularly updated from core management codes

  13. Hydrogen water chemistry for BWRs: A status report on the EPRI development program

    International Nuclear Information System (INIS)

    Jones, R.L.; Nelson, J.L.

    1990-01-01

    Many BWRs have experienced extensive intergranular stress corrosion cracking (IGSCC) in their austenitic stainless steel coolant system piping, resulting in serious adverse impacts on plant capacity factors, O and M costs, and personnel radiation exposures. A major research program to provide remedies for BWR pipe cracking was co-funded by EPRI, GE, and the BWR Owners Group for IGSCC Research between 1979 and 1988. Results from this program show that the likelihood of IGSCC depends on reactor water chemistry (particularly on the concentrations of ionic impurities and oxidizing radiolysis products) as well as on material condition and the level of tensile stress. Tests have demonstrated that the concentration of oxidizing radiolysis products in the recirculating water of a BWR can be reduced substantially by injecting hydrogen into the feedwater. Recent plant data show that the use of hydrogen injection can reduce the rate of IGSCC to insignificant levels if the concentration of ionic impurities in the reactor water is kept sufficiently low. This approach to the control of BWR pipe cracking is called hydrogen water chemistry (HWC). This paper presents a review of the results of EPRI's HWC development program from 1980 to the present. In addition, plans for additional work to investigate the feasibility of adapting HWC to protect the BWR vessel and major internal components from potential stress corrosion cracking problems are summarized. (orig.)

  14. BWR hydrogen addition for IGSCC

    International Nuclear Information System (INIS)

    Anderson, D.S.

    1985-01-01

    Mitigation of intergranular stress corrosion cracking (IGSCC) in austenitic stainless steel piping and other components exposed to the primary coolant in boiling water reactors has become a major industry challenge. Hydrogen water chemistry (HWC) has become a very popular recommended method of slowing the propagation of IGSCC and is a desirable alternative to material replacement. Although HWC is a reasonable solution for controlling IGSCC, it is not without significant drawbacks for some plants. Carolina Power and Light's (CP and L's) Brunswick Unit 2 is one of these plants where the use of HWC for the mitigation of IGSCC could have a major impact on the current operating philosophy

  15. Variation of the effectiveness of hydrogen water chemistry in a boiling water reactor during power coastdown operations

    International Nuclear Information System (INIS)

    Yeh Tsungkuang; Wang Meiya; Chu, Charles F.; Chang Ching

    2009-01-01

    A theoretical model was adapted to evaluate the impact of power coastdown on the water chemistry of a commercial boiling water reactor (BWR) in this work. In principle, the power density of a nuclear reactor upon a power level decrease would immediately be lowered, followed by water chemistry variations due to reduced radiolysis of water and extended coolant residence times in the core and near-core regions. It is currently a common practice for a commercial BWR to adopt hydrogen water chemistry (HWC) for corrosion mitigation. The optimal feedwater hydrogen concentration may be different after a power coastdown is implemented in a BWR. A computer code DEMACE was used in the current study to investigate the impact of various power coastdown levels on major radiolytic species concentrations and electrochemical corrosion potential (ECP) behavior of components in the primary coolant circuit of a domestic reactor operating under either normal water chemistry or HWC. Our analyses indicated that under a rated core flow rate the chemical species concentrations and the ECP did not vary monotonously with decreases in reactor power level at a fixed feedwater hydrogen concentration. In particular, ECP variations basically followed the patterns of hydrogen peroxide in the select regions and exhibited high values at power level of 90% for Reactor X. (author)

  16. A review of boiling water reactor water chemistry: Science, technology, and performance

    International Nuclear Information System (INIS)

    Fox, M.J.

    1989-02-01

    Boiling water reactor (BWR) water chemistry (science, technology, and performance) has been reviewed with an emphasis on the relationships between BWR water quality and corrosion fuel performance, and radiation buildup. A comparison of Nuclear Regulatory Commission (NRC) Regulatory Guide 1.56, the Boiling Water Reactor Owners Group (BWROG) Water Chemistry Guidelines, and Plant Technical Specifications showed that the BWROG Guidelines are more stringent than the NRC Regulatory Guide, which is almost identical to Plant Technical Specifications. Plant performance with respect to BWR water chemistry has shown dramatic improvements in recent years. Up until 1979 BWRs experienced an average of 3.0 water chemistry incidents per reactor-year. Since 1979 the water chemistry technical specifications have been violated an average of only 0.2 times per reactor-year, with the most recent data from 1986-1987 showing only 0.05 violations per reactor-year. The data clearly demonstrate the industry-wide commitment to improving water quality in BWRs. In addition to improving water quality, domestic BWRs are beginning to switch to hydrogen water chemistry (HWC), a remedy for intergranular stress corrosion cracking. Three domestic BWRs are presently operating on HWC, and fourteen more have either performed HWC mini tests or are in various stages of HWC implementation. This report includes a detailed review of HWC science and technology as well as areas in which further research on BWR chemistry may be needed. 43 refs., 30 figs., 8 tabs

  17. Liquefaction chemistry and kinetics: Hydrogen utilization studies

    Energy Technology Data Exchange (ETDEWEB)

    Rothenberger, K.S.; Warzinski, R.P.; Cugini, A.V. [Pittsburgh Energy Technology Center, PA (United States)] [and others

    1995-12-31

    The objectives of this project are to investigate the chemistry and kinetics that occur in the initial stages of coal liquefaction and to determine the effects of hydrogen pressure, catalyst activity, and solvent type on the quantity and quality of the products produced. The project comprises three tasks: (1) preconversion chemistry and kinetics, (2) hydrogen utilization studies, and (3) assessment of kinetic models for liquefaction. The hydrogen utilization studies work will be the main topic of this report. However, the other tasks are briefly described.

  18. Process chemistry related to hydrogen isotopes

    International Nuclear Information System (INIS)

    Iwasaki, Matae; Ogata, Yukio

    1991-01-01

    Hydrogen isotopes, that is, protium, deuterium and tritium, are all related deeply to energy in engineering region. Deuterium and tritium exist usually as water in extremely thin state. Accordingly, the improvement of the technology for separating these isotopes is a large engineering subject. Further, tritium is radioactive and its half-life period is 12.26 years, therefore, it is desirable to fix it in more stable form besides its confinement in the handling system. As the chemical forms of hydrogen, the molecular hydrogen with highest reactivity, metal hydride, carbon-hydrogen-halogen system compounds, various inorganic hydrides, most stable water and hydroxides are enumerated. The grasping of the behavior from reaction to stable state of these hydrogen compounds and the related materials is the base of process chemistry. The reaction of exchanging isotopes between water and hydrogen on solid catalyzers, the decomposition of ethane halide containing hydrogen, the behavior of water and hydroxides in silicates are reported. The isotope exchange between water and hydrogen is expected to be developed as the process of separating and concentrating hydrogen isotopes. (K.I.) 103 refs

  19. Hydrogen peroxide and radiation water chemistry of boiling water reactors

    International Nuclear Information System (INIS)

    Ibe, E.; Watanabe, A.; Endo, M.; Takahashi, M.; Karasawa, H.

    1991-01-01

    G-values and rate constants at elevated temperature are reviewed and updated for computer simulation of water radiolysis in BWRs. Quantitative relationship between g-values of H 2 and OH was found out to govern numerically the radiolytic environment in the BWR primary system. Thermal decomposition of hydrogen peroxide was measured in stagnant water in a quartz cell and the rate constant was determined at 2.4 x 10 -7 s -1 with the activation energy of 53.3 kJ/mol. Behaviors of hydrogen peroxide under HWC simulated with updated variables were consistent with plant observation at Forsmark 1 and 2. The most likely decomposition scheme of hydrogen peroxide at surface was identified as H 2 O 2 → H + HO 2 . Based on the surface decomposition process, actual level of hydrogen peroxide was estimated at 200-400 ppb under NWC condition from measured at BWR sampling stations. The estimation was consistent with the numerical simulation of BWR water radiolysis with updated variables. (author)

  20. Early hydrogen water chemistry in the boiling water reactor: industry-first demonstration

    International Nuclear Information System (INIS)

    Garcia, Susan E.; Odell, Andrew D.; Giannelli, Joseph F.

    2012-09-01

    ). Like all other U.S, BWRs, Peach Bottom 3 uses a mechanical vacuum pump (MVP) to draw initial condenser vacuum up to approximately 5% power and its operation is restricted to <4% H 2 in the gas/vapor stream. Accordingly, acceptance criteria established for the EHWC demonstration were RWCU Inlet H 2 / (Tot. Oxidant) Molar Ratio ≥2 and MVP %H 2 <4% (gas + vapor). Temporary equipment was installed for the EHWC demonstration to inject hydrogen gas into the reactor recirculation system through an existing sample line and into the feedwater system through a pressure sensing line during the startup evolution. Hydrogen was supplied from compressed gas cylinders in the reactor building and the existing hydrogen water chemistry (HWC) supply station in the turbine building. Temporary equipment was also used to admit air into the MVP suction stream to dilute injected H 2 gas and special equipment was designed and installed to monitor the %H 2 in the MVP discharge stream. Pt and Ag/AgCl electrodes were available in the mitigation monitoring system (MMS) to monitor ECP and extensive plant thermal-hydraulic and chemistry data were collected during the EHWC startup. The Peach Bottom 3 EHWC demonstration was performed safely without impacting the plant startup evolution. The EHWC acceptance criteria were met at low hydrogen injection rates. The results provide the basis for BWRs that have applied noble metals to design an EHWC process to mitigate IGSCC during plant start-ups effectively and safely while the MVP is in service. Plans for implementing EHWC across the Exelon BWR fleet are discussed. (authors)

  1. BWR chromium chemistry

    International Nuclear Information System (INIS)

    Baston, V.F.; Indig, M.E.; Skarpelos, J.M.

    1992-10-01

    This report addresses the concern about higher total specific conductivity in the reactor recirculation loop water due to the chromate ion. This concern is particularly high at plants where all other ionic species have been reduced through careful attention to makeup and condensate polisher operations. An EPRI Chromate Workshop was held in November 1990 to consider the issues raised by observed levels of chromate ion (generally 5 to 50 ppB). While BWRs on normal water chemistry were the only ones observing chromate, even plants on hydrogen water chemistry (HWC) observe sharp spikes of conductivity due to chromate whenever the hydrogen supply was interrupted after a reasonably long HWC operational period. The consensus of the workshop attendees was that chromate was not a concern as an agent causing pipe cracking compared to the more common species such as chloride and sulfate. However, the data are somewhat ambiguous for levels of chromate above 50 ppB. Adjustments to the weighing factors for the various ionic species in the industry chemistry performance index are suggested to allow for the known relative higher aggressiveness of other species relative to that of chromate

  2. Technical Basis for Water Chemistry Control of IGSCC in Boiling Water Reactors

    Science.gov (United States)

    Gordon, Barry; Garcia, Susan

    Boiling water reactors (BWRs) operate with very high purity water. However, even the utilization of near theoretical conductivity water cannot prevent intergranular stress corrosion cracking (IGSCC) of sensitized stainless steel, wrought nickel alloys and nickel weld metals under oxygenated conditions. IGSCC can be further accelerated by the presence of certain impurities dissolved in the coolant. The goal of this paper is to present the technical basis for controlling various impurities under both oxygenated, i.e., normal water chemistry (NWC) and deoxygenated, i.e., hydrogen water chemistry (HWC) conditions for mitigation of IGSCC. More specifically, the effects of typical BWR ionic impurities (e.g., sulfate, chloride, nitrate, borate, phosphate, etc.) on IGSCC propensities in both NWC and HWC environments will be discussed. The technical basis for zinc addition to the BWR coolant will also provided along with an in-plant example of the most severe water chemistry transient to date.

  3. BWR water chemistry impurity studies

    International Nuclear Information System (INIS)

    Ljungberg, L.G.; Korhonen, S.; Renstroem, K.; Hofling, C.G.; Rebensdorff, B.

    1990-03-01

    Laboratory studies were made on the effect of water impurities on environmental cracking in simulated BWR water of stainless steel, low alloy steel and nickel-base alloys. Constant elongation rate tensile (CERT) tests were run in simulated normal water chemistry (NWC), hydrogen water chemistry (HWC), or start-up environment. Sulfate, chloride and copper with chloride added to the water at levels of a fraction of a ppM were found to be extremely deleterious to all kinds of materials except Type 316 NG. Other detrimental impurities were fluoride, silica and some organic acids, although acetic acid was beneficial. Nitrate and carbon dioxide were fairly inoccuous. Corrosion fatigue and constant load tests on compact tension specimens were run in simulated normal BWR water chemistry (NWC) or hydrogen water chemistry (HWC), without impurities or with added sulfate or carbon dioxide. For sensitized Type 304 SS in NWC, 0.1 ppM sulfate increased crack propagation rates in constant load tests by up to a factor of 100, and in fatigue tests up to a factor of 10. Also, cracking in Type 316 nuclear grade SS and Alloy 600 was enhanced, but to a smaller degree. Carbon dioxide was less detrimental than sulfate. 3 figs., 4 tabs

  4. Chemistry - Toward efficient hydrogen production at surfaces

    DEFF Research Database (Denmark)

    Nørskov, Jens Kehlet; Christensen, Claus H.

    2006-01-01

    Calculations are providing a molecular picture of hydrogen production on catalytic surfaces and within enzymes, knowledge that may guide the design of new, more efficient catalysts for the hydrogen economy.......Calculations are providing a molecular picture of hydrogen production on catalytic surfaces and within enzymes, knowledge that may guide the design of new, more efficient catalysts for the hydrogen economy....

  5. The CH/π hydrogen bond: Implication in chemistry

    Science.gov (United States)

    Nishio, M.

    2012-06-01

    The CH/π hydrogen bond is the weakest extreme of hydrogen bonds that occurs between a soft acid CH and a soft base π-system. Implication in chemistry of the CH/π hydrogen bond includes issues of conformation, crystal packing, and specificity in host/guest complexes. The result obtained by analyzing the Cambridge Structural Database is reviewed. The peculiar axial preference of isopropyl group in α-phellandrene and folded conformation of levopimaric acid have been explained in terms of the CH/π hydrogen bond, by high-level ab initio MO calculations. Implication of the CH/π hydrogen bond in structural biology is also discussed, briefly.

  6. Hydrogen Bond Basicity Prediction for Medicinal Chemistry Design.

    Science.gov (United States)

    Kenny, Peter W; Montanari, Carlos A; Prokopczyk, Igor M; Ribeiro, Jean F R; Sartori, Geraldo Rodrigues

    2016-05-12

    Hydrogen bonding is discussed in the context of medicinal chemistry design. Minimized molecular electrostatic potential (Vmin) is shown to be an effective predictor of hydrogen bond basicity (pKBHX), and predictive models are presented for a number of hydrogen bond acceptor types relevant to medicinal chemistry. The problems posed by the presence of nonequivalent hydrogen bond acceptor sites in molecular structures are addressed by using nonlinear regression to fit measured pKBHX to calculated Vmin. Predictions are made for hydrogen bond basicity of fluorine in situations where relevant experimental measurements are not available. It is shown how predicted pKBHX can be used to provide insight into the nature of bioisosterism and to profile heterocycles. Examples of pKBHX prediction for molecular structures with multiple, nonequivalent hydrogen bond acceptors are presented.

  7. How Do Organic Chemistry Students Understand and Apply Hydrogen Bonding?

    Science.gov (United States)

    Henderleiter, J.; Smart, R.; Anderson, J.; Elian, O.

    2001-08-01

    Students completing a year-long organic chemistry sequence were interviewed to assess how they understood, explained, and applied knowledge of hydrogen bonding to the physical behavior of molecules. Students were asked to define hydrogen bonding and explain situations in which hydrogen bonding could occur. They were asked to predict and explain how hydrogen bonding influences boiling point, the solubility of molecules, and NMR and IR spectra. Results suggest that although students may be able to give appropriate definitions of hydrogen bonding and may recognize when this phenomenon can occur, significant numbers cannot apply their knowledge of hydrogen bonding to physical properties of molecules or to the interpretation of spectral data. Some possess misconceptions concerning boiling points and the ability of molecules to induce hydrogen bonding. Instructional strategies must be adjusted to address these issues.

  8. The 2HWC HAWC Observatory Gamma-Ray Catalog

    Energy Technology Data Exchange (ETDEWEB)

    Abeysekara, A. U.; Barber, A. S. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT (United States); Albert, A. [Physics Division, Los Alamos National Laboratory, Los Alamos, NM (United States); Alfaro, R.; Becerril, A.; Belmont-Moreno, E. [Instituto de Física, Universidad Nacional Autónoma de México, Mexico City (Mexico); Alvarez, C.; Arceo, R.; Caballero-Mora, K. S. [Universidad Autónoma de Chiapas, Tuxtla Gutiérrez, Chiapas (Mexico); Álvarez, J. D.; Arteaga-Velázquez, J. C. [Universidad Michoacana de San Nicolás de Hidalgo, Morelia (Mexico); Solares, H. A. Ayala; Brisbois, C. [Department of Physics, Michigan Technological University, Houghton, MI (United States); Baughman, B.; Berley, D. [Department of Physics, University of Maryland, College Park, MD (United States); Bautista-Elivar, N. [Universidad Politecnica de Pachuca, Pachuca, Hidalgo (Mexico); Gonzalez, J. Becerra [NASA Goddard Space Flight Center, Greenbelt, MD (United States); BenZvi, S. Y. [Department of Physics and Astronomy, University of Rochester, Rochester, NY (United States); Bernal, A. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Mexico City (Mexico); Braun, J., E-mail: riviere@umdgrb.umd.edu [Department of Physics, University of Wisconsin-Madison, Madison, WI (United States); and others

    2017-07-01

    We present the first catalog of TeV gamma-ray sources realized with data from the newly completed High Altitude Water Cherenkov Observatory (HAWC). It is the most sensitive wide field-of-view TeV telescope currently in operation, with a one-year survey sensitivity of ∼5%–10% of the flux of the Crab Nebula. With an instantaneous field of view >1.5 sr and >90% duty cycle, it continuously surveys and monitors the sky for gamma-ray energies between hundreds of GeV and tens of TeV. HAWC is located in Mexico, at a latitude of 19° N, and was completed in 2015 March. Here, we present the 2HWC catalog, which is the result of the first source search performed with the complete HAWC detector. Realized with 507 days of data, it represents the most sensitive TeV survey to date for such a large fraction of the sky. A total of 39 sources were detected, with an expected number of false detections of 0.5 due to background fluctuation. Out of these sources, 19 are new sources that are not associated with previously known TeV sources (association criteria: <0.°5 away). The source list, including the position measurement, spectrum measurement, and uncertainties, is reported, then each source is briefly discussed. Of the 2HWC associated sources, 10 are reported in TeVCat as PWN or SNR: 2 as blazars and the remaining eight as unidentified.

  9. BWR Water Chemistry Guidelines: 1993 Revision, Normal and hydrogen water chemistry

    International Nuclear Information System (INIS)

    Karlberg, G.; Goddard, C.; Fitzpatrick, S.

    1994-02-01

    The goal of water chemistry control is to extend the operating life of the reactor and rector coolant system, balance-of-plant components, and turbines while simultaneously controlling costs to safeguard the continued economic viability of the nuclear power generation investment. To further this goal an industry committee of chemistry personnel prepared guidelines to identify the benefits, risks, and costs associated with water chemistry in BWRs and to provide a template for an optimized water chemistry program. This document replaces the BWR Normal Water Chemistry Guidelines - 1986 Revision and the BWR Hydrogen Water Chemistry Guidelines -- 1987 Revision. It expands on the previous guidelines documents by covering the economic implications of BWR water chemistry control

  10. Environmental mitigation for SCC initiation of BWR core internals by hydrogen injection during start-up

    International Nuclear Information System (INIS)

    Dozaki, K.; Abe, A.; Nagata, N.; Takiguchi, H.

    2004-01-01

    Hydrogen injection into the reactor water has been applied to many BWR power stations. Since hydrogen injected accelerates recombination of oxidant generated by water radiolysis, oxidant concentration, such as dissolved oxygen concentration in reactor water can be reduced. As the result of the reduction of oxidant concentration, Electrochemical Corrosion Potential (ECP) at the surface of structural material can be lowered. Lowered ECP moderates Stress Corrosion Cracking (SCC) sensitivity of structural materials, such as stainless steels. As usual, hydrogen injection system begins to work after the plant start-up is finished, when the condition of normal operation is established. Accordingly, Hydrogen Water Chemistry (HWC) does not cover all the period of plant operation. As far as SCC crack growth is considered, loss of HWC during plant start-up does not result in significant crack growth, because of duration of plant start-up is much shorter than that of plant normal operation, when HWC condition is being satisfied. However, the reactor water environment and load conditions during a plant start-up may contribute to the initiation of SCC. It is estimated that the core internals are subjected to the strain rate that may cause susceptibility to SCC initiation during start-up. Dissolved oxygen (DO) and hydrogen peroxide (H 2 O 2 ) has a peak, and ECP is in high levels during start-up. Therefore it is beneficial to perform hydrogen injection during start-up as well in order to suppress SCC initiation. We call it HWC During Start-up (HDS) here. (orig.)

  11. The basic chemistry and photochemistry behind hydrogen peroxide tooth whitening

    NARCIS (Netherlands)

    Young, N.D.; Fairley, P.D.; Mohan, V.; Jumeaux, C.

    2013-01-01

    Tooth whitening using hydrogen peroxide gel formulation is a complexprocess which involves both chemistry and physics, and there is still some controversy about the efficiency of whitening processes, particularly with respect to the roles of temperature and irradiation with light. In this work we

  12. Study of CNT growth using nanocatalyst Ag precursor by HWC-VHF-PECVD

    International Nuclear Information System (INIS)

    Eliyana, Ajeng; Rosikin, Ahmad; Winata, Toto

    2015-01-01

    The study of CNT growth has been done by using silver (Ag) nanocatalyst as a guide precursor on corning glass 7059 substrate. The silver catalyst was prepared by the evaporation method by varying deposition time for 50, 25, and 14 seconds. The silver films were then annealed at temperature of 400°C for 4 hours. From Scanning Electron Microscope (SEM) and Energy Dispersive X-ray Spectroscopy (EDX) results the grain sizes are 65 nm, 57 nm, and 33 nm, and also the atomic compositions are 6,06%, 4,52%, and 3,73% for 14, 25 and 50 seconds samples, respectively. The 33 nm samples were then used for CNT growth by using Hot Wire Cell (HWC) – Very High Frequency (VHF) – Plasma Enhanced Chemical Vapor Deposition (PECVD) at 275 ° C deposition temperature and pressure of 300 mTorr. The rf power was varied from 8 to 20 watts, with deposition time for 60 minutes. The methane (CH4) 99.999% was used as Carbon sources. Hydrogen gas (H2) was used to etch the oxide layer formed during the pre-deposition process. The diameter and length for the CNT are 125 nm and 1.650 to 2.989 nm respectively

  13. Study of CNT growth using nanocatalyst Ag precursor by HWC-VHF-PECVD

    Energy Technology Data Exchange (ETDEWEB)

    Eliyana, Ajeng; Rosikin, Ahmad; Winata, Toto, E-mail: toto@fi.itb.ac.id [Physics of Electronics Material Research Division, Physics Programme, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, West Java (Indonesia)

    2015-04-16

    The study of CNT growth has been done by using silver (Ag) nanocatalyst as a guide precursor on corning glass 7059 substrate. The silver catalyst was prepared by the evaporation method by varying deposition time for 50, 25, and 14 seconds. The silver films were then annealed at temperature of 400°C for 4 hours. From Scanning Electron Microscope (SEM) and Energy Dispersive X-ray Spectroscopy (EDX) results the grain sizes are 65 nm, 57 nm, and 33 nm, and also the atomic compositions are 6,06%, 4,52%, and 3,73% for 14, 25 and 50 seconds samples, respectively. The 33 nm samples were then used for CNT growth by using Hot Wire Cell (HWC) – Very High Frequency (VHF) – Plasma Enhanced Chemical Vapor Deposition (PECVD) at 275 ° C deposition temperature and pressure of 300 mTorr. The rf power was varied from 8 to 20 watts, with deposition time for 60 minutes. The methane (CH4) 99.999% was used as Carbon sources. Hydrogen gas (H2) was used to etch the oxide layer formed during the pre-deposition process. The diameter and length for the CNT are 125 nm and 1.650 to 2.989 nm respectively.

  14. Theory of Hydrogen Storage: A New Strategy within Organometallic Chemistry

    Science.gov (United States)

    Zhao, Yufeng

    2006-03-01

    As one of the most vigorous fields in modern chemistry, organometallic chemistry has made vast contributions to a broad variety of technological fields including catalysis, light emitters, molecular devices, liquid crystals, and even superconductivity. Here we show that organometallic chemistry in nanoscale could be the frontier in hydrogen storage. Our study is based on the notion that the 3d transition metal (TM) atoms are superb absorbers for H storage, as their empty d orbital can bind dihydrogen ligands (elongated but non-dissociated H2) with high capacity at nearly ideal binding energy for reversible hydrogen storage. By embedding the TM atoms into a carbon-based nanostructures, high H capacity can be maintained. This presentation contains four parts. First, by comparing the conventional hydrogen storage media, e.g., metal hydrides and carbon-based materials, the general principles for designing hydrogen storage materials are outlined. Second, organometallic buckyballs are studied to demonstrate the novel strategy. The amount of H2 adsorbed on a Sc-coated fullerene, C48B12 [ScH]12, could approach 9 wt%, with binding energies of 30-40 kJ/mol. Third, the method is applied to the transition-metal carbide nanoparticles that have been synthesized experimentally. The similar non-dissociative H2 binding is revealed in our calculation, thereby demonstrating the resilience of the overall mechanism. Moreover, a novel self-catalysis process is identified. In the fourth part, transition-metal functionalization of highly porous carbon-based materials is discussed heuristically to foresee macroscopic media for hydrogen storage. Finally follows the summary and discussion of the remaining challenges to practical hydrogen storage. Work in collaboration with A. C. Dillon, Y.-H. Kim, M. Heben & S. B. Zhang and supported by the U.S. DOE/EERE under contract No. DE-AC36-99GO10337.

  15. The basic chemistry and photochemistry behind hydrogen peroxide tooth whitening

    OpenAIRE

    Young, N.D.; Fairley, P.D.; Mohan, V.; Jumeaux, C.

    2013-01-01

    Tooth whitening using hydrogen peroxide gel formulation is a complexprocess which involves both chemistry and physics, and there is still some controversy about the efficiency of whitening processes, particularly with respect to the roles of temperature and irradiation with light. In this work we avoid the complications of the physics bystudying the basic interactions between whitening agents and stainmolecules in simple solutions. We demonstrate that blue light irradiation has a clear and la...

  16. Comparison of the corrosion potential for stainless steel measured in-plant and in laboratory during BWR normal water chemistry conditions

    International Nuclear Information System (INIS)

    Molander, A.; Pein, K.; Tarkpea, P.; Takagi, Junichi; Karlberg, G.; Gott, K.

    1998-01-01

    To obtain reliable crack growth rate date for stainless steel in BWR environments careful laboratory simulation of the environmental conditions is necessary. In the plant the BWR normal water chemistry environment contains hydrogen peroxide, oxygen and hydrogen. However, in crack growth rate experiments in laboratories, the environment is normally simulated by adding 200 ppb oxygen to the high temperature water. Thus, as hydrogen peroxide is a more powerful oxidant than oxygen, it is to be expected that a lower corrosion potential will be measured in the laboratory than in the plant. To resolve this issue this work has been performed. In-plant and laboratory measurements have often been performed with somewhat different equipment, due to the special requirements concerning in-plant measurements. In this work such differences have been avoided and two identical sets of equipment for electrochemical measurements were built and used for measurements in-plant in a Swedish BWR and in high purity water in the laboratory. The host plant was Barsebaeck 1. Corrosion potential monitoring in-plant was performed under both NWC (Normal Water Chemistry) and HWC (Hydrogen Water Chemistry) conditions. This paper is, however, focused on NWC conditions. This is due to the fact, that the total crack growth obtained during a reactor cycle, can be determined by NWC conditions, even for plants running with HWC due to periodic stops in the hydrogen addition for turbine inspections or failure of the dosage or hydrogen production equipment. Thus, crack growth data for NWC is of great importance both for BWRs operating with HWC and NWC. Measurements in-plant and in the laboratory were performed during additions of oxygen and hydrogen peroxide to the autoclave systems. The corrosion potentials were compared for various conditions in the autoclaves, as well as versus in-plant in-pipe corrosion potentials. (J.P.N.)

  17. Inorganic Chemistry in Hydrogen Storage and Biomass Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Thorn, David [Los Alamos National Laboratory

    2012-06-13

    Making or breaking C-H, B-H, C-C bonds has been at the core of catalysis for many years. Making or breaking these bonds to store or recover energy presents us with fresh challenges, including how to catalyze these transformations in molecular systems that are 'tuned' to minimize energy loss and in molecular and material systems present in biomass. This talk will discuss some challenging transformations in chemical hydrogen storage, and some aspects of the inorganic chemistry we are studying in the development of catalysts for biomass utilization.

  18. Photoelectrochemical Hydrogen Production Using New Combinatorial Chemistry Derived Materials

    Energy Technology Data Exchange (ETDEWEB)

    Jaramillo, Thomas F.; Baeck, Sung-Hyeon; Kleiman-Shwarsctein, Alan; Stucky, Galen D. (PI); McFarland, Eric W. (PI)

    2004-10-25

    Solar photoelectrochemical water-splitting has long been viewed as one of the “holy grails” of chemistry because of its potential impact as a clean, renewable method of fuel production. Several known photocatalytic semiconductors can be used; however, the fundamental mechanisms of the process remain poorly understood and no known material has the required properties for cost effective hydrogen production. In order to investigate morphological and compositional variations in metal oxides as they relate to opto-electrochemical properties, we have employed a combinatorial methodology using automated, high-throughput, electrochemical synthesis and screening together with conventional solid-state methods. This report discusses a number of novel, high-throughput instruments developed during this project for the expeditious discovery of improved materials for photoelectrochemical hydrogen production. Also described within this report are results from a variety of materials (primarily tungsten oxide, zinc oxide, molybdenum oxide, copper oxide and titanium dioxide) whose properties were modified and improved by either layering, inter-mixing, or doping with one or more transition metals. Furthermore, the morphologies of certain materials were also modified through the use of structure directing agents (SDA) during synthesis to create mesostructures (features 2-50 nm) that increased surface area and improved rates of hydrogen production.

  19. U.S. experience with hydrogen water chemistry in boiling water reactors

    International Nuclear Information System (INIS)

    Cowan, R.L.; Head, R.A.; Indig, M.E.; Ruiz, C.P.; Simpson, J.L.

    1988-01-01

    Hydrogen water chemistry in boiling water reactors is currently being adopted by many utilities in the U.S., with eleven units having completed preimplementation test programs, four units operating permanently with hydrogen water chemistry, and six other units in the process of installing permanent equipment. Intergranular stress corrosion cracking protection is required for the recirculation piping system and other regions of the BWR systems. The present paper explores progress in predicting and monitoring hydrogen water chemistry response in these areas. Testing has shown that impurities can play an important role in hydrogen water chemistry. Evaluation of their effects are also performed. Both computer modeling and in plant measurements show that each plant will respond uniquely to feedwater hydrogen addition. Thus, each plant has its own unique hydrogen requirement for recirculation system protecion. Furthermore, the modeling, and plant measurements show that different regions of the BWR respond differently to hydrogen injection. Thus, to insure protection of components other than the recirculation systems may require more (or less) hydrogen demand than indicated by the recirculation system measurements. In addition, impurities such as copper can play a significant role in establishing hydrogen demand. (Nogami, K.)

  20. Hydrogen sulfide waste treatment by microwave plasma-chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Harkness, J.B.L.; Doctor, R.D.

    1994-03-01

    A waste-treatment process that recovers both hydrogen and sulfur from industrial acid-gas waste streams is being developed to replace the Claus technology, which recovers only sulfur. The proposed process is derived from research reported in the Soviet technical literature and uses microwave (or radio-frequency) energy to initiate plasma-chemical reactions that dissociate hydrogen sulfide into elemental hydrogen and sulfur. This process has several advantages over the current Claus-plus-tail-gas-cleanup technology, which burns the hydrogen to water. The primary advantage of the proposal process is its potential for recovering and recycling hydrogen more cheaply than the direct production of hydrogen. Since unconverted hydrogen sulfide is recycled to the plasma reactor, the plasma-chemical process has the potential for sulfur recoveries in excess of 99% without the additional complexity of the tail-gas-cleanup processes associated with the Claus technology. There may also be some environmental advantages to the plasma-chemical process, because the process purge stream would primarily be the carbon dioxide and water contained in the acid-gas waste stream. Laboratory experiments with pure hydrogen sulfide have demonstrated the ability of the process to operate at or above atmospheric pressure with an acceptable hydrogen sulfide dissociation energy. Experiments with a wide range of acid-gas compositions have demonstrated that carbon dioxide and water are compatible with the plasma-chemical dissociation process and that they do not appear to create new waste-treatment problems. However, carbon dioxide does have negative impacts on the overall process. First, it decreases the hydrogen production, and second, it increases the hydrogen sulfide dissociation energy.

  1. Predicted effect of power uprating on the water chemistry of commercial boiling water reactors

    International Nuclear Information System (INIS)

    Yeh, Tsung-Kuang; Wang, Mei-Ya; Chu, Charles F.; Chang Ching

    2009-01-01

    The approach of power uprating has been adopted by operators of light water reactors in the past few decades in order to increase the power generation efficiency of nuclear reactors. The power uprate strategy is apparently applicable to the three nuclear reactors in Taiwan as well. When choosing among the three types of power uprating, measurement uncertainty, stretch power uprating, and extended power uprating, a deliberate and thorough evaluation is required before a final decision and an optimal selection can be made. One practical way of increasing the reactor power is to deliberately adjust the fuel loading pattern and the control rod pattern and thus to avoid replacing the primary coolant pump with a new one of larger capacity. The power density of the reactor will increase with increasing power, but the mass flow rate in the primary coolant circuit (PCC) of a light water reactor will slightly increase (usually by less than 5 %) or even remain unchanged. Accordingly, an uprated power would induce higher neutron and gamma photon dose rates in the reactor coolant but have a minor or no effect on the mass flow rate of the primary coolant. The radiolysis product concentrations and the electrochemical corrosion potential (ECP) values differ largely in the PCC of a boiling water reactor (BWR). It is very difficult to measure the water chemistry data directly at various locations of an actual reactor. Thus the impact of power uprating on the water chemistry of a BWR operating under hydrogen water chemistry (HWC) can only be theoretically evaluated through computer modelling. In this study, the DEMACE computer code was modified to investigate the impact of power uprating on the water chemistry under a fixed mass flow rate in the primary coolant circuit of a BWR/6 type plant. Simulations were carried out for hydrogen concentrations in feedwater ranging from 0.0 to 2.0 mg . kg -1 and for power levels ranging from 100 % to 120 %. The responses of water chemistry and ECP

  2. The oxidation of hydrogen cyanide and related chemistry

    DEFF Research Database (Denmark)

    Dagaut, Philippe; Glarborg, Peter; Alzueta, Maria U.

    2008-01-01

    For modeling the formation of nitrogen oxides in combustion via both the prompt-NO and the fuel-NO mechanisms, as well as for modeling the reduction of nitrogen oxides via reburning, a good knowledge of the kinetics of oxidation of hydrogen cyanide (HCN) is required. The formation routes to HCN a...

  3. Developing and Implementing a Simple, Affordable Hydrogen Fuel Cell Laboratory in Introductory Chemistry

    Science.gov (United States)

    Klara, Kristina; Hou, Ning; Lawman, Allison; Wu, Liheng; Morrill, Drew; Tente, Alfred; Wang, Li-Qiong

    2014-01-01

    A simple, affordable hydrogen proton exchange membrane (PEM) fuel cell laboratory was developed through a collaborative effort between faculty and undergraduate students at Brown University. It has been incorporated into the introductory chemistry curriculum and successfully implemented in a class of over 500 students per academic year for over 3…

  4. Approach to mitigate intergranular stress corrosion cracking and dose rate reduction rate by water chemistry control in Tokai-2

    International Nuclear Information System (INIS)

    Hisamune, Kenji

    2015-01-01

    The Japan Atomic Power Company (JAPC) had been working on material replacement and measures to mitigate stress in order to maintain the integrity of the structural material of Tokai-Daini nuclear power plant (Tokai-2, BWR, 1,100 MWe; commercial operation started on November 28, 1978). In addition, as Stress Corrosion Cracking (SCC) environmental mitigation measures, we have been reducing the sulfate ion concentration in the reactor water by improving the regeneration method of the ion exchange resin at condensate purification system. Furthermore, in conducting the SCC environmental mitigation measures by applying hydrogen water chemistry (HWC) and HWC during start-up (HDS), we have been reducing the oxidizing agent concentration in the reactor water. On the other hand, as a plant that has not installed condensate filters, we have been working on feed water iron concentration reduction measures in Tokai-2 as part of the dose reduction measures. Therefore, we have improved condensate demineralizer's ion exchange resin and the ion exchange resin cleaning method using the ARCS (Advanced Resin Cleaning System) in order to improve the iron removal performance of condensate demineralizer. This document reports the improvement effect of the SCC environmental mitigation measures and the dose reduction measures by water chemistry management at Tokai-2. In addition, the dose reduction effect of the recently applied zinc injection, and the Electrochemical Corrosion Potential (ECP) monitoring plan under the On-Line Noble Chemical Addition (OLNC™) to be implemented later shall be introduced. (author)

  5. Surface chemistry of a hydrogenated mesoporous p-type silicon

    Energy Technology Data Exchange (ETDEWEB)

    Media, El-Mahdi, E-mail: belhadidz@tahoo.fr; Outemzabet, Ratiba, E-mail: oratiba@hotmail.com

    2017-02-15

    Highlights: • Due to its large specific surface porous silicon is used as substrate for drug therapy and biosensors. • We highlight the evidency of the contribution of the hydrides (SiHx) in the formation of the porous silicon. • The responsible species in the porous silicon formation are identified and quantified at different conditions. • By some chemical treatments we show that silicon surface can be turn from hydrophobic to hydrophilic. - Abstract: The finality of this work is devoted to the grafting of organic molecules on hydrogen passivated mesoporous silicon surfaces. The study would aid in the development for the formation of organic monolayers on silicon surface to be exploited for different applications such as the realisation of biosensors and medical devices. The basic material is silicon which has been first investigated by FTIR at atomistic plane during the anodic forward and backward polarization (i.e. “go” and “return”). For this study, we applied a numerical program based on least squares method to infrared absorbance spectra obtained by an in situ attenuated total reflection on p-type silicon in diluted HF electrolyte. Our numerical treatment is based on the fitting of the different bands of IR absorbance into Gaussians corresponding to the different modes of vibration of molecular groups such as siloxanes and hydrides. An adjustment of these absorbance bands is done systematically. The areas under the fitted bands permit one to follow the intensity of the different modes of vibration that exist during the anodic forward and backward polarization in order to compare the reversibility of the phenomenon of the anodic dissolution of silicon. It permits also to follow the evolution between the hydrogen silicon termination at forward and backward scanning applied potential. Finally a comparison between the states of the initial and final surface was carried out. We confirm the presence of clearly four and three distinct vibration modes

  6. Solar chemistry / hydrogen - Summary report on the research programme 2002; Forschungsprogramm Solarchemie / Wasserstoff

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This summary report for the Swiss Federal Office of Energy (SFOE) on the solar chemistry / hydrogen research programme presents an overview of work done in these fields in Switzerland in 2002. It includes an overview of work done on 12 research and development projects and 9 pilot and demonstration projects. The volume is completed with a selection of 13 annual reports on particular topics, including transformation and storage of energy by photo-chemical, photo-electrochemical and photovoltaic means, generation of hydrogen using water splitting, solar production of zinc and calcium, catalytic synthesis, redox processes for the production of hydrogen and compressed air as a means of storing energy. Also covered are the topics of how solar chemistry can help reduce CO{sub 2} emissions and the management of the International Energy Agency's hydrogen annex 14. Further reports look at the destabilisation of metal hydride compounds, materials for sustainable energy technologies and diffusion barriers for high-pressure hydrogen tanks.

  7. Thermodynamics and kinetics of graphene chemistry: a graphene hydrogenation prototype study.

    Science.gov (United States)

    Pham, Buu Q; Gordon, Mark S

    2016-12-07

    The thermodynamic and kinetic controls of graphene chemistry are studied computationally using a graphene hydrogenation reaction and polyaromatic hydrocarbons to represent the graphene surface. Hydrogen atoms are concertedly chemisorped onto the surface of graphene models of different shapes (i.e., all-zigzag, all-armchair, zigzag-armchair mixed edges) and sizes (i.e., from 16-42 carbon atoms). The second-order Z-averaged perturbation theory (ZAPT2) method combined with Pople double and triple zeta basis sets are used for all calculations. It is found that both the net enthalpy change and the barrier height of graphene hydrogenation at graphene edges are lower than at their interior surfaces. While the thermodynamic product distribution is mainly determined by the remaining π-islands of functionalized graphenes (Phys. Chem. Chem. Phys., 2013, 15, 3725-3735), the kinetics of the reaction is primarily correlated with the localization of the electrostatic potential of the graphene surface.

  8. Technical basis for hydrogen-water chemistry: Laboratory studies of water chemistry effects on SCC [stress-corrosion-cracking

    International Nuclear Information System (INIS)

    Kassner, T.F.; Ruther, W.E.; Soppet, W.K.

    1986-10-01

    The influence of different impurities, viz., oxyacids and several chloride salts, on the stress-corrosion-cracking (SCC) of sensitized Type 304 stainless steel (SS) was investigated in constant-extension-rate-tensile (CERT) tests in 289 0 C water at a low dissolved-oxygen concentration ( 0 C in low-oxygen environments with and without sulfate at low concentrations. In these experiments, the crack growth behavior of the materials was correlated with the type and concentration of the impurities and the electrochemical potentials of Type 304 SS and platinum electrodes in the simulated hydrogen-water chemistry environments. The information suggests that better characterization of water quality, through measurement of the concentrations of individual species (SO 4 2- , NO 3 - , Cu 2+ , etc.) coupled with measurements of the corrosion and redox potentials at high temperatures will provide a viable means to monitor and ultimately improve the performance of BWR system materials

  9. Main Group Element Chemistry in Service of Hydrogen Storage and Activation. Final report

    International Nuclear Information System (INIS)

    Dixon, David A.; Arduengo, Anthony J. III

    2010-01-01

    Replacing combustion of carbon-based fuels with alternative energy sources that have minimal environmental impact is one of the grand scientific and technological challenges of the early 21st century. Not only is it critical to capture energy from new, renewable sources, it is also necessary to store the captured energy efficiently and effectively for use at the point of service when and where it is needed, which may not be collocated with the collection site. There are many potential storage media but we focus on the storage of energy in chemical bonds. It is more efficient to store energy on a per weight basis in chemical bonds. This is because it is hard to pack electrons into small volumes with low weight without the use of chemical bonds. The focus of the project was the development of new chemistries to enable DOE to meet its technical objectives for hydrogen storage using chemical hydrogen storage systems. We provided computational chemistry support in terms of thermodynamics, kinetics, and properties prediction in support of the experimental efforts of the DOE Center of Excellence for Chemical Hydrogen Storage. The goal of the Center is to store energy in chemical bonds involving hydrogen atoms. Once the hydrogen is stored in a set of X-H/Y-H bonds, the hydrogen has to be easily released and the depleted fuel regenerated very efficiently. This differs substantially from our current use of fossil fuel energy sources where the reactant is converted to energy plus CO 2 (coal) or CO 2 and H 2 O (gasoline, natural gas), which are released into the atmosphere. In future energy storage scenarios, the spent fuel will be captured and the energy storage medium regenerated. This places substantial additional constraints on the chemistry. The goal of the computational chemistry work was to reduce the time to design new materials and develop materials that meet the 2010 and 2015 DOE objectives in terms of weight percent, volume, release time, and regeneration ability

  10. Final Report: Main Group Element Chemistry in Service of Hydrogen Storage and Activation

    Energy Technology Data Exchange (ETDEWEB)

    David A. Dixon; Anthony J. Arduengo, III

    2010-09-30

    Replacing combustion of carbon-based fuels with alternative energy sources that have minimal environmental impact is one of the grand scientific and technological challenges of the early 21st century. Not only is it critical to capture energy from new, renewable sources, it is also necessary to store the captured energy efficiently and effectively for use at the point of service when and where it is needed, which may not be collocated with the collection site. There are many potential storage media but we focus on the storage of energy in chemical bonds. It is more efficient to store energy on a per weight basis in chemical bonds. This is because it is hard to pack electrons into small volumes with low weight without the use of chemical bonds. The focus of the project was the development of new chemistries to enable DOE to meet its technical objectives for hydrogen storage using chemical hydrogen storage systems. We provided computational chemistry support in terms of thermodynamics, kinetics, and properties prediction in support of the experimental efforts of the DOE Center of Excellence for Chemical Hydrogen Storage. The goal of the Center is to store energy in chemical bonds involving hydrogen atoms. Once the hydrogen is stored in a set of X-H/Y-H bonds, the hydrogen has to be easily released and the depleted fuel regenerated very efficiently. This differs substantially from our current use of fossil fuel energy sources where the reactant is converted to energy plus CO2 (coal) or CO2 and H2O (gasoline, natural gas), which are released into the atmosphere. In future energy storage scenarios, the spent fuel will be captured and the energy storage medium regenerated. This places substantial additional constraints on the chemistry. The goal of the computational chemistry work was to reduce the time to design new materials and develop materials that meet the 2010 and 2015 DOE objectives in terms of weight percent, volume, release time, and regeneration ability. This

  11. Atomic scale study of the chemistry of oxygen, hydrogen and water at SiC surfaces

    International Nuclear Information System (INIS)

    Amy, Fabrice

    2007-01-01

    Understanding the achievable degree of homogeneity and the effect of surface structure on semiconductor surface chemistry is both academically challenging and of great practical interest to enable fabrication of future generations of devices. In that respect, silicon terminated SiC surfaces such as the cubic 3C-SiC(1 0 0) 3 x 2 and the hexagonal 6H-SiC(0 0 0 1) 3 x 3 are of special interest since they give a unique opportunity to investigate the role of surface morphology on oxygen or hydrogen incorporation into the surface. In contrast to silicon, the subsurface structure plays a major role in the reactivity, leading to unexpected consequences such as the initial oxidation starting several atomic planes below the top surface or the surface metallization by atomic hydrogen. (review article)

  12. C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN

    Energy Technology Data Exchange (ETDEWEB)

    Gerald P. Huffman

    2004-09-30

    The Consortium for Fossil Fuel Science (CFFS) is a research consortium with participants from the University of Kentucky, University of Pittsburgh, West Virginia University, University of Utah, and Auburn University. The CFFS is conducting a research program to develop C1 chemistry technology for the production of clean transportation fuel from resources such as coal and natural gas, which are more plentiful domestically than petroleum. The processes under development will convert feedstocks containing one carbon atom per molecular unit into ultra clean liquid transportation fuels (gasoline, diesel, and jet fuel) and hydrogen, which many believe will be the transportation fuel of the future. Feedstocks include synthesis gas, a mixture of carbon monoxide and hydrogen produced by coal gasification, coalbed methane, light products produced by Fischer-Tropsch (FT) synthesis, methanol, and natural gas.

  13. Decontamination flange film characterization for a boiling water reactor under hydrogen water chemistry

    International Nuclear Information System (INIS)

    Baston, V.F.; Garbauskas, M.F.; Bozeman, J.

    1996-01-01

    Stainless steel artifacts removed from a boiling water reactor class 4 plant that operated under hydrogen water chemistry and experienced a difficult decontamination were submitted for oxide film characterization. The results reported for the corrosion film composition and structure are consistent with existing theoretical concepts for stainless steel corrosion, spinel structure site preferences (octahedral or tetrahedral) for transition metal ions, and potential-pH diagrams. The observed zinc effects on film stability and lower cobalt incorporation are also consistent with these theoretical concepts

  14. Multi-level computational chemistry study on hydrogen recombination catalyst of off-gas treatment system

    International Nuclear Information System (INIS)

    Hatakeyama, Nozomu; Ise, Mariko; Inaba, Kenji

    2011-01-01

    In order to reveal the deactivation mechanism of the hydrogen recombination catalyst of off-gas treatment system, we investigate by using multi-level computational chemistry simulation methods. The recombiner apparatus is modeled by the numerical mesh system in the axial coordinates, and unsteady, advection and reaction rate equations are solved by using a finite difference method. The chemical reactions are formulated to represent adsorption-desorption of hydrogen and oxygen on Pt catalyst, and time developments of the coverage factors of Pt are solved numerically. The computational simulations successfully reproduce the very similar behaviors observed by experiments, such as increasing of the inversion rates of H 2 to H 2 O, the temperatures distributions along the flow direction, dependencies of experimental condition, and so on. Thus Pt poisoning is considered to cause the deactivation of the hydrogen recombination catalyst. To clarify the poisoning mechanism, the molecular level simulation is applied to the system of Pt on boehmite attacked by a cyclic siloxane which has been detected by experiments and considered as one of poisoning spices. The simulation shows ring-opening reaction of the cyclic siloxane on Pt, then attachment of two ends of the chain-like siloxane to Pt and boehmite, respectively, and that finally the recombination reaction is prevented. This may be the first study to find out the detailed dynamical mechanism of hydrogen recombination catalyst poisoning with cyclic siloxane. (author)

  15. EPRI BWR Water Chemistry Guidelines Revision

    International Nuclear Information System (INIS)

    Garcia, Susan E.; Giannelli, Joseph F.

    2014-01-01

    BWRVIP-190: BWR Water Chemistry Guidelines – 2008 Revision has been revised. The revision committee consisted of U.S. and non-U.S. utilities (members of the BWR Vessel and Internals Protection (BWRVIP) Mitigation Committee), reactor system manufacturers, fuel suppliers, and EPRI and industry experts. The revised document, BWRVIP-190 Revision 1, was completely reformatted into two volumes, with a simplified presentation of water chemistry control, diagnostic and good practice parameters in Volume 1 and the technical bases in Volume 2, to facilitate use. The revision was developed in parallel and in coordination with preparation of the Fuel Reliability Guidelines Revision 1: BWR Fuel Cladding Crud and Corrosion. Guidance is included for plants operating under normal water chemistry (NWC), moderate hydrogen water chemistry (HWC-M), and noble metal application (GE-Hitachi NobleChem™) plus hydrogen injection. Volume 1 includes significant changes to BWR feedwater and reactor water chemistry control parameters to provide increased assurance of intergranular stress corrosion cracking (IGSCC) mitigation of reactor materials and fuel reliability during all plant conditions, including cold shutdown (≤200°F (93°C)), startup/hot standby (>200°F (93°C) and ≤ 10%) and power operation (>10% power). Action Level values for chloride and sulfate have been tightened to minimize environmentally assisted cracking (EAC) of all wetted surfaces, including those not protected by hydrogen injection, with or without noble metals. Chemistry control guidance has been enhanced to minimize shutdown radiation fields by clarifying targets for depleted zinc oxide (DZO) injection while meeting requirements for fuel reliability. Improved tabular presentations of parameter values explicitly indicate levels at which actions are to be taken and required sampling frequencies. Volume 2 provides the technical bases for BWR water chemistry control for control of EAC, flow accelerated corrosion

  16. C1 Chemistry for the Production of Ultra-Clean Liquid Transportation Fuels and Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Gerald P. Huffman

    2006-03-30

    Professors and graduate students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of liquid transportation fuel and hydrogen from domestically plentiful resources such as coal, coalbed methane, and hydrocarbon gases and liquids produced from coal. An Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, the Air Force Research Laboratory, the U.S. Army National Automotive Center, and Tier Associates provides guidance on the practicality of the research. The current report summarizes the results obtained in this program during the period October 1, 2002 through March 31, 2006. The results are presented in detailed reports on 16 research projects headed by professors at each of the five CFFS Universities and an Executive Summary. Some of the highlights from these results are: (1) Small ({approx}1%) additions of acetylene or other alkynes to the Fischer-Tropsch (F-T) reaction increases its yield, causes chain initiation, and promotes oxygenate formation. (2) The addition of Mo to Fe-Cu-K/AC F-T catalysts improves catalyst lifetime and activity. (3) The use of gas phase deposition to place highly dispersed metal catalysts on silica or ceria aerogels offers promise for both the F-T and the water-gas shift WGS reactions. (4) Improved activity and selectivity are exhibited by Co F-T catalysts in supercritical hexane. (5) Binary Fe

  17. Pressure-induced chemistry in a nitrogen-hydrogen host-guest structure

    Science.gov (United States)

    Spaulding, Dylan K.; Weck, Gunnar; Loubeyre, Paul; Datchi, Fréderic; Dumas, Paul; Hanfland, Michael

    2014-12-01

    New topochemistry in simple molecular systems can be explored at high pressure. Here we examine the binary nitrogen/hydrogen system using Raman spectroscopy, synchrotron X-ray diffraction, synchrotron infrared microspectroscopy and visual observation. We find a eutectic-type binary phase diagram with two stable high-pressure van der Waals compounds, which we identify as (N2)6(H2)7 and N2(H2)2. The former represents a new type of van der Waals host-guest compound in which hydrogen molecules are contained within channels in a nitrogen lattice. This compound shows evidence for a gradual, pressure-induced change in bonding from van der Waals to ionic interactions near 50 GPa, forming an amorphous dinitrogen network containing ionized ammonia in a room-temperature analogue of the Haber-Bosch process. Hydrazine is recovered on decompression. The nitrogen-hydrogen system demonstrates the potential for new pressure-driven chemistry in high-pressure structures and the promise of tailoring molecular interactions for materials synthesis.

  18. C1 Chemistry for the Production of Ultra-Clean Liquid Transportation Fuels and Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Gerald P. Huffman

    2005-03-31

    Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of liquid transportation fuel and hydrogen from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, the Air Force Research Laboratory, the U.S. Army National Automotive Center (Tank & Automotive Command--TACOM), and Tier Associates provides guidance on the practicality of the research. The current report presents results obtained in this research program during the six months of the subject contract from October 1, 2002 through March 31, 2003. The results are presented in thirteen detailed reports on research projects headed by various faculty members at each of the five CFFS Universities. Additionally, an Executive Summary has been prepared that summarizes the principal results of all of these projects during the six-month reporting period.

  19. Advancement in reactor coolant chemistry management programs and related technology development in Taiwan

    International Nuclear Information System (INIS)

    Huang, C.S.; Lin, Chien C.

    2000-01-01

    Taiwan Power Company (TPC) has three nuclear power plants in operation with a total capacity of 51 GWe, contributing about 30% of electricity generation in Taiwan. The first two plants, Chinshan (CSNPP) and Kuosheng (KSNPP), are boiling water reactor plants, and the third one, Maanshan (MASNPP), is a pressurized water reactor plant. Each plant has two identical reactors. As many nuclear power plant operators worldwide, TPC is committed to operate the plants efficiently, economically, and safely. TPC has developed and implemented several chemistry improvement programs in recent years to improve the coolant chemistry in order to ( l ) protect structure materials from corrosion, (2) reduce radiation exposures to workers and (3) reduce radwaste production and radiation release to the environment. This paper describes TPC's experience in some water chemistry management, radwaste reduction and radiation exposure control programs. Future programs under planning, including implementation of hydrogen water chemistry (HWC) in BWRs, installation of condensate pre-filters, and development of on-line water chemistry monitoring system, are also be briefly discussed. In addition, some material related research and development programs will also be presented. (author)

  20. Chemistry

    International Nuclear Information System (INIS)

    Ferris, L.M.

    1975-01-01

    Research and development activities dealing with the chemical problems related to design and ultimate operation of molten-salt reactor systems are described. An experimental test stand was constructed to expose metallurgical test specimens to Te 2 vapor at defined temperatures and deposition rates. To better define the chemistry of fluoroborate coolant, several aspects are being investigated. The behavior of hydroxy and oxy compounds in molten NaBF 4 is being investigated to define reactions and compounds that may be involved in corrosion and/or could be involved in methods for trapping tritium. Two corrosion products of Hastelloy N, Na 3 CrF 6 and Na 5 Cr 3 F 14 , were identified from fluoroborate systems. The evaluation of fluoroborate and alternate coolants continued. Research on the behavior of hydrogen and its isotopes is summarized. The solubilities of hydrogen, deuterium, and helium in Li 2 BeF 4 are very low. The sorption of tritium on graphite was found to be significant (a few milligrams of tritium per kilogram of graphite), possibly providing a means of sequestering a portion of the tritium produced. Development of analytical methods continued with emphasis on voltammetric and spectrophotometric techniques for the in-line analysis of corrosion products such as Fe 2+ and Cr 3+ and the determination of the U 3+ /U 4+ ratio in MSBR fuel salt. Similar studies were conducted with the NaBF 4 --NaF coolant salt. Information developed during the previous operation of the CSTF has been assessed and used to formulate plans for evaluation of in-line analytical methods in future CSTF operations. Electroanalytical and spectrophotometric research suggests that an electroactive protonic species is present in molten NaBF 4 --NaF, and that this species rapidly equilibrates with a volatile proton-containing species. Data obtained from the CSTF indicated that tritium was concentrated in the volatile species. (JGB)

  1. Use of a PhET Interactive Simulation in General Chemistry Laboratory: Models of the Hydrogen Atom

    Science.gov (United States)

    Clark, Ted M.; Chamberlain, Julia M.

    2014-01-01

    An activity supporting the PhET interactive simulation, Models of the Hydrogen Atom, has been designed and used in the laboratory portion of a general chemistry course. This article describes the framework used to successfully accomplish implementation on a large scale. The activity guides students through a comparison and analysis of the six…

  2. Materials behavior in alternate (hydrogen) water chemistry in the Ringhals-1 boiling water reactor

    International Nuclear Information System (INIS)

    Ljungberg, L.G.; Cubicciotti, D.; Trolle, M.

    1986-01-01

    In-plant studies on the intergranular stress corrosion cracking (IGSCC) of sensitized austenitic stainless steel (SS) have been performed at the Swedish Ringhals-1 boiling water reactor (BWR). The studies have covered the present [full-temperature (normal)] water chemistry (PWC) and the alternate (primary) water chemistry (AWC) with hydrogen addition. The test techniques applied were constant extension rate testing (CERT) and electrochemical potential (ECP) measurements. The program was covered by extensive environment monitoring. The results verify earlier laboratory studies which show that sensitized austenitic SS is susceptible to IGSCC in PWC, but not in AWC. Other pressure-bearing BWR construction materials are not adversely affected by AWC. The boundary conditions in Ringhals-1 have been established for an AWC, which is defined as an environment that does not produce IGSCC in sensitized SS. The results are compared with a similar program at Dresden-2, and the points of agreement and discordance in the results are discussed. The relevance of ECP measurements for the control of AWC is discussed

  3. Para-hydrogen raman laser and its application to laser induced chemistry

    International Nuclear Information System (INIS)

    Tashiro, Hideo

    1988-01-01

    The report outlines the mechanism of the para-hydrogen Raman laser as a infrared light source, and its application to laser induced chemistry. The Stoke's wave number after a Raman shift is equal to the difference between the wave number of the CO 2 laser used for excitation and the rotation Raman wave number of the hydrogen molecule. A Raman laser can serve as an infrared source. CO 2 laser oscillation beam in the range of 9∼11 micrometers is selected and the frequency of infrared beam is varied by changing the wave number of the CO 2 laser beam. A problem with the Raman laser is that the Raman scatterring gain is small due to a large wavelength. In developing equipment, a special mechanism is required to solve this problem. A Raman laser comprises a CO 2 laser for excitation and multi-pulse Raman cells. The combination of a TEA oscillator and amplifiers gives CO 2 pulses with a peak power of about several tens of MW. Many heavy metal compounds including fluorides, carbonyl compounds and other organic compounds, absorb light with wavelengths in the same range as those of the Raman laser. Such compounds can be dissociated directly by applying Raman laser beams. The laser will be helpful for separation of isotopes, etc. (Nogami, K.)

  4. Investigation of coupling between chemistry and discharge dynamics in radio frequency hydrogen plasmas in the Torr regime

    International Nuclear Information System (INIS)

    Kalache, B; Novikova, T; Morral, A Fontcuberta i; Cabarrocas, P Roca i; Morscheidt, W; Hassouni, K

    2004-01-01

    We present the results of a study of a capacitively coupled hydrogen discharge by means of a one-dimensional numerical fluid model and experiments. The model includes a detailed description of the gas-phase chemistry taking into account the production of H - ions by dissociative attachment of H 2 vibrational levels. The population of these levels is described by a Boltzmann vibrational distribution function characterized by a vibrational temperature T V . The effect of the dissociative-attachment reaction on the discharge dynamics was investigated by varying the vibrational temperature, which was used as a model input parameter. Increasing the vibrational temperature from 1000 to 6000 K affects both the chemistry and the dynamics of the electrical discharge. Because of dissociative attachment, the H - ion density increases by seven orders of magnitude and the H - ion density to electron density ratio varies from 10 -7 to 6, while the positive ion density increases slightly. As a consequence, the atomic hydrogen density increases by a factor of three, and the sheath voltage drops from 95 to 75 V. Therefore, clear evidence of a strong coupling between chemistry and electrical dynamics through the production of H - ions is demonstrated. Moreover, satisfactory agreement between computed and measured values of atomic hydrogen and H - ion densities gives further support to the requirement of a detailed description of the hydrogen vibrational kinetics for capacitively coupled radio frequency discharge models in the Torr regime

  5. A Simple and Accurate Network for Hydrogen and Carbon Chemistry in the Interstellar Medium

    Science.gov (United States)

    Gong, Munan; Ostriker, Eve C.; Wolfire, Mark G.

    2017-07-01

    Chemistry plays an important role in the interstellar medium (ISM), regulating the heating and cooling of the gas and determining abundances of molecular species that trace gas properties in observations. Although solving the time-dependent equations is necessary for accurate abundances and temperature in the dynamic ISM, a full chemical network is too computationally expensive to incorporate into numerical simulations. In this paper, we propose a new simplified chemical network for hydrogen and carbon chemistry in the atomic and molecular ISM. We compare results from our chemical network in detail with results from a full photodissociation region (PDR) code, and also with the Nelson & Langer (NL99) network previously adopted in the simulation literature. We show that our chemical network gives similar results to the PDR code in the equilibrium abundances of all species over a wide range of densities, temperature, and metallicities, whereas the NL99 network shows significant disagreement. Applying our network to 1D models, we find that the CO-dominated regime delimits the coldest gas and that the corresponding temperature tracks the cosmic-ray ionization rate in molecular clouds. We provide a simple fit for the locus of CO-dominated regions as a function of gas density and column. We also compare with observations of diffuse and translucent clouds. We find that the CO, {{CH}}x, and {{OH}}x abundances are consistent with equilibrium predictions for densities n=100{--}1000 {{cm}}-3, but the predicted equilibrium C abundance is higher than that seen in observations, signaling the potential importance of non-equilibrium/dynamical effects.

  6. Measurement and Characterization of Hydrogen-Deuterium Exchange Chemistry Using Relaxation Dispersion NMR Spectroscopy.

    Science.gov (United States)

    Khirich, Gennady; Holliday, Michael J; Lin, Jasper C; Nandy, Aditya

    2018-03-01

    One-dimensional heteronuclear relaxation dispersion NMR spectroscopy at 13 C natural abundance successfully characterized the dynamics of the hydrogen-deuterium exchange reaction occurring at the N ε position in l-arginine by monitoring C δ in varying amounts of D 2 O. A small equilibrium isotope effect was observed and quantified, corresponding to ΔG = -0.14 kcal mol -1 . A bimolecular rate constant of k D = 5.1 × 10 9 s -1 M -1 was determined from the pH*-dependence of k ex (where pH* is the direct electrode reading of pH in 10% D 2 O and k ex is the nuclear spin exchange rate constant), consistent with diffusion-controlled kinetics. The measurement of ΔG serves to bridge the millisecond time scale lifetimes of the detectable positively charged arginine species with the nanosecond time scale lifetime of the nonobservable low-populated neutral arginine intermediate species, thus allowing for characterization of the equilibrium lifetimes of the various arginine species in solution as a function of fractional solvent deuterium content. Despite the system being in fast exchange on the chemical shift time scale, the magnitude of the secondary isotope shift due to the exchange reaction at N ε was accurately measured to be 0.12 ppm directly from curve-fitting D 2 O-dependent dispersion data collected at a single static field strength. These results indicate that relaxation dispersion NMR spectroscopy is a robust and general method for studying base-catalyzed hydrogen-deuterium exchange chemistry at equilibrium.

  7. C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN

    Energy Technology Data Exchange (ETDEWEB)

    Gerald P. Huffman

    2003-09-30

    The Consortium for Fossil Fuel Science (CFFS) is a research consortium with participants from the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University. The CFFS is conducting a research program to develop C1 chemistry technology for the production of clean transportation fuel from resources such as coal and natural gas, which are more plentiful domestically than petroleum. The processes under development will convert feedstocks containing one carbon atom per molecular unit into ultra clean liquid transportation fuels (gasoline, diesel, and jet fuel) and hydrogen, which many believe will be the transportation fuel of the future. These feedstocks include synthesis gas, a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. Some highlights of the results obtained during the first year of the current research contract are summarized as: (1) Terminal alkynes are an effective chain initiator for Fischer-Tropsch (FT) reactions, producing normal paraffins with C numbers {ge} to that of the added alkyne. (2) Significant improvement in the product distribution towards heavier hydrocarbons (C{sub 5} to C{sub 19}) was achieved in supercritical fluid (SCF) FT reactions compared to that of gas-phase reactions. (3) Xerogel and aerogel silica supported cobalt catalysts were successfully employed for FT synthesis. Selectivity for diesel range products increased with increasing Co content. (4) Silicoaluminophosphate (SAPO) molecular sieve catalysts have been developed for methanol to olefin conversion, producing value-added products such as ethylene and propylene. (5) Hybrid Pt-promoted tungstated and sulfated zirconia catalysts are very effective in cracking n-C{sub 36} to jet and diesel fuel; these catalysts will be tested for cracking of FT wax. (6) Methane, ethane, and propane are readily decomposed to pure

  8. Continuous high-temperature surveillance instrumentation for Dresden-2 hydrogen water chemistry program

    International Nuclear Information System (INIS)

    Fleming, M.F.; Mitchell, R.A.; Nelson, J.L.

    1987-01-01

    The objective of this program (under EPRI Contract RP1930-11) is to install and operate a high-temperature surveillance instrumentation system capable of monitoring the length of cracks in boiling water reactor (BWR) piping during plant operation. The ability to measure crack growth in BWR power plant piping welds is important to rapidly identify the effectiveness of repairs (such as the Hydrogen Water Chemistry Program). The feasibility of a system capable of continuous ultrasonic instrumentation at 600 0 F (288 0 C) was successfully demonstrated at the Dresden-2 suction line known as N1B. This intergranular stress corrosion cracking (IGSCC) surveillance instrumentation is sound in principal, because it survived on N1B for a time period of more than nine months from April 1985 to January 1986 (the last time data were recorded). The redesigned low-profile transducer system used for this system operated successfully for the same nine-month time period. This low profile transducer fits in the two-inch space normally occupied by insulation. As a result of poor routing of the coaxial cables running from the low-profile transducer to the electrical feed-throughs between the drywell and containment, these cables melted. Other instrument cables nearby were not damaged

  9. Diverse roles of hydrogen in rhenium carbonyl chemistry: hydrides, dihydrogen complexes, and a formyl derivative.

    Science.gov (United States)

    Li, Nan; Xie, Yaoming; King, R Bruce; Schaefer, Henry F

    2010-11-04

    Rhenium carbonyl hydride chemistry dates back to the 1959 synthesis of HRe(CO)₅ by Hieber and Braun. The binuclear H₂Re₂(CO)₈ was subsequently synthesized as a stable compound with a central Re₂(μ-H)₂ unit analogous to the B₂(μ-H)₂ unit in diborane. The complete series of HRe(CO)(n) (n = 5, 4, 3) and H₂Re₂(CO)(n) (n = 9, 8, 7, 6) derivatives have now been investigated by density functional theory. In contrast to the corresponding manganese derivatives, all of the triplet rhenium structures are found to lie at relatively high energies compared with the corresponding singlet structures consistent with the higher ligand field splitting of rhenium relative to manganese. The lowest energy HRe(CO)₅ structure is the expected octahedral structure. Low-energy structures for HRe(CO)(n) (n = 4, 3) are singlet structures derived from the octahedral HRe(CO)₅ structure by removal of one or two carbonyl groups. For H₂Re₂(CO)₉ a structure HRe₂(CO)₉(μ-H), with one terminal and one bridging hydrogen atom, lies within 3 kcal/mol of the structure Re₂(CO)₉(η²-H₂), similar to that of Re₂(CO)₁₀. For H₂Re₂(CO)(n) (n = 8, 7, 6) the only low-energy structures are doubly bridged singlet Re₂(μ-H)₂(CO)(n) structures. Higher energy dihydrogen complex structures are also found.

  10. Economic analysis of the hydrogen production by means of the thermo-chemistry process iodine-sulfur with nuclear energy

    International Nuclear Information System (INIS)

    Solorzano S, C.; Francois L, J. L.

    2011-11-01

    In this work an economic study was realized about a centralized plant of hydrogen production that works by means of a thermo-chemistry cycle of sulfur-iodine and uses heat coming from a nuclear power plant of IV generation, with base in the software -Hydrogen Economic Evaluation Programme- obtained through the IAEA. The sustainable technology that is glimpsed next for the generation of hydrogen is to great scale and based on processes of high temperature coupled to nuclear power plants, being the most important the cycle S-I and the electrolysis to high temperature, for what objective references are presented that can serve as base for the taking of decisions for its introduction in Mexico. After detailing the economic models that uses the software for the calculation of the even cost of hydrogen production and the characteristics, so much of the nuclear plant constituted by fourth generation reactors, as of the plant of hydrogen production, is proposed a -base- case, obtaining a preliminary even cost of hydrogen production with this process; subsequently different cases are studied starting from which are carried out sensibility analysis in several parameters that could rebound in this cost, taking into account that these reactors are still in design and planning stages. (Author)

  11. XVIII Mendeleev congress on general and applied chemistry. Summaries of reports in five volumes. Volume 5. IV Russian-French symposium Supramolecular systems in chemistry and biology. II Russian-Indian symposium on organic chemistry. International symposium on present-day radiochemistry Radiochemistry: progress and prospects. International symposium Green chemistry, stable evolution and social responsibility of chemists. Symposium Nucleophilic hydrogen substitution in aromatic systems and related reactions

    International Nuclear Information System (INIS)

    2007-01-01

    The 5 volume of the XVIII Mendeleev congress on general and applied chemistry includes summaries of reports on the subjects of sypramolecular systems in chemistry and biology, organic chemistry, modern radiochemistry, green chemistry - development and social responsibility of chemists, nucleophilic hydrogen substitution in aromatic systems and related chemical reactions [ru

  12. Application of computational chemistry methods to obtain thermodynamic data for hydrogen production from liquefied petroleum gas

    Directory of Open Access Journals (Sweden)

    J. A. Sousa

    2013-03-01

    Full Text Available The objective of this study was to estimate thermodynamic data, such as standard enthalpy, entropy and Gibbs free energy changes of reaction and, consequently, chemical equilibrium constants, for a reaction system describing the hydrogen production from Liquefied Petroleum Gas (LPG. The acquisition of those properties was made using computational chemistry methods and the results were compared with experimental data reported in the literature. The reaction system of steam reforming of LPG was reported as a set of seven independent reactions involving the chemical species n-C4H10, C3H8, C2H6, C2H4, CH4, CO2, CO, H2O, H2 and solid carbon. Six computational approaches were used: Density Functional Theory (DFT employing Becke's three parameter hybrid exchange functional, and the Lee-Yang-Parr correlation functional (B3LYP using the 6-31G++(d,p basis set and the composite methods CBS-QB3, Gaussian-1 (G1, Gaussian-2 (G2, Gaussian-3 (G3 and Gaussian-4 (G4. Mole fractions of the system components were also determined between 873.15 and 1173.15 K, at 1 atm and a feed with a stoichiometric amount of water. Results showed that the hybrid functional B3LYP/6-31G++(d,p, G3 and G4 theories were the most appropriated methods to predict the properties of interest. Gaussian-3 and Gaussian-4 theories are expected to be good thermodynamic data predictors and the known efficient prediction of vibrational frequencies by B3LYP is probably the source of the good agreement found in this study. This last methodology is of special interest since it presents low computational cost, which is important when more complex molecular systems are considered.

  13. Chemistry

    International Nuclear Information System (INIS)

    Ferris, L.M.

    1975-01-01

    The chemical research and development efforts related to the design and ultimate operation of molten-salt breeder reactor systems are concentrated on fuel- and coolant-salt chemistry, including the development of analytical methods for use in these systems. The chemistry of tellurium in fuel salt is being studied to help elucidate the role of this element in the intergranular cracking of Hastelloy N. Studies were continued of the effect of oxygen-containing species on the equilibrium between dissolved UF 3 and dissolved UF 4 , and, in some cases, between the dissolved uranium fluorides and graphite, and the UC 2 . Several aspects of coolant-salt chemistry are under investigation. Hydroxy and oxy compounds that could be formed in molten NaBF 4 are being synthesized and characterized. Studies of the chemistry of chromium (III) compounds in fluoroborate melts were continued as part of a systematic investigation of the corrosion of structural alloys by coolant salt. An in-line voltammetric method for determining U 4+ /U 3+ ratios in fuel salt was tested in a forced-convection loop over a six-month period. (LK)

  14. Investigating Hydrogen Bonding in Phenol Using Infrared Spectroscopy and Computational Chemistry

    Science.gov (United States)

    Fedor, Anna M.; Toda, Megan J.

    2014-01-01

    The hydrogen bonding of phenol can be used as an introductory model for biological systems because of its structural similarities to tyrosine, a para-substituted phenol that is an amino acid essential to the synthesis of proteins. Phenol is able to form hydrogen bonds readily in solution, which makes it a suitable model for biological…

  15. Redox Chemistry of Molybdenum Trioxide for Ultrafast Hydrogen-Ion Storage.

    Science.gov (United States)

    Wang, Xianfu; Xie, Yiming; Tang, Kai; Wang, Chao; Yan, Chenglin

    2018-05-11

    Hydrogen ions are ideal charge carriers for rechargeable batteries due to their small ionic radius and wide availability. However, little attention has been paid to hydrogen-ion storage devices because they generally deliver relatively low Coulombic efficiency as a result of the hydrogen evolution reaction that occurs in an aqueous electrolyte. Herein, we successfully demonstrate that hydrogen ions can be electrochemically stored in an inorganic molybdenum trioxide (MoO 3 ) electrode with high Coulombic efficiency and stability. The as-obtained electrode exhibits ultrafast hydrogen-ion storage properties with a specific capacity of 88 mA hg -1 at an ultrahigh rate of 100 C. The redox reaction mechanism of the MoO 3 electrode in the hydrogen-ion cell was investigated in detail. The results reveal a conversion reaction of the MoO 3 electrode into H 0.88 MoO 3 during the first hydrogen-ion insertion process and reversible intercalation/deintercalation of hydrogen ions between H 0.88 MoO 3 and H 0.12 MoO 3 during the following cycles. This study reveals new opportunities for the development of high-power energy storage devices with lightweight elements. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The chemistry of cycloheptatriene. Part XVI : Sigmatropic shifts of hydrogen in methylcycloheptatriene

    NARCIS (Netherlands)

    Borg, ter A.P.; Kloosterziel, H.

    1969-01-01

    Upon heating 7-methylcycloheptatriene, the 3-, 1- and 2-isomers are successively formed by 1-5 shifts of hydrogen. The rate consts. at 140 Deg were detd. Photochem. 1-7 shifts of hydrogen are also reported: the 1-isomer yields preferentially the 7-isomer and little of the 2-isomer, while the

  17. Role and chemistry of catalyst in hydrogen based heavy water plants (Paper No. 6.2)

    International Nuclear Information System (INIS)

    Pradhan, D.G.

    1992-01-01

    The chemistry of homogeneous catalyst particularly of KNH 2 in ammonia, based on which a number of plants are operating, is discussed. considering its importance and complexity. (author). 10 refs., 5 figs

  18. Chemistry

    International Nuclear Information System (INIS)

    Ferris, L.M.

    1976-01-01

    Research progress is reported in programs on fuel-salt chemistry, properties of compounds in the Li--Te system, Te spectroscopy UF 4 --H equilibria, porous electrode studies of molten salts, fuel salt-coolant salt reactions, thermodynamic properties of transition-metal fluorides, and properties of sodium fluoroborate. Developmental work on analytical methods is summarized including in-line analysis of molten MSBR fuel, analysis of coolant-salts for tritium, analysis of molten LiF--BeF 2 --ThF 4 for Fe and analysis of LiF--BeF--ThF 4 for Te

  19. NOBLE METAL CHEMISTRY AND HYDROGEN GENERATION DURING SIMULATED DWPF MELTER FEED PREPARATION

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D

    2008-06-25

    Simulations of the Defense Waste Processing Facility (DWPF) Chemical Processing Cell vessels were performed with the primary purpose of producing melter feeds for the beaded frit program plus obtaining samples of simulated slurries containing high concentrations of noble metals for off-site analytical studies for the hydrogen program. Eight pairs of 22-L simulations were performed of the Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles. These sixteen simulations did not contain mercury. Six pairs were trimmed with a single noble metal (Ag, Pd, Rh, or Ru). One pair had all four noble metals, and one pair had no noble metals. One supporting 4-L simulation was completed with Ru and Hg. Several other 4-L supporting tests with mercury have not yet been performed. This report covers the calculations performed on SRNL analytical and process data related to the noble metals and hydrogen generation. It was originally envisioned as a supporting document for the off-site analytical studies. Significant new findings were made, and many previous hypotheses and findings were given additional support as summarized below. The timing of hydrogen generation events was reproduced very well within each of the eight pairs of runs, e.g. the onset of hydrogen, peak in hydrogen, etc. occurred at nearly identical times. Peak generation rates and total SRAT masses of CO{sub 2} and oxides of nitrogen were reproduced well. Comparable measures for hydrogen were reproduced with more variability, but still reasonably well. The extent of the reproducibility of the results validates the conclusions that were drawn from the data.

  20. NMR Determination of Hydrogen Bond Thermodynamics in a Simple Diamide: A Physical Chemistry Experiment

    Science.gov (United States)

    Morton, Janine G.; Joe, Candice L.; Stolla, Massiel C.; Koshland, Sophia R.; Londergan, Casey H.; Schofield, Mark H.

    2015-01-01

    Variable temperature NMR spectroscopy is used to determine the ?H° and ?S° of hydrogen bond formation in a simple diamide. In this two- or three-day experiment, students synthesize N,N'-dimethylmalonamide, dimethylsuccinamide, dimethylglutaramide, or dimethyladipamide from methylamine and the corresponding diester (typically in 50% recrystallized…

  1. The chemistry of cycloheptatriene, part XIV : Hydrogen shifts in (4-Dimethylaminophenyl)cycloheptatrienes

    NARCIS (Netherlands)

    Borg, ter A.P.; Kloosterziel, H.; Westphal, Y.L.

    1967-01-01

    When the 7-isomer of the title compound is heated, the successive formation of the 3-, 1-, and 2-isomers by thermal 1–5 shifts of hydrogen is observed. Irradiation of the 3-isomer yields the 2-isomer. The rate constants for the various shifts are 1.7 ± 0.4 times larger than the corresponding

  2. Strong Coupling between Nanofluidic Transport and Interfacial Chemistry: How Defect Reactivity Controls Liquid-Solid Friction through Hydrogen Bonding.

    Science.gov (United States)

    Joly, Laurent; Tocci, Gabriele; Merabia, Samy; Michaelides, Angelos

    2016-04-07

    Defects are inevitably present in nanofluidic systems, yet the role they play in nanofluidic transport remains poorly understood. Here, we report ab initio molecular dynamics (AIMD) simulations of the friction of liquid water on defective graphene and boron nitride sheets. We show that water dissociates at certain defects and that these "reactive" defects lead to much larger friction than the "nonreactive" defects at which water molecules remain intact. Furthermore, we find that friction is extremely sensitive to the chemical structure of reactive defects and to the number of hydrogen bonds they can partake in with the liquid. Finally, we discuss how the insight obtained from AIMD can be used to quantify the influence of defects on friction in nanofluidic devices for water treatment and sustainable energy harvesting. Overall, we provide new insight into the role of interfacial chemistry on nanofluidic transport in real, defective systems.

  3. Infrared and Raman spectroscopy and quantum chemistry calculation studies of C-H...O hydrogen bondings and thermal behavior of biodegradable polyhydroxyalkanoate

    Czech Academy of Sciences Publication Activity Database

    Sato, H.; Dybal, Jiří; Murakami, R.; Noda, I.; Ozaki, Y.

    744-747, - (2005), s. 35-46 ISSN 0022-2860 R&D Projects: GA AV ČR IAA4050208 Keywords : infrared and Raman spectroscopy * quantum chemical calculation * C-H...O hydrogen bonding Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.440, year: 2005

  4. Hydrogen chloride heterogeneous chemistry on frozen water particles in subsonic aircraft plume. Laboratory studies and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Persiantseva, N.V.; Popovitcheva, O.B.; Rakhimova, T.V. [Moscow State Univ. (Russian Federation)

    1997-12-31

    Heterogeneous chemistry of HCl, as a main reservoir of chlorine content gases, has been considered after plume cooling and ice particle formation. The HCl, HNO{sub 3}, N{sub 2}O{sub 5} uptake efficiencies by frozen water were obtained in a Knudsen-cell flow reactor at the subsonic cruise conditions. The formation of ice particles in the plume of subsonic aircraft is simulated to describe the kinetics of gaseous HCl loss due to heterogeneous processes. It is shown that the HCl uptake by frozen water particles may play an important role in the gaseous HCl depletion in the aircraft plume. (author) 14 refs.

  5. Hydrogen chloride heterogeneous chemistry on frozen water particles in subsonic aircraft plume. Laboratory studies and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Persiantseva, N V; Popovitcheva, O B; Rakhimova, T V [Moscow State Univ. (Russian Federation)

    1998-12-31

    Heterogeneous chemistry of HCl, as a main reservoir of chlorine content gases, has been considered after plume cooling and ice particle formation. The HCl, HNO{sub 3}, N{sub 2}O{sub 5} uptake efficiencies by frozen water were obtained in a Knudsen-cell flow reactor at the subsonic cruise conditions. The formation of ice particles in the plume of subsonic aircraft is simulated to describe the kinetics of gaseous HCl loss due to heterogeneous processes. It is shown that the HCl uptake by frozen water particles may play an important role in the gaseous HCl depletion in the aircraft plume. (author) 14 refs.

  6. Hydrogen.

    Science.gov (United States)

    Bockris, John O'M

    2011-11-30

    The idea of a "Hydrogen Economy" is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO₂ in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H₂ from the electrolyzer. Methanol made with CO₂ from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan). Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs) by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  7. The Enthalpy of Decomposition of Hydrogen Peroxide: A General Chemistry Calorimetry Experiment

    Science.gov (United States)

    Marzzacco, Charles J.

    1999-11-01

    A calorimetry experiment involving the catalytic decomposition of aqueous hydrogen peroxide is presented. The experiment is simple, inexpensive, and colorful. In its simplest form, it can be performed in less than one hour; therefore, it is quite suitable for high school labs, which often have time restrictions. The chemicals required are household or commercial 3% H2O2(aq) and 0.50 M Fe(NO3)3(aq). Styrofoam cup calorimeters and thermometers with a range from 20 to 50 oC are also required. Ideally, the thermometers should be precise to 0.01 oC. The temperature of the H2O2 solution is monitored before and after the Fe(NO3)3 catalyst is added. The addition of the catalyst results in a color change and the evolution of heat and bubbles of oxygen. At the conclusion of the reaction, the color of the reaction mixture returns to that of the original Fe(NO3)3 solution. The heat change for the reaction is determined from the temperature change, the specific heat of the solution, and the calorimeter constant. The experimental enthalpy change for the reaction is in excellent agreement with the literature value.

  8. Hydrogen

    Directory of Open Access Journals (Sweden)

    John O’M. Bockris

    2011-11-01

    Full Text Available The idea of a “Hydrogen Economy” is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO2 in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H2 from the electrolyzer. Methanol made with CO2 from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan. Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  9. Early hydrogen water chemistry project review, improvement opportunities and conceptural design options at Exelon boiling water reactors

    International Nuclear Information System (INIS)

    Garcia, Susan E.; Odell, Andrew D.; Giannelli, Joseph F.

    2012-09-01

    Intergranular Stress Corrosion Cracking (IGSCC) and its impacts have been a major concern to the BWR fleet since the mid-70's. Several alternative strategies have been employed to reduce the negative impacts, however, the newest being Early Hydrogen Water Chemistry (EHWC). The Electric Power Research Institute (EPRI) and the BWRVIP (Vessel Internals Project) has strongly supported the development of EHWC, including laboratory testing and a demonstration program that was performed at Peach Bottom Atomic Power Station in October 2011. This paper will review the impacts of a 'Special Test Program' on a BWR plant including: Project management findings; technical reviews and documents required to support such a demonstration program; temporary equipment design, installation and testing; keeping the demonstration progressing along with the plant return from a refuel outage; and lessons learned that can be applied to EHWC implementation during future start-ups. Details will be compared between various Exelon BWRs in support of conceptual designs for EHWC systems and operation. Some comparisons on operational impacts will be provided between various types of BWR plants with differing 'Balance of Plant' designs. (authors)

  10. The influence of the water chemistry regime of the third circuit on the corrosion hydrogen burden to the secondary sodium circuit in the steam generator model of BN-800 reactor

    International Nuclear Information System (INIS)

    Smykov, V.B.; Ermolaev, N.P.; Kolesnik, A.I.; Egorov, V.A.; Shevchenko, N.N.

    1994-01-01

    An experimental program was conducted to determine the influence of water chemistry on the corrosion hydrogen burden from the III circuit to the secondary sodium in sodium-heated rig of OTSG of NPP BN-800. Combined water chemistry has given the best passivative effect on steam-generating surfaces and smallest hydrogen burden to secondary sodium during start-up. Common hydrogen increasing in secondary sodium was less then 0.2 ppm. In case of AVT water chemistry (NH 3 +N 2 H 4 ) in III side of OTSG-rig the hydrogen level in secondary sodium was 1.0-1.2 ppm. It means that during first start-up at NPP BN-800 the common hydrogen level in secondary sodium may reaches 0.80-0.85 ppm. 4 figs.; 4 tabs

  11. Carbene Chemistry. I. Stereochemical Integrity at C Alpha in Ketone Tosylhydrazones. II. Hydrogen Migration in 2-Carbena-6,6-Dimethylnorbornane.

    Science.gov (United States)

    1978-02-01

    H20, 10% Na2 CO3 , H20, and dried over MqSO 4 . Yields were typically ca. 75%. "! 33 CARBENE CHEMISTRY PART II. HYDROGEN MIGRATION IN 2-CARBENA-6,6...any a delocaliza- tion. Thus if one assumes a single product determining intermediate, carbene 54 is classical in the usual sense of the word. It has...placed in a refrigerator. The crystalline product was re- crystallized from methanol-O-d/D20 yielding purified tosylhydrazone with mp 156-1580. 58

  12. Quantum chemistry

    CERN Document Server

    Lowe, John P

    1993-01-01

    Praised for its appealing writing style and clear pedagogy, Lowe's Quantum Chemistry is now available in its Second Edition as a text for senior undergraduate- and graduate-level chemistry students. The book assumes little mathematical or physical sophistication and emphasizes an understanding of the techniques and results of quantum chemistry, thus enabling students to comprehend much of the current chemical literature in which quantum chemical methods or concepts are used as tools. The book begins with a six-chapter introduction of standard one-dimensional systems, the hydrogen atom,

  13. Hydrazine and hydrogen coinjection to mitigate stress corrosion cracking of structural materials in boiling water reactors (7). Effects of bulk water chemistry on ECP distribution inside a crack

    International Nuclear Information System (INIS)

    Wada, Yoichi; Ishida, Kazushige; Tachibana, Masahiko; Aizawa, Motohiro; Fuse, Motomasa

    2007-01-01

    Water chemistry in a simulated crack (crack) has been studied to understand the mechanisms of stress corrosion cracking in a boiling water reactor environment. Electrochemical corrosion potential (ECP) in a crack made in an austenite type 304 stainless steel specimen was measured. The ECP distribution along the simulated crack was strongly affected by bulk water chemistry and bulk flow. When oxygen concentration was high in the bulk water, the potential difference between the crack tip and the outside of the crack (ΔE), which must be one motive force for crack growth, was about 0.3V under a stagnant condition. When oxygen was removed from the bulk water, ECP inside and outside the crack became low and uniform and ΔE became small. The outside ECP was also lowered by depositing platinum on the steel specimen surface and adding stoichiometrically excess hydrogen to oxygen to lower ΔE. This was effective only when bulk water did not flow. Under the bulk water flow condition, water-borne oxygen caused an increase in ECP on the untreated surface inside the crack. This also caused a large ΔE. The ΔE effect was confirmed by crack growth rate measurements with a catalyst-treated specimen. Therefore, lowering the bulk oxidant concentration by such measures as hydrazine hydrogen coinjection, which is currently under development, is important for suppressing the crack growth. (author)

  14. Chemistry Notes

    Science.gov (United States)

    School Science Review, 1972

    1972-01-01

    Short articles on the kinetics of the hydrogen peroxide-iodide ion reaction, simulation of fluidization catalysis, the use of Newman projection diagrams to represent steric relationships in organic chemistry, the use of synthetic substrates for proteolytic enzyme reactions, and two simple clock reactions"--hydrolysis of halogenoalkanes and…

  15. Light Water Reactor Sustainability Program BWR High-Fluence Material Project: Assessment of the Role of High-Fluence on the Efficiency of HWC Mitigation on SCC Crack Growth Rates

    Energy Technology Data Exchange (ETDEWEB)

    Sebastien Teysseyre

    2014-04-01

    As nuclear power plants age, the increasing neutron fluence experienced by stainless steels components affects the materials resistance to stress corrosion cracking and fracture toughness. The purpose of this report is to identify any new issues that are expected to rise as boiling water reactor power plants reach the end of their initial life and to propose a path forward to study such issues. It has been identified that the efficiency of hydrogen water chemistry mitigation technology may decrease as fluence increases for high-stress intensity factors. This report summarizes the data available to support this hypothesis and describes a program plan to determine the efficiency of hydrogen water chemistry as a function of the stress intensity factor applied and fluence. This program plan includes acquisition of irradiated materials, generation of material via irradiation in a test reactor, and description of the test plan. This plan offers three approaches, each with an estimated timetable and budget.

  16. Chemistry of radio-frequency source of negative hydrogen ions; Chemia radio-frekvencneho zdroja negativnych ionov vodika

    Energy Technology Data Exchange (ETDEWEB)

    Skoviera, J.; Cernusak, I. [Univerzita Komenskeho, Prirodovedecka fakulta, Katedra fyzikalnej a teoretickej chemie, 84215 Bratislava (Slovakia)

    2013-04-16

    International Thermonuclear Experimental Reactor (ITER) is a prototype of nuclear fusion reactor Tokamak currently build in Cadarache. It will use as one of primary plasma heating components a radiofrequency driven negative ion source of deuterium. The purpose of cesium evaporated in the part of this ion source is to react with free electrons which can incidentally destroy generated hydrogen ions and are co-extracted with the hydrogen beam. Goal of this work is to investigate majority of processes which might have impact on hydrogen anion in either formative or destructive way associated with cesium. Generally the caesium dynamics is very complex in such sources and the interplay of the individual contributions and their control to establish optimum caesium coverage of the plasma grid is still an open issue. (authors)

  17. Nano-design of quantum dot-based photocatalysts for hydrogen generation using advanced surface molecular chemistry

    KAUST Repository

    Yu, Weili; Noureldine, Dalal; Isimjan, Tayirjan T.; Lin, Bin; Del Gobbo, Silvano; Abulikemu, Mutalifu; Hedhili, Mohamed N.; Anjum, Dalaver H.; Takanabe, Kazuhiro

    2015-01-01

    Efficient photocatalytic hydrogen generation in a suspension system requires a sophisticated nano-device that combines a photon absorber with effective redox catalysts. This study demonstrates an innovative molecular linking strategy for fabricating photocatalytic materials that allow effective charge separation of excited carriers, followed by efficient hydrogen evolution. The method for the sequential replacement of ligands with appropriate molecules developed in this study tethers both quantum dots (QDs), as photosensitizers, and metal nanoparticles, as hydrogen evolution catalysts, to TiO2 surfaces in a controlled manner at the nano-level. Combining hydrophobic and hydrophilic interactions on the surface, CdSe-ZnS core-shell QDs and an Au-Pt alloy were attached to TiO2 without overlapping during the synthesis. The resultant nano-photocatalysts achieved substantially high-performance visible-light-driven photocatalysis for hydrogen evolution. All syntheses were conducted at room temperature and in ambient air, providing a promising route for fabricating visible-light-responsive photocatalysts.

  18. Effect of Microstructure and Alloy Chemistry on Hydrogen Embrittlement of Precipitation-Hardened Ni-Based Alloys

    Science.gov (United States)

    Obasi, G. C.; Zhang, Z.; Sampath, D.; Morana, Roberto; Akid, R.; Preuss, M.

    2018-04-01

    The sensitivity to hydrogen embrittlement (HE) has been studied in respect of precipitation size distributions in two nickel-based superalloys: Alloy 718 (UNS N07718) and Alloy 945X (UNS N09946). Quantitative microstructure analysis was carried out by the combination of scanning and transmission electron microscopy and energy dispersive x-ray spectroscopy (EDS). While Alloy 718 is mainly strengthened by γ″, and therefore readily forms intergranular δ phase, Alloy 945X has been designed to avoid δ formation by reducing Nb levels providing high strength through a combination of γ' and γ″. Slow strain rate tensile tests were carried out for different microstructural conditions in air and after cathodic hydrogen (H) charging. HE sensitivity was determined based on loss of elongation due to the H uptake in comparison to elongation to failure in air. Results showed that both alloys exhibited an elevated sensitivity to HE. Fracture surfaces of the H precharged material showed quasi-cleavage and transgranular cracks in the H-affected region, while ductile failure was observed toward the center of the sample. The crack origins observed on the H precharged samples exhibited quasi-cleavage with slip traces at high magnification. The sensitivity is slightly reduced for Alloy 718, by coarsening γ″ and reducing the overall strength of the alloy. However, on further coarsening of γ″, which promotes continuous decoration of grain boundaries with δ phase, the embrittlement index rose again indicating a change of hydrogen embrittlement mechanism from hydrogen-enhanced local plasticity (HELP) to hydrogen-enhanced decohesion embrittlement (HEDE). In contrast, Alloy 945X displayed a strong correlation between strength, based on precipitation size and embrittlement index, due to the absence of any significant formation of δ phase for the investigated microstructures. For the given test parameters, Alloy 945X did not display any reduced sensitivity to HE compared with

  19. A detailed chemistry model for transient hydrogen and carbon monoxide catalytic recombination on parallel flat Pt surfaces implemented in an integral code

    International Nuclear Information System (INIS)

    Jimenez, Miguel A.; Martin-Valdepenas, Juan M.; Martin-Fuertes, Francisco; Fernandez, Jose A.

    2007-01-01

    A detailed chemistry model has been adapted and developed for surface chemistry, heat and mass transfer between H 2 /CO/air/steam/CO 2 mixtures and vertical parallel Pt-coated surfaces. This model is based onto a simplified Deutschmann reaction scheme for methane surface combustion and the analysis by Elenbaas for buoyancy-induced heat transfer between parallel plates. Mass transfer is treated by the heat and mass transfer analogy. The proposed model is able to simulate the H 2 /CO recombination phenomena characteristic of parallel-plate Passive Autocatalytic Recombiners (PARs), which have been proposed and implemented as a promising hydrogen-control strategy in the safety of nuclear power stations or other industries. The transient model is able to approach the warm-up phase of the PAR and its shut-down as well as the dynamic changes within the surrounding atmosphere. The model has been implemented within the MELCOR code and assessed against results of the Battelle Model Containment tests of the Zx series. Results show accurate predictions and a better performance than traditional methods in integral codes, i.e. empirical correlations, which are also much case-specific. Influence of CO present in the mixture on the PAR performance is also addressed in this paper

  20. Laboratory and modeling studies in search of the critical hydrogen concentration

    International Nuclear Information System (INIS)

    Bartels, David; Wu, Weiqiang; Kanjana, Kotchaphan; Sims, Howard; Henshaw, Jim

    2012-09-01

    The great success of hydrogen water chemistry (HWC) for primary coolant in nuclear power plants is due to the prevention of net radiolysis and to maintenance of the corrosion potential below -230 mV (SHE) where the rate of stress corrosion cracking is minimized. The critical hydrogen concentration or CHC has been defined as that concentration of excess H 2 in primary coolant water, which prevents net water radiolysis via the chain reaction OH + H 2 ↔H 2 O + H (1, -1) H + H 2 O 2 → H 2 O + OH (2) The principle oxidizing free radical (OH) is thus converted into a reducing radical (H), oxidation products are reduced back to water, and the net result is no chemical change. A set of benchmark experiments at the U2 reactor in Chalk River have been reported in an extensive AECL report, which indicate that the CHC in this reactor is ca. 25 micro-molar. Using the review of yields and reaction rates set forth in another recent AECL report, the Chalk River experiments have been modelled in work at NNL, Harwell. The model was not able to successfully reproduce the experimental CHC, or the steady-state H 2 concentrations (SSH2) in the absence of excess hydrogen. A sensitivity analysis of the entire model was carried out. Essentially three important variables have been found to dominate the result. Reaction rate (1) is overwhelmingly important in determining how much H 2 is needed to accomplish the chain back-reaction. Almost with equal importance, the back reaction (-1) needs to be considered at 300 deg. C, but there is some uncertainty of its magnitude. Finally, the relative yields of radicals and molecular products (i.e. H 2 , H 2 O 2 ) in particular H 2 :OH from the radiolysis are critical. Laboratory studies of hydrogenated water radiation chemistry have been carried out with a van de Graaff electron accelerator at Notre Dame Radiation Laboratory. Modelling of the hydrogen produced as a function of the hydrogen input, suggests that the reaction rate (-1) is ca. two

  1. General chemistry

    International Nuclear Information System (INIS)

    Kwon, Yeong Sik; Lee, Dong Seop; Ryu, Haung Ryong; Jang, Cheol Hyeon; Choi, Bong Jong; Choi, Sang Won

    1993-07-01

    The book concentrates on the latest general chemistry, which is divided int twenty-three chapters. It deals with basic conception and stoichiometry, nature of gas, structure of atoms, quantum mechanics, symbol and structure of an electron of ion and molecule, chemical thermodynamics, nature of solid, change of state and liquid, properties of solution, chemical equilibrium, solution and acid-base, equilibrium of aqueous solution, electrochemistry, chemical reaction speed, molecule spectroscopy, hydrogen, oxygen and water, metallic atom; 1A, IIA, IIIA, carbon and atom IVA, nonmetal atom and an inert gas, transition metals, lanthanons, and actinoids, nuclear properties and radioactivity, biochemistry and environment chemistry.

  2. Measurement of percent hydrogen in the mechanical vacuum pump gas stream during BWR startup

    International Nuclear Information System (INIS)

    Garcia, Susan E.; Odell, Andrew D.; Giannelli, Joseph F.

    2012-09-01

    All U.S BWRs use a Mechanical Vacuum Pump (MVP) to establish condenser vacuum during start-ups, normally from the initial heat-up to the point where sufficient reactor steam pressure and flow is available to place the Steam Jet Air Ejector (SJAE) and off-gas treatment system in service. MVP operation is restricted to <5% power and gas stream concentrations of <4% H 2 , the lower flammability limit (LFL) for hydrogen/air mixtures. For a particular plant startup prior to hydrogen injection for hydrogen water chemistry (HWC), the MVP %H 2 would depend on the air in-leakage rate, the H 2 gas generation rate from radiolysis and the gas/steam transport rate from the reactor vessel to the main condenser. The radiolysis rate at low power, which is not precisely known and has not been modeled for the BWR, is normally assumed to increase in proportion to thermal power. Two thirds of the radiolytic gas by volume would be H 2 and one third O 2 . The MVP is not equipped with %H 2 sampling and measurement capability, and many MVP systems include no flow measurement. No U.S plant or literature data on MVP %H 2 were found. The industry-first Early Hydrogen Water Chemistry (EHWC) demonstration at the Peach Bottom 3 nuclear power plant involved hydrogen gas injection into the reactor vessel during startup while the MVP was in service. To support the EHWC project, it was necessary to collect baseline MVP %H 2 data during a startup without hydrogen injection and to monitor MVP %H 2 during the startup with EHWC. The MVP system had no normal sample point, but included test taps in the suction and discharge piping. A sampling method and apparatus was invented (EPRI patent pending), designed, built and applied to obtain %H 2 measurements in the MVP gas stream. The apparatus allowed a gas sample stream to be taken from either the suction (vacuum) or discharge side of the MVP. The gas sample stream was preconditioned to remove moisture (the MVP uses water as a liquid compressant), flowed to

  3. Gaseous anion chemistry. Hydrogen-deuterium exchange in mono- and dialcohol alkoxide ions: ionization reactions in dialcohols

    International Nuclear Information System (INIS)

    Lloyd, J.R.; Agosta, W.C.; Field, F.H.

    1980-01-01

    The subject of this work is H-D exchange in certain gaseous anions using D 2 as the exchanging agent. The anions involved are produced from ethylene glycol, 1,3-propanediol, 1,4-butanediol, ethanol, 1-propanol, and 1-butanol. Spectra and postulated ionization reactions for these mono- and dialcohols are given. Hydrogen-deuterium exchange occurs in the (M - 1) - and (2M - 1) - ions of ethylene glycol, 1,3-propanediol, and 1,4-butanediol. The amount of exchange occurring is 3-8 times greater in (2M - 1) - than in (M - 1) - . The amount of H-D exchange occurring in ethanol, 1-propanol, and 1-butanol is small or zero in the (2M - 1) - ions and in the (M - 1) - ion for 1-butanol [the only (M - 1) - ion which could be examined experimentally]. The amount of exchange occurring in the (2M - 1) - and (M - 1) - ions from ethylene glycol is not affected by the total pressure or composition of the reaction mixture in the ionization chamber of the mass spectrometer. A novel hydrogen-bridging mechanism is suggested to account for the observed exchange occurring in the dialcohols

  4. Protection against post-irradiation oxygen-dependent damage in barley seeds by catalase and hydrogen peroxide: probable radiation chemistry

    International Nuclear Information System (INIS)

    Singh, S.P.; Kesavan, P.C.

    1990-01-01

    Influence of varying concentration of catalase and H 2 O 2 administered individually and in combination treatment during post-hydration on the oxygen-dependent and -independent pathways of damage was assessed in dry barley seeds irradiated in vacuo with 350 Gy of 60 Co gammarays. Both catalase (100 to 500 units/ml) and H 2 O 2 (0.001 to 0.1 mM) afforded significant radioprotection against the post-irradiation O 2 -dependent damage. However, a combination treatment (300 units/ml of catalase and 0.01 mM of H 2 O 2 ) afforded significantl y more protection than either of the additives individually. None of the concentrations of catalase exerted any effect on the O 2 -independent pathway, whereas H 2 O 2 at higher concentrations (1 and 10 mM) significantly potentiated both the O 2 -dependent as well as the -independent components of radiation damage. These observations are better explicable in terms of radiation chemistry. (author). 16 refs., 3 tabs

  5. Experimentally calibrated computational chemistry of tryptophan hydroxylase: Trans influence, hydrogen-bonding, and 18-electron rule govern O-2-activation

    DEFF Research Database (Denmark)

    Haahr, Lærke Tvedebrink; Kepp, Kasper Planeta; Boesen, Jane

    2010-01-01

    with the experimental value (0.25 mm/s) which we propose as the structure of the hydroxylating intermediate, with the tryptophan substrate well located for further reaction 3.5 Å from the ferryl group. Based on the optimized transition states, the activation barriers for the two paths (glu and his) are similar, so......Insight into the nature of oxygen activation in tryptophan hydroxylase has been obtained from density functional computations. Conformations of O2-bound intermediates have been studied with oxygen trans to glutamate and histidine, respectively. An O2-adduct with O2 trans to histidine (Ohis...... towards the cofactor and a more activated O–O bond (1.33 Å) than in Oglu (1.30 Å). It is shown that the cofactor can hydrogen bond to O2 and activate the O–O bond further (from 1.33 to 1.38 Å). The Ohis intermediate leads to a ferryl intermediate (Fhis) with an isomer shift of 0.34 mm/s, also consistent...

  6. Investigation of glutathione-derived electrostatic and hydrogen-bonding interactions and their role in defining Grx5 [2Fe-2S] cluster optical spectra and transfer chemistry.

    Science.gov (United States)

    Sen, Sambuddha; Bonfio, Claudia; Mansy, Sheref S; Cowan, J A

    2018-03-01

    Human glutaredoxin 5 (Grx5) is one of the core components of the Isc (iron-sulfur cluster) assembly and trafficking machinery, and serves as an intermediary cluster carrier, putatively delivering cluster from the Isu scaffold protein to target proteins. The tripeptide glutathione is intimately involved in this role, providing cysteinyl coordination to the iron center of the Grx5-bound [2Fe-2S] cluster. Grx5 has a well-defined glutathione-binding pocket with protein amino acid residues providing many ionic and hydrogen binding contacts to the bound glutathione. In this report, we investigated the importance of these interactions in cluster chirality and exchange reactivity by systematically perturbing the crucial contacts by use of natural and non-natural amino acid substitutions to disrupt the binding contacts from both the protein and glutathione. Native Grx5 could be reconstituted with all of the glutathione analogs used, as well as other thiol ligands, such as DTT or L-cysteine, by in vitro chemical reconstitution, and the holo proteins were found to transfer [2Fe-2S] cluster to apo ferredoxin 1 at comparable rates. However, the circular dichroism spectra of these derivatives displayed prominent differences that reflect perturbations in local cluster chirality. These studies provided a detailed molecular understanding of glutathione-protein interactions in holo Grx5 that define both cluster spectroscopy and exchange chemistry.

  7. Presidential Green Chemistry Challenge: 2007 Greener Reaction Conditions Award

    Science.gov (United States)

    Presidential Green Chemistry Challenge 2007 award winner, Headwaters Technology Innovation, developed a metal nanocatalyst to synthesize hydrogen peroxide directly from hydrogen and oxygen, eliminating hazardous chemicals.

  8. Economic analysis of the hydrogen production by means of the thermo-chemistry process iodine-sulfur with nuclear energy; Analisis economico de la produccion de hidrogeno mediante el proceso termoquimico yodo-azufre con energia nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Solorzano S, C.; Francois L, J. L., E-mail: cuausos@comunidad.unam.mx [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Paseo Cuauhnahuac No. 8532, Col. Progreso, 62550 Jiutepec, Morelos (Mexico)

    2011-11-15

    In this work an economic study was realized about a centralized plant of hydrogen production that works by means of a thermo-chemistry cycle of sulfur-iodine and uses heat coming from a nuclear power plant of IV generation, with base in the software -Hydrogen Economic Evaluation Programme- obtained through the IAEA. The sustainable technology that is glimpsed next for the generation of hydrogen is to great scale and based on processes of high temperature coupled to nuclear power plants, being the most important the cycle S-I and the electrolysis to high temperature, for what objective references are presented that can serve as base for the taking of decisions for its introduction in Mexico. After detailing the economic models that uses the software for the calculation of the even cost of hydrogen production and the characteristics, so much of the nuclear plant constituted by fourth generation reactors, as of the plant of hydrogen production, is proposed a -base- case, obtaining a preliminary even cost of hydrogen production with this process; subsequently different cases are studied starting from which are carried out sensibility analysis in several parameters that could rebound in this cost, taking into account that these reactors are still in design and planning stages. (Author)

  9. Corrosion Behavior and Oxide Properties of Zr-Nb-Cu and Zr-Nb-Sn Alloy in High Dissolved Hydrogen Primary Water Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yun Ju; Kim, Tae Ho; Kim, Ji Hyun [UNIST, Ulsan (Korea, Republic of)

    2016-05-15

    The water-metal interface is regarded as rate-controlling site governing the rapid oxidation transition in high burn-up fuel. And the zirconium oxide is made in water-metal interface and its structure and phase do an important role in terms of oxide properties. During oxidation process, the protective tetragonal oxide layer develops at the interface due to accumulated high stress during oxide growth, and it turns into non-protective monoclinic oxide with increasing oxide thickness, thus decreasing the stress. It has been reported that Nb addition was proven to be very beneficial for increasing the corrosion resistance of the zirconium alloys. From a more recent study, Cu addition in Nb containing Zirconium alloy was reported to be effective for increasing corrosion resistance in water containing B and Li. According to the previous research conducted, Zr-Nb-Cu shows better corrosion resistance than Zircaloy-4. The dissolved hydrogen (DH) concentration is the key issue of primary water chemistry, and the effect of DH concentration on the corrosion rate of nickel based alloy has been researched. However, the effect of DH on the zirconium alloy corrosion mechanism was not fully investigated. In this study, the weight gain measurement, FIB-SEM analysis, and Raman spectroscopic measurement were conducted to investigate the effects of dissolved hydrogen concentration and the chemical composition on the corrosion resistance and oxide phase of Zr-Nb-Cu alloy and Zr-Nb-Sn alloy after oxidizing in a primary water environment for 20 d. The corrosion rate of Zr-Nb-Cu alloy is slow, when it is compared to Zr-Nb-Sn alloy. In SEM images, the oxide thickness of Zr-Nb-Cu alloy is measured to be around 1.06 μm it of Zr-Nb-Sn alloy is measured to be 1.15 μm. It is because of the Segregation made by Sn solute element when Sn solute element oxidized. And according to ex situ Raman spectra, Zr-Nb-Cu alloy oxide has more tetragonal zirconium oxide fraction than Zr-Nb-Sn alloy oxide.

  10. Ammonia chemistry at SMART

    International Nuclear Information System (INIS)

    Na, J. W.; Seong, G. W.; Lee, E. H.; Kim, W. C.; Choi, B. S.; Kim, J. P.; Lee, D. J.

    1999-01-01

    Ammonia is used as the pH control agent of primary water at SMART (System-integrated Modular Advanced ReacTor). Some of this ammonia is decomposed to hydrogen and nitrogen by radiation in the reactor core. The produced hydrogen gas is used for the removal of dissolved oxygen in the coolant. Some of nitrogen gas in pressurizer is dissolved into the primary water. Because ammonia, hydrogen and nitrogen which is produced by ammonia radiolysis are exist in the coolant at SMART, ammonia chemistry at SMART is different with lithium-boron chemistry at commercial PWR. In this study, the pH characteristics of ammonia and the solubility characteristics of hydrogen and nytrogen were analyzed for the management of primary water chemistry at SMART

  11. Interstellar chemistry.

    Science.gov (United States)

    Klemperer, William

    2006-08-15

    In the past half century, radioastronomy has changed our perception and understanding of the universe. In this issue of PNAS, the molecular chemistry directly observed within the galaxy is discussed. For the most part, the description of the molecular transformations requires specific kinetic schemes rather than chemical thermodynamics. Ionization of the very abundant molecular hydrogen and atomic helium followed by their secondary reactions is discussed. The rich variety of organic species observed is a challenge for complete understanding. The role and nature of reactions involving grain surfaces as well as new spectroscopic observations of interstellar and circumstellar regions are topics presented in this special feature.

  12. A Rechargeable Hydrogen Battery.

    Science.gov (United States)

    Christudas Dargily, Neethu; Thimmappa, Ravikumar; Manzoor Bhat, Zahid; Devendrachari, Mruthunjayachari Chattanahalli; Kottaichamy, Alagar Raja; Gautam, Manu; Shafi, Shahid Pottachola; Thotiyl, Musthafa Ottakam

    2018-04-27

    We utilize proton-coupled electron transfer in hydrogen storage molecules to unlock a rechargeable battery chemistry based on the cleanest chemical energy carrier molecule, hydrogen. Electrochemical, spectroscopic, and spectroelectrochemical analyses evidence the participation of protons during charge-discharge chemistry and extended cycling. In an era of anthropogenic global climate change and paramount pollution, a battery concept based on a virtually nonpolluting energy carrier molecule demonstrates distinct progress in the sustainable energy landscape.

  13. Conference 'Chemistry of hydrides' Proceedings

    International Nuclear Information System (INIS)

    1991-07-01

    This collection of thesis of conference of Chemistry hydrides presents the results of investigations concerning of base questions of chemistry of nonorganic hydrides, including synthesis questions, studying of physical and chemical properties, thermodynamics, analytical chemistry, investigation of structure, equilibriums in the systems of metal-hydrogen, behaviour of nonorganic hydrides in non-water mediums and applying investigations in the chemistry area and technology of nonorganic hydrides

  14. Radiation chemistry

    International Nuclear Information System (INIS)

    Rodgers, F.; Rodgers, M.A.

    1987-01-01

    The contents of this book include: Interaction of ionizing radiation with matter; Primary products in radiation chemistry; Theoretical aspects of radiation chemistry; Theories of the solvated electron; The radiation chemistry of gases; Radiation chemistry of colloidal aggregates; Radiation chemistry of the alkali halides; Radiation chemistry of polymers; Radiation chemistry of biopolymers; Radiation processing and sterilization; and Compound index

  15. Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: relevance of metal hydride bonds and dihydrogen.

    Science.gov (United States)

    Jia, Hong-Peng; Quadrelli, Elsje Alessandra

    2014-01-21

    Dinitrogen cleavage and hydrogenation by transition-metal centers to produce ammonia is central in industry and in Nature. After an introductory section on the thermodynamic and kinetic challenges linked to N2 splitting, this tutorial review discusses three major classes of transition-metal systems (homogeneous, heterogeneous and biological) capable of achieving dissociation and hydrogenation of dinitrogen. Molecular complexes, solid-state Haber-Bosch catalytic systems, silica-supported tantalum hydrides and nitrogenase will be discussed. Emphasis is focused on the reaction mechanisms operating in the process of dissociation and hydrogenation of dinitrogen, and in particular on the key role played by metal hydride bonds and by dihydrogen in such reactions.

  16. Modelling perspectives on radiation chemistry in BWR reactor core

    International Nuclear Information System (INIS)

    Ibe, Eishi

    1991-01-01

    Development of a full-system boiling water reactor core model started in 1982. The model included a two-region reactor core, one with and one without boiling. Key design parameters consider variable dose rates in a three-layer liquid downcomer. Dose rates in the core and downcomer include both generation and recombination reactions of species. Agreement is good between calculations and experimental data of oxygen concentration as a function of hydrogen concentration for different bubble sizes. Oxygen concentration is reduced in the reactor pressure vessel (RPV) by increasing bubble size. The multilayer model follows the oxygen data better than a single-layered model at high concentrations of hydrogen. Key reactions are reduced to five radiolysis reactions and four decomposition reactions for hydrogen peroxide. Calculations by the DOT 3 code showed dose rates from neutrons and gamma rays in various parts of the core. Concentrations of oxygen, hydrogen peroxide, and hydrogen were calculated by the model as a function of time from core inlet. Similar calculations for NWC and HWC were made as a function of height from core inlet both in the boiling channel an the bypass channel. Finally the model was applied to calculate the oxygen plus half the hydrogen peroxide concentrations as a function of hydrogen concentration to compare with data from five plants. Power density distribution with core height was given for an early stage and an end stage of a cycle. Increases of dose rates in the turbine for seven plants were shown as a function of increased hydrogen concentration in the reactor water

  17. Hydrogen energy for beginners

    CERN Document Server

    2013-01-01

    This book highlights the outstanding role of hydrogen in energy processes, where it is the most functional element due to its unique peculiarities that are highlighted and emphasized in the book. The first half of the book covers the great natural hydrogen processes in biology, chemistry, and physics, showing that hydrogen is a trend that can unite all natural sciences. The second half of the book is devoted to the technological hydrogen processes that are under research and development with the aim to create the infrastructure for hydrogen energetics. The book describes the main features of hydrogen that make it inalienable player in processes such as fusion, photosynthesis, and metabolism. It also covers the methods of hydrogen production and storage, highlighting at the same time the exclusive importance of nanotechnologies in those processes.

  18. Chemistry in water reactors

    International Nuclear Information System (INIS)

    Hermansson, H.P.; Norring, K.

    1994-01-01

    The international conference Chemistry in Water Reactors was arranged in Nice 24-27/04/1994 by the French Nuclear Energy Society. Examples of technical program areas were primary chemistry, operational experience, fundamental studies and new technology. Furthermore there were sessions about radiation field build-up, hydrogen chemistry, electro-chemistry, condensate polishing, decontamination and chemical cleaning. The conference gave the impression that there are some areas that are going to be more important than others during the next few years to come. Cladding integrity: Professor Ishigure from Japan emphasized that cladding integrity is a subject of great concern, especially with respect to waterside corrosion, deposition and release of crud. Chemistry control: The control of the iron/nickel concentration quotient seems to be not as important as previously considered. The future operation of a nuclear power plant is going to require a better control of the water chemistry than achievable today. One example of this is solubility control via regulation in BWR. Trends in USA: means an increasing use of hydrogen, minimization of SCC/IASCC, minimization of radiation fields by thorough chemistry control, guarding fuel integrity by minimization of cladding corrosion and minimization of flow assisted corrosion. Stellite replacement: The search for replacement materials will continue. Secondary side crevice chemistry: Modeling and practical studies are required to increase knowledge about the crevice chemistry and how it develops under plant operation conditions. Inhibitors: Inhibitors for IGSCC and IGA as well for the primary- (zinc) as for the secondary side (Ti) should be studied. The effects and mode of operation of the inhibitors should be documented. Chemical cleaning: of heat transfer surfaces will be an important subject. Prophylactic cleaning at regular intervals could be one mode of operation

  19. Bad chemistry

    OpenAIRE

    Petsko, Gregory A

    2004-01-01

    General chemistry courses haven't changed significantly in forty years. Because most basic chemistry students are premedical students, medical schools have enormous influence and could help us start all over again to create undergraduate chemistry education that works.

  20. Photo-Electrochemical Effect of Zinc Addition on the Electrochemical Corrosion Potentials of Stainless Steels and Nickel Alloys in High Temperature Water

    International Nuclear Information System (INIS)

    Lee, Yi-Ching; Fong, Clinton; Fang-Chu, Charles; Chang, Ching

    2012-09-01

    Hydrogen water chemistry (HWC) is one of the main mitigating methods for stress corrosion cracking problem of reactor core stainless steel and nickel based alloy components. Zinc is added to minimize the radiation increase associated with HWC. However, the subsequently formed zinc-containing surface oxides may exhibit p-type semiconducting characteristics. Upon the irradiation of Cherenkov and Gamma ray in the reactor core, the ECP of stainless steels and nickel based alloys may shift in the anodic direction, possibly offsetting the beneficial effect of HWC. This study will evaluate the photo-electrochemical effect of Zinc Water Chemistry on SS304 stainless steel and Alloy 182 nickel based weld metal under simulated irradiated BWR water environments with UV illumination. The experimental results reveal that Alloy 182 nickel-based alloy generally possesses n-type semiconductor characteristics in both oxidizing NWC and reducing HWC conditions with zinc addition. Upon UV irradiation, the ECP of Alloy 182 will shift in the cathodic direction. In most conditions, SS304 will also exhibit n-type semiconducting properties. Only under hydrogen water chemistry, a weak p-type property may emerge. Only a slight upward shift in the anodic direction is detected when SS304 is illuminated with UV light. The potential influence of p-type semiconductor of zinc containing surface oxides is weak and the mitigation effect of HWC on the stress corrosion cracking is not adversely affected. (authors)

  1. Optimum Water Chemistry in radiation field buildup control

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chien, C. [Vallecitos Nuclear Center, Pleasanton, CA (United States)

    1995-03-01

    Nuclear utilities continue to face the challenGE of reducing exposure of plant maintenance personnel. GE Nuclear Energy has developed the concept of Optimum Water Chemistry (OWC) to reduce the radiation field buildup and minimize the radioactive waste production. It is believed that reduction of radioactive sources and improvement of the water chemistry quality should significantly reduce both the radiation exposure and radwaste production. The most important source of radioactivity is cobalt and replacement of cobalt containing alloy in the core region as well as in the entire primary system is considered the first priority to achieve the goal of low exposure and minimized waste production. A plant specific computerized cobalt transport model has been developed to evaluate various options in a BWR system under specific conditions. Reduction of iron input and maintaining low ionic impurities in the coolant have been identified as two major tasks for operators. Addition of depleted zinc is a proven technique to reduce Co-60 in reactor water and on out-of-core piping surfaces. The effect of HWC on Co-60 transport in the primary system will also be discussed.

  2. Complex chemistry

    International Nuclear Information System (INIS)

    Kim, Bong Gon; Kim, Jae Sang; Kim, Jin Eun; Lee, Boo Yeon

    2006-06-01

    This book introduces complex chemistry with ten chapters, which include development of complex chemistry on history coordination theory and Warner's coordination theory and new development of complex chemistry, nomenclature on complex with conception and define, chemical formula on coordination compound, symbol of stereochemistry, stereo structure and isomerism, electron structure and bond theory on complex, structure of complex like NMR and XAFS, balance and reaction on solution, an organo-metallic chemistry, biology inorganic chemistry, material chemistry of complex, design of complex and calculation chemistry.

  3. Mathematical Chemistry

    OpenAIRE

    Trinajstić, Nenad; Gutman, Ivan

    2002-01-01

    A brief description is given of the historical development of mathematics and chemistry. A path leading to the meeting of these two sciences is described. An attempt is made to define mathematical chemistry, and journals containing the term mathematical chemistry in their titles are noted. In conclusion, the statement is made that although chemistry is an experimental science aimed at preparing new compounds and materials, mathematics is very useful in chemistry, among other things, to produc...

  4. Water chemistry regimes for VVER-440 units: water chemistry influence on fuel cladding behaviour

    International Nuclear Information System (INIS)

    Zmitko, M.

    1999-01-01

    In this lecture next problems of water chemistry influence on fuel cladding behaviour for VVER-440 units are presented: primary coolant technologies; water chemistry specification and control; fuel integrity considerations; zirconium alloys cladding corrosion (corrosion versus burn-up; water chemistry effect; crud deposition; hydrogen absorption; axial offset anomaly); alternatives for the primary coolant regimes

  5. Hydrogen energy

    International Nuclear Information System (INIS)

    2005-03-01

    This book consists of seven chapters, which deals with hydrogen energy with discover and using of hydrogen, Korean plan for hydrogen economy and background, manufacturing technique on hydrogen like classification and hydrogen manufacture by water splitting, hydrogen storage technique with need and method, hydrogen using technique like fuel cell, hydrogen engine, international trend on involving hydrogen economy, technical current for infrastructure such as hydrogen station and price, regulation, standard, prospect and education for hydrogen safety and system. It has an appendix on related organization with hydrogen and fuel cell.

  6. Chemistry Division annual progress report for period ending July 31, 1981

    International Nuclear Information System (INIS)

    1982-01-01

    Research is reported on: chemistry of coal liquefaction, aqueous chemistry at high temperatures, geosciences, high-temperature chemistry and thermodynamics of structural materials, chemistry of TRU elements and compounds, separations chemistry, electrochemistry, nuclear waste chemistry, chemical physics, theoretical chemistry, inorganic chemistry of hydrogen cycles, molten salt systems, and enhanced oil recovery. Separate abstracts were prepared for the sections dealing with coal liquefaction, TRU elements and compounds, separations, nuclear wastes, and enhanced oil recovery

  7. Chemistry Division annual progress report for period ending July 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    Research is reported on: chemistry of coal liquefaction, aqueous chemistry at high temperatures, geosciences, high-temperature chemistry and thermodynamics of structural materials, chemistry of TRU elements and compounds, separations chemistry, electrochemistry, nuclear waste chemistry, chemical physics, theoretical chemistry, inorganic chemistry of hydrogen cycles, molten salt systems, and enhanced oil recovery. Separate abstracts were prepared for the sections dealing with coal liquefaction, TRU elements and compounds, separations, nuclear wastes, and enhanced oil recovery. (DLC)

  8. Research in radiation chemistry

    International Nuclear Information System (INIS)

    Silverman, J.

    1974-01-01

    In the survey the author discusses phenomena which are unique to radiation chemistry, as well as those in which radiation chemistry research plays a principal role. Works in this field such as spur phenomena and effects of scavengers in the radiolysis of water and liquid alkane, intraspur effects in styrene and polymerization of styrene at high dose rates are presented. The problem of the missing hydrogen atoms in irradiated alkanes needs answer and sensitization of crosslinking reactions may involve some unique aspects of radiation chemistry. Pairwise trapping of radicals in irradiated n-hydrocarbons have been observed in ESP-spectra. A well defined spectrum of radical pairs when the crystals of n-eicosane is irradiated and observed at 77 deg K. The nature of the spectrum, its changes with temperature and the effect of LET is discussed in the paper. (M.S.)

  9. Chemistry Notes

    Science.gov (United States)

    School Science Review, 1976

    1976-01-01

    Described are eight chemistry experiments and demonstrations applicable to introductory chemistry courses. Activities include: measure of lattice enthalpy, Le Chatelier's principle, decarboxylation of soap, use of pocket calculators in pH measurement, and making nylon. (SL)

  10. Chemistry Dashboard

    Science.gov (United States)

    The Chemistry Dashboard is part of a suite of dashboards developed by EPA to help evaluate the safety of chemicals. The Chemistry Dashboard provides access to a variety of information on over 700,000 chemicals currently in use.

  11. New insights into the crystal chemistry of agardite-(Ce): refinement of the crystal structure, hydrogen bonding, and epitaxial intergrowths with the Sb-analogue of auriacusite

    Science.gov (United States)

    Aksenov, Sergey M.; Chukanov, Nikita V.; Göttlicher, Jörg; Möckel, Steffen; Varlamov, Dmitriy; Van, Konstantin V.; Rastsvetaeva, Ramiza K.

    2018-01-01

    Agardite-(Ce) from Clara Mine, Schwarzwald, Germany, has been investigated by means of electron microprobe analysis, single-crystal X-ray analysis, XANES spectroscopy and IR spectroscopy. Hexagonal unit-cell parameters are: a = 13.598(6), c = 5.954(3) Å; V = 953.5(2) Å3; space group P63/ m. The structure has been solved and refined to final R 1 = 3.87%, w R 2 = 5.02 for 786 I > 3 σ( I). Hydrogen atoms have been localized. The crystal-chemical formula is ( Z = 2): A(1)(Ce0.82Ca0.14Sr0.04)Σ1.00 A(2)(Ca0.03Ce0.02)Σ0.05 [Cu5.75(Fe3+, Mn)0.20]Σ5.95 [ T(1)(AsO4) 2.96 T(2) (SbO4)0.04)]Σ3.00 (OH)5.96O0.04·3H2O. Hydrogen bonding in agardite-series minerals has been characterized for the first time. IR spectra of agardite-(Ce) and agardite-(Nd) from Lavrion used for comparison, as well as structural data indicate the presence of isolated H+ cations that do not form strong covalent bonds with coordinating O atoms. Agardite-(Ce) from Clara Mine forms epitaxial growths with the Sb-analogue of auriacusite. The latter mineral was characterized by EDS analyses; its typical empirical formulae are {Ca}_{0.0 6} {Ce}_{0.0 4} {Fe}^{ 3+ }{}_{ 1.0 6} {Cu}_{0. 8 9}[(SbO4)0.58(AsO4)0.38(SiO4)0.04]Σ1.00(O,OH) and {Ca}_{0.0 7 5} {Ce}_{0.0 4} {Fe}^{ 3+ }{}_{0. 9 3} {Cu}_{0. 9 7}[(SbO4)0.59(AsO4)0.35(SiO4)0.06]Σ1.00(O,OH). The formation of uniaxial growths of the Sb-analogue of auriacusite and agardite-(Ce) is caused by the close values of their c parameters (for auriacusite s.s. c = 5.9501(5) Å). Three-valence state of iron and five-valence of antimony in both minerals has been validated by means of Fe K- and Sb L 2,3-edge XANES spectroscopy.

  12. Combinatorial chemistry

    DEFF Research Database (Denmark)

    Nielsen, John

    1994-01-01

    An overview of combinatorial chemistry is presented. Combinatorial chemistry, sometimes referred to as `irrational drug design,' involves the generation of molecular diversity. The resulting chemical library is then screened for biologically active compounds.......An overview of combinatorial chemistry is presented. Combinatorial chemistry, sometimes referred to as `irrational drug design,' involves the generation of molecular diversity. The resulting chemical library is then screened for biologically active compounds....

  13. Aquatic Chemistry

    International Nuclear Information System (INIS)

    Kim, Dong Yeun; Kim, Oh Sik; Kim, Chang Guk; Park, Cheong Gil; Lee, Gwi Hyeon; Lee, Cheol Hui

    1987-07-01

    This book deals aquatic chemistry, which treats water and environment, chemical kinetics, chemical balance like dynamical characteristic, and thermodynamics, acid-base chemistry such as summary, definition, kinetics, and PH design for mixture of acid-base chemistry, complex chemistry with definition, and kinetics, precipitation and dissolution on summary, kinetics of precipitation and dissolution, and balance design oxidation and resolution with summary, balance of oxidation and resolution.

  14. Positronium chemistry

    CERN Document Server

    Green, James

    1964-01-01

    Positronium Chemistry focuses on the methodologies, reactions, processes, and transformations involved in positronium chemistry. The publication first offers information on positrons and positronium and experimental methods, including mesonic atoms, angular correlation measurements, annihilation spectra, and statistical errors in delayed coincidence measurements. The text then ponders on positrons in gases and solids. The manuscript takes a look at the theoretical chemistry of positronium and positronium chemistry in gases. Topics include quenching, annihilation spectrum, delayed coincidence

  15. A Chemistry Lesson at Three Mile Island.

    Science.gov (United States)

    Mammano, Nicholas J.

    1980-01-01

    Details the procedures used in utilizing the hydrogen bubble incident at Three Mile Island to relate these basic chemical principles to nuclear chemistry: gas laws, Le Chatelier's principle and equilibrium, and stoichiometry. (CS)

  16. Presidential Green Chemistry Challenge: 1999 Academic Award

    Science.gov (United States)

    Presidential Green Chemistry Challenge 1999 award winner, Professor Terry Collins, developed a series of TAML oxidant activators that work with hydrogen peroxide to replace chlorine bleaches for paper making and laundry.

  17. Presidential Green Chemistry Challenge: 2007 Academic Award

    Science.gov (United States)

    Presidential Green Chemistry Challenge 2007 award winner, Professor Michael J. Krische, developed selective C-C bond-forming hydrogenation without organometallic reagents, eliminating hazardous reagents and hazardous waste.

  18. Understanding of the structure activity relationship of PtPd bimetallic catalysts prepared by surface organometallic chemistry and ion exchange during the reaction of iso-butane with hydrogen

    KAUST Repository

    Al-Shareef, Reem A.; Harb, Moussab; Saih, Youssef; Ould-Chikh, Samy; Roldan, Manuel A.; Anjum, Dalaver H.; Guyonnet, Elodie Bile; Candy, Jean-Pierre; Jan, Deng-Yang; Abdo, Suheil F.; Aguilar-Tapia, Antonio; Proux, Olivier; Hazemann, Jean-Louis; Basset, Jean-Marie

    2018-01-01

    Well-defined silica supported bimetallic catalysts Pt100-x Pdx were prepared by Surface Organometallic Chemistry (SOMC) and Ionic-Exchange (IE) methods. For all investigated catalysts, iso-butane reaction with hydrogen under differential conditions led to the formation of methane and propane, n-butane, and traces of iso-butylene. The total reaction rate decreased with increasing the Pd loading for both catalysts series as a result of decreasing turnover rate of both isomerization and hydrogenolysis. In the case of Pt100-x Pdx(SOMC) catalysts, the experimental results in combination with DFT calculations suggested a selective coverage of Pt (1 0 0) surface by agglomerated Pd atoms like “islands”, assuming that each metal roughly keeps its intrinsic catalytic properties with relatively small electron transfer from Pt to Pd in the case of Pt-rich sample and from Pd to Pt in the case of Pd-rich sample. For the PtPd catalysts prepared by IE, the catalytic behavior could be explained by the formation of a surface alloy between Pt and Pd in the case of Pd-rich sample and by the segregation of a small amount of Pd on the surface in the case of Pt-rich sample, as demonstrated by TEM, EXAFS and DFT. The catalytic results were explained by a structure activity relationship based on the proposed mechanism of CH bond and CC bond activation and cleavage for iso-butane hydrogenolysis, isomerization, cracking and dehydrogenation.

  19. Understanding of the structure activity relationship of PtPd bimetallic catalysts prepared by surface organometallic chemistry and ion exchange during the reaction of iso-butane with hydrogen

    KAUST Repository

    Alshareef, Reem Abdul aziz Hamed

    2018-04-25

    Well-defined silica supported bimetallic catalysts Pt100-x Pdx were prepared by Surface Organometallic Chemistry (SOMC) and Ionic-Exchange (IE) methods. For all investigated catalysts, iso-butane reaction with hydrogen under differential conditions led to the formation of methane and propane, n-butane, and traces of iso-butylene. The total reaction rate decreased with increasing the Pd loading for both catalysts series as a result of decreasing turnover rate of both isomerization and hydrogenolysis. In the case of Pt100-x Pdx(SOMC) catalysts, the experimental results in combination with DFT calculations suggested a selective coverage of Pt (1 0 0) surface by agglomerated Pd atoms like “islands”, assuming that each metal roughly keeps its intrinsic catalytic properties with relatively small electron transfer from Pt to Pd in the case of Pt-rich sample and from Pd to Pt in the case of Pd-rich sample. For the PtPd catalysts prepared by IE, the catalytic behavior could be explained by the formation of a surface alloy between Pt and Pd in the case of Pd-rich sample and by the segregation of a small amount of Pd on the surface in the case of Pt-rich sample, as demonstrated by TEM, EXAFS and DFT. The catalytic results were explained by a structure activity relationship based on the proposed mechanism of CH bond and CC bond activation and cleavage for iso-butane hydrogenolysis, isomerization, cracking and dehydrogenation.

  20. Forensic Chemistry

    Science.gov (United States)

    Bell, Suzanne

    2009-07-01

    Forensic chemistry is unique among chemical sciences in that its research, practice, and presentation must meet the needs of both the scientific and the legal communities. As such, forensic chemistry research is applied and derivative by nature and design, and it emphasizes metrology (the science of measurement) and validation. Forensic chemistry has moved away from its analytical roots and is incorporating a broader spectrum of chemical sciences. Existing forensic practices are being revisited as the purview of forensic chemistry extends outward from drug analysis and toxicology into such diverse areas as combustion chemistry, materials science, and pattern evidence.

  1. Progress report, Chemistry and Materials Division, October 1 to December 31, 1975

    International Nuclear Information System (INIS)

    1976-01-01

    Interim research results are reported in solid state science (ion penetration, electron microscopy, radiation damage and metal physics, nuclear methods of analysis), general chemistry (analytical chemistry, hydrogen-water exchange, radioactivity measurements, electrochemistry), physical chemistry (radiation and isotope chemistry), materials science (surface chemistry and metal physics), and university research (deuterium exchange and zirconium alloy properties). (E.C.B.)

  2. Hydrogenated graphenes by birch reduction: influence of electron and proton sources on hydrogenation efficiency, magnetism, and electrochemistry

    Czech Academy of Sciences Publication Activity Database

    Eng, A.Y.S.; Sofer, Z.; Huber, Š.; Bouša, D.; Maryško, Miroslav; Pumera, M.

    2015-01-01

    Roč. 21, č. 7 (2015), 16828-16838 ISSN 0947-6539 Institutional support: RVO:68378271 Keywords : hydrogenated graphenes * birch reduction * magnetism * electrochemistry * hydrogenation efficiency Subject RIV: CA - Inorganic Chemistry Impact factor: 5.771, year: 2015

  3. Chemistry and climate change

    International Nuclear Information System (INIS)

    Bernier, Jean-Claude; Brasseur, Guy; Brechet, Yves; Candel, Sebastien; Cazenave, Anny; Courtillot, Vincent; Fontecave, Marc; Garnier, Emmanuel; Goebel, Philippe; Legrand, Jack; Legrand, Michel; Le Treut, Herve; Mauberger, Pascal; Dinh-Audouin, Minh-Thu; Olivier, Daniele; Rigny, Paul; Bigot, Bernard

    2016-01-01

    In its first part, this collective publication addresses the decennial and centuries-old variations of climate: perspectives and implications of climate change for the 21. century, questions remaining about the understanding of climate change from its sources to its modelling, extreme climate variations and societies during the last millennium. The contributions of the second part outline how chemistry is a tool to study climate change: ice chemistry as an archive of our past environment, observations and predictions on sea level rise, relationship between atmosphere chemistry and climate. The third set of contributions discusses the transformation of the energy system for a cleaner atmosphere and the management of the climate risk: the chemical processing of CO_2, actions of chemical companies to support the struggle against climate change, relationship between barrel price and renewable energies, relationship between grid complexity and green energy. The last part outlines the role chemistry can have to be able to do without fossil fuels: chemistry in front of challenges of transformation of the energy system, the use of micro-algae, the use of hydrogen as a vector of energy transition

  4. Pretreatment of lignocellulosic biomass using Fenton chemistry

    Science.gov (United States)

    Pretreatment is a necessary step in “biomass to biofuel conversion” due to the recalcitrant nature of lignocellulosic biomass. White-rot fungi utilize peroxidases and hydrogen peroxide (in vivo Fenton chemistry) to degrade lignin. In an attempt to mimic this process, solution phase Fenton chemistry ...

  5. Organic chemistry

    International Nuclear Information System (INIS)

    2003-08-01

    This book with sixteen chapter explains organic chemistry on linkage isomerism such as alkane, cycloalkane, alkene, aromatic compounds, stereo selective isomerization, aromatic compounds, stereo selective isomerization, organic compounds, stereo selective isomerization, organic halogen compound, alcohol, ether, aldehyde and ketone, carboxylic acid, dicarboxylic acid, fat and detergent, amino, carbohydrate, amino acid and protein, nucleotide and nucleic acid and spectroscopy, a polymer and medical chemistry. Each chapter has introduction structure and characteristic and using of organic chemistry.

  6. Radiation chemistry

    Energy Technology Data Exchange (ETDEWEB)

    None

    1973-07-01

    Research progress is reported on radiation chemistry of heavy elements that includes the following topics: radiation chemistry of plutonium in nitric acid solutions (spectrophotometric analysis and gamma radiolysis of Pu(IV) and Pu(VI) in nitric acid solution); EPR studies of intermediates formed in radiolytic reactions with aqueous medium; two-phase radiolysis and its effect on the distribution coefficient of plutonium; and radiation chemistry of nitric acid. (DHM)

  7. Hydrogen assisted diesel combustion

    Energy Technology Data Exchange (ETDEWEB)

    Lilik, Gregory K.; Boehman, Andre L. [The EMS Energy Institute, The Pennsylvania State University, University Park, PA 16802 (United States); Zhang, Hedan; Haworth, Daniel C. [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Herreros, Jose Martin [Escuela Tecnica Superior de Ingenieros Industriales, Universidad de Castilla La-Mancha, Avda. Camilo Jose Cela s/n, 13071 Ciudad Real (Spain)

    2010-05-15

    Hydrogen assisted diesel combustion was investigated on a DDC/VM Motori 2.5L, 4-cylinder, turbocharged, common rail, direct injection light-duty diesel engine, with a focus on exhaust emissions. Hydrogen was substituted for diesel fuel on an energy basis of 0%, 2.5%, 5%, 7.5%, 10% and 15% by aspiration of hydrogen into the engine's intake air. Four speed and load conditions were investigated (1800 rpm at 25% and 75% of maximum output and 3600 rpm at 25% and 75% of maximum output). A significant retarding of injection timing by the engine's electronic control unit (ECU) was observed during the increased aspiration of hydrogen. The retarding of injection timing resulted in significant NO{sub X} emission reductions, however, the same emission reductions were achieved without aspirated hydrogen by manually retarding the injection timing. Subsequently, hydrogen assisted diesel combustion was examined, with the pilot and main injection timings locked, to study the effects caused directly by hydrogen addition. Hydrogen assisted diesel combustion resulted in a modest increase of NO{sub X} emissions and a shift in NO/NO{sub 2} ratio in which NO emissions decreased and NO{sub 2} emissions increased, with NO{sub 2} becoming the dominant NO{sub X} component in some combustion modes. Computational fluid dynamics analysis (CFD) of the hydrogen assisted diesel combustion process captured this trend and reproduced the experimentally observed trends of hydrogen's effect on the composition of NO{sub X} for some operating conditions. A model that explicitly accounts for turbulence-chemistry interactions using a transported probability density function (PDF) method was better able to reproduce the experimental trends, compared to a model that ignores the influence of turbulent fluctuations on mean chemical production rates, although the importance of the fluctuations is not as strong as has been reported in some other recent modeling studies. The CFD results confirm

  8. Technetium chemistry

    International Nuclear Information System (INIS)

    Burns, C.; Bryan, J.; Cotton, F.; Ott, K.; Kubas, G.; Haefner, S.; Barrera, J.; Hall, K.; Burrell, A.

    1996-01-01

    Technetium chemistry is a young and developing field. Despite the limited knowledge of its chemistry, technetium is the workhorse for nuclear medicine. Technetium is also a significant environmental concern because it is formed as a byproduct of nuclear weapons production and fission-power generators. Development of new technetium radio-pharmaceuticals and effective environmental control depends strongly upon knowledge of basic technetium chemistry. The authors performed research into the basic coordination and organometallic chemistry of technetium and used this knowledge to address nuclear medicine and environmental applications. This is the final report of a three-year Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL)

  9. Chemistry Technology

    Data.gov (United States)

    Federal Laboratory Consortium — Chemistry technology experts at NCATS engage in a variety of innovative translational research activities, including:Design of bioactive small molecules.Development...

  10. The chemistry of subcritical water reactions of a hardwood derived lignin and lignin model compounds with nitrogen, hydrogen, carbon monoxide and carbon dioxide

    Science.gov (United States)

    Hill Bembenic, Meredith A.

    added pressure is: 1) cleavage of ethers (via hydrolysis) to form smaller methoxy-substituted phenolic monomers with aldehyde- or ketone-substituents representative of lignin monomers; 2) cleavage of the methoxy-, aldehyde- and/or ketone-substituents to form primarily methoxy-substituted phenolic monomers; 3) rearrangement of these phenolic monomers due to the enhanced pressure at reaction temperature; 4) formation of oligomers due to interaction amongst the methoxy-substituted phenolic monomers, which is also due to the enhanced pressure at reaction temperature; and 5) repolymerization of the monomers and oligomers to form high molecular weight compounds (i.e., longer reactions times or different pressures seemed to enhance these reactions). Under these conditions, depolymerization seems to be the dominant reaction pathway versus repolymerization. Reactions with lignin and H2O at 365°C have not been previously reported nor has the reaction chemistry for lignin depolymerization at these conditions been established. The results with lignin (or lignin model compounds), subcritical H2O and CO also show that the desired product slate can be modified with different pressure and time conditions. In particular, increasing reaction time (from 15 to 60 min.) caused lignin conversion to decrease, and the products appeared to be reacting with each other. However, the longer reaction time also showed that more methanol is generated (along with more solids).

  11. Hydrogen sensor

    Science.gov (United States)

    Duan, Yixiang; Jia, Quanxi; Cao, Wenqing

    2010-11-23

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  12. Advances in BWR water chemistry

    International Nuclear Information System (INIS)

    Garcia, Susan E.; Giannelli, Joseph F.; Jarvis, Mary L.

    2012-09-01

    This paper reviews recent advances in Boiling Water Reactor (BWR) water chemistry control with examples of plant experiences at U.S. designed BWRs. Water chemistry advances provide some of the most effective methods for mitigating materials degradation, reducing fuel performance concerns and lowering radiation fields. Mitigation of stress corrosion cracking (SCC) of materials remains a high priority and improved techniques that have been demonstrated in BWRs will be reviewed, specifically hydrogen injection combined with noble metal chemical addition (NMCA) and the newer on-line noble metal application process (OLNC). Hydrogen injection performance, an important part of SCC mitigation, will also be reviewed for the BWR fleet, highlighting system improvements that have enabled earlier injection of hydrogen including the potential for hydrogen injection during plant startup. Water chemistry has been significantly improved by the application of pre-filtration and optimized use of ion exchange resins in the CP (condensate polishing) and reactor water cleanup (RWCU) systems. EPRI has monitored and supported water treatment improvements to meet water chemistry goals as outlined in the EPRI BWR Water Chemistry Guidelines, particularly those for SCC mitigation of reactor internals and piping, minimization of fuel risk due to corrosion and crud deposits and chemistry control for radiation field reduction. In recent years, a significant reduction has occurred in feedwater corrosion product input, particularly iron. A large percentage of plants are now reporting <0.1 ppb feedwater iron. The impacts to plant operation and chemistry of lower feedwater iron will be explored. Depleted zinc addition is widely practiced across the fleet and the enhanced focus on radiation reduction continues to emphasize the importance of controlling radiation source term. In addition, shutdown chemistry control is necessary to avoid excessive release of activated corrosion products from fuel

  13. Hydrogen system (hydrogen fuels feasibility)

    International Nuclear Information System (INIS)

    Guarna, S.

    1991-07-01

    This feasibility study on the production and use of hydrogen fuels for industry and domestic purposes includes the following aspects: physical and chemical properties of hydrogen; production methods steam reforming of natural gas, hydrolysis of water; liquid and gaseous hydrogen transportation and storage (hydrogen-hydride technology); environmental impacts, safety and economics of hydrogen fuel cells for power generation and hydrogen automotive fuels; relevant international research programs

  14. Current organic chemistry

    National Research Council Canada - National Science Library

    1997-01-01

    Provides in depth reviews on current progress in the fields of asymmetric synthesis, organometallic chemistry, bioorganic chemistry, heterocyclic chemistry, natural product chemistry, and analytical...

  15. Nuclear chemistry

    International Nuclear Information System (INIS)

    Vertes, A.; Kiss, I.

    1987-01-01

    This book is an introduction to the application of nuclear science in modern chemistry. The first group of chapters discuss the basic phenomena and concepts of nuclear physics with emphasis on their relation to chemical problems, including the main properties and the composition of atomic nuclei, nuclear reactions, radioactive decay and interactions of radiation with matter. These chapters provide the basis for understanding the following chapters which encompass the wide scope of nuclear chemistry. The methods of the investigation of chemical structure based on the interaction of nuclear radiation with matter including positronium chemistry and other exotic atoms is elaborated in particular detail. Separate chapters are devoted to the use of radioactive tracers, the chemical consequences of nuclear processes (i.e. hot atom chemistry), radiation chemistry, isotope effects and their applications, and the operation of nuclear reactors

  16. Nuclear chemistry

    International Nuclear Information System (INIS)

    Vertes, A.; Kiss, I.

    1987-01-01

    This book is an introduction to the application of nuclear science in modern chemistry. The first group of chapters discuss the basic phenomena and concepts of nuclear physics with emphasis on their relation to chemical problems, including the main properties and the composition of atomic nuclei, nuclear reactions, radioactive decay and interactions of radiation with matter. These chapters provide the basis for understanding the following chapters which encompass the wide scope of nuclear chemistry. The methods of the investigation of chemical structure based on the interaction of nuclear radiation with matter including positronium chemistry and other exotic atoms is elaborated in particular detail. Separate chapters are devoted to the use of radioactive tracers, the chemical consequences of nuclear processes (i.e. hot atom chemistry), radiation chemistry, isotope effects and their applications, and the operation of nuclear reactors. (Auth.)

  17. Carbohydrates in Supramolecular Chemistry.

    Science.gov (United States)

    Delbianco, Martina; Bharate, Priya; Varela-Aramburu, Silvia; Seeberger, Peter H

    2016-02-24

    Carbohydrates are involved in a variety of biological processes. The ability of sugars to form a large number of hydrogen bonds has made them important components for supramolecular chemistry. We discuss recent advances in the use of carbohydrates in supramolecular chemistry and reveal that carbohydrates are useful building blocks for the stabilization of complex architectures. Systems are presented according to the scaffold that supports the glyco-conjugate: organic macrocycles, dendrimers, nanomaterials, and polymers are considered. Glyco-conjugates can form host-guest complexes, and can self-assemble by using carbohydrate-carbohydrate interactions and other weak interactions such as π-π interactions. Finally, complex supramolecular architectures based on carbohydrate-protein interactions are discussed.

  18. Primordial chemistry: an overview

    International Nuclear Information System (INIS)

    Signore, Monique; Puy, Denis

    1999-01-01

    In the standard Big Bang model, the light elements in the cosmos -hydrogen and helium but also deuterium and lithium- were created in the very early Universe. The main problem is to connect what we can actually observe to day with the standard Big Bang nucleosynthesis predictions essentially because of uncertainties in modeling their evolution since the Big Bang. After a brief review of the primordial nucleosynthesis -predictions and observations of the primordial abundances- we present the preliminary studies of the primordial chemistry: molecular formation and evolution in the early Universe

  19. Hail hydrogen

    International Nuclear Information System (INIS)

    Hairston, D.

    1996-01-01

    After years of being scorned and maligned, hydrogen is finding favor in environmental and process applications. There is enormous demand for the industrial gas from petroleum refiners, who need in creasing amounts of hydrogen to remove sulfur and other contaminants from crude oil. In pulp and paper mills, hydrogen is turning up as hydrogen peroxide, displacing bleaching agents based on chlorine. Now, new technologies for making hydrogen have the industry abuzz. With better capabilities of being generated onsite at higher purity levels, recycled and reused, hydrogen is being prepped for a range of applications, from waste reduction to purification of Nylon 6 and hydrogenation of specialty chemicals. The paper discusses the strong market demand for hydrogen, easier routes being developed for hydrogen production, and the use of hydrogen in the future

  20. Materials Chemistry

    CERN Document Server

    Fahlman, Bradley D

    2011-01-01

    The 2nd edition of Materials Chemistry builds on the strengths that were recognized by a 2008 Textbook Excellence Award from the Text and Academic Authors Association (TAA). Materials Chemistry addresses inorganic-, organic-, and nano-based materials from a structure vs. property treatment, providing a suitable breadth and depth coverage of the rapidly evolving materials field. The 2nd edition continues to offer innovative coverage and practical perspective throughout. After briefly defining materials chemistry and its history, seven chapters discuss solid-state chemistry, metals, semiconducting materials, organic "soft" materials, nanomaterials, and materials characterization. All chapters have been thoroughly updated and expanded with, for example, new sections on ‘soft lithographic’ patterning, ‘click chemistry’ polymerization, nanotoxicity, graphene, as well as many biomaterials applications. The polymer and ‘soft’ materials chapter represents the largest expansion for the 2nd edition. Each ch...

  1. Analytical chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jae Seong

    1993-02-15

    This book is comprised of nineteen chapters, which describes introduction of analytical chemistry, experimental error and statistics, chemistry equilibrium and solubility, gravimetric analysis with mechanism of precipitation, range and calculation of the result, volume analysis on general principle, sedimentation method on types and titration curve, acid base balance, acid base titration curve, complex and firing reaction, introduction of chemical electro analysis, acid-base titration curve, electrode and potentiometry, electrolysis and conductometry, voltammetry and polarographic spectrophotometry, atomic spectrometry, solvent extraction, chromatograph and experiments.

  2. Analytical chemistry

    International Nuclear Information System (INIS)

    Choi, Jae Seong

    1993-02-01

    This book is comprised of nineteen chapters, which describes introduction of analytical chemistry, experimental error and statistics, chemistry equilibrium and solubility, gravimetric analysis with mechanism of precipitation, range and calculation of the result, volume analysis on general principle, sedimentation method on types and titration curve, acid base balance, acid base titration curve, complex and firing reaction, introduction of chemical electro analysis, acid-base titration curve, electrode and potentiometry, electrolysis and conductometry, voltammetry and polarographic spectrophotometry, atomic spectrometry, solvent extraction, chromatograph and experiments.

  3. Analytical chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Myeong Hu; Lee, Hu Jun; Kim, Ha Seok

    1989-02-15

    This book give explanations on analytical chemistry with ten chapters, which deal with development of analytical chemistry, the theory of error with definition and classification, sample and treatment gravimetry on general process of gravimetry in aqueous solution and non-aqueous solution, precipitation titration about precipitation reaction and types, complexometry with summary and complex compound, oxidation-reduction equilibrium on electrode potential and potentiometric titration, solvent extraction and chromatograph and experiment with basic operation for chemical experiment.

  4. Analytical chemistry

    International Nuclear Information System (INIS)

    Chae, Myeong Hu; Lee, Hu Jun; Kim, Ha Seok

    1989-02-01

    This book give explanations on analytical chemistry with ten chapters, which deal with development of analytical chemistry, the theory of error with definition and classification, sample and treatment gravimetry on general process of gravimetry in aqueous solution and non-aqueous solution, precipitation titration about precipitation reaction and types, complexometry with summary and complex compound, oxidation-reduction equilibrium on electrode potential and potentiometric titration, solvent extraction and chromatograph and experiment with basic operation for chemical experiment.

  5. Green Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Collison, Melanie

    2011-05-15

    Green chemistry is the science of chemistry used in a way that will not use or create hazardous substances. Dr. Rui Resendes is working in this field at GreenCentre Canada, an offshoot of PARTEQ Innovations in Kingston, Ontario. GreenCentre's preliminary findings suggest their licensed product {sup S}witchable Solutions{sup ,} featuring 3 classes of solvents and a surfactant, may be useful in bitumen oil sands extraction.

  6. Hydrogen detector

    International Nuclear Information System (INIS)

    Kumagaya, Hiromichi; Yoshida, Kazuo; Sanada, Kazuo; Chigira, Sadao.

    1994-01-01

    The present invention concerns a hydrogen detector for detecting water-sodium reaction. The hydrogen detector comprises a sensor portion having coiled optical fibers and detects hydrogen on the basis of the increase of light transmission loss upon hydrogen absorption. In the hydrogen detector, optical fibers are wound around and welded to the outer circumference of a quartz rod, as well as the thickness of the clad layer of the optical fiber is reduced by etching. With such procedures, size of the hydrogen detecting sensor portion can be decreased easily. Further, since it can be used at high temperature, diffusion rate is improved to shorten the detection time. (N.H.)

  7. Progress report, Chemistry and Materials Division, April 1 to June 30, 1978

    International Nuclear Information System (INIS)

    1978-07-01

    Provisional research results are reported in the general areas of ion beam-radiation interactions with metals, radiation chemistry, hydrogen isotope exchange, analytical chemistry, and zirconium alloy properties. (E.C.B.)

  8. Progress report, Chemistry and Materials Division, October 1 to December 31, 1977

    International Nuclear Information System (INIS)

    1978-01-01

    Research results are reported on the interaction of ion beams with solids, radiation chemistry, hydrogen isotope exchange, surface science, analytical chemistry, and properties of zirconium and its alloys. (E.C.B.)

  9. Hydrogen economy and polymer membranes

    Czech Academy of Sciences Publication Activity Database

    Pientka, Zbyněk; Schauer, Jan

    2010-01-01

    Roč. 295, č. 1 (2010), s. 23-29 ISSN 1022-1360 R&D Projects: GA ČR GA104/09/1165; GA ČR GA203/08/0465 Institutional research plan: CEZ:AV0Z40500505 Keywords : foams * gas permeation * hydrogen Subject RIV: CD - Macromolecular Chemistry

  10. Hydrogen peroxide coordination to cobalt(II) facilitated by second-sphere hydrogen bonding

    Czech Academy of Sciences Publication Activity Database

    Wallen, C.M.; Palatinus, Lukáš; Bacsa, J.; Scarborough, C.C.

    2016-01-01

    Roč. 55, č. 39 (2016), s. 11902-11906 ISSN 0044-8249 Institutional support: RVO:68378271 Keywords : cobalt * hydrogen bonds * peroxides * peroxido ligands * second-sphere interactions Subject RIV: CC - Organic Chemistry

  11. Hydrogen highway

    International Nuclear Information System (INIS)

    Anon

    2008-01-01

    The USA Administration would like to consider the US power generating industry as a basis ensuring both the full-scale production of hydrogen and the widespread use of the hydrogen related technological processes into the economy [ru

  12. Chemistry and cosmology.

    Science.gov (United States)

    Black, John H

    2006-01-01

    The simplest elements, hydrogen and helium, offer a remarkably rich chemistry, which has controlled crucial features of the early evolution of the universe. Theoretical models of the origin of structure (stars, galaxies, clusters of galaxies, etc.) now incorporate this chemistry in some detail. In addition to the origin of structure, cosmologists are concerned with observational tests of competing world models. Primordial chemistry may give rise to some of the earliest departures from thermodynamic equilibrium in the universe. These effects may be observable as broad-band spectroscopic distortions of the cosmic background radiation, which otherwise exhibits a nearly perfect blackbody spectrum. The chemical history of the expanding universe is followed through a detailed calculation of the evolution of the abundances of H, H+, H-, H2, H2+, H3+, and other minor species. It is shown that continuous absorption by the small concentration of H- can produce a distortion in the cosmic background spectrum with a maximum at a frequency near nu/c = 9 cm-1 (wavelength 1.1 mm). The predicted effect lies only a factor of 5 below current limits. Its detection would provide an important test of our understanding of the recombination epoch of the universe.

  13. Radiation chemistry

    International Nuclear Information System (INIS)

    Swallow, A.J.

    1983-01-01

    The subject is covered in chapters, entitled: introduction (defines scope of article as dealing with the chemistry of reactive species, (e.g. excess electrons, excited states, free radicals and inorganic ions in unusual valency states) as studied using radiation with radiation chemistry in its traditional sense and with biological and industrial applications); gases; water and simple inorganic systems; aqueous metallo-organic compounds and metalloproteins; small organic molecules in aqueous solution; microheterogeneous systems; non-aqueous liquids and solutions; solids; biological macromolecules; synthetic polymers. (U.K.)

  14. Indoor Chemistry

    DEFF Research Database (Denmark)

    Weschler, Charles J.; Carslaw, Nicola

    2018-01-01

    This review aims to encapsulate the importance, ubiquity, and complexity of indoor chemistry. We discuss the many sources of indoor air pollutants and summarize their chemical reactions in the air and on surfaces. We also summarize some of the known impacts of human occupants, who act as sources...... and sinks of indoor chemicals, and whose activities (e.g., cooking, cleaning, smoking) can lead to extremely high pollutant concentrations. As we begin to use increasingly sensitive and selective instrumentation indoors, we are learning more about chemistry in this relatively understudied environment....

  15. Organic chemistry in the atmosphere. [laboratory modeling of Titan atmosphere

    Science.gov (United States)

    Sagan, C.

    1974-01-01

    The existence of an at least moderately complex organic chemistry on Titan is stipulated based on clear evidence of methane, and at least presumptive evidence of hydrogen in its atmosphere. The ratio of methane to hydrogen is the highest of any atmosphere in the solar system. Irradiation of hydrogen/methane mixtures produces aromatic and aliphatic hydrocarbons. A very reasonable hypothesis assumes that the red cloud cover of Titan is made of organic chemicals. Two-carbon hydrocarbons experimentally produced from irradiated mixtures of methane, ammonia, water, and hydrogen bear out the possible organic chemistry of the Titanian environment.

  16. Hydrogen economy

    Energy Technology Data Exchange (ETDEWEB)

    Pahwa, P.K.; Pahwa, Gulshan Kumar

    2013-10-01

    In the future, our energy systems will need to be renewable and sustainable, efficient and cost-effective, convenient and safe. Hydrogen has been proposed as the perfect fuel for this future energy system. The availability of a reliable and cost-effective supply, safe and efficient storage, and convenient end use of hydrogen will be essential for a transition to a hydrogen economy. Research is being conducted throughout the world for the development of safe, cost-effective hydrogen production, storage, and end-use technologies that support and foster this transition. This book discusses hydrogen economy vis-a-vis sustainable development. It examines the link between development and energy, prospects of sustainable development, significance of hydrogen energy economy, and provides an authoritative and up-to-date scientific account of hydrogen generation, storage, transportation, and safety.

  17. Handbook of heterocyclic chemistry

    National Research Council Canada - National Science Library

    Katritzky, Alan R

    2010-01-01

    ... Heterocyclic Chemistry I (1984) Comprehensive Heterocyclic Chemistry II (1996) Comprehensive Heterocyclic Chemistry III (2008) Comprehensive Organic Functional Group Transformations I (1995) Compreh...

  18. Reinventing Chemistry

    OpenAIRE

    Whitesides, George McClelland

    2015-01-01

    Chemistry is in a period of change, from an era focused on molecules and reactions, to one in which manipulations of systems of molecules and reactions will be essential parts of controlling larger systems. This Essay traces paths from the past to possible futures.

  19. Hydrogen safety

    International Nuclear Information System (INIS)

    Frazier, W.R.

    1991-01-01

    The NASA experience with hydrogen began in the 1950s when the National Advisory Committee on Aeronautics (NACA) research on rocket fuels was inherited by the newly formed National Aeronautics and Space Administration (NASA). Initial emphasis on the use of hydrogen as a fuel for high-altitude probes, satellites, and aircraft limited the available data on hydrogen hazards to small quantities of hydrogen. NASA began to use hydrogen as the principal liquid propellant for launch vehicles and quickly determined the need for hydrogen safety documentation to support design and operational requirements. The resulting NASA approach to hydrogen safety requires a joint effort by design and safety engineering to address hydrogen hazards and develop procedures for safe operation of equipment and facilities. NASA also determined the need for rigorous training and certification programs for personnel involved with hydrogen use. NASA's current use of hydrogen is mainly for large heavy-lift vehicle propulsion, which necessitates storage of large quantities for fueling space shots and for testing. Future use will involve new applications such as thermal imaging

  20. Surface Chemistry and Spectroscopy of Chromium in Inorganic Oxides

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Wachs, I.E.; Schoonheydt, R.A.

    1996-01-01

    Focuses on the surface chemistry and spectroscopy of chromium in inorganic oxides. Characterization of the molecular structures of chromium; Mechanics of hydrogenation-dehydrogenation reactions; Mobility and reactivity on oxidic surfaces.

  1. Presidential Green Chemistry Challenge: 1998 Greener Synthetic Pathways Award

    Science.gov (United States)

    Presidential Green Chemistry Challenge 1998 award winner, Flexsys America, developed nucleophilic aromatic substitution for hydrogen to eliminate waste from a common reaction and to produce 4-ADPA, a high-volume chemical.

  2. Presidential Green Chemistry Challenge: 2010 Greener Synthetic Pathways Award

    Science.gov (United States)

    Presidential Green Chemistry Challenge 2010 award winners, Dow and BASF, jointly developed a route to make propylene oxide from hydrogen peroxide that eliminates almost all waste and greatly reduces water and energy use.

  3. Presidential Green Chemistry Challenge: 2003 Greener Synthetic Pathways Award

    Science.gov (United States)

    Presidential Green Chemistry Challenge 2003 winner, Sud-Chemie, developed a synthesis for solid oxide catalysts used to make hydrogen and clean fuels. The process creates little wastewater, no nitrates, and no or little NOx.

  4. Hydrogen Embrittlement

    Science.gov (United States)

    Woods, Stephen; Lee, Jonathan A.

    2016-01-01

    Hydrogen embrittlement (HE) is a process resulting in a decrease in the fracture toughness or ductility of a metal due to the presence of atomic hydrogen. In addition to pure hydrogen gas as a direct source for the absorption of atomic hydrogen, the damaging effect can manifest itself from other hydrogen-containing gas species such as hydrogen sulfide (H2S), hydrogen chloride (HCl), and hydrogen bromide (HBr) environments. It has been known that H2S environment may result in a much more severe condition of embrittlement than pure hydrogen gas (H2) for certain types of alloys at similar conditions of stress and gas pressure. The reduction of fracture loads can occur at levels well below the yield strength of the material. Hydrogen embrittlement is usually manifest in terms of singular sharp cracks, in contrast to the extensive branching observed for stress corrosion cracking. The initial crack openings and the local deformation associated with crack propagation may be so small that they are difficult to detect except in special nondestructive examinations. Cracks due to HE can grow rapidly with little macroscopic evidence of mechanical deformation in materials that are normally quite ductile. This Technical Memorandum presents a comprehensive review of experimental data for the effects of gaseous Hydrogen Environment Embrittlement (HEE) for several types of metallic materials. Common material screening methods are used to rate the hydrogen degradation of mechanical properties that occur while the material is under an applied stress and exposed to gaseous hydrogen as compared to air or helium, under slow strain rates (SSR) testing. Due to the simplicity and accelerated nature of these tests, the results expressed in terms of HEE index are not intended to necessarily represent true hydrogen service environment for long-term exposure, but rather to provide a practical approach for material screening, which is a useful concept to qualitatively evaluate the severity of

  5. Chemistry and physics

    International Nuclear Information System (INIS)

    Broerse, J.J.; Barendsen, G.W.; Kal, H.B.; Kogel, A.J. van der

    1983-01-01

    This book contains the extended abstracts of the contributions of the poster workshop sessions on chemistry and physics of the 7th international congress of radiation research. They cover the following main topics: primary processes in radiation physics and chemistry, general chemistry in radiation chemistry, DNA and model systems in radiation chemistry, molecules of biological interest in radiation chemistry, techniques in radiation chemistry, hot atom chemistry. refs.; figs.; tabs

  6. Fine chemistry

    International Nuclear Information System (INIS)

    Laszlo, P.

    1988-01-01

    The 1988 progress report of the Fine Chemistry laboratory (Polytechnic School, France) is presented. The research programs are centered on the renewal of the organic chemistry most important reactions and on the invention of new, highly efficient and highly selective reactions, by applying low cost reagents and solvents. An important research domain concerns the study and fabrication of new catalysts. They are obtained by means of the reactive sputtering of the metals and metal oxydes thin films. The Monte Carlo simulations of the long-range electrostatic interaction in a clay and the obtention of acrylamides from anhydrous or acrylic ester are summarized. Moreover, the results obtained in the field of catalysis are also given. The published papers and the congress communications are included [fr

  7. Hydrogen millennium

    International Nuclear Information System (INIS)

    Bose, T.K.; Benard, P.

    2000-05-01

    The 10th Canadian Hydrogen Conference was held at the Hilton Hotel in Quebec City from May 28 to May 31, 2000. The topics discussed included current drivers for the hydrogen economy, the international response to these drivers, new initiatives, sustainable as well as biological and hydrocarbon-derived production of hydrogen, defense applications of fuel cells, hydrogen storage on metal hydrides and carbon nanostructures, stationary power and remote application, micro-fuel cells and portable applications, marketing aspects, fuel cell modeling, materials, safety, fuel cell vehicles and residential applications. (author)

  8. Radioanalytical chemistry

    International Nuclear Information System (INIS)

    1982-01-01

    The bibliography of Hungarian literature in the field of radioanalytical chemistry covers the four-year period 1976-1979. The list of papers contains 290 references in the alphabetical order of the first authors. The majority of the titles belongs to neutron activation analysis, labelling, separation and determination of radioactive isotopes. Other important fields like radioimmunoassay, environmental protection etc. are covered as well. (Sz.J.)

  9. Analytical chemistry

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The division for Analytical Chemistry continued to try and develope an accurate method for the separation of trace amounts from mixtures which, contain various other elements. Ion exchange chromatography is of special importance in this regard. New separation techniques were tried on certain trace amounts in South African standard rock materials and special ceramics. Methods were also tested for the separation of carrier-free radioisotopes from irradiated cyclotron discs

  10. Industrial chemistry engineering

    International Nuclear Information System (INIS)

    1993-01-01

    This book on industrial chemistry engineering is divided in two parts. The first part deals with industrial chemistry, inorganic industrial chemistry, organic industrial chemistry, analytical chemistry and practical questions. The last parts explain the chemical industry, a unit parts and thermodynamics in chemical industry and reference. It reveals the test subjects for the industrial chemistry engineering with a written examination and practical skill.

  11. Computational chemistry

    Science.gov (United States)

    Arnold, J. O.

    1987-01-01

    With the advent of supercomputers, modern computational chemistry algorithms and codes, a powerful tool was created to help fill NASA's continuing need for information on the properties of matter in hostile or unusual environments. Computational resources provided under the National Aerodynamics Simulator (NAS) program were a cornerstone for recent advancements in this field. Properties of gases, materials, and their interactions can be determined from solutions of the governing equations. In the case of gases, for example, radiative transition probabilites per particle, bond-dissociation energies, and rates of simple chemical reactions can be determined computationally as reliably as from experiment. The data are proving to be quite valuable in providing inputs to real-gas flow simulation codes used to compute aerothermodynamic loads on NASA's aeroassist orbital transfer vehicles and a host of problems related to the National Aerospace Plane Program. Although more approximate, similar solutions can be obtained for ensembles of atoms simulating small particles of materials with and without the presence of gases. Computational chemistry has application in studying catalysis, properties of polymers, all of interest to various NASA missions, including those previously mentioned. In addition to discussing these applications of computational chemistry within NASA, the governing equations and the need for supercomputers for their solution is outlined.

  12. Green chemistry

    International Nuclear Information System (INIS)

    Warner, John C.; Cannon, Amy S.; Dye, Kevin M.

    2004-01-01

    A grand challenge facing government, industry, and academia in the relationship of our technological society to the environment is reinventing the use of materials. To address this challenge, collaboration from an interdisciplinary group of stakeholders will be necessary. Traditionally, the approach to risk management of materials and chemicals has been through inerventions intended to reduce exposure to materials that are hazardous to health and the environment. In 1990, the Pollution Prevention Act encouraged a new tact-elimination of hazards at the source. An emerging approach to this grand challenge seeks to embed the diverse set of environmental perspectives and interests in the everyday practice of the people most responsible for using and creating new materials--chemists. The approach, which has come to be known as Green Chemistry, intends to eliminate intrinsic hazard itself, rather than focusing on reducing risk by minimizing exposure. This chapter addresses the representation of downstream environmental stakeholder interests in the upstream everyday practice that is reinventing chemistry and its material inputs, products, and waste as described in the '12 Principles of Green Chemistry'

  13. Hydrogen exchange

    DEFF Research Database (Denmark)

    Jensen, Pernille Foged; Rand, Kasper Dyrberg

    2016-01-01

    Hydrogen exchange (HX) monitored by mass spectrometry (MS) is a powerful analytical method for investigation of protein conformation and dynamics. HX-MS monitors isotopic exchange of hydrogen in protein backbone amides and thus serves as a sensitive method for probing protein conformation...... and dynamics along the entire protein backbone. This chapter describes the exchange of backbone amide hydrogen which is highly quenchable as it is strongly dependent on the pH and temperature. The HX rates of backbone amide hydrogen are sensitive and very useful probes of protein conformation......, as they are distributed along the polypeptide backbone and form the fundamental hydrogen-bonding networks of basic secondary structure. The effect of pressure on HX in unstructured polypeptides (poly-dl-lysine and oxidatively unfolded ribonuclease A) and native folded proteins (lysozyme and ribonuclease A) was evaluated...

  14. Theoretical chemistry periodicities in chemistry and biology

    CERN Document Server

    Eyring, Henry

    1978-01-01

    Theoretical Chemistry: Periodicities in Chemistry and Biology, Volume 4 covers the aspects of theoretical chemistry. The book discusses the stably rotating patterns of reaction and diffusion; the chemistry of inorganic systems exhibiting nonmonotonic behavior; and population cycles. The text also describes the mathematical modeling of excitable media in neurobiology and chemistry; oscillating enzyme reactions; and oscillatory properties and excitability of the heart cell membrane. Selected topics from the theory of physico-chemical instabilities are also encompassed. Chemists, mechanical engin

  15. Importance of nuclear power for chemistry

    International Nuclear Information System (INIS)

    Kolotyrkin, J.

    1982-01-01

    Examples are given of the use of ionizing radiations in nuclear chemistry, in radiation cross-linking of polymers. The possibilities are also indicated of applications in the disinfection of wastes, in fertilizer production and packaging, in the production of cellulose and hydrogen. The implementation of the said technologies depends on the solution of a number organizational problems. (J.B.)

  16. Solution chemistry

    Energy Technology Data Exchange (ETDEWEB)

    None

    1973-07-01

    Research progress is reported on studies in heavy element chemistry. Topics considered are: synergistic complexes of plutonyl ion; water uptake in synergistic systems; formation constants of some uranyl BETA -diketone complexes; thermodynamic acid dissociation constants of BETA -diketones; thermodynamic formation constants of uranyl BETA -diketonates; thiocyanate complexes of some trivalent lanthanides and actinides; stability constants of actinide complexes using dinonyl naphthalenesulfonic acid extraction; TBP extraction of actinides; stability constants of complexes of Pu(III) with 5- sulfosalicycllc acid; and solvent extraction behavior of Pu( VII). (DHM)

  17. Specific processes and scrambling in the dehydrogenation of ethane and the degenerate hydrogen exchange in the gas-phase ion chemistry of the Ni(C,H3,O)+/C2H6 couple

    Czech Academy of Sciences Publication Activity Database

    Schlangen, M.; Schwarz, H.; Schröder, Detlef

    2007-01-01

    Roč. 90, č. 5 (2007), s. 847-853 ISSN 0018-019X Institutional research plan: CEZ:AV0Z40550506 Keywords : alkoxides * C-H activation * gas-phase investigations * mass spectrometry * nicel Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.515, year: 2007

  18. Radiation chemistry and bioradical chemistry

    International Nuclear Information System (INIS)

    Ferradini, C.

    1991-01-01

    Oxygen metabolism results, at the cellular level, in the formation of superoxyde radical O 2 - · and probably also of hydroxyl radical OH·. Other radical species can be produced from exogenous or endogenous molecules and nearly all of them have the possibility to react with oxygen giving peroxyradicals. Some of these transients play a role in various biological processes such as phagocytosis, inflammation or ischemy although the mechanisms invoked are poorly understood. Radiation chemistry is an invaluable tool for obtaining a quantitative view of these mechanisms. A description is given of this interaction [fr

  19. Hydrogen-oxygen fuel cells

    Czech Academy of Sciences Publication Activity Database

    Vondrák, Jiří; Klápště, Břetislav; Velická, Jana; Sedlaříková, M.; Černý, R.

    2003-01-01

    Roč. 8, č. 1 (2003), s. 44-47 ISSN 1432-8488 R&D Projects: GA ČR GA203/02/0983; GA AV ČR IAA4032002 Institutional research plan: CEZ:AV0Z4032918 Keywords : electrocatalysis * hydrogen electrode Ionex membrane * membrane fuel cell Subject RIV: CA - Inorganic Chemistry Impact factor: 1.195, year: 2003

  20. Kinetics of Dicyclopentadiene Hydrogenation Using PD/C Catalyst

    Czech Academy of Sciences Publication Activity Database

    Skála, D.; Hanika, Jiří

    2003-01-01

    Roč. 45, 3-4 (2003), s. 105-108 ISSN 1335-3055 Institutional research plan: CEZ:AV0Z4072921 Keywords : hydrogenation * dicyclopentadiene * kinetics Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  1. Is Hydrogen Cyanide a Marker of Burkholderia cepacia Complex?

    Czech Academy of Sciences Publication Activity Database

    Gilchrist, F. J.; Sims, H.; Alcock, A.; Jones, A.M.; Bright-Thomas, R. J.; Smith, D.; Španěl, Patrik; Webb, A. K.; Lenney, W.

    2013-01-01

    Roč. 51, č. 11 (2013), s. 3849-3851 ISSN 0095-1137 Institutional support: RVO:61388955 Keywords : acetone * alcohol * hydrogen cyanide Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.232, year: 2013

  2. Fundamentals of nuclear chemistry

    International Nuclear Information System (INIS)

    Majer, K.

    1982-01-01

    The textbook is a Czech-to-German translation of the second revised edition and covers the subject under the headings: general nuclear chemistry, methods of nuclear chemistry, preparative nuclear chemistry, analytical nuclear chemistry, and applied chemistry. The book is especially directed to students

  3. Improving chemistry performance in CANDU plants

    International Nuclear Information System (INIS)

    Turner, C.; Guzonas, D.

    2010-01-01

    There is a strong interplay between coolant chemistry and materials selection in any nuclear power plant system. To achieve the design life of reactor components it is necessary to monitor and control relevant chemistry parameters, such as ionic conductivity, pH, concentrations of dissolved ions and redox species (e.g., hydrogen, hydrazine, oxygen) and the concentrations of suspended corrosion products. Chemistry specifications are set to achieve a balance between the sometimes conflicting requirements to minimize corrosion and radiological dose and to minimize operating and maintenance costs over the lifetime of the plant. For the past decade, Atomic Energy of Canada Limited (AECL) has taken a rigorous and disciplined approach to reviewing and updating all aspects of chemistry control in the CANDU® nuclear power plant (NPP). This approach has included proactively reviewing chemistry operating experience from existing CANDU® and other water-cooled NPPs worldwide to identify and address emerging issues, updating all of our chemistry control documentation to ensure that each chemistry parameter is linked to a specific requirement (e.g., reduce activity transport, monitor for condenser leak) and incorporating the latest results from our Research and Development (R and D) programs to ensure that all chemistry specifications are supported by a sound rationale. The results of this review and update have been incorporated into updated chemistry specifications and, in some cases, modified operating procedures for new and existing plants. In addition, recommendations have been made for design modifications to improve chemistry control in new build plants, especially during periods of shutdown and startup when chemistry control has traditionally been more challenging. Chemistry control in new-build CANDU® plants will rely increasingly on the use of on-line instrumentation interfaced directly to AECL's state-of-the-art chemistry monitoring, diagnostics and analysis

  4. Progress report, Chemistry and Materials Division, April 1 to June 30, 1977

    International Nuclear Information System (INIS)

    1977-07-01

    Research results are reported in such areas as ion penetration, electron microscopy, metal physics and radiation damage, nuclear methods of analysis, fuel analysis, and general analytical chemistry, electrochemistry, radiation chemistry, hydrogen-deuterium exchange, and surface chemistry of nuclear materials like zirconium base alloys. (E.C.B.)

  5. Hydrogen in metals

    International Nuclear Information System (INIS)

    1986-01-01

    The report briefly describes the results of the single projects promoted by the German Council of Research (DFG). The subjects deal with diffusion, effusion, permeation and solubility of hydrogen in metals. They are interesting for many disciplines: metallurgy, physical metallurgy, metal physics, materials testing, welding engineering, chemistry, nuclear physics and solid-state physics. The research projects deal with the following interrelated subjects: solubility of H 2 in steel and effects on embrittlement, influence of H 2 on the fatigue strength of steel as well as the effect of H 2 on welded joints. The studies in solid-state research can be divided into methodological and physico-chemical studies. The methodological studies mainly comprise investigations on the analytical determination of H 2 by means of nuclear-physical reactions (e.g. the 15 N method) and the application of the Moessbauer spectroscopy. Physico-chemical problems are mainly dealt with in studies on interfacial reactions in connection with the absorption of hydrogen and on the diffusion of H 2 in different alloy systems. The properties of materials used for hydrogen storage were the subject of several research projects. 20 contributions were separately recorded for the data bank 'Energy'. (MM) [de

  6. Cyclodextrin chemistry

    International Nuclear Information System (INIS)

    Khan, M.Z.; Chuaqui, C.A.

    1990-05-01

    The chemistry of cyclodextrins was studied. This study included synthesising some cyclodextrin derivatives, preparing selected inclusion complexes with cyclodextrin and investigating the effects of gamma irradiation on cyclodextrins and certain linear oligosaccharides. This report presents a brief review of the structure and properties of cyclodextrins, the synthesis of cyclodextrin derivatives, their complexation and applications. This is followed by a description of the synthesis of some cyclodextrin derivatives and the preparation of inclusion complexes of cyclodextrin with some organic compounds. Finally, the effects of gamma irradiation on cyclodextrins, some of their derivatives and certain structurally related carbohydrates are discussed. The gamma irradiation studies were carried out for two reasons: to study the effects of gamma irradiation on cyclodextrins and their derivatives; and to investigate selectivity during the gamma irradiation of cyclodextrin derivatives

  7. Astronomical chemistry.

    Science.gov (United States)

    Klemperer, William

    2011-01-01

    The discovery of polar polyatomic molecules in higher-density regions of the interstellar medium by means of their rotational emission detected by radioastronomy has changed our conception of the universe from essentially atomic to highly molecular. We discuss models for molecule formation, emphasizing the general lack of thermodynamic equilibrium. Detailed chemical kinetics is needed to understand molecule formation as well as destruction. Ion molecule reactions appear to be an important class for the generally low temperatures of the interstellar medium. The need for the intrinsically high-quality factor of rotational transitions to definitively pin down molecular emitters has been well established by radioastronomy. The observation of abundant molecular ions both positive and, as recently observed, negative provides benchmarks for chemical kinetic schemes. Of considerable importance in guiding our understanding of astronomical chemistry is the fact that the larger molecules (with more than five atoms) are all organic.

  8. Reburning chemistry

    International Nuclear Information System (INIS)

    Kilpin, P.; Hupa, M.; Glarborg, P.

    1992-01-01

    No reduction chemistry in natural gas (methane) reburning was studied using detailed kinetic modeling. A reaction set including 225 reversible elementary gas-phase reactions and 48 chemical species was applied to an ideal plug flow reactor, and the most important reactions leading to NO reduction were identified and quantified for a number of conditions relevant for natural gas reburning. In addition, the influence of different process parameters on the NO reduction was investigated in the reburn zone and burn-out zone, respectively. Further, comparison of the calculations to available laboratory-scale data on reburning is made. In this paper, the impact of various fluid dynamic, mixing, and chemical effects---not accounted for in the calculations---on the NO reduction and the optimum reburning conditions predicted is discussed

  9. Combustion chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N.J. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    This research is concerned with the development and use of sensitivity analysis tools to probe the response of dependent variables to model input variables. Sensitivity analysis is important at all levels of combustion modeling. This group`s research continues to be focused on elucidating the interrelationship between features in the underlying potential energy surface (obtained from ab initio quantum chemistry calculations) and their responses in the quantum dynamics, e.g., reactive transition probabilities, cross sections, and thermal rate coefficients. The goals of this research are: (i) to provide feedback information to quantum chemists in their potential surface refinement efforts, and (ii) to gain a better understanding of how various regions in the potential influence the dynamics. These investigations are carried out with the methodology of quantum functional sensitivity analysis (QFSA).

  10. Questioning hydrogen

    International Nuclear Information System (INIS)

    Hammerschlag, Roel; Mazza, Patrick

    2005-01-01

    As an energy carrier, hydrogen is to be compared to electricity, the only widespread and viable alternative. When hydrogen is used to transmit renewable electricity, only 51% can reach the end user due to losses in electrolysis, hydrogen compression, and the fuel cell. In contrast, conventional electric storage technologies allow between 75% and 85% of the original electricity to be delivered. Even when hydrogen is extracted from gasified coal (with carbon sequestration) or from water cracked in high-temperature nuclear reactors, more of the primary energy reaches the end user if a conventional electric process is used instead. Hydrogen performs no better in mobile applications, where electric vehicles that are far closer to commercialization exceed fuel cell vehicles in efficiency, cost and performance. New, carbon-neutral energy can prevent twice the quantity of GHG's by displacing fossil electricity than it can by powering fuel cell vehicles. The same is true for new, natural gas energy. New energy resources should be used to displace high-GHG electric generation, not to manufacture hydrogen

  11. Hydrogen Outgassing from Lithium Hydride

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, L N; Schildbach, M A; Smith, R A; Balazs1, B; McLean II, W

    2006-04-20

    Lithium hydride is a nuclear material with a great affinity for moisture. As a result of exposure to water vapor during machining, transportation, storage and assembly, a corrosion layer (oxide and/or hydroxide) always forms on the surface of lithium hydride resulting in the release of hydrogen gas. Thermodynamically, lithium hydride, lithium oxide and lithium hydroxide are all stable. However, lithium hydroxides formed near the lithium hydride substrate (interface hydroxide) and near the sample/vacuum interface (surface hydroxide) are much less thermally stable than their bulk counterpart. In a dry environment, the interface/surface hydroxides slowly degenerate over many years/decades at room temperature into lithium oxide, releasing water vapor and ultimately hydrogen gas through reaction of the water vapor with the lithium hydride substrate. This outgassing can potentially cause metal hydriding and/or compatibility issues elsewhere in the device. In this chapter, the morphology and the chemistry of the corrosion layer grown on lithium hydride (and in some cases, its isotopic cousin, lithium deuteride) as a result of exposure to moisture are investigated. The hydrogen outgassing processes associated with the formation and subsequent degeneration of this corrosion layer are described. Experimental techniques to measure the hydrogen outgassing kinetics from lithium hydride and methods employing the measured kinetics to predict hydrogen outgassing as a function of time and temperature are presented. Finally, practical procedures to mitigate the problem of hydrogen outgassing from lithium hydride are discussed.

  12. Why Teach Environmental Chemistry?

    Science.gov (United States)

    Gardner, Marjorie H.

    1974-01-01

    Discusses the importance of teaching environmental chemistry in secondary school science classes, and outlines five examples of environmental chemistry problems that focus on major concepts of chemistry and have critical implications for human survival and well-being. (JR)

  13. Progress report chemistry and materials division 1984 January 1 - June 30

    International Nuclear Information System (INIS)

    1984-08-01

    During the first half of 1984 work in the Chemistry and Materials Division of Chalk River Nuclear Laboratories concentrated on studies of ion penetration phenomena, surface phenomena, radiation damage, radiochemical analysis, recycle fuel analysis, gamma spectrometry, mass spectrometry of fuels and moderators, analysis of hydrogen in zirconium alloys, burnup analysis, radiolysis, hydrogen isotope separation, hydrogen adsorption, zirconium corrosion, and metal physics studies of zirconium

  14. Environmental chemistry. Seventh edition

    Energy Technology Data Exchange (ETDEWEB)

    Manahan, S.E. [Univ. of Missouri, Columbia, MO (United States)

    1999-11-01

    This book presents a basic understanding of environmental chemistry and its applications. In addition to providing updated materials in this field, the book emphasizes the major concepts essential to the practice of environmental chemistry. Topics of discussion include the following: toxicological chemistry; toxicological chemistry of chemical substances; chemical analysis of water and wastewater; chemical analysis of wastes and solids; air and gas analysis; chemical analysis of biological materials and xenobiotics; fundamentals of chemistry; and fundamentals of organic chemistry.

  15. In situ measurement of corrosion of type 316L stainless steel in 553 K pure water via the electrical resistance of a thin wire

    International Nuclear Information System (INIS)

    Ishida, Kazushige; Lister, Derek

    2012-01-01

    A system for the in situ monitoring of corrosion depth via electrical resistance measurements was applied to study the corrosion rate of type 316L stainless steel at 553 K in pure water. Corrosion depth was measured using a 50 μm diameter wire probe mounted axially in the tube. Measurements were in good agreement with literature data for both the hydrogen water chemistry (HWC) condition and the normal water chemistry (NWC) condition. Oxide film analyses by scanning electron microscopy and laser Raman spectroscopy on the wire probe and the tube showed no effects from shape of the test specimens or the application of electric current. Corrosion kinetics was evaluated by fitting equations to the measurements. Data for the HWC condition could be fitted by a two-step logarithmic-parabolic law. A single-step logarithmic law fitted data for the NWC condition. Changes in corrosion rate by the water chemistry changes were readily detected with the technique. Corrosion depth change could be observed for the water chemistry change from the NWC condition to the HWC condition with electrochemical corrosion potential (ECP) of -0.56 V vs. standard hydrogen electrode, which is lower than the ECP that the phase of iron oxide changes from α-Fe 2 O 3 to Fe 3 O 4 . (author)

  16. USSR Report Chemistry

    National Research Council Canada - National Science Library

    1986-01-01

    Contents: Adsorption, Chemistry,Alkaloids, Analytical Chemistry, Catalysis,Chemical Industry,,Coal Gasification, Combustion, Electrochemistry,Explosives and Explosions, Fertilizers, Free Radicals, Inorganic...

  17. Effects of ion concentration on the hydrogen bonded structure of ...

    Indian Academy of Sciences (India)

    WINTEC

    Effects of ion concentration on the hydrogen bonded structure of water in the vicinity of ions in aqueous NaCl solutions. A NAG. 1. , D CHAKRABORTY and A CHANDRA*. Department of Chemistry, Indian Institute of Technology, Kanpur 208 016. 1. Present address: Department of Chemistry and Chemical Engineering,.

  18. Hydrogen program overview

    Energy Technology Data Exchange (ETDEWEB)

    Gronich, S. [Dept. of Energy, Washington, DC (United States). Office of Utility Technologies

    1997-12-31

    This paper consists of viewgraphs which summarize the following: Hydrogen program structure; Goals for hydrogen production research; Goals for hydrogen storage and utilization research; Technology validation; DOE technology validation activities supporting hydrogen pathways; Near-term opportunities for hydrogen; Market for hydrogen; and List of solicitation awards. It is concluded that a full transition toward a hydrogen economy can begin in the next decade.

  19. Water chemistry

    International Nuclear Information System (INIS)

    Hofstetter, K.J.; Baston, V.F.

    1986-01-01

    Prior to the accident, the coolants in the primary and secondary systems were within normal chemistry specifications for an operating pressurized water reactor with once-through steam generators. During and immediately after the accident, additional boric acid and sodium hydroxide were added to the primary coolant for control of criticality and radioiodine solubility. A primary to secondary leak developed contaminating the water in one steam generator. For about 5 years after the accident, the primary coolant was maintained at 3800 +. 100 ppm boron and 1000 +. 100 ppm sodium concentrations. Dissolved oxygen was maintained 7.5, corrosion caused by increased dissolved oxygen levels (up to 8 ppm) and higher chloride ion content (up to 5 ppm) is minimized. Chemical control of dissolved oxygen was discontinued and the coolant was processed. Prior to removal of the reactor vessel head, the boron concentration in the coolant was increased to ≅ 5000 ppm to support future defueling operations. Decontamination of the accident generated water is described in terms of contaminated water management. In addition, the decontamination and chemical lay-up conditions for the secondary system are presented along with an overview of chemical management at TMI-2

  20. Migration chemistry

    International Nuclear Information System (INIS)

    Carlsen, L.

    1992-05-01

    Migration chemistry, the influence of chemical -, biochemical - and physico-chemical reactions on the migration behaviour of pollutants in the environment, is an interplay between the actual natur of the pollutant and the characteristics of the environment, such as pH, redox conditions and organic matter content. The wide selection of possible pollutants in combination with varying geological media, as well as the operation of different chemical -, biochemical - and physico-chemical reactions compleactes the prediction of the influence of these processes on the mobility of pollutants. The report summarizes a wide range of potential pollutants in the terrestrial environment as well as a variety of chemical -, biochemical - and physico-chemical reactions, which can be expected to influence the migration behaviour, comprising diffusion, dispersion, convection, sorption/desorption, precipitation/dissolution, transformations/degradations, biochemical reactions and complex formation. The latter comprises the complexation of metal ions as well as non-polar organics to naturally occurring organic macromolecules. The influence of the single types of processes on the migration process is elucidated based on theoretical studies. The influence of chemical -, biochemical - and physico-chemical reactions on the migration behaviour is unambiguous, as the processes apparently control the transport of pollutants in the terrestrial environment. As the simple, conventional K D concept breaks down, it is suggested that the migration process should be described in terms of the alternative concepts chemical dispersion, average-elution-time and effective retention. (AB) (134 refs.)

  1. Hydrogen Bonding With a Hydrogen Bond: The CH4•••H2O Dimer ...

    Indian Academy of Sciences (India)

    X-H•••C hydrogen bonds in n-alkane-HX (X = F, OH) complexes are stronger than C-H•••X hydrogen bonds. R Parajuli* and E Arunan**. *Department of Physics, Amrit Campus, Tribhuvan University, Kathmandu, Nepal. **Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bengaluru 560012, India.

  2. How green are the hydrogen production processes?

    International Nuclear Information System (INIS)

    Miele, Ph.; Demirci, U.B.

    2010-01-01

    Molecular hydrogen is recognised as being one of the most promising fuels alternate to fossil fuels. Unfortunately it only exists combined with other elements like e.g. oxygen in the case of water and therefore has to be produced. Today various methods for producing molecular hydrogen are being investigated. Besides its energy potential, molecular hydrogen is regarded as being a green energy carrier because it can be produced from renewable sources and its combustion/oxidation generates water. However as it has to be produced its greenness merits a deeper discussion especially stressing on its production routes. The goal of the present article is to discuss the relative greenness of the various hydrogen production processes on the basis of the twelve principles of green chemistry. It is mainly showed that the combination 'renewable raw materials, biological or electrochemical methods, and renewable energies (e.g. solar or wind)' undeniably makes the hydrogen production green. (authors)

  3. Progress report, Chemistry and Materials Division, 1 April to 30 June, 1979

    International Nuclear Information System (INIS)

    1979-07-01

    Research results are reported by groups investigating ion penetration, nuclear methods of analysis, accelerator operation, general analytical chemistry, radoactivity measurement, deuterium analysis, electrochemistry, mass spectrometry and fuel analysis, radiation chemistry and laser photochemistry, hydrogen-water exchange, isotope chemistry, surface chemistry, and electron microscopy. Work in an associated laboratory at the University of Toronto on isotopic changes in reaction rates is reported. (L.L.)

  4. Reaction between Hydrogen Sulfide and Limestone Calcines

    Czech Academy of Sciences Publication Activity Database

    Hartman, Miloslav; Svoboda, Karel; Trnka, Otakar; Čermák, Jiří

    2002-01-01

    Roč. 41, č. 10 (2002), s. 2392-2398 ISSN 0888-5885 R&D Projects: GA AV ČR IAA4072711; GA AV ČR IAA4072801 Keywords : hydrogen sulfide * limestone calcines * desulfurization Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.247, year: 2002

  5. Improper, Blue-Shifting Hydrogen Bond

    Czech Academy of Sciences Publication Activity Database

    Hobza, Pavel; Havlas, Zdeněk

    2002-01-01

    Roč. 108, - (2002), s. 325-334 ISSN 1432-881X R&D Projects: GA MŠk LN00A032 Institutional research plan: CEZ:AV0Z4055905; CEZ:AV0Z4040901 Keywords : improper, blue-shifting hydrogen bond * properties * nature Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.421, year: 2002

  6. Electron tunneling in chemistry

    International Nuclear Information System (INIS)

    Zamaraev, K.I.; Khajrutdinov, R.F.; Zhdanov, V.P.; Molin, Yu.N.

    1985-01-01

    Results of experimental and theoretical investigations are outlined systematically on electron tunnelling in chemical reactions. Mechanism of electron transport to great distances is shown to be characteristic to chemical compounds of a wide range. The function of tunnel reactions is discussed for various fields of chemistry, including radiation chemistry, electrochemistry, chemistry of solids, chemistry of surface and catalysis

  7. Importance of the Hydrogen Isocyanide Isomer in Modeling Hydrogen Cyanide Oxidation in Combustion

    DEFF Research Database (Denmark)

    Glarborg, Peter; Marshall, Paul

    2017-01-01

    Hydrogen isocyanide (HNC) has been proposed as an important intermediate in oxidation of hydrogen cyanide (HCN) in combustion, but details of its chemistry are still in discussion. At higher temperatures, HCN and HNC equilibrate rapidly, and being more reactive than HCN, HNC offers a fast alterna...... HNCO is the major consumption path for HCN. Under lean conditions, HNC is shown to be less important than indicated by the early work by Lin and co-workers, but it acts to accelerate HCN oxidation and promotes the formation of HNCO.......Hydrogen isocyanide (HNC) has been proposed as an important intermediate in oxidation of hydrogen cyanide (HCN) in combustion, but details of its chemistry are still in discussion. At higher temperatures, HCN and HNC equilibrate rapidly, and being more reactive than HCN, HNC offers a fast...

  8. Metastable hydrogen

    International Nuclear Information System (INIS)

    Dose, V.

    1982-01-01

    This paper deals with the basic physical properties of the metastable 2 2 sub(1/2) state of atomic hydrogen. Applications relying on its special properties, including measurement of the Lamb shift, production of spin-polarized protons and the measurement of molecular electric moments, are discussed. (author)

  9. Chemistry and propulsion; Chimie et propulsions

    Energy Technology Data Exchange (ETDEWEB)

    Potier, P [Maison de la Chimie, 75 - Paris (France); Davenas, A [societe Nationale des Poudres et des Explosifs - SNPE (France); Berman, M [Air Force Office of Scientific Research, Arlington, VA (United States); and others

    2002-07-01

    During the colloquium on chemistry and propulsion, held in march 2002, ten papers have been presented. The proceedings are brought in this document: ramjet, scram-jet and Pulse Detonation Engine; researches and applications on energetic materials and propulsion; advances in poly-nitrogen chemistry; evolution of space propulsion; environmental and technological stakes of aeronautic propulsion; ramjet engines and pulse detonation engines, automobiles thermal engines for 2015, high temperature fuel cells for the propulsion domain, the hydrogen and the fuel cells in the future transports. (A.L.B.)

  10. Industrial implications of hydrogen

    International Nuclear Information System (INIS)

    Pressouyre, G.M.

    1982-01-01

    Two major industrial implications of hydrogen are examined: problems related to the effect of hydrogen on materials properties (hydrogen embrittlement), and problems related to the use and production of hydrogen as a future energy vector [fr

  11. Feasibility Study of Hydrogen Production from Existing Nuclear Power Plants Using Alkaline Electrolysis

    International Nuclear Information System (INIS)

    Swalla, Dana R.

    2008-01-01

    The mid-range industrial market currently consumes 4.2 million metric tons of hydrogen per year and has an annual growth rate of 15% industries in this range require between 100 and 1000 kilograms of hydrogen per day and comprise a wide range of operations such as food hydrogenation, electronic chip fabrication, metals processing and nuclear reactor chemistry modulation

  12. Green chemistry: A tool in Pharmaceutical Chemistry

    OpenAIRE

    Smita Talaviya; Falguni Majumdar

    2012-01-01

    Green chemistry expresses an area of research developing from scientific discoveries about pollution awareness and it utilizes a set of principles that reduces or eliminates the use or generation of hazardous substances in all steps of particular synthesis or process. Chemists and medicinal scientists can greatly reduce the risk to human health and the environment by following all the valuable principles of green chemistry. The most simple and direct way to apply green chemistry in pharmaceut...

  13. From hot atom chemistry to epithermal chemistry

    International Nuclear Information System (INIS)

    Roessler, K.

    2004-01-01

    The rise and fall of hot atom chemistry (HAC) over the years from 1934 to 2004 is reviewed. Several applications are discussed, in particular to astrophysics and the interaction of energetic ions and atoms in space. Epithermal chemistry (ETC) is proposed to substitute the old name, since it better fits the energy range as well as the non-thermal and non-equilibrium character of the reactions. ETC also avoids the strong connexion of HAC to nuclear chemistry and stands for the opening of the field to physical chemistry and astrophysics. (orig.)

  14. Chemistry in Titan

    Science.gov (United States)

    Plessis, S.; Carrasco, N.; Pernot, P.

    2009-04-01

    Modelling the chemical composition of Titan's ionosphere is a very challenging issue. Latest works perform either inversion of CASSINI's INMS mass spectra (neutral[1] or ion[2]), or design coupled ion-neutral chemistry models[3]. Coupling ionic and neutral chemistry has been reported to be an essential feature of accurate modelling[3]. Electron Dissociative Recombination (EDR), where free electrons recombine with positive ions to produce neutral species, is a key component of ion-neutral coupling. There is a major difficulty in EDR modelling: for heavy ions, the distribution of neutral products is incompletely characterized by experiments. For instance, for some hydrocarbon ions only the carbon repartition is measured, leaving the hydrogen repartition and thus the exact neutral species identity unknown[4]. This precludes reliable deterministic modelling of this process and of ion-neutral coupling. We propose a novel stochastic description of the EDR chemical reactions which enables efficient representation and simulation of the partial experimental knowledge. The description of products distribution in multi-pathways reactions is based on branching ratios, which should sum to unity. The keystone of our approach is the design of a probability density function accounting for all available informations and physical constrains. This is done by Dirichlet modelling which enables one to sample random variables whose sum is constant[5]. The specifics of EDR partial uncertainty call for a hierarchiral Dirichlet representation, which generalizes our previous work[5]. We present results on the importance of ion-neutral coupling based on our stochastic model. C repartition H repartition (measured) (unknown ) → C4H2 + 3H2 + H .. -→ C4 . → C4H2 + 7H → C3H8. + CH C4H+9 + e- -→ C3 + C .. → C3H3 + CH2 + 2H2 → C2H6 + C2H2 + H .. -→ C2 + C2 . → 2C2H2 + 2H2 + H (1) References [1] J. Cui, R.V. Yelle, V. Vuitton, J.H. Waite Jr., W.T. Kasprzak

  15. The latest general chemistry

    International Nuclear Information System (INIS)

    Ryu, Geun Bae; Choi, Se Yeong; Kim, Chin Yeong; Yoon, Gil Jung; Lee, Eun Seok; Seo, Moon Gyu

    1995-02-01

    This book deals with the latest general chemistry, which is comprised of twenty-three chapters, the contents of this book are introduction, theory of atoms and molecule, chemical formula and a chemical reaction formula, structure of atoms, nature of atoms and the periodic table, structure of molecule and spectrum, gas, solution, solid, chemical combination, chemical reaction speed, chemical equilibrium, thermal chemistry, oxidation-reduction, electrochemistry, acid-base, complex, aquatic chemistry, air chemistry, nuclear chemistry, metal and nonmetal, organic chemistry and biochemistry. It has exercise in the end of each chapter.

  16. Constitutional dynamic chemistry: bridge from supramolecular chemistry to adaptive chemistry.

    Science.gov (United States)

    Lehn, Jean-Marie

    2012-01-01

    Supramolecular chemistry aims at implementing highly complex chemical systems from molecular components held together by non-covalent intermolecular forces and effecting molecular recognition, catalysis and transport processes. A further step consists in the investigation of chemical systems undergoing self-organization, i.e. systems capable of spontaneously generating well-defined functional supramolecular architectures by self-assembly from their components, thus behaving as programmed chemical systems. Supramolecular chemistry is intrinsically a dynamic chemistry in view of the lability of the interactions connecting the molecular components of a supramolecular entity and the resulting ability of supramolecular species to exchange their constituents. The same holds for molecular chemistry when the molecular entity contains covalent bonds that may form and break reversibility, so as to allow a continuous change in constitution by reorganization and exchange of building blocks. These features define a Constitutional Dynamic Chemistry (CDC) on both the molecular and supramolecular levels.CDC introduces a paradigm shift with respect to constitutionally static chemistry. The latter relies on design for the generation of a target entity, whereas CDC takes advantage of dynamic diversity to allow variation and selection. The implementation of selection in chemistry introduces a fundamental change in outlook. Whereas self-organization by design strives to achieve full control over the output molecular or supramolecular entity by explicit programming, self-organization with selection operates on dynamic constitutional diversity in response to either internal or external factors to achieve adaptation.The merging of the features: -information and programmability, -dynamics and reversibility, -constitution and structural diversity, points to the emergence of adaptive and evolutive chemistry, towards a chemistry of complex matter.

  17. Design Features of the SMART Water Chemistry

    International Nuclear Information System (INIS)

    Byung Seon Choi; Seong Hoon Kim; Juhyeon Yoon; Doo Jeong Lee; Yoon Yeong Bae; Sung Kyun Zee

    2004-01-01

    The design features for the primary water chemistry for the SMART are introduced from the viewpoint of the system characteristics and the chemical design concept. The most essential differences in water chemistry between the commercially operating PWRs and SMART are characterized by the presence of boron in the water and the operating mode of the purification system. SMART is a soluble boron free reactor, and the ammonia is used as a pH reagent. The material for SMART steam generator is also different from the standard material of the commercially operating PWRs: titanium alloy for the steam generator tubes. In SMART hydrogen gas which suppresses a generation of oxidizing species by the radiolysis processes in the reactors is not added to the primary coolant, but is normally generated from the radiolysis of the ammonia as the coolant passes through the core. Ammonia is added once per shift because SMART reactor has no letdown and charging system during power operation. Because of these competing processes, the concentrations of hydrogen, nitrogen and ammonia in the primary coolant are in equilibrium, which depend on the decomposition and/or combination rate of the ammonia. The level of permissible oxygen concentration in the primary coolant can be ensured by both suppression of the water radiolysis through maintaining a high enough hydrogen concentration in the primary coolant and by a restriction of the oxygen ingress into the primary coolant with the makeup water. The ammonia chemistry in SMART reactor eliminates the need for hydrogen injection for the control of the dissolved oxygen in the primary coolant because of spontaneous generation of hydrogen and nitrogen produced by the reaction of the ammonia decomposition. (authors)

  18. Hydrogen bond dynamics in bulk alcohols

    International Nuclear Information System (INIS)

    Shinokita, Keisuke; Cunha, Ana V.; Jansen, Thomas L. C.; Pshenichnikov, Maxim S.

    2015-01-01

    Hydrogen-bonded liquids play a significant role in numerous chemical and biological phenomena. In the past decade, impressive developments in multidimensional vibrational spectroscopy and combined molecular dynamics–quantum mechanical simulation have established many intriguing features of hydrogen bond dynamics in one of the fundamental solvents in nature, water. The next class of a hydrogen-bonded liquid—alcohols—has attracted much less attention. This is surprising given such important differences between water and alcohols as the imbalance between the number of hydrogen bonds, each molecule can accept (two) and donate (one) and the very presence of the hydrophobic group in alcohols. Here, we use polarization-resolved pump-probe and 2D infrared spectroscopy supported by extensive theoretical modeling to investigate hydrogen bond dynamics in methanol, ethanol, and isopropanol employing the OH stretching mode as a reporter. The sub-ps dynamics in alcohols are similar to those in water as they are determined by similar librational and hydrogen-bond stretch motions. However, lower density of hydrogen bond acceptors and donors in alcohols leads to the appearance of slow diffusion-controlled hydrogen bond exchange dynamics, which are essentially absent in water. We anticipate that the findings herein would have a potential impact on fundamental chemistry and biology as many processes in nature involve the interplay of hydrophobic and hydrophilic groups

  19. Hydrogen bond dynamics in bulk alcohols.

    Science.gov (United States)

    Shinokita, Keisuke; Cunha, Ana V; Jansen, Thomas L C; Pshenichnikov, Maxim S

    2015-06-07

    Hydrogen-bonded liquids play a significant role in numerous chemical and biological phenomena. In the past decade, impressive developments in multidimensional vibrational spectroscopy and combined molecular dynamics-quantum mechanical simulation have established many intriguing features of hydrogen bond dynamics in one of the fundamental solvents in nature, water. The next class of a hydrogen-bonded liquid--alcohols--has attracted much less attention. This is surprising given such important differences between water and alcohols as the imbalance between the number of hydrogen bonds, each molecule can accept (two) and donate (one) and the very presence of the hydrophobic group in alcohols. Here, we use polarization-resolved pump-probe and 2D infrared spectroscopy supported by extensive theoretical modeling to investigate hydrogen bond dynamics in methanol, ethanol, and isopropanol employing the OH stretching mode as a reporter. The sub-ps dynamics in alcohols are similar to those in water as they are determined by similar librational and hydrogen-bond stretch motions. However, lower density of hydrogen bond acceptors and donors in alcohols leads to the appearance of slow diffusion-controlled hydrogen bond exchange dynamics, which are essentially absent in water. We anticipate that the findings herein would have a potential impact on fundamental chemistry and biology as many processes in nature involve the interplay of hydrophobic and hydrophilic groups.

  20. The hydrogen; L'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The hydrogen as an energy system represents nowadays a main challenge (in a scientific, economical and environmental point of view). The physical and chemical characteristics of hydrogen are at first given. Then, the challenges of an hydrogen economy are explained. The different possibilities of hydrogen production are described as well as the distribution systems and the different possibilities of hydrogen storage. Several fuel cells are at last presented: PEMFC, DMFC and SOFC. (O.M.)

  1. Advanced Chemistry Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Description/History: Chemistry laboratoryThe Advanced Chemistry Laboratory (ACL) is a unique facility designed for working with the most super toxic compounds known...

  2. Electrostatics in Chemistry

    Indian Academy of Sciences (India)

    fundamental concepts of electrostatics as applied to atoms and molecules. The electric ... chemistry, the chemistry of the covalent bond, deals with the structures ..... the position of an asteroid named Ceres ... World Scientific. Singapore, 1992.

  3. Green chemistry: to rethink chemistry for tomorrow's world. Press briefing of 20 January 2015

    International Nuclear Information System (INIS)

    Legrand, Francois

    2015-01-01

    This document discusses various issues related to the development of the green chemistry sector, and mentions and presents activities performed by the CEA in this respect. A first part outlines how green chemistry is an answer to stakes for a sustainable development. The second part addresses metal recycling: recovery of silver from photovoltaic cells, avoiding tensions related to rare earth supply. The third part discusses how to replace dangerous or costly compounds (chromium in aircraft paintings, platinum in fuel cells, ruthenium in photovoltaic cells, rare earth in magnetic wire). The fourth part addresses how to transform wastes into useful products (production of formamides, of aromatic compounds, and of methanol, respectively from waste recycling, natural lignin, and CO_2). The fifth part presents new concepts for chemical synthesis: chemistry under ultrasounds, production of hydrogen from water. The sixth part presents contributions of life sciences to green chemistry: reduction of carbon dioxide emissions, bioremediation (biology for soil rehabilitation), production of molecules of interest by using micro algae, enzymes or bacteria. The last part discusses issues which outline that chemistry is at the heart of challenges for a sustainable nuclear in terms of materials, for a closed fuel cycle, in terms of fuel cycle processes, of installation sanitation and dismantling. Appendices formulate 5 societal challenges for green chemistry, and 12 background principles of green chemistry

  4. Preparative radiation chemistry

    International Nuclear Information System (INIS)

    Drawe, H.

    1978-01-01

    Preparative synthesis of compounds with the aid of radiation chemistry is increasingly used in laboratories as well as on a technical scale. A large number of new compounds has been produced with the methods of radiation chemistry. With the increasing number of available radiation sources, also the number of synthesis metods in radiation chemistry has increased. This paper can only briefly mention the many possible ways of synthesis in radiation chemistry. (orig./HK) [de

  5. USSR Report Chemistry

    National Research Council Canada - National Science Library

    1986-01-01

    THIS REPORT CONTAINS FOREIGN MEDIA INFORMATION FROM THE USSR CONCERNING Adsorption, Alkaloids, ANALYTICAL CHEMISTRY, CATALYSIS, ELECTROCHEMISTRY, Fertilizers, INORGANIC COMPOUNDS, ORGANOPHOSPHOROUS...

  6. Frontiers in Gold Chemistry

    OpenAIRE

    Ahmed A. Mohamed

    2015-01-01

    Basic chemistry of gold tells us that it can bond to sulfur, phosphorous, nitrogen, and oxygen donor ligands. The Frontiers in Gold Chemistry Special Issue covers gold complexes bonded to the different donors and their fascinating applications. This issue covers both basic chemistry studies of gold complexes and their contemporary applications in medicine, materials chemistry, and optical sensors. There is a strong belief that aurophilicity plays a major role in the unending applications of g...

  7. Organic chemistry experiment

    International Nuclear Information System (INIS)

    Mun, Seok Sik

    2005-02-01

    This book deals with organic chemistry experiments, it is divided five chapters, which have introduction, the way to write the experiment report and safety in the laboratory, basic experiment technic like recrystallization and extraction, a lot of organic chemistry experiments such as fischer esterification, ester hydrolysis, electrophilic aromatic substitution, aldol reaction, benzoin condensation, wittig reaction grignard reaction, epoxidation reaction and selective reduction. The last chapter introduces chemistry site on the internet and way to find out reference on chemistry.

  8. Use of Heterogenized Metal Complexes in Hydrogenation Reactions: Comparison of Hydrogenation and CTH Reactions.

    Czech Academy of Sciences Publication Activity Database

    Bata, P.; Zsigmond, A.; Gyémánt, M.; Czeglédi, A.; Klusoň, Petr

    2015-01-01

    Roč. 41, č. 12 (2015), s. 9281-9294 ISSN 0922-6168. [Pannonian Symposium on Catalysis /12./. Castle Trest, 16.09.2014-20.09.2014] Institutional support: RVO:67985858 Keywords : catalytic transfer hydrogenation * iron-phthalocyanine catalyst * chemoselectivity Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.833, year: 2015

  9. Hydrogen storage in graphite nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Park, C.; Tan, C.D.; Hidalgo, R.; Baker, R.T.K.; Rodriguez, N.M. [Northeastern Univ., Boston, MA (United States). Chemistry Dept.

    1998-08-01

    Graphite nanofibers (GNF) are a type of material that is produced by the decomposition of carbon containing gases over metal catalyst particles at temperatures around 600 C. These molecularly engineered structures consist of graphene sheets perfectly arranged in a parallel, perpendicular or at angle orientation with respect to the fiber axis. The most important feature of the material is that only edges are exposed. Such an arrangement imparts the material with unique properties for gas adsorption because the evenly separated layers constitute the most ordered set of nanopores that can accommodate an adsorbate in the most efficient manner. In addition, the non-rigid pore walls can also expand so as to accommodate hydrogen in a multilayer conformation. Of the many varieties of structures that can be produced the authors have discovered that when gram quantities of a selected number of GNF are exposed to hydrogen at pressures of {approximately} 2,000 psi, they are capable of adsorbing and storing up to 40 wt% of hydrogen. It is believed that a strong interaction is established between hydrogen and the delocalized p-electrons present in the graphite layers and therefore a new type of chemistry is occurring within these confined structures.

  10. Analytical chemistry instrumentation

    International Nuclear Information System (INIS)

    Laing, W.R.

    1986-01-01

    In nine sections, 48 chapters cover 1) analytical chemistry and the environment 2) environmental radiochemistry 3) automated instrumentation 4) advances in analytical mass spectrometry 5) fourier transform spectroscopy 6) analytical chemistry of plutonium 7) nuclear analytical chemistry 8) chemometrics and 9) nuclear fuel technology

  11. Fundamentals of nuclear chemistry

    International Nuclear Information System (INIS)

    Majer, V.

    1982-01-01

    The author of the book has had 25 years of experience at the Nuclear Chemistry of Prague Technical University. In consequence, the book is intended as a basic textbook for students of this field. Its main objectives are an easily understandable presentation of the complex subject and in spite of the uncertainty which still characterizes the definition and subjects of nuclear chemistry - a systematic classification and logical structure. Contents: 1. Introduction (history and definition); 2. General nuclear chemistry (physical fundamentals, hot atom chemistry, interaction of nuclear radiation with matter, radioactive elements, isotope effects, isotope exchange, chemistry of radioactive trace elements); 3. Methods of nuclear chemistry of nuclear chemistry (radiochemical methods, activation, separation and enrichment chemistry); 4. Preparative nuclear chemistry (isotope production, labelled compounds); 5. Analytival nuclear chemistry; 6. Applied nuclear chemistry (isotope applications in general physical and analytical chemistry). The book is supplemented by an annex with tables, a name catalogue and a subject index which will facilitate access to important information. (RB) [de

  12. Nanoengineered Carbon Scaffolds for Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, A. D.; Hudson, J. L.; Fan, H.; Booker, R.; Simpson, L. J.; O' Neill, K. J.; Parilla, P. A.; Heben, M. J.; Pasquali, M.; Kittrell, C.; Tour, J. M.

    2009-01-01

    Single-walled carbon nanotube (SWCNT) fibers were engineered to become a scaffold for the storage of hydrogen. Carbon nanotube fibers were swollen in oleum (fuming sulfuric acid), and organic spacer groups were covalently linked between the nanotubes using diazonium functionalization chemistry to provide 3-dimensional (3-D) frameworks for the adsorption of hydrogen molecules. These 3-D nanoengineered fibers physisorb twice as much hydrogen per unit surface area as do typical macroporous carbon materials. These fiber-based systems can have high density, and combined with the outstanding thermal conductivity of carbon nanotubes, this points a way toward solving the volumetric and heat-transfer constraints that limit some other hydrogen-storage supports.

  13. Novel Hydrogen Compounds from a Potassium Carbonate Electrolytic Cell

    International Nuclear Information System (INIS)

    Mills, Randell L.

    2000-01-01

    Novel compounds containing hydrogen in new hydride and polymeric states that demonstrate novel hydrogen chemistry have been isolated following the electrolysis of a K 2 CO 3 electrolyte with the production of excess energy. Inorganic hydride clusters K[KH KHCO 3 ] n + and hydrogen polymer ions such as OH 23 + and H 16 - were identified by time-of-flight secondary ion mass spectroscopy. The presence of compounds containing new states of hydrogen was confirmed by X-ray photoelectron spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, and proton nuclear magnetic resonance spectroscopy

  14. American Association for Clinical Chemistry

    Science.gov (United States)

    ... Find the answer to your question IN CLINICAL CHEMISTRY Hs-cTnI as a Gatekeeper for Further Cardiac ... Online Harmonization.net Commission on Accreditation in Clinical Chemistry American Board of Clinical Chemistry Clinical Chemistry Trainee ...

  15. Boron-Based Hydrogen Storage: Ternary Borides and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    Vajo, John J. [HRL Laboratories, LLC, Malibu, CA (United States)

    2016-04-28

    DOE continues to seek reversible solid-state hydrogen materials with hydrogen densities of ≥11 wt% and ≥80 g/L that can deliver hydrogen and be recharged at moderate temperatures (≤100 °C) and pressures (≤100 bar) enabling incorporation into hydrogen storage systems suitable for transportation applications. Boron-based hydrogen storage materials have the potential to meet the density requirements given boron’s low atomic weight, high chemical valance, and versatile chemistry. However, the rates of hydrogen exchange in boron-based compounds are thus far much too slow for practical applications. Although contributing to the high hydrogen densities, the high valance of boron also leads to slow rates of hydrogen exchange due to extensive boron-boron atom rearrangements during hydrogen cycling. This rearrangement often leads to multiple solid phases occurring over hydrogen release and recharge cycles. These phases must nucleate and react with each other across solid-solid phase boundaries leading to energy barriers that slow the rates of hydrogen exchange. This project sought to overcome the slow rates of hydrogen exchange in boron-based hydrogen storage materials by minimizing the number of solid phases and the boron atom rearrangement over a hydrogen release and recharge cycle. Two novel approaches were explored: 1) developing matched pairs of ternary borides and mixed-metal borohydrides that could exchange hydrogen with only one hydrogenated phase (the mixed-metal borohydride) and only one dehydrogenated phase (the ternary boride); and 2) developing boranes that could release hydrogen by being lithiated using lithium hydride with no boron-boron atom rearrangement.

  16. The New Color of Chemistry: Green Chemistry

    Directory of Open Access Journals (Sweden)

    Zuhal GERÇEK

    2012-01-01

    Full Text Available Green chemistry which is the new application of chemistry rules provides solutions to problems that mankind is faced with climate changes, sustainable agriculture, energy, toxics, depletion of natural sources e.g. designing new chemicals and processes that production and utilization of hazardous matters. So, it is the indispensible tool for sustainable development. Current and future chemists should consider the human health and ecological issues in their professional life. In order to provide a solution for this requirement, green chemistry rules and under standings should be primarily taken in the university curriculum and at all educational levels.

  17. Surface chemistry essentials

    CERN Document Server

    Birdi, K S

    2013-01-01

    Surface chemistry plays an important role in everyday life, as the basis for many phenomena as well as technological applications. Common examples range from soap bubbles, foam, and raindrops to cosmetics, paint, adhesives, and pharmaceuticals. Additional areas that rely on surface chemistry include modern nanotechnology, medical diagnostics, and drug delivery. There is extensive literature on this subject, but most chemistry books only devote one or two chapters to it. Surface Chemistry Essentials fills a need for a reference that brings together the fundamental aspects of surface chemistry w

  18. Fundamentals of reactor chemistry

    International Nuclear Information System (INIS)

    Akatsu, Eiko

    1981-12-01

    In the Nuclear Engineering School of JAERI, many courses are presented for the people working in and around the nuclear reactors. The curricula of the courses contain also the subject material of chemistry. With reference to the foreign curricula, a plan of educational subject material of chemistry in the Nuclear Engineering School of JAERI was considered, and the fundamental part of reactor chemistry was reviewed in this report. Since the students of the Nuclear Engineering School are not chemists, the knowledge necessary in and around the nuclear reactors was emphasized in order to familiarize the students with the reactor chemistry. The teaching experience of the fundamentals of reactor chemistry is also given. (author)

  19. Inorganic chemistry of earliest sediments

    International Nuclear Information System (INIS)

    Ochiai, E.I.

    1983-01-01

    A number of inorganic elements are now known to be essential to organisms. Chemical evolutionary processes involving carbon, hydrogen, nitrogen and oxygen have been studied intensively and extensively, but the other essential elements have been rather neglected in the studies of chemical and biological evolution. This article attempts to assess the significance of inorganic chemistry in chemical and biological evolutionary processes on the earth. Emphasis is placed on the catalytic effects of inorganic elements and compounds, and also on possible studies on the earliest sediments, especially banded iron formation and stratabound copper from the inorganic point of view in the hope of shedding some light on the evolution of the environment and the biological effects on it. (orig./WL)

  20. Annual report 1985 Chemistry Department

    International Nuclear Information System (INIS)

    Funck, J.; Larsen, E.; Nielsen, O.J.

    1986-03-01

    This report contains a brief survey of the main activities in the Chemistry Department. All particles and reports published and lectures given in 1985 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, analytical- and organic chemistry, environmental chemistry, polymer chemistry, geochemistry and waste disposal, radical chemistry, positron annihilation, mineral processing, and general. (author)

  1. Annual report 1984 Chemistry Department

    International Nuclear Information System (INIS)

    Funck, J.; Larsen, E.; Nielsen, O.J.

    1985-03-01

    This report contains a brief survey of the main activities in the Chemistry Department. All articles and reports published and lectures given in 1984 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, analytical- and organic chemistry , environmental chemistry, polymer chemistry, geochemistry and waste disposal, radical chemistry, positron annihilation, mineral processing, and general. (author)

  2. Fundamentals of nuclear chemistry

    International Nuclear Information System (INIS)

    Matel, L.; Dulanska, S.

    2013-01-01

    This text-book is an introductory text in nuclear chemistry and radiochemistry, aimed on university undergraduate students in chemistry and related disciplines (physics, nuclear engineering). It covers the key aspects of modern nuclear chemistry. The text begins with basic theories in contemporary physics. It relates nuclear phenomena to key divisions of chemistry such as atomic structure, spectroscopy, equilibria and kinetics. It also gives an introduction to sources of ionizing radiation, detection of ionizing radiation, nuclear power industry and accident on nuclear installations as well as basic knowledge's of radiobiology. This book is essential reading for those taking a first course in nuclear chemistry and is a useful companion to other volumes in physical and analytical chemistry. It will also be of use to those new to working in nuclear chemistry or radiochemistry.

  3. Destructive hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Terrisse, H; Dufour, L

    1929-01-21

    Oils of high boiling point, e.g. gas oil, lamp oil, schist oil, brown coal tar etc., are converted into motor benzine by heating them at 200 to 500/sup 0/C under pressure of 5 to 40 kilograms/cm/sup 2/ in the presence of ferrous chloride and gases such as hydrogen, or water gas, the desulfurization of the oils proceeding simultaneously. One kilogram of lamp oil and 100 g. ferrous chloride are heated in an autoclave in the presence of water gas under a pressure of 18 kg/cm/sup 2/ to 380 to 400/sup 0/C. The gaseous products are allowed to escape intermittently and are replaced by fresh water gas. A product distilling between 35 and 270/sup 0/C is obtained.

  4. Nuclear chemistry in the traditional chemistry program

    International Nuclear Information System (INIS)

    Kleppinger, E.W.

    1993-01-01

    The traditional undergraduate program for chemistry majors, especially at institutions devoted solely to undergraduate education, has limited space for 'special topics' courses in areas such as nuclear and radiochemistry. A scheme is proposed whereby the basic topics covered in an introductury radiochemistry course are touched upon, and in some cases covered in detail, at some time during the four-year sequence of courses taken by a chemistry major. (author) 6 refs.; 7 tabs

  5. The New Color of Chemistry: Green Chemistry

    OpenAIRE

    Zuhal GERÇEK

    2012-01-01

    Green chemistry which is the new application of chemistry rules provides solutions to problems that mankind is faced with climate changes, sustainable agriculture, energy, toxics, depletion of natural sources e.g. designing new chemicals and processes that production and utilization of hazardous matters. So, it is the indispensible tool for sustainable development. Current and future chemists should consider the human health and ecological issues in their professional life. In order to provid...

  6. Solid Aluminum Borohydrides for Prospective Hydrogen Storage.

    Science.gov (United States)

    Dovgaliuk, Iurii; Safin, Damir A; Tumanov, Nikolay A; Morelle, Fabrice; Moulai, Adel; Černý, Radovan; Łodziana, Zbigniew; Devillers, Michel; Filinchuk, Yaroslav

    2017-12-08

    Metal borohydrides are intensively researched as high-capacity hydrogen storage materials. Aluminum is a cheap, light, and abundant element and Al 3+ can serve as a template for reversible dehydrogenation. However, Al(BH 4 ) 3 , containing 16.9 wt % of hydrogen, has a low boiling point, is explosive on air and has poor storage stability. A new family of mixed-cation borohydrides M[Al(BH 4 ) 4 ], which are all solid under ambient conditions, show diverse thermal decomposition behaviors: Al(BH 4 ) 3 is released for M=Li + or Na + , whereas heavier derivatives evolve hydrogen and diborane. NH 4 [Al(BH 4 ) 4 ], containing both protic and hydridic hydrogen, has the lowest decomposition temperature of 35 °C and yields Al(BH 4 ) 3 ⋅NHBH and hydrogen. The decomposition temperatures, correlated with the cations' ionic potential, show that M[Al(BH 4 ) 4 ] species are in the most practical stability window. This family of solids, with convenient and versatile properties, puts aluminum borohydride chemistry in the mainstream of hydrogen storage research, for example, for the development of reactive hydride composites with increased hydrogen content. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Progress report, Chemistry and Materials Division, April 1 to June 30, 1976

    International Nuclear Information System (INIS)

    1976-07-01

    Preliminary results are reported on research covering such topics as ion penetration, electron microscopy, radiation damage and metal physics, nuclear methods of analysis, analytical chemistry, hydrogen-deuterium exchange, radiation chemistry, and corrosion (primarily of zirconium alloys). (E.C.B.)

  8. Antiparallel Dynamic Covalent Chemistries.

    Science.gov (United States)

    Matysiak, Bartosz M; Nowak, Piotr; Cvrtila, Ivica; Pappas, Charalampos G; Liu, Bin; Komáromy, Dávid; Otto, Sijbren

    2017-05-17

    The ability to design reaction networks with high, but addressable complexity is a necessary prerequisite to make advanced functional chemical systems. Dynamic combinatorial chemistry has proven to be a useful tool in achieving complexity, however with some limitations in controlling it. Herein we introduce the concept of antiparallel chemistries, in which the same functional group can be channeled into one of two reversible chemistries depending on a controllable parameter. Such systems allow both for achieving complexity, by combinatorial chemistry, and addressing it, by switching from one chemistry to another by controlling an external parameter. In our design the two antiparallel chemistries are thiol-disulfide exchange and thio-Michael addition, sharing the thiol as the common building block. By means of oxidation and reduction the system can be reversibly switched from predominantly thio-Michael chemistry to predominantly disulfide chemistry, as well as to any intermediate state. Both chemistries operate in water, at room temperature, and at mildly basic pH, which makes them a suitable platform for further development of systems chemistry.

  9. Modeling the electrochemistry of the primary circuits of light water reactors

    International Nuclear Information System (INIS)

    Bertuch, A.; Macdonald, D.D.; Pang, J.; Kriksunov, L.; Arioka, K.

    1994-01-01

    To model the corrosion behaviors of the heat transport circuits of light water reactors, a mixed potential model (NTM) has been developed and applied to both boiling water reactors (BWRs) and pressurized water reactors (PWRs). Using the data generated by the GE/UKEA-Harwell radiolysis model, electrochemical potentials (ECPs) have been calculated for the heat transport circuits of eight BWRs operating under hydrogen water chemistry (HWC). By modeling the corrosion behaviors of these reactors, the effectiveness of HWC at limiting IGSCC and IASCC can be determined. For simulating PWR primary circuits, a chemical-radiolysis model (developed by the authors) was used to generate input parameters for the MPM. Corrosion potentials of Type 304 and 316 SSs in PWR primary environments were calculated using the NTM and were found to be in good agreement with the corrosion potentials measured in the laboratory for simulated PWR primary environments

  10. Actinide/crown ether chemistry

    International Nuclear Information System (INIS)

    Benning, M.M.

    1988-01-01

    A structural survey of actinide/crown ether compounds was conducted in order to investigate the solid state chemistry of these complexes. Several parameters - the metal size, crown type, counterion, solvent systems and reaction and crystallization conditions - were varied to correlate their importance in complexation. Under atmospheric conditions, two types of complexes were isolated, those containing only hydrogen-bonded crown interactions and instances where the crown interacts directly with the metal center. In both cases, water seems to play a very important role. When coordinated to the metal, water molecules exhibit the necessary donor properties required for the formation of hydrogen-bonded contacts. The water molecules also provide fierce competition with the crown ethers for metal-binding sites and in most cases prohibit the formation of complexes in which direct metal-ligand association exists. The results of this study indicate that direct interaction between the metal atoms and the crown ethers, in the presence of water, can only occur with polyether conformations which limit the steric replusions within the metal coordination sphere

  11. The potential impact of hydrogen energy use on the atmosphere

    Science.gov (United States)

    van Ruijven, B. J.; Lamarque, J. F.; van Vuuren, D. P.; Kram, T.; Eerens, H.

    2009-04-01

    Energy models show very different trajectories for future energy systems (partly as function of future climate policy). One possible option is a transition towards a hydrogen-based energy system. The potential impact of such hydrogen economy on atmospheric emissions is highly uncertain. On the one hand, application of hydrogen in clean fuel cells reduces emissions of local air pollutants, like SOx and NOx. On the other hand, emissions of hydrogen from system leakages are expected to change the atmospheric concentrations and behaviour (see also Price et al., 2007; Sanderson et al., 2003; Schultz et al., 2003; Tromp et al., 2003). The uncertainty arises from several sources: the expected use of hydrogen, the intensity of leakages and emissions, and the atmospheric chemical behaviour of hydrogen. Existing studies to the potential impacts of a hydrogen economy on the atmosphere mostly use hydrogen emission scenarios that are based on simple assumptions. This research combines two different modelling efforts to explore the range of impacts of hydrogen on atmospheric chemistry. First, the potential role of hydrogen in the global energy system and the related emissions of hydrogen and other air pollutants are derived from the global energy system simulation model TIMER (van Vuuren, 2007). A set of dedicated scenarios on hydrogen technology development explores the most pessimistic and optimistic cases for hydrogen deployment (van Ruijven et al., 2008; van Ruijven et al., 2007). These scenarios are combined with different assumptions on hydrogen emission factors. Second, the emissions from the TIMER model are linked to the NCAR atmospheric model (Lamarque et al., 2005; Lamarque et al., 2008), in order to determine the impacts on atmospheric chemistry. By combining an energy system model and an atmospheric model, we are able to consistently explore the boundaries of both hydrogen use, emissions and impacts on atmospheric chemistry. References: Lamarque, J.-F., Kiehl, J. T

  12. Nanodiamond for hydrogen storage: temperature-dependent hydrogenation and charge-induced dehydrogenation.

    Science.gov (United States)

    Lai, Lin; Barnard, Amanda S

    2012-02-21

    Carbon-based hydrogen storage materials are one of hottest research topics in materials science. Although the majority of studies focus on highly porous loosely bound systems, these systems have various limitations including use at elevated temperature. Here we propose, based on computer simulations, that diamond nanoparticles may provide a new promising high temperature candidate with a moderate storage capacity, but good potential for recyclability. The hydrogenation of nanodiamonds is found to be easily achieved, in agreement with experiments, though we find the stability of hydrogenation is dependent on the morphology of nanodiamonds and surrounding environment. Hydrogenation is thermodynamically favourable even at high temperature in pure hydrogen, ammonia, and methane gas reservoirs, whereas water vapour can help to reduce the energy barrier for desorption. The greatest challenge in using this material is the breaking of the strong covalent C-H bonds, and we have identified that the spontaneous release of atomic hydrogen may be achieved through charging of hydrogenated nanodiamonds. If the degree of induced charge is properly controlled, the integrity of the host nanodiamond is maintained, which indicates that an efficient and recyclable approach for hydrogen release may be possible. This journal is © The Royal Society of Chemistry 2012

  13. Atmospheric chemistry and climate

    OpenAIRE

    Satheesh, SK

    2012-01-01

    Atmospheric chemistry is a branch of atmospheric science where major focus is the composition of the Earth's atmosphere. Knowledge of atmospheric composition is essential due to its interaction with (solar and terrestrial) radiation and interactions of atmospheric species (gaseous and particulate matter) with living organisms. Since atmospheric chemistry covers a vast range of topics, in this article the focus is on the chemistry of atmospheric aerosols with special emphasis on the Indian reg...

  14. Polymer chemistry (revised edition)

    International Nuclear Information System (INIS)

    Kim, Jae Mum

    1987-02-01

    This book deals with polymer chemistry, which is divided into fourteen chapters. The contents of this book are development of polymer chemistry, conception of polymer, measurement of polymer chemistry, conception of polymer, measurement of polymer, molecule structure of polymer, thermal prosperities of solid polymer, basic theory of polymerization, radical polymerization, ion polymerization, radical polymerization, copolymerization, polymerization by step-reaction, polymer reaction, crown polymer and inorganic polymer on classification and process of creation such as polymeric sulfur and carbon fiber.

  15. Chemistry of the elements

    International Nuclear Information System (INIS)

    Greenwood, N.N.; Earnshaw, A.

    1984-01-01

    This textbook presents an account of the chemistry of the elements for both undergraduate and postgraduate students. It covers not only the 'inorganic' chemistry of the elements, but also analytical, theoretical, industrial, organometallic;, bio-inorganic and other areas of chemistry which apply. The following elements of special nuclear interest are included: Rb, Cs, Fr, Sr, Ba, Ra, Po, At, Rn, Sc, Y, Zr, Hf, V, Nb, Ta, Mo, Tc, Ru, the Lanthanide Elements, the Actinide Elements. (U.K.)

  16. Iron Phthalocyanine as New Efficient Catalyst for Catalytic Transfer Hydrogenation of Simple Aldehydes and Ketones

    Czech Academy of Sciences Publication Activity Database

    Bata, P.; Notheisz, F.; Klusoň, Petr; Zsigmond, A.

    2015-01-01

    Roč. 29, JAN 2015 (2015), s. 45-49 ISSN 0268-2605 Institutional support: RVO:67985858 Keywords : heterogenized complexes * catalytic transfer hydrogenation * reusable catalyst Subject RIV: CC - Organic Chemistry Impact factor: 2.452, year: 2015

  17. Functionalization of Hydrogenated Chemical Vapour Deposition-Grown Graphene by On-Surface Chemical Reactions

    Czech Academy of Sciences Publication Activity Database

    Drogowska, Karolina; Kovaříček, Petr; Kalbáč, Martin

    2017-01-01

    Roč. 23, č. 17 (2017), s. 4022-4022 ISSN 1521-3765 Institutional support: RVO:61388955 Keywords : Chemical vapor deposition * Hydrogenation * Graphene Subject RIV: CF - Physical ; Theoretical Chemistry

  18. Hydrogen Cyanide In Protoplanetary Disks

    Science.gov (United States)

    Walker, Ashley L.; Oberg, Karin; Cleeves, L. Ilsedore

    2018-01-01

    The chemistry behind star and planet formation is extremely complex and important in the formation of habitable planets. Life requires molecules containing carbon, oxygen, and importantly, nitrogen. Hydrogen cyanide, or HCN, one of the main interstellar nitrogen carriers, is extremely dangerous here on Earth. However, it could be used as a vital tool for tracking the chemistry of potentially habitable planets. As we get closer to identifying other habitable planets, we must understand the beginnings of how those planets are formed in the early protoplanetary disk. This project investigates HCN chemistry in different locations in the disk, and what this might mean for forming planets at different distances from the star. HCN is a chemically diverse molecule. It is connected to the formation for other more complex molecules and is commonly used as a nitrogen tracer. Using computational chemical models we look at how the HCN abundance changes at different locations. We use realistic and physically motivated conditions for the gas in the protoplanetary disk: temperature, density, and radiation (UV flux). We analyze the reaction network, formation, and destruction of HCN molecules in the disk environment. The disk environment informs us about stability of habitable planets that are created based on HCN molecules. We reviewed and compared the difference in the molecules with a variety of locations in the disk and ultimately giving us a better understanding on how we view protoplanetary disks.

  19. Hydrogen converters

    International Nuclear Information System (INIS)

    Mondino, Angel V.

    2003-01-01

    The National Atomic Energy Commission of Argentina developed a process of 99 Mo production from fission, based on irradiation of uranium aluminide targets with thermal neutrons in the RA-3 reactor of the Ezeiza Atomic Centre. These targets are afterwards dissolved in an alkaline solution, with the consequent liberation of hydrogen as the main gaseous residue. This work deals with the use of a first model of metallic converter and a later prototype of glass converter at laboratory scale, adjusted to the requirements and conditions of the specific redox process. Oxidized copper wires were used, which were reduced to elementary copper at 400 C degrees and then regenerated by oxidation with hot air. Details of the bed structure and the operation conditions are also provided. The equipment required for the assembling in cells is minimal and, taking into account the operation final temperature and the purge with nitrogen, the procedure is totally safe. Finally, the results are extrapolated for the design of a converter to be used in a hot cell. (author)

  20. On the chemistry of the lightest exotic atoms

    International Nuclear Information System (INIS)

    Horvath, D.

    1980-01-01

    The chemical aspects of formation of three hydrogen-like exotic atoms, positronium, muonium and pionic hydrogen are discussed. For positronium two formation mechanisms, the Ore model with hot-atom reactions, and the spur reaction model are set against experimental observations in solutions. The use of pionic hydrogen atoms in obtaining information on the bond properties of hydrogen is illustrated by recent experiments performed in JINR. The use of negative pions in chemistry is demonstrated by electronic structure investigations performed in Dubna. The probability W that in a chemical system containing bound hydrogen atoms a stopped negative pion is captured by a proton reflects the bond properties of hydrogen. Recent results haVe shown that the hydrogen bond formation in liquid water and the coordination of water molecules in aquacomplexes lead to significant decreases in probability W for water. A comparison of the chemical uses of the exotic atoms shows that positronium and muonium inform us on intermolecular level probing a small environment of a few molecules while the pionic hydrogen atoms deliver information on the chemical bond of hydrogen, i.e. on intramolecular level

  1. From trace chemistry to single atom chemistry

    International Nuclear Information System (INIS)

    Adloff, J.P.

    1993-01-01

    Hot atom chemistry in the vast majority of experimental works deals with the trace amount of radioactive matters. Accordingly, the concept of trace chemistry is at the heart of hot atom chemistry. Some aspects of the chemistry at trace scale and at subtrace scale are presented together with the related problems of speciation and the complication which may arise due to the formation of radio colloids. The examples of 127 I(n,γ) 128 I and 132 Te (β - ) 132 I are shown, and the method based on radioactivity was used. The procedure of separating the elements in pitchblende is shown as the example of the chemistry of traces. 13 27 Al+ 2 4 He→ 0 1 n+ 15 30 P and 15 30 P→ 14 30 Si+e + +V are shown, and how to recognize the presence of radioactive colloids is explained. The formation of radiocolloids is by the sorption of a trace radioelement on pre-existing colloidal impurity or the self-condensation of monomeric species. The temporal parameters of the nature of reactions at trace concentration are listed. The examples of Class A and Class B reactions are shown. The kinetics of reactions at trace level, radon concentration, anthropogenic Pu and natural Pu in environment, the behavior of Pu atoms and so on are described. (K.I.)

  2. Advances in quantum chemistry

    CERN Document Server

    Sabin, John R

    2013-01-01

    Advances in Quantum Chemistry presents surveys of current topics in this rapidly developing field that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry, and biology. It features detailed reviews written by leading international researchers. This volume focuses on the theory of heavy ion physics in medicine.Advances in Quantum Chemistry presents surveys of current topics in this rapidly developing field that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry, and biology. It features

  3. Canopy Chemistry (OTTER)

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: Canopy characteristics: leaf chemistry, specific leaf area, LAI, PAR, IPAR, NPP, standing biomass--see also: Meteorology (OTTER) for associated...

  4. USSR Report, Chemistry

    National Research Council Canada - National Science Library

    1986-01-01

    This USSR Report on Chemistry contains articles on Aerosols, Adsorption, Biochemistry, Catalysis, Chemical Industry, Coal Gasification, Electrochemistry, Explosives and Explosions, Fertilizers, Food...

  5. Elements of environmental chemistry

    National Research Council Canada - National Science Library

    Hites, R. A; Raff, Jonathan D

    2012-01-01

    ... more. Extensively revised, updated, and expanded, this second edition includes new chapters on atmospheric chemistry, climate change, and polychlorinated biphenyls and dioxins, and brominated flame retardants...

  6. Green Chemistry Pedagogy

    Science.gov (United States)

    Kolopajlo, Larry

    2017-02-01

    This chapter attempts to show how the practice of chemistry teaching and learning is enriched by the incorporation of green chemistry (GC) into lectures and labs. To support this viewpoint, evidence from a wide range of published papers serve as a cogent argument that GC attracts and engages both science and nonscience students, enhances chemistry content knowledge, and improves the image of the field, while preparing the world for a sustainable future. Published pedagogy associated with green and sustainable chemistry is critically reviewed and discussed.

  7. DOE fundamentals handbook: Chemistry

    International Nuclear Information System (INIS)

    1993-01-01

    This handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of chemistry. This volume contains the following modules: reactor water chemistry (effects of radiation on water chemistry, chemistry parameters), principles of water treatment (purpose; treatment processes [ion exchange]; dissolved gases, suspended solids, and pH control; water purity), and hazards of chemicals and gases (corrosives [acids, alkalies], toxic compounds, compressed gases, flammable/combustible liquids)

  8. Uses of neutron scattering in supramolecular chemistry

    International Nuclear Information System (INIS)

    Lindoy, L.F.

    1998-01-01

    Full text: A major thrust in recent chemical research has been the development of supramolecular chemistry 1 - broadly the chemistry of large multicomponent molecular assemblies in which the component structural units are held together by either covalent linkages or by a variety of weaker (non-covalent) interactions that include hydrogen bonding, dipole stacking, π-stacking, van der Waals q forces and favourable hydrophobic interactions. Much of the activity in the area has been motivated by the known behaviour of biological molecules (such as enzymes). Thus molecular assemblies are ubiquitous in natural systems but, with a limited number of exceptions, have only recently been the subject of increasing investigation by chemists. A feature of much of this recent work has been its focus on molecular design for achieving complementarity between single molecule hosts and guests. The use of single crystal neutron diffraction coupled with molecular modelling and a range of other techniques to investigate the nature of individual supramolecular systems will be discussed. By way of example, in one such study the supramolecular array formed by co-crystallisation of 1,2- diaminoethane and benzoic acid has been investigated; the system self-assembles into an unusual layered structure composed of two-dimensional hydrogen bonded networks sandwiched between layers of edge-to-face stacked aromatic systems. The number of hydrogen-bond donors and acceptors is balanced in this structure

  9. Hydrogen storage via polyhydride complexes

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, C.M.; Zidan, R.A. [Univ. of Hawaii, Honolulu, HI (United States)

    1998-08-01

    The reversible dehydrogenation of NaAlH{sub 4} is catalyzed in toluene slurries of the NaAlH{sub 4} containing the pincer complex, IrH{sub 4} {l_brace}C{sub 6}H{sub 3}-2,6-(CH{sub 2}PBu{sup t}{sub 2}){sub 2}{r_brace}. The rates of the pincer complex catalyzed dehydrogenation are about five times greater those previously found for NaAlH{sub 4} that was doped with titanium through a wet chemistry method. Homogenization of NaAlH{sub 4} with 2 mole % Ti(OBu{sup n}){sub 4} under an atmosphere of argon produces a novel titanium containing material. TPD measurements show that the dehydrogenation of this material occurs about 30 C lower than that previously found for wet titanium doped NaAlH{sub 4}. In further contrast to wet doped NaAlH{sub 4}, the dehydrogenation kinetics and hydrogen capacity of the novel material are undiminished over several dehydriding/hydriding cycles. Rehydrogenation of the titanium doped material occurs readily at 170 C under 150 atm of hydrogen. TPD measurements show that about 80% of the original hydrogen content (4.2 wt%) can be restored under these conditions.

  10. An Overview of the EPRI PWR Primary Chemistry Program

    International Nuclear Information System (INIS)

    Perkins, David; Fruzzetti, Keith; Haas, Carey; Wells, Dan

    2012-09-01

    Primary chemistry controls continue to evolve, impacting long term equipment reliability goals, optimized core designs, and radiation dose management practices. Chemistry initiatives include increased primary system pH (T) , zinc injection, and optimization of primary system hydrogen concentration. Nevertheless, utilities are faced with ever changing challenges as fuel vendors continue to optimize core power densities coupled with longer operating cycles and material replacement efforts. These challenges must be collaboratively addressed by the plant chemists, engineers, and operators. Operational chemistry has changed dramatically over the years with increased primary pH (T) programs requiring some utilities to operate with up to 6 ppm lithium or slightly higher. Coupled with primary pH (T) program optimization, are ongoing EPRI research efforts attempting to develop an optimized hydrogen control program balancing material issues associated with primary water stress corrosion cracking (PWSCC) crack growth rate against fuel concerns associated with increased hydrogen concentrations. One of the most significant primary chemistry changes that effectively balances the demands of materials, fuels, chemistry and dose management strategies is zinc injection into the primary coolant. Since 1994 when Farley initiated zinc injection, zinc injection has been successfully injected at over 70 pressurized water reactors world-wide. Combining operational chemistry with shutdown chemistry controls provides the plant chemist with a technically based and balanced approach to fuel and material integrity as well as dose management strategies. Shutdown chemistry has continually evolved since the 1970's when the chemist was primarily concerned with fission products. Now the chemist must manage corrosion product release, and support Outage Management and Radiation Protection through the performance of a controlled shutdown. In part, this change was driven as plant materials evolved

  11. Annual report 1989 Chemistry Department

    International Nuclear Information System (INIS)

    Funck, J.; Neve Larsen, Aa.; Larsen, E.; Nielsen, O.J.

    1990-03-01

    This report contains a brief survey of the main activities in the Chemistry Department. The names and abstracts of all articles and reports published and lectures given in 1989 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, analytical- and organic chemistry, environmental chemistry, polymer chemistry, chemical reactivity, mineral processing, and general. (author)

  12. Annual report 1988 Chemistry Department

    International Nuclear Information System (INIS)

    Funck, J.; Neve Larsen, Aa.; Larsen, E.; Nielsen, O.J.

    1989-05-01

    This report contains a brief survey of the main activities in the Chemistry Department. The names and abstracts of all articles and reports published and lectures given in 1988 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, analytical- and organic chemistry, environmental chemistry, polymer chemistry, chemical reactivity, mineral processing, and general. (author)

  13. Annual report 1986 chemistry department

    International Nuclear Information System (INIS)

    Funck, J.; Larsen, E.; Nielsen, O.J.

    1987-03-01

    This report contains a brief survey of the main activities in the Chemistry Department. All articles and reports published and lectures given in 1986 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, analytical- and organic chemistry, environmental chemistry, polymer chemistry, radical chemistral, mineral processing, and general. (author)

  14. Hydrogen Bonds and Life in the Universe

    Directory of Open Access Journals (Sweden)

    Giovanni Vladilo

    2018-01-01

    Full Text Available The scientific community is allocating more and more resources to space missions and astronomical observations dedicated to the search for life beyond Earth. This experimental endeavor needs to be backed by a theoretical framework aimed at defining universal criteria for the existence of life. With this aim in mind, we have explored which chemical and physical properties should be expected for life possibly different from the terrestrial one, but similarly sustained by genetic and catalytic molecules. We show that functional molecules performing genetic and catalytic tasks must feature a hierarchy of chemical interactions operating in distinct energy bands. Of all known chemical bonds and forces, only hydrogen bonds are able to mediate the directional interactions of lower energy that are needed for the operation of genetic and catalytic tasks. For this reason and because of the unique quantum properties of hydrogen bonding, the functional molecules involved in life processes are predicted to have extensive hydrogen-bonding capabilities. A molecular medium generating a hydrogen-bond network is probably essential to support the activity of the functional molecules. These hydrogen-bond requirements constrain the viability of hypothetical biochemistries alternative to the terrestrial one, provide thermal limits to life molecular processes, and offer a conceptual framework to define a transition from a “covalent-bond stage” to a “hydrogen-bond stage” in prebiotic chemistry.

  15. Hydrogen Bonds and Life in the Universe

    Science.gov (United States)

    2018-01-01

    The scientific community is allocating more and more resources to space missions and astronomical observations dedicated to the search for life beyond Earth. This experimental endeavor needs to be backed by a theoretical framework aimed at defining universal criteria for the existence of life. With this aim in mind, we have explored which chemical and physical properties should be expected for life possibly different from the terrestrial one, but similarly sustained by genetic and catalytic molecules. We show that functional molecules performing genetic and catalytic tasks must feature a hierarchy of chemical interactions operating in distinct energy bands. Of all known chemical bonds and forces, only hydrogen bonds are able to mediate the directional interactions of lower energy that are needed for the operation of genetic and catalytic tasks. For this reason and because of the unique quantum properties of hydrogen bonding, the functional molecules involved in life processes are predicted to have extensive hydrogen-bonding capabilities. A molecular medium generating a hydrogen-bond network is probably essential to support the activity of the functional molecules. These hydrogen-bond requirements constrain the viability of hypothetical biochemistries alternative to the terrestrial one, provide thermal limits to life molecular processes, and offer a conceptual framework to define a transition from a “covalent-bond stage” to a “hydrogen-bond stage” in prebiotic chemistry. PMID:29301382

  16. Hydrogen Bonds and Life in the Universe.

    Science.gov (United States)

    Vladilo, Giovanni; Hassanali, Ali

    2018-01-03

    The scientific community is allocating more and more resources to space missions and astronomical observations dedicated to the search for life beyond Earth. This experimental endeavor needs to be backed by a theoretical framework aimed at defining universal criteria for the existence of life. With this aim in mind, we have explored which chemical and physical properties should be expected for life possibly different from the terrestrial one, but similarly sustained by genetic and catalytic molecules. We show that functional molecules performing genetic and catalytic tasks must feature a hierarchy of chemical interactions operating in distinct energy bands. Of all known chemical bonds and forces, only hydrogen bonds are able to mediate the directional interactions of lower energy that are needed for the operation of genetic and catalytic tasks. For this reason and because of the unique quantum properties of hydrogen bonding, the functional molecules involved in life processes are predicted to have extensive hydrogen-bonding capabilities. A molecular medium generating a hydrogen-bond network is probably essential to support the activity of the functional molecules. These hydrogen-bond requirements constrain the viability of hypothetical biochemistries alternative to the terrestrial one, provide thermal limits to life molecular processes, and offer a conceptual framework to define a transition from a "covalent-bond stage" to a "hydrogen-bond stage" in prebiotic chemistry.

  17. Electric arc hydrogen heaters

    International Nuclear Information System (INIS)

    Zasypin, I.M.

    2000-01-01

    The experimental data on the electric arc burning in hydrogen are presented. Empirical and semiempirical dependences for calculating the arc characteristics are derived. An engineering method of calculating plasma torches for hydrogen heating is proposed. A model of interaction of a hydrogen arc with a gas flow is outlined. The characteristics of plasma torches for heating hydrogen and hydrogen-bearing gases are described. (author)

  18. Theory of molecular hydrogen sorption for hydrogen storage

    Science.gov (United States)

    Zhang, Shengbai

    2011-03-01

    Molecular hydrogen (H2) sorption has the advantage of fast kinetics and high reversibility. However, the binding strength is often too weak to be operative at near room temperatures. Research into such hydrogen sorption materials has branched into the study of pure van der Waals (vdW) physisorption and that of weak chemisorption (known to exist in the so-called Kubas complexes). In either case, however, theoretical tools to describe such weak interactions are underdeveloped with error bars that often exceed the strength of the interaction itself. We have used quantum-chemistry (QC) based approaches to benchmark the various available DFT methods for four classes of weak chemisorption systems [Sun et al., Phys. Rev. B 82, 073401 (2010)]. These involve complexes containing Li, Ca, Sc, and Ti with increased strength of H2 binding from predominantly vdW to mostly Kubas-like. The study reveals that most of the DFT functionals within the generalized gradient approximation underestimate the binding energy, oppose to overestimating it. The functionals that are easy to use yet yielding results reasonably close to those of accurate QC are the PBE and PW91. I will also discuss the effort of implementing vdW interaction into the currently available density functional methods [Sun, J. Chem. Phys. 129, 154102 (2008)]. The rationale is that while the true vdW is an electron-electron correlation, a DFT plus classical dispersion approach may be too simple and unnecessary within the DFT. A local pseudopotential approach has been developed to account for the core part of the polarizability of the elements. Applications to a number of benchmark systems yield good agreement with QC calculations. The application of this method and the QC methods to vdW hydrogen binding will also be discussed. Work supported by DOE/BES and DOE/EERE Hydrogen Sorption Center of Excellence under RPI subcontracts No. J30546/J90336.

  19. A long symmetric N· · ·H· · ·N hydrogen bond inbis(4-aminopyridinium)(1+) azide(1−): redetermination from the original data

    Czech Academy of Sciences Publication Activity Database

    Fábry, Jan

    2017-01-01

    Roč. 73, č. 9 (2017), s. 1344-1347 ISSN 2056-9890 R&D Projects: GA ČR(CZ) GA15-12653S Institutional support: RVO:68378271 Keywords : hydrogen bonding * symmetric hydrogen bonds * primary amine group Subject RIV: CC - Organic Chemistry OBOR OECD: Organic chemistry

  20. Titanocene sulfide chemistry

    Czech Academy of Sciences Publication Activity Database

    Horáček, Michal

    2016-01-01

    Roč. 314, MAY 2016 (2016), s. 83-102 ISSN 0010-8545 R&D Projects: GA ČR(CZ) GAP207/12/2368 Institutional support: RVO:61388955 Keywords : titanocene sulfide chemistry * photolysis * titanocene hydrosulfides Ti-(SH)n Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 13.324, year: 2016

  1. A green chemistry approach

    Indian Academy of Sciences (India)

    Administrator

    One-pot synthesis of quinaldine derivatives by using microwave irradiation without any solvent – A green chemistry approach. JAVAD SAFARI*, SAYED HOSSEIN BANITABA and SEPEHR SADEGH SAMIEI. Department of Chemistry, The Faculty of sciences, University of Kashan, Kashan,. P.O. Box 87317-51167, I.R. Iran.

  2. Chemistry in Microfluidic Channels

    Science.gov (United States)

    Chia, Matthew C.; Sweeney, Christina M.; Odom, Teri W.

    2011-01-01

    General chemistry introduces principles such as acid-base chemistry, mixing, and precipitation that are usually demonstrated in bulk solutions. In this laboratory experiment, we describe how chemical reactions can be performed in a microfluidic channel to show advanced concepts such as laminar fluid flow and controlled precipitation. Three sets of…

  3. Chemistry of americium

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, W.W.

    1976-01-01

    Essential features of the descriptive chemistry of americium are reviewed. Chapter titles are: discovery, atomic and nuclear properties, collateral reading, production and uses, chemistry in aqueous solution, metal, alloys, and compounds, and, recovery, separation, purification. Author and subject indexes are included. (JCB)

  4. Movies in Chemistry Education

    Science.gov (United States)

    Pekdag, Bulent; Le Marechal, Jean-Francois

    2010-01-01

    This article reviews numerous studies on chemistry movies. Movies, or moving pictures, are important elements of multimedia and signify a privileged or motivating means of presenting knowledge. Studies on chemistry movies show that the first movie productions in this field were devoted to university lectures or documentaries. Shorter movies were…

  5. WATER CHEMISTRY ASSESSMENT METHODS

    Science.gov (United States)

    This section summarizes and evaluates the surfce water column chemistry assessment methods for USEPA/EMAP-SW, USGS-NAQA, USEPA-RBP, Oho EPA, and MDNR-MBSS. The basic objective of surface water column chemistry assessment is to characterize surface water quality by measuring a sui...

  6. The Breath of Chemistry

    DEFF Research Database (Denmark)

    Josephsen, Jens

    The present preliminary text is a short thematic presentation in biological inorganic chemistry meant to illustrate general and inorganic (especially coordination) chemistry in biochemistry. The emphasis is on molecular models to explain features of the complicated mechanisms essential to breathing...

  7. Exercises in Computational Chemistry

    DEFF Research Database (Denmark)

    Spanget-Larsen, Jens

    2016-01-01

    A selection of HyperChem© PC-exercises in computational chemistry. Answers to most questions are appended (Roskilde University 2014-16).......A selection of HyperChem© PC-exercises in computational chemistry. Answers to most questions are appended (Roskilde University 2014-16)....

  8. Chemistry and Biology

    Science.gov (United States)

    Wigston, David L.

    1970-01-01

    Discusses the relationship between chemisty and biology in the science curriculum. Points out the differences in perception of the disciplines, which the physical scientists favoring reductionism. Suggests that biology departments offer a special course for chemistry students, just as the chemistry departments have done for biology students.…

  9. Improved hydrogen monitoring helps control corrosion

    International Nuclear Information System (INIS)

    Strauss, S.D.

    1985-01-01

    Hydrogen analyzers have long been used for corrosion monitoring in both fossil-fired boilers and nuclear steam generators. The most recent stimulus for hydrogen monitoring has been provided by cracking of recirculation piping in water reactors. This paper examines the Hydran 202N, which represents an adaption of one instrument that has been used to monitor the degradation of transformer oils and fiberoptic cables. The sensing probe consists of a flow-through cell, an isolating membrane, and a miniature hydrogen/air fuel cell. The use of Hydran 202N at several fossil-fired and nuclear plants is described and the fossilplant application related to the effectiveness of water-chemistry control for a 400 psig oil-fired boiler is examined at a refinery

  10. Transuranic Computational Chemistry.

    Science.gov (United States)

    Kaltsoyannis, Nikolas

    2018-02-26

    Recent developments in the chemistry of the transuranic elements are surveyed, with particular emphasis on computational contributions. Examples are drawn from molecular coordination and organometallic chemistry, and from the study of extended solid systems. The role of the metal valence orbitals in covalent bonding is a particular focus, especially the consequences of the stabilization of the 5f orbitals as the actinide series is traversed. The fledgling chemistry of transuranic elements in the +II oxidation state is highlighted. Throughout, the symbiotic interplay of experimental and computational studies is emphasized; the extraordinary challenges of experimental transuranic chemistry afford computational chemistry a particularly valuable role at the frontier of the periodic table. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Third Chemistry Conference on Recent Trends in Chemistry

    International Nuclear Information System (INIS)

    Saeed, M.M.; Wheed, S.

    2011-01-01

    The third chemistry conference 2011 on recent trends in chemistry was held from October 17-19, 2001 at Islamabad, Pakistan. More than 65 papers and oral presentation. The scope of the conference was wide open and provides and opportunity for participation of broad spectrum of chemists. This forum provided a platform for the dissemination of the latest research followed by discussion pertaining to new trends in chemistry. This con fence covered different aspects of subjects including analytical chemistry, environmental chemistry, polymer chemistry, industrial chemistry, biochemistry and nano chemistry etc. (A.B.)

  12. Experimental interstellar organic chemistry: Preliminary findings

    Science.gov (United States)

    Khare, B. N.; Sagan, C.

    1971-01-01

    In a simulation of interstellar organic chemistry in dense interstellar clouds or on grain surfaces, formaldehyde, water vapor, ammonia and ethane are deposited on a quartz cold finger and ultraviolet-irradiated in high vacuum at 77K. The HCHO photolytic pathway which produces an aldehyde radical and a superthermal hydrogen atom initiates solid phase chain reactions leading to a range of new compounds, including methanol, ethanol, acetaldehyde, acetonitrile, acetone, methyl formate, and possibly formic acid. Higher nitriles are anticipated. Genetic relations among these interstellar organic molecules (e.g., the Cannizzaro and Tischenko reactions) must exist. Some of them, rather than being synthesized from smaller molecules, may be degradation products of larger organic molecules, such as hexamethylene tetramine, which are candidate consitituents of the interstellar grains. The experiments reported here may also be relevant to cometary chemistry.

  13. Accessing Specific Peptide Recognition by Combinatorial Chemistry

    DEFF Research Database (Denmark)

    Li, Ming

    Molecular recognition is at the basis of all processes for life, and plays a central role in many biological processes, such as protein folding, the structural organization of cells and organelles, signal transduction, and the immune response. Hence, my PhD project is entitled “Accessing Specific...... Peptide Recognition by Combinatorial Chemistry”. Molecular recognition is a specific interaction between two or more molecules through noncovalent bonding, such as hydrogen bonding, metal coordination, van der Waals forces, π−π, hydrophobic, or electrostatic interactions. The association involves kinetic....... Combinatorial chemistry was invented in 1980s based on observation of functional aspects of the adaptive immune system. It was employed for drug development and optimization in conjunction with high-throughput synthesis and screening. (chapter 2) Combinatorial chemistry is able to rapidly produce many thousands...

  14. Korean Kimchi Chemistry: A Multicultural Chemistry Connection

    Science.gov (United States)

    Murfin, Brian

    2009-01-01

    Connecting science with different cultures is one way to interest students in science, to relate science to their lives, and at the same time to broaden their horizons in a variety of ways. In the lesson described here, students make kimchi, a delicious and popular Korean dish that can be used to explore many important chemistry concepts,…

  15. Chemistry and Nanoscience Research | NREL

    Science.gov (United States)

    Chemistry and Nanoscience Center at NREL investigates materials and processes for converting renewable and new technologies. NREL's primary research in the chemistry and nanoscience center includes the Electrochemical Engineering and Materials Chemistry Providing a knowledge base in materials science covering

  16. System approach to chemistry course

    OpenAIRE

    Lorina E. Kruglova; Valentina G. Derendyaeva

    2010-01-01

    The article considers the raise of chemistry profile for engineers and constructors training, discloses the system approach to chemistry course and singles out the most important modules from the course of general chemistry for construction industry.

  17. Primary water chemistry for NPP with VVER-TOI

    International Nuclear Information System (INIS)

    Susakin, S.N.; Brykov, S.I.; Zadonsky, N.V.; Bystrova, O.S.

    2012-09-01

    Nowadays within the framework of development of the nuclear power industry in Russia the VVER-TOI reactor is under designing (Standard optimized design). The given design provides for improvement of operation safety level, of technical-economic, operational and load-follow characteristics, and for the raise of competitive capacity of reactor plant and NPP as a whole. In VVER-TOI reactor plant design the primary water chemistry has been improved considering operation experience of VVER reactor plants and a possibility of RP operation under load-follow modes from the viewpoint of meeting the following requirements: - suppression of generation of oxidizing radiolytic products under power operation; - assurance of corrosion resistance of structural materials of equipment and pipelines throughout the NPP design service life; - minimization of deposits on surfaces of the reactor core fuel rods and on heat exchange surface of steam generators; - minimization of accumulation of activated corrosion products; - minimization of the amount of radioactive processing waste. In meeting these requirements an important role is devoted to suppression of generation of oxidizing radiolytic products owing to accumulation of hydrogen in the primary coolant. At NPP with VVER-1000 reactor the ammonia-potassium water chemistry is used wherein the hydrogen accumulation is provided at the expense of ammonia proportioning. Usage of ammonia leads to generation of additional amount of radioactive processing waste and to increased irregularity of maintaining the water chemistry under the daily load-follow modes. In VVER TOI design the primary water chemistry is improved by replacing the proportioning of ammonia with the proportioning of gaseous hydrogen. Different process schemes were considered that provide for a possibility of hydrogen accumulation and maintaining owing to direct proportioning of gaseous hydrogen. The obtained results showed that transition to the potassium water chemistry

  18. Why hydrogen; Pourquoi l'hydrogene?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-02-01

    The energy consumption increase and the associated environmental risks, led to develop new energy sources. The authors present the potentialities of the hydrogen in this context of energy supply safety. They detail the today market and the perspectives, the energy sources for the hydrogen production (fossils, nuclear and renewable), the hydrogen transport, storage, distribution and conversion, the application domains, the associated risks. (A.L.B.)

  19. Hydrogen ion input to the Hubbard Brook Experimental Forest, New Hampshire, during the last decade

    Science.gov (United States)

    Gene E. Likens; F. Herbert Bormann; John S. Eaton; Robert S. Pierce; Noye M. Johnson

    1976-01-01

    Being downwind of eastern and midwestern industrial centers, the Hubbard Brook Experimental Forest offers a prime location to monitor long-term trends in atmospheric chemistry. Continuous measurements of precipitation chemistry during the last 10 years provide a measure of recent changes in precipitation inputs of hydrogen ion. The weighted average pH of precipitation...

  20. Photoswitchable Intramolecular Hydrogen Bonds in 5-Phenylazopyrimidines Revealed By In Situ Irradiation NMR Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Procházková, Eliška; Čechová, Lucie; Kind, J.; Janeba, Zlatko; Thiele, C. M.; Dračínský, Martin

    2018-01-01

    Roč. 24, č. 2 (2018), s. 492-498 ISSN 0947-6539 R&D Projects: GA ČR GA15-11223S Institutional support: RVO:61388963 Keywords : azopyrimidines * heterocycles * hydrogen bonds * NMR spectroscopy * UV/Vis in situ irradiation Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 5.317, year: 2016

  1. Hydrogen fuel. Uses

    International Nuclear Information System (INIS)

    Darkrim-Lamari, F.; Malbrunot, P.

    2006-01-01

    Hydrogen is a very energetic fuel which can be used in combustion to generate heat and mechanical energy or which can be used to generate electricity and heat through an electrochemical reaction with oxygen. This article deals with the energy conversion, the availability and safety problems linked with the use of hydrogen, and with the socio-economical consequences of a generalized use of hydrogen: 1 - hydrogen energy conversion: hydrogen engines, aerospace applications, fuel cells (principle, different types, domains of application); 2 - hydrogen energy availability: transport and storage (gas pipelines, liquid hydrogen, adsorbed and absorbed hydrogen in solid materials), service stations; 3 - hazards and safety: flammability, explosibility, storage and transport safety, standards and regulations; 4 - hydrogen economy; 5 - conclusion. (J.S.)

  2. Annual report 1987 Chemistry Department

    International Nuclear Information System (INIS)

    Funck, J.; Larsen, E.; Nielsen, O.J.

    1988-04-01

    This report contains a brief survey of the main activities in the Chemistry Department. The names and abstracts of all articles and reports published and lectures given in 1987 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, analytical- and organic chemistry, environmental chemistry, polymer chemistry, radical chemistry, mineral processing, and general. 13 ills., (author)

  3. Annual report 1982 chemistry department

    International Nuclear Information System (INIS)

    Larsen, E.; Nielsen, O.J.

    1983-04-01

    The work going on in the Risoe National Laboratory, Chemistry Department is briefly surveyed by a presentation of all articles and reports published in 1982. The facilities and equipment are barely mentioned. The papers are divided into eight activities: 1. neutron activation analysis 2. analytical- and organic chemistry 3. environmental chemistry 4. polymer chemistry 5. geochemistry 6. radical chemistry 7. poitron annihilation 8. uranium process chemistry. (author)

  4. Hydrogen energy systems studies

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.M.; Kreutz, T.G.; Steinbugler, M. [Princeton Univ., NJ (United States)] [and others

    1996-10-01

    In this report the authors describe results from technical and economic assessments carried out during the past year with support from the USDOE Hydrogen R&D Program. (1) Assessment of technologies for small scale production of hydrogen from natural gas. Because of the cost and logistics of transporting and storing hydrogen, it may be preferable to produce hydrogen at the point of use from more readily available energy carriers such as natural gas or electricity. In this task the authors assess near term technologies for producing hydrogen from natural gas at small scale including steam reforming, partial oxidation and autothermal reforming. (2) Case study of developing a hydrogen vehicle refueling infrastructure in Southern California. Many analysts suggest that the first widespread use of hydrogen energy is likely to be in zero emission vehicles in Southern California. Several hundred thousand zero emission automobiles are projected for the Los Angeles Basin alone by 2010, if mandated levels are implemented. Assuming that hydrogen vehicles capture a significant fraction of this market, a large demand for hydrogen fuel could evolve over the next few decades. Refueling a large number of hydrogen vehicles poses significant challenges. In this task the authors assess near term options for producing and delivering gaseous hydrogen transportation fuel to users in Southern California including: (1) hydrogen produced from natural gas in a large, centralized steam reforming plant, and delivered to refueling stations via liquid hydrogen truck or small scale hydrogen gas pipeline, (2) hydrogen produced at the refueling station via small scale steam reforming of natural gas, (3) hydrogen produced via small scale electrolysis at the refueling station, and (4) hydrogen from low cost chemical industry sources (e.g. excess capacity in refineries which have recently upgraded their hydrogen production capacity, etc.).

  5. Annual Report 1984. Chemistry Department

    DEFF Research Database (Denmark)

    Funck, Jytte; Nielsen, Ole John

    This report contains a brief survey of the main activities in the Chemistry Department. All articles and reports published and lectures given in 1984 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, an......, analytical- and organic chemistry, environmental chemistry, polymer chemistry, geochemistry and waste disposal, radical chemistry, positron annihilation, mineral processing, and general.......This report contains a brief survey of the main activities in the Chemistry Department. All articles and reports published and lectures given in 1984 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry...

  6. Oxygen from Hydrogen Peroxide. A Safe Molar Volume-Molar Mass Experiment.

    Science.gov (United States)

    Bedenbaugh, John H.; And Others

    1988-01-01

    Describes a molar volume-molar mass experiment for use in general chemistry laboratories. Gives background technical information, procedures for the titration of aqueous hydrogen peroxide with standard potassium permanganate and catalytic decomposition of hydrogen peroxide to produce oxygen, and a discussion of the results obtained in three…

  7. Do-It-Yourself: 3D Models of Hydrogenic Orbitals through 3D Printing

    Science.gov (United States)

    Griffith, Kaitlyn M.; de Cataldo, Riccardo; Fogarty, Keir H.

    2016-01-01

    Introductory chemistry students often have difficulty visualizing the 3-dimensional shapes of the hydrogenic electron orbitals without the aid of physical 3D models. Unfortunately, commercially available models can be quite expensive. 3D printing offers a solution for producing models of hydrogenic orbitals. 3D printing technology is widely…

  8. Reactions of oxygen and hydrogen with liquid sodium - a critical survey

    International Nuclear Information System (INIS)

    Ullmann, H.

    1982-01-01

    The fundamentals of solvation chemistry are presented with appropriate components formulated. Methods of investigation and kinetics of the reactions are described. The hydrogen equilibrium pressure and saturation solubilities are described. The chemical equilibrium between O and H in solution is presented with detailed tabulation of the saturation solutions of oxygen, hydrogen and hydroxide in liquid sodium. Agreements and differences with the literature are presented

  9. Moderator Chemistry Program

    International Nuclear Information System (INIS)

    Dewitt, L.V.; Gibbs, A.; Lambert, D.P.; Bohrer, S.R.; Fanning, R.L.; Houston, M.W.; Stinson, S.L.; Deible, R.W.; Abdel-Khalik, S.I.

    1990-11-01

    Over the past fifteen months, the Systems Chemistry Group of the Reactor Engineering Department has undertaken a comprehensive study of the Department's moderator chemistry program at Savannah River Site (SRS). An internal review was developed to formalize and document this program. Objectives were as outlined in a mission statement and action plan. In addition to the mission statement and action plan, nine separate task reports have been issued during the course of this study. Each of these task reports is included in this document as a chapter. This document is an organized compilation of the individual reports issued by the Systems Chemistry Group in assessment of SRS moderator chemistry to determine if there were significant gaps in the program as ft existed in October, 1989. While these reviews found no significant gaps in that mode of operation, or any items that adversely affected safety, items were identified that could be improved. Many of the items have already been dear with or are in the process of completion under this Moderator Chemistry Program and other Reactor Restart programs. A complete list of the items of improvement found under this assessment is found in Chapter 9, along with a proposed time table for correcting remaining items that can be improved for the chemistry program of SRS reactors. An additional external review of the moderator chemistry processes, recommendations, and responses to/from the Reactor Corrosion Mitigation Committee is included as Appendix to this compilation

  10. Chemistry of Technetium

    International Nuclear Information System (INIS)

    Omori, Takashi

    2001-01-01

    Since the late 1970's the coordination chemistry of technetium has been developed remarkably. The background of the development is obviously related to the use of technetium radiopharmaceuticals for diagnosis in nuclear medicine. Much attention has also been denoted to the chemical behavior of environmental 99 Tc released from reprocessing plants. This review covers the several aspects of technetium chemistry, including production of radioisotopes, analytical chemistry and coordination chemistry. In the analytical chemistry, separation of technetium, emphasizing chromatography and solvent extraction, is described together with spectrophotometric determination of technetium. In the coordination chemistry of technetium, a characteristic feature of the chemistry of Tc(V) complexes is referred from the view point of the formation of a wide variety of highly stable complexes containing the Tc=O or Tc≡N bond. Kinetic studies of the preparation of Tc(III) complexes using hexakis (thiourea) technetium(III) ion as a starting material are summarized, together with the base hydrolysis reactions of Tc(III), Tc(IV) and Tc(V) complexes. (author)

  11. Hydrogen in metals

    CSIR Research Space (South Africa)

    Carter, TJ

    2001-04-01

    Full Text Available .J. Cartera,*, L.A. Cornishb aAdvanced Engineering & Testing Services, MATTEK, CSIR, Private Bag X28, Auckland Park 2006, South Africa bSchool of Process and Materials Engineering, University of the Witwatersrand, Private Bag 3, P.O. WITS 2050, South Africa... are contrasted, and an unusual case study of hydrogen embrittlement of an alloy steel is presented. 7 2001 Published by Elsevier Science Ltd. Keywords: Hydrogen; Hydrogen-assisted cracking; Hydrogen damage; Hydrogen embrittlement 1. Introduction Hydrogen suC128...

  12. Mathematics for physical chemistry

    CERN Document Server

    Mortimer, Robert G

    2013-01-01

    Mathematics for Physical Chemistry is the ideal supplementary text for practicing chemists and students who want to sharpen their mathematics skills while enrolled in general through physical chemistry courses. This book specifically emphasizes the use of mathematics in the context of physical chemistry, as opposed to being simply a mathematics text. This 4e includes new exercises in each chapter that provide practice in a technique immediately after discussion or example and encourage self-study. The early chapters are constructed around a sequence of mathematical topics, wit

  13. Gas phase ion chemistry

    CERN Document Server

    Bowers, Michael T

    1979-01-01

    Gas Phase Ion Chemistry, Volume 1 covers papers on the advances of gas phase ion chemistry. The book discusses the advances in flow tubes and the measurement of ion-molecule rate coefficients and product distributions; the ion chemistry of the earth's atmosphere; and the classical ion-molecule collision theory. The text also describes statistical methods in reaction dynamics; the state selection by photoion-photoelectron coincidence; and the effects of temperature and pressure in the kinetics of ion-molecule reactions. The energy distribution in the unimolecular decomposition of ions, as well

  14. Spatially Resolved Artificial Chemistry

    DEFF Research Database (Denmark)

    Fellermann, Harold

    2009-01-01

    Although spatial structures can play a crucial role in chemical systems and can drastically alter the outcome of reactions, the traditional framework of artificial chemistry is a well-stirred tank reactor with no spatial representation in mind. Advanced method development in physical chemistry has...... made a class of models accessible to the realms of artificial chemistry that represent reacting molecules in a coarse-grained fashion in continuous space. This chapter introduces the mathematical models of Brownian dynamics (BD) and dissipative particle dynamics (DPD) for molecular motion and reaction...

  15. Experiments in physical chemistry

    CERN Document Server

    Wilson, J M; Denaro, A R

    1968-01-01

    Experiments in Physical Chemistry, Second Edition provides a compilation of experiments concerning physical chemistry. This book illustrates the link between the theory and practice of physical chemistry. Organized into three parts, this edition begins with an overview of those experiments that generally have a simple theoretical background. Part II contains experiments that are associated with more advanced theory or more developed techniques, or which require a greater degree of experimental skill. Part III consists of experiments that are in the nature of investigations wherein these invest

  16. Computational quantum chemistry website

    International Nuclear Information System (INIS)

    1997-01-01

    This report contains the contents of a web page related to research on the development of quantum chemistry methods for computational thermochemistry and the application of quantum chemistry methods to problems in material chemistry and chemical sciences. Research programs highlighted include: Gaussian-2 theory; Density functional theory; Molecular sieve materials; Diamond thin-film growth from buckyball precursors; Electronic structure calculations on lithium polymer electrolytes; Long-distance electronic coupling in donor/acceptor molecules; and Computational studies of NOx reactions in radioactive waste storage

  17. Spatially Resolved Artificial Chemistry

    DEFF Research Database (Denmark)

    Fellermann, Harold

    2009-01-01

    made a class of models accessible to the realms of artificial chemistry that represent reacting molecules in a coarse-grained fashion in continuous space. This chapter introduces the mathematical models of Brownian dynamics (BD) and dissipative particle dynamics (DPD) for molecular motion and reaction......Although spatial structures can play a crucial role in chemical systems and can drastically alter the outcome of reactions, the traditional framework of artificial chemistry is a well-stirred tank reactor with no spatial representation in mind. Advanced method development in physical chemistry has...

  18. DOE fundamentals handbook: Chemistry

    International Nuclear Information System (INIS)

    1993-01-01

    The Chemistry Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of chemistry. The handbook includes information on the atomic structure of matter; chemical bonding; chemical equations; chemical interactions involved with corrosion processes; water chemistry control, including the principles of water treatment; the hazards of chemicals and gases, and basic gaseous diffusion processes. This information will provide personnel with a foundation for understanding the chemical properties of materials and the way these properties can impose limitations on the operation of equipment and systems

  19. Non-thermally activated chemistry

    International Nuclear Information System (INIS)

    Stiller, W.

    1987-01-01

    The subject is covered under the following headings: state-of-the art of non-thermally activated chemical processes; basic phenomena in non-thermal chemistry including mechanochemistry, photochemistry, laser chemistry, electrochemistry, photo-electro chemistry, high-field chemistry, magneto chemistry, plasma chemistry, radiation chemistry, hot-atom chemistry, and positronium and muonium chemistry; elementary processes in non-thermal chemistry including nuclear chemistry, interactions of electromagnetic radiations, electrons and heavy particles with matter, ionic elementary processes, elementary processes with excited species, radicalic elementary processes, and energy-induced elementary processes on surfaces and interfaces; and comparative considerations. An appendix with historical data and a subject index is given. 44 figs., 41 tabs., and 544 refs

  20. Fuel Cell and Hydrogen Technologies Program | Hydrogen and Fuel Cells |

    Science.gov (United States)

    NREL Fuel Cell and Hydrogen Technologies Program Fuel Cell and Hydrogen Technologies Program Through its Fuel Cell and Hydrogen Technologies Program, NREL researches, develops, analyzes, and validates fuel cell and hydrogen production, delivery, and storage technologies for transportation

  1. Boron-nitrogen based hydrides and reactive composites for hydrogen storage

    DEFF Research Database (Denmark)

    Jepsen, Lars H.; Ley, Morten B.; Lee, Young-Su

    2014-01-01

    Hydrogen forms chemical compounds with most other elements and forms a variety of different chemical bonds. This fascinating chemistry of hydrogen has continuously provided new materials and composites with new prospects for rational design and the tailoring of properties. This review highlights...... a range of new boron and nitrogen based hydrides and illustrates how hydrogen release and uptake properties can be improved. © 2014 Elsevier Ltd....

  2. Dynamics of hydrogen in hydrogenated amorphous silicon

    Indian Academy of Sciences (India)

    is mobile and can easily move through the material). Hydrogen diffuses ... The determination of the relationship of light-enhanced hydrogen motion to ... term is negligible, and using the thermodynamic relation given below f(c) = kBT .... device-applications problematic but the normal state can be recovered by a thermal an-.

  3. Closed-cell polymeric foam for hydrogen separation and storage

    Czech Academy of Sciences Publication Activity Database

    Pientka, Zbyněk; Pokorný, P.; Bélafi-Bakó, K.

    2007-01-01

    Roč. 304, 1-2 (2007), s. 82-87 ISSN 0376-7388 R&D Projects: GA ČR GA203/06/1207 Institutional research plan: CEZ:AV0Z40500505 Keywords : polymeric foam * gas separation * hydrogen storage Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.432, year: 2007

  4. Electrochemical titration of hydrogen adsorbed on supported platinum catalysts

    Czech Academy of Sciences Publication Activity Database

    Paseka, Ivo

    2007-01-01

    Roč. 329, - (2007), s. 161-163 ISSN 0926-860X R&D Projects: GA ČR GA104/03/0409 Institutional research plan: CEZ:AV0Z40320502 Keywords : platinum * hydrogen adsorption * specific surface area Subject RIV: CA - Inorganic Chemistry Impact factor: 3.166, year: 2007

  5. Polarization-induced sigma-holes and hydrogen bonding

    Czech Academy of Sciences Publication Activity Database

    Hennemann, M.; Murray, J. S.; Politzer, P.; Riley, Kevin Eugene; Clark, T.

    2012-01-01

    Roč. 18, č. 6 (2012), s. 2461-2469 ISSN 1610-2940 Institutional research plan: CEZ:AV0Z40550506 Keywords : hydrogen bond * sigma-hole * polarization * field effect * ab initio calculation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.984, year: 2012

  6. Defining the hydrogen bond: An account (IUPAC Technical Report)

    Czech Academy of Sciences Publication Activity Database

    Arunan, E.; Desiraju, G. R.; Klein, R. A.; Sadlej, J.; Scheiner, S.; Alkorta, I.; Clary, D. C.; Crabtree, R. H.; Dannenberg, J. J.; Hobza, Pavel; Kjaergaard, H. G.; Legon, A. C.; Mennucci, B.; Nesbitt, D. J.

    2011-01-01

    Roč. 83, č. 8 (2011), s. 1619-1636 ISSN 0033-4545 Institutional research plan: CEZ:AV0Z40550506 Keywords : bonding * electrostatic interactions * hydrogen bonding * molecular interactions Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.789, year: 2011

  7. Thymol Hydrogenation in Bench Scale Trickle Bed Reactor

    Czech Academy of Sciences Publication Activity Database

    Dudas, J.; Hanika, Jiří; Lepuru, J.; Barkhuysen, M.

    2005-01-01

    Roč. 19, č. 3 (2005), s. 255-262 ISSN 0352-9568 Institutional research plan: CEZ:AV0Z40720504 Keywords : thymol hydrogenation * trickle bed reactor * gas-liquid-solid reaction Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 0.632, year: 2005

  8. Handbook of hydrogen energy

    CERN Document Server

    Sherif, SA; Stefanakos, EK; Steinfeld, Aldo

    2014-01-01

    ""This book provides an excellent overview of the hydrogen economy and a thorough and comprehensive presentation of hydrogen production and storage methods.""-Scott E. Grasman, Rochester Institute of Technology, New York, USA

  9. Hydrogen production by Cyanobacteria

    Directory of Open Access Journals (Sweden)

    Chaudhuri Surabhi

    2005-12-01

    Full Text Available Abstract The limited fossil fuel prompts the prospecting of various unconventional energy sources to take over the traditional fossil fuel energy source. In this respect the use of hydrogen gas is an attractive alternate source. Attributed by its numerous advantages including those of environmentally clean, efficiency and renew ability, hydrogen gas is considered to be one of the most desired alternate. Cyanobacteria are highly promising microorganism for hydrogen production. In comparison to the traditional ways of hydrogen production (chemical, photoelectrical, Cyanobacterial hydrogen production is commercially viable. This review highlights the basic biology of cynobacterial hydrogen production, strains involved, large-scale hydrogen production and its future prospects. While integrating the existing knowledge and technology, much future improvement and progress is to be done before hydrogen is accepted as a commercial primary energy source.

  10. Center for Hydrogen Storage.

    Science.gov (United States)

    2013-06-01

    The main goals of this project were to (1) Establish a Center for Hydrogen Storage Research at Delaware State University for the preparation and characterization of selected complex metal hydrides and the determination their suitability for hydrogen ...

  11. Radionuclides in analytical chemistry

    International Nuclear Information System (INIS)

    Tousset, J.

    1984-01-01

    Applications of radionuclides in analytical chemistry are reviewed in this article: tracers, radioactive sources and activation analysis. Examples are given in all these fields and it is concluded that these methods should be used more widely [fr

  12. Electrostatics in Chemistry

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 7. Electrostatics in Chemistry - Molecular Electrostatic Potential: Visualization and Topography. Shridhar R Gadre Pravin K Bhadane. Series Article Volume 4 Issue 7 July 1999 pp 14-23 ...

  13. Organic Chemistry Masterclasses

    Indian Academy of Sciences (India)

    of Science Education that is published monthly by the Academy since January 1996. ...... Modern chemistry is also emerging from molecules derived from the .... photochemical reactions, the traditional correlation diagram approach is more ...

  14. Alcohol combustion chemistry

    KAUST Repository

    Sarathy, Mani; Oß wald, Patrick; Hansen, Nils; Kohse-Hö inghaus, Katharina

    2014-01-01

    . While biofuel production and its use (especially ethanol and biodiesel) in internal combustion engines have been the focus of several recent reviews, a dedicated overview and summary of research on alcohol combustion chemistry is still lacking. Besides

  15. General Chemistry for Engineers.

    Science.gov (United States)

    Kybett, B. D.

    1982-01-01

    Discusses the relationship between molecular structure, intermolecular forces, and tensile strengths of a polymer and suggests that this is a logical way to introduce polymers into a general chemistry course. (Author/JN)

  16. WHAT MAKES CHEMISTRY DIFFICULT?

    African Journals Online (AJOL)

    IICBA01

    School of Natural and Computational Science Dire Dawa University, Ethiopia,. 2 ... lack of teaching aids and the difficulty of the language of chemistry. ... lab every other week consisting of concept pretests on the web, hand-written homework, ...

  17. Indicators: Soil Chemistry

    Science.gov (United States)

    The chemical makeup of the soil can provide information on wetland condition, wetland water quality and services being provided by the wetland ecosystem. Analyzing soil chemistry reveals if the soil is contaminated with a toxic chemical or heavy metal.

  18. Applications of supramolecular chemistry

    CERN Document Server

    Schneider, Hans-Jörg

    2012-01-01

    ""The time is ripe for the present volume, which gathers thorough presentations of the numerous actually realized or potentially accessible applications of supramolecular chemistry by a number of the leading figures in the field. The variety of topics covered is witness to the diversity of the approaches and the areas of implementation…a broad and timely panorama of the field assembling an eminent roster of contributors.""-Jean-Marie Lehn, 1987 Noble Prize Winner in Chemistry

  19. Gas phase ion chemistry

    CERN Document Server

    Bowers, Michael T

    1979-01-01

    Gas Phase Ion Chemistry, Volume 2 covers the advances in gas phase ion chemistry. The book discusses the stabilities of positive ions from equilibrium gas-phase basicity measurements; the experimental methods used to determine molecular electron affinities, specifically photoelectron spectroscopy, photodetachment spectroscopy, charge transfer, and collisional ionization; and the gas-phase acidity scale. The text also describes the basis of the technique of chemical ionization mass spectrometry; the energetics and mechanisms of unimolecular reactions of positive ions; and the photodissociation

  20. Reference Sources in Chemistry

    OpenAIRE

    Sthapit, Dilip Man

    1995-01-01

    Information plays an important role in the development of every field. Therefore a brief knowledge regarding information sources is necessary to function in any field. There are many information sources about scientific and technical subjects. In this context there are many reference sources in Chemistry too. Chemistry is one important part of the science which deals with the study of the composition of substances and the chemical changes that they undergo. The purpose of this report is...

  1. Quantitative analysis chemistry

    International Nuclear Information System (INIS)

    Ko, Wansuk; Lee, Choongyoung; Jun, Kwangsik; Hwang, Taeksung

    1995-02-01

    This book is about quantitative analysis chemistry. It is divided into ten chapters, which deal with the basic conception of material with the meaning of analysis chemistry and SI units, chemical equilibrium, basic preparation for quantitative analysis, introduction of volumetric analysis, acid-base titration of outline and experiment examples, chelate titration, oxidation-reduction titration with introduction, titration curve, and diazotization titration, precipitation titration, electrometric titration and quantitative analysis.

  2. Chemistry and nuclear technology

    International Nuclear Information System (INIS)

    De Wet, W.J.

    1977-01-01

    The underlying principles of nuclear sciece and technology as based on the two basic phenomena, namely, radioactivity and nuclear reactions, with their relatively large associated energy changes, are outlined. The most important contributions by chemists in the overall historical development are mentioned and the strong position chemistry has attained in these fields is indicated. It is concluded that chemistry as well as many other scientific discplines (apart from general benefits) have largely benefitted from these nuclear developments [af

  3. EPA Environmental Chemistry Laboratory

    Science.gov (United States)

    1993-01-01

    The Environmental Protection Agency's (EPA) Chemistry Laboratory (ECL) is a national program laboratory specializing in residue chemistry analysis under the jurisdiction of the EPA's Office of Pesticide Programs in Washington, D.C. At Stennis Space Center, the laboratory's work supports many federal anti-pollution laws. The laboratory analyzes environmental and human samples to determine the presence and amount of agricultural chemicals and related substances. Pictured, ECL chemists analyze environmental and human samples for the presence of pesticides and other pollutants.

  4. Fundamentals of quantum chemistry

    CERN Document Server

    House, J E

    2004-01-01

    An introduction to the principles of quantum mechanics needed in physical chemistry. Mathematical tools are presented and developed as needed and only basic calculus, chemistry, and physics is assumed. Applications include atomic and molecular structure, spectroscopy, alpha decay, tunneling, and superconductivity. New edition includes sections on perturbation theory, orbital symmetry of diatomic molecules, the Huckel MO method and Woodward/Hoffman rules as well as a new chapter on SCF and Hartree-Fock methods. * This revised text clearly presents basic q

  5. Tropical Soil Chemistry

    DEFF Research Database (Denmark)

    Borggaard, Ole K.

    and environmental protection. Tropical Soil Chemistry by Ole K. Borggaard provides an overview of the composition, occurrence, properties, processes, formation, and environmental vulnerability of various tropical soil types (using American Soil Taxonomy for classification). The processes and the external factors...... soil chemical issues are also presented to assess when, why, and how tropical soils differ from soils in other regions. This knowledge can help agricultural specialists in the tropics establish sustainable crop production. Readers are assumed to be familiar with basic chemistry, physics...

  6. Nuclear electrolytic hydrogen

    International Nuclear Information System (INIS)

    Barnstaple, A.G.; Petrella, A.J.

    1982-05-01

    An extensive study of hydrogen supply has recently been carried out by Ontario Hydro which indicates that electrolytic hydrogen produced from nuclear electricity could offer the lowest cost option for any future large scale hydrogen supply in the Province of Ontario, Canada. This paper provides a synopsis of the Ontario Hydro study, a brief overview of the economic factors supporting the study conclusion and discussion of a number of issues concerning the supply of electrolytic hydrogen by electric power utilities

  7. Hydrogen Technologies Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    Rivkin, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Burgess, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Buttner, W. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-01-01

    The purpose of this guide is to provide basic background information on hydrogen technologies. It is intended to provide project developers, code officials, and other interested parties the background information to be able to put hydrogen safety in context. For example, code officials reviewing permit applications for hydrogen projects will get an understanding of the industrial history of hydrogen, basic safety concerns, and safety requirements.

  8. Hydrogen-metal systems

    International Nuclear Information System (INIS)

    Wenzl, H.; Springer, T.

    1976-01-01

    A survey is given on the alloys of metal crystals with hydrogen. The system niobium-hydrogen and its properties are especially dealt with: diffusion and heat of solution of hydrogen in the host crystal, phase diagram, coherent and incoherent phase separation, application of metal-hydrogen systems in technology. Furthermore, examples from research work in IFF (Institut fuer Festkoerperforschung) of the Nuclear Research Plant, Juelich, in the field of metal-H systems are given in summary form. (GSC) [de

  9. Searching for magnetism in hydrogenated graphene: Using highly hydrogenated graphene prepared via birch reduction of graphite oxides

    Czech Academy of Sciences Publication Activity Database

    Eng, A.Y.S.; Poh, H. L.; Šaněk, F.; Maryško, Miroslav; Matějková, Stanislava; Šofer, Z.; Pumera, M.

    2013-01-01

    Roč. 7, č. 7 (2013), s. 5930-5939 ISSN 1936-0851 R&D Projects: GA ČR GA13-20507S Institutional support: RVO:68378271 ; RVO:61388963 Keywords : hydrogenated graphene * graphane * graphite oxide * ferromagnetism Subject RIV: BM - Solid Matter Physics ; Magnetism; CF - Physical ; Theoretical Chemistry (UOCHB-X) Impact factor: 12.033, year: 2013

  10. Hydrogen Tunneling in Enzymes and Biomimetic Models

    Energy Technology Data Exchange (ETDEWEB)

    Layfield, Joshua P.; Hammes-Schiffer, Sharon

    2014-04-09

    Hydrogen transfer reactions play an important role throughout chemistry and biology. In general, hydrogen transfer reactions encompass proton and hydride transfer, which are associated with the transfer of a positively or negatively charged species, respectively, and proton-coupled electron transfer (PCET), which corresponds to the net transfer of one electron and one proton in the simplest case. Such PCET reactions can occur by either a sequential mechanism, in which the proton or electron transfers first, or a concerted mechanism, in which the electron and proton transfer in a single kinetic step with no stable intermediate. Furthermore, concerted PCET reactions can be subdivided into hydrogen atom transfer (HAT), which corresponds to the transfer of an electron and proton between the same donor and acceptor (i.e., the transfer of a predominantly neutral species), and electron-proton transfer (EPT), which corresponds to the transfer of an electron and proton between different donors and acceptors, possibly even in different directions. In all of these types of hydrogen transfer reactions, hydrogen tunneling could potentially play a significant role. The biomimetic portion was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences.

  11. Hydrogen Tunneling in Enzymes and Biomimetic Models

    Energy Technology Data Exchange (ETDEWEB)

    Layfield, Joshua P.; Hammes-Schiffer, Sharon

    2013-12-20

    Hydrogen transfer reactions play an important role throughout chemistry and biology. In general, hydrogen transfer reactions encompass proton and hydride transfer, which are associated with the transfer of a positively or negatively charged species, respectively, and proton-coupled electron transfer (PCET), which corresponds to the net transfer of one electron and one proton in the simplest case. Such PCET reactions can occur by either a sequential mechanism, in which the proton or electron transfers first, or a concerted mechanism, in which the electron and proton transfer in a single kinetic step with no stable intermediate. Furthermore, concerted PCET reactions can be subdivided into hydrogen atom transfer (HAT), which corresponds to the transfer of an electron and proton between the same donor and acceptor (i.e., the transfer of a predominantly neutral species), and electron-proton transfer (EPT), which corresponds to the transfer of an electron and proton between different donors and acceptors, possibly even in different directions. In all of these types of hydrogen transfer reactions, hydrogen tunneling could potentially play a signficant role. The theoretical development portion of this Review was supported by the National Science Foundation under CHE-10-57875. The biological portion of this Review was funded by NIH Grant No. GM056207. The biomimetic portion was supported as part of the Center for Molecular Electro-catalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.

  12. Hydrogenation of passivated contacts

    Energy Technology Data Exchange (ETDEWEB)

    Nemeth, William; Yuan, Hao-Chih; LaSalvia, Vincenzo; Stradins, Pauls; Page, Matthew R.

    2018-03-06

    Methods of hydrogenation of passivated contacts using materials having hydrogen impurities are provided. An example method includes applying, to a passivated contact, a layer of a material, the material containing hydrogen impurities. The method further includes subsequently annealing the material and subsequently removing the material from the passivated contact.

  13. Henry Taube and Coordination Chemistry

    Science.gov (United States)

    dropdown arrow Site Map A-Z Index Menu Synopsis Henry Taube and Coordination Chemistry Resources with Professor of Chemistry, Emeritus, at Stanford University, received the 1983 Nobel Prize in Chemistry " there from 1940-41. "I became deeply interested in chemistry soon after I came to Berkeley,"

  14. First antimatter chemistry

    CERN Multimedia

    2006-01-01

    "The Athena collaboration, an experimental group working at the CERN laboratory in Geneva, has measured chemical reactions involving antiprotonic hydrogen, a bound object consisting of a negatively charged antiproton paired with a positively charged proton." (1 page)

  15. Organic chemistry and biology of the interstellar medium

    Science.gov (United States)

    Sagan, C.

    1973-01-01

    Interstellar organic chemistry is discussed as the field of study emerging from the discovery of microwave lines of formaldehyde and of hydrogen cyanide in the interstellar medium. The reliability of molecular identifications and comparisons of interstellar and cometary compounds are considered, along with the degradational origin of simple organics. It is pointed out that the contribution of interstellar organic chemistry to problems in biology is not substantive but analogical. The interstellar medium reveals the operation of chemical processes which, on earth and perhaps on vast numbers of planets throughout the universe, led to the origin of life, but the actual molecules of the interstellar medium are unlikely to play any significant biological role.

  16. Gas-grain chemistry in cold interstellar cloud cores with a microscopic Monte Carlo approach to surface chemistry

    Science.gov (United States)

    Chang, Q.; Cuppen, H. M.; Herbst, E.

    2007-07-01

    Aims:We have recently developed a microscopic Monte Carlo approach to study surface chemistry on interstellar grains and the morphology of ice mantles. The method is designed to eliminate the problems inherent in the rate-equation formalism to surface chemistry. Here we report the first use of this method in a chemical model of cold interstellar cloud cores that includes both gas-phase and surface chemistry. The surface chemical network consists of a small number of diffusive reactions that can produce molecular oxygen, water, carbon dioxide, formaldehyde, methanol and assorted radicals. Methods: The simulation is started by running a gas-phase model including accretion onto grains but no surface chemistry or evaporation. The starting surface consists of either flat or rough olivine. We introduce the surface chemistry of the three species H, O and CO in an iterative manner using our stochastic technique. Under the conditions of the simulation, only atomic hydrogen can evaporate to a significant extent. Although it has little effect on other gas-phase species, the evaporation of atomic hydrogen changes its gas-phase abundance, which in turn changes the flux of atomic hydrogen onto grains. The effect on the surface chemistry is treated until convergence occurs. We neglect all non-thermal desorptive processes. Results: We determine the mantle abundances of assorted molecules as a function of time through 2 × 105 yr. Our method also allows determination of the abundance of each molecule in specific monolayers. The mantle results can be compared with observations of water, carbon dioxide, carbon monoxide, and methanol ices in the sources W33A and Elias 16. Other than a slight underproduction of mantle CO, our results are in very good agreement with observations.

  17. Hydrogen separation process

    Science.gov (United States)

    Mundschau, Michael [Longmont, CO; Xie, Xiaobing [Foster City, CA; Evenson, IV, Carl; Grimmer, Paul [Longmont, CO; Wright, Harold [Longmont, CO

    2011-05-24

    A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to a hydrogen separation membrane system comprising a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to an integrated water gas shift/hydrogen separation membrane system wherein the hydrogen separation membrane system comprises a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for pretreating a membrane, comprising: heating the membrane to a desired operating temperature and desired feed pressure in a flow of inert gas for a sufficient time to cause the membrane to mechanically deform; decreasing the feed pressure to approximately ambient pressure; and optionally, flowing an oxidizing agent across the membrane before, during, or after deformation of the membrane. A method of supporting a hydrogen separation membrane system comprising selecting a hydrogen separation membrane system comprising one or more catalyst outer layers deposited on a hydrogen transport membrane layer and sealing the hydrogen separation membrane system to a porous support.

  18. AECL research programs in chemistry

    International Nuclear Information System (INIS)

    Crocker, I.H.; Eastwood, T.A.; Smith, D.R.; Stewart, R.B.; Tomlinson, M.; Torgerson, D.F.

    1980-09-01

    Fundamental or underlying research in chemistry is being done in AECL laboratories to further the understanding of processes involved in current nuclear energy systems and maintain an awareness of progress at the frontiers of chemical research so that new advances can be turned to advantage in future AECL endeavours. The report introduces the current research topics and describes them briefly under the following headings: radiation chemistry, isotope separation, high temperature solution chemistry, fuel reprocessing chemistry, and analytical chemistry. (auth)

  19. Annual report 1983 Chemistry Department

    International Nuclear Information System (INIS)

    Funck, J.; Larsen, E.; Nielsen, O.J.

    1984-05-01

    This report contains a brief survey of the main activities in the Chemistry Department. All articles and reports published and lectures given in 1983 are presented. The facilities and equipment are barely mentioned. The activities are divided into nine groups: 1. radioisotope chemistry 2. analytical- and organic chemistry 3. environmental chemistry 4. polymer chemistry 5. geochemistry and waste disposal 6. radical chemstry 7. positron annihilation 8. mineral processing 9. general. (author)

  20. Solar Hydrogen Reaching Maturity

    Directory of Open Access Journals (Sweden)

    Rongé Jan

    2015-09-01

    Full Text Available Increasingly vast research efforts are devoted to the development of materials and processes for solar hydrogen production by light-driven dissociation of water into oxygen and hydrogen. Storage of solar energy in chemical bonds resolves the issues associated with the intermittent nature of sunlight, by decoupling energy generation and consumption. This paper investigates recent advances and prospects in solar hydrogen processes that are reaching market readiness. Future energy scenarios involving solar hydrogen are proposed and a case is made for systems producing hydrogen from water vapor present in air, supported by advanced modeling.

  1. Canada's hydrogen energy sector

    International Nuclear Information System (INIS)

    Kimmel, T.B.

    2009-01-01

    Canada produces the most hydrogen per capita of any Organization of Economic Cooperation and Development (OECD) country. The majority of this hydrogen is produced by steam methane reforming for industrial use (predominantly oil upgrading and fertilizer production). Canada also has a world leading hydrogen and fuel cell sector. This sector is seeking new methods for making hydrogen for its future energy needs. The paper will discuss Canada's hydrogen and fuel cell sector in the context of its capabilities, its demonstration and commercialization activities and its stature on the world stage. (author)

  2. Hydrogen energy assessment

    Energy Technology Data Exchange (ETDEWEB)

    Salzano, F J; Braun, C [eds.

    1977-09-01

    The purpose of this assessment is to define the near term and long term prospects for the use of hydrogen as an energy delivery medium. Possible applications of hydrogen are defined along with the associated technologies required for implementation. A major focus in the near term is on industrial uses of hydrogen for special applications. The major source of hydrogen in the near term is expected to be from coal, with hydrogen from electric sources supplying a smaller fraction. A number of potential applications for hydrogen in the long term are identified and the level of demand estimated. The results of a cost benefit study for R and D work on coal gasification to hydrogen and electrolytic production of hydrogen are presented in order to aid in defining approximate levels of R and D funding. A considerable amount of data is presented on the cost of producing hydrogen from various energy resources. A key conclusion of the study is that in time hydrogen is likely to play a role in the energy system; however, hydrogen is not yet competitive for most applications when compared to the cost of energy from petroleum and natural gas.

  3. Hydrogen peroxide safety issues

    International Nuclear Information System (INIS)

    Conner, W.V.

    1993-01-01

    A literature survey was conducted to review the safety issues involved in handling hydrogen peroxide solutions. Most of the information found in the literature is not directly applicable to conditions at the Rocky Flats Plant, but one report describes experimental work conducted previously at Rocky Flats to determine decomposition reaction-rate constants for hydrogen peroxide solutions. Data from this report were used to calculate decomposition half-life times for hydrogen peroxide in solutions containing several decomposition catalysts. The information developed from this survey indicates that hydrogen peroxide will undergo both homogeneous and heterogeneous decomposition. The rate of decomposition is affected by temperature and the presence of catalytic agents. Decomposition of hydrogen peroxide is catalyzed by alkalies, strong acids, platinum group and transition metals, and dissolved salts of transition metals. Depending upon conditions, the consequence of a hydrogen peroxide decomposition can range from slow evolution of oxygen gas to a vapor, phase detonation of hydrogen peroxide vapors

  4. Hydrogen and its challenges

    International Nuclear Information System (INIS)

    Schal, M.

    2008-01-01

    The future of hydrogen as a universal fuel is in jeopardy unless we are able to produce it through an environment-friendly way and at a competitive cost. Today almost all the hydrogen used in the world is produced by steam reforming of natural gas. This process releases 8 tonnes of CO 2 per tonne of hydrogen produced. Other means of producing hydrogen are the hydrolysis, the very high temperature hydrolysis, and the direct chemical dissociation of water, these processes are greener than steam reforming but less efficient. About one hundred buses in the world operate on fuel cells fed by hydrogen, but it appears that the first industrial use of hydrogen at great scale will be for the local generation of electricity. Globally the annual budget for research concerning hydrogen is 4.4 milliard (10 9 ) euros worldwide. (A.C.)

  5. Technetium Chemistry in HLW

    International Nuclear Information System (INIS)

    Hess, Nancy J.; Felmy, Andrew R.; Rosso, Kevin M.; Xia Yuanxian

    2005-01-01

    Tc contamination is found within the DOE complex at those sites whose mission involved extraction of plutonium from irradiated uranium fuel or isotopic enrichment of uranium. At the Hanford Site, chemical separations and extraction processes generated large amounts of high level and transuranic wastes that are currently stored in underground tanks. The waste from these extraction processes is currently stored in underground High Level Waste (HLW) tanks. However, the chemistry of the HLW in any given tank is greatly complicated by repeated efforts to reduce volume and recover isotopes. These processes ultimately resulted in mixing of waste streams from different processes. As a result, the chemistry and the fate of Tc in HLW tanks are not well understood. This lack of understanding has been made evident in the failed efforts to leach Tc from sludge and to remove Tc from supernatants prior to immobilization. Although recent interest in Tc chemistry has shifted from pretreatment chemistry to waste residuals, both needs are served by a fundamental understanding of Tc chemistry

  6. Advanced studies in chemistry control with morpholine

    International Nuclear Information System (INIS)

    Riddle, J.M.

    1992-07-01

    Prior studies at Beaver Valley Unit 1 and at Prairie Island found that the substitution of morpholine for ammonia reduced corrosion and iron transport in the feedtrain of pressurized water reactors. The benefits of using morpholine encouraged other utilities to consider morpholine water chemistry. Calvert Cliffs Unit 1 was the first domestic PWR with deep-bed condensate polishers to use morpholine water chemistry. Typically a bed is operated in the hydrogen cycle for eight to ten days, followed by an additional 25 days in the morpholine cycle. Morpholine reduced feedwater iron levels by 28 percent. With morpholine treatment at Calvert Cliffs Unit 1, corrosion product transport in feedwater was reduced by a factor of 1.3 -- 1.4. Morpholine treatment at higher levels at Prairie Island Unit 2 provided a factor of 2.3 reduction in feedwater iron transport, in agreement with data from Electricity de France. EdF data show that the factor increases as the pH for ammonia chemistry is reduced from 9.5. When possible, the factors were compared at a pH of 9.2 for morpholine at room temperature. Aqueous solutions of morpholine thermally decompose at increasing rates with temperature above about 288 degree C (550 degree F). Oxygen and several metal oxides appear to increase the rate of decomposition to a small extent. Acetate, formate, and various amines, including ammonia, are the principal decomposition products

  7. Shutdown chemistry optimization at Maanshan NPP

    International Nuclear Information System (INIS)

    Sun Yuanlung; Chuang Benjamin; Su Kouhwa; Kao Jueiting

    2009-01-01

    At Maanshan PWRs, a significant piping radiation buildup caused by crud burst from fuel surface in the beginning of RFO used to be blamed as a contribution to high personal exposures during outage. Therefore, several modifications on shutdown chemistry procedures such as, early lithium removal, rapid boration, dissolved hydrogen removal, extended RCP operation, and maintaining maximum let down flow, have been consecutively conducted since no.1RFO-16, 2006. The important operational and chemical parameters of modified shutdown chemistry procedures adopted in no.2 RFO-17, 2008 and superiority in low reading (2 mSv/hr) from let down heat exchangers area radiation monitor over 11mSv/hr of no.1 RFO-16 at the same area will be addressed in this paper. At the end of no.2 RFO-17, low personal exposures of 765 man-mSv (TLD)verified the absence of crud burst during shutdown chemistry process and broke records of Maanshan NPP as well. Even with a new job on PZR pre-emptive dissimilar weld overlay which exhausting 17.37% of total 797 man-mSv(TLD) in the latest no.1 RFO-18, 659 man-mSv (TLD) made another record low in the history of Maanshan. (author)

  8. Ammonia chemistry in a flameless jet

    Energy Technology Data Exchange (ETDEWEB)

    Zieba, Mariusz; Schuster, Anja; Scheffknecht, Guenter [Institute of Process Engineering and Power Plant Technology, University of Stuttgart, Pfaffenwaldring 23, D-70569 Stuttgart (Germany); Brink, Anders; Hupa, Mikko [Process Chemistry Centre, Aabo Akademi University, Biskopsgatan 8, 20500 Aabo (Finland)

    2009-10-15

    In this paper, the nitrogen chemistry in an ammonia (NH{sub 3}) doped flameless jet is investigated using a kinetic reactor network model. The reactor network model is used to explain the main differences in ammonia chemistry for methane (CH{sub 4})-containing fuels and methane-free fuels. The chemical pathways of nitrogen oxides (NO{sub x}) formation and destruction are identified using rate-of-production analysis. The results show that in the case of natural gas, ammonia reacts relatively late at fuel lean condition leading to high NO{sub x} emissions. In the pre-ignition zone, the ammonia chemistry is blocked due to the absence of free radicals which are consumed by methane-methyl radical (CH{sub 3}) conversion. In the case of methane-free gas, the ammonia reacted very rapidly and complete decomposition was reached in the fuel rich region of the jet. In this case the necessary radicals for the ammonia conversion are generated from hydrogen (H{sub 2}) oxidation. (author)

  9. Hydrogen - From hydrogen to energy production

    International Nuclear Information System (INIS)

    Klotz, Gregory

    2005-01-01

    More than a century ago, Jules Verne wrote in 'The Mysterious Island' that water would one day be employed as fuel: 'Hydrogen and oxygen, which constitute it, used singly or together, will furnish an inexhaustible source of heat and light'. Today, the 'water motor' is not entirely the dream of a writer. Fiction is about to become fact thanks to hydrogen, which can be produced from water and when burned in air itself produces water. Hydrogen is now at the heart of international research. So why do we have such great expectations of hydrogen? 'Hydrogen as an energy system is now a major challenge, both scientifically and from an environmental and economic point of view'. Dominated as it is by fossil fuels (oil, gas and coal), our current energy system has left a dual threat hovering over our environment, exposing the planet to the exhaustion of its natural reserves and contributing to the greenhouse effect. If we want sustainable development for future generations, it is becoming necessary to diversify our methods of producing energy. Hydrogen is not, of course, a source of energy, because first it has to be produced. But it has the twofold advantage of being both inexhaustible and non-polluting. So in the future, it should have a very important role to play. (author)

  10. Hydrogen Filling Station

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

    2010-02-24

    Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen

  11. Chemistry of plutonium revealed

    International Nuclear Information System (INIS)

    Connick, R.E.

    1992-01-01

    In 1941 one goal of the Manhattan Project was to unravel the chemistry of the synthetic element plutonium as rapidly as possible. In this paper the work carried out at Berkeley from the spring of 1942 to the summer of 1945 is described briefly. The aqueous chemistry of plutonium is quite remarkable. Important insights were obtained from tracer experiments, but the full complexity was not revealed until macroscopic amounts (milligrams) became available. Because processes for separation from fission products were based on aqueous solutions, such solution chemistry was emphasized, particularly precipitation and oxidation-reduction behavior. The latter turned out to be unusually intricate when it was discovered that two more oxidation states existed in aqueous solution than had previously been suspected. Further, an equilibrium was rapidly established among the four aqueous oxidation states, while at the same time any three were not in equilibrium. These and other observations made while doing a crash study of a previously unknown element are reported

  12. Introduction to nuclear chemistry

    International Nuclear Information System (INIS)

    Lieser, K.H.

    1980-01-01

    The study in this book begins with the periodic system of elements (chapter 1). The physical fundamentals necessary to understand nuclear chemistry are dealt with in chapter 2. Chapter 3 and 4 treat the influence of the mass number on the chemical behaviour (isotope effect) and the isotope separation methods thus based on this effect. A main topic is studied in chapter 5, the laws of radioactive decay, a second main topic is dealt with in chapter 8, nuclear reactions. The chemical effects of nuclear reactions are treated on their own chapter 9. Radiochemical reactions which are partly closely linked to the latter are only briefly discussed in chapter 10. The following chapters discuss the various application fields of nuclear chemistry. The large apparatus indispensable for nuclear chemistry is dealt with in a special chapter (chapter 12). Chapter 15 summarizes the manifold applications. (orig.) [de

  13. Fluorine in medicinal chemistry.

    Science.gov (United States)

    Swallow, Steven

    2015-01-01

    Since its first use in the steroid field in the late 1950s, the use of fluorine in medicinal chemistry has become commonplace, with the small electronegative fluorine atom being a key part of the medicinal chemist's repertoire of substitutions used to modulate all aspects of molecular properties including potency, physical chemistry and pharmacokinetics. This review will highlight the special nature of fluorine, drawing from a survey of marketed fluorinated pharmaceuticals and the medicinal chemistry literature, to illustrate key concepts exploited by medicinal chemists in their attempts to optimize drug molecules. Some of the potential pitfalls in the use of fluorine will also be highlighted. © 2015 Elsevier B.V. All rights reserved.

  14. Reaction chemistry of cerium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    It is truly ironic that a synthetic organic chemist likely has far greater knowledge of the reaction chemistry of cerium(IV) than an inorganic colleague. Cerium(IV) reagents have long since been employed as oxidants in effecting a wide variety of organic transformations. Conversely, prior to the late 1980s, the number of well characterized cerium(IV) complexes did not extend past a handful of known species. Though in many other areas, interest in the molecular chemistry of the 4f-elements has undergone an explosive growth over the last twenty years, the chemistry of cerium(IV) has for the most part been overlooked. This report describes reactions of cerium complexes and structure.

  15. Mathematics for physical chemistry

    CERN Document Server

    Mortimer, Robert G

    2005-01-01

    Mathematics for Physical Chemistry, Third Edition, is the ideal text for students and physical chemists who want to sharpen their mathematics skills. It can help prepare the reader for an undergraduate course, serve as a supplementary text for use during a course, or serve as a reference for graduate students and practicing chemists. The text concentrates on applications instead of theory, and, although the emphasis is on physical chemistry, it can also be useful in general chemistry courses. The Third Edition includes new exercises in each chapter that provide practice in a technique immediately after discussion or example and encourage self-study. The first ten chapters are constructed around a sequence of mathematical topics, with a gradual progression into more advanced material. The final chapter discusses mathematical topics needed in the analysis of experimental data.* Numerous examples and problems interspersed throughout the presentations * Each extensive chapter contains a preview, objectives, and ...

  16. Introductory quantum chemistry

    International Nuclear Information System (INIS)

    Chandra, A.K.

    1974-01-01

    This book on quantum chemistry is primarily intended for university students at the senior undergraduate level. It serves as an aid to the basic understanding of the important concepts of quantum mechanics introduced in the field of chemistry. Various chapters of the book are devoted to the following : (i) Waves and quanta, (ii) Operator concept in quantum chemistry, (iii) Wave mechanics of some simple systems, (iv) Perturbation theory, (v) Many-electron atoms and angular momenta (vi) Molecular orbital theory and its application to the electronic structure of diatomic molecules, (vii) Chemical bonding in polyatomic molecules and (viii) Chemical applications of Hellmann-Feynman theorem. At the end of each chapter, a set of problems is given and the answers to these problems are given at the end of the book. (A.K.)

  17. Ultrafine hydrogen storage powders

    Science.gov (United States)

    Anderson, Iver E.; Ellis, Timothy W.; Pecharsky, Vitalij K.; Ting, Jason; Terpstra, Robert; Bowman, Robert C.; Witham, Charles K.; Fultz, Brent T.; Bugga, Ratnakumar V.

    2000-06-13

    A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

  18. Canadian hydrogen safety program

    International Nuclear Information System (INIS)

    MacIntyre, I.; Tchouvelev, A.V.; Hay, D.R.; Wong, J.; Grant, J.; Benard, P.

    2007-01-01

    The Canadian hydrogen safety program (CHSP) is a project initiative of the Codes and Standards Working Group of the Canadian transportation fuel cell alliance (CTFCA) that represents industry, academia, government, and regulators. The Program rationale, structure and contents contribute to acceptance of the products, services and systems of the Canadian Hydrogen Industry into the Canadian hydrogen stakeholder community. It facilitates trade through fair insurance policies and rates, effective and efficient regulatory approval procedures and accommodation of the interests of the general public. The Program integrates a consistent quantitative risk assessment methodology with experimental (destructive and non-destructive) failure rates and consequence-of-release data for key hydrogen components and systems into risk assessment of commercial application scenarios. Its current and past six projects include Intelligent Virtual Hydrogen Filling Station (IVHFS), Hydrogen clearance distances, comparative quantitative risk comparison of hydrogen and compressed natural gas (CNG) refuelling options; computational fluid dynamics (CFD) modeling validation, calibration and enhancement; enhancement of frequency and probability analysis, and Consequence analysis of key component failures of hydrogen systems; and fuel cell oxidant outlet hydrogen sensor project. The Program projects are tightly linked with the content of the International Energy Agency (IEA) Task 19 Hydrogen Safety. (author)

  19. High density hydrogen research

    International Nuclear Information System (INIS)

    Hawke, R.S.

    1977-01-01

    The interest in the properties of very dense hydrogen is prompted by its abundance in Saturn and Jupiter and its importance in laser fusion studies. Furthermore, it has been proposed that the metallic form of hydrogen may be a superconductor at relatively high temperatures and/or exist in a metastable phase at ambient pressure. For ten years or more, laboratories have been developing the techniques to study hydrogen in the megabar region (1 megabar = 100 GPa). Three major approaches to study dense hydrogen experimentally have been used, static presses, shockwave compression, and magnetic compression. Static tchniques have crossed the megabar threshold in stiff materials but have not yet been convincingly successful in very compressible hydrogen. Single and double shockwave techniques have improved the precision of the pressure, volume, temperature Equation of State (EOS) of molecular hydrogen (deuterium) up to near 1 Mbar. Multiple shockwave and magnetic techniques have compressed hydrogen to several megabars and densities in the range of the metallic phase. The net result is that hydrogen becomes conducting at a pressure between 2 and 4 megabars. Hence, the possibility of making a significant amount of hydrogen into a metal in a static press remains a formidable challenge. The success of such experiments will hopefully answer the questions about hydrogen's metallic vs. conducting molecular phase, superconductivity, and metastability. 4 figures, 15 references

  20. The energy carrier hydrogen

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The potential of hydrogen to be used as a clean fuel for the production of heat and power, as well as for the propulsion of aeroplanes and vehicles, is described, in particular for Germany. First, attention is paid to the application of hydrogen as a basic material for the (petro)chemical industry, as an indirect energy source for (petro)chemical processes, and as a direct energy source for several purposes. Than the importance of hydrogen as an energy carrier in a large-scale application of renewable energy sources is discussed. Next an overview is given of new and old hydrogen production techniques from fossil fuels, biomass, or the electrolysis of water. Energetic applications of hydrogen in the transportation sector and the production of electric power and heat are mentioned. Brief descriptions are given of techniques to store hydrogen safely. Finally attention is paid to hydrogen research in Germany. Two hydrogen projects, in which Germany participates, are briefly dealt with: the Euro-Quebec project (production of hydrogen by means of hydropower), and the HYSOLAR project (hydrogen production by means of solar energy). 18 figs., 1 tab., 7 refs

  1. Hydrogen energy applications

    International Nuclear Information System (INIS)

    Okken, P.A.

    1992-10-01

    For the Energy and Material consumption Scenarios (EMS), by which emission reduction of CO 2 and other greenhouse gases can be calculated, calculations are executed by means of the MARKAL model (MARket ALlocation, a process-oriented dynamic linear programming model to minimize the costs of the energy system) for the Netherlands energy economy in the period 2000-2040, using a variable CO 2 emission limit. The results of these calculations are published in a separate report (ECN-C--92-066). The use of hydrogen can play an important part in the above-mentioned period. An overview of several options to produce or use hydrogen is given and added to the MARKAL model. In this report techno-economical data and estimates were compiled for several H 2 -application options, which subsequently also are added to the MARKAL model. After a brief chapter on hydrogen and the impact on the reduction of CO 2 emission attention is paid to stationary and mobile applications. The stationary options concern the mixing of natural gas with 10% hydrogen, a 100% substitution of natural gas by hydrogen, the use of a direct steam generator (combustion of hydrogen by means of pure oxygen, followed by steam injection to produce steam), and the use of fuel cells. The mobile options concern the use of hydrogen in the transportation sector. In brief, attention is paid to a hydrogen passenger car with an Otto engine, and a hydrogen passenger car with a fuel cell, a hybrid (metal)-hydride car, a hydrogen truck, a truck with a methanol fuel cell, a hydrogen bus, an inland canal boat with a hydrogen fuel cell, and finally a hydrogen airplane. 2 figs., 15 tabs., 1 app., 26 refs

  2. Chemistry for environmental scientists

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, Detlev [Brandenburgische Technische Univ., Berlin (Germany). Lehrstuhl fuer Luftchemie und Luftreinhaltung

    2015-07-01

    Non-chemists in environmental sciences and engineering (e.g. physicists, biologists, ecologists, geographers, soil scientists, hydrologists, meteorologists, economists, engineers) need chemical basic knowledge for understanding chemical processes in the environment. This book focuses on general and fundamental chemistry (including required physics) such as properties and bonding of matter, chemical kinetics and mechanisms, phase and chemical equilibrium, the basic features of air (gases), water (liquids) and soil (solids) and the most important substances and their reactions in the environment. Selected key environmental chemical processes are shortly characterised in the light of multi-component and multiphase chemistry. This book is also useful for chemists who are beginning work on environmental issues.

  3. Progress in physical chemistry

    CERN Document Server

    Hempelmann, Rolf

    2008-01-01

    Progress in Physical Chemistry is a collection of recent ""Review Articles"" published in the ""Zeitschrift für Physikalische Chemie"". The second volume of Progress in Physical Chemistry is a collection of thematically closely related minireview articles written by the members of the Collaborative Research Centre (SFB) 277 of the German Research Foundation (DFG). These articles are based on twelve years of intense coordinated research efforts. Central topics are the synthesis and the characterization of interface-dominated, i.e. nanostructured materials, mainly in the solid state but also as

  4. Inorganic chemistry and medicine

    International Nuclear Information System (INIS)

    Sadler, P.J.; Guo, Z.

    1999-01-01

    Inorganic chemistry is beginning to have a major impact on medicine. Not only does it offer the prospect of the discovery of truly novel drugs and diagnostic agents, but it promises to make a major contribution to our understanding of the mechanism of action of organic drugs too. Most of this article is concerned with recent developments in medicinal coordination chemistry. The role of metal organic compounds of platinum, titanium, ruthenium, gallium, bismuth, gold, gadolinium, technetium, silver, cobalt in the treatment or diagnosis of common diseases are briefly are examined

  5. Frontiers in nuclear chemistry

    International Nuclear Information System (INIS)

    Sood, D.D.; Reddy, A.V.R.; Pujari, P.K.

    1996-01-01

    This book contains articles on the landmarks in nuclear and radiochemistry which takes through scientific history spanning over five decades from the times of Roentgen to the middle of this century. Articles on nuclear fission and back end of the nuclear fuel cycle give an insight into the current status of this subject. Reviews on frontier areas like lanthanides, actinides, muonium chemistry, accelerator based nuclear chemistry, fast radiochemical separations and nuclear medicine bring out the multidisciplinary nature of nuclear sciences. This book also includes an article on environmental radiochemistry and safety. Chapters relevant to INIS are indexed separately

  6. Nuclear chemistry 1

    International Nuclear Information System (INIS)

    Macasek, F.

    2009-01-01

    This text-book (electronic book - multi-media CD-ROM) constitutes a course-book - author's collection of lectures. It consists of 9 lectures in which the reader acquaints with the basis of nuclear chemistry and radiochemistry: History of nucleus; Atomic nuclei; Radioactivity; Nuclear reactions and nucleogenesis; Isotopism; Ionizing radiation; Radiation measurement; Nuclear energetics; Isotopic indicators. This course-book may be interesting for students, post-graduate students of chemistry, biology, physics, medicine a s well as for teachers, scientific workers and physicians. (author)

  7. Spins in chemistry

    CERN Document Server

    McWeeny, Roy

    2004-01-01

    Originally delivered as a series of lectures, this volume systematically traces the evolution of the ""spin"" concept from its role in quantum mechanics to its assimilation into the field of chemistry. Author Roy McWeeny presents an in-depth illustration of the deductive methods of quantum theory and their application to spins in chemistry, following the path from the earliest concepts to the sophisticated physical methods employed in the investigation of molecular structure and properties. Starting with the origin and development of the spin concept, the text advances to an examination of sp

  8. Chemistry for environmental scientists

    International Nuclear Information System (INIS)

    Moeller, Detlev

    2015-01-01

    Non-chemists in environmental sciences and engineering (e.g. physicists, biologists, ecologists, geographers, soil scientists, hydrologists, meteorologists, economists, engineers) need chemical basic knowledge for understanding chemical processes in the environment. This book focuses on general and fundamental chemistry (including required physics) such as properties and bonding of matter, chemical kinetics and mechanisms, phase and chemical equilibrium, the basic features of air (gases), water (liquids) and soil (solids) and the most important substances and their reactions in the environment. Selected key environmental chemical processes are shortly characterised in the light of multi-component and multiphase chemistry. This book is also useful for chemists who are beginning work on environmental issues.

  9. The chemistry of silicon

    CERN Document Server

    Rochow, E G; Emeléus, H J; Nyholm, Ronald

    1975-01-01

    Pergamon Texts in Organic Chemistry, Volume 9: The Chemistry of Silicon presents information essential in understanding the chemical properties of silicon. The book first covers the fundamental aspects of silicon, such as its nuclear, physical, and chemical properties. The text also details the history of silicon, its occurrence and distribution, and applications. Next, the selection enumerates the compounds and complexes of silicon, along with organosilicon compounds. The text will be of great interest to chemists and chemical engineers. Other researchers working on research study involving s

  10. Solvent effects in chemistry

    CERN Document Server

    Buncel, Erwin

    2015-01-01

    This book introduces the concepts, theory and experimental knowledge concerning solvent effects on the rate and equilibrium of chemical reactions of all kinds.  It begins with basic thermodynamics and kinetics, building on this foundation to demonstrate how a more detailed understanding of these effects may be used to aid in determination of reaction mechanisms, and to aid in planning syntheses. Consideration is given to theoretical calculations (quantum chemistry, molecular dynamics, etc.), to statistical methods (chemometrics), and to modern day concerns such as ""green"" chemistry, where ut

  11. Chemistry WebBook

    Science.gov (United States)

    SRD 69 NIST Chemistry WebBook (Web, free access)   The NIST Chemistry WebBook contains: Thermochemical data for over 7000 organic and small inorganic compounds; thermochemistry data for over 8000 reactions; IR spectra for over 16,000 compounds; mass spectra for over 33,000 compounds; UV/Vis spectra for over 1600 compounds; electronic and vibrational spectra for over 5000 compounds; constants of diatomic molecules(spectroscopic data) for over 600 compounds; ion energetics data for over 16,000 compounds; thermophysical property data for 74 fluids.

  12. Dynamic Combinatorial Chemistry

    DEFF Research Database (Denmark)

    Lisbjerg, Micke

    This thesis is divided into seven chapters, which can all be read individually. The first chapter, however, contains a general introduction to the chemistry used in the remaining six chapters, and it is therefore recommended to read chapter one before reading the other chapters. Chapter 1...... is a general introductory chapter for the whole thesis. The history and concepts of dynamic combinatorial chemistry are described, as are some of the new and intriguing results recently obtained. Finally, the properties of a broad range of hexameric macrocycles are described in detail. Chapter 2 gives...

  13. Basic radiation chemistry for the ionising energy treatment of food

    International Nuclear Information System (INIS)

    Moore, P.W.

    1985-01-01

    Before we can understand the chemistry involved in the irradiation of complex substances such as food we need to have some appreciation of the reactions involved and the products formed when ionising energy interacts with the simple substances such as water and dilute solutions. Reactions involving hydrated electrons, hydrogen atoms and hydroxyl radicals are examined and methods for minimising radiolytic effects in foods are discussed

  14. IS process for thermochemical hydrogen production

    International Nuclear Information System (INIS)

    Onuki, Kaoru; Nakajima, Hayato; Ioka, Ikuo; Futakawa, Masatoshi; Shimizu, Saburo

    1994-11-01

    The state-of-the-art of thermochemical hydrogen production by IS process is reviewed including experimental data obtained at JAERI on the chemistry of the Bunsen reaction step and on the corrosion resistance of the structural materials. The present status of laboratory scale demonstration at JAERI is also included. The study on the chemistry of the chemical reactions and the products separations has identified feasible methods to function the process. The flowsheeting studies revealed a process thermal efficiency higher than 40% is achievable under efficient process conditions. The corrosion resistance of commercially available structural materials have been clarified under various process conditions. The basic scheme of the process has been realized in a laboratory scale apparatus. R and D requirements to proceed to the engineering demonstration coupled with HTTR are briefly discussed. (author)

  15. Hydrogen gains further momentum

    International Nuclear Information System (INIS)

    Anon.

    2017-01-01

    As first industrial production projects should become a reality in the next few years, hydrogen as a source of energy will find important applications with mobility, which momentum is rapid and irresistible. Next steps will be the (large capacity) storage of hydrogen associated to power-to-gas systems and the generalization of renewable energies. This document presents 5 articles, which themes are: Description and explanation of the process of hydrogen production; Presentation of the H2V project for the construction, in Normandy, of the first operational industrial hydrogen production plant using electric power 100 pc generated by renewable energies; The conversion of electric power from renewable energies through hydrogen storage and fuel cells for buildings applications (Sylfen project); The development of a reversible fuel cell at Mines-Paris Tech University, that will be adapted to the storage of renewable electric power; Hydrogen as a lever for the development of zero-emission vehicles, from trucks to cars and bicycles

  16. Hydrogen Fuelling Stations

    DEFF Research Database (Denmark)

    Rothuizen, Erasmus Damgaard

    . A system consisting of one high pressure storage tank is used to investigate the thermodynamics of fuelling a hydrogen vehicle. The results show that the decisive parameter for how the fuelling proceeds is the pressure loss in the vehicle. The single tank fuelling system is compared to a cascade fuelling......This thesis concerns hydrogen fuelling stations from an overall system perspective. The study investigates thermodynamics and energy consumption of hydrogen fuelling stations for fuelling vehicles for personal transportation. For the study a library concerning the components in a hydrogen fuelling...... station has been developed in Dymola. The models include the fuelling protocol (J2601) for hydrogen vehicles made by Society of Automotive Engineers (SAE) and the thermodynamic property library CoolProp is used for retrieving state point. The components in the hydrogen fuelling library are building up...

  17. Recent advances in study of uranium surface chemistry in China

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Lizhu; Lai, Xinchun [Science and Technology on Surface Physics and Chemistry Laboratory, Sichuan (China); Wang, Xiaolin [China Academy of Engineering Physics, Sichuan (China)

    2014-04-01

    Uranium is very important in nuclear energy industry; however, uranium and its alloys corrode seriously in various atmospheres because of their chemical reactivities. In China, continuous investigations focused on surface chemistry have been carried out for a thorough understanding of uranium in order to provide technical support for its engineering applications. Oxidation kinetics of uranium and its alloys in oxidizing atmospheres are in good agreement with those in the literature. In addition to the traditional techniques, non-traditional methods have been applied for oxidation kinetics of uranium, and it has been verified that spectroscopic ellipsometry and X-ray diffraction are effective and nondestructive tools for in situ kinetic studies. The inhibition efficiency of oxidizing gas impurities on uranium hydrogenation is found to follow the order CO{sub 2} > CO > O{sub 2}, and the broadening of XPS shoulders with temperature in depth profile of hydrogenated uranium surface is discussed, which is not mentioned in the literature. Significant progress on surface chemistry of alloyed uranium (U-Nb and U-Ti) in hydrogen atmosphere is reported, and it is revealed that the hydrating nucleation and subsequent growth of alloyed uranium are closely connected with the surface states, underlying metal matrix, and it is microstructure-dependent. In this review, the recent advances in uranium surface chemistry in China, published so far mostly in Chinese language, are briefly summarized. Suggestions for further study are made. (orig.)

  18. Recent advances in study of uranium surface chemistry in China

    International Nuclear Information System (INIS)

    Luo, Lizhu; Lai, Xinchun; Wang, Xiaolin

    2014-01-01

    Uranium is very important in nuclear energy industry; however, uranium and its alloys corrode seriously in various atmospheres because of their chemical reactivities. In China, continuous investigations focused on surface chemistry have been carried out for a thorough understanding of uranium in order to provide technical support for its engineering applications. Oxidation kinetics of uranium and its alloys in oxidizing atmospheres are in good agreement with those in the literature. In addition to the traditional techniques, non-traditional methods have been applied for oxidation kinetics of uranium, and it has been verified that spectroscopic ellipsometry and X-ray diffraction are effective and nondestructive tools for in situ kinetic studies. The inhibition efficiency of oxidizing gas impurities on uranium hydrogenation is found to follow the order CO 2 > CO > O 2 , and the broadening of XPS shoulders with temperature in depth profile of hydrogenated uranium surface is discussed, which is not mentioned in the literature. Significant progress on surface chemistry of alloyed uranium (U-Nb and U-Ti) in hydrogen atmosphere is reported, and it is revealed that the hydrating nucleation and subsequent growth of alloyed uranium are closely connected with the surface states, underlying metal matrix, and it is microstructure-dependent. In this review, the recent advances in uranium surface chemistry in China, published so far mostly in Chinese language, are briefly summarized. Suggestions for further study are made. (orig.)

  19. Fuel Cell and Hydrogen Technology Validation | Hydrogen and Fuel Cells |

    Science.gov (United States)

    NREL Fuel Cell and Hydrogen Technology Validation Fuel Cell and Hydrogen Technology Validation The NREL technology validation team works on validating hydrogen fuel cell electric vehicles; hydrogen fueling infrastructure; hydrogen system components; and fuel cell use in early market applications such as

  20. Characterization of the electrochemical behavior of coating by steel welding 308l and in presence of noble metals deposits; Caracterizacion del comportamiento electroquimico de recubrimiento por soldadura de acero 308L y en presencia de depositos de metales nobles

    Energy Technology Data Exchange (ETDEWEB)

    Piedras, P.; Arganis J, C. R., E-mail: pedro.piedras@hotmail.es [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-10-15

    In this work the oxide deposits and noble metals deposit were characterized (Ag and Pt) on a coating of stainless steel 308l that were deposited by the shield metal arc welding (SMAW) on steel A36 by means of scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction. The extrapolation of Tafel technique was also used to obtain the corrosion potential (Ec) for the pre-rusty steel and for the samples with deposits of Pt and Ag under conditions of hydrogen water chemistry (HWC), demonstrating that this parameter diminishes with the presence of this deposits. (Author)

  1. Characterization of the electrochemical behavior of coating by steel welding 308l and in presence of noble metals deposits

    International Nuclear Information System (INIS)

    Piedras, P.; Arganis J, C. R.

    2014-10-01

    In this work the oxide deposits and noble metals deposit were characterized (Ag and Pt) on a coating of stainless steel 308l that were deposited by the shield metal arc welding (SMAW) on steel A36 by means of scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction. The extrapolation of Tafel technique was also used to obtain the corrosion potential (Ec) for the pre-rusty steel and for the samples with deposits of Pt and Ag under conditions of hydrogen water chemistry (HWC), demonstrating that this parameter diminishes with the presence of this deposits. (Author)

  2. Recent results from the chemistry of recoiling carbon and silicon atoms: The interplay between hot atom chemistry and gas kinetics

    International Nuclear Information System (INIS)

    Gaspar, P.P.; Garmestani, K.; Ferrieri, R.A.; Wolf, A.P.

    1990-01-01

    Recent results from the chemistry of recoiling carbon and silicon atoms illustrate the power of an experimental approach to the solution of complex mechanistic problems that combines the study of the reactions of recoiling atoms with conventional gas kinetic techniques. Included will be the reactions of 11 C atoms with anisole, addressing the question whether an aromatic pi-electron system can compete as a reactive site with carbon-hydrogen bonds

  3. Analytical Chemistry as Methodology in Modern Pure and Applied Chemistry

    OpenAIRE

    Honjo, Takaharu

    2001-01-01

    Analytical chemistry is an indispensable methodology in pure and applied chemistry, which is often compared to a foundation stone of architecture. In the home page of jsac, it is said that analytical chemistry is a learning of basic science, which treats the development of method in order to get usefull chemical information of materials by means of detection, separation, and characterization. Analytical chemistry has recently developed into analytical sciences, which treats not only analysis ...

  4. Hydrogen energy systems studies

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.M.; Steinbugler, M.; Dennis, E. [Princeton Univ., NJ (United States)] [and others

    1995-09-01

    For several years, researchers at Princeton University`s Center for Energy and Environmental Studies have carried out technical and economic assessments of hydrogen energy systems. Initially, we focussed on the long term potential of renewable hydrogen. More recently we have explored how a transition to renewable hydrogen might begin. The goal of our current work is to identify promising strategies leading from near term hydrogen markets and technologies toward eventual large scale use of renewable hydrogen as an energy carrier. Our approach has been to assess the entire hydrogen energy system from production through end-use considering technical performance, economics, infrastructure and environmental issues. This work is part of the systems analysis activity of the DOE Hydrogen Program. In this paper we first summarize the results of three tasks which were completed during the past year under NREL Contract No. XR-11265-2: in Task 1, we carried out assessments of near term options for supplying hydrogen transportation fuel from natural gas; in Task 2, we assessed the feasibility of using the existing natural gas system with hydrogen and hydrogen blends; and in Task 3, we carried out a study of PEM fuel cells for residential cogeneration applications, a market which might have less stringent cost requirements than transportation. We then give preliminary results for two other tasks which are ongoing under DOE Contract No. DE-FG04-94AL85803: In Task 1 we are assessing the technical options for low cost small scale production of hydrogen from natural gas, considering (a) steam reforming, (b) partial oxidation and (c) autothermal reforming, and in Task 2 we are assessing potential markets for hydrogen in Southern California.

  5. Hydrogen storage container

    Science.gov (United States)

    Wang, Jy-An John; Feng, Zhili; Zhang, Wei

    2017-02-07

    An apparatus and system is described for storing high-pressure fluids such as hydrogen. An inner tank and pre-stressed concrete pressure vessel share the structural and/or pressure load on the inner tank. The system and apparatus provide a high performance and low cost container while mitigating hydrogen embrittlement of the metal tank. System is useful for distributing hydrogen to a power grid or to a vehicle refueling station.

  6. Hydrogen meter prooftesting

    International Nuclear Information System (INIS)

    McCown, J.J.; Mettler, G.W.

    1976-04-01

    Two diffusion type hydrogen meters have been tested on the Prototype Applications Loop (PAL). The ANL designed unit was used to monitor hydrogen in sodium during FFTF startup and over a wide range of hydrogen concentrations resulting from chemical additions to the sodium and cover gas. A commercially available meter was added and its performance compared with the ANL unit. Details of the test work are described

  7. Photochemical hydrogen production system

    International Nuclear Information System (INIS)

    Copeland, R.J.

    1990-01-01

    Both technical and economic factors affect the cost of producing hydrogen by photochemical processes. Technical factors include the efficiency and the capital and operating costs of the renewable hydrogen conversion system; economic factors include discount rates, economic life, credit for co-product oxygen, and the value of the energy produced. This paper presents technical and economic data for a system that generates on-peak electric power form photochemically produced hydrogen

  8. Hydrogen Fuel Cell Vehicles

    OpenAIRE

    Anton Francesch, Judit

    1992-01-01

    Hydrogen is an especially attractive transportation fuel. It is the least polluting fuel available, and can be produced anywhere there is water and a clean source of electricity. A fuel cycle in which hydrogen is produced by solar-electrolysis of water, or by gasification of renewably grown biomass, and then used in a fuel-cell powered electric-motor vehicle (FCEV), would produce little or no local, regional, or global pollution. Hydrogen FCEVs would combine the best features of bat...

  9. ICE CHEMISTRY IN STARLESS MOLECULAR CORES

    Energy Technology Data Exchange (ETDEWEB)

    Kalvans, J., E-mail: juris.kalvans@venta.lv [Engineering Research Institute “Ventspils International Radio Astronomy Center” of Ventspils University College, Inzenieru 101, Ventspils, LV-3601 (Latvia)

    2015-06-20

    Starless molecular cores are natural laboratories for interstellar molecular chemistry research. The chemistry of ices in such objects was investigated with a three-phase (gas, surface, and mantle) model. We considered the center part of five starless cores, with their physical conditions derived from observations. The ice chemistry of oxygen, nitrogen, sulfur, and complex organic molecules (COMs) was analyzed. We found that an ice-depth dimension, measured, e.g., in monolayers, is essential for modeling of chemistry in interstellar ices. Particularly, the H{sub 2}O:CO:CO{sub 2}:N{sub 2}:NH{sub 3} ice abundance ratio regulates the production and destruction of minor species. It is suggested that photodesorption during the core-collapse period is responsible for the high abundance of interstellar H{sub 2}O{sub 2} and O{sub 2}H and other species synthesized on the surface. The calculated abundances of COMs in ice were compared to observed gas-phase values. Smaller activation barriers for CO and H{sub 2}CO hydrogenation may help explain the production of a number of COMs. The observed abundance of methyl formate HCOOCH{sub 3} could be reproduced with a 1 kyr, 20 K temperature spike. Possible desorption mechanisms, relevant for COMs, are gas turbulence (ice exposure to interstellar photons) or a weak shock within the cloud core (grain collisions). To reproduce the observed COM abundances with the present 0D model, 1%–10% of ice mass needs to be sublimated. We estimate that the lifetime for starless cores likely does not exceed 1 Myr. Taurus cores are likely to be younger than their counterparts in most other clouds.

  10. Chemistry is Evergreen

    Indian Academy of Sciences (India)

    Srimath

    2008 Nobel Prize in Chemistry. Swagata Dasgupta. Swagata Dasgupta is an ... would get excited. The GFP would then emit green light. (509 nm) and return to the ground state. com ponents required. T hese include a photoprotein,ae- quorin (F igure 2) w hich em its .... a chemical reaction which originates in an organism.

  11. Molten salt reactors: chemistry

    International Nuclear Information System (INIS)

    1983-01-01

    This work is a critical analysis of the 1000 MW MSBR project. Behavior of rare gases in the primary coolant circuit, their extraction from helium. Coating of graphite by molybdenum, chemistry of protactinium and niobium produced in the molten salt, continuous reprocessing of the fuel salt and use of stainless steel instead of hastelloy are reviewed [fr

  12. Antiparallel Dynamic Covalent Chemistries

    NARCIS (Netherlands)

    Matysiak, Bartosz M.; Nowak, Piotr; Cvrtila, Ivica; Pappas, Charalampos G.; Liu, Bin; Komaromy, David; Otto, Sijbren

    2017-01-01

    The ability to design reaction networks with high, but addressable complexity is a necessary prerequisite to make advanced functional chemical systems. Dynamic combinatorial chemistry has, proven to be a useful tool in achieving complexity, however with some limitations in controlling it. Herein we

  13. Colour chemistry in water

    OpenAIRE

    Cardona, Maria

    2015-01-01

    Atmospheric carbon dioxide (CO2) levels have increased dramatically in the last few decades. Famous for causing global warming, CO2 is also resulting in the acidification of seas and oceans. http://www.um.edu.mt/think/colour-chemistry-in-water/

  14. Chemistry and Heritage

    Science.gov (United States)

    Vittoria Barbarulo, Maria

    2014-05-01

    Chemistry is the central science, as it touches every aspect of the society we live in and it is intertwined with many aspects of our culture; in particular, the strong link between Chemistry and Archaeology and Art History is being explored, offering a penetrating insight into an area of growing interest from an educational point of view. A series of vital and vibrant examples (i.e., ancient bronzes composition, colour changes due to natural pigment decomposition, marble degradation) has been proposed, on one hand, to improve student understanding of the relationship between cultural and scientific issues arising from the examination, the conservation, and the maintenance of cultural Heritage, on the other, to illustrate the role of the underlying Chemistry. In some case studies, a survey of the most relevant atmospheric factors, which are involved in the deterioration mechanisms, has also been presented to the students. First-hand laboratory experiences have been providing an invaluable means of discovering the full and varied world of Chemistry. Furthermore, the promotion of an interdisciplinary investigation of a famous painting or fresco, involving the study of its nature and significance, the definition of its historical context, any related literature, the chemical knowledge of the materials used, may be an excellent occasion to experiment the Content and Language Integrated Learning (CLIL). The aim of this approach is to convey the important message that everyone has the responsibility to care for and preserve Heritage for the benefit of present and future generations.

  15. News: Green Chemistry & Technology

    Science.gov (United States)

    A series of 21 articles focused on different features of green chemistry in a recent issue of Chemical Reviews. Topics extended over a wide range to include the design of sustainable synthetic processes to biocatalysis. A selection of perspectives follows as part of this colu

  16. Electrostatics in Chemistry

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 2. Electrostatics in Chemistry - Basic Principles. Shridhar R Gadre Pravin K Bhadane. Series Article Volume 4 Issue 2 February 1999 pp 8-19. Fulltext. Click here to view fulltext PDF. Permanent link:

  17. Chemistry and Popperism.

    Science.gov (United States)

    Akeroyd, F. Michael

    1984-01-01

    Discusses the relationship of Karl Popper's theories to chemistry, examining scientific statements and verisimilitude (which indicates that newer theories should have a higher degree of truth content compared with older theories). Also provides examples illustrating the use of Agassi's criteria for assessing currently fashionable theories. (JN)

  18. The Lens of Chemistry

    Science.gov (United States)

    Thalos, Mariam

    2013-01-01

    Chemistry possesses a distinctive theoretical lens--a distinctive set of theoretical concerns regarding the dynamics and transformations of a perplexing variety of organic and nonorganic substances--to which it must be faithful. Even if it is true that chemical facts bear a special (reductive) relationship to physical facts, nonetheless it will…

  19. Chemistry Cook-Off

    Science.gov (United States)

    McCormick, Cynthia

    2012-01-01

    For this activity, high school chemistry students compete in a cooking contest. They must determine the chemical and physical changes that occur in the food they prepare, present their recipe as a step-by-step procedure similar to a lab procedure, identify chemicals in the food, and present all measurements in both metric and English units. The…

  20. Evaluating Environmental Chemistry Textbooks.

    Science.gov (United States)

    Hites, Ronald A.

    2001-01-01

    A director of the Indiana University Center for Environmental Science Research reviews textbooks on environmental chemistry. Highlights clear writing, intellectual depth, presence of problem sets covering both the qualitative and quantitative aspects of the material, and full coverage of the topics of concern. Discusses the director's own approach…

  1. Nuclear Chemistry, exercises

    International Nuclear Information System (INIS)

    Savio, E.; Saucedo, E.

    2002-01-01

    Those exercises have as objective to introduce the student in the basic concepts of nuclear chemistry: a) way of decline b) balances of mass used in nuclear reactions c) how to calculate activities, activity concentrations and specific activity d) radiotracers use in biomedical sciences pharmaceutical

  2. The chemistry of glycerin

    International Nuclear Information System (INIS)

    Kimsanov, B.Kh.; Karimov, M.B.; Khuseynov, K.

    1998-01-01

    This book dedicated to chemistry of polyatomic alcohols, in particular, to glycerin and its numerous derivatives. These compounds are very widespread in the natural objects and carry out several functions in alive organism. Big part of these matters are arrange in industry production of base organic synthesis

  3. The Chemistry of Griseofulvin

    DEFF Research Database (Denmark)

    Petersen, Asger Bjørn; Rønnest, Mads Holger; Larsen, Thomas Ostenfeld

    2014-01-01

    Specific synthetic routes are presented in schemes to illustrate the chemistry, and the analogs are presented in a table format to give an accessible overview of the structures. Several patents have been published regarding the properties of griseofulvin and its derivatives including synthesis...

  4. Plasma processing and chemistry

    NARCIS (Netherlands)

    Schram, D.C.; Mullen, van der J.J.A.M.; Sanden, van de M.C.M.

    1994-01-01

    The growing field of applications of plasma as deposition, etching, surface modification and chemical conversion has stimulated a renewed interest in plasma science in the atomic physical chemistry regime. The necessity to optimize the various plasma processing techniques in terms of rates, and

  5. Electrostatics in Chemistry

    Indian Academy of Sciences (India)

    Electrostatics in Chemistry. 3. Molecular Electrostatic Potential: Visualization and Topography. Shridhar R Gadre and Pravin K Bhadane. 1 1. Basic Principles, Resona- nce, Vol.4, No.2, 11-19, 1999. 2. Electrostatic Potentials of. Atoms, Ions and Molecules,. Resonance, Vol.4, No.5, 40-51,. 1999. Topographical features of the ...

  6. Supramolecular systems chemistry

    NARCIS (Netherlands)

    Mattia, Elio; Otto, Sijbren

    The field of supramolecular chemistry focuses on the non-covalent interactions between molecules that give rise to molecular recognition and self-assembly processes. Since most non-covalent interactions are relatively weak and form and break without significant activation barriers, many

  7. Analytical Chemistry Laboratory

    Science.gov (United States)

    Anderson, Mark

    2013-01-01

    The Analytical Chemistry and Material Development Group maintains a capability in chemical analysis, materials R&D failure analysis and contamination control. The uniquely qualified staff and facility support the needs of flight projects, science instrument development and various technical tasks, as well as Cal Tech.

  8. Dynamic combinatorial chemistry

    NARCIS (Netherlands)

    Otto, Sijbren; Furlan, Ricardo L.E.; Sanders, Jeremy K.M.

    2002-01-01

    A combinatorial library that responds to its target by increasing the concentration of strong binders at the expense of weak binders sounds ideal. Dynamic combinatorial chemistry has the potential to achieve exactly this. In this review, we will highlight the unique features that distinguish dynamic

  9. Is Chemistry Attractive for Pupils? Czech Pupils' Perception of Chemistry

    Science.gov (United States)

    Kubiatko, Milan

    2015-01-01

    Chemistry is an important subject due to understanding the composition and structure of the things around us. The main aim of the study was to find out the perception of chemistry by lower secondary school pupils. The partial aims were to find out the influence of gender, year of study and favorite subject on the perception of chemistry. The…

  10. Liquid hydrogen in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Yasumi, S. [Iwatani Corp., Osaka (Japan). Dept. of Overseas Business Development

    2009-07-01

    Japan's Iwatani Corporation has focused its attention on hydrogen as the ultimate energy source in future. Unlike the United States, hydrogen use and delivery in liquid form is extremely limited in the European Union and in Japan. Iwatani Corporation broke through industry stereotypes by creating and building Hydro Edge Co. Ltd., Japan's largest liquid hydrogen plant. It was established in 2006 as a joint venture between Iwatani and Kansai Electric Power Group in Osaka. Hydro Edge is Japan's first combined liquid hydrogen and ASU plant, and is fully operational. Liquid oxygen, liquid nitrogen and liquid argon are separated from air using the cryogenic energy of liquefied natural gas fuel that is used for power generation. Liquid hydrogen is produced efficiently and simultaneously using liquid nitrogen. Approximately 12 times as much hydrogen in liquid form can be transported and supplied as pressurized hydrogen gas. This technology is a significant step forward in the dissemination and expansion of hydrogen in a hydrogen-based economy.

  11. Hydrogen gas detector

    International Nuclear Information System (INIS)

    Bohl, T.L.

    1982-01-01

    A differential thermocouple hydrogen gas detector has one thermocouple junction coated with an activated palladium or palladium-silver alloy catalytic material to allow heated hydrogen gas to react with the catalyst and raise the temperature of that junction. The other juction is covered with inert glass or epoxy resin, and does not experience a rise in temperature in the presence of hydrogen gas. A coil heater may be mounted around the thermocouple junctions to heat the hydrogen, or the gas may be passed through a heated block prior to exposing it to the thermocouples

  12. Sustainable hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Block, D.L.; Linkous, C.; Muradov, N.

    1996-01-01

    This report describes the Sustainable Hydrogen Production research conducted at the Florida Solar Energy Center (FSEC) for the past year. The report presents the work done on the following four tasks: Task 1--production of hydrogen by photovoltaic-powered electrolysis; Task 2--solar photocatalytic hydrogen production from water using a dual-bed photosystem; Task 3--development of solid electrolytes for water electrolysis at intermediate temperatures; and Task 4--production of hydrogen by thermocatalytic cracking of natural gas. For each task, this report presents a summary, introduction/description of project, and results.

  13. Purification of hydrogen sulfide

    International Nuclear Information System (INIS)

    Tsao, U.

    1978-01-01

    A process is described for purifying a hydrogen sulfide gas stream containing carbon dioxide, comprising (a) passing the gas stream through a bed of solid hydrated lime to form calcium hydrosulfide and calcium carbonate and (b) regenerating hydrogen sulfide from said calcium hydrosulfide by reacting the calcium hydrosulfide with additional carbon dioxide. The process is especially applicable for use in a heavy water recovery process wherein deuterium is concentrated from a feed water containing carbon dioxide by absorption and stripping using hydrogen sulfide as a circulating medium, and the hydrogen sulfide absorbs a small quantity of carbon dioxide along with deuterium in each circulation

  14. New hydrogen technologies

    International Nuclear Information System (INIS)

    1992-01-01

    This report presents an overview of the overall hydrogen system. There are separate sections for production, distribution, transport, storage; and applications of hydrogen. The most important methods for hydrogen production are steam reformation of natural gas and electrolysis of water. Of the renewable energy options, production of hydrogen by electrolysis using electricity from wind turbines or by gasification of biomass were found to be the most economic for Finland. Direct use of this electricity or the production of liquid fuels from biomass will be competing alternatives. When hydrogen is produced in the solar belt or where there is cheap hydropower it must be transported over long distances. The overall energy consumed for the transport is from 25 to 40 % of the initial available energy. Hydrogen storage can be divided into stationary and mobile types. The most economic, stationary, large scale hydrogen storage for both long and short periods is underground storage. When suitable sites are not available, then pressure vessels are the best for short period and liquid H 2 for long period. Vehicle storage of hydrogen is by either metal hydrides or liquid H 2 . Hydrogen is a very versatile energy carrier. It can be used to produce heat directly in catalytic burners without flame, to produce electricity in fuel cells with high efficiency for use in vehicles or for peak power shaving, as a fuel component with conventional fuels to reduce emissions, as a way to store energy and as a chemical reagent in reactions

  15. Hydrogen as automotive fuel

    International Nuclear Information System (INIS)

    Ambrosini, G.; Ciancia, A.; Pede, G.; Brighigna, M.

    1993-01-01

    Hydrogen fueled vehicles may just be the answer to the air pollution problem in highly polluted urban environments where the innovative vehicle's air pollution abatement characteristics would justify its high operating costs as compared with those of conventional automotive alternatives. This paper examines the feasibility of hydrogen as an automotive fuel by analyzing the following aspects: the chemical-physical properties of hydrogen in relation to its use in internal combustion engines; the modifications necessary to adapt internal combustion engines to hydrogen use; hydrogen fuel injection systems; current production technologies and commercialization status of hydrogen automotive fuels; energy efficiency ratings; environmental impacts; in-vehicle storage systems - involving the use of hydrides, high pressure systems and liquid hydrogen storage systems; performance in terms of pay-load ratio; autonomous operation; and operating costs. With reference to recent trial results being obtained in the USA, an assessment is also made of the feasibility of the use of methane-hydrogen mixtures as automotive fuels. The paper concludes with a review of progress being made by ENEA (the Italian Agency for New Technology, Energy and the Environment) in the development of fuel storage and electronic fuel injection systems for hydrogen powered vehicles

  16. Hydrogen as automotive fuel

    International Nuclear Information System (INIS)

    Dini, D.; Ciancia, A.; Pede, G.; Sglavo, V.; ENEA, Rome

    1992-01-01

    An assessment of the technical/economic feasibility of the use of hydrogen as an automotive fuel is made based on analyses of the following: the chemical- physical properties of hydrogen in relation to its use in internal combustion engines; the modifications necessary to adapt internal combustion engines to hydrogen use; hydrogen fuel injection systems - with water vapour injection, cryogenic injection, and the low or high pressure injection of hydrogen directly into the combustion chamber; the current commercialization status of hydrogen automotive fuels; energy efficiency ratings; environmental impacts; in-vehicle storage systems - involving the use of hydrides, high pressure systems and liquid hydrogen storage systems; performance in terms of pay-load ratio; autonomous operation; and operating costs. The paper concludes that, considering current costs for hydrogen fuel production, distribution and use, at present, the employment of hydrogen fuelled vehicles is feasible only in highly polluted urban environments where the innovative vehicle's air pollution abatement characteristics would justify its high operating costs as compared with those of conventional automotive alternatives

  17. Palladium Nanoparticle Hydrogen Sensor

    Directory of Open Access Journals (Sweden)

    I. Pavlovsky

    2006-12-01

    Full Text Available An innovative hydrogen sensor based on palladium (Pd nanoparticle networks is described in the article. Made by Applied Nanotech Inc. sensor has a fast response time, in the range of seconds, which is increased at 80 °C due to higher hydrogen diffusion rates into the palladium lattice. The low detection limit of the sensor is 10 ppm of H2, and the high limit is 40,000 ppm. This is 100% of a lowest flammability level of hydrogen. This range of sensitivities complies with the requirements that one would expect for a reliable hydrogen sensor.

  18. Atomic hydrogen reactor

    International Nuclear Information System (INIS)

    Massip de Turville, C.M.D.

    1982-01-01

    Methods are discussed of generating heat in an atomic hydrogen reactor which involve; the production of atomic hydrogen by an electrical discharge, the capture of nascent neutrons from atomic hydrogen in a number of surrounding steel alloy tubes having a high manganese content to produce 56 Mn, the irradiation of atomic hydrogen by the high energy antineutrinos from the beta decay of 56 Mn to yield nascent neutrons, and the removal of the heat generated by the capture of nascent neutrons by 55 Mn and the beta decay of 56 Mn. (U.K.)

  19. Asymmetric Transfer Hydrogenation of 1-Aryl-3,4-Dihydroisoquinolines Using a Cp*Ir(TsDPEN) Complex

    Czech Academy of Sciences Publication Activity Database

    Václavíková Vilhanová, B.; Budinská, Alena; Václavík, Jiří; Matoušek, V.; Kuzma, M.; Červený, L.

    2017-01-01

    Roč. 2017, č. 34 (2017), s. 5131-5134 ISSN 1434-193X Institutional support: RVO:61388963 Keywords : 1-aryl-3,4-dihydroisoquinolines * asymmetric synthesis * hydrogenation * iridium * phosphoric acid Subject RIV: CC - Organic Chemistry OBOR OECD: Organic chemistry Impact factor: 2.834, year: 2016

  20. Liquid phase oxidation chemistry in continuous-flow microreactors.

    Science.gov (United States)

    Gemoets, Hannes P L; Su, Yuanhai; Shang, Minjing; Hessel, Volker; Luque, Rafael; Noël, Timothy

    2016-01-07

    Continuous-flow liquid phase oxidation chemistry in microreactors receives a lot of attention as the reactor provides enhanced heat and mass transfer characteristics, safe use of hazardous oxidants, high interfacial areas, and scale-up potential. In this review, an up-to-date overview of both technological and chemical aspects of liquid phase oxidation chemistry in continuous-flow microreactors is given. A description of mass and heat transfer phenomena is provided and fundamental principles are deduced which can be used to make a judicious choice for a suitable reactor. In addition, the safety aspects of continuous-flow technology are discussed. Next, oxidation chemistry in flow is discussed, including the use of oxygen, hydrogen peroxide, ozone and other oxidants in flow. Finally, the scale-up potential for continuous-flow reactors is described.

  1. Studies about interaction of hydrogen isotopes with metals and intermetallic compounds

    International Nuclear Information System (INIS)

    Vasut, F.; Anisoara, P.; Zamfirache, M.

    2003-01-01

    Hydrogen is a non-toxic but highly inflammable gas. Compared to other inflammable gases, its range of inflammability in air is much broader (4-74.5%) but it also vaporizes much more easily. Handling of hydrogen in form of hydrides enhances safety. The interaction of hydrogen with metals and intermetallic compounds is a major field within physical chemistry. Using hydride-forming metals and intermetallic compounds, for example, recovery, purification and storage of heavy isotopes in tritium containing system can solve many problems arising in the nuclear-fuel cycle. The paper presents the thermodynamics and the kinetics between hydrogen and metal or intermetallic compounds. (author)

  2. Radiation chemistry in nuclear technology

    International Nuclear Information System (INIS)

    Katsumura, Yosuke

    2006-01-01

    The importance of radiation chemistry in the field of nuclear technology including reactor chemistry, spent fuel reprocessing and radioactive high level waste repository, is summarized and, in parallel, our research activity will be briefly presented. (author)

  3. From Matter to Life: Chemistry?!

    Indian Academy of Sciences (India)

    chemistry came along at milder temperatures; particles formed atoms; these ... Chemistry is the science of matter and of its transformations, and life is its highest ..... information. The progression from elementary particles to the nucleus, the.

  4. Enhancing hydrogen spillover and storage

    Science.gov (United States)

    Yang, Ralph T [Ann Arbor, MI; Li, Yingwel [Ann Arbor, MI; Lachawiec, Jr., Anthony J.

    2011-05-31

    Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonification as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.

  5. Mathematical problems for chemistry students

    CERN Document Server

    Pota, Gyorgy

    2011-01-01

    Mathematical Problems for Chemistry Students has been compiled and written (a) to help chemistrystudents in their mathematical studies by providing them with mathematical problems really occurring in chemistry (b) to help practising chemists to activate their applied mathematical skills and (c) to introduce students and specialistsof the chemistry-related fields (physicists, mathematicians, biologists, etc.) intothe world of the chemical applications.Some problems of the collection are mathematical reformulations of those in the standard textbooks of chemistry, others we

  6. Process for exchanging hydrogen isotopes between gaseous hydrogen and water

    International Nuclear Information System (INIS)

    Hindin, S. G.; Roberts, G. W.

    1980-01-01

    A process for exchanging isotopes of hydrogen, particularly tritium, between gaseous hydrogen and water is provided whereby gaseous hydrogen depeleted in tritium and liquid or gaseous water containing tritium are reacted in the presence of a metallic catalyst

  7. Identification of Di(oxymethylene)glycol in the Raman Spectrum of Formaldehyde Aqueous Solutions by ab lnitio Molecular Dynamics Simulations and Quantum Chemistry Calculations

    Czech Academy of Sciences Publication Activity Database

    Delcroix, Pauline; Pagliai, M.; Cardini, G.; Bégué, D.; Hanoune, B.

    2015-01-01

    Roč. 119, č. 38 (2015), s. 9785-9793 ISSN 1089-5639 Institutional support: RVO:61388963 Keywords : hydrogen bond dynamics * chemical equilibria * liquid water Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.883, year: 2015

  8. Aqueous Solution Chemistry of Plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Clark, David L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-28

    Things I have learned working with plutonium: Chemistry of plutonium is complex; Redox equilibria make Pu solution chemistry particularly challenging in the absence of complexing ligands; Understanding this behavior is key to successful Pu chemistry experiments; There is no suitable chemical analog for plutonium.

  9. Annual report 1985 Chemistry Department

    International Nuclear Information System (INIS)

    1987-01-01

    This annual report describes the activities carried out in 1985 by the Chemistry Department in the following fields: Chemistry, Inorganic Chemistry, Physicochemistry (Interphases, Surfaces), General Chemical Analysis, Active Materials Analysis, X Ray Fluorescence Analysis, Mass Spectroscopy (Isotopic Analysis, Instrumentation) and Optical Spectroscopy. A list of publications is enclosed. (M.E.L.) [es

  10. HMI scientific report - chemistry 1987

    International Nuclear Information System (INIS)

    1989-01-01

    Results of the R and D activities of the Radiation Chemistry Department, Hahn-Meitner-Institut, are reported, primarily dealing with the following subjects: Interface processes and energy conversion, high-energy photochemistry and radiation chemistry as well as trace elements chemistry. A list of publications and lectures is added and gives a view on results obtained in research and development. (EF) [de

  11. Division of Analytical Chemistry, 1998

    DEFF Research Database (Denmark)

    Hansen, Elo Harald

    1999-01-01

    The article recounts the 1998 activities of the Division of Analytical Chemistry (DAC- formerly the Working Party on Analytical Chemistry, WPAC), which body is a division of the Federation of European Chemical Societies (FECS). Elo Harald Hansen is the Danish delegate, representing The Danish...... Chemical Society/The Society for Analytical Chemistry....

  12. Efficient production and economics of the clean fuel hydrogen. Paper no. IGEC-1-Keynote-Elnashaie

    International Nuclear Information System (INIS)

    Elnashaie, S.

    2005-01-01

    This paper/plenary lecture to this green energy conference briefly discusses six main issues: 1) The future of hydrogen economy; 2) Thermo-chemistry of hydrogen production for different techniques of autothermic operation using different feedstocks; 3) Improvement of the hydrogen yield and minimization of reformer size through combining fast fluidization with hydrogen and oxygen membranes together with CO 2 sequestration; 4) Efficient production of hydrogen using novel Autothermal Circulating Fluidized Bed Membrane Reformer (ACFBMR); 5) Economics of hydrogen production; and, 6) Novel gasification process for hydrogen production from biomass. It is shown that hydrogen economy is not a Myth as some people advocate, and that with well-directed research it will represent a bright future for humanity utilizing such a clean, everlasting fuel, which is also free of deadly conflicts for the control of energy sources. It is shown that autothermic production of hydrogen using novel reformers configurations and wide range of feedstocks is a very promising route towards achieving a successful hydrogen economy. A novel process for the production of hydrogen from different renewable biomass sources is presented and discussed. The process combines the principles of pyrolysis with the simultaneous use of catalyst, membranes and CO 2 sequestration to produce pure hydrogen directly from the unit. Some of the novel processes presented are essential components of modern bio-refineries. (author)

  13. Heavy-ion radiation chemistry

    International Nuclear Information System (INIS)

    Imamura, Masashi

    1975-01-01

    New aspect of heavy ion radiation chemistry is reviewed. Experiment has been carried out with carbon ions and nitrogen ions accelerated by a 160 cm cyclotron of the Institute of Physical and Chemical Research. The results of experiments are discussed, taking into consideration the effects of core radius depending on heavy ion energy and of the branch tracks of secondary electrons outside the core on chemical reaction and the yield of products. The effect of core size on chemical reaction was not able to be observed, because the incident energy of heavy ions was only several tens of MeV. Regarding high radical density, attention must be given to the production of oxygen in the core. It is possible to produce O 2 in the core in case of high linear energy transfer (LET), while no production of O 2 in case of low LET radiation. This may be one of study problems in future. LET effects on the yield of decomposed products were examined on acetone, methyl-ethyl-ketone and diethyl ketone, using heavy ions (C and N) as well as gamma radiation and helium ions. These three ketones showed that the LET change of two gaseous products, H 2 and CO, was THF type. There are peaks at 50-70 eV/A in the yield of both products. The peaks suggest the occurrence of ''saturation'' in decomposition. Attention was drawn to acetone containing a small amount (2 wt.%) of H 2 O. H 2 O and CO produced from this system differ from those in the pure system. The hydrogen connection formed by such a small amount of H 2 O may mediate the energy transfer. Sodium acetate tri-hydrate produces CH 3 radical selectively by gamma-ray irradiation at 77 K. In this case, the production of CH 2 COO - increases with the increase of LET of radiation. This phenomenon may be an important study problem. (Iwakiri, K.)

  14. Scientific Information Analysis of Chemistry Dissertations Using Thesaurus of Chemistry

    Directory of Open Access Journals (Sweden)

    Taghi Rajabi

    2017-09-01

    Full Text Available : Concept maps of chemistry can be obtained from thesaurus of chemistry. Analysis of information in the field of chemistry is done at graduate level, based on comparing and analyzing chemistry dissertations by using these maps. Therefore, the use of thesaurus for analyzing scientific information is recommended. Major advantage of using this method, is that it is possible to obtain a detailed map of all academic researches across all branches of science. The researches analysis results in chemical science can play a key role in developing strategic research policies, educational programming, linking universities to industries and postgraduate educational programming. This paper will first introduce the concept maps of chemistry. Then, emerging patterns from the concept maps of chemistry will be used to analyze the trend in the academic dissertations in chemistry, using the data collected and stored in our database at Iranian Research Institute for Information Science and Technology (IranDoc over the past 10 years (1998-2009.

  15. Physical Chemistry '98: Fourth International Conference on Fundamental and Applied Aspects of Physical Chemistry - Papers

    International Nuclear Information System (INIS)

    Ribnikar, S.; Anic, S.

    1998-01-01

    The proceedings has following chapters: Plenary lectures; Chemical Thermodynamics; Spectroscopy, Molecular Structures, Physical Chemistry of Plasma; Kinetics, Catalysis, Nonlinear Dynamics; Electrochemistry; Biophysical Chemistry, Photochemistry, Radiation Chemistry; Radiochemistry, Nuclear Chemistry; Solid State Physical Chemistry, Material Science; Macromolecular Physical Chemistry; Environmental Protection; Phase Boundaries; Complex Compounds; General Physical Chemistry. A separated abstract was prepared for each of the 20 papers selected from the three chapters: Biophysical Chemistry, Photochemistry, Radiation Chemistry; Radiochemistry, Nuclear Chemistry. and Environmental Protection. Refs and figs

  16. Hydrogen and fuel cells

    International Nuclear Information System (INIS)

    2006-06-01

    This road-map proposes by the Group Total aims to inform the public on the hydrogen and fuel cells. It presents the hydrogen technology from the production to the distribution and storage, the issues as motor fuel and fuel cells, the challenge for vehicles applications and the Total commitments in the domain. (A.L.B.)

  17. Hydrogen in amorphous silicon

    International Nuclear Information System (INIS)

    Peercy, P.S.

    1980-01-01

    The structural aspects of amorphous silicon and the role of hydrogen in this structure are reviewed with emphasis on ion implantation studies. In amorphous silicon produced by Si ion implantation of crystalline silicon, the material reconstructs into a metastable amorphous structure which has optical and electrical properties qualitatively similar to the corresponding properties in high-purity evaporated amorphous silicon. Hydrogen studies further indicate that these structures will accomodate less than or equal to 5 at.% hydrogen and this hydrogen is bonded predominantly in a monohydride (SiH 1 ) site. Larger hydrogen concentrations than this can be achieved under certain conditions, but the excess hydrogen may be attributed to defects and voids in the material. Similarly, glow discharge or sputter deposited amorphous silicon has more desirable electrical and optical properties when the material is prepared with low hydrogen concentration and monohydride bonding. Results of structural studies and hydrogen incorporation in amorphous silicon were discussed relative to the different models proposed for amorphous silicon

  18. Hydrogen evolution reaction catalyst

    Science.gov (United States)

    Subbaraman, Ram; Stamenkovic, Vojislav; Markovic, Nenad; Tripkovic, Dusan

    2016-02-09

    Systems and methods for a hydrogen evolution reaction catalyst are provided. Electrode material includes a plurality of clusters. The electrode exhibits bifunctionality with respect to the hydrogen evolution reaction. The electrode with clusters exhibits improved performance with respect to the intrinsic material of the electrode absent the clusters.

  19. Dark hydrogen fermentations

    NARCIS (Netherlands)

    Vrije, de G.J.; Claassen, P.A.M.

    2003-01-01

    The production of hydrogen is a ubiquitous, natural phenomenon under anoxic or anaerobic conditions. A wide variety of bacteria, in swamps, sewage, hot springs, the rumen of cattle etc. is able to convert organic matter to hydrogen, CO2 and metabolites like acetic acid, lactate, ethanol and alanine.

  20. Hydrogen Storage Tank

    CERN Multimedia

    1983-01-01

    This huge stainless steel reservoir,placed near an end of the East Hall, was part of the safety equipment connected to the 2 Metre liquid hydrogen Bubble Chamber. It could store all the hydrogen in case of an emergency. The picture shows the start of its demolition.

  1. Thick film hydrogen sensor

    Science.gov (United States)

    Hoffheins, Barbara S.; Lauf, Robert J.

    1995-01-01

    A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors.

  2. Hydrogen pellet injection device

    International Nuclear Information System (INIS)

    Kanno, Masahiro.

    1992-01-01

    In a hydrogen pellet injection device, a nozzle block having a hydrogen gas supply channel is disposed at the inner side of a main cryogenic housing, and an electric resistor is attached to the block. Further, a nozzle block and a hydrogen gas introduction pipe are attached by way of a thermal insulating spacer. Electric current is supplied to the resistor to positively heat the nozzle block and melt remaining solid hydrogen in the hydrogen gas supply channel. Further, the effect of temperature elevation due to the resistor is prevented from reaching the side of the hydrogen gas introduction pipe by the thermal insulation spacer. That is, the temperature of the nozzle block is directly and positively elevated, to melt the solid hydrogen rapidly. Preparation operation from the injection of the hydrogen pellet to the next injection can be completed in a shorter period of time compared with a conventional case thereby enabling to make the test more efficient. Further, only the temperature of the nozzle block is elevated with no effect of temperature elevation due to the resistor to other components by the thermal insulation flange. (N.H.)

  3. Hydrogen from biomass

    NARCIS (Netherlands)

    Claassen, P.A.M.; Vrije, de G.J.

    2006-01-01

    Hydrogen is generally regarded as the energy carrier of the future. The development of a process for hydrogen production from biomass complies with the policy of the Dutch government to obtain more renewable energy from biomass. This report describes the progress of the BWP II project, phase 2 of

  4. Measures for removing hydrogen

    International Nuclear Information System (INIS)

    Baukal, W.; Koehling, A.; Langer, G.; Poeschel, E.

    1984-01-01

    Basis for the investigation is a 1300-MW-PWR. The evolution of hydrogen was studied in design-basis and three hypothetical accident scenarios, the loss-of-coolant accident, the failure of emergency cooling system and core meltdown. It was shown that in the case of release rates of 4m 3 H 2 /h, the known post-accident hydrogen removal systems can be used and at medium rates up to 80 m 3 H 2 /h recombines of nuclear and non-nuclear industries are suitable under certain conditions. In the case of larger release rates it appears useful to apply a small recombiner of the type of the post-accident hydrogen removal system combined with an other hydrogen countermeasures. Recommendations are being made for the installation of an accident-proof hydrogen measuring system. (DG) [de

  5. Liquid hydrogen properties

    International Nuclear Information System (INIS)

    Choi, Jung Woon; Kim, Y. J.; Lee, K. H.; Kim, H. I.; Han, K. Y.; Park, J.H.

    2004-03-01

    The purpose of this report is to provide the input data, whose characteristic is thermodynamic and transport, in the form of equation for the thermo-hydraulic calculations using hydrogen as a working substance. The considered data in this report are particularly focused on the properties of para-hydrogen and of equilibrium-hydrogen around the working temperature range of the HANARO-CNS. The discussed properties of hydrogen are, in turn, the pressure of saturated vapors, the density, the heat of vaporization, thermal conductivity, viscosity, and heat capacity. Several equations to fit the above-mentioned experimental data allow calculating the various properties of liquid hydrogen with high accuracy at all considered temperatures

  6. Electrochemical Hydrogen Compressor

    Energy Technology Data Exchange (ETDEWEB)

    Lipp, Ludwig [FuelCell Energy, Inc., Torrington, CT (United States)

    2016-01-21

    Conventional compressors have not been able to meet DOE targets for hydrogen refueling stations. They suffer from high capital cost, poor reliability and pose a risk of fuel contamination from lubricant oils. This project has significantly advanced the development of solid state hydrogen compressor technology for multiple applications. The project has achieved all of its major objectives. It has demonstrated capability of Electrochemical Hydrogen Compression (EHC) technology to potentially meet the DOE targets for small compressors for refueling sites. It has quantified EHC cell performance and durability, including single stage hydrogen compression from near-atmospheric pressure to 12,800 psi and operation of EHC for more than 22,000 hours. Capital cost of EHC was reduced by 60%, enabling a path to meeting the DOE cost targets for hydrogen compression, storage and delivery ($2.00-2.15/gge by 2020).

  7. Hydrogen production methods

    International Nuclear Information System (INIS)

    Hammerli, M.

    1982-07-01

    Old, present and new proceses for producing hydrogen are assessed critically. The emphasis throughout is placed on those processes which could be commercially viable before the turn of the century for large-scale hydrogen manufacture. Electrolysis of water is the only industrial process not dependent on fossil resources for large-scale hydrogen production and is likely to remain so for the next two or three decades. While many new processes, including those utilizing sunlight directly or indirectly, are presently not considered to be commercially viable for large-scale hydrogen production, research and development effort is needed to enhance our understanding of the nature of these processes. Water vapour electrolysis is compared with thermochemical processes: the former has the potential for displacing all other processes for producing hydrogen and oxygen from water

  8. Hydrogen storage using borohydrides

    International Nuclear Information System (INIS)

    Bernard BONNETOT; Laetitia LAVERSENNE

    2006-01-01

    The possibilities of hydrogen storage using borohydrides are presented and discussed specially in regard of the recoverable hydrogen amount and related to the recovering conditions. A rapid analysis of storage possibilities is proposed taking in account the two main ways for hydrogen evolution: the dehydrogenation obtained through thermal decomposition or the hydrolysis of solids or solutions. The recoverable hydrogen is related to the dehydrogenation conditions and the real hydrogen useful percentage is determined for each case of use. The high temperature required for dehydrogenation even when using catalyzed compounds lead to poor outlooks for this storage way. The hydrolysis conditions direct the chemical yield of the water consuming, and this must be related to the experimental conditions which rule the storage capacity of the 'fuel' derived from the borohydride. (authors)

  9. Kinetics of Platinum-Catalyzed Decomposition of Hydrogen Peroxide

    Science.gov (United States)

    Vetter, Tiffany A.; Colombo, D. Philip, Jr.

    2003-07-01

    CIBA Vision Corporation markets a contact lens cleaning system that consists of an AOSEPT disinfectant solution and an AOSEPT lens cup. The disinfectant is a buffered 3.0% m/v hydrogen peroxide solution and the cup includes a platinum-coated AOSEPT disc. The hydrogen peroxide disinfects by killing bacteria, fungi, and viruses found on the contact lenses. Because the concentration of hydrogen peroxide needed to disinfect is irritating to eyes, the hydrogen peroxide needs to be neutralized, or decomposed, before the contact lenses can be used again. A general chemistry experiment is described where the kinetics of the catalyzed decomposition of the hydrogen peroxide are studied by measuring the amount of oxygen generated as a function of time. The order of the reaction with respect to the hydrogen peroxide, the rate constant, and the energy of activation are determined. The integrated rate law is used to determine the time required to decompose the hydrogen peroxide to a concentration that is safe for eyes.

  10. High temperature water chemistry monitoring

    International Nuclear Information System (INIS)

    Aaltonen, P.

    1992-01-01

    Almost all corrosion phenomena in nuclear power plants can be prevented or at least damped by water chemistry control or by the change of water chemistry control or by the change of water chemistry. Successful water chemistry control needs regular and continuous monitoring of such water chemistry parameters like dissolved oxygen content, pH, conductivity and impurity contents. Conventionally the monitoring is carried out at low pressures and temperatures, which method, however, has some shortcomings. Recently electrodes have been developed which enables the direct monitoring at operating pressures and temperatures. (author). 2 refs, 5 figs

  11. Survey of PWR water chemistry

    International Nuclear Information System (INIS)

    Gorman, J.

    1989-02-01

    This report surveys available information regarding primary and secondary water chemistries of pressurized water reactors (PWRs) and the impact of these water chemistries on reactor operation. The emphasis of the document is on aspects of water chemistry that affect the integrity of the primary pressure boundary and the radiation dose associated with maintenance and operation. The report provides an historical overview of the development of primary and secondary water chemistries, and describes practices currently being followed. Current problems and areas of research associated with water chemistry are described. Recommendations for further research are included. 183 refs., 9 figs., 19 tabs

  12. Bubble and foam chemistry

    CERN Document Server

    Pugh, Robert J

    2016-01-01

    This indispensable guide will equip the reader with a thorough understanding of the field of foaming chemistry. Assuming only basic theoretical background knowledge, the book provides a straightforward introduction to the principles and properties of foams and foaming surfactants. It discusses the key ideas that underpin why foaming occurs, how it can be avoided and how different degrees of antifoaming can be achieved, and covers the latest test methods, including laboratory and industrial developed techniques. Detailing a variety of different kinds of foams, from wet detergents and food foams, to polymeric, material and metal foams, it connects theory to real-world applications and recent developments in foam research. Combining academic and industrial viewpoints, this book is the definitive stand-alone resource for researchers, students and industrialists working on foam technology, colloidal systems in the field of chemical engineering, fluid mechanics, physical chemistry, and applied physics.

  13. Nuclear analytical chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Brune, D.; Forkman, B.; Persson, B.

    1984-01-01

    This book covers the general theories and techniques of nuclear chemical analysis, directed at applications in analytical chemistry, nuclear medicine, radiophysics, agriculture, environmental sciences, geological exploration, industrial process control, etc. The main principles of nuclear physics and nuclear detection on which the analysis is based are briefly outlined. An attempt is made to emphasise the fundamentals of activation analysis, detection and activation methods, as well as their applications. The book provides guidance in analytical chemistry, agriculture, environmental and biomedical sciences, etc. The contents include: the nuclear periodic system; nuclear decay; nuclear reactions; nuclear radiation sources; interaction of radiation with matter; principles of radiation detectors; nuclear electronics; statistical methods and spectral analysis; methods of radiation detection; neutron activation analysis; charged particle activation analysis; photon activation analysis; sample preparation and chemical separation; nuclear chemical analysis in biological and medical research; the use of nuclear chemical analysis in the field of criminology; nuclear chemical analysis in environmental sciences, geology and mineral exploration; and radiation protection.

  14. Quo vadis, analytical chemistry?

    Science.gov (United States)

    Valcárcel, Miguel

    2016-01-01

    This paper presents an open, personal, fresh approach to the future of Analytical Chemistry in the context of the deep changes Science and Technology are anticipated to experience. Its main aim is to challenge young analytical chemists because the future of our scientific discipline is in their hands. A description of not completely accurate overall conceptions of our discipline, both past and present, to be avoided is followed by a flexible, integral definition of Analytical Chemistry and its cornerstones (viz., aims and objectives, quality trade-offs, the third basic analytical reference, the information hierarchy, social responsibility, independent research, transfer of knowledge and technology, interfaces to other scientific-technical disciplines, and well-oriented education). Obsolete paradigms, and more accurate general and specific that can be expected to provide the framework for our discipline in the coming years are described. Finally, the three possible responses of analytical chemists to the proposed changes in our discipline are discussed.

  15. Medicinal chemistry for 2020

    Science.gov (United States)

    Satyanarayanajois, Seetharama D; Hill, Ronald A

    2011-01-01

    Rapid advances in our collective understanding of biomolecular structure and, in concert, of biochemical systems, coupled with developments in computational methods, have massively impacted the field of medicinal chemistry over the past two decades, with even greater changes appearing on the horizon. In this perspective, we endeavor to profile some of the most prominent determinants of change and speculate as to further evolution that may consequently occur during the next decade. The five main angles to be addressed are: protein–protein interactions; peptides and peptidomimetics; molecular diversity and pharmacological space; molecular pharmacodynamics (significance, potential and challenges); and early-stage clinical efficacy and safety. We then consider, in light of these, the future of medicinal chemistry and the educational preparation that will be required for future medicinal chemists. PMID:22004084

  16. Nuclear analytical chemistry

    International Nuclear Information System (INIS)

    Brune, D.; Forkman, B.; Persson, B.

    1984-01-01

    This book covers the general theories and techniques of nuclear chemical analysis, directed at applications in analytical chemistry, nuclear medicine, radiophysics, agriculture, environmental sciences, geological exploration, industrial process control, etc. The main principles of nuclear physics and nuclear detection on which the analysis is based are briefly outlined. An attempt is made to emphasise the fundamentals of activation analysis, detection and activation methods, as well as their applications. The book provides guidance in analytical chemistry, agriculture, environmental and biomedical sciences, etc. The contents include: the nuclear periodic system; nuclear decay; nuclear reactions; nuclear radiation sources; interaction of radiation with matter; principles of radiation detectors; nuclear electronics; statistical methods and spectral analysis; methods of radiation detection; neutron activation analysis; charged particle activation analysis; photon activation analysis; sample preparation and chemical separation; nuclear chemical analysis in biological and medical research; the use of nuclear chemical analysis in the field of criminology; nuclear chemical analysis in environmental sciences, geology and mineral exploration; and radiation protection

  17. Chemistry in protoplanetary disks

    Science.gov (United States)

    Semenov, D. A.

    2012-01-01

    In this lecture I discuss recent progress in the understanding of the chemical evolution of protoplanetary disks that resemble our Solar system during the first ten million years. At the verge of planet formation, strong variations of temperature, density, and radiation intensities in these disks lead to a layered chemical structure. In hot, dilute and heavily irradiated atmosphere only simple radicals, atoms, and atomic ions can survive, formed and destroyed by gas-phase processes. Beneath the atmosphere a partly UV-shielded, warm molecular layer is located, where high-energy radiation drives rich chemistry, both in the gas phase and on dust surfaces. In a cold, dense, dark disk midplane many molecules are frozen out, forming thick icy mantles where surface chemistry is active and where complex (organic) species are synthesized.

  18. Uranium chemistry research unit

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The initial field of research of this Unit, established in 1973, was the basic co-ordination chemistry of uranium, thorium, copper, cobalt and nickel. Subsequently the interest of the Unit extended to extractive metallurgy relating to these metals. Under the term 'co-ordination chemistry' is understood the interaction of the central transition metal ion with surrounding atoms in its immediate vicinity (within bonding distance) and the influence they have on each other - for example, structural studies for determining the number and arrangement of co-ordinated atoms and spectrophotometric studies to establish how the f electron energy levels of uranium are influenced by the environment. New types of uranium compounds have been synthesized and studied, and the behaviour of uranium ions in non-aqueous systems has also received attention. This work can be applied to the development and study of extractants and new extractive processes for uranium

  19. Organic Chemistry in Space

    Science.gov (United States)

    Charnley, Steven

    2009-01-01

    Astronomical observations, theoretical modeling, laboratory simulation and analysis of extraterrestrial material have enhanced our knowledge of the inventory of organic matter in the interstellar medium (ISM) and on small bodies such as comets and asteroids (Ehrenfreund & Charnley 2000). Comets, asteroids and their fragments, meteorites and interplanetary dust particles (IDPs), contributed significant amounts of extraterrestrial organic matter to the young Earth. This material degraded and reacted in a terrestrial prebiotic chemistry to form organic structures that may have served as building blocks for life on the early Earth. In this talk I will summarize our current understanding of the organic composition and chemistry of interstellar clouds. Molecules of astrobiological relevance include the building blocks of our genetic material: nucleic acids, composed of subunits such as N-heterocycles (purines and pyrimidines), sugars and amino acids. Signatures indicative of inheritance of pristine and modified interstellar material in comets and meteorites will also be discussed.

  20. Atmosphere physics and chemistry

    International Nuclear Information System (INIS)

    Delmas, R.; Megie, G.; Peuch, V.H.

    2005-10-01

    Since the 1970's, the awareness about the atmospheric pollution threat has led to a spectacular development of the researches on the complex interactions between the chemical composition of the atmosphere and the climate. This book makes a synthesis of the state-of-the-art in this very active domain of research. Content: introduction, atmosphere dynamics and transport, matter-radiation interaction and radiant transfer, physico-chemical processes, atmospheric aerosol and heterogenous chemistry, anthropic and natural emissions and deposition, stratospheric chemical system, tropospheric chemical system, polluted boundary layer, paleo-environments and ice archives, role of atmospheric chemistry in global changes, measurement principles and instruments, numerical modeling, experimental strategy, regulation and management of the atmospheric environment, index. (J.S.)